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Abstract. This paper proposes a new propagator for a set of Neuron
Constraints representing a two-layer network. Neuron Constraints are
employed in the context of the Empirical Model Learning technique, that
enables optimal decision making over complex systems, beyond the reach
of most conventional optimization techniques. The approach is based on
embedding a Machine Learning-extracted model into a combinatorial
model. Specifically, a Neural Network can be embedded in a Constraint
Model by simply encoding each neuron as a Neuron Constraint, which
is then propagated individually. The price for such simplicity is the lack
of a global view of the network, which may lead to weak bounds. To
overcome this issue, we propose a new network-level propagator based on
a Lagrangian relaxation, that is solved with a subgradient algorithm. The
approach is tested on a thermal-aware dispatching problem on multicore
CPUs, and it leads to a massive reduction of the size of the search tree,
which is only partially countered by an increased propagation time.

1 Introduction

Pushed by research advancements in the last decades, Combinatorial Opti-
mization techniques have been successfully applied to a large number of in-
dustrial problems. Yet, many real-world domains are still out-of-reach for such
approaches. To a large extent, this is due to difficulties in the formulation of an
accurate declarative model for the system to be optimized.

The Empirical Model Learning technique (EML), introduced in [1], has been
designed to enable optimal decisions making over complex systems considered
beyond the reach of traditional combinatorial approaches. In EML, an approx-
imate model of the target system is extracted via Machine Learning. Such em-
pirical model captures the effect of the user decisions on one or more observables
of interest (e.g. a cost measure or a constrained parameter). Then, the empir-
ical model is encoded using a combinatorial technology and embedded into a
combinatorial model to perform optimization.

Currently, the EML approach has been instantiated using Artificial Neural
Networks (ANN) and Constraint Programming, respectively as Machine Learn-
ing and Combinatorial Optimization technologies. Specifically, in [1] an ANN is
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employed to learn the effect of task mapping decisions on the temperature of a
quad-core CPU. In [2], the authors tackle a workload dispatching problem on
a 48-core system with thermal controllers: in this case, bad mapping decisions
may lead to overheating, which may cause a loss of efficiency when the con-
trollers slow down the cores to decrease their temperature. ANNs are employed
to predict the mapping-dependent efficiency loss, i.e the combined effect of the
thermal physics and the action of the on-line controllers.

The use of automatically extracted models for cost computation has been
previously employed in the context of metaheuristic methods. EML stands out
from those approaches for two main reasons: 1) because it makes the empirical
model a component, easy to integrate with traditional constraints; 2) because
it makes the empirical model active, rather than an simple function evaluator.
In [1] an [2], this is achieved by encoding each neuron in the ANN as a Neuron
Constraint, which is then propagated to narrow the search space.

Using individual constraints for the neurons is simple, but the loss of the
network global view may degrade the propagation effectiveness. To address this
issue, we propose a new propagator for the most common ANN structure in
practice, i.e. a two-layer, feed forward network. We assume to have sigmoid
neurons in the hidden layer, since they are a common choice [15], but the method
easily extends to any differentiable activation function. The new propagator
does not replace the use of multiple Neuron Constraints, but provides tighter
bounds (hence stronger filtering) on the network output variables. The bounds
are obtained via a Lagrangian relaxation, with the Lagrangian multipliers being
optimized via a subgradient method. We test the approach on a simplified version
of the thermal-aware dispatching problem from [2]: the new propagator leads to a
substantial (sometimes massive) reduction of the search tree size, in particular for
larger instances. This is however partially countered by an increased propagation
time. Fortunately, on the basis of a rather strong conjecture that we give at the
end of the paper, we believe a complexity reduction is possible.

The paper is structured as follows: Section 2 provides background information.
Section 3 describes our Lagrangian relaxation and its solution method, while Sec-
tion 4 explains how the Lagrangian multipliers are optimized. Section 5 provides
our experimental results and Section 6 the concluding remarks.

