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Preface

This volume contains the proceedings of the 19th International Conference on
Principles and Practice of Constraint Programming (CP 2013) that was held in
Uppsala, Sweden, September 16–20, 2013. Detailed information on the confer-
ence can be found on its website cp2013.a4cp.org.

The CP conference is the annual international conference on constraint
programming. It is concerned with all aspects of computing with constraints,
including theory, algorithms, environments, languages, models, systems, and ap-
plications such as decision making, resource allocation, and agreement technolo-
gies. Besides the main technical track, CP 2013 featured an application track,
which focused on uses of constraint technology and its comparison and integra-
tion with other optimization techniques (MIP, local search, SAT, . . .).

The interest of the research community in this conference was witnessed by
the large number of submissions received this year. We received 170 (long and
short) papers as follows: 138 papers submitted to the main track and 32 to
the application track. Both long and short papers were reviewed to the same
high standards of quality and no long papers were accepted as short papers.
The reviewing process for the main track used a two-level Program Commit-
tee, consisting of senior Program Committee members and Program Committee
members. Senior Program Committee members were responsible for managing
a set of papers in their respective areas of expertise. They met in Stockholm
during June 8–9, 2013. Each paper received at least three reviews, was exten-
sively discussed, and additional reviews were added when needed. At the end of
the reviewing process, we accepted 47 papers for the main technical track and
12 papers for the application track. All papers were presented at the conference.

Amongst the accepted papers, Jimmy Lee, Toby Walsh, and I selected a best
technical track paper (“Parallel Discrepancy-Based Search” by Thierry Moisan,
Jonathan Gaudreault, and Claude-Guy Quimper), a best application track paper
(“Bin Packing with Linear Usage Costs – An Application to Energy Manage-
ment in Data Centres” by Hadrien Cambazard, Deepak Mehta, Barry O’Sullivan,
and Helmut Simonis), and a best student paper (“Filtering AtMostNValue with
Difference Constraints: Application to the Shift Minimisation Personnel Task
Scheduling Problem” by Jean-Guillaume Fages and Tanguy Lapègue). I am
grateful to Jimmy Lee and Toby Walsh for their expert help in the selection
process.

The conference program featured three invited talks, an invited public lec-
ture, and an invited system presentation by distinguished scientists. This volume
includes abstracts for the invited talks by Michela Milano, Torsten Schaub, and
Peter Stuckey and the invited public lecture by Pascal Van Hentenryck. It also
includes a paper for the invited system presentation by Pascal Van Hentenryck
and Laurent Michel. The conference program included four tutorials: “MaxSAT
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Latest Developments” by Carlos Ansótegui, “Replication and Recomputation in
Scientific Experiments” by Ian Gent and Lars Kotthoff, “Constraint Program-
ming for Vehicle Routing Problems” by Phil Kilby, and “Constraint Program-
ming for the Control of Discrete Event Dynamic Systems” by Gérard Verfaille.
As an additional part of the program, Peter Stuckey and H̊akan Kjellerstrand
organized the first international “Lightning Model and Solve Competition”. The
winners of the 2013 ACP Research Excellence Award and Doctoral Research
Award presented their award talks. Many thanks to all of them for making es-
sential contributions to an exciting conference program!

The conference included a Doctoral Program, which allowed doctoral students
to come to the conference, present their work, and meet a mentor with similar
research interests. I am very grateful to Christopher Mears and Nina Narodytska
for doing a wonderful job in organizing the Doctoral Program.

The conference would not have been possible without the high-quality and
interesting submissions from authors, which made the decision process so chal-
lenging. I would like to thank the whole Program Committee for the time spent
in reviewing papers and in discussions. I am grateful to the additional review-
ers, often recruited on very short notice. A special thank you goes to the senior
Program Committee members for driving discussions, writing metareviews, and
coming to the meeting in Stockholm. I would like to thank Gilles Pesant, who
handled papers where I had a conflict of interest.

The conference would not have been possible without the great job done by
Mats Carlsson, Pierre Flener, and Justin Pearson as Conference Chairs. They
expertly took care of the local organization and I enjoyed our smooth and ef-
ficient collaboration. For conference publicity, I very much thank Guido Tack,
who did a great job in advertising the conference and for a professional and
always up-to-date website. I am very grateful to Laurent Michel, who acted as
Workshop and Tutorial Chair and put together an exciting workshop and tu-
torial program. I am also grateful to Jimmy Lee and Peter Stuckey for sharing
their past experiences as CP Program Chairs with me. I gratefully acknowledge
local help in sponsoring matters by Karin Fohlstedt, Charlotta Jörsäter, and
Victoria Knopf as well as in organizing the physical Senior Program Committee
meeting by Sandra Gustavsson Nylén.

The Conference Chairs and I took on the task of soliciting sponsors for CP
2013. We would like to thank our many sponsors for their extraordinarily gen-
erous support; they are prominently—and deservedly so—listed in alphabetical
order on a following page.

Last but not least, I want to thank the ACP Executive Committee for hon-
oring me with the invitation to serve as Program Chair of CP 2013.

June 2013 Christian Schulte



Conference Organization

Conference Chairs

Mats Carlsson SICS, Sweden
Pierre Flener Uppsala University, Sweden
Justin Pearson Uppsala University, Sweden

Program Chair and Application Track Chair

Christian Schulte KTH Royal Institute of Technology, Sweden

Workshop and Tutorial Chair

Laurent Michel University of Connecticut, USA

Doctoral Program Chairs

Christopher Mears Monash University, Australia
Nina Narodytska University of Toronto, Canada, and University

of New South Wales, Australia

Publicity Chair

Guido Tack Monash University, Australia

Senior Program Committee

Yves Deville UCLouvain, Belgium
Pierre Flener Uppsala University, Sweden
George Katsirelos INRA, Toulouse, France
Christophe Lecoutre CRIL, University of Artois, France
Jimmy Lee The Chinese University of Hong Kong
Amnon Meisels Ben-Gurion University of the Negev, Israel
Pedro Meseguer IIIA-CSIC, Spain
Laurent Michel University of Connecticut, USA
Barry O’Sullivan 4C, University College Cork, Ireland
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Value Interchangeability in Scenario Generation . . . . . . . . . . . . . . . . . . . . . . 587
Steven D. Prestwich, Marco Laumanns, and Ban Kawas

Embarrassingly Parallel Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
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Optimization for Policy Making:

The Cornerstone for an Integrated Approach

Michela Milano

DISI, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

Abstract. Policy making is a very complex task taking into account
several aspects related to sustainability, namely impact on the environ-
ments, health of productive sectors, economic implications and social ac-
ceptance. Optimization methods could be extremely useful for analysing
alternative policy scenarios, but should be complemented with several
other techniques such as machine learning, agent-based simulation, opin-
ion mining and visualization to come up with an integrated system able
to support decision making in the overall policy design life cycle. I will
discuss how these techniques could be merged with optimization and I
will identity some open research directions.

Policy making is the formulation of ideas or plans that are used by an organiza-
tion or government as a basis for making decisions. Public policy issues cover a
wide variety of fields such as economy, education, environment, health, social wel-
fare, national and foreign affairs. They are extremely complex, occur in rapidly
changing environments characterized by uncertainty, and involve conflicts among
different interests and affect the three pillars of sustainable development, namely
society, economy and the environment.

The government of a region or a nation should therefore take complex deci-
sions on the basis of the available data (for example coming from the monitoring
of previous policies), of the current economic situation, of the current level of
environmental indicators, and on available resources. Basically the planning ac-
tivity of a policy maker can be easily casted in a multi-criteria combinatorial op-
timization problem possibly under uncertainty, where Pareto optimal solutions
are alternative political scenarios. Each scenario has its own cost and impact
on environmental and economic indicators. Depending on the strategic political
objectives, the policy maker might prefer one alternative among others. Thus,
optimization can play a crucial role for improving the policy making process.

