
Learning more Accurate Bayesian Networks

in the CHC Approach by Adjusting the
Trade-Off between Efficiency and Accuracy

Jacinto Arias, José A. Gámez, and José M. Puerta

Department of Computing Systems - I3A
University of Castilla-La Mancha

Albacete, 02071
jacinto.arias@alu.uclm.es, {jose.gamez,jose.puerta}@uclm.es

Abstract. Learning Bayesian networks is known to be an NP-hard
problem, this, combined with the growing interest in learning mod-
els from high-dimensional domains, leads to the necessity of finding
more efficient learning algorithms. Recent papers propose constrained
approaches of successfully and widely used local search algorithms, such
as hill climbing. One of these algorithms families, called CHC (Con-
strained Hill Climbing), highly improves the efficiency of the original
approach, obtaining models with slightly lower quality but maintaining
its theoretical properties. In this paper we propose some modifications
to the last version of these algorithms, FastCHC, trying to improve the
quality of its output by relaxing the constraints imposed to include some
diversification in the search process. We also perform an intensive exper-
imental evaluation of the modifications proposed including quite large
datasets.

Keywords: Bayesian Networks, Machine Learning, Local Search,
Constrained Search, Scalability.

1 Introduction

Over the last decades, Bayesian Networks [7,9] have become one of the most
relevant knowledge representation formalisms in the field of Data Mining. Due
to its popularity and the increasing amount of data available it is not surprising
that learning the structure of Bayesian Networks from data has become also a
problem of growing interest.

This paper falls in the so-called score+search approach which poses learning
as an optimization problem: A scoring metric function f ([6,8]) is used to score
a network structure with respect to the training data, and a search method is
used to look for the network with the best score. The majority of the proposed
methods are based on heuristic and metaheuristic search strategies since this
problem is known to be NP-hard [2]. If we add the necessity of dealing with
massive datasets, local-search methods such as hill climbing, have achieved great

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 310–320, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Adjusting the Trade-Off between Efficiency and Accuracy in CHC Algorithms 311

popularity due to its ease of implementation and its trade-off between their
efficiency and the quality of the models obtained.

In order to deal with larger datasets, several scalable algorithms have been
proposed, specifically based on local-search approaches. Those methods are usu-
ally based on restricting the search space in different ways performing a two-step
process to first detect the constraints, and then perform an intensified and more
efficient local search [10]. In [3], the CHC algorithm is introduced, which pro-
gressively restricts the search space when performing an iterated local search
without needing a previous step. The development of this result leads to the
FastCHC algorithm [4] which improves the performance of the original defini-
tion by reducing to one the number of iterations needed.

All the CHC algorithms provide an efficiency improvement when comparing
them with most state of the art algorithms and especially with the unconstrained
hill climbing approach, maintaining also its original theoretical properties. How-
ever, restricting the search space normally implies a loss of quality in the models
obtained. In this paper, we propose some modifications to the FastCHC algo-
rithm, as it has proven to be the most efficient of the CHC family, in order
to balance the trade-off between efficiency and quality of the models, trying to
provide better solutions without decreasing its efficiency advantage. These mod-
ifications relax the constraints imposed by the original algorithm in order to
allow the algorithm visit additional solutions.

The rest of the paper is organized as follows: In Section 2 we review the
necessary background on Bayesian Networks and the hill climbing approach to
structural learning. In Section 3 we review the CHC algorithms family. In Section
4 we describe the modifications proposed to improve the FastCHC algorithm.
Finally, in section 5 we evaluate the performance of the modifications proposed
and compare them with the original algorithms. In section 6, we conclude with
a discussion of the results obtained and future directions.

2 Learning the Structure of Bayesian Networks

Bayesian Networks (BNs) are graphical models than can efficiently represent
and manipulate n-dimensional probability distributions [9]. Formally1, a BN is
a pair B = 〈G,Θ〉, where G is a graphical structure, or more precisely a Directed
Acyclic Graph (DAG) whose nodes are in V = {X1, X2, . . . , Xn} represent the
random variables of the domain we wish to model, and the topology of the graph
(the arcs in E ⊆ V×V) encodes conditional (in)dependence relationships among
the variables (by means of the presence or absence of direct connections between
pair of variables).

