
Globalizing Constraint Models�

Kevin Leo1, Christopher Mears1, Guido Tack1,2, and Maria Garcia de la Banda1,2

1 Faculty of IT, Monash University, Australia
2 National ICT Australia (NICTA), Victoria Laboratory

{kevin.leo,chris.mears,guido.tack,maria.garciadelabanda}@monash.edu

Abstract. We present a method that, given a constraint model, suggests global
constraints to replace parts of it. This helps non-expert users to write higher-level
models that are easier to reason about and may result in better solving perfor-
mance. Our method exploits the structure of the model by considering combi-
nations of the constraints, collections of variables, parameters and loops already
present in the model, as well as parameter data from several data files. We assign a
score to a candidate global constraint by comparing a sample of its solution space
with that of the part of the model it is intended to replace. The top-scoring global
constraints are presented to the user through an interactive display, which shows
how they could be incorporated into the model. The MiniZinc Globalizer, our
implementation of the method for the MiniZinc modelling language, is available
on the web.

1 Introduction

Constraint problems can usually be modelled in many different ways, and the choice
of model can have a significant impact on the effectiveness of the resulting constraint
program. Developing good models is often a very challenging iterative process that re-
quires considerable levels of expertise and consumes significant amounts of resources.
This paper introduces a method that supports users through this iterative process: given
a constraint problem model and a few input data files, the method suggests global con-
straints as possible replacements for certain sets of constraints in the model.

Replacing simpler constraints by global constraints — “globalizing” the model —
has three significant advantages. First, many solvers implement specialised algorithms
for global constraints. Therefore, having the global constraint in the model can improve
the efficiency of the solving process considerably. Second, more information is made
available regarding the underlying structure of the model. The additional information
can help, for example, to detect symmetries, which can then be broken either by adding
symmetry breaking constraints or by modifying the search. As another example, even if
the chosen solver does not yet support the inferred global constraint, its presence in the
model can be used to select better decompositions than the ones originally used by the
modeller. And third, the higher-level model obtained by the globalization may improve
the modeller’s understanding of the problem and even make it more readable.

� NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council. This
research was partly sponsored by the Australian Research Council grant DP110102258.

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 432–447, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Globalizing Constraint Models 433

Our method is based on splitting a constraint model into submodels, generating can-
didate global constraints for each submodel, and ranking and filtering these candidates
to produce the output returned to the user. Critically, each of these steps makes extensive
use of the existing structure in the model, such as loops and collections of variables, as
well as the provided instance data. Note that the correctness of replacing constraints in
the model by the candidate global constraints needs to be determined by the user. This
approach is similar to that successfully used for symmetry detection [10], which anal-
yses several small instances of a model (i.e., several combinations of model with input
data) to obtain candidate symmetries, and then lifts this information from the instances
to the model itself.

Our method has many novel characteristics when compared to other automatic model
transformation methods (e.g., [6,8,9,7,4,5,2,1]; see Section 6 for a detailed discussion).
First, other methods focus on directly inferring a combination of constraints for the
entire model, rather than on splitting it into submodels. Splitting allows us to directly
associate the candidate global constraint with the group of constraints it replaces (those
in the submodel). Second, the generation of arguments for the candidate global con-
straints uses the variables, parameters and collections of variables appearing in the as-
sociated submodel. This allows us to generate likely constraint arguments efficiently.
Further, it means the candidate global constraints are defined at the model level rather
than at the instance level. This is important not only for the user, but also for our third
novel characteristic: our method uses the solutions from different instances (rather than
from a single one) to generate, rank and filter the candidates. This increases its accuracy
considerably (as shown experimentally in Section 5).

We have implemented the method for the MiniZinc modelling language [11]. The
resulting tool – the MiniZinc Globalizer – can be accessed through a web interface at
http://www.minizinc.org/globalizer/. The presented techniques are how-
ever not specific to MiniZinc and apply to any representation of a constraint model.

2 Background

We distinguish between constraint problems, models, and instances. A constraint (sat-
isfaction or optimization) problem is the abstract problem we want to solve, e.g., the
Graph-colouring problem. A model is a concrete specification of the problem in terms
of variables, domains, constraints, and parameters. For the Graph-colouring problem, a
model could have variables representing the nodes, domains representing the colours,
parameters for the graph and number of colours used, and constraints stating that no
two connected nodes can have the same colour. A model together with one concrete set
of input data – such as a concrete graph and set of colours – is an instance.

All models used herein are written in MiniZinc. A MiniZinc model consists of a
list of variable declarations, parameter declarations, and constraints, as well as a solve
item that may specify an objective function. The subset of MiniZinc used in this paper
should be mostly self-explanatory.

http://www.minizinc.org/globalizer/

434 K. Leo et al.

1 int: p; int: nh; int: ng;
2 set of int : HostBoats = 1..nh;
3 set of int : GuestCrews = 1..ng;
4 set of int : Time = 1..p;
5 array [GuestCrews] of int : crew;
6 array [HostBoats] of int : capacity;
7
8 array [GuestCrews, Time] of var HostBoats : hostedBy;
9 array [GuestCrews, HostBoats, Time] of var 0..1 : visits;

