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Abstract. Traditionally, feature selection has been required as a pre-
liminary step for many pattern recognition problems. In recent years,
distributed learning has been the focus of much attention, due to the
proliferation of big databases, in some cases distributed across different
nodes. However, most of the existing feature selection algorithms were
designed for working in a centralized manner, i.e. using the whole dataset
at once. In this research, a new approach for using filter methods in a dis-
tributed manner is presented. The approach splits the data horizontally,
i.e., by samples. A filter is applied at each partition performing several
rounds to obtain a stable set of features. Later, a merging procedure is
performed in order to combine the results into a single subset of rele-
vant features. Five of the most well-known filters were used to test the
approach. The experimental results on six representative datasets show
that the execution time is shortened whereas the performance is main-
tained or even improved compared to the standard algorithms applied
to the non-partitioned datasets.

1 Introduction

In the past 20 years, the dimensionality of the datasets involved in data mining
has increased dramatically, as can be seen in [1]. This fact is reflected if one an-
alyzes the dimensionality (samples × features) of the datasets posted in the UC
Irvine Machine Learning Repository [2]. In the 1980s, the maximal dimensional-
ity of the data was about 100; then in the 1990s, this number increased to more
than 1500; and finally in the 2000s, it further increased to about 3 million. The
proliferation of this type of datasets with very high (> 10000) dimensionality
had brought unprecedented challenges to machine learning researchers. Learning
algorithms can degenerate their performance due to overfitting, learned models
decrease their interpretability as they are more complex, and finally speed and
efficiency of the algorithms decline in accordance with size.

Machine learning can take advantage of feature selection methods to be able
to reduce the dimensionality of a given problem. Feature selection (FS) is the
process of detecting the relevant features and discarding the irrelevant and re-
dundant ones, with the goal of obtaining a small subset of features that describes
properly the given problem with a minimum degradation or even improvement
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in performance [3]. Feature selection, as it is an important activity in data pre-
processing, has been an active research area in the last decade, finding success
in many different real world applications [4,5,6,7].

FS methods usually come in three flavors: filter, wrapper, and embedded meth-
ods [8]. The filter model relies on the general characteristics of training data and
carries out the FS process as a pre-processing step with independence of the in-
duction algorithm. On the contrary, wrappers involve optimizing a predictor as
a part of the selection process. Halfway these two models one can find embedded
methods, which perform FS in the process of training and are usually specific to
given learning machines. By having some interaction with the predictor, wrapper
and embedded methods tend to obtain higher prediction accuracy than filters,
at the cost of a higher computational cost. When dealing with high dimensional
data, as in this research, filters are preferable even when the subset of features
is not optimal, due to their computational and statistical scalability [9].

Traditionally, FS methods are applied in a centralized manner, i.e. a sin-
gle learning model to solve a given problem. However, when dealing with large
amounts of data, distributed FS seems to be a promising line of research since
allocating the learning process among several workstations is a natural way of
scaling up learning algorithms. Moreover, it allows to deal with datasets that are
naturally distributed, a frequent situation in many real applications (e.g. weather
databases, financial data or medical records). There are two common types of
data distribution: (a) horizontal distribution wherein data are distributed in sub-
sets of instances; and (b) vertical distribution wherein data are distributed in
subsets of attributes. The great majority of approaches distribute the data hori-
zontally, since it constitutes the most suitable and natural approach for most ap-
plications [10,11,12,13]. While not common, there are some other developments
that distribute the data vertically [14,15,16]. When the data come distributed
in origin, vertical distribution is solely useful where the representation of data
could vary along time by adding new attributes.

In this research, and in order to deal with large databases, we will distribute
the data horizontally. In this manner, several rounds of FS processes will be per-
formed, whose outputs will be combined into a single subset of relevant features.
Experimental results on six benchmark datasets demonstrate that our proposal
can maintain the performance of original FS methods, providing a learning scal-
able solution.

The rest of the paper is organized as follows: Section 2 presents our distributed
filter approach, Section 3 depicts the experimental setup, and Sections 4 and 5
report the experimental results and the conclusions, respectively.

