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Abstract. In this paper, we consider the problem of channel assign-
ment in multi-radio, multi-channel wireless mesh networks. We assume
a binary interference model and represent the set of interfering links in
a network topology as a conflict graph. We then develop a new cen-
tralised stochastic local search algorithm to find a channel assignment
that minimises the network interference. Our algorithm assigns channels
to communication links rather than radio interfaces. By doing so, our
algorithm not only does preserve the network topology, but is also inde-
pendent of the network routing layer. We compare the performance of
our algorithm with that of a well-known Tabu-based approach (by Subra-
manian et al.) on randomly generated sparse and dense network topolo-
gies. Using graph-theoretic evaluation and ns2 simulations (a widely used
discrete event network simulator), we show that our algorithm consis-
tently outperforms the Tabu-based approach in terms of both the net-
work interference and the throughput obtained under various offered
loads. In particular, for a practical setting of 3 radio interfaces per mesh
node in a dense network topology with 12 channels available, our ap-
proach achieves 70% lower network interference and thus 15 times higher
average throughput than those achieved by the Tabu-based approach.

1 Introduction

Wireless interference is one of the major factors that limits the performance of
IEEE 802.11-based wireless mesh networks. There have been various approaches
proposed to improve network performance by mitigating or taking into account
the effects of interference in wireless networks. These approaches include optimis-
ing the transmission power used by the nodes in a wireless network [7], utilising
network routing protocols that are interference-aware [9], and scheduling conflict-
free transmissions that consider the physical interference in the wireless network
[3]. In wireless mesh networks, a popular approach to minimise the effects of
interference is to equip wireless mesh nodes with multiple radio interfaces, and
assign non-overlapping channels to these interfaces. The key challenge in this
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case is to design a channel assignment algorithm that assigns the available chan-
nels to the radio interfaces in such a way that minimises the network interference
and thus maximises the network throughput, while at the same time preserving
the network topology.

In this paper, we present a new centralised stochastic local search (SLS)
algorithm for channel assignment in multi-radio, multi-channel wireless mesh
networks. The objective is to minimise the network interference while satisfy-
ing the interface constraint. We assume that the interference model is binary.
Consequently, two communication links are said to interfere with each other if
they are assigned the same channel and are within interference range of each
other. The network interference is the number of interfering pairs of links in the
channel assignment. There is also an interface constraint for each mesh node to
ensure that the number of channels being used at that node does not exceed
the number of radios available at the node. Our algorithm assigns channels to
communication links rather than radio interfaces. By doing so, our algorithm not
only does preserve the network topology, but is also independent of the network
routing layer.

Due to the constraints and optimisation issues in this application which more-
over requires a reasonable quick deployment and allows incremental fine-tuning,
we developed our algorithm on top of Kangaroo, a constraint-based local search
system [13]. We designed a new constraint to model the interface constraint at
each mesh node. We then represent the problem as a constrained optimisation
problem and use stochastic local search to find a solution (i.e. channel assign-
ment). Our search algorithm starts from a randomly generated initial solution;
which may be infeasible. It then iteratively improves the feasibility and optimal-
ity metrics of the solution. The search attempts to improve the feasibility metric
(i.e. the number of violated interface constraints) when the current solution is far
from being satisfied; other times, it tries to improve the optimality metric (i.e.
the network interference). When there is no improvement within a number of
iterations, it restarts by randomly assigning values to a number of variables. For
the selection of links that require changing its channel assignment, we use Nov-
elty [12], a very well-known stochastic local search algorithm. For the selection
of a channel to be assigned to a link, we pick the best possible channel.