10 constraint forall (g in GuestCrews, h in HostBoats, t in Time)
11 (visits[g,h,t] = 1 <-> hostedBy[g,t]=h); % channel
12
13 constraint forall (h in HostBoats)
14 (forall (g in GuestCrews)
15 (sum (t in Time) (visits[g,h,t]) <= 1) % distinct_visits
16 /\ forall (t in Time)
17 (sum (g in GuestCrews) (crew[g]*visits[g,h,t]) <= capacity[h]));
18 % capacity
19
20 array [GuestCrews, GuestCrews, Time] of var 0..1 : meet;
21 constraint forall (k, l in GuestCrews where k<l) (
22 forall (t in Time)
23 (hostedBy[k,t] = hostedBy[l,t] -> meet[k,l,t] = 1) % will_meet
24 /\ sum (t in Time) (meet[k,l,t]) <= 1); % meet_once

Fig. 1. A Progressive Party model in MiniZinc

Running Example: The Progressive Party Problem

Throughout the paper, we will use a version of the Progressive Party Problem as a
running example. This problem can be described as follows: to organise a party at a
yacht club, certain boats are designated as hosts, while the crews of the remaining boats
in turn visit the host boats for several successive fixed-time periods. Every boat has
a given maximum capacity for hosting guests, a guest crew cannot revisit a host, and
guest crews cannot meet more than once.

As shown in [12], the first known model for this problem was a zero-one integer
program by the University of Southampton. Since this model introduced a huge number
of constraints, an alternative one was given [12] which found a 13-host solution.

A MiniZinc version of the second model is shown in Fig. 1. Lines 1–6 introduce
the parameters: number of time periods, host boats, and guest crews, as well as the
sets of designated host boats and guest crews. The main decision variables (line 8)
express that at time t, guest crew g is hosted by boat hostedBy[g,t]. Lines 9–
11 introduce auxiliary zero-one variables visits[g,h,t] that are 1 if and only if
hostedBy[g,t]=h. These variables are used in line 15 to express that each guest
crew visits each host boat at most once; and in line 17 to model the capacity constraints.
Finally, lines 20–24 model that guest crews can meet at most once.

The expert modeller can immediately see that line 15 expresses an alldifferent con-
straint on the hostedBy variables for each g in GuestCrews. The fact that line 17
can be expressed using a set of bin packing constraints is slightly less obvious.

To simplify the discussion of our running example, the remaining sections will use
the following shorthand notation to express the main structure of the above model:
(∀GHT : channel) ∧ (∀H : (∀G : distinct_visits) ∧ (∀T : capacity)) ∧ (∀GG : (∀T :
will_meet) ∧ meet_once), where channel denotes the constraint appearing in lines 10–
11, distinct_visits that in line 15, capacity that in line 17, will_meet that in line 23

Globalizing Constraint Models 435

int: p; int: nh; int: ng;

set of int : Hosts = 1..nh;

set of int : Guests = 1..ng;

array [Guests] of int : crew;

array [Hosts] of int : capacity;

array [Guests, 1..p] of var Hosts : hostedBy;

array [Guests, Hosts, 1..p] of var 0..1 : visits;

constraint forall (g in Guests, h in Hosts, t in 1..p)

 (visits[g,h,t] = 1 <-> hostedBy[g,t]=h);@

constraint forall (g in Guests, h in Hosts)

 (sum (t in 1..p) (visits[g,h,t]) <= 1);

constraint forall (h in Hosts, t in 1..p)

 (sum (g in Guests) (crew[g]*visits[g,h,t]) <= capacity[h]);

solve satisfy;

output [show(hostedBy)];

submodel group
generation

candidate
generation

ranking / filtering

Model

Web interface

include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";

include "disjoint.mzn";

include "distribute.mzn";

include "element.mzn";

include "exactly.mzn";

include "global_cardinality.mzn";

include "global_cardinality_closed.mzn";

include "global_cardinality_low_up.mzn";

include "global_cardinality_low_up_closed.mzn";

include "increasing.mzn";

include "int_set_channel.mzn";

include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";

include "disjoint.mzn";

include "distribute.mzn";

include "element.mzn";

include "exactly.mzn";

include "global_cardinality.mzn";

include "global_cardinality_closed.mzn";

include "global_cardinality_low_up.mzn";

include "global_cardinality_low_up_closed.mzn";

include "increasing.mzn";

include "int_set_channel.mzn";

include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";

include "disjoint.mzn";

include "distribute.mzn";

include "element.mzn";

include "exactly.mzn";

include "global_cardinality.mzn";

include "global_cardinality_closed.mzn";

include "global_cardinality_low_up.mzn";

include "global_cardinality_low_up_closed.mzn";

include "increasing.mzn";

include "int_set_channel.mzn";

include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";

include "disjoint.mzn";

include "distribute.mzn";

include "element.mzn";

include "exactly.mzn";

include "global_cardinality.mzn";

include "global_cardinality_closed.mzn";

include "global_cardinality_low_up.mzn";

include "global_cardinality_low_up_closed.mzn";

include "increasing.mzn";

include "int_set_channel.mzn";

include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";

include "disjoint.mzn";

include "distribute.mzn";

include "element.mzn";

include "exactly.mzn";

include "global_cardinality.mzn";

include "global_cardinality_closed.mzn";

include "global_cardinality_low_up.mzn";

include "global_cardinality_low_up_closed.mzn";

include "increasing.mzn";

include "int_set_channel.mzn";

Constraint
library

submodel group

normalisation

Data sets

globalize(M,Data,Lib) =
(Constrs,Decls)← normalize(M)
Groups← generate_groups(Constrs,

Decls,
Data)

Candidates← /0
for each Gr ∈ Groups:

Candidates←Candidates ∪
process_group(Gr,

Lib)
return Candidates

Fig. 2. An overview of model globalization

and meet_once that in line 24. Universal quantifications over G,H and T correspond to
loops over the sets GuestCrews, HostBoats, and Time, respectively. We call G,H
and T the index sets of their loops. For simplicity, we always write nested forall
loops using a single quantifier and disregard the order of their index sets, e.g., ∀GHT is
equivalent to ∀T ∀G∀H, to ∀G∀T ∀H, and so on.

