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Preface

This volume contains a selection of the papers accepted for oral presentation
at the 15th Conference of the Spanish Association for Artificial Intelligence
(CAEPIA 2013), held in Madrid (Spain), during September 17-20, 2013. This
was the 15th biennial conference in the CAEPIA series, which was started back
in 1985. Previous editions took place in Madrid, Alicante, Málaga, Murcia,
Gijón, Donostia, Santiago de Compostela, Salamanca, Seville, and La Laguna.
This edition of CAEPIA was coordinated with various independent conferences:
IX Spanish Congress on Metaheuristics, Evolutive and Bioinspired Algorithms
(MAEB 2013), IV Symposium of Fuzzy Logic and Soft Computing (LFSC),
VII Symposium of Data Mining Theory and Applications (TAMIDA 2013), In-
formation Fusion 2013 (FINO 2013) and Agent and Multiagent Systems: From
Theory to Practice (ASMas). This is why this time the conference is called Multi-
Conference CAEPIA, as a sign of the strong tie between all Spanish artificial
intelligence (AI) researchers. Moreover, this year CAEPIA was held within the
IV Spanish Congress on Informatics (CEDI 2013).

CAEPIA is a forum open to worldwide researchers to present and discuss their
last scientific and technological advances in AI. Its main aims are to facilitate
the dissemination of new ideas and experiences, to strengthen the links among
the different research groups, and to help spread new developments to society.
All perspectives –theory, methodology, and applications– are welcome.

Apart from the presentation of technical full papers, the scientific program of
CAEPIA 2013 included two invited lectures, a Doctoral Consortium and, for the
first time, a special session on outstanding recent papers (Key Works) already
published in journals or forums of renowned reputation.

With the permanent goal of making CAEPIA a high-quality conference, and
following the model of current demanding AI conferences, the CAEPIA Program
Chairs organized the review process as follows. The Scientific Committee was
structured in two levels. At the first level the AI knowledge was distributed in
11 areas and a Track Chair was assigned for each one. These Track Chairs are
well-known members of the AI community affiliated to Spanish universities and
research centers. At the second level there was a Program Committee with 116
members (37 non-Spanish institutions). All papers were carefully peer-reviewed,
sometimes with the support of additional reviewers. There were 19 additional re-
viewers (eight non-Spanish institutions). The reviewers judged the overall quality
of the submitted papers, together with their originality and novelty, technical
correctness, awareness of related work, and quality of presentation. The reviewers
stated their confidence in the subject area in addition to detailed written com-
ments. Each paper was assigned to at least three Program Committee members
who made the reviews (following the double-blind model), and to a Track Chair
who supervised these reviews. On the basis of the reviews, the Track Chairs rec-
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ommended paper acceptance or rejection to the CAEPIA Program Chairs, who
made the final decisions. The CAEPIA Program Chairs chose the Best CAEPIA
Paper and the Best Reviewer, both awards acknowledged by AEPIA.

CAEPIA received 66 submissions. Authors were requested to mark their pa-
per as candidate to be published in the LNAI volume. Out of the 66 submis-
sions, 48 had this mark. After the review process, 27 out of these marked papers
were accepted for oral presentation and publication in this volume. Also, there
were submissions for this volume from the other associated conferences: 17 from
MAEB 2013 (six accepted), 10 from LFSC (four accepted), eight from TAMIDA
2013 (two accepted), one from FINO 2013 (0 accepted) and two from ASMas
(one accepted). These papers were reviewed under the same process and Scien-
tific Committee as the previous CAEPIA papers. The Program Chairs of these
conferences and the Chairs of the most related CAEPIA track also contributed
to the review process. As a result, this volume contains 40 papers, each pre-
sented in a 20-minute oral presentation during the conference. The papers were
organized according to their topics.

The two distinguished invited speakers were Francisco Herrera (ECCAI Fel-
low, University of Granada, Spain) and Tom Heskes (Editor-in-Chief of the scien-
tific journal Neurocomputing, Radboud University Nijmegen, The Netherlands).
Francisco Herrera presented the most relevant aspects of big data, the character-
istics of current libraries, and the challenges in the development of new scalable
algorithms. Tom Heskes showed how Bayesian machine learning techniques can
lead to a novel paradigm for brain–computer interfaces, the reconstruction of
images based on fMRI activation, and network analysis from diffusion tensor
imaging.

The Doctoral Consortium was specially designed for the interaction between
PhD students and senior researchers. A scientific panel of 12 Spanish professors in
AI interacted orally with the students on their plans and preliminary results. The
Doctoral Consortium was a joint activity with all the conferences coordinated
with CAEPIA, receiving 29 submissions. The Campus de Excelencia BioTICs
of the Granada University sponsored the best PhD work with the GENIL prize,
whereas AEPIA granted the next two best PhD proposals.

The session on Key Works, also jointly held with the other five conferences,
had 14 submissions. Recent works published in journals or forums of renown
reputation during the period 2011-2013 were allowed so as to spread them among
a wide audience from the AI community. Three senior members shaped the
Selection Committee.

The editors would like to thank everyone who contributed to the Multi-
Conference CAEPIA 2013: the authors of the papers, the members of the Sci-
entific Committee together with the additional reviewers, the invited speakers,
and the Doctoral Consortium and Key Works session organizers. Thanks are also
due to Luis Guerra, who designed the website of the CAEPIA conference, man-
aged the free EasyChair conference web system (http://www.easychair.org/),
and compiled this volume. Final thanks go to the Organizing Committee (that
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of CEDI included), the Complutense and Technical Universities of Madrid, the
Springer team, our sponsors, and AEPIA for their support.

June 2013 Concha Bielza
Antonio Salmerón

Amparo Alonso-Betanzos
Multi-Conference Organising

J. Ignacio Hidalgo
Luis Mart́ınez

Alicia Troncoso
Emilio Corchado

Juan M. Corchado
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Time-Aware Evaluation of Methods for Identifying Active Household
Members in Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Pedro G. Campos, Alejandro Belloǵın, Iván Cantador, and
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Marc Pujol-Gonzalez, Jesús Cerquides, Pedro Meseguer,
Juan Antonio Rodŕıguez-Aguilar, and Milind Tambe

Multidisciplinary Topics and Applications

Concurrent CPU-GPU Code Optimization: The Two-Point Angular
Correlation Function as Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Miguel Cárdenas-Montes, Miguel Ángel Vega-Rodŕıguez,
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An Evaluation of Best Compromise Search in Graphs

Enrique Machuca1, Lawrence Mandow1, and Lucie Galand2

1 Univ. Malaga, Spain
{machuca,lawrence}@lcc.uma.es

2 Univ. Paris-Dauphine, France
lucie.galand@dauphine.fr

Abstract. This work evaluates two different approaches for multicriteria graph
search problems using compromise preferences. This approach focuses search on
a single solution that represents a balanced tradeoff between objectives, rather
than on the whole set of Pareto optimal solutions. We review the main concepts
underlying compromise preferences, and two main approaches proposed for their
solution in heuristic graph problems: naive Pareto search (NAMOA∗), and a k-
shortest-path approach (kA∗). The performance of both approaches is evaluated
on sets of standard bicriterion road map problems. The experiments reveal that
the k-shortest-path approach looses effectiveness in favor of naive Pareto search
as graph size increases. The reasons for this behavior are analyzed and discussed.

1 Introduction

Multicriteria optimization problems involve the consideration of different objectives
that need to be optimized simultaneously. These problems seldom have a single optimal
solution, and in general, many optimal trade-offs between the different objectives can
be considered. The set of rational decisions to the problem is defined by the set of non-
dominated (Pareto-optimal) solutions. A nondominated solution cannot be improved by
other solution in one objective without worsening in at least another one.

However, choosing one among the set of nondominated solutions is a subjective deci-
sion particular to each decision maker. Several approaches have been proposed to tackle
this question. These include goal satisfaction, multiattribute utility theory, or compro-
mise programming [1]. One of the most popular approaches in multicriteria decision
making is based on the use of achievement scalarizing functions. These functions eval-
uate a solution according to its distance to a reference point in the objective space [12].
The most preferred solution is then the closest one to the reference point. Such a solu-
tion is called hereafter a best compromise solution. The reference point can be specified
by the decision maker as her aspiration level on each objective [10]. Otherwise, the
reference point can be the ideal point, defined as the cost of an ideal (but generally un-
reachable) solution that would achieve the scalar optimal value for all objectives [14].

In this paper, we consider the problem of determining a best compromise path from
an initial node to a goal node in a graph where the arcs are valued by several objective
functions. In this setting, the value of a path is the componentwise sum of the value of
its arcs. Since a best compromise solution is Pareto optimal (for any rational decision
maker), a simple approach could be a two-step procedure: 1) generate the set of Pareto

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 E. Machuca, L. Mandow, and L. Galand

optimal paths, and 2) select the best compromise path among them. Efficient algorithms
have been proposed to generate the whole set of Pareto optimal paths [7]. Contrary to
the single objective case, several distinct paths can be (Pareto) optimal on a node. The
number of Pareto optimal paths can even be exponential in the size of the instance [4].

Pareto dominance tests have to be performed to compare subpaths reaching each
node, requiring significant computation times. More specific approaches have been pro-
posed to directly focus the search on a preferred path with respect to a specific pref-
erence model without generating the whole set of Pareto optimal solutions ([8,2,3]).
Among these, kA∗ relies on an ordered enumeration of the paths (k-shortest-path al-
gorithm) according to a linear scalarizing function, until one obtains the guarantee that
the best compromise path has been found (i.e. already enumerated). Thanks to the use
of a linear scalarization, this approach does not require costly Pareto dominance tests.

In this paper, we compare two different heuristic algorithmic strategies for best com-
promise search in multiobjective graphs. The first one is a two-step procedure based on
standard Pareto search algorithms, like NAMOA∗ [7]. The second one explores the use
of k-shortest-path algorithms to avoid evaluating all Pareto optimal paths in the graph,
as well as performing computationally costly Pareto dominance tests. Preliminary re-
sults [2] showed an advantage in performance for kA∗ against the naive Pareto search
(NAMOA∗) on random graphs with an artificially calculated heuristic. This paper per-
forms a more systematic evaluation of both approaches on sets of standard bicriterion
route planning problems [9,6,5]. The algorithms are provided with the precalculated
Tung-Chew heuristics [11]. The experiments reveal that the k-shortest-path approach
looses effectiveness in favor of naive Pareto search as graph size increases.

Section 2 reviews relevant concepts and previous work that are used in this paper.
After the presentation of the instances in Section 3, the results obtained are shown
in Section 4. Then they are analyzed in Section 5 to exhibit the advantages and the
drawbacks of the two approaches. Finally, some conclusions are summarized in Section
6, leading us to further research perspectives.

2 Related Work

2.1 Preliminaries

Let us consider a decision problem where X denotes the set of feasible alternatives and
each feasible alternative x ∈ X is evaluated according to a set of q objective functions
to be minimized fi : X → R, i ∈ {1..q}. Each alternative x is represented in the
objective space by an evaluation vector (vector cost) f(x) = (f1(x), . . . , fq(x)). Let
Y = f(X) denote the set of images of the feasible alternatives of X in the objective
space. The comparison of the elements of X boils down to the comparison of their
vector costs in Y . Let us define the dominance relation (≺) between vectors as follows,

∀y,y′ ∈ Rq y ≺ y′ ⇔ ∀i yi ≤ y′i ∧ y 	= y′ (1)

where yi denotes the i-th element of vector y.
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Given a set of vectors Y , we shall define N (Y ) the set of non-dominated (Pareto-
optimal) vectors in set Y in the following way,

N (Y ) = {y ∈ Y | �y′ ∈ Y y′ ≺ y} (2)

The set N (Y ) is bounded by the ideal point α = (α1 . . . αq) and the nadir point
β = (β1 . . . βq), where αi = miny∈N (Y ){yi} and βi = maxy∈N (Y ){yi} 1.

2.2 Scalarizing Functions

Resorting to scalarizing functions amounts to modifying the multiobjective optimiza-
tion problem into a single objective one. Preferential information is taken into account
through parameters used in the scalarizing functions (e.g. weights to define the im-
portance of the objectives). An adequate scalarizing function s is required to have the
following properties: (1) any non-dominated solution can be optimal with respect to s
(with an appropriate choice of parameters); and (2) any optimal solution with respect
to s has to be non-dominated. These requirements ensure that, for any rational decision
maker, the preferred solution can be reached optimizing some scalarizing function.

One of the simplest multicriteria approaches is to define the scalarizing function as
a linear weighted combination of the evaluation vector. Given a set of weights wi, the
goodness or utility of a solution is given by,

u(y) =
∑
i

wi yi (3)

Any solution minimizing u(y) will be non-dominated (second requirement). How-
ever, in general only a subset of all non-dominated solutions can be obtained (the so-
called supported solutions). Some non-dominated solutions cannot be obtained regard-
less of the chosen weights. The first requirement is thus not satisfied.

Achievement scalarizing functions are widely used in multicriteria decision making.
They estimate the distance of a solution to a reference point using Minkowski’s dis-
tance, or �p-norm, defined by:

�p(y) = ‖y‖p = (
∑
i

|yi|p)1/p (p ≥ 1) (4)

Different norms are obtained for different values of p. The case for p = 1 is called
Manhattan distance, p = 2 is the Euclidean distance, and p = ∞ is the Chebyshev
distance, which measures the maximum component.

In the absence of further preferential information, and without loss of generality, we
may consider that the preferred solution is the one that minimizes distance to the ideal
point. For example, the Manhattan and Chebyshev distances from a vector y to the ideal
point α are defined respectively as,

‖y −α‖1 =
∑
i

|yi − αi| (5)

1 For q = 2 these points are easily obtained by the heuristic precalculation procedure [11].
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‖y −α‖∞ = max
i
|yi − αi| (6)

Notice that any solution that minimizes �p distance to the ideal point for some p is a
non-dominated solution (second requirement), except for the case p = ∞ [13]. In the
latter case, there is at least one �∞-optimal solution that is non-dominated, but this may
dominate other �∞-optimal ones. However when p = ∞, any non-dominated solution
can minimize �p distance. The first requirement is then satisfied. Actually, there does
not exist any scalarizing function satisfying simultaneously the two requirements [13].
Chebyshev distance appears thus as an adequate achievement function which enables
to reach any potentially preferred solution. We define therefore in the following a best
compromise solution as a solution that minimizes Chebyshev distance to the ideal point.
We use the following scalarizing functions for Manhattan and Chebyshev norms2,

s1(y) =
∑
i

wi(yi − αi) =
∑
i

wiyi −
∑
i

wiαi (7)

s∞(y) = max
i

wi(yi − αi) (8)

where for all i, wi =
δi

βi−αi
and δi is the relative importance of objective i.

2.3 Compromise Search with Chebyshev Norm

We consider the problem of determining a best compromise path from an initial node to
a goal node in a multiobjective graph with respect to the Chebyshev norm. Notice that
partial solutions evaluated according to the Chebyshev norm do not satisfy Bellman’s
optimality principle [2]. We compare two main general approaches. The first (naive)
approach consists in calculating the set of all nondominated solution costs using a label
setting algorithm like NAMOA∗ [7], and then identifying the optimal solution among
them. This approach is simple, but: (a) requires the calculation of the full Pareto set,
(b) costly Pareto dominance tests must be performed during the search to compare the
current subpaths and keep only the optimal ones. The second approach is an alternative
algorithm based on single-objective k-shortest paths search [2]. The major insight is
that it is possible to devise a weighted linear function that minorates the Chebyshev
distance [2]. For any vector cost y ∈ Rq , it can indeed be easily shown that,

s1(y)

q
≤ s∞(y) (9)

The linearity of the scalarizing function s1 makes it possible to determine the op-
timal path with respect to s1 from optimal (w.r.t. s1) subpaths (exploiting Bellman’s
principle). However, the optimal path with respect to s1 is not necessarily a path which
minimizes the Chebyshev norm. The principle of this approach is then to enumerate the
k best paths with respect to s1 until we are sure to have found the optimal path with
respect to s∞. The procedure can be summarized as follows,

2 Note that if we are evaluating solutions (not partial solutions), then by definition we have that
∀i, 0 ≤ αi ≤ yi.
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1. Use a k-shortest paths algorithm to generate a sequence of solutions according to
s1. Let us denote by yn the vector cost of the n-th solution found.

2. For each new solution found, calculate its value according to the Chebyshev norm
s∞, keeping the best value found so far, i.e p∗ = minns

∞(yn).

3. Stop searching as soon as a newly found solution ym satisfies s1(ym)
q > p∗.

4. Return the solution that achieved the optimal value of p∗. Path p∗ is optimal since

for any r > m, s1(yr)
q ≥ s1(ym)

q > p∗ and by (9) we have s∞(yr) ≥ s1(yr)
q .

Since the k-best search is performed on a single objective version of the problem, no
Pareto dominance tests are performed during the search. In the following, we evaluate
this approach using kA∗, a variant of A∗ that calculates k-shortest paths [2]. More
precisely, we improve kA∗ to avoid cyclic paths, which can obviously never lead to
non-dominated solutions. Otherwise, performance would be quite poor in our test sets.

3 Experiments

The algorithms have been tested on different classes of problem sets taken from the mul-
tiobjective search literature: bidimensional grids with random costs, and random route
planning problems on road maps. In all cases, the algorithms were provided with pre-
calculated heuristic functions as described by Tung and Chew [11]. These are obtained
from ideal optimal values for both objectives calculated with reverse scalar searches,
which are computationally much less costly than subsequent multicriteria searches [6].

The first test set involves square grids, like those described in [6]. A vicinity of four
neighbours is used. Bidimensional costs are random integers in the range [1, 10]. Start
node is placed at the center of the grid. For a grid of size d × d, the goal is placed at
depth d. Depth varies from 10 to 100 in steps of 10 with 10 problems for each size,
i.e., there are 100 problem instances. Thus, the total number of nodes and arcs for the
largest-sized grids (200× 200) is 40000 and 159200 respectively. The average number
of Pareto-optimal solution paths for the ten largest problems (200× 200) is 124.8.

The second test set is taken from the work of Raith and Ehrgott [9]. This consists of
three modified road maps from the ‘9th DIMACS Challenge on Shortest Paths’: Wash-
ington DC (DC), Rhode Island (RI), and New Jersey (NJ). These include integer cost
values for two different objectives: time and distance. The maps include a Hamiltonian
cycle that guarantees all nodes are connected. Nine random problems are defined for
each map. The size of the maps and the average number of distinct Pareto-optimal costs
are displayed in table 1.

The final test set consists of fifty random problems over the unmodified New York
City (NY) map from the DIMACS Challenge presented at [5]. The hardest road map
problems tested for the algorithms appear in this problem set, as reflected in the average
number of distinct Pareto (see table 1).

In all cases, problem instances were solved with a 1h time limit. The algorithms
were implemented in ANSI Common Lisp using LispWorks 6.0 Enterprise 64 bits. The
first and third test sets were run on a Sun Fire X4140 server with 2 six-core AMD
Opteron 2435 @ 2.60GHz processors and 64 Gb of RAM, under Windows Server 2008
R2 Enterprise (64-bits). In the second test set, the algorithms were run on a Windows 7
64-bit platform, with an Intel Core2 Quad Q9550 at 2.8Ghz, and 4Gb of RAM.
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Table 1. Size of road maps used in the test sets, and average number of nondominated solution
costs (DC, RI, and NJ as taken from [9], NY as taken from [5])

Name Location Nodes Arcs Avg. nondom. costs

DC Washington D.C. 9,559 39,377 3.33
RI Rhode Island 53,658 192,084 9.44
NJ New Jersey 330,386 1,202,458 10.66
NY New York City 264,346 730,100 198.62
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Fig. 1. Average execution times for the square grid problem set, as a function of goal depth

4 Results

Regarding the grid test set, figure 1 shows average execution times as a function of solu-
tion depth (averaged for the ten random problems available for each depth). NAMOA∗

displays a steady growth of time requirements. In general kA∗ provides better results
except for the hardest problems. Table 2 details the execution times for each of the ten
problems at depth 200. Most of the problems are solved rather quickly. However, two of
them have very large time requirements referred to their actual nondominated solutions.

Regarding the modified road map test sets (DC, RI, and NJ) maps, each problem
was solved in ten different runs. Figure 2 shows average execution times in logarithmic

Table 2. Data of kA∗for each problem instance of the grid test set (200× 200 grids)

Problem Time (sec.) k Sol. vector costs Avg. paths per sol. cost Nondom sol. vector costs
1 0.1560 164 81 2.02 23
2 1.0140 382 101 3.78 41
3 57.6270 3280 168 19.52 44
4 0.0940 40 24 1.66 16
5 0.5460 101 36 2.80 16
6 0.8890 530 141 3.75 37
7 0.7800 160 51 3.13 37
8 43.0090 2992 160 18.70 33
9 0.1720 75 35 2.14 17
10 6.8320 808 65 12.43 27
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Fig. 2. Time results on modified DIMACS road map problems (DC - top, RI - center, NJ - bottom)
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Fig. 3. Analysis of 200× 200 grid instance #8: (top) Solution vector costs in cost space; (center)
Label expansions in search space (NAMOA∗); (bottom) Label expansions in search space (kA∗)
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scale. Problem instances in the abscissa axis are ordered by increasing value of ordi-
nate for NAMOA∗. Values not displayed exceeded 1h time limit. In the NY City map,
NAMOA∗ was able to solve all 50 instances, against only 15 of them by kA∗ under the
time constraints. Algorithm kA∗ was faster than NAMOA∗only in 3 of them (Fig. 4).

5 Discussion

The execution time of kA∗ is much less predictable than that of NAMOA∗. This is
quite evident from the grid data set, where solution depth can be easily controlled for
experimental purposes. In the ten 200×200 grid instances, differences of three orders of
magnitude in execution time can be observed for different problems. Table 2 provides
valuable information regarding the performance of kA∗. For example, in the hardest
instances (#3 and #8), the number k of solution paths examined grows to 3280 and
2992 respectively. The number of distinct solution vector costs found was 164 and 154.
Therefore, the average number of solution paths for each distinct vector cost raises to
20, which makes the algorithm much less competitive in these instances. The table also
shows the number of nondominated solution vector costs among those explored by kA∗.

The number of labels explored by kA∗ at each node can increase sharply. This can be
attributed to the exponential worst case behavior of the algorithm, i.e. in some problem
instances there can be a combinatorially large number of paths with the same vector
cost. All of them are explicitly explored by the k-shortest-path approach. In contrast,
NAMOA∗ can be guaranteed to explore the same label for each node only once [7].

Let us analyze instance #8 in more detail. Figure 3(top) displays a portion of cost
space with the distinct solution vector costs explored by kA∗. Figures 3(center) and
3(bottom) show the number of label expansions for each node in the bidimensional grid
for NAMOA∗and kA∗. NAMOA∗ explores a larger portion of the grid. The number
of nondominated vector costs grows polynomially with depth and, since NAMOA∗

explores each one only once, the overall number of label expansions is much lower.
On the other hand, kA∗ explicitly explores many different paths with the same vector
costs or the same value with respect to s1 (some of them dominated). The explored
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Fig. 4. Time results (in seconds) on the NY City map
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portion of the grid is much smaller, and the number of dominated solution vector costs
is marginally larger. However, the overall search effort is much higher. This indicates
that kA∗ could be improved if only a single label were explored at each node for each
different vector cost, as happens in NAMOA∗.

The inability of kA∗ to solve instance 9 in the NJ map in the given time is also an
example of this unpredictability. Results on the NY City map provide further confir-
mation. Finally, results on road map problems indicate that the performance of kA∗ is
worse than that of NAMOA∗ in the hardest instances.

6 Conclusions and Future Work

This paper compares two approaches described in the literature for the calculation of a
best compromise path in a multiobjective graph. The first one uses NAMOA∗, a mul-
tiobjective generalization of A∗, to calculate the Pareto set and then determine the best
compromise solution. The second one relies on kA∗, a k-shortest-paths variant of A∗,
improved here to avoid cycles. This approach needs to consider dominated paths, but
avoids Pareto dominance checks. Earlier tests on small sized problems showed and ad-
vantage for the second approach [2]. We perform a more systematic evaluation on a va-
riety of standard problem sets taken from the literature. These comprise random grids
as well as realistic route planning problems in road maps. An analysis of the results
shows that kA∗ can indeed be faster in the simpler instances, but looses effectiveness in
favor of the full Pareto approach as graph size (and hence, problem difficulty) increases.
The data also show that the time performance of kA∗can be quite unpredictable. This is
attributed to the combinatorial nature of the problem, since in some problems there can
be a large number of paths with the same vector cost.

Another linear function different to s1/q could be used to lower bound s∞. Indeed
1/q is not the only weight that could be used. Actually we have

∑
i λiwi(yi − αi) ≤

s∞(y) for any nonnegativeλ such that
∑

i λi = 1. The number of enumerated solutions
depends on the choice of λ. A further study should take this issue into account.

A better understanding on performance of the two very different approaches (kA∗and
NAMOA∗) would make it possible to design a more efficient and more robust algorithm.
In particular, cycle avoidance allows effective pruning of some dominated paths on grids
and road maps. Other new enhancements of the k-shortest-paths approach should be
further investigated. In particular, a variant that only explores the k shortest paths with
different vector costs is an interesting avenue of future reseach. Our results suggest that
a k-shortest-path approach where each label is explored only once for each node, as
happens in standard Pareto search, could yield a much more effective algorithm.

Acknowledgments. Partially funded by P07-TIC-03018, Cons. Innovación, Ciencia y
Empresa (Junta Andalucía), and Univ. Málaga, Campus Excel. Int. Andalucía Tech.
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Abstract. The growth in multimedia production has increased the size of au-
diovisual repositories, and has also led to the formation of increasingly large
metadata collections about these contents. Deciding how these collections are
effectively represented is challenging due to their variety and volume. Besides,
large volumes also affect the performance of metadata retrieval tasks, compromis-
ing the success of multimedia search engines. This paper focuses on this scenario
and describes a case study in which semantic technologies are used for address-
ing metadata variety, and advanced compression techniques for dealing with the
volume dimension. As a result, we obtain a multimedia search prototype that con-
sumes compressed RDF metadata. This approach efficiently resolves a subset of
SPARQL queries by implementing representative multimedia searches, and also
provides full-text search in compressed space.

1 Introduction

Nowadays, an increasing amount of multimedia contents are produced, processed, and
stored in digital form. We continuously consume multimedia in different formats (text,
audio, video, or images), in diverse languages, and from different provenances. Recent
statistics published by YouTube1 give a real-world evidence of this growth. These num-
bers report that 72 hours of new video are uploaded every minute, accumulating a total
monthly production which exceeds the combined production of the three major U.S.
television networks during 60 years. This comparison is a clear example of multimedia
production in the WWW with respect to traditional mass media.

Managing huge multimedia collections involves efficient information retrieval sys-
tems [1] enabling storage, retrieval, and browsing of text documents, but also images,
audios, and videos. Technologies commonly used in such systems are based on the
analysis and processing of textual resource descriptions, which are typically generated
manually by the user. These data, commonly referred to as metadata, annotate different
features about multimedia resources, providing the clues by which a multimedia search
engine decides whether a resource is or not relevant to a particular query.

1 www.youtube.com/t/press statistics
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Metadata volume grows proportionally with the amount of multimedia production,
so its effective storage is the first concern to be addressed. However, it is not the only
problem in this scenario. Metadata used for describing different types of multimedia
resources vary both in semantics and structure. For instance, metadata used for describ-
ing a video differ from that used for audio, text, or image descriptions. This metadata
variety is even more important when compound multimedia resources are managed
because their description comprises metadata from each resource type within it. In this
case, flexible data models are required to manage this lack of a strict metadata structure.

This paper deals with the infrastructure underlying a multimedia search engine built
on top of (i) semantic technologies used for metadata modelling and querying, and (ii)
compressed data encoding using the binary RDF/HDT (Header-Dictionary-Triples) for-
mat [4]. On the one hand, RDF [9] provides a flexible graph-based data model which
enables metadata variety to be effectively managed, whereas SPARQL [12] sets the ba-
sic querying operators used for lookup purposes. It is worth noting that the use of these
semantic technologies also enable data to be released and linked with other datasets
within the Web of Data. This global space of knowledge (pushed by projects like Linked
Data) comprises an increasing number of data providers whose scalability is compro-
mised by data volume, but also by the velocity at which their information is queried. On
the other hand, the use of HDT for serializing RDF enables drastic spatial savings to be
achieved. It is an obvious improvement for addressing volume issues, but also allows
efficient indexes to be built on compressed space. These spatial savings allow indexes
to be loaded and queried in the main memory, achieving fast SPARQL resolution and
also full-text search in the aforementioned compressed space. These three V’s (variety,
volume, and velocity) comprise a widely accepted Big Data description, and our ability
to address all of them places our current approach in a highly competitive solution.

The rest of the paper is organized as follows. Section 2 introduces Linked Data foun-
dations, reviews its two main standards (RDF and SPARQL), and analyzes multimedia
datasets released within the Web of Data. Then, we introduce the binary HDT format
and Section 3 describes our approach for its indexing. Section 4 studies how our ap-
proach performs (in space and querying time) for a real-world experimental setup in
which it is also compared with respect to a general RDF store. Finally, Section 5 relates
our current achievements and devises our future lines of research.

2 Preliminaries

The amount of semantic data published on the Web has experienced an impressive
growth in the last few years. Inititatives like the Linked Open Data2 project (LOD) are
behind this technological movement which materializes the Sematic Web foundations.
LOD focuses on linking data on the Web, turning it into a “global database” which con-
nects things and facts about them. Public administrations (such as the USA and the UK
governments) pioneered this initiative which has spread to other areas like multimedia
(the New York Times or the BBC), educative and scientific projects, geography, etc.

The LOD philosophy has turned the Web into a global data space [8] in which data
are directly connected, and these links can be consumed following a pattern similar

2 http://linkeddata.org/
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to that used between web pages. Thus, LOD moves the Web from a document-centric
perspective (in which human users are the main target) to a data-centric one in which
any kind of software application can publish, browse, visualize, or consume data in
an automatic way. Semantic data are published and linked using RDF, enabling their
effective value and utiliy to be improved with their interconnection in the LOD cloud.

Linking data involves four main principles [2]: (1) use URIs for naming resources;
(2) use HTTP URIs so that people can look up those names; (3) use standard technolo-
gies (RDF, SPARQL) to provide useful information about the URI; (4) include links
to other URIs. When data are published as Linked Data, their RDF features can be
browsed using the corresponding labelled hyperlinks between them and the URIs can
be dereferenced following the aformentioned principles.

2.1 Linked Data Description and Querying

RDF [9] is a logical data model designed for resource description. These resources
model any kind of data as RDF expressions which are referenced through URIs. More-
over, properties define relationships or descriptive attributes about a resource. Finally,
the statements assign value to a property of a given resource in the form of triples (sub-
ject, predicate and object). Thus, an RDF collection comprises a triple set shaping a
directed and labelled graph structure. Figure 1 (left)3 illustrates an RDF graph mod-
elling an excerpt of multimedia metadata. The vertex m3:t5-21-10 describes a video
resource (note that this is modelled by the arc rdf:type the vertex m3:t5-21-10

to m3mm:Video) in MPEG2 and with dimensions 720 x 576. Moreover, the vertex
m3:individual1310128095945 describes a video fragment about the resource db-
pedia:Andres Iniesta which describes Andrés Iniesta in DBpedia.

The SPARQL Protocol [12] is the W3C recommended query language for RDF.
It is built on top of conjunctions and disjunctions of triple patterns (TPs). These TPs
are RDF triples in which each subject, predicate or object may be a variable. Thus, a
given TP matches an RDF subgraph when variables are replaced by results from the
RDF collection. In the previous example, the TP (m3:individual1310128095945,

m3:shows, ?O) retrieves the result dbpedia:Andres Iniesta in the variable ?O.

2.2 Multimedia in Linked Data

The last report4 about the LOD cloud points out that it comprises more than 31 billion
triples from 295 different sources, and more than 500 million links establish cross-
relations between datasets. A more focused analysis reports that 29 of these collections
belong to multimedia providers, and they expose 2 billion triples. Examples of these
multimeda providers are: BBC Music, which exposes semantic metadata about music
contents on the BBC, Event Media, which publishes multimedia descriptions about
events, and LinkedMDB, which provides information about movies and actors.

LOD enhances data value through their interconnection with other datasets in the
Web. For instance, movies and actors described in LinkedMDB are also linked to their

3 Note that prefixes are depicted at the bottom: m3 means http://www.buscamedia.es/
ontologies/M3/# and m3-prefixed resources/properties are identified in its scope.

4 www4.wiwiss.fu-berlin.de/lodcloud/state/ (September, 2011)
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Fig. 1. RDF graph describing multimedia metadata and its HDT-based representation

corresponding descriptions in DBpedia, enhancing the amount of information which
can be accessed from each one. However, an important issue that is not currently
covered, is how more fine-grained semantic descriptions are handled; following the
example, how an actor and his appearances in specific time frames of a video can be
effectively interlinked [13]. This kind of problems, and scalability related ones, will
be more pronounced according to the reported growth in multimedia production and
semantic metadata describing these new contents in the web of data.

2.3 Header-Dictionary-Triples (HDT)

The HDT binary format [4] addresses the current needs of large RDF datasets for scal-
able publishing and exchanging in the Web of Data5. HDT describes a binary serializa-
tion format for RDF that keeps large datasets compressed while maintaining search and
browse operations. It is worth noting that traditional RDF formats (N36, RDF/XML7

or Turtle8) are dominated by a document-centric perspective of the Web, resulting in
verbose textual syntaxes expensive to parse and index.

HDT integrates the data-centric and machine understandability perspectives to pro-
vide a data model for RDF. An HDT-encoded dataset is made up of three logical compo-
nents: (i) the Header (H) holds metadata describing the collection (provenance, statis-
tics, etc.) acting as an entry point for the consumer; (ii) the Dictionary (D) is a catalog
comprising all the different terms used in the dataset, such as URIs, literals and blank
nodes, while a unique identifier (ID) is assigned to each term; and (iii) the Triples (T)
component models the RDF graph after ID substitution, i.e. represented as tuples of
three IDs. The Dictionary and Triples components implement the main goal of HDT
compactness. Figure 1 (right) illustrates them for the aforementioned RDF graph.

5 www.w3.org/Submission/2011/03/
6 www.w3.org/DesignIssues/Notation3/
7 www.w3.org/TR/REC-rdf-syntax/
8 www.w3.org/TeamSubmission/turtle/
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Dictionary. This component distinguishes between four sets of terms according to their
role in the dataset. The SO partition represents those terms acting both as subject and
object: |SO|, mapped to the range [1, |SO|]. In the example, only m3:t5-21-10 sat-
isfies this condition, obtaining the ID 1. In turn, the S and O partitions represent the non
common subject and objects respectively. They are mapped from |SO|+1. Although this
decision produces an overlapping between the subject and object ID, the interpretation
of the correct partition is trivial once we know if the ID in the graph plays a subject
or an object role. The current example contains one subject: m3:t5-21-10 (ID 2) and
six objects (range 2-7). Finally, the P partition represents all the predicate terms: |P|,
and are independently mapped to the range [1, |P|] (no ambiguity is possible as they are
labels in the graph). The six predicates in the example are then mapped to 1-6.

Each set of terms is independently encoded as a subdictionary of the global dictio-
nary component. Inside each subdictionary, the IDs are assigned in a lexicographical
order. Thus, terms with a similar role and sharing a common prefix are represented con-
tiguously. This property allows better compression ratios to be achieved by applying dif-
ferential encoding to the terms, i.e. each term is encoded compared to its predecessor,
avoiding prefix repetitions. The implementation proposal makes use of Front-Coding
[14] inside each subdictionary [3].

Fig. 2. Implementation of the Triples component

Triples. This comprises the pure structure of the underlying RDF graph. Figure 1
(right) shows that this structure respects the original graph, avoiding the noise produced
by long labels and repetitions.

The implementation of this component deserves a deeper analysis. The left side of
Figure 2 draws an alternative representation of the ID graph as a forest of trees, one per
subject. Each subject is the root of its associated tree, representing the ordered list of
predicates reachable from the subject in the middle level. The objects for each (subject,
predicate) pair are listed in the leaves.

The final implementation of the Triples component is shown on the right side of
Figure 2. Each predicate and object level stores a bit sequence and an ID sequence.
The bit sequence Bp, in the predicate level, is a binary representation of the number of
predicates associated with each subject. The 1 bits mark the beginning of a new subject
in the list and its cardinality is given by the number of the following 0 bits (before the
next 1 bit). For instance, the representation of the first subject starts in the first position
of Bp, and the next three 0 bits denote that a total of four predicates are associated with
this subject. The IDs of these predicates can be retrieved from the sequence Sp from
the initial position of the subject (in our example, predicates 2,3,4,6). The object level
is represented in the same way. In this case, Bo models the number of objects for each
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(subject, predicate) pair and the IDs are retrieved from So. For instance, the subject 1
is associated with the predicate 3 in the second position of Sp, then the list of related
objects starts from the same second position of Bo and So. In this case, the list consists
of a single object, the object 6.

3 HDT for Semantic Metadata Retrieval

Triple patterns are the SPARQL query atoms for basic RDF retrieval. That is, all triples
matching a pattern (s, p, o) where each term may be variable.

The Triples in an HDT-encoded dataset are sorted by subject (subject-predicate-
object), hence SPARQL patterns with a given subject can be directly resolved in com-
pressed space (as stated in the original proposal [4]). This conception has been recently
extended [10] in order to resolve all kinds of triple patterns. The novel representation,
referred to as HDT-FoQ: HDT Focused on Querying, enhances the original data struc-
ture with an additional index built at loading time. All this infrastructure enables basic
triple patterns to be resolved very efficiently in compressed space.

This section describes the use of HDT-FoQ as the basis for efficient multimedia
retrieval. We detail the indexes in Dictionary and Triples as well as a proposed mech-
anism for integrating SPARQL resolution and the full-text search, commonly used in
multimedia.

3.1 Dictionary Indexing

The original HDT proposal encourages the use of differential encoding of the terms
of the dictionary. Although this decision, in general, achieves compact representations
and provides efficient retrieving (ID-to-term and term-to-ID), it fails to adapt to the
peculiarities of the different terms in the RDF collection. Whereas URIs and blank
nodes are compacted due to the presence of large common prefixes [11], literals are
mostly stored in plain as they do not share this property. In addition, full-text search
resolution is not directly supported.

Our proposal reviews the implementation of this component. Its compartmental or-
ganization allows us to propose a modification exclusively on the partition of the literal
objects. We implement the subdictionary of the literals using a self-indexing structure
called FM-Index [5]. A previous study [11] shows that the FM-Index achieves more
compact representations for the literals at the expense of slightly lower retrieving oper-
ations (ID-to-term and term-to-ID). However, this technique directly supports efficient
full-text search resolution over the literals, as it implements substring retrieval. Given a
literal substring, the proposal generalizes the ID-to-term algorithm [3]: we search the
substring in the structure and, for each occurrence, we retrieve the associated ID.

3.2 Triples Indexing

As stated, the original HDT proposal provides fast subject-based retrieval. This opera-
tion is implemented by mapping the bit sequences in an additional small structure [6]
that ensures constant time resolution for some basic bit-operations, such as locating a
certain 1 bit or 0 bit and counting the number of 1 bits or 0 bits up to a given position.
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However, the implicit subject order hinders the access by predicate and object. HDT-
FoQ [10] includes two additional indexes providing this access in compressed space.

Predicate Index. The Triples component lists all predicates in Sp, but an additional
index should group all the occurrences of each predicate in this sequence.

HDT-FoQ loads Sp into a succinct structure called wavelet tree [7]. This structure
organizes a sequence of integers, in a range [1,n], to provide some access and seek
operations to the data in logarithmic time. In our case, n is the range of different predi-
cates (|P |), which is commonly small. Thus, it provides access to all the occurrences of
a given predicate in O(log|P |), at the expense of o(n)log|P | additional bits for Sp.

Object Index. The Triples component is enhanced with an additional index that is re-
sponsible for solving accesses by object.

This index gathers the positions where each object appears in the original So, as
this information allows us to climb up the tree and retrieve the associated predicate
and subject in the previous indexes. The index of the positions is also built as a pair of
sequences; BoP is the bit sequence marking the beginning and number of positions for
each object and the integer sequence (SoP ) holds the positions.

4 Experiments

This section analyzes how our approach performs when it is used as the heart of a
multimedia search engine. We design an heterogenous setup comprising multimedia
metadata obtained from five real-world dumps published in the LOD cloud: event
media9 (multimedia descriptions about events), yovisto10 (videos about confer-
ences and masterclasses), linkedmdb11 (films and actors), freebase12 (only meta-
data about TV), and dbtune13 (music compilations). In addition, we concatenate all
these collections in a single mashup referred to as all. This decision aims to analyze
the numbers obtained when a heterogenoeus collection is represented and queried.

All collections are organized and encoded following the aforementioned HDT-FoQ
decisions, and their results are compared to the ones reported by Virtuoso14. This
RDF store is chosen because it is massively used in semantic scenarios, and also pro-
vides efficient full-text search facilities.

Table 1 shows, in the first column, the original collection size (in NTriples); the
second and third columns report, respectively, storage requirements for each technique
(note that Virtuoso sizes also include the space required by their full-text indexes).
HDT-FoQ representations use ≈ 9 − 11% of the original size for the largest collec-
tions, whereas the numbers increase for the smallest ones: 22.16% (yovisto) and
38.66% (event media). Finally, the all mashup is represented in 10.49% of its

9 http://www.eurecom.fr/∼troncy/ldtc2010/2010-06-15-N3 Events.zip
10 http://www.yovisto.com/labs/dumps/latest.ttl.tar.gz
11 http://queens.db.toronto.edu/∼oktie/linkedmdb
12 http://download.freebase.com/datadumps/2012-07-26/
13 http://km.aifb.kit.edu/projects/btc-2011/
14 http://www.openlinksw.com/
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Table 1. Storage requirements (in MB)

Original HDT-FoQ Virtuoso
event media 187.75 72.59 328.02
yovisto 708.35 156.95 778.02
linkedmdb 850.31 89.30 570.02
freebase 3354.09 302.80 3516.02
dbtune 9733.06 862.23 4220.02
all 14833.56 1555.35 8054.03

Table 2. Querying times

HDT-FoQ Virtuoso
Q1 0.18 ms 2.60 ms
Q2 42.51 s 86.54 s
Q3 5.63 s 5.90 s
Q4 5.21 s 11.95 s

original size, demonstrating that our approach reports effective numbers for all classes
of audiovisual metadata. On the other hand, Virtuoso only achieves compression for
linkedmdb and dbtune. It is worth mentioning that, in the worst case, Virtuoso full-
text indexes take up to 25% of the total representation size, but these only represent 3%
of the size used for representing the all mashup. Thus, Virtuoso uses ≈ 5 times more
space than HDT-FoQ for the mashup representation. This comparison gives an idea of
the storage savings which a multimedia search engine can benefit if our approach is
chosen for metadata storage instead of a general RDF store.

Q1: Q2: Q3: Q4:
SELECT ?p ?o WHERE SELECT ?s ?p ?o WHERE SELECT ?s ?o WHERE SELECT ?s ?p ?o WHERE
{ { { {
<content> ?p ?o. ?s rdf:type <type>. ?s <pred> ?o. ?s <pred> ?oo.
} ?s ?p ?o. FILTER regex(?o, ”txt”). ?s ?p ?o.

} } FILTER regex(?oo, ”txt”).
}

Q1: retrieves all data related to the content provided as subject.
Q2: retrieves all data related to the subject of a given type.
Q3: retrieves all resources where a property value matches the text pattern.
Q4: retrieves all associated data to resources where a property value matches the text pattern.

Then, we analyze retrieval performance using a set of generic queries which rep-
resent four typical searches in multimedia applications: a) Q1 and Q2 focus on pure
SPARQL resolution, whereas b) Q3 and Q4 also involve full-text searches for regex
filtering. We run all experiments on an AMD-OpteronTM270@2Ghz, Dual Core, 4GB
DDR2@800MHz, running 2.6.30-gentoo-r4. Our prototype is built on top of the C++
HDT library publicly available15.

Querying experiments16 were performed by running 50 queries of each type against
the mashup all (we use 125,000 queries for Q1 in order to obtain more precision).
Each experiment was preceded by a warm-up stage running the same number of queries.
This decision is made to load Virtuoso caches and obtain a more realistic comparison.
Table 2 summarizes these experiments. Each cell contains the mean execution times
per query of the whole batch; e.g. HDT-FoQ takes on average 0.18ms to evaluate each
query of type Q1, whereas Virtuoso takes 2.60ms for the same operation.

15 http://code.google.com/p/hdt-it/
16 http://dataweb.infor.uva.es/multimedia-setup.tgz
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Fig. 3. Prototype of our multimedia search engine

HDT-FoQ largely overcomes Virtuoso for the pure structural queries: Q1 and Q2

(it is worth noting that evaluation times for Q1 are more than 1 order of magnitude
faster than the remaining queries). Both techniques report similar numbers for Q3 due
to the need for full-text searching, but HDT-FoQ overcomes Virtuoso again for Q4. It
is worth mentioning that searches involving full words were executed using Virtuoso’s
bif:contains because it improves regex peformance. Even so, HDT-FoQ reports
better overall times for all queries in our setup, complementing our spatial achievements
and endorsing its efficiency as the heart of a multimedia search engine.

5 Conclusions and Future Work

This paper describes a case study of multimedia metadata management and querying
using semantic technologies. We have introduced RDF compression as the basis of a
lightweight indexing technique: HDT-FoQ, which reports excellent numbers in a real-
world setup involving some datasets from the Linked Data cloud. HDT-FoQ reduces
spatial requirements up to 5 times with respect to a typical RDF store and also over-
comes its performance for a set of common multimedia searches. These results support
HDT-FoQ as basic technology for building a multimedia search engine which consumes
semantic metadata. These facts make it an ideal solution for projects like Buscamedia.

Buscamedia17 aims to develop an innovative multimedia semantic search engine,
based on a) the new M318 ontology which represents multimedia knowledge in several
domains and taking into account a multilingual context; b) a natural language search
that allows direct interaction with the search system. Additionally, metadata collections
following M3 are also being generated. These metadata describe Formula 1, soccer, and
basketball TV videos in Spanish and Catalan languages.

Figure 3 shows our first prototype of semantic a search engine built on top of the
HDT-FoQ proposal and managing data from Buscamedia. It represents the Buscamedia

17 http://www.cenitbuscamedia.es/
18 http://www.oeg-upm.net/files/m3/M3-v2.3.rar



Compressing Semantic Metadata for Efficient Multimedia Retrieval 21

data in ≈ 5% of its original size, while providing SPARQL resolution and full-text
search in compressed space. Moreover, it implements an efficient data browser which
allows data to be traversed as pages in the WWW. Our future work focuses on building
a complete semantic search engine enhancing the current prototype with more advanced
searching capabilities. Achieving these goals is directly related to our research in how
HDT-FoQ can efficiently resolve SPARQL constructs.

Acknowledgments. This work has been funded by the Science Foundation Ireland:
SFI/08/CE/I1380, Lion-II, the Buscamedia Project: CENIT 2009-1026, and the Min-
istry of Economy and Competitiveness (Spain): TIN2009-14009-C02-02.
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Abstract. Online services are usually accessed via household accounts. A 
household account is typically shared by various users who live in the same 
house. This represents a problem for providing personalized services, such as 
recommendation. Identifying the household members who are interacting with 
an online system (e.g. an on-demand video service) in a given moment, is thus 
an interesting challenge for the recommender systems research community. 
Previous work has shown that methods based on the analysis of temporal pat-
terns of users are highly accurate in the above task when they use randomly 
sampled test data. However, such evaluation methodology may not properly 
deal with the evolution of the users’ preferences and behavior through time. In 
this paper we evaluate several methods’ performance using time-aware evalua-
tion methodologies. Results from our experiments show that the discrimination 
power of different time features varies considerably, and moreover, the accura-
cy achieved by the methods can be heavily penalized when using a more realis-
tic evaluation methodology. 

Keywords: household member identification, time-aware evaluation, evalua-
tion methodologies, recommender systems. 

1 Introduction 

Many online services providers offer access to their services via user accounts. 
These accounts can be seen as a mechanism to identify the active user, and track her 
behavior, letting e.g. build a personalized profile. A user profile can be used 
afterwards to provide personalized services, e.g. recommendation. However, user 
accounts can be shared by multiple users. An example of shared account is a 
household account, that is, an account shared by several users who usually live in 
the same house. In general, it is hard to detect whether a user account is being 
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accessed by more than one user, which raises difficulties for providing personalized 
services [1,2]. 

Users sharing a household do not necessarily access the service together. 
Consider for instance a four members family (formed e.g. by a father, a mother, a 
son and a daughter), sharing a household account of video-on-demand service. Each 
member of the family has distinct viewing interests and habits, and thus each of 
them watches video differently. If one member of the family asks for video 
recommendations, it is likely that those recommendations do not fit the user’s 
interests, because the account profile contains a mixture of preferences from the 
four family members. 

Two main strategies can be adopted in order to overcome such problem [3]. The 
first strategy is to increase the diversity of delivered recommendations [4], aiming 
to cover the heterogeneous range of preferences of the different members in a 
household. The second strategy is to identify the active household members for 
which recommendations have to be delivered. In this paper, we focus on the second 
strategy since it lets make more accurate recommendations, by only using 
preferences of active members, and discarding preferences of other, non-present 
members [1]. 

Previous work on the task has shown that the analysis of temporal patterns on 
historical data of household accounts provides important information for the 
discrimination of users, letting accurately identify active members [3,5,6]. 
Nonetheless, it is important to note that proposed methods have been assessed using 
evaluation methodologies based on the random selection of test cases. In a recent 
study on evaluation methodologies for recommender systems [7] it has been argued, 
however, that using randomly selected test data may not be fair for evaluation, 
particularly when temporal trends are being considered by the evaluated methods. 
We question whether this is also applicable for the task at hand, and in such case, 
which accuracy for active user identification would be achieved by using a more 
realistic evaluation methodology. 

Using different evaluation methodologies, in this paper we perform an empirical 
comparison of methods for active household member identification in recommender 
systems. The tested methods are based on exploiting time information, and thus, we 
include some stricter time-aware evaluation methodologies. Results obtained from 
experiments on a real dataset show that the contribution of time features vary 
considerable when assessed by different methodologies, and moreover, the accuracy 
achieved by the methods can be heavily penalized when using a more realistic 
evaluation methodology. 

The reminder of the paper is structured as follows. In Section 2 we describe 
related work. In Section 3 we detail methodologies employed in recommender 
systems evaluation that can be applied for assessing accuracy of methods used for 
identifying active household members. In Section 4 we present the methods 
evaluated. In Section 5 we describe the experiments performed, and report the 
results obtained. Finally, in Section 6 we present some conclusions and lines of 
future work.  
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2 Related Work 

The convenience of identifying users in households for recommendation purposes has 
been addressed in the recommender systems (RS) literature. Several proposals of RS 
on the TV domain consider the knowledge of which users are receiving the 
recommendations by means of explicit identification of users. For instance, Ardissono 
et al. [8] propose a personalized Electronic Programming Guide for TV shows, 
requiring the user to log in the system for providing personalization. Vildjiounaite et 
al. [9] propose a method to learn a joint model of users subsets in households, and use 
individual remote control devices for identifying users. The methods considered in 
this work, in contrast, aim to identify the user who is currently interacting with the 
system, by analyzing temporal patterns of individual users, without requiring to log in 
or to use special devices at recommendation time.  

Specific methods for the identification of users from household accounts have been 
proposed in the RS research field. Goren-Bar and Glinansky [10] predict which users 
are watching TV based on a temporal profile manually stated. In [10] users indicate 
the time lapses in which they would probably be in front of the TV. Oh et al. [11] 
derive time-based profiles from household TV watching logs, which model 
preferences for viewing of time lapses instead of individual users. In this way, the 
target profile corresponds to the time lapse at which recommendations are requested. 
These methods assume that users have a fixed temporal behavior through time. 

Recently, the 2011 edition of the Context-Aware Movie Recommendation 
(CAMRa) Challenge [2] requested participants to identify which members of 
particular households were responsible for a number of events –interactions with the 
system in the form of ratings. The contest provided a training dataset with information 
about ratings in a movie RS, including the household members who provided the 
ratings, and the associated timestamps. The challenge’s goal was to identify the users 
who had been responsible for certain events (ratings), and whose household and 
timestamp were given in a randomly sampled test dataset. This task is assumed to be 
equivalent to the task of identifying active users requesting recommendations at a 
particular time. 

The winners of the 2011 CAMRa challenge [6] and some other participants (e.g. 
[5,12]) exploited several time features derived from the available event timestamps. 
Such features showed different temporal rating habits of users in a household, 
regarding the day of the week, the hour of the day, and the absolute date when users 
rate items. In subsequent work [3], additional time features were investigated, as well 
as classification methods that enable an easy exploitation of such features, achieving a 
very high accuracy in the task (~ 98%). In this paper we use some of the best 
performing methods and time features presented in [3], and assess them using stricter 
evaluation methodologies, in order to test the reliability of the methods. 

As a matter of fact, researchers in the RS field have questioned the suitability of 
some evaluation methodologies used for assessing RS that exploit temporal patterns 
in data [13,14]. Their main objection is that data used for test purposes is not always 
more recent than data used for training, and this may be unfair for methods exploiting 
time knowledge. In [7] we compared several RS using different evaluation 
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methodologies, and found that measured performance and relative ranking of methods 
may vary considerably among methodologies. Extrapolating findings obtained in that 
work to the task at hand, we can expect to find differences in the accuracy of methods 
by utilizing methodologies that do not use randomly sampled test data. 

3 Evaluation Methodologies for Recommender Systems 

The evaluation of recommender systems can be performed either online or offline 
[15]. In an online evaluation real users interactively test one or more deployed 
systems, and in general, empirical comparisons of user satisfaction for different item 
recommendations are conducted by means of A/B tests [16]. In an offline evaluation, 
on the other hand, past user behavior recorded in a database is used to assess the 
systems’ performance, by testing whether recommendations match the users’ declared 
interests. Given the need of having deployed systems and a large number of people 
using them in online evaluations, and the availability of historical users’ data, most 
work in the RS field –and the one presented here– have focused on offline 
evaluations. 

From a methodological point of view, offline evaluation admits diverse strategies 
for assessing RS performance. In general, a recommendation model is built (trained) 
with available user data, and afterwards its ability to deliver good1 recommendations 
is assessed somehow with additional (test) user data. From this, in an offline 
evaluation scenario, we have to simulate the users’ actions after receiving 
recommendations. This is achieved by splitting the set of available ratings into a 
training set –which serves as historical data to learn the users’ preferences– and a test 
set –which is considered as knowledge about the users’ decisions when faced with 
recommendations, and which is commonly referred to as ground truth data. As noted 
in [15], there are several ways to split data into training and test sets, and this is a 
source for differences in evaluation of RS. Moreover, in case that the data is time 
stamped –the case for RS exploiting time information– differences in evaluation can 
be meaningful, and may affect relative ranking of the algorithms’ performance [7].  

Several offline evaluation methodologies had been employed in measuring 
recommender system performance. In [7] several time-aware (and time-unaware) 
methodologies are described, by means of a methodological description framework 
that is based on a number of key methodological conditions that drive a RS evaluation 
process. These methodological conditions include: a) the rating order criterion ( ) 
used for split data. For instance, we may use a time-dependent ordering of data ( ), 
assigning the last (according to timestamp) data to the test set. Or, we may assign a 
random subset of data (i.e. time-independent ordering, ) to the test set; b) the base 
set ( ) on which the rating order criterion is applied. For instance, the ordering 
criterion can be applied on the whole dataset (a community centered base set, ), or 
can be applied independently over each user’s data (a user-centered base set, ). In 
                                                           
1  There is no general definition of what good recommendations are. Nonetheless, a commonly 

used approach is to establish the quality (goodness) of recommendations by computing dif-
ferent metrics that assess various desired characteristics of RS outputs. 
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the latter case, the last data from each user is assigned to the test set. This case, 
despite its popularity due to its application in the Netflix Prize competition [17], is not 
the best choice to mimic real-world evaluation conditions [7]; and c) the size 
condition ( ), i.e., the number of ratings selected for the test set. For instance, a 
proportion-based schema can be used ( ), e.g. assigning 20% of data to the test 
set and the remaining 80% to the training set, or a fixed number  of ratings per user 
can be assigned to the test set ( , ), assigning the remaining ratings from each user 
to the training set.   

The above evaluation conditions and related methodologies can be easily 
extrapolated to the task at hand, in order to test the reliability of the existent methods for 
household member identification. The only condition that requires a special treatment is 
the base set condition. In this case, as available data includes the household at which 
each user belongs to, it is possible to define a household-centered base set ( ). That 
is, the application of rating order and size conditions on each household’s data. 

4 Methods for Identifying Active Household Members 

Following the formulation given in [3], we treat the identification of the active 
household members as a classification problem, aiming to classify user patterns 
described by feature vectors that include time context information. This approach can 
be formalized as follows. Let us consider a set of events , , … ,  and a set 
of users , , , , … , ,  within a household , such that event  is 
associated to one, and only one, user , . Also, let us consider that each of these 
events is described by means of a feature vector, called . The question to address 
is whether it is possible to determine which user is associated to an event  once 
(some) components  of its feature vector  are already known. In this paper, 
events correspond to instances of user ratings, and feature vectors correspond to time 
context representations of the events. Based on findings in [3], the time features 
considered in this work are the absolute date (D), the day of the week (W) and the 
hour of the day (H), as they are the best performing features reported in that paper 
for this task. 

The first method considered is the A priori model described in [3]. This method 
computes probability distribution functions, which represent the probabilities that 
users are associated to particular events, and uses computed probabilities to assign a 
score to each user in a household given a new event. More specifically, we compute 
the probability mass function (PMF) of each feature given a particular user, restricted 
to the information related with that user’s household, that is, | , 

where  is the set of users in the household . Then, for each new event , we 
obtain its representation as a feature vector , and identify the user who maximizes 
the PMF, that is, arg max | . When more than one feature is 

used, we assume independence and use the joint probability function, i.e., the product 
of the features’ PMFs. 
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We also evaluate Machine Learning (ML) algorithms described in [3], that are able 
to deal with heterogeneous attributes. Specifically, we have restricted our study to the 
following methods: Bayesian Networks (BN), Decision Trees (DT), and Logistic 
Regression (LR). These methods provide a score ,  based on different 

statistics from the training data, and select the users with highest scores. 
The above methods use a fixed set of time features in the classification task, i.e., 

they use the same set of features over all the households. It is important to note, 
however, that data from only one household is used for classifying events of that 
household, i.e., the methods do not use data from other households for identifying 
members of a given household.  

5 Experiments  

In this section we report and discuss results obtained in experiments we conducted to 
evaluate the methods presented in Section 4, by means of different evaluation 
methodologies. Using some time-aware methodologies, we aim to test the reliability 
of the methods for identification of active household members in a realistic scenario. 
We begin by describing the used dataset, followed evaluation methodologies, and 
assessed metric. 

5.1 Dataset 

We use a real movie rating dataset made publicly available by MoviePilot2 for the 
2011 edition of the CAMRa Challenge [2]. This dataset contains a training set of 
4,546,891 time stamped ratings from 171,670 users on 23,974 movies, in the timespan 
from July 11, 2009 to July 12, 2010. A subset of 145,069 ratings contains a household 
identifier. This subset includes a total of 602 users from 290 different households, 
who rated 7710 movies. The dataset also includes two test sets that also contain 
ratings with household identifier. Test set #1 contains 4482 ratings from 594 users on 
811 items in the timespan from July 15, 2009 to July 10, 2010, and Test set #2 
contains 5450 ratings from 592 users on 1706 items in the timespan from July 13, 
2009 to July 11, 2010. We merged all the ratings with household identification, 
obtaining a total of 155,001 unique ratings (the household dataset). These ratings 
were then used for building several training and test sets according to different 
evaluation methodologies, as described below. 

5.2 Evaluation Methodologies and Metrics 

Aiming to analyze differences on accuracy of the methods presented in Section 3, we 
selected three different evaluation methodologies. Two of them use a time-dependent 
rating order condition, and the other one use a time-independent order condition. 

The first methodology (denoted as ) consists of a combination of a 
community-centered base set ( ), a time-dependent rating order ( ), and a fixed 
size ( , ) condition. Specifically, all ratings in the household dataset are 

                                                           
2 www.moviepilot.com 
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sorted according to their timestamp, and the last 5,450 ratings are assigned to the test 
set (and the first 149,551 are assigned to the training set). In this way, a test set of 
similar size to test set #2 is built. The second methodology (denoted as ) is 
equivalent to  with a household-centered base set condition ( ). 
Specifically, the ratings of each household are sorted according to timestamp, and the 
last 19 ratings from each household are assigned to the test set. We chose 19 ratings 
aiming to build a test set of similar size to the one built with . The third 
methodology (denoted as ) is similar to  with a time-
independent rating order condition ( ). That is, 19 ratings are randomly selected 
from each household, and assigned to the test set. 

We computed the accuracy of the evaluated methods in terms of the correct 
classification rate by household ( ), i.e., the number of correct active member 
predictions divided by the total number of predictions, averaged by household, as 
proposed by CAMRa organizers. Formally, let  be the entire set of households in 
the dataset, and let  be a method under evaluation. The metric is expressed as 
follows: 1 1 ,,  

where  is the user predicted by  as associated to , , 1 if 
, and 0 otherwise, and ,  are the pairs of events and users of household  

in the test set.  

5.3 Results 

Table 1 shows the  results obtained by the evaluated methods using the three 
methodologies detailed in Section 5.2. The table also shows the results obtained on 
the test set #2, proposed by CAMRa organizers for the task (column titled CAMRa).. 
The table shows the results obtained by using individual time features, grouped by 
method. 

In the table, we observe similar results when using methodologies based on a time-
independent (random) rating order condition (CAMRa and ). Much worse 
results are observed when using methodologies employing a time-dependent rating 
order condition (  and ). Particularly lower accuracies are 
achieved when using . We note that this methodology provides the 
evaluation scenario most similar to a real-world situation: data up to a certain point in 
time is available for training purposes, and data after that (unknown at that time) is 
then used as ground truth. In our case, this methodology provides a small number of 
training events for some households, which affect the methods’ ability to detect 
temporal patterns of users. In fact, for some households, there is no training data at 
all. In this way,  represents a hard, but realistic evaluation methodology 
for the task. On the contrary, methodologies using a time-independent rating order 
condition provide easy, but unrealistic evaluation scenarios, because they let the 
methods use training data that would not be available in a real-world setting. The 

 methodology provides an intermediate scenario, in which an important 
part of data is available for learning temporal patterns of each household’s members. 
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We also observe in Table 1 that the discrimination power of the different time 
features varies among methodologies. In the case of the A priori method, the best results 
on time-independent methodologies and  are obtained with hour of the day 
(H) feature, while absolute date (D) achieves the best results among ML methods –we 
note that results are similar across features. However, when using the stricter 

, the best results among methods are obtained with day of the week (W) 
feature, nearly followed by the hour of the day feature. On the contrary, the absolute 
date feature performs the worst consistently. This highlights how unrealistic the less 
strict methodologies are for the task, because they let the methods exploit a temporal 
behavior (the exact date of interaction) that in a real situation would be impossible to 
learn. This also shows that hour of the day, and more strongly day of the week, 
features describe a consistent temporal pattern of users through time.     

Table 1. Correct classification rates obtained by the evaluated methods using the different time 
features and evaluation methodologies. Global top values in each column are in bold, and the 
best values for each method are underlined. 

Method Time 
Feature 

   CAMRa 

A priori 
H 0.6087 0.8163 0.9468 0.9457 
W 0.6167 0.8069 0.9299 0.9310 
D 0.4947 0.8152 0.9461 0.9413 

BN 
H 0.6533 0.8232 0.9539 0.9442 
W 0.6907 0.8189 0.9412 0.9438 
D 0.6506 0.8575 0.9574 0.9538 

DT 
H 0.6637 0.8229 0.9541 0.9459 
W 0.6963 0.8223 0.9417 0.9435 
D 0.6506 0.8544 0.9535 0.9472 

LR 
H 0.6674 0.8256 0.9537 0.9432 
W 0.6908 0.8132 0.9381 0.9405 
D 0.6147 0.8307 0.9555 0.9515 

 
Table 2 shows the  results obtained by the evaluated methods using 

combinations of time features, and the same methodologies reported in Table 1. The 
results show that using less strict methodologies, combinations including the absolute 
date feature perform better. On the contrary, using  the best results are 
achieved by the combination of hour of the day and day of week. 

All these results show that correct classification rate is prone to major differences 
depending on the evaluation methodology followed. The discrimination power of time 
features varies considerably when assessed by different methodologies. Moreover, the 
accuracy achieved by the methods is much lower when using the more realistic 

 methodology. 
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Table 2. Correct classification rates obtained by the evaluated methods using combinations of 
time features, on different evaluation methodologies. Global top values in each column are in 
bold, and best values for each method are underlined. 

Method Time 
Feature 

   CAMRa 

A priori 

HW 0.6496 0.8421 0.9688 0.9652 
HD 0.4947 0.8205 0.9739 0.9727 
WD 0.4947 0.8152 0.9470 0.9426 
HWD 0.4947 0.8205 0.9746 0.9720 

BN 

HW 0.6876 0.8325 0.9721 0.9690 
HD 0.6262 0.8287 0.9773 0.9740 
WD 0.6529 0.8127 0.9534 0.9484 
HWD 0.6809 0.8401 0.9770 0.9744 

DT 

HW 0.7188 0.8644 0.9773 0.9750 
HD 0.6389 0.8648 0.9753 0.9709 
WD 0.6932 0.8417 0.9526 0.9470 
HWD 0.6950 0.8599 0.9777 0.9752 

LR 

HW 0.6635 0.8652 0.9768 0.9701 
HD 0.6515 0.8650 0.9824 0.9769 
WD 0.6636 0.8697 0.9553 0.9564 
HWD 0.6591 0.8670 0.9808 0.9759 

6 Conclusions and Future Work 

In this paper we have presented an empirical comparison of methods for active 
household member identification, evaluated under different methodologies previously 
applied on recommender systems evaluation. Given that the methods are based on 
exploiting temporal patterns, we included some time-aware evaluation methodologies 
in order to test the reliability of previously reported results. We also analyzed the 
contribution of each time feature and combinations of features to the task. 

The results obtained show that the discrimination power of time features, alone and 
combined, varies considerably when assessed by different methodologies. We observed 
that less strict methodologies provide unrealistic results, due to the exploitation of 
temporal information that are hard to obtain in a realistic evaluation scenario. Moreover, 
the accuracy achieved by all the methods was much worse when using a strict time-aware 
evaluation methodology. This findings show that stronger methods are required to 
provide accurate identification of active household members in real-world applications. 

Next steps in our research will consider the development of methods able to improve 
accuracy in the task on the stricter time-aware evaluation methodologies, as a previous 
step towards obtaining better results on real-world applications. One way to accomplish 
this goal may be to exploit patterns found across several households that may be useful to 
use in cases where little information about user’s temporal behavior is available. 
Furthermore, we plan to test additional time features that can be derived from 
timestamps, and use a combination of time features and other type of features, e.g. based 
on demographic data, aiming to increase the discrimination power of the feature set. 
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Abstract. In recent years, Pseudo Relevance Feedback techniques have
become one of the most effective query expansion approaches for doc-
ument retrieval. Particularly, Relevance-Based Language Models have
been applied in several domains as an effective and efficient way to en-
hance topic retrieval. Recently, some extensions to the original RMmeth-
ods have been proposed to apply query expansion in other scenarios,
such as opinion retrieval. Such approaches rely on mixture models that
combine the query expansion provided by Relevance Models with opin-
ionated terms obtained from external resources (e.g., opinion lexicons).
However, these methods ignore the structural aspects of a document,
which are valuable to extract topic-dependent opinion expressions. For
instance, the sentiments conveyed in blogs are often located in specific
parts of the blog posts and its comments. We argue here that the com-
ments are a good guidance to find on-topic opinion terms that help to
move the query towards burning aspects of the topic. We study the role
of the different parts of a blog document to enhance blog opinion re-
trieval through query expansion. The proposed method does not require
external resources or additional knowledge and our experiments show
that this is a promising and simple way to make a more accurate rank-
ing of blog posts in terms of their sentiment towards the query topic. Our
approach compares well with other opinion finding methods, obtaining
high precision performance without harming mean average precision.

Keywords: Information retrieval, opinion mining, blogs, comments, rel-
evance models, pseudo relevance feedback, query expansion.

1 Introduction and Motivation

The blogosphere is one of the most important sources of opinion in the Internet
[1]. Given a query and a collection of blogs, several methods have been proposed
to retrieve opinions related to the query topic [1]. The most popular choice is
to consider this task as a two-stage process that involves a topic retrieval stage
(i.e., retrieve on-topic posts), and a re-ranking stage based on opinion features [2].
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The first stage usually involves ad-hoc search with popular Information Retrieval
(IR) models (e.g., BM25). The second stage is a more complex task with many
unresolved issues (e.g., irony, off-topic opinions, mixed polarity). Most success-
ful approaches search for documents that are both opinionated and on-topic by
considering positional information as the best guidance to find on-topic opin-
ions [3,4]. Pseudo Relevance Feedback (PRF) combined with external opinion
resources has also been proposed to support opinion finding [5]. However, most
studies ignore the structural aspects of a blog post to determine opinions. This
is unfortunate because sentiments often appear in specific locations of the text.
For instance, in the study of blog comments presented in [6], Mishne and Glance
found that comments constitute a substantial part of the blogosphere, accounting
for up to 30% of the total volume of blog data.

In this paper we present a simple PRF strategy that exploits the poten-
tial opinions provided in the comments to improve opinion finding in blogs.
In particular, we use one of the most robust and effective PRF techniques:
Relevance-Based Language Models (RM) [7]. Several estimations for RM have
been proposed in the literature, being the so-called RM3 [8] the approach that
performs best [9]. In this work we present an alternative RM3 estimation for
selecting expansion terms from comments. We estimate the relevance model
from these highly opinionated parts of the blogs with the objective of selecting
opinionated and on-topic expansion terms. We compare the performance of our
comments-based approach against the standard RM3 formulation. Our exper-
iments show that the new expansion method is promising when compared to
global approaches that consider the whole document to do expansion.

2 Background

Nowadays, advanced search tasks need to go beyond a ranked list of relevant
documents. One of these tasks is opinion retrieval [10,1], where opinions need to
be integrated within the retrieval task. For instance, in the TREC Blog Track [2]
the participants are asked to search for blog pages that express an opinion about
a given topic. This task can be summarised as: What do people think about X?
[2] and is often addressed in two stages. First, a ranking of documents related
to the topic (X ) is obtained and, next, the initial list is re-ranked using opinion-
based features. The output is a ranking of documents in decreasing order of their
estimated subjectivity with respect to the query.

Relevance Models explicitly introduced the concept of relevance in the Lan-
guage Modeling (LM) framework [7]. In RM, the original query is considered a
very short sample of words obtained from a relevance model R and relevant doc-
uments are larger samples of text from the same model. From the words already
seen, the relevance model is estimated. If more words from R are needed then
the words with the highest estimated probability are chosen. The terms in the
vocabulary are therefore sorted according to these estimated probabilities. After
doing some assumptions the RM1 method is defined as:
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P (w|R) ∝
∑
d∈C

P (d) · P (w|d) ·
n∏

i=1

P (qi|d) (1)

Usually, P (d) is assumed to be uniform.
∏n

i=1 P (qi|d) is the query likeli-
hood given the document model, which is traditionally computed using Dirichlet
smoothing. P (w|d) accounts for the importance of the word w within the docu-
ment d. The process follows four steps:
1. Initially, the documents in the collection (C) are ranked using a standard

LM retrieval model (e.g., query likelihood with Dirichlet smoothing).
2. The top r documents from the initial retrieval are taken for driving the

estimation of the relevance model. In the following, this pseudo relevant set
will be referred to as RS.

3. The relevance model’s probabilities, P (w|R), are calculated from the esti-
mate presented in Eq. 1, using RS instead of C.

4. The expanded query is built with the e terms with highest estimated P (w|R).
RM3 [8] is a later extension of RM that performs better than RM1. RM3

interpolates the terms selected by RM1 with a LM computed from the original
query:

P (w|q′) = (1− λ) · P (w|q) + λ · P (w|R) (2)

Negative cross entropy with the expanded query is used to get the final ranking.

3 Comments-Biased Relevance Model

As we discussed in Section 1, people tend to express opinions related to the topic
of the blog post when they write comments. We argue that the comments of a
blog post are more densely populated by opinions than other parts of the docu-
ment. Therefore, we hypothesize that terms in comments are highly opinionated
and on-topic and therefore, a simple PRF technique that takes advantage of
these specific words to expand the original query will be a very promising tool
to improve opinion finding in blogs. We have designed an alternative RM3 esti-
mation in which Eq. 1 is modified to promote terms that appear in the comments
of the blog post:

P (w|R) ∝
∑

d∈RS
P (d) · P (w|dcomm) ·

n∏
i=1

P (qi|d) (3)

where w is any word appearing in the set of comments associated to documents in
RS and P (w|dcomm) is computed as the probability of w in the set of comments
of document d. In this way, the comments act as proxies of the documents in
terms of opinion. Observe that the estimation of the query likelihood remains
at document level because the effect of topic relevance on the estimation of the
relevance model is better encoded using the whole document.

Finally, both P (w|dcomm) and P (qi|d) are estimated using Dirichlet smooth-
ing:
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P (w|dcomm) =
fw,dcomm + μ · P (w|Ccomm)

|dcomm|+ μ
(4)

P (qi|d) =
fqi,d + μ · P (qi|C)

|d|+ μ
(5)

where fqi,d is the number of times that the query term qi appears in document
d, and fw,dcomm is the number of times that the word w appears in the document
that is constructed by concatenating all the comments associated to d (dcomm).
|d| and |dcomm| are the number of words in d and dcomm, respectively. P (qi|C)
is the probability of qi in the collection of documents C and P (w|Ccomm) is the
probability of w in the collection of comments. μ is an smoothing parameter that
we have to train.

4 Experiments

In our experiments we used the well-known BLOGS06 test collection [11]. We
considered the TREC 2006, TREC 2007, and TREC 2008 blog track’s bench-
marks, all of which have the BLOGS06 as the reference collection. One of the
core tasks in these tracks is the opinion finding task, i.e., given a query topic,
systems have to return a ranking of subjective blog posts related to the query.
As usual in TREC, each query topic contains three different fields (title, descrip-
tion, and narrative). We only used the title field, which is short and the best
representation of real user web’s queries [2]. Documents were pre-processed and
segmented into posts and comments following the heuristic method proposed in
[12]. We also removed 733 common words from documents and queries.

Documents were judged by TREC assessors in two different aspects: i) Topic
relevance: a post can be relevant, not relevant, or not judged, ii) Opinion: whether
or not the on-topic documents contain explicit expression of opinion or sentiment
about the topic. In this paper we are interested in this second level of judgements,
focusing our attention on retrieving documents that express an explicit opinion
about the query (regardless of the polarity of the opinion).

4.1 Baselines

In TREC 2008, to promote the study of the performance of opinion-finding
methods against uniform retrieval rankings, a set of five topic-relevance retrieval
runs was provided. These standard baselines use a variety of retrieval approaches,
and have varying retrieval effectiveness1.

It is a standard practice to use these baselines as initial input for the opinion
retrieval stage. We followed this evaluation design and applied the proposed
RM estimation to re-rank the baselines. The measures adopted to evaluate the

1 Baselines were selected from the runs submitted to TREC Blog Retrieval Task 2008.
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opinion retrieval effectiveness are mean average precision (MAP), Precision at
10 (P@10), and the Reliability of Improvement (RI) [13], which is a commonly
used robustness measure for PRF methods:

RI(q) =
n+ − n−

|q| (6)

where q is the set of queries tested, n+ is the number of improved queries, n− the
number of degraded queries and |q| is the total number of queries in q. Observe
that the gold-standard is obtained from the documents that were assessed as
subjective with respect to the query topic.

4.2 Query Formulation

We used the Indri retrieval platform for both indexing and retrieval2. In order
to apply our RM estimation under this framework, Equation 2 is implemented
in the Indri’s query language as follows:

#weight (λ #combine( q1 · · · q|n|)
(1− λ) #weight( P (t1|R) · t1 · · · P (te|R) · te)) (7)

where q1 · · · q|n| are the original query terms, t1 · · · te are the e terms with high-
est probability according to Equation 3, and λ is a free parameter to control
the trade-off between the original query and the expanded terms. We selected
Dirichlet [14] as the smoothing technique for our experiments.

4.3 Training and Testing

We trained our methods with the 100 topics provided by TREC 2006 and TREC
2007 blog track (optimising MAP) and then we used the 50 TREC 2008 topics as
the testing query set. The parameters trained were the following: the smoothing
parameter of Dirichlet μ (μ ∈ {10, 100, 1000, 2000, 3000, 4000, 5000, 6000}),
the number of documents in the pseudo relevant set r = |RS|, (r ∈ {5, 10, 25,
50, 75, 100}), the number of terms selected for expansion e (e ∈ {5, 10, 25, 50,
75, 100}) and the interpolation weight λ (λ ∈ {0, .1, .2, .3, .4, .5, .6, .7, .8, .9,
1}). The parameters were tuned (independently for each baseline) for both the
classical RM3 estimated from the whole documents (post and comments) and
for our proposal (labelled as RM3C) following an exhaustive exploration process
(grid search).

4.4 Results

Table 1 and Table 2 report the experimental results. Each run was evaluated in
terms of its ability to retrieve subjective documents higher up in the ranking. The
best value for each baseline and performance measure is underlined. Statistical

2 http://www.lemurproject.org/indri.php

http://www.lemurproject.org/indri.php
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Table 1. Opinion finding MAP results for the TREC 2008 dataset. The symbols �(�)
and �(�) indicate a significant improvement(decrease) over the original baselines and
the RM3 method respectively.

orig. RM3 RM3C
Baseline MAP MAP RI MAP RI

baseline1 .3239 .3750� (+16%) .60 .3653� (+13%) .56
baseline2 .2639 .3117� (+18%) .36 .3244� (+23%) .52
baseline3 .3564 .3739 (+5%) .08 .3753 (+5%) .12
baseline4 .3822 .3652 (−4%) -.04 .3688 (−4%) -.08
baseline5 .2988 .3383� (+13%) .44 .3385� (+13%) .48

average .3251 .3528� (+8%) .29 .3545� (+9%) .32

Table 2. Opinion finding P@10 results for the TREC 2008 dataset. The symbols �(�)
and �(�) indicate a significant improvement(decrease) over the original baselines and
the RM3 method respectively.

orig. RM3 RM3C
Baseline P@10 P@10 RI P@10 RI

baseline1 .5800 .6140 (+6%) .18 .6360 (+10%) .20
baseline2 .5500 .5560 (+1%) .04 .6340�� (+15%) .18
baseline3 .5540 .5800 (+5%) -.02 .6460�� (+17%) .30
baseline4 .6160 .6140 (−0%) -.04 .6560 (+6%) .18
baseline5 .5300 .5940 (+12%) .18 .6660�� (+26%) .54

average .5660 .5916 (+5%) .07 .6476�� (+14%) .28

significance was estimated using the Wilcoxon test at the 95% level. The symbols
� and � indicate a significant improvement or decrease over the original baselines
and the symbols � and� indicate a significant improvement (resp. decrease) with
respect to the standard RM3 method.

Opinion Retrieval Performance. Both RM3 and RM3C outperform the
original baselines but RM3C performs the best. In terms of MAP , RM3 is able
to achieve improvements that are similar to those found with RM3C. However,
in terms of P@10, RM3C shows significant improvements with respect to the
baselines and with respect to RM3. Furthermore, RM3C shows higher values of
RI. This indicates that the improvements obtained using queries expanded with
terms from comments are more consistent than those obtained with terms from
the whole document. These results also highlight the importance of comments to
enhance precision without harming recall (MAP is roughly the same with either
RM methods). This suggests that subjective words estimated from comments
lead to a more accurate query-dependent opinion vocabulary. Furthermore, the
independence of our method of any external lexicon is important because, in
many domains and languages, there is a lack of good opinion resources.
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Table 3. Average opinion finding MAP performance over the 5 different baselines
re-ranked by TREC 2008 systems against the results achieved by RM3C on top of
those systems. The symbols �(�) indicate a significant (resp. decrease) improvement
over the TREC systems. TREC systems that were able to outperform the original 5
topic-retrieval baselines are in bold.

orig. TREC run+RM3C
TREC Run MAP MAP RI

uicop1bl1r .3614 .3524 (−2%) -.18
B1PsgOpinAZN .3565 .3558 (−2%) .10
uogOP1PrintL .3412 .3510 (+3%) .10
NOpMM107 .3273 .3532� (+8%) .38
UWnb1Op .3215 .3538� (+10%) .33
FIUBL1DFR .2938 .3520� (+20%) .61
UniNEopLRb1 .2118 .2121 (+0%) .18
uams08b1pr .1378 .3347� (+43%) .93

Table 4. Average opinion finding P@10 performance over the 5 different baselines
re-ranked by TREC 2008 systems agains the results achieved by RM3C on top of
those systems. The symbols �(�) indicate a significant (resp. decrease) improvement
over the TREC systems. TREC systems that were able to outperform the original 5
topic-retrieval baselines are in bold.

orig. TREC run+RM3C
TREC Run P@10 P@10 RI

uicop1bl1r .6020 .6264 (+4%) .14
B1PsgOpinAZN .6204 .6512� (+5%) .30
uogOP1PrintL .5964 .6320� (+6%) .25
NOpMM107 .5744 .6432� (+12%) .37
UWnb1Op .6068 .6500 (+7%) .25
FIUBL1DFR .4804 .6392� (+33%) .76
UniNEopLRb1 .6156 .6464 (+5%) .29
uams08b1pr .1284 .6100� (+375%) 1.0

Comparison against TREC Systems. Our technique does not use any spe-
cific opinion lexicon. It simply re-ranks documents based on a comments-oriented
query expansion method that works from an initial ranked set of documents. This
brings us the opportunity to apply our methods on top of effective opinion find-
ing methods. To test this combination we considered the systems proposed by
teams participating in the last TREC blog opinion retrieval task (TREC2008)
[2]. Observe that this subjective task was quite challenging: half of TREC sys-
tems failed to retrieve more subjective documents than the baselines [2]. In Ta-
ble 3 and Table 4 we report the mean performance (over the five baselines) of the
TREC systems against the average performance achieved by applying RM3C on
top of those systems’ runs. Observe that our methods and these TREC systems
were evaluated under the same testing conditions (i.e., re-ranking performance
against the 5 topic-retrieval baselines). The systems in bold were the only ones
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able to show improvements with respect to the original five retrieval baselines in
terms of MAP. We can observe that our RM3C approach is often able to improve
the performance of these methods, showing usually significant improvements in
terms of P@10, as well as good RI scores. This demonstrates that our method is
able to improve strong subjective rankings. Table 3 and Table 4 also show that
our expansion approach is robust because RM3C is able to outperform all types
of opinion retrieval systems regardless of their original performance. Observe
also that the average P@10 of our method in Table 2 (.6476) is clearly higher
than the P@10 obtained by any TREC participant.

5 Related Work

Relevance Feeedback and Query Expansion techniques have been considered as
an efficient, effective and natural way to enhance the effectiveness of retrieval
systems [15]. RF methods use the information provided by relevant documents
from an initial retrieval to rewrite and improve the quality of the original query
[16]. However, in many scenarios, the applicability of RF is limited because of the
lack of relevance judgements. In order to deal with the absence of judgements,
Pseudo Relevance Feedback strategies were proposed [17,18]. These methods do
not need explicit relevance judgements because they assume that some of the
documents retrieved by an IR system are relevant to the original query. How to
select the pseudo-relevance documents and also how to use them to improve the
original query varies from one PRF method to another.

Relevance Models have emerged as one of the most effective and efficient PRF
approaches. As a result of this, different estimations have been proposed [9] and
applied in all sorts of IR problems. In particular, for the opinion retrieval task,
Huang and Croft [5] proposed a RM estimation based on a mixture with exter-
nal opinion resources. This approach showed satisfactory results. However, the
information provided by the documents’ structure to search for opinions is often
ignored. This is unfortunate because the comments supply valuable information,
as demonstrated in ad-hoc IR retrieval tasks [19,20], summarisation [21] and
snippet generation problems [22].

Several blog opinion retrieval methods have been proposed in the literature.
The most successful studies in this subject are those focused on finding docu-
ments that are both opinionated and on-topic [4,3,23]. To meet this aim, some
papers consider term positional information to find opinionated information re-
lated to the query. Santos et al. [4] applied a novel opinion mining approach
that takes into account the proximity of query terms to subjective sentences in
a document. Gerani et al. [3,23] proposed proximity-based opinion propagation
methods to calculate the opinion density at the position of each query term in
a document. These two studies led to improvements over state of the art base-
lines for blog opinion retrieval. The main concern for applying these methods is
their computational cost. For example, in [3,23], it is necessary to apply a kernel
function at each opinion term to propagate their sentiment scores to every query
term in the document. Furthermore, these methods are dependent on external
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opinion resources. These resources might not be available for a particular do-
main or language. We designed here a simple PRF method that, focusing the
query expansion process on comments, performs well without the need of any
external information. Moreover, as we explained in section 4, our proposal is
complementary to other opinion finding techniques.

6 Conclusions and Future Work

In this paper we have proposed a RM estimation focused on the comments of the
blog posts to support opinion finding. Under this framework, the original query is
expanded with salient words supplied by a relevance model constructed from the
comments of the blog posts. The proposed method significantly outperforms the
classical RM3 estimation for an opinion finding task. We provided experimental
evidence showing that the comments are very useful to move the query towards
opinionated words. This novel expansion approach is particularly consistent as
a high precision mechanism.

One of the characteristics of our approach is that we apply an homogeneous
treatment for all types of queries. However, in some cases this could be not
desirable. In this respect, we would like to study methods to dynamically adapt-
ing our expansion techniques depending on the quality of the initial query [13].
In the near future, we also want to study the effect of spam comments on our
expansion approach.

Acknowledgments. This work was funded by Secretaŕıa de Estado de Inves-
tigación, Desarrollo e Innovación from the Spanish Government under project
TIN2012-33867.
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Abstract. In this paper we present a contextual modeling approach for model-
based recommender systems that integrates and exploits both user preferences 
and contextual signals in a common vector space. Differently to previous work, 
we conduct a user study acquiring and analyzing a variety of realistic contextual 
signals associated to user preferences in several domains. Moreover, we report 
empirical results evaluating our approach in the movie and music domains, 
which show that enhancing model-based recommender systems with time, loca-
tion and social companion information improves the accuracy of generated rec-
ommendations. 

Keywords: context-aware recommendation, contextual modeling, model-based 
recommender systems. 

1 Introduction 

Recommender Systems (RS) are software tools that provide users with suggestions of 
items that should be the most appealing based on personal preferences (tastes, 
interests, goals). Main strategies of RS are content-based filtering (CBF), which 
recommends items similar to those preferred by the user in the past, and collaborative 
filtering (CF), which recommends items preferred in the past by people who are 
similar-minded to the user. To overcome particular limitations, CBF and CF are 
commonly combined in the so-called hybrid filtering (HF) strategies [3,7]. 

For any of the above strategies, recommendation approaches can be classified as 
heuristic-based or model-based [3,6]. Heuristic-based approaches utilize explicit 
heuristic formulas that aggregate collected user preferences to compute item relevance 
predictions. Model-based approaches, in contrast, utilize collected user preferences to 
build (machine learning) models that, once built, provide item relevance predictions. In 
this way, model-based approaches lead to faster responses at recommendation time. 

In its basic formulation, recommender systems do not take into account the context 
–e.g. time, location, and social companion– in which the user experiences an item. It 
has been shown, however, that context may determine or affect the user’s preferences 
when selecting items for consumption [9]. Those RS that somehow exploit contextual 
information are called context-aware recommender systems (CARS). Adomavicius et 
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al. [2,4], classify them as contextual pre-filtering, contextual post-filtering, and 
contextual modeling approaches. Contextual pre- and post-filtering approaches are 
based on context-unaware recommendation methods, which are applied on pre-
processed preference data, or are used to generate recommendations that are post-
adjusted, in both cases according to the user’s current context. Contextual modeling, 
on the contrary, extends the user-item preference relations with contextual 
information to compute recommendations. 

Researchers have shown that CARS provide more accurate recommendations than 
context-unaware RS [5,11]. Nevertheless, context-aware recommendation is a 
relatively unexplored area, and still needs a much better comprehension [4]. For 
instance, analyzing which are the characteristics and values of distinct contextual 
signals –alone or in combination– that really influence recommendation performance 
improvements is an important open research issue. Some researchers have conducted 
studies on context-aware recommendation comparing different approaches [13,14,15], 
but little work has been done at the contextual signal level. Moreover, in general, 
reported studies have focused on individual domains, without analyzing the 
generalization of the proposed approaches for several domains. 

A major difficulty to address the above issues is the current lack of available real 
context-enriched data. A method for obtaining contextual data is to automatically 
infer the context in which the user experiences an item, e.g. by capturing time and 
location signals. In general, this approach has been used in CARS research to capture 
context data (usually timestamps) when users rate items. However, it is important to 
note that if a system collects ratings instead of consumption/purchase records, the 
captured contexts do not necessarily correspond to the real contexts that affect or 
determine the user’s (contextualized) preferences for items. 

In this paper we present a contextual modeling approach for model-based RS that 
integrates both user preferences and contextual signals in a common vector space, 
and, being a hybrid recommendation approach, exploits content-based user 
preferences in a collaborative filtering fashion. Differently to previous work, we 
conduct a user study acquiring and analyzing a variety of realistic contextual signals 
associated to user preferences in several domains. Moreover, we report empirical 
results evaluating our approach in the movie and music domains, which show that 
enhancing model-based recommender systems with time, location and social 
companion information improves the accuracy of generated recommendations. 

The remainder of the paper is structured as follows. In Section 2 we discuss related 
work. In Section 3 we present our contextual modeling approach for integrating user 
preferences and contextual signals. In Section 4 we describe the user study and analysis 
performed, and in Section 5 we report the recommendation results obtained. Finally, in 
Section 6 we provide some conclusions and future research directions for our work. 

2 Related Work 

Quoting Dey [8], “context is any information that can be used to characterize the 
situation of an entity.” In information retrieval and filtering systems, an entity can be 
a user, an (information) item, or an experience the user is evaluating [5], and any 
signal –such as device, location, time, social companion, and mood– regarding the 
situation in which a user interacts with an item can be considered as context. 
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Context-aware recommender systems exploit contextual information to provide 
differentiated recommendations according to the user’s current situation. Based on 
how such contextual information is exploited, three types of context-aware 
recommendation approaches can be distinguished [4]: contextual pre-filtering 
approaches –which prune, split and/or group available user preference data according 
to the target context, before applying a context-independent recommendation 
algorithm–, contextual post-filtering approaches –which apply a context-independent 
recommendation algorithm on the original user preference data, and afterwards adapt 
the generated recommendations according to the target context–, and contextual 
modeling –which incorporate contextual information into the algorithm that generates 
recommendations. 

In this paper we focus on contextual modeling, since it lets effectively extend and 
exploit the user-item relations with several contextual signals, without the need of 
discarding (valuable) data or adapting generated recommendations for providing 
contextualized recommendations. 

One of the first contextual modeling approaches was presented in [12], where Oku 
et al. incorporated several contextual signals –including time, social companion, and 
weather– into a Support Vector Machine model for restaurant recommendation. Yu et 
al. [16] modeled situation context (in which the user utilizes/consumes an item) and 
capability context (in which the current capacity of the utilized device is specified) to 
provide media recommendations in smart phones. These contexts are incorporated 
into content-based Bayesian and rule-based recommendation approaches. Abbar et al. 
[1] proposed a conceptualization of context-aware recommendation based on an 
architecture composed of various context-based personalization services, including 
context discovery, binding and matching services. In the proposed architecture, 
context clusters are formed by analyzing user activity logs to describe regular 
contexts or situations, such as “at home” and “at work.” Koren [11] extended the 
Matrix Factorization model incorporating temporal context information for movie 
rating prediction. The time signal was indeed argued as a key factor by the winning 
team of the well-known Netflix Prize competition. Finally, Karatzoglou et al. [10] 
used Tensor Factorization to model n-dimensional contextual information. The 
approach was called multiverse recommendation because of its ability to bridge data 
pertaining to different contexts (universes of information) into a unified model. 

In the literature, most of the work on context modeling for recommendation 
focuses on individual domains, exploits a single contextual signal, and/or evaluates 
approaches in terms of performance recommendation improvements due to the 
consideration of contextual signals, without analyzing and characterizing the context 
values that really determine such improvements. Differently, in this paper we conduct 
a user study aimed to acquire and evaluate a variety of realistic contextual signals 
associated to the users’ preferences in several domains, and present an analysis of 
recommendation improvements for the different values of the contextual signals when 
they are exploited alone or in combination. 

3 Contextual Modeling in Model-Based Recommender Systems 

We address the contextual modeling problem from a machine learning perspective. 
Specifically, we propose to represent both user preferences and contextual signals in a 
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common vector space. The dimensions of the considered vector space are content-
based attributes associated to user preferences and item features, and context-based 
attributes associated to user-item preference relations. Hence, as shown in Figure 1, a 
preference relation ,  between user  and item  is defined as a pattern: , , … , , , … , , , , … , , ;  
where :  gives a numeric value that indicates the preference of user  for 
(items with) a content attribute  ; :  gives a numeric value that 
indicates the importance of a (content) attribute  for describing item ; , : 0,1  is 1 if a contextual signal  is active in the preference of 
user  for item , and 0 otherwise; and 0,1  is the preference relevance of user 

 for item , being 1 if user  prefers/likes item  (for the context values , , … , , ), and 0 otherwise. 

 

Fig. 1. A user-item preference relation as a pattern of content- and context-based attributes 

In the user study presented in this paper, for the movie and music domains, we 
considered the content- and context-based attributes shown in Table 1. For each user 
,  the value  of a content-based attribute  was the number of ’s 

liked/preferred items with . For each item , the value  of a content-based 
attribute  was 1 if  had the attribute, and 0 otherwise. 

Table 1. Attributes in the movie and music domains considered in the user study 

Domain Attribute type Attributes 

movies 

content-based 
(f, g) 

a user’s preferred/liked genres action, adventure, animation, comedy, crime, 
drama, family, fantasy, futuristic, historical, 
horror, melodrama, musical, mystery, neo 
noir, parody, romance, sci-fi, thriller, war a movie’s genres 

context-based 
(h) 

day of the week work day, weekend day, indifferent 
time of the day morning, afternoon, night, indifferent 

social companion 
alone, with my partner, with my family,  
with friends, indifferent 

music 

content-based 
(f, g) 

a user’s preferred/liked genres 60s, 70s, 80s, 90s, acoustic, ambient, blues, 
classical, electronic, folk, hip hop, indie, jazz, 
latin, metal, pop, punk, rnb, rock, soul a musician’s genres 

context-based 
(h) 

day of the week work day, weekend day, indifferent 
time of the day morning, afternoon, night, indifferent 

location 
at home, at work, at the car/bus,  
at the bar/disco, indifferent 
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The set of attribute patterns (collected in the user study) was then used to build and 
evaluate a number of well-known classifiers, namely Naïve Bayes, Random forest, 
Multilayer Perceptron, and Support Vector Machine. In this way, preferences of 
individual users were exploited in a collaborative way, and the classifiers can be 
considered as model-based hybrid recommender systems. 

Analyzing the collected patterns, in Section 4 we present relations existing between 
user preferences for movie/music genres and the considered contexts. Next, in Section 
5 we present an evaluation on the effect of exploiting or discarding contextual 
information by the recommender systems. 

4 Analyzing Contextualized User Preferences  

To evaluate our contextual modeling approach with realistic context information 
associated to user preferences at item consumption time, we built an online evaluation 
tool1, where users were presented with sets of movies or musicians (no combinations 
of both), and were requested to freely provide personal ratings for those movies they 
had watched and musicians they had listened to. To facilitate the evaluation, the users 
could select preferred movie and music genres and the language –English or Spanish– 
of the online evaluation, and skip any item they did not want to evaluate. For both the 
movie and music domains, 20 genres (shown in Tables 2 and 3) were used as user 
preferences and item features. 

A total of 72 users, recruited via social networking sites, participated in the study, 
evaluating 178 movies and 132 musicians, generating 713 evaluation cases. In each 
evaluation case, a target user assigned to an item (movie or musician) an integer rating 
in the range [1, 10], and specified the context (  attribute values in Table 1) in which 
she preferred to consume the item. In the offline analysis, the preference relevance 0,1  of an evaluation case was set in two ways: a)  was set to 1 if the rating was 
greater or equal than 7, taking into account that the average ratings of all users 
(community) in the movie and music domains were 7.26 and 7.48, respectively; and b) 
 was set to 1 if the rating was greater or equal than the target user’s average rating. 

4.1 Analysis of Contextualized User Preferences in the Movie Domain 

Table 2 depicts the distribution of contextualized movie preferences of the users who 
participated in our study. The table relates the considered 20 movie genres with the 
time and social companion contexts. Each cell in the table has a numeric value that is 
the number of users who liked (i.e., assigned a rating greater or equal to 7) a movie 
belonging to the corresponding genre in a particular context, discarding cases in 
which a movie genre was preferred by only one user in the given context. The 
green/red arrows indicate the most/least liked movies in work and weekend days. The 
circles reflect the relative popularity of the genres in the time of the day (morning/ 
afternoon/night) context. 

From the table, interesting observations can be made. Regarding the day of the 
week context, comedy, adventure and fantasy movies are watched in any day, 
showing the users’ majority like for movies evoking positive emotions. In contrast, 

                                                           
1 Online evaluation tool, http://ir.ii.uam.es/emotions 
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The classifiers were built with patterns associated to user-item preference relations. 
The attributes of a pattern corresponded to a user’s favorite genres, an item’s genres, 
and, in some configurations, the time and/or location/social companion context of the 
user-item preference relation. The pattern’s class label was 1 if the user “liked” the 
item in the given context, and 0 otherwise, where “liked” means the user assigned to 
the item a rating equal or greater than 7 (community average), or a rating greater or 
equal than the user’s average rating (user average). 

The tables of this section show the best average (10-fold cross validation) 
performance values of the classifiers for the distinct user profile types. As commonly 
done in machine learning, we computed accuracy (percentage of patterns correctly 
classified) as the main measure for recommendation performance. Additionally, in order 
to take the pattern’s class distribution into account, we also computed the geometric 
mean √  (being  and  the accuracy values on the 
majority/like and minority/dislike classes respectively), and the Area Under the ROC 
Curve (AUC). 

