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Abstract. Learning from crowds is a recently fashioned supervised clas-
sification framework where the true/real labels of the training instances
are not available. However, each instance is provided with a set of noisy
class labels, each indicating the class-membership of the instance accord-
ing to the subjective opinion of an annotator. The additional challenges
involved in the extension of this framework to the multi-label domain are
explored in this paper. A solution to this problem combining a Structural
EM strategy and the multi-dimensional Bayesian network models as clas-
sifiers is presented.

Using real multi-label datasets adapted to the crowd framework, the
designed experiments try to shed some lights on the limits of learning to
classify from the multiple and imprecise information of supervision.

Keywords: Multi-label classification, multi-dimensional classification,
Learning from crowds, Structural EM method, Bayesian network models.

1 Introduction

The process of training a classifier in the standard supervised classification
paradigm requires a training dataset of examples which are class-labeled by
a domain expert, who establishes to which class each example belongs. Other
related paradigms, under the general name of partially supervised classification,
deal with datasets in which the expert is not able to label completely/certainly
all the training examples. In one way or another, all these paradigms provide
expert supervision of the training data. Moreover, the reliability of this informa-
tion of supervision is a strong assumption, based on which most of the techniques
taking part in the learning process have been developed (evaluation techniques,
performance scores, learning methods, etc.). However, obtaining this kind of
reliable supervision can be expensive and difficult, even for a domain expert.

In the last decades, the Web has emerged as a large source of information,
providing a quick and easy way to collect data. Actually, the main drawback of
the data collected in this way is its reliability. As it has been usually produced
by non-expert annotators, this subjective data may involve incompleteness, im-
preciseness and/or incorrectness. Learning from noisy data (or labeled by an
unreliable annotator) is a known problem [2,18]. However, these new technolo-
gies provide an easy and cheap way to obtain not one but many different personal
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opinions about the class-membership of a given example. Thus, the idea of learn-
ing from data labeled by taking into account diverse and multiple (subjective)
opinions has led to a new learning paradigm.

In the related literature, the problem of learning from multiple noisy labelers
or annotators is known as learning from crowds [9]. In this problem, the real class-
membership information of the training instances is not provided. However, a
crowd of mainly non-expert labelers provides different subjective (noisy) opinions
about the class-membership of the training instances. Note the differences with
[6], where the opinions of a fixed number of domain experts have to be combined.

Learning to classify from this kind of data is possible and useful [12,14]. The
learning algorithm has to cope with the individual unreliability of the annotators
in order to build accurate classifiers from the consensus opinion. The ability to
learn an accurate classifier from a given dataset of this type is largely influenced
by two related factors: the quality of the annotators and the degree of consensus
between them. Learning can be feasible even when the annotators do not have a
high reliability if, for each instance, a subset of annotators agree in their predic-
tions. Based on both concepts, we present our initial solution to the additional
challenges which involves the application of the learning from crowds paradigm
to multi-label classification (in a broader sense than [11]).

The rest of the paper is organized as follows. In the next section, a formal
definition of the problem is presented, together with its adaptation to the multi-
dimensional classification framework. Then, our method (an adaptation of a
state-of-the-art algorithm) for learning multi-dimensional Bayesian network clas-
sifiers from this kind of data is described. Next, the experiments show some lim-
its in the learning ability of our method (according to noise rate and consensus
degree). And finally, some conclusions and future work are presented.

2 Learning from Crowds in Multi-label Domains

In the problem of multi-label learning from crowds, the examples are provided
without the true labels (a.k.a. gold-standard), and only the label(s) assigned by
multiple (non-expert) annotators are available. Here, an annotator assigns one
or several labels to an instance according to their subjective opinion.

Like the classical multi-label (ML) learning paradigm, the problem is de-
scribed by a set of n predictive variables (X1, . . . , Xn) and a class variable C.
Moreover, X denotes the instance space (all the possible value assignments to
the n predictive variables) and C = {c1, . . . , cq} denotes the label space (the set
of q possible class labels). A ML dataset D = {(x1, c1), (x2, c2), . . . , (xm, cm)}
consists of a set of m examples of the problem, where xi ∈ X is a n-tuple that
assigns a value to each predictive variable and ci ⊆ C is the corresponding set
of class labels, denoting the class-membership of the example.