2 Background and Related Works

Artificial Neural Neworks: An ANN is a system emulating the behavior of
a biological network of neurons. Each ANN unit (artificial neuron) corresponds
to the following function:

z = f

(
b +

n−1∑
i=0

wixi

)
(1)

where xi are the neuron inputs and wi are their weights, b is called the bias
and z is the neuron output. All the terms are ∈ R. Besides, f : R → R is
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Fig. 1. A A two-layer, feed forward ANN. B Domains for the ANN inputs and actual
output maximum. C Output bound computed by the existing propagators.

called activation function and is monotone non-decreasing. Some examples of
activation functions follow:

(a) f(y) = y (b) f(y) =

{
1 if y ≥ 0

− 1 otherwise
(c) f(y) =

2

1 + e−2y
− 1 (2)

Case (a), (b) and (c) respectively correspond to a linear, step and sigmoid neuron.
Function (c) is called tansig and it is an accurate, faster to compute, approxi-
mation of tanh(y). The neurons are connected in a network structure, the most
common being an acyclic (i.e. feed-forward), two-layer graph. The first layer is
referred as hidden, the second is called the output layer (because it provides
network output). Typically, sigmoid neurons are employed in the hidden layer.
Figure 1A shows an example of such a network. Each node represents a neuron,
the weights are reported as label on the arcs, xi are the network input and z is
the network output. The weights of an ANN can be assigned automatically by
minimizing the average square error on a known set of examples: there are many
specifically designed, readily available, algorithms for this purpose [13,3,11].

Neuron Constraints: A Neuron Constraint is a constraint that encodes and
propagates Equation (1) and is equivalent to the following pair of constraints:

(c0) z = f(y) (c1) y = b+
n−1∑
i=0

wixi (3)

where z, y and xi are real-valued decision variables1 with interval domain, i.e.
z ∈ [z, z], y ∈ [y, y] and xi ∈ [xi, xi]. The term y is called the neuron activity. It
is possible to embed an ANN in a CP model by building a Neuron Constraint for
each node in the network and by introducing decision variables to represent the
output of each hidden neuron. Each Neuron Constraint is implemented either as
a single entity or as an actual pair of constraints. In the second case, we must
explicitly introduce a decision variable to model each neuron activity.

Motivating Example: The propagator for a Neuron Constraint enforces bound
consistency on (c0) and (c1). For a single neuron, this leads to the tightest
possible bounds on all the variables. However, this approach is much less effective
once more complex networks are taken into account. Consider the two layer

1 Note that real-valued variables with fixed precision can be modeled via integer vari-
ables (e.g. a number in [0, 1] with precision 0.01 corresponds to a number ∈ {0..100}).
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network from Figure 1A, having tansig neurons in the hidden layer and a single
linear neuron connected to the output.

Assuming both x0 and x1 range in [−1, 1], the maximum possible value for
the output z is � 1.515 (see Figure 1B). Now, let yj denote the activity of the
j-th hidden neuron. The upper bound on z computed by the output neuron (i.e.
z∗), is obtained by fixing both y0 and y1 to their maximum possible values (i.e.
y∗0 and y∗1). We have y∗0 = 2, obtained by fixing both x0 and x1 to −1. We have
also y∗1 = 2, corresponding to x0 = −1 and x1 = 1. Therefore, z∗ is � 1.928. The
loose bound is obtained since each neuron is propagated separately, thus allowing
the network inputs to take incompatible values. This issue can be overcome by
employing a global, network-level propagator, which is what this paper is about.

Related Works: Neural Networks have been used as cheap-to-compute cost
function evaluators in the context of metaheuristics: in [4] a Genetic Algorithm
exploits an ANN to estimate the performance of an absorption chiller. The work
[14] proposes a custom heuristic for workload dispatching in a data center and
uses an ANN for temperature estimation. In Control Theory, ANNs are employed
on-line as predictors (i.e. dynamic system models) and their parameters are
continuously adjusted according to the prediction error [6]. This is a specific case
of system identification [12], which is the process of learning a (typically linear)
system model to be used for on-line control, mostly at a local scale. A few works,
such as [10], have employed ANNs for solution checking. Others have used ANNs
as a surrogate system model for the back-computation of hidden parameters: in
[8], this is done to estimate the condition of road pavement layers. Finally, in
the OptQuest metaheuristic system [7], a neural network is trained during search
with the aim to avoid trivially bad solutions.