5.1 Evaluation of Contextualized Recommendations in the Movie Domain 

Table 4 shows the performance results of the recommendation models for the 
different user profile types in the movie domain. It can be seen that in general 
incorporating contextual information into the classifiers improves the overall  and 

 values. In this case, the time context was the most influential to obtain better 
performance, and Random Forest was the best performing algorithm. 

Table 4. Performance values of the model-based recommender systems built with the different 
user profile types (attribute configurations) in the movie domain. Global top values are in bold, 
and best values for each profile type are underlined. 

Profile 
type 

Classifier 
Community average  User average 

acc acc+ acc- g AUC acc acc+ acc- g AUC 

- Majority class 71.4 100.0 0.0 0.0 49.3 57.2 100.0 0.0 0.0 49.2 

genres 

Naïve Bayes 73.6 96.3 16.8 40.2 62.8 54.8 83.6 16.3 36.9 50.8 

Random forest 76.9 90.6 42.9 62.3 71.9 59.6 68.5 47.8 57.2 60.7 

MLP 73.3 91.6 27.7 50.4 67.1 53.4 60.5 43.8 51.5 52.1 

SVM 70.4 82.2 41.2 58.2 61.7 55.5 75.6 28.7 46.6 52.1 

genres 
+ 

time 
contexts 

Naïve Bayes 73.8 96.3 17.6 41.2 63.5 55.5 81.5 20.8 41.2 52.7 

Random forest 77.4 91.2 42.9 62.5 74.5 63.9 70.2 55.6 62.5 66.3 
MLP 74.0 90.9 31.9 53.9 68.5 57.2 62.2 50.6 56.1 58.1 

SVM 70.7 80.5 46.2 61.0 63.3 55.5 74.8 29.8 47.2 52.3 

genres 
+ 

companion 
context 

Naïve Bayes 73.3 96.0 16.8 40.2 62.9 53.6 80.3 18.0 38.0 51.0 

Random forest 74.0 89.2 36.1 56.8 70.9 60.1 69.7 47.2 57.4 61.6 

MLP 72.8 90.2 29.4 51.5 66.7 56.0 60.9 49.4 54.9 57.4 

SVM 69.5 79.1 45.4 59.9 62.3 55.0 73.9 29.8 46.9 51.9 

genres 
+ 
all 

contexts 

Naïve Bayes 73.8 95.3 20.2 43.8 63.6 54.8 80.3 20.8 40.8 52.6 

Random forest 75.5 90.6 37.8 58.5 73.6 62.3 67.6 55.1 61.0 61.3 

MLP 73.8 89.9 33.6 55.0 68.1 53.8 61.3 43.8 51.8 54.4 

SVM 71.4 81.1 47.1 61.8 64.1 56.0 74.8 30.9 48.1 52.8 
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5.2 Evaluation of Contextualized Recommendations in the Music Domain 

Table 5 shows the performance results of the recommendation models for the 
different user profile types in the music domain. Similarly to the movie domain, it can 
be seen that in general incorporating contextual information into the classifiers 
improves the overall  and  values. In this case, location context is more 
influential than time context to obtain better performance, and is the combination of 
both contextual signals what leads to the best performance. Random Forest is again 
the algorithm that achieves the highest performance values. 

Table 5. Performance values of the model-based recommender systems built with the different 
user profile types (attribute configurations) in the music domain. Global top values are in bold, 
and best values for each profile type are underlined. 

Profile 
type Classifier 

Community average  User average 

acc acc+ acc- g AUC acc acc+ acc- g AUC 

- Majority class 75.9 100.0 0.0 0.0 46.5 56.0 100.0 0.0 0.0 47.6 

genres 

Naïve Bayes 70.7 82.8 32.6 51.9 53.5 50.3 60.7 36.9 47.3 47.2 

Random forest 73.3 85.5 34.8 54.5 58.7 59.2 66.4 50.0 57.6 60.4 

MLP 72.8 83.4 39.1 57.1 60.8 52.9 55.1 50.0 52.5 50.6 

SVM 73.8 83.4 43.5 60.2 63.5 52.9 58.9 45.2 51.6 52.1 

genres 
+ 

time 
contexts 

Naïve Bayes 71.7 83.4 34.8 53.9 55.8 53.9 61.7 44.0 52.1 51.0 

Random forest 75.4 87.6 37.0 56.9 69.8 60.7 60.7 60.7 60.7 62.3 

MLP 74.9 83.4 47.8 63.2 68.8 59.7 59.8 59.5 59.7 58.5 

SVM 75.4 83.4 50.0 64.6 66.7 56.5 58.9 53.6 56.2 56.2 

genres 
+ 

location 
context 

Naïve Bayes 71.2 82.8 34.8 53.7 54.3 53.9 61.7 44.0 52.1 49.7 

Random forest 75.9 87.6 39.1 58.5 64.2 61.8 65.4 57.1 61.1 61.0 

MLP 74.3 83.4 45.7 61.7 65.4 56.0 58.9 52.4 55.5 57.4 

SVM 74.3 81.4 52.2 65.2 66.8 63.4 63.6 63.1 63.3 63.3 

genres 
+ 
all 

contexts 

Naïve Bayes 70.2 81.4 34.8 53.2 56.3 54.5 62.6 44.0 52.5 52.6 

Random forest 79.6 90.3 45.7 64.2 74.4 63.9 64.5 63.1 63.8 65.0 

MLP 76.4 85.5 47.8 64.0 65.3 60.2 64.5 54.8 59.4 59.9 

SVM 77.5 82.8 60.9 71.0 71.8 59.2 61.7 56.0 58.7 58.8 

6 Conclusions and Future Work 

On realistic context-enriched user preference data in the movie and music domains, 
we have analyzed the influence of several (isolated and combined) contextual signals 
–namely time, location and social companion–, and have empirically shown that a 
proposed contextual modeling approach lets improve the performance of a number of 
model-based recommender systems. 

In the future we should increase the size of the dataset by collecting additional user 
evaluations. With a larger dataset we could build heuristic-based collaborative 
filtering strategies, and integrate them with pre- and post-filtering contextualization 
approaches. As stated by Adomavicius et al. [4], one of the main current challenges 
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on context-aware recommendation is the investigation and comprehension of which 
contextualization approaches perform better, and under which circumstances. 
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Abstract. With the recent increasing popularity of social networking
services like Facebook and Twitter, community structure has become a
problem of considerable interest. Although there are more than a hun-
dred algorithms that find communities in networks, only a few are able
to detect overlapping communities, and an even smaller number of them
follow an approach based on the evolution dynamics of these networks.
Thus, we present FRINGE, an algorithm for the detection of overlap-
ping communities in networks, which, based on the ideas of friendship
and leadership, not only returns the overlapping communities detected,
but also specifies their leading members. We describe the algorithm in
detail and compare its results with those obtained by CFinder and iLCD
for both synthetic and real-life networks. These results show that our
proposal behaves well in networks with a clear social hierarchy, as seen
in modern social networks.

Keywords: community detection, graph algorithms, overlapping com-
munities, social influence, social networks.

1 Introduction

Various types of complex networks like biological, social, and technological can
be effectively modeled as graphs by considering each entity as a vertex and
each relationship as an edge. It has been shown that many real-world networks
have a community structure that is characterized by groups of densely connected
vertices [4]. Although there is not a universally accepted definition, a community
is understood as a subgraph whose vertices are more tightly connected to each
other than to vertices belonging to other communities [3].

Despite the fact that there is a large amount of algorithms that detect com-
munities appropriately, most of them do not take into account the specific char-
acteristics that social networks present, such as (i) the small-world property,
(ii) power-law degree distributions, and (iii) network transitivity. The first shows
that the average distance among vertices in a network is short, usually scaling
logarithmically with the total number of vertices; the second states that there
are typically many vertices in a network with low degree and a small number
of them with high degree; finally, the third expresses that two vertices that are
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neighbors of the same third vertex are likely to be neighbors. We think that it is
necessary to include part of the complexity of these underlying phenomena for
the proper detection of groups with similar interests and their leading members
in social networks.

Following this idea, we designed and implemented FRINGE (acronym for
FRIendship Networks with General Elements), an algorithm for the discovery
of overlapping communities, which is based on the intuitive idea of friendship
among members of a community in which some of them act as leaders of the
group. A modified version of FRINGE was used for measuring the correlation
between the popularity of the set of photos uploaded by a user in Flickr and his
or her influence [12]. In this paper, we explain FRINGE and compare it with
two other algorithms: (i) CFinder and (ii) iLCD. The former is frequently used
for testing community detection algorithms [1], whereas the latter is a recent
algorithm that follows a social approach different from ours [2]. We test these
algorithms with both synthetic and real-life networks. This paper is an updated
and extended version of [11].

The paper is organized as follows. In Sect. 2, we review the existing research
work related to the detection of overlapping communities in graphs, and, in
particular, those applied to social networks. Section 3 defines the concepts and
terminology on which the algorithm is based. Section 4 explains in detail the
mode of operation of the algorithm. Section 5 gathers the results obtained by
FRINGE with both synthetic and real-life networks in comparison to CFinder
and iLCD. Finally, Sect. 6 summarizes and draws the most important conclusions
of our proposal.

2 Related Work

Detecting communities in complex networks is one of the most interesting and
still open problems in the field of network theory. Its application continues to be
very useful in disciplines in which systems are represented as graphs. The amount
of algorithms developed for community detection has grown since 2002, when
Girvan and Newman (GN) proposed their divisive hierarchical algorithm [4].
Nevertheless, most of these algorithms are focused on detecting nonoverlapping
communities, so they are not suitable for the detection of communities in social
networks (for a comprehensive review article, see [3]).

An adapted version of the GN algorithm for discovering overlapping commu-
nities, named CONGA, was proposed by Gregory [5]. It is similar to the GN algo-
rithm, except for the addition of a vertex splitting step that supports overlapping
communities. Since the performance of the algorithm was not good, the same
author proposed an improved version of his algorithm, called CONGO, based on
a local form of betweenness that yields good results and is much faster [6].

CPM is another interesting and well-known algorithm, proposed by Palla et
al. [13], for the detection of overlapping communities. CFinder [1] is a fast algo-
rithm based on CPM that locates and visualizes overlapping, densely intercon-
nected groups of vertices in undirected graphs, and allows the user to navigate
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through the graph and the set of communities detected. This algorithm is used
in Sect. 5 for comparing our results to its output.

Regarding algorithms focused on detecting communities in social networks,
we found the following works, which do not embrace the universal approach
based on the optimization of the modularity quality function [4]. The impor-
tance of the modularity quality function seems to have recently vanished because
of two shortcomings: (i) its resolution limit and (ii) the structural diversity of
high-modularity partitions [3]. In short, the former refers to the impossibility
of detecting clusters that are comparatively small with respect to the graph as
a whole; the latter states that the optimal partition may not coincide with the
most intuitive partition. This has led researchers to search for other approaches
to the detection of communities, trying to incorporate in their algorithms how
these communities are formed and evolve.

Finally, Cazabet et al. [2] proposed a new algorithm for community detection,
called iLCD, using a new approach based on two notions: (i) intrinsic nature of
communities and (ii) longitudinal detection. The former states that the detection
of a community should not be limited to a certain size, i.e., the algorithm can find
big and small communities in the same network; the latter aims to gather the
dynamics of the network, i.e., the moment when a vertex or an edge is created.
Cazabet et al. showed that the results obtained by iLCD are equal to or better
than those obtained by CFinder in most cases. This algorithm is used in Sect. 5
for comparing our results with its output.

3 Definitions

3.1 Basic Terminology

Following the same notation as Fortunato [3], a graph G = (V,E) is a pair of
sets, where V is a set of vertices or nodes and E is a set of unordered pairs of
elements of V , called edges or links ; this type of graph is said to be undirected,
but if E was a set of ordered pairs of vertices, the graph would be considered to
be directed. Sometimes, it may be necessary to assign real numbers, i.e., weights,
to each element of E; this type of graph is said to be weighted. Such weights
might represent, for example, lengths or capacities. All the graphs in this paper
are considered to be undirected, unweighted, and containing no self-loops.

A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. We
denote the number of vertices and edges of a graph with n and m, respectively.
The density of a graph G is defined as

ρG =
2m

n (n− 1)
. (1)

Since the maximum number of edges is n (n− 1) /2, the maximal density of
a graph is 1, whereas the minimal density is 0. Two vertices are neighbors if
they are connected by an edge. The set of neighbors Γv of a vertex v is called
neighborhood. The degree kv of a vertex v is the number of its neighbors.
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3.2 Extended Degree and General Elements

The extended degree of a vertex in a graph is a centrality measure—proposed
by the authors of this paper—that aims to estimate the impact of a member
in a social network by taking into consideration not only its direct neighbors,
but also the neighbors of these. Generally, in social networks, people with more
connections, i.e., with greater degree, are influential, but if the connections with
other neighbors were taken into account, the prominence of these neighbors
might be better modeled.

Thus, the extended degree k+v of a vertex v is the number of edges attached to
it plus the number of edges attached to each of its neighbors. In mathematical
terms, it is defined as

k+v = kv +
∑
w∈Γv

kw . (2)

The leading member of a community is the vertex that has the greatest ex-
tended degree among the vertices belonging to that community; it is precisely
the most important member in a community. A first-order friend in a commu-
nity is a vertex that connects directly to the leading member of that community,
whereas an nth-order friend is a vertex whose minimum distance to the lead-
ing member equals n ≥ 2, running only through the vertices belonging to that
leading member’s community.

3.3 Community

There is no universally accepted definition of community beyond the notion
that there must be more internal than external edges in the community [3].
As a matter of fact, it strongly depends on the context of the phenomenon
under study. Most algorithms developed for the identification of communities in
graphs have their own definition, which makes it even more difficult to establish a
formal definition of community. As a consequence, some researchers focused their
work on establishing common features that held the members of a community
together. We pay attention to the works of Wasserman and Faust [14], and
Moody and White [10], and redefine the definition of community with their
criteria.

Our notion of community is based on the intuitive idea of friendship among
members of current social networking services like Facebook and Twitter, and
the concept of leadership of some members, as seen in some classical networks
in the scientific literature, e.g., Zachary karate club [15]. Thus, a community A
detected by this version of the algorithm must be at least composed of a leading
member, all vertices connecting directly to it, i.e. its first-order friends, and any
nth-order friend v, ∀n ≥ 2, that satisfies the following condition∣∣∣∣∣

⋃
C∈C

ΓC
v

∣∣∣∣∣−max
C∈C

{∣∣ΓC
v

∣∣} ≥ max
C∈C

{∣∣ΓC
v

∣∣}− ∣∣ΓA
v

∣∣ , (3)

where
∣∣⋃

C∈C Γ
C
v

∣∣ is the number of neighbors of the vertex v already classified in
any community (from first- to (n− 1)th-order friends), C is the set of identified
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communities, maxC∈C
{∣∣ΓC

v

∣∣} is the maximum value of the number of neighbors

of the vertex v in each community of C, and
∣∣ΓA

v

∣∣ is the number of neighbors of
the vertex v belonging to A, which is the community under study.

Two interesting criteria for subgraph cohesion by Wasserman and Faust are
complete mutuality and reachability. Complete mutuality states that commu-
nities are defined as subgraphs whose vertices are all adjacent to each other—
cliques in graph terms. However, this is a very strict definition of community.
The other criterium, reachability, makes it possible to lessen the notion of clique
and introduces a similar structure: k-cliques. A k-clique is a maximal subgraph
such that the distance of each pair of its vertices is not larger than k. Let n be
the largest minimum distance from an nth-order friend to the leading member,
then our communities are always 2n-cliques.

In [10], one useful feature of community arises. It states that the elimination
of a member cannot dissolve the community. This restriction is true for our
definition of community, except for the removal of leading members, which are
the glue that binds communities together. Thus, we permit the removal of any
member of a community, except for its leading member, which ensures that
the definition of reachability above is satisfied. According to Fortunato [3], “a
required property of a community is connectedness. We expect that, for C to be
a community, there must be a path between each pair of its vertices, running
only through vertices of C,” which is true for our definition of community.

Thus, we define a community as a subgraph that meets the constraints of
reachability, connectedness and nondissolution of the community when remov-
ing a vertex—except for its leading member—and highlight the importance of
leading members and their neighbors in our intuitive approach based on leader-
ship.

4 FRINGE

The FRINGE algorithm runs in four steps. The first step consists in detect-
ing the initial set of communities, the second classifies first-order friends, the
third classifies nth-order friends according to (3), and the fourth checks if any
community is a subset of any of the rest and, if so, merges them. For a deeper
understanding of the algorithm, a description of each step is provided.

The first question that must be clarified by the algorithm is, given a graph,
how many communities are required to classify all its vertices? Since this infor-
mation is not known in advance, this first phase of the algorithm is to identify
the initial set of communities in which to classify vertices of the graph. Before
any other operation is performed by the algorithm, all vertices must be arranged
into a list L from largest to smallest extended degree. Since we want to detect
at least two communities, the first two vertices in L are automatically selected
to be the leading members of two different communities to form the initial set
of communities C; note that if these two vertices actually belonged to the same
community, the last phase of the algorithm would eventually classify them into a
sole community. Intuition says that if subsequent vertices in L want to be consid-
ered as leading members of new communities, the difference in extended degree
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between the last vertex selected and the candidate to be the leading member
of a new community should be less than or equal to the difference in extended
degree between the last two vertices selected. In mathematical terms, it is

k+�i−2
− k+�i−1

≥ k+�i−1
− k+�i , (4)

where �i is the current candidate to be the leading member of a new community,
and �i−1 and �i−2 are the last two vertices selected as leading members. How-
ever, this is a very strict condition, hence we shall try to apply a more optimistic
approach to the aforementioned condition. Thus, the authors of this paper in-
troduce the concept of restriction factor of a graph as the factor to be applied
to the left-hand side of (4) in order to make it easier to meet the condition. In
mathematical terms, the restriction factor of a graph G is defined as

RG = 2− ρG , (5)

where ρG is the density of G. For dense graphs (e.g., cliques), in which the
extended degree of all vertices is very similar, i.e., it is not crucial to lessen the
strictness of (4), the restriction factor is close to 1—since the density of dense
graphs is very close to 1—and barely has effect. On the other hand, for sparse
graphs (e.g., most social networks), in which the extended degree of all vertices
is quite different, the restriction factor is closer to 2 than to 1—since the density
of sparse graphs is close to 0—and makes it easier to meet the condition. Thus,
the right condition to be met for every vertex to be considered as the leading
member of a new community is defined as⌊(

k+�i−2
− k+�i−1

)
RG

⌋
+ 1 ≥ k+�i−1

− k+�i . (6)

After calculating the initial set of communities C, the algorithm is able to
classify first-order friends. For each vertex v of the graph (except for vertices
already considered to be leading members), the algorithm classifies v into the
communities in C in which v connects directly to the leading members.

For each vertex v that remains unclassified, the algorithm classifies v into the
communities in C in which v satisfies (3). This is an iterative process that does
not stop while there is a vertex that remains unclassified and the number of
unclassified vertices after the ith iteration is smaller than the number after the
(i− 1)th iteration, which does not ensure that all vertices are classified into, at
least, one community at the end of this step.

The last phase performed by the algorithm consists in finding all possible
subsets among the communities in C. For each community A, the algorithm
checks if all its members belong to another larger community B, i.e., if A is a
subgraph of B, and, if so, merges them.

The computational complexity of the algorithm is O
(
u2 〈k〉

)
, which highly

depends on two factors: (i) the average degree 〈k〉 of the graph and (ii) the num-
ber of vertices that remain unclassified after the second phase of the algorithm,
whose impact on the computational complexity is much deeper than the former’s
because 〈k〉 � n for sparse graphs, e.g., social networks.
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5 Experimental Results

When a new method for the detection of communities is proposed, it is paramount
to test its performance and compare it to other algorithms. In this section, we
study the effectiveness of our proposal with both synthetic and real-life networks,
for which the communities to be detected are known in advance, comparing
FRINGE results to those obtained by CFinder and iLCD.

5.1 Synthetic Networks

Currently, one of the most acclaimed works published on the issue of comparing
community detection algorithms is the paper written by Lancichinetti and For-
tunato [7], in which they introduced an extension to the original version of their
LFR benchmark [8] for directed and weighted graphs with overlapping commu-
nities. Given a graph generated by the LFR benchmark, every vertex shares a
fraction 1 − μ of its edges with the other vertices of its community and a frac-
tion μ with the vertices of the other communities, being μ the so-called mixing
parameter. If μ ≤ 0.5, then the number of neighbors of every vertex inside its
community is higher than or equal to the number of its neighbors belonging to
other communities. The smaller μ is, the clearer the leadership hierarchy of the
graph is. Therefore, FRINGE should recover most of the community structure
of the graph for small values of μ.

The networks for this case study were generated using the LFR benchmark.
These consist of 512 vertices, i.e., medium-sized networks, where every vertex
has an average degree of 16 and a maximum degree of 64. In order to compare
FRINGE to CFinder and iLCD, two different scenarios were established: (i) one
in which the mixing parameter varies and (ii) another in which the density of
the graph is varied. In the first case, 60 different networks were generated for
values of μ ranging from 0 to 0.5, i.e., 10 different networks for each value of
μ, adding 0.1 to μ in each step. In the second case, 40 different networks were
generated for values of density ranging from 0.1 to 0.4, i.e., 10 different networks
for each value of density, adding 0.1 to density in each step.

Normalized mutual information was the measure chosen to indicate the simi-
larity between real partitions and those detected by the algorithms under study.
In [7], an extension to normalized mutual information for overlapping communi-
ties was presented, which is used in this case study. Once the normalized mutual
information value of every network generated is calculated, the best value of
all the networks with either the same mixing parameter or the same density—
depending on the parameter to be represented—is chosen.

Figure 1 depicts normalized mutual information values when the mixing pa-
rameter μ increases from 0 to 0.5. The figure indicates that FRINGE is able to
recover almost 80% of the community structure for very low values of μ, i.e.,
for networks with a very clear leadership hierarchy. Furthermore, it shows that
FRINGE results are slightly better than those obtained by CFinder and iLCD
in most cases. As can also be seen in Fig. 1, the higher the density is, the better
defined communities are. In this case, FRINGE provides better results than both
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Fig. 1. Comparison of FRINGE, CFinder, and iLCD with synthetic networks

CFinder and iLCD in all cases. Note that the mixing parameter value chosen to
measure the normalized mutual information when the density of the network is
varied is a very low value, i.e., close to 0. This value is chosen because communi-
ties detected in social networks usually are formed by a relatively small number
of members with a dense network of connections between them.

5.2 Real-Life Networks

As in other scientific disciplines, there are some experimental results that are
considered to be reliable for measuring the effectiveness of the methods developed
in the field of community detection. We now show the application of FRINGE
on three real-life networks: (i) Zachary karate club, (ii) Bottlenose dolphins, and
(iii) American college football.

Zachary karate club [15] is classically used as a standard benchmark in com-
munity detection. This network shows 78 social ties between 34 members of a
karate club at an American university in the 1970s. Accidentally, the adminis-
trator and the instructor had an unpleasant argument, and as a consequence,
the club eventually split into two smaller groups, centered on the administrator
and the instructor, respectively. For this network, four overlapping communities
were detected by FRINGE, with vertices 1, 34, 3, and 33 as leading members.

Bottlenose dolphins [9] describes the 159 associations between 62 dolphins
living in Doubtful Sound (New Zealand) compiled by Lusseau et al. after seven
years of research. This network can be split naturally into two groups. For this
network, two overlapping communities are detected by FRINGE, with dolphins
called Grin and SN4 as leading members.

The number of communities detected by FRINGE for the two networks above
matches those reported by Lancichinetti and Fortunato in [7], whose algorithm
optimizes the modularity quality function, though their communities do not
include exactly the same members detected by FRINGE.

Finally, American college football [4] is also used as a standard benchmark for
community detection. This network represents the Division I games during the
2000 season, where nodes denote football teams and edges show season games.
The teams can be split into 12 conferences. The network consists of 115 vertices
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and 616 edges. For this network, eight overlapping communities are detected
by FRINGE. To the best of our knowledge, this network has not been used for
testing overlapping community detection algorithms.
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Fig. 2. Comparison of FRINGE, CFinder, and iLCD with real-life networks

To conclude, Figure 2 shows the good performance of FRINGE with Zachary
karate club, which has a clear leadership hierarchy, as well as the bad perfor-
mance with American college football, which is a perfect example of a network
with vertices with similar influence, i.e., vertices with similar extended degrees,
where clique-based algorithms like CFinder gather very good results. Further-
more, the bad results showed by iLCD seem to confirm that the algorithm does
not work properly with small and medium-sized networks.

6 Conclusions

The aim of this paper was to provide a new algorithm, called FRINGE, for
the detection of overlapping communities and the identification of their leading
members in social networks. Unlike most techniques based on the optimization
of the modularity quality function, FRINGE is based on the intuitive idea of
friendship among members of current social networking services and the concept
of leadership of some of these members.

To evaluate our proposal, we compared FRINGE to CFinder, a well-known
algorithm widely used in the literature, and iLCD, a recent algorithm that follows
a social approach different from ours. The experimentation performed showed
that FRINGE adequately works on networks with a clear leadership hierarchy,
obtaining better results than those gathered by CFinder and iLCD in most cases.

Currently, FRINGE works with undirected and unweighted graphs, but fu-
ture research shall aim to update the algorithm in order for the detection of
overlapping communities in all types of graphs. Since FRINGE is focused on
social networks, we wish to extend it to be able to identify leadership hierarchies
according to the actions that leaders perform in these social networks and the
moment when these actions are carried out.
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13. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the Overlapping Com-
munity Structure of Complex Networks in Nature and Society. Nature 435(7043),
814–818 (2005)

14. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Structural Analysis in the Social Sciences. Cambridge University Press (1994)

15. Zachary, W.: An Information Flow Model for Conflict and Fission in Small Groups.
Journal of Anthropological Research 33(4), 452–473 (1977)



Permutability of Fuzzy Consequence Operators
and Fuzzy Interior Operators

Neus Carmona1, Jorge Elorza1, Jordi Recasens2, and Jean Bragard1

1 Departamento de Fı́sica y Matemática Aplicada,
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Abstract. In this paper we study the permutability of the composition of fuzzy
consequence operators (fuzzy closings) and fuzzy interior operators (fuzzy open-
ings). We establish several characterizations and we show the relation of per-
mutability with the fuzzy closure and fuzzy interior of a fuzzy operator. We also
study the connection between permutability and the preservation of the opera-
tor type through the composition. More precisely, when the composition of two
openings is an opening and the composition of two closings is a closing.

Keywords: Permutability, Fuzzy closing, Fuzzy Consequence Operator, Fuzzy
Opening, Fuzzy Interior Operator.

1 Introduction

Composition of fuzzy operators often appears in fields like fuzzy mathematical mor-
phology or approximate reasoning. These two fields are closely related and several re-
sults can be transfered from one field to the other [6].

In fuzzy mathematical morphology, fuzzy closings and openings act as morpholog-
ical filters used for image processing [3,4]. These operators and their generalization to
algebraic fuzzy closings and openings (which do not necessary need a structuring el-
ement) have been extensively studied in several contexts [2,7,10]. It seems natural to
ask about the permutation of the usual composition of these operators, that is when the
order of application does not change the result.

In approximate reasoning, fuzzy closings are called fuzzy consequence operators
and they play the role of deriving consequences from certain premises and relations
[5,8]. Fuzzy interior operators (fuzzy openings) appear as a dual notion of fuzzy con-
sequence operators in the lattice of truth values [1]. Therefore, it is also natural in this
context to wonder when these operators permute. Permutability of fuzzy indistinguibil-
ity relations, which are closely related to fuzzy interior and consequence operators, has
already been studied [9]. The aim of this paper is the study of the permutability of fuzzy
consequence operators (fuzzy closings) and fuzzy interior operators (fuzzy openings).
We will work in the chain [0,1], but all the results still hold if [0,1] is replaced by any
complete lattice L.
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In Section 2 we recall the main definitions and results that will be used throughout
the paper. In Section 3 we study the permutability of fuzzy consequence operators. In
Section 4 we study the dual case of the permutability of fuzzy interior operators. Finally,
in Section 5 we present the conclusions.

2 Preliminaries

In this paper, X will denote a non-empty classical universal set, [0,1]X will be the set
of all fuzzy subsets of X and Ω ′ the set of fuzzy operators defined from [0,1]X to [0,1]X .

Definition 1. [8] A fuzzy operator C ∈ Ω ′ is called a fuzzy consequence operator
(FCO for short) or fuzzy closing when it satisfies for all μ ,ν ∈ [0,1]X :

1. Inclusion μ ⊆C(μ)
2. Monotonicity μ ⊆ ν ⇒C(μ)⊆C(ν)
3. Idempotence C(C(μ)) =C(μ)

Ω will denote the set of all fuzzy consequence operators of [0,1]X .

The inclusion of fuzzy subsets is given by the pointwise order, i.e. μ ⊆ ν if and only
if μ(x)≤ ν(x) for all x ∈ X .

Given two fuzzy operators C1, C2 we say that C1 ≤ C2 if C1(μ) ⊆C2(μ) for all
μ ∈ [0,1]X .

Definition 2. [1] A fuzzy operator C ∈ Ω ′ is called a fuzzy interior operator (FIO for
short) or fuzzy opening when it satisfies for all μ ,ν ∈ [0,1]X :

1. Antiinclusion C(μ)⊆ μ
2. Monotonicity μ ⊆ ν ⇒C(μ)⊆C(ν)
3. Idempotence C(C(μ)) =C(μ)

Λ will denote the set of all fuzzy interior operators of [0,1]X.

In the mathematical morphology context, properties 1 from Definitions 1 and 2 are
usually called extensive and anti-extensive properties respectively.

For any fuzzy operator C, one can define the smallest FCO which is greater than or
equal to C and the greatest FIO which is smaller than or equal to C.

Definition 3. Let C : [0,1]X −→ [0,1]X be a fuzzy operator. We define the fuzzy closure
C of C as the fuzzy operator given by

C = inf
φ∈Ω
C≤φ

{φ} . (1)

Note that the fuzzy closure is actually a fuzzy consequence operator. This property de-
rives from the fact that the infimum of FCO is also a fuzzy consequence operator.
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Definition 4. Let C : [0,1]X −→ [0,1]X be a fuzzy operator. We define the fuzzy interior
◦
C of C as the fuzzy operator given by

◦
C = sup

φ∈Λ
C≥φ

{φ} . (2)

Note that the fuzzy interior of a fuzzy operator is actually a fuzzy interior operator,
since the supremum of FIO is also a fuzzy interior operator.

Using the usual composition, one can define the power of a fuzzy operator.

Definition 5. Let C : [0,1]X −→ [0,1]X be a fuzzy operator. We define Ck for k ∈ N as
the fuzzy operator defined recursively as:

C1 =C i.e. C1(μ)(x) =C(μ)(x) ∀μ ∈ [0,1]X and ∀ x ∈ X.
Ck =C(Ck−1) i.e. Ck(μ)(x) =C(Ck−1(μ))(x) ∀μ ∈ [0,1]X , ∀ x ∈ X and k ≥ 2.

That is, Ck is the usual composition of the operator C with itself k times.

To study the permutability of fuzzy consequence operators and fuzzy interior opera-
tors, we need some previous results about the properties of Ck. The following lemmas
are easy to prove.

Lemma 1. Let C : [0,1]X −→ [0,1]X be a fuzzy operator. If C is inclusive, then Ck is
inclusive for all k ∈N.

Lemma 2. Let C : [0,1]X −→ [0,1]X be a fuzzy operator. If C is antiinclusive, then Ck

is antiinclusive for all k ∈ N.

Lemma 3. Let C : [0,1]X −→ [0,1]X be a fuzzy operator. If C is monotone, then Ck is
monotone for all k ∈ N.

3 Permutability of Fuzzy Consequence Operators

Consider the sequence of fuzzy operators given by
{

Ck
}

k∈N. It directly follows that if
C is inclusive, the sequence is increasing.

Proposition 1. Let C : [0,1]X −→ [0,1]X be a fuzzy operator. If C is inclusive, then the
sequence

{
Ck
}

k∈N is increasing and convergent. That is , Ck ≤Ck+1 for all k ∈ N and
there exists a fuzzy operator U ∈Ω ′ such that U = limn∈NCn.

Proof. Since 1 is an upper bound for Ck(μ)(x) for all μ ∈ [0,1]X , all x ∈ X and all
k ∈ N, the sequences

{
Ck(μ)(x)

}
k∈N are increasing and bounded, thus they converge.

Hence, the limit operator exists and it is defined by

U(μ)(x) = lim
n→∞

Cn(μ)(x) . (3)

��
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Remark 1. Note that in this case, U = lim
n→∞

Cn = sup
n∈N

Cn.

Theorem 1. Let C : [0,1]X −→ [0,1]X be an inclusive and monotone fuzzy operator.
Then, lim

n→∞
Cn =C.

Proof. To show that limn→∞ Cn ≤C we shall prove that Ck ≤C for all k∈N by induction
on k.

– For k = 1 it is clear that C ≤C.
– Assume that Ck ≤C for a certain k. Then, Ck(μ) ⊆C(μ) for all μ ∈ [0,1]X . Since

C ≤C and C is monotone and idempotent, it follows that

C(Ck(μ))⊆C(Ck(μ))⊆C(C(μ)) =C(μ) .

Since Cn ≤C for all n ∈N, it follows that limn∈NCn ≤C.
To prove that limn→∞ Cn ≥C let us show that limn→∞ Cn is a closure operator. Since

C is inclusive and monotone, Lemmas 1 and 3 ensure the inclusion and monotonicity
of limn→∞ Cn. For the idempontence, it is straightforward that

lim
n→∞

Cn( lim
n→∞

Cn(μ))(x) = lim
n→∞

Cn(μ)(x) .

Therefore, lim
n→∞

Cn = sup
n∈N

Cn =C. ��

Let us recall the definition of permutability of fuzzy operators:

Definition 6. Let C,C′ be fuzzy operators. We say that C and C′ are permutable (or
that C and C′ permute) if C ◦C′ =C′ ◦C.

To characterize when two fuzzy consequence operators permute we need the follow-
ing lemmas.

Lemma 4. Let C,C′ : [0,1]X −→ [0,1]X be fuzzy consequence operators. Then,

C ◦C′ ≥max(C,C′) .

Proof. It directly follows from the inclusion and monotonicity properties. Since C is
inclusive C′(μ) ⊆ C(C′(μ)) for all μ ∈ [0,1]X and C ◦C′ ≥ C′. Since C′ is inclusive
μ ⊆ C′(μ) and adding the monotonicity of C we get that C(μ) ⊆ C(C′(μ)) for all
μ ∈ [0,1]X and C ◦C′ ≥C. Therefore, C ◦C′ ≥max(C,C′). ��

Lemma 5. Let C,C′ : [0,1]X −→ [0,1]X be two fuzzy consequence operators. Then,
max(C,C′) is an inclusive and monotone fuzzy operator.

Proof. The proof is straightforward. As C and C′ are inclusive, max(C,C′) is also in-
clusive. For the monotonicity, note that μ1 ⊆ μ2 implies C(μ1)(x) ≤ C(μ2)(x) and
C′(μ1)(x) ≤ C′(μ2)(x) for all μ ∈ [0,1]X and x ∈ X . Hence, max(C,C′)(μ1)(x)) ≤
max(C,C′)(μ2)(x)) for all μ ∈ [0,1]X and x ∈ X . ��
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At this point, we are ready to prove that there is only one case where the composition
of two fuzzy consequence operators is also a fuzzy consequence operator.

Proposition 2. Let C,C′ be fuzzy consequence operators. Then, C◦C′ is a fuzzy conse-
quence operator if and only if C ◦C′ = max(C,C′).

Proof. It is sufficient to prove that if C◦C′ is a FCO then C◦C′ =max(C,C′). The other
implication follows from the the fact that the closure of an operator is a FCO.

Assume that C ◦C′ is a FCO. From Lemma 4, C ◦C′ ≥ max(C,C′). Therefore, C ◦
C′ ≥max(C,C′).
In addition, we have

C ◦C′ ≤max(C,C′)◦max(C,C′) = max2(C,C′)≤max(C,C′)

where the last inequality holds due to Theorem 1 and Lemma 5. Hence, C ◦C′ =
max(C,C′). ��

For two fuzzy consequence operators to permute it is necessary and sufficient that their
composition gives a FCO in both directions.

Theorem 2. Let C,C′ be fuzzy consequence operators. Then, C and C′ permute if and
only if C ◦C′ and C′ ◦C are fuzzy consequence operators.

Proof. First, let us show that if C and C′ permute, then C ◦C′ and C′ ◦C are FCO.

– Inclusion: From Lemmas 4 and 5, C ◦C′ ≥max(C,C′) which is inclusive.
– Monotonicity: Suppose μ1⊆ μ2. From the monotonicity ofC′ it follows that C′(μ1)⊆

C′(μ2) and from the monotonicity of C, C(C′(μ1))⊆C(C′(μ2)).
– Idempotence:

(C ◦C′)((C ◦C′)(μ))(x) = (C ◦C′)((C′ ◦C)(μ))(x) =C(C′(C′(C(μ))))(x)
=C(C′(C(μ)))(x) =C(C(C′(μ)))(x) =C(C′(μ))(x) = (C ◦C′)(μ)(x) .

The same arguments hold for C′ ◦C.
The other implication directly follows from Proposition 2. ��

Remark 2. Note that there are cases of fuzzy consequence operators C and C′ such that
C′ ◦C is a FCO (and therefore C′ ◦C = max(C,C′)) but C and C′ do not permute.

Example 1. Let X be a non empty classical set and let α,β ∈R such that 0< β <α < 1.
Let C′ and C be FCO defined as follows:

C′(μ)(x) =

⎧⎨
⎩

1 i f μ(x)> β

β i f μ(x)≤ β
C(μ)(x) =

⎧⎨
⎩

1 i f μ(x)> α

α i f μ(x)≤ α .
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Note that C′ ◦C = max(C,C′) = X where X(x) = 1 for all x ∈ X , but C′ ◦C 	= C ◦C′.
Indeed, one has

(C ◦C′)(μ)(x)

⎧⎨
⎩

1 i f μ(x)> β

α i f μ(x)≤ β

which is not a FCO.

4 Permutability of Fuzzy Interior Operators

One can prove analogous results for the fuzzy interior operators. From Lemma 2 the
following proposition is easy to show.

Proposition 3. Let C : [0,1]X −→ [0,1]X be a fuzzy operator. If C is antiinclusive, then
the sequence

{
Ck
}

k∈N is decreasing and convergent. That is , Ck+1 ≤Ck for all k ∈ N

and there exists a fuzzy operator L ∈Ω ′ such that L = limn∈NCn.

Proof. Since 0 is a lower bound for Ck(μ)(x) for all μ ∈ [0,1]X , all x∈ X and all k ∈N,
the sequences

{
Ck(μ)(x)

}
k∈N are decreasing and bounded, thus they converge. Hence,

the limit operator exists and it is defined by

L(μ)(x) = lim
n→∞

Cn(μ)(x) . (4)

��

Remark 3. Note that in this case, L = lim
n→∞

Cn = inf
n∈N

Cn.

Theorem 3. Let C : [0,1]X −→ [0,1]X be an antiinclusive and monotone fuzzy operator.

Then, lim
n→∞

Cn =
◦
C.

Proof. The proof is dual to Theorem 1, therefore we will only give a sketch of the

demonstration. By induction on k, it can be proved that Ck ≥
◦
C for all k ∈ N. Thus,

limn→∞ Cn ≥
◦
C.

To prove the other inequality we need to show that limn→∞ Cn is an interior operator.
Lemmas 2 and 3 ensure the antiinclusion and monotonicity properties. The idempotence
is obtained using the definition of limit as done in Theorem 1.

Hence, lim
n→∞

Cn = inf
n∈N

Cn =
◦
C. ��

The following lemmas are analogous to the ones of section 3. They are necessary to
characterize when two fuzzy interior operators permute.

Lemma 6. Let C,C′ : [0,1]X −→ [0,1]X be fuzzy interior operators. Then,

C ◦C′ ≤min(C,C′) .

Lemma 7. Let C,C′ : [0,1]X −→ [0,1]X be fuzzy interior operators. Then, min(C,C′)
is an antiinclusive and monotone fuzzy operator.
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For fuzzy interior operators we obtain the dual result of Proposition 2. The compo-
sition of fuzzy interior operators is a FIO only in the following case:

Proposition 4. Let C,C′ be fuzzy interior operators. Then, C ◦C′ is a fuzzy interior

operator if and only if C ◦C′ =
◦

min(C,C′).

Proof. The proof is analogous to Proposition 2. It is sufficient to prove that if C ◦C′ is

a FIO then C ◦C′ =
◦

min(C,C′) . The other implication follows from the fact that the
fuzzy interior of an operator is a FIO.

Suppose that C◦C′ is a fuzzy interior operator. From Lemma 6, we know that C◦C′ ≤
min(C,C′). Therefore, C ◦C′ ≤

◦
min(C,C′) .

In addition, one has,

C ◦C′ ≥ min(C,C′)◦min(C,C′) = min2(C,C′) ≥
◦

min(C,C′)

where the last inequality holds due to Theorem 3 and Lemma 7. Hence, C ◦C′ =
◦

min(C,C′). ��
Now we are ready to characterize when two fuzzy interior operators permute. The result
is dual to the one obtained for FCO in section 3.

Theorem 4. Let C,C′ be fuzzy interior operators. Then, C and C′ permute if and only
if C ◦C′ and C′ ◦C are fuzzy interior operators.

Proof. The proof is analogous to the proof of Theorem 2. First of all, let us show
that if C and C′ permute, then C ◦C′ and C′ ◦C are fuzzy openings. Monotonicity and
idempotence are proved exactly in the same way than in Theorem 2. Inclusion follows
from Lemmas 6 and 7. Since C ◦C′ ≤ min(C,C′) and min(C,C′) is antiinclusive, so is
C ◦C′. The same argument holds for C′ ◦C.

The other implication directly follows from Proposition 4. ��

5 Conclusions

We have shown that given two fuzzy consequence operators (fuzzy closings), they per-
mute if and only if their composition is a FCO in both directions. In this case, their
composition is the closure of their maximum.

We have obtained an analogous result for fuzzy interior operators (fuzzy openings).
Two FIO permute if and only if their composition is a fuzzy interior operator in both
directions. In this case, their composition is the interior of their minimum.

In addition, we have shown that the composition of two fuzzy closings is a fuzzy
closing if and only if it is the closure of their maximum. Moreover, we have proved
the dual result for fuzzy openings. That is, the composition of two fuzzy openings is a
fuzzy opening if and only if it is the interior of their minimum.
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Abstract. In this paper, a novel filter for high-density salt and pep-
per noise removal based on the fuzzy mathematical morphology using
t-norms is proposed. This filter involves two phases, namely, a detection
step of the corrupted pixels and the restoration of the image using a
specialized regularization method using fuzzy open-close and close-open
sequences. The experimental results show that the proposed algorithm
outperforms other nonlinear filtering methods both from the visual point
of view and the values of some objective performance measures for images
corrupted up to 90% of noise.

Keywords: Mathematical morphology, t-norm, residual implication, high
density salt and pepper noise, noise reduction, open-close filter.

1 Introduction

In transmission or recording processes, digital images can be affected by noise.
This can be considered as a problem, as the image processing techniques do not
work properly in a noisy environment. Therefore, a preprocessing step to deal
with this fact is necessary.

For example, in artificial vision, many techniques of interpretation, measure-
ment, segmentation or detection of structures require the removal, reduction or
smoothing of noise in order to improve their performance. However, the noise re-
moval techniques must be applied looking for a compromise between the effective
suppression of the noise while preserving the fine texture and edges. Different
noise types can affect an image. Our contribution deals with the removal of the
salt and pepper impulsive noise in high-density corrupted images.

In general, impulsive noise removal has been a recurring topic in last years.
In addition of the classical median filter, several approaches have been proposed
to remove this noise type. In [1], a decision-based algorithm was presented for
restoration of images that are highly corrupted by impulsive noise, replacing
the noisy pixel value by the median of its neighbour pixel values. Moreover,
another approach was introduced in [2], where an impulsive noise detector using
mathematical residues is proposed. This method tries to identify pixels that are
corrupted by the salt and pepper noise and afterwards, the image is restored

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 70–79, 2013.
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using a sequence of open-close algorithms that it is applied only to the noisy
pixels. Beyond all the previous methods, some recent algorithms based on fuzzy
logic have been proposed (see [3,4]).

Among the fuzzy logic based theories, fuzzy mathematical morphology is the
generalization of the binary morphology [5] using techniques of fuzzy sets (see
[6,7]). This morphology has shown a great potential in image processing. In
particular, fuzzy mathematical morphology plays an important role in many
applications like segmentation and edge detection (see [8,9]) and filtering (see
[10,11]). In particular, a novel filtering method for salt and pepper noise re-
moval was proposed in [12] by extending the method presented in [2] to fuzzy
mathematical morphology. This new method showed a better behaviour of the
performance of the algorithm with respect to an increase of the amount of noise
compared with the algorithm presented in [2]. In addition, it outperformed the
non-fuzzy one for low amounts of noise while its performance was similar for im-
ages corrupted with high amounts of noise. However, its performance decreased
sharply for images corrupted with more than 80% of noise. In this paper, we
propose a modification of the algorithm presented in [12] based on a new detec-
tion function of the noisy pixels and an improved Block Smart Erase with an
adaptive window size. This new version of the algorithm is able to remove the
noise from images corrupted up to 90% of noise preserving the edges and details.

The communication is organized as follows. In Section 2, the definitions and
properties of the fuzzy morphological operators are recalled. In Section 3 the
proposed novel algorithm is explained. Then, in Section 4, the objective perfor-
mance comparison based on PSNR and SSIM among our method and some noise
filtering algorithms is performed. Finally, in the last section, some conclusions
and future work are pointed out.

2 Fuzzy Logic Morphological Operators

Fuzzy morphological operators are defined using fuzzy operators such as fuzzy
conjunctions, like t-norms, and fuzzy implications. More details on these logical
connectives can be found in [13] and [14], respectively.

Definition 1. A t-norm is a commutative, associative, non-decreasing function
T : [0, 1]2 → [0, 1] with neutral element 1, i.e., T (1, x) = x for all x ∈ [0, 1].

Next we recall the definition of fuzzy implications.

Definition 2. A binary operator I : [0, 1]2 → [0, 1] is a fuzzy implication if it
is non-increasing in the first variable, non-decreasing in the second one and it
satisfies I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

A well-known way to obtain fuzzy implications is the residuation method. Given
a t-norm T the binary operator

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}

is a fuzzy implication called the residual implication or R-implication of T .
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Using the previous operators, we can define the basic fuzzy morphological
operators such as dilation and erosion. We will use the following notation: T
denotes a t-norm, I a fuzzy implication, A a grey-level image, and B a grey-level
structuring element.

Definition 3 ([15]). The fuzzy dilation DT (A,B) and the fuzzy erosion
EI(A,B) of A by B are the grey-level images defined by

DT (A,B)(y) = sup
x

T (B(x− y), A(x))

EI(A,B)(y) = inf
x

I(B(x− y), A(x)).

From the fuzzy erosion and the fuzzy dilation, the fuzzy opening and the
fuzzy closing of a grey-level image A by a structuring element B can be defined
as follows.

Definition 4 ([15]). The fuzzy closing CT,I(A,B) and the fuzzy opening
OT,I(A,B) of A by B are the grey-level images defined by

CT,I(A,B)(y) = EI(DT (A,B),−B)(y),
OT,I(A,B)(y) = DT (EI(A,B),−B)(y).

A more detailed account on these operators, its properties and applications
can be found in [7,8,15]. In particular, when I is the residual implication of T ,
most of the usual properties of a mathematical morphology hold.

3 The Proposed Algorithm

The proposed algorithm is an improved version of the algorithm FMMOCS pre-
sented in [12] which was an extension to the fuzzy mathematical morphology of
the algorithm presented in [2]. The method is divided in two main steps. The
first one is a preliminary identification of corrupted pixels in an effort to avoid
the processing of pixels which are not corrupted by impulse noise. In the second
one the filtering method is applied only to those pixels identified as noise in the
first step.

3.1 A Morphological Salt and Pepper Noise Detector

In [12], the noise detection function was based on the fuzzy mathematical mor-
phological residues of Top-Hat and Dual Top-Hat operators. Although its perfor-
mance was quite good, when the amount of noise was higher than 80% it failed
to detect all the noisy pixels and consequently, the quality of the filtered results
decreased both from the visual point of view and the values of the performance
objective measures. In this paper, we propose to use the detection function pre-
sented in [16] specially introduced for images corrupted up to 90% of noise. This
algorithm is based on the fuzzy morphological alternate filters. In particular, it
follows the following steps for each pixel of the image:
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1. Find out the maximum (Smax) and minimum (Smin) values of a 7×7 window
centred at the current pixel.

2. Compute the following function

d(i, j)=

∣∣∣∣CT,IT (OT,IT (A,B), B)(i, j) +OT,IT (CT,IT (A,B), B)(i, j)

2
−A(i, j)

∣∣∣∣
3. Finally, the detection function is given by

b(i, j) =

{
1 if (A(i, j) = Smax or A(i, j) = Smin) and d(i, j) ≥ t,
0 otherwise,

where t is a predefined threshold and we conclude that A(i, j) is a corrupted
pixel if, and only if, b(i, j) = 1.

3.2 Fuzzy Open-Close Sequence Algorithm

In this second step, in order to remove the noise, two filters, namely the fuzzy
open-close filter (FOCF) and the fuzzy close-open sequence filter (FCOF) are
applied only to the corrupted pixels. FOCF is defined as follows:

FOCFT,IT (A, (B1, B2)) = CT,IT (OT,IT (A,B1), B2)

where B1 and B2 are two structuring elements. The main target of this filter
is to remove the salt noise pixels. In particular, the size of B1 must be small
enough to preserve the details of the image and the size of B2 must be larger
than of B1 in order to eliminate powerfully the pepper noise pixels which have
been not removed by the fuzzy opening.

In the same way, FCOF is defined as follows:

FCOFT,IT (A, (B1, B2)) = OT,IT (CT,IT (A,B1), B2)

whereB1 and B2 are again two structuring elements. Analogously to the previous
filter, this filter is applied to remove the pepper noise pixels.

However, the noises whose size is larger than the size of B1 will not be removed
and in fact, they are propagated in the image. This fact leads to the generation
of some undesired white (or black) blocks in the filtered image. To avoid this
behaviour, the so-called Block Smart Erase (BSE) algorithm, which is based on
the median of the surrounding pixels, is applied. The second modification we
propose is included in this BSE algorithm. In [12], a fixed window size N = 7
was considered. This fact was good enough for images corrupted up to 80% of
noise, however when the amount of noise was higher the BSE algorithm was
not able to remove properly some undesired white and black blocks. The main
reason is because when the amount of noise is higher than 80% some blocks are
larger than 7×7 and consequently, a fixed window size of N = 7 does not remove
them. Consequently, in order to remove them and preserve as much as possible
the fine details of the image, we propose an adaptive window size for the BSE
algorithm, which is specified as follows:
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Table 1. PSNR for various filters for Lenna image at different noise densities

Noise PSNR
DBA SMF5 AMF17 OCS OCSflat FMMOCS* FMMOCSflat* FMMOCS FMMOCSflat

10 30.2896 29.2999 37.1820 31.6873 29.7633 33.5973 32.2427 38.3735 38.3204
20 29.7204 28.2710 34.7001 31.1085 31.0747 31.5054 31.5612 33.7895 33.0919
30 29.0282 26.0472 32.8216 29.6786 31.1533 30.5352 31.1954 32.0707 31.6896
40 28.0453 25.5084 30.7554 28.3672 30.4075 29.9621 30.3865 30.9451 30.5128
50 26.8784 22.4622 29.2463 27.3714 29.3507 29.2843 29.3425 29.7788 29.3753
60 25.1899 18.4381 27.4294 26.5269 28.4292 28.2932 28.4284 28.5054 28.4224
70 23.7784 13.8772 25.7660 25.7700 27.4667 27.1356 27.4667 27.1802 27.4567
80 21.5853 10.1319 23.7004 24.8901 26.0970 25.1708 26.0963 25.3627 26.1346
90 18.7213 7.2976 18.3076 23.7672 21.8158 17.4673 21.8158 21.6633 23.7761

1. Consider an N ×N window centred at the test pixel, starting by N = 5.
2. If A(i, j) ∈ {0, 255} then we have an absolute extreme value and step 3 must

be applied. Otherwise, the pixel is not altered.
3. If an extreme value is detected, assign the median value of the window as its

gray-level value. If the median value is again an extreme value, go to step 1
and consider a larger window size N ′ with N ′ = N + 2.

Finally, the FMMOCS filter can be defined as the arithmetic mean of the two
previous fuzzy open-close and close-open sequence filters after applying the BSE
algorithm, that is,

FMMOCST,IT
(A, (B1, B2)) =

BSE(FOCFT,IT
(A, (B1, B2)))

2
+

BSE(FCOFT,IT
(A, (B1, B2)))

2
.

4 Simulation Results

In this section the performance of the proposed method will be evaluated and
compared with other well-known methods for filtering noisy images which are
corrupted by impulsive noise. In particular, we will compare the FMMOCS filter
with some other nonlinear filtering algorithms such as the Decision-Based algo-
rithm (DBA), a nonlinear filter designed by Srinivasan and Ebenezer in [1]; the
standard 5×5 median filter (SMF5); an adaptive median filter with a maximum
allowed size of the adaptive filter window (Smax) of 17 (AMF17); the open-close
sequence algorithm (OCS) presented in [2] and based on the classical grey-level
mathematical morphology; and the previous version of the FMMOCS filter (FM-
MOCS*) presented in [12]. These algorithms will be tested with two well-known
gray-level images such us “lenna.tif”, which is an image with homogeneous re-
gions and low details, and “baboon.tif” which is an image with high activity. In
the experiments, both images are corrupted by salt and pepper noise, where 255
represents salt and 0 represents the pepper noise with equal probability, with
levels varying from 10% to 90% with increments of 10%.

In addition to a visual comparison of the filtered images obtained by these
algorithms, the restoration performance is quantitatively measured by two widely
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Table 2. SSIM for various filters for Lenna image at different noise densities

Noise SSIM
DBA SMF5 AMF17 OCS OCSflat FMMOCS* FMMOCSflat* FMMOCS FMMOCSflat

10 0.998941 0.9933 0.9989 0.9940 0.9951 0.9975 0.9966 0.9992 0.9992
20 0.997221 0.9915 0.9981 0.9955 0.9965 0.9960 0.9960 0.9976 0.9972
30 0.995024 0.9887 0.9970 0.9956 0.9967 0.9950 0.9957 0.9965 0.9961
40 0.991075 0.9840 0.9952 0.9948 0.9960 0.9942 0.9948 0.9954 0.9949
50 0.985619 0.9680 0.9932 0.9933 0.9949 0.9933 0.9933 0.9940 0.9934
60 0.974659 0.9219 0.9897 0.9918 0.9933 0.9915 0.9917 0.9919 0.9917
70 0.961453 0.7976 0.9851 0.9897 0.9914 0.9889 0.9897 0.9890 0.9897
80 0.930712 0.5979 0.9758 0.9858 0.9850 0.9825 0.9858 0.9833 0.9859
90 0.856297 0.3976 0.9186 0.9617 0.8745 0.8996 0.9617 0.9607 0.9756

(a) PSNR values (b) SSIM values

Fig. 1. PSNR and SSIM values for different filters operating on the “Lenna” image.
Top: plot for all filters. Down: plot for the OCS and FMMOCS with the two types of
structuring elements.

used performance objective measures, namely PSNR (see [1,2]) and SSIM (see
[17]). Larger values of PSNR and SSIM are indicators of better capabilities for
noise reduction and image recovery.

Following [12] and [2], we have fixed two different sequences of structuring
elements: a flat sequence of squares of sizes 5, 3 and 7, respectively, and a binary
sequence of diamonds with the same sizes. These structuring elements with sizes
5, 3 and 7 correspond to the structuring elements B, B1 and B2, respectively,
of the algorithm explained in Section 3. When the flat squares are used, we
will denote the algorithm by “FMMOCSflat” and simply by “FMMOCS” when
binary diamonds are considered. The same structuring elements and notation
are used for the OCS algorithm proposed in [2] and the old version of the FM-
MOCS, denoted by FMMOCS*. For the FMMOCS and its old version we have
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(a) Original (b) Noisy image 90% (c) DBA

(d) SMF5 (e) AMF17 (f) OCS

(g) OCSflat (h) FMMOCS (i) FMMOCSflat

Fig. 2. Filtered images for the Lenna image corrupted with 90% noise. See Tables 1
and 2 for the PSNR and SSIM values, respectively

considered the �Lukasiewicz t-norm given by TLK(x, y) = max{x+ y − 1, 0} and
its residual implication defined as ILK(x, y) = min{1, 1−x+y} for all x, y ∈ [0, 1]
as conjunction and fuzzy implication respectively, for the fuzzy morphological
operators.

In Section 3, we have proposed a noise detection function depending of a
threshold value. Obviously, this threshold value affects the performance of the
proposed method and by choosing the appropriate value, we can effectively re-
duce the number of misclassified noise-free pixels. It is clear that as we increase
the amount of noise, the threshold value must decrease to classify more pixels as
corrupted ones. In particular, the following values have shown a great detection
and classification performance: t = 210 (10%), t = 85 (20%), t = 60 (30%),
t = 30 (40-50%) and t = 0 for higher amounts. For the implementation of an
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(a) Original (b) Noisy image 90% (c) DBA

(d) SMF5 (e) AMF17 (f) OCS

(g) OCSflat (h) FMMOCS (i) FMMOCSflat

Fig. 3. Filtered images for the “baboon” image corrupted with 90% noise

unsupervised version of the algorithm, the threshold value t could be automat-
ically determined through a proper estimation of the density of the salt and
pepper noise of the image. Finally, for the FMMOCS* noise detection function
we have considered t = 90 as in [12] and t = 0 for the OCS filter as in [2].

The quantitative performance comparison of our method versus the other con-
sidered algorithms for the Lenna image is collected in Tables 1 and 2. In these
tables, we display the values of the PSNR (dB) and SSIM measures, respec-
tively, for the Lenna image corrupted from 10% to 90% of salt and pepper noise.
In Figure 1, we can see graphically the evolution of the measures for each algo-
rithm depending on the amount of noise. Note that we omit the curves of the old
versions of FMMOCS since from Tables 1 and 2, their performances are worse
than the new version presented in this paper. From these measures we can infer
that FMMOCSflat and OCS obtain the best results at 90%, but FMMOCSflat
obtains much higher performance values for the other amounts of noise. At 20
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and 30%, the AMF17 obtains the highest values but its performance decreases
drastically for high-density corrupted images. In addition, FMMOCS and FM-
MOCSflat filters perform robustly over all the noise range. They represent a
slowly decreasing curve even when the noise ratio significantly increases. Other
filters fall down abruptly generating worse results when the noise ratio is high. It
is worthy to note the undesirable behaviour of the OCSflat which obtains lower
values of the measures for the images corrupted with 10% and 20% than the
value obtained for the 30% amount of noise. We do not include the measures for
the baboon image because of the space constraint and the similar behaviour of
the measures for each filtering method.

In Figures 2 and 3, we present the restoration results for the two images
considered in this section corrupted with 90% of salt and pepper noise. Note
that the FMMOCSflat algorithm gives the best performance in terms of noise
suppression and detail and edge preservation, as it was already suggested by
the two measures. Some filtering methods, specially SMF5 and AMF17, are not
able to remove the noise while DBA removes the noise but it does not preserve
the edges and fine details of the image. In addition, most of the filtered images
present some undesired black and white regions, which are successfully removed
by the BSE algorithm of the FMMOCSflat. Thus, the proposed filter can remove
most of the noise effectively while well preserving the edge image details of the
image improving drastically the performance of the first version of this algorithm
presented in [12].

5 Conclusions and Future Work

In this paper, we have presented a novel filtering method for high-density salt
and pepper noise corrupted images based on the fuzzy mathematical morphol-
ogy using t-norms. The algorithm is an improved version of the one presented
in [12] by using a new noise detection function and an adaptive window size in
the Block Smart Erase algorithm. The obtained results show that the new algo-
rithm outperforms its predecessor and other well-established nonlinear filtering
methods from both the visual point of view and the PSNR and SSIM values. As
future work, we want to deal with random values impulse noise since we hope
that the fuzzy approach can be very competitive for its removal. In addition, the
performance of the fuzzy mathematical morphologies based on uninorms could
be worthy to study.
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Abstract. In this paper we introduce the semi-uninorm based ordered
weighted averaging (SUOWA) operators, a new class of aggregation func-
tions that integrates weighted means and OWA operators. To do this we
take into account that weighted means and OWA operators are particu-
lar cases of Choquet integrals. So, the capacities associated to SUOWA
operators are defined by using the values of the capacities associated to
these functions and idempotent semi-uninorms.

Keywords: Weighted means, OWA operators, SUOWA operators, Cho-
quet integrals, Semi-uninorms.

1 Introduction

Weighted means and ordered weighted averaging (OWA) operators (Yager [16])
are functions widely used in the aggregation processes. Although both are defined
through weighting vectors, their behavior is quite different: Weighted means
allow to weight each information source in relation to their reliability while
OWA operators allow to weight the values according to their ordering.

Some authors, such as Torra [13] and Torra and Narukawa [15], have reported
the need for both weightings. For instance, suppose we have several sensors to
measure a physical property. On the one hand, sensors may be of different quality
and precision, so a weighted mean type aggregation is necessary. On the other
hand, to prevent a faulty sensor alters the measurement, we might take a OWA
type aggregation where the maximum and minimum values are not considered.

Different aggregation functions have appeared in the literature to deal with
this kind of situations. Special attention deserve the weighted OWA (WOWA)
operators, introduced by Torra [13]. WOWA operators integrate weighted means
and OWA operators in the sense that one of these functions is obtained when
the other one has a “neutral” behavior, that is, its weighting vector is that of the
arithmetic mean (the behavior of WOWA operators and other similar functions
has been analyzed by Llamazares [10]).

The aim of this work is to introduce a new class of aggregation functions,
the semi-uninorm based ordered weighted averaging (SUOWA) operators, that
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integrate the weighted means and the OWA operators in the above sense. To do
this we take into account that weighted means and OWA operators are particular
cases of Choquet integrals. So, the capacities associated to SUOWA operators
are defined by using the values of the capacities associated to these functions
and idempotent semi-uninorms.

The paper is organized as follows. In Section 2 we recall some basic properties
of aggregation functions and the definitions of weighted means, OWA operators
and Choquet integrals. Section 3 is devoted to the construction of capacities by
means of which we can integrate weighted means and OWA operators in a new
class of operators, the SUOWA operators. Finally, some concluding remarks are
provided in Section 4.

2 Preliminaries

Throughout the paper we will use the following notation: N = {1, . . . , n}; given
A ⊆ N , |A| will denote the cardinal of A; vectors will be denoted in bold; η will
denote the vector (1/n, . . . , 1/n); x ≥ y will mean xi ≥ yi for all i ∈ N ; given
x ∈ Rn, x[1] ≥ · · · ≥ x[n] and x(1) ≤ · · · ≤ x(n) will denote the components of x
in decreasing and increasing order, respectively.

In the following definition we present some well-known properties usually
demanded to the functions used in the aggregation processes.

Definition 1. Let F : Rn −→ R be a function.

1. F is symmetric if F (xσ(1), . . . , xσ(n)) = F (x1, . . . , xn) for all x ∈ Rn and
for all permutation σ of N .

2. F is monotonic if x ≥ y implies F (x) ≥ F (y) for all x,y ∈ Rn.

3. F is idempotent if F (x, . . . , x) = x for all x ∈ R.
4. F is compensative (or internal) if min(x) ≤ F (x) ≤ max(x) for all x ∈ Rn.

5. F is homogeneous of degree 1 (or ratio scale invariant) if F (λx) = λF (x)
for all x ∈ Rn and for all λ > 0.

2.1 Weighted Means and OWA Operators

Weighted means and OWA operators are defined by vectors with non-negative
components whose sum is 1.

Definition 2. A vector q∈Rn is a weighting vector if q∈ [0, 1]n and
∑n

i=1 qi=1.

Definition 3. Let p be a weighting vector. The weighted mean associated to p
is the function Mp : Rn −→ R given by

Mp(x) =

n∑
i=1

pixi.
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Weighted means are continuous, monotonic, idempotent, compensative and ho-
mogeneous of degree 1 functions.

OWA operators were introduced by Yager [16] as a tool for aggregation pro-
cedures in multicriteria decision making.

Definition 4. Let w be a weighting vector. The OWA operator associated to w
is the function Ow : Rn −→ R given by

Ow(x) =

n∑
i=1

wix[i].

OWA operators are continuous, symmetric, monotonic, idempotent, compen-
sative and homogeneous of degree 1 functions.

2.2 Choquet Integrals

Choquet integrals (see Choquet [2] and Murofushi and Sugeno [11]) are based
on the notion of capacity. A capacity is similar to a probability measure but by
replacing additivity by monotonicity (see also fuzzy measures in Sugeno [12]).
Games are obtained when we drop the monotonicity property.

Definition 5

1. A game υ on N is a set function, υ : 2N −→ R satisfying υ(∅) = 0.
2. A capacity (or fuzzy measure) μ on N is a game on N satisfying μ(A) ≤ μ(B)

whenever A ⊆ B. Therefore, μ : 2N −→ [0,∞). The capacity is said to be
normalized if μ(N) = 1.

The Choquet integral can be defined in a general context (see Choquet [2] and
Murofushi and Sugeno [11]). However, we only consider the Choquet integral in
the framework that we are dealing with here (see Grabisch et al. [8, p. 181]).

Definition 6. Let μ be a capacity on N . The Choquet integral with respect to μ
is the function Cμ : Rn −→ R given by

Cμ(x) =
n∑

i=1

μ(B(i))
(
x(i) − x(i−1)

)
,

where B(i) = {(i), . . . , (n)} and, by convention, x(0) = 0.

It is worth noting that we have defined the Choquet integral for all vectors
of Rn instead of nonnegative vectors because we are actually considering the
asymmetric Choquet integral with respect to μ (on this, see Grabisch et al. [8,
p. 182]). In addition to this, note that the Choquet integral can be defined with
respect to games instead of capacities (see again Grabisch et al. [8, p. 181]).
In this case, the Choquet integral satisfies the following properties (Grabisch et
al. [8, p. 193 and p. 196]):



A New Class of Functions for Integrating W.M. and OWA Operators 83

Remark 1. If υ is a game on N and Cυ is the Choquet integral with respect to
υ, then

1. Cυ is continuous.
2. Cυ is homogeneous of degree 1.
3. Cυ is monotonic if and only if υ is a capacity.
4. Cυ is idempotent when υ(N) = 1.
5. Cυ is compensative when υ is a normalized capacity.

For the sake of similarity with OWA operators, in the sequel we show an
equivalent representation of Choquet integral by means of decreasing sequences
of values (see Torra [14]). Given x ∈ Rn, we can consider [·] and (·) so that
[i] = (n+ 1− i) for all i ∈ N . In this case,

Cμ(x) =
n∑

i=1

μ(A[i])
(
x[i] − x[i+1]

)
,

where A[i] = {[1], . . . , [i]} and, by convention, x[n+1] = 0.
From the previous expression, it is straightforward to check that the Choquet

integral can be written as

Cμ(x) =
n∑

i=1

(
μ(A[i])− μ(A[i−1])

)
x[i],

with the convention A[0] = ∅. From this formula we can easily see that weighted
means and OWA operators are specific cases of Choquet integral (see also Fodor
et al. [3] and Grabisch [6,7]).

Remark 2. Let μ be a capacity on N .

1. Cμ is the weighted mean Mp if μ(A[i]) − μ(A[i−1]) = p[i] for all i ∈ N , or,

equivalently, μ(A[i]) =
∑i

j=1 p[j] for all i ∈ N . Therefore μ(A) =
∑

i∈A pi
for all A ⊆ N .

2. Cμ is the OWA operator Ow if μ(A[i]) − μ(A[i−1]) = wi for all i ∈ N , or,

equivalently, μ(A[i]) =
∑i

j=1 wj for all i ∈ N . Therefore μ(A) =
∑|A|

i=1 wi for
all A ⊆ N .

3 Integrating Weighting Means and OWA Operators

Our aim is to find new functions based on the Choquet integral, Fp,w, that
integrate weighted means and OWA operators in the following sense: Fp,η = Mp

and Fη,w = Ow (see WOWA operators in Torra [13]).
If we represent the function Fp,w as

Fp,w(x) =

n∑
i=1

(
μp,w(A[i])− μp,w(A[i−1])

)
x[i],
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with A[0] = ∅, then, according to Remark 2, Fp,w integrates weighted means
and OWA operators when the capacity μp,w satisfies

μp,η(A) =
∑
i∈A

pi and μη,w(A) =

|A|∑
i=1

wi, (1)

for all A ⊆ N .
In the next subsection we show a procedure for constructing capacities satis-

fying the conditions given by (1).

3.1 Constructing Capacities by Using Semi-uninorms

Given A ⊆ N , weighted means and OWA operators are generated through nor-

malized capacities defined by the values
∑

i∈A pi and
∑|A|

i=1 wi, respectively.
Therefore, our first intention is to consider a game on N given as a function
of these values; that is,

νfp,w(A) = f

⎛
⎝∑

i∈A

pi,

|A|∑
i=1

wi

⎞
⎠.

However, conditions given by (1) implies that, if |A| = j, then

νfη,w(A) = f

⎛
⎝ j

n
,

|A|∑
i=1

wi

⎞
⎠ =

|A|∑
i=1

wi and νfp,η(A) = f

(∑
i∈A

pi,
j

n

)
=
∑
i∈A

pi;

that is, j/n should be a neutral element of the function f . Since the neutral
element of a function is unique, we should use different functions according to
the cardinality of the set A. To avoid this, we make a transformation of the

values
∑

i∈A pi and
∑|A|

i=1 wi taking into account the cardinality of the set A. So,
when the set A is non-empty, we consider the set function

υf
p,w(A) = |A| · f

⎛
⎜⎝
∑
i∈A

pi

|A| ,

|A|∑
i=1

wi

|A|

⎞
⎟⎠.

In this way, conditions given by (1) are satisfied when f is a function with
neutral element 1/n. When we look for functions with neutral elements, uni-
norms, introduced by Yager and Rybalov [17], appear in a natural way (see also
Fodor et al. [5], and Fodor and De Baets [4]).

Definition 7. A function U : [0, 1]2 −→ [0, 1] is a uninorm if it is symmetric,
associative (U(x, U(y, z)) = U(U(x, y), z) for all x, y, z ∈ [0, 1]), monotonic and
possesses a neutral element e ∈ [0, 1] (U(x, e) = x for all x ∈ [0, 1]).
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Nevertheless, for our purposes we can dispense with the symmetry and associa-
tivity properties. In this case we obtain semi-uninorms functions, introduced by
Liu [9].

Definition 8. A function U : [0, 1]2 −→ [0, 1] is a semi-uninorm if it is mono-
tonic and possesses a neutral element e ∈ [0, 1] (U(e, x) = U(x, e) = x for all
x ∈ [0, 1]).

The set of semi-uninorms with neutral element e ∈ [0, 1] will be denoted by Ue.
Notice that semi-uninorms satisfy the following boundary conditions: U(0, 0) = 0
and U(1, 1) = 1.

Taking into account the above considerations, we can now define the game
associated to two weighting vectors and a semi-uninorm.

Definition 9. Let p and w be two weighting vectors and let U ∈ U1/n. The
game associated to p, w and U is the set function υU

p,w : 2N −→ R defined by

υU
p,w(A) = |A| · U

⎛
⎜⎝
∑
i∈A

pi

|A| ,

|A|∑
i=1

wi

|A|

⎞
⎟⎠

if A 	= ∅, and υU
p,w(∅) = 0.

It is easy to check that υU
p,w satisfies the conditions given by (1) and that

υU
p,w(N) = 1. However, the game υU

p,w may not be a capacity; that is, it may
not be monotonic as we show in the following example.

Example 1. Let p = (0.5, 0.2, 0.1, 0.1, 0.1) and w = (0.6, 0.2, 0, 0, 0.2). Given
U ∈ U0.2, we have

– If A = {2}, then υU
p,w(A) = U(0.2, 0.6) = 0.6.

– If B = {2, 3, 4, 5}, then υU
p,w(B) = 4U(0.5/4, 0.2) = 0.5.

Therefore, A ⊆ B but υU
p,w(A) > υU

p,w(B); that is, υU
p,w is not monotonic.

Nevertheless, it is relatively easy to obtain a capacity υ̂ from a game υ. To do
this, for each subset A of N we consider the maximum value of the set function
over the subsets contained in A.

Definition 10. Let υ be a game on N . The capacity associated to υ is the set
function υ̂ : 2N −→ [0,∞) given by

υ̂(A) = max
B⊆A

υ(B).

Some basic properties of υ̂ are given in the sequel.

Remark 3. Let υ be a game on N . Then:

1. If υ is a capacity, then υ̂ = υ.
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2. If υ(A) ≤ 1 for all A ⊆ N and υ(N) = 1, then υ̂ is a normalized capacity.

In addition to the previous properties, it is worth noting that if a game on N
fulfils the conditions given by (1), then the capacity associated to the game also
satisfies these conditions.

Proposition 1. Let p and w be two weighting vectors and let υp,w be a game

on N such that υp,η(A) =
∑

i∈A pi and υη,w(A) =
∑|A|

i=1 wi for all A ⊆ N .

Then, υ̂p,η(A) =
∑

i∈A pi and υ̂η,w(A) =
∑|A|

i=1 wi for all A ⊆ N .

Proof. Given A ⊆ N ,

υ̂p,η(A) = max
B⊆A

υp,η(B) = max
B⊆A

∑
i∈B

pi =
∑
i∈A

pi,

υ̂η,w(A) = max
B⊆A

υη,w(B) = max
B⊆A

|B|∑
i=1

wi =

|A|∑
i=1

wi.

In accordance with the previous remarks, instead of using the games υU
p,w we

will use the capacities associated with them.

Definition 11. Let p and w be two weighting vectors, let U ∈ U1/n, and let
υU
p,w be the game associated to p, w and U . The capacity υ̂U

p,w associated to the

game υU
p,w will be called the capacity associated to p, w and U .

Notice that, by definition, υU
p,w(A) ≥ 0 for all A ⊆ N . Therefore, when |A| = 1

we have υ̂U
p,w(A) = υU

p,w(A).
Once we know how to obtain capacities, our next goal is to get normalized

capacities. According to 2) of Remark 3 and Proposition 1, in order to obtain a
normalized capacity on N satisfying the conditions given by (1) it is sufficient
to find a game υp,w on N satisfying these conditions and such that υp,w(A) ≤ 1
for all A ⊆ N and υp,w(N) = 1. However, the game υU

p,w may not satisfy the

condition υU
p,w(A) ≤ 1 for all A ⊆ N , as we show in the following example.

Example 2. Let p = (0.5, 0.2, 0.1, 0.1, 0.1) and w = (0.6, 0.2, 0, 0, 0.2). Consider
the semi-uninorm (see Calvo et al. [1, p. 11]) given by

U(x, y) = max
(
0,min(1, x+ y − 0.2)

)
.

It is easy to check that U ∈ U0.2. If A = {1, 2} we have

υU
p,w(A) = 2U(0.35, 0.4) = 2 · 0.55 = 1.1 > 1.

Nevertheless, as we show in the following proposition, idempotent semi-
uninorms allow us to guarantee the condition υU

p,w(A) ≤ 1 for all weighting
vectors p and w and for all A ⊆ N .

Proposition 2. Let U ∈ U1/n. If U is idempotent, then υU
p,w(A) ≤ 1 for all

weighting vectors p and w and for all A ⊆ N .
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Proof. Given p,w two weighting vectors and a non-empty set A of N , we have

υU
p,w(A) = |A|U

⎛
⎜⎝
∑
i∈A

pi

|A| ,

|A|∑
i=1

wi

|A|

⎞
⎟⎠ ≤ |A|U

(
1

|A| ,
1

|A|

)
= |A| 1

|A| = 1.

We will denote by Ue
i the set of idempotent semi-uninorms with neutral element

e ∈ [0, 1]. It is worth noting that this class of functions has been characterized
by Liu [9].

Proposition 3. Let U ∈ Ue. U is idempotent if and only if

U(x, y) =

⎧⎪⎨
⎪⎩
min(x, y) if (x, y) ∈ [0, e]2,

max(x, y) if (x, y) ∈ [e, 1]2 \ {(e, e)},
P (x, y) otherwise,

where P : [0, e) × (e, 1] ∪ (e, 1] × [0, e) −→ [0, 1] is monotonic and min(x, y) ≤
P (x, y) ≤ max(x, y) for all (x, y) ∈ [0, e)× (e, 1] ∪ (e, 1]× [0, e).

Obviously, the smallest and the greatest idempotent semi-uninorm are, respec-
tively, the following uninorms (which were given by Yager and Rybalov [17]):

Umin(x, y) =

{
max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) otherwise,

Umax(x, y) =

{
min(x, y) if (x, y) ∈ [0, 1/n]2,

max(x, y) otherwise.

In the next subsection we formally define the SUOWA operators.

3.2 SUOWA Operators

We now introduce SUOWA operators as the Choquet integrals with respect to
the capacities υ̂U

p,w.

Definition 12. Let p and w be two weighting vectors and let U ∈ U1/n
i . The

semi-uninorm based ordered weighted averaging (SUOWA) operator associated
to p,w and U is the function SU

p,w : Rn −→ R given by

SU
p,w(x) =

n∑
i=1

six[i],

where si = υ̂U
p,w(A[i]) − υ̂U

p,w(A[i−1]), with υ̂U
p,w the capacity associated to p,w

and U , A[i] =
{
[1], . . . , [i]

}
and, by convention, A[0] = ∅.
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According to Remak 1, and since υ̂U
p,w are normalized capacities, SUOWA

operators are continuous, monotonic, idempotent, compensative and homoge-
neous of degree 1 functions. In the sequel we show an example to illustrate these
operators (the weighting vectors p and w are taken from Torra [13]).

Example 3. Let us to consider the weighting vectors p = (0.4, 0.1, 0.2, 0.3) and
w = (0.125, 0.375, 0.375, 0.125). Besides Umin and Umax, we are also going to use
Uam, the idempotent semi-uninorm obtained by means of the arithmetic mean:

Uam(x, y)=

⎧⎪⎨
⎪⎩
min(x, y) if (x, y)∈ [0, 0.25]2,
max(x, y) if (x, y)∈ [0.25,1]2 \

{
(0.25, 0.25)

}
,

(x+ y)/2 otherwise.

In Table 1 we show the games and the capacities associated to these idempo-
tent semi-uninorms. Note that all the values of the games coincide with those of
the capacities; that is, the games υUmin

p,w , υUam
p,w and υUmax

p,w are actually capacities.

Table 1. Games and capacities associated to Umin, Uam and Umax

Umin Uam Umax

Set υUmin
p,w υ̂Umin

p,w υUam
p,w υ̂Uam

p,w υUmax
p,w υ̂Umax

p,w

{1} 0.125 0.125 0.2625 0.2625 0.4 0.4

{2} 0.1 0.1 0.1 0.1 0.1 0.1

{3} 0.125 0.125 0.125 0.125 0.125 0.125

{4} 0.125 0.125 0.2125 0.2125 0.3 0.3

{1, 2} 0.5 0.5 0.5 0.5 0.5 0.5

{1, 3} 0.6 0.6 0.6 0.6 0.6 0.6

{1, 4} 0.7 0.7 0.7 0.7 0.7 0.7

{2, 3} 0.3 0.3 0.3 0.3 0.3 0.3

{2, 4} 0.4 0.4 0.4 0.4 0.4 0.4

{3, 4} 0.5 0.5 0.5 0.5 0.5 0.5

{1, 2, 3} 0.7 0.7 0.7875 0.7875 0.875 0.875

{1, 2, 4} 0.875 0.875 0.875 0.875 0.875 0.875

{1, 3, 4} 0.9 0.9 0.9 0.9 0.9 0.9

{2, 3, 4} 0.6 0.6 0.7375 0.7375 0.875 0.875

N 1 1 1 1 1 1
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When x = (7, 6, 4, 3), the values returned by the SUOWA operators by using
the capacities υUmin

p,w , υUam
p,w and υUmax

p,w are

SUmin
p,w (7, 6, 4, 3) = 0.125 · 7 + 0.375 · 6 + 0.2 · 4 + 0.3 · 3 = 4.825,

SUam
p,w (7, 6, 4, 3) = 0.2625 · 7 + 0.2375 · 6 + 0.2875 · 4 + 0.2125 · 3 = 5.05,

SUmax
p,w (7, 6, 4, 3) = 0.4 · 7 + 0.1 · 6 + 0.375 · 4 + 0.125 · 3 = 5.275.

However, when x = (6, 7, 3, 4), the three functions take the same value:

SUmin
p,w (6, 7, 3, 4) = SUam

p,w (6, 7, 3, 4) = SUmax
p,w (6, 7, 3, 4)

= 0.1 · 7 + 0.4 · 6 + 0.375 · 4 + 0.125 · 3 = 4.975.

4 Conclusion

In some practical cases it is necessary to combine values by using both a weight-
ing mean and a OWA type aggregation. Although there exist in the literature a
large number of aggregation operators, WOWA operators are the only ones that
possess desirable properties for aggregation and allow us to deal with this kind
of situations. As WOWA operators, the functions introduced in this paper are
obtained from Choquet integrals with respect to normalized capacities. There-
fore, SUOWA operators are continuous, monotonic, idempotent, compensative
and homogeneous of degree 1 functions, and, consequently, they constitute an
alternative to WOWA operators to deal with this kind of aggregation problems.
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Abstract. In real-life Group Decision Making problems defined under
uncertainty, it is usually necessary to carry out a consensus reaching pro-
cess to achieve a solution that is accepted by all experts in the group.
Additionally, when a high number of experts take part in such processes,
it may sometimes occur that some subgroups of them with similar in-
terests try to bias the collective opinion, which makes it more difficult
to reach a collective agreement. The consensus reaching process could
be optimized if the group’s attitude towards consensus were integrated
in it, and the complexity of dealing with large groups of experts could
be reduced with the adequate automation of such a process. This paper
presents a Web-based Consensus Support System for large-scale group
decision making problems defined under uncertainty, that integrates the
group’s attitude towards consensus and allows experts to provide their
preferences by means of linguistic information. The underlying consensus
model of the proposed system carries out processes of Computing with
Words to deal with linguistic preferences effectively.

Keywords: Linguistic Group Decision Making, Consensus Reaching,
Consensus Support System, Attitude.

1 Introduction

Decision making is a usual mankind process in daily life. In a group decision
making (GDM) problem, a group of decision makers or experts try to reach a
common solution to a problem consisting of a set of possible alternatives [3].
Real GDM problems are often defined under an uncertain environment, so that
experts may prefer in some occasions to provide information (preferences about
alternatives) in a domain closer to human natural language, e.g. by means of
linguistic information [1, 10].

An increasingly important aspect in many real GDM problems is the need for
a common solution which is accepted by all experts in the group, which can be
achieved if Consensus Reaching Processes (CRPs) are introduced as part of the

� Corresponding author.

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 91–100, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



92 I. Palomares and L. Mart́ınez

GDM problems resolution process [7]. Nowadays computational advances make
it possible the participation of larger groups of experts in CRPs. However, some
challenges arise in CRPs during the resolution of large-scale GDM problems:

– The possible existence of subgroups of experts with an own-group interest,
who try to deviate the solution of the GDM problem to a solution according
to their aims forgetting about the CRP, so that it is much more difficult
to achieve an agreed solution. In such cases, the integration of the group’s
attitude towards consensus, i.e. experts’ capacity to modify their own pref-
erences during the CRP, becomes an important aspect to optimize CRPs
involving large groups [5].

– Despite CRPs are classically guided and supervised by a human modera-
tor [7], the management of large groups not only turns his/her tasks more
complex, but also complicates physical meetings. The design of a Consensus
Support System (CSS) that automates the moderator’s tasks and facilitates
non-physical meetings becomes then necessary.

This paper presents a web-based CSS that supports consensus processes for
large-scale GDM problems defined under uncertainty. The underlying consensus
model of such a system integrates the group’s attitude towards consensus in the
CRP, and it allows experts the use of linguistic information to provide their
preferences. In order to facilitate computations on linguistic information across
the CRP, the methodology of Computing with Words (CW) [6,11] is considered,
by utilizing the 2-tuple linguistic model [2] to carry out such computations.

This paper is structured as follows: Section 2 revises some basic concepts.
Section 3 presents the proposed CSS and its underlying consensus model. Section
4 shows an example of the CSS performance, and Section 5 concludes the paper.

2 Basic Concepts

In this section, some preliminary concepts used in our proposal about linguis-
tic GDM, the 2-tuple linguistic model and attitude integration in CRPs are
reviewed.

2.1 Linguistic Group Decision Making

GDM problems are formally defined as decision situations in which a set E =
{e1, . . . , em}, (m ≥ 2), of decision makers or experts must express their pref-
erences over a finite set of alternatives X = {x1, . . . , xn}, (n ≥ 2) by using a
preference structure, for instance a linguistic preference relation Pi [1]:

Pi =

⎛
⎜⎝

− . . . p1ni
...

. . .
...

pn1i . . . −

⎞
⎟⎠

where each assessment plki = su ∈ S represents ei’s degree of preference of
alternative xl over xk, (l 	= k), expressed as a linguistic term su in a term set
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S = {s0, . . . , sg} with granularity g. Without loss of generality, it is assumed in
this paper that S is chosen by considering that linguistic terms su (u = 0, . . . , g),
are symmetrically distributed in an ordered scale, with odd cardinality, |S| =
g + 1. It is also assumed here that the semantics of a term su ∈ S will be
represented by a triangular fuzzy number in the unit interval [4].

2.2 2-tuple Linguistic Computational Model for CW

Classical resolution schemes for linguistic GDM [1], showed the necessity of using
models to operate with linguistic information accurately and obtain understand-
able results [6]. The methodology of CW was proposed by L. Zadeh in [11] to
facilitate reasoning, computational and decision making processes on linguistic
information. In the field of CW, there exist multiple linguistic computational
models that define different operations on linguistic information, such as aggre-
gation, comparison, etc. One of the most extended models of CW in linguistic
decision making is the so-called 2-tuple linguistic model [2], which avoids the
loss of information and guarantees accurate and understandable results.

The 2-tuple linguistic model represents the information by means of a pair
(s, α), where s ∈ S is a linguistic term and α ∈ [−0.5, 0.5) is a symbolic transla-
tion that supports the “difference of information” between a counting of infor-
mation β assessed in the interval of granularity of S, [0, g], and its closest value in
{0,. . . ,g}, which indicates the index of the closest linguistic term in S. Some func-
tions were defined to facilitate computational processes on 2-tuples by transform-
ing them into numerical values. A bijective function Δ : [0, g]→ S × [−0, 5, 0.5)
is defined as follows [2]:

Δ(β) = (si, α), with

{
i = round(β),
α = β − i,

(1)

where round assigns β its closest value i ∈ {0, . . . , g}. An inverse function Δ−1 :
S × [−0, 5, 0.5) → [0, g] which, given a linguistic 2-tuple, returns its equivalent
numerical value β, is also defined as:

Δ−1(si, α) = i+ α = β (2)

The 2-tuple linguistic computational model defined different operations on 2-
tuples [2]. The consensus approach proposed (see Sect. 3.1) considers the use of
2-tuple aggregation operators across the CRP [4, 6].

2.3 Attitude Integration in Consensus Reaching

The integration of the group’s attitude towards consensus in situations in which
several subgroups of experts with different interests take part in a large-scale
GDM problem, might help optimizing CRPs according to their needs and the
characteristics of each particular problem. A model that integrates such an at-
titude was recently proposed in [5], where the following two types of group’s
attitudes were presented:
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– Optimistic attitude: Achieving an agreement is more important for experts
than their own preferences. Therefore, more importance is given to positions
in the group with higher agreement.

– Pessimistic attitude: Experts prefer to preserve their own preferences. There-
fore, positions in the group with lower agreement are given more importance.

Here, we also introduce the possibility of adopting a neutral attitude:

– Neutral attitude: Experts consider that both achieving an agreement and
preserving their own preferences are equally important. Therefore, positions
in the group with an intermediate degree of agreement attain a greater im-
portance.

In order to integrate the attitude of experts in CRPs, it is used an aggregation
operator, so-called Attitude-OWA, which extends OWA aggregation operators [8]
and is specially suitable for dealing with large groups of experts [5]. Attitude-
OWA uses two attitudinal parameters provided by the decision group:

– ϑ ∈ [0, 1] represents the group’s attitude, which can be optimistic (ϑ > 0.5),
pessimistic (ϑ < 0.5) or neutral (ϑ = 0.5). It is equivalent to the orness
measure that characterizes OWA operators [8].

– ϕ ∈ [0, 1] indicates the amount of agreement positions that are given non-null
weight in the aggregation. The higher ϕ, the more values are considered.

Attitude-OWA operator is then defined as follows:

Definition 1. [5] An Attitude-OWA operator on a set A = {a1, . . . , ah}, based
on attitudinal parameters ϑ, ϕ, is defined by:

Attitude−OWAW (A, ϑ, ϕ) =

h∑
j=1

wjbj (3)

being W = [w1 . . . wh]
� a weighting vector, with wi ∈ [0, 1],

∑
i wi = 1, and bj

the j-th largest of ai values.

Weights wi are computed based on ϑ and ϕ, so that they reflect the attitude
adopted by experts. The following scheme was proposed to compute them [5]:

i) The values of ϑ, ϕ are determined, based on the interests of experts in the
group and/or the nature of the GDM problem.

ii) A Regular Increasing Monotone quantifier with membership funcion Q(r),

Q(r) =

⎧⎨
⎩

0 if r ≤ γ,
r−γ
δ−γ if γ < r ≤ δ,

1 if r > δ.

(4)

is defined, being r ∈ [0, 1], γ = 1− ϑ− ϕ
2 and δ = γ + ϕ.

iii) Yager’s method is applied to compute weights wi [9]:

wi = Q

(
i

h

)
−Q

(
i− 1

h

)
, i = 1, . . . , h (5)
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3 Consensus Support System

This section presents an attitude-based Web CSS aimed to solve large-scale lin-
guistic GDM problems. Its main novelty is the consensus model implemented,
which extends the one proposed in [5], by introducing the necessary steps to
manage linguistic information based on the 2-tuple linguistic model, and im-
proving the feedback mechanism applied during the CRP to avoid generating an
excessive amount of advice for experts. The Web-based CSS architecture is also
presented.

The CSS description is divided into two parts: (i) a detailed scheme of the
consensus model; and (ii) an overview of the architecture and functionalities of
the system.

3.1 Consensus Model

A scheme of the proposed consensus model is depicted in Fig. 1. Its phases are
described in detail below:

Fig. 1. Consensus model scheme

1. Determining Group’s Attitude: The group’s attitude towards consensus is
determined by gathering attitudinal parameters ϑ, ϕ.

2. Gathering Preferences : Each ei provides his/her preferences on X by means
of a linguistic preference relation Pi = (plki )n×n, plki ∈ S (see Sect. 2.1).

3. Computing Consensus Degree: The degree of collective agrement is computed
as a value in [0,1] (inspired by Kacprzyk’s notion of “soft consensus” [3]).
This paper introduces the use of the 2-tuple linguistic model in this phase
to carry out processes of CW on linguistic information. Additionally, the
group’s attitude towards consensus is integrated during this phase:

(a) For each linguistic assessment plki = su (u = 0, . . . , g), its corresponding
β value (which will be denoted as βlk

i ) is computed as follows:

βlk
i = Δ−1

(
(su, 0)

lk
i

)
= u (6)

being (su, 0)
lk
i the 2-tuple associated to an assessment plki = su ∈ S and

Δ−1 the transformation function shown in Eq. (2) [2].
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(b) For each pair ei, et, (i < t), a similarity matrix SMit = (smlk
it )

n×n,
smlk

it ∈ [0, 1], is computed:

smlk
it = 1−

∣∣∣∣βlk
i − βlk

t

g

∣∣∣∣ (7)

(c) A consensus matrix CM = (cmlk)n×n is obtained by aggregating simi-
larity values, by means of Attitude-OWA operator, which integrates the
group’s attitude in the CRP (see Sect. 2.3) [5]. This aggregation step is
the main novelty, with respect to other previous consensus models, for
the management of large groups in CRPs:

cmlk = Attitude−OWAW (SIM lk, ϑ, ϕ) (8)

where the set SIM lk = {smlk
12, . . . , sm

lk
1m, . . . , smlk

(m−1)m} represents all

pairs of experts’ similarities in their opinion on (xl, xk), and cmlk is the
degree of consensus achieved by the group in their opinion on (xl, xk).

(d) Consensus degrees cal on each alternative xl, are computed as

cal =

∑n
k=1,k 	=l cm

lk

n− 1
(9)

(e) Finally, an overall consensus degree is computed:

cr =

∑n
l=1 ca

l

n
(10)

4. Consensus Control : Consensus degree cr is compared with a consensus thresh-
old μ ∈ [0, 1], established a priori by the group. If cr ≥ μ, the CRP ends
and the group moves on the selection process; otherwise, the process requires
further discussion. A parameter Maxrounds ∈ N can be also defined to limit
the maximum number of discussion rounds.

5. Advice Generation: When cr < μ, experts must modify their preferences to
make them closer to each other and increase the consensus degree in the
following CRP round. Despite a human moderator has been traditionally
responsible for advising and guiding experts during CRPs [7], the proposed
CSS automates his/her tasks, most of which are conducted in this phase of
the CRP. Two novelties are introduced in this phase: the use of the 2-tuple
linguistic model to carry out computations on linguistic assessments, and a
threshold parameter that will improve the feedback generation mechanism.
(a) Compute a collective preference and proximity matrices: A 2-tuple-based

collective preference Pc = (plkc )n×n, plkc ∈ S × [−0.5, 0.5), is computed
for each pair of alternatives by aggregating experts’ preference relations:

plkc = (su, α)
lk
c = ν((su, α)

lk
1 , . . . , (su, α)

lk
m) (11)

where s ∈ S and ν is a 2-tuple aggregation operator [2,4,6]. Afterwards,
a proximity matrix PPi between each ei’s preference relation and Pc
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is obtained. Proximity values pplki ∈ [0, 1] are computed for each pair
(xl, xk) as follows:

pplki = 1−
∣∣∣∣βlk

i − βlk
c

g

∣∣∣∣ (12)

being βlk
c = Δ−1

(
(s, α)lkc

)
.

(b) Identify preferences to be changed (CC): Assessments on pairs (xl, xk)
whose consensus degrees cal and cplk are not enough, are identified:

CC = {(xl, xk)|cal < cr ∧ cplk < cr} (13)

Based on CC, the model identifies those experts who should change their
opinions on each of these pairs, i.e. those eis whose assessment plki on
(xl, xk) ∈ CC is furthest to plkc . To do so, an average proximity pplk is
calculated, by using an aggregation operator λ:

pplk = λ(pplk1 , . . . , pplkm) (14)

Experts ei whose pplki < pplk are advised to modify their assessments
plki on (xl, xk).

(c) Establish change directions: Some direction rules are checked to suggest
the direction of changes proposed to experts on their linguistic assess-
ments. Here, we propose a novel mechanism that optimizes the perfor-
mance of this step in large-scale GDM, by introducing an acceptability
threshold ε ≥ 0, to allow a margin of acceptability in the cases that βlk

i

and βlk
c are close to each other. This approach prevents generating an

excessive number of unnecessary advice for experts in such cases.
– DIR.1: If (βlk

i −βlk
c ) < −ε, then ei should increase his/her assessment

plki on (xl, xk).
– DIR.2: If (βlk

i −βlk
c ) > ε, then ei should decrease his/her assessment

plki on (xl, xk).
– DIR.3: If −ε ≤ (βlk

i − βlk
c ) ≤ ε then ei should not modify his/her

assessment plki on (xl, xk).

3.2 System Architecture

The CSS is based on a client/server architecture with a Web user interface, so
that users do not have to install any specific software to use the CSS in their
computer. Figure 2 depicts the architecture of the CSS and the communication
between the client and server sides, which will be explained in further detail
below.

The main advantage of the system is the automation of the human moderator,
thus eliminating any biasness caused by his/her possible subjectivity, and it
facilitates ubiquitous CRPs amongst large groups of experts. The CSS functions
are divided into two categories: client and server functions.

Client. On the client side, the following four interfaces have been designed to
communicate the CSS with experts participating in a GDM problem:
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Expert

CSS CLIENT
(web user interface)

Expert

[...]

Administrator

Preferences

Recommendations

Preferences

Recommendations

NETWORK

Computing 
consensus

degree

Consensus 
control

Advice
generation

Preferences

Recommendations

CSS SERVERGDM problem

and CRP settings

Fig. 2. CSS architecture and client-server communication

– Authentication: An expert introduces his/her username and password to
authenticate in the CSS.

– Problem selection: The expert is shown information about the GDM prob-
lem/s to which he/she has been invited to take part.

– Preferences elicitacion (Fig. 3): Experts provide their preferences by means
of a linguistic preference relation (Sect. 3.1, phase 2), whose assessments are
linguistic terms in a term set defined a priori by the administrator of the
CSS, as will be explained below.

– Checking advice received during the CRP : At the end of a discussion round
(after phase 5 in Sect. 3.1), the application shows each expert the advice to
modify his/her preferences.

Fig. 3. Expressing preferences

Additionally, some users can log in the system under the role of administrator to
define the initial GDM problem settings, including: the GDM problem description
and alternatives, experts invited to take part in the problem, parameters of the
CRP and the linguistic term set to be used by experts.
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Server. The server communicates with the client interfaces to send/receive
information to/from experts by means of the Internet. Some modules that cor-
respond with different phases of the consensus model described in Sect. 3.1 are
implemented here to automate the human moderator tasks during the CRP:
(i) computing the consensus degree (Sect. 3.1, phase 3), (ii) consensus Control
(Sect. 3.1, phase 4) and (iii) advice Generation (Sect. 3.1, phase 5).

4 System Performance

In this section, a large-scale GDM problem is introduced and solved by using
the proposed CSS. The problem is formulated as follows: a group of 41 students
from Computer Science M.Sc. Degree, E = {e1, . . . , e41}, must make an agreed
decision about choosing a place to celebrate their graduation dinner. The set
of proposed restaurants is X = {x1 : ’Santa Catalina’ castle, x2: ’Los Caballos’
ranch, x3: ’Pegalajar’ caves, x4: ’Juleca’ complex}.