3 Globalization

Figure 2 provides a graphical and algorithmic view of the main steps of our method,
which are as follows. First, the input model file M together with one or more data files
Data are read. Then, M is normalized by splitting conjoined constraints and separat-
ing the constraints Constrs from the variable and parameter declarations Decls. After
normalization, several submodel instance groups are generated, where each such group
Gr ∈ Groups corresponds to the instantiation of a single submodel with each of the
data files in Data. A submodel is formed by the combination of Decls with a subset of
Constrs. For each group Gr, the method generates a set of candidate global constraints
from those present in the constraint library Lib, where each global constraint in this set
is a candidate for equivalence to the submodel associated to Gr. The generated candi-
dates are then scored according to how well their solution space matches that of the
submodel, and are filtered out if their score is below a given threshold. Finally, the re-
sulting candidates are shown to the user by means of an interactive GUI. The following
sections discuss each of these steps in detail.

3.1 Generating Submodel Instance Groups

The algorithms for normalizing a model M and generating its submodel instance groups
Groups are shown in Fig. 3. The normalize procedure partitions M into two sets: the
set Constrs of normalized constraints and the set Decls of original variable and pa-
rameter declarations. Constraints are normalized by exhaustively applying two rewrit-
ing rules that (a) turn top-level conjunctions into individual constraints and (b) split
forall loops that contain conjunctions into individual forall loops. For example,
after normalizing the Progressive Party model, Constrs will contain the following five

436 K. Leo et al.

normalize(M)
Constrs← set of constraints in M
while one of the following rules applies:

if there is a c ∈ Constrs of the form (c1 ∧ . . .∧ cn):
replace c with ci for each i

if there is a c ∈ Constrs of the form (∀A1 . . .∀An : c1 ∧ . . .∧ cm):
replace c with (∀A1 . . .∀An : ci) for each i

Decls← set of all variable and parameter declarations in M
return (Constrs,Decls)

generate_groups(Constrs,Decls,Data)
Groups← /0
for each SC ⊆ Constrs such that SC is connected:

Groups← Groups ∪ { instantiate(/0,SC,Decls,Data) }
∪ unroll_loops(/0,SC,Decls,Data)

return Groups

unroll_loops(Fix,SC,Decls,Data)
Groups← /0
for each A such that (∀ . . .A . . . : d) is in all c ∈ SC:

for each combination L of loops ∀A, one for each c ∈ SC:
Groups← Groups ∪ { instantiate({L}∪Fix,SC \L,Decls,Data) }

∪ unroll_loops({L}∪Fix,SC \L,Decls,Data)
return Groups

instantiate(Fix,SC,Decls,Data)
Gr← /0
for all combinations of min,max for all L ∈ Fix and all D ∈ Data

create submodel instance SI from submodel (SC∪Decls)
Gr← Gr ∪ {SI}

return Gr

Fig. 3. Splitting a model M into groups of submodel instances

constraints ∀GHT : channel, ∀GH : distinct_visits, ∀HT : capacity, ∀GGT : will_meet
and ∀GG : meet_once.

Normalization is vital for discovering global constraints that describe parts of a
top level constraint. For example, we said that the combination of constraint ∀GH :
distinct_visits with channelling constraint ∀GHT : channel in the Progressive Party is
equivalent to a conjunction of alldifferents. To discover this, we need to consider
each component constraint separately, so that we can combine them appropriately.

Once normalization is complete, generate_groups produces every connected subset
of constraints in Constrs.1 Two constraints are connected if they share at least one vari-
able. A set of constraints is connected if for each pair of constraints c,c′ in the set, a
path of constraints can be found starting with c and ending with c′, such that consecutive
constraints on the path are connected. For example, the subset of normalized constraints

1 Our implementation has a parameter to limit the maximum size of the generated subsets (the
default is 3 as our experiments have not found globals from larger conjunctions of constraints).

Globalizing Constraint Models 437

SC = {∀GHT : channel,∀GG : meet_once} in the Progressive Party is not connected,
since their sets of variables are {visits, hostedBy} and {meet}, respectively. Since
the set of global constraints inferred for a non-connected SC would at best be identical
to the union of those found for each of its constraints separately, we can discard SC.

Every connected subset SC ∈ Constrs is passed to instantiate, together with the set
of declarations Decls and the input data files Data, to create a group of related submodel
instances: one per combination of the submodel SC∪Decls with a data file D in Data.

Considering all connected subsets of the normalized top-level constraints is, how-
ever, not enough. This can be illustrated with the Progressive Party model: since no
global constraint describes a conjunction of alldifferent constraints, the normal-
ized constraints ∀GH : distinct_visits and ∀GHT : channel must be combined, un-
rolled and instantiated in such a way as to make them discoverable. Loop unrolling
achieves this by recursively combining and instantiating the loops in each SC subset
of Constrs as follows. For each index set A that appears in every constraint of SC,
it computes each combination L of forall loops over A, choosing one from each
constraint c ∈ SC. Let us explain how such a combination is computed for subset
SC = {∀GHT : channel,∀GH : distinct_visits,∀GGT : will_meet,∀GG : meet_once}
and loop G (which appears in every constraint of SC). We first label the individual
loops to be able to identify them: ∀G1HT : channel, ∀G2H : distinct_visits, ∀G3G4T :
will_meet, ∀G5G6 : meet_once. We then compute all combinations of G that have one
index set from each constraint, obtaining 4 combinations: L1 = {∀G1,∀G2,∀G3,∀G5},
L2 = {∀G1,∀G2,∀G3,∀G6}, L3 = {∀G1,∀G2,∀G4,∀G5}, and L4 = {∀G1,∀G2,∀G4,
∀G6}.

