
An Engineering Approach for the Design of Hybrid
Modelling Methods

Dimitris Karagiannis(&) and Margit Schwab

Universitaet Wien, Research Group Knowledge Engineering,
Waehringer Strasse 29, 1090 Vienna, Austria

{dk, ms}@dke.univie.ac.at

Abstract. A fast moving business environment requires flexible and open
conceptual modelling approaches for the discussion of diverse needs from the
business point of view. In the conception and design of these business needs
and resulting requirements, manifold modelling languages and methods on
different levels of the realisation process are available. Despite their number,
flexibility in this paper is referred to the exchange of ‘building blocks’ of
modelling frameworks and the composition of hybrid modelling methods. That
this claim for flexibility does neither affect efficiency nor goes at the account of
a sound conception of the hybrid modelling method, a deliberate procedure
comprising different steps is required. We call this procedure conceptualisa-
tion. At the end of this procedure an implementation on a meta-modelling
platform is performed and the result of the conceptualisation process is a
‘deployable tool’. Furthermore we imply the hybrid modelling method is of a
graphical, semi-formal kind and based on a meta-modelling approach. The
conceptualisation is a platform dependent activity. In the paper at hand the
meta-modelling platform ADOxx

�
is used.

Keywords: Meta-model � Modelling language � Hybrid modelling � Adoxx
� �

Meta-modelling platform � Method engineering

1 Introduction

In the disciplines of informatics and business informatics models form in many cases
the methodological basis, but represent in particular the connection to reality.
Depending on the scenario underlying the model construction some of the situations
that are described in form of models are known. In a diversity of ‘developing situa-
tions’ the design of models is required because reality itself does not yet exist [9]. In
both cases a deliberate consideration of the described concepts as well as expected
behaviour is insofar of essential relevance. Aligned to these considerations and
resulting requirements the modelling language intended to be used for the model
construction must offer an appropriate set of expressions and incorporate topic related
concinnity. The more expressive the modelling language is the more detailed infor-
mation can be modelled. The better the abstraction of generic modelling concepts
succeeds the more expressive is the language.

J. Cordeiro et al. (Eds.): ICEIS 2012, LNBIP 141, pp. 3–17, 2013.
DOI: 10.1007/978-3-642-40654-6_1,
� Springer-Verlag Berlin Heidelberg 2013

Based on the initial requirements the different modelling methods are developed
for a specific domain and for a particular purpose. In a ‘reuse scenario’ of the mod-
elling language where the application scenario respectively the purpose of the models
vary, not all of the modelling concepts the language offers, may be meaningful for or
meet the needs of ‘the new scenario’. This is even true for basically generically held
modelling languages. A surplus of modelling concepts is certainly a negligible
‘annoyance’, if there are too little or semantically different modelling concepts as
required, then this is graver. The development of a new modelling language could
solve this issue. Another scenario is that the missing concepts can be regained in
another modelling language respectively modelling method. In such a case a new
development might not seem feasible, e.g. too laborious, but the composition of a
‘user-need-specific’ modelling method is a tempting approach. This is due to several
reasons for example the availability of established modelling concepts with an already
clear recognition and clear in their semantic interpretation, an explicit usage scenario
with an already determined high level aggregated versus micro-flow knowledge
representation, an already solved solution approach for a certain problem, and once
established – the alignment to the existing knowledge base, eventually existing
implementation examples in form of tools, etc.

In the paper we speak of hybrid modelling for describing the process of creation of
such a ‘user-need-specific’ modelling method. We assume an actual modelling need
and therefore discuss this process from the angle of ‘implementation entailing prep-
aration steps’, i.e. the conceptualisation. We will highlight the fundamental integra-
tion problems of this undertaking and discuss them from a meta-model point of view,
from syntactical, structural and semantic heterogeneity. We use the meta-modelling
framework of Karagiannis/Kühn for the definition and distinction of the different parts
of a modelling method [5].

The paper is organized as follows. Section 2 is devoted to explications on hybrid
modelling and resulting integration challenges. Section 3 describes the actual proce-
dure for hybrid modelling in form of a conceptualisation life cycle. Section 4 con-
cludes the paper and gives an outlook on further research questions to be addressed.