However, optimization is only one - yet important - cornerstone for the im-
provement of the overall policy making process. There are a number of techniques
that could and should be merged with optimization to come up with integrated
software tools aiding the policy maker in the overall policy design life cycle.
One example is agent-based simulation [3] to mimic the social reaction to policy
instruments. Another important technique is opinion mining [5] that basically
extracts opinions and sentiments on specific policy topics from blogs and forums
enabling e-participation in the policy design. Data mining and machine learning
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in general would also be extremely important for processing the always increas-
ing amount of data coming from sensors, extracting relations between these data
and the political interventions and possibly insert this extracted model into the
optimization model.

Finally, policy makers are not ICT experts and should be aided in the use of
the above-mentioned technology. Advanced visualization techniques should play
an important role in the human-machine interaction.

Despite a number of research papers have been published in each above men-
tioned area, what is totally missing at present is a comprehensive tool that assists
the policy maker in all phases of the decision making process. The tool should
compute alternative scenarios each comprising both a well assessed plan and the
corresponding implementation strategies to achieve its objective, its cost and its
social acceptance. We need a tool that is able to integrate and consider at the
same time global objectives and individual/social reactions. These two aspects
could be (and often are) in conflict and possibly game theory could be used to
find an equilibrium between the two parts.

During the talk I will present some recent work developed under the EU FP7
project called ePolicyn - Engineering the policy making life cycle - aimed at
developing decision support systems aiding the policy maker across all phasees
of the policy making process [1], [4], [2]. The case study will be on the regional
energy plan of the Emilia Romagna region of Italy. We will show the different
phases of the policy making process and explain where optimization could play
a role and how other techniques should be integrated with it.

Acknowledgment. The author is partially supported by the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n.
288147.
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Answer Set Programming:

Boolean Constraint Solving
for Knowledge Representation and Reasoning

Torsten Schaub�

University of Potsdam, Germany
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Answer Set Programming (ASP; [1,2,3]) is a declarative problem solving ap-
proach, combining a rich yet simple modeling language with high-performance
Boolean constraint solving capacities. ASP is particularly suited for modeling
problems in the area of Knowledge Representation and Reasoning involving in-
complete, inconsistent, and changing information. As such, it offers, in addi-
tion to satisfiability testing, various reasoning modes, including different forms
of model enumeration, intersection or unioning, as well as multi-criteria and
-objective optimization. From a formal perspective, ASP allows for solving all
search problems in NP (and NPNP ) in a uniform way. Hence, ASP is well-
suited for solving hard combinatorial search problems, like system design and
timetabling. Prestigious applications of ASP include composition of Renaissance
music [4], decision support systems for NASA shuttle controllers [5], reasoning
tools in systems biology [6,7,8] and robotics [9,10], industrial team-building [11],
and many more. The versatility of ASP is nicely reflected by the ASP solver
clasp [12], winning first places at various solver competitions, such as ASP, MISC,
PB, and SAT competitions. The solver clasp is at the heart of the open source
platform Potassco hosted at potassco.sourceforge.net. Potassco stands for
the “Potsdam Answer Set Solving Collection” [13] and has seen more than 30000
downloads world-wide since its inception at the end of 2008.

The talk will start with an introduction to ASP, its modeling language and
solving methodology, and portray some distinguished ASP systems.
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the Past Are Condemned to Repeat It

Peter J. Stuckey

National ICT Australia, Victoria Laboratory
Department of Computing and Information Systems,

University of Melbourne, Australia
pstuckey@unimelb.edu.au

Abstract. Constraint programming is a highly successful technology
for tackling complex combinatorial optimization problems. Any form of
combinatorial optimization involves some form of search, and CP is very
well adapted to make use of programmed search and strong inference
to solve some problems that are out of reach of competing technologies.
But much of the search that happens during a CP execution is effectively
repeated. This arises from the combinatorial nature of the problems we
are tackling. Learning about past unsuccessful searches and remembering
this in an effective way can exponentially reduce the size of the search
space. In this talk I will explain lazy clause generation, which is a hybrid
constraint solving technique that steals all the best learning ideas from
Boolean satisfiability solvers, but retains all the advantages of constraint
programming. Lazy clause generation provides the state of the art solu-
tions to a wide range of problems, and consistently outperforms other
solving approaches in the MiniZinc challenge.

1 Introduction

In the early days of constraint programming there was considerable interest in
learning from failure via look-back methods [1] and intelligent backtracking [2].
But this research faded out as propagation approaches proved to be more suc-
cessful at tackling complex problems [3].

The SAT community revitalized learning, which is now the most critical com-
ponent in a modern Davis-Putnam-Logemann-Loveland SAT solver, essentially
because they devised data structures to efficiently store and propagate hundreds
of thousands of learnt nogoods [4]. This technology has been incorporated in
constraint programming solvers, first by Katsirelos and Bacchus [5] who used
literals of the form x = d and x �= d to represent integer variables. This was
extended in the Lazy Clause Generation (LCG) approach [6] by using literals
of the form x ≤ d and x ≥ d. By storing nogoods that record the reason why
a subtree search has failed, constraint programming solvers with learning can
exponentially reduce the search required to find and prove optimal solutions.

In Lazy Clause Generation each constraint propagator is extended to be able
to explain its propagation. Lazy Clause Generation has proved remarkably suc-
cessful in tackling hard combinatorial optimization problems. It defines the state
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of the art complete method in many well studied scheduling problems, such as
resource constraint project scheduling (RCPSP) [7], and variations like RCPSP
with generalized precedences [8]. LCG has lead to substantial benefits in real life
packing problems, such as carpet cutting [9]. LCG solvers have dominated the
MiniZinc challenge competition www.minizinc.org since 2010 (although they
are not eligible for prizes) illustrating the approach is applicable over a wide
range of problem classes.

In this presentation, I will explain how lazy clause generation solvers work,
some of the challenging algorithmic decisions that arise in creating explaining
propagators, and some of the important emerging research directions such as op-
timized Boolean encoding [10], lazy decomposition [11], and lifelong learning [12].
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We live in a period where Information and Communication Technologies (ICT)
has revolutionized the way we communicate, learn, work, and entertain ourselves.
But we also live in challenging times, from climate change and natural disasters
of increased intensity to rapid urbanization, pollution, economic stagnation, and
a shrinking middle class in Western countries. In this lecture, we argue that
ICT now has the opportunity to radically change the way we take decisions as a
society, exploiting the wealth of data available to understand physical, biological,
business, and human behaviors with unprecedented accuracy and speed. We
illustrate this vision with challenging problems in disaster management, energy,
medicine, and transportation.
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The Objective-CP Optimization System
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Abstract. Objective-CP is an optimization system that views an op-
timization program as the combination of a model, a search, and a
solver. Models in Objective-CP follow the modeling style of constraint
programming and are concretized into specific solvers. Search proce-
dures are specified in terms of high-level nondeterministic constructs,
search combinators, and node selection strategies. Objective-CP sup-
ports fully transparent parallelization of multi-start and branch & bound
algorithms. The implementation of Objective-CP is based on a se-
quence of model transformations, followed by a concretization step. More-
over, Objective-CP features a constraint-programming solver following
a micro-kernel architecture for ease of maintenance and extensibility. Ex-
perimental results show the practicability of the approach.

1 Introduction

This paper presents an overview of Objective-CP, an optimization system
written in Objective-C (an object-oriented layer on top of C). Objective-CP
builds on more than two decades of research on the design and implementation of
constraint-programming systems, from CHIP to systems such as Ilog Solver,
Opl, Ilog Concert, Comet, Gecode, and MiniZinc which have probably
had the strongest influence on its design and implementation. The design of
Objective-CP takes the the view that

Optimization Program = Model + Search + Solver

or, in other words, that an optimization program consists of a model, a search,
and an underlying constraint solver.