The following linguistic term set is defined to allow students provide their
preferences, S = {s0 : None(n), s1 : V ery low(vl), s2 : Low(l), s3 : Average(a),
s4 : High(h), s5 : V ery high(vh), s6 : Perfect(p)}.

The group stated that they preferred to achieve a collective agreement as fast
as possible, rather than preserving their own individual preferences. The CRP
was first applied without considering the group’s attitude (the arithmetic mean
operator was used instead of Attitude-OWA to compute cmlk in Eq. (8)). After-
wards, the CRP was carried out again twice, by defining two different attitudes:
an optimistic and a pessimistic attitude. Table 1 shows the parameters defined
for the CRP, including the two attitudes considered.

Table 1. Parameters defined at the beginning of the CRP

Attitudinal param. Optimistic ϑ = 0.65, ϕ = 0.6
Pessimistic: ϑ = 0.35, ϕ = 0.6

Consensus threshold μ = 0.85

Max. #rounds Maxrounds = 10

Accept. threshold ε = 0.2

Once all experts logged in the system, selected the GDM problem to take part
in it and submitted their initial preferences by means of the Web user interface
(see Fig. 3), the CRP began. Table 2 shows the convergence towards consensus,
i.e. the consensus degree achieved at each round, for each case defined above.
Students were most satisfied with the solution achieved when an optimistic at-
titude was adopted, because a fewer number of discussion rounds was required
in this case to reach a consensus.

The proposed CSS facilitated the resolution of the large-scale GDM problem
defined, taking into account the attitude of experts towards consensus and let-
ting them provide their preferences by means of linguistic terms. The 2-tuple
linguistic model made it possible to make the necessary computations of the
CRP on linguistic information without any loss of information.
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Table 2. Global consensus degree for each round

Consensus round: 1 2 3 4 5 6 7 8

Without attitude 0.695 0.743 0.772 0.805 0.823 0.855

Pessimistic 0.512 0.587 0.656 0.707 0.749 0.801 0.839 0.868

Optimistic 0.793 0.828 0.851

5 Concluding Remarks

In this paper, we have presented a Web-based Consensus Support System to
deal with large-scale linguistic group decision making problems. The presented
system, which incorporates a client-server architecture that automates the con-
sensus reaching process to a high degree, is characterized by integrating the
group’s attitude towards consensus. The consensus model carries out processes
of Computing with Words based on the 2-tuple linguistic model to deal with lin-
guistic information provided by experts, thus preventing any loss of information.
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TIN-2012-31263 and ERDF.
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Abstract. Qualitative Reasoning is a branch of Artificial Intelligence
that automates the reasoning about the behavior of physical systems
by using qualitative rather than precise quantitative information. An
approach in this field is Order-of-magnitude Reasoning which deals with
coarse values of different orders of magnitude which are abstractions of
precise values. Several multimodal logics has been introduced to deal with
Orders-of-magnitude systems proving their correctness and completeness
although their decidability has been scarcely studied. In this paper we
focus our attention on this problem showing that a pioneering logic in
this area has the strong model property.

Qualitative Reasoning (QR) is a branch of Artificial Intelligence that auto-
mates the reasoning about the behavior of physical systems by using qualitative
rather than precise quantitative information. QR offers a representation of real
world close to human patterns where quantitative reasoning is not so important
to make decisions. An approach in this field is Order-of-magnitude Reasoning
(OMR) which deals with coarse values of different orders of magnitude which are
abstractions of precise values. Two approaches to order of magnitude reasoning
can be identified: Absolute Order of Magnitude (AOM) and Relative Order of
Magnitude (ROM) models. In AOM reasoning each element belongs to a qual-
itative class. It is usual to consider some specific real numbers as landmarks to
divide the real line into equivalence classes. For instance, in [7] these classes are
denoted by “negative large” (NL), “negative medium” (NM), “negative small”
(NS), “zero” ([0]), “positive small” (PS), “positive medium” (PM) and “positive
large”(PL). On the other hand, ROM reasoning introduces a family of binary
order of magnitude relations which establish different comparison relations be-
tween numbers. The seminal work was the formal system introduced in [8], based
on three basic relations, used to represent the intuitive concepts “negligibility”,
“closeness” and “comparability”. However, both approaches AOM and ROM rea-
soning have been integrated in [9, 10], where an absolute partition is combined
with a set of comparison relations between real numbers.

The first logic to deal with order of magnitude reasoning was introduced in [1],
a multimodal logic considered in the context of a mixed approach where the set
of values is merely a subset of the real numbers and with a designed number α
so that −α and +α serves to delimit the qualitative classes:
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OBS INF OBS

α α+

+

−

−

In the picture, −α and +α are used to build the qualitative classes of “positive
observable” (OBS+), “negative observable” (OBS−) and “non-observable” (also
called infinitesimal) numbers (INF). This choice makes sense, in particular, when
considering physical metric spaces in which we always have a smallest unit which
can be measured; however, it is not possible to identify a least or greatest non-
observable number. We can make comparisons between these sets of numbers by
using binary relations such as x is less than y (x < y) and x is less than and
comparable to y (x � y). This approach was extended in [2] by introducing a
negligibility relation x is negligible w.r.t. y (x ≺ y). The notion of negligibility
used in that paper is directional, that is, negligible numbers are always to the
left, so a negligible number with respect to a given number x is smaller than x.
Later on, a multimodal logic with a notion of bidirectional negligibility (where
the sign of the numbers is not taken into account) was introduced in [4] and
others magnitude relations as non-closeness and distance were introduced in [5].
In [4] neglibility relation is defined exclusively in terms of qualitative classes.
Thus a number x is negligible with respect to a number y if and only if either
x = 0 or both x is small and y is large (independently of their signs). In contrast,
in [2] neglibility relation may even exist between two numbers of the same class
unless both belong to INF.

Much work has been done on the completeness of this kind of logics but little
in the study of their decidability. Until very recently the only work appeared
on this subject was [3], where a decision procedure based on tableau calculus
was developed but only for a fragment of the logic proposed in [1]. After that,
the first result about the decidability of an entire logic on order-of-magnitude
reasoning is [6]. In that paper the decidability of the logic proposed in [4] has
been proved showing that it has the strong finite model property. In this paper
we focus our attention on the decidability of the logic proposed in [2] proving
that it has the same property.

1 Logic L(MQ)N

In our syntax we will consider the connectives
−→� and

←−� to deal with the usual

ordering <, the connectives
−→� and

←−� to deal with � and the connectives
−→�n

and
←−�n to deal with ≺. The intuitive meanings of each modal connective is as

follows:
−→�A: A is true for all number greater than the current one.−→�A: A is true for all number greater than and comparable to the current one.←−�A: A is true for all number less than the current one.←−�A: A is true for all number less than and comparable to the current one.−→�n A: A is true for all number from which the current one is negligible.←−�n A: A is true for all number which is negligible from the current one.
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The alphabet of the language of L(MQ)N is defined by using a stock of
atoms or propositional variables, V , the classical connectives ¬,∧,∨ and →, the

constants � and ⊥, the unary modal connectives
−→� ,

←−� ,
−→� ,

←−� ,
−→�n and

←−�n ,
the constants α+ and α− and the auxiliary symbols: (, ). L(MQ)N -formulas
are generated from V ∪ {α+, α−,�,⊥} by the construction rules of classical
propositional logic by adding the following rule: If A is a formula, then so are−→�A,

←−�A,
−→�A,

←−�A,
−→�n A and

←−�n A. The mirror image of A is the result of

replacing in A each occurrence of
−→� ,

←−� ,
−→� ,

←−� ,
−→�n , ←−�n , α+, α− by

←−� ,
−→� ,

←−� ,−→� ,
←−�n , −→�n , α−, α+, respectively. We will use the symbols

−→♦ ,
←−♦ ,

−→
 ,
←−
 ,

−→♦n and←−♦n as abbreviations respectively of ¬−→�¬, ¬←−�¬, ¬−→�¬, ¬←−�¬, ¬−→�n ¬ and ¬←−�n ¬.
Definition 1. An L(MQ)N -frame is a tuple Σ = (S,+α,−α,<,≺), where
1. S is a non empty set of points and < a binary relation of strict linear order

on S 1.
2. +α and −α are designated points in S (called frame constants) and allow to

form the sets Obs+, Inf, and Obs− that are defined as follows:

Obs− = {x ∈ S | x ≤ −α}, Inf = {x ∈ S | −α < x < +α},
Obs+ = {x ∈ S | +α ≤ x}.

3. ≺ is a restriction of <, i.e. ≺⊆<, and satisfies:
(i) If x ≺ y < z, then x ≺ z.
(ii) If x < y ≺ z, then x ≺ z.
(iii) If x ≺ y, then either x /∈ Inf or y /∈ Inf.

We will use x � y as an abbreviation of “x < y and x, y ∈ QC”, where QC ∈
{Inf,Obs+,Obs−}”.
Definition 2. Let Σ be an L(MQ)N -frame, we define an L(MQ)N - model on
Σ as an ordered pair M = (Σ, h), where h is a meaning function (or, interpre-
tation) h : V −→ 2S. Any interpretation can be uniquely extended to the set of all
formulas in L(MQ)N (also denoted by h) by means of the usual conditions for
the classical boolean connectives and the constants � and ⊥, and the following
conditions for the modal operators and frame constants:

h(
−→�A) = {x ∈ S | y ∈ h(A) for all y such that x < y}

h(
−→�A) = {x ∈ S | y ∈ h(A) for all y such that x � y}

h(
−→�n A) = {x ∈ S | y ∈ h(A) for all y such that x ≺ y}

h(
←−�A) = {x ∈ S | y ∈ h(A) for all y such that y < x}

h(
←−�A) = {x ∈ S | y ∈ h(A) for all y such that y � x}

h(
←−�n A) = {x ∈ S | y ∈ h(A) for all y such that y ≺ x}

h(α+) = {+α}
h(α−) = {−α}

1 That is, < is a relation on S : irreflexive (for all x ∈ S: x �< x), transitive (for all
x, y, z ∈ S: if x < y and y < z, then x < z) and connected (for all x, y ∈ S: either
x < y or x = y or y < x).
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The concepts of satisfiability, truth and validity of an L(MQ)N -formula are
defined as usual in modal logics.

2 Axiomatization of L(MQ)N

In this section we present a Hilbert-style axiomatization of L(MQ)N . In what
follows we will use the following abbreviations:

obs− =def
−→♦α− ∨ α−, inf =def

←−♦α− ∧ −→♦α+ and obs+ =def α+ ∨←−♦α+.

In our axiomatization we consider all the tautologies of classical propositional
logic together with the following axiom schemata and rules:

Axiom schemata for white connectives:

K1
−→�(A→ B)→ (

−→�A→ −→�B)

K2 A→ −→�←−♦A
K3

−→�A→ −→�−→�A
K4

(−→�(A ∨B) ∧−→�(
−→�A ∨B) ∧ −→�(A ∨ −→�B)

)
→
(−→�A ∨ −→�B

)
Axiom schema for

−→� :

C1
−→�(A→ B)→ (

−→�A→ −→�B)

Mixed axiom:

M1
−→�A→ −→�A

Axiom schemata for constants, Axiom schemata for
where ξ ∈ {α+, α−} neglibility

c1
←−♦ ξ ∨ ξ ∨−→♦ ξ N1

−→�n (A→ B)→ (
−→�n A→ −→�n B)

c2 ξ → (
←−�¬ξ ∧ −→�¬ξ) N2 A→ −→�n ←−♦n A

c3 α− → −→♦α+ N3
−→�A→ −→�n A

c4 α− → −→�A N4
−→�n A→ −→�−→�n A

c5
−→♦α− → −→�obs− N5

−→�n A→ −→�n −→�A
c6

−→�A→ −→�(obs− → A) N6 inf→ −→�n obs+
c7 inf→ −→� inf
c8 (inf ∧ −→�A)→ −→�(inf→ A)

c9 (obs+ ∧−→�A)→ −→�A

We also consider as axioms the corresponding mirror images of all the axioms.
Rules of inference:

(MP) Modus Ponens for →.

(N
−→�) If � A then � −→�A, (N

←−� )] If � A then � ←−�A.

Theorem 1. Every L(MQ)N -formula A is L(MQ)N -valid iff it is L(MQ)N -
provable.

For the proof see [2].
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3 Decidability

In this section we focus our attention on decidability of L(MQ)N logic. For this
end, we will follow the strategy of [6]. First, we have to show the soundness
and completeness of the axiomatization of L(MQ)N with respect to a class of
models weaker than the L(MQ)N -models defined above, called “quasi L(MQ)N -
models”. Then applying the filtration method, we show that each formula satisfi-
able in a quasi L(MQ)N -model is satisfiable also in a finite quasi L(MQ)N -model
with at most a given size. This means that L(MQ)N logic has the strong finite
model property which imply its decidability.

Definition 3. A quasi L(MQ)N -frame is a tuple Σ = (S,+α,−α,<,≺), where
S is a non empty set of points, < is a transitive and connected relation on S, +α
and −α are designated points in S with the properties: +α ≮ +α, −α ≮ −α and
−α < +α. With the help of these points we build the sets Obs−, Inf and Obs+

as in Definition 1. Finally, the relation ≺ satisfies the conditions of item 3 of
the Definition 1. A quasi L(MQ)N -model on Σ is an ordered pair M = (Σ, h),
where h is a meaning function defined as in Definition 2.

The notions of satisfiability, truth and validity of an L(MQ)N -formula are the
same as in L(MQ)N -models. In what follows quasi L(MQ)N -models are referred
to as L(MQ)N∗ -models. Now we have the following proposition:

Proposition 1. For every L(MQ)N -formula A, the following conditions hold:

1. If A is L(MQ)N∗ -valid, then it is L(MQ)N -valid.
2. If A is L(MQ)N -provable, then it is L(MQ)N∗ -valid.

Proof. Item 1 is a consequence of the fact that every L(MQ)N -model is an
L(MQ)N∗ -model. With respect to item 2 it is sufficient to prove that all the
axioms are valid in L(MQ)N∗ -models and all the rules preserve L(MQ)N∗ -validity.
For space reasons we omit the proof.

As a result of Theorem 1 and Proposition 1 we have the following theorem:

Theorem 2. For every L(MQ)N -formula A, the following conditions are equiv-
alent: (i) A is L(MQ)N -valid, (ii) A is L(MQ)N∗ -valid, and (iii) A is L(MQ)N -
provable.

Theorem 2 allows us to focus our attention on the L(MQ)N∗ -models. Next we
show that all L(MQ)N∗ –satisfiable formula A is satisfiable in a finite L(MQ)N∗ -
model. As a preliminary question we will eliminate black operators rewriting
L(MQ)N -formulas. To do this we establish the following proposition:

Proposition 2. The following L(MQ)N -formulas are L(MQ)N -valid:

1.
−→�A↔

((−→♦α−∧−→�(obs− → A)
)
∨α−∨

(
inf→ −→�(inf→ A)

)
∨
(
obs+∧−→�A

))
.

2.
←−�A↔

((
obs−∧←−�A)∨

(
inf→←−�(inf→ A)

)
∨α+∨

(←−♦α+∧←−�(obs+ → A)
))

.
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In what follows we will consider a language containing only primitive operators
(without black squares) and the constants obs−, inf and obs+. We start with the
following definition:

Definition 4. Let A be an L(MQ)N -formula written only in terms of the prim-
itive operators (without black squares). Define

A∗ =def A ∧
(
obs− ∨ inf ∨ obs+

)
∧

∧
ξ∈{α−,α+}

(ξ → −→�¬ξ)

Because (obs− ∨ inf ∨ obs+
)
∧
∧

ξ∈{α−,α+}(ξ → −→�¬ξ) is an L(MQ)N∗ –valid

formula, then A is L(MQ)N∗ –satisfiable if and only if A∗ is L(MQ)N∗ -satisfiable.
This allows us to prove for a given L(MQ)N∗ –satisfiable formula A that it is
satisfiable in a finite L(MQ)N∗ -model by proving that A∗ is. In what follows we
use Γ to denote a set closed under subformulas for some formula A∗ as described
above. Consider any L(MQ)N∗ -modelM = (S,+α,−α,<,≺, h). Take x ∼Γ y iff
{B ∈ Γ : x ∈ h(B)} = {B ∈ Γ : y ∈ h(B)}. Clearly ∼Γ is an equivalence relation
on S. So, for every x ∈ S we define [x] = {y ∈ S : y ∼Γ x}, that is, [x] is the
equivalence class of x determined by ∼Γ . Now we define the filtration model.

Definition 5. Let M = (S,−α,+α,<,≺, h) be an L(MQ)N∗ -model. We define
a filtration model of M through Γ (a Γ -filtration of M, for short) as a structure
of the form MΓ = (SΓ ,+αΓ ,−αΓ , <Γ ,≺Γ , hΓ ), where:

1. SΓ = {[x] : x ∈ S}.
2. +αΓ = [+α] and −αΓ = [−α].
3. <Γ ⊆ SΓ × SΓ , so that for every [x], [y] ∈ SΓ we have [x] <Γ [y] iff:

– for every
−→�A ∈ Γ : if x ∈ h(

−→�A), then y ∈ h(A) ∩ h(
−→�A);

– for every
←−�A ∈ Γ : if y ∈ h(

←−�A), then x ∈ h(A) ∩ h(
←−�A);

– for every
−→�n A ∈ Γ : if x ∈ h(

−→�n A), then y ∈ h(
−→�n A);

– for every
←−�n A ∈ Γ : if y ∈ h(

←−�n A), then x ∈ h(
←−�n A).

4. ≺Γ ⊆ SΓ × SΓ , so that for every [x], [y] ∈ SΓ we have [x] ≺Γ [y] iff:

– for every [+]A ∈ Γ : if x ∈ h([+]A), then y ∈ h(A) ∩ h(
−→�A);

– for every [−]A ∈ Γ : if y ∈ h([−]A), then x ∈ h(A) ∩ h(
←−�A);

– if x ∈ h(inf), then y ∈ h(obs+);
– if y ∈ h(inf), then x ∈ h(obs−);

being [+] ∈ {−→� ,
−→�n } and [−] ∈ {←−� ,

←−�n }.
5. hΓ (p) = {[x] : x ∈ h(p)}, for every atom p ∈ Γ (if p /∈ Γ , hΓ (p) = ∅).

Remark 1. Observe that every element in an equivalence class of the filtration
model belongs to the same qualitative class, that is, given x, y ∈ S such that
y ∈ [x] we have: x ∈ QC iff y ∈ QC. For instance, take QC = Obs−. It is
easy to see that x ∈ Obs− iff x ∈ h(obs−). Since obs− ∈ Γ and y ∼Γ x, hence
x ∈ Obs− iff y ∈ Obs−.

Remark 2. From the construction of the model MΓ we obtain that the size of
SΓ is bounded by 2|A

∗|, where | A∗ | is the length of the formula A∗.
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Proposition 3. Let MΓ = (SΓ ,+αΓ ,−αΓ , <Γ ,≺Γ , hΓ ) be a Γ -filtration of an
L(MQ)N∗ -model M = (S,−α,+α,<,≺, h). Then for every x, y ∈ S:

1. If x < y, then [x] <Γ [y].
2. If x ≺ y, then [x] ≺Γ [y].

Proof. For 1. Let x < y be. Consider
−→�A ∈ Γ and x ∈ h(

−→�A), then y ∈ h(A)

and by the validity of
−→�A→ −→�−→�A (axiom K3), we obtain also x ∈ h(

−→�−→�A),

hence y ∈ h(
−→�A). Similarly, if

←−�A ∈ Γ and y ∈ h(
←−�A) we obtain x ∈ h(A) ∩

h(
←−�A). On the other hand, if

−→�n A ∈ Γ and x ∈ h(
−→�n A), because −→�n A→ −→�−→�n A

(axiom N4) is valid, then x ∈ h(
−→�−→�n A) and so y ∈ h(

−→�n A). If ←−�n A ∈ Γ and

y ∈ h(
←−�n A), we obtain in a similar way x ∈ h(

←−�n A). This completes the proof of
[x] <Γ [y].

For 2. Let x ≺ y be. Then x < y, since ≺⊆<. So, as in the previous case, if−→�A ∈ Γ and x ∈ h(
−→�A) then y ∈ h(A) ∩ h(

−→�A). A similar result is obtained

for
←−�A ∈ Γ . On the other hand, assume

−→�n A ∈ Γ and x ∈ h(
−→�n A). Then

y ∈ h(A); moreover, since
−→�n A→ −→�n −→�A (axiom N5) is valid, then x ∈ h(

−→�n −→�A),

hence y ∈ h(
−→�A). We proceed in a similar way if

←−�n A ∈ Γ . Let x ∈ h(inf)

be, since the formula inf → −→�n obs+ is valid (axiom N6), then x ∈ h(
−→�n obs+)

and so y ∈ h(obs+). Finally, if y ∈ h(inf) we can obtain in a similar way that
x ∈ h(obs−). This completes the proof of [x] ≺Γ [y]. qed

Proposition 4. If MΓ = (SΓ ,+αΓ ,−αΓ , <Γ ,≺Γ , hΓ ) is a Γ -filtration of an
L(MQ)N∗ -model M = (S,+α,−α,<,≺, h), then MΓ is an L(MQ)N∗ -model.

Proof. (1) First we have to prove that<Γ is a transitive and connected relation.
The transitivity is an immediate consequence of the definition of <Γ and the
connectedness comes from the fact that < is connected and Proposition 3(1).
(2) +αΓ (= [−α]) and −αΓ (= [+α]) are designated points in SΓ . For these
we have:

(a) [−α] <Γ [+α], (b) [−α] 	<Γ [−α], (c) [+α] 	<Γ [+α].

(a) is an immediate consequence of −α < +α and the Proposition 3(1). With
respect to (b) assume the contrary, that is, [−α] <Γ [−α]. Now, given −α ∈
h(α−) and the validity of α− → −→�¬α−, we obtain −α ∈ h(

−→�¬α−). So, taking

into account that
−→�¬α− ∈ Γ and the assumption, then −α ∈ h(¬α−), that is,

−α /∈ h(α−), a contradiction. The proof of (c) is similar. So we can build the
sets Obs−Γ , InfΓ and Obs+Γ as follows:

Obs−Γ = {[x] ∈ SΓ : [x] ≤Γ [−α]}, InfΓ = {[x] ∈ SΓ : [−α] <Γ [x] <Γ [+α]},
Obs+Γ = {[x] ∈ SΓ : [+α] ≤Γ [x]}. 2

2 It should be noticed that the symbol ≤Γ does not denote necessarily an antisym-
metric relation. It is used as an abbreviation for <Γ and = in an standard way,
where <Γ is only a transitive and connected relation. Moreover, in the context of
L(MQ)N∗ -models ≤ is used with the same meaning.
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Now we prove that this definition is well established, that is:

(a) For every [x] ∈ SΓ : [x] ∈ Obs−Γ ∪ InfΓ ∪Obs+Γ .
(b) The sets Obs−Γ , InfΓ and Obs+Γ are pairwise disjoint.
(c) For every [x] ∈ Obs−Γ , [y] ∈ InfΓ and [z] ∈ Obs+Γ , hold [x] <Γ [y] <Γ [z].

The condition (a) is a consequence of the Proposition 3(1) and the fact: x ∈
Obs− ∪ Inf ∪ Obs+. For condition (b) assume [x] ∈ Obs−Γ ∩ InfΓ in order
to reach a contradiction. From this assumption we have both [x] ≤Γ [−α] and
[−α] <Γ [x] <Γ [+α]. If [x] = [−α], then [−α] <Γ [−α], a contradiction. If
[x] <Γ [−α], we obtain the same result by transitivity of <Γ . In a similar way
we can prove that InfΓ ∩Obs+Γ andObs−Γ ∩Obs+Γ are empty sets. The condition
(c) is an immediate consequence of transitivity of <Γ .

(3) Next we prove ≺Γ ⊆<Γ . Assume [x] ≺Γ [y]. Let
−→�A ∈ Γ and x ∈ h(

−→�A)

be; then it is immediate that y ∈ h(A) ∩ h(
−→�A). The case for

←−�A ∈ Γ is

analogous. On the other hand, if
−→�n A ∈ Γ and x ∈ h(

−→�n A), then y ∈ h(
−→�A),

and by the validity of
−→�A → −→�n A (N3), we obtain y ∈ h(

−→�n A). The case for
←−�n A ∈ Γ is analogous. Hence [x] <Γ [y].

In what follows will be useful take into account the following properties about
the sets Obs−Γ , InfΓ and Obs+Γ . For any x ∈ S we have:

(†1) [x] ∈ Obs−Γ iff x ∈ h(obs−), (†2) [x] ∈ InfΓ iff x ∈ h(inf),

(†3) [x] ∈ Obs+Γ iff x ∈ h(obs+).

To prove these properties we can prove first the conditions listed below. For
every x ∈ S:

(∗1) If [x] ≤Γ [−α], then x ≤ −α, (∗3) If [x] <Γ [+α], then x < +α,
(∗2) If [−α] <Γ [x], then −α < x, (∗4) If [+α] ≤Γ [x], then +α ≤ x.

For (∗1). Suppose that [x] ≤Γ [−α] and −α < x in order to reach a contradiction.
By Proposition 3(1) we get [−α] <Γ [x], and from this and the assumption we
easily obtain [−α] <Γ [−α], which is impossible. The remaining cases are proved
in a similar way.

Now consider (†1) as an example: [x] ∈ Obs−Γ iff [x] ≤Γ [−α] iff x ≤ −α (by
using Proposition 3(1) and (∗1)) iff x ∈ h(obs−).

(4) Next we prove that if [x] ≺Γ [y] <Γ [z], then [x] ≺Γ [z]. Assume [x] ≺Γ

[y] <Γ [z]. Now, since [x] ≺Γ [y], if
−→�A ∈ Γ and x ∈ h(

−→�A), then y ∈ h(
−→�A),

and since [y] <Γ [z] then z ∈ h(A) ∩ h(
−→�A). The case for

←−�A ∈ Γ is similar.

Now consider
−→�n A ∈ Γ and x ∈ h(

−→�n A), then, given [x] ≺Γ [y], we obtain

y ∈ h(
−→�A) and, given [y] <Γ [z], we get z ∈ h(A) ∩ h(

−→�A). We proceed

similarly if
←−�n A ∈ Γ . Now, given [x] ≺Γ [y], if x ∈ h(inf), then y ∈ h(obs+), so

by (†3) above we have [y] ∈ Obs+Γ , and given [y] <Γ [z], then [z] ∈ Obs+Γ , and
so by (†3) again we get z ∈ h(obs+). Moreover, if z ∈ h(inf), we can also obtain
x ∈ h(obs−). Thus [x] ≺Γ [z].
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(5) Next we prove that if [x] <Γ [y] ≺Γ [z], then [x] ≺Γ [z]. Assume [x] <Γ

[y] ≺Γ [z]. Now, because [x] <Γ [y], if
−→�A ∈ Γ and x ∈ h(

−→�A), then y ∈ h(
−→�A)

and, since [y] ≺Γ [z], we obtain z ∈ h(A) ∩ h(
−→�A). The case for

←−�A ∈ Γ is

similar. Now, since [x] <Γ [y], if
−→�n A ∈ Γ and x ∈ h(

−→�n A), then we have

y ∈ h(
−→�n A) and, since [y] ≺Γ [z], we obtain z ∈ h(A) ∩ h(

−→�A). If
←−�n A ∈ Γ ,

we proceed in a similar way. If x ∈ h(inf), then by (†2) [x] ∈ infΓ , and given
[x] <Γ [y] we get [y] ∈ InfΓ ∪Obs+Γ , thus y ∈ h(inf)∪ h(obs+) by (†2) and (†3).
In this case, if y ∈ h(inf), as [y] ≺Γ [z], then z ∈ h(obs+). If y ∈ h(obs+), then
by (†3), [y] ∈ Obs+Γ and as [y] ≺Γ [z], then [y] <Γ [z] (since ≺Γ ⊆<Γ ), thus
z ∈ Obs+Γ , and by (†3) z ∈ h(obs+). On the other hand, we can also prove that
if z ∈ h(inf), then x ∈ h(obs−). Thus [x] ≺Γ [z].

(6) Finally we prove that [x] ≺Γ [y] implies either [x] /∈ InfΓ or [y] /∈ InfΓ .
Assume [x] ≺Γ [y] and [x] ∈ InfΓ , that is, x ∈ h(inf), by (†2). So, given [x] ≺Γ

[y], we have y ∈ h(obs+), then y /∈ h(inf) and, by (†2), we finally get [y] /∈
InfΓ . qed

Proposition 5. Let (SΓ ,+αΓ ,−αΓ , <Γ ,≺Γ , hΓ ) be a Γ -filtration of an
L(MQ)N∗ -model (SΓ ,+α,−α,<,≺, h). Then, for every A ∈ Γ and for every
x ∈ S we have:

x ∈ h(A) if and only if [x] ∈ hΓ (A).

Proof. The proof is by induction on the lenght of A. As a way of example, let

A be of the form
−→�n B. Suppose that the proposition holds for B (induction

hypothesis). Now assume x ∈ h(
−→�n B) and consider [y] ∈ SΓ such that [x] ≺Γ [y].

Then, as
−→�n B ∈ Γ , y ∈ h(B) and, by the induction hypothesis, [y] ∈ hΓ (B).

Hence [x] ∈ hΓ (
−→�n B). Reciprocally, assume [x] ∈ hΓ (

−→�n B) and let y ∈ S be
such that x ≺ y. Thus, by Proposition 3(2), [x] ≺Γ [y]. Now by the assumption,

[y] ∈ hΓ (B), and by the induction hypothesis, y ∈ h(B). Thus x ∈ h(
−→�n B). qed

The proof of the following proposition is straightforward.

Proposition 6. Let A be an L(MQ)N - formula satisfied in an L(MQ)N∗ -model
M by a point x in M. Let Γ be the set of subformulas of A∗ and MΓ a Γ -
filtration of M, then A is satisfied in the L(MQ)N∗ -model MΓ by [x].

Recall that a logic L has the strong finite model property whenever an L- formula
A is satisfiable in an in an L-model, then there is a computable function f such
that A is satisfiable in an L-model of size at most f(|A |). Now we can state the
following result:

Theorem 3 (Strong Finite Model Property). The logic L(MQ)N has the
strong finite model property.

Proof. From Remark 2 and Proposition 6. qed

Finally, taking into account that, for all L(MQ)N -formula A, we can generate
all finite L(MQ)N∗ -models with size at most 2|A

∗|, then by a standard argument
using the previous theorem we finally get:

Theorem 4 (Decidability). The logic L(MQ)N is decidable.
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4 Conclusions and Future Work

In this paper we have proved the decidability of a multimodal logic for order-of-
magnitude qualitative reasoning introduced in [2] called L(MQ)N . This result
is achieved by using the filtration method proving that this logic has the finite
strong model property. As future task we will develop a decision procedure for
L(MQ)N based on tableau method and a study of the complexity of this logic.
Moreover, there are other logics than L(MQ)N dealing with order-of-magnitude
reasoning whose decidability is not solved and our intention is to tackle this
problem also in next works.
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Abstract. Many efforts have been done recently proposing new intelligent re-
sampling methods as a way to solve class imbalance problems; one of the main 
challenges of the machine learning community nowadays. Usually the purpose 
of these methods is to balance the classes. However, there are works in the lit-
erature showing that those methods can also be suitable to change the class dis-
tribution of not so imbalanced and even balanced databases, to a distribution 
different to 50% and significantly improve the outcome of the learning process. 
The aim of this paper is to analyse which resampling methods are the most 
competitive in this context. Experiments have been performed using 29 data-
bases, 8 different resampling methods and two learning algorithms, and have 
been evaluated using AUC performance metric and statistical tests. The results 
show that SMOTE, the well-known intelligent resampling method, is one of the 
best candidates to be used, improving the results obtained by some of its vari-
ants that are successful in the context of class imbalance. 

Keywords: Optimal class distribution, class imbalance problems, resampling 
methods, SMOTE. 

1 Introduction 

Class imbalance problem is considered one of the emerging challenges in the machine 
learning area [11, 17, 23]. In class imbalance problems, the number of examples of 
one class (minority class) is much smaller than the number of examples of the other 
classes, with the minority class being the class of greatest interest and that with the 
biggest error cost from the point of view of learning. 

One of the approaches used to deal with class imbalance problems, called data ap-
proach, consists of resampling (subsampling or oversampling) the data in order to 
balance the classes before building the classifier. This approach is independent of the 
learning algorithm used and most of the research has been done in this direction [5, 9, 
18]. One of the most popular data approaches is SMOTE [6]: an intelligent oversam-
pling technique to synthetically generate more minority class examples. A broad 
analysis and comparison of some variants can be found in [4, 13]. 
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Although resampling methods are usually addressed to solve class imbalance prob-
lems, Weiss and Provost [20] showed that there is usually a class distribution different 
to that appearing in the data set, with which better results are obtained. 

Based on Weiss and Provost’s work, Albisua et al. [1] confirmed that changes in 
the class distribution of the training samples improve the performance of the classifi-
ers. However, in contrast to what Weiss and Provost pointed out in their work, they 
found that the optimal class distribution depends on the learning algorithm used (even 
if there are decision tree learners using the same split criteria, such as C4.5 and CTC) 
and also on whether or not the trees are pruned. Later, the same authors proposed in 
[2] an approach for enhancing the effectiveness of the learning process that combines 
the use of resampling methods with the optimal class distribution (instead of balanc-
ing the classes). It should be noted that the use of this approach is not restricted to 
imbalanced data sets but can be applied to any data set (imbalanced or not) in order to 
improve the results of the learning process. The authors demonstrated that 50% is not 
always the optimal class distribution even when intelligent resampling methods are 
used. The authors proposed a methodology able to find a class distribution that  
obtains better results than the balanced one with statistically significant differences (in 
many cases) for eight resampling methods and two learning algorithms. The experi-
ments described in their work confirm that an optimal class distribution exists, but 
that it depends not only on the data’s characteristics but also on the algorithm and on 
the resampling method used. 

However, in the mentioned work there is a question that remains unanswered and 
we will try to answer in this work: when using C4.5 and PART to solve a real world 
problem, which of the 8 evaluated resampling methods and class distribution are the 
best for the concrete problem? 

The work presented in this paper tries to answer the previous question based on ex-
periments performed with 29 real problems (balanced and imbalanced ones) extracted 
from the UCI Repository benchmark [3] using 8 different resampling methods, C4.5 and 
PART algorithms and the AUC performance measure. For estimating performance we 
used a 10-fold cross-validation methodology executed five times (5x10CV). Finally, we 
used the non-parametric statistical tests proposed by Demšar in [8] and García et al. in 
[14] and [15] to evaluate the statistical significance of the results. 

Section 2 provides a brief description of the resampling methods, algorithms and 
performance metric to be used. In Section 3 we describe the experimental methodol-
ogy used to corroborate the previously mentioned hypothesis and in Section 4 we 
present an analysis of the experimental results. Finally, in Section 5 we summarize the 
conclusions and suggest further work. 

2 Resampling Methods, Algorithms and Performance Metrics 

In this section we briefly describe some of most popular and interesting resampling 
methods used to tackle the class imbalance problem found in bibliography, the two  
algoritms (C4.5 and PART) and the performance metric used to evaluate the classifiers. 
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According to resampling methods, random subsampling and random oversampling 
can be considered as baseline methods because they are the simplest methods and 
they do not use any kind of knowledge about the data set. In contrast, the rest of the 
methods can be considered as intelligent methods. Random subsampling (SUB) con-
sists of erasing randomly selected examples from the majority class whereas random 
oversampling (OVER) consists usually in replicating randomly selected examples of 
the minority class to balance the training data [4]. 

SMOTE (SMT) (Synthetic Minority Oversampling TEchnique) [6] is an over-
sampling algorithm where the minority class is oversampled to generate new synthetic 
examples. The basic idea is to generate new synthetic examples that are located be-
tween each of the minority class examples and one of its k nearest neighbours com-
bining their feature vectors.  

In Borderline-SMOTE1 (SMT1) and Borderline-SMOTE2 (SMT2) [16] only the 
borderline minority examples are oversampled. The minority class examples will be 
considered to be in the borderline if more than half of their m nearest neighbours  
belong to the majority class. The Borderline-SMOTE1 option uses just the minority 
class neighbours of the borderline examples to generate the synthetic examples, 
whereas the Borderline-SMOTE2 option uses all the neighbours (minority and major-
ity class).  

Wilsons Edited Nearest Neighbour Rule (ENN) [21] is a cleaning algorithm that 
removes an example if it could be misclassified by its three nearest neighbours, eras-
ing those examples having at least two of their three nearest neighbours belonging to 
the other class. The class distribution of the final sample cannot be chosen. 

SMOTE-ENN (SMTN) is a combination of the oversampling method SMOTE and 
the cleaning algorithm ENN to be applied to the oversampled training set. The aim is 
to reduce the overfitting risk in the classifier. This method achieve very good results 
for data sets with few minority examples and it is considered as a reference method by 
some authors [4, 13]. 

ENN-SMOTE (NSMT) is a variant of SMOTE-ENN proposed in [2] where the 
cleaning process is done before applying SMOTE, and, as a consequence, it has a 
lower computational cost. 

The resampling methods have been tested in two algorithms: C4.5 [19], one of the 
top 10 algorithms in data mining in the IEEE International Conference in Data Mining 
held in 2006 [22], and PART [12], a supervised learning algorithm that builds a rule 
set designed with the aim of combining the capacities of C4.5 and Ripper [7]. 

Finally, since accuracy (Acc) and error rate (Err = 1-Acc) are strongly biased in favour 
of the majority class, we used a metric based on the confusion matrix: AUC (Area Under 
ROC Curve), a graphical representation to compare TP rate and FP rate while changing 
the decision threshold of an example to belong to a class. The AUC metric [10] is one of 
the most used metrics in the bibliography for class imbalance problems. 

3 Experimental Methodology 

Inspired by the work presented by Albisua et al. in [2], the aim of this work is to find 
the best resampling method and class distribution to solve a concrete real problem. 
The authors presented in their paper a methodology able to find a class distribu-tion 
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that obtains better results than the balanced one for 29 databases with eight resam-
pling methods and two learning algorithms and we experimented with the same data-
bases, class distributions, resampling methods and algorithms they proposed.  

Experiments were performed with 29 two-class (all databases with more than two 
classes were transformed to two-class problems) real problems, all belonging to the 
UCI Repository benchmark [3]. The 29 databases have different class distribution 
ranges. There are 4 databases where the minority class examples are less than 10%, 9 
databases where they are between 10% and 25%, 10 databases between 25% and 40% 
and 6 databases with more than 40%.   

A 10-fold cross-validation methodology was used five times (5x10CV) to estimate 
the generalization capacity of the classifiers based on the AUC performance metric. 
The proposals were evaluated for 8 different resampling methods: the 7 resampling 
methods described in Section 2, (SUB, OVER, SMT, SMT1, SMT2 and SMTN and 
NSMT) and an additional version of SUB, SUBo. In SUBo the size of the samples is 
limited by the number of examples of the minority class (in average 27.64% of the 
training samples) based on Weiss and Provost’s methodology [20]. In this work the 
size was limited to be able to evaluate a wide range of different values of the minority 
class distribution, from 2% to up 98%, and to make the comparison as fair as possible. 
Moreover, SUB was also used without size limitations i.e. randomly erasing selected 
examples from one of the classes only until the desired class distribution is achieved. 
When it is used to balance the sample, the size is the double of the size obtained with 
SUBo, i.e. 55.28%, in average. 

On the other hand, for each of the folds and resampling methods, samples were 
generated for the three class distributions proposed in [2]: 

• ocd: optimal class distribution, i.e., the class distribution obtaining the best results 
when samples were generated with SUBo, as Weiss and Provost did.  

• orm: optimal class distribution for each of the resampling methods. Obtained ex-
ploring values around ocd: the next value (ocd+10%) and the previous value (ocd-
10%). 

• bal: balanced class distribution. 

Aware of the important role randomness plays in every resampling method, from 
each training sample in the 5x10CV, 50 samples for each method and class distribu-
tion were generated.  

The SMOTE-ENN method is an exception; in this case we generated a single sam-
ple, instead of 50. In order to apply this method 50 times, we had to recalculate a new 
distance matrix for each sample generated with SMOTE and then apply ENN. This 
caused problems with disk space and extended the experimental time. 

These samples were used to build C4.5 and PART classifiers. When testing them, 
the corrector (oversampling ratio) proposed by Weiss & Provost to adapt the induced 
model to the distribution expected in reality was used.  

As we previously indicated AUC was the performance metric selected to determine 
the best classifiers in the experiments. Moreover, the nonparametric tests proposed by 
Demšar in [8] and García et al. in [14] and [15]  were used to evaluate the statistical 
significance of the results. 
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4 Experimental Results 

Table 2 shows the results, as AUC average values of the 29 datasets, for the two algo-
rithms (PART in the upper part and C4.5 in the lower one), for the eight resampling 
strategies (by columns) and for the three class distribution values considered, bal, ocd 
and orm (by rows). Besides, the first column is added, ORIG, which contains the 
results obtained using the whole training sample to build the classifiers; i.e. without 
any resampling method (because of this the value is the same for the three rows). This 
is a reference value to evaluate whether or not it is worth using any resampling 
method. For each row (combination of an algorithm and a class distribution value), 
the results related to the best resampling method are marked in bold, while all the 
results that do not improve the results for ORIG have a grey background. 

Table 1. Mean values of AUC for each of the evaluated algorithms, resampling methods and 
class distributions used (orm, ocd and bal) 

  ORIG SUBo SUB OVER SMT SMT1 SMT2 SMTN NSMT 

PART orm 79.92 84.27 85.54 85.37 85.23 85.11 85.68 83.46 83.61 
 ocd 79.92 84.23 85.20 85.09 84.76 84.69 84.67 82.09 83.50 
 bal 79.92 84.11 85.52 84.84 84.44 84.48 84.78 83.97 83.45 

C4.5 orm 83.47 84.19 85.69 84.63 85.13 84.91 85.44 83.82 83.82 
 ocd 83.47 84.17 85.28 84.17 84.84 84.47 85.12 82.63 83.55 
 bal 83.47 83.97 85.62 84.18 84.80 84.42 84.96 84.15 83.29 

As it can be observed in Table 1, most of the results obtained using some resam-
pleng method are better than those obtained when any resampling method was used, 
ORIG (only for two cases the results were worse). On the other hand, in the most of 
the comparisons, the random subsampling method, SUB, was the strategy that ob-
tained the best results, except to for the case of the PART algorithm and the orm class 
distribution, where the best results were obtained by Bordeline-SMOTE1. 

However, if we calculate the average ranks for each combination of algorithm and 
class distribution value, the conclusion about what resampling method is better is 
different. This is because there are some datasets (e.g. abalone and sick_euthyroid, in 
the case of C4.5) which obtain much better GM values with SUB than with SMT but, 
however, SMT improves SUB in many more datasets. Fig. 1 shows graphically the 
average ranks obtained in order to be able to appreciate the distance between the ob-
tained values associated to each resampling method for each comparison. As can be 
observed, in four out of six cases, SMT is the method that achieved the best rank and 
only when the balanced class distribution was used, SUB achieved the first position. 
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Fig. 1.  Average ranks for each combination of algorithm and class distribution value 

Observing the results of Fig. 1, we want to notice the difference between the results 
of the two algorithms. On the one hand, the position obtained by ORIG (no resam-
pling method) always is the last for PART whereas it is an intermediate value (fourth 
or fifth rank) for C4.5, achieving better results than some resampling techniques as 
random subsampling (Weiss and Provost’s size) and oversampling; and the combina-
tions of SMOTE and ENN. On the other hand, the distance between the values of the 
average ranks is bigger for PART than for C4.5. As it is known, this will be crucial to 
find statistically significant differences in the performance of the compared resam-
pling strategies based on the modern non-parametric tests. 

We performed the statistical tests proposed by Demšar in [8] and García et al. in 
[14] and [15] in order to discover whether there are statistically significant differences 
among the resampling strategies applied to each comparison. Iman-Davenport test 
reported significant differences in the 6 comparisons. Then, we carried out a powerful 
post-hoc procedure, Shaffer test, to discover between which pairs of methods the 
significant differences appeared with a 95% significant level. Due to space limitation, 
we only will notice that, in the six comparisons, significant differences were found at 
least between the first and the last two options. In the case of PART, all resampling 
methods, except for SUBo and SMOTE-ENN (SMTN), achieved significant differ-
ences when comparing with the reference value, ORIG. However, for C4.5, any re-
sampling method achieved differences with ORIG. Besides, it is worth noticing that, 
referred to the two algorithms, more pairs of methods achieved significant differences 
when we used the ocd class distribution than when we used the bal value, and even 
more when we used the orm class distribution value. 
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Anyway, in order to simplify the empirical study and to focus on the methods and 
the class distribution values with better behaviour, we used a methodology based on 
hierarchical comparisons. In this way, associated to each algorithm, first we selected 
the three best resampling strategies for each value of class distribution (bal, ocd and 
orm) and, adding the option without using any resampling technique, ORIG, we per-
formed an analysis of statistically significant differences in order to determine which 
strategy has the best performance in this context. 

Table 2 shows the average ranks (and the rank position) obtained among all data-
sets for the selected resampling strategies in each algorithm. As it can be observed, 
SMOTE (SMT) when orm class distribution is used, is the best option (in bold) for 
the two algorithms, and, in this case, the option without using any resampling method, 
ORIG, is the worst (the 10th position) for the two algorithms. 

Table 2. Average ranks of the best resampling strategies related to each class distribution value 
and algorithm 

   bal   ocd   orm  
 ORIG SUB SMT SMT1 SMT OVR SUB SMT SMT2 SUB 

PART 
9.34 
(10) 

5.44 
(7) 

5.28 
(5) 

6.31 
(9) 

4.69 
(3) 

5.40 
(6) 

5.97 
(8) 

3.50 
(1) 

4.14 
(2) 

4.93 
(4) 

   
5.68 
(3) 

  
5.35 
(2) 

  
4.19 
(1) 

 

   bal   ocd   orm  
 ORIG SUB SMT SMT1 SMT SMT2 SUB SMT SMT2 SMT1 

C4.5 
6.74 
(10) 

5.50 
(4) 

5.91 
(8) 

6.21 
(9) 

5.69 
(5) 

5.90 
(7) 

5.84 
(6) 

3.97 
(1)

4.69 
(3) 

4.55 
(2) 

   
5.87 
(3) 

  
5.81 
(2) 

  
4.40 
(1) 

 

Besides, in the second row associated to each algorithm, the mean of the three av-
erage ranks belonging to each class distribution value. As it can be observed, for the 
two algorithms, the resampling techniques for the orm value are the best ones, then 
the obtained ones with ocd, and, finally, the obtained ones with the balanced class 
distribution, bal. 

Following with the analysis, we performed the previous mentioned statistical test 
in order to determine whether there are statistically significant differences between 
the results for each algorithm. Checking for significant differences using Iman-
Davenport, the p-value is near to zero, and so, we can proceed with a Shaffer test. 
Table 3 shows the results associated to a Shaffer test for the two algorithms where the 
adjusted p-value (APV) related to each pair of the comparison appears. Besides, a “+” 
implies that the option in the row is statistically better than the one in the column; 
whereas “-” implies the contrary; and “=” means that there are not significant differ-
ences. Results with significant differences appear with a grey background. Due to 
space limitation, Table 3 shows the results of the multiple comparison test but only 
for those options that achieved significant differences (the p-value of the remaining of 
the compared pairs is 1.0 or near). 
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Table 3. Shaffer test for the best resampling strategies for each class distribution value and 
algorithm 

PART   bal   ocd   orm  
 ORIG SUB SMT SMT1 SMT OVR SUB SMT SMT2 SUB 

ORIG x 
- 

3.4x10-5 

- 

1.1x10-5 

- 

0.0048

- 

1.7x10-7

- 

2.4x10-5

- 

7.6x10-4

- 

8.8x10-12

- 

2.1x10-9 

- 

1.0 x10-6 

orm 
SMT 

+ 

8.8x10-12

= 

0.4138 

= 

0.7399 

+ 

0.0147

= 

1.0 

= 

0.4948 

= 

0.0559 
x 

= 

1.0 

= 

1.0 

orm 
SMT2 

+ 

2.1x10-9

= 

1.0 

= 

1.0 

= 

0.1824

= 

1.0 

= 

1.0 

= 

0.6243 

= 

1.0 
x 

= 

1.0 

C4.5   bal   ocd   orm  
 ORIG SUB SMT SMT1 SMT SMT2 SUB SMT SMT2 SMT1 

ORIG x 
= 

1.0 

= 

1.0 

= 

1.0 

= 

1.0 

= 

1.0 

= 

1.0 

- 

0.0216 

= 

0.3552 

= 

0.2119 

orm 
SMT 

+ 

0.0216 

= 

1.0 

= 

0.5137 
= 

0.1734

= 

1.0 

= 

0.5455

= 

0.6515
x 

= 

1.0 

= 

1.0 

First, we can see the poor behaviour of the no-resampling method, ORIG, for the 
PART algorithm, since it is significantly outperformed by all analysed resampling 
strategies. On the other hand, in general terms, Table 3 suggests that SMOTE (SMT), 
when used with the orm class distribution value, is the only resampling strategy that 
achieves significant differences comparing with not using any resampling method, 
ORIG. 

Finally, although beyond the context of this work, with regard to the differences 
between behaviour of the two algorithms, no significant differences were found by the 
Iman-Davenport test using the three best strategies for each algorithm (with a p-value 
equal to 0.6012). 

5 Conclusions and Further Work 

cIn this work we used resampling techniques, which were designed to deal with class 
imbalance problems, to be applied to datasets we can consider they are not so imbal-
anced or even balanced. These resampling techniques are often used to balance the 
unbalance in the representation in the classes since this makes the learning process a 
more complex problem. In this work we used an approach proposed in [2] in order to 
estimate the (near-)optimal class distribution for a given resampling method, the orm 
value, whatever the original class distribution may be, being applied on 29 datasets, 8 
different resampling methods and two learning algorithms. The main aim of this work 
was to determine which was the best resampling method to solve a concrete classifi-
cation problem in a context where the datasets are not so imbalanced. 

Although random subsampling, one of the simplest and fastest methods, achieved 
competitive results, especially when used with balanced class distribution, the well-
known SMOTE, an intelligent oversampling method, used with the estimated optimal 
class distribution, was the only one which achieved statistically significant differences 
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comparing with the option without using any resampling strategy. Besides, in this 
context, SMOTE outperformed some its variants, as strategies based on the borderline 
minority examples or based on the combination with editing techniques, which have 
showed better results in the literature in the context of class imbalanced datasets. 
These results were confirmed by the two used algorithms: C4.5 and PART. 

As further work, we think it would be interesting to extend the experimentation 
with more resampling techniques and to confirm the results with more learning algo-
rithms. On the other hand, we are conscious that the quest of the optimal class distri-
bution for each dataset and selected resampling method could be improved. The use 
of optimization techniques would be of interest in order to improve the results to deal 
with a concrete learning problem. 
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Abstract. Traditionally, feature selection has been required as a pre-
liminary step for many pattern recognition problems. In recent years,
distributed learning has been the focus of much attention, due to the
proliferation of big databases, in some cases distributed across different
nodes. However, most of the existing feature selection algorithms were
designed for working in a centralized manner, i.e. using the whole dataset
at once. In this research, a new approach for using filter methods in a dis-
tributed manner is presented. The approach splits the data horizontally,
i.e., by samples. A filter is applied at each partition performing several
rounds to obtain a stable set of features. Later, a merging procedure is
performed in order to combine the results into a single subset of rele-
vant features. Five of the most well-known filters were used to test the
approach. The experimental results on six representative datasets show
that the execution time is shortened whereas the performance is main-
tained or even improved compared to the standard algorithms applied
to the non-partitioned datasets.

1 Introduction

In the past 20 years, the dimensionality of the datasets involved in data mining
has increased dramatically, as can be seen in [1]. This fact is reflected if one an-
alyzes the dimensionality (samples × features) of the datasets posted in the UC
Irvine Machine Learning Repository [2]. In the 1980s, the maximal dimensional-
ity of the data was about 100; then in the 1990s, this number increased to more
than 1500; and finally in the 2000s, it further increased to about 3 million. The
proliferation of this type of datasets with very high (> 10000) dimensionality
had brought unprecedented challenges to machine learning researchers. Learning
algorithms can degenerate their performance due to overfitting, learned models
decrease their interpretability as they are more complex, and finally speed and
efficiency of the algorithms decline in accordance with size.

Machine learning can take advantage of feature selection methods to be able
to reduce the dimensionality of a given problem. Feature selection (FS) is the
process of detecting the relevant features and discarding the irrelevant and re-
dundant ones, with the goal of obtaining a small subset of features that describes
properly the given problem with a minimum degradation or even improvement

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 121–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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in performance [3]. Feature selection, as it is an important activity in data pre-
processing, has been an active research area in the last decade, finding success
in many different real world applications [4,5,6,7].

FS methods usually come in three flavors: filter, wrapper, and embedded meth-
ods [8]. The filter model relies on the general characteristics of training data and
carries out the FS process as a pre-processing step with independence of the in-
duction algorithm. On the contrary, wrappers involve optimizing a predictor as
a part of the selection process. Halfway these two models one can find embedded
methods, which perform FS in the process of training and are usually specific to
given learning machines. By having some interaction with the predictor, wrapper
and embedded methods tend to obtain higher prediction accuracy than filters,
at the cost of a higher computational cost. When dealing with high dimensional
data, as in this research, filters are preferable even when the subset of features
is not optimal, due to their computational and statistical scalability [9].

Traditionally, FS methods are applied in a centralized manner, i.e. a sin-
gle learning model to solve a given problem. However, when dealing with large
amounts of data, distributed FS seems to be a promising line of research since
allocating the learning process among several workstations is a natural way of
scaling up learning algorithms. Moreover, it allows to deal with datasets that are
naturally distributed, a frequent situation in many real applications (e.g. weather
databases, financial data or medical records). There are two common types of
data distribution: (a) horizontal distribution wherein data are distributed in sub-
sets of instances; and (b) vertical distribution wherein data are distributed in
subsets of attributes. The great majority of approaches distribute the data hori-
zontally, since it constitutes the most suitable and natural approach for most ap-
plications [10,11,12,13]. While not common, there are some other developments
that distribute the data vertically [14,15,16]. When the data come distributed
in origin, vertical distribution is solely useful where the representation of data
could vary along time by adding new attributes.

In this research, and in order to deal with large databases, we will distribute
the data horizontally. In this manner, several rounds of FS processes will be per-
formed, whose outputs will be combined into a single subset of relevant features.
Experimental results on six benchmark datasets demonstrate that our proposal
can maintain the performance of original FS methods, providing a learning scal-
able solution.

The rest of the paper is organized as follows: Section 2 presents our distributed
filter approach, Section 3 depicts the experimental setup, and Sections 4 and 5
report the experimental results and the conclusions, respectively.

2 Distributed Feature Selection

In this paper we present a distributed filter approach by partitioning the data
horizontally. The methodology consists of applying filters over several partitions
of the data, combined in the final step into a single subset of features. The idea
of distributing the data horizontally builds on the assumption that combining
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the output of multiple experts is better than the output of any single expert.
There are three main stages: (i) partition of the datasets; (ii) application of the
filter to the subsets; and (iii) combination of the results.

The feature selection algorithm (see pseudo-code in Algorithm 1) is applied to
all the datasets in several iterations or rounds. This repetition ensures capturing
enough information for the combination stage. At each round, the first step is the
partition of the dataset, which consists of randomly dividing the original training
dataset into several disjoint subsets of approximately the same size that cover
the full dataset (see Algorithm 1, line 3). As mentioned above, the partition will
be doing horizontally . Then, the filter algorithm chosen is applied to each subset
separately and the features selected to be removed receive a vote (Algorithm 1,
lines 5 - 8). At that point, a new partition is performed and another round of
votes is accomplished until reaching the predefined number of rounds. Finally,
the features that have received a number of votes above a certain threshold are
removed. Therefore, a unique set of features is obtained to train a classifier C
and to test its performance over a new set of samples (test dataset).

To determine the threshold of votes required to remove a feature is not an
easy-to-solve question, since it depends on the given dataset. Therefore, we have
developed our own automatic method which calculates this threshold, outlined
in Algorithm 1, lines 9-19. The best value for the number of votes is estimated
from its effect on the training set, but due to the large size of the dataset, not
the complete training set was used, only 10% was employed.

Following the recommendations exposed in [17], the selection of the number
of votes must take into account two different criteria: the training error and the
percentage of features retained. Both values must be minimized to the extent
possible, by minimizing the fitness criterion e[v] (see Algorithm 1, line 18). To
calculate this criterion, a term α is introduced to measure the relative relevance
of both values and was set to α = 0.75 as suggested in [17], giving more influence
to the classification error. Because of performing a horizontally partition of the
data, the maximum number of votes is the number of rounds r times the number
of subsets s. Since in some cases this number is in the order of thousands, instead
of evaluating all the possible values for the number of votes we have opted for
delimiting into an interval [minV ote,maxV ote] computed used the mean and
standard deviation (see lines 9-12 in Algorithm 1).

3 Experimental Setup

This section presents the datasets chosen for testing the distributed approach
and the concrete filters which will carry out the feature selection process. For
testing the adequacy of our proposal, four well-known supervised classifiers, of
different conceptual origin, were selected: C4.5, naive Bayes, IB1 and SVM. All
the classifiers and filters are executed using the Weka tool [18], with default
values for their parameters. Notice that the C4.5 classifier, widely-used in the
FS literature, performs its own embedded selection of features so it might be
using a smaller number of features than the other ones.
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Algorithm 1: Pseudo-code for distributed filter

Data: d(m×n+1) ← labeled training dataset with m samples and n input features

X ←set of features, X = {x1, . . . , xn}
s ← number of submatrices of d with p samples
r ← number of rounds
α ← 0.75

Result: S ← subset of features \S ⊂ X
/* Obtaining a vector of votes for discarding features */

1 initialize the vector votes to 0, |vector|=n
2 for each round do
3 Split d randomly into s disjoint submatrices
4 for each submatrix do
5 apply a feature selection algorithm
6 F ← features selected by the algorithm
7 E ← features eliminated by the algorithm \E ∪ F = X
8 increment one vote for each feature in E

end

end
/* Obtain threshold of votes, Th, to remove a feature */

9 avg ← compute the average of the vector votes
10 std ← compute the standard deviation of the vector votes
11 minV ote ← minimum threshold considered (computed as avg − 1/2std)
12 maxV ote ← maximum threshold considered (computed as avg + 1/2std)
13 z ← submatrix of d with only 10% of samples
14 for v ← mixVote to maxVote with increment 5 do
15 Fth ← subset of selected features (number of votes < v)
16 error ← classification error after training z using only features in Fth

17 featPercentage ← percentage of features retained
(

|Fth|
|X| × 100

)
18 e[v] ← α× error + (1− α)× featPercentage

end
19 Th ← min(e), Th is the value which minimizes the error e
20 S ← subset of features after removing from X all features with a number of

votes ≥ Th

3.1 Datasets

In order to test our distributed filter approach, we have selected six benchmark
datasets which are reported in Table 1, depicting their properties (number of
features, number of training and test instances and number of classes). These
datasets can be considered representative of problems from medium to large
size, since the horizontally distribution is not suitable for small-sample datasets.
All of them can be free downloaded from the UCI Machine Learning Repository
[2]. Those datasets originally divided into training and test sets were maintained,
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whereas, for the sake of comparison, datasets with only training set were ran-
domly divided using the common rule 2/3 for training and 1/3 for testing. The
number of packets (s) to partition the dataset in each round is also displayed in
the last column of Table 1. This number was calculated with the constraint of
having, at least, three packets per dataset.

Table 1. Dataset description

Dataset Features Training Test Classes Packets

Connect4 42 45038 22519 3 45
Isolet 617 6238 1236 26 5
Madelon 500 1600 800 2 3
Ozone 72 1691 845 2 11
Spambase 57 3067 1534 2 5
Mnist 717 40000 20000 2 5

3.2 Filter Methods

The distributed approach proposed herein can be used with any filter method.
In this work, five well-known filters, based on different metrics, were chosen.
While three of the filters return a feature subset (CFS, Consistency-based and
INTERACT), the other two (ReliefF and Information Gain) are ranker methods,
so it is necessary to establish a threshold in order to obtain a subset of features.
In this research we have opted for retaining the c top features, being c the number
of features selected by CFS. It is also worth noting that although most of the
filters work only over nominal features, the discretization step is done by default
by Weka, working as a black box for the user.

– Correlation-based Feature Selection (CFS) is a simple filter algorithm
that ranks feature subsets according to a correlation based heuristic evalu-
ation function [19]. Theoretically, irrelevant features should be ignored and
redundant features should be screened out.

– The Consistency-based Filter [20] evaluates the worth of a subset of
features by the level of consistency in the class values when the training
instances are projected onto the subset of attributes.

– The INTERACT algorithm [21] is based on symmetrical uncertainty (SU).
The authors stated that this method can handle feature interaction, and
efficiently selects relevant features. The first part of the algorithm requires a
threshold, but since the second part searches for the best subset of features,
it is considered a subset filter.

– Information Gain [22] is one of the most common attribute evaluation
methods. This filter provides an ordered ranking of all the features and then
a threshold is required.

– ReliefF [23] is an extension of the original Relief algorithm that adds the
ability of dealing with multiclass problems and is also more robust and capa-
ble of dealing with incomplete and noisy data. This method may be applied
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in all situations, has low bias, includes interaction among features and may
capture local dependencies which other methods miss.

4 Experimental Results

In this section we present and discuss the experimental results over six bench-
mark datasets. Our distributed approach is compared with the centralized stan-
dard approach of each method. To distinguish between both approaches, a “C”
(centralized) or a “D” (distributed) was added to the name of the filter. In the
case of the distributed approach, three rounds (r in Algorithm 1) have been
executed.

Table 2 reports the test classification accuracies of C4.5, naive Bayes, IB1
and SVM over the six datasets. The best result for each dataset and classifier is
highlighted in bold face, while the best result for dataset is also shadowed.

As expected, the results are very variable depending on the dataset and the
classifier. However, in terms of average (last column), the best result for each
classifier is obtained by a distributed approach, except for SVM. In particular,
ReliefF-D combined with C4.5 achieves the highest accuracy, outperforming in
at least 4% the best results for the remaining classifiers.

For datasets Connect4 and Isolet, the highest accuracies are obtained by cen-
tralized approaches, although these results improve only in 0.90% and 2.19%,
respectively, the best mark achieved by a distributed method. For Ozone dataset,
both distributed and centralized approaches obtain the highest precision when
combined with SVM classifier.

For the remaining datasets (Madelon, Spambase and Mnist), the best results
are accomplished by a distributed method. It is worth mentioning the case of
Spambase, where ReliefF distributed combined with naive Bayes reports 91.79%
of classification accuracy whilest the same filter method in the standard central-
ized approach achieves a poor 41.85% of accuracy. The results for Mnist dataset
are also remarkable, where the highest accuracy (96.31%) outperforms the best
mark of a centralized method in more than 6%.

Table 3 reports the runtime of the feature selection algorithms, both in cen-
tralized and distributed manners. In the distributed approach, considering that
all the subsets can be processed at the same time, the time displayed in the
table is the average of the times required by the filter in each subset generated
in the partitioning stage. In these experiments, all the subsets were processed
in the same machine, but the proposed algorithm can be executed in multiple
processors. Please note that this filtering time is independent of the classifier
chosen.

As expected, the advantage of the distributed approach in terms of execution
time over the standard method is significant. The time is reduced for all datasets
and filters. It is worth mentioning the important reductions as the dimensional-
ity of the dataset grows. For Mnist dataset, which has 717 features and 40000
training samples, the reduction is more than notable. For ReliefF filter, the pro-
cessing time is reduced from almost 8 hours to 15 minutes, proving the adequacy
of the distributed approach when dealing with large datasets.
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Table 2. Test classification accuracy. Best results are highlighted.

Connect4 Isolet Madelon Ozone Spambase Mnist Average

C
4
.5

CFS-C 61.22 81.59 80.50 97.63 81.16 86.99 81.51
CFS-D 61.25 82.23 76.88 95.86 79.27 88.65 80.69
INT-C 60.48 78.96 80.63 96.92 78.16 87.24 80.40
INT-D 61.66 79.03 82.38 94.79 80.83 88.62 81.22
Cons-C 60.49 56.00 80.63 98.70 84.62 87.00 77.90
Cons-D 61.66 77.10 82.63 96.33 79.34 90.46 81.25
IG-C 63.90 81.40 72.75 98.22 83.83 87.83 81.32
IG-D 62.34 81.08 79.63 97.87 85.33 87.88 82.36
ReliefF-C 63.49 79.54 73.88 98.11 78.81 87.34 80.19
ReliefF-D 63.00 80.56 87.50 98.46 84.75 87.95 83.70

N
B

CFS-C 60.28 75.05 71.75 78.22 57.69 71.88 69.15
CFS-D 58.83 73.89 70.13 76.69 57.24 73.34 68.35
INT-C 53.85 71.26 70.00 78.22 57.95 70.94 67.04
INT-D 59.16 70.75 70.13 75.03 74.77 71.06 70.15
Cons-C 54.12 42.78 70.00 98.70 91.00 72.78 71.56
Cons-D 59.16 69.92 70.38 73.25 92.89 75.74 73.56
IG-C 60.42 69.34 70.38 74.08 76.53 70.74 70.25
IG-D 60.28 67.54 70.63 77.63 89.70 68.09 72.31
ReliefF-C 60.42 62.67 68.63 71.36 41.85 69.82 62.46
ReliefF-D 60.50 56.51 71.50 60.95 91.79 70.93 68.70

IB
1

CFS-C 53.90 56.00 85.63 96.45 79.14 87.93 76.51
CFS-D 57.61 54.78 65.63 96.57 77.31 91.65 73.93
INT-C 58.27 52.92 88.75 94.44 79.73 86.87 76.83
INT-D 57.61 49.84 71.75 95.27 76.86 91.79 73.85
Cons-C 58.06 49.90 88.75 98.70 80.83 87.36 77.27
Cons-D 57.61 58.31 71.63 95.27 77.38 96.31 76.09
IG-C 51.29 54.78 74.25 95.98 78.62 89.63 74.09
IG-D 57.01 59.72 86.13 95.50 78.42 90.77 77.92
ReliefF-C 61.81 59.14 75.25 95.98 76.99 89.97 76.52
ReliefF-D 57.01 57.09 90.88 96.80 80.70 91.35 78.97

S
V
M

CFS-C 60.42 83.45 66.50 98.70 85.85 79.58 79.08
CFS-D 60.42 82.42 67.13 98.70 82.27 81.52 78.74
INT-C 60.42 73.83 66.38 98.70 80.31 78.54 76.36
INT-D 60.42 78.00 68.50 98.70 81.49 80.84 77.99
Cons-C 60.42 31.17 66.38 98.70 81.88 75.14 68.95
Cons-D 60.42 68.12 66.50 98.70 81.94 80.85 76.09
IG-C 60.42 82.94 67.13 98.70 83.83 78.28 78.55
IG-D 60.42 79.67 67.13 98.70 83.38 79.30 78.10
ReliefF-C 60.42 84.61 67.50 98.70 81.94 75.43 78.10
ReliefF-D 60.42 82.36 67.50 98.70 83.57 75.72 78.04

For the distributed approach, there exist also the time required to find the
threshold to build the final subset of features. This time highly depends on the
classifier, as can be seen in Table 4. In this table it is visualized the average
runtime for each filter and classifier. It is easy to note that the classifier which
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Table 3. Runtime (hh:mm:ss) for the FS methods tested. Lowest times highlighted in
bold font.

Method Connect4 Isolet Madelon Ozone Spambase Mnist

CFS-C 00:02:25 00:05:49 00:00:55 00:00:12 00:00:16 00:44:55
CFS-D 00:00:06 00:01:12 00:00:13 00:00:04 00:00:04 00:05:24
INT-C 00:02:57 00:04:55 00:00:56 00:00:12 00:00:16 00:42:13
INT-D 00:00:05 00:00:54 00:00:14 00:00:04 00:00:04 00:04:50
Cons-C 00:13:36 00:07:03 00:01:01 00:00:12 00:00:19 03:22:21
Cons-D 00:00:05 00:01:02 00:00:14 00:00:04 00:00:05 00:09:37
IG-C 00:02:19 00:04:32 00:00:55 00:00:12 00:00:16 00:38:17
IG-D 00:00:05 00:00:49 00:00:13 00:00:03 00:00:04 00:04:46
ReliefF-C 00:31:40 00:13:04 00:01:23 00:00:14 00:00:29 07:54:40
ReliefF-D 00:00:06 00:00:57 00:00:17 00:00:03 00:00:04 00:15:59

requires more execution time is SVM whilst the one which requires the short-
est time is naive Bayes. In any case, this is usually in the order of seconds (2
minutes in the worst case) so it is insignificant when compared with the time
required by any of the centralized algorithms showed above. Moreover, if the
user would rather save this time, it is possible to establish a fixed threshold and
not performing this specific calculation.

Table 4. Average runtime (hh:mm:ss) for obtaining the threshold of votes. Lowest
times highlighted in bold font.

Method C4.5 NB IB1 SVM

CFS-D 00:00:36 00:00:26 00:00:48 00:01:36
INT-D 00:00:31 00:00:24 00:00:50 00:01:23
Cons-D 00:00:29 00:00:23 00:00:46 00:01:41
IG-D 00:00:38 00:00:28 00:00:46 00:01:43
ReliefF-D 00:00:33 00:00:26 00:00:41 00:02:02

In light of the above, we can conclude that our distributed proposal performs
successfully, since the running time is considerably reduced and the accuracy
does not drop to inadmissible values. In fact, our approach is able to match
and in some cases even improve the standard algorithms applied to the non-
partitioned datasets.

5 Conclusions

In this work, we have proposed a new method for scaling up feature selection:
a distributed filter approach. The proposed method has been able to success-
fully distribute the feature selection process, shortening the execution time and
maintaining the classification performance.
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An experimental study was carried out on six datasets considered representa-
tive of problems from medium to large size. In terms of classification accuracy,
our distributed filtering approach obtains similar results to the centralized meth-
ods, even with slight improvements for some datasets. Furthermore, the most
important advantage of the proposed method is the dramatically reduction in
computational time (from the order of hours to the order of minutes). As future
work, we plan to distribute other FS techniques, such as wrapper or embedded
methods, and to try the vertical partition instead of the horizontal one.

Acknowledgements. This research has been economically supported in part
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Abstract. Neuroevolution has come a long way over the last decade.
Lots of interesting and successful new methods and algorithms have
been presented, with great improvements that make the field become
very promising. Concretely, HyperNEAT has shown a great potential
for evolving large scale neural networks, by discovering geometric reg-
ularities, thus being suitable for evolving complex controllers. However,
once training phase has finished, evolved neural networks stay fixed and
learning/adaptation does not happen anymore. A few methods have been
proposed to address this concern, mainly using Hebbian plasticity and/or
Compositional Pattern Producing Networks (CPPNs) like in Adaptive
HyperNEAT. This methods have been tested in simple environments to
isolate the effectiveness of adaptation from the Neuroevolution. In spite
of this being quite convenient, more research is needed to better un-
derstand online adaptation in more complex environments. This paper
shows a new proposal for online weight adaptation in neuroevolved ar-
tificial neural networks, and presents the results of several experiments
carried out in a race simulation environment.

Keywords: Neuroevolution, Online Adaptation, Complex Environments.

1 Introduction

Artificial Intelligence is always seeking to mimic human brain processes in one
way or another. The more powerful and developed computers and algorithms
are, the more we appreciate the intrinsic complexity and inherent generality
of the human brain and its learning capabilities. Attempting to replicate the
unique capabilities of the brains into software algorithms, the field of Artificial
Neural Networks (ANNs) [13] came into live. The initial euphoria about what
ANNs would be able to do soon vanished as the intrinsic complexities of neurons
came along. Training ANNs is a difficult task, but even more difficult is finding
effective and efficient topologies.

Neuroevolution [12,7] (i.e. the use of evolutive algorithms to search for ANNs
topologies and weights) is one of the best known ways to generate and train
complex, recurrent ANNs. One of the most prominent Neuroevolutive (NE)
algorithms of the past decade was Neuroevolution of Augmenting Topologies
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(NEAT) [9,7,10]which proposed a way of minimizing the problem of Competing
Conventions and the use of complexification to traverse the search space looking
for effective and efficient ANNs topologies. Yet, it remained very difficult to find
and train large scale topologies of ANNs, which are believed to be necessary for
complex tasks. Then Compositional Pattern Producing Networks (CPPNs) and
Hyper-cube Based NEAT (HyperNEAT) [8,1,5] discovered a way to use NEAT
as a form of indirect encoding for producing large scale ANNs with topological
regularities (as in the human brain). Then on, HyperNEAT has shown great abil-
ity to produce large scale Neural Networks able to perform efficiently in complex
domains where an intelligent controller is required.

However, as ANNs increase in complexity and capabilities, an important sub-
ject remains unsolved. Neuroevolution algorithms have shown as a great way to
discover topologies and weight sets that exhibit complex behaviours but, once
the training phase is over, the produced ANNs stay fixed from then on. This
greatly limits the use of resulting ANNs to static domains or domains where
variance is not a problem. In contrast, our brains show what is called Neural
Plasticity, which enables them to learn and adapt constantly to changing situ-
ations. This means that further research on online learning and adaptation for
ANNs is required, to let us develop systems able to perform well on changing
domains. In this sense, adaptive Evolving-Substrate HyperNEAT (Adaptive ES-
HyperNEAT) [6,5] has done a first step by adding Hebbian ABC Plasticity [3]
as patterns of local rules to ANNs, and also using CPPNs to continuously adapt
weights over time. Nevertheless, there is no theoretical or empirical evidence
about the performance of these approaches in complex environments.

Our contribution in this paper is focused on two points: presenting a new
proposal for online adaptation of previously evolved ANNs, and giving some
empirical evidence on how these approaches perform in a complex environment.
In section 2, a succinct background on previous developments that conform the
base for our contribution is presented. Section 3 describes our proposal for online
adaptation and its motivation. Experimental results are shown in section 4,
along with a description of the simulation environment used. Finally, section 5
summarizes our conclusions and further work.

2 Background

Our contribution represents one more step in the way that has been followed by
lots of researches previous to us. Next we describe some previous work on which
our contribution is based.

2.1 Neuroevolution of Augmenting Topologies (NEAT)

NEAT is a direct-encoding neuroevolution algorithm with speciation that evolves
populations of ANNs starting from the most simple possible topologies and in-
creasingly complexifying them. This way of traversing the search space is aimed
at getting the simplest possible ANNs that solve a given task (i.e. the topolo-
gies with least possible hidden neurons). It does so by adding new neurons and
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links by means of mutation and protecting innovations through speciation (i.e.
different species have their own evolutive niche, not competing with each other).
The key concept that makes NEAT a powerful algorithm is innovations tracking.
The algorithm maintains a registry of all the innovations that have happened
across all the populations of the different epochs. Each new link or neuron that
appears in a new position is given a registration Id. and, from then on, each
individual that gets a neuron in the same position is referred with the same
Id. This mechanism effectively tracks innovations and permits the creation of
an effective crossover operator that overcomes part of the consequences of the
Competing Conventions problem.

Although NEAT represented a great breakthrough, it suffered from the same
problem that all direct-encoding algorithms suffer: they are inherently not scal-
able and not modular. For instance, closely observing the human brain, there
are lots of regularities and patterns that repeat everywhere. If a direct encod-
ing was to discover that topology, it should repeatedly discover each one of the
regularities again and again. Direct Encoding has no mechanism for replicating
structures or patterns of structures across the phenotype, because it is a direct
low-level map between genes and neurons/links.

2.2 Compositional Pattern Producing Networks (CPPN)

Compositional Pattern Producing Networks (CPPNs) [11] were created as an
indirect encoding scheme to overcome the impossibility of modularization and
pattern repetition that NEAT had due to its direct encoding. CPPNs are a
kind of networks similar to ANNs, but with an important difference: each node,
instead of being a neuron, represents a mathematical function (e.g. sine, cosine,
gaussian...). Therefore, a CPPN is a composition of functions that can produce
outputs full of symmetries, patterns and regularities.

Describing this composition of functions as a network instead of a formal
math composition, the model can profit from existing neuroevolutive algorithms
to produce CPPNs. In particular, a modification of NEAT, called CPPN-NEAT
can evolve increasingly complex CPPNs that are suitable for indirectly encoding
links and weights of ANNs.

2.3 Hypercube-Based NeuroEvolution of Augmenting Topologies

HyperNEAT[1] takes NEAT and CPPNs as indirect encoding scheme and pro-
duces large scale ANNs with regularities, patterns and symmetries. HyperNEAT
takes a population of CPPNs as genotypes of the final large-scale ANNs, and
uses CPPN-NEAT to evolve these genotypes. For a CPPN to produce an ANN,
a geometric substrate is required. A substrate is a collection of nodes (i.e. neu-
rons) placed in a N-dimensional space, thus having a vector of coordinates
xi = (xi

1,x
i
2, ...,x

i
n) for each node i. Typically, in a 2D-space neurons would

be scattered in [−1, 1] × [−1, 1]. Once a substrate is defined, the next step is
to add links and weights between neurons. This is done iteratively querying the
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CPPN with the coordinates of each possible pair of neurons (xi,xj)∀i, j, where
the output value from the CPPN represents the weight of the link from xi to xj.

Taking into account that links and their weights are produced as a function of
the relative location of neurons in space, it follows that the resulting topology of
the ANN is related to the actual geometry of the substrate. This is an interesting
characteristic of HyperNEAT, because it can produce ANNs with the ability
of understanding geometry relations in their inputs. For instance, if we think
of a chess controller with 64 inputs (one for each square of the board), the
CPPNs will produce ANNs with intrinsic knowledge of the board structure.
This characteristic is not present in traditional ANNs, which have to discover
this information by themselves during training phase.

2.4 Adaptive, Evolvable-Substrate HyperNEAT

The two most recent improvements on HyperNEAT address two important is-
sues. On the one hand, HyperNEAT requires the user to design an a priori
substrate. While this could be very interesting in some problem domains, it nor-
mally is a matter of concern. Most of the time there are no clues on how to design
the substrate, how many neurons to use, how to distribute them, etc. For this
issue, Evolvable Substrate HyperNEAT (ES-HyperNEAT) [5,6] has developed a
way to automatically configure a suitable substrate. The main idea behind is to
measure variance in the function that the CPPN encodes: spatial areas of high
variance in the function are considered to encode more information and, there-
fore, to require more density of nodes. On the other hand, HyperNEAT produces
trained ANNs that, like almost any other neuroevolution algorithm, do not learn
and/or adapt outside the evolution phase. Therefore, produced ANNs have a sort
of fixed, hardcoded behaviour that will not change even if it is required. In order
to address this issue, weight adaptation has been added to HyperNEAT, encoded
as a pattern of local rules that modulate each weight. Concretely, three alterna-
tives have been explored in [4]: Hebbian plasticity, Hebbian ABC plasticity and
a modification of CPPN to make them able to update weights at each iteration.
These three approaches were tested in a T-Maze where there were two rewards
that switched position sometimes. Two different experiments were set up: in the
first one, there was one big reward and a small one that sometimes switched
positions. In the second one, rewards were relative to a color graduation scheme,
which was designed explicitly to be non linearly-separable. Simulated agents
were required to traverse the T-Maze and find the best reward repeatedly, thus
requiring online adaptation to the different reward schemes and changes. They
found that standard Hebbian Plasticity was not able to adapt, whereas there was
a trade-off between the other two alternatives, considering bests results for the
modification of CPPNs but with higher computational costs, as CPPNs needed
to be queried every time-step for each weight.
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3 Proposed Method for Online Weight Adaptation

The approaches for ANNs online weight adaptation proposed by [4] are quite
interesting and open up a new field for discussion. Results shown up to date
encouraged us to further test with these approaches but in a more complex
scenario, where online adaptation and learning is required. For our experiments
we used a modification of The Open Racing Car Simulator (TORCS) game, as
in the annual car racing competition [2]. The experimental setup and results are
discussed in section 4.

The results in [4] have shown that the most promising approach seams to
be the modification of CPPNs to accept pre and post synaptic activation in-
formation in order to output a new weight at each time-step. Thinking of this
approach, it seams a reasonable hypothesis that good weight adaptation comes
from non-linear functions (and, most probably, from continuous and derivable
ones). However, thinking of the human brain, it is also reasonable to think that
delays between activations, frequency and strength seam to be the most impor-
tant factors in the modulation of neural connections. Therefore, adding up all
these ideas, we hypothesized and constructed a new prospective model for weight
adaptation. Our model considers that the updated weight of a link connecting
neuron i to neuron j depends on the activations of i and j on the n previous
time-steps. From these n previous time-steps we will consider the post-synaptic
activity O of i and j (namely Oi and Oj) and the pre-synaptic activity I of
j (Ij). The updated weight is the result of a relation between all these values
at the n-th step (the latest one) and the mean of their previous values, pre-
processed by three modulation functions ψm,m ∈ {1, 2, 3} and post-processed
by the update-strength function ζ. This relation is expressed in equation 1.

wij = ζn(
(n− 1)ψ1(O

i
n)ψ2(I

j
n)ψ3(O

j
n)

ψ1(
∑n−1

k=1 O
i
k)ψ2(

∑n−1
k=1 I

j
k)ψ3(

∑n−1
k=1 O

j
k)
) (1)

This equation is the same for each link, with the exception of the param-
eter n, the modulation functions ψm and the update-strength function ζ. All
this functions will be created by the CPPN as a weighted average of a pre-
defined subset of the functions that the CPPN uses as internal nodes Ω =
{Fi}, at the time the phenotype is created. For this approach to work properly,
CPPNs have been modified to include 4M new outputs, being M = |Ω|. Each
Mk = {mk1,mk2, ...mkM} set of parameters is used as coefficients to construct
a weighted function, as in equation 2.

ψk(x) =

∑M
q=1 mkqFq(x)∑M

q=1 mkq

(2)

4 Experimentation and Results

One of our main aims in this work was to do empirical tests in complex environ-
ments in order to give more evidence on the previously existing methods, and
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have initial measures and evidence to give us a hint on what to expect from our
hypothesis (i.e. whether it has a probability of being good or it is plainly wrong).
As we stated before, we have used a modification on the TORCS racing game as
environment (see figure 1). We have set up a population of 200 individuals and
have trained them to be able to drive alone in the circuit ”CG Speedway number
1”, which comes with the original game package. Drivers are evolved to drive
alone until they drive fine enough to finish the track, and then no more evolution
is carried and they enter the adaptive test phase. In this second phase, drivers
are asked to drive the same circuit but with lots of opponents and starting from
the last position. The problem requires the drivers to be able to adapt not to
crash against opponents, just by using the local weight adaptation rules.

Fig. 1. A screenshot during a test of a previously trained driver. The driver receives
180.000 inputs (600× 300) one from each pixel from the viewport in front.

Standard HyperNEAT was the algorithm chosen to evolve the ANNs, and a
virtual first person camera, with a resolution of 600 × 300 pixels and 32 bits
of color per pixel, was used as main input. The ANNs also had as input a
status vector with this information: amount of damage done, current gear, cur-
rent RPM, speed in x and y axis, and the 4 wheel rotation speeds. ANNs were
required to output the values of acceleration, brake, gear up/down, and steer
left/right. Therefore, the substrate was configured with 180.009 input neurons
and 4 outputs. Based on experimental research, we set up 540.000 hidden nodes
with recurrent connections enabled for CPPNs, and sine, gaussian, sigmoid, ab-
solute value and linear as available activation functions. Neuron output range
was set to [−1, 1] and a CPPN output value less than 0.2 was considered 0 (no
link). The functions contained in the Ω set where sine, gaussian and sigmoid.
The compatibility threshold was set to 5.5, and the compatibility modifier to
0.3. Survival threshold within species was set to 20%, whereas drop-off age was
set to 18 and target number of species to 7. There was a 4% chance of adding
either a node or a link, and links had 50% chance of mutation.

After approximately 2500 epochs of evolution, drivers were able to satisfactory
drive their cars to the finish line (just 1 lap) when asking them to drive alone.
From then on, evolution was finished and drivers were put in the same track,
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but together with 37 other drivers (standard fuzzy logic drivers coming with
the TORCS package). Each driver was repeatedly tested 1500 times with each
online adaptation method and population averages were taken (see figure 2).
Final results depicted in figure 2 show that our proposal has a decent level

Fig. 2. Comparison of average results over 1500 runs of the track against 37 opponents.
100 points mark means that the driver arrived to the finish line in 70 seconds, more
than 100 points means the driver arrived earlier

of adaptation, whereas CPPN shows the greatest performance. Interestingly,
Hebbian approaches show some kind of linear improvements, what seems quite
unnatural. We tested both Hebbian approaches with more than 1500 repetitions
of the track, (actually, up to 3500 repetitions) and both of them reached a top in
the intervals [47.54, 56.5] for standard Hebbian and [69.9, 75.6] for ABC Hebbian.

Despite the fact that CPPN clearly outperforms our approach in learning
results, our approach has the advantage of being much more efficient computa-
tionally. For each single decision, CPPN has to query the entire network, whereas
our method only has to do a simplified math calculation. Measured in CPU cycles
of a Intel Core i7 920, CPPN takes a mean of 2.22Mpf (Million cycles per frame),
whereas our approach takes only 1.25Mpf, which represents a 44% improvement.

5 Conclusions and Futher Work

In this paper we have considered Neuroevolution and HyperNEAT algorithms for
Machine Learning and, in concrete, we have focused on the addition of different
kinds of local adaptation rules (sometimes called neuro-plasticity) to enable the
evolved individuals to continue learning online after training.

We also have presented a new proposal for online learning based on a combi-
nation of continuous and derivable functions to update weights each time-step.
Our approach shows interesting results, as it shows some nice level of adapta-
tion. Despite not achieving the same level of performance than CPPN-based
approach, our approach is less computationally expensive, as it does not require
to query the CPPN for each link at each time-step.
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The first most interesting question to continue this research would be why
our approach seams to reach a top so fast. It is our belief that more work on
this approach could offer more interesting results, as there is still much room
for new approaches on online learning through weight updating or even cre-
ation/destruction of neurons and links.
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Abstract. We study the problem of learning Bayesian classifiers (BC)
when the true class label of the training instances is not known, and
is substituted by a probability distribution over the class labels for each
instance. This scenario can arise, e.g., when a group of experts is asked to
individually provide a class label for each instance. We particularize the
generalized expectation maximization (GEM) algorithm in [1] to learn
BCs with different structural complexities: naive Bayes, averaged one-
dependence estimators or general conditional linear Gaussian classifiers.
An evaluation conducted on eight datasets shows that BCs learned with
GEM perform better than those using either the classical Expectation
Maximization algorithm or potentially wrong class labels. BCs achieve
similar results to the multivariate Gaussian classifier without having to
estimate the full covariance matrices.

Keywords: Bayesian classifiers, probabilistic class labels, partially su-
pervised learning, belief functions.

1 Introduction

A classification problem consists of assigning a class label to an object based
on a set of characteristic features. Traditionally, machine learning research has
focused on two problems: supervised and unsupervised learning. In supervised
learning, the true class label of a set of training instances is known. In unsuper-
vised learning settings, on the other hand, the true class label of the training
instances is not available. It can be both hard and expensive to identify the true
class label of all training instances. However, it is often easier to locate partial
or incomplete information about the true class labels, and more sophisticated
methods have been proposed for incorporating that information. Semi-supervised
learning deals with the problem of learning classifiers when the true class labels
of only a few training instances are known, and the rest of the training set
is unlabeled. In partially supervised learning, a subset of possible class labels
(including the true class) is given for each instance.

A general framework for learning multivariate Gaussian classifiers (MGC)
is provided in [1], where the class information is modeled as belief functions
[2], and a generalized expectation maximization (GEM) algorithm is proposed.

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 139–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This approach includes supervised, unsupervised, semi-supervised and partially
supervised learning as particular cases. Here we particularize the GEM algorithm
to a specific scenario, where the information about the class for each instance
is given as a probability distribution over the class labels. This is motivated by
a problem in which it is hard to identify the true class labels of the training
instances, perhaps because each label is not clearly defined, and a set of experts
is asked to label the (same) training set to gain information about how the
labels are assigned. Then, we summarize the information about the experts’
classifications as probability distributions over the class labels.

Bayesian networks [3] are probabilistic graphical models which encode a fac-
torization of the joint probability distribution over a set of variables, allowing
for different kinds of reasoning and efficient computations. Bayesian classifiers
(BC) [4] adapt Bayesian networks to classification problems. Here we adapt the
GEM algorithm to fit BCs with different structures when the class information
for each instance is given as a probability distribution.

In Sect. 2 we particularize the GEM algorithm to the case where the class
information is given as probability distributions. Section 3 shows the use of the
GEM algorithm to learn BCs. Section 4 includes the evaluation of the classifiers
over eight datasets. Section 5 ends with conclusions and future work.

2 The GEM Algorithm for Probabilistic Class Labels

Our problem domain is modeled using n predictive univariate variables X =
(X1, . . . , Xn) and a class variable C. The domain of each variable Xj is continu-
ous and denoted as ΩXj . The class variable is discrete with ΩC = {1, . . . ,K}. We
have a training dataset with N instances: D = {(x1,π1), . . . , (xN ,πN )}, where
xi = (xi,1, . . . , xi,n) are the values of the predictive variables for the ith instance,
and πi = (πi,1, . . . , πi,k) is the class information, i.e., a probability distribution
over ΩC so that πi,k is the probability of instance i belonging to class k, with

0 ≤ πi,k ≤ 1 and
∑K

k=1 πi,k = 1. For instance, imagine that we ask 20 experts to
classify each instance of a two-class problem and, for the ith instance, 15 experts
classify it as belonging to class 1 and the rest assign the instance to class 2. We
model that information as the probability distribution: πi = (0.75, 0.25).

In [1], the information about the class of each instance xi is modeled as a
basic belief assignment (bba), which is a function mΩC

i : 2ΩC → [0, 1] over the

powerset 2ΩC , verifying
∑

ω⊆ΩC
mΩC

i (ω) = 1. Table 1 shows an example of a
general bba (top) from [5]. Using the belief function theory in the context of the
transferable belief model [2], a generalization of the Expectation Maximization
(EM) algorithm [6] is derived in [1] for fitting a finite mixture of multivariate
Gaussian distributions with K components

fX(x) =

K∑
k=1

pC(k; θC)fX|k(x;μX|k,ΣX|k) , (1)

which is used as a MGC, where pC(k; θC) is the prior probability of C = k and
fX|k(x;μX|k,ΣX|k) is the conditional multivariate Gaussian density function of
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Table 1. Example of a general bba mΩC
i (ω) taken from [5] (top) and a Bayesian bba

(bottom). The class variable C has three values ΩC = {1, 2, 3}.
ω

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} ΩC

General bba 0 0.1 0 0.3 0.2 0.3 0 0.1
Bayesian bba 0 0.3 0.2 0.5 0 0 0 0

the predictive variablesX given C = k. The GEM algorithm finds the parameters

Θ = {θC} ∪
{
μX|k,ΣX|k

}
k=1,...,K

that maximize a generalized log-likelihood

(LL) criterion

ln(plΘ(Θ|D)) =
N∑
i=1

ln

(
K∑

k=1

pli,kpC(k; θC)fX|k(xi;μX|k,ΣX|k)

)
+ ν , (2)

where ν is a constant and pli,k = plΩC

i ({k}) are the plausibilities of the ith

instance for the set {k}, with plΩC

i (ω) =
∑

γ⊆ΩC ,γ∩ω 	=∅m
ΩC

i (γ), ∀ω ⊆ ΩC .
In our scenario, each bba is a probability distribution over ΩC , so all the focal

sets (subsets ω with mΩC

i (ω) > 0) are singletons, and the bba is called a Bayesian

bba (bottom row in Table 1). Since our mΩC

i are Bayesian, the plausibility

functions plΩC

i are probability measures: pli,k = plΩC

i ({k}) = mΩC

i ({k}) = πi,k.
Then, the generalized LL criterion (2) is rewritten as

LL = ln(p(Θ|D)) =

N∑
i=1

ln

(
K∑

k=1

πi,kpC(k; θC)fX|k(xi;μX|k,ΣX|k)

)
+ ν . (3)

The GEM algorithm is then particularized to maximize the LL criterion (3)
by alternating the two steps:

– Expectation step in iteration q: compute the expected posterior probabilities

t
(q)
i,k =

πi,kpC(k; θC)fX|k(xi;μX|k,ΣX|k)∑K
k′=1 πi,k′pC(k′; θC)fX|k′(xi;μX|k′ ,ΣX|k′)

, (4)

– Maximization step in iteration q: find the parameters which maximize the
expected LL of the complete data

θ
(q+1)
C=k =

1

N

N∑
i=1

t
(q)
i,k ,μ

(q+1)
X|k =

1∑N
i=1 t

(q)
i,k

N∑
i=1

t
(q)
i,kxi ,

Σ
(q+1)
X|k =

1∑N
i=1 t

(q)
i,k

N∑
i=1

t
(q)
i,k

(
xi − μ

(q+1)
X|k

)(
xi − μ

(q+1)
X|k

)T
.

(5)

Like the EM algorithm, the GEM algorithm guarantees that the generalized
LL (3) increases in each iteration q up to a local maximum. To avoid local
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maxima, several runs of the algorithm are usually performed with different ran-
domized initializations of the parameters Θ, and the model with the highest

LL is returned. Instead, we consider the πi,k as initial values for t
(1)
i,k in the

first expectation step (4) of the algorithm. Therefore, the algorithm is only run
once. The stopping criterion used to check the convergence of the algorithm is
(LLq − LLq−1)/|LLq−1| < ε. We set ε = 10−6.

3 Learning Bayesian Classifiers with GEM

Multivariate Gaussian classifiers, such as the ones used in [1], need to estimate
a full covariance matrix ΣX|k for each class label. When the number of training
instances N is low or a high number of predictive variables n are available in the
dataset, the estimated covariance matrices might not be very accurate. BCs are
able to exploit the conditional independence relationships between the predictive
variables given the class variable, reducing the number of parameters for esti-
mation. We focus on BCs which conform with the conditional linear Gaussian
(CLG) network’ structure [7], i.e., discrete variables cannot have continuous par-
ents. Therefore, the class variable is a parent of all the predictive variables and
the predictive variables can only have other (continuous) predictive variables as
parents. In a BC with a CLG structure, the conditional density function for a
continuous variable Xj having parents Pa(Xj) = (Yj , C), where Yj is continu-

ous, is defined as fXj |yj ,k(xj) = N (xj ; β0,Xj |Yj ,k +βT
Xj |Yj ,kyj , σ

2
Xj |Yj ,k

), with

β0,Xj |Yj ,k = μXj |k −ΣXj ,Yj |kΣ
−1
Yj |kμYj |k ,

βXj |Yj ,k = Σ−1
Yj |kΣYj ,Xj |k ,

σ2
Xj |Yj ,k

= ΣXj |k −ΣXj ,Yj |kΣ
−1
Yj |kΣYj ,Xj |k ,

(6)

where μXj |k and μYj |k are the mean values of variables Xj and Yj given the
class label k. Therefore, we only need to estimate, for each class label k, the
covariances of each variable with its parents (ΣXj ,Yj|k), and the covariances
between the parents of the same variables (ΣYj |k) in the maximization step (5).

In this paper, we consider four BCs with different structures, and fit their
parameters with GEM:

– The naive Bayes (NB) classifier [8] assumes that all the predictive variables
are conditionally independent given the class variable. Therefore, the co-
variance matrices for each component are reduced to diagonal matrices, so
only the main diagonal of ΣX|k has to be estimated for each class label
k in GEM (5). The updating equations for the mean values μX|k of the
conditional densities in (5) are unchanged.

– The averaged one-dependence estimators (AODE) classifier [9] learns n BCs
with a tree-augmented naive Bayes (TAN) structure [4]. The variable Xj is
a parent of all the other predictive variables in the jth BC. When classifying
a new instance, we compute the posterior probability of each class label as
the mean of the posterior probabilities yielded by each TAN classifier.
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– The structural EM (SEM) algorithm [10] is used to find the structure of
the BC. Since we want to find the conditional (in)dependence relation-
ships between the predictive variables given the class variable, we search
for the structure in the space of the predictive variables. The SEM algo-
rithm alternates between a structural search step and a parameter search
step. The structural search starts with a NB structure and greedily eval-
uates all the possible structures that can be obtained by adding, deleting
or reversing an arc between two predictive variables. The arcs from the
class variable C to each predictive variable Xj are fixed. In the paramet-
ric search, the GEM algorithm finds the maximum likelihood estimates of
the parameters. The process is iterated until there is no further increase in
the BIC score. We implemented a BIC score which uses the generalized LL
(3): BIC(M : D) = ln(p(Θ|D)) − 0.5dim(M) lnN , where M represents a
classifier and dim(M) is the number of free parameters in the classifier.

– The performance of BCs is known to suffer when irrelevant or redundant
variables are not removed from the problem. Therefore, we have also con-
sidered including feature subset selection in the structural search step of the
SEM algorithm. We call this algorithm the feature subset selected structural
EM (FSSSEM). FSSSEM includes the class variable in the structural search
step and introduces some restrictions to ensure that the BC structure is
valid. First, arcs including the class variable have to be directed towards the
predictive variables and cannot be reversed. Second, if an arc from the class
variable to a predictive feature is deleted, we consider that the variable has
been erased and we delete all the arcs including the predictive variable. Like
SEM, the search procedure alternates between the structural search and the
parameter search steps until the generalized BIC score does not increase.

When classifying a new instance x, any BC yields a posterior probability p(C =
k|X = x) for each class label k. We use the maximum a posteriori decision
rule, so that x is assigned to the class with maximum posterior probability
k∗ = argmaxk∈ΩC p(C = k|X = x).

4 Experiments

This section includes the evaluation of the classifiers on eight datasets taken from
the UCI1 and KEEL2 repositories (see Fig. 1). Each variable in the datasets was
standardized by subtracting the mean and dividing by the standard deviation.
We erased the eighth variable in the glass dataset because 82.24% of the values
were zero and the estimated covariance matrices were not positive definite in
some runs. Also, we erased the first variable in the ion dataset because it was
discrete.

Five classifiers (MGC, NB, AODE, SEM and FSSSEM) were learned in four
different scenarios according to the available data and the algorithm used:

1 Available at: http://archive.ics.uci.edu/ml/
2 Available at: http://keel.es

http://archive.ics.uci.edu/ml/
http://keel.es
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– GEM: The parameters of the BCs were found using the probability distri-
bution for the class labels with the GEM algorithm.