2 Hybrid Modelling

The topic of hybrid modelling is predominantly related to two major disciplines –
conceptual and enterprise modelling. In the informatics domain conceptual modelling
has first emerged for the description and design of databases in form of semantic data
models, of programming languages in form of object-orientation and for example
UML and of artificial intelligence, AI in form of knowledge representation, e.g.
description logics [2, p. 4]. The development of conceptual modelling shows that it
was at its beginning a sole computer science topic but got increasingly adopted in
enterprise modelling at this stage. In enterprise modelling scenarios the angle on
information that is represented in form of models is more related to business and
management needs and adds in particular the ‘process perspective’ [11]. In both
strands distinct modelling languages offering appropriate modelling concepts have
been developed for expressing the specific requirements of the different domain.

4 D. Karagiannis and M. Schwab

Traditionally conceptual modelling languages are rather data-structure-oriented, a
property that represents the major difference in contrast to enterprise modelling. In
enterprise modelling the need is to represent business processes and the way how to
process content from a business logic view in form of models. This need requires other
modelling concepts [4, pp. 12–20].

An increasingly powerful IT-support enables gradually more comprehensive and
complex modelling approaches. In order to facilitate the business needs with flexible
and deliberate IT-solutions modelling frameworks tend to offer a vertical integration
of different ‘conceptional’ levels, i.e. from a high level strategic goal definition to the
actual micro flow representation within a specific IT system. Hand in hand with these
comprehensive approaches goes that the actual ‘end user’ of these modelling
frameworks must show comprehensive knowledge about the ‘intended use’ of these
frameworks also. Still, in most cases the offered modelling frameworks provide a
certain direction with the supported application scenarios, e.g. process versus actor-
goal oriented modelling approaches. We claim that due to diverse business require-
ments in a fast moving environment amplified flexibility and open modelling
approaches in form of a ‘modular construction system’ are of need – the hybrid
modelling approach.

Despite, the meaning of hybrid defined in the Oxford English Dictionary as ‘‘[…]
anything derived from heterogeneous sources, or composed of different or incon-
gruous elements; in Philol. a compound formed of elements belonging to different
languages […]’’ the resulting hybrid modelling method must fulfil certain formalisms
[10].

The first requirement is that the result of hybrid modelling is a modelling method
that falls in the category of a graphical semi-formal modelling method based on a
meta-modelling approach. This output-related requirement already claims certain
formalisms regarding the composition and structure of the modelling method.

A second requirement is that the hybrid modelling method is implemented and
offered in form of a modelling tool. The implementation itself uses the programming
language/s as formalism/s. The better the resulting hybrid modelling method is con-
ceptually composed, the smoother the transformation of the concepts to the codes can
be done. The requirement of an implementation is based on the conviction that an
efficient modelling support can only be guaranteed by a modelling tool. Hand in hand
with this persuasion goes the assertion that the user requires a structured procedure for
creating models that are ‘machine-processable’, e.g. for corresponding evaluation
algorithms. In the latter case we do not focus on the creation of executable code from
the conceptual model.

Adopting modelling concepts from different modelling frameworks entails several
challenges on different levels regarding their integration. For all further explanations
the focus is on the metamodel of language levels as depicted in Fig. 1. The classifi-
cation is according to Karagiannis/Kühn [5, p. 453].

Although, the aimed structure shows a metamodel formalism, the different
‘building blocks’ can be of different formalisms, e.g. logic-based formal grammar.
Furthermore they can exhibit diverse abstraction levels. On a metamodel level this
brings along the following states in a way that metamodels vary

An Engineering Approach for the Design of Hybrid Modelling Methods 5

• Vertically, showing different levels of detail;
• Horizontally, the modelling concepts are on the same abstraction level but describe

different aspects;
• In both ways.

One of the most essential parts in hybrid modelling is the integration of the
modelling concepts and the translation from dissimilar formalism on the metamodel
level. As on the metamodel level not at least as modelling language inherent con-
straints are determined in this integration, e.g. which association connects which
modelling elements. The intricacies of a modelling method are rather found on the
abstract syntax and semantic parts that also come along with the expressiveness and
dynamics of the notation. This implies that the integration on a metamodel level is
insufficient.

Though, the structure and constraints of a modelling language are often in focus, a
modelling method provides further concepts apart from its modelling language. At
first extent the ‘functionality’ a modelling method offers is not obvious but it becomes
effective once implemented ‘as a piece of software’. In this context we would like to
stress mechanisms and algorithms. These are characterised by the fact that they
express a form of dynamic behaviour of the modelling method and become applicable
in the composition of the actual ‘end user models’ as instances created by means of
the modelling method. Assuming that an algorithm is part of the hybrid modelling
method, it requires an appropriate ‘translation’ of its general behaviour and semantic
behaviour to the new modelling method, e.g. attributes containing input values.