Models are first-class objects in Objective-CP; they also follow the style of
constraint programming and are solver-independent. This allows for easy exper-
imentation with different technologies and smooth hybridizations [5,4]. Models
can be concretized into a specific solver to obtain an optimization program, (e.g.,
a constraint programs or a mixed-integer program). The resulting optimization
program can be solved using a black-box search or a dedicated search procedure
expressed in terms of the model variables. Search procedures in Objective-CP
are specified in terms of high-level nondeterministic constructs, search combi-
nators, and node selection strategies, merging the benefits of search controllers
and continuations [22] on the one hand and compositional combinators (e.g.,
[17]) on the other hand. The search language is generic and independent of
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the underlying solver, although obviously search procedures call the underlying
solver for adding constraints, binding variables, and querying the search state.
Objective-CP transparently supports the parallelization of optimization pro-
grams, supporting parallel multi-start algorithms and parallel branch & bound.

The implementation of Objective-CP performs a series of model transfor-
mations, including a flattening of the model, followed by a concretization of
the final model into a specific solver. Objective-CP also features a constraint-
programming solver inspired by the micro-kernel approach to operating systems.
It features small components, such as a propagation engine, a variable library,
and a constraint library, that are separated and have minimal interfaces.

It is difficult to summarize the contributions of a large system. However, the
following features of Objective-CP are worth highlighting:

1. Objective-CP enables the model and the search to be expressed in terms
of the model variables, although the model can be concretized into different
solvers;

2. Objective-CP offers a rich, generic search language. The search language
is independent of the underlying solver and merges the benefits of two high-
level approaches to search: search controllers and search combinators. In
particular, Objective-CP provides a small set of abstractions that natu-
rally combine to build complex search procedures.

3. Objective-CP achieves a strong symbiosis with the underlying host lan-
guage, i.e., Objective-C. In particular, it allows for an iterative style in
search procedures and makes heavy use of closures and first-order functions.

4. Objective-CP provides first-class models which make it possible to offer
model combinators and an implementation approach based on model trans-
formations and concretizations.

5. Objective-CP provides an automatic and transparent parallelization of
optimization programs, even when the program feature a search procedure
(i.e., not a black-box search).

6. Objective-CP features a constraint-programming solver based on the con-
cept of micro-kernel in operating systems, i.e., it strives to define small com-
ponents with minimal interfaces.

This paper reviews the design and implementation of Objective-CP. Section
2 gives a brief overview of Objective-C. Section 3 then presents an overview
of Objective-CP, including models, search, and transparent parallelization.
The implementation methodology and the experimental results are presented in
Sections 4–5. Sections 6–7 discuss the related work and the conclusion.

2 The Host Language

Objective-CP is written on top of Objective-C, a high-level programming
language that adds an object-oriented layer on top of C. Objective-C marries
the elegance of a fully dynamic object-oriented runtime based on dynamic mes-
sage dispatching (a la Smalltalk with the performance of C). Objective-C
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features syntactic extensions over C to model classes (called @interface), in-
terfaces (called @protocol) and categories that provide the ability to extend the
API of a class with new methods without requiring access to the source code.
Objective-C inherits the static typing of C, yet it offers the ability to be loosely
typed for the object-oriented extensions. The Smalltalk heritage is significant.
For instance,Objective-C separates the notion of message and response behav-
ior. It also offers introspection, message interception, and rerouting. The syntax
of Objective-C may seem peculiar at first. A method call cp.label(x) is
written as [cp label: x] where label: is the method name. When using mul-
tiple arguments, Objective-C “names” each of them. For instance, a method
call cp.labelWith(x,v) could be become [cp label: x with: v], where the
method name is label:with:. Objective-C also features closures and first-
order functions. For instance,

1 [cp onSolution: ^{printf(’’found a solution \n’’);}];

uses a closure ^{printf(’’found a solution \n’’)} which can be called sub-
sequently, The snippet

1 [S enumerateWithBlock:^(int i) {printf(’’\%d ’’,i); }];

depicts the use of a first-order function. The code enumerates the elements of
set S and calls the first-order function passing each element to parameter i. The
body of the function prints the value of the set elements. Overall, Objective-C
is a nice compromise between the flexibility of Smalltalk and the efficiency of
C. It is particularly well-adpated for developing complex systems.

3 The Design of Objective-CP

This section reviews the design of Objective-CP and its main concepts: mod-
els, programs, search procedures, and transparent parallelization. The focus is on
introducing the concepts informally and conveying a sense of the global design.
Model composition is covered in detail in [4].

3.1 Models

Figure 1 illustrates several features of Objective-CP: It depicts a program
which solves a capacitated warehouse location problem with a CP solver and
a MIP solver. Lines 1–25 declare a model (line 1), its data (lines 2–7 where
constants are omitted), its decision variables (lines 9–14), its constraints (lines
16–23), and its objective function (lines 24–25). The capacity constraints in line
17 feature reified constraints, while lines 21–22 feature element constraints to
link the warehouse and store variables and to compute the transportation cost
for each store. The objective function is stated in lines 24–25 and sums the fixed
and transportation costs. This is a standard constraint-programming model for
this problem, the only peculiarity being the syntax of Objective-C.
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1 id <ORModel > model = [ORFactory createModel ];

2 ORInt fixed = ...;

3 ORInt maxCost = ...;

4 id <ORIntRange > Stores = ...;

5 id <ORIntRange > Warehouses = ...;

6 ORInt* cap = ...;

7 ORInt ** tcost = ...;

8
9 id<ORIntVarArray > cost =

10 [ORFactory intVarArray: model range:Stores domain: RANGE(model ,0,maxCost )];

11 id<ORIntVarArray > supp =

12 [ORFactory intVarArray: model range:Stores domain: Warehouses ];

13 id<ORIntVarArray > open =

14 [ORFactory intVarArray: model range:Warehouses domain: RANGE(model ,0 ,1)];

15
16 for(ORInt i=Warehouses.low;i <= Warehouses.up;i++)

17 [model add: [Sum(model ,s,Stores ,[supp[s] eq: @(i)]) leq: @(cap[i])]];

18 for(ORInt i=Stores.low;i <= Stores.up; i++) {

19 id <ORIntArray > row = [ORFactory intArray: model range: Warehouses with:

20 ^ORInt(ORInt j) { return tcost[i][j];}];

21 [model add: [[open elt: supp[i]] eq: @1]];

22 [model add: [cost[i] eq: [row elt: supp[i]]]];

23 }

24 [model minimize: Sum(model ,s,Stores ,cost[s]) plus:

25 Sum(model ,w,Warehouses ,[@(fixed) mul: open[w]])];

26
27 id <CPProgram > cp = [ORFactory createCPProgram: model ];

28 id <MIPProgram > mip = [ORFactory createMIPProgram: model];

29 [cp solve ];

30 [mip solve ];

Fig. 1. Capacitated Warehouse Location in Objective-CP

This model is a specification and cannot be executed. No data structures are
allocated for the variables, the constraints, and the objectives. For instance, a
variable contains its domains but not in a form that can be used for computation
and a constraint only collects its variables or expressions. This is similar to
models in modeling languages and in the Ilog Concert library.

Models are first-class objects in Objective-CP: They can be cloned and
transformed and it is possible to retrieve their variables, constraints, and objec-
tive. They also support the definition of model combinators, an abstraction to
build hybrid optimization algorithms compositionally [4].

3.2 Programs

To execute a model in Objective-CP, it is necessary to create an optimization
program. Lines 27–28 from Figure 1

1 id<CPProgram > cp = [ORFactory createCPProgram: model];
2 id<MIPProgram > mip = [ORFactory createMIPProgram: model ];

create a CP and a MIP program. In other words, these lines concretize the
warehouse location model into two executable programs. These two programs
are then solved in lines 29–30 with both technologies.

