
A Dynamic Bayesian Network Framework

for Learning from Observation

Santiago Ontañón1, José Luis Montaña2, and Avelino J. Gonzalez3

1 Drexel University, Philadelphia, PA, USA 19104
santi@cs.drexel.edu

2 University of Cantabria, Santander, Spain
montanjl@unican.es

3 University of Central Florida, Orlando, FL, USA
gonzalez@ucf.edu

Abstract. Learning from Observation (a.k.a. learning from demonstra-
tion) studies how computers can learn to perform complex tasks by ob-
serving and thereafter imitating the performance of an expert. Most work
on learning from observation assumes that the behavior to be learned can
be expressed as a state-to-action mapping. However most behaviors of
interest in real applications of learning from observation require remem-
bering past states. We propose a Dynamic Bayesian Network approach
to learning from observation that addresses such problem by assuming
the existence of non-observable states.

1 Introduction

Learning by watching others do something is a natural and highly effective way
for humans to learn. It is also an intuitive and highly promising avenue for
machine learning. It might provide a way for machines to learn how to perform
tasks in a more natural fashion. This form of learning is known as Learning
from Observation (LfO). Works reported in the literature also refer to learning
from demonstration, learning by imitation, programming by demonstration, or
apprenticeship learning, as largely synonymous to LfO.

This paper presents a new framework for LfO, based on Dynamic Bayesian
Networks [7], called LfODBN. While there has been much work on LfO in the
past (for a recent overview, see [1]), most proposed approaches assume that the
behavior to be learned can be represented as a situation-to-action mapping (a
policy). This assumes that, in the behavior to be learned, the choice of actions
depends only on the current observable state. However, most behaviors of interest
in the real world do not satisfy this restriction. For example, if we were to teach
a robot how to automatically drive a car, the robot will need to remember past
information that is not part of the current observable state, such as what was
the last speed limit sign seen.

In general, the problem is that when learning from observation, the learn-
ing agent can observe the state of the world and the actions executed by the
demonstrator or expert, but not the internal mental state of the expert (e.g. her

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 373–382, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

374 S. Ontañón, J.L. Montaña, and A.J. Gonzalez

memory). The LfODBN model presented in this paper takes into account that
the expert has a non-observable internal state, and, under some restrictions, can
learn such behaviors.

Work in learning from observation can be traced back to the early days of
AI. For instance, Bauer [2] proposed in 1979 to learn programs from example
executions, which basically amounts to learning strategies to perform abstract
computations by demonstration. This form of learning was especially popular in
robotics [8]. Modern work on the more general LfO subject came from Sammut
et al [15] and Sidani [17]. Fernlund et al. [5] used learning from observation to
build agents capable of driving a simulated automobile in a city environment.
Pomerleau [13] developed the ALVINN system that trained neural networks from
observation of a road-following automobile in the real world. Although the neural
network approach to learning from observation has remained popular with con-
tributions such as the work of Moriarty and Gonzalez [9], LfO has been explored
in the context of many other learning paradigms such as reinforcement learn-
ing [16], case-based reasoning (CBR) [6,11], and Inverse Reinforcement Learning
(IRL) [10]. These approaches, however, ignore the fact that the expert might
have internal state. For example, IRL assumes the expert is solving a Markov
Decision Process (MDP), and thus has no additional internal state other than
the observed state. For IRL to be applicable to the general problem of LfO, it
needs to consider partially observable MDPs (POMDP), to account for the lack
of observability of the expert’s state.

The remainder of this paper is organized as follows. Sections 2 and 3 present
some background on dynamic Bayesian networks and learning from observation
respectively. Then, Section 4 presents our LfODBN model. After that, Section
5 empirically evaluates the LfODBN in a synthetic benchmark.

2 Background

A Bayesian Network (BN) is a modeling tool that represents a collection of
random variables and their conditional dependencies as a directed acyclic graph
(DAG). In this paper, we are interested in a specific type of BNs called Dynamic
Bayesian Networks (DBN) [7]. In a DBN, the variables of the network are divided
into a series of identical time-slices. A time-slice contains the set of variables
representing the state of the process that we are trying to model at a given instant
of time. Variables in a time-slice can only have dependencies with variables in
the same or previous time-slices. DBNs can be seen as graphical representations
of stochastic processes, i.e. random processes that depend on time [12].