For all the adopted parts and pieces apply that they were initially designed from a
particular angle, the one of the initial method developer, in order to convey particular
semantics and demand a particular handling in their effective use. Assuming the
hybrid modelling approach does not mean a reuse of existing concepts for a further
development, the initial meaning needs to be taken into account in essential accuracy.

Fig. 1. Focus on the Meta-Model of Language Levels [5].

6 D. Karagiannis and M. Schwab

3 The Conceptualisation Life Cycle for Hybrid Modelling

In the process of hybrid modelling, we identify three basic phases. These are the
creation phase, the design phase and the compilation phase and form together the
conceptualisation life cycle that is shown in Fig. 2. The first phase is related to the
application scenario and the need of the user and refers basically to the selection
process the user performs for identifying the existing modelling concepts within the
hybrid method. The second phase is related to preparatory steps for the implemen-
tation. The most essential task is the determination of the meta-modelling platform.

The design phase cannot be done without knowing the target platform. We will
concentrate on describing the tasks of that phase in the sequel. The compilation phase
relates to the creation of the modelling tool. Depending on the deployment strategy
different solutions are conceivable, e.g. standalone with web-access, mobile app, etc.

3.1 The Creation Phase

At the starting point of this phase the actual application scenario for which models
should be created, must be clear. Based on this need the different building blocks for
the hybrid modelling method can be determined. The detailed study and analysis of
the selected building blocks goes hand in hand with this determination. The actual
integration of the selected parts is understood as ‘a merge’ of existing concepts. The
result of the creation phase is a detailed picture of the available hybrid modelling
concepts and their dependencies, required mechanisms and algorithms including
eventual requirements with regards to ‘model processing’ on an instance level, like
user triggered data actualisations, report generation, dynamic visualisations. The
detailed picture needs to be described in a way that the actual intended usage of the
modelling concepts can be understandable. Depending on the maturity of the under-
lying building blocks the description can be of formal but also informal kind or can for
example include the definition of a consistent meta-model of the hybrid modelling
method on a sole conceptual level. The more concrete the description in the creation
phase is, the easier is the engineering work within the subsequent design phase and the
more aligned to the initial purpose of the hybrid modelling undertaking the resulting

Fig. 2. Conceptualisation Life Cycle for Hybrid Modelling.

An Engineering Approach for the Design of Hybrid Modelling Methods 7

method will be. Independent of the level of formalism in the creation of a hybrid
modelling method the three major parts must be addressed:

• Modelling language including syntax, semantics and notation,
• Mechanisms and algorithms and
• Modelling procedure comprising the actual usage of the modelling language as

intended by the ‘hybrid modelling method developer’, i.e. method engineer.

Several challenges regarding transformation and integration emerge from bringing
the different building blocks on a consistent level. From the angle of the method
engineer this integration task is easier if the selected method and the selected platform
provide the same concepts, e.g. a meta-modelling-approach.

Meta-models are not able to express all syntactical rules that have to be taken into
account when creating a valid instance model that is conform to the defined modelling
language [7, p. 68]. For this reason a detailed description of the three parts of a
modelling language - the syntax, the semantic and notation - is of need. On this
detailed level design decisions are required. These can be necessary due to the fol-
lowing points:

• Syntactical heterogeneity, which represent the difference in formats intended for the
serialization of metamodels.

• Structural heterogeneity:

– Representational heterogeneity: metamodels are represented using different
metamodelling languages, each of them showing difference in its expressive
power of available modelling primitives (classes, attributes, …);

– Schematic heterogeneity: equal concepts are modelled either with different
modelling primitives or with different number of primitives.

• Semantic heterogeneity, which represents differences in the meaning of the con-
sidered metamodel concepts.

Last but not least the ‘look and feel’ in the notations requires integration. Though
it may seem the lesser part, for the untrained addressee with regards to the handling
and reading of diagrammatic models, colour is for example an important distinction
element to keep the available shapes and as a consequence their meaning apart. A
consistent notation is a design decision from the usability point of view.

Depending on the design decisions made in the modelling language part of the
hybrid modelling method, the parts ‘mechanisms and algorithms’ and the ‘modelling
procedure’ part must be aligned.

3.2 The Design Phase

In the design phase the preconditions for the later implementation respectively cus-
tomisation phase are elaborated. Depending on the ‘degree of maturity’, i.e. how many
and well elaborated modelling concepts it offers, underlying formal definition, etc. of
a given modelling method the design phase is more or less extensive.