– EM: The parameters of the BCs were found with the classical EM algorithm
[6]. The probability distributions for the class labels were used to initialize

t
(1)
i,k in the E-step of the first iteration of the algorithm.

– Wrong labels (WL): The BCs were fitted as in a common supervised clas-
sification problem, but the class labels of some instances were flipped to a
wrong label (see Sect. 4.1).

– True labels (TL): The BCs were fitted using the true class labels of the
instances. This corresponds to an utopian scenario where the class labels of
the instances are known to be correct.

4.1 Dataset Generation and Stratified l-Fold Cross-Validation

We artificially modified the real datasets by transforming the true class label
of each instance into a probability distribution over the class labels. For each
instance, we sampled a value bi from a beta distribution with mean μB and
standard deviation σB . If the true class label for the ith instance was k, then we
set πi,k = 1− bi and πi,k′ = bi/(K−1), k′ 	= k. The beta distribution models the
mistakes made by the experts when classifying the instances. The probability
of the true class label was high with low values of μB, whereas high values of
μB yielded probability distributions where the true class label did not have the
maximum probability. Similarly, in the WL setting, we randomly modified the
class label for some instances in the dataset. For each instance, we drew a value
ui from a uniform distribution in [0, 1]. If ui < bi, then the true class label was
changed to any other class label in ΩC with equal probability.

Stratified l-fold cross-validation was used to honestly estimate the classifica-
tion error of the models. We assumed that the true class label of the instances
was not available, so we based the stratified cross-validation on the probability
distributions over the class labels. We proposed a simple greedy algorithm for
generating the folds in the cross-validation process. The goal was to generate
folds with the same mean probabilities as the complete dataset. First, for each
class label k, the instances were ranked in decreasing order using the proba-
bilities πi,k. Then, a mean rank was computed for each instance using K − 1
rankings. We ordered the instances according to the mean rank and assigned
each instance to the fold with the lowest sum of mean ranks at any time. The
proposed stratified l-fold cross-validation algorithm yielded folds with similar
proportions to the complete dataset, even when the class labels were unbalanced
(not shown). Once the folds were generated, we proceeded as in a classical strat-
ified cross-validation setting. Each fold was considered once to test the classifier
learned using the other l− 1 folds. The estimated error of the classifier was the
mean of the errors of the classifiers learned for each fold.

4.2 Results

Figure 1 shows the mean classification error achieved in each dataset for differ-
ent values of μB = {0.1, 0.2, 0.3, 0.4} in the beta distribution used to generate
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Fig. 1. Mean classification error and standard deviation bars in ten repetitions
of a 10-fold stratified cross-validation procedure. The probability distributions for
the class labels πi were generated from beta distributions B(μB , 0.01) with μB =
{0.1, 0.2, 0.3, 0.4}.
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Table 2. Comparison between algorithms considering the results for all the classifiers
(5), datasets (8) and values of μB (4).

H0 W/T/L
Binomial test Bergmann-Hommel test

H1 p-value H1 p-value

GEM = EM 141/1/18 > ∗ 0.0000 �= ∗ 0.0000
GEM = WL 104/0/56 > ∗ 0.0000 �= ∗ 0.0000
GEM = TL 32/5/123 < ∗ 0.0000 �= ∗ 0.0000
EM = WL 80/0/80 �= 1.0000 �= 0.1530
EM = TL 20/0/140 < ∗ 0.0000 �= ∗ 0.0000
WL = TL 16/0/144 < ∗ 0.0000 �= ∗ 0.0000

the artificial datasets. The value σB = 0.01 was used in all experiments. We
performed ten repetitions of 10-fold stratified cross-validation and computed the
classification error with respect to the true class labels of the instances. The
GEM algorithm frequently outperformed the classical EM algorithm, the only
exception being the ring dataset, where EM and GEM algorithms won 10 times
each. Interestingly, GEM achieved better results than TL in some experiments,
e.g., MGC in appendicitis and crabs datasets, or NB in appendicitis, iris,
ring and wine datasets (μB = 0.1). A possible explanation is that GEM uses
the information about an instance to estimate the parameters of the condi-
tional probabilities for all the class labels where the probability πi,k is higher
than zero. Therefore, more information was available to fit the classifiers and
higher accuracies could be achieved. The accuracy in the WL scenario deteri-
orated as we increased the mean value of the beta distributions, e.g., in the
appendicitis, crabs, glass, iris or wine datasets. On the contrary, the ac-
curacy of GEM remained rather stable or decreased slightly (e.g., fourclass or
phoneme) when increasing μB. These behaviors could be observed for all but the
classifiers learned with FSSSEM. In general, MGC, SEM and AODE were the
classifiers that performed better for the different algorithms and datasets. NB
yielded poor results in the crabs and glass datasets but seemed to outperform
the other classifiers in appendicitis. FSSSEM’s performance was not very good
across all the datasets.

Table 2 compares the four learning algorithms (GEM, EM, WL and TL). The
number of times the first algorithm wins, ties or loses against the second are
shown. The binomial test checks whether or not the number of wins is equal
to the number of losses. The non-parametric Bergmann-Hommel post-hoc test
[11] checks whether or not the mean accuracy of the methods is the same. The
p-value and the alternative hypothesis (H1) are reported for each test. Statisti-
cally significant results at α = 0.05 are shown with an asterisk. We found that
GEM significantly outperformed both EM and WL. Not surprisingly, we found
significant differences between TL and all the other learning scenarios. On the
other hand, no significant differences were found between EM and WL.

Similarly, Table 3 compares the five BCs. We did not find significant dif-
ferences between the pairwise performances of AODE, MGC and SEM. All the
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Table 3. Comparison between classifiers considering the results for all the algorithms
(4), datasets (8) and values of μB (4)

H0 W/T/L
Binomial test Bergmann-Hommel test

H1 p-value H1 p-value

MGC = NB 80/0/48 > ∗ 0.0030 �= ∗ 0.0022
MGC = AODE 49/17/62 < 0.1273 �= 1.0000
MGC = SEM 57/7/64 < 0.2928 �= 1.0000
MGC = FSSSEM 108/1/19 > ∗ 0.0000 �= ∗ 0.0000
NB = AODE 41/0/87 < ∗ 0.0000 �= ∗ 0.0003
NB = SEM 39/14/75 < ∗ 0.0005 �= ∗ 0.0008
NB = FSSSEM 89/0/39 > ∗ 0.0000 �= ∗ 0.0000
AODE = SEM 59/5/64 < 0.3593 �= 1.0000
AODE = FSSSEM 108/0/20 > ∗ 0.0000 �= ∗ 0.0000
SEM = FSSSEM 100/1/27 > ∗ 0.0000 �= ∗ 0.0000

classifiers significantly outperformed FSSSEM according to both tests. The fea-
ture subset selection method in FSSSEM is rather naive and uninformative and
the number of selected variables in the final classifiers was usually low. This could
explain FSSSEM’s poor performance. Also, NB was outperformed by MGC,
AODE and SEM.

5 Conclusions

In this paper we have adapted the GEM algorithm [1] to the particular sce-
nario where the information about the class of the training instances is given
as probability distributions over the class labels. We used this particulariza-
tion of the GEM algorithm to learn Bayesian network classifiers with different
structural complexities: multivariate Gaussian classifiers, naive Bayes, AODE or
conditional linear Gaussian classifiers. We evaluated the classifiers on eight real
datasets. BCs learned with GEM outperform others learned with the classical
EM algorithm or with potentially wrong labels. We found no significant differ-
ences between the performances of MGC, AODE and CLG classifiers learned
with SEM. In general, both AODE and SEM require a lower number of parame-
ters than MGC to be estimated from data. Therefore, these classifiers might be
more appropriate when the number of instances in the training datasets are low
with respect to the number of variables.

Future work includes the extension to other BCs, e.g., TAN, k-DB, selective
NB, etc. These methods are far more efficient than SEM or FSSSEM because the
structural search uses the conditional mutual information between the predictive
variables to find interrelationships. However, estimating the conditional mutual
information between two variables when the class values are provided as proba-
bility distributions or belief functions is a matter of research. Other more informa-
tive methods could be used for feature subset selection. Adapting classical mea-
sures of the information that a variable (or a set of variables) provides about the



148 P.L. López-Cruz, C. Bielza, and P. Larrañaga

class, such as the mutual information or correlation-basedmeasures, to work with
uncertain class labels is also challenging. In this paper, we have only considered
score+searchmethods for learning BCs. However, there are approaches which are
based on statistical tests for conditional independence between the variables. To
the best of our knowledge, how to adapt conditional independence tests to work
with probabilistic class labels is also an open question.

Finally, the GEM algorithm does not explicitly model class uncertainty, i.e.,
the probabilities πi,k remain constant throughout the whole algorithm and they
do not appear in the final model (1). Other approaches that explicitly model
these probabilities (e.g., using Dirichlet distributions) would be useful for study-
ing and considering the interactions between the different class values.
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Abstract. Traditional machine learning algorithms are focused on batch
learning from a static data set or from a well-known distribution. How-
ever, these algorithms take a considerable amount of time to learn a large
amount of training data and besides many of them are not able to deal with
nonstationary distributions. Recent machine learning challenges require
the capability of online learning in nonstationary environments. Thus, in
this work we propose a new learning method, for single-layer neural net-
works, that introduces a forgetting function in an incremental learning al-
gorithm. The algorithm employs a recursive formula in order to obtain
the solution of a weighted least squares problem. The performance of the
method is experimentally checked over different data sets. The proposed
algorithm has demonstrated high adaptation to changes while maintain-
ing a low consumption of computational resources.

Keywords: Neural Networks, Incremental Learning, Nonstationary
Learning.

1 Introduction

Nowadays, data analysis methods in machine learning play an important role
in industry and science. The growth of the World Wide Web and improvements
in data collection technology lead to a rapid increase in the magnitude and
complexity of the analysis tools. This growth is driving the need for scalable
and incremental algorithms that can handle the learning task on “Big Data”.
Moreover, recent machine learning challenges require the capability of adaptable
learning in nonstationary environments. This implies the development of new
algorithms that are also able to deal with changes in the underlying problem to
be learnt.

In this scenario, the well-known Recursive Least Squares (RLS) [1,2] is a
popular adaptive algorithm for solving Least Squares problems that has been
extensively studied and applied in the last decades to problems such as signal
processing, communications and control. In each iteration of the algorithm the
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parameters are updated using recursive equations. The complexity of the RLS
method is O(I2), being I the dimension of the data points. The algorithm min-
imizes the total squared error between the desired signal and the output of the
system, from the beginning to the current data point. Therefore, the RLS has
infinite memory as all errors are given the same consideration in the total error.
In cases where the function to be modeled by the system comes from a nonsta-
tionary distribution, the use of a forgetting factor allows the RLS to reduce the
value of older error data multiplying by an exponential weighting factor, and
thus to adapt the optimal parameters in changing scenarios. In this algorithm
there are two variables which have to be provided with initial values to start
the recursions: the parameters of the model (w) and a matrix (P), that is pro-
portional to the inverse of the covariance matrix of the parameters. The most
commonly-used approximate initialization scheme consists of setting w = 0 and
P = δI, where δ " 0 is a suitable chosen constant with a high value. In order
to avoid the approximate initialization of the RLS, in [3] the authors present an
order-recursive formula for the Moore-Penrose pseudoinverse of a matrix that
extended the classical Greville formula [4]. This new version not only reduces
almost half memory locations of Greville formula at each recursion, but also is
very useful to derive recursive formulas for the optimization solutions involving
the pseudoinverses of matrices. As applications, using the new formulas, the au-
thors derive Recursive Least Squares procedures which coincide exactly with the
batch Least-Squares (LS) solution, including a simple and exact initialization.
This formulation has the advantage, compared to the RLS, that no initialization
parameters must be established and then its performance does not depend on
those values.

2 The Rationale of the Approach

Recently, a new convex objective function for single-layer neural networks has
been presented in [5] which can be used to adjust the parameters of the network us-
ing nonlinear output functions. In that work it was remarked that the presented
approach opens the opportunity to incrementally learn that kind of neural net-
works without the necessity of saving previous data. However, this incremental
capacity involves the computation of a I × I system of linear equations for each
new data point, leading to instabilities for ill-posed problems and with a complex-
ity of O(M ∗ I2) being M a heavy constant. In [6], the incremental learning capa-
bilities of the model presented in [5] were explored and extended to nonstationary
scenarios, obtaining good results. Thatmodel weights the importance of each data
sample taking into account whether it is recent or not, giving exponentially more
importance to recent data points. Although it demonstrates that it is an effective
algorithm for concept drift problems, it still has to solve a new system of equation
for each new data sample and has to reset the weighting of the data samples peri-
odically leading to a cumbersome algorithm. Afterwards, the work in [7] extended
the previous research using an initialization scheme which is equivalent to intro-
ducing a Tikhonov regularization term in the training objective function. This last
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property makes the proposed algorithm suitable for complex high-dimensional or
noisy problems which are typically ill-posed.

In this work we derive a recursive algorithm that extends the later models
to train exactly a single-layer neural network with a nonlinear output function
in case this function is differentiable and invertible. Most of the the output
functions used in Artificial Neural Networks [8] comply with these condition, so
it can be used as basic build block for more complex models. The derivation of
the algorithm is based on the global optimum theorem demonstrated in [5] and
the variations of Greville formula for pseudoinverse computing developed in [3].
Depending on the values given to the hyperparameters and the selected output
function, it can be demonstrated that RLS and the model in [5] are all special
cases of the proposed algorithm.

3 Description of the Proposed Method

In the work presented in [5] a new convex objective function for the supervised
learning of single-layer neural networks (see Figure 1) was presented. The func-
tion is based on the minimization of the mean squared error before the nonlinear
activation functions, instead of after them, as is usually the case. In that research
it was proved that the minimization of this function is approximately equiva-
lent, up to first order of a Taylor series, to the minimization of the regular Mean
Squared Error (MSE). Figure 1 contains the nomenclature employed in that
work and in the rest of the paper, where I is the number of inputs and J is the
number of outputs. For the sth pattern xs = (1, x1s, x2s, . . . , xIs) its associate
desired output ds is propagated backwards using the inverse of the output func-
tion for each neuron f−1

j and the minimization of the error between the internal

network value zjs and f−1
j (djs) is considered.
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Specifically, the following theorem was demonstrated in [5]:

Theorem 1. Let x ∈ RI+1 be the column vector containing the input of a single-
layer feedforward neural network, d; y ∈ RJ be the desired and real outputs,
W ∈ RJ×(I+1) be the weight matrix, and f ; f−1; f ′ : RJ → RJ be the non
linear function, its inverse and its derivative. Then, the minimization of the
MSE between d and y at the output of the non linearity

min
W

1

S

S∑
s=1

‖ys − ds‖2, (1)

where S is the number of data points and y = f (Wx), is equivalent, up to
first Taylor order, to minimizing the MSE before the non linearity, i.e., between
z = Wx and d̄ = f−1(d) weighted depending on the value of the derivative of the
non linearity at the corresponding operating point. Mathematically, this property
can be written as

min
W

E[(d− y)T (d− y)] ≈ min
W

E[(f ′(d̄) · ε̄)T (f ′(d̄) · ε̄)] (2)

where (·) denotes the element-wise Hadamard product of vectors f ′(d̄) and ε̄ =
d̄− z.

��

The details of the proof of this theorem can be consulted in [5]. Using the
previous result, a method that uses a system of I × I linear equations to obtain
the optimal parameters of the network was proposed. Therefore, the network,
containing nonlinear activation functions, can be trained using a linear proce-
dure which can be incrementally updated. The approaches to solve these systems
of equations have a complexity, in the best case, of O(M ∗ I2) being M a heavy
constant.

Furthermore, in the research presented in [3] the following theorem was demon-
strated:

Theorem 2. Consider the weighted least squares problem:

min
w

(
dN −XNw)TΛ2

N (dN −XNw
)

(3)

where the weighting diagonal matrix ΛN is defined by

ΛN =

(
λN−1ΛN−1 0

0 1

)
, (4)

XN = (x1x2 · · ·xN ) is the matrix of data points and dN = (d1, d2, ..., dN )T is
the column vector of desired outputs at instant N . Then, for any N = 0, 1, ... the
optimal parameters can be obtained by the following recursive equation:

wN+1 = wN + kN+1(dN+1 − xT
N+1wN ) (5)

where kN+1 is defined by (using an auxiliar matrix QN ):
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1. If xT
N+1QN = 0 then

kN+1 = PNxN+1/(λ
2
N + xT

N+1PNxN+1) (6)

PN+1 = λ−2
N (I− kN+1x

T
N+1)PN (7)

QN+1 = QN (8)

2. If xT
N+1QN 	= 0 then

kN+1 = QNxN+1/(x
T
N+1QNxN+1) (9)

PN+1 = λ−2
N (I− kN+1x

T
N+1)PN (I− kN+1x

T
N+1)

T (10)

+kN+1k
T
N+1 (11)

QN+1 = (I− kN+1x
T
N+1)QN (12)

and the initial values are always fixed as w0 = 0, P0 = 0 and Q0 = I. The
forgetting values λN can be established, as usual, in the interval (0, 1].

��

Applying the previous result, a set of recursive formulas (equations (5)-(12))
can be used to determine the optimal parameters, with a complexity of O(I2),
instead of a system of linear equations. However, this scheme is restricted to be
employed for networks with linear activation functions. If nonlinear functions are
utilized in the output layer of the single-layer neural network then it prevents
the use of this linear formulation.

In the following we present a new result that allows to extend the previous
approach for the general case of any activation function (linear/nonlinear) in the
neurons of the network. We center the attention in a single output neuron, in
order not to make the presentation cumbersome, but the presented result can
be applied in a neuron-by-neuron manner for a multi-output network.

Theorem 3. Consider the weighted minimization problem of a single-layer neu-
ral network:

min
w

(
dN − f(XNw))TΛ2

N (dN − f(XNw)
)

(13)

in which the diagonal matrix ΛN weights the error committed for each data point.

For any N = 0, 1, ..., the exact solution, up to first Taylor order, to this
optimization problem is given recursively by the following algorithm:

wN = wN + f ′(d̄N+1)kN+1(dN+1 − xT
N+1wN ) (14)

where kN+1 is defined by:

1. If f ′(d̄N+1)x
T
N+1QN = 0 then

kN+1 =
(
PNxN+1f

′(d̄N+1)
)
/
(
λ2
N + f ′(d̄N+1)

2xT
N+1PNxN+1

)
(15)

PN+1 = λ−2
N (I− f ′(d̄N+1)kN+1x

T
N+1)PN (16)

QN+1 = QN (17)
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2. If f ′(d̄N+1)x
T
N+1QN 	= 0 then

kN+1 = QNxN+1/
(
f ′(d̄N+1)(x

T
N+1QNxN+1)

)
(18)

PN+1 = λ−2
N (I− kN+1x

T
N+1f

′(d̄N+1))PN (I− kN+1x
T
N+1f

′(d̄N+1))
T (19)

+kN+1k
T
N+1 (20)

QN+1 = (I− kN+1x
T
N+1f

′(d̄N+1))QN (21)

and the initial values are

P0 = 0, Q0 = I, λN ∈ (0, 1].

Proof. The problem in equation (13) can be restated, using theorem 1, in the
following manner:

min
w

(dN −XNw)
T
FNΛ2

NFN (dN −XNw) (22)

where FN = diag(f ′(d̄1), . . . , f
′(d̄N )). Therefore, if we multiply each element of

dN and each data point vector xi, i = 1, . . . , N by Fi we arrive to the problem,

min
w

(d	
N −X	

Nw)TΛ2
N (d	

N −X	
Nw) (23)

where d	
N = dNFN and X	

N = XNFN . This problem, by theorem 2, can be
solved by the same recursive procedure, but substituting dN+1 and xN+1 by
d	N+1 and x	

N+1.
��

Using the previous result, a single-layer neural network, with nonlinear activation
functions, can be trained in an incremental fashion using the recursive equations
in (14)-(21). This allows us to use this scheme for either the learning of big data
sets that must be processed online, due to memory limitations, or streaming data
scenarios where samples arrive continuously. Regarding complexity analysis, the
proposal has a complexity of O(I2), where I is the number of input neurons, due
to the matrix-vector multiplications involved in the recursive formulas. Finally,
the following issues can be discussed:

Remark 1: If λN = 1, ∀N then the method works in a stationary learning mode,
and it arrives to the same solution than in [5] but using an updating recursive
formula instead of a system of linear equations.
Remark 2: If λN = 1, ∀N and the output function f is the linear function, this
model includes Exact Recursive Least Squares in [3] as a special case.
Remark 3: If 0 < λN < 1, ∀N then we can use this algorithm for learning in
non stationary enviroments like in [6] and [7].
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4 Experimental Results

Several simulations were carried out to verify the performance of the proposed
method in incremental and nonstationary environments. Firstly, the behavior
of the proposed model was checked for the prediction of the Mackey-Glass [9]
chaotic time series. In order to test the adaptation ability of the method in
nonstationary environments, the data set was generated changing the parameter
of the Mackey-Glass equations (every 900 data points) using the following order
τ = {10, 15, 10, 14, 10, 13}. The task was to predict the value 85 steps ahead using
an embedding input dimension of 8 values. In this case the forgetting parameter
(λN ) was set to 0.99. Figure 2 shows the Mean Squared Error (MSE), for the
test, obtained in each step of the online learning. As can be observed, the error is
monotonically decreased from the starting point and each 900 samples it grows
due to the changes in the function to be learned. Despite this, the method is
able to adapt its parameters to get quickly the solution for each new context.
Therefore, in this complex identification task, the proposed model presents a
fast convergence to the optimal and a good accuracy.
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Fig. 2. MSE for the test set, of the Mackey data set, in each step of the online learning
process

Secondly, the proposed method was applied to the Nebraska Weather Predic-
tion Data. This data set is formed by the weather measurements compiled by the
U.S. National Oceanic and Atmospheric Administration from over 9000 weather
stations worldwide [10]. Records date back to the 1930s, providing a wide scope
of weather trends. Daily measurements include a variety of features (tempera-
ture, pressurewind speed, etc.) and indicators for precipitation and other weather-
related events. Following the methodology in [11] the Offutt Air Force Base in
Bellevue, Nebraska, was chosen for this experiment due to its extensive range of
50 years (1949-1999) and diverse weather patterns, making it a longterm precipi-
tation classification/predictiondrift problem. In this case the experimental setting
was as follows: the model is sequentially updated for each new pattern and next
300 patterns were used as test set. Class labels are based on the binary indicator
provided for each daily reading of rain or not rain. Figure 3 contains the test accu-
racy for this classification problem using a λN value equal to 0.99. The results are
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comparable to those graphically obtained by the non linear approaches proposed
in [11] but using a faster and simpler learning algorithm.
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Fig. 3. Test accuracy for the Nebraska data set
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Fig. 4. Four subsets forming the Stairs data set. Each subset is obtained rotating 90
degrees the previous one.

Finally, an artificial data set, named Stairs data set, was employed for classifi-
cation purposes. This 2D data set is the union of four subsets, each one forming
two different stairs, one for each class (see Figure 4). In each subset the slope
of the stairs is rotated 90 degrees with respect to the previous one. Each step
of the stair is formed by 100 samples which are uniformly distributed in a unit
square. The whole data set contains 2400 samples, 600 in each subset, divided
in two classes. The class label is represented by a circle and a cross in the figure.
In order to create a training and test set each subset was randomly divided in
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half, thus each set contains 1200 samples. As can be observed, this is a nonsta-
tionary data set as the optimal decision function for each subset varies and it is
approximately a line with a slope of 45, 135, 225 and 270 degrees.

The data points of each subset were presented, sequentially, to the proposed
method in a sample-by-sample manner and, thus, each 300 samples a change is
produced in the problem to be learnt. Figure 5 contains the accuracy ratio, ob-
tained by the proposed method for the corresponding test set at each epoch of the
training process, using two different forgetting factors (λN=0.99 and λN=0.9).
As can be seen, the first factor lead to a more conservative scenario whereas the
second one allows a faster adaptation to changes.
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Fig. 5. Test accuracy for the Stairs data set using different forgetting factors (λN)

5 Conclusions

In this work we have presented a new incremental learning algorithm, with for-
getting capability, for a single-layer neural network with non linear output func-
tions. For practical purposes, it avoids the necessity of solving a system of linear
equations at each step of the learning process, as in [5] and [6], thus making it
an easier and more efficient algorithm for online and nonstationary scenarios.
This is achieved using a new version of the classical Greville formula to derive
recursive equations for the optimization process avoiding the pseudoinverses of
matrices. In addition, for its application to large-scale learning scenarios, the
proposed algorithm complies with the property of incremental learning, making
it also a suitable method for batch learning from data sets which need to be
considered by parts (chunks).
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Abstract. The naive Bayes is a competitive classifier that makes strong
conditional independence assumptions. Its accuracy can be improved by
relaxing these assumptions. One classifier which does that is the semi-
naive Bayes. The state-of-the-art algorithm for learning a semi-naive
Bayes from data is the backward sequential elimination and joining
(BSEJ) algorithm. We extend BSEJ with a second step which removes
some of its unwarranted independence assumptions. Our classifier out-
performs BSEJ and five other Bayesian network classifiers on a set of
benchmark databases, although the difference in performance is not sta-
tistically significant.

Keywords: semi-naive Bayes, tree augmented naive Bayes, Bayesian
network classifiers.

1 Introduction

A classifier is a function which uses a set of features of an object to assign it to
a class. The naive Bayes classifier [1,2] is an effective probabilistic classifier. It
assumes that the features are independent given the class. This assumption is
violated in many domains and more accurate classification can often be obtained
by avoiding unwarranted independence assumptions [3]. A common approach to
this is to augment naive Bayes by accounting for interactions between features,
obtaining an augmented naive Bayes model [3]

Semi-naive Bayes [4] is one such augmented naive Bayes classifier. It assumes
that correlations exist only inside disjoint subsets of features. No independence
assumptions are made within a feature subset, i.e., each feature directly depends
on every other. The best-known algorithm for learning a semi-naive Bayes is the
backward sequential elimination and joining (BSEJ) algorithm [4]. This algo-
rithm tends to capture few correlations among the features [3].

We set out to extend theBSEJ algorithmwith a second stepwhich removes some
of its independence assumptions that are notwarrantedby the data.We use tests of
conditional independence to identify the unwarranted independences.Weaugment
the semi-naive Bayes model with a restricted set of interactions. This procedure is
inspired by the selective tree augmented naive Bayes algorithm [5].

We report an empirical comparison of our proposal with the BSEJ algorithm
and with five other reference Bayesian network classifiers.
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This paper is organized as follows. Sections 2 introduces Bayesian network
classifiers. Section 3 explains the backward sequential elimination and joining
(BSEJ) algorithm. Section 4 describes the selective tree augmented naive Bayes
algorithm. Section 5 explains the proposed extension of BSEJ. Section 6 reports
the empirical evaluation of our proposal. Section 7 sums the paper up.

2 Bayesian Network Classifiers

We use upper-case letters to denote variables (X) and lower-case letters (x)
to denote variable values. We use boldface letters to denote multidimensional
vectors. A problem domain is described with n predictive variables or features
X = (X1, . . . , Xn) and a class variable C. In our setting, all variables are discrete
with xi ∈ {1, . . . , ri} and c ∈ {1, . . . , rc}. A Bayes classifier assigns a vector of
feature values x to the most probable class, i.e.

c∗ = argmax
c

p(c|x).

A Bayesian network classifier [3] uses a Bayesian network [6] to encode p(c,x).
A Bayesian network consists of two components: a directed acyclic graph G and
a set of parameters Θ. Each node V in the graph corresponds to a random
variable and the arcs represent direct dependencies between the variables. G en-
codes the conditional independence assumptions about the variables: a variable
V is independent of its nondescendants given Pa(V ), its parents in G. The pa-
rameters Θ quantify the network by specifying the local probability distribution
for each V , p(v|pa(v)), where pa(v) is a value of the set of variables Pa(V ). A
Bayesian network classifier assigns x to the class that maximizes p(c,x) since
argmaxc p(c,x) = argmaxc p(c|x).

The best-known Bayesian network classifier is the naive Bayes. It assumes
that the features are conditionally independent given the class (see Fig. 1a for
its network structure), factorizing p(c,x) as

p(c,x) = p(c)

n∏
i=1

p(xi|c).

This assumption is violated in many domains and more accurate classification
can often be obtained by avoiding unwarranted independence assumptions [3]. A
common approach to this is to augment naive Bayes’ structure with arcs between
features, obtaining an augmented naive Bayes model [3].

3 Semi-naive Bayes

The semi-naive Bayes (SB) is an augmented naive Bayes classifier. It assumes
that correlations exist only inside disjoint subsets of features. No independence
assumptions are made within a feature subset, i.e., each feature depends directly
on every other. This means that the structure of a naive Bayes is augmented with



Augmented Semi-naive Bayes Classifier 161

(a) (b) (c)

Fig. 1. Examples of Bayesian network classifier structures. Naive Bayes (a), semi-naive
Bayes (b), and augmented semi-naive Bayes (c)

an arc between every pair of features in the same feature subset. For simplicity
of representation, we depict the dependencies within a feature subset with a
compound node corresponding to the Cartesian product of the features within
the subset (see Fig. 1b). Unlike naive Bayes, the semi-naive Bayes model does
not necessarily include all the features of a domain. According to the semi-naive
Bayes,

p(c,x) = p(c)
∏
j∈Q

p(xSj |c), (1)

where Sj ⊆ {1, . . . , n} is the j-th feature subset, Q = {1, . . . ,K} is the set of in-
dices of feature subsets, and the following conditions hold: ∪j∈QSj ⊆ {1, 2, ..., n}
and Sj ∩ Sl = ∅, j 	= l.

The number of possible partitions of the feature set into disjoint subsets grows
faster than exponential in n. That justifies the use of heuristics for learning a
semi-naive Bayes from data. The backward sequential elimination and joining
(BSEJ) [4] algorithm is the state-of-the-art algorithm for this purpose. It uses
a greedy search which, starting from the structure of a naive Bayes (where each
feature is a singleton feature subset), chooses between two operations in each
step:

– Removing a feature Xi from the model
– Creating a new feature subset XSk

by merging two subsets, XSj and XSj

A cross-validation estimate of predictive accuracy is used to evaluate the candi-
date operations. If no operation improves the accuracy of the current structure,
the search stops.

4 Selective Tree Augmented Naive Bayes

The tree augmented naive Bayes (TAN) augments the naive Bayes with a tree
over the features. That is, it conditions every feature except one (the root of the
tree) on exactly one other feature. The augmenting tree which maximizes the
likelihood of the TAN can be efficiently found using Chow-Liu’s algorithm.

The selective tree augmented naive Bayes (STAN) may remove less than n−1
conditional independence assumptions of the naive Bayes. Before learning the
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augmenting tree, STAN discards dependencies that are not statistically signifi-
cant. It may occur that a subset of features has no warranted conditional depen-
dencies on other features. In that case there can be no arcs between this feature
subset and the other features, and the augmenting structure will be a forest (a
set of trees) rather than a tree.

5 Augmented Semi-naive Bayes

We would like to know if correlating some of the disjoint (and conditionally
independent) feature subsets of a semi-naive Bayes can improve its predictive
accuracy. Just before outputting the final semi-nave Bayes model, the BSEJ
algorithm considers correlating each pair of feature subsets and finds that no
correlation improves its estimate of accuracy. We consider correlating a pair of
feature subsets if their conditional dependency is statistically significant. We
augment the semi-naive Bayes with a tree or a forest over the feature subsets
(see Fig. 1c), removing at most K − 1 unwarranted independence assumptions,
where K is the number of feature subsets. We select the augmenting edges that
maximize the likelihood of the model. Although correlating any feature subset
pair of the final semi-naive Bayes did not improve the accuracy estimate of BSEJ,
it is possible that removing several, unwarranted independence assumptions at
once can improve prediction. In any case, augmenting the semi-naive Bayes in
this way is fast compared to BSEJ’s time complexity.

The augmented semi-naive Bayes (ASB) factorizes p(c,x) as

p(c,x) = p(c)
∏
i∈R

p(xSi |c)
∏

i∈Q\R
p(xSi |xj(i), c),

where Q and Si are defined as in Equation (1), R ⊆ Q is the set of indices of
feature subsets that are conditioned only on the class variable (root(s) of the
trees(s)), and {Xj(i)} = Pa(XSi) \ C.

To test if two sets of features, XSi and XSj , are conditionally independent
given the class we use the χ2 test of conditional independence (see, e.g., [7]).
If the null hypothesis of conditional independence holds, then 2NI(XSi ;XSj |C)
asymptotically follows the χ2 distribution with (rSi−1)(rSj−1)rc degrees of free-
dom, whereN is the number of cases in our data sample, and rSi =

∏
k∈Si

ri. The

χ2 approximation is not reliable when there are little cases in the contingency
table over XSj , XSj , and C [8]. Following [9], we consider the χ2 approximation
to be reliable if the average cell count in the contingency table is at least 5.
Also following [9], we assume conditional independence when this condition is
not fulfilled. That is, we do not remove the independence assumption for a pair
of feature subsets if the test of their conditional independence is unreliable.

The procedure for finding the augmenting structure is based on Chow-Liu’s
algorithm. First, we build a complete undirected graph G = (K,A). Each vertex
j ∈ K corresponds to XSj , a subset of features correlated in the semi-naive
Bayes, and there is an edge between every two nodes i and j such that cor-
responding feature subsets, XSi and XSj , are not conditionally independent
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according to the χ2 test. As G is not necessarily a complete graph it is possibly
not connected. In this case, the augmenting structure that maximizes the likeli-
hood is not necessarily a tree but a maximum weighted forest (MWF) [10]. The
MWF is given by the union of the maximum weighted spanning trees (MWST)
for each connected component of G. This union of MWSTs can be found by
applying Kruskal’s algorithm on G (there is no need to run it separately for each
connected component of G) [10].

Our procedure for augmenting the semi-naive Bayes is similar to the STAN
algorithm for augmenting the naive Bayes. The differences are that ASB can
remove independence assumptions between non-singleton sets of features and
that it uses the standard procedure for testing for conditional independence (the
one described in [7]). Namely, it seems that the authors of STAN were not aware
of the test for conditional independence and therefore they developed and used
a heuristic based on the χ2 test of independence.

The full augmented semi-naive Bayes algorithm is specified more formally in
Algorithm 1.

Algorithm 1. Augmented semi-naive Bayes

1. B ← a semi-naive Bayes model
2. S ← a partition of features such that ∪K

j=1Sj = S and XSj is a set of features
correlated in B

3. rSj ←
∏

l∈Sj
rl, j ∈ {1, . . . ,K}

4. G ← (K,E), a complete undirected graph with nodes K and edges E
5. for all i, j = 1, . . . ,K,i < j do
6. if N

rSj
rSi

rc
≥ 5 and 2NI(XSi ;XSj |C) passes the X2

(rSi
−1)(rSj

−1)rc
test at sig-

nificance level α then
7. weight of edge i—j in E ← I(XSi ;XSj |C)
8. else
9. remove edge i—j from E
10. end if
11. end for
12. T ← maximum weighted forest obtained by applying Kruskal’s algorithm on G
13. T′ ← for each T ∈ T choose a root node at random and direct edges away from it
14. for all i, j such that arc i → j ∈ T′ do
15. augment B with arcs from each Xl in XSi to every Xk in XSj

16. end for

6 Experimental Evaluation

6.1 Setup

We compare the augmented semi-naive Bayes (ASB) algorithm to six reference
algorithms for learning Bayesian network classifiers. Two of those algorithms
learn a selective naive Bayes (SNB) [11] model. The forward sequential selection
(FSS) algorithm [11] performs a greedy search guided by predictive accuracy
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while the filter forward sequential selection (FFSS) omits from the model the
features that are deemed independent of the class by the χ2 independence test.
Besides SNB, we consider the naive Bayes (NB), the tree augmented naive Bayes
(TAN), the selective tree augmented naive Bayes (STAN), and the backward
sequential elimination and joining (BSEJ) algorithm.

We compare the classifiers over 14 natural domains from UCI repository [12]
(see Table 1). Prior to classifier comparison, we removed incomplete rows and
discretized numeric features with the MDL method [13].

For the BSEJ and the FSS, we used 5-fold stratified cross-validation to esti-
mate predictive accuracy. For statistical tests of (conditional) independence we
used a significance level of 0.05 and applied the criterion of χ2 approximation
reliability. In FFSS, if a test of independence of Xi and C is not reliable, then
independence is assumed and Xi is omitted from the model. For STAN, we used
the same test of conditional independence as for ASB. Laplace’s correction of
maximum likelihood was used to estimate parameters. We estimated predictive
accuracy of the classifiers with 5 repetitions of 5-fold stratified cross-validation.

The Bayesian network classifiers are implemented in the bayesClass [14]
package for the R statistical environment [15]. We used the caret [16] package
for R to estimate predictive accuracy with cross-validation.

Table 1. Data sets. #Instances column displays the number of complete instances

No. Data set #Features #Instances #Classes

1 Balance Scale 4 625 3
2 Breast Cancer (Wisconsin) 9 683 2
3 Car 6 1728 4
4 Chess (kr vs. kp) 36 3196 2
5 Dermatology 34 358 6
6 Ecoli 7 336 8
7 House Voting 84 16 232 2
8 Ionosphere 34 351 2
9 Lymphography 18 148 4
10 Molecular Biology (Promoters) 57 106 2
11 Molecular Biology (Splice) 61 3190 3
12 Primary Tumor 17 132 22
13 Tic-tac-toe 9 958 2
14 Wine 13 178 3

6.2 Results

Following [17], we performed Friedman’s test [18,19] and Iman and Devenport’s
correction [20] to compare the classifiers over all the data sets. Our proposal
outperforms the other methods (see Table 2 for Friedman’s ranks) although the
difference is not statistically significant1.

1 The p-value from both Friedman’s and Iman and Davenport’s test was 0.2.
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Table 2. Average Friedman’s ranks. Lower ranking means better performance. ASB =
augmented semi-naive Bayes, STAN = selective tree augmented Bayes, FSS = forward
sequential selection, BSEJ = backward sequential elimination and joining, FFSS =
filter forward sequential selection, NB = naive Bayes, TAN = tree augmented naive
Bayes.

Algorithm Friedman’s ranks

ASB 3.11
STAN 3.96
FSS 5.21
BSEJ 3.57
FFSS 4.35
NB 3.53
TAN 4.25

p-valueFriedman 0.20
p-valueIman-Davenport 0.20

Table 3. Estimated accuracies (in %) of the compared classifiers. The best performing
classifiers on a data set are marked in bold. Some data set names are shorter than
in Table 1 but the order is the same. ASB = augmented semi-naive Bayes, STAN =
selective tree augmented Bayes, FSS = forward sequential selection, BSEJ = backward
sequential elimination and joining, FFSS = filter forward sequential selection, NB =
naive Bayes, TAN = tree augmented naive Bayes.

No. Data set ASB STAN FSS BSEJ FFSS NB TAN

1 Balance Scale 72.9±2.5 73.2±2.9 73.6±2.2 72.8±2.3 73.3±2.3 73.3±2.3 73.2+-2.9
2 Breast Cancer 97.1±1.1 97.1±1.1 96.9±1.4 97.5±1.0 97.5±1.0 97.5±1.0 97.1±1.1
3 Car 93.3±1.6 93.5±1.5 70.0±0.1 90.0±1.8 85.1±1.7 85.3±1.4 94.1±1.6
4 Chess 94.1±1.1 92.6±0.8 94.1±1.0 92.2±1.1 87.8±1.4 87.8±1.4 92.4±0.9
5 Dermatology 98.2±1.5 98.0±1.6 95.1±3.4 98.2±1.5 98.0±1.6 98.0±1.6 97.1±1.7
6 Ecoli 85.7±3.4 85.7±3.4 83.4±2.8 85.7±3.4 85.7±3.4 85.7±3.4 84.5±3.2
7 House Voting 84 94.3±2.8 92.9±2.8 97.0±2.4 91.2±4.5 91.3±4.5 91.2±4.4 93.6±2.7
8 Ionosphere 92.0±3.7 91.9±3.7 90.7±3.6 90.7±3.8 90.7±4.1 90.7±4.1 92.2±3.1
9 Lymphography 85.4±6.1 82.7±5.6 78.4±7.3 85.0±6.5 82.7±7.1 84.6±6.2 83.4±6.0
10 Promoters 89.8±6.4 90.5±5.0 84±11.2 89.8±6.4 90.5±5.0 91.7±6.2 48.7±1.2
11 Splice 94.9±0.7 95.0±0.8 93.5±0.8 95.5±0.8 95.4±0.9 95.5±0.8 52.5±0.3
12 Primary Tumor 46.5±9.4 21.3±2.0 42.5±7.7 46.5±9.4 21.3±2.0 48.3±9.3 41.6±8.0
13 Tic-tac-toe 75.3±3.2 74.8±2.9 69.6±3.4 71.7±3.7 70.4±3.9 70.4±3.8 75.8±2.9
14 Wine 98.7±1.6 98.7±1.6 95.4±2.9 98.9±1.4 98.9±1.4 98.9±1.4 96.9±2.6

The ASB significantly2 improves on BSEJ on four data sets (car, chess, iono-
sphere, and tic-tac-toe. See Table 3 for accuracies.). The BSEJ outputs a model
similar to the NB on those data sets (e.g. on ionosphere it removes a single
feature and accounts for one interaction) while the ASB heavily augments the
BSEJ (e.g. on ionosphere it builds a full tree among feature groups). This shows
that useful interactions missed by BSEJ can be recovered by ASB.

There is no significant difference between ASB and BSEJ on the remaining
data sets. The ASB degrades BSEJ on only three data sets and the degradation is

2 According to Wilcoxon’s signed rank test at 5% significance level.
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minor (by at most 0.6% accuracy). On four data sets the ASB model is identical
to the BSEJ. One of those data sets - primary tumor - has many classes (22) and
not many cases (132). This yields the conditional independence test unreliable
for every pair of features and therefore no arcs are be added. On the other three
data sets, lowering the significance threshold would have would have produced
augmented BSEJ models (i.e. arcs would have been added).

7 Concluding Remarks

We have presented the augmented-semi naive Bayes (ASB) algorithm, a method
for removing some of the unwarranted independence assumptions of a semi-naive
Bayes model. The ASB is computationally inexpensive compared to the BSEJ,
the algorithm used for learning a semi-naive Bayes. Our experiments show that
ASB improves BSEJ in some domains without degrading it others. The ASB
outperformed BSEJ and five other Bayesian network classifiers on 14 bench-
mark data sets, although the improvement in performance is not statistically
significant. Further experiments, over more data sets, might give more conclu-
sive results. Since ASB seems to improve BSEJ, it might be interesting to extend
the approach to augmenting other Bayesian network classifier learned by max-
imizing predictive accuracy, such as the forward sequential selection algorithm
for learning a selective naive Bayes.
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Abstract. User profiling, defined as the inference of user interests, intentions, 
characteristics, behaviors and preferences, is nowadays one of the most  
important keys in personalized services on Internet, such as segmented target 
advertisements. In this paper, we propose a scalable and automated technique 
for user ontology profiling in social networks by extracting URL content shared 
by users in tweets. The new approach models a user profile as a semantic 
ontology where user interests and intentions are represented. OpenDNS and 
DBpedia collective knowledge databases are utilized in order to find the 
interests and intentions categories of the user profile ontology, enhancing the 
performance of our method and taking the collective categorization of the 
websites. User profile ontology evolves constantly and is populated with 
assertions of individuals and relationships of interest and intention from these 
collective knowledge repositories. Experimental results indicate strongly that 
the proposed method automatically generates, correctly, the interests and 
intentions of a user profile. 

Keywords: Twitter, Social Networks, Ontology, RDF, OWL, NoSQL. 

1 Introduction 

User profiling, defined as the inference of user interests, intentions, characteristics, 
behaviors and preferences, is the new tool for Internet services expansion. For 
example, profiling a user’s location, buy items or topic interests (which we will focus) 
enables new services to provide personalized search results, news sites to recommend 
buy items, and advertisers to serve targeted ads. To profile a user, the traditional 
approaches leverage limited user-centric data (e.g., search log or purchase history),  
mining values of various user attributes such as demographic characteristics (e.g., age, 
gender, origin), intentions (looking items to buy, e.g. TV LCD 32”), interests (e.g. 
politics, sports, TV programs). Scalable algorithms for mining big data in order to 
generate user profiles can help also in new advanced services on Internet such as: 
discovering danger users for a target topic like terrorism or looking for new specific 
customers. Twitter, LinkedIn, Google+, Facebook and other similar services study the 
users’ posted content and their interactions with others. The real business of these 
companies is to know about their users to shell advertisements and to improve the 
quality of experience of them. Beyond this techniques, other methods try to generate 
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online digital footprints [1] for disambiguating the users. A repository of improved 
user profiles may significantly generate better and new Internet business. Ontologies 
can play an important role in user profiling [2]. Ontologies are a formal description 
and specification of concepts. They provide a well-defined and constructed method to 
provide a standard format to define user interests. 

In this work, we propose a scalable and automated technique for user profiling by 
extracting his URLs from publicly available tweets information, enhancing the 
performance of our method and taking the collective categorization of the websites 
from DBPedia1 and OpenDNS2. In other words, we generate a concise, yet descriptive 
semantic ontology user profile using Twitter streams. With a semantically ontology 
user profile generated, one can easily identify and reasoning the exact topics of 
interest a user has. In contrast to bag of word approaches, we generate semantically 
enhanced user profiles that quantify the users’ interests and intentions in a set of 
specific categories. Ultimately, our profiling method outputs a semantically enhanced 
user profile that reflects the real user interest.  

The remainder of this paper is structured as follows: In section 2 we discuss related 
work on modeling expertise of social media users. Section 3 describes the architecture 
used and presents a high level description of the algorithm. In section 4 we describe 
the ontology used. We discuss our results in section 5 and highlight implications and 
of our work. Finally, section 6 describes conclusions of our work and discusses ideas 
for future work.  

2 Social Network Analysis 

Online social network services such as Twitter, LinkedIn, Google+ and Facebook 
become important platforms for users to connect with friends as well as share 
information. For example, Twitter, a social network for users to follow each other and 
publish tweets3, now has almost 500 million active users and generates 50 million 
tweets daily. On one hand, those services need to “understand” their users better, 
because old tasks (e.g., targeted ads) now become even more challenging (e.g., 
serving ads without queries), and new tasks (e.g., recommending “friends”) arise in 
the context of social network. How are people connected on Twitter? Who are the 
most influential people? What do people talk about? How does information diffuse 
via retweet? On the other hand, those services generate additional information to 
leverage, because not only user-centric data (e.g., tweets) is available, but also 
information from others can be propagated through users’ social connections. Profile  
information including name, age, location in Twitter services, although it can be 
incomplete (a user may choose not to post bio details) or misleading (a user may 
choose to list a wrong place). As a micro-blogging site, Twitter is supposed to hold 
less personal information than sites like Facebook. Despite this, we wondered if it is 
possible to reconstruct the profiles of Twitter [3] users from only publicly available 

                                                           
1 DBpedia is a crowd-sourced community effort to extract structured information from 

Wikipedia (http://dbpedia.org). 
2 OpenDNS cloud websites tagging.  

http://community.opendns.com/domaintagging/ 
3 Twitter stats from http://www.statisticbrain.com/twitter-statistics/ 
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information on their profile. However, other relevant attributes, such as explicit and 
implicit interests or political preferences are usually omitted. Different approaches 
can be obtained in the literature like automatic user classification and profiling 
politics interests [4]. For example, the problem to discover interest by casting it as a 
user classification task and leveraging two types of information: user-centric 
information reflecting the linguistic content of the user’s tweets, his social behaviors 
and likes, and; social graph information in the form of the distribution of the possible 
target class values for the people connected to the user by a social graph link. 
Machine learning approach has been used in several occasions like in [5], where is 
described a general machine learning framework for social media user classification 
which relies on four general feature classes: user profile, user tweeting behavior, 
linguistic content of user messages and user social network features. It has been 
proposed the use of wavelet based on clustering method to group users for 
discovering regular and consistent behavioral patterns in topical tweeting [6] into 
different groups that exhibit behavioral similarity. According to [7], it is explored the 
usefulness of different types of user-related data (tweets, retweets, bio and list data) 
for making sense of the domain expertise of Twitter users. Also, there are papers 
working on the identification of the personality of the users [8]. Different works like 
[9, 10] develop tools and services to allow the end-users to inspect Twitter-based 
profiles and enables other applications to reuse these profiles. People can overview 
their personal Twitter activities or profiles of other users to explore the topics those 
users were concerned with in the past. Different methods (entity-based, topic-based 
and hashtag-based tag) are used to visualize profiles.   

Another topic explored in Social network analysis is to use Twitter as a social virtual 
sensor [11, 12]. The large number of Twitter updates results in numerous reports related 
to events, including social events such as parties, baseball games, and presidential 
campaigns. Also, disastrous events such as storms, fires, traffic jams, riots, heavy rainfall, 
earthquakes or the last bomb attack in Boston can be used as event detector or sensor 
detector. User profiling or Twitter system event detection classifies events that are visible 
through tweets such as earthquakes, terrorist attacks or fires. 

Different works exist in the literature to study the topological characteristics of 
Twitter and its power as a new medium of information sharing [12, 13]. Twitter has 
explicit social structures among users and can be viewed as a time-series which 
records the activity volumes of a user at different intervals over an extended time 
period [12]. In order to identify influences on Twitter, it is possible to rank users by 
the number of followers or ranking by retweets [14]. 

User profiling is taking place within the project Novared. It aims to find scalable 
methods to find users with specific interests and intentions to target advertising more 
tailored to the interests of the people.  

3 Architecture and Algorithm 

How to model user interests and intentions through user profiling is a key for providing 
personalized service. In our domain, a user profile is modeled by ontology based on 
OWL (Ontology Web Language) or RDF (Resource Description Framework)/XML 
format. For this reason, initial definition of user profile ontology has been created and 
completed with concepts extracted from additional sources such as advertisement 
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taxonomies, OpenDNS taxonomy and DBpedia ontology. In addition, our taxonomy 
defined adheres to the Friend-Of-A-Friend (FOAF) ontology, allowing reuse its classes, 
properties and individual definitions. OpenDNS offers a free domain service, Domain 
Tagging, to filter web sites based on several categories. Domains or URLs has been 
tagged into these categories and voted on the accuracy of submitter’s tag by Domain 
Tagging community members. According to the community, a domain can be awaiting 
votes (community is voting on this domain’s tags), approved (domain is confirmed in the 
category by the community) or rejected (domain does not belong in the category). 
DBpedia extracts structured data from Wikipedia and make it available as RDF 
(Resource Description Framework). Data can be accessed using an SQL-like query 
language called SPARQL. OpenDNS and DBpedia knowledge bases play an important 
role in enhancing the performance of our method. Both cover many domains.  

 

Fig. 1. Novared Architecture 

Over the past few years, trends such as concurrency, connectivity, peer-to-peer, 
mobility and cloud computing have created the need to store large amount of data in 
distributed databases that provide high availability and scalability. New varieties of non-
relational databases, commonly references as NoSQL, have emerged. The loss of 
flexibility or rigid schemes, the inability to scale data, the high latency or low 
performance and cost, are some of the major data management problems leading to the 
adoption of these technologies, nowadays widely used by companies such Amazon or 
Google. In this context and in order to support the ability to process large amounts of 
real-time information, NoSQL database become a crucial requirement in our application 
domain. After conducting a deep analysis of NoSQL technology and solutions current 
state, according to several features, Cassandra4 and Virtuoso5 non-relational databases, 
were the best suited to the desired application domain within the project. 
                                                           
4 The Apache Cassandra database http://cassandra.apache.org/ 
5 Virtuoso is an grade multi-model data server http://virtuoso.openlinksw.com/ 
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The high level Novared architecture (Fig. 1) is focused on extracted URLs posted 
by users in tweets, user profile ontology, OpenDNS, DBpedia, NoSQL databases and 
Reasoner, seen as an intelligent component that implements the logic and key 
algorithm to populate user profiles with information about their interests and 
intentions. 

In order to implement the algorithm, we have developed a set of sub-processes that 
allows adding new functionalities, defining and executing a workflow through an own 
library for semantic analysis of information inspired in UIMA6 philosophy, called 
Moriarty. It works as server processes with BPEL interpreter engine (jBPMN).  

 

Fig. 2. Workflow and sub-processes 

URLs contained in tweets can be considered as the seed for our approach. This 
information is helpful for identifying interests and intentions of a user and providing 
advanced Internet services. In our solution, tweets from users are crawled from 
Twitter in order to extract URL content, which cover different topics. URLs that 
people share on Twitter show their interests in specific topics. The ability to classify 
these URLs allows a first approximation to analyze their interests or their purchase 
intentions. This information posted by users in tweets is stored in Cassandra NoSQL 
database.  Cassandra is a column oriented distributed storage system, designed to 
handle very large amount of data spread out across many servers while providing a 
highly available service with no single point of failure. This allows that the system to 
be scalable to support from hundred to millions of tweets.  

In a batch mode, user tweets information gathered in Cassandra database is 
constantly analyzed. Basically, new information from all users is searched in 
Cassandra database through Cassandra sub-process. User-to-user, with its 
identification, OWL2Onto and Onto+Virtuoso sub-processes perform a search of its 
existing user profile ontology or a predefined ontological model within Virtuoso 
NoSQL database of RDF triples. Based on the extracted information, the aim of 
InterestGeneration sub-process is to generate new interest and intention relationships 
and concepts in user profile ontology. Over these relationships and concepts, 
Inference sub-process deduces new information about interests and intentions by 
means of a reasoner called Pellet7 (e.g. if the property hasIntent is transitive, and the 
property relates individual A to individual B, and also individual B to individual C, 
                                                           
6  UIMA Project http://uima.apache.org 
7  Pellet reasoning server http://clarkparsia.com/pellet/ 
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then it can be inferred that individual A is related to individual C via property). 
Finally, Onto2Virutuoso sub-process allows saving the updated user profile with the 
new information inferred in Virtuoso NoSQL database. Once generated or updated 
the ontological profile for all users, UserProcessedCassandra sub-process set in the 
Cassandra database that users have been processed.  

We propose a new user profiling algorithm which takes place in several steps and 
is described as follows: 

 

User Profiling Algorithm  
Input: url, userId, ontology 

Output: user profile ontology with assertions 
 

1. Check if url is interesting (/*not a search engines, a url shortened by services or a  generalist social networks */); 
2. If url is interesting then 
3.    If url exists in ontology then 
4.       hasIntent or hasInterest relationship is generated in user profile ontology; 
5.    Else 
6.       Search url in OpenDNS;  
7.       If url exits in OpenDNS then 
8.           For each categoryOpenDNS associated to the url in approved (by the community) 
9.              categoryOpenDNS is added to user profile ontology; 
10.              hasIntent or hasInterest relationship is generated in user profile ontology; 
11.       Search url in DBpedia  (/* whether the url exists or not in OpenDNS */); 
12.       If url exits in DBpedia then 
13.          For each categoryDBpedia associated to the url in the result of a query against DBpedia SPARQL endpoint 
14.              categoryDBpedia is added to user profile ontology; 
15.              hasIntent or hasInterest relationship is generated in user profile ontology; 
16.              Search sameAs in categoryDBpedia 
17.                 For each categoryDBpediaSameAs associated to categoryDBpedia in the result of a SPARQL query 
18.                    categoryDBpediaSameAs is added to user profile ontology like equivalent class to categoryDBpedia; 
19.                    hasIntent or hasInterest relationship is generated in user profile ontology; 
20. return ontology (/* with assertions of relationships and new concepts */); 

 

Fig. 3. User Profiling Algorithm 

Our algorithm discriminates between interesting and uninteresting URL. An 
uninteresting URL includes search engines (such as Google, Yahoo or Bing), URL 
shortened by services is resolved (such as Bitly, Goo or Su) and generalist social 
networks (such as Facebook, Twitter or Tuenti). User profiles are enriched with 
concepts and topics extracted from OpenDNS and DBpedia knowledge bases 
enhancing the performance of our approach. An extraction process of Domain 
Tagging data from OpenDNS has been implemented through Web-Harvest, an Open 
Source Web Data Extraction tool, in order to obtain URLs categorized by concepts. In 
addition, with concepts obtained as a result of a query against the DBpedia SPARQL 
endpoint8, user profile ontology is populated with RDF assertions of URLs, concepts 
and relationships of interest and intention. As new concepts and relationships are 
defined and inferred, user profile ontology keeps alive. 

                                                           
8  Sparlql query end point - http://dbpedia.org/sparql 



174 P. Peña et al. 

4 Ontology 

We use ontology to investigate how domain knowledge can help in the acquisition of 
user preferences. Artificial intelligence literature contains several definition of 
ontology, many of which contradict each other. Ontology is a term borrowed from 
philosophy that refers to the science describing the kinds of entities in the world and 
how they are related. On the other hand the OWL Web Ontology Language is a 
language for defining and instantiating Web Ontologies. We assume that ontology is a 
format explicit description of concepts in a particular domain (“class” sometimes 
called “concepts”), properties of each concept describing various features and 
attributes of the concept (“slots”, sometimes called “roles” or “properties”), and 
restrictions on slots (“facets”, also called “role restrictions”).  

Ontology together with a set of individuals of classes constitutes a knowledge base. 
Actually, there is a fine line where the ontology ends and the knowledge base begins. 
Classes are the focus of most ontologies and describe concepts in a domain. The 
profile Ontology inside Novared project is constructed based on standard 
advertisements taxonomy for user profile, OpenDNS taxonomy, and FOAF and 
DBpedia ontologies. The top class is “Thing” (profile) as the domain to build 
Novared ontology. Our ontology is always alive, as it may define new classes from 
the online update with additional concepts from other sources. The main classes are 
described as follows:    

• Person: class that contains user identification. 
• URL: class that includes URLs posted in tweets. 
• Interest: class that hosts concepts related to relationships with user interests URLs. 
• Intention: class that holds classes dedicated to relationships involving URLs user 

purchase intentions.  
• Unknown: class that contains URLs that do not exists in OpenDNS and DBpedia. 
• UnknownCategory: class of categories that do not exist in OpenDNS and DBpedia. 

The main subclasses defined for intentions (Fig. 4) are Auctions, AutoBuyers, 
Ecommerce/Shopping, Services and Travel; the subclasses for interests (Fig. 5) are 
Academia, Adult_Themes, Business_Services, Events, Government, GreenLiving, 
Health, Hobbies, Humor, JobSeekers, News/Media, Non-profits, Parenting, Politics, 
Religious, Sports, TechEnthusiasts and TravelEnthusiasts. 

The URL obtained for one user in the tweets is incorporated as exemplary of the 
class URL and associated to user entity. The topology of the ontology built can be 
showed in Fig. 6. Initial definition of advertisement with DBpedia categories was 
completed with new concepts (or synonyms) from the OpenDNS categories. 

The basic relationships defined in ontology are “hasInterest” and “hasIntent” and 
their corresponding reflexive “isOfInterestTo” or “isOfIntent”. Thus, each user 
classes are related to those of “Interest” by the relation “hasInterest”, and are related 
to those of “Intention” by the relation “hasIntention”. Obviously, URLs can have a 
relationship of belonging to one or more concepts from the categories of interest and 
intentions. Therefore, inference is done to obtain the interests and intentions of each 
user from de URLs posted in tweets. 
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Fig. 4. and Fig. 5. Intent and interest first level branch of the ontology 

5 Results 

To evaluate our approach for generating user profiles, 18,000 tweets from 8,000 users 
are been crawled from Twitter in order to extract URL content.  

We present an example of the results from an experiment conducted about how the 
user profiling is generated. From a URL, the topology of the inferred model is 
illustrated in Fig. 6 and Fig. 7. User profile ontology is populated with information 
(new concepts and relationships) about their interest and intentions. 

In our experiment some URLs are only in OpenDNS, other are in both (OpenDNS 
and DBPedia) and other URLs are neither. In this case, the URL www.avis.com 
extracted in tweets is an exemplar of URLs that are in OpenDNS and in DBpedia. 

Filtered the URL www.avis.com by OpenDNS, it can be observed that user profile 
ontology is populated with new concepts related to “Travel” category such as 
“Companies_based_in_Detroit,_Michigan”, “Car_rental_companies”, “Transportation_ 
companies_of_the_United_States”, “Companies_established_in_1946”, “Companies_ 
based_in_Morris_County,_New_Jersey”, “Franchises”, “Companies_based_in_Nassau_ 
County,_New_York”, and their “sameAs” provided by searches in DBpedia knowledge 
base. Moreover, as “Travel” belongs to “Intent” category of initial user profile ontology, 
“hasIntent” relationships have been generated between user and URL, URL and these 
categories and consequently, inferred intention relationships between user and sameAs 
categories are added. Finally, the “big” number of relationships generated was stored and 
can be queried in Virtuoso database, where billions of relationships can be asserted 
without performance problems. 

Based on experimental results it can be confirmed that the method improves the 
automatic acquisition of interests and intentions of a user profile. 
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Fig. 6. and Fig. 7. Topology of inferred model generated 

6 Conclusions and Future Work 

Services on Internet are trying to adapt to the interests and intentions of users, 
providing them a more personalized attention. In this paper, a method based on the 
generation of user profiles is proposed in order to provide advertisements that really 
interest. 

The results obtained allow us to face new tests and analysis of results with 
optimism. Our approximation allows obtaining automatically the interests and 
intentions of users through the URLs they share. They also show that the help of 
additional knowledge bases such as OpenDNS and DBpedia plays an important role 
and has a significant positive effect in user profiling. Social Networks and therefore 
Big Data have created the need to store, analyze and process large amount of data in 
distributed databases that provide high availability and scalability. Our ambition for 
the future work is to further investigate in massive data processing and clustering, 
allowing the implementation of scalable algorithms. We are currently working on 
analyzing the performance and scalability of the system presented, seeing the 
possibilities of massive data and user processing. On the other hand, we are working 
on including the categorization and opinion analysis of the Twitter text and the 
incorporation of new knowledge repositories such as DMOZ9 or SUMO10 in order to 
improve and enrich the user profiling.  

                                                           
9  Open Directory Project http://www.dmoz.org/ 
10 Suggested Upper Merged Ontology (SUMO)  http://www.ontologyportal.org/ 
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Abstract. The knowledge for managing diseases is usually compiled
in single-disease clinical guidelines (CG). These CGs are not directly
reusable for managing comorbid patients, who suffer from more than
one disease. This is because some interactions may exist between the
different involved CGs. However, some common high-level activities can
be found in the different CGs. In this work we present a Multi-Agent
Planning (MAP) approach which encodes these common activities in a
common recipe used by planning agents to firstly obtain local solutions
and then applying a conflict solving procedure over them. An experimen-
tal evaluation has been carried out to test the validity of the approach.

1 Introduction

Clinical Guidelines (CGs) are used in Clinical Decision Making to build care
plans (the strategy to treat a patient). CGs unify criteria according to the best
scientific evidence, encapsulating the knowledge to assist clinicians about ap-
propriate health care for managing a single disease, which prevent CGs to be
directly reusable when tailoring a care plan for a comorbid patient, who suffers
from more than one disease [1]. That is because diseases (and their corresponding
treatments) are not completely independent when they are present in the same
patient. Therefore, if the integral care plan for a comorbid patient is built by just
joining the separated care plans for each disease, some undesirable interactions
might arise. An ontology with these interactions can be found in [2], including
drug interactions (two different drugs which must not be administered together
may be prescribed by different CGs); redundant actions (different CGs may pre-
scribe the same intervention - e.g. a blood test - which should be practiced just
once to the patient); and timing interactions (different CGs may prescribe dif-
ferent interventions which should be time constrained between them - e.g. two
different X-rays, each one prescribed by a different CG for a different disease,
should be scheduled in the same session). These interactions have to be avoided
in order to not damage the patient, to make the most of each visit of the patient,
and to improve the efficiency in the use of available resources.

On the other hand, the knowledge encoded in single-disease CGs is in the form
of operating procedures which can be formalized in the so-called Computer In-
terpretable Guidelines using a representation based on “Task-Network Models”

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 178–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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[3], from which care plans must be tailored to specific patients. Hierarchical Task
Network (HTN) planning with temporal capabilities has already been demon-
strated to be a suitable approach for it in single-disease scenarios [4]. Moreover,
Computer Interpretable Guidelines written in domain-specific languages can be
translated to the HTN planning formalism [5]. The required inputs for such
HTN planning processes are (1) a planning domain encoding the operating pro-
cedures of a single-disease CG, (2) the context relevant data (including patient
information), (3) a set of high-level goal tasks, and (4) a start date for the care
plan. The HTN planning process decomposes the high-level goal tasks using the
knowledge in the planning domain until a set of basic actions is obtained, which
corresponds to the required care plan for the patient.

Given the effort required to build a CG and to formalize it, it is all but realistic
to manually create a new CG (and to formalize it) for every potential combination
of diseases.On the other hand, the operating procedures in CGs usually follow a se-
quential schema composed of high-level activities such as diagnosis, pharmacologi-
cal treatment, evaluation, etc. These high-level activities can be seen as sequential
stages which a care plan must comply with for a single disease. Therefore, adher-
ence to these stages needs to be also maintained when several diseases are present.
In this work, we take advantage of these stages, common to different CGs, to ob-
tain a care plan for a comorbid patient from single-diseaseCGs. This allows for the
reuse of the knowledge alreadygathered in the single-diseaseCGs, savingmodeling
and implementation efforts.AMAPapproach is implementedwhere the knowledge
of each single-disease CG is formalized as a separated planning domain; a common
recipe is created to represent the high-level stageswhich the integral care planmust
adhere to; and the potential interactions between the different CGs are stored in
a database. Each agent encodes the local knowledge for a single disease and is in
charge of (1) computing a local care plan for each one of the stages of that disease,
(2) communicating its local solutions to the rest of agents, and (3) carrying out a
conflict solving process which uses the interactions database to detect andmanage
the potential interactions. These steps are carried out for each high-level stage of
the common recipe. In order to allow for consistency between partial care plans, the
context data and start time are updated at the beginning of the process and after a
partial care plan is obtained for each stage. This approach allows for the distribu-
tion of the computation in both the local planning and conflict solving processes1.

In the next section the concept of common recipe and the conflict solving
process are introduced. In section 3, the MAP approach is explained. An exper-
imental evaluation follows in section 4. The related work is exposed in section 5
and our conclusions finish the paper.

1 In this work, the following adjectives are used with these meanings: “local” for enti-
ties within the scope of a single disease/agent; “global” for entities involving all the
agents/diseases; “partial” for entities within the scope of a single stage of the care
plan; and“integral” for entities involving all the stages. Thus, the approach presented
in this paper can be seen as a way to obtain a global integral care plan from the local
partial solutions proposed by several agents.
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2 A Common Recipe and Conflict Solving Approach

In this section we introduce the concept of common recipe as a way to split the
integral care planning process in different stages, and a conflict solving process
to detect and manage the intra-stage interactions between local solutions. The
way that these elements are used will be extended in section 3.

2.1 Common Recipe

A Common Recipe encodes the main high-level activities of a CG such as diag-
nosis, pharmacological treatment, evaluation, etc. These high-level activities can
be seen as sequential stages according to which care plans must be planned and
scheduled. These stages are specified as a set of planning goals to be achieved
sequentially2. Some additional information is needed to allow the agents to cor-
rectly manage this common recipe. Next, these elements are enumerated.

Goals. There is a planning goal in the common recipe for each high-level stage
of the care plan. Each planning goal is a high-level activity which needs to be
decomposed until a set of basic actions is obtained. An example of goal would be
Diagnosis, which is the high-level activity. An example of basic actions which this
high-level activity could be decomposed in is: {blood-test, chest-X-ray}. Time
constraints and causal dependencies might hold between different stages and
inside each one of them. The intra-stage dependencies are encoded in the formal
CGs (the local planning domains) and managed by each agent separately by the
local planning processes. Managing inter-stage dependencies requires to store
information about the partial solutions, as it is shown next.

Start Time of the care plan. This is needed as a reference to schedule the care
plan actions. In order to comply with inter-stage constraints, this Start Time is
updated after a global solution is found for each goal of the common recipe.

Context Data. The context data contains the relevant information about the
patient and the available resources. In order to comply with inter-stage con-
straints, the Context Data needs to be updated after each goal of the common
recipe is solved.

Selection Criterion. In case that several global solutions are found (by differ-
ent agents) for a goal of the common recipe, a single one needs to be selected.
This is the purpose of this selection criterion, which acts as an utility function
assigning a numeric value to each global care plan.

2.2 Conflict Solving

The local planning processes within each stage do not have information about
the potential interactions with other (external) local solutions. Therefore, a con-
flict solving process is implemented in each agent to detect and manage these

2 In HTN planning, goals are specified as high-level activities which need to be de-
composed by the planning algorithm.
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interactions at planning time, before any care plan is given as output, so there is
no chance for any interaction to happen at execution time (unless any deviation
from the expected care plan takes place during its execution, which is something
out of the scope of this paper). The conflict solving process is similar in all the
agents and is also based in HTN planning like the local planning processes3. Each
conflict solving process takes as inputs: (1) the context relevant data,where the
information about interactions is added; (2) the start time for the current
stage of the common recipe; (3) a set of conflict solving procedures encoded as
task networks; and (4) the local partial solutions from each agent for the cur-
rent goal of the common recipe. With this data, each conflict solver dynamically
builds a new HTN planning problem whose output is a global partial solution
for the current goal of the common recipe. The conflict solving process in each
agent is responsible to accommodate the local proposals from the rest of agents
to its own local solution in order to find an interaction-free global solution (i,e,.
each agent explores different global solutions, namely those where its own local
solutions remain unaltered). Next we explain the kind of interactions that this
conflict solving process is able to detect and the processes used to manage them.

Drug Interactions occur between two different drugs when they must not be
administered together. If each drug is intended to treat a different disease, they
might be prescribed together by the respective local CGs for a patient suffering
from both diseases. The process for managing this interactions consists of (1)
storing in the planning state every drug prescribed by a local solution to the
patient; (2) checking this information when a new drug administration is found
in a different local solution; and (3) if a drug interaction is found, substitute the
new drug by any other applicable and non-interacting drug.

Redundant Actions are those similar interventions prescribed by different
guidelines (e.g. a blood test) which should be made just once to the patient. Re-
dundant actions should be merged in order to make the most of each visit of the
patient and to improve the efficiency in the use of resources. To avoid redundant
actions: (1) the first time that an action susceptible to be redundant is found in a
local solution, it is added to the global plan, and a fact is added to the planning
state reflecting this addition; and (2) for subsequent appearances of this action
in different local solutions, it is not added to the plan but the corresponding
local constraints are adjusted accordingly (i.e., if an X-ray is scheduled after a
blood test in a local solution, but another blood test was already scheduled by a
different local solution, then the new blood test is not added to the global plan,
but the X-ray should be scheduled after the already existing blood test).

Timing Interactions occur when different CGs prescribe different actions
and a time constraint between them should be added in the global plan (e.g.:
two different X-rays, prescribed by different CGs for different diseases, should be

3 Though both the local planning and conflict solving processes are based in HTN
planning, they are different processes used for different purposes. In order to not
confuse them, the term “planning” is always used only for the local planning pro-
cesses (except in the current subsection).
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Fig. 1. Multi-agent architecture

scheduled in the same session). The reasons to manage these interactions are the
same as for redundant actions. To manage timing interactions: (1) the first time
that an action susceptible of a timing interaction is found in a local solution, it is
added to the global care plan, and a fact is added to the planning state reflecting
this addition; and (2) for subsequent appearances of timing-interacting actions
in other local solutions, their schedules are adjusted with the first one, so timing
interactions are complied and local constraints are not broken.

The formalism used for conflict solving is based on temporal HTN planning
and allows for the representation and managing of these complex constraints via
a hierarchy of compositional activities[4].

3 Multi-Agent Planning

In this section the MAP approach which makes use of the common recipe and
conflict solving processes previously explained is detailed.

3.1 Agent Configuration and Architecture

Figure 1 depicts the configuration of each agent and the multi-agent architecture
of our approach. The modules in each agent are: (1) a coordinator, which is
in charge of managing the overall process of the agent and communicating with
the rest of agents; (2) a planner, which uses the expert local knowledge of a
single-disease CG to find local solutions; and (3) a conflict solver, which tries
to resolve the interactions between local solutions. Each agent encapsulates the
local expert knowledge about a single disease (distribution of the local partial
planning), and explores different global solutions by its conflict solver module as
explained in section 2 (distribution of the searching for global partial solutions).
All the agents have access to the common recipe and the interaction information
(both the interactions themselves and their related conflict solving procedures).
The common recipe is used by the coordinator module to guide the overall
process within each agent, and the interaction information is used by the conflict
solvers to detect and manage interactions between local solutions at each stage
of the common recipe. This is explained in detail next.
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Fig. 2. Overall process. Solid lines represent the control flow. Dashed lines have been
drawn where communication between agents takes place. Dotted lines depict the data
flow which modify the data sources (it is explained in the text how and where these
data sources are used, referring them in italic type).

3.2 Overall Process

The coordinator of each agent is responsible for the agent behavior, which is
drawn in figure 2. The control flow elements are referred here by the numbers
which label them in the figure. The process begins (step 0) by each agent read-
ing the common recipe, which contains: the high-level Goals representing the
sequential stages of the care plan, the earliest Start Time for the integral plan,
the Context Data holding at that time, and the Selection Criterion for evaluating
global solutions. Afterward, all the agents enter in an iterative cycle where:

1. Each agent checks if there are still pending Goals to process.
2. Each agent selects the next goal from the common recipe (if at least one is

still pending) and set it as the Current Goal.
3. A local planning process is carried out in each agent for the Current Goal, the

Start Time, the Context Data, and the encapsulated expert knowledge about
a single-disease CG (see figure 1). Afterward, all the agents communicate
their local partial solutions to the rest of agents (an empty message is sent
by the agents who have not found any solution in this step). The local
planning process is kept in a stand-by mode, so a controlled backtracking
can be triggered in case that further local solutions are needed.

4. Each agent checks if there are new local partial solutions.
5. If at least a new local partial solution has been found by any of the local

planning processes, a conflict solving process is carried out by each agent,
taking as input the new proposals plus the information about interactions
and conflict resolution procedures (see figure 1). Each solution found by a
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conflict solving process is a global partial solution for the Current Goal, and is
free of interactions. Afterward, all the agents communicate the global partial
solutions that they have found to the rest of agents (an empty message is
sent by agents who have not found any solution in this step).

6. Each agent checks if there are global partial solutions to evaluate for the
Current Goal. If no global partial solution has been found by any agent,
then each agent goes back to 3 and repeat the steps 3 to 6. As stated in step
3, the local planning process was kept in a stand-by mode so it can trigger a
controlled backtracking in order to give a new (not already discovered) local
partial solution for the Current Goal.

7. When at least a global partial solution is found, each agent selects the best
one, according to the Selection Criterion read from the common recipe. This
criterion is the same for all the agents, so all of them will select the same
solution for the Current Goal.

8. The best global partial solution from the previous step is adopted by each
agent, which means that: (1) the Start Time is updated with the latest end
time of an action in the solution plan; (2) the Context Data is updated with
the data holding at that time (end planning state of the solution); and (3)
the solution is stored with the rest of Best Global Partial Solutions.

This whole process ends either with Success when a global partial solution
has been found for every goal in the common recipe, or with Fail when no
new local solutions are found by any agent while trying to solve any of the
Goals. In case that the Success state is reached, the global integral solution
(which represents an interaction-free care plan for the comorbid patient) is built
up from the Best Global Partial Solutions. Updating the Start Time and the
Context Data in step 8 allows for partial global solutions to comply with the
sequentiality constraint between stages and for inter-stage interaction detection,
respectively.

4 Experimental Evaluation

An experimental evaluation of the ideas presented in this work has been carried
out. Two synthetic CGs for fictitious diseases X and Y have been encoded as
local HTN planning domains4. The recommendations of each CG are divided in
three different sequential stages: (1) Diagnosis, (2) Pharmacological Treatment,
and (3) Evaluation. These stages are depicted in figure 3. A Common Recipe is
created as explained in section 2, consisting of these sequential stages as goals, a
start time for the care plan, the context data (of a unique fictitious patient), and
a (random) selection criterion. Finally, the following interactions are encoded.
Drug interactions: X1 and Y 1 are known to interact between them. Re-
dundant actions: blood-test and information-gathering must not be repeated
in the global integral plan. Timing interactions: X-rays actions (chest-X-ray
and head-X-ray) should be scheduled together.

4 These synthetic CGs are not intended to reflect any real diseases but the kind of
interactions that could be found between them.
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(a) Diagnosis stages. The left frame is read: “The Diagnosis stage for disease X consists
of an information gathering about patient relevant data, a blood test and a chest X-ray”.
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(b) Possible pharmacological treatments for diseases X (left) and Y (right). First
row of the left table is read: “the dosage of X1 drug consists of a total of 2 doses
with a delay of 24 hours between them”.
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(c) Evaluation stages. The right frame is read: “The Evaluation stage of disease Y
consists of an information gathering and an evaluation of the evolution of disease Y ”.

Fig. 3. Modeling of the different stages for single-disease CGs

Two agents (named X and Y ) are created according to figures 1 and 2. Each
agent encapsulates the expert knowledge about a single disease (X and Y , re-
spectively). The two shaded boxes most on the top of figure 4 represent the local
integral solution plans, obtained by running agents X and Y separately. There it
can be seen how just joining them would come up with several undesirable inter-
actions, i.e.: (1) both X1 and Y 1 drugs (which are known to interact) would be
prescribed together; (2) the blood test would be repeated (times 1 and 2), as well
as the information gathering action (times 1 and 11); and (3) two X-ray actions
would be scheduled at different times (times 2 and 3). Furthermore, different
stages would overlap along time (times 3 and 11). The bottom shaded box con-
tains the result of running both X and Y agents together following the approach
presented in sections 2 and 35. There it can be seen how Y 1 drug is replaced by
Y 2 which does not interact with X1. The correct drug dosage for Y 2 is scheduled
by the conflict solver as in figure 3(b). A single blood test is scheduled at time
2. Both the chest-X-ray and head-X-ray are scheduled together at time 3. Also
the repetition of the gathering information action is avoided, which requires a
special mention: the information gathering action for disease X (which remains
in the global care plan) belongs to the Diagnosis stage, though the information
gathering action for disease Y (which is removed in the global care plan) belongs
to the Evaluation stage. This inter-stage and inter-agent interaction is correctly
managed thanks to the inclusion of information about planned actions in the
Context data (see section 2.2) and the consistent updating of the Context Data
with the end state of each partial global solution (step 8 of figure 2).

5 No alternative local proposals where needed in this experiment, where a global solu-
tion was always found with the first local proposals of each agent for each high-level
goal.
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Fig. 4. Experiment results. The top frame contains the legend of the different icons
in the timed frame below. Time is represented along the horizontal axis of the timed
frame, which contains the experimental results. Equally-distributed and discrete time
points have been used for the sake of clarity, but they correspond to real dates (and
times) not necessarily separated by the same time interval.

5 Related Work

Some other approaches in the literature make distributed planning for a central-
ized plan as in ours. In [6], process planning for machined parts is divided into
three different stages which look similar to the common recipe goals presented
here. However, a single agent is responsible for each stage, while in our approach
each stage is distributed and tackled in parallel by several agents. In [7], coordi-
nation is done at execution time between different agents to face possible context
variances from a original plan previously computed in a centralized way. These
features does not match our problem requirements, where the interactions which
need for coordination are known a priori and must be managed at planning time.
In the work of [8], the impact of any local decision is ultimately due to particular
resources which cannot be committed to different agents. Redundant actions and
timing interactions are not considered, and the drug interactions that we need
to manage relate to the use of different resources by different agents.

Regarding the problem of care planning for comorbid patients, it has already
been addressed from different single-agent perspectives in works as [9,10]. The
GLINDA project [2] exploits the strength of agent-based representations for
detecting and repairing interactions and consolidating treatment recommenda-
tions. Though there is not much information about this last approach, it seems
that the HTN planning technology used in the present work allows for many
more tailoring capabilities from CGs specifications to the specific patient fea-
tures and available resources. The interaction ontology of [2] has been used here
to categorize different kind of interactions.
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6 Conclusions

A MAP approach is presented to tackle the problem of care planning for comor-
bid patients. Three types of interactions and their management processes have
been characterized. The main contribution of this work is the implementation
and management of a common recipe with the common high-level activities for
several diseases, together with the conflict resolution processes based on HTN
planning. All this in the frame of a MAP architecture which allows for the dis-
tribution of the local planning and conflict solving processes among the different
agents. Our main objective for future work is to encode real clinical guidelines
and try the approach in a more realistic scenario.

Acknowledgments. This work is supported by the Spanish MICINN project
TIN2011-27652-C03-03.
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Abstract. In this contribution, we study a system for argumentation-
based backward planning built on t-DeLP, a temporal extension of Garcia
and Simari’s argumentation system known as defeasible logic program-
ming framework (DeLP). In t-DeLP programs, temporal facts and de-
feasible temporal rules combine into arguments, which compare against
each other to decide which of their conclusions are to prevail. We present
a planning system by introducing actions (as in temporal planning) into
this logical framework, and then study centralized algorithms for back-
ward planning in scenarios involving multiple executing agents.

1 Introduction

A general assumption on the representation of actions in most planning systems
(be it for actions with deterministic, conditional or disjunctive effects) is that
the action encapsulates all the possible effects of its execution. While this as-
sumption enables a quite simple update function, it also forbids reasoning about
propositions, between states or even within a state. In the literature, reasoning
about actions’ preconditions or indirect effects is partially obtained by extending
classical planning with (monotonic) conditional effects or rules.

The motivation for the present approach is to combine actions with more flex-
ible and complex causal inferences; this is to allow modeling the indirect effects
of actions (the ramification problem), or qualifications on their preconditions as
well (the qualification problem). We use to this end a non-monotonic temporal
logic programming framework t-DeLP based on defeasible argumentation [4],
following the initial work in abstract argumentation [2] and logical argumenta-
tion (e.g. [9]). The use of temporal arguments allows to split the representation
of a real-world action into: (i) a simple planning action, encapsulating its direct,
incontestable effects; and (ii) a set of temporal defeasible rules, which combine
with the former into arguments for indirect or context-dependent effects. By
combining the t-DeLP notion of logical consequence (called warrant) with clas-
sical update, one can define a t-DeLP-based planning system. While t-DeLP
planning problems for multiple executing agents can easily be solved by forward
planning, we focus on the less trivial case of backward planning. In either case,
Breadth First Search, BFS for short, (and other well-known search methods in
OR-graphs) can be shown to be sound and complete for t-DeLP planning.

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 188–198, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



An Argumentation-Based Multi-agent Temporal Planning System 189

The paper is structured as follows. In Section 2 we briefly review first the
t-DeLP temporal defeasible logic programming framework. Then in Section 3,
we adapt the basic concepts of planning systems to the present case, including
an appropriate update function for t-DeLP, and notions of planning domain and
plan. In section 4 we present BFS algorithms for t-DeLP plan search. Finally, in
Section 5, we show that BFS is sound and complete in the space of plans for a
given planning domain.

Notation. Wemakeuseof the followingconventions. Sequences aredenoted 〈x0 , . . . , xn〉
(general case) or [x0, . . . , xn] (for argumentation lines) or (x0, . . . , xn) (for plans and up-

date). Given a sequence x = 〈x0, . . . , xn〉 and an element x, we denote by x∩〈x〉 the con-
catenation of xwith x, i.e. the sequence 〈x0, . . . , xn, x〉 or [x0, . . . , xn, x]. If f is a function

f : X → Y andX ′ ⊆ X, we define f [X ′] = {f(a) ∈ Y | a ∈ X ′}.

2 Preliminaries: Temporal Defeasible Logic Programming

In this Section, we briefly review the argumentation-based temporal logic pro-
gramming framework t-DeLP used later in the planning system. For a detailed
description and motivation for t-DeLP, the reader is referred to [7]. t-DeLP is
indeed a temporal extension of Garcia and Simari’s DeLP [4] and inherits from
it a lot a features. The language of t-DeLP builds upon a set of temporal literals
and temporal defeasible rules. Temporal literals are the form 〈�, t〉, where � is a
literal (expressions of the form p or ∼p from a given set of variables p ∈ Var) and
t is a time point (we consider discrete time, so t will take values in the natural
numbers), and will denote that � holds at time t. Since the strong negation ∼
cannot be nested, we will use the following notation over literals: if � = p then
∼� will denote ∼p, and if � = ∼p then ∼� will denote p. Time is relevant to
determine whether a pair of temporal literals 〈�, t〉 and 〈∼�, t′〉 contradict each
other: only when t = t′.

A temporal defeasible rule (or simply a rule) is an expression δ of the form

〈�, t〉 −� 〈�0, t0〉, . . . , 〈�n, tn〉 where t ≥ max{t0, . . . tn}

body(δ) will denote the set of its conditions {〈�0, t0〉, . . . , 〈�n, tn〉} and head(δ)
its conclusion 〈�, t〉 . A defeasible rule δ states that if the premises in body(δ) are
true, then there is a reason for believing that the conclusion (i.e. head(δ)) is also
true. This conclusion, though, may be later withdrawn when further information
is considered, as we will see later. t-DeLP only makes use of future-rules oriented
rules: head(δ) cannot occur earlier than any 〈�, t〉 ∈ body(δ). A special subset of
defeasible rules is that of persistence rules, of the form 〈�, t+ 1〉 −�〈�, t〉, stating
that, unless there exist reasons to the contrary, � is preserved from t to t+ 1 (if
true at t). Such a rule will denoted as δ�(t).

Given a set of temporal rules and literals Γ , we say a literal 〈�, t〉 derives from
Γ , denoted Γ � 〈�, t〉 or also 〈�, t〉 ∈ Cn(Γ ) iff 〈�, t〉 ∈ Γ or there exists δ ∈ Γ
with head(δ) = 〈�, t〉, and such that body(δ) is a set of literals that derive from
Γ . We say Γ is consistent iff no pair 〈�, t〉, 〈∼�, t〉 exists in Cn(Γ ). In particular,
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a set of literals is consistent iff it does not contain any such pair. Note that
derivability is monotonic: Cn(Γ ) ⊆ Cn(Γ ′) whenever Γ ⊆ Γ ′.

Definition 1 (Program). A t-DeLP program, or t-de.l.p., is a pair (Π,Δ)
where Π is a consistent set of temporal literals (also called strict facts), and Δ
is a set of temporal defeasible rules.

Because of deafesible rules may be conflicting, the set of derivable literals in a
t-DeLP program (Π,Δ) will not in general be consistent. To decide whether a
literal can be accepted as a valid conclusion of the program, argumentation tech-
niques can be used. In a sketch, DeLP-style argumentation techniques for logic
programming formalisms work as follows: we start with a program or knowledge
base (Π,Δ) with temporal facts in Π and defeasible rules in Δ, and a query
〈�, t〉; we combine facts and rules in (Π,Δ) into an argument A for 〈�, t〉, i.e. a
consistent set A ⊆ Π∪Δ that entails 〈�, t〉 by applying only modus ponens. Once
some such argument A for 〈�, t〉 is built, the argumentative process goes on by
generating counter-arguments B ⊆ Π ∪ Δ defeating A. Then arguments C de-
fending A by way of defeating some such B are considered; and so on. The whole
set arguments can be arranged in the form of a tree having A as its root and arcs
denote the defeat relation. Finally, an iterative marking procedure starting from
the leaf nodes of the tree determines whether the root argumentA is undefeated,
in which case its conclusion 〈�, t〉 is taken as a valid conclusion (or warrant) of
the program. Below we provide formal defintions of all these notions.

Definition 2 (Argument). Given a t-de.l.p. (Π,Δ), an argument for 〈�, t〉 is
a set A = AΠ ∪ AΔ, with AΠ ⊆ Π and AΔ ⊆ Δ, such that:

(1) AΔ ∪Π � 〈�, t〉, (3) AΔ is ⊆-minimal satisfying (1) and (2).
(2) Π ∪ AΔ is consistent, (4) AΠ is ⊆-minimal satisfying AΔ ∪ AΠ � 〈�, t〉

Given an argument A for 〈�, t〉, we also define concl(A) = 〈�, t〉, base(A) =
body[A]� head[A] and literals(A) = (

⋃
body[A]) ∪ head[A].

It can be shown that each 〈�0, t0〉 ∈ literals(A) induces a unique sub-argument
of A, denoted A(〈�0, t0〉), i.e. a subset of A which is an argument for 〈�0, t0〉.

Given a t-de.l.p. (Π,Δ), let A0 andA1 be arguments. We sayA1 attacks A0 iff
∼concl(A1) ∈ literals[A0], where we use the notation ∼〈�, t〉 to denote 〈∼�, t〉. In
this case, we also say that A1 attacks A0 at the sub-argument A0(∼concl(A1)).

Definition 3 (Defeat). Let A1 attack A0 at B, where concl(A1) = 〈∼�, t〉. We
say A1 is a proper defeater for A0, denoted A1 $ A0, iff

base(A1) � base(B) or B = A1(〈�, t′〉) ∪ {δ�(t′′)}t′≤t′′<t, for some t′ < t.

We say A1 is a blocking defeater for A0 when A1 attacks A0 but A1 	$ A0 and
A0 	$ A1. Blocking defeat relations are denoted A1 ≺$ A0. Finally, a defeater
is a proper or a blocking defeater.

An argument B defeating A can in its turn have its own defeaters C, . . . and
so on. This gives rise to argumentation lines, sequences of arguments where each
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Fig. 1. (Left) ArgumentsA,B are denoted with triangle-like figures. Strict facts from Π
in base(A), base(B) are depicted as rectangles. Here, argument B attacks A at the sub-
argumentA(〈∼, �, t〉), depicted in grey. (Right) An argumentation line Λ = [A1, . . . ,A4]
in the dialectical tree for A1; defeated sub-arguments are depicted in grey. Notice that
the time of these attacks is (non-strictly) decreasing: t1 > t2 > t3 = t4.

argument defeats its predecessor (among other conditions). More precisely, if A1

is an argument in a program (Π,Δ), an argumentation line for A1 is a sequence
of arguments Λ = [A1, . . . ,An] such that:

(i) supporting arguments, i.e. those in odd positions A2i+1 ∈ Λ are jointly
consistent with Π , and similarly for interfering arguments A2i ∈ Λ.

(ii) a supporting (interfering) argument is different from the attacked sub-
arguments of previous supporting (interfering) arguments: Ai+2k 	=
Ai(∼concl(Ai+1)).

(iii) Ai+1 is a proper defeater for Ai if Ai is a blocking defeater for Ai−1.

The set of maximal argumentation lines for A1 can be arranged in the form of
a tree, where all paths [A1, . . .] exactly correspond to all the possible maximal
argumentation lines for A1. This dialectical tree for A1 is denoted T(Π,Δ)(A1).

The marking procedure of the arguments in a dialectical tree T = T(Π,Δ)(A1)
for A1 is defined as follows:

(1) mark all terminal nodes of T with a U (for undefeated);

(2) mark a node B with a D (for defeated) if it has a children node marked U ;

(3) mark B with U if all its children nodes are marked D .

Definition 4 (Warrant). Given a t-de.l.p. (Π,Δ), we say 〈�, t〉 is warranted
in (Π,Δ) if there exists an argument A for 〈�, t〉 in (Π,Δ) such that A is marked
undefeated (U) in the dialectical tree T(Π,Δ)(A1). The set of warranted literals is
denoted warr(Π,Δ).

One can show t-DeLP enjoys the next logical properties, called Rationality Pos-
tulates [1,9], that prevent certain counter-intuitive results occur:
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(P1) Sub-arguments: if A is undefeated in T(Π,Δ)(A), then any
sub-argument A′ of A is also undefeated in T(Π,Δ)(A′).

(P2) Direct Consistency: warr(Π,Δ) is consistent.
(P3) Indirect Consistency: warr(Π,Δ) ∪Π is consistent.
(P4) Closure: Cn(warr(Π,Δ) ∪Π) ⊆ warr(Π,Δ),

3 A Planning System for t-DeLP

After this brief review of t-DeLP, we proceed to introduce a planning system
based on t-DeLP logic programming. In this paper, we study centralized planning
with multiple agents: the plan is built by a central planner, endowed with goals,
and knowledge of agents’ abilities.

In order to simplify the description of the planning system, several assump-
tions are made on actions. An action e has a unique effect, denoted μe (or
〈μe, te〉). The effect μe, which by default reads as action e was just executed at
te, is exclusive to this action e (not found in nature, or other actions) and cannot
be contradicted once it is made true. We also simplify the temporal aspects of
these actions: the preconditions of e are all about some unique time-point t, and
they need only be warranted at t, not during the full execution of e; this execu-
tion will take 1 time unit, so te = t+ 1. These assumptions simplify proofs, but
can be dropped out if necessary. Finally, agents are simplified as follows: (i) an
action e can only be executed by an agent a, also denoted ea; and its execution
makes agent a busy during the interval [t, te]; (ii) we will also assume that there
exist enough agents.

In what follows we will assume a t-DeLP language be given. Let us proceed
with the basic definitions of action, planning domain and update.

Definition 5 (Action, Executability). An action is a pair e = (pre(e), post(e)),
where pre(e) = {〈�, t〉, . . . , 〈�′, t〉} is a consistent set of temporal literals and
post(e) = {〈μe, te〉}, with t < te = t + 1. These are called the preconditions
and the (direct) effect of e.

An action e is executable in a t-de.l.p. program (Π,Δ) iff pre(e) ⊆ warr(Π,Δ).
Given a set of agents (or actuators) Ag = {a, b, . . .}, we denote an action e
available to agent a by ea. A set of actions A is non-overlapping wrt Ag iff for
any two actions of a same agent a in A, say ea, fa, the effect of ea is to occur
strictly before the preconditions of fa, or viceversa.

Definition 6 (Planning Domain). Given a set of agents Ag, we define a
planning domain as a triple

M = ((Π,Δ), A,G)
where (Π,Δ) is a t-de.l.p. representing the domain knowledge1, with Π represent-
ing (the facts holding true in) the initial state, G is a set of literals representing
the goals, and A is a set of actions available to the agents in Ag.

1 The language of (Π,Δ) is assumed to contain a literal μe for each action e ∈ A.
Moreover, temporal literals 〈μe, te〉 can only occur in the body of the rules of Δ,
while those of the form 〈∼μe, te〉 cannot occur anywhere in Π , Δ, A or G.
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Definition 7 (Action Update). The update of a t-de.l.p. (Π,Δ) by an action
e, denoted (Π,Δ) % e, is another t-de.l.p. defined as follows:

(Π,Δ) % e =
{
(Π ∪ post(e), Δ), if pre(e) ⊆ warr(Π,Δ)

(Π,Δ), otherwise.

A plan π essentially contains a sequence of actions 〈e1, . . . , en〉. Actually, since
actions are assigned an execution time by their preconditions, it can just be
specified by a set of actions {e1, . . . , en}, rather than by a sequence. Indeed, it
is not difficult to check that, given a t-de.l.p. (Π,Δ) and a pair of simultaneous
actions e, f, i.e. pre(e) = {〈�, t〉, . . .} and pre(f) = {〈�′, t〉, . . .}, then ((Π,Δ) % e) %
f = ((Π,Δ) % f) % e. This enables the following definition.

Definition 8 (Plan update). The update of a t-de.l.p. (Π,Δ) by a set of
actions A is defined as follows:

(Π,Δ) %A =

{
(Π,Δ), if A = ∅

((Π,Δ) % ei) % {e1, . . . , ei−1, ei+1, . . . , en}, if A = {e1, . . . , en}

where the action ei is such that ti ≤ tj for any 1 ≤ j ≤ n, with tj denoting the
time associated to the preconditions of the action ej (for 1 ≤ j ≤ n).

A solution is then a plan whose actions make the goals warranted.

Definition 9 (Solution). Given a set of agents Ag and planning domain M =
((Π,Δ), A,G) and, a set of actions A′ ⊆ A is a solution for M and Ag iff

G ⊆ warr((Π,Δ) %A′) and A′ is non-overlapping w.r.t. Ag.

4 Backward Planning in t-DeLP

In this section we describe the plan space for a backward planning approach in
t-DeLP. Actually one could also consider a forward search approach defined the
cycle add action-compute warrant in update-check if solution. But this approach
is straightforward in our setting: given a planning domain M = ((Π,Δ), A,G),
plans are simply sets of actions A′ ⊆ A which are obtained from the empty plan
(i.e. the empty set of actions) by refinements of the form

A′ ∪ {e} is a plan iff pre(e) ⊆ warr((Π,Δ) %A′)

and, for example, breadth-first search can easily be shown to be sound and
complete for this forward approach. This simplicity derives from the fact that
the planner always knows the “state” (warranted literals of a t-de.l.p.) given by
the current plan. Therefore we will devote the rest of the paper to study the case
of backward plan search.

The idea for t-DeLP backward planning is to start enforcing the goals with
arguments and actions and iteratively enforce their undefeated status and, re-
spectively, preconditions, with the help of more arguments (and actions). The
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Fig. 2. (Left) An argument step A introduces an action e which triggers an argument
threat B to A. This threat is addressed by a further plan step C. (Right) The dark-grey
area represents the provisional tree for A1 in plan π, which is a sub-tree of the full
dialectical tree (outlined area). After a refinement of π with A5, this plan step and new
threats (the light grey area) occur in the new provisional tree for A1 in π(A5).

plan construction, starting again from the empty plan and consisting of a se-
quence of (action+argument) refinement steps, stops when all these arguments
and actions are, respectively, undefeated and executable. In our setting, we con-
sider the following two types of refinement steps: argument steps, and threat
resolution moves (the usual refinement steps in planning, namely actions, are
just part of the former). An argument step is introduced to solve an open goal
and consists of an argument for that goal, together with a set of actions whose
effects (and facts from the initial state) support the base of this argument. A
threat for an argument step A is an interfering argument in a maximal argumen-
tation line for some dialectical (sub-)tree for A. Finally a threat resolution move
is like an argument step but defeating a threat rather solving a goal. Figure 2
(left) depicts examples of plan refinements: (1) a goal exists; (2) an argument
step A (with an action e) is added; (3) the new action e plus the initial state Π
enable a threat B; this is an interfering argument in the (new) tree for A; (4)
this threat motivates another plan step C, a threat resolution move.

A plan π for some planning domain M = ((Π,Δ), A,G) will consist of a triple

(A(π),Trees(π), goals(π))

where A(π) is the set of actions the plan involves, Trees(π) is a set of dialectical
(sub-)trees (one for each argument step) and goals(π) is the set of open goals
of π. Trees(π) is used to keep track of threats and threat resolution moves. To
understand how these sub-trees are computed during the plan construction, note
that a plan π does induce the provisional t-de.l.p.

(Π,Δ)⊕ π = (Π ∪ post[A(π)], Δ).

