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Abstract. Constraint Programming (CP) solvers classically explore the
solution space using tree-search based heuristics. Monte-Carlo Tree
Search (MCTS), aimed at optimal sequential decision making under un-
certainty, gradually grows a search tree to explore the most promising
regions according to a specified reward function. At the crossroad of
CP and MCTS, this paper presents the Bandit Search for Constraint
Programming (BaSCoP) algorithm, adapting MCTS to the specifics of
the CP search. This contribution relies on i) a generic reward function
suited to CP and compatible with a multiple restart strategy; ii) the use
of depth-first search as roll-out procedure in MCTS. BaSCoP, on the
top of the Gecode constraint solver, is shown to significantly improve
on depth-first search on some CP benchmark suites, demonstrating its
relevance as a generic yet robust CP search method.
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1 Introduction

A variety of algorithms and heuristics have been designed in constraint program-
ming (CP), determining which (variable, value) assignment must be selected at
each step, how to backtrack on failures, and how to restart the search [1]. The
selection of the algorithm or heuristics most appropriate to a given problem
instance, intensively investigated since the late 70s [2], most often relies on su-
pervised machine learning (ML) [3–7].

This paper advocates the use of another ML approach, namely reinforcement
learning (RL) [8], to support the CP search. Taking inspiration from earlier work
[9–12], the paper contribution is to extend the Monte-Carlo Tree Search (MCTS)
algorithm to control the exploration of the CP search tree.

Formally, MCTS upgrades the multi-armed bandit framework [13, 14] to se-
quential decision making [15], leading to breakthroughs in the domains of e.g.
games [16, 17] or automated planning [18]. MCTS proceeds by growing a search
tree through consecutive tree walks, gradually biasing the search toward the
most promising regions of the search space. Each tree walk, starting from the
root, iteratively selects a child node depending on its empirical reward estimate
and the confidence thereof, enforcing a trade-off between the exploitation of the
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best results found so far, and the exploration of the search space (more in section
2.3). The use of MCTS within the CP search faces two main difficulties. The first
one is to define an appropriate reward attached to a tree node (that is, a partial
assignment of the variables). The second difficulty is due to the fact that the
CP search frequently involves multiple restarts [19]. In each restart, the current
search tree is erased and a brand new search tree is built based on a new vari-
able ordering (reflecting the variable criticality after e.g. their weighted degree,
impact or activity). As the rewards attached to all nodes cannot be maintained
over multiple restarts for tractability reasons, MCTS cannot be used as is.

A first contribution of the presented algorithm, named Bandit-based Search
for Constraint Programming (BaSCoP), is to associate to each (variable, value)
assignment its average relative failure depth. This average can be maintained
over the successive restarts, and used as a reward to guide the search. A second
contribution is to combine BaSCoP with a depth-first search, enforcing the
search completeness in the no-restart case. A proof of principle of the approach is
given by implementing BaSCoP on the top of the Gecode constraint solver [20].
Its experimental validation on three benchmark suites, respectively concerned
with the job-shop (JSP) [21], the balanced incomplete block design (BIBD) [22],
and the car-sequencing problems, comparatively demonstrates the merits of the
approach.

The paper is organized as follows. Section 2 discusses the respective relevance
of supervised learning and reinforcement learning with regard to the CP search
control, and describes the Monte Carlo Tree Search. Section 3 gives an overview
of theBaSCoP algorithm, hybridizing MCTS with CP search. Section 4 presents
the experimental setting for the empirical validation of BaSCoP and discusses
the empirical results. The paper concludes with some perspectives for further
research.

2 Machine Learning for Constraint Programming

This section briefly discusses the use of supervised machine learning and re-
inforcement learning for the control of CP search algorithms. For the sake of
completeness, the Monte-Carlo Tree Search algorithm is last described.