The most common example of a DBN is the Hidden Markov Model [14], or
HMM. There are only two variables in each time slice t in an HMM. A hidden
variable Ct, typically called the state, and an observable variable Yt, typical
called the output. The output Yt only depends on the state Ct, and the state Ct

only depends on the state in the previous time slice, Ct−1 (except in the first
time slice). Moreover, the conditional probabilities p(Ct|Ct−1) and p(Yt|Ct) are
assumed to be independent of t.

A Dynamic Bayesian Network Framework for Learning from Observation 375

Although HMMs are the best known DBN and have many applications, such
as speech recognition [14], there are other well-studied DBNs such as Input-
Output Hiden Markov Models (IOHMM) [3]. In an IOHMM, in addition to the
state and the output, there is an observable input variable, Xt upon which both
the state Ct and the output Yt depend. In the remainder of this paper we will
use the following convention: if X is a variable, then we will use a calligraphic
X to denote the set of values it can take, and lower case to denote the specific
values it takes, i.e. xt ∈ X .

3 Learning from Observation

The goal of learning from observation (LfO) is to automatically learn a behavior
by observing an expert perform a given task. The main difference between LfO
and standard supervised learning is that the goal is to learn a behavior that
might vary over time, rather than approximating a static function. The basic
elements in LfO are the following:

– There is an environment E.
– There is one actor (or trainer, expert, or demonstrator), who performs a task

in the environment E.
– There is a learning agent A, whose goal is to learn how to achieve the task

in the environment E by observing the actions performed by the actor.

In learning from observation, the learning agent A first observes one or several
actors performing the task to be learned in the environment, and records their
behavior in the form of traces, from where behavior is learned. Some learning
from observation approaches assume that the learner also has access to a reward
signal R. In our framework we will assume such reward signal is not available,
and that the goal is thus to just imitate the actor.

Specifically, the behavior of an agent can be captured by three different vari-
ables: its perception of the environment, X , its unobservable internal mental
state C, and the perceptible actions it executes, Y . We will define I = X ×C×Y,
and interpret the actor behavior as a stochastic process I = {I1, ..., In, ...}, with
state space I. It = (Xt, Ct, Yt) is the random variable where Xt and Yt repre-
sent respectively the input and output variables at time t, and Ct represents
the internal state of the actor at time t. The observed behavior of an actor in a
particular execution defines a learning trace: LT = [(x1, y1), ..., (xn, yn)] where
xt and yt represent the specific perception of the environment and action of the
actor at time t. The pair of variables Xt and Yt represent the observation of the
learning agent A, i.e.: Ot = (Xt, Yt). Thus, for simplicity, we can write a learning
trace as LT = [o1, ..., on].

We assume that the random variables Xt and Yt are multidimensional vari-
ables that can be either continuous or discrete. In our framework, thus, the LfO
problem reduces to estimating the unknown probability measure that governs the
stochastic process, taking as input a data set of k trajectories {LTj : 1 ≤ j ≤ k}
of the stochastic process I.

376 S. Ontañón, J.L. Montaña, and A.J. Gonzalez

X3X1 X2

Y2Y1 Y3

C3C1 C2

...

Slice 1 Slice 2 Slice 3

Fig. 1. The LfODBN Model. Grayed out variables are observable by the learning agent,
white variables are hidden. Xt is the perception of the state, Yt is the action, and Ct

is the internal state of the agent.

As mentioned above, most work on LfO [1] assumes that the action Yt depends
exclusively on the state Xt (i.e. that the behavior is Markovian). Under this
assumption, each of the entries (xt, yt) in a trace can be taken as individual
examples in a supervised learning framework. Thus, if we assume that the action
the expert executes at time t only depends on the perception at time t, then
learning from observation is equivalent to supervised learning. However, in many
real-life behaviors this assumption doesn’t hold.

Consider the following example. When a driver in a highway sees a sign in-
dicating the desired exit is approaching, the driver starts merging to the right
lanes, even if she does not see the sign any more. Thus, the driver needs to
remember that she has seen such sign (in her internal state C).