The implementation of lines 27–28 involves a series of model transformations
followed by an actual concretization which creates the solver variables, con-
straints, and objectives. Like in modern modeling languages such as MiniZinc,
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1 id <ORModel > m = [ORFactory createModel ];

2
3 // data declarations and reading
4
5 id<ORIntVarArray > slab =

6 [ORFactory intVarArray: m range: SetOrders domain: Slabs ];

7 id<ORIntVarArray > load =

8 [ORFactory intVarArray: m range: Slabs domain: Capacities ];

9
10 [m add: [ORFactory packing: slab itemSize: weight load: load ]];

11 for(ORInt s = Slabs.low; s <= Slabs.up; s++)

12 [m add:[Sum(m,c,Colors ,Or(m,o,coloredOrder[c],[slab[o] eq:@(s)])) leq:@2]];

13 [m minimize: Sum(m,s,Slabs ,[loss elt: [load at: s]])];

14
15 id<CPProgram > cp = [ORFactory createCPProgram: m];

16
17 [cp solve: ^{

18 for(ORInt i = SetOrders.low; i <= SetOrders.up; i++) {

19 ORInt ms = max(0,[cp maxBound: slab ]);

20 [cp tryall: Slabs suchThat: ^bool(ORInt s) { return s <= ms+1; }

21 in: ^void(ORInt s) { [cp label: slab[i] with: s]; }

22 ];

23 }

24 }]

Fig. 2. The Steel Mill Slab Problem in Objective-CP

models are flattened to avoid potential redundant normalizations of expressions,
constraints and objectives by several solvers. Solvers can then be kept small and
compact. The flattened model must also be linearized for MIP solvers that do
not support reification and element constraints. Observe that a model can be
concretized multiple times as Figure 1 demonstrates. This feature is useful when
designing hybrid optimization models such as those implemented in CML [5], to
implement multi-start solvers, or portfolios of algorithms.

3.3 Search

The warehouse location programs use black-box searches. However,Objective-
CP lets optimizers state their own search algorithms. Figure 2 depicts a program
for the steel mill slab problem (the data declaration and reading are omitted
for brevity). The model (lines 5–13) is the same as in [6,8]: Line 10 states a
global packing constraint and line 12 imposes reified constraints for the color
requirements. The objective function in line 13 features element constraints.
The model is concretized into a CP program on line 15. The search procedure
is specified in lines 18–24: It combines a C for-loop with a nondeterministic
tryall instruction (first introduced in Opl [20]). The search procedure breaks
value symmetries on the slabs as in [8].

There are three features of Objective-CP that deserve to be highlighted
here. First, an optimization program in Objective-CP is the combination of
a propagation engine and a (solver-independent) search explorer as shown in
Figure 3. It follows that the search in Objective-CP is generic: It only features
generic abstractions such as search controllers, nondeterministic constructs, and
combinators, which do not depend on a particular solver technology. Once again,
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Fig. 3. The Structure of a CP Program in Objective-CP

this is an interesting property from a software engineering standpoint since it
provides reusability and separation of concerns.

Second, the search procedure operates on the model variables, not on concrete
variables of the underlying solver (in contrast to Ilog Concert). Programmers
in Objective-CP do not need to know the existence of concrete variables: The
optimization program is responsible for performing the mapping from model to
concrete variables.

Third, Objective-CP achieves a strong symbiosis with its host language,
since native iterative control structures in Objective-C (e.g., for-loops) and
non-deterministic constructs in Objective-CP (e.g., tryall) are interleaved
to implement search procedures. It is useful to dive into a simple example to
show this symbiosis. The excerpt

1 -(void) labelArray: (id <ORIntVarArray >) x {

2 for (int i=x.range.low;i <= x.range.up; i++)

3 while (![cp bound: x[i]]) {

4 int v = [cp min: x[i]];

5 [cp try: ^{ [cp label:x[i] with:v];} or: ^{ [cp diff:x[i] with: v];}];

6 }

7 }

depicts how to label an array of variables in Objective-CP. Line 2 iterates
over the indices of the array, while lines 3–6 label variable x[i]. The variable
labeling is a while-loop that terminates when x[i] is bound. Each iteration takes
the smallest value in the domain of x[i] and either assigns it to x[i] or remove
it from its domain. This nondeterministic step uses the try nondeterministic
construct ([20,3]). What is interesting in this snippet is the ability to use a for-
loop over local variables (e.g., i and v) and to combine it with nondeterminism.
This is possible because, when the Objective-CP implementation selects an
alternative to the try instruction, it restores the values of i and v to their states
before the execution of the try. This symbiosis enables an iterative style for
writing search procedures that avoid the need to use goals and the and combina-
tor in [10,17]. This symbiosis provides significant software engineering benefits,
including a small and modular implementation, and the ability to avoid decou-
pling the syntactic structure of the search and the control flow of the execution.
Even more important perhaps are the benefits for debugging. Users can place
breakpoints anywhere in the code and use native debugging tools to inspect the
computation state. With goals or combinators for sequential composition, users,
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when debugging, are in the interpreter code and have lost the connection to the
original control flow.

The design of the search component in Objective-CP is based on the motto

Search = Continuations + Controllers

or, in other words, the belief that a rich and extensible search language can
be built bottom-up from continuations and search controllers. These abstrac-
tions make it possible to offer a rich collection of high-level nondeterministic
constructs and search combinators. Moreover, controllers can also be used to
specify node selection strategies. As a result, Objective-CP unifies the search
controllers of Comet [22] and the search combinators of [17] (and hence the
goals of Ilog Solvers). We illustrate a few of these combinators and present a
large neighborhood search based on them.

Limits. Limit combinators (e.g., [14]) impose conditions on a search procedure
or, equivalently, on the exploration of a search subtree. These limits may concern
a variety of measures including computation times and the number of solutions,
as well as any condition provided by users. For instance,

1 [cp limitSolutions: k in: ^{ [cp labelArray: x]; }];

ensures that only k labelings of array x are returned. Once the k-th labeling has
been obtained, the instruction fails. Limits can be composed naturally as in

1 [cp limitFailures: 200 in ^{
2 [cp limitSolutions: k in: ^{ [cp labelArray:x]; }];
3 }];

The resulting code also limits the number of failures in the labeling to 200.

The Repeat Combinator. The repeat combinator repeatedly executes a body
until it succeeds, interleaving each iteration with the execution of a closure. In
Prolog, it would be written as

1 repeat(Body ,Restart ) :- call(Body).
2 repeat(Body ,Restart ) :- call(Restart ), repeat(Body ,Restart ).

It is particularly useful with various forms of randomization and local search
algorithms. For instance, the fragment

1 [cp repeat: ^{ [cp limitFailures: nbFailures.value

2 in: ^{ [cp labelHeuristic: h];}] }

3 onRepeat: ^{ [nbFailures setValue: nbFailures.value * f]; }

4 }];

depicts a (randomized) search procedure with restarts. In this example, each
iteration is allowed nbFailures.value failures and the number of failures is
increased geometrically after each search. The same excerpt can be transformed
in a generic restart combinator that repeatedly executes a body until a condition
c is met and executes restart when the body fails, i.e.,
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1 [cp solve: ^{

2 [cp limitTime: timeLimit in: ^{

3 [cp repeat :^{

4 [cp limitFailures: failureLimit in:^{

5 for(ORInt i = SetOrders.low; i <= SetOrders.up; i++) {

6 ORInt ms = max(0,[cp maxBound: slab ]);

7 [cp tryall: Slabs suchThat: ^bool(ORInt s) { return s <= ms+1;}

8 in: ^void(ORInt s) {

9 [cp label: slab[o] with: s];

10 }];

11 }

12 }];

13 }]

14 onRepeat :^{

15 id <ORSolution > s = [[cp solutionPool] best];

16 if (s != nil)

17 [Orders enumerateWithBlock :^( ORInt i) {

18 if ([d next] <= Pr)

19 [cp label: x[i] with: [s intValue:x[i]]];

20 }];

21 }];

22 }];

23 }];

Fig. 4. A Large Neighborhood Search for the Steel Mill Slab Problem

1 -(void) restart : (void^()) body when: (BOOL^()) c onRestart: (void^()) restart
2 {
3 [self repeat: [self limitCondition: c in: body()]; onRepeat :^{restart ();}];
4 }

The earlier restart search, together with a time limit, can be written

1 [cp limitTime: 300 in: ^ {

2 [cp restart: ^{ [cp labelHeuristic: h]; }

3 when: ^BOOL() { return cp.nbFailures > nbFailures.value; }

4 onRestart: ^{ [nbFailures setValue: nbFailures.value * f]; }

5 ];

6 }];

These code fragments demonstrate compositionality. Limit, repeat, and nonde-
terministic combinators are interleaved in arbitrary ways.