2.1 Supervised Machine Learning

Most approaches to the control of search algorithms exploit a dataset that
records, for a set of benchmark problem instances, i) the description of each
problem instance after appropriate static and dynamic features [3, 23]; ii) the
associated target result, e.g. the runtime of a solver. Supervised machine learn-
ing is applied on the dataset to extract a model of the target result based on
the descriptive features of the problem instances. In SATzilla [3], a regression
model predicting the runtime of each solver on a problem instance is built from
the known instances, and used on unknown instances to select the solver with
minimal expected run-time. Note that this approach can be extended to ac-
commodate several restart strategies [24]. CPHydra [4] uses a similarity-based
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approach (case-based reasoning) and builds a switching policy based on the most
efficient solvers for the problem instance at hand. In [5], ML is likewise applied
to adjust the CP heuristics online. The Adaptive Constraint Engine [25] can
be viewed as an ensemble learning approach, where each heuristic votes for a
possible (variable,value) assignment to solve a CSP. The methods Combining
Multiple Heuristics Online [6] and Portfolios with Deadlines [26] are designed
to build a scheduler policy in order to switch the execution of black-box solvers
during the resolution process. Finally, optimal hyper-parameter tuning [7, 27]
is tackled by optimizing the estimate of the runtime associated to parameter
settings depending on the current problem instance.

2.2 Reinforcement Learning

A main difference between supervised learning and reinforcement learning is
that the former focuses on taking a single decision, while the latter is interested
in sequences of decisions. Reinforcement learning classically considers a Markov
decision process framework (S,A, p, r), where S and A respectively denote the
state and the action spaces, p is the transition model (p(s, a, s′) being the prob-
ability of being in state s′ after selecting action a in state s in a probabilistic
setting; in a deterministic setting, tr(s, a) is the node s′ reached by selecting
action a in state s) and r : S �→ IR is a bounded reward function. A policy
π : S �→ A, starting in some initial state until arriving in a terminal state or
reaching a time horizon, gathers a sum of rewards. The RL goal is to find an
optimal policy, maximizing the expected cumulative reward.

RL is relevant to CP along two frameworks, referred to as offline and online
frameworks. The offline framework aims at finding an optimal policy w.r.t. a
family of problem instances. In this framework, the set of states describes the
search status of any problem instance, described after static and dynamic feature
values; the set of actions corresponds e.g. to the CP heuristics to be applied for a
given lapse of time. An optimal policy associates an action to each state, in such
a way that, over the family of problem instances (e.g., on average), the policy
reaches optimal performances (finds a solution in the satisfiability setting, or
reaches the optimal solution in an optimization setting) as fast as possible.

The online framework is interested in solving a single problem instance. In this
framework, the set of states corresponds to a partial assignment of the variables
and the set of admissible actions corresponds to the (variable, value) assignments
consistent with the current state. An optimal policy is one which finds as fast as
possible a solution (or, the optimal solution) for the problem instance at hand.

In the remainder of the paper, only the online framework will be considered;
states and nodes will be used interchangeably. This online framework defines a
specific RL landscape. Firstly, the transition model is known and deterministic;
the next state s′ = tr(s, a) reached from a state s upon the (variable,value)
assignment action a, is the conjunction of s and the (variable,value) assignment.
Secondly, and most importantly, there is no clearly defined reward to be attached
to intermediate states: e.g. in the satisfiability context, intrinsic rewards (satisfi-
ability or unsatisfiability) can only be attached to terminal states. Furthermore,
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such intrinsic rewards are hardly informative (e.g. all but a negligible fraction of
the terminal states are unsatisfiable; and the problem is solved in general after
a single satisfiable assignment is found).

The online framework thus makes it challenging for mainstreamRL approaches
to adjust the Exploration vs Exploitation trade-off at the core of RL. For this
reason, the Monte-Carlo Tree Search approach is considered.

2.3 Monte Carlo Tree Search

The best known MCTS algorithm, referred to as Upper Confidence Tree (UCT)
[15], extends the Upper Confidence Bound algorithm [14] to tree-structured
spaces. UCT simultaneously explores and builds a search tree, initially restricted
to its root node, along N tree-walks. Each tree-walk involves three phases:

The bandit phase starts from the root node (initial state) and iteratively
selects a child node (action) until arriving in a leaf node of the MCTS tree.
Action selection is handled as a multi-armed bandit problem. The set As of
admissible actions a in node s defines the child nodes (s, a) of s; the selected
action a∗ maximizes the Upper Confidence Bound:

r̄s,a + C
√
log(ns)/ns,a (1)

over a ranging in As, where ns stands for the number of times node s has been
visited, ns,a denotes the number of times a has been selected in node s, and
r̄s,a is the average cumulative reward collected when selecting action a from
node s. The first (respectively the second) term in Eq. (1) corresponds to the
exploitation (resp. exploration) term, and the exploration vs exploitation trade-
off is controlled by parameter C. In a deterministic setting, the selection of the
child node (s, a) yields a single next state tr(s, a), which replaces s as current
node.