The second element of the pair, Θ, represents a set of numerical parameters,
usually conditional probability distributions drawn from the graph structure

1 We use standard notation, that is, bold font to denote sets and n-dimensional configu-
rations, calligraphic font to denote mathematical structures, upper case for variables
sets of random variables, and lower case to denote states of variables or configuration
of states.



312 J. Arias, J.A. Gámez, and J.M. Puerta

which quantifies the network: For each Xi ∈ V we have a conditional probability
distribution P (Xi | pa(Xi)), where pa(Xi) represents any combination of the
values of the variables Pa(Xi), and Pa(Xi) is the parent set of Xi in G.

From a BN B = 〈G,Θ〉, we can recover the joint probability distribution over
V given by:

P (X1, X2, . . . , Xn) =

n∏

i=1

P (Xi | Pa(Xi))

The problem of learning the structure of a BN can be stated as follows: Given
a training dataset D = {v1, . . . , vm} of instances of V, find the DAG G∗ such
that

G∗ = arg max
G∈Gn

f(G : D)

where f(G : D) is a scoring metric which evaluates the merit of any candidate
DAG. An important property of the metrics that are commonly used for BN
structural learning is the decomposability in presence of full data, which evaluate
a given DAG as the sum of its node family scores, i.e. the subgraphs formed by a
node and its parents in G [7]. This provides an efficient neighbourhood evaluation
for local search algorithms such as hill climbing, which evaluates local changes
for a candidate solution, normally starting from the empty graph, and performs
the one which maximizes the score function until it is not possible to find a better
neighbour. By using local changes which only modify one arc at each step, we
can reuse the computations carried out in previous stages and compute only the
statistics corresponding to the variables whose parents have been modified. The
most used operators are arc addition, deletion and reversal.

The popularity of HC is probably due to its ease of implementation as well
as its good trade-off between efficiency and quality of the output, which is a
local optimum. In addition, it has other theoretical properties which makes it
interesting, e.g. under certain assumptions the algorithm guarantees that the
resulting network is a minimal I-map2 [3].

3 Constrained Hill Climbing Methods

The CHC algorithm [3] is based on a progressive restriction of the neighbourhood
during the search process. The algorithm keeps what the authors call, Forbidden
Parents Sets (FP ) for each node, so in the neighbourhood generation step for
the node Xi, any node Xj ∈ FP (Xi) is not considered as a suitable parent of Xi

and the algorithm avoids its evaluation, saving a large number of computations.
In order to include a node in the FP set, the algorithm uses the value of

the score metric as a sort of conditional independence test when evaluating

2 A DAG G is an I-map of a probability distribution p if all independences that G
codifies are also present in the original p distribution and it is minimal if none of the
arcs in the DAG can be deleted without violating the I-map condition.



Adjusting the Trade-Off between Efficiency and Accuracy in CHC Algorithms 313

local changes, so that when the difference (diff) of score between the current
structure and the one resulting of applying the considered operation does not
reveal a gain in the structure, the FP sets are updated consequently:

– Adding Xj → Xi. If diff < 0 then {Xj} is added to FP (Xi) and vice versa.
– Deleting Xj → Xi. If diff > 0 then {Xj} is added to FP (Xi) and vice

versa.
– Reversal of Xj → Xi. Decompose as deleting(Xj → Xi)+adding(Xi → Xj)

and use the previous two rules to update the FP sets.

Although the initial CHC algorithm results in a much more efficient search
process when compared with the unconstrained hill climbing it does not guar-
antee to return a minimal I-map and for that reason the CHC* algorithm is
proposed, in which the output of the CHC algorithm is used as the initial solu-
tion of an unconstrained hill climbing to retain the theoretical properties.

An iterated version of the CHC algorithm is also proposed in [3], in which the
algorithm performs several iterations by using the output of the previous one
as the initial solution for the next restarting the FP sets to the empty set. The
algorithm ends when it is unable to perform any change at the beginning of an
iteration and, because no constraints are being used, it has the same stopping
criterion as the hill climbing algorithm thus retains its theoretical properties: It
guarantees a minimal I-map.

All the previous development lead to the most efficient version of the CHC
algorithm, called FastCHC [4]. This algorithm guarantees a minimal I-map in
just one iteration. To accomplish this, the algorithm tries to correct wrong dis-
covered relationships in the graph by releasing some constraints every time it
performs an addition operation to the network, i.e. after the algorithm adds the
arc Xi → Xj it releases all the constraints from FP (Xi) and FP (Xj) respec-
tive neighbourhoods to allow the algorithm to correct the solution if needed to
become an I-map.