This t-de.l.p. results from considering that all the actions in A(π) as being ex-
ecutable in (Π,Δ). At its turn, this t-de.l.p. induces a provisional dialectical
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tree T(Π,Δ)⊕π(A). However this tree is not stored in Trees(π). Indeed, in order
to avoid unnecessary threat resolution moves, the policy of the planner will be
to address each threat Ak with a single defeater Ak+1 for it. This results in
a sub-tree of the former, denoted T ∗

(Π,Δ)⊕π(A), that will be stored instead in

Trees(π). All this makes each stored sub-tree in Trees(π) to be a sub-tree of the
(corresponding) full tree in the same plan π, and also a sub-tree of the new
sub-tree after any refinement π(A).

Plans for a given a planning domain M = ((Π,Δ), A,G) obtained by a se-
quence of refinement steps upon the empty plan. The initial empty plan for M is
simply defined by the triple π∅ = (∅,∅, G). If π is the resulting plan after refin-
ing π∅ with n refinement steps A1, · · · ,An, we will denote π = π∅(A1, . . . ,An).
Moreover, for 1 ≤ k ≤ n, we will write πk = π∅(A1, . . . ,Ak), and a plan refine-
ment of π by an refinement step A will be denoted π(A) = π∅(A1, . . . ,An,A).

In the following, given a set of agents Ag and a planning domain M =
((Π,Δ), A,G), we describe the two types of refinement steps.

Definition 10 (Argument Step Refinement). Let π = π∅(A1, . . . ,Ak) be
a plan for M and Ag. Let 〈�, t〉 ∈ goals(π) be an open goal in π. Let A be an
argument for 〈�, t〉 in a t-de.l.p. (Π ∪ Γ,Δ) ⊕ π, where Γ is a set of literals
consistent with Π. If A satisfies:

(i) base(A) ⊆ Π ∪ post[A∗], for some ⊆-minimal set A∗ ⊆ A of actions such
that A∗ ∪A(π) is non-overlapping w.r.t. Ag.

(ii) literals(A)∪pre[A∗] is consistent with
⋃

1≤i≤k goals(π
i)∪

⋃
1≤i≤k literals(Ai)

the refinement of π by A, is the new plan π(A) whose components are:

A(π(A)) = A(π) ∪ A∗

goals(π(A)) = the previous goals goals(π) minus 〈�, t〉 and Π, plus preconditions
for A∗ not in Π or already solved in some πi (with 1 ≤ i ≤ k)

Trees(π(A)) = the set of trees Trees(π) expanded with the new threats in
(Π,Δ)⊕ π(A); and a new tree for A containing the arg. line
[A] and each threat [A,B], for some arg. B from (Π,Δ)⊕ π(A)

Definition 11 (Threat resolution). Let π = π∅(A1, . . . ,Ak) be a plan for
M and Ag, and for some 1 ≤ i ≤ k let Λ = [Ai, . . . ,B] be a threat in π (i.e.
in T ∗

(Π,Δ)⊕π(Ai) ∈ Trees(π)). Further, let C be an argument in a t-de.l.p. (Π ∪
Γ,Δ)⊕ π, where Γ is a set of literals consistent with Π. If C satisfies:

(i) base(C) ⊆ Π ∪ post[A∗], for some ⊆-minimal set A∗ ⊆ A of actions which is
non-overlapping w.r.t. Ag

(ii) Λ∩[C] is an argumentation line in T(Π∪post[A∗],Δ)⊕π(A)

the refinement of π by C, is the new plan π(C) whose components are:

A(π(C)) = A(π) ∪ A∗,
goals(π(C)) = the goals in goals(π)�Π, plus preconditions of A∗

which were not already solved in π1, . . . , πk

Trees(π(C)) = the trees from Trees(π), each expanded with new
threats in (Π,Δ) ⊕ π(C)
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Figure 2 (Right) illustrates a refinement by a threat resolution move A5 (the
only newly added argument in a odd position in the dialectical sub-tree.

Definition 12 (Plan). π is a plan for M and Ag iff it is obtained from π∅

after a finite number of refinement steps as defined in Definitions 10 and 11.

5 Algorithms for t-DeLP Backward Planning

In t-DeLP backward planning, the space of plans for a planning domain M is the
graph defined by the set of plans for M and the “is a refinement of ” relation.
In this graph, Breadth First Search is instantiated by the following algorithm:

Input : M = ((Π,Δ), A,G).

LET Plans = 〈π∅〉 and π = π∅

WHILE goals(π) �= ∅ OR threats(π) �= ∅

DELETE π FROM Plans
SET Plans = Plans ∩〈 π(A) | π(A) is a refinement of π}
SET π = the first element of Plans
COMPUTE threats(π)

Output : π (i.e. the set of actions A(π) ); or fail, if Plans = ∅

Since G is a finite set of goals 〈�, t〉, these goals are bounded by some maximum
value t∗, and so plan steps simply consist of arguments (and action) whose
conclusions (resp. effects) are about some t ≤ t∗. In consequence, only finitely-
many plan step refinements (for any plan) can be obtained from (Π,Δ) and A,
and so the space of plans is finite. Hence, the usual search methods BFS, DFS,
etc are terminating, so the next proofs for BFS easily adapt to other methods.

Theorem 1 (Soundness of t-DeLP plan search.). Let π be an output of
the BFS algorithm in the space of plans for M. Then π is a solution for M.

Proof sketch: The proof is by induction on the time instants (from t = 0 onwards)
for the claim that the preconditions (open goals) required at t are warranted in the
t-de.l.p. updated by the actions executed before t. �

Theorem 2 (Completeness of t-DeLP plan search). LetM = ((Π,Δ), A,G)
be a planning domain and assume some solution A′ ⊆ A exists. Then, the BFS
search in the space of plans for M terminates with an output π.

Proof sketch: Assume A′ is ⊆-minimal. From this set A′, we extract undefeated argu-
ments for each of their preconditions (to be used as argument steps), and a minimal
set of defending arguments from their dialectical trees (to be used as threat resolution
moves). Then it can be seen by induction (from π∅) that a refinement with an extracted
argument exists, or the terminating condition goals(π) = ∅ = threats(π) is met. �

Example. Imagine two agents desiring to move a table within a room, without
breaking the jar lying upon the table. The table has two sides (north and south),
which can be lifted by either action lift.N, lift.S. Consider the next abbreviations:
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b = broken(jar) h = horizontal(table) μN = μlift.N

f = falls.off(jar) o = on(jar, table) μS = μlift.S

The indirect effects of lifting just one side of the table can indistinctly be
represented with monotonic conditionals -as in standard temporal planning [5]-
(up) or with t-DeLP defeasible rules (down):

〈b, t+ 1〉 ← 〈μN, t〉, 〈∼μS, t〉, 〈o, t〉 〈b, t+ 1〉 ← 〈μS, t〉, 〈∼μN, t〉, 〈o, t〉

〈∼h, t〉 −� 〈μN, t〉 〈∼h, t〉 −� 〈μS, t〉 〈h, t〉 −� 〈μN, t〉, 〈μS, t〉
〈b, t〉 −� 〈f, t〉 〈∼o, t〉 −� 〈f, t〉 〈f, t+ 1〉 −� 〈∼h, t〉, 〈o, t〉

Note, though, that the conditionals require negative effects among theirpremises,
e.g. the frame problem. This problem is aggravated by actions like gluing the jar to
the table, since an extra premise 〈∼glued(jar, table), t〉 must be added to each con-
ditional, and so on. In contrast, t-DeLP planning domains can modularly expand
Δ with the rule 〈∼f, t+ 1〉 −� 〈∼h, t〉, 〈o, t〉, 〈glued(jar, table), t〉.

6 Related Work and Conclusions

The literature on temporal planning is quite rich (see e.g. [5], Ch. 14), though
most proposals are based on monotonic rules and hence they are unable to fully
address the ramification problem. The combination of the temporal t-DeLP logic
programming with planning techniques is largely inspired by the DeLP-based
partial order planning (POP) system in [3]. While a POP planning system is
more flexible than a linear planner, the underlying logic DeLP is less expressive
given the implicit time approach and hence the absence of temporal reasoning.
Distributed algorithms for this planning system can be found in [8,6].

In this paper we have presented a planning system which combines a classical
update function for temporal planning with temporal defeasible logic program-
ming t-DeLP logical system. This adds non-monotonic reasoning to temporal
actions, thus allowing for complex indirect effects. The main contributions con-
sist in showing that the usual plan search methods are sound and complete.
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Abstract. This paper tackles the problem of allowing a team of UAVs
with limited communication range to autonomously coordinate to ser-
vice requests. We present two MRF-based solutions: one assumes in-
dependence between requests; and the other considers also the UAVs’
workloads. Empirical evaluation shows that the latter performs almost
as well as state-of-the-art centralized techniques in realistic scenarios.

1 Introduction

Unmanned Aerial Vehicles (UAVs) are an attractive technology for large-area
surveillance. UAVs are fairly cheap, have many sensing abilities, exhibit a long
endurance and can communicate using radios. Several applications can be effi-
ciently tackled with a team of UAVs: power line monitoring, fire detection, and
disaster response among others. The autonomous coordination of a UAV team to
service a sequence of requests is an open problem receiving increasing attention.
In our scenario the requests to be serviced are submitted by a human operator,
and the surveillance area is larger than the UAVs’ communication range. Most
related work comes from robotics, where multi-robot routing [1] is identified as
a central problem. But the usual version of multi-robot routing assumes that
all robots can directly communicate with each other, which is not our case. Al-
though some works drop this assumption [2,3], they are focused on exploration of
locations, disallowing requests from operators. State-of-the-art research employs
auctions to allocate requests to UAVs (robots bid on requests). Auctions are
quite intuitive, and in some cases they provide quality guarantees [1]. However,
the problem can also be modeled as a Markov Random Field (MRF) [4], or as
a Distributed Constraint Optimization Problem (DCOP) [5], for which efficient
and easy to distribute algorithms exist. Delle Fave et. al. [5] propose an encod-
ing where each UAV directly selects which request it is going to service next.
However their model disregards that UAVs can communicate with each other. In
this paper we explore coordination solutions for a scenario in which each UAV
can communicate with the neighboring UAVs in its range. First, we present an
MRF-based solution where the cost of servicing each request is independent of

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 199–208, 2013.
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operator
ρ1

ρ2

ρ3

τ1
τ2

τ3

Fig. 1. Firefighting scenario: ρ1, ρ2, and ρ3 are UAVs; dotted cicles around them are
their communication ranges; τ1, τ2, and τ3 are targets. A solid line between a target
and a UAV means that the UAV is aware of the target.

the remaining requests assigned to the UAV. Thereafter, we introduce a second
solution where UAVs adjust their estimations of the cost of servicing a task
depending on their workload, with a slight increment in complexity. Empirical
evaluation shows that this is a practical solution for realistic problems.

Motivating Example. In a firefighting context, consider a UAV team con-
tinuously monitoring a large natural park. A common approach is to adopt a
centralized strategy: UAVs’ routes are planned at a central commanding base
that guarantees cooperation. However, if the natural park is significantly larger
than the UAV communication range, performing centralized planning is unfea-
sible because the resulting plan can not be effectively transmitted to UAVs.

Figure 1 contains a snapshot of a possible firefighting scenario, with three
UAVs, three targets, and a human operator. A good plan would send UAV ρ1
to target τ3 and UAV ρ2 to targets τ2 and τ1. However, this plan of action can
never be ascertained when assuming limited communication range. The only
reasonable strategy to achieve cooperation with limited communication range is
to make the UAVs directly coordinate between themselves, in a decentralised
manner. Agents themselves must determine their best possible actions at each
point in time so that the overall time to service requests is minimised.

Approach. This is a dynamic problem where UAVs move constantly and re-
quests can be introduced at any time. In our approach, the operators send re-
quests to some UAV in their range, which temporarily becomes its owner. Mean-
while, the UAVs use the algorithms detailed below to compute an allocation of all
pending requests to some UAV. After each allocation cycle, each UAV becomes
the owner of the requests that have been assigned to it, and a new allocation
cycle begins. At every time, each UAV that owns some request flies towards the
nearest of them, and each idle UAV tries to get in range of the closest operator.

2 Coordination Using Independent Valuations

Multi-agent coordination, and particularly task allocation, can be modeled as a
MRF [4]. Despite the existance of very powerful algorithms for MRFs, this line
of work has received much less attention than auction-based approaches.
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2.1 Encoding the Problem as a Binary MRF

Let R = {τ1, . . . , τm} be a set of requests, P = {ρ1, . . . , ρn} be a set of UAVs,
r and p are indexes for requests and UAVs respectively, Rp ⊆ R be the set of
requests that UAV p can service, and Pr ⊆ P be the set of UAVs that can service
request r. A naive encoding of the requests-to-UAVs allocation as an MRF is:

– Create a variable xr for each request τr. The domain of this variable is the
set of UAVs that can service the request, namely Pr. If xr takes value ρp, it
means that request τr will be serviced by UAV ρp.

– Create an n-ary constraint cp for each UAV ρp, that evaluates the cost of
servicing the requests assigned to ρp. We assume independence, so the cost
of servicing a set of requests is the sum of the costs of servicing each request.

Xp is the set of variables that have ρp in their domains. An assignment of
values to each of the variables inXp is noted asXp. Solving the problem amounts
to finding the combination of request-to-UAV assignmentsX∗ that satisfiesX∗ =
argminX

∑
p∈P cp(Xp).

Figure 2 shows an encoding of the motivating example. There is a variable for
each request. The domain of x1 is the set of UAVs that can service it. This is
the set of all UAVs that are in communication range of the owner of τ1. Hence,
the domain of x1 is just {ρ3}. Likewise, the domain of x2 and x3 is {ρ1, ρ2}
because both UAVs can fulfill them. Next, we create a function cp for each UAV
ρp. Because ρ3 can only service τ1, the scope of function c3 is x1. As a result,
c3 is a unary function that specifies the cost for UAV ρ3 to service τ1, namely
the distance between ρ3 and τ1 (hereafter δpr will be employed as a shorthand
for the distance between ρp and τr). c2’s scope is {x2, x3}, because UAV ρ2 can
service both τ2 and τ3. Hence, c2 has to specify four costs for ρ2:

1. Both requests are allocated to ρ1, which is 0.
2. τ2 is allocated to ρ1 but τ3 is allocated to ρ2, which is δ23 = 2.
3. τ2 is allocated to ρ2, but τ3 is allocated to ρ1, which is δ22 = 2.
4. Both requests are allocated to ρ2, which is δ22 + δ23 = 4.

c1 is similarly computed. From Figure 2 costs, X∗ = 〈x1 = ρ3, x2 = ρ2, x3 = ρ1〉.
This encoding scales poorly. First, it does not exploit the fact that we assume

independence when computing the cost of servicing a combination of requests in
the constraints cp. The number of entries in cp is the product of the domain sizes
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of each of the variables in its scope. Hence, the number of entries in cp scales
exponentially with respect to the number of requests that UAV ρp can service.
However, we can exploit the independence between requests by decomposing
each cost function cp into smaller cost functions, each one evaluating the cost of
servicing a single request. That is, thanks to that independence between requests,
we can represent cp as a combination of cost functions cpr, one per variable in
the scope of cp, such that cp(Xp) =

∑
xr∈Xp

cpr(xr). Now the number of values
to specify the cost of servicing a set of requests scales linearly with respect to
the number of requests. Figure 3 represents the example in Figure 2 using this
new encoding. Notice that for each UAV we specify the cost of servicing a given
request when the request is assigned to it, or 0 when allocated to another UAV.
However, the new encoding still suffers from redundancy. Say that another UAV
ρ4 is in the communication range of both ρ1 and ρ2. Since this UAV would be
eligible to serve requests τ2 and τ3, the domain of x2 and x3 would become
{ρ1, ρ2, ρ3}. As a result, UAV ρ1 must extend its cost function c12 to include a
new entry where τ2 is assigned to ρ4, whose cost is obviously 0. Therefore, we
must aim at an encoding such that a cost function cpr contains only two values:
δpr if τr is allocated to ρp, or 0 otherwise.

With this aim, we now convert the request variables into binary variables,
replacing each original variable xr ∈ X by a set of binary variables zpr, one
per UAV in Pr. Previous cpr cost functions now generate vpr cost functions on
these binary variables. In addition, for each r, zpr are linked through a selection
function sr to ensure that a request can be only serviced by a single UAV.
For instance, consider variable x2 with domain {ρ1, ρ2}. We create two binary
variables z12 and z22. Intuitively, z12 being “on” means that request τ2 is assigned
to UAV ρ1. A selection factor linked to both z12 and z22 would guarantee that
only one of the two variables is set to “on”. In our example, this selection function
is a cost function s2, which introduces an infinite cost whenever there is no single
variable active. Figure 4 shows the binary encoding of the example in Figure 3.

2.2 Solving the Problem with Max-Sum

Now we optimize the max-sum algorithm to run on the last encoding of Section 2.
Max-sum sends messages from factors to variables and from variables to factors.
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However, our factor graph allows us some simplifications. Notice that each zpr
is only linked to cost function vpr and selector function sr. It is direct to observe
that the message that zpr must send to vpr is exactly the one received from sr,
while the message that it must send to sr is exactly the one received from vpr .
Then, since each variable simply relays messages between the cost function and
selection function it is linked to, henceforth we will disregard variables’ messages
and instead we will consider that functions directly exchange messages.

The max-sum general message expression from function f to function g is

μf→g(Zf∩g) = min
Zf−g

⎡
⎣f(Zf−g,Zf∩g) +

∑
g′∈N(f)−g

μg′→f (Zg′∩f )

⎤
⎦ , (1)

where Zf∩g stands for an assignment to the variables in the scope of f and g,
Zf−g stands for an assignment to the variables in the scope of f that are not in
g, N(f) stands for the set of functions f is linked to (its neighboring functions),
and μg′→f stands for the message from function g′ to function f .

Observe in Figure 4 that selection and cost functions are connected by a
single binary variable. Thus, the messages exchanged between functions in our
problem will refer to the assignments of a single binary variable. In other words,
the assignment Zf∩g will correspond to some binary variable zpr. Therefore, a
message between functions must contain two values, one per assignment of a
binary variable. At this point, we can make a further simplification and consider
sending the difference between the two values. Intuitively, a function sending a
message with a single value for a binary variable transmits the difference between
the variable being active and inactive. In general, we will define the single-valued
message exchanged between two functions as

νf→g = μf→g(1)− μf→g(0). (2)

Next, we compute the messages between cost and selection functions.
(1) From cost function to selection function. This message expresses the differ-
ence for a UAV ρp between serving request τr or not, therefore

νvpr→sr = vpr(1)− vpr(0) = δpr − 0 = δpr. (3)

(2) From selection function to cost function. Consider selection function sr and
cost function vpr. From equation 1, we obtain:

μsr→vpr (1) = 0, μsr→vpr (0) = min
ρp′∈Pr−ρp

δp′r

Then we can apply equation 2 to obtain the single-valued message νsr→vpr =
−minρp′∈Pr−ρp δp′r. Moreover, this message can be computed efficiently. Con-
sider the pair 〈ν∗, ν∗∗〉 as the two lowest values received by the selection function
sr. Then, the message that sr must send to each vpr is

νsr→vpr =

{
−ν∗ νvpr→sr 	= ν∗

−ν∗∗ νvpr→sr = ν∗
. (4)
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To summarize, each cost function computes and sends messages using equation
3; each selection function computes and sends messages using equation 4.

Max-Sum Operation. Max-sum is an approximate algorithm in the general
case, but it is provably optimal on trees. Due to how we encoded the problem, the
resulting factor graph contains a disconnected, tree-shaped component for each
request r (see Figure 4). Thus, Max-sum operates optimally in this case. The
algorithm is guaranteed to converge after traversing the tree from the leaves
to the root and then back to the leaves again. In our case, the tree-shaped
component for each request is actually a star-like tree, with the selection function
sr at the center, and all others connected to it. We are guaranteed to compute the
optimal solution in two steps if we pick sr as the root node of each component.

Typically, Max-sum’s decisions are made by the variable nodes after running
the algorithm. However, we have no variables in our graph because we eliminated
them. Thus, we have to let either the selector nodes sr or the cost nodes vpr
make the decision. Letting selectors choose is better because it guarantees that
the same task is never simultaneously assigned to two different UAVs. Because
the decisions are made by the sr nodes, there is no need for the second Max-
sum iteration (messages from selector to cost functions) anymore. Instead, the
selector nodes can directly communicate their decision to the UAVs.

The logical Max-sum nodes include: a cost function vpr for each each UAV
ρp; and a selection function sr for each request, that runs in its current owner.

Max-sum runs on our motivating example as follows. First, each leaf cost
function vpr must send its cost to the root of its tree, sr. That is, UAV ρ1 sends
1 to s3 (within UAV ρ2), and 5 to s2 (within itself). Likewise, UAV ρ2 sends 2 to
s2 and 2 to s3, whereas UAV ρ3 sends 7 to s1. Thereafter, the sr nodes decide by
choosing the UAV whose message had a lower cost. Hence, s3 (running within
UAV ρ2) decides to allocate τ3 to ρ1, s2 allocates τ2 to ρ2, and s1 allocates τ1
to ρ3. Upon receiving the allocation messages, each UAV knows precisely which
requests have been allocated to itself.

3 Coordination Using Workload-Based Valuations

In realistic scenarios, requests do not appear uniformly across time and space,
but concentrated around one or several particular areas, namely the hot spots.
In that case, the assumption of independence in the valuation of the requests
provides an allocation that assigns a large number of requests to the UAVs
close to the hot spot, leaving the remaining UAVs idle. In these scenarios, the
independence assumption is too strong. Next, we show that it is possible to relax
this assumption while keeping an acceptable time complexity for Max-Sum. We
introduce a new factor for each UAV: a penalty that grows as the number of
requests assigned to the UAV increases. Formally, let Zp = {zpr|τr ∈ Rp} be
the set of variables encoding the assignment to UAV ρp. The number of requests
assigned to UAV i is ηp =

∑
r∈Rp

zpr. The workload factor for UAV ρp is

wp(Zp) = f(ηp) = k · (ηp)
α, (5)
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where k ≥ 0 and α ≥ 1 are parameters that can be used to control the fairness
in the distribution of requests (in terms of how many requests are assigned to
each UAV). Thus, the larger the α and the k, the fairer the request distribution.

The direct assessment of Max-Sum messages going out of the workload factor
takes O(N · 2N−1) time, where N = |Zp|. Interestingly, the workload factor is
a particular case of a cardinality potential as defined by Tarlow et. al. [6]. A
cardinality potential is a factor defined over a set of binary variables (Zp in this
case) that does only depend on the number of active variables. That is, it does
not depend on which variables are active, but only on how many of them are
active. As described in [6], the computation of the Max-Sum messages for these
potentials can be done in O(N logN). Thus, using Tarlow’s result we can reduce
the time to assess the messages for the workload factors from exponential in the
number of variables to linearithmic.

In addition, we can add the workload factor the cost factors that describe the
cost for UAV ρp to service each of the requests. The following result1 shows that
if we have a procedure for determining the Max-Sum messages going out of a
factor over binary variables, say f , we can reuse it to determine the messages
going out of a factor h that is the sum of f with a set of independent costs, one
for each variable.

Lemma 1. Let f be a factor over binary variables Y = {y1, . . . , yn}. Let g(Y) =∑n
i=1 γi · yi be another factor defined as the addition of a set of n independent

factors, one over each variable yi. Let h(Y) = f(Y)+g(Y) be the factor obtained
by adding f and g. Let

μf→yj (yj , ν1, . . . , νn) = min
Y−j

⎡
⎣f(Y) +

∑
k 	=j

νk · yk

⎤
⎦

and νf→yj (ν1, . . . , νn) = μf→yj (1, ν1, . . . , νn)− μf→yj(0, ν1, . . . , νn).

We have that νh→yj (ν1, . . . , νn) = νf→yj (ν1 + γ1, . . . , νn + γn) + γj .

Thus, we can define a single factor that expresses the complete costs of a UAV
when assigned a set of requests, that is the sum of the independent costs for
each of the requests assigned plus the workload cost for accepting that number
of requests. Formally the cost factor for UAV ρp is:

wp(Zp) +
∑

τr∈Rp

cpr(zpr). (6)

Summarizing, by introducing workload valuations that do not only depend on
each individual request, but also on the number of requests, we have shown that
it is possible to relax the assumption of independence between valuations with a
very minor impact on the computational effort required to assess the messages
(from linear to linearithmic).

1 Due to lack of space the proof is provided in a technical report [7].
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4 Empirical Evaluation

Next, we empirically evaluate our decentralized algorithms: (i) d-independent,
that uses independent valuations on tasks; and (ii) d-workload, that employs
workload-based request valuations. Comparing their performance against the
current state-of-the-art is difficult because most methods can not cope with the
communication range limitation of our problem. Thus, we implemented a re-
laxed version of the problem to compare against them. In this relaxation, UAVs
delegate the allocation to a centralized planner agent, disregarding any commu-
nication limits. However, no request can be assigned to a UAV that is not aware
of its existence. The central agent employs one of two different request allocation
algorithms. The c-independent algorithm runs a single-item auction per request
to allocate it to some plane. Hence, this technique assumes independent valua-
tions for requests. In contrast, the c-ssi algorithm employs state-of-the-art Se-
quential Single Item [8] auctions to compute the allocation of requests to planes.
Because we want to minimize the average service time, our SSI auctions employ
the BidMinPath bidding rule as specified in [1]. Notice that these centralized
methods are solving a simplified (less constrained) version of the problem.

We tested the performance of c-independent, d-independent, c-workload and
d-ssi on multiple problems. Each problem represents a time-span (T ) of a month.
During that time, 10 UAVs with a communication range of 2 km survey a square
field of 100 km2. We assume that the UAVs always travel at a cruise speed of
50 km/h. In these scenarios, a single operator submits requests at a mean rate
of one request per minute. We introduce four crisis periods during which the
rate of requests is much higher. The requests submission times are sampled
from a mixture of distributions. The mixture contains four normal distributions
Ni(μi, 7.2 h) (one per crisis period) and a uniform distribution for the non-crisis
period. The ui means themselves are sampled from a uniform distribution U(T ).

Next, we introduce two scenarios that differ on the spatial distribution of re-
quests. In the uniform scenario, the requests are uniformly distributed, whereas
the hot spot scenario models a more realistic setting where crisis requests are
localized around hot spots. These spatial hot spots are defined as bivariate Gaus-
sian distributions with randomly generated parameters. Figure 5 depicts an ex-
ample of such scenario, where we painted one dot for each request. The scattered
dots correspond to non-related requests, whereas related requests form dot clouds
around their hot spot. Finally, the strong dot represents the operator, and the
light circle surrounding it represents its communication range.

To use our d-workload method we have to set the values of k and α. Hence,
we performed an exploration on the space of these parameters to determine
which values are suitable to the hot spot scenarios. Figure 6 shows the results
we obtained after this exploration. The colors correspond to the median of the
average service time that we obtained after running the algorithm in 30 different
scenarios for each pair (k, α). For instance, when k = 102 and α = 1.12 the
algorithm achieved a median average service time of 137 s. Observe that the
algorithm exhibits a smooth gradient for any fixed value of α or k. Hence, good
combinations of k and α can be found by fixing one parameter to a reasonable
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Fig. 5. Example task distribution in a
Gaussian scenario
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Fig. 6. Parameter exploration in the
Gaussian scenario

value and performing a descent search on the other one. We chose k = 1000, and
found the best corresponding α to be 1.36 with 0.01 precision.

Then we ran all the algorithms on a set of 30 new problems, to ensure that the
parameters were not overfitted. In the uniform scenario, c-independent clearly
obtains the best results. Figure 7 shows the results obtained by the other algo-
rithms relative to c-independent ’s performance (better algorithms appear lower
in the graph). Surprisingly, dropping the independence assumption in these sce-
narios actually worsens performance instead of improving it. Nonetheless, the
performance loss is much lower between d-independent and d-workload (5%)
than between c-independent and c-ssi (17%).

In contrast, c-ssi obtains the best overall results in the hot spot scenarios.
Figure 8 shows how the other algorithms fared in comparison. Our d-workload
mechanism obtains very similar results than c-ssi (only 2% worse in median).
Recall that c-ssi requires global communication between the agents, and can not
be distributed without introducing major changes to the algorithm. Therefore, d-
workload stands as the best algorithm when UAVs have limited communication
ranges. These results show that, in the more realistic setting where there are
request hot spots, relaxing the independence assumption provides significant
gains in service time, both in the centralized and distributed algorithms.
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5 Conclusions

This paper introduced the limited-range online routing problem, which requires
that UAVs coordinate to serve requests submitted by external operators. To
tackle this problem, we employed an MRF-based solution instead of the more
common market-based approaches. Using a novel encoding of the problem and
the max-sum algorithm, we showed that this approach can functionally mimic
the operation of a decentralized parallel single-auctions approach. The MRF-
based approach provides an easily extensible framework. In this case, we show
that it is possible to introduce new factors to represent the workload of each
UAV while maintaining low computational and communication requirements.
Empirical evaluation shows that the improved version achieves 11% lower ser-
vice times than the single-auctions approach. Moreover, the actual performance
comes very close to that of employing state-of-the-art centralized SSI auctions.
Because of the communication range limit, centralized SSI auctions can not be
implemented in the real-world. Therefore, our workload-based mechanism is the
method of choice for decentralized coordination with communication range limit.
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Abstract. Nowadays many computational systems are endowed of multi-cores
in the main processor units, and one or more many-core cards. This makes possi-
ble the execution of codes on both computational resources concurrently. The
challenge in this scenario is to balance correctly both execution paths. When
the scenario is simple enough, by-hand optimization can be affordable, other-
wise metaheuristic techniques are mandatory. In this work, Differential Evolution
algorithm is implemented to optimize a concurrent CPU-GPU code calculating
the Two-Point Angular Correlation Function applied to the study of Large-Scale
Structure of the Universe. The Two-Point Angular Correlation Function is a com-
putationally intensive function, requiring the calculation of three histograms with
different execution times. Therefore, this forces to implement a parameter for
describing the percentage of computation in CPU per histogram, and the coun-
terpart in GPU; and to use metaheuristic techniques to fit the appropriate values
for these three percentages. As a consequence of the optimization process de-
scribed in this article, a significant reduction of the execution time is achieved.
This proof of concept demonstrates that Evolutionary Algorithms are useful for
fairly balancing computational paths in concurrent computing scenarios.

Keywords: Code Optimization, Differential Evolution, Concurrent Computing,
Two-Point Angular Correlation Function, GPU Computing.

1 Introduction

The maximization of the exploitation of the resources on an heterogeneous system,
multi-core CPU and many-core GPU, requires an optimum balance between the execu-
tion time of the tasks assigned to CPU and to GPU. This forces to carefully select the
amount of data analysed in each resource, which fairly balances both execution paths.
Otherwise, an important penalization in the execution time might be produced.

In the previous version of this code, the amount of data analysed in CPU and GPU
has been governed by a single parameter. This parameter governs the percentage of
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galaxies analysed in CPU, while the remaining ones are analysed in GPU. This single
parameter is applied to the three histograms that have to be built for the calculation
of the Two-Point Angular Correlation Function (TPACF) when studying the Large-
Scale Structure of the Universe. However, this strategy is quite naive and only partially
satisfactory.

By measuring the execution time of each histogram construction when being
executed completely in GPU, it has been proved that some of them take longer than
others. These execution times are related to the nature of the data which the histogram
analyses (positions of galaxies in the sky). The differences underlie on the data repre-
sentation: on the one hand, galaxies randomly distributed on the sky, and on the other
hand, galaxies distributed in clusters and superclusters following a particular cosmolog-
ical model. These differences impact over the execution times through the construction
of the histograms.

When histogramming galaxies with cosmological structure (clusters and superclus-
ters of galaxies), most of the galaxies feed a reduced number of bins in the histogram.
Then, the code must serialize a lot of increments in few bins. As a consequence, this
produces an increment in the execution time. Oppositely, for random data the construc-
tion fairly distributes the counts in all bins, and therefore, less serialization is produced.
In this case, the construction of the histogram operates with a higher degree of
parallelism than in the previous case.

This scenario indicates that the strategy followed until this point —a single per-
centage for all the histograms— is quite naive. A single percentage does not balance
correctly both execution paths in the histograms. Consequently, the most appropri-
ate strategy is to propose independent percentages for each histogram. However, this
increment in the number of parameters to optimize, in practice, impedes to fit the
values by-hand, and makes necessary the use of evolutionary techniques for finding
suitable values for them. It should be underlined that previous versions of this code have
suffered from an intensive optimization process on the GPU part. Therefore, to produce
an additional reduction of the execution time becomes a challenging task.

In spite of these efforts, the new astronomical surveys will largely increase the
volume of data, and as a consequence, it will make necessary new developments and
improvements. This motivates the present work, to evaluate the concurrent computing
techniques to obtain an additional reduction of the execution time.

Due to its very simple and flexible implementation, Differential Evolution
algorithm (DE) is usually proposed as first attempt to solve complex optimization prob-
lems. Moreover, DE is able to produce high-quality suboptimal solutions with a limited
execution time budget. Python has been selected as programming language for the DE
implementation.

The rest of the paper is organized as follows: Section 2 summarizes the Related Work
and previous efforts done. A brief explanation of the underlying physics and the TPACF
is presented in Section 3.1. In Sections 3.2 and 3.3, the most relevant details about the
implementation are presented. The underpinning of the Statistical Inference is exposed
in Section 3.4. The Results and the Analysis are displayed in Section 4. And finally, the
Conclusions are presented in Section 5.
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2 Related Work

The previous efforts done in the acceleration of the analysis of the distribution of
galaxies can be classified in two categories. On the one hand, it can be mentioned
the implementations of the TPACF problem into more powerful computing platforms:
FPGA [1], GPU [2,3]. And, on the other hand, it can be cited the use of some tricky
mechanism to reduce the complexity of the calculation without losing too much ac-
curacy —i.e. kd-trees [4] or pixelization [5]—. The present work can be included in
the first category; although no examples of concurrent implementation have previously
been published.

No previous uses of Evolutionary Algorithms applied to the optimization of concur-
rent computing scenarios have been found in the scientific literature.

3 Methods and Materials

3.1 Underlying Physics

Recent progresses in observational cosmology have led to the development of the
ΛCDM (Lambda Cold Dark Matter) model [6]. It describes a large amount of inde-
pendent observations with a reduced number of free parameters. However, the model
predicts that the energy density of the Universe is dominated by two unknown and
mysterious components: the dark matter and the dark energy. These two components
constitute the 96% of the total matter-energy density of the Universe.

Dark energy and dark matter have never been directly observed, and their nature
remains unknown. Understanding the nature of the dark matter and the dark energy is
one of the most important challenges of the current cosmology studies1.

The distribution of galaxies in the Universe is one of the main probes of the ΛCDM
cosmological model. The most important observable to study the statistical properties
of this distribution is the Two-Point Angular Correlation Function (TPACF), which is
a measure of the excess of probability, relative to a random distribution, of finding two
galaxies separated by a given angular distance. By comparing different results in the
correlation function, implicit comparisons between cosmological models are made.

The TPACF is a computationally intensive function. Taking into account that the
astronomical surveys (Dark Energy Survey, the Kilo-Degree Survey or Euclid) expected
for the forthcoming years will enlarge from dozens of thousands up to hundreds of
millions of galaxies, and the number of accessible samples will also increase, then any
improvement in the performance will be helpful to ameliorate the analysis capacity.

The TPACF, ω(θ), is a measure of the excess or lack of probability of finding a
pair of galaxies under a certain angle with respect to a random distribution. In general,
estimators TPACF are built by combining the following quantities:

– DD(θ) is the number of pairs of galaxies for a given angle θ chosen from the data
catalogue (D).

1 The quantification of the budget between ordinary and dark components in the Universe is
a major issue as proven by the recognition of the Science magazine in 1998 and 2003 as
"Scientific Breakthrough of the Year".



212 M. Cárdenas-Montes et al.

– RR(θ) is the number of pairs of galaxies for a given angle θ chosen from the random
catalogue (R).

– DR(θ) is the number of pairs of galaxies for a given angle θ taking one galaxy from
the data catalogue (D) and another from the random catalogue (R).

Although diverse estimators for TPACF do exist, the estimator proposed by Landy
and Szalay [7], (Eq. 1), is the most widely used by cosmologists due to its minimum
variance. In this equation, Nreal and Nrandom are the number of galaxies in data cata-
logue (D) and random catalogue (R).

ω(θ) = 1 + (Nrandom

Nreal
)2 · DD(θ)

RR(θ) − 2 · (Nrandom

Nreal
) · DR(θ)

RR(θ) (1)

A positive value ofω(θ) —estimator of TPACF— will indicate that galaxies are more
frequently found at angular separation of θ than expected for a randomly distributed set
of galaxies. On the contrary, when ω(θ) is negative, a lack of galaxies in this particular
θ is found. Consequently ω(θ) = 0 means that the distribution of galaxies is purely
random.

3.2 Implementation of TPACF

Initially, the strategy for the GPU implementation pays attention to the use of shared
memory for intermediary calculations and registers for frequently used data. Intermedi-
ary calculations are stored in shared memory, avoiding writing and reading operations
in global memory, which is slower than shared memory.

Besides, the code is optimized by incrementing the data locality: frequently used data
are stored in registers. Since each galaxy is analysed against all the rest, the coordinates
of this galaxy are an excellent candidate to be stored in registers. Registers are closer
to thread and faster than shared memory. Consequently, they are adequate to store this
type of data. However, register storage is very limited (32 K registers per thread block),
and an abuse of its use can lead to a depletion of this type of memory, and finally, to
provoke a degradation of the performance.

By placing frequently used data or intermediate results in registers and shared
memory, slow accesses to global memory are being replaced by fast accesses to these
other types of memories.

The construction of the histograms: DD(θ), RR(θ) and DR(θ), is other potential bot-
tleneck. Until this point, the sequence of commands in the kernel is: a multithreaded
calculation has acted over the pairs of galaxies calculating the dot product, next the
arc-cosine, and finally, the bin in the histogram where a count has to be added. Unfortu-
nately, due to the multithreaded nature of the kernel, simultaneous updates of the same
bin in the histogram can occur and must be avoided to do not loss any count. Therefore,
the use of atomic operations becomes mandatory.

The use of atomic operations in global memory might cause a major performance
degradation during the histogram construction. The alternative to overcome this draw-
back is a computational strategy where partial histograms are constructed in shared
memory instead of a single histogram in global memory. Later, partial histograms are
merged in a final histogram in global memory.
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One of the most powerful abilities of the GPU is its capacity to parallelize a huge
number of operations. For this reason, any operation tending to serialize them will
provoke a performance degradation.

In the GPU architecture, a warp refers to a collection of 32 threads that are executed
in a single time step. Each thread in a warp executes the same instruction on different
data. This schema is extremely efficient if all the threads in the warp follow the same
control flow path. However, if at least one thread follows a different control flow path —
thread divergence—, then each path has to be serialized, and consequently the efficiency
diminishes.

In reducing the thread divergence, the number of serialized threads is diminished,
and an improvement of the performance is expected. For this reason, the if-conditionals
in the kernel are substituted by min() function where possible.

On the other hand, the code implements a coalesced pattern access to the global
memory. This is achieved by disposing the x-coordinates of all galaxies in a single array,
and similarly for y-coordinates and z-coordinates. By implementing this data layout,
adjacent threads in a block request contiguous data from global memory. Coalesced
access maximizes the global memory bandwidth usage by reducing the number of bus
transferences.

3.3 Differential Evolution Implementation

The evolutionary algorithm proposed in this work to fit the parameters governing the
percentages of data analysed in CPU (%DD, %DR, and %RR) is Differential Evolution
[8,9] under the schema DE/rand/1/bin [10]. The percentage of data analysed in GPU is
1−% of data analysed in CPU. The main features of this algorithm are its flexibility to
deal with many different types of problems, and the speed in the implementation and in
the execution, which allows quickly obtaining high-quality suboptimal solutions. The
execution time of the whole process is, a priory, one of the most critical aspects of
the problem. Due that each TPACF run takes around 250 seconds, the estimation of
the execution time of the whole process (with a configuration of 10 vectors and 10
generations) will increase in two orders of magnitude in relation to a single TPACF run.

For the numerical experiments, a configuration of 10 cycles and 10 vectors have
been established, although a very small production with 20 vectors is also performed.
The initial values of the percentages are randomly selected in the range (0.03, 0.13).
This range has been selected from the previous knowledge when executing the same
problem with a single percentage.

In order to allow the manipulation of the CUDA code by other code, a Python im-
plementation is proposed. This choice is based on the capacity of Python to handle
pieces of text, to compose files with these pieces, to compile them, then to execute it,
and finally to capture some output information. The output information is the fitness
associated to the vector. By repeating this process, DE can make evolve the parameters:
%DD, %DR, and %RR towards values which minimize the execution time.

As pseudorandom number generator, a subroutine based on Mersenne Twister [11]
has been used in the Python implementation.
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The numerical experiments have been executed in a machine with two Intel Xeon
X5570 processors at 2.93 GHz and 8 GB of RAM, and a C2075 NVIDIA GPU card.
CUDA release 5.0 and compute capability 2.0 have been used.

3.4 Statistical Inference

Statistical hypothesis is an essential method employed at the data analysis stage of a
comparable experiment. For comparison purposes, two different types of tests can be
applied: parametric or non-parametric. The difference between both types of tests rely
on the assumption of a normal distribution for parametric tests, whereas non explicit
conditions are assumed in non-parametric tests. For this reason, this type of tests is
recommended when the statistical model of data is unknown [12].

The Wilcoxon signed-rank test belongs to the category of non-parametric tests. It is
a pairwise test that aims to detect significant differences between two sample means
[12,13]. The application of this test to our study will allow discern if the differences in
the execution time when using different percentage values are significant.

In order to assess if the optimized parameters set performs better than the standard
set, the sign test can be used. As well as the Wilcoxon signed-rank test, the sign test is
a non-parametric test.

4 Results and Analysis

4.1 Single Percentage Implementation

Once the source code has been correctly assembled, Python implementation takes care
about compiling the source code, to execute it, and finally, to capture the execution
time. This last value corresponds to the fitness of each vector of the DE population. By
repeating this process along the population and the generations, the code produces a set
of optimized values for the three percentages.

Concurrent computation is possible because the construction of each histogram can
be split in partial histograms. Firstly, input data are split in two chunks. These chunks
are assigned to both computational resources: CPU and GPU, where the corresponding
partial histograms are constructed. At the end of the process, both partial histograms
are merged in the CPU. In the CPU part, a parallel implementation based on OpenMP
is performed, whereas in GPU is based on CUDA.

When using a single percentage for the concurrent execution of the histograms, the
fitness landscape presents a minimum in the range from 9% to 11% (Fig. 1). Unfor-
tunately, the percentages that exhibit the lowest values (11%) and the lowest median
(10%) do not coincide. This indicates the difficulty of the decision-making process
about the most suitable percentage to minimize the execution time.

4.2 Multiple Percentages Implementation

By dividing the previous single percentage into three percentages, one per concurrent
part of each histogram, a most suitable matching between the execution times of both
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Fig. 1. Execution time (ms) of TPACF for concurrent execution by using a single percentage (12
executions per case)

computational paths is expected, and finally an extra reduction in the execution time.
Although, the three parameters can be fitted separately, by freezing two histograms
constructions and optimizing the remaining one, the relatively narrow time slot assigned
to the optimization forces to run the optimization as a whole. Thus, each finished run
produces a potential solution for later verification process.

When implementing the optimization process, each execution of the Differential
Evolution code produces a candidate solution composed of three percentages which
minimize the execution time (Fig. 2). The analysis of the results indicates a tendency
towards larger values of %DD than for the other %RR and %DR. This result is con-
sistent with the fact that DD histogram construction should take more time due to the
galaxy clustering around low angles.

DD RR DR

P
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e
n
ta
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Fig. 2. Panel (a, left) shows the comparative box plots for the percentages of DD, RR and DR,
while panel (b, right) shows the lines endorsing each particular realization.
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Due that RR and DR histograms calculations involve random data, a lower number of
serializations on the bins construction is expected. Therefore, these histograms should
be faster than DD histogram calculation, and consequently to get lower percentage of
data processed concurrently in the CPU.

By observing Fig. 2 and Table 1, it can be stated that a tendency towards graded
values of the percentages:%DD >%RR >%DR is rawly achieved. The results mostly
reproduce the structure expected for the percentages. However, an in-depth insight to the
individual results (Right Panel in Fig. 2) demonstrated that the current implementation
does not always produce sets with this schema, otherwise other schemas as %DD <%RR
appear.

In order to check the quality of the achieved solutions, a new production with each
particular percentage values set of %DD, %DR, and %RR obtained as optimizer so-
lutions, is performed with 12 executions per case. In the two last columns of Table 1,
the mean execution time (fitness) achieved, and the speed-up when comparing with the
case of a single percentage with the lowest median (10%) are presented.

For some cases: R1, R3 and R4 the reduction of the execution time is relevant;
whereas for other cases: R2 and R6 it is almost negligible. Finally, two cases: R5 and R7
do not produce any improvement in the execution time, even they take longer than the
best case of single percentage (10%). These results underline the difficulty associated to

Table 1. Numerical results of the production with 10 vectors and 10 cycles: identifier, percentages
of the best solution achieved, fitness (execution time of TPACF) of the best solution achieved,
execution time of the optimizer run, mean and deviation standard of the fitness (execution time
of TPACF) after 12 runs for this particular percentages set, and speed-up (compared when using
a single percentage, 10%).

Id. %DD %RR %DR
Best

Fitness (ms)
Optimizer

Execution Time
Mean Fitness (ms)

12 execution Speedup

R1 12.66 10.64 9.82 241,888.5 1,029m11.296s 242,762.2±1,599.8 1.022
R2 11.39 11.49 10.49 242,691.7 1,026m41.409s 247,505.5±4,696.8 1.003
R3 12.94 11.01 7.90 242,810.7 1,043m30.935s 244,369.2±2,467.1 1.016
R4 12.06 10.12 8.11 244,090.9 1,053m57.763s 244,409.7±151.4 1.016
R5 12.72 12.00 10.21 242,427.0 1,041m49.962s 250,554.9±5,853.5 0.991
R6 11.75 11.49 9.10 243,011.7 1,041m46.596s 246,572.3±2,574.5 1.007
R7 10.40 11.60 9.37 244,596.7 1,043m14.309s 249,483.3±5,513.3 0.995

Table 2. Numerical results of the production with 20 vectors and 10 cycles: identifier, percentages
of the best solution achieved, fitness (execution time of TPACF) of the best solution achieved, and
execution time of the optimizer run.

Id. %DD %RR %DR
Best

Fitness (ms)
Optimizer

Execution Time

R1 12.56 10.56 11.38 241,399.2 2,074m29.396s
R2 12.76 9.04 9.91 242,704.4 2,082m44.008s
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obtain further reduction in the execution time of the optimized TPACF code. Moreover,
the success cases demonstrate that the use of three percentages with the appropriate
values face to a single percentage improves the productivity of the code.

In order to produce higher-quality solutions, diverse actions can be applied to the
optimizer. Probably an increment in the number of cycles or in the population size
might mitigate the adverse scenario, but at the same time, it will increment critically the
optimizer execution time. Therefore, at this point a balance between the quality of the
suboptimal solution and the execution time is mandatory.

As part of the production, two runs were executed doubling the population (Table
2). This increment results in an extra improvement of the fitness achieved, but unfor-
tunately, a duplication of the execution time is produced too. This increment makes
unfeasible to proceed with more improvements in the fitness through incrementing the
population or the number of cycles.

When statistically analysing the numerical results of each production with the Wil-
coxon signed-rank test, only the productions R1, R3 and R4 state that the differences
are significant for a confidence level of 95% (p-value under 0.05). This means that the
differences are unlikely to have occurred by chance with a probability of 95%.

Moreover, in order to assess if the performance is better than when using the best
case of single percentage (10%), the sign test can be used. The analysis indicates that
for the percentages obtained at R1, R3 and R4, the TPACF execution takes shorter than
the previous best case, single percentage at 10%.

5 Conclusions

In this paper, the application of Differential Evolution algorithm to the optimization of
a concurrent GPU-CPU code executing the Two-Point Angular Correlation Function is
presented. This code has had a long track of successful optimizations in the past. There-
fore, the achievement of any extra reduction in the execution time is a challenging task.

In the past, for distributing the computational tasks between the CPU and the GPU, a
coarse-grained approach with a single percentage governing the whole concurrent part
has been followed with satisfactory but limited results. By using multiple percentages
—one percentage per histogram— an extra improvement in the productivity of the code
is foreseen. However, the use of multiple percentages impedes by-hand optimization,
and requires the implementation of an evolutionary technique to obtain suitable values
for the percentages associated to the concurrent construction of each histogram.

As a result of applying Differential Evolution algorithm to the optimization of the
three percentages, suitable percentages sets which produce a reduction of the execution
time for the problem are achieved. This reduction reverberates in an increment of the
productivity of the scientific collaborations where this code is used as analysis tool.

Beyond the particularities of the implementation presented, the work has demon-
strated that evolutionary algorithms can be successfully applied to the correct balancing
between multiple computational paths in concurrent computing.
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Abstract. Compiling is not only running a program that interprets a given 
source file collection. In the compilation process, it is important the immediacy 
and way of display the results, and the user interaction. In this research it  
is proposed the creation of a unified platform (.Cloud) that supports editing, 
compiling and running applications in multiple languages and that can execute 
directly into the user's browser without installing any plugins, making it inde-
pendent of the platform and operating system used. .Cloud will be independent 
of the platform on which it runs, which will favor mainly to devices with li-
mited resources, both hardware and platform software. The use of a Cloud tool 
of this type also facilitates the work group within computing projects, allowing 
multiple programmers working on the same data with optimized workflow. 

Keywords: Cloud Computing, AI Applications, Cloud Storage, Utility  
Computing, Cloud Compiling. 

1 Introduction 

The latest paradigm to emerge is Cloud computing [14, 2] which promises reliable 
services delivered through next-generation data centers that are built on virtualized 
compute and storage technologies. Although at first glance this may appear to be 
simply a technological paradigm, reality shows that the rapid progression of Cloud 
Computing is primarily motivated by economic interests that surround its purely 
computational or technological characteristics [15]. As a result, the number of both 
closed and open source platforms has been rapidly increasing [10]. 

The term “Cloud Computing” defined the infrastructure as a “Cloud” from which 
businesses and users are able to access applications from anywhere in the world  
on demand. Thus, the computing world is rapidly transforming towards developing 
software for millions to consume as a service, rather than to run on their individual 
computers.  

To this end, it is necessary to take into account not only the underlying infrastruc-
ture, but also the services that are offered to the end user. Cloud computing platforms 
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has properties of clusters or grids environments, with its own special attributes and 
capabilities such strong support for virtualization, dynamically composable services 
with Web Service interfaces, value added services by building on Cloud compute, 
application services and storage. The infrastructure revolves around the concept of 
elasticity that autonomous, dynamic and automatic adaption, and learns from past 
experiences, with the aim of offering computational services of any type. The elastici-
ty model constitutes the core of the system that, if correctly designed, will facilitate 
the remaining processes and their deployment in any environment independently of 
the physical features, operating system, etc. In conclusion, since user requirements for 
cloud services are varied, service providers have to ensure that they can be flexible  
in their service delivery while keeping the users isolated from the underlying  
infrastructure. 

One of these new kinds of services and applications has to provide the capacity to 
develop software for cloud computing environments over the cloud itself. In this 
sense, this study presents .Cloud that is an IDE directly deployed over a Cloud Com-
puting environment. This means, in fact, that .Cloud is an IDE that permit to develop 
software directly in the cloud (through the browser) without the need of install any 
kind of software in the user computer. Moreover, .Cloud allows to developers not 
only to program Web applications (HTML/CSS, PHP, Phyton, Perl an so on) but also 
traditional software (Java, C, etc.). 

This paper is structured as follows, next section shows the state-of-the art of both 
Cloud Computing and cloud distributed compilation. Section 3 provides an overview 
of the .Cloud platform; and, finally, section 4 presents the results, conclusions and 
future work.  

2 Compiling Software over the Cloud 

The compilation can be defined as the process to translate a program written in a high 
level programming language into a machine code that the computer, where the  
program is going to be executed, is able to understand it. This definition has been 
accepted for a long time, however Cloud Computing is changed the traditional con-
cept of computing environment and, for so, the compiling process has to evolve. 

Cloud Computing can be considered as a metaphor for speaking about Internet. 
This technological paradigm helps to amplify the feeling of decentralization and  
obfuscation of the origin of information. Actually, Cloud is much more than Internet, 
or rather, it is over Internet and extends its services. So that, it can be consider as an 
abstraction of a complex mechanism that simplifies the services and provides a secure 
remote access to information (among other things). 

A Cloud computing environment can be shown from two viewpoints [16]: 

• At the internal level, the system consists of a set of physical machines (servers), 
which contribute to the system by means of their computational resources 
(processing capacity, volatile memory, etc.). These physical server forms the  
low layer of the infrastructure within the cloud environment. Over this physical 
layer, there is a virtual layer formed by units of hardware abstraction called virtual 
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machines. This split of the infrastructure in two layers makes possible the external 
feel of unlimited resources, although obviously the infrastructure is limited to 
available resources. 

• At the external level, a cloud computing system is composed of a set of services 
that are offered to the users. These services are commonly known as XaaS (XaaS: 
X as a Service) [17]. The most usual division consists in to split the services  
in three groups: Software, Platform, and Infrastructure. Software and platform  
services can be considered as web applications: the software layer know as SaaS 
(Software as a Service) provides a service with GUI (Graphical User Interface) to 
the end users similarity to the traditional software. the platform layer called  
PaaS (Platform as a Service) provides a set resources addressed to the developers. 
Infrastructure layer (IaaS, Infrastructure as a Service) is a layer that offers compu-
tational resources (Computational resources, storage, network, etc.) thanks to the 
virtualization layer described in the internal level. 

Actually, the compilation and execution processes are very similar because the 
process of compiling consists of to act in a given set of files. The difference between 
executing and compiling is that in the compilation some parameters, such as the  
immediacy of generate and visualize the results, are less important. Besides, in  
compiling time, the interaction with the end-user is not import because the communi-
cation is only performed at starting and ending of the process. 

Although, there are many examples of traditional IDEs (Integrated Developed  
Environment) such as Netbeans [13], Eclipse [6], JBuilder [12], .NET [1], App Cloud 
[3], etc. So far, there are few examples of compilation tools that are specific deployed 
for a Cloud Computing environment. Thus, it is possible to find the tool named 
Ideone [9] that offers a compiler and debugger for more than 40 programming lan-
guages through a web application. Other example is Compilify [5], which is similar to 
Ideone, and the first beta version allow to develop .NET applications writing in C#. 
And, finally, Cloud Compiler [4] which is framed under IBM operating systems 
OS/390 and z/OS, from the end user viewpoint works like a traditional compiler, but 
the compilation is done in a remote server..Cloud platform. 

This section presents the .Cloud which is an IDE that allows to develop focus for 
and, also, in a Cloud Computing environment. This means that the developers do not 
have to install any software in computers and they only have to access to .Cloud dep-
loyed over a Cloud Computing environment.  

.Cloud is deployed in the platform +Cloud [16, 7] that is a Cloud platform that 
makes it possible to easily develop applications in a cloud. This platform allows  
services to be offered at the PaaS (Platform as a Service) and SaaS (Software as a 
Service) levels. Both PaaS and SaaS layers are deployed using an internal layer, 
which provides a virtual hosting service with automatic scaling and functions for 
balancing workload. A more detailed description of each layer is provided below: 

• SaaS Layer. This layer hosts a wide set of Cloud applications. +Cloud as  
environment offers a set of native applications to manage the complete Cloud  
environment: virtual desktop, user control panel and administration panel. 
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• PaaS Layer. The PaaS layer is oriented to offer services to the upper layer, and is 
supported by the lower IaaS layer. The PaaS layer provides services through 
RESTful web services [16] in an API format (i) the File Storage Service (FSS), 
which provides an interface for a container of files, emulating a directory structure 
in which the files are stored with a set of metadata, thus facilitating retrieval, in-
dexing, search, etc; (ii) the Object Storage Service (OSS), which provides a simple 
and flexible schemaless database service oriented towards documents; and finally 
(iii), the IdentityManager (iM), which is the module of +Cloud in charge of offer-
ing authentication services to clients and applications;  

2.1 +Cloud Architecture 

.Cloud is divided into two main and independent components: the client application 
and the server application. This architecture is shown in Figure 1. Although, both 
client and server application can be deployed in the same remote server and the access 
from the end user can be done from an user agent, like a web browser. The advantage 
of this this splitting is that the client can be moved to another web server or infrastruc-
ture that is not directly supported by the Cloud environment; while the server is kept 
over +Cloud platform and it is in charge to perform the communications with other 
services within the cloud platform. The communication between them is done using 
web services.  

 

Fig. 1. Cloud architecture 
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Fig. 3. Remote execution process mechanism 

Both pipes are launched jointly with the program in execution, besides a daemon is 
launched and it is in charge of read the program output and send it to the execution 
service. This service, finally, returns this output to the client to be shown in the user 
agent, usually, a browser.  

This daemon has a key role in the architecture, because it is in charge to keep the 
pipe open during the execution of the program. If it does not exist, the pipe will close  
 

 

Fig. 4. Project editor 
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after the first output. This also triggers that the execution process will be canceled due 
to operating system restrictions. The writing daemon and the service exchange  
the information by means of a socket. This socket allows keeping open the communi-
cation during all the remote execution and avoiding busy-waiting. 

With regards on the communication the first approach was to use RESTful web 
services, however there were some difficulties with this approach because it is not 
able to keep the session between the peers open. Finally, we have chosen to use an 
intermediate approach with REST service and PUSH technology. All services of 
.Cloud use JSON as exchange data language. 

The server application has to provide a communication mechanism between the 
client and service, to gather and share the importation in execution time. This time 
depends on many factors (bandwidth, etc.); these factors also depend on the commu-
nication strategy (PUSH technologies). .Cloud has used long-polling mechanism in 
front of other strategies such as web-sockets, because long-polling offers a more  
reliable communication and more compatibility with the web browsers. 

With the regards on the design of the GUI, it has been taken as reference other 
graphic features widely distributed web applications as Google Apps or iCloud, in 
which a simple and straightforward design helps the user to quickly guided by the 
interface. The interface is shown in Figure 4. 

2.3 .Cloud Integration in +Cloud 

.Cloud consider an environment with the following characteristics:  

• +Cloud provide an object-oriented database (OSS) and storage files service (FSS). 
• .Cloud has to allow the scalability of the system in terms of deployment of the 

system in many virtual machines. 
• There is a virtual machine that centralized the information. 

In order to allow that .Cloud can be executed in a Cloud environment, it is neces-
sary to take into account that .Cloud can be executed in several virtual machines at the 
same time. If different end users are working with the same project at the same time, 
and this project is deployed in different virtual machines, .Cloud has to provide a 
process to update the information in execution time among all copies of the project 
(each of them used by a specific end user). To this end, there is a background program 
that ensure that every information is stored in the persistence layer (FSS and OSS) 
and at the same time this information is updated among all virtual machines that pro-
vide resources to .Cloud.  

3 Results and Conclusions 

This study presents .Cloud that is IDE specially developed to be deployed within a 
Cloud environment. .Cloud has been test in many traditional user agents (Internet 
Explorer 9, Safari, Google Chrome) as well as user agents of tablets and Smartphones  
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Table 1. Comparision between .Cloud and other similar platforms 
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Projects ✓ ✓ ✓ ✓ ✓  ✓  ✓ 

Desktop version ✓ ✓ ✓ ✓ ✓  ✓   

Browser version      ✓  ✓ ✓ 

Debug tools ✓ ✓ ✓ ✓ ✓  ✓   

Cloud storage     ✓  ✓ ✓ ✓ 

Multilingual ✓ ✓ ✓ ✓     ✓ 

Test tool ✓ ✓ ✓ ✓ ✓     

Workgroup tool ✓ ✓ ✓ ✓   ✓  ✓ 

Additional complements. ✓ ✓ ✓ ✓ ✓     

Compiling and execution in a Cloud.     ✓ ✓ ✓ ✓ ✓ 

 

 

Fig. 5. Compiling and executing a Project 
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(Chrome Mobile and Safari for iOS) as shown in Figure 5. The forthcoming  
steps within the development of this platform will be the test the platform in a real 
environment with real end users. 

As a conclusion, .Cloud presents a set of characteristics that are not provided for 
other IDES (traditional or cloud-based). Table 1 provides show a comparison between 
our platform and other platforms. 
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Abstract. In this work a mathematical model to simulate malware
spreading is proposed. Specifically, it is an individual-based model whose
dynamic is governed by means of a particular type of finite state machine
called cellular automaton. Moreover, it is a SIR compartmental model,
i.e. the population of hosts is divided into three classes: susceptible
computers, infected computers and recovered computers, and the evo-
lution between these states is ruled according to specific local transition
functions involving boolean expressions. Several computer simulations
are performed using different initial conditions.

Keywords: Malware propagation, Computer worms, Cellular au-
tomata, eEpidemic, SIR model, Computer networks.

1 Introduction and Preliminaries

Internet is probably one of the most important inventions of humans. It is a
world-wide communication network that can be considered as an enormous dig-
ital library and publishing medium. People can share ideas and information
(texts, images, videos, etc.) with a little more than a few keystrokes; Internet
is open 24/7, and all users are able to instantly access all kinds of information
from anywhere. However, this appealing scenario hides several dangers for the
users and their computers: the malicious software is one of them.

Malicious software (malware in short) refers to software programs designed
to damage or do other unwanted actions on a computer or network system. The
worldwide economic and social impact of malware actions is high and conse-
quently it is one of the most troubling security issues not only for large business
but also for small ones and home environments. This problem has grown over
the years along with the growth of the use of Internet. According to PandaLabs
2012 Annual Report 27 millions new strains of malware were detected during
the year 2012 (the average number of new threats created every day had risen
from 55.000 in 2009 to 74.000 in 2012).

The first malware software to gain public attention was computer viruses (a
specific kind of malware); this term came about because of its similarities with

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 228–238, 2013.
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biological viruses that require a host organism to live and reproduce ([2,4]).
Other types of malware are computer worms, Trojan horses, bots, logic bombs,
spyware, adware, etc. A computer virus is a hidden and malicious program that
infects a computer by copying itself to other programs or files. It is executed
when the host program or the infected file is opened; subsequently it searches
for uninfected files and tries to attach itself to them too. Unlike computer viruses,
computer worms may not depend on other programs or victim actions for repli-
cation, dissemination or execution (a worm may replicate itself and, for example,
send out a copy of itself to everyone listed in the contact/address book). Com-
puter worms spread rapidly by taking advantage of file transport characteristics
of the communication systems, and exploiting vulnerabilities exhibited by op-
erating systems. Consequently, computer worms provide an efficient vehicle for
the insertion of malicious payloads (if any) into network hosts on global scale. A
computer worm basically consist of two modules: the spreading mechanism and
the exploit mechanism.

The spreading mechanism transports the computer worm to the next target.
It operates autonomously without an external assistance and is characterized
by its spreading patterns in both space and time. This procedure can be ei-
ther a topological or overlay spreading pattern. In the first case the spreading
mechanism often ties to the IP addressing scheme: It commonly choses network
addresses to probe and potentially infect in a sequential or random manner. In
the second case the propagation is based on logical connections, relationships
or knowledge existing in the environment (computer network, application-layer
data, user data, etc.) Computer worms can be classified regarding to the speed
of the spreading mechanism: fast spreading computer worms and slow spread-
ing computer worms. In the first case when the computer worms reaches the
host, immediately tried to probe other computer in the shortest way, then a
great number of computer and bandwidth resources are consumed. On the other
hand, slow spreading computer worm stays hidden in the host computer remain-
ing dormant until certain trigger occurs; at this moment the computer worm is
activated and try to propagate over the network usually proving a few number
of machines.

The exploit mechanism takes advantage of the vulnerabilities (buffers over-
flows, vulnerable software, system services, weak passwords, etc.) of susceptible
hosts in order to (unauthorized) access of the computer system. Many computer
worms carry a malicious payload (that yields to the corruption of information
contained in the hosts, the establishment of backdoors, the development of DDoS
attacks, etc.) and may implement other functionality such as obfuscation tech-
niques and learning abilities. Consequently, computer worms offers attackers an
effective method to not only gain control but also to maintain it.

Taking into account this scenario, the analysis and design of mathematical
and computational models that allow one to simulate the worm’s spreading pro-
cess is an important issue. In this sense, mathematical models provide theoretical
foundation of control and forecast of malware. Several mathematical models re-
lated to this topic have been published in the scientific literature and the great
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majority are based on the use of differential equations (see, for example, [3,7]
and references therein). Those are compartmental models since the population
of hosts is divided into different classes: susceptible, exposed, infected, recovered,
etc. In this sense SIR models (Susceptible-Infected-Recovered) play an impor-
tant role when one try to simulate the dynamic of a fast spreading computer
worm, whereas SEIR (Susceptible-Exposed-Infected-Recovered) models are suit-
able when slow spreading computer worms are considered (due to the existence
of a latent period).

This work deals with fast spreading computer worms and consequently our
attention will be focused on SIR models. There are few works published in the
scientific literature introducing a SIR model for computer worm spreading and
all of them are based on differential equations ([1,5,6,8,10]). Due to their own na-
ture, these models based on differential equations present certain disadvantages
such as the following: (1) They do not take into account interactions between
hosts at the local level. Consequently, all the parameters involved are general
and it is therefore impossible to observe the specificities of each computer. (2)
They assume that the hosts are homogeneously distributed and that they are
all connected with one another. When the spreading of the computer worm is
macroscopically analyzed, results show a fairly accurate approximation to the
real scene; nevertheless, it is not possible to obtain results at the microscopic
scale (evolution of each computer), which are crucial to emergency management
in situations of malware outbreaks.

These two deficiencies in the models based on differential equations may be
addressed using cellular automata-based discrete models. These models allow
for the contemplation of hosts’ particular characteristics and of the different
connection topologies, which may be changed over time. Cellular automata (CA
for short) are finite state machines formed by a collection of n memory units
called cells. At each step of time, they are endowed with a state from the state
set given by a finite field (see, for example, [9]). The state of a particular cell
is updated synchronously according to a specified rule function whose variables
are the states of the neighbor cells at the previous time step. Unfortunately, as
far we know, there is not any model based on cellular automata to study the
spreading of computer worms on a computer network.

The main goal of this paper is to introduce a new mathematical model to
simulate computer worm spreading. As this work deals with fast spreading com-
puter worms that are mainly spreading by bulk e-mailing itself to those contacts
existing in the address book of the infected hosts, the CA-based model proposed
is a SIR compartmental model.

The rest of the paper is organized as follows: The basic theory of cellular au-
tomata on graphs is introduced in section 2; the mathematical model to simulate
computer worm spreading is presented in section 3; in section 4 some simula-
tions of the proposed model is given, and finally the conclusions are presented
in section 5.
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2 Cellular Automata on Graphs

A graph G is a pair (V,E) where V = {v1, v2, . . . , vn} is an ordered non-empty
finite set of elements called nodes and E is a finite family of pairs of elements of
V called edges. The node vj is said to be adjacent to the node vi if there exists
the edge (vj , vi) ∈ E. In this work we will consider undirected graphs, that is:
(vi, vj) = (vj , vi) ∈ E (vj could be a adjacent to vi, not vice-versa). The degree
of a node v, dv, is the number of its adjacent nodes.

A cellular automaton on a (directed) graph G = (V,E) is a 4-uple A =
(C,S,N , f) where:

(1) The set C defines the cellular space of the CA such that every node stands
for a cell of the cellular automaton.

(2) S is the finite set of states that can be assumed by the nodes at each
step of time. In this sense, the state of the node v at time step t is denoted by
s[v, t] ∈ S.

(3) N is the neighborhood function which assigns to each node its neighbor-
hood, that is: N : V → 2V , v '→ N (v). Note that the neighborhoods of the nodes
are, in general, different from others.

(4) The function f is the local transition rule that governs the dynamic of
the cellular automaton. The local transition function f computes the state of
every node at a particular time step t + 1 whose variables are the states of the
neighbors cells at the previous step of time t, that is:

s[vi, t+ 1] = f
(
s[vi1 , t], s[vi2 , t], . . . , s[vidi , t]

)
∈ S, (1)

where N (vi) = {vi1 , vi2 , . . . , vidi }.

3 The SIR Model for Computer Worm Spreading

As is mentioned in Section 2 this work deals with fast spreading computer worms,
i.e. there is not any dormant or latent period during the life cycle of the malware.
Then, the computers of the network will be classified into the following three
classes: (1) Susceptible computers, S: Those that have not been infected by the
computer worm. (2) Infected computers, I: Those hosts that are reached by the
computer worm. The malware is activated and it is able to propagate to another
computer or file. (3) Recovered computers, R: Those that have been detected as
infected by the computer worm and have been cleaned or quarantined.

S I R

Fig. 1. States of the computer where the computer virus is hosted
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Consequently, the model is a SIR compartmental model where susceptible
hosts becomes infected when the computer worm reaches them and infected hosts
progress to recovered when the malware is detected and the countermeasures are
successfully implemented. In Figure 1 a flow diagram with the evolution of the
states of a computer is shown.

Moreover, in our model the following four assumptions are done: (1) The
computer network is modeled as a directed graph G = (V,E) with n nodes:
V = {v1, . . . , vn} such that each node stands for a computer of the network. (2)
There is an edge between the node vj and the node vi (i.e., vjvi ∈ E) if the email
account associated to the node vi is in the book address of the email account
associated to the node vj . (3) Any node computer is susceptible to be infected by
the computer virus. (4) The number of nodes in the network remains constant
throughout time and, as is mentioned above, at a particular step of time each
node will be endowed with one of the following states: susceptible, infected or
recovered.

The CA producing the dynamics of the system is defined as follows: The di-
rected graph determining the computer network, G = (V,E), gives the topology
of the cellular space C (in this sense every cell stands for a node/computer). The
state set is S = {S, I, R} and at every step of time the state of each cell is:

s[v, t] =

⎧⎨
⎩

S, if the node v is susceptible at time t
I, if the node v is infected at time t
R, if the node v is recovered at time t

(2)

The neighborhood of a cell v is formed by the cells/nodes of G adjacent to v.
Finally, the local transition functions that govern the transition between the

cell’s states are the following:

Transition from Susceptible to Infected: A susceptible computer v becomes
infected when the computer worm reaches it, and it occurs when: the user has
downloaded an infected software from a web page and/or the user opens an
infected file attached to an incoming e-mail. The boolean function that model
the transition from susceptible state to infected state is the following:

Inf (N (v) , t) = d[v]⊕
⊕

u∈N (v)
s[u,t−1]=I

m[v, u], (3)

where d and m are random variables defined as follows:

d[v] =

{
1, with probability ωv · (1− pv)
0, with probability 1− ωv · (1− pv)

(4)

m[v, u] =

{
1, with probability γv · δvu (1− pv)
0, with probability γv · δvu · (1− pv)

(5)

where ωv is the probability to visit a web page for downloading a file which could
be suspect to be infected; pv is the probability that the firewall installed in the
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computer detects the infected file; δvu is the probability that the user opens the
attached file of an email from the neighbor node u, and γv the probability that
the attached file will be infected.

Transition from Infected to Recovered: The computer worm can be de-
tected by the antivirus software with probability p̃v; as a consequence, if v is an
infected node at time t− 1 then:

Rec (v, t) =

{
1, with probability p̃v
0, with probability 1− p̃v

(6)

Consequently the transition functions are as follows:

(1) s[v, t] = S if s[v, t− 1] = S and Inf (N (v) , t) = 0.

(2) s[v, t] = I if s[v, t − 1] = I and Rec (v, t− 1) = 0 or s[v, t − 1] = S and
Inf (N (v) , t) = 1.

(3) s[v, t] = R if s[v, t− 1] = R or s[v, t− 1] = I and Rec (v, t− 1) = 0.

4 Simulations and Discussion

In this section some simulations taking into account different scenarios will be
performed and analyzed. The general assumptions are the following:

– A population of n = 100 hosts is considered in the simulations.

– The step of time is 1 hour.

– 168 iterations of the model are computed in every homogeneous simulation,
that is, the evolution is computed for one week. In the case of heterogeneous
simulations, 480 iterations are shown (20 days).

– The population of hosts is divided into four classes attending to the behavior
of the user in regard with security awareness: Type I (experienced users),
Type II (ordinary users awareness of security), Type III (ordinary users not
awareness of security issues) and Type IV (novice users). Consequently, the
values of the parameters involved in the model (ωv, pv, δvu, γv and p̃v) vary
from one type to other.

Two scenarios will be considered. In the first one homogeneous conditions are
stated, that is: (1) the topology of the cellular space is based on a complete graph
(every host is connected with the rest of the hosts), and (2) the host belonging
to the same category (Type I, Type II, Type III or Type IV) are endowed
with the same parameters. Note that this scenario is similar to the ODE-based
models. In the second one, we will consider heterogeneous (and more realistic)
conditions: (1) the graph defining the cellular space will not be complete, that
is, the neighborhoods are different from one to others, and (2) the values of the
parameters are also different from one host to other (nevertheless, these values
vary in the same range for every type).
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Homogeneous Scenario. The values of the parameters used in these simula-
tions are presented in the Table 1. Notice that all hosts of the same type have
the same associated values and the following assumptions are made: (1) The
parameter ωv is computed taking into account the number of downloads from a
‘malicious” web page made in a period of time; (2) The parameters pv and p̃v are
computed taking into account the type of the user. In this sense, pv (resp. p̃v)
will be higher for users of Type I (resp. Type IV) than others; (3) We will con-
sider that all users open all e-mails independently of the sender (then δuv = 1);
and (4) The probability to send infected files also depends on the class of the
host: this probability is higher in Type I than in other types.

Table 1. Values of the parameters depending on the host’s class (homogeneous case)

Parameter Type I Type II Type III Type IV

ωv 1/720 1/360 1/168 1/24
pv 0.5 0.4 0.25 0.1
δvu 1 1 1 1
γv 0.1 0.25 0.5 0.75
p̃v 0.25 0.2 0.1 0.05

In Figure 2 two simulations with the evolution of the different classes of hosts
(susceptibles, infected and recovered) are shown supposing that all hosts are
susceptibles at time t = 0 and taking into account different sizes of the four
types of hosts. In Figure 3 four simulations are introduced. In all of them the
size of types is the same (Type I is 15%, Type II is 25%, Type III is 45% and
Type IV is 15%) but there are infected hosts at time t = 0 which belong to
different classes.
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Fig. 2. Evolution of the number of the different compartments when homogeneous
conditions are considered and different sizes of the types are used: (a) Type I (15%),
Type II (25%), Type III (45%) and Type IV (15%). (b) Type I (15%), Type II (15%),
Type III (35%) and Type IV (35%)
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Fig. 3. The 5% of the population is infected at time t = 0 (a) The infected belong to
Type I. (b) The infected belong to Type II. (c) The infected belong to Type III. (d)
The infected belong to Type IV.

Although few simulations have been shown in this work, several have been
done in laboratory. In all of them the trend is similar: there is an initial growth of
the population of infected hosts whose speed and force depends on the following:
(1) The size of the classes of users: the larger the sizes of the classes III and IV
are, the more initial growing of infected compartment, and (2) The type of the
infected hosts at t = 0: if initial infected hosts belong to types III and IV, there
exists a notable growth of this compartment.

After the initial increasing of infected hosts, the evolutions shown by the
simulations yield to a quasi-disease free equilibrium: the number of infected
computers gradually decreases to reach a status close to the extinction, although
some outbreaks appear periodically.

Heterogeneous Scenario. In this case the majority of the values of the pa-
rameters are not the same for all hosts belonging to the same type: they vary
from a fixed range taking into account the main features of these classes (see
Table 2). In this sense, the characteristics of the hosts are different from one
to another. Nevertheless both the probability to download malware from web
page, and the parameter representing the emails opening remain constants. The
topology of the cellular space is defined by means of a graph with n = 45 nodes
formed by three clusters of 15 elements which are joined across some of them (see
Figure 4-(a)). In Figure 4-(b) a simulation of the global dynamic of the model is
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Table 2. Values of the parameters depending on the host’s class (heterogeneous
scenario)

Parameter Type I Type II Type III Type IV

ωv 1/720 1/360 1/168 1/24
pv [0.5,0.75] [0.4,0.5] [0.25,0.4] [0.05,0.25]
δvu 1 1 1 1
γv [0.05,0.25] [0.25,0.5] [0.5,0.75] [0.75,0.95]
p̃v [0.75,0.95] [0.5,0.75] [0.25,0.5] [0.05,0.25]

presented with the following distribution of classes: 7 hosts of Type I, 11 hosts
of Type II, 20 hosts of Type III, and 7 hosts of Type IV. Moreover there is only
one infected host at time t = 0 which is the union host between the left cluster
(where hosts of Type IV are placed) and the middle cluster. The individual-based
dynamic can also be computed due to the discrete nature of cellular automata.
Some configurations of the system at steps of time t = 0, 4, 13, 40, and 90 are
shown in Figure 5.

As in the previous case, the trend obtained from the simulations exhibits a
quasi-disease free equilibrium. Nevertheless the force of the infection depends
on the situation of the infected hosts at time t = 0 and the distribution of the
types of host in the computer network. For example, if the hosts belonging to
types III and IV are all concentrated in the same clusters (as is considered in
the simulation of the Figure 5) the infection is mainly restricted to these clusters
and it is reflected in the dynamic of the model. In this sense it is very important
to pay special attention to these hosts that “join” clusters: the spreading of the
malware could be contained if security countermeasures will be adopted in this
nodes.
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Fig. 4. (a) Graph topology of the computer network. (b) Evolution of the number of
the different compartments when inhomogeneous conditions are considered.
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t = 0

t = 4

t = 13

t = 40

Fig. 5. Evolution of the state of every computer (green: susceptible computer, red:
infected computer, blue: recovered computer)

5 Conclusions

A SIR mathematical model to simulate the propagation of a computer worm
through a computer network is introduced. The mathematical tool used is a
particular type of finite state machine called cellular automata on graphs and
three classes of host are considered: susceptible, infected and recovered. By way of
conclusions to this work, the following statements may be made: (1) The model is
the first one based on cellular automata to simulate the behavior of a computer
worm’s spreading. (2) This model is an improvement on earlier ones (based
on differential equations) since it allows for the contemplation of the specific
characteristics of each of the hosts that make up the population, predicting
both general and individual behavior. (3) It is crucial to accurately define the
models parameters: topology, probabilities of infection and recovery, etc. (4) The
model facilitates real-time predictions of the evolution of the malware spreading,
making it possible to modify the different parameters and control measures.
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Abstract. This work proposes a common framework for Fault Detection and
Isolation of discrete and parametric faults in hybrid systems using Hybrid Possi-
ble Conflicts , HPCs. Fault detection is based on residual activation for the set of
HPCs in the current mode. Using the structural information in each HPC we first
search for discrete –related to actuators– fault candidates, because these faults
introduce highly non-linear behaviors. To confirm or reject them, we track sets
of HPCs in the current and potential faulty modes. We confirm the mode whose
HPC residuals become zero, or start the fault isolation of parametric faults if ev-
ery discrete fault is discarded. We test our approach in a hybrid four tank system.

1 Introduction

Hybrid systems can be found almost everywhere. Most of them are critical, so they must
behave correctly, and in case of misbehavior, it should be detected quickly. Diagnosis
systems allow accurate and fast fault detection and isolation.

The Model-based Artificial Intelligence community, known as DX, has approached
hybrid systems modeling during the last 15 years. There are different proposals based
on hybrid modeling [13,15], hybrid state estimation [10], or combination of online state
tracking and residual evaluation [2,1]. All these solutions require to somehow model
and eventually fully or approximately estimate the set of possible states, and to diagnose
the current set of consistent modes. Both steps are computationally expensive or even
infeasible for complex systems, but several solutions have been proposed [15,14].

The main source of hybrid behavior are discrete actuators, like discrete valves or
switches in fluid or electrical systems, respectively. A fault in an actuator, that we will
call a discrete fault, affects system dynamics, usually causing a mode change, thus
modifying system behavior in a different way than a parametric fault [8].

Hybrid Possible Conflicts [4], HPCs, are an extension of Possible Conflicts [16], that
rely upon Hybrid Bond Graphs, HBGs, [13] models to track hybrid systems behavior.
HBGs are an extension of Bond Graphs (BG) [11] that model the discrete changes as
ideal switching junctions which can be set to ON or OFF according to an automaton.

The main goal of this work is the definition and characterization of a common
framework for Fault Detection and Isolation of discrete and parametric faults in hy-
brid systems. The new proposal uses Consistency-based Diagnosis, CBD, with HPCs
for both, discrete and parametric faults. Once a fault is detected, and it can be related
to a discrete fault, this kind of faults will be preferred candidates because they intro-
duce highly non-linear behavior. We propose to track candidates for every possible new
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mode, and reject those whose residuals do not become zero. Only if discrete faults are
rejected, we start the parametric fault isolation stage.

The rest of the paper is organized as follows. Section 2 presents the case study used
to illustrate our approach, and introduces HBG modeling. Section 3 summarizes HPCs.
Section 4 describes the discrete fault diagnosis framework proposed in this work. Sec-
tion 5 presents some results obtained in the case study. Section 6 discusses our approach
against related work, and Section 7 draws some conclusions.

2 Case Study

The hybrid four-tank system in Figure 1(a) will be used to illustrate our proposal. The
system has an input flow which can be sent to either tank 1, or tank 3 or both. Once the
liquid in tank 1 reaches height h, tank 2 starts to fill. A symmetric configuration occurs
for tanks 3 and 4.

(a) Schematic (b) Bond-graph model

Fig. 1. The four-tank hybrid system: schematic and associated bond-graph model

The methodology chosen to model the system in this work is Hybrid Bond Graphs,
which are an extension of Bond Graphs. BGs are defined as a domain-independent
energy-based topological modeling language for physical systems [11]. Several types
of primitive elements are used to build BGs: storage elements (capacitances, C, and
inductances, I), dissipative elements (resistors, R) and elements to transform energy
(transformers, TF, and gyrators, GY). There are also effort and flow sources (Se and
Sf), which are used to define interactions between the system and the environment.
Elements in a BG are connected by 0 or 1 junctions (representing ideal parallel or
series connections between components, respectively). Each bond has associated two
variables (effort and flow). The rate of energy is defined as effort × flow for each
bond. The SCAP algorithm [11] is used to assign causality automatically to the BG.

To model hybrid systems using BGs we need to use some kind of connections which
allow changes in their state. HBGs [13] extend BGs by including those connections.
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They are idealized switching junctions that allow mode changes in the system. If a
switching junction is set to ON, it behaves as a regular junction. When it changes to
OFF, all bonds incident on the junction are deactivated forcing 0 flow (or effort) for
1 (or 0) junctions. A finite state machine control specification (CSPEC) implements
those junctions. Transitions between CSPEC states can be triggered by endogenous
(autonomous) or exogenous (commanded) variables, called guards, as described in [18].

Figure 1(b) shows the HBG model of the four-tank system in Figure 1(a). The system
has four switching junctions:SW1, SW2, SW3 and SW4. SW1 and SW3 are controlled
ON/OFF transitions, while SW2 and SW4 are autonomous transitions. Both kinds of
transitions are represented using a finite state machine. Figure 2(a) shows the automata
associated with both kind of transition for SW1 and SW2. Automata for simmetric
switches SW3 and SW4 are equivalent.

(a) Automata for commanded
and autonomous transitions

(b) Bond graphs for the four PCs found for the four-tank system.

Fig. 2. On the left, automata associated with the commanded transition for SW1, and for the
autonomous transition in SW2, respectively. On the right, the four HPCs found in the system.

3 Hybrid Possible Conflicts Background

The Possible Conflict, PC, approach is a model decomposition technique from the DX
community [16], that have been successfully used for Consistency-based Diagnosis in
continuous systems. PCs define minimal structurally overdetermined subsets of equa-
tions with minimal analytical redundancy to generate fault hypotheses from observed
measurement deviations. In the original approach, only structural and causal informa-
tion from the system model is used. PCs were originally computed using a hypergraph
abstracting the structural model of the system. Recently, PCs can be directly computed
from BG models [5].

The PC concept was recently extended to cope with hybrid system dynamics, modelled
by means of HBGs [13], and it was named Hybrid Possible Conflicts [4]. Main advantage
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of HBG modelling is that does not require pre-enumeration of the system modes. How-
ever, using directly HBGs for fault diagnosis of hybrid systems [14] has the drawback
of causality reassignment for the entire bond graph model, because during that process
the diagnoser needs to stop tracking the behavior of the system, making it sensitive to
miss faults that occur during (or immediately after) such reassignment process. HPCs
simplify this process, because it has been shown [4] that if the HBG of the system has a
valid causal assignment when all switching junctions are set to ON, then the set of HPCs
can be uniquely determined from this configuration. For any given configuration, a tran-
sition of a switching junction from ON to OFF, or the other way around, have one of the
following effects on an HPC:

– If the switching junction is not part of the HPC, the HPC remains the same.

– If the switching junction is part of the HPC and the transition induces a causality
change in the HPC, new causality will be assigned and the HPC will be updated. If
there is not a valid causal assignment, the HPC can not be used.

– If the switching junction is part of the HPC and the transition does not induce a
change in causality, then either the HPC remains the same, or a subsystem of the
HPC disappears or the whole HPC can not be used (because the discrepancy node
disappears).

Hence, HPCs provide an efficient approach to hybrid systems fault diagnosis since:

– The set of HPCs is only computed in one configuration and does not need to be re-
computed due to a transition in a switching junction. Also, HPCs that do not contain
the switching junction can track and diagnose the system during the transition.

– The transition of a switching junction only requires to update causality on the HPCs
that contain the switch, not in the whole system. This reassigment is efficiently
performed online incorporating the proposal by Roychoudhury et al. [18]

For the case study we have found four HPCs, whose BG fragments are shown in
figure 2(b). Each one of them estimates one of the measured variables (p1, p2, p3, p4).

For the system configuration where all the switches are ON, the relation between
the HPCs and their related switching junctions can be seen in Table 1, which is called
Hybrid Fault Signature Matrix (HFSM). This is an important information that we will
use later in our proposal for discrete faults isolation.

For parametric faults, fault isolation is performed by means of the reduced qualita-
tive fault signature matrix, RQ-FSM, shown in Table 2 for the mode where each switch
is ON. Faulty parameters are represented as Θ. For a given mode, the Q-FSM can be
online computed from the Temporal Causal Graph, TCG, associated to an HPC [13]. In
Table 2 each column represents a measurement in the TCG obtained from the original
HBG, which is also the source of a discrepancy for a HPC, and it shows the qualita-
tive fault signatures as computed in TRANSCEND [13], except that it is minimal, i.e.
each column represents the expected effect only in the measurement estimated by the
HPC [6] for the set of faults, in rows, but do not propagate in the underlying TCG for
any reachable measurement.
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Table 1. Hybrid Fault Signature Ma-
trix (HFSM) showing the relations be-
tween switching junctions and each
HPC

Sw-j HPC1 HPC2 HPC3 HPC4
1SW1 1 1
1SW2 1 1
1SW3 1 1
1SW4 1 1

Table 2. Reduced Qualita-
tive Fault Signature Matrix

Θ HPC1 HPC2 HPC3 HPC4
C+

1 -+
C+

2 -+
C+

3 -+
C+

4 -+
R+

01 0- 0+
R+

03 0+ 0-
R+

1 0+
R+

2 0+
R+

3 0+
R+

4 0+
R+

12 0- 0-
R+

34 0+ 0-

Table 3. Hybrid Qual-
itative Fault Signature
Matrix

Sw-j HPC1 HPC3
1SW1(11) + -
1SW1(00) - +
1SW1(01) + -
1SW1(10) - +
1SW3(11) - +
1SW3(00) + -
1SW3(01) - +
1SW3(10) + -

4 Discrete Fault Detection and Isolation

This section describes the proposed integration framework for fault detection and isola-
tion in hybrid systems for both discrete and parametric faults. Prior to that, the meaning
of discrete fault has to be clarified. Discrete faults in this work are defined as faults
in discrete actuators, i.e. commanded mode switches that do not perform the correct
action. Four faulty situations are considered (SWi refers to switching junction i):

1. SWi = 11: SWi is stuck to ON (1).
2. SWi = 00: SWi is stuck to OFF (0).
3. SWi = 01: Autonomous switch for SWi from OFF (0) to ON (1).
4. SWi = 10: Autonomous switch for SWi from ON (1) to OFF (0).

Regarding faults profile, our current proposal works with single fault and abrupt fault
assumptions. Abrupt faults appear instantaneously and its magnitude does not change
afterwards (can be modelled as a step function).

For the sake of generality, we assume that the variable directly affected by a switch-
ing junction is not measured. Otherwise, discrete faults can be easily detected and iso-
lated because they induce high non-linear changes in their governed system variables.

The main assumption in this work is that the operation mode of the system is known
before a fault occurs. This assumption allows us to generalize the fault signature ma-
trix method, usually applied to isolate parametric faults, to discrete faults. First, we
define the Hybrid Qualitative Fault Signature Matrix (HQFSM): the signature ma-
trix for the qualitative information about the effects of the discrete faults in the HPC
residuals1. Qualitative signs represent the variation of the residual, which is built us-
ing the measured value in the actual system and the estimation for the measurement in
the hypothetical mode we will be in if there is actually a fault. We just focus on the
commanded mode changes. In our case study, there are only two commanded actua-
tors: SW1 and SW3, we only build the HQFSM for SW1 and SW3, that can be seen

1 Residuals are calculated as the actual value of the measurement - the estimated value.
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in table 3. This HQFSM will allow rejecting those fault candidates whose residuals do
not comply with the specification of the HQFS. Application of this rejection procedure
requires knowing the system mode before a discrete fault occurs. Finally, since discrete
faults generally have a bigger and potentially more dangerous influence in the system
behavior, whenever possible, they will be considered as preferred fault candidates [9].

We will explain how we can track the hybrid system and how to perform fault isola-
tion and identification for both discrete and parametric faults.

Tracking of hybrid systems can be performed using Hybrid PCs [4]. Initially, the set
of HPCs is built assuming all switching junctions are set to ON. Afterwards, the set of
models for the HPCs for the actual mode are efficiently built, and they start tracking the
system. Whenever a mode change, commanded or autonomous is detected, a new set
of models for the HPCs is computed online. In case a fault arises, some of the residuals
must be activated, i.e. the HPC residuals must be significantly different from zero.

Based on the activated residuals for the set of active HPCs, the structural informa-
tion in the HQFSM (table 3), and the QFSM (table 2), we build the current set of fault
candidates. This set can contain both discrete and parametric faults. If there is no dis-
crete fault as a fault candidate, we perform regular fault isolation and identification as
described in [5]. Otherwise, we consider discrete faults as preferred candidates.

Discrete faults will be tested to confirm or discard them, hence we look at the HFSM
(Table 1) to identify affected SWi according to the activated PCs. Meanwhile, the HPCs
tracking the system before the detection time will continue doing it to update the set of
candidates in case of new activations.

We look at the QFSM of activated HPCs in Table 2. Those qualitative signatures
that do not match observed signatures can be rejected. For each discrete fault whose
qualitative signature matches the HQFSM (table 3), we build a new potential mode,
i.e. a new configuration of HPCs, and we simulate them during a period σt. Eventually,
during that σt period, the HPCs from the actual mode will converge. If all the HPCs of a
candidate mode converge, their residuals are deactivated, the discrete fault is identified,
so the initial HPCs are stopped and the HPCs from the new mode continue tracking the
system. If none of the tested modes converges, their set of HPCs are deactivated, and
the fault is assumed to be parametric, starting the common parametric fault detection
and isolation procedure using the reduced QFSM (Table 2) to obtain an isolation as
accurate as possible.

5 Results

Several scenarios have been tested to validate this approach: autonomous and com-
manded transitions that must not be detected, and fault injections (both discrete and
parametric) that must be detected and isolated. We have run several experiments with
different mode configurations and faults – varying the size, time of fault occurrence,
even introducing faults immediately after the mode change–, obtaining satisfactory re-
sults in all of them. Due to space limitations, we explain here the results on two of those
scenarios. Both experiments were run during 700 s using a sampling period of 1 s; the
noise level is set to 5%.
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Discrete Fault in SW1. First experiment begins when all the tanks are empty, and
we start filling the system. Values for the four switches are: {ON,OFF,ON,OFF},
respectively. After 500 s, we introduce a discrete fault in SW1: the switch goes OFF.
Figure 3(a) shows the evolution of the pressures in tanks 1, and 3, and their residuals
for HPC1, and HPC3. Fault detection is done at t = 502 s, and looking at Table 1, we
see that every discrete fault is a potential candidate.

At t = 507s, we can compute the fault signatures: a 0− signature is derived for
HPC1 residual, and a 0+ signature is derived for HPC3 residual. Looking at Table 3
and comparing with the actual fault signatures, we conclude that only four discrete
faults are consistent with current observations: 1SW1(00), 1SW1(10), 1SW3(11), and
1SW3(01). Since we know that current state has every switch to ON, only two of them
are possible (discrete faults 1SWi(1−)): an autonomous transition to OFF in SW1:
1SW1(10), and stuck ON in SW3: 1SW1(11).

Our hybrid diagnosis framework creates two different instances of the HPCs in the
system, one for each fault candidate. It quickly reassigns causality by running Hybrid
SCAP for the mode transitions, and tracks the system for an empirically determined
time interval σt(in this work, since system dynamics are quite fast we used σt = 20s)
to isolate the fault. This tracking can be seen in Figure 3(b), and 3(c), for SW1 and SW3

fault candidates, respectively. As can be seen, only the HPCs estimations for hypothe-
sized autonomous transition to OFF in SW1 are able to track the current behavior (the
residuals go to zero). Since the other hypothesized fault can not recover their residuals,
it is rejected as a valid candidate.

Parametric Fault in R01. Second experiment corresponds to a 20% blockage fault in
R01 for the same initial configuration. The fault is introduced at time t = 500 s, leading
to fault detection by HPC1 and HPC3 residuals at t = 505 s. Looking at Table 1, we
see again that there are discrete fault candidates.

At time 511 s a 0− signature is derived for HPC1 residual, and a 0+ signature is de-
rived for HPC3 residual. These are the same signatures as in the previous experiment,
then the set of candidates are the same.

The hybrid diagnosis framework creates two different instances of the HPCs in the
system, Hybrid SCAP reassigns causality for the mode transitions, and tracks the sys-
tem for the empirically determined time interval of 20 s. For this scenario none of the
discrete fault candidates can be confirmed as the true fault in the system (all the resid-
uals diverge); as a result, the isolation algorithm discards a discrete fault in the system.
Next step in the algorithm is to hypothesize parametric faults. Looking at Table 2, we
see that the fault signatures obtained for HPC1 and HPC3 only match the fault in R01,
thus confirming R01 as the true fault in the system, without further calculations.

6 Related Work

Only recently existing approaches have been able to cope with both parametric and
discrete faults using a unique framework.

Initial works from the Control Theory community using parameterized ARRs [7]
are not suitable for systems with high non-linearities or a large set of modes. Purely
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(a) Autonomous transition to off in SW1.
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(b) Autonomous transition to off in SW1, and such change is correctly hy-
pothesized.
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(c) Autonomous transition to off inSW1, but SW3 stuck ON is hypothesized.

Fig. 3. Measurements and estimations of HPC1 and HPC3, and their corresponding residuals,
for an autonomous transition in SW1
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discrete models [12] are not feasible for the estimation of both continuous and discrete
behavior.

In the DX community, most approaches regarding discrete faults require to follow
every possible state [10,3]. Our approach assumes that we can identify the next state
based on the estimation of the current one and the autonomous or commanded tran-
sitions. Recently, HyDe [15] deals with discrete faults, but in a generic framework
that allows continuous, discrete and stochastic models. HyDe requires a model for the
transition behavior of the system, which is not necessary in our approach.

Baydouh et al. [1] derive the set of ARRs for each mode, using a parity-space
approach, avoiding the estimation of the continuous state. Our proposal also uses
information of the HPC’s residuals, but we do not need to build the set of HPCs for
each mode. Additionally, we do not require an additional Discrete Event System for
diagnosis.

Rienmuller et al. [17] couple the state estimator hME [10] with the framework pro-
posed in [1]. Results of residuals from parameterized ARRs are analysed and used to
focus the state-estimation process. Both steps work interleaved. Our framework just
uses the result from the HPCs residuals of the most probable states, but not all of them
are needed.

The HPCs approach elaborates on the TRANSCEND proposal for diagnosing hy-
brid systems using HBGs [14], and its extension to cope with discrete faults proposed
by Daigle [8]. Main difference comes from using HPCs to focus the analysis of the
switching junctions potentially responsible for the discrete fault, instead of analysing
the whole model. Another difference is that we do not require the measurement of the
flows related with the discrete fault. If that was the case, our proposal could obtain
similar results and even lower response times.

7 Conclusions and Future Work

This work extends the HPCs framework [4] for fault detection and isolation of discrete
and parametric faults. Assuming operation modes are related to changes in commanded
and autonomous switches, we do not need to explicitly model changes in the config-
uration. We use structural information in the HPCs, the HFSM, to select candidates.
Qualitative information in the HQFSM helps to reject conflicting candidates. We as-
sume that HPCs in the correct state will provide rather quickly residuals close to zero.
This proposal has been satisfactorily tested on several scenarios in a laboratory plant
using simulation data.

We can conclude that using HPCs we deal with both parametric and discrete faults
in a unified framework, by means of the fault signature matrix for both types of faults.
We do not impose that the magnitude related to the SWj modeling the discrete fault
must be measured; instead, we use the HFSM to isolate discrete faults. The HQFSM,
including qualitative information, speeds up the fault detection and isolation process.

Future work to improve this framework is to first include fault identification. We
are also working on an integrated framework for hybrid systems fault detection, isola-
tion, and identification using Dynamic Bayesian Networks to estimate the continuous
behavior and also to identify parametric faults.
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Abstract. We present a sequencing problem given on JIT (Just In
Time) manufacturing environments, with the objective of minimizing the
variation of manufacturing rates (ORV : Output Rate Variation). Specif-
ically, we propose an extension based on requiring to the sequences the
preservation of the production mix throughout the products manufactur-
ing. To solve the ORV and the extended problem, we propose algorithms
based on BDP (Bounded Dynamic Programming) and we perform two
computational experiments based on instances from the literature.

Keywords: Automobile industry, JIT manufacturing, Sequences,
Scheduling algorithms, Dynamic programming, Heuristics.