8 D. Karagiannis and M. Schwab

The prerequisites for starting this phase are on the one hand the input from the
creation phase and on the other hand the platform the hybrid modelling method is
realised on. The hybrid modelling method at this stage is in a status in the range from
‘the raw script’ to ‘ready-to-use’ in its theoretical description and explains the method
from a ‘‘business logic’’ point of view depending on the underlying domain. The meta-
modelling platform, in this case ADOxx

�
adds the ‘technical’ point of view. The entire

conceptualisation process cannot be done if the platform is not determined. The design
phase of the conceptualisation life cycle shows two elementary results: a conceptu-
alisation meta-model and an implementation meta-model.

3.2.1 The Meta-Models
The metamodel term in this paper is understood as the description model of a
language, i.e. the modelling language. The metamodel comprises in itself a particular
structure in form of rules and constraints how the modelling concepts are intended to
be combined by the initial method developer. The metamodel is thus the grammar of
the modelling language [12].

In contrast to the pure language metamodel there are the – in general generically
held – concepts of the meta-modelling platform, so the meta2model, i.e. level 3 of the
graphic in Fig. 1. The particular challenge now is to map the language metamodel to
the ‘generic’ platform concepts. We state that this is a critical task and the better this
alignment succeeds the better the applicability and the more flexible the handling of
the object language will be at the later stage.

Assuming a top-down approach a comprehensive analysis of the to-be-imple-
mented modelling concepts is the first step and includes the identification of hybrid
modelling method inherent dependencies and constraints. If a pure language meta-
model is lacking, it is likely that the actual ‘immediate’ mapping of the modelling
concepts including their dependencies respectively constraints gives a different result
within the conceptualisation life cycle. The reason for this is, that ‘hierarchy of
modelling concepts’ with regards to the platform metamodel can be different than
from a sole ‘business logic’ point of view.

In any case the representation of the language metamodel in the platform meta-
model requires design decisions. These are not necessarily due to an inaccurate
description or specification of the hybrid language metamodel but related to the fact
that some questions arise the first time in the preparation of its implementation. These
questions are triggered by a combination of the structure of the platform and the later
usability of the method. A typical example of such ‘gaps’ are the description of
associations and the constraints they impose. As a popular description language for
metamodels works the UML class diagram and although the cardinalities for the
classes representing modelling concepts are frequently indicated, time and again the
dependencies introduced due to for example inheritance assumptions are paid little
attention. For the implementation the level where association-related constraints
become effective are important. If the language metamodel is not expressive enough
and if the method developer does not give any further information, only the analysis of
eventually existing example models show the actual use of the respective modelling
concepts including ‘theoretically’ integrated modelling constraints. Therefore inher-
itance and hierarchical concepts of both the language and the platform metamodel

An Engineering Approach for the Design of Hybrid Modelling Methods 9

represent a source of additional design decisions due to the aimed implementation.
There are further sources that are addressed in the sequel by means of the metamodel
in a specific platform, i.e. the ADOxx

�
platform meta2model [3, 7].1

Although, the analysis of the language and the platform metamodels gives
information about the hybrid modelling method inherent dependencies and con-
straints, the actual parts of the hybrid modelling language require further attention.
The conceptualisation of the notation and semantic part and from them an alignment
of the syntax part, grants to the modelling language increased expressiveness and
flexible handling with regards to conveying intricacies of information. Therefore the
conceptualisation of the language meta-model is only part of the rent.

3.2.2 Notation, Syntax and Semantic
The structure of a graphical, semi-formal hybrid modelling method consists of three
parts, the notation, the syntax and the semantic.

The Notation: The notation describes the graphical representation of the elements
of the modelling language. Although the notation is very often seen as the least
important part, it is a very obvious aspect as it is visualised. So, if for example the
notation is not specified detailed enough, different interpretations depending on the
method engineer’s perception and design of the modelling concept are possible. This
has for example happened in case of the i* modelling method. Fig. 3 shows a selection
of two modelling concepts originating from the i* modelling method. Interestingly the
shape of the ‘Actor’ modelling concept is rather consistent whereas the shape of the
‘Softgoal’ modelling concept is difficult to reach [13, 15].

For the definition of the notation for a hybrid modelling method a similar situation
is conceivable. The following combinations are likely, either there are

• More than one modelling classes for the same modelling concept providing dif-
ferent notations;

• Modelling concepts where the notation part has not yet been defined.

In both cases a design decision is required how to proceed for the hybrid mod-
elling method. This design decision is again ideally done by the ‘hybrid modelling
language developer’ in the creation phase already.