We compare the performance of our algorithmwith that of a well-known Tabu-
based approach by Subramanian et al. [19] on randomly generated sparse and
dense network topologies. It is worth noting that our industry partners in wireless
mesh networks confirm our assumed network scenario (network topology, traffic
pattern, etc.) and parameter choices to be realistic. Using graph-theoretic eval-
uation and ns2 simulations, we empirically show that our algorithm consistently
outperforms the Tabu-based approach in terms of both the network interference
and the throughput obtained under various offered loads. In particular, for a prac-
tical setting of 3 radio interfaces per mesh node in a dense network topology with
12 channels available, our approach achieves 70% lower network interference and
thus 15 times higher average throughput than those achieved by the Tabu-based
approach. Note that ns2 (a discrete event network simulator) uses a more complex
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and realistic interference model based on the Signal to Interference plus Noise Ra-
tio (SINR) measured at the receiver nodes. It is the most widely used simulator
in the networks community for the quantitative evaluation of network algorithms.
Our ns2 evaluation strongly demonstrates that our simple interference model is
an effective abstraction of the complex physical problem of wireless interference,
and leads to very good network performance.

The rest of the paper is organised as follows: Section 2 reviews related work;
Section 3 describes the model and problem formulation; Section 4 provides a
brief review of the Tabu-based algorithm by Subramanian et al. [19]; Section 5
describes in detail our stochastic local search based approach; Section 6 presents
our experimental evaluations. Finally, Section 7 summarises our conclusions and
outlines the future work.

2 Related Work

The frequency assignment problems, also called channel assignment problems,
have been a major research topic over the past years. Fast developments of wire-
less telephone networks and satellite communication projects have been the key
factors behind this. Moreover, other applications like TV broadcasting and mili-
tary communication have much inspired the interests in this research area. There
have been various channel assignment algorithms proposed in the literature for
various channel assignment problems and even for wireless mesh networks specif-
ically. Interested readers can refer to a few good survey papers on various channel
assignment problems [2] and on wireless mesh networks [5,18]. In this section,
we briefly review a few relevant approaches.

Existing works on channel assignment algorithms can be divided into the
distributed and centralised approaches. In distributed channel assignment ap-
proaches [8,17,16], individual network nodes compute its channel assignment
based on locally gathered information about its network neighbourhood. Dis-
tributed channel assignment approaches are more suitable to be used once a
network has been set up and is operationally running. This is because it is more
adaptive to dynamic changes in local network topology (due to node failures or
external interference) and any changes in the channel assignment can be confined
to the local neighbourhood. In this paper, we are interested in the optimal chan-
nel assignment for mesh nodes in an initial network-wide deployment (before the
entire network is operational running), which is better handled by a centralised
channel assignment approach. Here, the centralised controller node is simply one
of the mesh nodes configured to act in this role at deployment time. Even in a
completely new and rapid deployment scenario, it is acceptable to wait for a few
seconds for the channel allocation to complete.

In centralised channel assignment approaches [19,11,15], a central entity com-
putes the optimal channel assignment based on global information about the
network topology, such as the interference relationship between the nodes or
communication links in the network. Typically, the interference relationship is
represented as a conflict graph. The central entity then disseminates the channel
assignment information throughout the network to every node.
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Subramanian et al. proposed a Tabu-based approach in [19] in which the Tabu
search based technique [6] is used to find a channel assignment that minimises
the network interference. We will describe the Tabu-based approach in more
detail in Section 4, and compare the performance of our proposed algorithm
with this approach in Section 6. In [11], a greedy heuristic channel assignment
algorithm called CLICA is proposed to find a connected and low interference
network topology. Subramanian et al. compared the performance of their Tabu-
based approach with CLICA in [19] and showed that their approach performs
better. In the BFS channel assignment algorithm in [15], each mesh node has
one radio interface configured to a default common channel in order to main-
tain network-wide connectivity. With typical mesh nodes having at most two or
three radio interfaces each, this can lead to inefficient utilisation of the avail-
able channels in the network and poor network performance. In contrast, our
algorithm in this paper preserves network connectivity by assigning channels to
communication links, instead of using a dedicated radio interface configured to
a common channel.