1 Introduction

Mixed-products manufacturing lines are very common in JIT (Just In Time)
and DS (Douki Seisan) environments and allow to manufacture variants of one
or more products with same production system. These product units, despite
having some degree of similarity (families), may require different use of resources
(human resources, automated systems and tools) and components consumption
in each of the workstations of the assembly line. Moreover, to obtain the final
products, the parts that create each product (components), according to the
BOM (Bill of Materials), are incorporated into the WIP (Work In Progress)
following the line flow.

This flexibility of the line, due to the product variety, becomes necessary to
determine the order in which the product units go through the line, according
to three general principles: (I) a drastic reduction in component stock and semi-
manufactured products, (II) efficient use of the available manufacturing time and
(III) reduction of the work overload to the minimum. Thus, we find the sequenc-
ing problems, classified by [1] into three types (1) Mixed-model sequencing, (2)
Car sequencing problem, and (3) Level scheduling.

This paper falls under the principle I and the problem type 3. Specifically,
we focus on the study of the ORVP (Output Rate Variation Problem, a real
problem) [2] and PRVP (Product Rate Variation Problem, an academic problem)

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 250–259, 2013.
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[3] and we propose several approaches to treat both problems at once (desirable
properties on the automobile industry). To solve the selected alternatives, in this
paper we use a procedure based on Dynamic Programming using bounds [4].

2 ORVP and PRVP

2.1 The ORV Problem

The ORVP is described for the first time in a work by [2] dedicated to the Toyota
production system, but its name comes from [5] and several heuristics ([2,4,6])
and exact procedures ([4,7]) have been proposed to solve it.

The problem focuses on sequencing, regularly, a total of D products, grouped
into a set I of product types, of which di are of type i(i = 1, ..., |I|). Moreover,
the components are grouped into a set J . A product unit of type i requires
nj,i units of component type j(j = 1, ..., |J |). The objective is minimizing the
variation in consumption rates of all components during the manufacturing of
products. Thus, we can define the ideal consumption rate (constant over time)
of component j as (1) and the ideal consumption of the component j when t
products were manufactured as (2):

ṅj =
1

D

|I|∑
i=1

nj,i · di j = 1, ..., |J | (1)

Y ∗
j,t = ṅj · t j = 1, ..., |J |; t = 1, ..., D (2)

Moreover, when t products were manufactured, of which Xi,t are of type i
(i = 1, ..., |I|), the actual consumption of the component j (j = 1, ..., |J |) is:

Yj,t =

|I|∑
i=1

nj,i ·Xi,t j = 1, ..., |J |; t = 1, ..., D (3)

The discrepancy or distance between the actual and ideal consumption of the
component j when have passed through the line t product units is:

δj,t(Y ) = Yj,t − Y ∗
j,t j = 1, ..., |J |; t = 1, ..., D (4)

We can measure the non-regular consumption of components for D products
through the discrepancies defined in (4); that is:

ΔR(Y ) =
D∑

t=1

|J|∑
j=1

|δj,t(Y )|,ΔE(Y ) =
D∑

t=1

√√√√ |J|∑
j=1

δ2j,t(Y ),ΔQ(Y ) =
D∑
t=1

|J|∑
j=1

δ2j,t(Y ) (5)

Where ΔR(Y ), ΔE(Y ) and ΔQ(Y ), are respectively the global rectangular,
Euclidean and quadratic discrepancies of the components consumption.
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Let (Y = {ΔR(Y ), ΔE(Y ), ΔQ(Y )} be the set of functions , then the result-
ing single-objective models for the ORVP are:

M ORV Models : Min f(f ∈ �Y ) (6)

Subject to:

D∑
t=1

xi,t = di i = 1, ..., |I | (7)

|I|∑
i=1

xi,t = 1 t = 1, ..., D (8)

xi,t ∈ {0, 1} i = 1, ..., |I |; t = 1, ..., D (9)

Note that, constraints (7) satisfy the demand of all products; constraints (8)
assign only one product unit to at each position in the sequence; and constraints
(9) set the variables xi,t(i = 1, ..., |I|; t = 1, ..., D) as binary, taking the value 1 if a
product unit of type i occupies the tth position of the sequence and 0 otherwise.
Obviously, the link between the variables xi,t and Xi,t is: Xi,t =

∑t
τ=1 xi,τ

(∀i = 1, ..., |I|; ∀t = 1, ..., D).

2.2 The PRV Problem

The PRVP is described for the first time in a work by [3] and its name comes
from [5]. The problem focuses on sequencing, regularly, a total of D products,
grouped into a set I of product types, of which di are of type i (i = 1, ..., |I|) so
that the production rates are maintained as constant as possible along the time
in that the products are manufactured.

The PRVP is a specific case of the ORVP if we impose: (1) a bijective applica-
tion between the sets I and J (|I| = |J |) and (2) each product type requires one
unit of component related through these application. In this case, we can define
the following objective functions of non-regularity in production (X) between
the actual and ideal productions over time:

ΔR(X) =

D∑
t=1

|I|∑
i=1

|δi,t(X)|,ΔE(X) =

D∑
t=1

√√√√ |I|∑
i=1

δ2i,t(X),ΔQ(X) =

D∑
t=1

|I|∑
i=1

δ2i,t(X) (10)

Where:

δi,t(X) = Xi,t −X∗
i,t =

t∑
τ=1

xi,τ − ḋi · t i = 1, ..., |I |; t = 1, ..., D (11)

Being ḋi = di/D (i = 1, ..., |I|) the ideal production rate of product type i ∈ I
and δi,t(X) the discrepancy or distance between the actual and ideal production
of product i when t product units were manufactured.

If we define (X = {ΔR(X), ΔE(X), ΔQ(X)} as the set of functions, the
resulting single-objective models for the PRVP are:
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M PRV Models : Min f ′(f ′ ∈ �X ) (12)

Subject to: (7)-(9) from M ORV Models.

2.3 Relation between the ORV and the PRV Problems

The PRVP is a particular case of ORVP when I = J and nj,i = δj,i (Kro-
necker delta). Furthermore, to establish a link between the solutions of both
problems, we will use the properties derived from preserving a production mix
when manufacturing product units over time.

Let X∗
i,t = ḋi · t be the number of units of product type i (∀i ∈ I), of a total of

t (∀t ∈ D) units that should ideally be manufactured to maintain the production

mix. And, let
−→
X

∗
= (X∗

1,1, ..., X
∗
|I|,D) be the ideal point of cumulative production.

Then, for the ideal point
−→
X

∗
the following is fulfilled: δi,t(X) = Xi,t −X∗

i,t = 0
(∀i, ∀t); and therefore, ΔR(X), ΔE(X), and ΔQ(X) are optimal and are equal to

zero. In addition, the point
−→
X

∗
has the property of regularizing the consumption

of components. In effect:

Theorem 1. For the ideal point
−→
X

∗
: δj,t(Y ) = Yj,t − Y ∗

j,t = 0 (∀i, ∀t).

Proof.We have: Yj,t =
∑|I|

i=1 nj,i ·X∗
i,t ⇐⇒ Yj,t =

∑|I|
i=1 nj,i ·ḋi ·t = t(

∑|I|
i=1 nj,i ·

ḋi) = t · ṅj = Y ∗
j,t. Therefore, δj,t(Y ) = Yj,t − Y ∗

j,t = 0, (∀i ∈ I, ∀t ∈ D).

Corollary 1: For point
−→
X =

−→
X

∗
, must be satisfied ΔR(Y ) = ΔE(Y ) =

ΔQ(Y ) = 0. Consequently, the functions of global discrepancies, rectangular,
Euclidean and quadratic, of the components consumption are optimal.

3 Models for ORVP with Production Regularity

To address the ORVP and PRVP at once, we can use at least two ways of
working: (1) Address the problems together as a multi-objective problem through
the formulation and use of new models with bi-objective functions, and (2) add
to the original ORVP models a set of constraints that guarantee the preservation
of production mix throughout the working day.

3.1 Bi-objective ORVP and PRVP Models

Based on Theorem 1 and the conclusions derived from it, we can state that the
preservation of production mix is in line with the regularity of the consumption
of components; so, if both properties are desirable, it is reasonable to formulate
the following bi-objective models:

M ORV PRV Models : (Min f) ∧ (Min f ′) (f ∈ �Y , f ′ ∈ �X) (13)

Subject to: (7)-(9) from M ORV
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3.2 ORVP Models with Production Mix Restriction (pmr)

From Theorem 1, we can also control the production regularity in sequences, if
we limit the values of the variables of cumulative production, Xi,t (i = 1, ..., |I|,
t = 1, ..., D), to the integer values closest to the ideal values, X∗

i,t = ḋi ·t, because
those variables must be whole integers. That is:

�ḋi · t� � Xi,t � �ḋi · t� i = 1, ..., |I |; t = 1, ..., D (14)

Where *x+ and ,x- are greatest integer less than or equal to x and smallest
integer greater than or equal x, respectively.

If we impose the constraints (14) to the sequences, we can derive the following
properties:

Theorem 2. If *ḋi·t+ � Xi,t � ,ḋi·t-, (∀i; ∀t), thenXi,t−Xj,t � ,ḋi · t-−*ḋj · t+,
(∀{i, j} ⊆ I; ∀t).

Proof. It is satisfied: Xi,t � ,ḋi · t- and *ḋj · t+ � Xj,t, (∀{i, j} ⊆ I; ∀t).
Therefore, Xi,t + *ḋj · t+ � ,ḋi · t-+Xj,t ⇐⇒ Xi,t −Xj,t � ,ḋi · t- − *ḋj · t+,

(∀{i, j} ⊆ I; ∀t).

Corollary 2: If di < dj then Xi,t −Xj,t � 1, (∀{i, j} ⊆ I; ∀t).
Using Theorem 2, we have Xi,t − Xj,t � ,ḋi · t- − *ḋj · t+. Furthermore,

di < dj ⇒ *ḋi · t+ � *ḋj · t+.
Therefore, we can write: Xi,t−Xj,t � ,ḋi · t-− *ḋj · t+ � ,ḋi · t-− *ḋi · t+ � 1

(∀{i, j} ⊆ I; ∀t).

Theorem 3. If *ḋi · t+ � Xi,t � ,ḋi · t-, (∀i; ∀t), then Xi,t −Xj,t �*ḋi · t+ −
,ḋj · t-, (∀{i, j} ⊆ I; ∀t).

Proof. Xi,t � *ḋi · t+ and ,ḋj · t- � Xj,t, (∀{i, j} ⊆ I; ∀t) must be satisfied.

Therefore, Xi,t + ,ḋj · t- � *ḋi · t++Xj,t ⇐⇒ Xi,t −Xj,t � *ḋi · t+ − ,ḋj · t-
(∀{i, j} ⊆ I; ∀t).

Corollary 3: If di > dj then Xj,t −Xi,t � 1, (∀{i, j} ⊆ I; ∀t).
From Theorem 3, we have Xi,t −Xj,t �*ḋi · t+ − ,ḋj · t-. Also, di > dj ⇒

,ḋi · t- � ,ḋj · t-.
Finally, we can write: Xi,t −Xj,t �*ḋi · t+ − ,ḋj · t- � *ḋi · t+ − ,ḋi · t- � −1

⇒ Xj,t −Xi,t � 1, (∀{i, j} ⊆ I; ∀t).

Corollary 4: If di = dj then |Xi,t −Xj,t| � 1, ∀{i, j} ⊆ I; ∀t).
From Theorem 2, Xi,t −Xj,t � ,ḋi · t- − *ḋj · t+ � ,ḋi · t- − *ḋi · t+ � 1.

From Theorem 3, Xi,t −Xj,t � *ḋi · t+ − ,ḋj · t- � *ḋj · t+ − ,ḋj · t- � −1.
Therefore: −1 � Xi,t −Xj,t � 1 ⇒ |Xi,t −Xj,t| � 1.
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In this way, from M ORV reference models, we have:

M ORV pmrModels : Min f(f ∈ �Y ) (15)

Subject to: (7)-(9) from M ORV and (14).

In this paper, we use the M ORV and M ORV pmr models with the function
.Q(Y ) as objective function f.

4 Use of BDP to Solve ORVP and ORVP pmr

BDP (Bounded Dynamic Programming) is a procedure that combines features of
dynamic programming with features of branch and bound algorithms related to
the use of overall and partial bounds of the problem. The procedure determines
an extreme path in a multistage graph with D+1 stages, explores some or all
of the vertices at each stage t(t = 0, ..., D) of the graph and uses overall bounds
of the problem to remove, discard and select, stage by stage, the vertices most
promising, then develop these, until the last stage D is reached.

To solve the ORVP, the algorithm BDP and the system of partial and overall
bounds, BOUND4, designed for this problem [4], are used and the minimization
of the function .Q(Y ) is fixed as objective.

Let be qt,i the minimum contribution of the product i situated at position
t of the sequence (a procedure to calculate qt,i can be found at [4]). Then, the
values of qt,i are ordered for fixed i in increasing order and, being qol,i the value
that occupies position l. The bound BOUND4(t) is calculated as:

BOUND4(t) =
1

2
·

|I|∑
i=1

di−Xi,t∑
l=1

qol,i −
1

2
·A(t) (16)

Where A(t) is the increment of .Q(Y ) of the product sequenced at stage t,
and di −Xi,t represents the pending demand of the product i. Finally the value
used as guide in the BDP procedure is LBZ = �Q(Yt−1) +A(t) +BOUND4(t).

The procedure BDP is described following (see details on [8]):

BDP - ORVP pmr

Input : D, |I |, |J |, di(∀i), nj,i(∀i,∀j), Z0,H
Output : list of sequences obtained by BDP
0 Initialization: t = 0; LBZmin = ∞
1 While t < D do:
2 t = t+ 1
3 While (list of consolidated vertices in stage t-1 not empty) do:
4 Select vertex (t).
5 Develop vertex (t).
6 Filter vertex (Z0,H, LBZmin).
7 End While
8 End stage ()
9 End While
End BDP - ORVP pmr
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To solve the ORV pmr, the above procedure has been adapted for the ORVP
adding a mechanism to remove, at each stage (t = 0, ..., D), the vertices that do
not satisfy the preservation conditions of production mix (14). This elimination
rule reduces significantly the search space of solutions, because the number of
vertices H(t) to consider at each stage t of the graph is limited by the number
of product types |I| as follow:

H(0) = H(D) = 1;H(t) �
(

|I |
�|I |/2�

)
t = 1, ..., D − 1 (17)

For example, in a set of instances with |I| = 4 for the ORV P pmr, a maximum
window width of H = 6 will be sufficient to guarantee all optima.

The Theorems 2 and 3, and their corollaries, allowed us to incorporate to the
BDP procedure different rules blocks, some of them with equivalent effect on
the prune of the graph. In effect, when we reach stage t, Xj(∀j) is the satisfied
demand of the vertex J(t− 1) that is selected to be developed.

Let J(t, i) = J(t − 1)
⋃
{i} be the new vertex to explore of stage t, built

adding the product type i to the vertex J(t − 1), then the following must be
done: Xi ← Xi + 1;Xj ← Xj (∀j if j 	= i). In these conditions, the following
blocks of rules to discard vertices can be defined:

– BLOCK 1: Rules from (14)
If ∃j : (Xj < *ḋj · t+) ∨ (Xj > ,ḋj · t-)→ Discard vertex

– BLOCK 2: Rules from Theorem 2 and 3.
∀j 	= i : if ∃j : Xi −Xj > ,ḋi · t- − *ḋj · t+ → Discard vertex

∀j 	= i : if ∃j : Xi −Xj < *ḋi · t+ − ,ḋj · t- → Discard vertex
– BLOCK 3: Rules from Corollaries 2, 3 and 4.
∀j 	= i : if di < dj ∧ ∃j : Xi > Xj + 1→ Discard vertex
∀j 	= i : if di = dj ∧ ∃j : |Xi −Xj | > 1→ Discard vertex
∀j 	= i : if di > dj ∧ ∃j : Xj > Xi + 1→ Discard vertex

5 Computational Experiment

5.1 Computational Experiment with ORV Reference Instances

The first computational experiment corresponds to 225 instances of reference [6]
with 45 demand plans into 5 blocks (B), and 5 product-component structures
(E), which represent the BOM. All instances have four product types (|I| = 4)
and a total demand of 200 units (D = 200).

To obtain the optimal solutions from ORV and ORV pmr models, the BDP
was used under the following conditions: (1) BDP procedure programmed in
C++, using gcc v4.2.1, running on an Apple Macintosh iMac computer with an
Intel Core i7 2.93 GHz processor and 8 GB RAM using MAC OS X 10.6.7; (2)
to reach the optima were used six windows width (H = 1, 6, 64, 128, 512, 1024),
but to demonstrate all of them, H = 2048 and H = 4096 were necessary; (3) the
initial solution, Z0, for each window width was the solution obtained by BDP
with the previous window width, except for H = 1, where Z0 =∞.
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Given the models for ORV and ORV pmr, the functions .Q(Y ), .Q(X) and
the set of instances E: (1) we determine the best solution for .Q(Y ) offered by
both models for each instance ε∈E, S∗

ORV (ε) and S∗
ORV pmr(ε); (2) from those

best solutions we obtain the relative percentage deviations (RPD) for the values
of the functions f ∈ {.Q(Y ),.Q(X)} as shown in (18). The main results of the
experiment, using BDP, are collected in Tables 1 and 2.

RPD(f, ε) =
f(S∗

ORV (ε))− f(S∗
ORV pmr(ε))

f(S∗
ORV (ε))

·100 (fε{�Q(Y ),�Q(X)}; ε∈E) (18)

The results show that that ORV pmr is fifty times faster than ORV re-
garding the average CPU time required to demonstrate the optimal solutions
(CPUORV = 11.32 and CPUORVpmr = 0.21) being the maximum (CPUORV =
80.03; CPUORVpmr = 0.22) and minimum (CPUORV = 0.64; CPUORVpmr =
0.17) lowest too. In addition, the CPU time, spent with ORV pmr, does not de-
pend on the instance solved. Other main results of the experiment, using BDP,
are collected in Tables 1 and 2.

Table 1. Optima number reached(1) and demonstrated(2) for each window width (H)

H 1 6 64 128 512 1024 2048 4096

ORV (1) 9 121 174 199 223 225 - -

ORV
(1)
pmr 3 225 - - - - - -

ORV (2) 0 0 19 51 177 210 224 225

ORV
(2)
pmr 0 225 - - - - - -

Table 2. Average values of RPD(�Q(Y )) and RPD(�Q(X))

E1 E2 E3 E4 E5 Average

RPD(�Q(Y )) -5.02 -5.11 -1.60 -0.06 -10.92 -4.54
RPD(�Q(X)) 39.24 19.03 5.11 0.17 37.03 20.11

In Table 1 we can see the optima reached and demonstrated for the window
widths used. H = 4096 was necessary to demonstrate the optima of the 225
instances with ORV and H = 1024 was sufficient to reach them. For its part,
ORV pmr reached and demonstrated all the optima with a window width H = 6.

Finally, regarding the quality of the results, Table 2 shows: (1) an average
worsening of 4.54% for optimal .Q(Y ) of ORV pmr with regard to ORV ; (2)
the incorporation of the constraints (14) improves by an average of 20.11% the
preservation of the production mix (.Q(X)); and (3) more radical average gains
in .Q(X) and average worsening in (.Q(Y )) in those product structures that
move away from the possible equivalence between the ORVP and the PRVP.
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5.2 Computational Experiment with Instances from the CSP

The second computational experiment corresponds to 9 instances related to the
Car Sequencing Problem (prob001) in the CSPlib library (www.csplib.org), with-
out taking into account the constraints related to the Car Sequencing Problem.
The total demand is D = 100 units in all instances and the number of compo-
nents is |J | = 5, while the number of product types |I| oscillates between 22
and 26. The maximum window width (H) required by BDP to demonstrate the
optima, when the discard rules to preserve the production mix are incorporated,
oscillates between H � 705432 (for |I| = 22) and H � 10400600 (for |I| = 26).
However, in this computational experiment we used a maximum window width
of H = 1000 taking as initial solutions those obtained with H = 100. We have
compared the results obtained with BDP for the ORV and those obtained for
the ORV pmr, incorporating the constraints (14) or the rules to preserve the
production mix. The main results are collected in Table 3.

Table 3. Values of (�Q(Y )), (�Q(X)), RPD(�Q(Y )), RPD(�Q(X)) and lower
bound for (�Q(Y )) (LBZmin) for the ORV and the ORV pmr

ORV ORV pmr LBZmin RPD RPD

Instance (�Q(Y )) (�Q(X)) (�Q(Y )) (�Q(X)) (�Q(Y )) (�Q(Y )) (�Q(X))

4/72 48.7 1107.6 51.1 374.5 43.1 -4.8 66.2
6/76 47.2 1403.1 48.9 313.0 42.1 -3.7 77.7
10/93 47.1 1095.3 49.4 399.3 41.7 -4.9 63.5
16/81 44.5 1374.6 47.6 442.2 41 -7.1 67.8
19/71 45.8 762.9 49.5 410.3 41.7 -8.1 46.2
21/90 46.8 1176.0 49.7 393.4 42.0 -6.2 66.5
26/82 47.3 1300.9 49.4 401.9 42.0 -4.4 69.1
36/92 45.0 1089.9 48.3 376.0 40.7 -7.3 65.5
41/66 45.3 1233.0 49.5 320.6 40.5 -9.2 74.0

Average -6.2 66.3

The solutions obtained for the ORV and ORV pmr are not optimal. However,
the bounds for (.Q(Y )) found through the ORV pmr allowed us to find solutions
for the ORV that are, on average for the nine instances, around 10.24% of the
bound. The best solution obtained corresponds to the instance 16/81, whose
value is located at a distance of 7.87% of his bound. The worst solution obtained
corresponds to the instance 4/72, at a distance of 11.50% of his bound.

The average CPU times for each instance are 168s, for the ORV, and 96s
for the ORV pmr. The CPU time of the ORV pmr is best in more than 40%
compared with those of the ORV. Moreover, the improvement in the preservation
of production mix RPD(.Q(X)) corresponds to a value of 66.3%, while the
worsening in regular consumption of components RPD(.Q(Y )) corresponds
to a value of 6.2%, when we incorporate to the ORV the rules related to the
regularity on the production.
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6 Conclusions

We have presented bi-objective and mono-objective models to the ORVP with
preservation of the production mix in the JIT and DS context.

From ORV and ORV pmr models with quadratic function (.Q(Y )) for the
consumption of components, we have realized two computational experiments
using bounded dynamic programming as resolution procedure.

In the first experiment, with 225 reference instances from the literature, the
incorporation of the restrictions to preserve the production mix into ORV, re-
duces to one fiftieth the average CPU time with BDP, being enough a window
width of H = 6 to demonstrate all the optima. The component consumption
regularity of ORV pmr worsens by an average of 4.54 over ORV, but the gain of
production mix preservation is 20.11%. In the second computational experiment,
we have selected 9 instances from the Car Sequencing Problem, corresponding to
a high number of products. In this computational experiment, without reaching
the optima, we obtained an average improvement of 66.3% in the preservation of
production mix, and a worsening of 6.2% in regular consumption of components.
The bounds obtained using BDP for the function (.Q(Y )) on the ORV pmr
problem improves to those obtained for the ORV, for all the instances.
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Abstract. The success of cloud computing services and the volun-
teer computing paradigm encouraged researchers to utilize user-donated
resources for general purpose applications. The sustainability of this
paradigm resides in making the most out of the existing under-utilized
computer capabilities of Internet users. In this paper, we present a fast
heuristic to determine which is the subset of hosts that consumes the
minimum power while maintain a certain level of availability when a
service is deployed on top of them in the framework of a large-scale con-
tributory community. We evaluate our proposal by means of computer
simulation in a stochastic environment.

1 Introduction

Cloud computing has become increasingly popular as a tool to outsource large
computing infrastructures [2], which caused the data centers behind them to
grow at an exponential rate. Those digital warehouses are usually made up by
a significant amount of relatively homogeneous computing resources, stacked in
racks inside cooled and secured server rooms. Strict administration and mainte-
nance policies guarantee a certain level of service quality, and redundant
ISP-managed network links connects them to the Internet. Maintaining these
large infrastructures is neither cheap nor environmentally friendly [11]. Most of
them consume vast amounts of energy not only to run active servers but also
the network equipment, the cooling systems and idle servers. Hence, the carbon
footprint [7] of these facilities is large enough to consider taking measures to
reduce it.

Current trends [6, 8, 18] promote the use of non-dedicated resources for of-
fering Internet services, as done in the Cloud Computing paradigm. Trying to
go one step further in the use of non-dedicated resources than legacy Volunteer
Computing systems and employing them for general-purpose computing, Lázaro
proposed the contributory computing model [15], in which users contribute their
resources to be used by anyone inside a community. Thus, a community-based
cloud can be seized as a platform to deploy long-lived services. The uncertainty
associated with these dynamic systems, where individual resources can fail or be
disconnected at any time without previous notice, not only limits their use in
practical applications but also restricts the complexity of the computations that
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can be executed on them. In order to guarantee service availability over time in
these scenarios, it becomes necessary to develop new methodologies that support
efficient decision-making when selecting resources. These methodologies have to
deal with large-scale networks, complex topologies and different host behaviors
in order to support attractive services for the very end-user.

Besides the service availability, it would be profitable to reduce the energy
consumption of every service deployed in a community. Energy consumption of
every single host when supporting a given service could be combined with the
availability when selecting the hosts to place service replicas and so obtain highly
available and less energy-consuming service deployments. This paper presents
a heuristic-based methodology to efficiently and automatically select the set of
hosts that provide a given level of service availability while minimizing the energy
consumption of the deployment.

The rest of this article is structured as follows. We briefly review the current
literature related to this work in Section 2. We formally describe the problem
addressed by this article in 3. We present our methodology in Section 4 and its
evaluation by means of a numerical example by means of simulation in Section 5.
We highlight the conclusions of our work in Section 6.

2 Related Work

Many recent studies focused on availability studies of distributed computing
environments based on heterogeneous and non-dedicated resources [3, 12, 14].
These studies provided valuable information about the availability patterns of
non-dedicated resources but they mainly focus on node-level availability, whereas
our target is the system-level availability. Our work is focused on complex ser-
vices, composed by several interconnected and intermittently available resources
and aims to guarantee service availability and minimize the energy consumption.

The notion of collective availability [1] refers to making a service or a data
object available by replicating it in several machines. It is considered to be
available if at least k out of n computers are available [4,9]. In [16], the authors
studied the case of guaranteeing collective availability for computational services,
considering n identical replicas of them and service availability only when at least
k replicas are available.

In [19], the authors develop a reliability-aware task scheduling algorithm in
which inter-dependencies among tasks are considered. The performance of their
algorithm surpasses that of previous algorithms not considering reliability but
some of their assumptions restrict the applicability of their model to large-scale
systems.

Issues regarding the development of environmentally sustainable computing
have been discussed since the emergence of the clouds. [10] designs, implements
and evaluates a Green Scheduling Algorithm with a neural network predictor
for optimizing power consumption in datacenters. They predict load demands
from historical data and turns off or restarts servers according to it. Green
task-scheduling algorithms are presented in [20]. After a simulation experiment,
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the authors conclude that heuristically assigning tasks to computers with lower
energy is significantly more energy-efficient than doing it randomly. Borgetto
et al. studied in [5] the problem of energy-aware resource allocation for long-
term services or on-demand computing tasks hosted in clusters. They formalize
the problem as an NP-hard constrained optimization problem, propose several
heuristics and use simulation to validate their approaches by comparing their
results in realistic scenarios.

3 Problem Description

Our goal is to deploy long-lived services on top of non-dedicated resources. We
regard a service as any application, running on one or several computers, which
is able to receive messages from other computers and send messages in response.
A service is deployed for a period of time T , after which some component re-
assignation might be required. This is repeated until the service is explicitly
stopped by an external agent. We assume all services are either stateless or
has an internal procedure to maintain status amongst different replicas and a
short processing time for queries, at least compared with time T . Thanks to
the former, service instances are easily replicable and many of them might be
deployed simultaneously, offering some redundancy to the system.

We assume that a distributed service is a set P of interrelated processes that
must run for a (usually long) period of time (0, T ). The processes communicate
among themselves, which induces a topology in the service. This topology is
described by logical conditions relating the various processes that make up the
service. Let us assume that we have a pool N of n available hosts to deploy the
service. Each of them is characterized by a certain availability behavior and an
energy consumption.

The availability is obtained from historical behavior of every single host. It is
possible to approximate the availability and unavailability intervals to a statis-
tical function by observing their evolution. This way, the availability intervals
would determine a failure distribution and the unavailability intervals a repair
distribution. Many statistical functions may be considered to approximate the
behavior of these intervals. From the expectancy of failure and the repair distri-

butions, the mean availability can be obtained as āni =
E[failureni

()]

E[failureni
()]+E[repairni

()] .

We consider the energy consumption of a host to be a variable with many
factors that affect this value and its great variability over time. Despite this,
some authors proposed to model the energy consumption of a computer as a
linear function directly proportional to the load of the computer [17]. Therefore,
it can be approximated as eni(t) = emin

ni
+ (emax

ni
− emin

ni
) · sni(t), where emin

ni

is the energy employed when there is no load in that computer, emax
ni

is the
energy consumed at maximum load in the computer and sni(t) is the percentage
load of the host ni at time t. Consider eni ∈ [emin

ni
, emax

ni
] for sni ∈ [0, 1]. This

energy model is valid if we assume resources incorporate effective power-saving
mechanisms, such as Dynamic Voltage and Frequency Scaling in the processors
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Apart from their availability and energy consumption, we consider all nodes
can host any process, but only one process at a given time. Clearly, a process is
available at a given time t if and only if its host node is available at time t. A
deployment of any distributed service is an injective function D : P → N . For
the sake of simplicity we use the expression Dj to indicate the service deployed
over a set of given hosts. Another simplified description of the deployment is
given by a set of binary variables xni∀i ∈ N , where xni = 1 if the node ni was
selected to host some process of the service, and xni = 0 otherwise. The energy
associated with the deployment is the sum of the individual energy consumptions
of the selected hosts and this is the parameter that we want to minimize.

As services are something continuous on time, we attempt to provide a certain
level of availability by guaranteeing the service will be available a percentage of
the time T . This percentage (atarget) must be one of the service requirements
given when specifying the service itself. In summary, our problem can be formu-
late as a discrete optimization problem with a restriction:

Find D : P → N

that minimizes
∑
∀i∈N

xnieni

subject to āD ≥ atarget

The obtaining details of āD are out of the scope of this work. We refer the
reader to previous work on complex system availability estimation through dis-
crete event simulator, for example the work in [13].

If |P| = m, then the size of the search space is the number of different de-
ployments, n!

(n−m)! . As we mainly deal with very large-scale systems, typically

n " m, which makes n!
(n−m)! very large, and rules out any form of brute-force

search.

4 Methodology

Because of the size of the search space for service deployments in contributory
communities, we developed a fast heuristic to determine pseudo-optimal deploy-
ments in restrained times. Assume we have historical information of the host
availability and unavailability intervals; a mechanism to continuously monitor
the load of the involved hosts at any given time; the target services are coher-
ent (that is āDj > āDj+1); and a user service deployment request that indicates
a desired availability level atarget. We developed a host selection methodology
following the next steps:

1. Order the list of available hosts by mean availability in descending order, in
such a way that āni > āni+1 .

2. From the host ordered list, obtain a list of possible service deployments,
considering only host subsets of consecutive elements in the host list. If
service size is m and n hosts are available in the system, the obtained list
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should contain n − m + 1 deployments. This step is possible due to the
coherent traits of the studied systems (that is āDj > āDj+1).

3. Perform a binary search over the deployments list, keeping the immediate
deployment in list such that āDj ≥ atarget. We named this deployment as
Dlimit.

4. Perform a linear search upwards the availability-sorted list of deployments.
Since we consider the services to be coherent, all the deployments in this part
of the list would have ¯aDj ≥ atarget, but the energy consumption associated
to the selected hosts may be lower (eDlimit

≥ eDlimit−j
). Therefore, we seek

for the deployment offering the lowest energy consumption only in that part
of the list, since all deployments on it will fulfill the availability requirement.

Figure 1 shows a graphical chart of the operation of our proposal. The numbers
in the figure are completely artificial, chosen to clarify the example. On it, Dlimit

is D2, but the energy consumption of D1 is lower, so the chosen deployment
should be the latter (which still fulfills the availability requirements).

Fig. 1. Sketch of the proposed methodology in a reduced scenario: 3 component service
and 7 available hosts in the community.

This methodology is flexible enough to adapt to very different service topolo-
gies and host behaviors. As well, it is ready to work either on large or small
scale communities. Due to the stochastic nature of the load on the different
hosts involved in a community, the pseudo-optimal deployments obtained by
our heuristic might vary for a given service, since it depends on the system
status at time the request was done.

5 Numerical Experiment

No real traces of availability and energy consumption are available for the in-
tended systems in this work. For this reason, we artificially generated the infor-
mation of 10, 000 hosts by the parameters shown in Table 1. RandUniform(a,b)
stands for a random number generation function following a Uniform distribution
within the [a,b] range.
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Table 1. Synthetically generated historical host information

Node ID Node i

Failure Distribution
Type Weibull

Shape RandUniform(0.8, 2)

Scale RandUniform(0.5, 4)

Repair Distribution
Type Weibull

Shape RandUniform(0.5, 1.75)

Scale RandUniform(0.2, 1.8)

āni

E[failurei()]
E[failurei()]+E[repairi()]

ēi
emini RandUniform(20, 50)

emaxi RandUniform(350, 1000)

Fig. 2. Service topology description

We then considered an abstract service defined by the topology shown in the
directed graph in Figure 2. The numbers indicate the arbitrary order in which
the hosts are selected from the list (āni ≥ āni+1).

We then built a computer simulator in Java to generate random behavior for
the load in each of the involved hots if the service was placed on it. Our simulator
generated random numbers in the range [0,1] as the load of each computer if the
service was deployed on it every time a service deployment request was placed.
From the expected load and the energy consumption information describing
each host (previously obtained from Table 1), it was possible to determine the
energy consumption for all the hosts. The energy consumption of a given service
deployment can be then obtained by aggregating the energy consumption of all
the selected hosts.

We ran the simulator for 100 lifetimes, as if 100 services were to be deployed
in the community. In all cases, we fixed the availability requirement at 90% and
we recorded the availability and the energy consumption of the most greedy
deployment (selecting the most available hosts, as was D1 in Figure 1) and the
ones of the deployment found by our methodology. We show the mean results
and the mean differences in Table 2 and we declare the mean execution time was
903.5 milliseconds in a desktop computer built of an Intel Core i5-2400 processor,
4 GBytes of RAM memory, running Ubuntu Linux 12.10 and the Oracle Java
Virtual Machine 7u17-64bits.

We show in Figure 3 the result of four deployment search processes, se-
lected randomly among the 100 performed in the experiment. The graphs depict
the temporal process and the evolution of the service availability and energy
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Table 2. Overview of the measured results

āD ēD
Greedy deployments 0.992 4437.33
Our deployments 0.959 1938.35

Δ 3.31% 56.32%

consumption of the chosen hosts. The vertical dashed line indicates the time the
binary search ends and the linear local search starts, while the horizontal one
signals the availability threshold (atarget) imposed by the requester.

Fig. 3. Graphical evolution of four different service deployments

From the obtained results, we affirm our methodology outperforms the greedy
approach in terms of energy consumption while maintains the availability above a
given threshold. What is more, our method prove to work fast when dealing with
a sizable pool of very different hosts. Thanks to this fact, it could be included
in a user-interactive service deployment procedure within a real community.

6 Conclusions

Energy consumption of large-scale distributed computing infrastructures is a
matter to be regarded by system administrators. As the scale of these systems
grows, its environmental footprints also does.
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We combined the environmental concern with the emerging computing con-
cept of contributory communities. These communities are based on user-donated
computers and require no large datacenters to offer long-lived services. However,
its non-dedicated nature poses new challenges when guaranteeing service survival
over time.

In this paper we proposed a simple and fast heuristic to determine a subset
of hosts suitable to provide a given level of service availability. In addition, we
included the energy consumption as a variable in the equation. The main goal of
this research was to minimize the energy consumption of the deployed services
while maintaining the service availability over the mentioned threshold.

We evaluated our heuristic by means of computer simulation and we found
that investing very few time (less than a second) to perform a search among
the available resources, it is possible to reduce the energy consumption up to a
56.32% while degrading the offered availability only a 3.31%.
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Abstract. Multi-objective evolutionary algorithms rely on the use of
variation operators as their basic mechanism to carry out the evolution-
ary process. These operators are usually fixed and applied in the same
way during algorithm execution, e.g., the mutation probability in genetic
algorithms. This paper analyses whether a more dynamic approach com-
bining different operators with variable application rate along the search
process allows to improve the static classical behavior. This way, we ex-
plore the combined use of three different operators (simulated binary
crossover, differential evolution’s operator, and polynomial mutation) in
the NSGA-II algorithm. We have considered two strategies for selecting
the operators: random and adaptive. The resulting variants have been
tested on a set of 19 complex problems, and our results indicate that both
schemes significantly improve the performance of the original NSGA-II
algorithm, achieving the random and adaptive variants the best overall
results in the bi- and three-objective considered problems, respectively.

Keywords: Multiobjective Optimization, Evolutionary Algorithms,
Variation Operators, Adaptation.

1 Introduction

Evolutionary algorithms (EAs) are a family of stochastic search techniques within
metaheuristics [1] widely used on optimization. Genetic Algorithms (GAs), Evo-
lution Strategies (ES), Genetic Programming (GP), and Differential Evolution
(DE), among others, are examples of EAs. Specialized versions of EAs to solve
multi-objective optimization problems usually referred as to MOEAs.

Most of EAs and MOEAs operate under a common principle: one or several
individuals undergo the effect of some variation operators. Examples of these
operators are the crossover and mutation operators, in the context of GAs, or
the differential evolution operator in DE methods.
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Some researchers have shown that some operators are more suitable for some
types of problems than others. If we focus on multi-objective optimization, we
can find some examples. Deb et al. evaluated the behavior of a number of op-
erators for solving problems with variable linkages [3], and observed that the
SBX operator was unable to deal with these types of problems. Iorio and Li [7]
discussed the suitability of a number of operators for solving rotated problems
and those having epistatic interactions among decision variables.

To make things harder, there is no reason to think that a variation operator is
equally effective, in terms of its evolvability or ability to produce better solutions,
over the whole search space of a given problem. In fact, the search space of
real-world optimization problems may not be free of variable-linkage, epistasis,
rotation, or complex relationships among their decision variables. Under these
circumstances, the use of methods that keep their variation operators invariant
through the whole execution of the EA may not be the best alternative.

Our goal is to investigate, in the context of multi-objective optimization,
whether the combined use of different variation operators during the search
may improve the performance of classical MOEAs. Our hypothesis is that the
variation operators used in most of these algorithms can be effective in the ex-
ploration of certain regions of the search space of a given problem, but not
over the whole search space. We study this idea by endowing NSGA-II with the
ability to select its variation operators from a set containing different alterna-
tives. The resulting algorithms are evaluated by solving problems with difficult
Pareto sets; in particular, the LZ09 [9] benchmark and problems of the CEC
2009 competition [12]).

In this paper we propose two new versions of the NSGA-II algorithm which
are able to select from among different variation operators during the search. We
have considered a set composed of three operators commonly used in
multi-objective optimization metaheuristics: SBX crossover, polynomial-based
mutation, and the variation operator used in DE. The first proposed version
of NSGA-II, referred to as NSGA-IIr hereinafter, creates new solutions by ran-
domly selecting an operator from the set. The second version, named NSGA-IIa
from now on, uses a record of the contribution of each operator in the past for
selecting the operator to apply. This second scheme is based on the one proposed
in the AMALGAM algorithm [11], and the idea is to give to these operators a
higher probability of being chosen when they are capable of producing solutions
that survive from one generation to the next. Additionally, we include in the
study a version of NSGA-II using only the DE operator.

The rest of this paper is organized as follows. Next section reviews related
work. Section 3 details our proposals. The methodology used in this work is
described in Section 4 and the obtained results are analyzed in Section 5. Finally,
we present our main conclusions and some possible paths for future research.

2 Previous Related Work

In this section we review existing works related to ours. We focus only on multi-
objective optimization aproaches.
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In [10], Toscano and Coello dealt with the issue of selecting the best operator
for solving a given problem. These authors proposed a micro genetic algorithm,
called μGA2, which runs several simultaneous instances of μGA2 configured
with different variation operators. Periodically, the instance with the poorest
performance was replaced with the best performing one. Thus, after several
generations, all the parallel instances worked only with the best performing
operator. A disadvantage of this approach is that once an operator had been
discarded, it could not be used again in the execution of the algorithm.

MOSaDE [5] combines the use of four different versions of the DE operator.
This combination was made in an adaptive way: the version that contributes the
most to the search was given a higher probability of being used for creating new
solutions. This contribution was measured by considering the success, in terms
of the non-dominated solutions that it produced in the last n iterations of the
algorithm. An improved version of MOSaDE with object-wise learning strategies,
called OW-MOSaDE [6], participated in the CEC2009 MOEA competition [13],
obtaining an average rank of 9.39 among 13 algorithms.

Vrugt and Robinson proposed in [11] the AMALGAM algorithm, based on
the idea of using a number of multi-objective algorithms within a master algo-
rithm. By measuring the contribution of each method in the last iteration, each
algorithm was adaptively used favoring those techniques exhibiting the highest
reproductive success. The algorithms used were NSGA-II, a PSO approach, a
DE approach, and an adaptive metropolis search (AMS) approach.

Relate works propose therefore new algorithms or the combination of several
existing techniques using a master approach, like in AMALGAM. Additionally,
all of them use an scheme based on the contribution of the different operators
for considering their application. The main point of our work, however, is not to
propose a new algorithm but to analyze whether the combination of operators
can improve the performance of an existing algorithm such as NSGA-II, when
dealing with difficult multi-objective optimization problems.

3 NSGA-II with Combined Operators

This section aims at describing NSGA-IIa and NSGA-IIr. For the sake of clarity,
we first present the original technique and then our proposals.

3.1 NSGA-II

NSGA-II (Deb et al. [2]) is the most popular multi-objective metaheuristic by
far. It is a generational GA, so it is based on a population P of size n which,
at each iteration, is used to create another population of n new solutions as
follows. For every solution in P , two parents are selected and combined using
the recombination operator and the result is later altered by means of a mutation
operator. We use SBX crossover and polynomial mutation, as done in NSGA-II
when adopting real-numbers encoding. As a result of these two operations, a new
individual is created and inserted into a temporal population Q. Finally, P and
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Algorithm 1. Pseudocode of NSGA-IIr.
1: Input: n // the population size
2: P ← Random Population() // P = population
3: Q ← ∅ // Q = auxiliar population
4: while not Termination Condition() do
5: for i ← 1 to (n) do
6: randValue←rand();
7: if (randValue ≤ 1/3) then
8: parent←Selection1(P); // only one parent is selected
9: offspring←PolynomialMutation(parent);
10: else
11: if (randValue ≤ 2/3) then
12: parents←Selection2(P); // two parents are selected
13: offspring←SBX(parents);
14: else
15: parents←Selection3(P); // three parents are selected
16: offspring←DE(population[i], parents);
17: end if
18: end if
19: Evaluate Fitness(offspring);
20: Insert(offspring,Q);
21: end for
22: R ← P ∪ Q
23: Ranking And Crowding(R);
24: P ←Select Best Individuals(R)
25: end while
26: Return P;

Q are merged in a single population R. The n best individuals, after applying
the ranking and crowding procedures in R, will be selected to be the population
P in the next generation of the algorithm. See further details in [2].

3.2 NSGA-IIr

NSGA-IIr is an extension of NSGA-II that makes use of three different
variation operators: SBX crossover, polynomial mutation, and DE’s variation
operator. These operators are randomly selected whenever a new solution is to be
produced. The pseudocode of this version is detailed in Algorithm 1.

The main difference with respect to the original NSGA-II lies in the parents
selection mechanism and in the way in which offsprings are produced (lines 6-18).
NSGA-IIr proceeds as follows. For each individual in P , it produces a random
value in [0, 1] (line 6). Depending of this value, one out of the three variation
operators is selected, as shown in lines 7-18. Once the offspring is generated, the
algorithm behaves as the original NSGA-II.

3.3 NSGA-IIa

NSGA-IIa applies the same variation operators as NSGA-IIr, but in an adap-
tive way, by taking into account their contribution, i.e., each operator selection
probability is adjusted by considering that operator success in the last iteration.

The adaptive scheme considered for operator selection is based on the one used
in AMALGAM [11]. Algorithm 2 describes such scheme. Assuming a number of
NumOperators different operators, the method computes the contribution of
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Algorithm 2. Computing the contribution of each operator.
1: Input: P // population for the next iteration
2: totalcontribution ← 0
3: for 1 ≤ operator ≤ NumOperators do
4: contributionoperator ← solutionsInNextPopulation(operator,P ) ;
5: if contributionoperator ≤ threshold then
6: contributionoperator ← threshold;
7: end if
8: totalcontribution ← totalcontribution + contributionoperator;
9: end for
10: for 1 ≤ operator ≤ NumOperators do
11: probabilityoperator ← contributionoperator / totalcontribution ;
12: end for

all of them (loop between lines 3-9). The idea is to count how many solutions
generated by each operator are part of the population P of the next generation
(line 4). If an operator has contributed with less solutions than a minimum
threshold, its contribution is set to this minimum threshold (lines 5-7); by doing
so we avoid any operator to be discarded when producing no solutions in an
iteration. Our motivation is that this operator may be useful later in a different
phase of the search. In this work we have considered a threshold equal to 2, which
was the value used in AMALGAM. Once the contribution of the operators have
been computed, the probability of selecting them is updated (line 12). This way,
the operators have a probability of being selected in the next generation which
is proportional to their contribution.

3.4 NSGA-IIde

As we are using the DE operator in NSGA-IIr and NSGA-IIa, we consider inter-
esting to include in the study another NSGA-II variant, where the mutation and
crossover operators have been replaced by the DE operator. We have named this
version NSGA-IIde. This way, we will have more information to determine if the
performance improvements are not related to the use of a particular operator
but to the combination of some of them.

4 Experimentation

Here we present the benchmark problems adopted for our tests, together with
the parameter settings and the methodology followed in our experiments.

Benchmark Problems. We consider the LZ09 [9] benchmark and the problems
defined for the CEC2009 competition [12]. The former is composed by nine
problems (LZ09 F1 - LZ09 F9), all of which are bi-objective, except for LZ09 F6,
which has three objectives. The latter contains problems with two, three, and
five objectives, as well as constrained and unconstrained problems. We have
selected the seven UF1- UF7 bi-objective and the UF8 - UF10 three-objective
unconstrained problems.
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Parameters Settings. For NSGA-II and its three variants we have used the same
settings. The population size is 100, the SBX and polynomial mutation probabil-
ities are 0.9 and 1/L (L is the number of decision variables of the problem being
solved), respectively. Both operators share the same distribution index value,
which is set to 20. The DE operator variant is current/1/bin, and the values of
the CR and F control parameters are, respectively, 1.0 and 0.5. The stopping
condition is 150, 000 function evaluations in the case of the LZ09 problems, and
300, 000 for the CEC 2009 problems.

Quality Assessment. To assess the performance of the algorithms we adopt two
widely used indicators: additive epsilon [8]) and hypervolume [14].

Analysis of Results. For each combination of algorithm and problem we have
made 30 independent runs, and we report the median, x̃, and the interquartile
range, IQR, as measures of location (or central tendency) and statistical disper-
sion, respectively, for each considered indicator. When presenting the obtained
values in tables, we emphasize with a dark gray background the best result for
each problem, and a clear grey background is used to indicate the second best
result; this way, we can see at a glance the most salient algorithms.

When comparing the values yielded by two algorithms on a given problem, we
check if differences in the results are statistically significant. To cope with this
issue, we have applied the unpaired Wilcoxon rank-sum test, a non-parametric
statistical hypothesis test, which allows us to make pairwise comparisons between
algorithms to analyze the significance of the obtained data [4]. A confidence level
of 95% (i.e., significance level of 5% or p-value under 0.05) has been used in all
cases, meaning that the differences were unlikely occurred by chance with a
probability of 95%.

5 Comparison of Results

In this section, we analyze the obtained results when running the algorithms
under the aforementioned experimental methodology. We first analyze the values
yielded by the I+ε indicator, and then the ones obtained by the IHV one.

The values obtained by the I+ε are summarized in Table 1. We start by ana-
lyzing the values obtained in the LZ09 family. As we can observe, the algorithm
applying the adaptive combination of several operators, NSGAIIa, has led to an
improvement of the results of the original version of NSGA-II in all the prob-
lems that are part of this benchmark, but it was outperformed, in turn, by the
random variant, NSGA-IIr, in all the problems but two (LZ09 F4 and LZ09 F6).
The NSGA-II variant using DE only achieved the best result in the first problem.
Our wilcoxon analysis has relevealed that statistical significance has been found
when comparing the the two extensions of NSGA-II algorithm with the original.
Regarding to the comparison between our two proposals, there is no statistical
significance in problems LZ09 F1 and LZ09 F4, NSGA-IIa outperforms NSGA-
IIr in six problems, and NSGA-IIr improves NSGA-IIa in LZ09 F6, the only
three-objective problem of the benchmark.
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Table 1. LZ09 benchmark. Median and interquartile range of the I+ε indicator.

NSGA-II NSGAII-r NSGAII-a NSGAII-de

LZ09 F1 1.69e − 021.7e−03 1.52e − 022.4e−03 1.52e − 022.9e−03 1.46e − 023.9e−03
LZ09 F2 1.70e − 012.5e−02 7.43e − 021.7e−02 9.62e − 022.8e−02 1.49e − 013.6e−02
LZ09 F3 1.12e − 012.3e−02 4.78e − 022.1e−02 7.84e − 021.5e−02 1.20e − 012.6e−02
LZ09 F4 1.38e − 012.0e−02 5.44e − 021.7e−02 5.16e − 021.9e−02 1.13e − 012.3e−02
LZ09 F5 1.09e − 013.1e−02 6.54e − 023.7e−02 8.29e − 022.9e−02 1.21e − 011.8e−02
LZ09 F6 2.75e − 014.0e−02 2.69e − 011.3e−02 2.31e − 015.3e−02 6.38e − 012.4e−01
LZ09 F7 3.32e − 011.7e−01 3.48e − 022.1e−02 1.28e − 011.4e−01 1.00e + 000.0e+00
LZ09 F8 2.76e − 011.4e−01 2.22e − 016.7e−02 2.54e − 011.5e−01 9.10e − 012.1e−01
LZ09 F9 1.87e − 016.5e−02 7.98e − 023.7e−02 1.05e − 012.3e−02 1.49e − 013.2e−02

UF1 1.54e − 012.4e−02 1.82e − 022.7e−03 5.51e − 022.6e−02 1.30e − 012.8e−02
UF2 9.35e − 022.5e−02 5.53e − 022.4e−02 6.73e − 023.1e−02 1.13e − 012.8e−02
UF3 3.12e − 011.1e−01 4.63e − 026.0e−02 1.40e − 011.1e−01 2.35e − 014.7e−02
UF4 4.95e − 022.5e−03 4.62e − 021.8e−03 5.11e − 025.1e−03 8.27e − 029.8e−03
UF5 3.80e − 017.2e−02 4.25e − 012.0e−01 5.00e − 012.1e−01 1.05e + 003.5e−01
UF6 3.68e − 011.5e−01 4.62e − 013.9e−01 5.30e − 013.0e−01 4.11e − 011.9e−01
UF7 1.33e − 013.5e−01 5.68e − 021.8e−02 7.55e − 023.4e−02 9.68e − 022.7e−02
UF8 3.05e − 014.4e−01 7.13e − 014.5e−01 3.09e − 014.5e−01 8.56e − 011.7e−01
UF9 4.91e − 012.8e−01 5.57e − 014.0e−01 4.58e − 012.1e−01 8.65e − 012.7e−01
UF10 9.31e − 011.3e−01 9.44e − 011.6e−01 8.61e − 011.5e−01 1.97e + 006.4e−01

Table 2. LZ09 benchmark. Median and interquartile range of the IHV indicator.

NSGA-II NSGA-IIr NSGA-IIa NSGA-IIde

LZ09 F1 6.53e − 011.1e−03 6.55e − 016.9e−04 6.55e − 017.2e−04 6.56e − 017.6e−04
LZ09 F2 5.53e − 011.3e−02 6.35e − 019.6e−03 6.25e − 012.1e−02 5.66e − 013.6e−02
LZ09 F3 6.24e − 018.1e−03 6.46e − 013.5e−03 6.41e − 016.5e−03 5.85e − 011.6e−02
LZ09 F4 6.34e − 014.7e−03 6.44e − 012.8e−03 6.48e − 013.8e−03 5.89e − 011.4e−02
LZ09 F5 6.28e − 011.1e−02 6.43e − 011.0e−02 6.41e − 018.5e−03 5.96e − 011.2e−02
LZ09 F6 2.08e − 013.4e−02 2.51e − 012.7e−02 2.89e − 012.9e−02 4.35e − 024.7e−02
LZ09 F7 4.80e − 014.3e−02 6.50e − 014.5e−03 6.37e − 012.9e−02 0.00e + 000.0e+00
LZ09 F8 4.62e − 014.8e−02 5.33e − 013.8e−02 5.00e − 014.4e−02 0.00e + 000.0e+00
LZ09 F9 2.25e − 014.1e−02 2.99e − 011.7e−02 2.88e − 011.8e−02 2.31e − 012.9e−02

UF1 5.73e − 011.9e−02 6.53e − 018.9e−04 6.47e − 017.7e−03 5.78e − 012.9e−02
UF2 6.34e − 018.9e−03 6.47e − 014.4e−03 6.46e − 016.0e−03 5.99e − 011.3e−02
UF3 4.74e − 014.8e−02 6.38e − 012.1e−02 6.00e − 015.7e−02 3.43e − 015.4e−02
UF4 2.64e − 011.4e−03 2.68e − 016.5e−04 2.66e − 012.1e−03 2.34e − 011.4e−02
UF5 1.87e − 018.1e−02 2.39e − 012.1e−01 1.98e − 011.5e−01 0.00e + 000.0e+00
UF6 2.43e − 016.7e−02 2.34e − 011.6e−01 2.39e − 011.6e−01 5.42e − 026.2e−02
UF7 4.41e − 018.8e−02 4.81e − 017.1e−03 4.77e − 014.7e−03 4.51e − 011.9e−02
UF8 1.96e − 019.6e−02 1.08e − 011.4e−01 1.87e − 011.6e−01 0.00e + 003.9e−04
UF9 3.21e − 011.6e−01 1.78e − 013.7e−01 3.94e − 012.0e−01 3.53e − 026.9e−02
UF10 1.73e − 022.3e−02 0.00e + 002.7e−02 3.63e − 026.3e−02 0.00e + 000.0e+00

Regarding the problems of the CEC 2009 competition we can see that the
random NSGA-II variant achieved the best values in five out the seven bi-
objective problems and no best results in the tree-objective instances. The
applied Wilcoxon Rank-sum test showed, however, that the differences with
NSGA-II in problems UF5, UF6, and UF8 were not statistically significant.
NSGA-IIa performed better that NSGA-II in problems UF4, UF5, and UF6,
and it outperformed NSGA-IIr in UF9 and UF10 with confidence in all these
instances.

The values for the IHV are included in Table 2. A simple comparison with the
convergence indicator results (Table 1) shows almost an identical performance of
the algorithms for the LZ09 benchmark; however, the Wilcoxon ranks-sum test
values showed some differences. According to the IHV , NSGA-IIa obtained a bet-
ter value in LZ09 F4 with statistical confidence and the differences in LZ09 F5
are non significant. Some values in Table 2 are 0; this means that the approxima-
tion front produced by the algorithm was beyond the limits of the Pareto front
used to calculate the IHV indicator, so none of the solutions contribute to the
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Fig. 1. Computed approximations for problems LZ09 F2, LZ09 F9, and UF3 with
NSGA-II (left), NSGA-IIr (center), and NSGA-IIa (right)

hypervolume. In the case of the second evaluated benchmark, NSGA-IIr got again
the best figures in most of the bi-objective problems, but it was outperformed by
NSGA-II in the three-objectiveUF8, UF9, andUF10 instances by NSGA-II, being
the differences significant according to the applied statistical methodoly. NSGA-
IIa also yielded best results than NSGA-IIr in the same problems, although the dif-
ferences are not significant in the UF8 problem. Compared with NSGA-II, NSGA-
IIa obtained better values in six out the ten studied problems with confidence, be-
ing the differences in the rest of problems non significant.

To illustrate the performance of our proposals, we include the best Pareto
front approximations found by the NSGA-II and its two variants according to
the IHV in Fig. 1 for problems LZ09 F2, LZ09 F9, and UF3. We can observe
these problems posed a lot of difficulties to NSGA-II, which produced very poor
approximation sets. The extensions of NSGA-II have generated better results in
terms of the quality of the computed fronts, which can be visually stated.
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6 Discussion

From the previous study we can infer some facts. First, it is clear that the com-
bined used of the three chosen operators, in an adaptive or in a random way,
lead to algorithms outperforming NSGA-II in most of the considered problems.
Given that NSGA-IIde does not achieve better results compared with the orig-
inal algorithm (with the exception of the LZ09 F1 problem) we conclude that
the combination of the three operators is the reason of the performance improve-
ments that are obtained by both the NSGA-IIr and NSGA-IIa variants.

The 19 evaluated problems have complex Pareto sets and most of state-of-the-
art Pareto dominance-based MOEAs experiment troubles when solving them, so
the enhancements illustrated by Fig. 1 are remarkable. Consequently, we infer
that the combination of operators has a positive influence in the performance of
the resulting algorithms, allowing a better exploration of the search space, thus
supporting our initial hyphotesis of that the variation operators used in many
MOEAs can be effective in the exploration of certain regions of the search space
of a given problem but not over the whole search space.

Our analysis revealed that the random selection of operators provides overall
better results than the adaptive version in bi-objective problems, while the latter
outperforms the former in three-objective problems. This issue deserves further
research.

7 Conclusions

We have studied two schemes for using variation operators in a combined way
in the NSGA-II algorithm. The first one selects the operators at random, while
the second one takes them in an adaptive way. The considered operators have
been SBX crossover, polynomial mutation, and the DE operator. To assess the
performance of the two combined strategies we have taken 19 multiobjective
problems, two quality indicators, and we have statistically ensured the confidence
of the obtained results. A version of NSGA-II using only the differential evolution
operator has been included for completeness.

The experiments carried out revealed that the combinator of operators en-
hances the performance over the original NSGA-II algorithm. The random
scheme was the most salient variant when solving the bi-objective problems,
while the adaptive algorithm yielded the best results in the three-objective in-
stances. The improvements achieved in many problems are remarkable; therefore,
we conclude that the combined use of variation operators can improve classical
MOEAs, as shown in the context of the experimentation carried out. It is worth
noting that the modifications of the NSGA-II algorithm are kept in a minimum.

As future work, we plan the inclusion of a broader set of operators. The appli-
cation of the analyzed variation schemes to other multi-objective evolutionary
algorithms (e.g., MOEA/D), the study of potential benefits when applying it for
solving scalable problems in the number of variables or objectives, and the in-
vestigation of why the random and adaptive schemes yield, respectively, the best
Pareto front approximations in the bi- and three-objective selected problems are
also a matter of future work.
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Abstract. A metaheuristic for the capacitated vertex p-center problem
is presented. This is a well-known location problem that consists of plac-
ing p facilities and assigning customers to these in such a way that the
largest distance between any customer and its associated facility is min-
imized. In addition, a capacity on demand for each facility is considered.
The proposed metaheuristic framework integrates several components
such as a greedy randomized adaptive procedure with biased sampling
in its construction phase and iterated greedy with a variable neighbor-
hood descent in its local search phase. The overall performance of the
heuristic is numerically assessed on widely used benchmarks on location
literature. The results indicate the proposed heuristic outperforms the
best existing heuristic.

Keywords: Combinatorial optimization, discrete location, metaheuris-
tics, GRASP, IGLS, VND.

1 Introduction

The vertex p-center problem can be defined as the problem of locating p facilities
and assigning customers to them so as to minimize the longest distance between
any customer and its assigned facility. The term vertex means that the set of
candidate facility sites and the set of customers are the same. In the capacitated
version (CpCP) it is required that the total customer demand assigned to each
facility does not exceeded its given capacity. The CpCP is NP-hard [1]. Practical
applications of p-center problems can be found in school districting planning or
system design in health coverage, to name a few.

The uncapacitated version of the problem has been widely investigated from
both exact and approximate approaches. Elloumi et al. [2] provide an extensive
review of the literature. The CpCP has received less attention in the literature.
From an exact optimization perspective, Özsoy and Pınar [3] presented an exact
method based on solving a series of set covering problems using an off-the-shelf
mixed-integer programming (MIP) solver while carrying out an iterative search
over the coverage distances. More recently, Albareda-Sambola et al. [4] proposed
an exact method based on Lagrangian relaxation and a covering reformulation.
From the heuristic perspective, the work of Scaparra et al. [5] stands as the
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most significant. They developed a heuristic based on large-scale local search
with a multiexchange neighborhood represented by an improved graph exploit-
ing principles from network optimization theory. In this paper, we present a
metaheuristic framework that integrates several components such as greedy ran-
domized adaptive procedures with biased sampling in its construction phase and
iterated greedy with a variable neighborhood descent in its local search phase.
The empirical work indicates our heuristic outperforms the best existing method.

2 Problem Formulation

Let V be the set of nodes representing customers or potential locations for the
p facilities. The integer distance between nodes i and j is represented for dij .
Each node j ∈ V has a demand or weight wj and each node i ∈ V has a capacity
defined by si. For the combinatorial model, a p-partition of V is denoted by
X = {X1, ..., Xp}, where Xk ⊂ V is called a subset of V . Each subset Xk is
formed by a subset of nodes such that

⋃
k∈K Xk = V and Xk ∩ Xl = ∅ for all

k, l ∈ K, k 	= l where K = {1, ..., p}. The set of centers is denoted by P ⊂ V
such that P = {c(1), ..., c(p)} where c(k) is the active location for subset Xk,
i.e., the node that hosts the facility serving the customers in Xk. The problem
can be represented by the following combinatorial model.

min
X∈Π

max
k∈K

f(Xk) (1)

where Π is the collection of all p-partitions of V . For a given territory Xk

its cost function, also called the bottleneck cost, is computed as f(Xk) =
maxj∈Xk

{dj,c(k)} where the center c(k), taking into account the capacity, is
given by

c(k) = arg min
i∈Xk

⎧⎨
⎩max

j∈Xk

⎧⎨
⎩dij :

∑
j′∈Xk

wj′ ≤ si

⎫⎬
⎭
⎫⎬
⎭ (2)

Here, by convention, if for a given Xk there is not any i ∈ Xk such that∑
j∈Xk

wj ≤ si then f(Xk) =∞.

3 Proposed Heuristic

To solve the problem we propose a metaheuristic framework with several com-
ponents such as a greedy randomized adaptive [6] procedure with biased sam-
pling in its construction phase and Iterated Greedy Local Search (IGLS) with
a Variable Neighborhood Descent (VND) in its local search phase. IGLS is a
method related to the Iterated Local Search (ILS) originally proposed by Ruiz
and Stützle [7]. IGLS takes a solution as an input and iteratively applies destruc-
tion and reconstruction phase, in a special way focusing on the space of solutions
that are locally optimal. Instead of iterating over a local search as done in ILS,
IGLS iterates over a greedy reconstruction heuristic.
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The VND is a variant of Variable Neighborhood Search (VNS) proposed by
Hansen and Mladenovic [8, 9]. VNS is a metaheuristic for solving combinato-
rial and global optimization problems whose basic idea is a systematic change
of neighborhood both within a descent phase to find a local optimum and in
a perturbation phase to get out of the corresponding valley. VND method is
obtained if a change of neighborhoods is performed in a deterministic way. The
proposed approach is presented in Algorithm 1. An initial solution is obtained
on Steps 2–3. Within the main loop (Steps 5–14), the local search (Steps 6–7)
is performed as long as the solution keeps improving. By improving we mean
that either the new solution has a better objective function than the previous or
if it reduces the number of bottleneck customers while not worsening the total
cost, without creating new bottleneck subsets and new bottleneck customers. If
the solutions does not improve, then a shake of the solution is applied, this is
defined as removing several bottleneck subsets that meet a given criteria and
reconstructing a new solution from the partial solution. These components are
described next.

Algorithm 1. GVND

1: procedure GVND(V, p, α, β, Itermax,LB)
2: X ← Construction(α, p)
3: X ← VND(X)
4: Xbest ← X
5: while ¬(stopping criteria) do
6: X ← IGLS(β,X)
7: X ← VND(X)
8: if X is better that Xbest then
9: Xbest ← X
10: else
11: X ← Shake(α,X)
12: end if
13: Itermax ← Itermax − 1
14: end while
15: return Xbest

16: end procedure

Construction: The construction phase is comprised of two sub-tasks: (a) center
location and (b) customer allocation. First, p nodes are chosen as centers. The
choice of these centers is made through a greedy randomized adaptive construc-
tion procedure, taking into account the distance factors and the capacity of each
vertex j ∈ V . This phase is based on the greedy method proposed by Dyer [10]
for the p-center problem. The location phase starts by choosing the first cen-
ter randomly. Then, we iteratively choose the next center seeking a node whose
weighted distance from its nearest center is relatively large. The motivation of
this is to try to obtain centers that are as disperse as possible, but also to favor
the choice of centers with large capacity such we can assign more customers to
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it in the allocation phase. Within a greedy randomized procedure method this is
done as follows. Let P be a partial set of chosen centers. Then for each j ∈ V \P ,
its nearest center is given by i∗ = argmini∈P {dij}. The we compute the greedy
function as

γ(j) = sjdi∗j (3)

A restricted candidate list (RCL) is built by the elements whose greedy function
evaluation falls, within α% of the best value. RCL = {j : γ(j) ≥ γmax−α(γmax−
γmin)}, where α ∈ (0, 1).

Instead of choosing the next candidate element to add to the partial solu-
tion uniformly at random, we introduce a biased selection mechanism. In the
construction mechanism proposed by Bresina [11], a family of such probability
distributions is introduced. First, a rank r[j] assigned to each candidate element
j, according to its greedy function value (3). The element with the largest greedy
function value has rank 1, the second largest has rank 2, and so on. In this case,
we defined the bias function using an exponential distribution as b(r[j]) = e−r[j].
Once all elements of the RCL have been ranked, the probability π(j) of selecting
element j ∈ RCL can be computed as π(j) = b(r[j])/

∑
j′∈RCL b(r[j′]).

Once the centers are fixed, the second sub-task consists of allocating the
customers to these centers. This phase is performed in a deterministic greedy
manner. As some preliminary testing showed, performing this step under a ran-
domized greedy strategy did not bring any value to the quality of the solution. In
addition, the pure greedy approach in this phase is more efficient. The customers
are defined by the remaining nodes j ∈ V \ P . To this end we define a greedy
function that measures the cost of assigning a customer j to a center k located
in c(k) as follows:

φ(j, k) = max

⎧⎨
⎩djc(k)

d̄
,−

⎛
⎝sc(k) −

∑
j′∈Xk

wj′

⎞
⎠+ wj

⎫⎬
⎭ (4)

where d̄ = maxi,j∈V {dij} + 1 is a normalization factor. If the capacity con-
straint is satisfied, the function only takes into account the distance factor,
otherwise, the function returns an integer value that penalizes the assignment.
Then assigns each node j to a nearest center, namely Xk∗ ← Xk∗ ∪ {j} where
k∗ = argmink∈K φ(j, k). Finally, once the assignment is done, the centers for
the entire partition are updated using (2).

Local Search: Given an initial solution built by the construction phase, the im-
provement phase applies an IGLS followed by VND with two neighborhoods
based on insertion and exchange. Each procedure is briefly described next.

1. IGLS: This method takes a solution as an input and iteratively applies
destruction and reconstruction phases. In this specific case, deallocating
the β% of nodes located in Xk, with high values of the function ρ(j) =
djc(k)/

∑
j′∈Xk

djc(k). The choice of this function is motivated by the fact
that the nodes farther from the center are the ones affecting more the dis-
persion function. The reconstruction phase reassigns each disconnected node
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to a nearest center, namely Xk∗ ← Xk∗ ∪{j} where k∗ = argmink∈K φ(j, k).
A priority assignment is given to the bottleneck nodes, i.e., nodes whose pre-
vious assignment matched the value of the objective function value.

2. VND: This method is formed by two neighborhoods based on reinsertion and
exchange movements. It is presented in Algorithm 2, where neighborhoods
are denoted as Nk, k = 1, ..., kmax, in this case kmax = 2. For each of the two
neighborhoods, the potential move takes into account the distance factors
and the capacity. Each neighborhood is briefly described next.

Algorithm 2. Variable Neighborhood Descent

1: procedure VND(X)
2: while k ≤ kmax do
3: X ′ ← argminy∈Nk(X) f(y)
4: if X ′ is better that X then
5: X ′ ← X
6: k ← 1
7: else
8: k ← k + 1
9: end if
10: end while
11: return X
12: end procedure

N1) Reinsertion: This neighborhood considers moves where a node i (cur-
rently assigned to center of set Xq) is assigned to set Xk, i.e., given X =
(X1, . . . , Xp) reinsertion(i, k) = {X1, . . . , Xq \ {i}, . . . , Xk ∪ {i}, ..., Xp}
where i must be a bottleneck node for the move to be attractive.

N2) Exchange: This neighborhood considers moves where two nodes i and j in
different subsets are swaped, i.e., given X = (X1, . . . , Xp), swap(i, j) =
{X1, ..., Xq ∪{j}\{i}, ..., Xk∪{i}\{j}, ..., Xp}, where either i or j must
be a bottleneck node for the move to be attractive.

Improvement Criteria: We uses a effective improvement criteria propose in [5]
which includes the reduction of bottleneck elements, this is defined as

f(X ′) < f(X) ∨ (f(X ′) = f(X),B(X ′) ⊆ B(X),J (X ′) ⊂ J (X)) (5)

where B(X) denote the set of bottleneck subsets in X , i.e., B(X) = {k ∈ K :
f(Xk) = f(X)} and J (X) contains the demand nodes with maximum distance
from the active location in each subset Xk, i.e., J (X) = {j ∈ Xk : djc(k) =
f(X), k ∈ B(X)}. This criteria is met if it decreases the objective function value
or if it reduces the number of bottleneck customers while not worsening the total
cost, without creating new bottleneck subsets and new bottleneck customers.
The incumbent solution Xbest is updated if a better feasible solution is found
according to the criterion (5) otherwise a shake of the solution X is applied.
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Shake: We define an auxiliary mechanism that performs a partial shake of the cur-
rent solution through an aggressive removal and reconstruction of several subsets,
which diversifies the structure of the solution. The selection criteria of subsets is

L ← {η1(j), η2(j), η3(j) : η1(j) = l(j), j ∈ J (X)} (6)

where η(j) = argmink∈K djc(k). Then η1(j), η2(j), and η3(j) are the first, sec-
ond, and third nearest centers to j, respectively, under the distance criterion. l(j)
is the center serving customer j. Let W ← ∪k∈LXk. We then now remove these
sets from the current solution X ← X \W . Now, using the construction phase,
we construct a new solution X ′ by reassigning the nodes in W with p = |L|.
Finally X ← X ∪X ′ is the new current solution.

Stopping criteria: The approach stops when the maximum number of iterations
is met or if a relative deviation with respect to a known (if any) lower bound
(LB) for the problem is less than a given ε. For our practical purposes a value
of 1.0× 10−8 is used for ε.

4 Computational Results

This section shows the overall performance of the heuristic which is empirically
assessed on widely used benchmarks on location literature. The heuristic was
coded in C++, compiled with gcc/g++ version 4.2 with the “-O3” optimization
level. ILOG CPLEX 12.5 is used in exact method proposed in [3] and we imposed
some resource limitation to every test: computation was halted after 1 hour or in
case of memory overflow. Each of the experiments was carried out on a MacBook
Pro 13” with Intel Core i5 2.4 GHz, 4 GiB RAM under OS X Lion 10.7.5. For
the experiments, we used three different data sets generated for other location
problems.

(Set A) Beasley OR-Library: Contains two groups of 10 instances, with 50 de-
mand nodes and 5 facilities to be located, and 100 demand nodes and 10
facilities to be located, respectively. In all of the problems the capacity is
assumed equal for every facility.

(Set B) Galvão and ReVelle: The set includes two networks that were randomly
generated by for the maximal covering location problem. The set includes 8
instances with size of 100 and 150 customers, and range from 5 to 15 centers.
In this case, the facility capacities are variable.

(Set C) Lorena and Senne: The set includes 6 large instances whose size ranges
from 100 to 402 customers, and from 10 to 40 centers. Also in this case, all
of the facility sites have equal capacity. This set is considered large scale and
therefore more difficult to solve.

Recall fromSection 3 that two important algorithmic parameters areα andβ. In
a preliminary phase, the heuristic was fine-tuned by running the algorithm50 itera-
tions for each possible combination α×β ∈ {0.0, 0.1, . . . , 1.0}×{0.0, 0.1, . . . , 1.0}
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on the three data sets. We choose the best combination (α, β) for each dataset
based on an average of the objective function value for all executions and combi-
nations (α, β). For the remaining experiments, the choices of (α, β) are set to (0.4,
0.3), (0.3, 0.3), and (0.3,0.3), for data sets A, B, and C, respectively.

For the next experiments every run of our heuristic was done using 30 repeti-
tions with different random seeds and using 500 as iteration limit. No lower
bound (LB) was used. We perform a comparison of the proposed approach
(Heuristic QR) with the heuristic by Scaparra et al. [5] (Heuristic SP) and the
exact method by Özsoy and Pınar [3] (Exact OP). These methods have been ex-
ecuted over the same machine, under the conditions specified for each method,
to ensure a fair comparison.

Table 1. Comparison of methods on data set A

n p Instance Optimal
OP SP QR

gap % Time (s) gap % Time (s) gap1 % gap2 % Time (s)
50 5 cpmp01 29 0.00 0.19 0.00 0.45 0.00 0.00 0.45

cpmp02 33 0.00 1.13 0.00 0.72 0.00 0.00 0.49
cpmp03 26 0.00 0.20 0.00 0.56 0.00 0.00 0.48
cpmp04 32 0.00 0.53 0.00 0.61 0.00 0.00 0.53
cpmp05 29 0.00 1.02 0.00 0.69 0.00 0.00 0.50
cpmp06 31 0.00 1.62 3.23 0.75 2.90 0.00 0.49
cpmp07 30 0.00 0.51 0.00 0.91 0.67 0.00 0.53
cpmp08 31 0.00 0.61 0.00 0.73 0.00 0.00 0.49
cpmp09 28 0.00 0.74 3.57 0.91 3.33 0.00 0.49
cpmp10 32 0.00 2.14 12.50 1.74 13.75 0.00 0.48
Average 0.00 0.87 1.93 0.81 2.07 0.00 0.49

100 10 cpmp11 19 0.00 2.91 21.05 5.4 8.25 0.00 1.41
cpmp12 20 0.00 2.91 10.00 5.74 4.17 0.00 1.39
cpmp13 20 0.00 3.46 5.00 5.46 0.33 0.00 1.36
cpmp14 20 0.00 2.15 10.00 5.28 2.50 0.00 1.37
cpmp15 21 0.00 4.06 9.52 5.9 3.49 0.00 1.41
cpmp16 20 0.00 6.96 10.00 7.04 3.83 0.00 1.43
cpmp17 22 0.00 30.14 9.09 6.03 4.55 4.55 1.41
cpmp18 21 0.00 6.50 4.76 4.74 1.75 0.00 1.34
cpmp19 21 0.00 9.30 9.52 6.25 5.40 0.00 1.42
cpmp20 21 0.00 12.25 0.00 5.93 8.89 0.00 1.44
Average 0.00 8.06 8.90 5.78 4.31 0.45 1.40
Overall average 0.00 4.47 5.41 3.29 3.19 0.23 0.94

Tables 1–3 display the comparison of methods for each data set. In each table
the first two columns represent the instance size measured by number of nodes
n and number of partitions p. “Instance” is the name of the particular problem
instance and “Optimal” indicates the optimal value of the instance. For each
method column “gap (%)” expresses the percent of relative deviation or gap
with respect to the optimal value and “Time (s)” gives the execution time in
seconds. It should be noted that for the proposed method QR, we show the
time average performance over the 30 independent repetitions, also “gap1 %”
and “gap2 %” denote the average and best gap, respectively, over all repetitions.
Table 4 summarizes the comparison among methods for the three data sets in
terms of their average relative optimality gap, running time, and memory usage.
The memory statistic indicates the maximum resident set size used [12], in bits,
that is, the maximum number of bits of physical memory that each approach
used simultaneously.



286 D.R. Quevedo-Orozco and R.Z. Ŕıos-Mercado

Table 2. Comparison of methods on data set B

n p Instance Optimal
OP SP QR

gap % Time (s) gap % Time (s) gap1 % gap2 % Time (s)
100 5 G1 94 0.00 4.49 3.19 4.71 1.88 1.06 1.39
100 5 G2 94 0.00 5.90 3.19 4.48 1.60 0.00 1.23
100 10 G3 83 0.00 121.44 9.64 8.01 8.72 4.82 1.58
100 10 G4 84 0.00 25.03 8.33 8.28 8.73 5.95 1.54
150 10 G5 95 0.00 190.95 5.26 22.61 4.95 3.16 2.70
150 10 G6 96 0.00 120.46 5.21 21.21 4.38 3.13 2.37
150 15 G7 89 0.00 60.62 8.99 28.31 8.35 5.62 3.53
150 15 G8 89 0.00 213.61 10.11 26.52 8.84 6.74 3.48

Overall average 0.00 92.81 6.74 15.52 5.93 3.81 2.23

The first thing to notice is that for all instances tested, an optimal solution
was found by the exact method, such that the “gap” column in all tables rep-
resents the true relative optimality gap found by any method. As far as data
set A is concerned, the exact method was found very efficient for the smaller in-
stance group (size 50× 5), performing better than any heuristic. However, when
attempting the larger group (size 100 × 10), there are a couple of instances for
which the exact method struggled. The performance of both heuristics was more
robust than that of the exact method as they both took less than 1.5 seconds
to solve each instance. In terms of solution quality, the proposed heuristic found
better solutions than the ones reported by the SP heuristic.

Table 3. Comparison of methods on data set C

n p Instance Optimal
OP SP QR

gap % Time (s) gap % Time (s) gap1 % gap2 % Time (s)
100 10 SJC1 364 0.00 195.16 26.67 8.79 23.24 7.478 0.68
200 15 SJC2 304 0.00 74.30 10.48 39.60 7.37 1.599 1.95
300 25 SJC3a 278 0.00 136.49 38.73 125.03 16.41 7.184 6.12
300 30 SJC3b 253 0.00 152.20 35.59 119.65 13.16 3.661 8.38
402 30 SJC4a 284 0.00 522.63 30.99 283.18 9.76 5.219 11.39
402 40 SJC4b 239 0.00 157.52 44.12 241.68 10.94 2.346 18.56

Overall average 0.00 206.38 31.10 136.32 13.48 4.58 7.85

When analyzing data set B we can observe that the exact method takes con-
siderably longer than both heuristics to reach an optimal solution. On average,
the exact method takes about an order of magnitude longer. In terms of solution
quality, again our heuristic obtains better solutions (average gap of 5.93 %) than
the SP heuristic (average gap of 6.74%). Regarding data set C, we can observe
that the exact method takes on average above 4 minutes while our heuristic takes
less than 9 seconds. When comparing our heuristic with the SP heuristic, we can
see that ours is faster and finds solutions of significantly better quality. Figure
1 shows a comparison of the methods in terms of their asymptotic running time
and used memory resources with respect to the number of nodes. As can be seen,
the resources used by the proposed approach are lower than those used by the
other two methods.

There exist a recent data set added to the OR-Library that features values
of p proportional to the number of nodes. This is regarded as a very hard set to
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Table 4. Summary of comparison among methods on data sets A, B, and C

Dataset
Average gap (%) Average time (s) Average memory (bits)

OP SP QR1 QR2 OP SP QR OP SP QR

A 0.00 5.41 3.19 0.23 4.47 3.29 0.94 2.59E+07 4.37E+07 5.12E+05
B 0.00 6.74 5.93 3.81 92.81 15.52 2.23 4.78E+07 2.12E+08 5.57E+05
C 0.00 31.10 13.48 4.58 206.38 136.32 7.85 1.38E+08 4.70E+08 7.96E+05
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Fig. 1. Comparison of methods in terms of asymptotic running time and memory usage

solve for capacitated location problems such as p-median and p-center problems.
In our preliminary experiments, we have observed that the exact method fails
to find optimal solutions for some instances. Table 5 displays the results on this
data set. As can be seen, the exact method is unable to find a feasible solution in
all five instances either by reaching the time limit of 1 hr (instances 1 and 3) or
by running out of memory (instances 2, 4, and 5). Heuristic SP fails in delivering
an optimal solution in 3 out of 5 instances. Our heuristic finds a feasible solution
in 4 out of 5 instances.

Table 5. Comparison of methods on data set D

Subset Instance n p
OP SP QR

Best LB Time (s) Objetive Time (s) Objetive Time (s)

D 27 150 60 10 3600.00 - - 55 22.94
D 32 200 80 11 959.04 - - - -
D 33 200 80 7 3600.00 10 49.72 14 47.95
D 35 200 80 8 964.56 12 59.91 16 41.18
D 40 200 80 8 2846.75 - - 18 41.39

5 Conclusions

We have proposed a metaheuristic framework that integrates several components
such as a greedy randomized adaptive procedure with biased sampling in its
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construction phase and iterated greedy with a variable neighborhood descent in
its local search phase. The preliminary results are very promising. The results
indicate the proposed heuristic outperforms the best heuristic in terms of both
solution quality and running time. The performance of the proposed approach is
more robust than that of the exact method, requiring less seconds and memory
to solve each instance obtaining reasonably good objective values.
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Abstract. The aim of the work presented here is to reduce gas emis-
sions in modern cities by creating a light infrastructure of WiFi intelligent
spots informing drivers of customized, real-time routes to their destina-
tions. The reduction of gas emissions is an important aspect of smart
cities, since it directly affects the health of citizens as well as the envi-
ronmental impact of road traffic. We have built a real scenario of the
city of Malaga (Spain) by using OpenStreetMap (OSM) and the SUMO
road traffic microsimulator, and solved it by using an efficient new Evo-
lutionary Algorithm (EA). Thus, we are dealing with a real city (not
just a roundabout, as found in the literature) and we can therefore mea-
sure the emissions of cars in movement according to traffic regulations
(real human scenarios). Our results suggest an important reduction in
gas emissions (10%) and travel times (9%) is possible when vehicles are
rerouted by using the Red Swarm architecture. Our approach is even
competitive with human expert’s solutions to the same problem.

Keywords: Application, Evolutionary Algorithm, Gas Emissions, Road
Traffic, Smart City, Smart Mobility.

1 Introduction

The concept of Smart City is global, but it is related to six concrete character-
istics: smart economy, smart people, smart governance, smart mobility, smart
environment, and smart living [1]. There is an interplay between these domains
as they are broadly related to future sustainable urban development.

The aim of the work presented here is to reduce greenhouse gas emissions and
other gases which cause air pollution (smart environment). This is an important
aspect of smart cities, since it directly affects the health of citizens (smart living)
and represents the environmental impact of road traffic (smart mobility).

One of the European Union’s objectives for the year 2020 is the reduction
of greenhouse gas emissions [2]. Several countries have pledged to reduce these
emissions by the year 2020 in sectors outside of carbon emission rights. While we
wait for the electric car to become a mass reality, an effective system to manage
road traffic will always mean to reduce the current gas emissions.

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 289–299, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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For example, carbon dioxide (CO2) emissions from fuel combustion have been
rising since 1971 1 (the first year of pollution statistics) worldwide and this
growing tendency will be hard to revert in the near future.

Carbon monoxide (CO) affects human health as well as the ability of the
atmosphere to rid itself of polluting gases. Any combustion process has the
potential to produce carbon monoxide gases, especially in vehicles. Furthermore,
CO can be turned into CO2 through chemical processes in the atmosphere. [3].

Our proposal directly relates to the strategy Europe 2020 and the Smart Cities
initiative because we focus on the reduction of gas emissions and travel times. We
have already presented a preliminary proposal of our Red Swarm [4] architecture
for lowering travel times in Malaga (Spain) by rerouting vehicles using a globally
distributed strategy that respects user destinations and is positive for travel
times through the city. In the present work we state that this strategy can also
be used to reduce the pollutant emissions from vehicles which move through the
streets of a modern city.

This article is structured as follows. First, Section 2 reviews some other ap-
proaches related to the reduction of gas emissions. Then, Section 3 describes the
methodology applied and the Red Swarm architecture while Section 4 focuses
on the experiments conducted and the analysis of the results. Finally, Section 5
provides our conclusions and future work.

2 Related Work

There are several studies which focus on reducing gas emissions from vehicles
in urban areas. In [5], the authors stated that an improvement in the traffic
flow does not necessarily guarantee reduced emission levels and that a solution
which focuses only on reducing travel times may result in higher emissions than
others which also take emissions into account. We had also reached the same
conclusion, so we decided to start the present work, taking gas emissions into
account by including them in the optimization process.

Several route optimizations were performed in [6] using different metrics other
than travel times. The authors observed that optimization seems to depend on
the type of roads available in the area analyzed. Furthermore, a series of inter-
dependencies between pollutant emissions and road network types were given.
Although we have observed some of the dependencies mentioned in this paper,
we will focus on reducing CO and check how the rest of the metrics behave.

Red Swarm is our proposal which concentrates on reducing traffic jams, so our
solution is consistent with [7], where a linear and positive correlation between
the occupancy of the network and the emissions criteria was demonstrated.

Finally, the necessity of using multiple metrics for evaluating Intelligent Trans-
portation Systems (ITS) which include gas emissions as well as travel times was
presented in [8]. The authors use an Inter-Vehicle Communication (IVC) system
in order to inform vehicles of possible congestions or accidents. The results show

1 CO2 Emissions From Fuel Combustion - HighLights c© OECD/IEA, (2012).
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that metrics are usually in conflict with each other, which shows that we are
attempting to solve a very complex problem.

These approaches have encouraged us to extend our previous proposal [4],
which only focused on the optimization of travel times, and include here the
reduction of gas emissions as an innovative solution in a smart city where com-
munications between vehicles and the infrastructure (WiFi spots) is possible.

3 Methodology

Our architecture Red Swarm [4] is an affordable system for any modern city that
only needs the utilization of already existing computers in traffic lights (which is
true for most cities in Spain) plus a WiFi spot and our software solution based on
bio-inspired algorithms. It consists of: i) Several spots distributed throughout the
city, installed at traffic lights with the purpose of redirecting the traffic efficiently;
ii) An Evolutionary Algorithm (EA) which calculates the configuration for the
Rerouting Algorithm; and iii) The Rerouting Algorithm which runs in each spot
and suggests alternative routes to vehicles by using a WiFi link between the spot
and the On Board Unit (OBU) installed in each vehicle.

As we have successfully reduced travel times of vehicles in our afore mentioned
previous approach, our next step is to address the reduction of gas emissions
produced by vehicles in the city. In order to evaluate a configuration of the
system, we use the microscopic traffic simulator SUMO (Simulator of Urban
Mobility) [9] which interacts with TraCI (Traffic Control Interface) [10]. While
SUMO simulates the traffic flow of each vehicle, TraCI allows our Rerouting
Algorithm to control SUMO to obtain the state of the simulation and change it.

SUMO implements the car-following model developed by Stefan Krauß in
[11] while pollutant emissions and fuel consumption are based on values of the
HBEFA database [12]. At the end of the simulation, data from vehicles such
as travel time, travel distance, fuel consumption, gas emissions, etc., can be
collected from the log files generated.

Red Swarm is based on the principle of avoiding traffic jams. Each Red Swarm
spot consists of aWiFi access point installed at a traffic light and a processing unit

Fig. 1. Component Schema of Red Swarm
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which communicates with the approaching vehicles (V2I) and informs them of the
new itinerary to follow to their personal destination. This intelligent distribution
of traffic is done by the Rerouting Algorithm which reads the configuration calcu-
lated previously by the EA according to the city’s characteristics. Fig. 1 presents
a schema with the relationship between components of Red Swarm.

3.1 Optimization Scenario and Technology

The scenario chosen for our study corresponds to an area of the city of Malaga
(Spain). The analyzed square is bounded by Carreteŕıa Street to the north,
the Mediterranean Sea to the south, Gutemberg Street to the east, and the
Guadalmedina River to the west.

The characteristics of the scenario are:

– Eight inputs and eight outputs corresponding to real streets of the city.

– Sixty four flows (all possible journeys between input and output streets).

– Ten Red Swarm spots.

– Four different kinds of vehicles: sedan, van, wagon, and transport.

(a) OSM (b) SUMO

(c) Snapshot from Google EarthTM

Fig. 2. Malaga scenario imported from OSM into SUMO and exported to Google Earth
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First, we have imported the scenario from the OpenStreetMap (OSM) project
in order to work with real streets of the urban area. Then, we can export this
scenario from SUMO to Google EarthTM with the vehicles, traffic lights and
sensors which we have added to it, so that we can obtain a photorealistic snap-
shot of the simulation. In Fig. 2(a) we show a snapshot from OSM of the area
analyzed, in Fig. 2(b) the same area imported into SUMO, and in Fig. 2(c) a
snapshot exported from SUMO to Google EarthTM. Note the ten Red Swarm
spots placed in strategic junctions of the city (red circles).

3.2 Evolutionary Algorithm

We have designed an Evolutionary Algorithm (10+2)-EA to solve this problem.

Solution Encoding. The solution encoding consists of configuring the sensors
related to each Red Swarm spot arranged into chunks of routes depending on the
vehicles’ destination. When a vehicle is rerouted, the Rerouting Algorithm gets
a set of routes from the solution depending on the vehicle’s destination and the
street in which the vehicle is (determined by the sensor activated). Then, the new
route for the vehicle is calculated based on the probabilities stored in the solution,
thus the summation of all the probabilities which belong to the same destination
chunk must be equal to 1.0. For example, if a vehicle v which is traveling to D8

is detected by the sensor S1, the Rerouting Algorithm will reroute it depending
on the probabilities stored in the chunk D8 which belongs to S1. In Fig. 3 we
illustrate the status vector of probabilities as well as their meaning. Note that
the complete vector consists of 28 sensors with eight destination chunks included
inside each one.

Fig. 3. Solution encoding

Fitness Function. We define the fitness function presented in Equation 1 in
order to reduce only CO emissions and later evaluate the rest of the metrics (gas
emissions, travel times, and route lengths) as a way of checking how robust our
solution is and which correlations we can observe.

F = ω1(N − ntrips) + ω2

∑
COtrip

N
(1)

The fitness function contains two terms to be minimized. In the first one, N is
the total number of vehicles in the scenario and ntrips is the number of vehicles
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which complete their trip during the simulation. This term guarantees that all
vehicles arrive at their destination which is especially important as SUMO writes
trip data in output files only for those vehicles which complete their itinerary. As
a consequence, we need all the values to successfully calculate the fitness value.
The second term represents the average CO emitted by the vehicles during the
period of analysis. The weights ω1 and ω2 are required to normalize each term
in the fitness value.

Operators. The selection strategy implemented in EA is nondeterministic. It
selects two individuals from the population by using the uniform distribution
provided by the pseudo-random number generator included in Python as it is
the language in which we have developed the algorithm. We have used a standard
two point crossover as the recombination operator and, ADOS (All Destinations
- One Sensor) and ODOS (One Destination - One Sensor) [4] as specialized
mutation operators. Finally, we have performed an elitist replacement, so that
the worst individuals of the population are replaced if they have a fitness value
higher than the offspring produced in the current generation.

Parameterization. We set a population size of ten individuals and, in each
new generation, two new descendants are created according to the crossover (0.8)
and mutation (0.6) probabilities. The mutation operator is selected depending
on the mutation threshold. If the fitness value is over the threshold (8000) the
ADOS mutation is applied and when the value is under the threshold, the ODOS
mutation is used instead. The former allows a quick search of the data space
while the latter performs a more careful exploration in order to improve the
solution in small steps. These values, as well as the number of generations, were
the best after performing a set of preliminary tests. Table 1 summarizes the
parameterization of the EA.

Table 1. Parameters of the EA

Evaluation Time (s) 2000
Population Size 10
Offspring Size 2
Crossover Probability 0.8
Mutation Probability 0.6
Mutation Threshold 8000
Number of Generations 8000
(ω1, ω2) (4096, 1)

Finally, the value of ω1 (4096) corresponds to the average CO emissions from
vehicles obtained from the experts’ solution (included in Table 2), and the value
of ω2 (1) makes the CO emissions to be linearly related to the fitness value. Note
that the first term of the fitness function is different from zero only when there
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exist vehicles which are still in the city at the end of the period analyzed, and
hence penalizing these solutions.

3.3 Experimental Settings

We have performed 110 independent runs of the optimization algorithm on 16
machines which are part of the cluster belonging to the NEO (Networking and
Emerging Optimization) group. Each one is equipped with an Intel Core2 Quad
CPU (Q9400) @ 2.66GHz and 3.5 GB of RAM, running GNU/Linux 3.2.0-39.
Each new generation lasted 40 seconds (we are dealing with a large number of
streets, traffic lights and vehicles) and the average time spent in obtaining each
final solution was about 50 hours. Such a long execution time is caused by the
fact that we have optimized three different traffic scenarios simultaneously in
order to find a robust solution for every single fitness evaluation.

4 Results

The optimization of the scenario was performed by using the EA previously
defined. As a result, we have achieved the values shown in Table 2. We report
the CO reduction as it is the metric which we focused on, but also the rest of
the emissions obtained from the scenario are included as well as the travel time
and the route length. Note that these values are the average of the 800 vehicles
which have traveled through the city during the period analyzed.

Table 2. Results of the CO reduction and the effects on the rest of the metrics

Metric Experts’ Solution Red Swarm Improvement

CO (mg) 4095.7 3950.7 3.5%
CO2 (g) 518.6 519.0 -0.1%
HC (mg) 175.5 170.6 2.8%
NOx (mg) 910.0 912.9 -0.3%

Travel Time (s) 549.9 544.5 1.0%
Route length (m) 1471.7 1587.2 -7.9%

Results show a significant reduction (-3.5%) of carbon monoxide (CO) emitted
by the vehicles and also 2.8% less in Hydro-Carbons (HC) when our Red Swarm
system is used. Carbon dioxide emissions (CO2) and Nitrogen oxides (NOx)
present a negligible increment of 0.1% and 0.3%, respectively, while the average
travel time is still better (lower) than the experts’ solution (-1.0%). This is
an important fact for us, because Red Swarm was conceived as a method for
reducing travel times in the city and we do not want to renounce this goal.
Finally, route lengths are 7.9% longer, mainly because we are rerouting vehicles
via alternatives streets which do not belong to the best path chosen by the
experts.
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Table 3. Results averaged over runs on 50 random instances and the best of them

Metric
Average Best solution

Experts R-S Improv. Experts R-S Improv.

CO (mg) 4161.4 4080.4 1.9% 4435.0 3988.0 10.1%
CO2 (g) 522.6 533.0 -2.0% 549.7 527.8 4.0%
HC (mg) 178.9 175.9 1.7% 194.0 173.2 10.7%
NOx (mg) 914.6 937.4 -2.5% 953.0 927.0 2.7%

Travel Time (s) 555.1 552.4 0.5% 597.4 543.1 9.1%
Route length (m) 1459.4 1617.3 -10.8% 1467.5 1616.1 -10.1%

Globally, we provide a very important reduction in pollution at the small and
distributed cost of slightly longer journey for citizens. However, they are not
spending more time in completing their journey, since we are explicitly comput-
ing the fastest routes for them.

Moreover, we have carried out 50 additional runs to evaluate different random
seeds which affect the traffic distribution (vehicle order, flows, etc.) in order to
test the robustness of our solution applied to this area of Malaga. We have
calculated the average metrics of these runs and also selected the best of them
to be analyzed as follows.

The results provided in Table 3 present a 10% (avg. 2%) reduction in carbon
monoxide emissions, a 11% (avg. 2%) reduction in hydro-carbons emissions,
and travel times are 9% (avg. 1%) shorter than the experts’ solution. Although
carbon dioxide emissions, nitrogen oxides emissions, and route lengths are not
improved on average (2.0% and 2.5% higher, respectively), CO2 and NOx are
actually reduced by our best solution (-4.0% and -2.7%, respectively). These
average results were as expected because our main goal in this complex work
was to reduce CO emissions of vehicles thus we have included only this metric
in the fitness function.

Fig. 4. Fitness from experts’ solution and Red Swarm (50 instances)
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(a) CO Emissions (b) CO2 Emissions (c) HC Emissions

(d) NOx Emissions (e) Travel time (f) Route length

Fig. 5. Metrics for the experts’ solution (EXP), RANDOM search (RND), and Red
Swarm (R-S), for the best solution

The overall result is a positive one: we can reduce pollution and at the same
time reduce travel times in the city. That will be what citizens and authorities
will obtain as a net contribution towards a smart city. The small increments in
route lengths are as we would all accept when using highways, for example.

Furthermore, the best result is satisfactory as is the average one, as we have
tested it against 50 different instances in which Red Swarm outperforms the ex-
perts’ solution in 34 of them (68%). Fig. 4 shows fitness values from the experts’
solution (EXP) and Red Swarm (R-S) for each pair of instances evaluated. Note
that they are sorted by the fitness value of the experts’ solution and that the y
axis does not start at zero.

We have also carried out a sanity check in order to validate our algorithm
against a random search. Data from the experts’ solution (EXP), RANDOM
search (RND), and Red Swarm are shown in Fig. 5.

Figures 5(a), 5(b), 5(c) and 5(d) plot the graphs of gas emissions of the 800
vehicles sorted by value. We can observe that CO and HC emissions of Red
Swarm (R-S) are in general, lower than the experts’ values. Besides, CO2 and
NOx emission values are not so different between the experts’ solution and Red
Swarm. Fig. 5(e) shows that the maximum travel time of vehicles in Red Swarm
is lower than those observed in the experts’ solution. And finally, Fig. 5(f) shows
that routes in Red Swarm are longer than the experts’ ones.

Additionally, values from RANDOM search (RND) shown in these figures are
the worst of the comparison. These poor results of RANDOM search are mainly
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produced by the vehicles which remain into the city, moving in circles instead of
being routed to their destination. This indicates that RANDOM search is not
capable to produce a good configuration for Red Swarm, thus confirming that
we need some smart guidance like the one provided by the EA used.