The tree building phase takes place upon arriving in a leaf node s; some
action a is (randomly or heuristically) selected and tr(s, a) is added as child node
of s. The growth rate of the MCTS tree can be controlled through an expand
rate parameter k, by adding a child node after the leaf node has been visited
k times. Accordingly, the number of nodes in the tree is N/k, where N is the
number of tree-walks.

The roll-out phase starts from the leaf node tr(s, a) and iteratively (ran-
domly or heuristically) selects an action until arriving in a terminal state u; at
this point the reward ru of the whole tree-walk is computed and used to update
the cumulative reward estimates in all nodes (s, a) visited during the tree-walk:

ns,a ← ns,a + 1; ns ← ns + 1
r̄s,a ← r̄s,a + (ru − r̄s,a)/ns,a

(2)

Additional heuristics have been considered, chiefly to prevent over-exploration
when the number of admissible arms is large w.r.t the number of simulations
(the so-called many-armed bandit issue [28]). Notably, the Rapid Action Value
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Estimate (RAVE) heuristics is used to guide the exploration of the search space
and the tree-building phase [16] when node rewards are based on few samples
(tree-walks) and are thus subject to a high variance. In its simplest version,
RAVE(a) is set to the average reward taken over all tree-walks involving action
a. The action selection is based on a weighted sum of the RAVE and the Upper
Confidence Bound (Eq. (1)), where the RAVE weight decreases with the number
ns of visits to the current node [16].

A few work have pioneered the use of MCTS to explore a tree-structured
assignment search space, in order to solve satisfiability or combinatorial opti-
mization problem instances. In [9], MCTS is applied to boolean satisfiability;
the node reward is set to the ratio of clauses satisfied by the current assignment,
tentatively estimating how far this assignment goes toward finding a solution.
In [11], MCTS is applied to Mixed Integer Programming, and used to control
the selection of the top nodes in the CPLEX solver; the node reward is set to
the maximal value of solutions built on this node. In [10], MCTS is applied to
Job Shop Scheduling problems; it is viewed as an alternative to Pilot or roll-out
methods, featuring an integrated and smart look-ahead strategy. Likewise, the
node reward is set to the optimal makespan of the solutions built on this node.

3 The BaSCoP Algorithm

This section presents the BaSCoP algorithm (Algorithm 1), defining the pro-
posed reward function and describing how the reward estimates are exploited
to guide the search. Only binary variables will be considered in this section for
the sake of simplicity; the extension to n-ary variables is straightforward, and
will be considered in the experimental validation of BaSCoP (section 4). Before
describing the structure of the BaSCoP search tree, let us first introduce the
main two ideas behind the proposed hybridization of MCTS and the CP search.

Among the principles guiding the CP search [29], a first one is to select vari-
ables such that an eventual failure occurs as soon as possible (First Fail princi-
ple). A second principle is to select values that maximize the number of possible
assignments. The First Fail principle is implemented by hybridizing MCTS with
a mainstream variable-ordering heuristics (wdeg is used in the experiments). The
latter principle will guide the definition of the proposed reward (section 3.2).

A second issue regards the search strategy used in the MCTS roll-out phase.
The use of random search is not desirable, among other reasons as it does not
enforce the search completeness in the no-restart context. Accordingly, the roll-
out strategy used in BaSCoP implements a complete strategy, the depth first
search.

3.1 Overview

The overall structure of the BaSCoP search space is displayed in Fig. 1. BaS-
CoP grows a search tree referred to as top-tree (the filled nodes in Fig. 1), which
is a subtree of the full search tree. Each node is a partial assignment s (after
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Algorithm 1. BaSCoP

input : number N of tree-walks, restart schedule, selection rule SR,
expand rate k.

data structure: a node stores
- a state : partial assignment as handled by the solver,
- the variable to be assigned next,
- children nodes corresponding to its admissible values,
- a top flag marking it as subject to SR or DFS,
- statistics: number n of visits, average failure depth avg.
Every time a new node must be created (first visit), its state is
computed in the solver by adding the appropriate literal, and
its variable is fetched from the solver.
All numeric variables are initialized to zero.