Large Neighborhood Search. Figure 4 illustrates how search combinators can be
used to implement a large neighborhood search (LNS) in Objective-CP. The
LNS search uses two limit combinators and a repeat combinator to transform the
core search depicted previously into a large neighborhood search. The outermost
limit combinator ensures that the overall search does not exceed the time limit.
In the search, the body of the repeat combinator is the basic search (lines 5–10)
presented in Figure 2, enclosed in a limit combinator that limits the number
of failures (line 4). The restart code in lines 15–20 defines the neighborhood
structure: It takes the best solution found so far, and fixes the value of a variable
in this solution with probability Pr (d is a uniform distribution in [0,1]).

Implementation of Search Combinators. How does Objective-CP implement
combinators compositionally? The key is to use controllers and to support the
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Fig. 5. Chaining Controllers

1 -(void) limitFailures: (int) max in: (void ^()) body

2 {

3 id <ORSearchController > c = [[ ORLimitFailures alloc] initWithLimit: max];

4 [self pushController: c];

5 body ();

6 [c succeeds ];

7 [self popController ];

8 }

Fig. 6. The Implementation of a Limit Combinator

ability to chain controllers. Figure 6 depicts the implementation of the limit
combinator for failures. Lines 3–4 create a limit controller (line 3) and push it as
the top-level controller (line 4). Line 7 pops it once the body of the combinator is
executed. Figure 5 depicts the chains of controllers for one and two limits, high-
lighting the compositionality of the approach. The effect of the pushController
instruction is undone upon backtracking or, more generally, when the search
jumps to other nodes in the search tree. The ability to chain controllers is the
key for the modular and compositional design of search combinators. A con-
troller for limiting the number of solutions is shown in Figure 7. It maintains
the number of solutions produced so far ( nbSol), which is updated every time
the body succeeds (line 11). Methods startTryLeft and startTryRight tests
whether the limit is reached, in which case it fails. Otherwise, they delegate the
call to the subcontroller, i.e., the next controller controller in the chain. All
other methods in the controller are inherited from the superclass and simply
delegate the call to the subcontroller. Figure 8 depicts the implementation of
the repeat combinator. Lines 2–3 create a continuation and a choice point. The
first execution runs the body (line 6). Later executions creates a choice point,
executes the onRepeat code, then the body.

3.4 Transparent Parallelization in Objective-CP

Objective-CP supports fully transparent parallelizations of its programs. For
instance, the concretization

1 id<CPProgram > cp = [ORFactory createCPProgram: model];

can be replaced by

1 id<CPProgram > cp = [ORFactory createCPMultiStartProgram: model nb: 4];
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1 @implementation ORLimitSolution {

2 int _max;

3 int _nbSol;

4 }

5 -(ORLimitSolution *) initWithLimit: (int) m

6 {

7 self = [super init];

8 _max = m; _nbSol = 0;

9 return self;

10 }

11 -(void) succeeds { _nbSol ++;}

12 -(BOOL) hasReachedLimit { return _nbSol >= _max; }

13 -(void) startTryLeft

14 {

15 if ([self hasReachedLimit ]) [_controller fail];

16 else return [_controller startLeft ];

17 }

18 -(void) startTryRight

19 {

20 if ([self hasReachedLimit ]) [_controller fail];

21 else return [_controller startRight ];

22 }

23 @end

Fig. 7. The Limit Solution Controller

1 -(void) repeat: (ORClosure) body onRepeat: (ORClosure) onRepeat {

2 NSCont* enter = [NSCont takeContinuation ];

3 [_controller._val addChoice: enter ];

4 if ([enter nbCalls ]!=0)

5 if (onRepeat) onRepeat ();

6 body ();

7 }

Fig. 8. The Implementation of the repeat Combinator

to obtain a multistart search procedure capable of executing four searches on
four threads with different random seeds: The model and the search procedure
are left unchanged. At the implementation level, Objective-CP concretizes the
model four times to obtain four different CP programs. The search is executed
on each CP program. Since the search is expressed in terms of the model objects,
a particular thread executing the search will retrieve its concrete solver from the
multistart program and then access the concrete objects in that solver.

Objective-CP also supports a full transparent parallelization of a branch &
bound search using a work-stealing model. For instance, the code

1 id<CPProgram > cp = [ORFactory createParCPProgram: model ];

creates a parallel branch & bound that can execute search algorithms such as
those described previously. These algorithms can be defined in terms of search
combinators and nondeterministic constructs. The parallel implementation fol-
lows the computational model described in [11,12] which exploits search con-
trollers (see Figure 9). A parallel constraint program consists of a set of workers,
a problem pool, and a template to create the node selection strategy. Each
worker is a solver with its own engine and search explorer. The explorer has
its traditional chain of controllers and a parallel adapter that encapsulates two
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other controllers: an instance of the strategy template that is used to perform
the search and a generator to produce subproblems into the problem pool.

4 The Implementation of Objective-CP

The Objective-CP implementation receives a model M0 as input, performs a
number of model transformations τ1, . . . , τk−1 to obtain models M1, . . . ,Mk and
then concretizes the final model Mk to obtain a concrete solver S (see Figure
10). Each model in this sequence is of the form 〈Xi, Ci, Oi〉, where Xi are the
model variables, Ci is the set of constraints, Oi is the objective function, and
Xi ⊆ Xi+1 (1 ≤ i < k). This section reviews some of these steps.

4.1 Model Transformations

Objective-CP supports a number of model transformations, including flatten-
ings, linearizations, and relaxations. Flattenings are becoming a standard tool
in optimization systems, as examplified by systems such as Flat Zinc [13].
It removes the need to manipulate expressions in solvers that can then focus
on implementing the core constraints. This methodology is also advocated in
[18] to minimize the size of a kernel, possibly using views to minimize or elim-
inate most of the induced overhead. Figure 11 describes some flattening rules
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τf (〈X, {C1, . . . , Ck}, O〉) = 〈X ∪X ′, C′, O′〉 where

τc(Ci) = 〈C′
i, X

′
i〉 (1 ≤ i ≤ k),

τe(O) = 〈O′, CO, Xo〉,
X ′ =

(⋃k
i=1 X

′
i

)
∪Xo,

C′ =
(⋃k

i=1 C
′
i

)
∪ Co.

τe(el ∗ er) = 〈z, C,X〉 where

τe(el) = 〈zl, Cl, Xl〉,
τe(er) = 〈zr, Cr, Xr〉,
C = {mult(zl, zr, z)} ∪ Cl ∪ Cr,
X = {z, zl, zr} ∪Xl ∪Xr.

τc(alldifferent(e1, ...en)) = 〈C,X〉 where

τe(ei) = 〈zi, Ci, Xi〉 (1 ≤ i ≤ n)
C = {alldifferent(z1, ...zn)} ∪

⋃n
i=1 Ci

X = {z1, . . . , zn} ∪
⋃n

i=1 Xi.