3 Model and Problem Formulation

A typical architecture of a wireless mesh network has two tiers: backbone tier
and access tier. The backbone tier consists of stationary mesh nodes (or nodes)
forming a wireless multihop backbone infrastructure, with one or more nodes
also functioning as gateways to the Internet. The access tier sees the end-user
client devices connecting to the mesh nodes in order to communicate with other
client devices or to access the Internet. The 5GHz and 2.4GHz frequency bands
are typically used for the communications in the backbone and access tiers re-
spectively.

The mesh nodes usually have multiple radio interfaces, each of which might be
configured with a channel k ∈ K, where K is the set of available channels in the
backbone tier. We assume all nodes to have the same number of r radio interfaces,
each having omni-directional antennas with the same transmission range Rtx.
Let Duv denote the physical distance between two nodes u and v. There exists
a communication link (or link) l ≡ luv between nodes u and v, if Duv < Rtx and
both nodes have a radio interface configured to a common channel. A given set
of nodes V and the links E can be modelled as an undirected graph G = (V,E).
Let Ev denote the links incident on a node v.

In this paper, we are interested in the optimal assignment of channels to
links in a multihop backbone infrastructure in order to minimise the interfer-
ence between the links. Due to the inverse relationship between interference
and network throughput, by minimising the interference in the network, we es-
sentially maximise the network throughput. We model the interference between
co-channel communication links with the range-based interference model. In this
interference model, every node has an associated interference range, Rint, that
is typically larger than the transmission range. A unicast transmission on a
link l from node u to node v can be interfered with by another simultaneous
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transmission (on the same channel) from any node within the interference range
of both nodes u and v.

We assume that the interference model is binary in the sense that the uni-
cast transmission is successful if there is no interference present, and unsuc-
cessful otherwise. We also assume that transmissions on different channels do
not interfere. Note that our channel assignment algorithm does not depend on
the choice of the interference model used in this paper, i.e. the range-based
interference model. Our channel assignment algorithm will work with other in-
terference models such as the hop-based and the protocol interference models.
These interference models are called pairwise interference models after the fact
that interference is defined on pairs of communication links. Interested readers
can refer to [10] for a description of these and other interference models.

Given a pairwise interference model, we use a conflict graph Gc to model the
set of interfering communication links in the wireless mesh network represented
by a graph G. Each link l in G essentially becomes a vertex in the conflict graph
Gc. An edge in Gc exists between a pair of vertices l and l′, if the links luv and
l′u′v′ in the network are on the same channel and interfere with each other. With
the range-based interference model that we adopt in this paper, an edge exists
if any of the following is true: Duu′ ≤ Rint, or Duv′ ≤ Rint, or Dvu′ ≤ Rint, or
Dvv′ ≤ Rint.

The objective of our channel assignment problem is to find a mapping φ
that assigns unique channels to the links in such a way that minimises the
network interference. Given a channel assignment φ, let φ(l) denote the channel
assigned to a link l and σφ(v) the number of unique channels assigned to the links
incident on a node v. The network interference η(φ) of a channel assignment φ
is the number of edges in the conflict graph. A feasible channel assignment must
satisfy all the interface constraints to ensure that for each node v, the number
of unique channels assigned to all communication links incident on v is at most
the number of radio interfaces available at v, i.e. σφ(v) ≤ r.

Note that by assigning channels to communication links rather than to radio
interfaces, our channel assignment algorithm maintains the same network topol-
ogy as in the case when a single channel is used for all communication links in
the network. By doing so, our channel assignment algorithm is independent of
the network routing layer.

4 Tabu-Based Algorithm

The Tabu-based algorithm by Subramanian et al. [19] comprises two phases,
which can be viewed as optimisation and satisfaction phases. First, in the
optimisation phase, the network interference is iteratively minimised without
considering the interface constraints. Therefore, the best solution found in the
first phase normally violates the interface constraints. Next, in the satisfaction
phase, these violated interface constraints are heuristically fixed to obtain a fea-
sible solution. Note that while fixing those violated constraints, the network
interference may increase. However, the Tabu-based algorithm returns its one
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and only solution at the end of the second phase without attempting to improve
the network interference further.