5 Conclusions and Future Work

In this paper we show how to reduce the gas emissions from vehicles during their
journeys through the city of Malaga by using the Red Swarm architecture. To
do this, we have defined an EA, a specialized fitness function, and carried out a
great deal of complex experiments in order to obtain a solution which improves
the experts’ one implemented in SUMO. Results confirm that our approach is
competitive not only in the best scenario (10.1% less in CO emissions) but also
in 68% of the different traffic distributions tested (34 of 50). Moreover, we have
observed that our work, based on Red Swarm, also reduces the travel time of
vehicles as well as the rest of the emissions analyzed.

After studying the state of the art, especially [6,13], we have concluded that
those works are based on a different model than our proposal because instead
of setting the entire route of vehicles, we just send them to another Red Swarm
spot or to their destination. Furthermore, our model does not restrict arrival
times of vehicles to being fixed, so the comparative of results would not be fair.

As a matter of future work, we are currently extending the zone analyzed with
the aim of including the whole city of Malaga in the optimization process. We
are also testing different kinds of bio-inspired algorithms in order to reduce the
computation time and the solution quality.

We should probably also try to have a more sophisticated problem definition,
such as a multiobjective modeling; this is however difficult, since the high com-
puting time and the realistic data we are using is quite different from standard
benchmarks and will need a careful analysis in terms of metrics and Pareto fronts
obtained (possibly with just a few points, for example).

Acknowledgments. Authors acknowledge funds from the Ministry of Econ-
omy and Competitiveness and FEDER under contract TIN2011-28194 roadME:
(http://roadme.lcc.uma.es).
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Abstract. In developed countries, the need of infrastructure maintenance is  
becoming an important issue because their infrastructures have been built up 
progressively over the last 100 years or longer. Moreover, users are increasingly 
demanding in terms of quality, comfort, and safety. Under this scenario, infra-
structure managers seek to optimize each monetary unit invested in mainten-
ance, thus ensuring that funds are allocated to the best alternative. This paper 
presents a heuristic model for solving the budget allocation problem with the 
implementation of a Simulated Annealing (SA) algorithm. An illustrative  
example is undertaken, analyzing the effect of budgetary restrictions in infra-
structure performance. It can be concluded that infrastructure performance 
shows a good parabolic correlation with available budget. 

Keywords: Asset management, optimization, budget allocation, maintenance, 
performance. 

1 Introduction 

Due to the fact that infrastructures are one of the main assets of countries, they need 
to be managed in such a way that they present an acceptable condition over their ser-
vice lives. In developed countries, the need of maintenance management is especially 
important because their infrastructures have been built up progressively over the last 
100 years or longer; the infrastructure network has tended to stabilize, reducing the 
funds requirements in new construction but increasing the requirements in preserva-
tion. At the same time, users are increasingly demanding in terms of quality, comfort, 
and safety. However, the current economic crisis is increasing the budgetary pressures 
on maintenance agencies. This leads to an important deterioration of infrastructures, 
making larger the gap between infrastructure needs and historical rates of investment. 

Based on a report dealing with the current condition of American's infrastructures 
[1], the figures are worrisome: current spending ($1.1 trillion per year) amounts  
to only about a half of the investment needed to bring current condition to a good 
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condition. In order to analyze a specific example: one-third of America's major roads 
are in poor or mediocre condition and the estimated budget needed annually to im-
prove road conditions doubles the current spending ($70.3 billion per year). Other 
infrastructures currently present similar poor conditions and there is a clear trend of 
decreasing grades (Table 1). 

Table 1. ASCE Report Card Grades [1] 

1988 1998 2001 2005 2009 
Aviation B- C- D D+ D 
Bridges - C- C C C 
Drinking water B- D D D- D- 
Hazardous waste D D- D+ D D 
Inland waterways B- - D+ D- D- 
Roads C+ D- D+ D D- 
Schools D F D- D D 
Solid waste C- C- C+ C+ C+ 
Transit C- C- C- D+ D 
Wastewater C D+ D D- D- 
America's Infrastructure C D D+ D D 

 
In this context, infrastructure managers seek to optimize each monetary unit in-

vested in maintenance. For this purpose, managers undertake analysis at three levels 
[2]: project level, network level and strategic level. In broad terms, technical decisions 
on a specific asset are made at the project level; at the network level, the network 
maintenance programming is defined considering the available budget; and finally, at 
the strategic level, overall objectives are stated based on the organization's policies 
[3]. Previous works have dealt with the problem at the project [4] and strategic level 
[5]. This paper deals with the maintenance management problem at the network level. 

At the network level, the problem is known as the "budget allocation problem" and 
it consists on defining the maintenance program by answering [6]: (a) which infra-
structures should receive treatment?; (b) what treatment should be applied?; and (c) 
when should it be applied? However, the solution of the problem is not direct: STxN 
solutions are feasible for solving the maintenance program of a network with N infra-
structures, S maintenance treatments and a planning horizon of T years [7] (Fig. 1). 

 

Fig. 1. Possible solutions to the budget allocation problem [7] 
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This kind of problem suffers from combinatorial explosion and it can be handle  
using different techniques. A recent review undertaken by the authors [8] reveals that 
the methods mainly used are mathematical optimization (i.e. linear, non-linear, integ-
er programming, etc.) and heuristic optimization. However, reviewed applications 
using mathematical optimization show a trend of limiting the number of variables 
considered in the optimization [9-10]. Regarding heuristic methods, most studies have 
focused on evolutionary based optimization algorithms and, specifically, on genetic 
algorithms [11]. As far as the authors are aware, existing applications do not solve the 
problem at the network level considering local search heuristics. 

Having stated this gap in the literature, this paper seeks to present a model that 
enables the optimization by local search heuristics of maintenance investments at the 
network level. Regarding the structure of the paper, after explaining the optimization 
problem, we present the heuristic algorithm implemented for the optimization.  
Finally, we apply it to an example for illustrative purposes, summarizing the findings 
and discussing the shortcomings of the study. 

2 Optimization Problem Definition 

The optimization problem proposed in this study consists of a single-objective  
optimization of long term effectiveness, measured by the infrastructures' performance 
over time (F, defined by Eq. (1)) satisfying both budgetary limitations and minimal 
performance level (gj, defined by Eq. (2)).  , , … ,  (1) , , … , 0 (2)

In the expressions above, x1, x2, ..., xm are the design variables of the problem. 

2.1 Objective Function 

The assessment of long term effectiveness proposed in this study is based on a life-
cycle analysis, considering the evolution over time of infrastructure performance and 
maintenance treatments' costs. Infrastructure's performance (IP, hereafter) will assess 
the degree to which the infrastructure serves its users and fulfills the purpose to which 
it was built or acquired [6]. Performance indicators have been developed for different 
infrastructures: pavements [12-14], bridges [15], railroads [16], etc. The evolution of 
infrastructure's performance over time and the effect of treatment alternatives will be 
based on the infrastructure's deterioration model [17]. 

The measure proposed to assess long term effectiveness of maintenance alternatives 
is the area bounded by the performance curve and the threshold value of infrastructure's 
condition (ABPC, hereafter) (Fig. 2). The rationale of this approach is simple: a well-
maintained infrastructure (having therefore a larger ABPC) provides greater benefits 
than a poorly maintained infrastructure [18]; moreover, as benefits derived from well 
maintained infrastructures are numerous and difficult to quantify in monetary terms, the 
ABPC can be used as a surrogate for overall user benefits [18-19].  
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Fig. 2. Long-term effectiveness of a maintenance alternative 

Therefore, the problem deals with the maximization of the long-term performance 
of maintenance alternatives at the network level. This study transforms constrained 
problems into unconstrained ones using a penalty function (PF) defined in Section 
2.2. 

max  (3)

where ABPCn is the long-term effectiveness of infrastructure n, evaluated as the  
area bounded by the performance curve and the threshold value of infrastructure's 
condition (IPmin,n); and PF is the penalty function. 

2.2 Constraints 

Constraints in Eq. (2) include both an annual budgetary restriction (Eq. (4)) and  
a limitation of a minimum performance level for each of the infrastructures in the 
network (Eq. (5)).  ∑ ;  (4)   ,  ;  and  (5)

where t is the year in which the analysis is undertaken, where t ≤ T; n is the infrastruc-
ture being analyzed, where n ≤ N; cost (xn) is the unit cost of maintenance alternative 

x in infrastructure n;   is the present worth factor for discount rate i, in year t; Bt 

is the available budget in year t; IPnt is the performance level of infrastructure n in 
year t; and IPmin,n is the minimum performance level allowed for infrastructure n. 

In this problem, restrictions are relaxed to allow for solutions with unfulfilled re-
strictions. This procedure transforms the constrained problem into an unconstrained 
one by using penalty functions based on expressions of Yepes and Medina [20]. 

  0, 0, 0 ;    (6) 

IP

Time

IPmin

ABPC
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where k1j is a fixed penalty for exceeding acceptable values for constraint equation j; 
k2j is the penalty slope for exceeding acceptable values for constraint equation j; rv is 
the real value of the constraint function of the alternative being evaluated; and avj is 
the acceptable value of the constraint function j. 

2.3 Variables 

A total of m=NxT variables define a solution for the budget allocation problem of 
infrastructure maintenance at the network level (Fig. 1). Each of these variables can 
take Sn possible values, being S the number of treatment alternatives available for 
each infrastructure n. These variables define a sequence of maintenance treatments 
that can be implemented in the N infrastructures under study over the analysis period 
T. Given a set of values for the variables of the present problem, the evaluation of the 
ABPC and cost of a particular solution is straightforward. 

2.4 Parameters 

The parameters are all those magnitudes taken as data and therefore, remain constant 
in the optimization process. In the optimization problem proposed in this study, para-
meters are related to the analysis period (T), discount rate (i), performance models 
(IPnt) and treatment costs (cost (xn)). 

3 Proposed Heuristic Strategy: Simulated Annealing 

Simulated annealing algorithm (SA henceforth) is based on the analogy of crystal 
formation from masses melted at high temperature and let cool slowly [21]. This me-
thod presents the advantage of escaping from local optima by enabling, under some 
conditions, the degradation of a solution. Authors propose SA as it is a simple and 
efficient heuristic search in solving combinatorial optimization problems. Moreover, 
previous studies undertaken by the authors have compared SA to other heuristics and 
have conclude that SA provides very good results in different optimization problems 
[22-24]. The scope of the current paper is to analyze the viability of applying SA and 
therefore, local search heuristics, to the optimization problem. However, the suitabili-
ty of this specific method (SA) towards other local search heuristics will need further 
analysis. 

SA starts with a feasible solution randomly generated and a high initial temperature. 
This solution is gradually altered by applying moves to the values of the variables.  
Given a current solution, a move is applied obtaining a new solution, which is evaluated 
and it is adopted as the new current solution when is feasible and if it improves the  
objective function. Less effective solutions are accepted when a 0–1 random number is 
smaller than exp(-ΔE/T), where ΔE is the decrease of long-term effectiveness of the new 
configuration and T is the temperature. The current solution is then checked against 
restrictions and if feasible, it is adopted as the new solution. The initial temperature is  
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decreased geometrically (T = kT) by means of a coefficient of cooling k. A number of 
iterations called Markov chains is allowed at each step of temperature. The algorithm 
stops when the temperature is a small percentage of the initial temperature. 

4 Numerical Application 

A numerical application is developed in this section for illustrative purposes. This 
example analyzes the budget allocation problem in a network composed of five infra-
structures, each of them having a deterministic deterioration model and a set of main-
tenance alternatives. In all cases, IP is rated between 0 and 100, being 100 a perfect 
performance and 0 a failure status. These five infrastructures, analyzed over a period 
of 25 years, lead to a problem with m = NxT = 125 variables. 

The deterioration model considered assumes that the deterioration rate varies over 
time (Eq (7)): the first segment models the period after construction in which there is 
a lineal deterioration, while the second segment models the period during which dete-
rioration rate is more significant, showing a parabolic relation over time. ,,  (7)

where IPnt is the infrastructure's performance profile over time under no maintenance; 
IPn0 is the initial (i.e. t=0) infrastructure's performance; α n0 and βn0 are the initial dete-
rioration rates of infrastructure n; tln is the time of initiation of parabolic deterioration; 
and t is the time. Table 2 shows the values of parameters considered. 

Table 2. Parameters considered in the deterioration models 

Parameter Infr. 1 Infr. 2 Infr. 3 Infr. 4 Infr. 5 
IPn0 50 73 40 60 80 
α n0 0 -0.25 -0.01 -0.1 -0.3 
βn0 -0.7 -0.6 -0.4 -0.3 -0.9 
tln 0 2 0 1 3 

Table 3. Range of parameters' values considered in the maintenance models 

Parameter Infr. 1 Infr. 2 Infr. 3 Infr. 4 Infr. 5 
sn 21 5 10 15 10 

ΔIPns 0-10 0-5 0-10 0-6 0-7 
Δtln 0-3 0-1 0-0.5 0-2 0-0.75 
Δαns 0-0.05 0-0.05 0-0.04 0-0.01 0-0.001 
Δβns 0-0.2 0-0.2 0-0.2 0-0.2 0-0.15 

cost (€) 0-200 0-150 0-160 0-185 0-200 
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Table 4. Parameters considered in the overall optimization problem 

Parameter Value 
Analysis period (T) 25 years 

Discount rate (i) 0.06 
Minimum performance (IPmin) 25 

Available budget in €  in year t (B(t)) 350-0.02·t 
Fixed penalty (k1) 2 000 
Penalty slope (k2) 100 

 

The maintenance model in the example considers that each infrastructure (n) has a 
set of maintenance alternatives (sn). Each of these alternatives can lead to one, several, 
or all of the following effects: an immediate increase of performance (ΔIPns); an in-
crease of time in which the deterioration is lineal (Δtln); or a reduction of deterioration 
rates (Δαns and Δβns). The maintenance alternatives considered include both preserva-
tion and rehabilitation. Their application can, therefore, improve the initial value of 
IP. The range of parameters' values considered in the maintenance models is  
presented in Table 3. Finally, Table 4 shows parameters considered in the overall 
optimization problem. 

4.1 Results 

The algorithm was programmed in Matlab 12 on a PC AMD Phenom II X6 1055T 
Processor 2.80 GHz. The calibration of the algorithm recommended Markov chains  
of 10 000 iterations, a cooling coefficient of 0.99 and two Markov chains without 
improvements in the current solution as stop criterion. The initial temperature was 
adjusted following the method proposed by Medina [25].The most efficient move 
identified was a random variation of 2 or up to 2 variables of the 125 in the problem. 
100 randomly generated initial solutions were tried to study the influence of the initial 
solution on the results. The statistical description of this sample is the following: the 
maximum and minimum values of long-term effectiveness are 6 659 and 6 168,  
respectively; the sample mean is 6 447, with a confidence interval of ±47.42 for a 
0.05 level of significance; and the standard deviation of the sample is 132.5. 

 

Fig. 3. Infrastructures' performance (IP) under no maintenance 
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In order to analyze the maintenance strategies, the optimal of the 100 solutions 
sample is analyzed in detail. Under no maintenance, the infrastructure network 
presents a poor performance at the end of the analysis period, with all infrastructures 
presenting a failure status (Fig. 3). As shown in Fig. 4 and Fig. 5, the optimization 
process improves the network performance while satisfying budgetary constraints. In 
fact, the average value of IP increases from failure (IPaverage < 0) to a value of 80.75 in 
the optimal maintenance strategy. In the figures below, performance levels are eva-
luated as the percentage of time in which the infrastructures present a IP between the 
following intervals: A (IP: 75-100), B (IP: 50-75), C (IP: 25-50) and D (IP: 0-25). 

 

 

Fig. 4. Infrastructures' performance level 
before and after optimization 

 

Fig. 5. Annual cost and budgetary restriction 

Finally, a parametric study of budgetary restrictions was undertaken. This analysis 
would help infrastructure managers to evaluate the impact of budgetary limitations on 
infrastructure’s performance. The analysis considered variations of ±20% and ±40% 
of the initial budgetary restriction (being the initial annual restriction B(t) =350-0.02·t). 
These five budgetary scenarios were optimized, dealing to an optimal maintenance 
strategy for each scenario. Fig. 6 shows the variation of average infrastructures’ per-
formance with available budget. The results obtained have a good parabolic variation 
in terms of the total present budget: IP = -2.96·TB2 + 30.82·TB + 6.45 with a regres-
sion coefficient of R2 = 0.981, being TB the total present budget in k €. 

 

Fig. 6. Variation of average IP with budget restriction 
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5 Conclusions 

In the light of the results obtained in this study, the following conclusions may be 
derived: 

─ Local search heuristics and more specifically the proposed SA algorithm is an effi-
cient procedure for the design of maintenance strategies in terms of infrastructure 
performance under budget and technical restrictions, offering near-optimal solutions 
to the budget allocation problem. 

─ SA enables managers to undertake “what-if” analysis, evaluating the effect of  
budgetary restrictions in infrastructures’ performance. 

─ From the parametric analysis, it can be concluded that near-optimal maintenance 
strategies show a good parabolic correlation with the available budget. 

After having applied the algorithm in an illustrative example, two future research 
lines are defined: first, its application and validation in a real example; and second, 
the application of other local search heuristics in order to analyze the goodness of the 
proposed SA approach. 
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Abstract. Learning Bayesian networks is known to be an NP-hard
problem, this, combined with the growing interest in learning mod-
els from high-dimensional domains, leads to the necessity of finding
more efficient learning algorithms. Recent papers propose constrained
approaches of successfully and widely used local search algorithms, such
as hill climbing. One of these algorithms families, called CHC (Con-
strained Hill Climbing), highly improves the efficiency of the original
approach, obtaining models with slightly lower quality but maintaining
its theoretical properties. In this paper we propose some modifications
to the last version of these algorithms, FastCHC, trying to improve the
quality of its output by relaxing the constraints imposed to include some
diversification in the search process. We also perform an intensive exper-
imental evaluation of the modifications proposed including quite large
datasets.

Keywords: Bayesian Networks, Machine Learning, Local Search,
Constrained Search, Scalability.

1 Introduction

Over the last decades, Bayesian Networks [7,9] have become one of the most
relevant knowledge representation formalisms in the field of Data Mining. Due
to its popularity and the increasing amount of data available it is not surprising
that learning the structure of Bayesian Networks from data has become also a
problem of growing interest.

This paper falls in the so-called score+search approach which poses learning
as an optimization problem: A scoring metric function f ([6,8]) is used to score
a network structure with respect to the training data, and a search method is
used to look for the network with the best score. The majority of the proposed
methods are based on heuristic and metaheuristic search strategies since this
problem is known to be NP-hard [2]. If we add the necessity of dealing with
massive datasets, local-search methods such as hill climbing, have achieved great
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popularity due to its ease of implementation and its trade-off between their
efficiency and the quality of the models obtained.

In order to deal with larger datasets, several scalable algorithms have been
proposed, specifically based on local-search approaches. Those methods are usu-
ally based on restricting the search space in different ways performing a two-step
process to first detect the constraints, and then perform an intensified and more
efficient local search [10]. In [3], the CHC algorithm is introduced, which pro-
gressively restricts the search space when performing an iterated local search
without needing a previous step. The development of this result leads to the
FastCHC algorithm [4] which improves the performance of the original defini-
tion by reducing to one the number of iterations needed.

All the CHC algorithms provide an efficiency improvement when comparing
them with most state of the art algorithms and especially with the unconstrained
hill climbing approach, maintaining also its original theoretical properties. How-
ever, restricting the search space normally implies a loss of quality in the models
obtained. In this paper, we propose some modifications to the FastCHC algo-
rithm, as it has proven to be the most efficient of the CHC family, in order
to balance the trade-off between efficiency and quality of the models, trying to
provide better solutions without decreasing its efficiency advantage. These mod-
ifications relax the constraints imposed by the original algorithm in order to
allow the algorithm visit additional solutions.

The rest of the paper is organized as follows: In Section 2 we review the
necessary background on Bayesian Networks and the hill climbing approach to
structural learning. In Section 3 we review the CHC algorithms family. In Section
4 we describe the modifications proposed to improve the FastCHC algorithm.
Finally, in section 5 we evaluate the performance of the modifications proposed
and compare them with the original algorithms. In section 6, we conclude with
a discussion of the results obtained and future directions.

2 Learning the Structure of Bayesian Networks

Bayesian Networks (BNs) are graphical models than can efficiently represent
and manipulate n-dimensional probability distributions [9]. Formally1, a BN is
a pair B = 〈G,Θ〉, where G is a graphical structure, or more precisely a Directed
Acyclic Graph (DAG) whose nodes are in V = {X1, X2, . . . , Xn} represent the
random variables of the domain we wish to model, and the topology of the graph
(the arcs in E ⊆ V×V) encodes conditional (in)dependence relationships among
the variables (by means of the presence or absence of direct connections between
pair of variables).

The second element of the pair, Θ, represents a set of numerical parameters,
usually conditional probability distributions drawn from the graph structure

1 We use standard notation, that is, bold font to denote sets and n-dimensional configu-
rations, calligraphic font to denote mathematical structures, upper case for variables
sets of random variables, and lower case to denote states of variables or configuration
of states.
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which quantifies the network: For each Xi ∈ V we have a conditional probability
distribution P (Xi | pa(Xi)), where pa(Xi) represents any combination of the
values of the variables Pa(Xi), and Pa(Xi) is the parent set of Xi in G.

From a BN B = 〈G,Θ〉, we can recover the joint probability distribution over
V given by:

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi | Pa(Xi))

The problem of learning the structure of a BN can be stated as follows: Given
a training dataset D = {v1, . . . , vm} of instances of V, find the DAG G∗ such
that

G∗ = arg max
G∈Gn

f(G : D)

where f(G : D) is a scoring metric which evaluates the merit of any candidate
DAG. An important property of the metrics that are commonly used for BN
structural learning is the decomposability in presence of full data, which evaluate
a given DAG as the sum of its node family scores, i.e. the subgraphs formed by a
node and its parents in G [7]. This provides an efficient neighbourhood evaluation
for local search algorithms such as hill climbing, which evaluates local changes
for a candidate solution, normally starting from the empty graph, and performs
the one which maximizes the score function until it is not possible to find a better
neighbour. By using local changes which only modify one arc at each step, we
can reuse the computations carried out in previous stages and compute only the
statistics corresponding to the variables whose parents have been modified. The
most used operators are arc addition, deletion and reversal.

The popularity of HC is probably due to its ease of implementation as well
as its good trade-off between efficiency and quality of the output, which is a
local optimum. In addition, it has other theoretical properties which makes it
interesting, e.g. under certain assumptions the algorithm guarantees that the
resulting network is a minimal I-map2 [3].

3 Constrained Hill Climbing Methods

The CHC algorithm [3] is based on a progressive restriction of the neighbourhood
during the search process. The algorithm keeps what the authors call, Forbidden
Parents Sets (FP ) for each node, so in the neighbourhood generation step for
the node Xi, any node Xj ∈ FP (Xi) is not considered as a suitable parent of Xi

and the algorithm avoids its evaluation, saving a large number of computations.
In order to include a node in the FP set, the algorithm uses the value of

the score metric as a sort of conditional independence test when evaluating

2 A DAG G is an I-map of a probability distribution p if all independences that G
codifies are also present in the original p distribution and it is minimal if none of the
arcs in the DAG can be deleted without violating the I-map condition.
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local changes, so that when the difference (diff) of score between the current
structure and the one resulting of applying the considered operation does not
reveal a gain in the structure, the FP sets are updated consequently:

– Adding Xj → Xi. If diff < 0 then {Xj} is added to FP (Xi) and vice versa.
– Deleting Xj → Xi. If diff > 0 then {Xj} is added to FP (Xi) and vice

versa.
– Reversal of Xj → Xi. Decompose as deleting(Xj → Xi)+adding(Xi → Xj)

and use the previous two rules to update the FP sets.

Although the initial CHC algorithm results in a much more efficient search
process when compared with the unconstrained hill climbing it does not guar-
antee to return a minimal I-map and for that reason the CHC* algorithm is
proposed, in which the output of the CHC algorithm is used as the initial solu-
tion of an unconstrained hill climbing to retain the theoretical properties.

An iterated version of the CHC algorithm is also proposed in [3], in which the
algorithm performs several iterations by using the output of the previous one
as the initial solution for the next restarting the FP sets to the empty set. The
algorithm ends when it is unable to perform any change at the beginning of an
iteration and, because no constraints are being used, it has the same stopping
criterion as the hill climbing algorithm thus retains its theoretical properties: It
guarantees a minimal I-map.

All the previous development lead to the most efficient version of the CHC
algorithm, called FastCHC [4]. This algorithm guarantees a minimal I-map in
just one iteration. To accomplish this, the algorithm tries to correct wrong dis-
covered relationships in the graph by releasing some constraints every time it
performs an addition operation to the network, i.e. after the algorithm adds the
arc Xi → Xj it releases all the constraints from FP (Xi) and FP (Xj) respec-
tive neighbourhoods to allow the algorithm to correct the solution if needed to
become an I-map.

4 Proposal

As mentioned before, constrained algorithms experiment a loss of quality for the
sake of efficiency [4]. In this paper we propose two different strategies to relax the
constraints present in the FastCHC algorithm to allow some diversification in the
search process, thus it will visit additional solutions that otherwise would remain
unexplored. All the following modifications maintain the theoretical properties
of the original algorithm as we don’t modify the required conditions.

4.1 Releasing Constraints in Variable Neighbourhood Levels

Our first proposal is a basic modification to FastCHC based on the aforemen-
tioned strategy [4] of releasing some of the constraints from the nodes involved
in the change performed at each search step. Although this strategy was origi-
nally designed to correct wrong discovered relationships, we can also see it as a
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diversification technique, as it allows the search algorithm to explore additional
solutions which could have a better score.

This modification, which we call FastCHCMod1, extends the described proce-
dure to deletion and reversal operations. We also consider releasing constraints
from a wider range of nodes in order to extend the unconstrained search space.
To achieve this, we include a new parameter L ∈ N which represents levels of
neighbourhood to release constraints from, i.e., for a value L = 1 when a change
involving nodes Xi and Xj is performed any node adjacent to Xj (adj1(Xj))
will be removed from FP (Xi), and vice versa3; for a level L = 2, any node
Xj′ ∈ adj1(Xj) and its respective adjacent nodes (adj2(Xj)) will be removed
from FP (Xi), and vice versa; for the general case L = n any node in adjn(Xj)
will be removed from FP (Xi), and vice versa.

4.2 Limiting the FP Sets Size

The main disadvantage of the previous approach is that the behaviour of the
modification is not much predictable and for that reason the new included param-
eter L could be difficult to set. Our second proposal tries to release constraints
during the search procedure regarding the score metric value.

We add a limit S for the maximum number of FP constraints that can be
simultaneously stored in the FP , so when the number of constraints reaches this
limit some of them must be released in order to keep the number of constraints
at S. As the constraints are added or released in pairs, i.e. if variable Xi is added
to FP (Xj) also Xj will be added to FP (Xi), we count both directions as one
so the parameter S refers to half the size of the sum of all the FP sizes:

1

2

n∑
i=1

#FP (Xi) ≤ S

This modification requires two design decisions to be defined: A suitable ap-
proximation S for the maximum number of FP constraints to be maintained
and an update criteria to determine which constraints must be kept in the FP
sets.

We should not use an absolute approximation to select an appropriate S
value because the number of constraints that are discovered during a search
procedure highly depends on the dataset number of attributes and other specific
characteristics. For that reason, we ought to express a limitation parameter
independently from the dataset that is being used. To make an approximate
idea of the size that the FP sets reach when using different datasets, we carried
out an experiment computing the maximum number of discovered constrains
(Smax) for different datasets, which are described in Section 5. In Table 1 we
can confirm how much this number varies from one dataset to another.

We can use this value Smax as a reference value that we can compute auto-
matically and then express the size limitation as a reduction factor α which will

3 The behaviour of the modification with L = 1 is similar to the original FastCHC,
which releases constraints in the same way but only after performing addition moves.
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Table 1. FP sets maximum size reached during a full execution of the original
FastCHC and after the first iteration of the algorithm. The last column includes the
ratio between these two values as a comparison.

Network #vars Full Execution (Smax) First Iteration (S0) Ratio

Mildew 35 556 474 85%
Barley 48 1053 841 80%
Hailfinder 56 1458 1243 85%
Pigs 441 96142 86912 90%

be applied to obtain S; having a parameter independent from the dataset. How-
ever, since obtaining Smax is not feasible without performing a full execution of
the algorithm, we must find an approximate value that we could obtain using
computations that the unmodified algorithm already performs. In Table 1, we
show the size of the FP sets after the first iteration of the algorithm, S0, and
the ratio between this value and the one obtained after a full execution Smax,
showing that there is no much difference between them, thus we can take the
latter value as an optimistic approximation that should fit our requirements.

In summary, our modification performs the first iteration of the search process
just as it does FastCHC, discovering and storing in the FP sets S0 constraints,
then a reduction of α is applied to the size of the FP sets and the algorithm
releases all the constrains needed to fit this new maximum size: S = α ·S0. From
that point, FastCHC algorithm is executed, with the difference that, when new
FP constrains are discovered, the FP sets must be updated and some of the
constraints need to be released in order to fit the imposed limit.

Regarding the update policy, we keep a list including all the constraints dis-
covered ordered by their score at time of being included (as they are forbidden
they will not be updated anymore). When the amount of constraints exceeds the
limit, the one with the highest score will be released from the list.

In order to manually fix the parameter α we can interpret it as a balance
between efficiency and quality of the models. As we can see in Figure 1, a value
of α closer to 1.0 must keep an algorithm behaving much like FastCHC, but
a value of α closer to 0.0 keeps the algorithm’s behaviour closer to the Hill
Climbing approach but retaining the speed up advantage of the first iteration of
the original constrained algorithm.

5 Experimental Evaluation

In this section we examine the different modifications to the FastCHC algorithm
proposed in this paper, we perform an empirical evaluation for each modification
with different values of their parameters. We selected FastCHCMod1 with L = 2
and L = 3, as preliminary experiments revealed that larger values of L don’t
provide much difference, and FastCHCMod2 with α = 0.4, α = 0.6, and α = 0.8
to evaluate α in a wide range. In addition, we include as reference algorithms
the unmodified FastCHC and the standard hill climbing (HC ).
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Fig. 1. Evolution of the search process of the HC, FastCHC and FastCHCMod2 with
different values of α. Each point correspond to a complete search step representing
the BDeu score metric value obtained (y-axis) and the score metric calls (x-axis). This
execution corresponds to an single execution for a 5000 instances sample from one of
the random BN 200 networks, described in Section 5.

5.1 Implementation and Running Environment

All the algorithms have been implemented in Java using the ProGraMo library
for dataset and graph structures management [5]. The score metric used is the
Bayesian Dirichlet Equivalent Uniform (BDeu) [6] with an equivalent sample size
of 10 and all other parameters set up as in [10]. We also take advantage of the
internal cache described in [3] which saves the result of every score computation
using the probability family as a hash key in order to re-use it later in the
execution, achieving high computational savings especially in larger domains.

5.2 Performance Indicators

We consider two kind of factors as performance indicators to compare the dif-
ferent algorithms: the quality of the network obtained which is given by the
value of the scoring metric (BDeu) and the efficiency of the algorithm which is
given by the number of score function computations carried out by each algo-
rithm (calls). As the execution time depends on both the implementation and
the specification of the computer on which the algorithm is executed, we con-
sider the score function calls for being independent of those factors and having
direct correspondence with CPU time requirements.

5.3 Experiments

We have carried out a first set of experiments using a collection of real worl net-
works which are commonly referenced in the literature and varies from smaller



Adjusting the Trade-Off between Efficiency and Accuracy in CHC Algorithms 317

Table 2. Main characteristics of the real networks used in the experiments

Network Alarm Barley Hailfinder Insurance Mildew Munin1 Pigs
#vars 38 48 56 27 35 189 441
#arcs 46 84 66 52 46 282 592
Domain Medicine Agriculture Meteorology Insurance Agriculture Medicine Genetics

to larger domains, the networks have been obtained from the Bayesian Network
Repository4. Their main characteristics are shown in Table 2. In addition, a
second set of more intensive experiments have been carried on using a set of
synthetic databases sampled from a collection of artificial networks, which have
been randomly generated with different degrees of difficulty based on the proce-
dure described in [1]. We use a collection of 4 networks with 100 nodes and an
average of 100 arcs and 4 networks with 200 nodes and an average of 400 arcs.
We have sampled 5 datasets of 5000 instances for each network, the following
results are obtained from the average of them.

5.4 Detailed Results

Table 3 shows the BDeu score metric value and calls for each algorithm and
database. The results highlighted in bold are the best for the corresponding
network. As we can confirm in the data, the algorithms perform consistently with
their definition being hill climbing the one with highest scores and FastCHC the
most efficient. Also, we can confirm the score improvements of the modifications,
especially when comparing FastCHCMod2 for the three different values of α;
FastCHCMod1 score improvement is more subtle but efficiency is hardly modified.
As we can see, the score value an calls difference between the constrained and the
unconstrained algorithms is more noticeable for the larger databases, supporting
the scalability properties of the constrained algorithms.

5.5 Summary

Taking into account the two sets of experiments described above, a comprehen-
sive performance comparison for each algorithm with hill climbing is shown in
Figure 2, regarding the ratio between the score metric calls and the BDeu score;
the later is computed using exp((BDeu(Modeli)− BDeu(HC))/m) in order to pro-
vide an estimation of the ratio between the probability that Modeli and model
HC assign to the next data sample. In this graphical comparison we can confirm
the expected behaviour of the modifications, displaying the FastCHC algorithm
in the bottom left corner as the most efficient but less accurate algorithm and
the hill climbing in the upper right corner, being the less efficient algorithm
which obtains the best solutions; the modifications are spread along the diago-
nal showing the desired balance between efficiency and quality according to their
parameters values meaning.

4 http://www.cs.huji.ac.il/site/labs/compbio/Repository/

http://www.cs.huji.ac.il/site/labs/compbio/Repository/


318 J. Arias, J.A. Gámez, and J.M. Puerta

Table 3. Score metric value (above) and calls (below) for each algorithm and network.
BN 100 and BN 200 represent the average of the results obtained for the two collection
of synthetic networks described.

Dataset HC FastCHC FastCHCMod1 FastCHCMod1

(L = 2) (L = 3)
Alarm -47999.3454 -48045.1449 -48010.4824 -48009.5839
Barley -261888.6082 -271658.9229 -269808.1994 -267565.7600
Hailfinder -250408.8787 -251528.0754 -251417.5400 -251411.9393
Insurance -67021.9905 -67317.2964 -67172.8644 -67131.2555
Mildew -232748.2202 -243978.3822 -243444.3285 -243278.5567
Munin1 -203005.5923 -206639.3665 -205756.4947 -205235.2420
Pigs -1673304.6600 -1673110.1193 -1672782.9907 -1672522.5336
BN n100 -328499.1000 -334554.4000 -334223.4000 -333286.0000
BN n200 -667642.3000 -682648.9000 -682081.4000 -680601.0000

FastCHCMod2 FastCHCMod2 FastCHCMod2

(α = 40%) (α = 60%) (α = 80%)
Alarm -48001.0012 -48001.0012 -48006.6924
Barley -264254.3812 -266033.6374 -265699.4747
Hailfinder -250346.7057 -250396.9589 -250472.7089
Insurance -67019.6496 -67034.4770 -67058.0366
Mildew -237832.5022 -243042.4006 -242635.9131
Munin1 -203452.6020 -204512.2889 -204837.3228
Pigs -1673019.6149 -1672623.7133 -1672552.5238
BN n100 -330526.2000 -331589.1000 -332992.9000
BN n200 -673222.0000 -676501.1000 -678693.6000

Dataset HC FastCHC FastCHCMod1 FastCHCMod1

(L = 2) (L = 3)
Alarm 3444.2000 1533.8000 1673.4000 1848.0000
Barley 5680.8000 1876.2000 1993.4000 2123.8000
Hailfinder 7063.2000 2401.0000 2556.4000 2673.6000
Insurance 2230.0000 1075.2000 1266.0000 501.2000
Mildew 2460.4000 906.4000 960.0000 1041.4000
Munin1 102218.2000 58598.8000 62181.2000 67445.4000
Pigs 539248.6000 125902.2000 132401.0000 146048.2000
BN n100 20712.2500 6297.6000 6712.9000 7658.3500
BN n200 99766.6000 22819.7500 23591.9500 25775.7000

FastCHCMod2 FastCHCMod2 FastCHCMod2

(α = 40%) (α = 60%) (α = 80%)
Alarm 2635.0000 2436.6000 2211.2000
Barley 3758.0000 3305.4000 2926.4000
Hailfinder 5031.2000 4427.2000 3698.8000
Insurance 1892.4000 1774.8000 1669.2000
Mildew 1695.8000 1418.8000 1217.8000
Munin1 94122.4000 91824.2000 88950.8000
Pigs 317561.4000 257212.0000 198098.6000
BN n100 13831.8500 11059.7500 8753.0500
BN n200 50421.9000 39880.6500 31093.2000

6 Conclusions

We have defined some modifications for constrained local search algorithms in
order to obtain higher quality solutions closer to the state of the art algorithms
when maintaining an efficient algorithm. The second modification proposed in-
troduces a parameter which can be tuned in order to adjust the behaviour of the
algorithm regarding the efficiency/quality tradeoff. Future works could lead to a
parameters-free modification of the algorithm, in which the size of the FP sets
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Hill Climbing (1.0000, 1.0000)

FastCHC (0.3176, 0.5971)
FastCHCMod1 L = 2 (0.3402, 0.6189)

FastCHCMod1 L = 3 (0.3438, 0.6546)

FastCHCMod2 alpha = 0.4 (0.6314, 0.8136)

FastCHCMod2 alpha = 0.6 (0.5409, 0.7339)

FastCHCMod2 alpha = 0.8 (0.4611, 0.6924)
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Fig. 2. Comparison between the different algorithms regarding score metric calls (x-
axis) and score metric value (y-axis). The values displayed next to the algorithms names
express the averaged ratios (calls, score) relative to the hill climbing algorithm from
all datasets.

is reduced dynamically during the search process, trying to relax the constrains
in the lasts steps of the search to take advantage of both constrained and uncon-
strained approaches. Preliminary experiments using a fixed rate reduction of the
FP sets and statistical parameters such as the score variance between solutions
have shown similar results to the parametrized modification.
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Abstract. Influence Diagrams are a tool used to represent and solve
decision problems under uncertainty. One of the most efficient exact
methods used to evaluate Influence Diagrams is Lazy Evaluation. This
paper proposes the use of trees for representing potentials involved in an
Influence Diagram in order to obtain an approximate Lazy Evaluation
of decision problems. This method will allow to evaluate complex deci-
sion problems that are not evaluable with exact methods due to their
computational cost. The experimental work compares the efficiency and
goodness of the approximate solutions obtained using different kind of
trees.

Keywords: Influence Diagram, Approximate computation, Lazy Eval-
uation, Deterministic algorithms, Context-specific independencies.

1 Introduction

An Influence Diagram (ID) [1] is a Probabilistic Graphical Model used for repre-
senting and evaluating decision problems under uncertainty. IDs can encode the
independence relations between variables in a way that avoids an exponential
growth of the representation. Several approaches have been proposed to evalu-
ate IDs such as Variable Elimination [2,3] and Arc Reversal [4]. However, if the
problem is too complex the application of these methods may become infeasible
due to the high requirement of resources (time and memory). A technique that
improves the efficiency of the evaluation is Lazy Evaluation (LE) [5]. The basic
idea is to maintain a decomposition of the potentials and to postpone compu-
tation for as long as possible. Some other deterministic methods use alternative
representations for the potentials, such as trees [6,7]. This representation sup-
ports the exploitation of context-specific independencies [8]. That is, identical
values of the potential can be grouped. Moreover, if potentials are too large,
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they can be pruned and converted into smaller trees, thus leading to approxi-
mate and more efficient algorithms. The potential representation as a numerical
tree was already used for LE in Bayesian networks [9]. This paper proposes the
use of trees for LE of IDs in order to obtain an approximate LE of Bayesian
decision problems. The experimental work compares the computing time, mem-
ory requirements and goodness of approximations using tables, numerical and
binary trees.

The paper is organized as follows: Section 2 introduces some basic concepts
about IDs and Lazy Evaluation; Section 3 describes key issues about numerical
and binary trees and and how they are used during the lazy evaluation of IDs;
Section 4 includes the experimental work and results; finally Section 5 details
our conclusions and lines for future work.

2 Preliminaries

2.1 Influence Diagrams

An ID [1] is a direct acyclic graph used for representing and evaluating deci-
sion problems under uncertainty. An ID contains three types of nodes: chance
nodes (representing random variables), decision nodes (mutually exclusive ac-
tions which the decision maker can control) and utility nodes (representing deci-
sion maker preferences). We denote by UC the set of chance nodes, by UD the set
of decision nodes, and by UV the set of utility nodes. The decision nodes have a
temporal order, D1, . . . , Dn, and the chance nodes are partitioned according to
when they are observed: I0 is the set of chance nodes observed before to the first
decision, and Ii is the set of chance nodes observed after decisionDi is taken and
before decisionDi+1 is taken. Finally, In is the set of chance nodes observed after
Dn. That is, there is a partial temporal ordering: I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In.

The universe of the ID is U = UC ∪ UD = {X1, . . . , Xm}. Let us suppose
that each variable Xi takes values on a finite set ΩXi = {x1, . . . , x|ΩXi

|}. If
I is a set of indexes, we shall write XI for the set of variables {Xi|i ∈ I},
defined on ΩXI = ×i∈IΩXi . The elements of ΩXI are called configurations
of XI and will be represented as xI . Each chance node Xi has a conditional
probability distribution P (Xi|pa(Xi)) associated. In the same way, each utility
node Vi has a utility function U(pa(Vi)) associated. In general, we will talk
about potentials (not necessarily normalized). Let XI be the set of all variables
involved in a potential, then a probability potential denoted by φ is a mapping
φ : ΩXI → [0, 1]. A utility potential denoted by ψ is a mapping ψ : ΩXI → R.
The set of probability potentials is denoted by Φ while the set of utility potentials
is denoted by Ψ .

When evaluating an ID, we must compute the best choice or optimal policy
δi for each decision Di, that is, a mapping δi : Ωpa(Di) → ΩDi where pa(Di)
are the informational predecessors or parents of Di. To be well defined, informa-
tional predecessors of each decision in a ID must include previous decisions and
informational predecessors of the previous decisions (no-forgetting assumption).
The optimal policy maximizes the expected utility for each decision.
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2.2 Lazy Evaluation

The principles of Lazy Evaluation (LE) were already used for making inference
in BNs [10], so it can be adapted for evaluating IDs [5]. The basic idea of this
method is to maintain the decomposition of the potentials for as long as possible
and to postpone computations for as long as possible, as well as to exploit barren
variables and independence relations introduced by evidence. LE is based on
message passing in a strong junction tree, which is a representation of an ID built
by moralization and by triangulating the graph using a strong elimination order.
Nodes in the strong junction trees correspond to cliques (maximal complete
subgraphs) of the triangulated graph. Each clique is denoted by Ci where i is
the index of the clique. The root of the strong junction tree is denoted by C1. Two
neighbour cliques are connected by a separator which contains the intersection
of the variables in both cliques. An example of a strong junction tree is shown
in Fig. 1. The original IDs and details for building this strong junction tree are
given in [2].

C1

B,D1, E,F,D

C6

F,D3,H
C14

D3, H,K
C15

H,K, J

C5

E,D2, G
C8

D2, G,D4, I
C16

D4, I, L

C10

B,E,D, C
C11

B,C,A

F

E

B,E,D

D3, H

D2, G

B,C

K,H

D4, I

Root

S6

S5

S10

S14

S8

S11

S15

S16

Fig. 1. Example of a Strong Junction Tree obtained from an ID

Propagation is performed by message-passing. Initially, each potential is as-
sociated to one clique containing all its variables. These potentials are not com-
bined, so during propagation each clique and separator keeps two lists of poten-
tials (one for probabilities and another for utilities). The message propagation
starts by invoking the Collect Message algorithm in the root (Definition 1).

Definition 1 (Collect Message). Let Cj be a clique where Collect Message is
invoked, then:

1. Cj invokes Collect Message in all their children.
2. The message to the clique parent of Cj is built and sent by absorption (Def-

inition 2).

A clique can send the message to its parent (Absorption) if it has received all
the messages from their children. Consider a clique Cj and its parent separator
S. Absorption in Cj amounts to eliminating the variables of Cj\S from the list of
probability and utility potentials Φ and Ψ associated with Cj and the separators
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of ch(Cj) and then associating the obtained potentials with S. Algorithms for
marginalizing a variable from a list of potentials are given in [5]. For example,
when absorption is invoked in clique C14, the variable K is removed from the
list of potentials in C14 and in the child separator S15. The resulting potentials
are stored in the parent separator S14.

Definition 2 (Absorption). Let Cj be a clique, S be the parent separator and
be ch(Cj) the set of child separators. If Absorb Evidence is invoked on Cj, then:

1. Let RS = ΦCj ∪ ΨCj ∪
⋃

S′∈ch(Cj)
(Φ∗

S′ ∪ Ψ∗
S′) .

2. Let X = {X |X ∈ Cj , X 	∈ S} the variables to be removed.
3. Choose an order to remove the variables in X.
4. Marginalize out all variables in X from RS. Let Φ

∗
S and Ψ∗

S the set of prob-
ability and utility potentials obtained. During this step, potential containing
each variable are combined.

5. Associate Φ∗
S and Ψ∗

S to the parent separator S.

The propagation finishes when the root clique has received all the messages.
The utility potential from which each variable Di is eliminated during the eval-
uation should be recorded as the expected utility (EU) for the decision Di. The
values of the decision that maximizes the expected utility is the policy for Di.

3 Lazy Evaluation with Trees

3.1 Numerical and Binary Trees

Traditionally, potentials have been represented using tables. However, several
alternative representations have been proposed in order to reduce the storage
size of the potentials and improve the efficiency of the evaluation algorithms.
An example are trees (numerical [6] and binary [7]) that will be denoted by NT
and BT respectively. Figure 2 shows three different representations for the same
utility potential: (a) table, (b) a NT and (c) a BT.

U(A,B) b1 b2 b3 b4
a1 30 30 30 30
a2 45 45 20 20
a3 25 25 25 25

A

30

a1

B

45

b1

45

b2

20

b3

20

b3

a2

25

a3

A

30

a1

A

B

45

b1, b2

20

b3, b4

a2

25

a3

a2, a3

(a) (b) (c)

Fig. 2. Potential represented as a table (a), as a NT (b) and as BT (c)
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The main advantage of trees is that they allow the specification of context-
specific independencies [8]. For example, the table in Fig. 2 requires 12 values
for representing the potential. When A = a1, the potential will always take
the value 30, regardless of the value of B. Similarly, when A = a3, the utility
value is also independent of B. Therefore, a NT representing the same utility
potential requires 8 nodes. Moreover, the representation of the potential as a
BT requires only 7 nodes since leaves labelled with 45 and 20 can be collapsed
in two leaves. That is, BTs allow representing context-specific independencies
which are finer-grained than those represented using NTs. These finer-grained
independencies are also called contextual-weak independencies [11]. If trees are
too large, they can be pruned and converted into smaller trees, thus leading to
approximate algorithms. When a tree is pruned, leaves with a similar value are
represented with a single leaf labelled with their mean. The prune is controlled
with a threshold ε ≥ 0. A low ε value will produce large trees with a low error,
while a high ε value will produce small trees with a big error. When ε = 0,
the exact prune is performed. That is, only identical values are grouped. When
building a tree, variables are sorted in a way that the most informative variables
must be situated in the highest nodes of the tree. This operation will reduce the
error obtained when pruning a tree. More details for the building and pruning
processes are given in [6,7].

3.2 Evaluation with Trees

LE algorithm for IDs can be easily adapted for working with trees (NTs or BTs).
Evaluation algorithms for IDs require five operations with potentials: restriction,
combination, sum-marginalization, max-marginalization and division. These op-
erations must be implemented for operating with trees instead of tables. The
general scheme of LE adapted for working with trees is shown below.

1. Initialization phase:

(a) Build initial trees:

– for each φ ∈ Φ obtain Tφ.
– for each ψ ∈ Ψ obtain Tψ.

(b) Prune all trees
(c) Build the Strong Junction Tree from the ID.

2. Propagation phase:

(a) Associate each potential (trees) in Φ ∪ Ψ to only one clique containing
all the variables in its domain.

(b) Call the method CollectMessage in the root node. After removing each
variable during the propagation, trees can be pruned again.

The main difference is that now it requires an initialization phase where initial
trees are built from tables (1.a) and pruned in order to obtain smaller trees (1.b).
After that, the Strong Junction Tree is built. Besides pruning initial potentials,
an additional pruning can be performed after removing each variable during
propagation. That is, after step 4 in Definition 2.
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4 Experimentation

For testing purposes, two different families of IDs are used. First, a real world
ID used for the treatment of gastric NHL disease [12] with 3 decisions, 1 utility
node and 17 chance nodes. Second, a set of 20 randomly generated IDs with 2
decisions, 1 utility node, and a random number (between 6 and 17) of chance
nodes. All IDs are evaluated using different variations of the LE algorithm: using
tables (LET); using NTs and BTs pruning only initial potentials present in the
ID (LETNT and LETBT); and using NTs and BTs using the pruning operation
after removing each variable (LETNTPR and LETBTPR). The threshold used
for pruning is ranged in the interval [0, 1.0]. All the algorithms are implemented
in Java with the Elvira Software1.

The graphics included in Fig. 3 show the storage requirement for storing all
the potentials during the NHL ID evaluation, that is, potentials associated to
the cliques and intermediate potentials used to compute the messages. For space
restrictions only results using the thresholds values 0 and 0.05 are shown. The
vertical axis indicate the storage size using a logarithmic scale: number of values
in the tables and number of nodes in the trees. The horizontal axis indicate the
evaluation stage when the storage size is measured. These measurements are
performed after combining potentials containing a variable to be removed, and
after pruning the resulting potentials of marginalization. It can be observed that
less space is needed for representing the potentials as BTs than using NTs or
tables. When the exact prune is performed (threshold = 0), differences are not
very significant, which become even less significant during the latest stages. This
is due to the combination of potentials during evaluation that makes the effect
of initial prune disappear. Moreover, at some stages of the evaluation tables
require less space for storing the potentials than trees, which need an additional
space for storing the internal nodes. However, with a higher threshold value, the
reduction of the size is more noticeable since the additional storage requirements
are compensated.

The reduction of the potential sizes should lead to more efficient algorithms:
operations with smaller potentials should be faster. In Figure 4 it is shown the
computation time for evaluating the NHL ID with different threshold values.
It can be observed that pruning after removing each variable (LENTPR and
LEBTPR) is not efficient when the exact prune is performed: the overhead in-
troduced by pruning and sorting trees eats all the gain obtained with the smaller
potentials. The evaluation time with BTs (LEBT) is faster than the evaluation
with NTs (LENT). However, with higher threshold values, all variants of the
evaluation algorithm with trees obtain similar results. By contrast, worst results
are obtained using tables (LET).

Figure 5 includes six different graphics representing root mean squared error
calculated over all the configurations in the potential (horizontal axis) against
tree size (vertical axis) for the expected utilities corresponding to decisions 0,
1, and 2 for the NHL ID. Each point in the graphics corresponds to a different

1 http://leo.ugr.es/~elvira

http://leo.ugr.es/~elvira
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Fig. 3. Size of all potentials stored in memory during the NHL ID evaluation comparing
tables, NTs and BTs with different threshold values

Fig. 4. Evaluation time for the NHL ID with different threshold values. The evaluation
time using tables (LET) is approximately 15000 ms. and it is independent from the
threshold value.

evaluation with a certain threshold value. Analyzing graphics corresponding to
evaluations with a single initial prune (left column), it can be seen that in most
of the evaluations the same error level is achieved using BTs of smaller size than
the corresponding NTs. However, if the exact prune is performed (RMSE=0),
the size is smaller using NTs. By contrast, if trees are also pruned after re-
moving each variable (right column), NTs offer better approximate solutions
than BTs. These conclusions can also be obtained with Table 1, which shows
the hyper-volume indicators obtained from the evaluation of the NHL ID. The
hyper-volume [13] is an unary indicator that measures the area of the dominated
portion of the space. It is defined in the interval [0, 1], being 1 the optimal so-
lution and 0 the worst. The hyper-volume indicator can be used to evaluate a



328 R. Cabañas et al.

set of different approximations of a potential if preferences about size and error
are unknown. Each row corresponds to one of the expected utilities, whereas
each column corresponds to the evaluation scheme. In case of a single prune,
the hyper-volume values (HLEBT ) obtained using BTs are always larger (bet-
ter) than the corresponding hyper-volume values (HLENT ) using NTs. In case
of pruning after removing each variable (HLENTPR and HLEBTPR), the hyper-
volume values obtained using BTs are lower for Decisions 2 and 1.

Table 1. Hyper-volume values of the approximate expected utilities

HLENT HLEBT HLENTPR HLEBTPR

Decision 2 0.7259 0.7846 0.9756 0.9673

Decision 1 0.6981 0.7419 0.9758 0.9645

Decision 0 0.2930 0.5584 0.9592 0.9626

Fig. 5. Results of the expected utilities approximation for the NHL ID performing a
single prune at the beginning (left) and pruning after removing each variable (right)

In order to get more solid conclusions in relation to the error obtained when
approximating potentials with trees, a similar procedure can be done with ran-
dom IDs. The hyper-volume values for the these IDs are shown in Table 2. Each
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row corresponds to a different random ID, whereas the columns indicate the eval-
uation scheme used and expected utility analyzed. Obtaining a 0 hyper-volume
value means that the size of the expected utility is independent of threshold value
used for pruning. This happen because the prune operation may reduce part of
the trees which must be completely developed during posterior combinations.
It can also be observed that the hyper-volume value HLEBT is usually larger
than the corresponding HLENT value. By contrast there are less differences if
HLEBTPR and HLENTPR are compared. Moreover, for Decision 0 HLENTPR is
usually larger than HLEBTPR. To prove these hypothesis four Wilcoxon signed-
rank are performed comparing HLENT against HLEBT and HLENTPR againts
HLEBTPR for each decision. The results of these test are shown in Table 3. For
each test, it shows the p-value, the percentage of IDs where the use of BTs give
better results and whether the null hypothesis was rejected (NTs and BTs are
not equal) with a significance level of 10%. For the comparison HLENT and
HLEBT the hypothesis was rejected, then better approximate solutions are ob-
tained using BTs than using NTs if only a single initial prune is performed. In
case of pruning trees after removing each variable, the null hypothesis is not re-
jected for Decision 1. In case of Decision 0, the null hypothesis is rejected. Taking
into account that HLENTPR is usually larger than HLEBTPR, it can be deduced
that NTs offer better approximate solutions than BTs if trees are pruned after
removing each variable.

Table 2. Hyper-volume values of utility trees comparing NTs and BTs

Decision 1 Decision 2 Decision 1 Decision 2
HLENT HLEBT HLENT HLEBT HLENTPR HLEBTPR HLENTPR HLEBTPR

0.28 0.995 0.296 1 0.991 0.989 0.999 0.999

0.745 0.671 0.177 0.827 0.703 0.665 0.901 0.844

0.26 0.922 0.261 0.944 0.981 0.985 0.942 0.937

0.447 0.393 0.613 0.65 0.364 0.384 0.438 0.277

0.529 0.341 0.333 0.163 0.431 0.341 0.548 0.641

0.671 0.635 0.369 0.812 0.606 0.635 0.863 0.809

0.0712 0.168 0.521 0.747 0.0695 0.202 0 0.312

0.8 0.979 0.605 0.95 0.95 0.972 0.941 0.937

0.891 0.997 0.395 0.997 0.99 0.997 0.996 0.995

0.443 0.998 0.334 0.99 0.994 0.999 0.926 0.987

0.178 0.968 0.283 0.997 0.987 0.972 1 0.999

0.259 0.259 0 0 0.247 0.248 0.338 0

0.577 0.571 0.445 0.66 0.562 0.559 0.686 0.631

0.456 0.378 0 0.548 0.449 0.376 0.882 0.856

0.319 0.975 0.253 0.972 0.991 0.968 0.992 0.96

0.533 0.524 0.34 0.96 0.507 0.52 0.944 0.94

0.278 0.992 0.295 1 0.979 0.975 0.988 0.997

0.413 0.388 0.411 0.898 0.334 0.416 0.975 0.892

0.686 0.656 0 0.856 0.679 0.648 0.817 0.816

0.746 0.976 0.45 0.946 0.986 0.979 0.993 0.982
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Table 3. Results for the Willcoxon sign-rank test with the random ID

HLENT vs HLEBT HLENTPR vs HLEBTPR

p-value % BT wins rejected p-value % BT wins rejected

Decision 1 0.0793 50 yes 0.94 50 no

Decision 0 1.82 · 10−4 95 yes 0.0859 20 yes

5 Conclusions and Future Work

This paper proposes to combine the use of trees for representing the potentials
and Lazy Evaluation to evaluate IDs which allows to perform an approximate
Lazy Evaluation of decision problems. It is explained how trees are used during
the evaluation of IDs and compared the computing time, memory requirements
and goodness of approximations using tables, NTs and BTs. The experiments
shows that less space is used for storing potentials as a BT than as NT or as a
table. Moreover, if potentials are approximated the reduction is more noticeable.
In general, the evaluation with trees is faster than using tables. Concerning to the
error level achieved, the experiments showed that BTs offer better approximate
solutions than NTs if only initial potentials are pruned. If trees are pruned after
removing each variable during evaluation NTs offer better results.

As regards future directions of research, we would like to study alternative
heuristics or scores for triangulating the graph. The heuristics used until now
consider that potentials are represented as tables, not as trees. Finally, another
direction of research could be the integration of restrictions with binary trees.
This would allow the treatment of asymmetric decision problems [14], where the
set of legitimate states of variables may vary depending on different states of
other variables.
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Abstract. Recursive Probability Trees offer a flexible framework for
representing the probabilistic information in Probabilistic Graphical Mod-
els. This structure is able to provide a detailed representation of the dis-
tribution it encodes, by specifying most of the types of independencies
that can be found in a probability distribution. Learning this structure
involves the search for context-specific independencies along with fac-
torisations within the available data. In this paper we develop the first
approach at learning Recursive Probability Trees from data by extending
an existent greedy methodology for retrieving small Recursive Probabil-
ity Trees from probabilistic potentials. We test the performance of the al-
gorithm by learning from different databases, both real and handcrafted,
and we compare the performance for different databases sizes.

Keywords: Bayesian networks learning, approximate computation, de-
terministic algorithms, probability trees, recursive probability trees.

1 Introduction and Previous Work

In general, inference algorithms become less efficient as the number of variables
and general complexity of the model grow, as this implies operations with big
structures that require large storage space and increase the computational pro-
cessing time. A way of addressing this problem is by modelling the probabilistic
information taking into account the existent patterns within the probability dis-
tributions that can compact the information, such as independencies that hold
only for certain contexts, i.e. context-specific independencies (cs-independencies)
[1] and different kinds of factorisations.

Recursive Probability Trees [3] (RPTs) were designed as an alternative to
traditional data structures for representing probabilistic potentials, such as con-
ditional probability tables (CPTs) or probability trees [6] (PTs). In this paper
we present our approach for learning RPT structures from a database, extending
an existent methodology based on detecting patterns within potentials [2].

The previous algorithm, developed by Cano et al. in [2], consists of building
an RPT from another probabilistic potential (a CPT or a PT, for instance).

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 332–341, 2013.
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The problem of finding a minimal RPT is NP-hard as proven in [2]. Hence, this
methodology focuses in obtaining an RPT in a greedy way, following a heuris-
tic designed for selecting Split nodes that are likely to reduce the dependencies
among the remaining variables. In this way it is intended to increase the pos-
sibilities of finding multiplicative factorisations, which constitute the basis for
obtaining RPTs of small size.

In general, the methodology is oriented to the detection of cs-independencies
and also multiplicative factorisations. Context-specific independencies are sought
following a similar approach to the one used for building probability trees [6].
It is based on selecting variables for Split nodes according to their information
gain, as it is done when constructing decision trees [5]. Regarding multiplicative
decompositions, the idea is to detect groups of variables according to their mutual
information. The obtained groups are later used to get the potentials making up
the multiplicative decomposition. In this work, we adapt the general workflow of
the algorithm to deal with the new problem: learning the structure from data.

The rest of the paper is organized as follows: Section 2 defines RPTs and de-
scribes their features; Section 3 describes our approach for learning an RPT from
a database; Section 4 shows the experimental evaluation performed for testing
the performance of the algorithm; and finally Section 5 presents conclusions as
well as future research directions.

2 Recursive Probability Trees

Recursive Probability Trees [3] are a generalization of PTs. RPTs were developed
with the aim of enhancing PTs’ flexibility and so they are able to represent
different kinds of patterns that so far were out of the scope of probability trees.

As an extension of a PT, an RPT is a directed tree, to be traversed from
root to leaves, where the nodes (both inner nodes and leaves) play different roles
depending on their nature. In the simplest case, an RPT is equivalent to a PT,
where the inner nodes represent variables, and the leaf nodes are labelled by
numbers. In the context of RPTs, we will call this type of inner nodes as Split
nodes and this kind of leaves as Value nodes.

RPTs propose to include factorisations within the data structure by incorpo-
rating a type of inner node that lists together all the factors. Therefore, a List
node represents a multiplicative factorisation by listing all the factors making
up the division. If a List node stores a factorisation of k factors of a potential φ
defined on XJ, and every factor i (an RPT as well) encodes a potential φi for a

subset of variables XJi
⊆ XJ, then φ corresponds to

∏k
i=1 φi(XJi

).
When necessary, RPTs will include a fourth type of node denominated Po-

tential node. This is a leaf node and its purpose is to encapsulate a full potential
within the leaf in an internal structure. This internal structure usually will not
be an RPT, but a probability tree or a probability table instead. In fact, as long
as the internal structure of a Potential node supports the basic operations on
potentials (namely marginalization, restriction and combination), it is accepted
within the RPT representation.
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In summary, an RPT can have four kind of nodes in total: Split or List nodes
as inner nodes, and Value or Potential nodes as leaves. We can combine them
in very different ways in order to find the structure that best fits the potential
to be represented, making RPTs an extremely flexible framework to work with.

X6 X1

X2 X3

X4 X5

List
node

φ1(X6)

Potential
node

φ2(X1) φ3(X5)

φ4(X3, X1) φ5(X2, X1, X6) X2

X3

0.5

0

φ6(X4, X5)

1

0

φ7(X4)

1

Split
node

V alue
node

(i) (ii)

Fig. 1. An RPT representing a full Bayesian network

An RPT is able to represent a full model like a Bayesian network (BN) as it
is shown in Fig. 1. The more straightforward way of representing a BN would
be to join with a List node all the conditional probability distributions defined
by the chain rule for Bayesian networks, as shown in the right part of Fig. 1.
Every factor could be represented independently looking for patterns within it.
In the figure, the conditional probability distribution associated to X4 has been
detailed using Split nodes.

3 Learning an RPT from a Database

The starting point is a database cases defined over a set of variables X, and
the aim of the algorithm is therefore to find a representation of the probability
distribution encoded in cases as an RPT.

The proposed algorithm is defined in Alg. 1, and as it can be seen in the
pseudocode, it is divided into four steps, iterating over them until finding a
suitable representation for the encoded distribution of the data. The first step
consists of building an auxiliary graph structure Gc with vertex set X where a
pair of variables Xi, Xj ∈ X will be linked if there is probabilistic dependence
between them. More precisely, a link Xi −Xj is present in Gc if the weight of
the link between Xi and Xj is bigger than 0. We use the Bayesian Dirichlet
equivalent metric [4] to measure the relation between pairs of variables, and
hence, a link Xi −Xj will be included only if

W (Xi, Xj) = BDe(Xi|Xj)−BDe(Xi) > 0. (1)

The second step of the algorithm consists of analysing the resultant graph Gc.
A disconnected representation of Gc can be directly translated as a factorisation,



Learning Recursive Probability Trees from Data 335

learn(database cases)1

Input: A database cases
Output: RT , an RPT for an approximation of the distribution in cases
begin2

// Step 1: compute Gc3

Gc → graph for variables dependencies in cases4

// Step 2: graph analysis5

Gc analysis looking for connected components6

// Several scenarios are possible according to Gc7

if Gc is partitioned into components C = {C1 . . .Cn} then8

// Step 3: multiplicative factorisation9

RT ← multiplicativeFactorisation(cases,C)10

else11

// Only one component: decomposition with Step 412

RT ← contextSpecificFactorisation(cases,Gc)13

end14

return RT15

end16

Algorithm 1. Main body of the learning algorithm

jumping into the third step of the algorithm, because the separation between the
clusters mean that the dependence between their variables is weak. The fourth
step of the algorithm corresponds to the case when the graph Gc remains as a
single connected component, which means that the potential is not decomposable
as a list of factors with disjoint variables. However, conditional decompositions
are possible, so the algorithm looks for either factorisations that share variables,
cs-independencies, or a combination of both.

3.1 Representing a Factorisation

If Gc is disconnected in n connected components X1 ∪ · · · ∪ Xn = X. The
factorisation is given by:

f(x) = f1(x1) · · · fn(xn), (2)

where fi = f↓Xi , i = 1, . . . , n. Each fi is a potential with the absolute frequen-
cies for all the variables in the correspondent connected component. Therefore,
f corresponds to the joint probability distribution of all the variables in the Gc.

If the clusters do not share any variables (as it happens, for instance, when Gc

is disconnected the first time that we compute it in Alg. 1), we can normalise each
potential independently using the Laplacian correction to avoid dealing with zero
probability values. If the clusters share variables, then we apply the Laplace cor-
rection taking into account all the variables only when normalising the first factor.
The other factors are normalised using the Laplace correction but conditioned to
the common variables, in order to avoid the introduction of normalising errors.
This set of conditioning variables is associated to the cluster until the end of the
algorithm, so further factorisations will be correctly normalised.
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If any of the clusters contains more than 2 variables, we recursively apply
the algorithm to try to learn a factorised substructure from the database for
the correspondent subset of variables. Hence, the distribution for the current
cluster can be represented as an RPT where the root node would be a List node
containing the factors in Eq. 2.

3.2 Analysing Connected Components

This part of the algorithm will work with a subset of the variables of the database
and will iteratively perform a series of steps: first, locate the variable within the
cluster that present the highest degree of dependence with respect to the others,
and remove it from the graph; second, recompute the links in the reduced graph
by weighting the relations between every pair of the remaining variables; third,
analyse the graph: if it becomes disconnected, we can represent the cluster as a
factorisation, if it becomes too small (2 variables) it means that a factorisation
is not possible, hence we represent the cluster as a Potential node, retrieving
the parameters from the database. The third possibility is that after removing a
variable, the graph continues being connected, in which case we iterate selecting
a new variable to be removed, and so on.

The above mentioned degree of dependence between every variable Xi and
those other variables belonging to its neighbourhood, ne(Xi), is computed as:

VXi =
∑

Xj∈ne(Xi)

W (Xi, Xj). (3)

Every iteration of the loop selects the variable maximizing the degree of depen-
dence in order to look for the context in which the underlying potential might
be factorised:

Xmax = argmax
Xi

VXi . (4)

Once Xmax is selected it will be included in S1 or S2. These are auxiliary vectors
that represent two types of variables: those that are closely related to all the
others (S1) and those variables that are highly dependent of only a subset of the
variables in the component (S2). Note that the ordering in which the variables
are selected is very important, as every deletion is dependent on the previous
one. The splitting of the tree with the variables of S1 will be performed using a
first-in-first-out fashion.

Therefore, Xmax will be included in S1 if it is completely connected to the
rest of variables in Gc. Otherwise it will be included in S2. In both cases, Xmax

and its links will be removed from Gc producing a new graph GXmax
c that will

be considered in further iterations.
Each remaining link Xi − Xj is re-weighted according to the previously re-

moved variables Xs = S1 ∪ S2, being only included the links that obtain a
positive score: W (Xi, Xj | Xs)=BDe(Xi | Xj , Xs)−BDe(Xi | Xs) > 0.
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3.3 Obtaining a Factorisation of a Cluster

If we disconnect the graph during the procedure explained above, we build the cor-
respondent RPT as follows. If S1 has variables, we take the first variableXi in S1

and build a List node with two children: one will be a Split node ofXi and the sec-
ond a Potential node with the marginal probability distribution of Xi computed
from the database, and normalised using Laplace but checking ifXi belongs to the
conditioning set. Then, for every possible child of the Split node, we add the same
structure for the next variable in S1, and so on until we represent all the variables
in the set. We have to consider when learning the parameters both the Split nodes
above and the possible list of conditioning variables in the Laplace normalisation.

Then for each branch of the Split nodes consistent with every possible config-
uration of the variables in S1, we store the factorisation at the leaves according
to the variables in S2 and the resultant clusters C = {c1, ..., cn}. The structure
will be a factorisation computed as explained in Sec. 3.1, but considering that
we include the variables in S2 to the set of variables of every subcluster:

f(c1, . . . , cn,S2) :=

n∏
i=1

fh(ci,S2), (5)

Once a decomposition is performed, the algorithm is recursively applied to each
and every potential obtained successively, until no further decomposition can be
computed.

As an example of the whole process, consider the situation represented in
Fig. 2. After removing X4 and X3 we find a decomposition of the graph in two
connected components, so we build an RPT with a Split chain of the variables
in S1, in this example just X4, and in the leaves we place the factorisation, that
has a List node as a root, and one child per resultant connected component plus
a normalisation factor. Each subfactor is analysed independently afterwards.

X5

X7X6

X4X3

X1

X2

X4

0 1

φ1 φ2 Sn1 φ3 φ4 Sn2

S1 = {X4}

S2 = {X3}

φ1 = (φR(X4=0))↓(X1,X2,X3,X4)

φ2 = (φR(X4=0))↓(X5,X6,X7,X3,X4)

φ3 = (φR(X4=1))↓(X1,X2,X3,X4)

φ4 = (φR(X4=1))↓(X5,X6,X7,X3,X4)

Fig. 2. Creation of a Split chain with a decomposition of the auxiliary graph
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4 Experimental Evaluation

In this section we present the experimental evaluation carried out in order to
analyse the performance of the proposed algorithm. We learned from different
kind of databases, both handcrafted and real, and examined the results both in
terms of accuracy (by analysing how well the learned models fit the data) and
size of the obtained representation.

Generation of a Random RPT

Some of the RPTs used in the experiments were generated at random using the
algorithm described below. We considered three parameters: a set of variables
X, a probability pS for the generation of Split nodes as inner nodes, and a
probability pP for the generation of Potential nodes on the leaves.

The procedure is recursive, generating first the root node and going down to
the leaves. If the size of X is less or equal than 2, we will generate a leaf node: if
X is not empty, we generate a Potential node of its variables. If X is empty, then
we incorporate a Value node labelled by a random value to the structure. If the
number of remaining variables is between 3 and 5, the probability of generating
an inner node (either Split or List node) is 0.2. If the number of variables is
equal or greater than 5, then we will always generate an inner node.

When generating an inner node, a Split node of a random variable within the
set will be created with probability pS . For List nodes, a maximum of 5 children
is allowed in order to bound the size of the factorisation. The choosing of the
number of children for a List node follows a Poisson distribution. For each child
of the List node, we randomly create a subset of variables to be represented. The
intersection between the subsets does not have to be empty.

When building a leaf node, we will generate either a Potential node or a Value
node according to pP . A Value node will contain a random number between 0
and 1. To create a Potential node, we first randomly obtain a number n between
1 and the size of the set of remaining variables. Then we randomly retrieve
n variables from the set and store them as the domain of the new Potential
node. For each configuration of the new set of variables, we store a random
value between 0 and 1, as its probability value. Potential nodes are internally
represented as probability trees, with a small prune factor of 0.001, to avoid the
storage of many similar values within the structure.

At the end of the process, we check if any of the variables of X was left out.
If this is the case, a Potential node with the remaining variables is created, and
attached to the previously generated RPT through a List node that becomes
the new root of the final RPT. In this way it is possible to calibrate the RPT to
represent a potential with the desired level of factorisations or cs-independencies.
The generated RPTs are normalised afterwards by including at the root a nor-
malisation factor equal to 1/sumRPT , corresponding sumRPT to the addition
of the probability values correspondent to every possible configuration of the
variables in the RPT.
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4.1 Detecting Factorisations and Context-Specific Independencies
in the Data

The aim of this experiment was to check the accuracy and size of the learned
RPTs. We sampled several RPTs with different degrees of factorisations and cs-
independencies within them, and then learned a new structure with the proposed
algorithm. Afterwards we compared the learned structure to the original one,
both measuring the Kullback-Leibler divergence between them, and counting
the number of probability values needed to represent the distribution.

To do so, we used the random RPT generator explained above to build RPTs
of 10 binary variables, and varied the probability of generating a Split node (pS)
between 0 and 1, with intervals of 0.1. The probability of generating a Potential
node (pP ) in the leaves was set to 0.8. For each combination of the parameters,
the experiment was repeated 30 times. For each generated RPT we sampled a
database of 100, 500, 1000, 2000 and 5000 entries.

Figure 3 shows the average of the 30 Kullback-Leibler divergence values ob-
tained for each value of pS . The Kullback-Leibler divergence shows generally
reasonable accurate results, getting worse as the level of factorisations decrease
in the original distributions. This means that the algorithm performs well at
detecting clusters of highly dependent variables, and in general obtains good ap-
proximations of the distributions by detecting the patterns hidden within them.
As for the number of samples in the database, we can see in Fig. 3 that small
databases lead to poor representations, whilst too much data leads to overfitting.
The best average results are obtained for the database of 2000 entries.

Fig. 3. Average Kullback-Leibler divergence between the original distribution and the
learned, for different RPTs and for different database sizes

We alsomeasured the sizes of both the originalmodel and the learned structures
for all the considered cases. In general, the learned RPTs are much more compact
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in all the cases. For instance, in Fig. 4 we see the averages of the 30 structures gen-
erated for each value of pS , with the database of 2000 entries, where we can check
how the approximations are much smaller and, as seen in Fig. 3, still reasonably
accurate.We do not show the figures for all the database sizes due to lack of space,
but the observed behaviour is constant for all the tested database sizes.

Fig. 4. Size of the learned RPTs for the database of 2000 instances

In general we can conclude from this experiment that the proposed algorithm
returns compact structures representing good approximations of the original
distributions.

4.2 Learning Bayesian Networks

In this experiment we learned the RPT models from 6 databases extracted from
the UCI Machine Learning Repository1.For each database, we learned the RPT
with 80% of the data, and then computed the loglikelihood with the remaining
20%. We compared the resultant accuracy with the models obtained by the PC
and K2 algorithms.

This procedure was repeated 30 times, every time varying the partition of the
database. With the average of the loglikelihood and size (in terms of number of
probability values stored) of the models we computed the Bayesian Information
Criteria (BIC), that for small sample sizes penalizes more complex models. The
results are shown in Fig.5, where we can see that RPTs get a better score than at
least one of the other learned models with all the databases with the exception
of Heart Disease, where all three algorithms obtain a very similar score. As an
intuitive conclusion from the experiment, we have included horizontal lines in
Fig. 5 detailing the average BIC for all the considered networks, where we can see
how RPTs tie with the PC algorithm (with an average of -869,57 (s.d. 283,54)
for RPTs and -866,51 (s.d. 452,09) for the PC), whilst K2 results fall far behind
(with an average of -1090,98 and standard deviation of 389,64)).

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Fig. 5. Bayesian Information Criteria for the learned models

5 Conclusions

This paper presents an algorithm for learning RPTs from a database, looking
for factorisations and cs-independencies within the data. The experiments sug-
gest that the algorithm retrieves accurate and compact representations for the
underlying distributions, being competitive against algorithms like PC and K2.
In this work we have only considered the BDe metric for weighting the relations
between variables, but other measures, like the mutual information, can be con-
sidered and tested against each other in future works. In fact, some preliminary
experimentation (not included in this work due to lack of space) hints that the
algorithm performs similarly changing the metric.
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{afalvarez,iperez,antonio.salmeron}@ual.es

Abstract. Mixtures of truncated basis functions (MoTBFs) have been
recently proposed as a generalisation of mixtures of truncated exponen-
tials and mixtures of polynomials for modelling conditional distributions
in hybrid Bayesian networks. However, no structural learning algorithm
has been proposed so far for such models. In this paper we investigate
the use of the PC algorithm as a means of obtaining the underlying net-
work structure, that is finally completed by plugging in the conditional
MoTBF densities. We show through a set of experiments that the ap-
proach is valid and competitive with current alternatives of discretizing
the variables or adopting a Gaussian assumption. We restrict the scope
of this work to continuous variables.

Keywords: continuous Bayesian networks, PC algorithm, mixtures of
truncated basis functions, structural learning.

1 Introduction

Mixtures of truncated basis functions (MoTBFs) [1] have been recently proposed
as a general framework for handling hybrid Bayesian networks, i.e. Bayesian net-
works where discrete and continuous variables coexist. Previous hybrid models
as the so-called mixtures of truncated exponentials (MTEs) [2] and mixtures of
polynomials (MOPs) [3] can be regarded as particular cases of MoTBFs.

Unlike the conditional Gaussian (CG) model [4], where discrete variables are
not allowed to have continuous parents, MoTBFs do not impose any structural
restrictions to the network. Furthermore, they are closed under addition, multi-
plication, and integration and therefore inference in an MoTBF network can be
performed efficiently using standard methods like the Shenoy-Shafer architecture
[5] or the variable elimination algorithm [6].

The problem of learning marginal and conditional MoTBFs from data has
been addressed from a general point of view [7] and also for the particular case
of MTEs [8,9] and MOPs [10]. However, structural learning in this context has
only been considered in the literature for the particular case of MTEs [11] where a
score-and-search algorithm is proposed. The main difficulty in following a score-
and-search approach is that it requires re-estimating conditional densities after
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each move is made, what is a specially time-consuming task in the particular
case of MoTBFs, as we will discuss in Section 3.

In this paper we analyse a simple alternative to construct Bayesian networks
with MoTBFs based on the PC algorithm. The idea is to obtain the structure
using the PC algorithm over a discretized version of the data, and afterwards
plugging in the conditional MoTBF densities. We carry out an experimental
comparison of this strategy combined with MTEs and MOPs versus two other
approaches: discretizing all the variables and assume that the joint distribution
in the network is a multivariate Gaussian. We have not included methods based
on kernel densities [12] in the comparison, since they do not admit exact in-
ference algorithms. We only consider continuous variables in this work, leaving
as a future task the inclusion of discrete ones. The implementations have been
developed using the R statistical software [13] with the corresponding packages
for supporting the PC algorithm [14] and the learning of Gaussian networks [15].

The paper continues with a description of the MoTBF framework in Section 2.
The method used for learning MoTBFs from data is given in Section 3. The
experimental analysis, which is the core of this work, is reported in Section 4.
The paper ends with the conclusions in Section 5.

2 Mixtures of Truncated Basis Functions

The MoTBF framework [1] is based on the use of a set of real-valued basis
functions ψ(·), which includes both polynomial and exponential functions as
special cases. A marginal MoTBF density is defined as follows: Let X be a
continuous variable with domain ΩX ⊆ R and let ψi : R → R, for i = 0, . . . , k,
define a collection of real basis functions. A function gk : ΩX '→ R+

0 is an MoTBF
potential of level k wrt. Ψ = {ψ0, ψ1, . . . , ψk} if gk can be written as

gk(x) =

k∑
i=0

ai ψi (x) , (1)

where ai are real numbers. The potential is a density if
∫
ΩX

gk(x) dx = 1. Note

that as opposed to the MTE and MOP definitions [2,3], a marginal MoTBF
potential does not employ interval refinement to improve its expressive power.

Example 1. By letting the basis functions correspond to polynomial functions,
ψi(x) = xi for i = 0, 1, . . ., the MoTBF model reduces to an MOP model for
univariate distributions. Similarly, if we define the basis functions as ψi(x) =
{1, exp(−x), exp(x), exp(−2x), exp(2x), . . .}, the MoTBF model corresponds to
an MTE model with the exception that the parameters in the exponential func-
tions are fixed.

In a conditional MoTBF density, the influence a set of continuous parent vari-
ables Z has on their child variable X is encoded only through the partitioning
of the domain of Z, denoted as ΩZ , into hyper-cubes, and not directly in the
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functional form of gk(x|z) inside each hyper-cube. More precisely, for a partition-
ing P = {Ω1

Z , . . . , Ω
m
Z } of ΩZ , the conditional MoTBF is defined for z ∈ Ωj

Z ,
1 ≤ j ≤ m, as

g
(j)
k (x|z ∈ Ωj

Z) =
k∑

i=0

a
(j)
i ψ

(j)
i (x). (2)

3 Learning MoTBFs

A procedure for fitting an MoTBF to any density function whose functional
form is known is described in [1]. Roughly speaking, the procedure is based
on assuming a set of orthonormal basis functions and using generalised Fourier
series to estimate the parameters in Equation (1).

In what concerns learning marginal MoTBFs from data, we have used a mod-
ified version of the method in [7], based on fitting an MoTBF to the empirical
distribution function of the data by least squares [16]. The empirical distribution
function is defined for a sample D = {x1, . . . , xN} as

GN (x) =
1

N

N∑
�=1

1{x� ≤ x}, x ∈ R, (3)

where 1{·} is the indicator function.
As an example, if we use polynomials as basis functions, Ψ = {1, x, x2, x3, . . .},

the parameters can be obtained solving the optimization problem

minimize

N∑
�=1

(
GN (x�)−

k∑
i=0

ci x
i
�

)2

subject to

k∑
i=1

i ci x
i−1 ≥ 0 ∀x ∈ Ω, (4)

k∑
i=0

ci a
i = 0 and

k∑
i=0

ci b
i = 1,

where the constraints ensure that the obtained parameters conform a valid
density.

Conditional densities are also learnt using the algorithm in [7], which is based
on splitting the domain of the parent variables, ΩZ, as long as the BIC score is
improved. As splitting criterium we use equal frequency binning. After splitting a
variable Z, the algorithm fits a univariate MoTBF for each induced sub-partition
Ω1

Z and Ω2
Z . In order to decide whether or not to carry out a candidate partition

ΩZ′ we consider the potential improvement in BIC score [17] resulting from
splitting that partition:

BIC-Gain(Ω′
Z , Z) = BIC(f ′,D)−BIC(f,D),
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where f ′ is the conditional MoTBF potential defined over the partitioning after
splitting.

As we mentioned before, no structural learning algorithm for MoTBFs can be
found so far in the literature. The only exception is the procedure described in
[11], which is restricted to MTEs. We have decided not to take it as a basis for
structural learning because of its computational complexity. The reason is that it
is based on a score-and-search approach, and therefore it requires to re-estimate
conditionals in each move. Notice that, unlike discrete conditionals, estimation of
a conditional MoTBF can be a costly task, as it requires solving an optimisation
problem in order to find the solution to the least squares equations employed to
fit the parameters (see Eq. (4)). Hence, we have chosen a more simple alternative
based on using the PC algorithm [18]. The procedure consists of the next three
steps:

1. Discretise the variables in the database. In the experiments reported in Sec-
tion 4 we used equal width binning with three resulting values.

2. Use the PC algorithm to obtain a Bayesian network structure from the dis-
cretised database. In the experiments reported in Section 4 we set a signif-
icance level α = 0.05 and chose G2 as the test statistic for the conditional
independence tests.

3. Estimate a conditional MoTBF density for each variable given its parents in
the network following the scheme given in [7].

4 Experimental Analysis

4.1 Algorithms Used in the Experiments

We have conducted a series of experiments aimed at testing the performance of
the learning procedure described in Section 3. The idea is to determine whether
or not the scheme based on PC + MoTBF conditionals is competitive with the
simple application of the PC algorithm to obtain a discrete Bayesian network and
with the construction of a continuous Bayesian network with CG distribution.
All the experiments have been run on the R platform [13] using packages pcalg
[14] and bnlearn [15]. More precisely, the algorithms used in the study are:

– MTEi, with i = 2, 3, 4. The algorithm described in Section 3 particularised
for MTEs, by using exponentials as basis functions, and allowing the domain
of the parent variables in conditionals to be split at most i times.

– MOPi, with i = 2, 3, 4. The same as above, but using polynomials instead
of exponentials as basis functions.

– Discretei, with i = 3, 6, 8, 10. The algorithm described in Section 3 dividing
the domain of each variable into i pieces by equal frequency binning and
adjusting a constant density into each interval.

– CG: The algorithm in [15] for obtaining a continuous Bayesian network with
Gaussian joint distribution.
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Table 1. Databases used in the experiments

dataset #instances #variables

diabetes 768 8
disclosure 662 4
ecoli 336 5
glass 163 7
iris 150 4
seeds 209 7
segmentation 210 16
slump 103 10
vertebral 310 6
waveform 5000 21

4.2 Experiments with Real-World Datasets

The first block of experiments consisted of testing the above mentioned algo-
rithms over a set of databases taken from the UCI machine learning repository
[19]. Most of the databases are oriented to classification, and therefore we re-
moved the class variable in order to keep only the continuous features. The values
for each variable were pre-processed by applying standardisation, in order to mit-
igate potential numerical errors when fitting the parameters of the exponential
terms in MoTBFs. The description of the datasets is shown in Table 1. For
each of the networks, we run the algorithms mentioned in Section 4.1 and com-
puted the log-likelihood and the BIC score [17] of the training database given
each learnt network. Notice that, as the likelihood is not comparable between
discrete and continuous distributions due to the fact that continuous densities
are not bounded above, we have represented the distribution of each discretised
variable as a continuous density with a constant value in each of the regions cor-
responding to the discrete values. For instance, assume a variableX with support
[0, 3] and discretised by equal width binning into three values 0, 1 and 2 corre-
sponding to intervals [0, 1), [1, 2) and [2, 3]. Assume also that P (X = 0) = 0.2,
P (X = 1) = 0.5 and P (X = 2) = 0.3. The distribution of X is then represented
with a continuous density

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.2 if 0 ≤ x < 1,

0.5 if 1 ≤ x < 2,

0.3 if 2 ≤ x ≤ 3,

0 otherwise.

The results are displayed in Tables 2 and 3. Attending to the obtained results,
the use of discrete variables and MOPs are the best choices in terms of likelihood
while the CG model provides slightly better results in terms of BIC, which
is not surprising as the CG model requires few parameters in general. It is
worth pointing out that in two of the databases (seeds and vertebral) some of
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Table 2. Average log-likelihood per record computed using the networks learnt by the
tested algorithms. Boldfaced numbers indicate the best algorithm for each database.
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MTE2 -8.43 -5.64 -6.50 -8.23 -4.69 -7.73 -11.59 -10.38 -7.40 -28.26
MTE3 -8.42 -5.64 -6.41 -8.36 -4.69 -7.70 -12.23 -10.38 -7.60 -28.50
MTE4 -8.53 -5.64 -6.54 -8.23 -4.69 -7.79 -12.09 -10.38 -7.95 -28.37
MOP2 -8.39 -5.62 -6.57 -7.86 -4.24 -7.59 -10.29 -10.44 -7.36 -27.37
MOP3 -8.33 -5.62 -6.17 -8.02 -5.80 -7.26 -11.67 -10.44 -7.42 -27.66
MOP4 -8.40 -5.62 -6.20 -7.66 -5.84 -7.49 -11.51 -10.44 -7.77 -27.94
CG -10.98 -5.67 -6.54 -8.63 -4.35 -6.01 -15.05 -14.06 -7.42 -26.75
Discrete3 -13.78 -7.32 -7.25 -10.24 -4.26 -7.53 -19.23 -13.09 -9.00 -36.57
Discrete6 -13.00 -7.25 -6.27 -8.36 -3.95 -6.01 -15.55 -12.79 -8.10 -34.81
Discrete8 -12.54 -7.22 -5.98 -7.71 -3.75 -5.43 -14.28 -12.76 -7.57 -33.87
Discrete10 -12.22 -7.16 -5.67 -7.56 -3.83 -4.92 -13.48 -12.52 -7.22 -33.34

Table 3. Average BIC score per record computed using the networks learnt by the
tested algorithms. Boldfaced numbers indicate the best algorithm for each database.
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MTE2 -8.73 -5.79 -6.85 -9.18 -4.99 -8.72 -13.45 -11.60 -8.03 -28.59
MTE3 -8.77 -5.79 -6.83 -9.16 -4.99 -8.71 -14.29 -11.60 -8.27 -28.90
MTE4 -8.85 -5.79 -6.97 -9.18 -4.99 -8.92 -14.10 -11.60 -8.89 -28.76
MOP2 -8.73 -5.75 -6.88 -8.72 -4.69 -8.48 -12.00 -11.56 -7.92 -27.75
MOP3 -8.71 -5.75 -6.68 -8.99 -6.39 -8.50 -13.69 -11.56 -8.10 -28.02
MOP4 -8.79 -5.75 -6.76 -8.80 -6.48 -8.54 -13.72 -11.56 -8.61 -28.31
CG -11.04 -5.69 -6.61 -8.81 -4.45 -6.15 -15.34 -14.33 -7.51 -26.79
Discrete3 -13.99 -7.38 -7.51 -10.84 -4.53 -8.06 -19.99 -13.72 -9.33 -36.82
Discrete6 -14.49 -7.47 -8.04 -11.41 -5.12 -9.53 -18.79 -15.04 -10.33 -37.68
Discrete8 -15.78 -7.60 -9.62 -11.76 -5.85 -12.32 -20.07 -16.38 -11.98 -38.96
Discrete10 -17.82 -7.73 -10.57 -12.62 -6.54 -15.50 -22.53 -17.79 -12.89 -40.03

the columns were linear functions of other columns. This kind of deterministic
dependence is not taken into account by the algorithm for learning MoTBFs,
while the CG model captures such dependencies in a natural way. In order to
have a more precise picture of the significance of the difference among the tested
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algorithms, we run a Friedman’s test (α = 0.05) followed by a Nemenyi’s post-
hoc test in case of significant differences. In terms of likelihood, the outcome of
the tests was that the only significant differences where found in favour of MOP2,
3, 4 and Discrete10 vs. the Discrete3 algorithm. For the BIC case, differences
were reported by the statistical test indicating a superiority of the CG, MTE
and MOP approaches vs. the discrete cases, except for Discrete3.

X1 X3 X5 X7 X9

X2 X4 X6 X8 X10

Fig. 1. Network used to generate the synthetic databases in the experiments

Table 4. Detail of the distributions in the synthetic network

X1 ∼ Be(0.5, 0.5) X2|X1 ∼ Be(X1, X1)
X3|X1 ∼ Exp(X1 + 1) X4|X2, X3 ∼ N (X2 +X3, 1)
X5|X3 ∼ Exp(X3 + 1) X6|X4, X5 ∼ Exp(|X4 +X4|+ 1)
X7|X5 ∼ N (X5, 2) X8|X6, X7 ∼ χ2

�X6+X7�+1

X9|X7 ∼ U(0, |X7|+ 1) X10|X8, X9 ∼ Γ (X8, X9)

4.3 Experiments with Synthetic Databases

One of the advantages of MoTBFs with respect to other models is their ability
to accurately approximate a wide variety of differently shaped probability den-
sities [1]. Taking this into account, we designed an experiment in order to test
the different algorithms in a setting where the variables in the network come
from a range of densities with different shapes. With that aim, we constructed
an artificial network with the structure depicted in Figure 1 and the conditional
densities specified in Table 4. We randomly sampled five databases from the ar-
tificial network, with sizes 100, 500, 1000, 2500 and 5000 and run the algorithms
over the generated databases, measuring the log-likelihood and the BIC score of
each database given the learnt networks. The results are displayed in Tables 5
and 6. As expected, in this case the best option, both in terms of likelihood and
BIC score, is the use of MoTBFs, and more precisely, MOPs. A more detailed
analysis of the differences using Friedman’s test plus Nemenyi’s post-hoc reveals
significant differences in terms of likelihood on the side of MOP3 vs. CG and of
MOPs in general versus the discrete approaches (except Discrete10). In terms of
BIC, the differences with respect to CG fade away whilst significant ones show
up between MOPs and Discrete10.
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Table 5. Average log-likelihood per record computed using the networks learnt from
the synthetic datasets by the tested algorithms. Boldfaced numbers indicate the best al-
gorithm for each database. The five rightmost columns correspond to the five databases
used, of size 100, 500, 1000, 2500 and 5000.

Algorithm 100 500 1000 2500 5000

MTE2 -10.00 -9.74 -9.31 -9.46 -9.50
MTE3 -10.00 -9.52 -9.29 -9.47 -9.54
MTE4 -9.85 -9.56 -9.14 -9.62 -9.64
MOP2 -9.79 -9.57 -8.73 -8.85 -9.19
MOP3 -9.79 -9.38 -8.55 -8.67 -9.03
MOP4 -9.79 -9.48 -8.78 -8.94 -9.09
CG -13.93 -13.65 -13.53 -13.65 -13.48
Discrete3 -13.82 -13.95 -14.93 -16.82 -16.20
Discrete6 -13.16 -12.62 -13.79 -15.73 -14.79
Discrete8 -12.91 -11.95 -13.28 -15.38 -14.20
Discrete10 -12.56 -11.08 -12.75 -15.03 -13.46

Table 6. Average BIC score per record computed using the networks learnt from the
synthetic datasets by the tested algorithms. Boldfaced numbers indicate the best algo-
rithm for each database. The five rightmost columns correspond to the five databases
used, of size 100, 500, 1000, 2500 and 5000.

Algorithm 100 500 1000 2500 5000

MTE2 -11.19 -10.21 -9.67 -9.73 -9.66
MTE3 -11.19 -10.14 -9.76 -9.76 -9.69
MTE4 -11.28 -10.16 -9.63 -9.90 -9.81
MOP2 -10.89 -10.05 -9.20 -9.12 -9.36
MOP3 -10.89 -9.98 -9.19 -8.98 -9.27
MOP4 -10.89 -10.03 -9.33 -9.25 -9.32
CG -14.23 -13.76 -13.59 -13.68 -13.50
Discrete3 -14.56 -14.37 -15.17 -16.93 -16.30
Discrete6 -16.04 -15.72 -15.50 -16.49 -16.11
Discrete8 -17.91 -18.74 -17.12 -17.14 -18.05
Discrete10 -20.22 -21.99 -19.71 -18.37 -20.35

5 Conclusions

In this paper we have analysed a simple way to induce continuous Bayesian
networks from data using MoTBF densities. The idea, though simple, seems
to have a valid practical value as shown by the experiments carried out. The
models obtained in this way for the real-world databases tested are competitive
with the CG model and superior to the discrete approach. For the synthetic
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databases, which represent a situation where the variables involved are of an
heterogeneous nature, the MoTBF approach is superior in terms of likelihood
an also in terms of BIC score. The conclusion is that, as long as no taylor-made
structural learning algorithms for MoTBFs are developed, our simple approach
can be a valid alternative for addressing practical applications. From the purely
practical point of view, an important advantage is that no model assumptions
have to be checked before using it (unlike, for example, the Gaussian case).

In what concerns future lines of work, the next immediate step is to extend
the implementation of the learning algorithm to allow the inclusion of discrete
variables, in which case the differences with respect to the CG approach should
widen in favour of the MoTBF approach. More research is needed for developing
taylor-made structural learning algorithms for MoTBFs, where a first way to
explore can be to translate the use of the test statistics of the PC algorithm to
the MoTBF framework.
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Abstract. Learning from crowds is a recently fashioned supervised clas-
sification framework where the true/real labels of the training instances
are not available. However, each instance is provided with a set of noisy
class labels, each indicating the class-membership of the instance accord-
ing to the subjective opinion of an annotator. The additional challenges
involved in the extension of this framework to the multi-label domain are
explored in this paper. A solution to this problem combining a Structural
EM strategy and the multi-dimensional Bayesian network models as clas-
sifiers is presented.

Using real multi-label datasets adapted to the crowd framework, the
designed experiments try to shed some lights on the limits of learning to
classify from the multiple and imprecise information of supervision.

Keywords: Multi-label classification, multi-dimensional classification,
Learning from crowds, Structural EM method, Bayesian network models.

1 Introduction

The process of training a classifier in the standard supervised classification
paradigm requires a training dataset of examples which are class-labeled by
a domain expert, who establishes to which class each example belongs. Other
related paradigms, under the general name of partially supervised classification,
deal with datasets in which the expert is not able to label completely/certainly
all the training examples. In one way or another, all these paradigms provide
expert supervision of the training data. Moreover, the reliability of this informa-
tion of supervision is a strong assumption, based on which most of the techniques
taking part in the learning process have been developed (evaluation techniques,
performance scores, learning methods, etc.). However, obtaining this kind of
reliable supervision can be expensive and difficult, even for a domain expert.

In the last decades, the Web has emerged as a large source of information,
providing a quick and easy way to collect data. Actually, the main drawback of
the data collected in this way is its reliability. As it has been usually produced
by non-expert annotators, this subjective data may involve incompleteness, im-
preciseness and/or incorrectness. Learning from noisy data (or labeled by an
unreliable annotator) is a known problem [2,18]. However, these new technolo-
gies provide an easy and cheap way to obtain not one but many different personal

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 352–362, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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opinions about the class-membership of a given example. Thus, the idea of learn-
ing from data labeled by taking into account diverse and multiple (subjective)
opinions has led to a new learning paradigm.

In the related literature, the problem of learning from multiple noisy labelers
or annotators is known as learning from crowds [9]. In this problem, the real class-
membership information of the training instances is not provided. However, a
crowd of mainly non-expert labelers provides different subjective (noisy) opinions
about the class-membership of the training instances. Note the differences with
[6], where the opinions of a fixed number of domain experts have to be combined.

Learning to classify from this kind of data is possible and useful [12,14]. The
learning algorithm has to cope with the individual unreliability of the annotators
in order to build accurate classifiers from the consensus opinion. The ability to
learn an accurate classifier from a given dataset of this type is largely influenced
by two related factors: the quality of the annotators and the degree of consensus
between them. Learning can be feasible even when the annotators do not have a
high reliability if, for each instance, a subset of annotators agree in their predic-
tions. Based on both concepts, we present our initial solution to the additional
challenges which involves the application of the learning from crowds paradigm
to multi-label classification (in a broader sense than [11]).

The rest of the paper is organized as follows. In the next section, a formal
definition of the problem is presented, together with its adaptation to the multi-
dimensional classification framework. Then, our method (an adaptation of a
state-of-the-art algorithm) for learning multi-dimensional Bayesian network clas-
sifiers from this kind of data is described. Next, the experiments show some lim-
its in the learning ability of our method (according to noise rate and consensus
degree). And finally, some conclusions and future work are presented.

2 Learning from Crowds in Multi-label Domains

In the problem of multi-label learning from crowds, the examples are provided
without the true labels (a.k.a. gold-standard), and only the label(s) assigned by
multiple (non-expert) annotators are available. Here, an annotator assigns one
or several labels to an instance according to their subjective opinion.