Summarising the said, the behaviour of the different classes with regards to their
graphical representation is determined when specifying the notation of the hybrid
modelling language. The notation is moreover related with the semantics and the
syntax in a way that the graphical representation is determined by a specific attribute

1 ADOxx
�

is the metamodelling platform that is used by the Research Group Knowledge
Engineering of the University of Vienna for their research on metamodels, metamodelling and
model languages. It is an extensible, repository-based platform, offers a three-step modelling
hierarchy and is based on a rich meta-model. ADOxx

�
is a ‘development’ platform for modelling

languages which are founded on a metamodel approach. Karagiannis, D.; Visic, N. (2011): ‘‘Next
Generation of Modelling Platforms’’. In: Grabis, J.; Kirikova, M. (eds.): Perspectives in Business
Informatics Research, Vol. 90, pages 19–28, Springer Berlin Heidelberg. Furthermore the projects
of the Open Models Initiative are realised on this platform (http://www.openmodels.at).

10 D. Karagiannis and M. Schwab

http://www.openmodels.at

value. The attribute value is part of the semantic whereas the attribute itself is part of
the syntax.

The Semantic: The semantics describe the meaning of the modelling concepts of a
modelling language, i.e. contrasting the objects in reality and which are to be mapped
in the model and how the language elements have to be interpreted. The semantics are
also expressed in the values the attributes defined in the syntax part can adopt. The
graphical representation of the respective modelling concept eventually underlines the
semantics. In the conceptualisation of a hybrid modelling method a clear delineation
of the semantics of modelling concepts is of need. For a better explanation the dis-
cussion should be done by means of an example.

The hybrid modelling method should contain modelling concepts of the i* method
and of a business process modelling method, BPMS. Although the integration of parts
of these two modelling languages is rather conceivable on a vertical level due to the
general purpose of the modelling methods, some modelling concepts require special
attention. In the i* modelling method the ‘view’ of a strategic dependency model
contains the modelling concepts of Actor, Agent, Role, Position, Dependency Link,
Association Link and the ‘intentional elements’. In the BPMS method there is the
model type working environment model containing the modelling concepts of
Organisational Unit, Performer, Role, Position, Is subordinated, Belongs to, Has role,
Is manager and Has position. Selected elements of both modelling methods are given
in Fig. 4.

Even if one would integrate the strategic dependency model and from the BPMS
method the model type business process model, so sets of modelling concepts with
different predetermined purposes, in the business process model consideration the
Role and or Performer is a central element for the specification on which level
respectively skill level the activities within the business process should be processed.

Fig. 3. Examples of Different Notations for the Same Modelling Concept.

An Engineering Approach for the Design of Hybrid Modelling Methods 11

In order to determine if for example the Role in the i* modelling method can be reused
for the business process models the assigned semantic from the description and usage
interpretation of the modelling concepts is of need.

What can be learnt from Fig. 4 is that those elements that show similarities require
a clear interpretation for avoiding a ‘muddling through’ of the modelling concepts in
their actual use on an object level.

The Syntax: The syntax describes the dependencies and constraints in between the
modelling concepts and is furthermore represented in the description of the properties
of these in form of attributes. Almost every modelling concept offers a ‘name’
attribute. Other attributes are used for a comprehensive description of the domain and
application scenario the modelling method is used for. An integration of attributes of
semantically identical modelling concepts of two different modelling methods will
rather be the creation of the ‘common multiple’. In the modelling concept of a Role in
the i* method only the attribute ‘name’ was defined; in the Role of the BPMS method
besides the ‘name’ attribute seventeen further attributes are defined for a compre-
hensive description of the modelling concept. Moreover three of them trigger by
means of predefined values a change of the graphical notation [1].

The detailed steps of the design phase of the conceptualisation life cycle for hybrid
modelling are discussed by Xu et al. using modelling concepts of i* and UML to
merge them to Active i*. The Active i* modelling method is a representative example
that has emerged from hybrid modelling [14].

3.2.3 Mechanisms and Algorithms
The conceptualisation of the hybrid modelling language was only described for the
language part so far. The underlying modelling framework of Karagiannis/Kühn
requires the modelling procedure and algorithms and mechanisms as integrated

Actor gent Role
Association

Link
Dependency

Link

Organisational unit ~ !=

A Position

~ != -

Performer ~
~

almost 1:1
!= != -

Role !=
~

almost 1:1
~ -

Position -

Is subordinated -

Belongs to -

Has role -

Is manager -

Has postion

!= !=

-

-

-

-

-

~

!= !=

- -

- -

- -

- -

- - -

-

-

-

-

~ !=

~ !=

~ !=

~ !=

~ !=

Caption:
!= unlike, does not correspond at all
1:1 identical in their natural language description and use

~ natural language description and use show similarities

- not applicable - comparision of modelling class to reation class

i* classes and relations

Modelling Concepts

 B
P

M
S

 c
la

ss
es

 a
n

d
 r

el
at

io
n

s

Fig. 4. Contrasting Modelling Concepts from the i* and the BPMS Method.