4.1 Optimisation Phase

In this phase, the Tabu-based algorithm starts with a random initial solution φ0

wherein each link l is assigned to a random channel k ∈ K i.e. φ0(l) = k. Given a
solution φi, it then obtains the next solution φi+1 by selecting the best candidate
(having the lowest network interference) from a number of randomly generated
neighbouring solutions. A neighbouring solution φ′i of a solution φi is generated
by randomly selecting a link l and then assigning a random channel k ∈ K to
the link. The neighbour generation process ensures that k �= φi(l) and the pair
(l, k) does not appear in a maintained tabu list τ , which is a first-in-first-out
queue of a given length. When φi+1 is obtained from φi, the modified link l
and the new channel k assigned to the link are pushed into the queue; before
that, one queue element is popped out, if the queue is full. The first phase of
the algorithm terminates if there is no improvement in the network interference
after |E| iterations, where E is the set of links in the network [19].

4.2 Satisfaction Phase

In this phase, the Tabu-based algorithm mainly attempts to satisfy the violated
interface constraints in the solution φ returned by the first phase. For this, it
picks a node v that has the most violations in its interface constraint. The number
of violations of the interface constraint at a given node v is max(σφ(v) − r, 0).
The algorithm then performs a merge operation that chooses two channels k and
k′, and makes a replacement φ(l) = k′ for each incident link l to v such that
φ(l) = k. The replacement process has a recursive cascading effect on each node
v′ that l is also incident on. While satisfying the interface constraints, the merge
operation may increase the network interference η(φ). Therefore, the choice of k
and k′ is greedily made so that the increase in η(φ) is minimised.

5 Stochastic Local Search Based Algorithm

We developed our stochastic local search based algorithm on top of Kangaroo, a
constraint-based local search system [13]. We define the variables and functions
such as constraints and objectives in the Kangaroo system. Kangaroo then effi-
ciently propagates changes from variables to the dependant functions. In each
iteration when the variables are assigned with new values, Kangaroo performs
execution by updating the functions’ values. It also helps to efficiently explore
potential neighbouring solutions by performing simulation: computing the fea-
sibility and optimality metrics temporarily due to the potential changes in the
variables.
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5.1 Constraint and Objective Functions

We designed a new constraint function AtMostCount in Kangaroo to model the
interface constraints. The AtMostCount constraint maintains the degree of con-
straint violation and penalises the links for causing the violation. We also use
NotEqual constraints to represent ‘no conflict’ between two given links, and Sum
function to accumulate the constraints to form the top-level objective functions.

Each function f(p1, · · · , pn) has the parameters pjs that are either variables
or other functions. A function f depends on a variable x, denoted by f → x, if
x is itself a parameter of f or f has a parameter p → x. Each function f has
a non-negative metric fm denoting its evaluation. For each x ← f , it also has
a non-negative hint fh(x) denoting the preference level of changing x’s value to
improve fm. A constraint f is satisfied when fm = 0 and in that case fh(x) = 0
for any x. This means a constraint’s metric improves when it is minimised.

AtMostCount. The number of unique values occurred in the given n variables
x1, · · · , xn must not exceed a specified limit m. This constraint, denoted by
C(x1, · · · , xn), has its metric Cm = max(c − m, 0) and for each variable xj ,
a hint Ch(xj) = n − cj ; where c is the number of unique values used in the
variables while cj is the number of times xj ’s value has occurred. Notice that
Cm is the number of additional values used beyond the limit. Also, notice that
Ch(xj) captures the heuristic stated as ‘the fewer the value of a variable occurs,
the more the preference of the variable’s value to be modified’.