main loop :
search tree T ← new Node(empty state)
for N tree-walks do

if restart then T ← new Node(empty state)

if Tree-walk(T ).state.success then
process returned solution

function Tree-walk(node) returns (depth, state) :
if node.state is terminal (failure,success) then

close the node, and its ancestors if necessary
return (0, node.state)

if node.top = false then
once every k, node.top ← true
otherwise, return DFS(node)

node.n← node.n+ 1
Use SR to select value among admissible ones
(d, s) = Tree-walk(node’s child associated to value)
node.avg ← node.avg + (d− node.avg)/node.n
if d > node.avg then reward = 1
else reward = 0
let � = (node.variable, value):

n� ← n� + 1
RAVE � ← RAVE � + (reward −RAVE �)/n�

return (d+ 1, s)

function DFS(node) returns (depth, state) :
if node.state is terminal (failure,success) then

close the node, and its ancestors if necessary
return (0, node.state)

(d, s) = DFS(leftmost admissible child)
return (d+ 1, s)
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Fig. 1. Overview of the BaSCoP search space. The top tree (filled nodes) is explored
and extended along the MCTS framework. The bottom tree involves the tree paths
under the top-tree leaves, iteratively updated by depth-first search. The status of a
bottom-node is open (unfilled) or closed (dotted).

the constraint propagation achieved by the CP solver). The possible actions in
s are to assign a fixed variable X (fetched from the variable-ordering heuristics)
to value true or false, respectively represented as �X and �X̄ literals. Each child
node of s (noted s ∧ � with � = �X or �X̄) is associated a status: closed if the
sub-tree associated to s∧ � has been fully explored; open if the sub-tree is being
explored; to-be-opened if the node has not yet been visited. The value assigned
to X is selected depending on the reward of the child nodes (section 3.2) and
the selection rule (section 3.3).

BaSCoP simultaneously explores and extends the top-tree along the MCTS
framework, following successive tree-walks from the root until reaching a leaf
node of the top-tree. The growth of the top-tree is controlled through the expand
rate parameter k (section 2.3), where a child node is added below a leaf node s
after s has been visited k times.

Upon reaching a leaf node of the top-tree, the BaSCoP roll-out phase is
launched until reaching a terminal state (failure or complete assignment). The
roll-out phase uses the depth-first-search (DFS) strategy. DFS only requires to
maintain a tree path below each leaf node; specifically, it requires to maintain the
status of every node in these tree paths, referred to as bottom nodes (depicted
as unfilled nodes in Fig. 1). By construction, DFS proceeds by selecting the left
child node unless it is closed. Thereby,BaSCoP enables a systematic exploration
of the subtrees below its leaf nodes, thus enforcing a complete search in the no-
restart setting.

3.2 Relative Failure Depth Reward

In the MCTS spirit, the choice among two child nodes must be guided by the
average performance or reward attached to these child nodes, and the confidence
thereof. Defining a reward attached to a partial assignment however raises sev-
eral difficulties, as discussed in section 2. Firstly, the performance attached to
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the terminal states below a node might be poorly informative, e.g. in the satisfi-
ability context. Secondly and most importantly, a heuristics commonly involved
in the CP search is that of multiple restarts. Upon each restart, the current CP
search tree is erased; the memory of the search is only reflected through some
indicators (e.g. weighted degree, weighted dom-degree, impact, activity or no-
goods) maintained over the restarts. When rebuilding the CP search tree from
scratch, a new variable ordering is computed from these indicators, expectedly
resulting in more efficient and shorter tree-paths. Naturally, BaSCoP must ac-
commodate multiple restarts in order to define a generic CP search strategy. For
tractability reasons however, BaSCoP can hardly maintain all top-trees built
along multiple restarts, or the rewards attached to all nodes in these top-trees.
On the other hand, estimating node rewards from scratch after each restart is
poorly informative too, as the rewards are estimated from insufficiently many
tree-walks.