For each combination L, loop unrolling calls instantiate with L added to the set of
combinations Fix to be fixed, and removed from SC. Fixing a loop means instantiating
its index variable to a particular value from its index set. Our algorithm fixes indices to
two values: the minima and maxima of their index set. Consider, for example, index set
G and SC = {∀G1HT : channel,∀G2H : distinct_visits}. The only combination L for G
is L = {∀G1,∀G2}. Thus, instantiate will fix the index variable g of G1 and G2 to the
same value resulting in the following two submodels:

(g = min(G))∧ (∀HT : channel)∧ (∀H : distinct_visits)
(g = max(G))∧ (∀HT : channel)∧ (∀H : distinct_visits)

each describing an alldifferent constraint over the variables HostedBy[g,h],
for a fixed value of g. Both submodels are then instantiated with any provided data,
resulting in submodel instances that are added to the same group. Each will also be
submitted to further loop unrolling leading to the following submodels:

(g = min(G)∧h = min(H))∧ (∀T : channel)∧ (distinct_visits)
(g = min(G)∧h = max(H))∧ (∀T : channel)∧ (distinct_visits)
(g = max(G)∧h = min(H))∧ (∀T : channel)∧ (distinct_visits)
(g = max(G)∧h = max(H))∧ (∀T : channel)∧ (distinct_visits)

This process is repeated recursively until all loops have been unrolled.
A special case to be considered is what the algorithm should do upon fixing all

the loops in a constraint when the original forall loop had a where clause. During
unrolling, and as long as there is one forall the algorithm leaves the where clause

438 K. Leo et al.

generate_candidates(SI,Decls, Lib)=
Candidates← /0
Solutions← random sample of solutions of submodel instance SI
Template← (SI \Decls)∪Solutions
Base_arguments←

(variable and parameter collections in SI) ∪
(variable and parameter sub-collections in constraints of SI) ∪

Arguments← Base_arguments ∪
(array accesses of elements of Base_arguments) ∪
{ constant 0 } ∪
{ blank symbol }

for each constraint cons in Lib:
for each tuple args that can be built from Arguments:

Replace blank symbols in args by their value
Instance← Template ∪ (constraints for cons(args))
if Instance is satisfiable

add cons(args) to Candidates
return Candidates

Fig. 4. Generating candidate constraints for a submodel instance

as part of that forall, but when there is no forall left, the resulting constraint gets
wrapped in an if-then-else expression to avoid creating incorrect submodels.

3.2 Candidate Generation

As explained in the previous section, once generate_groups finishes, Groups has all
submodel instance groups, where each group contains different instances of the same
submodel. Recall that each instance has different parameter values due either to differ-
ent data files given by the user, or to the different minima and maxima values chosen
during loop unrolling. Each group Gr in Groups is then processed to generate a set
of candidate constraints, which are added to the final set Candidates. The algorithm
for generating candidate constraints for each submodel instance SI ∈ Gr, given the set
Decls of declarations of the original model M, and the library of global constraints Lib,
is shown in Fig. 4. Note that each constraint entry in Lib has a name, arity, and type of
arguments. In addition, arguments can have associated information indicating whether
they are functionally dependent on other arguments, and stating conditions that must be
met for the argument to be used. See Section 4.2 for details on the particular Lib used
by our implementation.

The algorithm proceeds as follows. After finding a random sample of solutions of
SI, we build a template model by replacing the parameters and variables in Decls by
the sample solutions. The template includes all the sample solutions, as we want the
candidate global constraint to satisfy all of these sample solutions: a single sample
solution that violates the constraint is sufficient evidence to discard the constraint. This
template model is trivially satisfiable. Intuitively, a global constraint will be considered
as a candidate if it is satisfied by the sample solutions of SI — that is, if after adding
the candidate, the template model remains satisfiable.

Globalizing Constraint Models 439

Candidate constraints are obtained by combining each constraint cons in Lib with
an A-tuple args of arguments, where A is the arity of the constraint. The arguments are
drawn from the identifiers that appear in SI. These include the variable and parameter
collections whose identifiers appear in SI, those same collections restricted to their sub-
sets that are actually used in the constraints of SI, array access expressions composed
from the two previous groups (referred to as base_arguments), the constant zero, and a
special blank symbol. This blank symbol is used as a place-holder for arguments known
to be functionally defined by the others. Once all non-blank arguments are selected, the
blank symbol is replaced by its corresponding value. Note that this value must be the
same for all sample solutions. If the constraint is not functional, or if the sample so-
lutions disagree on what the value should be, args is discarded. Functionally-defined
arguments are further required to take the same value across all instances. This is how-
ever not a significant issue, as they are only used when no named parameter is found.

Finally, the candidate global constraint cons(args) is added to the template model
and the resulting model is evaluated. If the constraint holds, cons(args) is added to the
list of candidate global constraints for SI.