4 Proposal

As mentioned before, constrained algorithms experiment a loss of quality for the
sake of efficiency [4]. In this paper we propose two different strategies to relax the
constraints present in the FastCHC algorithm to allow some diversification in the
search process, thus it will visit additional solutions that otherwise would remain
unexplored. All the following modifications maintain the theoretical properties
of the original algorithm as we don’t modify the required conditions.

4.1 Releasing Constraints in Variable Neighbourhood Levels

Our first proposal is a basic modification to FastCHC based on the aforemen-
tioned strategy [4] of releasing some of the constraints from the nodes involved
in the change performed at each search step. Although this strategy was origi-
nally designed to correct wrong discovered relationships, we can also see it as a



314 J. Arias, J.A. Gámez, and J.M. Puerta

diversification technique, as it allows the search algorithm to explore additional
solutions which could have a better score.

This modification, which we call FastCHCMod1, extends the described proce-
dure to deletion and reversal operations. We also consider releasing constraints
from a wider range of nodes in order to extend the unconstrained search space.
To achieve this, we include a new parameter L ∈ N which represents levels of
neighbourhood to release constraints from, i.e., for a value L = 1 when a change
involving nodes Xi and Xj is performed any node adjacent to Xj (adj1(Xj))
will be removed from FP (Xi), and vice versa3; for a level L = 2, any node
Xj′ ∈ adj1(Xj) and its respective adjacent nodes (adj2(Xj)) will be removed
from FP (Xi), and vice versa; for the general case L = n any node in adjn(Xj)
will be removed from FP (Xi), and vice versa.

4.2 Limiting the FP Sets Size

The main disadvantage of the previous approach is that the behaviour of the
modification is not much predictable and for that reason the new included param-
eter L could be difficult to set. Our second proposal tries to release constraints
during the search procedure regarding the score metric value.

We add a limit S for the maximum number of FP constraints that can be
simultaneously stored in the FP , so when the number of constraints reaches this
limit some of them must be released in order to keep the number of constraints
at S. As the constraints are added or released in pairs, i.e. if variable Xi is added
to FP (Xj) also Xj will be added to FP (Xi), we count both directions as one
so the parameter S refers to half the size of the sum of all the FP sizes:

1

2

n∑

i=1

#FP (Xi) ≤ S

This modification requires two design decisions to be defined: A suitable ap-
proximation S for the maximum number of FP constraints to be maintained
and an update criteria to determine which constraints must be kept in the FP
sets.

We should not use an absolute approximation to select an appropriate S
value because the number of constraints that are discovered during a search
procedure highly depends on the dataset number of attributes and other specific
characteristics. For that reason, we ought to express a limitation parameter
independently from the dataset that is being used. To make an approximate
idea of the size that the FP sets reach when using different datasets, we carried
out an experiment computing the maximum number of discovered constrains
(Smax) for different datasets, which are described in Section 5. In Table 1 we
can confirm how much this number varies from one dataset to another.

We can use this value Smax as a reference value that we can compute auto-
matically and then express the size limitation as a reduction factor α which will

3 The behaviour of the modification with L = 1 is similar to the original FastCHC,
which releases constraints in the same way but only after performing addition moves.



Adjusting the Trade-Off between Efficiency and Accuracy in CHC Algorithms 315

Table 1. FP sets maximum size reached during a full execution of the original
FastCHC and after the first iteration of the algorithm. The last column includes the
ratio between these two values as a comparison.

Network #vars Full Execution (Smax) First Iteration (S0) Ratio

Mildew 35 556 474 85%
Barley 48 1053 841 80%
Hailfinder 56 1458 1243 85%
Pigs 441 96142 86912 90%

be applied to obtain S; having a parameter independent from the dataset. How-
ever, since obtaining Smax is not feasible without performing a full execution of
the algorithm, we must find an approximate value that we could obtain using
computations that the unmodified algorithm already performs. In Table 1, we
show the size of the FP sets after the first iteration of the algorithm, S0, and
the ratio between this value and the one obtained after a full execution Smax,
showing that there is no much difference between them, thus we can take the
latter value as an optimistic approximation that should fit our requirements.