NotEqual. The values of two given variables must not be equal. This constraint,
denoted by Q̄(x, x′), has its metric Q̄m = 1 if x equals x′, else 0. Its hints are
defined as Q̄h(x) = Q̄h(x′) = Q̄m. When two variables have the same value
changing either one’s value could make them unequal and thus improve the
metric.

Sum. This function, denoted by S(f1, · · · , fn), accumulates a given number of
functions. We defined its metric Sm =

∑
fm
j and for each variable x← S, a hint

Sh(x) =
∑

x←fj
fh
j (x), where 1 ≤ j ≤ n.

5.2 Constrained Optimisation Model

The constrained optimisation model used by our algorithm is defined in Proce-
dure 1 ConstructModel. We first create a variable xl for each link l in the network
(Lines 1–2). The domain of each variable is K, the set of available channels. For
each node v, we then create an AtMostCount constraint Cv with the links inci-
dent on v (Lines 3–5). The limit given to each Cv is r which is the number of
radio interfaces available at a node. The Sum function Ssat accumulates all the
AtMostCount constraints (Line 6). The accumulated metric of Ssat must be 0 in
order to get a feasible channel assignment for the network.

For each potential edge in the conflict graph Gc, we create a NotEqual con-
straint Q̄ll′ (Lines 7–9) with the variables xl and xl′ respectively associated
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Procedure 1: ConstructModel

1 foreach link l ∈ E do
2 Create a variable xl with domain K;
3 foreach node v ∈ V do
4 Let X be the set of variables for the links Ev;
5 Create a constraint Cv with X and the limit r;

6 Create a function Ssat with all Cvs created above;
7 foreach potential edge e in Gc do
8 Let l and l′ be the vertices which e incidents on;
9 Create a constraint Q̄ll′ with variables xl and xl′ ;

10 Create a function Sopt with all Q̄s created above;
11 Create a function Scomb with Ssat and Sopt;

with the two links l and l′; note that these two links cause interference if they
are assigned with the same channel. The Sum function Sopt accumulates all the
NotEqual constraints (Line 10) and thus represents the network interference. The
metric of this Sum function needs to be as small as possible. Finally, we have
another Sum function Scomb that combines Ssat and Sopt (Line 11) to give an
overall evaluation of the candidate channel assignment.

5.3 Local Search Method

Our search algorithm, shown in Procedure 2 PerformSearch, starts from a
randomly generated initial solution; which may be infeasible (Line 6). It then it-
eratively improves the feasibility and optimality metrics of the solution (i.e. Ssat

and Sopt respectively). In each iteration, our algorithm chooses one of the three
options: i) satisfy: minimise the violation of interface constraints (Lines 20–23)
when the current assignment is far from being feasible (i.e. Sm

sat ≥ Proximity);
ii) optimise: minimise the network interference (Lines 16–19) if the current as-
signment is already feasible (Sm

sat is 0) or very close to being feasible (Sm
sat <

Proximity); or iii) restart: randomly change a large portion of the current as-
signment to escape stagnation (Lines 12–15).

Function 3 selectVarValue selects a variable x greedily based on its hint
obtained from VarObj. It then selects a new value k for x that minimises the
metric of ValObj. The variable choice is limited to the subset of variables that
the Constraint parameter depends on. Parameters VarObj and ValObj can be any
Sum function (Ssat, Sopt or Scomb) defined above.

With a small probability, Function 3 selects a random variable in the subset
(Line 4). Otherwise for most of the time, it selects a variable in the subset that
has the maximum hint in VarObj, breaking ties on being assigned earlier (Lines
5–11). However, when that variable is the most recently assigned one in this
subset, with a given small noise probability it will select the variable that has
the second maximum hint (Novelty heuristic in Line 10).

Therefore, the first option (satisfy) in Procedure PerformSearch randomly
selects a violated AtMostCount C with a view to improving the feasibility
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metric Sm
sat by changing the value of a variable x ← C. Variable x and its

value are selected by calling Function 3 with the following options Constraint=C,
VarObj=Ssat and ValObj=Ssat.