Similarly, the dataset D in a multi-label learning from crowds framework is
composed of m examples D = {(x1,A1), (x2,A2), . . . , (xm,Am)}, which are as-
sumed to have been sampled i.i.d. from some underlying probability distribution.
Each instance xi is provided together with a group Ai, which contains the labels
(annotations) provided by different annotators: Ai = {ci1, . . . , cit}, with cij ⊆ C
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and t being the number of annotators. As a classical multi-label classification
problem, the objective is to infer the class label(s) of new unseen instances.

A Transformation to Multi-dimensional Classification. In a multi-dimensional
(MD) classification problem [1,10], there is more than one class variable
(C1, . . . , Cd), and each one has its own set of possible labels. In this case, the
label space C = C1 × · · · × Cd denotes all the possible joint label assignments to
the d class variables (label configurations). An example (xi, ci) of a MD training
dataset includes a d-tuple ci ∈ C that assigns a label to each class variable,
apart from the instance predictive values xi ∈ X . Given a new instance, the
multi-dimensional classifier predicts a class label for each class variable.

In this paper, in order to deal with the presented multi-label problem, we
transform it to the multi-dimensional classification framework. As explained in
the related literature [1,10,17], the multi-label learning paradigm can be de-
scribed as a multi-dimensional problem in which there are as many binary class
variables as class labels in the multi-label problem (dMD = qML). Thus, each
binary class variable (MD) represents the presence/absence of a class label (ML).

The adapted datasetD of multi-dimensional learning from crowds is composed
of m examples D = {(x1,A

1), (x2,A
2), . . . , (xm,Am)}, where the information

of supervision for each instance xi is provided in a (t× d)-matrix Ai. Thus, the
position Ai

ac indicates the class label predicted for the class variable Cc by the
annotator La.

3 Learning from Crowds in Multi-dimensional Domains

The main characteristic of the learning from crowds framework is the availabil-
ity of much and diverse information of supervision. A natural solution to this
problem could be the transformation of the crowds information to some kind of
probabilistic supervision. From this point of view, the problem is closely related
with other problems with imprecise labels such as learning with partial labels
[3], learning from probabilistic information [8], etc. Nevertheless, in the presence
of imprecise or incorrect data, it is worth modeling the source of noise.

As explained previously, the crowd supervision consists of the class labels as-
signed to the instances according to the subjective opinion of several annotators.
Certainly, each annotator can be considered as a source of noise. Based on this
idea, Raykar et al. [9] proposed an EM-based algorithm to solve the learning
from crowds problem in single-dimensional domains, using a set of weights to
model the reliability of the annotators.

Under the realistic assumption that the annotators might show different
reliability in different prediction tasks, we have extended the idea of Raykar et
al. [9] to the multi-dimensional paradigm, independently modeling the reliability
of each annotator predicting each class variable.

To sum up, we have reformulated the problem as searching the weights (wac)
that better describe the ability of each annotator, La, to predict each class vari-
able Cc, and leading to the generation of accurate classifiers. For solving both
interrelated problems, we propose a learning algorithm based on the Structural
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Expectation-Maximization (SEM) strategy, which iteratively alternates to im-
prove the initially obtained reliability weights (several techniques are proposed)
and to look for an improved fit of the model. A basic adaptation of a state-of-
the-art local-search algorithm is used to learn the model, a multi-dimensional
Bayesian network classifier (MBC [1]), from crowd data augmented with relia-
bility weights. For the sake of simplicity, in this paper the number of annotators
is fixed, i.e. all the instances are annotated by all the annotators.

3.1 Our Structural EM Strategy

A MBC [1] is a Bayesian network M = (G, θ) defined over a set V = {V1, . . . , Vv}
of random variables, where G = (V ,R) is an acyclic directed graph and θ its
parameters. As a classifier, the set of variables can be divided in class variables,
VC = {C1, . . . , Cd}, and predictive variables, VX = {X1, . . . , Xn}, where v =
n+ d. The graph of a MBC cannot contain arcs in R from the predictive (VX)
to the class variables (VC).

The Structural EM strategy (SEM), proposed by Friedman [5], provides a
suitable framework to infer both the graph structure and the model parameters
of a Bayesian network model from missing data. The EM strategy, proposed
by Dempster et al. [4], is used in our framework to obtain the maximum like-
lihood parameters from multiple weighted annotations. Iteratively, the method
estimates the reliability weights of the annotators given the current fit of the
model, and re-estimates the model parameters. Under fairly general conditions,
the iterative increment of the likelihood has been proved to converge to a sta-
tionary value (most of the times, a local maximum) [7]. Additionally, the SEM
strategy incorporates an outer loop to the parametric-convergence loop of the
classical EM, and iteratively improves an initially-proposed structure.