In summary, our modification performs the first iteration of the search process
just as it does FastCHC, discovering and storing in the FP sets S0 constraints,
then a reduction of α is applied to the size of the FP sets and the algorithm
releases all the constrains needed to fit this new maximum size: S = α ·S0. From
that point, FastCHC algorithm is executed, with the difference that, when new
FP constrains are discovered, the FP sets must be updated and some of the
constraints need to be released in order to fit the imposed limit.

Regarding the update policy, we keep a list including all the constraints dis-
covered ordered by their score at time of being included (as they are forbidden
they will not be updated anymore). When the amount of constraints exceeds the
limit, the one with the highest score will be released from the list.

In order to manually fix the parameter α we can interpret it as a balance
between efficiency and quality of the models. As we can see in Figure 1, a value
of α closer to 1.0 must keep an algorithm behaving much like FastCHC, but
a value of α closer to 0.0 keeps the algorithm’s behaviour closer to the Hill
Climbing approach but retaining the speed up advantage of the first iteration of
the original constrained algorithm.

5 Experimental Evaluation

In this section we examine the different modifications to the FastCHC algorithm
proposed in this paper, we perform an empirical evaluation for each modification
with different values of their parameters. We selected FastCHCMod1 with L = 2
and L = 3, as preliminary experiments revealed that larger values of L don’t
provide much difference, and FastCHCMod2 with α = 0.4, α = 0.6, and α = 0.8
to evaluate α in a wide range. In addition, we include as reference algorithms
the unmodified FastCHC and the standard hill climbing (HC ).



316 J. Arias, J.A. Gámez, and J.M. Puerta

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−1
00

00
00

−9
50

00
0

−9
00

00
0

Score Metric Calls

B
D

eu
 S

co
re

FastCHC
α = 0.8
α = 0.6
α = 0.4

HC

Fig. 1. Evolution of the search process of the HC, FastCHC and FastCHCMod2 with
different values of α. Each point correspond to a complete search step representing
the BDeu score metric value obtained (y-axis) and the score metric calls (x-axis). This
execution corresponds to an single execution for a 5000 instances sample from one of
the random BN 200 networks, described in Section 5.

5.1 Implementation and Running Environment

All the algorithms have been implemented in Java using the ProGraMo library
for dataset and graph structures management [5]. The score metric used is the
Bayesian Dirichlet Equivalent Uniform (BDeu) [6] with an equivalent sample size
of 10 and all other parameters set up as in [10]. We also take advantage of the
internal cache described in [3] which saves the result of every score computation
using the probability family as a hash key in order to re-use it later in the
execution, achieving high computational savings especially in larger domains.

5.2 Performance Indicators

We consider two kind of factors as performance indicators to compare the dif-
ferent algorithms: the quality of the network obtained which is given by the
value of the scoring metric (BDeu) and the efficiency of the algorithm which is
given by the number of score function computations carried out by each algo-
rithm (calls). As the execution time depends on both the implementation and
the specification of the computer on which the algorithm is executed, we con-
sider the score function calls for being independent of those factors and having
direct correspondence with CPU time requirements.

5.3 Experiments

We have carried out a first set of experiments using a collection of real worl net-
works which are commonly referenced in the literature and varies from smaller



Adjusting the Trade-Off between Efficiency and Accuracy in CHC Algorithms 317

Table 2. Main characteristics of the real networks used in the experiments

Network Alarm Barley Hailfinder Insurance Mildew Munin1 Pigs
#vars 38 48 56 27 35 189 441
#arcs 46 84 66 52 46 282 592
Domain Medicine Agriculture Meteorology Insurance Agriculture Medicine Genetics

to larger domains, the networks have been obtained from the Bayesian Network
Repository4. Their main characteristics are shown in Table 2. In addition, a
second set of more intensive experiments have been carried on using a set of
synthetic databases sampled from a collection of artificial networks, which have
been randomly generated with different degrees of difficulty based on the proce-
dure described in [1]. We use a collection of 4 networks with 100 nodes and an
average of 100 arcs and 4 networks with 200 nodes and an average of 400 arcs.
We have sampled 5 datasets of 5000 instances for each network, the following
results are obtained from the average of them.