As a common trait, in all the mentioned approaches the ANN is exploited
in a rather limited fashion, namely as black-box function evaluator. Conversely,
Empirical Model Learning has the ability to actively employ the extracted model
to improve the performance of the optimization process.

3 Computing Bounds for the Network Output

In this work, we design a new propagator for computing bounds to the output
of a two-layer, feed-forward network. Without loss of generality, we consider the
problem of finding an upper bound for a single output variable, i.e. on solving:

P0 : max z = b̂+

m−1∑
j=0

ŵjf(yj) (4)

s.t. yj = bj +

n−1∑
i=0

wj,ixi ∀j = 0..m− 1 (5)

xi ∈ [xi, xi] ∀i = 0..n− 1 (6)
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where xi are the network inputs (n in total), yj are the activities of the hidden
layer neurons (m in total). The term wj,i is the weight of the i-th input in activity
of the j-th hidden neuron and bj is the bias for the j-th hidden neuron. The term
ŵj is the weight of the output of the j-th hidden neuron in the activity of the

output neuron and b̂ is the bias for the output neuron. The z variable represents
the activity of the output neuron: since all activation functions are monotone
non-decreasing, an upper bound on z corresponds to an upper bound on the
network output.

Problem Relaxation: Problem P0 is non-linear, non-convex and cannot be
solved in polynomial time in general. Therefore, we resort to a relaxation in order
to obtain a scalable solution approach. Specifically, we employ a Lagrangian
relaxation for Constraints (5), obtaining:

LP0(λ) : max
x,y

z(λ) = b̂+

m−1∑
j=0

ŵjf(yj)+ (7)

+

m−1∑
j=0

λj

(
bj +

n−1∑
i=0

wj,ixi − yj

)
(8)

xi ∈ [xi, xi] ∀i = 0..n− 1 (9)

yj ∈ [y
j
, yj ] ∀j = 0..m− 1 (10)

where λ is the vector of Lagrangian multipliers λj , acting as parameters for the
relaxation. The notations x and y refer to the vectors of the xi and yj variables.
Constraints (10) have been added to prevent LP0(λ) from becoming unbounded.
The values y

j
and yj are chosen so that Constraints (10) are redundant in the

original problem. In particular:

y
j
= bj +

∑
i

{
wj,ixi if wj,i ≥ 0

wj,ixi otherwise
(11)

and the value yj is computed similarly. Now, since problem LP0(λ) is a relax-
ation, its feasible space includes that of P0. Additionally, for all points where
Constraints (5) are satisfied, we have z = z(λ), for every possible λ. Therefore,
the set of solutions of LP0(λ) contains all the solutions of P0, with the same
objective value. Hence the optimal solution z∗(λ) of LP0(λ) is always a valid
bound on the optimal solution z∗ of P0.

Solving the Relaxation: Problem LP0(λ) can be decomposed into two inde-
pendent subproblems LP1(λ) and LP2(λ) such that:

z∗(λ) = b̂+

m−1∑
j=0

λjbj + z∗LP1(λ) + z∗LP2(λ) (12)
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with:

z∗LP1(λ) = max
x

zLP1(λ) =

n−1∑
i=0

⎛
⎝m−1∑

j=0

λjwj,i

⎞
⎠xi LP1(λ) (13)

s.t. xi ∈ [xi, xi] ∀i = 0..n− 1 (14)

z∗LP2(λ) = max
y

zLP2(λ) =
m−1∑
j=0

(ŵjf(yj)− λjyj) LP2(λ) (15)

s.t. yj ∈ [y
j
, yj ] ∀j = 0..m− 1 (16)

The two subproblems can be addressed separately.

Solving LP1(λ): Problem LP1(λ) can be solved by assigning each xi either to

xi or to xi, depending on the sign of the reduced weight w̃i(λ) =
∑m−1

j=0 λjwj,i.
In detail:

z∗LP1(λ) =

n−1∑
i=0

{
w̃i(λ)xi if w̃i(λ) ≥ 0

w̃i(λ)xi otherwise
(17)

The process requires nm steps to compute the reduced weights and n steps to
obtain the final solution, for a worst case time complexity of O(nm).