Procedure 2: PerformSearch

1 BestSoln = ∅;
2 MinConflict = ∞;
3 Proximity = 1;
4 IterSinceRestart = 0;
5 RestartPeriod = |E| × 10;
6 initialiseRandomly (CurrSoln);
7 while Sm

comb > 0 ∧ ¬TimeOut do
8 if Sm

sat = 0 ∧ Sm
opt < MinConflict then

9 MinConflict = Sm
opt;

10 BestSoln = CurrSoln;
11 IterSinceRestart = 0;

12 if ++IterSinceRestart > RestartPeriod then
13 IterSinceRestart = 0;

14 X = Select |E|
8
, 2|E|

8
or 3|E|

8
variables randomly;

15 Assign random values to the variables X;

16 else if Sm
sat < Proximity then

17 Select C randomly from all Cvs;
18 (x, k) = selectVarValue(C,Sopt, Scomb);
19 Assign the value k to the variable x;

20 else // Sm
sat ≥ Proximity

21 Select C randomly from Cvs such that Cm
v > 0;

22 (x, k) = selectVarValue(C,Ssat, Ssat);
23 Assign the value k to the variable x;

24 return BestSoln;

Function 3: selectVarValue(Constraint, VarObj, ValObj)

1 Noise = 0.01;
2 X = {x : x← Constraint};
3 Select a variable x ∈ X in the following way:
4 if bernoulii (Noise) then randomly;
5 else // use Novelty

6 Assume x1 ∈ X and x2 ∈ X have the first
7 and second maximum hint in VarObj
8 breaking tie on being assigned earlier;
9 if x1 is the last assigned variable then

10 x= if bernoulii (Noise) then x2 else x1

11 else x = x1

12 By simulation, select a value k for x
13 such that the metric of ValObj is minimised;
14 return (x, k);
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For the second option (optimise), we could use a violated NotEqual constraint
Q̄ to limit the variable choices in Function 3. However, a Q̄ depends only on two
variables, and thus restricts the choice particularly in a stagnant situation. Notice
that most of the time the variable selection is greedy and the value selection is
also greedy with no tabu; which makes it harder to escape from a stagnant
situation for any further improvement. The use of a random AtMostCount C
gives more choices to select a variable from. Here, we set VarObj=Sopt to select
a variable as we want to improve the network interference. However, we set
ValObj=Scomb to select a value to find an assignment that might converge in the
optimality metric but could even diverge in the feasibility metric.

The third option (restart) randomly assigns values to a number of variables,
if there is no improvement after a given number of iterations.

6 Performance Evaluations

We compared the performance of the Tabu-based algorithm (using our imple-
mentation with the optimal settings as specified in [19]) and our SLS-based
algorithm using both graph-theoretic evaluations and ns2 simulations [1]. In our
evaluations, we used two different types of random network topologies: dense and
sparse. We generated these networks by randomly placing 50 nodes respectively
in 500× 500 and 800× 800 square meter areas. Using the default ns2 simulation
settings for IEEE 802.11a, the transmission range Rtx is set to 163 meters, while
the interference range Rint is set to 410 meters. With these settings, the average
node degree is around 11 in the dense network while in the sparse network, the
average node degree is around 5. The parameter choices are confirmed to be
realistic by our industry partners.

6.1 Graph-Theoretic Evaluations

For both of the channel assignment algorithms, we used a computer equipped
with Intel(R) Xeon(R) 64bit quad-core CPU X3470 @2.93GHz with 8MB L2
Cache and 8GB RAM running Ubuntu Linux version 12.04. We ran both the
algorithms 25 times on each benchmark topology with a realistic 30 seconds
cutoff time. Note that quick response time is important for an initial deployment
of a wireless mesh network in a disaster situation. The choice of 30 seconds is
based on user acceptance surveys undertaken by industry partners. For each run,
we collected the best solution found within the cutoff time. We then used the
median quality solution out of those 25 best solutions to run the ns2 simulations
and to present our results and provide analysis based on them.