5.4 Detailed Results

Table 3 shows the BDeu score metric value and calls for each algorithm and
database. The results highlighted in bold are the best for the corresponding
network. As we can confirm in the data, the algorithms perform consistently with
their definition being hill climbing the one with highest scores and FastCHC the
most efficient. Also, we can confirm the score improvements of the modifications,
especially when comparing FastCHCMod2 for the three different values of α;
FastCHCMod1 score improvement is more subtle but efficiency is hardly modified.
As we can see, the score value an calls difference between the constrained and the
unconstrained algorithms is more noticeable for the larger databases, supporting
the scalability properties of the constrained algorithms.

5.5 Summary

Taking into account the two sets of experiments described above, a comprehen-
sive performance comparison for each algorithm with hill climbing is shown in
Figure 2, regarding the ratio between the score metric calls and the BDeu score;
the later is computed using exp((BDeu(Modeli)− BDeu(HC))/m) in order to pro-
vide an estimation of the ratio between the probability that Modeli and model
HC assign to the next data sample. In this graphical comparison we can confirm
the expected behaviour of the modifications, displaying the FastCHC algorithm
in the bottom left corner as the most efficient but less accurate algorithm and
the hill climbing in the upper right corner, being the less efficient algorithm
which obtains the best solutions; the modifications are spread along the diago-
nal showing the desired balance between efficiency and quality according to their
parameters values meaning.

4 http://www.cs.huji.ac.il/site/labs/compbio/Repository/

http://www.cs.huji.ac.il/site/labs/compbio/Repository/


318 J. Arias, J.A. Gámez, and J.M. Puerta

Table 3. Score metric value (above) and calls (below) for each algorithm and network.
BN 100 and BN 200 represent the average of the results obtained for the two collection
of synthetic networks described.

Dataset HC FastCHC FastCHCMod1 FastCHCMod1

(L = 2) (L = 3)
Alarm -47999.3454 -48045.1449 -48010.4824 -48009.5839
Barley -261888.6082 -271658.9229 -269808.1994 -267565.7600
Hailfinder -250408.8787 -251528.0754 -251417.5400 -251411.9393
Insurance -67021.9905 -67317.2964 -67172.8644 -67131.2555
Mildew -232748.2202 -243978.3822 -243444.3285 -243278.5567
Munin1 -203005.5923 -206639.3665 -205756.4947 -205235.2420
Pigs -1673304.6600 -1673110.1193 -1672782.9907 -1672522.5336
BN n100 -328499.1000 -334554.4000 -334223.4000 -333286.0000
BN n200 -667642.3000 -682648.9000 -682081.4000 -680601.0000

FastCHCMod2 FastCHCMod2 FastCHCMod2

(α = 40%) (α = 60%) (α = 80%)
Alarm -48001.0012 -48001.0012 -48006.6924
Barley -264254.3812 -266033.6374 -265699.4747
Hailfinder -250346.7057 -250396.9589 -250472.7089
Insurance -67019.6496 -67034.4770 -67058.0366
Mildew -237832.5022 -243042.4006 -242635.9131
Munin1 -203452.6020 -204512.2889 -204837.3228
Pigs -1673019.6149 -1672623.7133 -1672552.5238
BN n100 -330526.2000 -331589.1000 -332992.9000
BN n200 -673222.0000 -676501.1000 -678693.6000

Dataset HC FastCHC FastCHCMod1 FastCHCMod1

(L = 2) (L = 3)
Alarm 3444.2000 1533.8000 1673.4000 1848.0000
Barley 5680.8000 1876.2000 1993.4000 2123.8000
Hailfinder 7063.2000 2401.0000 2556.4000 2673.6000
Insurance 2230.0000 1075.2000 1266.0000 501.2000
Mildew 2460.4000 906.4000 960.0000 1041.4000
Munin1 102218.2000 58598.8000 62181.2000 67445.4000
Pigs 539248.6000 125902.2000 132401.0000 146048.2000
BN n100 20712.2500 6297.6000 6712.9000 7658.3500
BN n200 99766.6000 22819.7500 23591.9500 25775.7000

FastCHCMod2 FastCHCMod2 FastCHCMod2

(α = 40%) (α = 60%) (α = 80%)
Alarm 2635.0000 2436.6000 2211.2000
Barley 3758.0000 3305.4000 2926.4000
Hailfinder 5031.2000 4427.2000 3698.8000
Insurance 1892.4000 1774.8000 1669.2000
Mildew 1695.8000 1418.8000 1217.8000
Munin1 94122.4000 91824.2000 88950.8000
Pigs 317561.4000 257212.0000 198098.6000
BN n100 13831.8500 11059.7500 8753.0500
BN n200 50421.9000 39880.6500 31093.2000