Fig. 11. Excerpts of The Flattening Transformation in Objective-CP

1 τMIP (alldifferent(x1 ,...xn)) = {
2 �x1 = 1� + . . . + �xn = 1� ≤ 1,
3 . . .
4 �x1 = k� + . . . + �xn = k� ≤ 1,
5 }

Fig. 12. A Linearization of the Alldifferent Constraint

in Objective-CP in terms of the function τf , τc, and τe to flatten a model, a
constraint, and an expression. In these rules, the zi’s are brand new variables
not used anywhere in the model. For instance, the figure illustrates the flatten-
ing of the alldifferent constraint, which flattens the expressions e1, . . . , en to
obtain the variables z1, . . . , zn, the constraints C1, . . . , Cn, and the new variables
X1, . . . , Xn. The resulting alldifferent constraint is solely expressed in terms of
variables, not expressions. Finally, τe illustrates the flattening of a multiplication
expression to obtain very simple constraints in the solver.

Models can be linearized for use in a MIP solver and there is considerable
literature on how to perform such transformations (e.g., [16,9]). Figure 12 de-
scribes the linearization of the alldifferent constraint assuming that the variables
take values in 1..k. The linearization defines a number of inequalities over the
literals �xi = j�, i.e., 0/1 variables that denote whether xi is assigned the value
j. The linearization of the variables also generates constraints of the form

xi =
k∑

j=1

j ∗ �xi = j�.

As suggested in [16], these constraints may be enforced lazily when the model
only uses the literals.
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As indicated earlier, models are first-class objects in Objective-CP and the
implementation can include code of the form

id<ORModel > lfm = [[[m copy] flatten ] linearize];

Another benefit of the Objective-CP architecture is the factorization of trans-
formations (flattenings, normalizations, and linearizations) across multiple
solvers. Solvers do not have to be concerned with these transformations which are
now performed at the model level. Obviously it does not mean that solvers cannot
manipulate constraint globally as is necessary, say in hull and box-consistency
[1,23]. Rather it simply means that the transformations provide a normalization
of the model expressions in a form appropriate for the solvers.

4.2 Concretization

The concretization γ takes a model m in a flattened form appropriate for a
solver s and concretizes m into s, i.e., s = γ(m). The concretization associates
a concrete variable with every model variable and a concrete object to every
model object (e.g., a constraint). The concretization γ is used at various places.
For instance, an instruction

[cp label: x with: v]

that labels variable x with value v is implemented by a call

[engine label: γ(x) with: v]

that concretizes variable x and calls the same method on the constraint engine.
The literals of variable x can be accessed through

[cp literal : x for: v]

which returns γ(�x = v�). The instruction

[parcp label: x with: v]

in a parallel solver is implemented by the call

[cpk label: x with: v]

which itself becomes

[enginek label: γk(x) with: v]

where cpk is the kth solver, enginek is its engine, and γk is its concretization.
Adding a constraint c during the search requires some care, since these con-

straints are expressed in terms of the original model. The optimization program
must preserve the chain of transformations τ1, . . . , τk and apply them to con-
straint c to obtain a tuple 〈X,C〉, where X is a set of new variables and C is
a set of new constraints. Both X and C can now be concretized through γ and
posted in the solver. In other words, the addition of a constraint c executes

γ(τn(. . . (τ2(τ1(〈{}, {c}〉)) . . .)).
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1 @protocol CPEngine

2 -(ORStatus) add: (id <CPConstraint >) c;

3 -(void) setObjective: (id<ORObjective >) obj;

4 @end

Fig. 13. The CPEngine Interface

1 @protocol CPUKernel

2 -(void) scheduleCtrEvt: (id<CPCtrEvent >) list;

3 -(void) scheduleValEvt: (id<CPValEvent >) list;

4 -(void) triggerLossEvt: (id <CPTriggerMap >) map;

5 -(void) triggerBindEvt: (id <CPTriggerMap >) map;

6 -(ORStatus) propagate;

7 @end

Fig. 14. The Micro-Kernel Interface

4.3 A Micro-Kernel Architecture

The constraint-programming solver of Objective-CP is based on a micro-kernel
architecture inspired by ideas from operating systems. Micro-kernel architectures
have become popular in operating systems as they favor extensibility, mainte-
nance, and easier proofs of correctness. This section briefly reviews the main
ideas behind the micro-kernel architecture.

The CP solver in Objective-CP is only concerned with constraint propaga-
tion, as the search in Objective-CP is solver-independent and lies in a separate
library. The solver itself consists of two objects: an engine that defines the API
to add constraints and objectives and a kernel that implements the propagation
and provide minimal functionalities to define new propagators. Their interfaces
are sketched in Figures 13 and 14.

The engine interface is used to register native constraints and objectives. No
decomposition or rewriting is necessary at this stage, since these transformations
took place earlier in the pipeline, The constraint interface

1 @protocol CPConstraint
2 -(ORUInt) getId;
3 -(ORStatus ) post;
4 @end

is minimalist and only requires each constraint to be uniquely identified and to
support a post method. Objective function are similar and abstract away the
nature of the objective function.

The micro-kernel provides the interface to schedule and propagate events. It
supports four types of events: constraint, variable, value, and trigger events. In-
tuitively, constraint events are used to propagate a constraint, variable events
to execute a closure (e.g., upon a variable modification), value events to apply a
first-order function (e.g., when a value is removed from a domain), and trigger
events to update triggers. For space reasons, we do not discuss triggers in the
rest of the paper: It suffices to say that they provide functionalities related to
the watched literals in Minion [7]. The interfaces CPCtrEvent and CPValEvent

represent simple lists of constraints, closures, and first-order function applica-
tions (CPCtrEvent contains both constraints and variable events for efficiency
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and simplicity reasons). Observe that the micro-kernel is agnostic with respect to
the events themselves, which are in the realm of the variable definitions in other
libraries. Hence, the micro-kernel architecture entirely separates the propagation
from the variables and makes it possible to add new variable types composition-
ally without upgrading the kernel. In particular, the list of events are built and
maintained outside the kernel.

The micro-kernel maintains an array of P + 1 queues to track the scheduled
closures and first-order function applications. By default, value events are at
priority P , variable events at priority P − 1, and constraint events at priorities
1..P − 2. Priority 0 has a special role to be discussed shortly. Conceptually,
method scheduleCtrEvt receives a list of k pairs 〈ci, pi〉 where ci is a constraint
and pi is an integer priority in 1..P − 2 and updates the queues with

Qpi = enQueue(Qpi , ci) 0 ≤ i ≤ k − 1.

The other scheduling functions are similar.

1 -(ORStatus)propagate {

2 BOOL done = NO;

3 return tryfail(ORStatus ^{

4 while (!done) {

5 p = maxP
i=1 i · (Qi �= ∅)

6 while (p �= 0) {

7 execute(deQueue(Qp));

8 p = maxP
i=1 i · (Qi �= ∅);

9 }

10 done = Qp = ∅;
11 }

12 while (Q0 �= ∅) execute(deQueue(Q0));

13 return ORSuspend;

14 }, ^ {

15 while (Q0 �= ∅) execute(deQueue(Q0));

16 return ORFail;

17 });

18 }

Fig. 15. The Micro-Kernel Propagation

Method propagate executes the
propagation loop and its implemen-
tation is shown in Figure 15. The al-
gorithm processes each non-empty
queue in turn from the highest (P )
to the lowest (1) priority. Line 5
finds the index of the highest prior-
ity queue with some events. Lines
6–9 pick the first highest priority
event, execute it (line 7) and carry
on until p = 0 which indicates
that all queues in the 1..P range
are empty. Finally, lines 12 and 15
unconditionally execute the events
held in Q0 even after a failure has been discovered. As is customary, the dispatch-
ing of messages may schedule additional events that will be handled during this
cycle. Lines 4–13 are the body of a closure which is passed to the micro-kernel
function tryfail together with a failure handler (line 15–16). Function tryfail

executes the first closure and diverts the control flow to the second closure when
the fail function is called during the first closure execution. The events in Q0

are always executed: They are typically used to collect and update monitoring
information, which can then be used to implement heuristics or learning tech-
niques. The micro-kernel does not have any reference to variable, domain, or even
the nature of constraints: It only manipulates closures, first-order applications,
and information about constraints (e.g., whether they have been propagated or
not).