Solving LP2(λ): Problem LP2(λ) can be further decomposed into a sum of
maximization problems of non-linear, non-convex, monovariate functions with
box constraints. Each of the subproblems is in the form:

max
yj

gj(yj , λ) = ŵjf(yj)− λjyj (18)

s.t. yj ∈ [y
j
, yj ] (19)

Each subproblem can be solved analytically, in case f is differentiable, which
is a very realistic assumption given that in most practical applications f is a
sigmoid. In such case, the objective function from Equation (18) will have a
shape similar to the one depicted in Figure 2A. Hence the maximum can be
found by comparing the value of gj(yj , λ) on y

j
, on yj (depending on the value

of ŵj and λj) or on the yj value corresponding to a local maximum. The presence
of at most one local maximum is guaranteed by the fact that both f(yj) and
λjyj are mononote. Now, for the local minimum and maximum the derivative
of gj(yj , λ) will be null, i.e. ŵjf

′(yj) − λj = 0. Assuming a tansig activation
function, this means that:

ŵj
4e−2yj

(1 + e−2yj )
2 − λj = 0 (20)

By substituting u = e−2yj in Equation (20), we get:

4ŵju− λj

(
1 + 2u+ u2

)
= 0 (21)
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Fig. 2. Shapes for the cost function in the decomposition of LP2(λ)

Note that if λj = 0, then no local maximum exists. The same holds if ŵj = 0.
Hence it is safe to assume λj , ŵj �= 0 and we can get:

u2 +

(
2− 4

ŵj

λj

)
u+ 1 = 0 (22)

Which can be solved via the classic quadratic formula for second degree equa-
tions, yielding two solutions u′ and u′′. The solutions are non-complex iff:(

2− 4
ŵj

λj

)2

− 4 ≥ 0 ⇔ ŵj

λj

(
ŵj

λj
− 1

)
≥ 0 (23)

I.e. if ŵj and λj are equal in sign and if |ŵj | ≥ λj (or equivalently if ŵj/λj > 1).
In this case, the yj values corresponding to the local minimum and maximum
are given by:

y′j = −1

2
log u′, y′′j = −1

2
log u′′ (24)

It can be shown that u′ and u′′ are guaranteed to be positive. If the conditions
to have a real-valued solution for Equation (22) do not hold, then the maximum
corresponds to either y

j
or yj : in detail, if sign(ŵj) �= sign(λj), then this hap-

pens because both f(yj) and −λjyj are non-decreasing or non-increasing (see
Figure 2B). If |ŵj | < λj no local maximum exists (see Figure 2C), because the
derivative of the tansig is always ≤ 1.

Hence, the solution of each subproblem in the decomposition of LP2(λ) can
be found by solving Equation (20) (if the conditions are met) and by comparing
the value of gj(yjλ) for at most four yj values. The process takes constant time.
Solving LP2(λ) requires m such computations, plus nm iterations to obtain all
y
j
and yj . The overall worst case time complexity is O(nm).

Summary: For a fixed value of all the Lagrangian multipliers λ, the relaxed
subproblem LP0(λ) can therefore be solved via the process described in Al-
gorithm 1, to yield an upper bound on z. In the algorithm, z∗(λ) denotes the
bound, while x∗

i (λ) and y∗j (λ) are the values of xi and yj in the corresponding
solution. We recall that a feasible solution for LP0(λ) may be infeasible for P0.
The algorithm to compute a lower bound is analogous.



A New Propagator for Two-Layer Neural Networks in EML 455

Algorithm 1. (Computing an upper bound on z by solving LP0(λ))

initialize z∗(λ) = b̂+
∑m−1

j=0 λjbj
for i = 0..n− 1 do

set x∗
i (λ) =

{
xi if w̃i(λ) ≥ 0

xi otherwise

update z∗(λ) = z∗(λ) + w̃i(λ)x
∗
i (λ)

for j = 0..m − 1 do
compute y

j
and yj

set y∗
j (λ) = argmax{gj(y

j
, λ), gj(yj , λ)}

if λj �= 0 and ŵj /λj > 1 then

set y′
j , y

′′
j = − 1

2
log

(
−β±

√
β2−4

2

)