2 Distributed Feature Selection

In this paper we present a distributed filter approach by partitioning the data
horizontally. The methodology consists of applying filters over several partitions
of the data, combined in the final step into a single subset of features. The idea
of distributing the data horizontally builds on the assumption that combining
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the output of multiple experts is better than the output of any single expert.
There are three main stages: (i) partition of the datasets; (ii) application of the
filter to the subsets; and (iii) combination of the results.

The feature selection algorithm (see pseudo-code in Algorithm 1) is applied to
all the datasets in several iterations or rounds. This repetition ensures capturing
enough information for the combination stage. At each round, the first step is the
partition of the dataset, which consists of randomly dividing the original training
dataset into several disjoint subsets of approximately the same size that cover
the full dataset (see Algorithm 1, line 3). As mentioned above, the partition will
be doing horizontally . Then, the filter algorithm chosen is applied to each subset
separately and the features selected to be removed receive a vote (Algorithm 1,
lines 5 - 8). At that point, a new partition is performed and another round of
votes is accomplished until reaching the predefined number of rounds. Finally,
the features that have received a number of votes above a certain threshold are
removed. Therefore, a unique set of features is obtained to train a classifier C
and to test its performance over a new set of samples (test dataset).

To determine the threshold of votes required to remove a feature is not an
easy-to-solve question, since it depends on the given dataset. Therefore, we have
developed our own automatic method which calculates this threshold, outlined
in Algorithm 1, lines 9-19. The best value for the number of votes is estimated
from its effect on the training set, but due to the large size of the dataset, not
the complete training set was used, only 10% was employed.

Following the recommendations exposed in [17], the selection of the number
of votes must take into account two different criteria: the training error and the
percentage of features retained. Both values must be minimized to the extent
possible, by minimizing the fitness criterion e[v] (see Algorithm 1, line 18). To
calculate this criterion, a term α is introduced to measure the relative relevance
of both values and was set to α = 0.75 as suggested in [17], giving more influence
to the classification error. Because of performing a horizontally partition of the
data, the maximum number of votes is the number of rounds r times the number
of subsets s. Since in some cases this number is in the order of thousands, instead
of evaluating all the possible values for the number of votes we have opted for
delimiting into an interval [minV ote,maxV ote] computed used the mean and
standard deviation (see lines 9-12 in Algorithm 1).

3 Experimental Setup

This section presents the datasets chosen for testing the distributed approach
and the concrete filters which will carry out the feature selection process. For
testing the adequacy of our proposal, four well-known supervised classifiers, of
different conceptual origin, were selected: C4.5, naive Bayes, IB1 and SVM. All
the classifiers and filters are executed using the Weka tool [18], with default
values for their parameters. Notice that the C4.5 classifier, widely-used in the
FS literature, performs its own embedded selection of features so it might be
using a smaller number of features than the other ones.
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Algorithm 1: Pseudo-code for distributed filter

Data: d(m×n+1) ← labeled training dataset with m samples and n input features

X←set of features, X = {x1, . . . , xn}
s← number of submatrices of d with p samples
r ← number of rounds
α← 0.75

Result: S← subset of features \S ⊂ X
/* Obtaining a vector of votes for discarding features */

1 initialize the vector votes to 0, |vector|=n
2 for each round do
3 Split d randomly into s disjoint submatrices
4 for each submatrix do
5 apply a feature selection algorithm
6 F← features selected by the algorithm
7 E← features eliminated by the algorithm \E ∪ F = X
8 increment one vote for each feature in E

end

end
/* Obtain threshold of votes, Th, to remove a feature */

9 avg ← compute the average of the vector votes
10 std← compute the standard deviation of the vector votes
11 minV ote← minimum threshold considered (computed as avg − 1/2std)
12 maxV ote← maximum threshold considered (computed as avg + 1/2std)
13 z← submatrix of d with only 10% of samples
14 for v ← mixVote to maxVote with increment 5 do
15 Fth ← subset of selected features (number of votes < v)
16 error ← classification error after training z using only features in Fth

17 featPercentage← percentage of features retained
(

|Fth|
|X| × 100

)