12 D. Karagiannis and M. Schwab

modelling method parts. The modelling procedure becomes manifest in the
composition of the hybrid modelling language, e.g. the definition of model types
and an accompanying instruction manual for example in form of language-specific
modelling guidelines. The mechanisms and algorithms are of different kind as they
usually represent extensions of the modelling language respectively of the usage
scenario of the modelling language. In this understanding the mechanisms and
algorithms necessitate consideration regarding parameters which form their input and
a consideration in which way they are realised in the modelling language, e.g. which
attribute of what attribute type contains values required for a composition algorithm.
Furthermore we learn from the modelling framework of Karagiannis/Kühn that three
different mechanisms and algorithms are distinguished by the criterion if they are
specific for the modelling technique or if they are generic, e.g. breadth-first-search
algorithm. If the algorithms work with the modelling concepts of the hybrid modelling
language, it has to be defined if the algorithms require an alignment of the syntax and
related semantics parts, e.g. in form of additional attribute values to gather input
values or to capture calculation results from algorithms. Further examples where
algorithms affect directly the modelling concepts are if constraints are triggered by
means of algorithms, e.g. in form of the verification of modelling scenarios,
cardinality checks. The design of such functionality-related algorithms is essential for
the ‘smooth and easy going’ use of the implemented hybrid modelling method and is
of high significance within the conceptualisation life cycle.

The fact that the platform itself offers general predefined functionality, e.g. report
generation or ‘only’ interfaces where additional functionality can be integrated in the
general language composition forms another aspect in the conceptualisation of
mechanisms and algorithms. Conceptualisation tasks for predefined functionality are
different as it is rather a configuration than actual code design that is required for
language specific algorithms.

3.3 The Compilation Phase

The compilation phase is the last of the conceptualisation life cycle. In this phase it
has to be decided in which way the realised hybrid modelling method should be
offered to the end user. Depending on the scope and how comprehensive the method is
in its composition some deployment alternatives are preferable to others, e.g. the
deployment in form of a modelling app. The deployment variant also determines how
the hybrid modelling method is intended to be used. The composition by the use of a
terminal server and by means of a web-interface allows from the end user point of
view quick access without taking care of any further installation routines. Furthermore
the hybrid modelling method is more easily available for a bigger community. The
deployment of the hybrid modelling method as an independent distributable unit, e.g.
standalone version, is another option. Which deployment variant is meaningful
depends on the actual ‘business model’ for the hybrid modelling method and repre-
sents the last design decision. In the compilation phase the actual realisation of the
elaborated hybrid modelling is performed. We call this task customising as it is
performed on an existing meta-modelling platform.

An Engineering Approach for the Design of Hybrid Modelling Methods 13

3.3.1 Platform Specifics
Depending on platform internal procedures, the actual sequence of implementation
steps is predetermined. In order to allow defining the respective conceptualised parts,
the provision of appropriate formalisms, e.g. programming or scripting languages, is
required. These formalisms provide the actual support to codify the specifications and
are either platform-specific, e.g. AdoScript for ADOxx

�
or rather generic like for

example Java. ADOxx
�

offers integrated dialogs for the realisation of the
conceptualised metamodel, the syntax creation in form of attributes and the design
of the notation. Each dialog encapsulates specific functionality for achieving the
expected result. For the mechanisms and algorithms ‘message ports’ are offered for a
seamless integration. Depending on how specific the mechanisms and algorithms for
the modelling technique are, not all implementation steps require actual coding. Some
steps are solely configurations of generic platform functionality according to the
hybrid modelling language needs, for example mechanisms for the notebook structure,
predefining queries, print layouts or embedment of new menu buttons for launching
algorithms and are therefore classified as ‘customising’ steps. The different nested
formalisms guide the actual realisation on the platform and are prerequisite for a well-
rounded, easy to handle modelling method.