Taking inspiration from the RAVE heuristics (section 2.3), it thus comes to
associate a reward to each �X and �X̄ literals, where X ranges over the variables
of the problem. The proposed reward measures the impact of the literal on the
depth of the failure, as follows. Formally, let s denote a current node with �X
and �X̄ as possible actions. Let d̄s,f denote the average depth of the failures
occurring below s. Literal � (with � = �X or �X̄) receives an instant reward 1
(respectively, 0) if the failure of the current tree-path occurs at depth d > d̄s,f
(resp., d < d̄s,f ). The rationale for this reward definition is twofold. On the one
hand, the values to be assigned to a variable only need to be assessed relatively to
each other (recall that the variable ordering is fixed and external to BaSCoP).
On the other hand, everything else being equal, the failure due to a (variable,
value) assignment should occur later than sooner: intuitively, a shorter tree-walk
likely contains more bad literals than a longer tree-walk, everything else being
equal.

Overall, the BaSCoP reward associated to each literal �, noted r(�), averages
the instant rewards gathered in all tree-paths where � is selected in a top-tree
node s. Indicator n(�) counts the number of times literal � is selected in a top
tree node. As desired, reward r(�) and indicator n(�) can be maintained over
multiple restarts, and thus based on sufficient evidence. Their main weakness
is to aggregate the information from different contexts due to dynamic variable
ordering (in particular the top-tree nodes s where literal � is selected might be
situated at different tree-depths) and due to multiple restarts. The aggregation
might blur the estimate of the literal impact; however, the blurring effect is
mitigated as the aggregation affects both �X and �X̄ literals in the same way.

3.3 Selection Rules

Let s andX respectively denote the current node and the variable to be assigned.
BaSCoP uses different rules in order to select among the possible assignments
of X (literals �X and �X̄) depending on whether the current node s belongs to
the top or the bottom tree.
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In the bottom tree, the depth-first-search applies, always selecting the left
child node unless its status is closed. Note that DFS easily accommodates value
ordering: in particular, the local neighborhood search [21] biased toward the
neighborhood of the last found solution (see section 4.2) can be enforced by
setting the left literal to the one among �X and �X̄ which is satisfied by this last
solution.

In the top-tree, several selection rules have been investigated:

– Balanced SR alternatively selects �X and �X̄ ;
– ε-left SR selects �X with probability 1 − ε and �X̄ otherwise, thus imple-

menting a stochastic variant of the limited discrepancy search [30];
– UCB SR selects the literal with maximal reward upper-bound (Eq. (1))

select arg max
�∈{�X ,�X̄}

r(�) + C

√
log(n(�X) + n(�X̄))

n(�)

– UCB-Left SR: same as UCB SR, with the difference that different ex-
ploration constants are attached to literals �X and �X̄ in order to bias the
exploration toward the left branch. Formally, Cleft = ρCright with ρ > 1 the
strength of the left bias.

Note that balanced and ε-left selection rules are not adaptive; they are considered
to comparatively assess the merits of the adaptive UCB and UCB-Left selection
rules.

3.4 Computational Complexity

BaSCoP undergoes a time complexity overhead compared to DFS, due to the
use of tree-walks instead of the optimized backtrack procedure, directly jumping
to a parent or ancestor node. A tree-walk involves: i) the selection of a literal
in each top-node; ii) the creation of a new node every k visits to a leaf node;
iii) the update of the reward values for each literal. The tree-walk overhead thus
amounts to h arithmetic computations, where h is the average height of the
top-tree.

However, in most cases these computations are dominated by the cost of
creating a new node, which involves constraint propagation upon the considered
assignment.

With regard to its space complexity, BaSCoP includes N/k top nodes after
N tree-walks, where k is the expand rate; it also maintains the DFS tree-paths
behind each top leaf node, with complexity O(Nh′/k), where h′ is the aver-
age height of the full tree. The overall space complexity is thus increased by a
multiplicative factor N/k; however no scalability issue was encountered in the
experiments.

4 Experimental Validation

This section reports on the empirical validation of BaSCoP on three binary and
n-ary CP problems: job shop scheduling problems (JSP) [31], balance incomplete
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block design (BIBD) and car sequencing (the last two problems respectively
correspond to problems 28 and 1 in [32]).

4.1 Experimental Setting

BaSCoP is implemented on the top of the state-of-the-art Gecode framework
[20]. The goal of the experiments is twofold. On the one hand, the adaptive
exploration vs exploitation MCTS scheme is assessed comparatively to the depth-
first-search baseline. On the other hand, the relevance of the relative-depth-
failure reward (section 3.2) is assessed by comparing the adaptive selection rules
to the fixed balanced and ε-left selection rules (section 3.3).