As a second example, imagine an agent wants to learn how to play Stratego
by observation. Stratego is similar to Chess, but players do not see the types
of the pieces of the opponent, only their locations. Thus, the perception of the
state Xt contains only the locations of the pieces of the opponent (in addition
to the player’s piece locations and types). After certain movements, a player can
temporally observe the type of one piece, and must remember this in order to
exploit this information in the future. In this case, the internal state Ct of an
actor should contain all the types of the opponent pieces observed up to time t.

The typical strategy to avoid this situation when designing a LfO system is
to identify all of those aspects the expert has to remember, and include them in
the set of input features. For example, we could add a variable to xt representing
“which is the last exit sign we saw in the highway”. However, this requires manual
“feature engineering”, which is highly undesirable.

4 DBN-Based Learning from Observation

Using the DBN framework, we can represent the probability distribution of the
stochastic process representing the behavior of an actor as the network shown in
Figure 1, that we call the LfODBN model. The LfODBN model contains all the
variables in LfO and their conditional dependencies (grayed out variables are
observable, white variables are hidden). The internal state of the actor at time
t, Ct, depends on the internal state at the previous instant of time, Ct−1, the

A Dynamic Bayesian Network Framework for Learning from Observation 377

X3X1 X2

Y2Y1 Y3

... X3X1 X2

Y2Y1 Y3

...

Slice 1 Slice 2 Slice 3 Slice 1 Slice 2 Slice 3

Fig. 2. Simplifications of the model in Figure 1 For assumptions 1 (right) and 2 (left)

previous action Yt−1 and of the current observation Xt. The action Yt depends
only on the current observation, Xt and the current internal state Ct.

Given the LfODBN model, if the learning agent wants to learn the behavior
of the expert, it has to learn the dependencies between the variables Ct, Xt, and
Yt, i.e. it has to learn the following conditional probability distributions: ρ(C1),
ρ(Yt|Ct, Xt), and ρ(Ct|Ct−1, Xt, Yt−1). If the learning agent is able to infer the
previous conditional probability distributions, it can replicate the behavior of
the expert. In practice, the main difficulty is that the internal state variable Ct

is not observable, which, although typically neglected in the LfO literature, plays
a key role in many behaviors of interest.

Also, notice that the goal of LfO is just to learn to replicate the behavior
(i.e. actions) of the actor. Thus, relations such as the dependency of Xt in Xt−1

and Yt−1 (that captures the effect that actions have on the environment) are
irrelevant. Those relations would be key, however, if the learning agent was
learning a model of the world for planning purposes.

Let us now present three approaches to LfO based on making three different
assumptions over the internal state of the actor Ct.

4.1 Assumption 1: No Internal State

The assumption that the expert has no internal state, i.e. that Ct is irrelevant, is
equivalent to assuming the behavior is reactive, and thus the action Yt only de-
pends on the current observation (Xt). In this case, we can simplify the LfODBN
model as shown on the right hand side of Figure 2. Under this assumption, we
can just use standard supervised learning techniques to learn the conditional
probability ρ(Yt|Xt).

In this approach, each entry in a learning trace can be treated independently,
and any supervised learning algorithm such as decision trees, neural networks or
SVMs can be used. This is the simplest approach to LfO, with the only drawback
that it cannot learn any behavior that requires the agent to remember anything
from past states. The next two approaches make less restrictive assumptions
about the internal state of the expert, to alleviate this problem.

4.2 Assumption 2: Time Window

In this approach, we assume that the expert internal state is a time window
memory that stores the last k observations (i.e., the current state Xt, and the

378 S. Ontañón, J.L. Montaña, and A.J. Gonzalez

last k − 1 observations Ot−1, ..., Ot−(k−1)). For example, if k = 2, the expert
internal state is Ct = (Xt, Ot−1). Under this assumption we can reformulate the
LfODBN model, as shown on the left hand side of Figure 2 for k = 2. Notice
that given k, we can ignore Ct in the DBN model, and thus, we still have no
hidden variables. In general, for any given k, the conditional probability that
must be learned is: ρ(Yt|Xt, Ot−1, ..., Ot−(k−1)).

In this approach, each subsequence of k entries in a learning trace can be
treated independently as a training example, and we can still use supervised
learning techniques. The main drawback of this approach is that, as k increases,
the number of features in the training examples increases, and thus, the learning
task becomes more complex.

4.3 Assumption 3: Finite Discrete Internal State

Using the time window assumption, it is possible to learn behaviors where the
agent only needs to remember a fixed number of past states; however, in general,
the agent might need to remember a past state that is arbitrarily far in the past.