Note that the Tabu-based algorithm is a one-off algorithm meaning it pro-
duces only one solution as its output and then terminates. This is obvious from
the two phases of the algorithm. The first phase iteratively minimises only the
network interference while ignoring the interface constraints. Therefore, a feasi-
ble solution can only be found at the end of the second phase which fixes those
constraint violations. Nevertheless, in most cases, the Tabu-based algorithm was
able to return a solution within the stipulated cutoff time.
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Fig. 1. Convergence of fractional network interference w.r.t. time for SLS-based and
Tabu-based algorithms in the dense network with 12 channels and 3 radio interfaces
per node

In contrast, our SLS-based algorithm is an any-time algorithm [21], meaning
that one can terminate the algorithm at any time (after the initial time to find
the first solution) and still has a valid solution. In other words, our algorithm
is capable to quickly find a feasible solution. Once such a solution is found, our
algorithm still keeps running in the quest of further improving solutions (in terms
of the network interference) as long as the cutoff time permits (Procedure 2 Lines
7–10). Trading off with the time available, one can at any time take the best
solution found so far.

We plot the typical convergence pattern of our algorithm in Figure 1 on a dense
network with 3 radio interfaces at each node and 12 available channels. Notice
that by the time the Tabu-based algorithm found its solution, our algorithm
has already found a number of solutions that are much better. This was found
true for all test cases. We observed the results found by the Tabu-based method
over 25 runs on a test case to be very consistent, with only a small variance.
This suggests that executing this method multiple times until the time cutoff
would not make big differences. Conversely, our method found significantly better
solutions than the Tabu method within the same time window, and further
improved the solution quality substantially over time. If one were to terminate
our algorithm early, still a sufficiently good solution would be returned. We
used the optimal settings in [19] for our Tabu implementation used the optimal
settings but we didn’t tuned our method much.

For further comparison, we graphically show in Figure 2 the fractional net-
work interferences of the solutions produced by the SLS-based and Tabu-based
algorithms for the sparse network. These results were obtained by using 3 and
12 channels with the number of radio interfaces varied from 2 to 8. We show the
same for the dense network in Figure 3. The fractional network interference is
defined as the ratio of the number of edges in the conflict graph produced by a
given channel assignment and the total number of conflicts in the single-channel
network. From these results, it is clear that our algorithm obtained significantly
better fractional network interference than the Tabu-based algorithm.
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Fig. 2. Fractional network interference of the solutions produced by SLS-based and
Tabu-based algorithms in the sparse network with (a) 3 or (b) 12 channels
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Fig. 3. Fractional network interference of the solutions produced by SLS-based and
Tabu-based algorithms in the dense network with (a) 3 or (b) 12 channels

We sought a reasonable explanation for these performances. Note that our
algorithm switches between the satisfaction and optimisation phases in an in-
terleaving fashion. Moreover, both phases respect the interface constraints and
the network interference in a separate or combined way. On the other hand,
the Tabu-based algorithm has two separate phases where the satisfaction phase
follows the optimisation phase. While the latter phase only minimises the net-
work interference, the former phase just satisfies the interface constraints; no
interaction between these two criteria is considered.

Our further observations suggest the solution quality of the Tabu-based algo-
rithm greatly reduces by the fact that fewer than the total number of available
channels are used by both of its phases. In particular, the satisfaction phase while
addressing the violations of the interface constraints replaces one channel with
another; which greatly reduces the number of channels being used in the end. As
a result, the conflict graphs contain larger clusters and a higher number of edges
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(a) Tabu-based (b) SLS-based

Fig. 4. Conflict graphs for the solutions produced by SLS-based and Tabu-based algo-
rithms in a sparse network with 12 channels and 3 radio interfaces per node

for the solutions produced by the Tabu-based algorithm, compared to those pro-
duced by the SLS-based algorithm. This can be observed in Figure 4 that shows
the conflict graphs produced by the SLS-based and Tabu-based algorithms in
the sparse network with 12 channels and 3 radio interfaces per node.