6 Conclusions

We have defined some modifications for constrained local search algorithms in
order to obtain higher quality solutions closer to the state of the art algorithms
when maintaining an efficient algorithm. The second modification proposed in-
troduces a parameter which can be tuned in order to adjust the behaviour of the
algorithm regarding the efficiency/quality tradeoff. Future works could lead to a
parameters-free modification of the algorithm, in which the size of the FP sets



Adjusting the Trade-Off between Efficiency and Accuracy in CHC Algorithms 319

Hill Climbing (1.0000, 1.0000)

FastCHC (0.3176, 0.5971)
FastCHCMod1 L = 2 (0.3402, 0.6189)

FastCHCMod1 L = 3 (0.3438, 0.6546)

FastCHCMod2 alpha = 0.4 (0.6314, 0.8136)

FastCHCMod2 alpha = 0.6 (0.5409, 0.7339)

FastCHCMod2 alpha = 0.8 (0.4611, 0.6924)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

Score Metric Calls Comparison

B
D

eu
 S

co
re

 C
om

pa
ris

on

Fig. 2. Comparison between the different algorithms regarding score metric calls (x-
axis) and score metric value (y-axis). The values displayed next to the algorithms names
express the averaged ratios (calls, score) relative to the hill climbing algorithm from
all datasets.

is reduced dynamically during the search process, trying to relax the constrains
in the lasts steps of the search to take advantage of both constrained and uncon-
strained approaches. Preliminary experiments using a fixed rate reduction of the
FP sets and statistical parameters such as the score variance between solutions
have shown similar results to the parametrized modification.

Acknowledgments. This work has been partially funded by FEDER funds and
the Spanish Government (MICINN) through project TIN2010-20900-C04-03.

References

1. Alonso-Barba, J.: delaOssa, L., Gámez, J., Puerta, J.: Scaling up the greedy equiv-
alence search algorithm by constraining the search space of equivalence classes.
International Journal of Approximate Reasoning (2013)

2. Chickering, D.M.: Learning bayesian networks is NP-complete. In: Learning from
data, pp. 121–130. Springer (1996)

3. Gámez, J., Mateo, J., Puerta, J.: Learning bayesian networks by hill climbing:
efficient methods based on progressive restriction of the neighborhood. Data Mining
and Knowledge Discovery 22(1-2), 106–148 (2011)

4. Gámez, J., Mateo, J., Puerta, J.: One iteration CHC algorithm for learning
Bayesian networks: an effective and efficient algorithm for high dimensional prob-
lems. Progress in Artificial Intelligence 1(4), 329–346 (2012)

5. Gámez, J., Salmerón, A., Cano, A.: Design of new algorithms for probabilistic
graphical models. Implementation in Elvira. Programo Research Project (TIN2007-
67418-c03) (2010)



320 J. Arias, J.A. Gámez, and J.M. Puerta

6. Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: The
combination of knowledge and statistical data. Machine Learning 20(3) (1995)

7. Jensen, F.V., Nielsen, T.D.: Bayesian networks and decision graphs. Springer
(2007)

8. Neapolitan, R.E.: Learning bayesian networks. Pearson Prentice Hall (2004)
9. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausble In-

ference. Morgan Kaufmann Pub. (1988)
10. Tsamardinos, I., Brown, L., Aliferis, C.: The max-min hill-climbing bayesian net-

work structure learning algorithm. Machine Learning 65(1), 31–78 (2006)


	Learning more Accurate Bayesian Networks
in the CHC Approach by Adjusting the
Trade-Off between Efficiency and Accuracy

	1 Introduction
	2 Learning the Structure of Bayesian Networks
	3 Constrained Hill Climbing Methods
	4 Proposal
	4.1 Releasing Constraints in Variable Neighbourhood Levels
	4.2 Limiting the FP Sets Size

	5 Experimental Evaluation
	5.1 Implementation and Running Environment
	5.2 Performance Indicators
	5.3 Experiments
	5.4 Detailed Results
	5.5 Summary

	6 Conclusions
	References