The BaSCoP expand rate parameter k is set to 5, after a few preliminary
experiments showing good performances in a range of values around 5. The per-
formances (depending on the problem family) are reported versus the number
of tree-walks, averaged over 11 independent runs unless otherwise specified. The
computational time is similar for all considered approaches, being granted that
the DFS baseline uses the same tree-walk implementation as BaSCoP1. The
comparison of the runtimes is deemed to be fair as most of BaSCoP computa-
tional effort is spent in the tree-walk part, and will thus take advantage of an
optimized implementation in further work.

4.2 Job Shop Scheduling

Job shop scheduling, aimed at minimizing the schedule makespan, is modelled
as a binary CP problem [21]. Upon its discovery, a new solution is used to i)
update the model (requiring further solutions to improve on the current one); ii)
bias the search toward the neighborhood of this solution along a local neighbor-
hood search strategy. The search is initialized using the solutions of randomized
Werner schedules, that is, using the insertion algorithm of [33] with randomized
flips in the duration-based ranking of operations. The variable ordering heuris-
tics is based on wdeg-max [34]. Multiple restarts are scheduled along a Luby
sequence with factor 64.

The performance indicator is the mean relative error (MRE), that is the rela-
tive distance to the best known makespan m∗ ((makespan −m∗)/m∗), averaged
over the runs and problem instances of a series. MRE is monitored over 50 000
BaSCoP tree-walks, comparing the following selection rules: none, which corre-
sponds to DFS standalone; balanced, which corresponds to a uniform exploration
of the top nodes; ε-left, where the exploration is biased towards the left child
nodes, and the strength of the bias is controlled from parameter ε; UCB-left,
where the exploration-exploitation trade-off based on the relative-depth-failure
reward is controlled from parameter C, and the bias toward the left is controlled
from parameter ρ. The results on the first four series of Taillard instances are

1 This implementation is circa twice longer than the optimized tree-walk Gecode im-
plementation − which did not allow however the solution-guided search procedure
used for the JSP and car sequencing problems at the time of the experiments.
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Table 1. BaSCoP experimental validation on the Taillard job shop problems: mean
relative error w.r.t. the best known makespan, averaged on 11 runs (50 000 tree walks)

Results on instance sets
Selection rule 1-10 11-20 21-30 31-40

None (DFS) 0.51 2.07 2.31 13.55

Balanced 0.39 1.76 2.00 3.29

ε-left

ε
0.05 0.57 1.58 1.58 2.56
0.1 0.45 1.65 1.74 2.24
0.15 0.58 1.46 1.63 2.37
0.2 0.46 1.67 1.88 2.55

average 0.51 1.59 1.71 2.43

UCB

ρ C
1 0.05 0.35 1.61 1.59 2.24
1 0.1 0.39 1.53 1.51 2.34
1 0.2 0.41 1.52 1.65 2.57
1 0.5 0.42 1.39 1.71 2.37
2 0.05 0.32 1.51 1.47 2.22
2 0.1 0.40 1.57 1.49 2.16
2 0.2 0.43 1.48 1.48 2.37
2 0.5 0.55 1.77 1.67 2.38
4 0.05 0.34 1.57 1.60 2.19
4 0.1 0.43 1.55 1.68 2.33
4 0.2 0.44 1.53 1.63 2.39
4 0.5 0.40 1.40 1.42 2.46
8 0.05 0.36 1.51 1.62 2.04
8 0.1 0.45 1.52 1.59 2.33
8 0.2 0.46 1.51 1.62 2.39
8 0.5 0.29 1.51 1.65 2.55
average 0.40 1.53 1.59 2.33

Table 2. Best makespans obtained out of 11 runs of 200 000 tree-walks on the 11-20
series of Taillard instances, comparing DFS and BaSCoP with UCB-Left selection rule
with parameters C = 0.05, ρ = 2. Bold numbers indicate best known results so far.