Let us illustrate this process with the subinstance SI formed by combining the con-
straint (g=min(G))∧(∀HT : channel) of the Progressive Party model (where min(G)=
1) with the variable and parameter declarations in the model, and some data file D ∈
Data. The base arguments for SI include the variable collections hostedBy and vis-
its, the variable sub-collections hostedBy[1,t] and visits[1,h,t], and the parameter col-
lections HostBoats, GuestCrews, p, nh, ng, Time, and the index g itself (with value
1). The arguments are the constant 0, the blank symbol, the base arguments, and ar-
ray accesses formed by combining an array with a parameter, e.g., crew[nh] and host-
edBy[p,capacity]. After considering all constraints in Lib with these arguments, the fol-
lowing candidate constraints are generated (among many others):

– lex2(hostedBy)
– alldifferent([hostedBy[g,1],hostedBy[g,2],. . . ,hostedBy[g,p]])
– sliding_sum(0, p, g, [hostedBy[g,1],hostedBy[g,2],. . . ,hostedBy[g,p]])

Note that in the first constraint the entire hostedBy array is used as an argument, while
in the second and third constraints only that subset of the array that participates in the
constraints of the submodel – where g is fixed to 1 – is used as an argument.

An alternative to this form of candidate generation is to syntactically match groups
of constraints to known (correct) reformulations. We do not take this approach as it
would be much too restrictive, requiring the modeler to have implemented exactly the
constraints we are looking for.

3.3 Ranking and Filtering

As shown in Figure 5, submodel instances are processed in groups, where each group
Gr contains submodel instances of the same model. This allows us to accurately de-
termine the candidate constraints for Gr by taking the intersection of the candidate
constraints found for each submodel instance SI in Gr. For the first SI being processed,
the full set of constraints and argument tuples (written as the special symbol Universe)

440 K. Leo et al.

process_group(Gr,Decls,Lib)=
Candidates← Universe
for each submodel instance SI in group Gr:

Candidates← Candidates ∩ generate_candidates(SI,Decls,Lib)
for each candidate constraint cons(args) in Candidates:

SolutionsC← random sample of solutions of cons(args)
SolutionsM ← subset of SolutionsC that are also solutions of SI
if |SolutionsM|÷ |SolutionsC|< equivalenceThreshold

Delete cons(args) from Candidates
for each possible context B:

SolutionsC← random sample of solutions of cons(args) ∧ B
SolutionsM ← subset of SolutionsC that are also solutions of SI
if |SolutionsM|÷ |SolutionsC| ≥ equivalenceThreshold

Add cons(args) with context B to Candidates
return Candidates

Fig. 5. Ranking and filtering constraints

is considered, so that the intersection is the candidate set generated for this SI. Due to
filtering the set decreases for subsequent instances in the group and, after processing
the final one, the remaining candidates are exactly the intersection we seek to compute.

For each candidate constraint cons(args) inferred for a given SI, process_group
measures how closely it matches SI. To achieve this, we collect a random sample of
solutions of cons(args), and compute the fraction of these solutions that are also so-
lutions to SI. If the constraint is equivalent to the submodel of SI, this fraction must
be 1; if the constraint is a poor match, the fraction should be close to 0. We filter the
candidates by keeping only those constraints whose matching fraction is greater than a
given threshold. A threshold of 0.5 has been shown experimentally to be sufficient to
eliminate imperfect matches, and we use that value in our implementation.

In some cases a constraint in a model is equivalent to a candidate global constraint
only in the context of another constraint. Consider a submodel instance SI contain-
ing constraints A and B, and a candidate global constraint cons(args), where A is not
equivalent to cons(args), but the conjunction A∧ B is equivalent to the conjunction
cons(args)∧B. We call B the context in which A is equivalent to cons(args). For exam-
ple, let SI have the constraints (t =min(1..p))∧∀GH : channel∧∀H : capacity from the
Progressive Party. The global constraint bin_packing_capa(capacity,hostedBy[1..ng,t],
crew) is equivalent to ∀H : capacity, but only in the context of ∀GH : channel. In gen-
eral, a contextually-equivalent constraint cons(args) will be implied by SI but appear
weaker than the instance and, thus, will score badly during ranking. In this case, we try
using one of SI’s constraints as the context constraint B, and test via sampling whether
cons(args)∧B implies the submodel instance. If this scores well, we say that A is equiv-
alent to cons(args) under the context of B, and add this to the list of candidates.

For the purpose of scoring and filtering, a candidate constraint should now be con-
sidered a pair of the cons(args) and its context. Note that the context may be empty.
This means that for a context-dependent constraint to pass the filtering tests, it must
pass with the same context in all instances of the group.

Globalizing Constraint Models 441

Table 1. Library of global constraints

alldifferent circuit global_cardinality nvalue
alldifferent_except_0 count increasing sliding_sum
all_equal cumulative inverse sort
atleast decreasing lex_less strict_lex2
atmost diffn lex_lesseq subcircuit
bin_packing distribute lex2 unary
bin_packing_capa element maximum value_precede
bin_packing_load exactly minimum
channel gcc member

4 Implementation

We have implemented the globalization system for MiniZinc models. We use the libmzn
C++ library for parsing and manipulating MiniZinc model and data files. The model
evaluator is written in Haskell, and uses bindings to call libmzn.

4.1 Checking versus Solving

As shown before, when generating the candidates of a given submodel instance SI of
group Gr, our method first solves SI to find a random sample of its solutions. To do
this, our implementation uses the standard MiniZinc tool mzn2fzn to flatten SI, and
the Gecode constraint solver to find 30 random solutions for it. Theses are found with a
search that selects values in random order, and restarts from scratch whenever a solution
is found. If the search is not complete within 60 seconds, SI is discarded.