In Algorithm 1, a pseudo-code of the SEM method developed in this paper
is shown. In the following subsections, the different tasks of this method are
explained in detail: the initialization of the reliability weights (line 3 in Algorithm
1) and their improvement (line 10); the structural learning (line 4) and structural
improvement (line 14); and the parametric learning (line 9).

3.2 Reliability Weights of the Annotators

As previously mentioned, we use weights wac to indicate the reliability of the
predictions of the annotator La for the class variable Cc. These weights are
initialized in the first stage of the SEM method and updated iteratively.

Initializing Weights. Similar to [13], our SEM method initializes the weight wac

as the ability of the annotator La to agree with other annotators (consensus) in
the label assigned to class variable Cc, averaging over all the instances of the
dataset. That is,

wac =
1

m

m∑

i=1

1

t− 1

∑

a′ �=a

I[Ai
a′c = Ai

ac] (1)

wherem is the number of instances, t is the number of annotators and I[condition]
is a function that returns 1 when the condition is true, and 0 otherwise.
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Algorithm 1 Pseudo-code of our Structural EM method.

1: procedure StructuralEM(D,maxIt, ε) � D: dataset
2: i = 0 � maxIt: max. number of iterations
3: W← initializeWeights(D) � ε: threshold (stop condition)
4: Gi ← structuralLearning(D,W)
5: repeat
6: j = 0
7: repeat
8: Ŵ←W
9: θj ← parametricLearning(D,W, Gi)
10: W← estimateWeights(D,Gi,θj)
11: j = j + 1
12: until (diff(W,Ŵ) < ε) Or (j = maxIt)
13: i = i+ 1
14: Gi ← findMaxNeighborStructure(D,W, Gi−1)
15: until (Gi = Gi−1) Or (i = maxIt)
16: return M ≡ (Gi,θj)
17: end procedure

Weights Updating. To update the reliability weights, four alternative procedures
has been developed: two model-based procedures (using the most probable label
configuration; or using the probabilities of all the possible label configurations),
both of them combined or not with the consensus concept.

On the one hand, the information provided by the model M (learnt in the
previous EM iteration) is used in two ways. In a first approach, the label config-
uration of maximum joint probability c̆ given the instance is calculated. Then,
each weight wac is updated as the mean accuracy of the annotator La over the
class variable Cc, using each maximal configuration c̆i as the golden truth:

wac =
1

m

m∑

i=1

I[c̆ic = Ai
ac] (2)

In the second approach, for each instance the marginal probability of each class
variable is calculated using the model M. Subsequently, these probabilities are
used to update each weight of an annotator by averaging the probability of their
predictions for the given class variable over the whole dataset,

wac =
1

m

m∑

i=1

|C|∑

j=1

pM(c̄j |ci) · I[c̄jc = Ai
ac] (3)

where C is the label space (set of all the label configurations) and c̄j ∈ C.
On the other hand, the weight-updating process can remember the mean

degree of consensus. Thus, the reliability weights are updated according to the
function, wac = (wCons

ac +wM

ac)/2, where w
Cons
ac is the consensus weight (calculated

by means of Eq. 1) and wM

ac is the model-based weight (calculated with either
Eq. 2 or Eq. 3). Therefore, as both model-based functions can be extended with
the consensus idea, we finally have four weight-updating techniques.
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3.3 Estimating the Model Parameters from Crowds in
Multi-dimensional Domains

In this paper, the parameters of the MBC are estimated by frequency counts,
as usual. In order to cope with the weighted and multi-labeled class informa-
tion provided by the crowds, we have adapted the procedure to collect fre-
quency counts. Thus, given an instantiation (u1, . . . , uj) of a set of variables
Uu = {U1, . . . , Uj} ⊆ V = (VX ,VC), the posterior probability is defined as,

p(u1, . . . , ui|ui+1, . . . , uj) = N(u1, . . . , ui, ui+1, . . . , uj)/N(ui+1, . . . , uj)

where N(·) represents the counts obtained from the provided dataset. In this
problem, they are calculated as follows:

N(u) =
1

∑t
a=1 W

↓u
a

t∑

a=1

W↓u
a

∑

y∈X (D,Aa)