In this more general assumption, we assume that the internal state of the
expert is discrete and can take a finite amount l of different values. In this
assumption, we need to consider the complete LfODBN model as shown in Figure
1. Under this assumption, the Expectation-Maximization (EM) algorithm [4] can
be used to learn the parameters of the LfODBN.

A possible simplification assumes that the internal state Ct depends only on
previous internal state Ct−1 and observation Xt (i.e. that it does not depend on
the past action). The resulting model corresponds to an Input-Output Hidden
Markov Model (IOHMM), for which specialized algorithms are known [3].

5 Experimental Evaluation

This section presents an experimental validation of algorithms based on the
three assumptions presented above, and compares them with other common LfO
algorithms in the literature. Specifically, these experiments are designed to show
that standard algorithms used in the literature of LfO (such as neural networks)
can only learn a limited set of behaviors; algorithms based on the LfODBN
model, however, make a less restrictive assumption on the internal state of the
expert, and thus, can learn a wider range of behaviors.

The domain we used for our experiments simulates an automatic vacuum
cleaner navigating a room, and removing dirt spots. The goal is to remove dirt
spots in a grid map. For these experiments, all the obstacles are static, and
the only moving object in the simulation is the vacuum cleaner. The simulation
time is discreet, and at each time step, the vacuum cleaner can take one out of
these 5 actions: up, down, left, right and stand still, with their intuitive effect (if
the vacuum tries to move into an obstacle, the effect is equivalent to the stand
still action). Actions are deterministic. Thus, the control variable Y can take 5
different values: {up, down, left, right, stand}.

A Dynamic Bayesian Network Framework for Learning from Observation 379

The vacuum cleaner perceives the world through 8 different variables: two
binary variables per direction (up, down, left, right), one of them identifying
what can the vacuum cleaner see in each direction (dirt or obstacle), and the
other determining whether the object being seen is close (touching) or far. For
the experiments, we created a collection of 7 different maps, of different sizes,
from 8x8 to 32x32 and with different configuration of obstacles and dirt (with
between 2 to 8 dirt spots). We created several different experts to learn from:

RND: SmartRandom. This agent executes random actions, except if it sees
dirt in one of the four directions, in which case it will move straight for it.

STR: SmartStraightLine. This agent picks a direction at random and moves
in a straight line until collision. Then, it repeats its behavior. But if it sees
dirt in one of the four directions, it will move straight for it.

ZZ: ZigZag. This agent moves in zig-zag: it moves to the right, until colliding,
then moves down and starts moving to the left until colliding. When it cannot
go down any further, it repeats the behavior, but going up, and so on.

SEQ: FixedSequence. This agent always repeats the same, fixed, sequence of
actions (15 actions long). Once the sequence is over, it restarts from scratch.

EXP: SmartExplorer. This is a complex agent that remembers all the cells
in which it has already been. With a high probability (0.75) it selects the
action that will lead him closer to an unexplored cell. Once all the cells in
the map have been explored, the agent stops. If it sees dirt in one of the four
directions, it will move straight for the dirt. Notice that in order to perform
this behavior, the agent needs to remember each cell it has visited before.

We generated a total of 35 learning traces (one per expert per map). Each
learning trace is 1000 steps long. Therefore, the learning agents have 7 learning
traces per expert. We compared the performance of the following algorithms:

Algorithms Making Assumption 1: We used NN (Neural Networks), widely
used in the literature of LfO [13,9], and BN (Bayesian Networks), a direct
implementation of the simplified Bayesian Network shown in Figure 2. Neu-
ral Networks in our experiments have one hidden layer with 10 nodes, and
5 output nodes (one per possible action).

Algorithms Making Assumption 2: We also experimented with two algo-
rithms in this case: NNk2 (Neural Networks) and BNk2 (Bayesian Networks).
For both algorithms, we used k = 2, i.e. they learn to predict the expert ac-
tions based on the current state of the world, and the state and action in
the previous instant of time.

Algorithms Making Assumption 3: We experimented with using the EM
algorithm1 to learn the parameters of both our proposed LfODBN model
(Figure 1), as well as an IOHMM. In both cases, we ran 20 iterations of EM,
and limited the internal state to have 4 different values.