Later in the process our method checks the satisfiability of the instance resulting
from adding to the template the possible candidate constraints. Since this template has
no variables, and the added constraints are simply evaluated, no search is required. Such
checks are performed very often, and the expense of flattening the instance and calling a
full constraint solver is crippling. To avoid this, we have implemented a simple evaluator
of MiniZinc instances known not to have variables. In practice, this optimization is
crucial, as the number of evaluations is usually in the hundreds of thousands.

4.2 Library of Global Constraints

Table 1 lists the global constraints in our implementation of Lib, which is used for
candidate generation. These are all the global constraints defined in MiniZinc’s standard
library (version 1.6) over integer arguments (sets are not handled yet by our prototype
implementation), with the addition of the following constraints:

– channel(x,a): channels an integer variable x to an array of 0-1 variables a.
– gcc(x,counts): a special case of global_cardinality where the “cover” argument,

which specifies a map from indices to values, is fixed to the identity map.
– unary(s,d): a special case of cumulative where the resource capacity and the usage

for each task are fixed to 1, implementing a unary resource constraint.

442 K. Leo et al.

We are able to evaluate most of the constraints using the default decomposition given
in the MiniZinc library. However, some decompositions introduce variables which are
not handled by our simple satisfiability check evaluator (recall that our satisfiability
check does not perform search). Thus, in these cases we evaluate the constraint directly.

As mentioned in Section 3.3, each constraint is annotated with conditions for its
use to prevent the constraint being considered as a candidate when it is trivially true
or otherwise useless. For example, the alldifferent constraint specifies that its argument
must be an array of variables with arity greater than one since, otherwise, the constraint
is trivially true or nonsensical. As another example, the sliding_sum(l,u,n,x) constraint
specifies that every n-length subsequence of x must sum to a value between l and u.
When generating candidates, we ensure that l < u, 1 < n < length(x), and l > n ×
lb_array(x) ∨ u < n × ub_array(x). The first two conditions ensure that the parameters
make sense, while the third one ensures that the constraint is tighter than what is already
imposed by the domains of the variables in x. This last condition is added for efficiency
reasons, as the ranking and filtering process would have taken care of it.

4.3 Web Interface

The MiniZinc Globalizer is implemented as an asynchronous web server that queues the
requests made by clients and can execute several requests in parallel. Requests can be
cancelled by the user and are automatically cancelled when the session is terminated, for
instance, when a user closes the browser window. The Globalizer is publicly available
at http://www.minizinc.org/globalizer/.

Figure 6 shows a screen shot of the web interface. Users can enter their model and in-
stance data through an embedded editor (seen on the left). Clicking ANALYZE launches
the request, initiating a progress bar that provides the user periodic progress updates.
When the analysis finishes, the right hand side of the window displays the results. Click-
ing on any candidate constraint highlights in yellow the part of the original model that
the constraint could replace, and highlights in orange the candidate’s context, if any.
The interface allows the user to select parts of the model and restrict the analysis to the
selected parts by selecting “Only selection” in the lower left corner of the window. The
analysis will then only use the selected constraints. This is useful when the analysis is
taking a long time, or the user wants to focus on a particular part of the model.

Fig. 6. The web interface to the MiniZinc Globalizer

http://www.minizinc.org/globalizer/

Globalizing Constraint Models 443

Table 2. Experimental Results

problem time |Groups| calls evals top candidates

Cars 215 12 2910 31335 gcc(step_class,cars_in_class)
count(step_class,c,cars_in_class[c])
sliding_sum(sliding_sum(0,option_max_per_block[p],
option_block_size[p],step_option_use[1..10,*])

Jobshop 23 16 410 3620 unary(s[1..n,*], d[1..n,*])
Party 691 48 4214 36429 bin_packing_capa(spareCapacity,hostedBy[i..n,*],crew)

alldifferent(hostedBy[*,1..4])
channel(hostedBy[*,*], visits[*,1..4,*])
unary(hostedBy[*,1..4],visits[*,*,1..4])

Packing 1659 29 32174 114597 diffn(x,y,pack_s,pack_s)
diffn(y,x,pack_s,pack_s)

Schedule 174 13 3077 22835 gcc(x,[1,0,1,0,1,0,1])
Sudoku 1 3996 166 6305 24465 alldifferent(p[*,1..9])

gcc(p[*,1..9], [1,1,1,1,1,1,1,1,1])
alldifferent(p[1..9,*])
gcc(p[1..9,*], [1,1,1,1,1,1,1,1,1])

Sudoku 2 335 7 338 2347 -
Warehouses 245 24 3853 69871 gcc(supplier,use)

5 Experiments

This section evaluates the accuracy and practicality of the prototype implementation of
our MiniZinc Globalizer. The evaluation is performed over a set of constraint problems,
each with a number of different data sets. The MiniZinc models used for these problems
are available at the MiniZinc Globalizer website.

The results are shown in Table 2, where for each problem model we show: the name
of the problem (problem), the time in seconds to run the MiniZinc Globalizer (time),
the number of submodel instance groups obtained (|Groups|), the number of calls to
Gecode to obtain sample solutions of either submodel instances or global constraint
candidates (calls), the number of satisfiability tests performed (evals), and the global
constraints proposed as candidates with score 1 (top candidates), where high quality
candidates appear in bold. We have manually simplified the output, and excluded some
duplicate constraints where the system was unable to distinguish two parameters that
appear different, but actually refer to the same value. The set of problems used in the
table is as follows.

Cars is a version of the car sequencing problem (CSPLib 001) as implemented in the
MiniZinc distribution. It uses simple arithmetic and counting constraints to express the
capacity and sequence restrictions of the problem. The Globalizer finds the correspond-
ing sliding_sum and global_cardinality constraints.