, with β = 2− 4
ŵj

λj

if y′
j ∈ ]y

j
, yj [ and gj(y

′
j , λj) > gj(y

∗
j (λ), λj) then y∗

j (λ) = y′
j

if y′′
j ∈ ]y

j
, yj [ and gj(y

′′
j , λj) > gj(y

∗
j (λ), λj) then y∗

j (λ) = y′′
j

set z∗(λ) = z∗(λ) + gj(y
∗
j (λ), λ)

return z∗(λ)

4 Optimizing the Lagrangian Multipliers

Any assignment of the multipliers λ yields a valid bound on the output variable
z. Hence it is possible to improve the bound quality by optimizing the multiplier
values, i.e. by solving the following unconstrained minimization problem:

L0 : min
λ

z∗(λ) (25)

Where z∗(λ) is here a function that denotes the optimal solution of LP0(λ).
Problem L0 is convex in λ and hence has a unique minimum. This is true
even if LP0(λ) is non-convex: in fact, the two problems are defined on different
variables (i.e. λ versus x and y). The minimum point can therefore be found via
a descent method. Now, let λ′ be an assignment of λ such that the corresponding
solution of LP0(λ) does not change for very small variations of the multipliers,
i.e. x∗(λ′) = x∗(λ′′) and y∗(λ′) = y∗(λ′′), with ‖λ′ − λ′′‖ → 0. Then z∗(λ) is
differentiable in λ′ and in particular:

∂z∗(λ′)
∂λj

= sj = bj +

n−1∑
i=0

wj,ix
∗
i (λ

′)− y∗j (λ
′) (26)

Equation (26) is obtained by differentiating the objective of LP0(λ) under the
above mentioned assumptions. When such assumptions do not hold, the sj values
provide a valid subgradient. The optimum value of L0 can therefore be found
via a subgradient method, by starting from an assignment λ(0) and iteratively
applying the update rule:

λ(k+1) = λ(k) − σ(k)s(k) (27)
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where λ(k) denotes the multipliers for the k-th step, s(k) is the vector of all sj
(i.e. the subgradient) and σ(k) is a scalar, representing a step length.

Step Update Policy: We have chosen to employ the corrected Polyak step
size policy with non-vanishing threshold from [5]. This guarantees the conver-
gence to the optimal multipliers (given infinitely many iterations), with bounded
error. Other policies from the literature are more accurate, but have a slower
convergence rate, which is in our case the critical parameter (since we will run
the subgradient method within a propagator). In detail, we have:

σ(k) = β
z∗(λ(k))− (zbest − δ(k))

‖s(k)‖2 (28)

where β is a scalar value in ]0, 2[. The term zbest − δ(k) is an estimate of the
L0 optimum: it is computed as the difference between the best (lowest) bound
found so far zbest, and a scalar δ(k) dynamically adjusted during search. Hence,
the step size is directly proportional to the distance of the current bound from
the estimated optimal one, i.e. z∗(λ(k))−(zbest−δ(k)). The larger δ(k), the larger
the estimated gap w.r.t the best bound and the larger the step size.

The value of δ(k) is non-vanishing, which means it is constrained to be larger
than a threshold δ∗. This ensures to have σ(k) > 0 and prevents the subgradient
optimization from getting stuck. We determine the δ∗ value when the propagator
is first executed at the root of the search tree. Specifically, we choose δ∗ =
γz∗(λ(0)), with γ being a small positive value. During search, we compute δ(k)

according to the following rules:

δ(k+1) =

{
max(δ∗, νδ(k)) if z∗(λ(k)) > zbest − δ(k)

max(δ∗, μz∗(λ(k))) otherwise
(29)

where ν, μ ∈ ]0, 1[. In practice, if the last computed bound z∗(λ(k))) does not
improve over the estimated optimum zbest − δ(k), then we reduce the current
δ(k) value, i.e. we make the estimated optimum closer to zbest. Conversely, when
an improvement is obtained, we “reset” δ(k), i.e. we assume that the estimated
optimum is μ% lower than zbest.