Ta11 Ta12 Ta13 Ta14 Ta15 Ta16 Ta17 Ta18 Ta19 Ta20

DFS 1365 1367 1343 1345 1350 1360 1463 1397 1352 1350
BaSCoP 1357 1370 1342 1345 1339 1365 1462 1407 1332 1356

reported in Table 1, showing that BaSCoP robustly outperforms DFS for a
wide range of parameter values. Furthermore, the adaptive UCB-based search
improves on average on all fixed strategies, except for the 1-10 series.

Complementary experiments displayed in Table 2,show that BaSCoP dis-
covers some of the current best-known makespans, previously established using
dedicated CP and local search heuristics [35], at similar computational cost (circa
one hour on Intel Xeon E5345, 2.33GHz for 200 000 tree-walks).
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4.3 Balance Incomplete Block Design (BIBD)

BIBD is a family of challenging Boolean satisfaction problems, known for their
many symmetries. We considered instances from [22], characterized from their
v, k, and λ parameters. A simple Gecode model with lexicographic order of the
rows and columns is used. Instances for which no solution could be discovered
by any method within 50 000 tree-walks are discarded. Two goals are tackled:
finding a single solution; finding them all.

Table 3. BaSCoP experimental validation on BIBD: number of tree-walks needed to
find the first solution. Best results are indicated in bold; ’-’ indicates that no solution
was found after 50 000 tree-walks.

BaSCoP
v k λ DFS bal. C 0.05 C 0.1 C 0.2 C 0.5 C 1

9 3 2 49 49 49 49 49 49 49
9 4 3 45 45 45 45 45 45 45
10 3 2 63 63 63 63 63 63 63
10 4 2 45 45 45 45 45 45 45
10 5 4 333 669 357 355 355 256 509
11 5 2 45 45 45 45 45 45 45
13 3 1 161 331 176 176 176 243 265
13 4 1 40 40 40 40 40 40 40
13 4 2 202 935 216 216 216 499 463
15 3 1 131 131 131 131 131 131 131
15 7 3 567 1579 233 233 233 451 370
16 4 1 164 166 164 164 164 164 164
16 4 2 639 12583 1297 1279 1282 1324 2492
16 6 2 503 821 315 315 315 314 407
16 6 3 7880 - 3200 3198 2559 2594 4394
19 3 1 671 - 493 493 493 709 3541
19 9 4 - - 26251 25310 25383 2004 -
21 3 1 - - 779 779 779 1183 6272
21 5 1 261 634 217 217 217 217 277
25 5 1 3425 11168 636 636 636 643 541
25 9 3 - - - 35940 - 30131 -
31 6 1 13889 36797 882 882 882 953 893

After preliminary experiments, neither variable ordering nor value ordering
(e.g. based on the local neighborhood search) heuristics were found to be effec-
tive. Accordingly, BaSCoP with UCB selection rule is assessed comparatively
to the DFS standalone and BaSCoP with balanced selection rule.

Table 3 reports the number of iterations needed to find the first solution; a
single run is considered. Satisfactory results are obtained for low values of the
trade-off parameter C. On-going experiments consider lower C values.

The All-solution setting is considered to investigate the search efficiency of
BaSCoP. On easy problems where all solutions can be found after 50 000 tree-
walks, same number of tree-walks is needed to find all solutions. The search
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Table 4. BaSCoP experimental validation on BIBD: Number of tree-walks needed to
find 50% of the solutions when all solutions are found in 50 000 tree-walks

BaSCoP
v k λ DFS bal. C 0.05 C 0.1 C 0.2 C 0.5 C 1

9 3 2 8654 8000 8862 8860 7473 7317 7264
9 4 3 13291 15144 12821 12824 12794 13524 13753
10 4 2 156 215 153 153 153 153 181
11 5 2 45 45 45 45 45 45 45
13 4 1 40 40 40 40 40 40 40
15 7 3 5007 5254 1877 1878 1877 1961 2773
16 4 1 322 394 377 379 378 392 340
16 6 2 1677 1947 1130 1131 1133 1139 1270
21 5 1 507 799 484 484 484 495 537

average 3300 3538 2865 2866 2709 2785 2911

Table 5. BaSCoP experimental validation on BIBD: Number of solutions found in
50 000 tree-walks