I[y[U1] = u1, . . . , y[U|u|] = u|u|]

where [Uj] indicates the index of the variable Uj ∈ Uu in the original set of
variables V and X (D,Aa) is the set of instances D labeled according to the
annotations Aa of annotator La. In the specific count, the weight assigned to
annotator La (W↓u

a ) is calculated as the product of the weights per variable,
taking into account only those variables in Uu:

W↓u
a =

∏

U∈Uu

wa[U ] (4)

As previously shown, our SEM method only estimates the weights wac of the
class variables (Cc ∈ VC). Consequently, regarding Eq. 4, the weights of the
predictive variables (Xx ∈ VX) are considered constant, wix = 1. In practice,
the estimator implements the Laplacian correction in order to avoid zero counts.

3.4 Local Search for Structural Learning

Our method to learn the structure of a MBC B from the data (line 4 in Algo-
rithm 1) is based on the wrapper algorithm of Larrañaga et al. [1]. Following
their proposal, at each iteration of the local search, the arc inclusion/deletion
(candidate change) that, respecting a fixed ancestral order, most improves the
score of the current structure is chosen. The candidate changes are evaluated
using the log K2 score:

logP (B,D) =

v∑

i=1

qi∑

j=1

log
(ri − 1)!

(Nij + ri − 1)!

ri∑

k=1

logNijk!

where v is the number of variables, ri is the number of values that the variable
Vi can take, and qi is the number of possible configurations of the parents of Vi.
As the log K2 score is decomposable, the arc inclusion/deletion can be evaluated
only taking into account the arc-destination variable and its parents.
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Structural MBC Improvement. The function at line 14 of the Algorithm 1 per-
forms a single local-search step in the MBC structure space in order to find a
better fit of the model. In practice, the structural improvement is chosen us-
ing the same procedure as the structural learning method presented before, but
restricted to a single step.

4 Experiments

In this section, the two factors that we have used to describe the amount of
information provided in the learning from crowds problem are tested. Due to
the lack of time, we have not managed to obtain real crowd datasets1. However,
we have designed a strategy to simulate multiple annotators controlling the noise
rate and the consensus between them. Thus, three real multi-label datasets2 have
been adapted to simulate multiple-annotated datasets.

Generation of Annotators. We have implemented a strategy for generating anno-
tators from the real class labels of the ML datasets. For each class variable, start-
ing from the true labels, a user-specified percentage of these labels —randomly
selected— are fixed (well-labeled instances). The rest of labels are swapped with
probability 0.5 in order to introduce the characteristic noise of this kind of data.

The degree of consensus is controlled by sharing the same fixed set of well-
labeled instances between a user-specified number of annotators. Then, an extra
(small) rate of changes is applied to each annotator individually in order to
generate low divergence between them.

In both experimental settings, 10 annotators have been generated (this selec-
tion is based on the discussion of Snow et al. [14]), and all of them annotate
all the class variables and instances. By default, the method uses the provided
indexation of variables as ancestral order (always respecting that the class vari-
ables appear before the predictive variables). Regarding the learned models, the
MBC have been restricted to a maximum of K = 3 parents per variable.

4.1 Influence of the Noise Rate

The first set of experiments has been designed in order to test the ability of our
learning method to cope with an increasing amount of noise in the annotations.
In this way, the consensus degree has been fixed to four annotators [14] and
different values (four) of mean noise rate have been tested for each dataset.
Three real ML datasets (emotions, scene and yeast) have been used to simulate
the information of crowds. Moreover, for each designed test, ten datasets have
been generated, summing up to the total number of datasets, 120 (4 error rates,
3 datasets, 10 repetitions).

1 For future work, Mechanical Turk (http://www.mturk.com) is an online platform
that allows to easily collect data from crowds.

2 Multi-label datasets available at: http://mulan.sourceforge.net/datasets.html

http://www.mturk.com
http://mulan.sourceforge.net/datasets.html
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Table 1. Experiments developed to test the noise rate influence. The three datasets
are evaluated in a 10 × 5-fold CV according to four measures [1], and the results are
shown in terms of the mean value and the corresponding standard deviation (each
experiment is repeated over 10 equal-generated crowd datasets).