In Figures 2 and 3, notice that the fractional network interference produced by
our SLS-based algorithm reaches the minimum after 2 radios for the 3-channels
case and 4 radios for the 12-channels case. Further increase in the number of radio
interfaces does not make any significant difference in the network interference.
This means the number of radio interfaces at each node could effectively be
reduced to these levels without increasing the network interference; which would
result in lower hardware cost for the mesh nodes.

6.2 ns2 Simulations

In this evaluation, we investigate the network throughput performance of both
our SLS-based algorithm and the Tabu-based algorithm. We use the IEEE
802.11a implementation in ns2 with its default settings, and added support for
multiple interfaces and multiple channels [4]. Using the same two network topolo-
gies as in Section 6.1, we employ CBR traffic on every single-hop communication
link in the network. We use this single-hop traffic model in order to evaluate the
performance when all communication links in the network carry the same traffic
load. We measure the throughput on every link as we slowly increase the of-
fered traffic load on each link until the achievable throughput does not increase
anymore. All transmissions are unicast transmissions with a packet size of 1000
bytes, and are using the IEEE 802.11a MAC protocol with the RTS/CTS feature
turned off. The transmission bit rate is set to a fixed rate of 6Mbps, and each
simulation run is 60 seconds long.
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Fig. 5. Average link throughput in a sparse/dense network with 12 channels, and
low/medium/high offered traffic load

Figure 5 shows the average link throughput achieved in the sparse and dense
networks with 12 available channels, for different offered traffic loads as we vary
the number of radio interfaces per node from 1 to 8. We observe that the average
link throughput achieved by our SLS-based algorithm reaches a maximum after
3 or 4 radios. This is consistent with the graph-theoretic results shown earlier
in Figures 2b and 3b. We also see that our SLS-based algorithm consistently
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outperforms the Tabu-based algorithm in terms of the achievable throughput
obtained under various offered traffic loads. In particular, we see that for a
practical network setting of 2 or 3 radio interfaces per node, our SLS-based
algorithm achieves an average throughput that is markedly higher by as much
as 2 times in the sparse network and 15 times in the dense network, compared
to the Tabu-based algorithm.

7 Conclusion

In this paper, we have presented a new centralised stochastic local search algo-
rithm to find a channel assignment that minimises the network interference in a
multi-radio and multi-channel wireless mesh network. Using a binary interference
model, we represent the interfering links in the network with a conflict graph.
Our SLS-based algorithm preserves the network topology and is independent of
the routing layer. We compared the performance of our SLS-based algorithm
with the Tabu-based approach [19] on randomly generated sparse and dense
network topologies by using graph-theoretic evaluation and ns2 simulations.

Our graph-theoretic results show that our approach significantly outperforms
the Tabu-based approach in the network interference of the channel assignments
produced. Our approach produces solutions with smaller clusters in the con-
flict graphs compared to those produced by the Tabu-based approach. Further-
more, our approach usually finds a number of better solutions even before the
Tabu-based approach produces its only solution. Our approach still continues to
improve the solution quality. Thus ours is an any-time algorithm meaning one
could stop it at any time and still get a reasonably good solution.

The ns2 simulation results show that our SLS-based algorithm consistently
outperforms the Tabu-based approach in terms of the average network through-
put obtained under various offered traffic loads. Indeed, for a practical setting of
3 radio interfaces per mesh node in a dense network topology with 12 channels
available, our approach achieves 70% lower network interference and 15 times
higher average throughput than those achieved by the Tabu-based approach.

In terms of future work, we plan to explore the use of more advanced stochastic
local search algorithms (e.g. gNovelty+ [14]) in our channel assignment approach.
We also plan to use other interference models, e.g. measurement-based interfer-
ence models [20], in our channel assignment algorithm in order to capture more
realistic network interference scenarios.
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