3.3.2 Customising
The actual implementation belongs to the compilation phase of the conceptualisation
life cycle.

In the ADOxx
�

meta2model the central element is the ‘library’ that works as a
container to which all formalisms and constructs of one of its instances, i.e. the
modelling language metamodel are assigned to. The first step is the set-up of the
platform-conceptualised metamodel of the modelling language. In this task, the
ADOxx

�
meta2model distinguishes between classes and relation classes. For relation

classes at least two endpoints need to be defined and these are basically the specifi-
cation from which modelling class to which modelling class the association is allowed
to be drawn.

Once the basic ‘skeleton’ of the modelling language is given, the immediate next
step would be the definition of the syntax. The modelling classes as well as relation
classes have different attributes that are from predefined attribute types. For the
platform the commonly known attribute types like integer, double, string, enumera-
tion, etc. are defined. For the platform conceptualisation a distinction between class
attributes and instance attributes is made. The difference between these two lies in the
values the attribute can adopt. Class attributes are context neutral and not to be filled
by the end user or modeller using the method once implemented. Instance attributes
are context dependent and will be used by the modeller to capture data and convey
certain information [8, p. 100].

In ADOxx
�

the concept ‘notebooks’, i.e. the dialog structure is defined by a
number of attributes. ‘Notebooks’ need to be specified for those modelling and
relation classes where attributes have been defined whilst the syntax realisation. In the
ATTREP dialog of the platform, the attributes are summarised in chapters and sub-
groups. Theses structural elements influence the display of the attributes for the ‘end
user’ of the modelling method.

14 D. Karagiannis and M. Schwab

A further concept of the meta2model platform shows, though on another level but
most essential for the use of the modelling method, the structural element ‘model
types’. A model type is a classification element for the available modelling concepts
of a modelling method. For the end user model types are ‘a predefined set’ of mod-
elling and relation classes that specify the purpose of a model. The concept of model
types is similar to the ‘diagram types’ classification within the UML modelling lan-
guage. The definition, which elements are within a model type and which are not, is
sometimes difficult and can best be answered by ‘observing’ the actual use of mod-
elling concepts, i.e. by means of the created models. The source of difficulties is
actually if a model is created by means of a particular model type and the further
development of that same model, i.e. same instance, should be done by modelling
classes that are assigned to a different model type. Such a ‘model development’
procedure is related to the modelling procedure part but influences the implementation
at this stage. A solution for avoiding such handling constraints is either to foresee the
same modelling concepts in more than one model type or to work with ‘view mode’
concepts. The platform specifies in this context the ‘Mode’ concept.

The last part of the modelling language, the notation part is realised in the
GRAPHREP dialog of the ADOxx

�
platform for the modelling and relation classes.

As discussed, the notation can show static and dynamic parts whereas in this context
the conceptualisation goes as far as to the description of the ‘behaviour’ of the
notation, e.g. change of graphical representation if a certain condition is fulfilled. In
the actual realisation it has to be determined if such a dynamic part is realised by the
notation-specific formalism or if it is more efficient when realising it by means of a
language-specific algorithm and hence a different formalism.

The actual coding of modelling technique-related algorithms forms together with
the configuration of mechanisms the last customising part of a hybrid modelling
method realisation.

Subsequently the compilation of the hybrid modelling method to a modelling tool
winds-up conceptualisation life cycle.

4 Conclusions and Future Work

In the paper at hand it has been discussed that the design and conceptualisation of
hybrid modelling methods require a number of steps where deliberate design decisions
are of need. The conceptualisation is a prerequisite for an implementation in form of a
‘self-contained modelling tool’. In order to structure the different steps that are
required for achieving this goal, a conceptualisation life cycle is suggested. Each of
the single phases of the cycle shows a particular focus and contains parts where due to
additional parameters provided by the platform a further design is of need. As the
platform the hybrid modelling method is supposed to be realised on, provides func-
tionality and structures which have not been relevant during the development phase of
the hybrid modelling method ‘on paper’ more design decisions given by the platform
logics are necessary.

An Engineering Approach for the Design of Hybrid Modelling Methods 15

Further work is required for integrating formalisms to describe language-specific
algorithms apart from pseudo code which we consider as insufficient, providing
mechanisms for reusability of concepts and transformations on a meta-model level.