18 e[v]← α× error + (1− α)× featPercentage

end
19 Th← min(e), Th is the value which minimizes the error e
20 S← subset of features after removing from X all features with a number of

votes ≥ Th

3.1 Datasets

In order to test our distributed filter approach, we have selected six benchmark
datasets which are reported in Table 1, depicting their properties (number of
features, number of training and test instances and number of classes). These
datasets can be considered representative of problems from medium to large
size, since the horizontally distribution is not suitable for small-sample datasets.
All of them can be free downloaded from the UCI Machine Learning Repository
[2]. Those datasets originally divided into training and test sets were maintained,
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whereas, for the sake of comparison, datasets with only training set were ran-
domly divided using the common rule 2/3 for training and 1/3 for testing. The
number of packets (s) to partition the dataset in each round is also displayed in
the last column of Table 1. This number was calculated with the constraint of
having, at least, three packets per dataset.

Table 1. Dataset description

Dataset Features Training Test Classes Packets

Connect4 42 45038 22519 3 45
Isolet 617 6238 1236 26 5
Madelon 500 1600 800 2 3
Ozone 72 1691 845 2 11
Spambase 57 3067 1534 2 5
Mnist 717 40000 20000 2 5

3.2 Filter Methods

The distributed approach proposed herein can be used with any filter method.
In this work, five well-known filters, based on different metrics, were chosen.
While three of the filters return a feature subset (CFS, Consistency-based and
INTERACT), the other two (ReliefF and Information Gain) are ranker methods,
so it is necessary to establish a threshold in order to obtain a subset of features.
In this research we have opted for retaining the c top features, being c the number
of features selected by CFS. It is also worth noting that although most of the
filters work only over nominal features, the discretization step is done by default
by Weka, working as a black box for the user.

– Correlation-based Feature Selection (CFS) is a simple filter algorithm
that ranks feature subsets according to a correlation based heuristic evalu-
ation function [19]. Theoretically, irrelevant features should be ignored and
redundant features should be screened out.

– The Consistency-based Filter [20] evaluates the worth of a subset of
features by the level of consistency in the class values when the training
instances are projected onto the subset of attributes.

– The INTERACT algorithm [21] is based on symmetrical uncertainty (SU).
The authors stated that this method can handle feature interaction, and
efficiently selects relevant features. The first part of the algorithm requires a
threshold, but since the second part searches for the best subset of features,
it is considered a subset filter.

– Information Gain [22] is one of the most common attribute evaluation
methods. This filter provides an ordered ranking of all the features and then
a threshold is required.

– ReliefF [23] is an extension of the original Relief algorithm that adds the
ability of dealing with multiclass problems and is also more robust and capa-
ble of dealing with incomplete and noisy data. This method may be applied
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in all situations, has low bias, includes interaction among features and may
capture local dependencies which other methods miss.

4 Experimental Results

In this section we present and discuss the experimental results over six bench-
mark datasets. Our distributed approach is compared with the centralized stan-
dard approach of each method. To distinguish between both approaches, a “C”
(centralized) or a “D” (distributed) was added to the name of the filter. In the
case of the distributed approach, three rounds (r in Algorithm 1) have been
executed.

Table 2 reports the test classification accuracies of C4.5, naive Bayes, IB1
and SVM over the six datasets. The best result for each dataset and classifier is
highlighted in bold face, while the best result for dataset is also shadowed.

As expected, the results are very variable depending on the dataset and the
classifier. However, in terms of average (last column), the best result for each
classifier is obtained by a distributed approach, except for SVM. In particular,
ReliefF-D combined with C4.5 achieves the highest accuracy, outperforming in
at least 4% the best results for the remaining classifiers.

For datasets Connect4 and Isolet, the highest accuracies are obtained by cen-
tralized approaches, although these results improve only in 0.90% and 2.19%,
respectively, the best mark achieved by a distributed method. For Ozone dataset,
both distributed and centralized approaches obtain the highest precision when
combined with SVM classifier.