4.4 A Finite-Domain Integer Variable

We now sketch the implementation of a finite-domain variable, whose class
CPIntVar is outlined as follows:
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1 @interface CPIntVar {

2 id<CPEngine > _engine;

3 id<CPDom > _dom;

4 id<CPCtrEvent > _min ,_max ,_bounds ,_bind;

5 id<CPValEvent > _loss;

6 }

7 -(id)initVar: (CPEngine *) engine low: (ORInt) low up: (ORInt) up;

8 -(void) whenChangeMinDo: (void ^()) f;

9 -(void) whenLoseValueDo: (void^(ORInt)) f;

10 -(void) whenChangePropagate: (id <CPConstraint >) c;

11 -(ORStatus) updateMin: (ORInt) newMin;

12 -(ORStatus) removeValue: (ORInt) value;

13 @end

Instance variable dom points to a domain representation such as a range, a bit-
vector, or a list of intervals. Methods whenChangeMinDo and whenLoseValueDo

are used to register variable events and value events respectively. Their imple-
mentation is simple:

1 -(void) whenChangeMinDo: (void^()) f { [_min insert: f]; }
2 -(void) whenLoseValueDo: (void^(ORInt )) f { [_loss insert : f]; }

Method whenChangePropagate is slightly more involved: It creates a closure cl
to propagate a constraint ctr and inserts a pair (cl,ctr) in the list.

The update methods of a variable are expected to schedule relevant events.
Consider method updateMin:

1 -(ORStatus )updateMin:(ORInt)newMin {
2 BOOL changed = [_dom updateMin:newMin ];
3 if (changed ) {
4 [_engine scheduleCtrEvt:_min];
5 [_engine scheduleCtrEvt:_bounds ];
6 if ([_dom size] == 1) [_engine scheduleCtrEvt:_bind ];
7 }
8 return ORSuspend;
9 }

It updates the domain, and when the domain is modified, it schedules the exe-
cution of the events registered on the min and bounds lists. If the domain is a
singleton, line 6 also schedules the bind list. Note that method updateMin on
the domain may raise a failure, which is captured in the tryfail construct.

4.5 Propagators

We now illustrate a few propagators. Figure 16 depicts a domain-consistent
propagator for constraint x = y+ c using value events. Lines 3–4 cover the cases
where one of the variables is bound and the other variable is updated accord-
ingly. Lines 6–7 initiate the filtering of x and y by tightening their respective
bounds. Lines 8–11 prune the domain of the variables. Lines 13–14 associates
first-order functions with x and y to respond to the loss of value v from their
domains. Figure 17 sketches the implementation of a global constraint using
variable and constraint events. The post method scans all the variables (lines
4–6) and registers a closure to update internal data structures when a variable
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1 @implementation CPEqualDC // x = y + c
2 -(ORStatus) post {

3 if (bound(x)) [y bind: x.min - c];

4 else if (bound(y)) [x bind: y.min + c];

5 else {

6 [x updateMin:y.min + c andMax:y.max + c];

7 [y updateMin:x.min - c andMax:x.max - c];

8 for(ORInt i = x.min;i <= x.max; i++)

9 if (![x member:i]) [y remove:i - c];

10 for(ORInt i = y.min; i <= y.max; i++)

11 if (![y member:i]) [x remove:i + c];

12
13 [x whenLoseValueDo :^( ORInt v) { [y remove: v - c];}];

14 [y whenLoseValueDo :^( ORInt v) { [x remove: v + c];}];

15 }

16 return ORSuspend;

17 }

Fig. 16. A Domain Consistency Propagator for x = y + c

1 @implementation CPAllDifferent // on array _x
2 -(ORStatus) post {

3 [self initDataStructures ];

4 for(ORInt i = _x.low; i <= _x.up; i++)

5 if (!_x[i].bound ])

6 [_var[i] whenBindDo: ^{ [self removeOnBind:i]; } ];

7 [self propagate ];

8 for(ORInt k = _x.low; k <= _x.up; k++)

9 if (!_x[k]. bound) [_x[k] whenChangePropagate: self];

10 return ORSuspend;

11 }

12 -(void) propagate {

13 if (![ self feasible ]) fail ();

14 [self prune ];

15 }

16 @end

Fig. 17. The AllDifferent Skeleton

is bound. It propagates the constraint and registers itself with each variable to
propagate whenever the domain of the source variable x[k] changes (lines 8–9).
Observe that this implementation combines variable-based and constraint-based
propagation.

5 Experimental Results

Every programming system strikes a trade-off between expressiveness and effi-
ciency. This section examines the efficiency of Objective-CP to quantify this
trade-off more precisely. It describes the compilation, runtime, and search effi-
ciency of Objective-CP. All experiments were carried out on MacOS X 10.8.3
running on a Core i7 at 2.6Ghz. All the results are based on 10 runs of the
program (given that tie-breaks are randomized). All the times are reported in
milliseconds. Columns μ(T ) and σ(T ) report the average and standard devia-
tion for the total runtime (measured from the moment the program starts to the
moment it terminates). Column μ(|M |) reports the memory usage in kilobytes
for the entire executable (it is measured at the malloc interface).
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Table 1. Performance of Objective-CP

Bench μ(T ) σ(T ) μ(|M|) |X| |C| G(|X|) G(|C|) μ(Tc) σ(Tc)

ais 1,444.3 111.8 1,336 59 33 1.49 1.88 1.9 0.6
costas 5,298.3 7,210.7 1,544 240 424 1.65 1 7.7 1.8
fdmul 427.3 64.2 674 29 15 1.83 1.6 1.4 0.5
magicserie 9,808.4 86.1 122,050 300 301 302.99 1 961.8 23.9
bibd 793.2 104.3 16,836 2,205 663 4 10.98 123 13.1
debruijn 7,619.3 207 554,915 57,346 57,346 2 1 1,535.3 121.9
golomb 28,068.2 238.8 904 132 134 1 1 2.2 0.4
coloringModel 14,872.7 248.2 1,818 81 1,309 1 1 10.9 2.4
eq20 23.6 2.9 986 7 20 21 1 2.3 0.7
latinSquare 498.7 55 1,660 147 182 1.33 1 4.5 1.6
slab 2,937.6 154.2 52,313 223 113 179.2 26.54 465.3 7.1
sport 5,987.8 380.3 2,018 287 113 1 1 4.2 1.2

Table 2. Comparison of Objective-CP and Comet

Perfect Sport Slab Slab-LNS
System μ(T ) σ(T ) μ(T ) σ(T ) μ(T ) σ(T ) μ(T ) σ(T )

comet 6,145.64 180.8 4,655.7 90.9 5,205.5 102.6 17,241.7 10,644
ocp 5,884.16 204.8 4,712.1 76.3 2,213.2 59.1 6,308.2 3,632.5

Compilation Efficiency. Table 1 discusses model compilation efficiency. Columns
|X | and |C| report the size of the model (number of variables and constraints),
while G(|X |) and G(|C|) give the growth rate when the model has been flattened
and concretized. G(|X |) = 2.0 states that the concretized model has twice as
many variables as the original. μ(Tc) and σ(Tc) report the average and standard
deviation of the time (in milliseconds) needed to compile and concretize the high-
level model. The compilation time is almost always insignificant rarely passing
10 milliseconds. For Debruijn, the compilation is the heaviest with about 1.5
seconds for a large instance with some 57,346 variables and constraints modeled
as algebraic expressions. The next two most expensive are the magicserie and
slab benchmarks that heavily rely on reifications.