Jobshop is a simple job-shop scheduling problem taken from the MiniZinc distribu-
tion. It implements the non-overlapping of two tasks on a unary resource using simple
reified constraints. Globalization finds the unary scheduling constraint.

Party is our running example from Figure 1. As discussed earlier, the Globalizer
finds the bin packing and alldifferent constraints. It also finds the channel
global constraint.

Packing packs n squares into a rectangle. The source code was taken from the
MiniZinc distribution. The Globalizer finds diffn constraints that express the non-
overlapping of rectangles.

444 K. Leo et al.

Schedule is a contrived scheduling example from [4]. The schedule is constrained
in a way that one task needs to start on every even time point, which implies a global
cardinality constraint with argument [1,0,1,0,...]. Our analysis can find this con-
straint as long as all instances have the same schedule length, as otherwise the argu-
ments differ in length between instances and are thus discarded. The generalization of
such sequences is left to future work.

Sudoku 1 and 2 are different models for the Sudoku puzzle. The first one uses
a zero-one integer linear programming formulation, and the Globalizer finds some
alldifferent constraints. The second model posts binary not-equal constraints on
variables that are organised by row and column, in a complicated set of nested forall
loops. Here, the loop unrolling is not strong enough to generate candidates that corre-
spond to individual rows, columns, or blocks. As a result, Globalizer cannot find any
replacement global constraints.

Warehouses is a warehouse allocation problem (CSPLib 034), whose source code
was taken from the MiniZinc distribution. The Globalizer finds that a loop containing
counting constraints can be aggregated into one global cardinality constraint.

Discussion

The models discussed here are taken either from the literature or from the example suite
that comes with MiniZinc. In most cases, the Globalizer has been able to find the global
constraints that an expert modeller would have used.

The current prototype is not optimized for performance. The time to analyse a rea-
sonably complex model with 3-4 data sets is in the range of minutes up to an hour,
depending mainly on the number of candidates that need to be checked for satisfiability
(a number that grows considerably with the number of possible arguments). There is
still great potential for improving performance by both avoiding and parallelizing un-
necessary candidate checks and parameter instantiations which, as indicated, make up
for the bulk of the run time.

The number of generated groups is relatively small (usually less than 50), which
means that the problem splitting algorithm achieves a good level of pruning. Generating
only a small number of groups and top scoring constraints is important since the results
are meant to be presented to a human user.

Looking at the number of satisfiability tests, which can reach hundreds of thousands,
it becomes clear that each check needs to be very efficient. This justifies the introduction
of a dedicated constraint evaluator as discussed in Section 4.1.

It is interesting to note the effect of using more than one data file for a given prob-
lem. For example, analysing the packing problem with a single data file results in 54
candidate global constraints with a score of 1. Adding the additional data files increases
the discriminative power of the system by reducing the candidates with a score of 1
to the two shown in Table 2. Similarly, analysing Warehouses with only one data file
results in 6 candidate global constraints with a score of 1, as opposed to one as in the
table above. For the Schedule and Jobshop problems, however, a single data file was
enough to narrow the candidates down to a single constraint with a score of 1.

Globalizing Constraint Models 445

6 Related Work

There are two main lines of research related to this work: constraint acquisition and
automatic model transformation.

In the acquisition line of work, Constraint Seeker [1] infers global constraints from
positive and negative examples of solutions, and Model Seeker [2] infers an entire
model (i.e., conjunctions of constraints) from complete solutions to a constraint prob-
lem. This differs from the method presented in this paper both in motivation and method-
ology. Our motivation is to identify parts of a given model that can be replaced by global
constraints. Having access to an initial model significantly affects our methodology, as
it allows us to make extensive use of the information contained in the model. In par-
ticular, it allows us to (a) focus on submodels that are equivalent to a single global
constraint, as opposed to a conjunction of them, (b) significantly reduce the search for
possible combinations of global constraint arguments, while increasing the likelihood
of obtaining meaningful ones, and (c) consider not only the solution variables, but any
other intermediate variables in the model and its input data. Having the input data also
affects our methodology, as it allows us to (a) better generate candidates and (b) au-
tomatically generate as many solutions as we require for our rankings. For example,
the input data enables us to derive bin packing constraints for the Progressive Party
problem, while Model Seeker cannot infer these from just the solutions.

Note that we could use Model Seeker to generate more complex candidates for each
submodel, and Constraint Seeker to infer and rank candidate constraints. We would like
to experimentally evaluate and compare these approaches to our own submodel and
constraint generators when the two tools become publicly available.

Our method is also related to the CGRASS system [6,8], which among other model
transformations, includes a specialised component to detect alldifferent global con-
straints for instances of the problem. The main differences are that our Globalizer aims
at inferring any of a set of global constraint using a general (rather than specialised)
method, and does so for a model, rather than for each of its instances.

Other acquisition approaches focus on the automatic generation of implied con-
straints. A general method is described in [5], where machine learning is used to induce
constraints for the solutions for small problems, and a theorem prover is then used to
show the constraints hold for the model. The generality of the method results in appli-
cability restrictions: the model data can only be a single integer, and the model needs to
be expressible in first order logic. In our case the constraints are already pre-determined
(the list of global constraints considered) and, thus, the data can be as complex as nec-
essary. Further, we do not attempt to prove the correctness of the constraints as this
reduces to proving the equivalence of two models, which is undecidable.