For the remaining datasets (Madelon, Spambase and Mnist), the best results
are accomplished by a distributed method. It is worth mentioning the case of
Spambase, where ReliefF distributed combined with naive Bayes reports 91.79%
of classification accuracy whilest the same filter method in the standard central-
ized approach achieves a poor 41.85% of accuracy. The results for Mnist dataset
are also remarkable, where the highest accuracy (96.31%) outperforms the best
mark of a centralized method in more than 6%.

Table 3 reports the runtime of the feature selection algorithms, both in cen-
tralized and distributed manners. In the distributed approach, considering that
all the subsets can be processed at the same time, the time displayed in the
table is the average of the times required by the filter in each subset generated
in the partitioning stage. In these experiments, all the subsets were processed
in the same machine, but the proposed algorithm can be executed in multiple
processors. Please note that this filtering time is independent of the classifier
chosen.

As expected, the advantage of the distributed approach in terms of execution
time over the standard method is significant. The time is reduced for all datasets
and filters. It is worth mentioning the important reductions as the dimensional-
ity of the dataset grows. For Mnist dataset, which has 717 features and 40000
training samples, the reduction is more than notable. For ReliefF filter, the pro-
cessing time is reduced from almost 8 hours to 15 minutes, proving the adequacy
of the distributed approach when dealing with large datasets.
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Table 2. Test classification accuracy. Best results are highlighted.

Connect4 Isolet Madelon Ozone Spambase Mnist Average

C
4
.5

CFS-C 61.22 81.59 80.50 97.63 81.16 86.99 81.51
CFS-D 61.25 82.23 76.88 95.86 79.27 88.65 80.69
INT-C 60.48 78.96 80.63 96.92 78.16 87.24 80.40
INT-D 61.66 79.03 82.38 94.79 80.83 88.62 81.22
Cons-C 60.49 56.00 80.63 98.70 84.62 87.00 77.90
Cons-D 61.66 77.10 82.63 96.33 79.34 90.46 81.25
IG-C 63.90 81.40 72.75 98.22 83.83 87.83 81.32
IG-D 62.34 81.08 79.63 97.87 85.33 87.88 82.36
ReliefF-C 63.49 79.54 73.88 98.11 78.81 87.34 80.19
ReliefF-D 63.00 80.56 87.50 98.46 84.75 87.95 83.70

N
B

CFS-C 60.28 75.05 71.75 78.22 57.69 71.88 69.15
CFS-D 58.83 73.89 70.13 76.69 57.24 73.34 68.35
INT-C 53.85 71.26 70.00 78.22 57.95 70.94 67.04
INT-D 59.16 70.75 70.13 75.03 74.77 71.06 70.15
Cons-C 54.12 42.78 70.00 98.70 91.00 72.78 71.56
Cons-D 59.16 69.92 70.38 73.25 92.89 75.74 73.56
IG-C 60.42 69.34 70.38 74.08 76.53 70.74 70.25
IG-D 60.28 67.54 70.63 77.63 89.70 68.09 72.31
ReliefF-C 60.42 62.67 68.63 71.36 41.85 69.82 62.46
ReliefF-D 60.50 56.51 71.50 60.95 91.79 70.93 68.70

IB
1

CFS-C 53.90 56.00 85.63 96.45 79.14 87.93 76.51
CFS-D 57.61 54.78 65.63 96.57 77.31 91.65 73.93
INT-C 58.27 52.92 88.75 94.44 79.73 86.87 76.83
INT-D 57.61 49.84 71.75 95.27 76.86 91.79 73.85
Cons-C 58.06 49.90 88.75 98.70 80.83 87.36 77.27
Cons-D 57.61 58.31 71.63 95.27 77.38 96.31 76.09
IG-C 51.29 54.78 74.25 95.98 78.62 89.63 74.09
IG-D 57.01 59.72 86.13 95.50 78.42 90.77 77.92
ReliefF-C 61.81 59.14 75.25 95.98 76.99 89.97 76.52
ReliefF-D 57.01 57.09 90.88 96.80 80.70 91.35 78.97