1 Specifically, we used the EM implementation in the Matlab Bayes Net Toolbox using
the jtree 2TBN inf engine inference engine.

380 S. Ontañón, J.L. Montaña, and A.J. Gonzalez

Table 1. Output Evaluation of the different LfO algorithms consisting of the percent-
age of expert actions predicted correctly. The bottom row shows the average of all the
other rows, showing that LfODBN obtains the highest accuracy overall.

NN BN NNk2 BNk2 IOHMM LfODBN

RND 32.0 30.9 32.0 31.0 31.0 31.1
STR 40.0 40.7 85.1 84.8 77.2 84.3
ZZ 41.3 40.9 73.7 91.6 65.2 83.4
SEQ 43.2 36.2 66.4 51.9 85.8 88.2
EXP 48.4 49.3 79.1 77.6 65.3 79.3

Avg. 41.0 39.6 67.26 67.38 64.9 72.3

We evaluated the performance of the algorithms by measuring their accuracy
in predicting the actions executed by the experts. For this purpose, we performed
a leave-one-out evaluation, where agents learned from 6 learning traces, and were
asked to predict the actions in the 7th, test trace. Specifically, given a model
M learned by one of the learning algorithms, and a test trace LT containing n
entries, the predictive accuracy Acc(M,LT) was measured as follows:

P (M,LT, t) =

{
1 if M(xt, [ot−1, ..., o1]) = yt

0 otherwise

Acc(M,LT) =
1

n

∑
t=1...n

P (M,LT, t)

where M(xt, [ot−1, ..., o1]) represents the action predicted by the model M given
the observation at time t, and the entire subtrace from time 1 to time t − 1.
Since our traces have 1000 entries each, and we had 7 traces per expert, each
reported result is the average of 7000 predictions.

Table 1 shows the predictive accuracy of each learning algorithm when learn-
ing from each of the experts. The best results for each expert are highlighted in
bold (when more than one learning agent achieved statistically undistinguishable
results, all of them are highlighted in bold). The easiest behavior to learn is the
SmartRandom (RND) expert. All the learning agents were capable to perfectly
learning this behavior. Notice that, even if the behavior is perfectly learned, they
can only predict about a 31% of the actions of this expert, since the behavior of
the expert involved randomness.

Next in difficulty is the SmartStraightLine (STR) expert. For this behavior,
agents need to remember what was the last direction in which they moved.
Thus, learning agents using assumption 1 (NN and BN) could simply not learn
this behavior. All the other learning agents could learn this behavior perfectly
(except IOHMM, which learned a pretty good approximation, but not exactly).
The problem with IOHMM is that the relationship between Yt−1 and Ct is not
present in the DBN, and thus, it has troubles learning behaviors that depend
on the previous action. Again, no agent reached a 100% of prediction accuracy,
since the expert would pick a random direction each time it hit a wall.

A Dynamic Bayesian Network Framework for Learning from Observation 381

The ZigZag (ZZ) agent is even harder to learn, since, in addition to the last
direction of movement, the agent must remember whether it is currently trav-
eling down or up. No learning algorithm was able to learn this properly. All
the algorithms making assumptions 2 and 3 properly learned the left-to-right
behavior (and thus the high accuracy of BNk2), but none was capable of learn-
ing when to move down or up when changing directions. This was expected for
algorithms making assumption 2, however, algorithms making assumption 3 are,
in principle, capable of learning this. GEM was not capable of learning this from
the training data provided though, and ended up learning only an approximate
behavior, with some mistakes.

The FixedSequence (SEQ) expert is complex to learn, since, in order to learn
the fixed sequence of 15 moves, agents must internally remember in which of
the 15 states of the sequence they are. By using the past action as a reference,
algorithms making assumption 2 (NNk2, BNk2) could better learn this behavior
better that agents making assumption 1 (NN, BN) (increasing the value of k all
the way up to 15 should let agents using assumption 2 learn this behavior, but
with prohibitive number of features). However, only agents making assumption
3 could learn a good enough approximation.

Finally, the SmartExplorer (EXP) expert is very hard to learn, since it involves
remembering every cell that has been visited. None of the agents was able to learn
this behavior. Some algorithms, like LfODBN, have a high predictive accuracy
(79.3%) just because they appropriately learn the probability of the expert to
stop (the expert stops after exploring the whole room), and then they can predict
correctly that the expert will just issue the stand action till the end of the trace.
The bottom row of Table 1 shows the average predictive accuracy for all the
learning algorithms we experimented with, showing that LfODBN obtains the
highest accuracy overall.