Another related method is that of CONACQ [3] which, given examples of solutions
and non-solutions for a target problem and a library of constraints, acquires constraint
networks, that is, conjunctions of constraints in the library that are consistent with the
given solutions and non-solutions. CONACQ uses SAT-based version space algorithm,
where the version space is the set of all constraint networks defined from the library that
are consistent with the examples. While general and powerful, it considers instances of
models, rather than models themselves. Further, it relies on the library of constraints be-
ing relatively small. This is not the case for our approach. As far as we know, CONACQ

446 K. Leo et al.

currently only handles binary constraints and is not publicly available. Finally, [4] de-
scribes how implied parametric constraints can be learned by adding a large disjunction
of constraints with different parameters that together are guaranteed to be implied, and
then successively pruning that disjunction by checking if certain sets of parameters can
be removed without changing the solution space. This method goes further than what
we attempt in that it infers parameters from solutions, while we only try to match pa-
rameters that are already given in the model. For functional dependencies, however, we
can infer parameter sets, as in the Schedule example in Section 5.

In the area of model transformations, the work on Essence [9,7] is somewhat related.
These systems transform a model specified in a highly abstract manner into a more
concrete one. Our method moves in the opposite direction: we detect parts of a concrete
model that are instances of a more generic model pattern. While currently this generic
pattern is restricted to global constraints, it is straightforward to extend the method
to use any other useful constraint pattern. In fact, globalization and automatic trans-
formation are complementary: starting from a low-level model, globalization yields a
high-level model that is then amenable to automatic transformation.

7 Conclusion

This paper has introduced a method for globalizing constraint models. Given a con-
straint model, the method proposes global constraints to replace parts of it. This helps
users improve their models, since global constraints capture the inherent structure of a
model and can thus help obtain a better translation to the underlying solving technology
and faster solving using specialised algorithms.

The inference process is based on splitting a model into submodels that correspond
to subsets of its constraints, potentially unrolling loops, and instantiating each of the
resulting submodels with different data sets into a group of submodel instances. From
these groups of instances, candidate constraints are generated by sampling the solution
space of both the group and the candidate constraints. The candidates are ranked and
filtered based on how well their search spaces match.

We have presented experimental evidence that the method is both practical and ac-
curate. Our implementation, the MiniZinc Globalizer, is available as a web-based tool.

Regarding future work, while the system already provides useful results, there are
some improvements we are planning to explore. First, we would like to incorporate
ranking techniques from Constraint Seeker, such as using known implications between
constraints to eliminate more imperfect candidates. Second, in order to make contexts
more useful, we need to detect global constraints on alternative viewpoints by automat-
ically introducing channeling constraints (Model Seeker follows a similar approach).
Third, we would like to generalise argument sequences (such as the [1,0,1,0...]
in the simple scheduling example from Section 5) and to detect more complex expres-
sions as constraint arguments. Fourth, the confidence in the suggested constraints may
be improved by using theorem proving or other techniques to prove equivalence in cases
where it is possible. Finally, we would like to integrate the system into an IDE that lets
users refactor models automatically using the suggestions generated by the Globalizer.

Globalizing Constraint Models 447

References

1. Beldiceanu, N., Simonis, H.: A constraint seeker: Finding and ranking global constraints
from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26. Springer, Heidelberg
(2011)

2. Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models from pos-
itive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer,
Heidelberg (2012)

3. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space algorithm
for acquiring constraint satisfaction problems. In: Gama, J., Camacho, R., Brazdil, P.B.,
Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 23–34. Springer,
Heidelberg (2005)

4. Bessiere, C., Coletta, R., Petit, T.: Learning implied global constraints. In: Veloso, M.M.
(ed.) IJCAI, pp. 44–49 (2007)

5. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints. In: Euro-
pean Conference on Artificial Intelligence, ECAI, vol. 141, pp. 73–77. IOS Press (2006)

6. Frisch, A., Miguel, I., Walsh, T.: Extensions to proof planning for generating implied con-
straints. In: Calculemus 2001 (2001)

7. Frisch, A.M., Jefferson, C., Martínez-Hernández, B., Miguel, I.: The rules of constraint mod-
elling. In: International Joint Conference on Artificial Intelligence, vol. 19, pp. 109–116.
Lawrence Erlbaum Associates LTD. (2005)

8. Frisch, A.M., Miguel, I., Walsh, T.: CGRASS: A system for transforming constraint satisfac-
tion problems. In: O’Sullivan, B. (ed.) CologNet 2002. LNCS (LNAI), vol. 2627, pp. 15–30.
Springer, Heidelberg (2003)

9. Gent, I.P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models: A case
study with ESSENCE′ and MINION. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS
(LNAI), vol. 4612, pp. 184–199. Springer, Heidelberg (2007)

10. Mears, C., Garcia de la Banda, M., Wallace, M., Demoen, B.: A novel approach for detect-
ing symmetries in CSP models. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS,
vol. 5015, pp. 158–172. Springer, Heidelberg (2008)

11. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards
a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529–543. Springer, Heidelberg (2007)

12. Smith, B.M., Brailsford, S.C., Hubbard, P.M., Williams, H.P.: The progressive party prob-
lem: Integer linear programming and constraint programming compared. Constraints 1(1),
119–138 (1996)

	Globalizing Constraint Models
	1 Introduction

	2 Background

	3 Globalization

	3.1 Generating Submodel Instance Groups
	3.2 Candidate Generation

	3.3 Ranking and Filtering

	4 Implementation

	4.1 Checking versus Solving

	4.2 Library of Global Constraints

	Web Interface

	5 Experiments

	6 Related Work

	7 Conclusion
	References