S
V
M

CFS-C 60.42 83.45 66.50 98.70 85.85 79.58 79.08
CFS-D 60.42 82.42 67.13 98.70 82.27 81.52 78.74
INT-C 60.42 73.83 66.38 98.70 80.31 78.54 76.36
INT-D 60.42 78.00 68.50 98.70 81.49 80.84 77.99
Cons-C 60.42 31.17 66.38 98.70 81.88 75.14 68.95
Cons-D 60.42 68.12 66.50 98.70 81.94 80.85 76.09
IG-C 60.42 82.94 67.13 98.70 83.83 78.28 78.55
IG-D 60.42 79.67 67.13 98.70 83.38 79.30 78.10
ReliefF-C 60.42 84.61 67.50 98.70 81.94 75.43 78.10
ReliefF-D 60.42 82.36 67.50 98.70 83.57 75.72 78.04

For the distributed approach, there exist also the time required to find the
threshold to build the final subset of features. This time highly depends on the
classifier, as can be seen in Table 4. In this table it is visualized the average
runtime for each filter and classifier. It is easy to note that the classifier which
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Table 3. Runtime (hh:mm:ss) for the FS methods tested. Lowest times highlighted in
bold font.

Method Connect4 Isolet Madelon Ozone Spambase Mnist

CFS-C 00:02:25 00:05:49 00:00:55 00:00:12 00:00:16 00:44:55
CFS-D 00:00:06 00:01:12 00:00:13 00:00:04 00:00:04 00:05:24
INT-C 00:02:57 00:04:55 00:00:56 00:00:12 00:00:16 00:42:13
INT-D 00:00:05 00:00:54 00:00:14 00:00:04 00:00:04 00:04:50
Cons-C 00:13:36 00:07:03 00:01:01 00:00:12 00:00:19 03:22:21
Cons-D 00:00:05 00:01:02 00:00:14 00:00:04 00:00:05 00:09:37
IG-C 00:02:19 00:04:32 00:00:55 00:00:12 00:00:16 00:38:17
IG-D 00:00:05 00:00:49 00:00:13 00:00:03 00:00:04 00:04:46
ReliefF-C 00:31:40 00:13:04 00:01:23 00:00:14 00:00:29 07:54:40
ReliefF-D 00:00:06 00:00:57 00:00:17 00:00:03 00:00:04 00:15:59

requires more execution time is SVM whilst the one which requires the short-
est time is naive Bayes. In any case, this is usually in the order of seconds (2
minutes in the worst case) so it is insignificant when compared with the time
required by any of the centralized algorithms showed above. Moreover, if the
user would rather save this time, it is possible to establish a fixed threshold and
not performing this specific calculation.

Table 4. Average runtime (hh:mm:ss) for obtaining the threshold of votes. Lowest
times highlighted in bold font.

Method C4.5 NB IB1 SVM

CFS-D 00:00:36 00:00:26 00:00:48 00:01:36
INT-D 00:00:31 00:00:24 00:00:50 00:01:23
Cons-D 00:00:29 00:00:23 00:00:46 00:01:41
IG-D 00:00:38 00:00:28 00:00:46 00:01:43
ReliefF-D 00:00:33 00:00:26 00:00:41 00:02:02

In light of the above, we can conclude that our distributed proposal performs
successfully, since the running time is considerably reduced and the accuracy
does not drop to inadmissible values. In fact, our approach is able to match
and in some cases even improve the standard algorithms applied to the non-
partitioned datasets.

5 Conclusions

In this work, we have proposed a new method for scaling up feature selection:
a distributed filter approach. The proposed method has been able to success-
fully distribute the feature selection process, shortening the execution time and
maintaining the classification performance.
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An experimental study was carried out on six datasets considered representa-
tive of problems from medium to large size. In terms of classification accuracy,
our distributed filtering approach obtains similar results to the centralized meth-
ods, even with slight improvements for some datasets. Furthermore, the most
important advantage of the proposed method is the dramatically reduction in
computational time (from the order of hours to the order of minutes). As future
work, we plan to distribute other FS techniques, such as wrapper or embedded
methods, and to try the vertical partition instead of the horizontal one.
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