Deflection: Subgradient methods are known to exhibit a zig-zag behavior when
close to an area where the cost function is non-differentiable. In this situation
the convergence rate can be improved via deflection techniques. In its most
basic form (the one we adopt), a deflection technique consists in replacing the
subgradient in Equation (27) and (28) with the following vector (see [5]):

d(k) = αs(k) + (1 − α)d(k−1) (30)

where d(k) is called search direction and α is a scalar in ]0, 1], meaning that d(k)

is a convex combination of the last search direction and the current subgradient.
The components sj having alternating sign in consecutive gradients (such that

s
(k)
j s

(k−1)
j < 0) tend to cancel one each other in the deflected search direction.
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Fig. 3. A Subgradient optimization trace (10 iterations, no deflection). B Subgradi-
ent optimization trace (10 iterations, with deflection).

This behavior can be observed in Figure 3. This depicts the bound value as a
function of λ for the network from Figure 1, together with the trace of the first
10 subgradient iterations. The use of the deflection allows to get considerably
closer to the best possible bound (� 1.523 in this case). Note that bound is
not tight (the actual network maximum is � 1.515), but it remarkably better
than the value obtained from the propagation of individual neuron constraints
(� 1.928). When using the deflection technique, the value β from Equation (28)
must be ≤ α for the method to converge.

Propagator Configuration: We stop the subgradient optimization after a
fixed number of steps. At the end of the process, we keep the best multipli-
ers λ∗ we have found and the corresponding bound z∗(λ∗). We compute both
an upper and a lower bound on the network output. The bound computation al-
gorithm does not replace the propagation of individual neuron constraints, that
we implement as pair of separated constraints as from Equation (3). We rely
on individual neuron constraints to perform propagation on the network inputs,
and for computing the bounds y

j
, yj on the activity of the hidden neurons.

The new propagator is scheduled with the lowest possible priority in the tar-
get Constraint Solver. When the constraint is propagated for the first time, we

perform 100 subgradient iterations, starting with all-zero multipliers (λ
(0)
j =

0 ∀j = 0..m − 1). After that, when the constraint is triggered we perform only
3 iterations, starting from the best multipliers λ∗ from the last activation. We
keep the multipliers also when branching from a node of the search tree to one
of its children, as a simple (but important) form of incremental computation.

We always use α = 0.5 for the deflection and we keep β = α. We re-initialize
δ∗ every time the constraint is triggered, using γ = 0.01. Therefore, the cor-
rection factor δ(k) is always at least 1% of the computed bound computed at
the first subgradient iteration. The attenuation factor ν for δ(k), used when no
improvement is obtained, is fixed to 0.75. The μ factor, used to reset δ(k) when
the estimated bound is improved, is 0.25 for the first constraint propagation
and 0.05 for all the following ones. This choice is done on the basis that small
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updates of the network inputs (such as those occurring during search) result in
small modifications of the optimal multipliers.

5 Experimental Results

Target Problem: We have tested the new propagator on a simplified version
of the thermal-aware workload dispatching problem from [2]. A number of tasks
need to be executed on a multi-core CPU. Each CPU core has a thermal con-
troller, which reacts to overheating by reducing the operating frequency until
the temperature is safe. The frequency reduction causes a loss of efficiency that
depends on the workload of the core, on that of the neighboring cores, on the
thermal physics, and on the controller policy itself. An ANN is used to obtain an
approximate model of the efficiency of each core, as a function of the workload
and the room temperature. We target a synthetic quad core CPUs, simulated via
an internally developed tool based on the popular Hotspot system [9]. A training
set has been generated by mapping workloads at random on the platform and
then obtaining the corresponding core efficiencies via the simulator. We have
then trained a two-layer ANN for each core, with tansig neurons in the hidden
layer and a single linear neuron in the output layer.

Each task i is characterized by a value cpii, measuring the degree of its CPU
usage: lower cpii values correspond to more computation intensive (and heat
generating) tasks. An equal number of tasks must be mapped on each core. The
input of the ANN is the average cpii of each core and the room temperature
t. The goal is to find a task-to-core mapping such that no efficiency is below a
minimum threshold θ. We use the vector of integer variables p to model the task
mapping, with pi = k iff task i is mapped to core k. Our model is as follows:

gcc (p, [0..nc − 1],nt /nc) (31)

acpik =
nc

nt

nt−1∑
i=0

cpii(pi = k) ∀k = 0..nc − 1 (32)