BaSCoP
v k λ DFS bal. C 0.05 C 0.1 C 0.2 C 0.5 C 1

10 3 2 19925 11136 17145 17172 17031 18309 22672
10 5 4 1454 1517 1552 1554 1550 1556 1558
13 4 2 824 1457 16597 16654 16596 2063 1898
15 3 1 21884 2443 22496 22505 22497 23142 15273
16 4 2 190 6 4726 4727 4725 247 392
16 6 3 180 - 416 416 425 306 64
19 3 1 18912 - 19952 19952 19952 15794 10190
19 9 4 - - 18 18 18 36 -
21 3 1 - - 16307 16289 16329 14764 9058
25 5 1 416 260 460 460 460 460 420
25 9 3 - - - 12 - 8 -
31 6 1 253 34 347 342 347 347 342

average 7388 3279 9173 8473 9166 6684 6516

efficiency is therefore assessed from the number of tree-walks needed to find 50%
of the solutions, displayed in Table 4. Likewise, there exists a plateau of good
results for low values of parameter C.

For more complex problems, the number of solutions found after 50 000 tree-
walks is displayed in Table 5.

Overall,BaSCoP consistently outperforms DFS, particularly so for low values
of the exploration constant C, while DFS consistently outperforms the non-
adaptive balanced strategy. For all methods, the computational cost is ca 2
minutes on Intel Xeon E5345, 2.33GHz for 50 000 tree-walks).

4.4 Car Sequencing

Car sequencing is a CP problem involving circa 200 n-ary variables, with n
ranging over [20, 30]. As mentioned, the UCB decision rule straightforwardly
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Table 6. BaSCoP experimental validation on car-sequencing: top line: violation after
10 000 tree-walks, averaged over 70 problem instances. bottom line: significance of the
improvement over DFS after Wilcoxon signed-rank test.

BaSCoP
DFS bal. C 0.05 C 0.1 C 0.2 C 0.5

average gap 17.1 17.1 16.6 16.7 16.6 16.5
p-value - 0 10−3 5 10−3 10−3 10−3

extends beyond the binary case. After preliminary experiments, multiple restart
strategies were not considered as they did not bring any improvements. Variable
ordering based on activity [36] was used together with a static value ordering.
70 instances (ranging in 60-01 to 90-10 from [32]) are considered; the algorithm
performance is the violation of the capacity constraint (number of extra stalls)
averaged over the solutions found after 10 000 tree-walks.

The experimental results (Table 6) show that CP solvers are far from reach-
ing state-of-the-art performance on these problems, especially when using the
classical relaxation of the capacity constraint [37]. Still, while DFS and balanced
exploration yield same results, BaSCoP with UCB selection rule significantly
improves on DFS after a Wilcoxon signed-rank test; the improvement is robust
over a range of parameter settings, with C ranging in [.05, .5].

5 Discussion and Perspectives

The generic BaSCoP scheme presented in this paper achieves the adaptive
control of the variable-value assignment in the CP search along the Monte-Carlo
Tree Search ideas. The implementation of BaSCoP on the top of the Gecode
solver and its comparative validation on three families of CP problems establish,
as a proof of principle that cues about the relevance of some (variable,value)
assignments can be efficiently extracted and exploited online.

A main contribution of the proposed scheme is the proposed (variable,value)
assignment reward, enforcing the BaSCoP compatibility with multiple restart
strategies. Importantly,BaSCoP can (and should) be hybridized with CP heuris-
tics, such as dynamic variable ordering or local neighborhood search; the use of
the depth-first search strategy as roll-out policy is a key issue commanding the
completeness of the BaSCoP search, and its efficiency.

This work opens several perspectives for further research. Focussing on the
no-restart CP context, a first perspective is to apply the proposed relative fail-
ure depth reward to partial assignments. Another extension concerns the use
of progressive-widening [38] or X-armed bandits [39] to deal with respectively
many-valued or continuous variables.

A mid-term perspective concerns the parallelization of BaSCoP, e.g. through
adapting the parallel MCTS approaches developed in the context of games [40].
In particular, parallel BaSCoP could be hybridized with the parallel CP ap-
proaches based on work stealing [41], and contribute to the collective identifica-
tion of the most promising parts of the search tree.
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Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 225–239.
Springer, Heidelberg (2004)

www.gecode.org


480 M. Loth et al.

38. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.)
CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

39. Bubeck, S., Munos, R., Stoltz, G., Szepesvári, C.: X-armed bandits. Journal of
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