6 Conclusions

This paper has presented a model of Learning form Observation (LfO) based on
Dynamic Bayesian Networks (DBN), called LfODBN. The main contribution of
this model is that it makes explicit the need for accounting for the unobservable
internal state of the expert when learning a behavior from observation.

Additionally, we proposed three different approaches to learn from observa-
tion, based on three different assumptions on the internal state of the expert: 1)
assume the expert has no internal state, 2) assume the internal state of the expert
is a memory of the last k states, and 3) assume the expert has a finite discrete
internal state. Each of the three assumptions leads to a different collection of
algorithms: the first two can be addressed with supervised learning algorithms,
but the last requires a different learning approach (for which we propose to use
DBN learning algorithms that account for hidden variables).

Our experimental results show that algorithms making different assumptions
can learn different ranges of behaviors, and that supervised learning approaches
to LfO are not enough to deal with the general form of the LfO problem.

382 S. Ontañón, J.L. Montaña, and A.J. Gonzalez

As part of our future work, we want to explore further less restrictive assump-
tions over the internal state of the expert, that allow learning broader ranges of
behaviors, while still being tractable. Finally, we would also study better evalu-
ation metrics for LfO, since, as observed in this paper, traditional classification
accuracy is not very representative of the performance of LfO algorithms.

Acknowledgements. This work is partially supported by spanish grant
TIN2011-27479-C04-04.

References

1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robot. Auton. Syst. 57, 469–483 (2009)

2. Bauer, M.A.: Programming by examples. Artificial Intelligence 12(1), 1–21 (1979)
3. Bengio, Y., Frasconi, P.: Input/output hmms for sequence processing. IEEE Trans-

actions on Neural Networks 7, 1231–1249 (1996)
4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society, Series B 39(1),
1–38 (1977)

5. Fernlund, H.K.G., Gonzalez, A.J., Georgiopoulos, M., DeMara, R.F.: Learning
tactical human behavior through observation of human performance. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B 36(1), 128–140 (2006)

6. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imi-
tating robocup players. In: Proceedings of the Twenty-First International Florida
Artificial Intelligence Research Society (FLAIRS), pp. 251–256 (2008)

7. Ghahramani, Z.: Learning dynamic Bayesian networks. In: Caianiello, E.R. (ed.)
Adaptive Processing of Sequences and Data Structures, International Summer
School on Neural Networks. Tutorial Lectures, pp. 168–197. Springer, London
(1998)

8. Lozano-Pérez, T.: Robot programming. Proceedings of IEEE 71, 821–841 (1983)
9. Moriarty, C.L., Gonzalez, A.J.: Learning human behavior from observation for

gaming applications. In: FLAIRS Conference (2009)
10. Ng, A.Y., Russell, S.: Algorithms for Inverse Reinforcement Learning. In: in Proc.

17th International Conf. on Machine Learning, pp. 663–670 (2000)
11. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: On-line case-based planning. Com-

putational Intelligence Journal 26(1), 84–119 (2010)
12. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes.

McGraw-Hill Series in Electrical and Computer Engineering. McGraw-Hill (2002)
13. Pomerleau, D.: Alvinn: An autonomous land vehicle in a neural network. In:

Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, vol. 1.
Morgan Kaufmann (1989)

14. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 257–286 (1989)

15. Sammut, C., Hurst, S., Kedzier, D., Michie, D.: Learning to fly. In: Proceedings of
the Ninth International Workshop on Machine Learning (ML 1992), pp. 385–393
(1992)

16. Schaal, S.: Learning from demonstration. In: NIPS, pp. 1040–1046 (1996)
17. Sidani, T.: Automated Machine Learning from Observation of Simulation. Ph.D.

thesis, University of Central Florida (1994)

	ADynamic Bayesian Network Framework for Learning from Observation
	1 Introduction
	2 Background
	3 Learning from Observation
	4 DBN-Based Learning from Observation
	4.1 Assumption 1: No Internal State
	4.2 Assumption 2: Time Window
	4.3 Assumption 3: Finite Discrete Internal State

	5 Experimental Evaluation
	6 Conclusions
	References