ek = b̂k +

nh−1∑
j=0

ŵk,jyk,j ∀k = 0..nc − 1 (33)

yk,j = tansig

(
bk,j +

nc−1∑
h=0

wk,j,hacpih + wk,j,nc t

)
∀k = 0..nc − 1,

∀j = 0..nh − 1
(34)

ek ≥ θ ∀k = 0..nc − 1 (35)

pi ∈ {0..nc − 1} ∀i = 0..nt (36)

where nt is the number of tasks and nc is the number of cores (4 in our case).
In (31) we use the gcc global constraint to have exactly nt/nc tasks per core. For
simplicity, we assume nt is a multiple of nc. Constraints (32) are used to obtain
the average cpii per core (i.e. the acpik variables). Constraints (33) and (34)
define the ANN structure and are implemented using Neuron Constraints. The
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Fig. 4. Results for the 16 task workloads, on platforms 0-2

value nh is the number of hidden neurons per ANN (nh = 5 in our case), b̂k is
the bias of the output neuron in the ANN for core k, ŵk,j are the neuron weights.
Similarly, bk,j is bias of the hidden neuron j in the neural network for core k,
while wk,j,h, wk,j,nc are the weights. The value t is the room temperature, which
is fixed for each problem instance. Each ek variable represents the efficiency of
the core k and is forced to be higher than θ by Constraints (35).

Experimental Setup: We tested two variants of the above model, where the
new Lagragian propagator is respectively used (lag) and not used (base). A com-
parison with an alternative approach (e.g. a meta-hueristic using the ANN as a
black-box), although very interesting, is outside the scope of this paper, which is
focused on improving a filtering algorithm. We solve the problem via depth-first
search by using a static search heuristic, namely by selecting for branching the
first unbounded variable and always assigning the minimum value in the domain.
The choice of a static heuristic allows a fair comparison of different propagators:
pruning a value at a search node has the effect of skipping the corresponding
sub-tree, but does not affect the branching decisions in an unpredictable fashion.
As an adverse side effect, static heuristics are not well suited to solve this specific
problem. Therefore, we limit ourselves to relatively small instances with either
16 or 20 tasks, which are nevertheless be sufficient to provide a sound evalua-
tion. We consider 100 task sets for each size value. We performed experiments
on 6 synthetic quad-core platforms, effectively testing 4 × 6 = 24 networks. For
each combination of task set size and platform, we have empirically determined
an efficiency threshold θ such that finding a feasible solution is non-trivial in
most cases. Each experiment is run with a 60 seconds time limit. This is usually
enough to find a solution, but it is never sufficient for proving infeasibility (which
appears to take a very long time, mainly due to the chosen search heuristic). We
have implemented everything on top of the Google or-tools solver. All the tests
are run on a 2.8 GHz Intel Core i7.
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Fig. 5. Results for the 20 task workloads, on platforms 0-2
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Fig. 6. Results for the 16 task workloads, on platforms 3-5

Results: The results of our experimentation are reported in Figures 4, 5, 6, 7.
Each of them refers to 100 instances (with either 16 or 20 tasks) tested on three
different platforms, and contains two scatter plots in log scale. The left-most
diagram reports the solution times, with lag on the x axis and base on the y
axis. Each instance is represented by a point and different colors and markers
are used to distinguish between different platforms. Points above the diagonal
represent instances where an improvement was obtained. A horizontal and a
vertical line highlight the position of 1-second run times. The right-most plot
is similar, except that it shows the number of branches and refers only to the
instances for which a solution was found by both approaches. Each of the dotted
diagonal lines represents a one-order-of-magnitude improvement.

The dramatic good news here is that the novel propagator achieves an impres-
sive reduction in the number of branches, in a significant number cases. The gain
may be as large as 2-3 orders or magnitude. This is an important result, pointing
out that the bound improvement provided by the Lagrangian relaxation is far
from negligible. Interestingly, the benefits tend to be higher for larger instances:
a reasonable explanation for this behavior is that additional propagation is
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Fig. 7. Results for the 20 task workloads, on platforms 3-5

performed relatively high in the search tree, thus pruning larger subtrees as
the instance size grows.