Like the classical multi-label (ML) learning paradigm, the problem is de-
scribed by a set of n predictive variables (X1, . . . , Xn) and a class variable C.
Moreover, X denotes the instance space (all the possible value assignments to
the n predictive variables) and C = {c1, . . . , cq} denotes the label space (the set
of q possible class labels). A ML dataset D = {(x1, c1), (x2, c2), . . . , (xm, cm)}
consists of a set of m examples of the problem, where xi ∈ X is a n-tuple that
assigns a value to each predictive variable and ci ⊆ C is the corresponding set
of class labels, denoting the class-membership of the example.

Similarly, the dataset D in a multi-label learning from crowds framework is
composed of m examples D = {(x1,A1), (x2,A2), . . . , (xm,Am)}, which are as-
sumed to have been sampled i.i.d. from some underlying probability distribution.
Each instance xi is provided together with a group Ai, which contains the labels
(annotations) provided by different annotators: Ai = {ci1, . . . , cit}, with cij ⊆ C
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and t being the number of annotators. As a classical multi-label classification
problem, the objective is to infer the class label(s) of new unseen instances.

A Transformation to Multi-dimensional Classification. In a multi-dimensional
(MD) classification problem [1,10], there is more than one class variable
(C1, . . . , Cd), and each one has its own set of possible labels. In this case, the
label space C = C1 × · · · × Cd denotes all the possible joint label assignments to
the d class variables (label configurations). An example (xi, ci) of a MD training
dataset includes a d-tuple ci ∈ C that assigns a label to each class variable,
apart from the instance predictive values xi ∈ X . Given a new instance, the
multi-dimensional classifier predicts a class label for each class variable.

In this paper, in order to deal with the presented multi-label problem, we
transform it to the multi-dimensional classification framework. As explained in
the related literature [1,10,17], the multi-label learning paradigm can be de-
scribed as a multi-dimensional problem in which there are as many binary class
variables as class labels in the multi-label problem (dMD = qML). Thus, each
binary class variable (MD) represents the presence/absence of a class label (ML).

The adapted datasetD of multi-dimensional learning from crowds is composed
of m examples D = {(x1,A

1), (x2,A
2), . . . , (xm,Am)}, where the information

of supervision for each instance xi is provided in a (t× d)-matrix Ai. Thus, the
position Ai

ac indicates the class label predicted for the class variable Cc by the
annotator La.

3 Learning from Crowds in Multi-dimensional Domains

The main characteristic of the learning from crowds framework is the availabil-
ity of much and diverse information of supervision. A natural solution to this
problem could be the transformation of the crowds information to some kind of
probabilistic supervision. From this point of view, the problem is closely related
with other problems with imprecise labels such as learning with partial labels
[3], learning from probabilistic information [8], etc. Nevertheless, in the presence
of imprecise or incorrect data, it is worth modeling the source of noise.

As explained previously, the crowd supervision consists of the class labels as-
signed to the instances according to the subjective opinion of several annotators.
Certainly, each annotator can be considered as a source of noise. Based on this
idea, Raykar et al. [9] proposed an EM-based algorithm to solve the learning
from crowds problem in single-dimensional domains, using a set of weights to
model the reliability of the annotators.

Under the realistic assumption that the annotators might show different
reliability in different prediction tasks, we have extended the idea of Raykar et
al. [9] to the multi-dimensional paradigm, independently modeling the reliability
of each annotator predicting each class variable.

To sum up, we have reformulated the problem as searching the weights (wac)
that better describe the ability of each annotator, La, to predict each class vari-
able Cc, and leading to the generation of accurate classifiers. For solving both
interrelated problems, we propose a learning algorithm based on the Structural
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Expectation-Maximization (SEM) strategy, which iteratively alternates to im-
prove the initially obtained reliability weights (several techniques are proposed)
and to look for an improved fit of the model. A basic adaptation of a state-of-
the-art local-search algorithm is used to learn the model, a multi-dimensional
Bayesian network classifier (MBC [1]), from crowd data augmented with relia-
bility weights. For the sake of simplicity, in this paper the number of annotators
is fixed, i.e. all the instances are annotated by all the annotators.

3.1 Our Structural EM Strategy

A MBC [1] is a Bayesian network M = (G, θ) defined over a set V = {V1, . . . , Vv}
of random variables, where G = (V ,R) is an acyclic directed graph and θ its
parameters. As a classifier, the set of variables can be divided in class variables,
VC = {C1, . . . , Cd}, and predictive variables, VX = {X1, . . . , Xn}, where v =
n+ d. The graph of a MBC cannot contain arcs in R from the predictive (VX)
to the class variables (VC).

The Structural EM strategy (SEM), proposed by Friedman [5], provides a
suitable framework to infer both the graph structure and the model parameters
of a Bayesian network model from missing data. The EM strategy, proposed
by Dempster et al. [4], is used in our framework to obtain the maximum like-
lihood parameters from multiple weighted annotations. Iteratively, the method
estimates the reliability weights of the annotators given the current fit of the
model, and re-estimates the model parameters. Under fairly general conditions,
the iterative increment of the likelihood has been proved to converge to a sta-
tionary value (most of the times, a local maximum) [7]. Additionally, the SEM
strategy incorporates an outer loop to the parametric-convergence loop of the
classical EM, and iteratively improves an initially-proposed structure.

In Algorithm 1, a pseudo-code of the SEM method developed in this paper
is shown. In the following subsections, the different tasks of this method are
explained in detail: the initialization of the reliability weights (line 3 in Algorithm
1) and their improvement (line 10); the structural learning (line 4) and structural
improvement (line 14); and the parametric learning (line 9).

3.2 Reliability Weights of the Annotators

As previously mentioned, we use weights wac to indicate the reliability of the
predictions of the annotator La for the class variable Cc. These weights are
initialized in the first stage of the SEM method and updated iteratively.

Initializing Weights. Similar to [13], our SEM method initializes the weight wac

as the ability of the annotator La to agree with other annotators (consensus) in
the label assigned to class variable Cc, averaging over all the instances of the
dataset. That is,

wac =
1

m

m∑
i=1

1

t− 1

∑
a′ 	=a

I[Ai
a′c = Ai

ac] (1)

wherem is the number of instances, t is the number of annotators and I[condition]
is a function that returns 1 when the condition is true, and 0 otherwise.
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Algorithm 1 Pseudo-code of our Structural EM method.

1: procedure StructuralEM(D,maxIt, ε) � D: dataset
2: i = 0 � maxIt: max. number of iterations
3: W ← initializeWeights(D) � ε: threshold (stop condition)
4: Gi ← structuralLearning(D,W)
5: repeat
6: j = 0
7: repeat
8: Ŵ ← W
9: θj ← parametricLearning(D,W, Gi)
10: W ← estimateWeights(D,Gi,θj)
11: j = j + 1
12: until (diff(W,Ŵ) < ε) Or (j = maxIt)
13: i = i+ 1
14: Gi ← findMaxNeighborStructure(D,W, Gi−1)
15: until (Gi = Gi−1) Or (i = maxIt)
16: return M ≡ (Gi,θj)
17: end procedure

Weights Updating. To update the reliability weights, four alternative procedures
has been developed: two model-based procedures (using the most probable label
configuration; or using the probabilities of all the possible label configurations),
both of them combined or not with the consensus concept.

On the one hand, the information provided by the model M (learnt in the
previous EM iteration) is used in two ways. In a first approach, the label config-
uration of maximum joint probability c̆ given the instance is calculated. Then,
each weight wac is updated as the mean accuracy of the annotator La over the
class variable Cc, using each maximal configuration c̆i as the golden truth:

wac =
1

m

m∑
i=1

I[c̆ic = Ai
ac] (2)

In the second approach, for each instance the marginal probability of each class
variable is calculated using the model M. Subsequently, these probabilities are
used to update each weight of an annotator by averaging the probability of their
predictions for the given class variable over the whole dataset,

wac =
1

m

m∑
i=1

|C|∑
j=1

pM(c̄j |ci) · I[c̄jc = Ai
ac] (3)

where C is the label space (set of all the label configurations) and c̄j ∈ C.
On the other hand, the weight-updating process can remember the mean

degree of consensus. Thus, the reliability weights are updated according to the
function, wac = (wCons

ac +wM
ac)/2, where w

Cons
ac is the consensus weight (calculated

by means of Eq. 1) and wM
ac is the model-based weight (calculated with either

Eq. 2 or Eq. 3). Therefore, as both model-based functions can be extended with
the consensus idea, we finally have four weight-updating techniques.
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3.3 Estimating the Model Parameters from Crowds in
Multi-dimensional Domains

In this paper, the parameters of the MBC are estimated by frequency counts,
as usual. In order to cope with the weighted and multi-labeled class informa-
tion provided by the crowds, we have adapted the procedure to collect fre-
quency counts. Thus, given an instantiation (u1, . . . , uj) of a set of variables
Uu = {U1, . . . , Uj} ⊆ V = (VX ,VC), the posterior probability is defined as,

p(u1, . . . , ui|ui+1, . . . , uj) = N(u1, . . . , ui, ui+1, . . . , uj)/N(ui+1, . . . , uj)

where N(·) represents the counts obtained from the provided dataset. In this
problem, they are calculated as follows:

N(u) =
1∑t

a=1 W
↓u
a

t∑
a=1

W↓u
a

∑
y∈X (D,Aa)

I[y[U1] = u1, . . . , y[U|u|] = u|u|]

where [Uj] indicates the index of the variable Uj ∈ Uu in the original set of
variables V and X (D,Aa) is the set of instances D labeled according to the
annotations Aa of annotator La. In the specific count, the weight assigned to
annotator La (W↓u

a ) is calculated as the product of the weights per variable,
taking into account only those variables in Uu:

W↓u
a =

∏
U∈Uu

wa[U ] (4)

As previously shown, our SEM method only estimates the weights wac of the
class variables (Cc ∈ VC). Consequently, regarding Eq. 4, the weights of the
predictive variables (Xx ∈ VX) are considered constant, wix = 1. In practice,
the estimator implements the Laplacian correction in order to avoid zero counts.

3.4 Local Search for Structural Learning

Our method to learn the structure of a MBC B from the data (line 4 in Algo-
rithm 1) is based on the wrapper algorithm of Larrañaga et al. [1]. Following
their proposal, at each iteration of the local search, the arc inclusion/deletion
(candidate change) that, respecting a fixed ancestral order, most improves the
score of the current structure is chosen. The candidate changes are evaluated
using the log K2 score:

logP (B,D) =

v∑
i=1

qi∑
j=1

log
(ri − 1)!

(Nij + ri − 1)!

ri∑
k=1

logNijk!

where v is the number of variables, ri is the number of values that the variable
Vi can take, and qi is the number of possible configurations of the parents of Vi.
As the log K2 score is decomposable, the arc inclusion/deletion can be evaluated
only taking into account the arc-destination variable and its parents.
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Structural MBC Improvement. The function at line 14 of the Algorithm 1 per-
forms a single local-search step in the MBC structure space in order to find a
better fit of the model. In practice, the structural improvement is chosen us-
ing the same procedure as the structural learning method presented before, but
restricted to a single step.

4 Experiments

In this section, the two factors that we have used to describe the amount of
information provided in the learning from crowds problem are tested. Due to
the lack of time, we have not managed to obtain real crowd datasets1. However,
we have designed a strategy to simulate multiple annotators controlling the noise
rate and the consensus between them. Thus, three real multi-label datasets2 have
been adapted to simulate multiple-annotated datasets.

Generation of Annotators. We have implemented a strategy for generating anno-
tators from the real class labels of the ML datasets. For each class variable, start-
ing from the true labels, a user-specified percentage of these labels —randomly
selected— are fixed (well-labeled instances). The rest of labels are swapped with
probability 0.5 in order to introduce the characteristic noise of this kind of data.

The degree of consensus is controlled by sharing the same fixed set of well-
labeled instances between a user-specified number of annotators. Then, an extra
(small) rate of changes is applied to each annotator individually in order to
generate low divergence between them.

In both experimental settings, 10 annotators have been generated (this selec-
tion is based on the discussion of Snow et al. [14]), and all of them annotate
all the class variables and instances. By default, the method uses the provided
indexation of variables as ancestral order (always respecting that the class vari-
ables appear before the predictive variables). Regarding the learned models, the
MBC have been restricted to a maximum of K = 3 parents per variable.

4.1 Influence of the Noise Rate

The first set of experiments has been designed in order to test the ability of our
learning method to cope with an increasing amount of noise in the annotations.
In this way, the consensus degree has been fixed to four annotators [14] and
different values (four) of mean noise rate have been tested for each dataset.
Three real ML datasets (emotions, scene and yeast) have been used to simulate
the information of crowds. Moreover, for each designed test, ten datasets have
been generated, summing up to the total number of datasets, 120 (4 error rates,
3 datasets, 10 repetitions).

1 For future work, Mechanical Turk (http://www.mturk.com) is an online platform
that allows to easily collect data from crowds.

2 Multi-label datasets available at: http://mulan.sourceforge.net/datasets.html

http://www.mturk.com
http://mulan.sourceforge.net/datasets.html
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Table 1. Experiments developed to test the noise rate influence. The three datasets
are evaluated in a 10 × 5-fold CV according to four measures [1], and the results are
shown in terms of the mean value and the corresponding standard deviation (each
experiment is repeated over 10 equal-generated crowd datasets).

Noise rate 10% 20% 30% 40% 10% 20% 30% 40%

microf1 0.59 ± 0.01 0.56 ± 0.02 0.50 ± 0.03 0.41 ± 0.03 0.44 ± 0.02 0.35 ± 0.02 0.24 ± 0.03 0.13 ± 0.03

macrof1 0.58 ± 0.02 0.54 ± 0.02 0.48 ± 0.03 0.41 ± 0.03 0.44 ± 0.02 0.35 ± 0.01 − − − − − −
globalAcc 0.24 ± 0.01 0.22 ± 0.01 0.18 ± 0.02 0.11 ± 0.02 0.34 ± 0.02 0.26 ± 0.02 0.15 ± 0.02 0.07 ± 0.02

meanAcc 0.72 ± 0.01 0.70 ± 0.01 0.69 ± 0.02 0.69 ± 0.01 0.83 ± 0.01 0.82 ± 0.01 0.82 ± 0.00 0.83 ± 0.00

emotions scene

Noise rate 10% 20% 30% 40%

microf1 0.59 ± 0.01 0.57 ± 0.01 0.56 ± 0.01 0.54 ± 0.01

macrof1 − − − − − − − − − − − −
globalAcc 0.15 ± 0.01 0.13 ± 0.01 0.11 ± 0.01 0.09 ± 0.02

meanAcc 0.76 ± 0.02 0.75 ± 0.01 0.74 ± 0.01 0.74 ± 0.01

yeast

In Table 1, the results obtained from these experimental settings show the
expected tendency of an increment of the degradation as the noise rate is larger.
However, as a result of the transformation to the multi-dimensional framework,
the resulting class variables tend to be strongly unbalanced (a class value is over-
represented in the dataset). Among the problems that this generates, note that
the accuracy-based evaluation measures become unfair. For example, in the tests
with most noise of Table 1, some of the displayed mean accuracy values corre-
spond to the label proportions of the dataset (which have macrof1 = ‘−−−’), i.e.
the method is always predicting the majority class label. In this way, our weight
updating procedure based on maximal-probability could be failing to capture
the information of supervision as a combination of the multiple annotations.

4.2 Influence of the Consensus

In the second set of experiments, we show the behavior of our method when
the consensus between the labelers increases. Thus, following the procedure de-
scribed before, five groups of ten datasets were generated where the degree of
consensus ranges from two to six annotators. The annotators in consensus have
been generated with a noise rate of 10%, and the rest with 30%. Due to lack of
space, only the ML dataset emotions is used in this experimental settings.

As a fundamental parameter in our approach, we wanted to show the relia-
bility weights of the annotators obtained after the training process. As shown in
Figure 1, all the weight updating procedures identify the reliable annotators (all
of them are shown over 1). However, the weights produced by the approaches
that incorporate the consensus idea are those which are most unbalanced. Sur-
prisingly, larger consensus annotators’ weights do not imply a notable gain in
terms of global accuracy (nor other performance measures, not shown due to
lack of space). Our method behaves as expected when it performs better as
the degree of consensus is increased. However, the performances do not show
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Fig. 1. Experiments developed to test the influence of the consensus degree. In the
left figure, the relevance rate of the consensus annotators (mean of the weights of
the consensus annotators divided by that of non-consensus annotators) according to
different weight-updating approaches. In the right figure, the same experiments are
evaluated in terms of global accuracy. All the results are shown by means of mean value
and the corresponding standard deviation, evaluated in a 10×5-fold CV (repeated over
10 equal-generated crowd datasets).

notable differences whether the weight-updating approach considers the consen-
sus information or not.

5 Conclusions

As shown, the current method does not seem to make the most of this kind of
data, being unable to extract information from the consensus between annota-
tors. It could be worth exploring other paradigms to weight the relevance of the
annotators, according to other performance metrics (see, for example, [16]).

As explained before, our method implements four approaches for updating
the weights of the annotators. Specifically, two of them only consider the model
predictions in the update procedure, and the other two combine the model es-
timations and the consensus information, both with the same relevance. An
interesting idea for future work could be to implement a simulated-annealing
based technique that modifies the relevance of both factors (model predictions
and consensus) throughout the iterative method every time that the weights are
updated. In this way, in the first iterations we could rely more on the consensus
information and, in the final iterations, relying on the model predictions.

Moreover, considering that the annotators can choose the instances that they
label, we could skip the previous assumption that all the annotators label all the
instances. Similarly, it could be also interesting to allow annotators not to as-
sert the membership of every instance to all the classes [15]; that is, to consider
a new state for the annotations (member, non-member, unknown). Skipping
both assumptions would introduce new challenges to the learning process,
mainly affecting the way in which we calculate the reliability weights of the
annotators.
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Abstract. Mixtures of polynomials (MoPs) are a non-parametric
density estimation technique for hybrid Bayesian networks with con-
tinuous and discrete variables. We propose two methods for learning
MoP approximations of conditional densities from data. Both approaches
are based on learning MoP approximations of the joint density and the
marginal density of the conditioning variables, but they differ as to how
the MoP approximation of the quotient of the two densities is found.
We illustrate the methods using data sampled from a simple Gaussian
Bayesian network. We study and compare the performance of these meth-
ods with the approach for learning mixtures of truncated basis functions
from data.

Keywords: Hybrid Bayesian networks, conditional density estimation,
mixtures of polynomials.

1 Introduction

Mixtures of polynomials (MoPs) [1,2], mixtures of truncated basis functions
(MoTBFs) [3], and mixtures of truncated exponentials (MTEs) [4] have been
proposed as density estimation techniques in hybrid Bayesian networks (BNs)
including both continuous and discrete random variables. These classes of den-
sities are closed under multiplication and marginalization, and they therefore
support exact inference schemes based on the Shenoy-Shafer architecture. Also,
the densities are flexible in the sense that they do not impose any structural
constraints on the model, unlike, e.g., conditional linear Gaussian networks.

Only marginal and conditional MoTBFs appear during inference in hybrid
BNs [5]. Learning MoP, MoTBF and MTE approximations of one-dimensional
densities from data has been studied in [6,7]. Learning conditional density ap-
proximations has, however, only been given limited attention [7,8]. The main
difficulty is that the classes of functions above are not closed under division. The
general approach shared by existing methods for learning conditional densities
is that the conditioning variables are discretized, and a one-dimensional approx-
imation of the density of the conditional variable is found for each combination
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364 P.L. López-Cruz et al.

of the (discretized) values of the conditioning variables. Thus, the estimation of
a conditional density is equivalent to estimating a collection of marginal densi-
ties, where the correlation between the variable and the conditioning variables
is captured by the discretization procedure.

In this paper, we present two new approaches, based on conditional sampling
and interpolation, respectively, for learning MoP approximations of conditional
densities from data. Our approach differs from previous methods in several ways.
As opposed to [1,2,3], we learn conditional MoPs directly from data without
any parametric assumptions. Also, we do not rely on a discretization of the
conditioning variables to capture the correlation among the variables [7,8]. On
the other hand, our conditional MoPs are not proper conditional densities, hence
posterior distributions established during inference have to be normalized so that
they integrate to 1.

The paper is organized as follows. Section 2 briefly introduces MoPs and
details the two new approaches for learning conditional MoPs. Experimental
results and a comparison with MoTBFs are shown in Sect. 3. Section 4 ends
with conclusions and outlines future work.

2 Learning Conditional Distributions

2.1 Mixtures of Polynomials

Let X = (X1, . . . , Xn) be a multi-dimensional continuous random variable with
probability density fX(x). A MoP approximation of fX(x) over a closed domain
ΩX = [ε1, ξ1] × · · · × [εn, ξn] ⊂ Rn [1] is an L-piece d-degree piecewise function
of the form

ϕX(x) =

{
poll(x) for x ∈ Al, l = 1, . . . , L,

0 otherwise,

where poll(x) is a multivariate polynomial function with degree d (and order
r = d + 1) and A1, . . . , AL are disjoint hyperrectangles in ΩX, which do not
depend on x, with ΩX = ∪L

l=1Al, Ai ∩Aj = ∅, i 	= j.
Following the terminology used for BNs, we consider the conditional random

variable X as the child variable and the vector of conditioning random variables
Y = (Y1, . . . , Yn) as the parent variables. Given a sample DX,Y = {(xi,yi)}, i =
1, . . . , N , from the joint density of (X,Y), the aim is to learn a MoP approxi-
mation ϕX|Y(x|y) of the conditional density fX|Y(x|y) of X |Y from DX,Y.

2.2 Learning Conditional MoPs Using Sampling

The proposed method is based on first obtaining a sample from the conditional
density of X |Y and then learning a conditional MoP density from the sampled
values. Algorithm 1 shows the main steps of the procedure. First, we find a MoP
representation of the joint density ϕX,Y(x,y) (step 1) using the B-spline inter-
polation approach proposed in [6]. Second, we obtain a MoP of the marginal
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density of the parents ϕY(y) by marginalization (step 2). Next, we use a sam-
pling algorithm to obtain a sample DX|Y from the conditional density of X |Y
(step 3), where the conditional density values are obtained by evaluating the quo-
tient ϕX,Y(x,y)/ϕY(y). More specifically, we have used a standard Metropolis-
Hastings sampler for the reported experimental results. For the sampling process
we generate uniformly distributed values over ΩY for the parent variables Y,
whereas the proposed distribution for the child variable is a linear Gaussian dis-
tribution N (βTy, σ2), where β is an n-dimensional vector with all components
equal to 1/n. We used σ2 = 0.5 in our experiments. Next, we find an (unnor-
malized) MoP approximation of the conditional density X |Y from DX|Y (step
4). Finally, we apply the partial normalization procedure proposed in [1] to ob-
tain a MoP approximation ϕX|Y(x|y) of the conditional density (steps 5 and 6).
The complexity of the algorithm is dominated by the complexity of the learning
algorithm in [6].

This method has some interesting properties. The B-spline interpolation
algorithm for learning MoPs in [6] guarantees that the approximations are con-
tinuous, non-negative and integrate to one. Therefore, the conditional MoPs
obtained with Algorithm 1 are also continuous and non-negative. Continuity is
not required for inference in BNs, but it usually is a desirable property, e.g., for
visualization purposes. The algorithm provides maximum likelihood estimators
of the mixing coefficients of the linear combination of B-splines when learning
MoPs of the joint density (ϕX,Y(x,y)) and the marginal density ϕy(y), hence
the quotient ϕX,Y(x,y)/ϕY(y) corresponds to a maximum likelihood model of
the conditional distribution. It should be noted, though, that this property is
not shared by the final learned model as the partial normalization (steps 5 and
6) does not ensure that the learned MoP is a proper conditional density. There-
fore, the MoP approximations of the posterior densities should be normalized to
integrate to 1.

Algorithm 1
Inputs:

– DX,Y: A training dataset DX,Y = {(xi,yi)}, i = 1, . . . , N

– r: The order of the MoP

– L: The number of pieces of the MoP

Output: ϕX|Y(x|y). The MoP approximation of the density of X |Y
Steps:

1. Learn a MoP ϕX,Y(x,y) of the joint density of (X,Y) from the dataset
DX,Y using polynomials with order r and L pieces [6].

2. Marginalize out X from ϕX,Y(x,y) to yield a MoP ϕY(y) of the marginal
density of the parent variables Y: ϕY(y) =

∫
ΩX

ϕX,Y(x,y)dx.

3. Use a Metropolis-Hastings algorithm to yield a sample DX|Y with M obser-
vations from the conditional density ϕX,Y(x,y)/ϕY(y).

4. Learn an unnormalized conditional MoP ϕ
(u)
X|Y(x|y) from DX|Y using poly-

nomials with order r and L pieces [6].
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5. Compute the partial normalization constant:

c =

∫
ΩX

∫
ΩY

ϕY(y)ϕ
(u)
X|Y(x|y)dydx .

6. Find the partially normalized MoP of the conditional density:

ϕX|Y(x|y) = 1

c
ϕ
(u)
X|Y(x|y) .

We show an example with two variables X and Y . We sampled a training
dataset DX,Y with N = 5000 observations from the two-dimensional Gaussian

density (X,Y ) ∼ N
((

0
0

)
,

(
2 1
1 1

))
. This two-dimensional density corresponds

to a Gaussian BN, where Y ∼ N (0, 1) and X |Y ∼ N (y, 1). Next, we applied
Algorithm 1 to learn the MoP approximation of the conditional density of X |Y .
The domain of the approximation was set to ΩX,Y = [−3, 3] × [−2, 2], which
includes 0.9331 of the total Gaussian density mass. Note that σ2

Y = 1 is smaller
than σ2

X = 2, thus the domain ΩY = [−2, 2] is smaller than ΩX . We used the
BIC score to greedily find the number of pieces L and the order r of the MoP. The
conditional MoP learned with Algorithm 1 is shown in Fig. 1(a). The conditional
MoP had L = 16 pieces and order r = 2, i.e., 64 polynomial coefficients. The
true conditional density of X |Y is the linear Gaussian density N (y, 1) shown in
Fig. 1(b). We can see that the conditional MoP in Fig. 1(a) is continuous and
close to the true conditional density. We observe high peaks at the “corners”
of the domain ΩX,Y . These are due to numerical instabilities when evaluating
the quotient ϕX,Y (x, y)/ϕY (y), caused by both the joint and the marginal MoPs
yielding small values (close to zero) at the limits of the approximation domain.

Next, we performed inference based on the conditional MoP learned with
Algorithm 1. Figures 1(c), (d) and (e) show the MoPs (solid) and true (dashed)
posterior densities for Y given three different values for X . The three values
correspond to the percentiles 10, 50 and 90 of X ∼ N (0, 2). Both the MoPs and
the true posterior densities shown in Figs. 1(c), (d) and (e) were normalized in
the domain ΩY so that they integrate to one. We can see that the MoPs of the
posterior densities are also continuous and close to the true posterior densities;
Kullback-Leibler divergence values are reported in Sect. 3.

2.3 Learning Conditional MoPs Using Interpolation

The preliminary empirical results output by Algorithm 1 show that the sampling
approach can produce good approximations. However, it is difficult to control or
guarantee the quality of the approximation due to the partial normalization.

This shortcoming has motivated an alternative method for learning a MoP
approximation of a conditional probability density for X |Y. The main steps of
the procedure are summarized in Algorithm 2. First, we find MoP approxima-
tions of both the joint density of (X,Y) and the marginal density of Y in the



Learning Mixtures of Polynomials of Conditional Densities from Data 367

0.0

0.1

0.2

0.3

0.4

0.5

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

(a) Conditional MoP of X|Y

X

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

(b) True conditional density of X|Y

X

Y

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(c) MoP posterior density Y|X=−1.81

Y

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

(d) MoP posterior density Y|X=0

Y

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(e) MoP posterior density Y|X=1.81

Y

D
en

si
ty

Fig. 1. (a) Conditional MoP of X|Y learned with Algorithm 1. (b) True conditional
density of X|Y ∼ N (y, 1). (c,d,e) MoP approximations (solid) and true posterior den-
sities (dashed) of Y |X for three values of X.

same way as in Algorithm 1 (steps 1 and 2). Next, we build the conditional MoP
ϕX|Y(x|y) by finding, for each piece poll(x,y) defined in the hyperrectangleAl, a
multidimensional interpolation polynomial of the function given by the quotient
of the joint and the marginal densities ϕX,Y(x,y)/ϕY(y).

Algorithm 2
Inputs:

– DX,Y: A training dataset DX,Y = {(xi,yi)}, i = 1, . . . , N
– r: The order of the MoP
– L: The number of pieces of the MoP

Output: ϕX|Y(x|y). The MoP approximation of the density of X |Y
Steps:

1. Learn a MoP ϕX,Y(x,y) of the joint density of the variables X and Y from
the dataset DX,Y [6].

2. Marginalize out X from ϕX,Y(x,y) to yield a MoP ϕY(y) of the marginal
density of the parent variables Y: ϕY(y) =

∫
ΩX

ϕX,Y(x,y)dx.
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3. For piece poll(x,y), defined in Al, l = 1, . . . , L, in the conditional MoP
ϕX|Y(x|y):

Find a multi-dimensional polynomial approximation of function g(x,y) =
ϕX,Y(x,y)/ϕY(y) using an interpolation method.

We consider two multidimensional interpolation methods, which can be used
to obtain the polynomials of the pieces poll(x,y) in step 3 of Algorithm 2:

– The multidimensional Taylor series expansion (TSE) for a point yields a
polynomial approximation of any differentiable function g. The quotient of
any two functions is differentiable as long as the two functions are also differ-
entiable. In our scenario, polynomials are differentiable functions and, thus,
we can compute the TSE of the quotient of two polynomials. Consequently,
we can use multidimensional TSEs to find a polynomial approximation of
g(x,y) = ϕX,Y(x,y)/ϕY(y) for each piece poll(x,y). We computed these
TSEs of g(x,y) for the midpoint of the hyperrectangle Al.

– Lagrange interpolation (LI) finds a polynomial approximation of any func-
tion g. Before finding the LI polynomial, we need to evaluate function g
on a set of interpolation points. In the one-dimensional scenario, Cheby-
shev points are frequently used as interpolation points [9]. However, mul-
tidimensional LI is not a trivial task because it is difficult to find good
interpolation points in a multidimensional space. Some researchers have re-
cently addressed the two-dimensional scenario [9,10]. To find a conditional
MoP using LI, we first find and evaluate the conditional density function
g(x,y) = ϕX,Y(x,y)/ϕY(y) on the set of interpolation points in Al. Next,
we compute the polynomial poll(x,y) for the piece as the LI polynomial
over the interpolation points defined in Al. Note that other approaches, e.g.,
kernel-based conditional estimation methods, can also be used to evaluate
the conditional density g(x,y) on the set of interpolation points.

Compared with Algorithm 1, there are some apparent (dis)advantages. First,
the conditional MoPs produced by Algorithm 2 are not necessarily continuous.
Second, interpolation methods cannot in general ensure non-negativity, although
LI can be used to ensure it by increasing the order of the polynomials. On
the other hand, the learning method in Algorithm 2 does not need a partial
normalization step. Thus, if the polynomial approximations are close to the
conditional density ϕX,Y(x,y)/ϕY(y), then the conditional MoP using these
polynomial interpolations is expected to be close to normalized. As a result, we
can more directly control the quality of the approximation by varying the degree
of the polynomials and the number of hyperrectangles.

We applied Algorithm 2 to the example in Fig. 1. We used the two-dimensional
LI method over the Padua points in [10] to compute the polynomials poll(x,y)
of the conditional MoP, see Fig. 2(a). The conditional MoP with the highest
BIC score had L = 16 pieces and order r = 3, i.e., 144 polynomial coefficients.
We observe that the conditional MoP in Fig. 2(a) is not continuous. Also, the
MoPs of the posterior density in Figs. 2(c), (d) and (e) are not continuous either;
Kullback-Leibler divergence values are reported in Sect. 3.
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Fig. 2. (a) Conditional MoP of X|Y learned with Algorithm 2. (b) True conditional
density of X|Y ∼ N (y, 1). (c,d,e) MoP approximations (solid) and true posterior den-
sities (dashed) of Y |X for three values of X.

3 A Comparison with MoTBFs

In this section, we compare the approaches proposed in this paper with the
method proposed in [7] for learning conditional MoTBFs from data. Figure 3
shows the MoTBFs of the conditional (a) and the posterior (c,d,e) densities
approximated using the data in Figs. 1 and 2. The conditional MoTBF had
L = 6 pieces and each piece defined a MoP with at most six parameters. MoTBF
approximations of conditional densities are obtained by discretizing the parent
variables and fitting a one-dimensional MoTBF for each combination of the
discrete values of the parents. Compared with the two learning methods proposed
in Algorithms 1 and 2, the method in [7] captures the correlation between the
parent variables and the child variable through the discretization instead of
directly in the functional polynomial expressions.

If there is a weak correlation between the child and parent variables, then
the conditional MoTBF approach is expected to yield approximations with few
pieces. On the other hand, as the variables become more strongly correlated,
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Fig. 3. (a) Conditional MoTBF of X|Y learned with the approach in [7]. (b) True
conditional density of X|Y ∼ N (y, 1). (c,d,e) MoTBF approximations (solid) and true
posterior densities (dashed) of Y |X for three values of X.

additional subintervals will be introduced by the learning algorithm. The MoTBF
learning algorithm does not rely on a discretization of the child variable, but it
rather approximates the density using a higher-order polynomial/exponential
function. In contrast, Algorithms 1 and 2 yield conditional MoPs with more
pieces because the domain of approximation ΩX,Y is split into hyperrectangles
in all the dimensions. However, with the finer-grained division of the domain into
hyperrectangles, the polynomial functions of the conditional MoPs will usually
have a low order.

We empirically compared the results of Algorithm 1, Algorithm 2 (using both
TSE and LI) and the method proposed in [7]. We sampled ten datasets for each
sample size (N = 25, 500, 2500, 5000) from the Gaussian BN, where Y ∼ N (0, 1)
and X |Y ∼ N (y, 1). We used Algorithms 1 and 2 as part of a greedy search
procedure. We started by considering one interval for each dimension (L = 1)
and order r = 2 (linear polynomials). Then, we increased either the number
of intervals to 2 (L = 4) or the order of the polynomials to r = 3. Finally,
we chose the MoP with the highest BIC score out of the two MoPs (increasing
either L or r) and iterated until there was no further increase in the BIC score.
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Table 1. Mean Kullback-Leibler divergences between the MoP approximations and
the true posterior densities for ten datasets sampled from the BN, where Y ∼ N (0, 1)
and X|Y ∼ N (y, 1). The best results for each sample size are highlighted in bold.
Statistically significant differences at α = 0.05 are shown with symbols ∗, †, ‡, �.

N Y |X = x Alg. 1 (∗) Alg. 2 TSE (†) Alg. 2 LI (‡) MoTBF (�)

25
X =-1.81 0.5032 †� 0.7297 0.3487 ∗†� 0.7084 †
X =0.00 0.0746 ‡� 0.0745 ∗‡� 0.1510 0.0939 ‡
X =1.81 0.4952 †‡� 0.7297 ‡ 1.4582 0.7084 †‡

500
X =-1.81 0.4194 0.2321 ∗‡ 0.3161 ∗ 0.2191 ∗‡
X =0.00 0.0239 †‡� 0.0646 � 0.0453 †� 0.0950
X =1.81 0.4141 0.2311 ∗‡ 0.3701 ∗ 0.2170 ∗‡

2500
X =-1.81 0.1045 0.0850 0.1128 0.0728 ∗‡
X =0.00 0.0387 0.0441 0.0097 ∗†� 0.0272 ∗†
X =1.81 0.0984 0.0978 0.1041 0.0695 ∗‡

5000
X =-1.81 0.0575 0.0413 0.0341 ∗ 0.0308 ∗
X =0.00 0.0196 0.0262 0.0221 0.0210
X =1.81 0.0556 0.0425 0.0383 0.0322 ∗

Table 1 shows the mean Kullback-Leibler divergences between the MoPs and
the true posterior densities Y |X for three values of X in the ten repetitions. We
applied a paired Wilcoxon signed-rank test and report statistically significant
differences at a significance level α = 0.05. The null hypothesis is that the two
methods perform similarly. The alternative hypothesis is that the algorithm in
the column outperforms the algorithm shown with a symbol: ∗ for Alg. 1, †
for Alg. 2 with TSE, ‡ for Alg. 2 with LI, and � for conditional MoTBFs. For
instance, a � in the column corresponding to Alg. 1 in Table 1 shows that Alg. 1
significantly outperformed MoTBFs for a given value of N and X . Algorithms 1
and 2 yielded competitive results against conditional MoTBFs.

4 Conclusion

We have presented two methods for learning MoP approximations of the con-
ditional density of X |Y from data. Both methods are based on finding MoP
approximations of the joint density ϕX,Y(x,y) and the marginal density of the
parents ϕY(y). Thus, the first method obtains a sample from the conditional
density ϕX,Y(x,y)/ϕY(y) using a Metropolis-Hastings algorithm, from which
it learns the conditional MoP ϕX|Y(x|y). The second method obtains a MoP
of the conditional density ϕX,Y(x,y)/ϕY(y) using a multidimensional interpo-
lation technique. Multidimensional TSE and LI were considered and evaluated.
The approaches were empirically studied and compared with MoTBFs using a
dataset sampled from a Gaussian BN. As opposed to previous research on ap-
proximating conditional densities, the proposed approaches rely only on data
without assuming any prior knowledge on the generating parametric density.
Also, continuous parents do not need to be discretized.
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In this paper, the same number of intervals were used for learning the MoPs
of the joint and the conditional densities. Also, equal-width intervals [εi, ξi] are
considered in each dimension, and the hyperrectangles Al have the same size. In
the future, we intend to study how to automatically find appropriate values for
the order r, the number of pieces L, and the limits [εi, ξi] of the hyperrectangles
defining each one of the MoPs. This should reduce the number of pieces required
to find good MoP approximations. We also intend to use these approaches in
more complex BNs. This involves considering other problems, e.g., BN structure
learning. Finally, we intend to thoroughly compare these methods with MTE
and MoTBF approaches.
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Abstract. Learning from Observation (a.k.a. learning from demonstra-
tion) studies how computers can learn to perform complex tasks by ob-
serving and thereafter imitating the performance of an expert. Most work
on learning from observation assumes that the behavior to be learned can
be expressed as a state-to-action mapping. However most behaviors of
interest in real applications of learning from observation require remem-
bering past states. We propose a Dynamic Bayesian Network approach
to learning from observation that addresses such problem by assuming
the existence of non-observable states.

1 Introduction

Learning by watching others do something is a natural and highly effective way
for humans to learn. It is also an intuitive and highly promising avenue for
machine learning. It might provide a way for machines to learn how to perform
tasks in a more natural fashion. This form of learning is known as Learning
from Observation (LfO). Works reported in the literature also refer to learning
from demonstration, learning by imitation, programming by demonstration, or
apprenticeship learning, as largely synonymous to LfO.

This paper presents a new framework for LfO, based on Dynamic Bayesian
Networks [7], called LfODBN. While there has been much work on LfO in the
past (for a recent overview, see [1]), most proposed approaches assume that the
behavior to be learned can be represented as a situation-to-action mapping (a
policy). This assumes that, in the behavior to be learned, the choice of actions
depends only on the current observable state. However, most behaviors of interest
in the real world do not satisfy this restriction. For example, if we were to teach
a robot how to automatically drive a car, the robot will need to remember past
information that is not part of the current observable state, such as what was
the last speed limit sign seen.

In general, the problem is that when learning from observation, the learn-
ing agent can observe the state of the world and the actions executed by the
demonstrator or expert, but not the internal mental state of the expert (e.g. her

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 373–382, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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memory). The LfODBN model presented in this paper takes into account that
the expert has a non-observable internal state, and, under some restrictions, can
learn such behaviors.

Work in learning from observation can be traced back to the early days of
AI. For instance, Bauer [2] proposed in 1979 to learn programs from example
executions, which basically amounts to learning strategies to perform abstract
computations by demonstration. This form of learning was especially popular in
robotics [8]. Modern work on the more general LfO subject came from Sammut
et al [15] and Sidani [17]. Fernlund et al. [5] used learning from observation to
build agents capable of driving a simulated automobile in a city environment.
Pomerleau [13] developed the ALVINN system that trained neural networks from
observation of a road-following automobile in the real world. Although the neural
network approach to learning from observation has remained popular with con-
tributions such as the work of Moriarty and Gonzalez [9], LfO has been explored
in the context of many other learning paradigms such as reinforcement learn-
ing [16], case-based reasoning (CBR) [6,11], and Inverse Reinforcement Learning
(IRL) [10]. These approaches, however, ignore the fact that the expert might
have internal state. For example, IRL assumes the expert is solving a Markov
Decision Process (MDP), and thus has no additional internal state other than
the observed state. For IRL to be applicable to the general problem of LfO, it
needs to consider partially observable MDPs (POMDP), to account for the lack
of observability of the expert’s state.

The remainder of this paper is organized as follows. Sections 2 and 3 present
some background on dynamic Bayesian networks and learning from observation
respectively. Then, Section 4 presents our LfODBN model. After that, Section
5 empirically evaluates the LfODBN in a synthetic benchmark.

2 Background

A Bayesian Network (BN) is a modeling tool that represents a collection of
random variables and their conditional dependencies as a directed acyclic graph
(DAG). In this paper, we are interested in a specific type of BNs called Dynamic
Bayesian Networks (DBN) [7]. In a DBN, the variables of the network are divided
into a series of identical time-slices. A time-slice contains the set of variables
representing the state of the process that we are trying to model at a given instant
of time. Variables in a time-slice can only have dependencies with variables in
the same or previous time-slices. DBNs can be seen as graphical representations
of stochastic processes, i.e. random processes that depend on time [12].

The most common example of a DBN is the Hidden Markov Model [14], or
HMM. There are only two variables in each time slice t in an HMM. A hidden
variable Ct, typically called the state, and an observable variable Yt, typical
called the output. The output Yt only depends on the state Ct, and the state Ct

only depends on the state in the previous time slice, Ct−1 (except in the first
time slice). Moreover, the conditional probabilities p(Ct|Ct−1) and p(Yt|Ct) are
assumed to be independent of t.
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Although HMMs are the best known DBN and have many applications, such
as speech recognition [14], there are other well-studied DBNs such as Input-
Output Hiden Markov Models (IOHMM) [3]. In an IOHMM, in addition to the
state and the output, there is an observable input variable, Xt upon which both
the state Ct and the output Yt depend. In the remainder of this paper we will
use the following convention: if X is a variable, then we will use a calligraphic
X to denote the set of values it can take, and lower case to denote the specific
values it takes, i.e. xt ∈ X .

3 Learning from Observation

The goal of learning from observation (LfO) is to automatically learn a behavior
by observing an expert perform a given task. The main difference between LfO
and standard supervised learning is that the goal is to learn a behavior that
might vary over time, rather than approximating a static function. The basic
elements in LfO are the following:

– There is an environment E.
– There is one actor (or trainer, expert, or demonstrator), who performs a task

in the environment E.
– There is a learning agent A, whose goal is to learn how to achieve the task

in the environment E by observing the actions performed by the actor.

In learning from observation, the learning agent A first observes one or several
actors performing the task to be learned in the environment, and records their
behavior in the form of traces, from where behavior is learned. Some learning
from observation approaches assume that the learner also has access to a reward
signal R. In our framework we will assume such reward signal is not available,
and that the goal is thus to just imitate the actor.

Specifically, the behavior of an agent can be captured by three different vari-
ables: its perception of the environment, X , its unobservable internal mental
state C, and the perceptible actions it executes, Y . We will define I = X ×C×Y,
and interpret the actor behavior as a stochastic process I = {I1, ..., In, ...}, with
state space I. It = (Xt, Ct, Yt) is the random variable where Xt and Yt repre-
sent respectively the input and output variables at time t, and Ct represents
the internal state of the actor at time t. The observed behavior of an actor in a
particular execution defines a learning trace: LT = [(x1, y1), ..., (xn, yn)] where
xt and yt represent the specific perception of the environment and action of the
actor at time t. The pair of variables Xt and Yt represent the observation of the
learning agent A, i.e.: Ot = (Xt, Yt). Thus, for simplicity, we can write a learning
trace as LT = [o1, ..., on].

We assume that the random variables Xt and Yt are multidimensional vari-
ables that can be either continuous or discrete. In our framework, thus, the LfO
problem reduces to estimating the unknown probability measure that governs the
stochastic process, taking as input a data set of k trajectories {LTj : 1 ≤ j ≤ k}
of the stochastic process I.
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X3X1 X2

Y2Y1 Y3

C3C1 C2

...

Slice 1 Slice 2 Slice 3

Fig. 1. The LfODBN Model. Grayed out variables are observable by the learning agent,
white variables are hidden. Xt is the perception of the state, Yt is the action, and Ct

is the internal state of the agent.

As mentioned above, most work on LfO [1] assumes that the action Yt depends
exclusively on the state Xt (i.e. that the behavior is Markovian). Under this
assumption, each of the entries (xt, yt) in a trace can be taken as individual
examples in a supervised learning framework. Thus, if we assume that the action
the expert executes at time t only depends on the perception at time t, then
learning from observation is equivalent to supervised learning. However, in many
real-life behaviors this assumption doesn’t hold.

Consider the following example. When a driver in a highway sees a sign in-
dicating the desired exit is approaching, the driver starts merging to the right
lanes, even if she does not see the sign any more. Thus, the driver needs to
remember that she has seen such sign (in her internal state C).

As a second example, imagine an agent wants to learn how to play Stratego
by observation. Stratego is similar to Chess, but players do not see the types
of the pieces of the opponent, only their locations. Thus, the perception of the
state Xt contains only the locations of the pieces of the opponent (in addition
to the player’s piece locations and types). After certain movements, a player can
temporally observe the type of one piece, and must remember this in order to
exploit this information in the future. In this case, the internal state Ct of an
actor should contain all the types of the opponent pieces observed up to time t.

The typical strategy to avoid this situation when designing a LfO system is
to identify all of those aspects the expert has to remember, and include them in
the set of input features. For example, we could add a variable to xt representing
“which is the last exit sign we saw in the highway”. However, this requires manual
“feature engineering”, which is highly undesirable.

4 DBN-Based Learning from Observation

Using the DBN framework, we can represent the probability distribution of the
stochastic process representing the behavior of an actor as the network shown in
Figure 1, that we call the LfODBN model. The LfODBN model contains all the
variables in LfO and their conditional dependencies (grayed out variables are
observable, white variables are hidden). The internal state of the actor at time
t, Ct, depends on the internal state at the previous instant of time, Ct−1, the
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X3X1 X2

Y2Y1 Y3

... X3X1 X2

Y2Y1 Y3

...

Slice 1 Slice 2 Slice 3 Slice 1 Slice 2 Slice 3

Fig. 2. Simplifications of the model in Figure 1 For assumptions 1 (right) and 2 (left)

previous action Yt−1 and of the current observation Xt. The action Yt depends
only on the current observation, Xt and the current internal state Ct.

Given the LfODBN model, if the learning agent wants to learn the behavior
of the expert, it has to learn the dependencies between the variables Ct, Xt, and
Yt, i.e. it has to learn the following conditional probability distributions: ρ(C1),
ρ(Yt|Ct, Xt), and ρ(Ct|Ct−1, Xt, Yt−1). If the learning agent is able to infer the
previous conditional probability distributions, it can replicate the behavior of
the expert. In practice, the main difficulty is that the internal state variable Ct

is not observable, which, although typically neglected in the LfO literature, plays
a key role in many behaviors of interest.

Also, notice that the goal of LfO is just to learn to replicate the behavior
(i.e. actions) of the actor. Thus, relations such as the dependency of Xt in Xt−1

and Yt−1 (that captures the effect that actions have on the environment) are
irrelevant. Those relations would be key, however, if the learning agent was
learning a model of the world for planning purposes.

Let us now present three approaches to LfO based on making three different
assumptions over the internal state of the actor Ct.

4.1 Assumption 1: No Internal State

The assumption that the expert has no internal state, i.e. that Ct is irrelevant, is
equivalent to assuming the behavior is reactive, and thus the action Yt only de-
pends on the current observation (Xt). In this case, we can simplify the LfODBN
model as shown on the right hand side of Figure 2. Under this assumption, we
can just use standard supervised learning techniques to learn the conditional
probability ρ(Yt|Xt).

In this approach, each entry in a learning trace can be treated independently,
and any supervised learning algorithm such as decision trees, neural networks or
SVMs can be used. This is the simplest approach to LfO, with the only drawback
that it cannot learn any behavior that requires the agent to remember anything
from past states. The next two approaches make less restrictive assumptions
about the internal state of the expert, to alleviate this problem.

4.2 Assumption 2: Time Window

In this approach, we assume that the expert internal state is a time window
memory that stores the last k observations (i.e., the current state Xt, and the
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last k − 1 observations Ot−1, ..., Ot−(k−1)). For example, if k = 2, the expert
internal state is Ct = (Xt, Ot−1). Under this assumption we can reformulate the
LfODBN model, as shown on the left hand side of Figure 2 for k = 2. Notice
that given k, we can ignore Ct in the DBN model, and thus, we still have no
hidden variables. In general, for any given k, the conditional probability that
must be learned is: ρ(Yt|Xt, Ot−1, ..., Ot−(k−1)).

In this approach, each subsequence of k entries in a learning trace can be
treated independently as a training example, and we can still use supervised
learning techniques. The main drawback of this approach is that, as k increases,
the number of features in the training examples increases, and thus, the learning
task becomes more complex.

4.3 Assumption 3: Finite Discrete Internal State

Using the time window assumption, it is possible to learn behaviors where the
agent only needs to remember a fixed number of past states; however, in general,
the agent might need to remember a past state that is arbitrarily far in the past.

In this more general assumption, we assume that the internal state of the
expert is discrete and can take a finite amount l of different values. In this
assumption, we need to consider the complete LfODBN model as shown in Figure
1. Under this assumption, the Expectation-Maximization (EM) algorithm [4] can
be used to learn the parameters of the LfODBN.

A possible simplification assumes that the internal state Ct depends only on
previous internal state Ct−1 and observation Xt (i.e. that it does not depend on
the past action). The resulting model corresponds to an Input-Output Hidden
Markov Model (IOHMM), for which specialized algorithms are known [3].

5 Experimental Evaluation

This section presents an experimental validation of algorithms based on the
three assumptions presented above, and compares them with other common LfO
algorithms in the literature. Specifically, these experiments are designed to show
that standard algorithms used in the literature of LfO (such as neural networks)
can only learn a limited set of behaviors; algorithms based on the LfODBN
model, however, make a less restrictive assumption on the internal state of the
expert, and thus, can learn a wider range of behaviors.

The domain we used for our experiments simulates an automatic vacuum
cleaner navigating a room, and removing dirt spots. The goal is to remove dirt
spots in a grid map. For these experiments, all the obstacles are static, and
the only moving object in the simulation is the vacuum cleaner. The simulation
time is discreet, and at each time step, the vacuum cleaner can take one out of
these 5 actions: up, down, left, right and stand still, with their intuitive effect (if
the vacuum tries to move into an obstacle, the effect is equivalent to the stand
still action). Actions are deterministic. Thus, the control variable Y can take 5
different values: {up, down, left, right, stand}.
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The vacuum cleaner perceives the world through 8 different variables: two
binary variables per direction (up, down, left, right), one of them identifying
what can the vacuum cleaner see in each direction (dirt or obstacle), and the
other determining whether the object being seen is close (touching) or far. For
the experiments, we created a collection of 7 different maps, of different sizes,
from 8x8 to 32x32 and with different configuration of obstacles and dirt (with
between 2 to 8 dirt spots). We created several different experts to learn from:

RND: SmartRandom. This agent executes random actions, except if it sees
dirt in one of the four directions, in which case it will move straight for it.

STR: SmartStraightLine. This agent picks a direction at random and moves
in a straight line until collision. Then, it repeats its behavior. But if it sees
dirt in one of the four directions, it will move straight for it.

ZZ: ZigZag. This agent moves in zig-zag: it moves to the right, until colliding,
then moves down and starts moving to the left until colliding. When it cannot
go down any further, it repeats the behavior, but going up, and so on.

SEQ: FixedSequence. This agent always repeats the same, fixed, sequence of
actions (15 actions long). Once the sequence is over, it restarts from scratch.

EXP: SmartExplorer. This is a complex agent that remembers all the cells
in which it has already been. With a high probability (0.75) it selects the
action that will lead him closer to an unexplored cell. Once all the cells in
the map have been explored, the agent stops. If it sees dirt in one of the four
directions, it will move straight for the dirt. Notice that in order to perform
this behavior, the agent needs to remember each cell it has visited before.

We generated a total of 35 learning traces (one per expert per map). Each
learning trace is 1000 steps long. Therefore, the learning agents have 7 learning
traces per expert. We compared the performance of the following algorithms:

Algorithms Making Assumption 1: We used NN (Neural Networks), widely
used in the literature of LfO [13,9], and BN (Bayesian Networks), a direct
implementation of the simplified Bayesian Network shown in Figure 2. Neu-
ral Networks in our experiments have one hidden layer with 10 nodes, and
5 output nodes (one per possible action).

Algorithms Making Assumption 2: We also experimented with two algo-
rithms in this case: NNk2 (Neural Networks) and BNk2 (Bayesian Networks).
For both algorithms, we used k = 2, i.e. they learn to predict the expert ac-
tions based on the current state of the world, and the state and action in
the previous instant of time.

Algorithms Making Assumption 3: We experimented with using the EM
algorithm1 to learn the parameters of both our proposed LfODBN model
(Figure 1), as well as an IOHMM. In both cases, we ran 20 iterations of EM,
and limited the internal state to have 4 different values.

1 Specifically, we used the EM implementation in the Matlab Bayes Net Toolbox using
the jtree 2TBN inf engine inference engine.
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Table 1. Output Evaluation of the different LfO algorithms consisting of the percent-
age of expert actions predicted correctly. The bottom row shows the average of all the
other rows, showing that LfODBN obtains the highest accuracy overall.

NN BN NNk2 BNk2 IOHMM LfODBN

RND 32.0 30.9 32.0 31.0 31.0 31.1
STR 40.0 40.7 85.1 84.8 77.2 84.3
ZZ 41.3 40.9 73.7 91.6 65.2 83.4
SEQ 43.2 36.2 66.4 51.9 85.8 88.2
EXP 48.4 49.3 79.1 77.6 65.3 79.3

Avg. 41.0 39.6 67.26 67.38 64.9 72.3

We evaluated the performance of the algorithms by measuring their accuracy
in predicting the actions executed by the experts. For this purpose, we performed
a leave-one-out evaluation, where agents learned from 6 learning traces, and were
asked to predict the actions in the 7th, test trace. Specifically, given a model
M learned by one of the learning algorithms, and a test trace LT containing n
entries, the predictive accuracy Acc(M,LT ) was measured as follows:

P (M,LT, t) =

{
1 if M(xt, [ot−1, ..., o1]) = yt

0 otherwise

Acc(M,LT ) =
1

n

∑
t=1...n

P (M,LT, t)

where M(xt, [ot−1, ..., o1]) represents the action predicted by the model M given
the observation at time t, and the entire subtrace from time 1 to time t − 1.
Since our traces have 1000 entries each, and we had 7 traces per expert, each
reported result is the average of 7000 predictions.

Table 1 shows the predictive accuracy of each learning algorithm when learn-
ing from each of the experts. The best results for each expert are highlighted in
bold (when more than one learning agent achieved statistically undistinguishable
results, all of them are highlighted in bold). The easiest behavior to learn is the
SmartRandom (RND) expert. All the learning agents were capable to perfectly
learning this behavior. Notice that, even if the behavior is perfectly learned, they
can only predict about a 31% of the actions of this expert, since the behavior of
the expert involved randomness.

Next in difficulty is the SmartStraightLine (STR) expert. For this behavior,
agents need to remember what was the last direction in which they moved.
Thus, learning agents using assumption 1 (NN and BN) could simply not learn
this behavior. All the other learning agents could learn this behavior perfectly
(except IOHMM, which learned a pretty good approximation, but not exactly).
The problem with IOHMM is that the relationship between Yt−1 and Ct is not
present in the DBN, and thus, it has troubles learning behaviors that depend
on the previous action. Again, no agent reached a 100% of prediction accuracy,
since the expert would pick a random direction each time it hit a wall.
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The ZigZag (ZZ) agent is even harder to learn, since, in addition to the last
direction of movement, the agent must remember whether it is currently trav-
eling down or up. No learning algorithm was able to learn this properly. All
the algorithms making assumptions 2 and 3 properly learned the left-to-right
behavior (and thus the high accuracy of BNk2), but none was capable of learn-
ing when to move down or up when changing directions. This was expected for
algorithms making assumption 2, however, algorithms making assumption 3 are,
in principle, capable of learning this. GEM was not capable of learning this from
the training data provided though, and ended up learning only an approximate
behavior, with some mistakes.

The FixedSequence (SEQ) expert is complex to learn, since, in order to learn
the fixed sequence of 15 moves, agents must internally remember in which of
the 15 states of the sequence they are. By using the past action as a reference,
algorithms making assumption 2 (NNk2, BNk2) could better learn this behavior
better that agents making assumption 1 (NN, BN) (increasing the value of k all
the way up to 15 should let agents using assumption 2 learn this behavior, but
with prohibitive number of features). However, only agents making assumption
3 could learn a good enough approximation.

Finally, the SmartExplorer (EXP) expert is very hard to learn, since it involves
remembering every cell that has been visited. None of the agents was able to learn
this behavior. Some algorithms, like LfODBN, have a high predictive accuracy
(79.3%) just because they appropriately learn the probability of the expert to
stop (the expert stops after exploring the whole room), and then they can predict
correctly that the expert will just issue the stand action till the end of the trace.
The bottom row of Table 1 shows the average predictive accuracy for all the
learning algorithms we experimented with, showing that LfODBN obtains the
highest accuracy overall.

6 Conclusions

This paper has presented a model of Learning form Observation (LfO) based on
Dynamic Bayesian Networks (DBN), called LfODBN. The main contribution of
this model is that it makes explicit the need for accounting for the unobservable
internal state of the expert when learning a behavior from observation.

Additionally, we proposed three different approaches to learn from observa-
tion, based on three different assumptions on the internal state of the expert: 1)
assume the expert has no internal state, 2) assume the internal state of the expert
is a memory of the last k states, and 3) assume the expert has a finite discrete
internal state. Each of the three assumptions leads to a different collection of
algorithms: the first two can be addressed with supervised learning algorithms,
but the last requires a different learning approach (for which we propose to use
DBN learning algorithms that account for hidden variables).

Our experimental results show that algorithms making different assumptions
can learn different ranges of behaviors, and that supervised learning approaches
to LfO are not enough to deal with the general form of the LfO problem.
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As part of our future work, we want to explore further less restrictive assump-
tions over the internal state of the expert, that allow learning broader ranges of
behaviors, while still being tractable. Finally, we would also study better evalu-
ation metrics for LfO, since, as observed in this paper, traditional classification
accuracy is not very representative of the performance of LfO algorithms.
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Abstract. In [6], MCMC sampling is applied to approximately calculate
the ratio of essential graphs (EGs) to directed acyclic graphs (DAGs) for
up to 20 nodes. In the present paper, we extend that work from 20 to
31 nodes. We also extend that work by computing the approximate ratio
of connected EGs to connected DAGs, of connected EGs to EGs, and of
connected DAGs to DAGs. Furthermore, we prove that the latter ratio
is asymptotically 1. We also discuss the implications of these results for
learning DAGs from data.

Keywords: Bayesian networks, Markov equivalence, MCMC.

1 Introduction

Probably the most common approach to learning directed acyclic graph (DAG)
models1 from data, also known as Bayesian network models, is that of performing
a search in the space of either DAGs or DAG models. In the latter case, DAG
models are typically represented as essential graphs (EGs). Knowing the ratio
of EGs to DAGs for a given number of nodes is a valuable piece of information
when deciding which space to search. For instance, if the ratio is low, then one
may prefer to search the space of EGs rather than the space of DAGs, though the
latter is usually considered easier to traverse. Unfortunately, while the number
of DAGs can be computed without enumerating them all [9, Equation 8], the
only method for counting EGs that we are aware of is enumeration. Specifically,
Gillispie and Perlman enumerated all the EGs for up to 10 nodes by means of a
computer program [3]. They showed that the ratio is around 0.27 for 7-10 nodes.
They also conjectured a similar ratio for more than 10 nodes by extrapolating
the exact ratios for up to 10 nodes.

Enumerating EGs for more than 10 nodes seems challenging: To enumerate
all the EGs over 10 nodes, the computer program of [3] needed 2253 hours
in a ”mid-1990s-era, midrange minicomputer”. We obviously prefer to know
the exact ratio of EGs to DAGs for a given number of nodes rather than an
approximation to it. However, an approximate ratio may be easier to obtain
and serve as well as the exact one to decide which space to search. In [6], a
Markov chain Monte Carlo (MCMC) approach was proposed to approximately

1 All the graphs considered in this paper are labeled graphs.
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calculate the ratio while avoiding enumerating EGs. This approach consisted of
the following steps. First, the author constructed a Markov chain (MC) whose
stationary distribution was uniform over the space of EGs for the given number
of nodes. Then, the author sampled that stationary distribution and computed
the ratio R of essential DAGs (EDAGs) to EGs in the sample. Finally, the
author transformed this approximate ratio into the desired approximate ratio of
EGs to DAGs as follows: Since #EGs

#DAGs can be expressed as #EDAGs
#DAGs

#EGs
#EDAGs ,

2

then we can approximate it by #EDAGs
#DAGs

1
R where #DAGs and #EDAGs can be

computed via [9, Equation 8] and [10, p. 270], respectively. The author reported
the so-obtained approximate ratio for up to 20 nodes. The approximate ratios
agreed well with the exact ones available in the literature and suggested that
the exact ratios are not very low (the approximate ratios were 0.26-0.27 for 7-20
nodes). This indicates that one should not expect more than a moderate gain
in efficiency when searching the space of EGs instead of the space of DAGs. Of
course, this is a bit of a bold claim since the gain is dictated by the average
ratio over the EGs visited during the search and not by the average ratio over
all the EGs in the search space. For instance, the gain is not the same if we
visit the empty EG, whose ratio is 1, or the complete EG, whose ratio is 1/n!
for n nodes. Unfortunately, it is impossible to know beforehand which EGs will
be visited during the search. Therefore, the best we can do is to draw (bold)
conclusions based on the average ratio over all the EGs in the search space.

In this paper, we extend the work in [6] from 20 to 31 nodes. We also extend
that work by reporting some new approximate ratios. Specifically, we report
the approximate ratio of connected EGs (CEGs) to connected DAGs (CDAGs),
of CEGs to EGs, and of CDAGs to DAGs. We elaborate later on why these
ratios are of interest. The approximate ratio of CEGs to CDAGs is computed
from the sample as follows. First, we compute the ratio R′ of EDAGs to CEGs
in the sample. Second, we transform this approximate ratio into the desired
approximate ratio of CEGs to CDAGs as follows: Since #CEGs

#CDAGs can be expressed

as #EDAGs
#CDAGs

#CEGs
#EDAGs , then we can approximate it by #EDAGs

#CDAGs
1
R′ where #EDAGs

can be computed by [10, p. 270] and #CDAGs can be computed as shown in
Appendix A. The approximate ratio of CEGs to EGs is computed directly from
the sample. The approximate ratio of CDAGs to DAGs is computed with the
help of Appendix A and [9, Equation 8].

The computer program implementing the MCMC approach described above is
essentially the same as in [6] (it has only been modified to report whether the EGs
sampled are connected or not).3 The program is written in C++ and compiled
in Microsoft Visual C++ 2010 Express. The experiments are run on an AMD
Athlon 64 X2 Dual Core Processor 5000+ 2.6 GHz, 4 GB RAM and Windows
Vista Business. The compiler and the computer used in [6] were Microsoft Visual
C++ 2008 Express and a Pentium 2.4 GHz, 512 MB RAM and Windows 2000.

2 We use the symbol # followed by a class of graphs to denote the cardinality of the
class.

3 The modified program will be made available after publication.
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Table 1. Exact and approximate #EGs
#DAGs

and #EDAGs
#EGs

NODES EXACT OLD APPROXIMATE NEW APPROXIMATE
#EGs

#DAGs
#EDAGs

#EGs Hours #EGs
#DAGs

#EDAGs
#EGs Hours #EGs

#DAGs
#EDAGs

#EGs Hours

2 0.66667 0.50000 0.0 0.66007 0.50500 3.5 0.67654 0.49270 1.3

3 0.44000 0.36364 0.0 0.43704 0.36610 5.2 0.44705 0.35790 1.0

4 0.34070 0.31892 0.0 0.33913 0.32040 6.8 0.33671 0.32270 1.2

5 0.29992 0.29788 0.0 0.30132 0.29650 8.0 0.29544 0.30240 1.4

6 0.28238 0.28667 0.0 0.28118 0.28790 9.4 0.28206 0.28700 1.6

7 0.27443 0.28068 0.0 0.27228 0.28290 12.4 0.27777 0.27730 2.0

8 0.27068 0.27754 0.0 0.26984 0.27840 13.8 0.26677 0.28160 2.3

9 0.26888 0.27590 7.0 0.27124 0.27350 16.5 0.27124 0.27350 2.6

10 0.26799 0.27507 2253.0 0.26690 0.27620 18.8 0.26412 0.27910 3.1

11 0.26179 0.28070 20.4 0.26179 0.28070 3.8

12 0.26737 0.27440 21.9 0.26825 0.27350 4.2

13 0.26098 0.28090 23.3 0.27405 0.26750 4.5

14 0.26560 0.27590 25.3 0.27161 0.26980 5.1

15 0.27125 0.27010 25.6 0.26250 0.27910 5.7

16 0.25777 0.28420 27.3 0.26943 0.27190 6.7

17 0.26667 0.27470 29.9 0.26942 0.27190 7.6

18 0.25893 0.28290 37.4 0.27040 0.27090 8.2

19 0.26901 0.27230 38.1 0.27130 0.27000 9.0

20 0.27120 0.27010 40.3 0.26734 0.27400 9.9

21 0.26463 0.27680 17.4

22 0.27652 0.26490 18.8

23 0.26569 0.27570 13.3

24 0.27030 0.27100 14.0

25 0.26637 0.27500 15.9

26 0.26724 0.27410 17.0

27 0.26950 0.27180 18.6

28 0.27383 0.26750 20.1

29 0.27757 0.26390 21.1

30 0.28012 0.26150 21.6

31 0.27424 0.26710 47.3

The experimental settings is the same as before for up to 30 nodes, i.e. each
approximate ratio reported is based on a sample of 104 EGs, each obtained as
the state of the MC after performing 106 transitions with the empty EG as
initial state. For 31 nodes though, each EG sampled is obtained as the state of
the MC after performing 2× 106 transitions with the empty EG as initial state.
We elaborate later on why we double the length of the MCs for 31 nodes.

The rest of the paper is organized as follows. In Section 2, we extend the work
in [6] from 20 to 31 nodes. In Section 3, we extend the work in [6] with new
approximate ratios. In Section 4, we recall our findings and discuss future work.
The paper ends with two appendices devoted to technical details.

2 Extension from 20 to 31 Nodes

Table 1 presents our new approximate ratios, together with the old approximate
ones and the exact ones available in the literature. The first conclusion that we
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draw from the table is that the new ratios are very close to the exact ones, as
well as to the old ones. This makes us confident on the accuracy of the ratios for
11-31 nodes, where no exact ratios are available in the literature due to the high
computational cost involved in calculating them. Another conclusion that we
draw from the table is that the ratios seem to be 0.26-0.28 for 11-31 nodes. This
agrees well with the conjectured ratio of 0.27 for more than 10 nodes reported in
[3]. A last conclusion that we draw from the table is that the fraction of EGs that
represent a unique DAG, i.e. #EDAGs

#EGs , is 0.26-0.28 for 11-31 nodes, a substantial
fraction.

Recall from the previous section that we slightly modified the experimental
setting for 31 nodes, namely we doubled the length of the MCs. The reason
is as follows. We observed an increasing trend in #EGs

#DAGs for 25-30 nodes, and
interpreted this as an indication that we might be reaching the limits of our
experimental setting. Therefore, we decided to double the length of the MCs for
31 nodes in order to see whether this broke the trend. As can be seen in Table
1, it did. This suggests that approximating the ratio for more than 31 nodes will
require larger MCs and/or samples than the ones used in this work.

Note that we can approximate the number of EGs for up to 31 nodes as
#EGs
#DAGs#DAGs, where #EGs

#DAGs comes from Table 1 and #DAGs comes from [9,

Equation 8]. Alternatively, we can approximate it as #EGs
#EDAGs#EDAGs, where

#EGs
#EDAGs comes from Table 1 and #EDAGs can be computed by [10, p. 270].

Finally, a few words on the running times reported in Table 1 may be in place.
First, note that the times reported in Table 1 for the exact ratios are borrowed
from [3] and, thus, they correspond to a computer program run on a ”mid-1990s-
era, midrange minicomputer”. Therefore, a direct comparison to our times seems
unadvisable. Second, our times are around four times faster than the old times.
The reason may be in the use of a more powerful computer and/or a different
version of the compiler. The reason cannot be in the difference in the computer
programs run, since this is negligible. Third, the new times have some oddities,
e.g. the time for two nodes is greater than the time for three nodes. The reason
may be that the computer ran other programs while running the experiments
reported in this paper.

3 Extension with New Ratios

In [3, p. 153], it is stated that ”the variables chosen for inclusion in a multi-
variate data set are not chosen at random but rather because they occur in a
common real-world context, and hence are likely to be correlated to some de-
gree”. This implies that the EG learnt from some given data is likely to be
connected. We agree with this observation, because we believe that humans are
good at detecting sets of mutually uncorrelated variables so that the original
learning problem can be divided into smaller independent learning problems,
each of which results in a CEG. Therefore, although we still cannot say which
EGs will be visited during the search, we can say that some of them will most
likely be connected and some others disconnected. This raises the question of
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Table 2. Approximate #CEGs
#CDAGs

, #CEGs
#EGs

and #CDAGs
#DAGs

NODES NEW APPROXIMATE
#CEGs

#CDAGs
#CEGs
#EGs

#CDAGs
#DAGs

2 0.51482 0.50730 0.66667

3 0.39334 0.63350 0.72000

4 0.32295 0.78780 0.82136

5 0.29471 0.90040 0.90263

6 0.28033 0.94530 0.95115

7 0.27799 0.97680 0.97605

8 0.26688 0.98860 0.98821

9 0.27164 0.99560 0.99415

10 0.26413 0.99710 0.99708

11 0.26170 0.99820 0.99854

12 0.26829 0.99940 0.99927

13 0.27407 0.99970 0.99964

14 0.27163 0.99990 0.99982

15 0.26253 1.00000 0.99991

16 0.26941 0.99990 0.99995

17 0.26942 1.00000 0.99998

18 0.27041 1.00000 0.99999

19 0.27130 1.00000 0.99999

20 0.26734 1.00000 1.00000

21 0.26463 1.00000 1.00000

22 0.27652 1.00000 1.00000

23 0.26569 1.00000 1.00000

24 0.27030 1.00000 1.00000

25 0.26637 1.00000 1.00000

26 0.26724 1.00000 1.00000

27 0.26950 1.00000 1.00000

28 0.27383 1.00000 1.00000

29 0.27757 1.00000 1.00000

30 0.28012 1.00000 1.00000

31 0.27424 1.00000 1.00000

∞ ? ? ≈ 1

whether #CEGs
#CDAGs ≈

#DEGs
#DDAGs where DEGs and DDAGs stand for disconnected

EGs and disconnected DAGs. In [3, p. 154], it is also said that a consequence
of the learnt EG being connected is ”that a substantial number of undirected
edges are likely to be present in the representative essential graph, which in turn
makes it likely that the corresponding equivalence class size will be relatively
large”. In other words, they conjecture that the equivalence classes represented
by CEGs are relatively large. We interpret the term ”relatively large” as having
a ratio smaller than #EGs

#DAGs . However, this conjecture does not seem to hold
according to the approximate ratios presented in Table 2. There, we can see
that #CEGs

#CDAGs ≈ 0.26-0.28 for 6-31 nodes and, thus, #CEGs
#CDAGs ≈

#EGs
#DAGs . That

the two ratios coincide is not by chance because #CEGs
#EGs ≈ 0.95-1 for 6-31 nodes,

as can be seen in the table. A problem of this ratio being so close to 1 is that
sampling a DEG is so unlikely that we cannot answer the question of whether



388 J.M. Peña

#CEGs
#CDAGs ≈ #DEGs

#DDAGs with our sampling scheme. Therefore, we have to con-

tent with having learnt that #CEGs
#CDAGs ≈

#EGs
#DAGs . It is worth mentioning that

this result is somehow conjectured by Kočka when he states in a personal com-
munication to Gillispie that ”large equivalence classes are merely composed of
independent classes of smaller sizes that combine to make a single larger class”
[2, p. 1411]. Again, we interpret the term ”large” as having a ratio smaller than
#EGs
#DAGs . Again, we cannot check Kočka’s conjecture because sampling a DEG is
very unlikely. However, we believe that the conjecture holds, because we expect
the ratios for those EGs with k connected components to be around 0.27k, i.e. we
expect the ratios of the components to be almost independent one of another.
Gillispie goes on saying that ”an equivalence class encountered at any single
step of the iterative [learning] process, a step which may involve altering only a
small number of edges (typically only one), might be quite small” [2, p. 1411].
Note that the equivalence classes that he suggests that are quite small must
correspond to CEGs, because he suggested before that large equivalence classes
correspond to DEGs. We interpret the term ”quite small” as having a ratio
greater than #EGs

#DAGs . Again, this conjecture does not seem to hold according to

the approximate ratios presented in Table 2. There, we can see that #CEGs
#CDAGs ≈

0.26-0.28 for 6-31 nodes and, thus, #CEGs
#CDAGs ≈

#EGs
#DAGs .

From the results in Tables 1 and 2, it seems that the asymptotic values for
#EGs
#DAGs ,

#EDAGs
#EGs , #CEGs

#CDAGs and #CEGs
#EGs should be around 0.27, 0.27, 0.27 and

1, respectively. It would be nice to have a formal proof of these results. In this
paper, we have proven a related result, namely that the ratio of CDAGs to
DAGs is asymptotically 1. The proof can be found in Appendix B. Note from
Table 2 that the asymptotic value is almost achieved for 6-7 nodes already. Our
result adds to the list of similar results in the literature, e.g. the ratio of labeled
connected graphs to labeled graphs is asymptotically 1 [4, p. 205].

Note that we can approximate the number of CEGs for up to 31 nodes
as #CEGs

#EGs #EGs, where #CEGs
#EGs comes from Table 2 and #EGs can be com-

puted as shown in the previous section. Alternatively, we can approximate it as
#CEGs
#CDAGs#CDAGs, where #CEGs

#CDAGs comes from Table 2 and #CDAGs can be
computed as shown in Appendix A.

Finally, note that the running times to obtain the results in Table 2 are the
same as those in Table 1, because both tables are based on the same samples.

4 Discussion

In [3], it is shown that #EGs
#DAGs ≈ 0.27 for 7-10 nodes. We have shown in this paper

that #EGs
#DAGs ≈ 0.26-0.28 for 11-31 nodes. These results indicate that one should

not expect more than a moderate gain in efficiency when searching the space of
EGs instead of the space of DAGs. We have also shown that #CEGs

#CDAGs ≈ 0.26-

0.28 for 6-31 nodes and, thus, #CEGs
#CDAGs ≈

#EGs
#DAGs . Therefore, when searching

the space of EGs, the fact that some of the EGs visited will most likely be
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connected does not seem to imply any additional gain in efficiency beyond that
due to searching the space of EGs instead of the space of DAGs.

Some questions that remain open and that we would like to address in the fu-
ture are checking whether #CEGs

#CDAGs ≈
#DEGs
#DDAGs , and computing the asymptotic

ratios of EGs to DAGs, EDAGs to EGs, CEGs to CDAGs, and of CEGs to EGs.
Recall that in this paper we have proven that the asymptotic ratio of CDAGs
to DAG is 1. Another topic for further research, already mentioned in [6], would
be improving the graphical modifications that determine the MC transitions,
because they rather often produce a graph that is not an EG. Specifically, the
MC transitions are determined by choosing uniformly one out of seven modifi-
cations to perform on the current EG. Actually, one of the modifications leaves
the current EG unchanged. Therefore, around 14 % of the modifications cannot
change the current EG and, thus, 86 % of the modifications can change the cur-
rent EG. In our experiments, however, only 6-8 % of the modifications change
the current EG. The rest up to the mentioned 86 % produce a graph that is not
an EG and, thus, they leave the current EG unchanged. This problem has been
previously pointed out in [7]. Furthermore, he presents a set of more complex
modifications that are claimed to alleviate the problem just described. Unfor-
tunately, no evidence supporting this claim is provided. More recently, He et
al. have proposed an alternative set of modifications having a series of desir-
able features that ensure that applying the modifications to an EG results in a
different EG [5]. Although these modifications are more complex than those in
[6], the authors show that their MCMC approach is thousands of times faster
for 3, 4 and 6 nodes [5, pp. 17-18]. However, they also mention that it is un-
fair to compare these two approaches: Whereas 104 MCs of 106 transitions each
are run in [6] to obtain a sample, they only run one MC of 104-105 transitions.
Therefore, it is not clear how their MCMC approach scales to 10-30 nodes as
compared to the one in [6]. The point of developing modifications that are more
effective than ours at producing EGs is to make a better use of the running time
by minimizing the number of graphs that have to be discarded. However, this
improvement in effectiveness has to be weighed against the computational cost
of the modifications, so that the MCMC approach still scales to the number of
nodes of interest.

Appendix A: Counting CDAGs

Let A(x) denote the exponential generating function for DAGs. That is,

A(x) =
∞∑
k=1

Ak

k!
xk

where Ak denotes the number of DAGs of order k. Likewise, let a(x) denote the
exponential generating function for CDAGs. That is,

a(x) =

∞∑
k=1

ak
k!

xk
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where ak denotes the number of CDAGs of order k. Note that Ak can be
computed without having to resort to enumeration by [9, Equation 8]. However,
we do not know of any formula to compute ak without enumeration. Luckily, ak
can be computed from Ak as follows. First, note that

1 +A(x) = ea(x)

as shown by [4, pp. 8-9]. Now, let us define A0 = 1 and redefine A(x) as

A(x) =
∞∑
k=0

Ak

k!
xk,

i.e. the summation starts with k = 0. Then,

A(x) = ea(x).

Consequently,

an
n!

=
An

n!
− (

n−1∑
k=1

k
ak
k!

An−k

(n− k)!
)/n

as shown by [4, pp. 8-9], and thus

an = An − (

n−1∑
k=1

k

(
n

k

)
akAn−k)/n.

See also [1, pp. 38-39]. Moreover, according to [12, Sequence A082402], the result
in this appendix has previously been reported in [8]. However, we could not gain
access to that paper to confirm it.

Appendix B: Asymptotic Behavior of CDAGs

Theorem 1. The ratio of CDAGs of order n to DAGs of order n tends to 1 as
n tends to infinity.

Proof. Let An and an denote the numbers of DAGs and CDAGs of order n,
respectively. Specifically, we prove that (An/n!)/(an/n!)→ 1 as n→∞. By [13,
Theorem 6], this holds if the following three conditions are met:

(i) log((An/n!)/(An−1/(n− 1)!))→∞ as n→∞,
(ii) log((An+1/(n+1)!)/(An/n!)) ≥ log((An/n!)/(An−1/(n− 1)!)) for all large

enough n, and
(iii)

∑∞
k=1(Ak/k!)

2/(A2k/(2k)!) converges.

We start by proving that the condition (i) is met. Note that from every DAG
G over the nodes {v1, . . . , vn−1} we can construct 2n−1 different DAGs H over
{v1, . . . , vn} as follows: Copy all the arrows from G to H and make vn a child in
H of each of the 2n−1 subsets of {v1, . . . , vn−1}. Therefore,

log((An/n!)/(An−1/(n− 1)!)) ≥ log(2n−1/n)
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which clearly tends to infinity as n tends to infinity.
We continue by proving that the condition (ii) is met. Every DAG over the

nodes V ∪ {w} can be constructed from a DAG G over V by adding the node w
to G and making it a child of a subset Pa of V . If a DAG can be so constructed
from several DAGs, we simply consider it as constructed from one of them. Let
H1, . . . , Hm represent all the DAGs so constructed from G. Moreover, let Pai
denote the subset of V used to construct Hi from G. From each Pai, we can
now construct 2m DAGs over V ∪ {w, u} as follows: (i) Add the node u to Hi

and make it a child of each subset Paj ∪ {w} with 1 ≤ j ≤ m, and (ii) add the
node u to Hi and make it a parent of each subset Paj ∪ {w} with 1 ≤ j ≤ m.
Therefore, An+1/An ≥ 2An/An−1 and thus

log((An+1/(n+ 1)!)/(An/n!)) = log(An+1/An)− log(n+ 1)

≥ log(2An/An−1)−log(n+1) ≥ log(2An/An−1)−log(2n) = log(An/An−1)−logn

= log((An/n!)/(An−1/(n− 1)!)).

Finally, we prove that the condition (iii) is met. Let G and G′ denote two
(not necessarily distinct) DAGs of order k. Let V = {v1, . . . , vk} and V ′ =
{v′1, . . . , v′k} denote the nodes in G and G′, respectively. Consider the DAG H
over V ∪V ′ that has the union of the arrows in G andG′. Let w and w′ denote two
nodes in V and V ′, respectively. Let S be a subset of size k−1 of V ∪V ′\{w,w′}.
Now, make w a parent in H of all the nodes in S ∩ V ′, and make w′ a child in
H of all the nodes in S ∩ V . Note that the resulting H is a DAG of order 2k.
Note that there are k2 different pairs of nodes w and w′. Note that there are(
2k−2
k−1

)
different subsets of size k − 1 of V ∪ V ′ \ {w,w′}. Note that every choice

of DAGs G and G′, nodes w and w′, and subset S gives rise to a different DAG
H . Therefore, A2k/A

2
k ≥ k2

(
2k−2
k−1

)
and thus

∞∑
k=1

(Ak/k!)
2/(A2k/(2k)!) =

∞∑
k=1

A2
k(2k)!/(A2kk!

2)

≤
∞∑
k=1

((k − 1)!(k − 1)!(2k)!)/(k2(2k − 2)!k!2) =
∞∑
k=1

(4k − 2)/k3

which clearly converges.
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Taking Advantage of All the Information Contained

in Low Order Interactions
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Abstract. This work presents a multidimensional classifier described in terms of
interaction factors called multidimensional k-interaction classifier. The classifier
is based on a probabilistic model composed of the product of all the interaction
factors of order lower or equal to k and it takes advantage of all the information
contained in them. The proposed classifier does not require a model selection
step and its complexity is controlled by the regularization parameter k. Multidi-
mensional k-interaction classifier is a generalization of the Kikuchi-Bayes clas-
sifier (Jakulin et al. 2004) to the multidimensional classification problem. The
proposed multidimensional classifier is especially appropriate for small k values
and for low dimensional domains. Multidimensional k-interaction classifier has
shown a competitive behavior in difficult artificial domains for which the low
order marginal distributions are almost uniform.

1 Multidimensional Supervised Classification

In the last years, a novel problem called multidimensional supervised classification has
been proposed by the machine learning community. It is the natural generalization of
the well known supervised classification problem, from a single class variable to multi-
ple class variables. The interest in multidimensional supervised classification emerges
naturally from the real world problems where, usually, more than one variable is needed
to be predicted or diagnosed. Many of the methodological contributions to this novel
problem consist of adapting techniques taken from supervised classification by taking
advantage of the relations among the different class variables. This work generalizes
the Kikuchi-Bayes classifier [7] to the multidimensional supervised classification prob-
lem by modeling the lower order interactions among the class variables. We propose an
alternative interpretation of the probabilistic model in which the classifier is based: it is
presented in terms of interaction factors instead of the Kikuchi approximation.

Formally, a multidimensional supervised classification problem consists of two types
of random variables, the features denoted as X = (X1, ..., Xn) and the class variables
denoted as C = (C1, ..., Cm) [1]. In this work we focus on discrete random variables,
where Xi and Cj takes ri and lj possible categories (or labels) in the spaces ΩXi and
ΩCj , respectively. The random variables X and C take values in ΩX = ΩX1 × ... ×
ΩXn and ΩC = ΩC1 × ... × ΩCm , respectively. Given a set of indexes S, we denote
XS the |S|-dimensional random variable (Xi)i∈S . We say that a function defined over

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 393–401, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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XS has order |S|. We assume that the features and the class variables are distributed
according to a joint probability distribution denoted as p(x, c), where x = (x1, ..., xn)
and c = (c1, ..., cm) are instantiations of the random variables X and C , respectively.
A multidimensional classifier can be seen as a function ψ(x) which maps ΩX onto
ΩC . The quality of the constructed classifier is usually measured in terms of (global)
classification error defined as the probability of misclassification, and given by ε(ψ) =∑

x p(x)[1− p(ψ(x)|x)].
One of the main approaches to construct a classifier consists of estimating the joint

distribution p(X,C) from the available data D = {(x1, c1), ..., (xN , cN )}, e.g. using
maximum likelihood estimation. Thus, the classifier is given by an estimate of the joint
distribution together with the Bayes (classification) rule:

ψ(x) ≡ argc max p̂(x, c) (1)

where p̂ represents the estimated probability distribution. This approach is known as
generative [8] and it is optimal in terms of classification error when the true distribution
is used. The optimal classifier is known as the Bayes classifier. In the multidimensional
classification literature stand out the use of generative classifiers based on Bayesian
networks [1,2,4,14,16,17].

A closely related approach consists of using an estimate of the class conditional
distribution p̂(c|x), instead of the joint distribution, to define the classifier ψ(x) ≡
argcmax p̂(c|x). This alternative approach is known as conditional (or discriminative)
[8]. The reader should note that any function f(x, c), fulfilling f(x, c) ∝ p̂(x, c) when
x is fixed, produces a classifier equivalent to the one given by Equation 1. The mul-
tidimensional classifier proposed in this work is a conditional classifier. We consider
this choice more appropriate because the conditional distribution requires the estima-
tion of fewer parameters than the joint distribution, and because p̂(x) is irrelevant for
classification purposes [5].

In Section 2 we propose the multidimensional k-interaction classifier. Section 3
presents the empirical results obtained in artificial domains, which highlight the benefits
of our proposal compared to forward greedy classifier induction algorithms. Finally, in
Section 4, we summarize the main contributions of this work and we point out the main
future work lines.

2 Multidimensional k-Interaction Classifier

This section presents the multidimensional k-interaction classifier (MkIC). MkIC is a
conditional classifier based on an approximation of the class conditional distribution
p(c|x). The approximation is presented in terms of a product of interaction factors, which
are closely related to the quantity of information theory called interaction information.
A single regularization parameter k, fixed by the user, limits the order of the marginal
distributions involved in the factorization of the approximation. This classifier is the gen-
eralization of Kikuchi-Bayes [7] to the multidimensional classification problem.

It is easy to prove that the joint distribution of XS can be factorized as follows:

p(xS) =
∏
R⊆S

φ(xR) (2)
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where φ is called interaction factor. That is, the joint distribution of a set of discrete
random variables is factorized into the product of the interaction factors of all of its
subsets. The interaction factor for XS is defined as

φ(xS) =
∏
R⊆S

p(xR)(−1)|S|−|R|
(3)

where φ(xS) = 1 when p(xS) = 0. Besides, φ(xS) can be alternatively defined as
the quotient of the joint distribution for XS divided by its Kirkwood approximation
[10]. The expectation of the logarithm of an interaction factor E[log φ(x)] is an in-
formation theory quantity called interaction information [6,11,12]. Krippendorff [11]
indicates that it is a unique dependency from which all relations of a lower order are
removed. The interaction information has been used in order to quantify the strength of
the interaction among a set of random variable [6,12].

In the light of Equation 2 we can decompose the class conditional distribution as
follows:

p(c|x) = p(x, c)

p(x)

=

∏
S⊆{1,...,m}

∏
R⊆{1,...,n} φ(xR, cS)∏

R⊆{1,...,n} φ(xR)

=
∏

S⊆{1,...,m}
S	=∅

∏
R⊆{1,...,n}

φ(xR, cS)

Note that all the factors of the denominator in the second equality are included in the
numerator and, thus, they have been removed for obtaining the last equality.

Our approach to the conditional distribution p(c|x) is based on the interaction factors
of order lower or equal to k:

fk(c|x) =
∏

S⊆{1,...,m}
0<|S|≤k

∏
R⊆{1,...,n}
|S|+|R|≤k

φ(xR, cS)

Higher order factors are ignored in order to control the complexity of the approxi-
mation, i.e. the number of parameters. The function fk is known in the literature as
a hierarchical structural model [11]. The approximation fk to p(c|x) for values of k
higher than one is not a distribution except for special cases of p(c|x). However, we
can construct a classifier based on this approach using the Bayes rule because we are
only interested in the maximum value of fk given x. Moreover, the approximation can
be easily normalized for each value x.

The function fk can be expressed in terms of marginal distributions in a closed form
as follows:

fk(c|x) =
∏

S⊆{1,...,m}
0<|S|≤k

∏
R⊆{1,...,n}
|S|+|R|≤k

p(xR, cS)
eSR (4)
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where the exponents are given by eSR =
∑k−|S|

i=0

∑k−i−|S|−|R|
j=0 (−1)i+j

(
m−|S|

i

)(
n−|R|

j

)
.

For example, in a domain with x = (X1, X2) and C = (C1, C2) we have that
f2(c|x) = φ(c1)φ(c2)φ(c1, c2)φ(x1, c1)φ(x2, c1)φ(x1, c2)φ(x2, c2) or, equivalently,
f2(c|x) = p(c1, c2)p(x1, c1)p(x2, c1)p(x1, c2)p(x2, x2)p(c1)

−2p(c2)
−2p(x1)

−2

p(x2)
−2.

MkIC is defined as follows:

ψk(x) ≡ argc max fk(c|x)

2.1 Merits and Caveats of MkIC

MkIC depends on a single regularization parameter k which controls the number of
parameters of the model and the maximum order of the marginal distributions. The
model is completely determined by the marginal distributions of order k, because lower
order marginal distributions can be obtained by marginalization. The approximation
fk given in Equation 4 models all the interactions of order lower or equal to k and,
therefore, MkIC can take advantage of all the information contained in them. Clearly,
since it models all the interactions of lower order there is not a model selection step
and, once k is fixed the model can be given in a closed form.

The number of factors implied in fk (see Equation 4) is
∑k

i=1

∑k−i
j=0

(
m
i

)(
n
j

)
and it

grows exponentially with k. As a consequence, the computational cost for classifying
unlabeled instances for MkIC is O(

∑k
i=1

∑k−i
j=0

(
m
i

)(
n
j

)
). Clearly, in order to control

the number of factors and the time required for classifying an unlabeled instance, the
use of a low value of k is advisable. Besides, due to its high computational complexity
the model is recommendable for domains with a small number of random variables.

An important property of the factorization of probability distributions is described
in term of a set of integer numbers called counting regions [9,15]. A counting region
number express the strength of the contribution of a (multidimensional) random vari-
able in a given factorization: its influence in the probability mass of the factorization
increases as its counting region is higher. Counting region [9,15] is associated to re-
gion based factorizations [15], a family of factorizations of probability distributions
given in terms of a product of marginal distributions powered to an integer. Thus, the
approach to the conditional distribution p(c|x) given in Equation 4 can be seen as a
region based approximation. In Equation 4, the counting region of a multidimensional
variable (XR,CS) is given by the sum of the exponents of the marginal distributions
defined over random variables (XT ,CU ) for which R ⊆ T and S ⊆ U . A factoriza-
tion of a probability distribution is said to be a valid region-based decomposition for a
(multidimensional) random variable when its counting region is one. Intuitively, it can
be said that a (multidimensional) random variable with the counting region equal to one
contributes exactly once to the probability mass of the approached distribution.

Interestingly, the counting region associated to random variable (XR,CS) in the fac-
torization given in Equation 4 is one if and only if S 	= ∅ and |S| + |R| ≤ k, and zero
otherwise. Thus, the factorization fk is a valid region-based approximation for every sub-
set of the variables of order k or less, which contain at least one class variable. In other
words, the multidimensional random variables which contain a class variable of order
lower or equal to k contributes one time to the probability mass of the factorization.
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3 Experimentation in Artificial Domains

The experimentation consists of a comparison of MkIC for k ∈ {2, 3, 4} with the
wrapper multidimensional Bayesian classifier [1] (Wrapper) and the Bayes classifier
(Bayes). Details of Wrapper are shown in Appendix. Following the suggestions for
model selection given in [13], we have used the stratified 5-fold cross validation error
estimator in order to guide the search of Wrapper. The estimated probability distribu-
tions have been learned from data using the Laplace correction.

The experimentation is focused on artificial domains in order to illustrate the benefits
of using MkIC in domains for which the lower order marginal distributions tend to have
a small discriminative power. The domains are characterized by:

– Number of class variables: m ∈ {2, 3, 4, 5, 6, 7, 8}
– Number of features: n ∈ {4, 6, 8, 10, 12, 14, 16}

All the random variables are binary. The probability distribution of the different do-
mains, p(x, c), has been randomly sampled using Dirichlet distributions with the fol-
lowing parameters:

– p(c) is sampled from a Dirichlet with parameters α = 1. These parameters do not
favor balanced or unbalanced class probability distributions.

– p(x|c) is sampled from a Dirichlet distribution with parameters α = 1/n. These
parameters favor more unbalanced distributions p(x|c), as the number of features
n increases.

The average Bayes error for the different type of the domains is shown in Table
1. Due to the selected parameters, the average Bayes error tends to increase as m in-
creases, and it tends to decrease as n increases. For each combination of the parameters
m and n, we have generated 25 probability distributions at random. For each probabil-
ity distribution we have sampled a test set of size 1000, in order to reliably estimate the
errors, and training sets of size N ∈ {10, 30, 100, 300, 1000, 3000, 10000}. The differ-
ent training set sizes are used for analyzing the evolution of the behavior of MkIC as
the training set size increases.

The randomly generated domains are unstructured, i.e. with a high probability they
do not exhibit conditional independences among the implied random variables. Besides,
the domains can be considered difficult because with a high probability the marginal dis-
tributions of low order are almost uniform and, thus, they tend have low discriminative
power. By the aggregation property of the Dirichlet distribution, it can be demonstrated
that p(xi, cj) can be seen as sampled from a Dirichlet distribution with parameters

α = 2n−1

n +2m−1. A Dirichlet with these parameters samples distributions close to the
uniform with a high probability.

Taken into account the low discrimination power of the low order marginals and
the absence of conditional independences, we can say that the generated domains are
difficult for supervised classification, and specially difficult for forward greedy algo-
rithms based on graphical models [1], e.g. the Wrapper algorithm. We have selected
the Wrapper algorithm due to its competitive classification behavior among a variety of
forward greedy algorithms based on Bayesian networks [1]. The experimentation tries
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to illustrate the advantages of using MkIC and the difficulties of the popular family of
the greedy heuristic in domains with the described particularities.

Figure 2 summarizes the obtained results. We have decided to present the average
among the different domains because the same pattern appears for the domains with a
different number of class variables. On one hand, Wrapper is not able to learn an appro-
priate joint distribution from data due to the low discriminative power of the marginal
distributions of low order. It learns graphs with a very low number of edges and, thus, it
can not take advantage of the larger training sets. On the other hand, MkIC reduces the
error as the training set size increases because it is able to take advantage of all the dis-
criminative information contained in the low order interactions. Besides, as k increases
the reduction of the error with respect to the training set size seems to be higher because
MkIC is able to learn more complex interactions. At low values of the training set size
(100 or less) M4IC behaves worse than M2IC and M3IC because it needs more data to
learn appropriate interaction factors of order 4. This result suggests that the optimal k
value tends to be higher as the training set size increases.

4 Conclusions

the multidimensional k-interaction classifier is a conditional classifier based on an ap-
proach to the conditional class distribution p(c|x) which takes into account all the in-
teraction factors of order equal or lower than k. The approach does not require a model
selection step and it is given in a closed form fixed a k value. The multidimensional
k-interaction classifier is able to exploit all the information contained in low order inter-
actions. This characteristic seems to be highly beneficial in domains for which the low
order marginal distributions have a low discriminative power. In the performed experi-
mentation, multidimensional k-interaction classifier has shown a competitive behavior
in this type of domains.

The multidimensional k-interaction classifier has a computational cost for classify-
ing an instance of O(

∑k
i=1

∑k−i
j=0

(
m
i

)(
n
j

)
). Thus, it is advisable to choose low values

of k (typically k ∈ {2, 3, 4}), and it is specially appropriate for domains with low
dimensionality.

In the future, in order to reduce the number of factors implied in our approach, we
will develop an interaction factor selection procedure based on the interaction informa-
tion quantity [3]. Besides, a heuristic for the selection of an appropriate value of k will
be proposed based on the particularities of the multidimensional supervised classifica-
tion domain and the size of the available data.
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Appendix: The Wrapper Classifier Induction Algorithm

The pseudocode of the wrapper classifier induction algorithm is shown in Algorithm
1. The parameters of the probability represented with Bayesian networks based on the
constructed graphs are obtained from data using the Laplace’s correction. The multidi-
mensional Bayesian classifier associated to a graph G is denoted as ψG . The estimated
error is obtained with the stratified k-fold cross-validation and it is denoted as ε̂.

Algorithm 1 (The Wrapper algorithm)
Input: Data set, D = {(x1, c1), ..., (xN , cN )}, number of folds of the stratified k-fold
cross-validation error estimation, k
Output: Multidimensional Bayesian classifier
Pseudocode:

- Initialization: assign all the possible arcs among the random variables x1, ..., xn,
c1, ..., cm to addArcs, set remArcs to an empty set of arcs, set G to the empty graph,
set minError to one and cont to true

- While(cont)
• Obtain the error associated to all the classifiers obtained by adding each arc

in addArcs which does not cause cycles to G, and select the best G+

• Obtain the error associated to all the classifiers obtained by removing each
arc in remArcs from G, and select the best G−

• If ε̂(ψG) ≤ ε̂(ψG− )

∗ If ε̂(ψG+ ) < minError

· Add the arc in G+ not included in G to remArcs and remove it from
addArcs

· G = G+

· minError = ε̂(ψG+ )
∗ Else cont = false

• Else
∗ If ε̂(ψG− ) < minError

· Remove the arc in G− included in G from remArcs
· G = G−

· minError = ε̂(ψG− )
∗ Else cont = false

- End While
- Return ψG
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