Noise rate 10% 20% 30% 40% 10% 20% 30% 40%

microf1 0.59 ± 0.01 0.56 ± 0.02 0.50 ± 0.03 0.41 ± 0.03 0.44 ± 0.02 0.35 ± 0.02 0.24 ± 0.03 0.13 ± 0.03

macrof1 0.58 ± 0.02 0.54 ± 0.02 0.48 ± 0.03 0.41 ± 0.03 0.44 ± 0.02 0.35 ± 0.01 − − − − − −
globalAcc 0.24 ± 0.01 0.22 ± 0.01 0.18 ± 0.02 0.11 ± 0.02 0.34 ± 0.02 0.26 ± 0.02 0.15 ± 0.02 0.07 ± 0.02

meanAcc 0.72 ± 0.01 0.70 ± 0.01 0.69 ± 0.02 0.69 ± 0.01 0.83 ± 0.01 0.82 ± 0.01 0.82 ± 0.00 0.83 ± 0.00

emotions scene

Noise rate 10% 20% 30% 40%

microf1 0.59 ± 0.01 0.57 ± 0.01 0.56 ± 0.01 0.54 ± 0.01

macrof1 − − − − − − − − − − − −
globalAcc 0.15 ± 0.01 0.13 ± 0.01 0.11 ± 0.01 0.09 ± 0.02

meanAcc 0.76 ± 0.02 0.75 ± 0.01 0.74 ± 0.01 0.74 ± 0.01

yeast

In Table 1, the results obtained from these experimental settings show the
expected tendency of an increment of the degradation as the noise rate is larger.
However, as a result of the transformation to the multi-dimensional framework,
the resulting class variables tend to be strongly unbalanced (a class value is over-
represented in the dataset). Among the problems that this generates, note that
the accuracy-based evaluation measures become unfair. For example, in the tests
with most noise of Table 1, some of the displayed mean accuracy values corre-
spond to the label proportions of the dataset (which have macrof1 = ‘−−−’), i.e.
the method is always predicting the majority class label. In this way, our weight
updating procedure based on maximal-probability could be failing to capture
the information of supervision as a combination of the multiple annotations.

4.2 Influence of the Consensus

In the second set of experiments, we show the behavior of our method when
the consensus between the labelers increases. Thus, following the procedure de-
scribed before, five groups of ten datasets were generated where the degree of
consensus ranges from two to six annotators. The annotators in consensus have
been generated with a noise rate of 10%, and the rest with 30%. Due to lack of
space, only the ML dataset emotions is used in this experimental settings.

As a fundamental parameter in our approach, we wanted to show the relia-
bility weights of the annotators obtained after the training process. As shown in
Figure 1, all the weight updating procedures identify the reliable annotators (all
of them are shown over 1). However, the weights produced by the approaches
that incorporate the consensus idea are those which are most unbalanced. Sur-
prisingly, larger consensus annotators’ weights do not imply a notable gain in
terms of global accuracy (nor other performance measures, not shown due to
lack of space). Our method behaves as expected when it performs better as
the degree of consensus is increased. However, the performances do not show
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Fig. 1. Experiments developed to test the influence of the consensus degree. In the
left figure, the relevance rate of the consensus annotators (mean of the weights of
the consensus annotators divided by that of non-consensus annotators) according to
different weight-updating approaches. In the right figure, the same experiments are
evaluated in terms of global accuracy. All the results are shown by means of mean value
and the corresponding standard deviation, evaluated in a 10×5-fold CV (repeated over
10 equal-generated crowd datasets).

notable differences whether the weight-updating approach considers the consen-
sus information or not.

5 Conclusions

As shown, the current method does not seem to make the most of this kind of
data, being unable to extract information from the consensus between annota-
tors. It could be worth exploring other paradigms to weight the relevance of the
annotators, according to other performance metrics (see, for example, [16]).

As explained before, our method implements four approaches for updating
the weights of the annotators. Specifically, two of them only consider the model
predictions in the update procedure, and the other two combine the model es-
timations and the consensus information, both with the same relevance. An
interesting idea for future work could be to implement a simulated-annealing
based technique that modifies the relevance of both factors (model predictions
and consensus) throughout the iterative method every time that the weights are
updated. In this way, in the first iterations we could rely more on the consensus
information and, in the final iterations, relying on the model predictions.

Moreover, considering that the annotators can choose the instances that they
label, we could skip the previous assumption that all the annotators label all the
instances. Similarly, it could be also interesting to allow annotators not to as-
sert the membership of every instance to all the classes [15]; that is, to consider
a new state for the annotations (member, non-member, unknown). Skipping
both assumptions would introduce new challenges to the learning process,
mainly affecting the way in which we calculate the reliability weights of the
annotators.
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References
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