On the flip side, the new propagator comes with a considerable computational
burden at each search node. As a general trend, on the 16 task instances this
is sufficient to counter the benefits of the smaller number of branches: the lag
approach therefore tends to be slower than the base one, although not much
slower. For the 20 task workloads, there is a significant gain in solution time on
platform 2 and 1, and a slight improvement on platform 0. The novel propagator
behaves nicely on platform 3 and 4 as well, solving more instances than base
respectively for the first 28 and 47 seconds. The method reports however a
larger number of time-outs at the end of the 60 seconds. The base approach
considerably outperforms the lag one on platform 5.

In general, the effectiveness of the Lagrangian propagator is non-uniform
across different platforms: the reduction in the number of branches is much
larger for platforms 0, 2, 3 and 4 than it is for platforms 1 and 5. This rises
interest in investigating techniques to identify the network weight configurations
that are more likely to benefit from the new propagator. The results seem to be
much more consistent for different workloads on a single platform, although this
may be due in part to the way our task sets are generated.

Finally, it is worth noting that the higher scalability (on the time side) of the
Lagrangian approach is in part due to the use of subgradient optimization. We
recall from Section 4 that for each constraint activation (except for the first one)
we perform only 3 subgradient iterations. Since such number is fixed regardless
of the number of tasks, the computational cost of the new propagator grows
proportionally slower as the instances become larger.

6 Concluding Remarks

Summary: We have introduced a novel propagator for two-layer, feed forward
ANNs, to be used in Empirical Model Learning. The new propagator is based on
a Lagrangian relaxation, which is solved for a fixed assignment of the multipliers
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via a fast, dedicated, approach. The multipliers themselves are optimized via a
subgradient method. The current implementation works for tansig sigmoids in
the hidden layer, but targeting other activation functions should be easy enough,
provided they are differentiable.

The novel propagation does not replace the existing ones, but allows the com-
putation of tighter bound on the ANN output variables. The approach manages
to obtain a substantial reduction of the number of branches (up to 2-3 orders of
magnitude) in our test set. The method seems to work best for comparatively
larger instances. On the other side, the new propagation is computationally
expensive, countering in part the benefits of the smaller search tree. Neverthe-
less, a gain in terms of solution time is obtained in a significant number of
cases.

Future Work: A natural direction for future research is devising a way to fil-
ter the xi variables, based on the Lagrangian relaxation. Second, the highest
priority for future developments is achieving a reduction in the computation
time, in order to fully exploit the reduction in the number of branches. This
goal can be pursued (1) via the application of additional incremental techniques
or (2) by improvements in the multiplier optimization routine. The computa-
tion of y

j
, yj can be easily be made incremental, since they are linear ex-

pression. The incremental update of the LP0(λ) solution upon changes in λ
is trickier, since all the multipliers tend to change after every subgradient it-
erations. We believe however that the convergence of the multiplier optimiza-
tion routine offers large room for improvements, on the basis of the following
conjecture.

The Conjecture: Let us assume that the relaxed problem z∗(λ) from Sec-
tion 4 is differentiable for the optimal multipliers λ∗. As a consequence, it must

hold ∂z∗(λ∗)
∂λj

= 0 for every λj . Now, the partial derivatives are given by Ex-

pressions (26), which also represents the violation degree of Constraints (5).
Therefore, if z∗(λ) is differentiable in λ∗, then the relaxation solution x∗(λ∗),
y∗(λ∗) is feasible for the original problem and the bound is tight. This means
that the original problem can be solved via convex optimization.

Since we know problem P0 is non-convex and hard to solve in general, we
expect the above situation to be symptomatic of tractable subclasses, which can
be probably identified by an analysis of the network weights. For example we
know that, if the products wj,i ŵj have constant sign ∀j, then propagating the
individual Neuron Constraints is sufficient to compute tight bounds on z.

Therefore, we expect that non-trivial Lagrangian bounds correspond to non-
differentiable points of z∗(λ). Such non-differentiable areas are given in our case
by a set of hyperplanes in R

m (i.e. on the space of the multipliers), with the
coefficients of the hyperplanes being easy to compute. This information can be
exploited to focus the search for the optimal λ to a much smaller space, improving
the rate of convergence and decreasing the overall computation time.
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