References

1. BOC_Group: BPMS Method Manual for ADONIS 5.0, p. 1206. BOC Asset Management
GmbH, Vienna (2012)

2. Brodie, M.L.: John Mylopoulos: Sewing Seeds of Conceptual Modelling. In: Borgida, A.T.,
Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and
Applications. LNCS, vol. 5600, pp. 1–9. Springer, Heidelberg (2009)

3. Fill, H.-G., Redmond, T., Karagiannis, D.: FDMM: A Formalism for Describing ADOxx
Meta Models and Models. In: Maciaszek, L., et al. (eds.) Proceedings of ICEIS 2012 - 14th
International Conference on Enterprise Information Systems, Wrocław, Poland, Vol. 3,
pp. 133–144. SciTePress (2012)

4. Frank, U.: Multiperspective enterprise modelling: theoretical background and design of an
object-oriented development environment (German original: Multiperspektivische
Unternehmensmodellierung: Theoretischer Hintergrund und Entwurf einer
objektorientierten Entwicklungsumgebung). Habilitation Thesis, Munich, R. Oldenbourg
Verlag (1994)

5. Karagiannis, D., Kühn, H.: Metamodelling Platforms. In: Bauknecht, K., Tjoa, A.M.,
Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, p. 182. Springer, Heidelberg
(2002)

6. Karagiannis, D., Visic, N.: Next Generation of Modelling Platforms. In: Grabis, J.,
Kirikova, M. (eds.) BIR 2011. LNBIP, vol. 90, pp. 19–28. Springer, Heidelberg (2011)

7. Kühn, H.: The ADOxx
�

Metamodelling Platform. In: 1st Open Models Workshop Methods
as Plug-Ins for Meta-Modelling. http://www.openmodels.at/web/omi/blogs/-/blogs/1st-
international-workshop-on-omi?_33_redirect=%2Fweb%2Fomi%2Fblogs (2010). Acces-
sed 07 November 2012

8. Kühn, H.: Method integration in business engineering (German Original:
Methodenintegration im Business Engineering. Unpublished Thesis p. 284. Faculty of
Business Administration and Informatics, University of Vienna, Vienna (2004)

9. Mahr, B.: Information science and the logic of models. Softw. Syst. Model. 8(3), 365–383
(2009)

10. OED: hybrid, adj. Oxford_English_Dictionary (ed.). Online version of September 2012.
http://www.oed.com/view/Entry/89809?redirectedFrom=hybrid#eid (2012). Accessed 29
October 2012

11. Staud, J. L.: Enterprise Modelling (German original: Unternehmensmodellierung), p. 379.
Springer, Heidelberg (2010)

12. Strahringer, S.: Metamodel (German original: Metamodell). Enzyklopaedie der
Wirtschaftsinformatik Kurbel, K., et al. (eds.), http://www.enzyklopaedie-der-
wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/
Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/konzeptuelle-modellierung-
von-is/metamodell/index.html (2012). Accessed 07 November 2012

13. i* Wiki.: iStar Tools. http://istar.rwth-aachen.de/tiki-index.php?page=i%2A%20Tools
(2011). Accessed 20 April 2011

16 D. Karagiannis and M. Schwab

http://www.openmodels.at/web/omi/blogs/-/blogs/1st-international-workshop-on-omi?_33_redirect=%2Fweb%2Fomi%2Fblogs
http://www.openmodels.at/web/omi/blogs/-/blogs/1st-international-workshop-on-omi?_33_redirect=%2Fweb%2Fomi%2Fblogs
http://www.oed.com/view/Entry/89809?redirectedFrom=hybrid#eid
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/konzeptuelle-modellierung-von-is/metamodell/index.html
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/konzeptuelle-modellierung-von-is/metamodell/index.html
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/konzeptuelle-modellierung-von-is/metamodell/index.html
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/konzeptuelle-modellierung-von-is/metamodell/index.html
http://istar.rwth-aachen.de/tiki-index.php?page=i%2A%20Tools

14. Xu, T., Ma, W., Liu, L., Karagiannis, D.: Synthesizing Enterprise Strategic Model and
Business Processes in Active-i*. In: 2010 14th IEEE Enterprise Distributed Object
Computing Conference Workshops (EDOCW), pp. 345–354 (2010)

15. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements
Engineering, p. 760. MIT Press, Cambridge (2011)

An Engineering Approach for the Design of Hybrid Modelling Methods 17

	1 An Engineering Approach for the Design of Hybrid Modelling Methods
	Abstract
	Introduction
	Hybrid Modelling
	The Conceptualisation Life Cycle for Hybrid Modelling
	3.1 The Creation Phase
	3.2 The Design Phase
	3.2.1 The Meta-Models
	3.2.2 Notation, Syntax and Semantic
	3.2.3 Mechanisms and Algorithms

	3.3 The Compilation Phase
	3.3.1 Platform Specifics
	3.3.2 Customising

	Conclusions and Future Work
	References