Runtime Efficiency. Table 2 offers an insight on the performance of Objective-
CP relative to the Comet platform and shows that the Objective-CP archi-
tecture competes with the Comet platform. The statistics for both systems
were collected on the same (slightly faster) machine over 50 runs of each bench-
mark. Slab-LNS relies on a complex search heuristic with dynamic symmetry
breaking and a large neighborhood search component (i.e., it uses several search
combinators). Care was taken to implement the exact same search in Comet.

Search Efficiency. Table 3 provides an overview of several black-box search pro-
cedures embedded in combinators. Space limitations do not allow for a compre-
hensive suite of tests but, instead, we focus on demonstrating sound performance
on a number of interesting search procedures. The magic square benchmark (size
12) was executed with both Abs and Ibs within a restarting search with a failure
limit doubling at each restart. The satisfaction knapsack (instance 4) results are
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Table 3. Search with Objective-CP

Bench Method μ(Tcpu) σ(Tcpu) μ(Twc) σ(Twc) μ(Choices) σ(Choices) μ(|M|)

magicsquareModel ABS 7,871.8 3,251.6 8,043.9 3,335.7 57,952.5 37,181.1 4,850.1
magicsquareModel IBS 15,021.2 7,581.3 15,228.9 7,816.8 101,308.1 144,010.7 2,289.2
knapsack ABS 401.9 115.3 409.4 116.5 8,975.5 2,493.2 1,413
progressive ABS 2,763.8 695.4 2,797.3 703.5 1,226.1 822.1 17,303.5
progressive IBS 958.1 281.1 984.9 287.9 2,988.4 2,139.8 15,511.8
progressive WDeg 1,587.3 1,068.2 1,630.4 1,087.9 8,769.2 6,724.9 15,459.4

for Abs alone (the others being too long). For the progressive party problem, the
configuration is (2,8) and three black-box searches were compared. The search
were all embedded in the same failure-limited restarting search. The results show
that Objective-CP achieves strong results on these benchmarks using state-
of-the-art black-box algorithms. Note that, while Abs is the slowest of the three
on progressive, it does far fewer choices than the other two and the bulk of the
running time is spent in the probing. (No attempts were made to tweak the
parameters which were identical on all benchmarks.).

6 Related Work

Obviously, Objective-CP builds on top of over two decades of research in con-
straint programming and modeling systems. This section reviews some of the
most relevant work from an overall system design standpoint. Opl, Ilog Con-
cert, Comet, the G12 project, and Gecode probably had the most influences
on its design and implementation. At some level, Objective-CP can be viewed
as a synthesis of the salient features of each of these systems and delivers, what
we believe, is a sweet spot in the trade-off between expressiveness and efficiency.
It goes without saying that different users may prefer different abstraction levels
(e.g., a modeling language or a low-level library) based on their experience and
the nature of their applications.

Opl [20] is a modeling language implemented on top of Ilog Solver which
features high-level modeling and search abstractions. Opl introduced the try

and tryall constructs but did not support compositional combinators and its
implementation of node selection strategies was somewhat ad-hoc. Its implemen-
tation was in terms of goals. Models were not first-class objects and a dedicated
language OPL Script [21] was needed to compose models. Objective-CP
borrowed the nondeterministic constructs of Opl but boosted almost all other
aspects of the system (which is expected given the progress in the last 15 years).

Ilog Concert [2] introduced models into C++ libraries. Ilog Concert
makes it possible to define models that can be then extracted by algorithms. The
extraction process associates modeling objects (prefixed by Ilo) with implemen-
tation objects (prefixed by Ilc for the CP solver). Search goals can be expressed
on the implementation objects in a way similar to Ilog Solver. Objective-
CP does not expose implementation objects and the search is implemented
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solely based on model variables. The search language of Objective-CP is fun-
damentally different to those of Ilog Concert/Ilog Solver. At the func-
tionality level, Objective-CP enjoys a nice symbiosis with the underlying host
languages, support an iterative style for search, and extensibility of the search
languages. At the implementation level, it is based on continuations and con-
trollers, not on recursive goals [15] which are close to the original implementation
of constraint logic programming [19].

Comet [3] is a domain-specific language for hybrid optimization, featur-
ing solvers for constraint programming, mathematical programming, and local
search. Its search language for constraint programming is based on continua-
tions and controllers [22] but it did not support compositional combinators as
argued in [17]. Comet does not have the concept of models, which led to the
development of CML [5]. Objective-CP merge the controllers and the contin-
uations of Comet with the concept of models and a more compositional search
language into a low-level host language, achieving a strong symbiosis between
the extensions and the host.

The G12 project at NICTA introduced the MiniZinc modeling language and
its implementation through a series of transformations to FlatZinc [13].MiniZ-
inc has a lot of similarities with Opl but took a much more systematic imple-
mentation approach based on model transformations. Objective-CP uses a
similar strategy but exposes models as first-class objects and enables hybrid
optimization through model combinators [4]. It also features a search language
merging the benefits of search controllers [22] and search combinators [17].

7 Conclusion

This paper presented an overview of Objective-CP based on the vision

Optimization Program = Model + Search + Solver

to strike a good balance between expressiveness, extensibility, and efficiency.
From an expressiveness standpoint,Objective-CP features high-level modeling
and search languages which never refer to implementation objects. The search
language of Objective-CP is based on the motto

Search = Continuations + Controllers

or, in other words, the belief that a rich and extensible search language can
be built bottom-up and compositionally from continuations and search con-
trollers. Objective-CP provides the ability to transparently parallelize multi-
start and branch & bound algorithms. At the implementation level, Objective-
CP performs a number of model transformations of the user model before con-
cretization into a specific solver. Objective-CP features an efficient constraint-
programming solver based on a micro-kernel architecture, separating propaga-
tion, variables, and constraints.
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Abstract. Backtracking strategies based on the computation of dis-
crepancies have proved themselves successful at solving large problems.
They show really good performance when provided with a high-quality
domain-specific branching heuristic (variable and value ordering heuris-
tic), which is the case for many industrial problems. We propose a novel
approach (PDS) that allows parallelizing a strategy based on the com-
putation of discrepancies (LDS). The pool of processors visits the leaves
in exactly the same order as the centralized algorithm would do. The
implementation allows for a natural/intrinsic load balancing to occur
(filtering induced by constraint propagation would affect each processor
pretty much in the same way), although there is no communication be-
tween processors. These properties make PDS a scalable algorithm that
was used on a massively parallel supercomputer with thousands of cores.
PDS improved the best known performance on an industrial problem.

1 Introduction

Constraint solvers have been used for decades and were successful at solving
numerous operations research problems. For instance, these solvers are used
for optimizing computer networks by better routing the traffic [1,2], and for
planning and scheduling problems [3] in different industries, among them the
forest products industry [4,5]. A solver accepts as input a combinatorial problem
defined by a set of variables and a set of constraints posted on these variables.
The solver usually explores the candidate solutions by doing a backtracking
search in a tree.

With the rise of multi-core servers, there has been an increase in research
for parallelizing constraint solvers. Parallelization is not trivial as there is need
for a trade-off between the workload balance, the communication cost, and the
duplication (redundancy) of work between the processors.

The choice of an efficient search strategy is instrumental in solving large in-
dustrial problems, even in a centralized environment (for performance reasons, it
is essential to explore the most promising leaves first). Among others, backtrack-
ing strategies based on the analysis of discrepancies such as LDS [6], DDS [7],
and DBDFS [8] have proved themselves successful at solving large problems.
They show really good performance when provided with a high-quality branch-
ing heuristic (that is, variable and value ordering heuristic), which is the case
for many industrial problems (e.g. [5]).

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 30–46, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this article, we propose a novel approach (PDS) that allows parallelizing
a strategy based on the computation of discrepancies (i.e. LDS). The proposed
approach shows the following characteristics:

– The pool of processors globally visits the leaves in exactly the same order as
the centralized version of LDS would do.

– There is no need for communication between the processors.
– The implementation allows for a natural/intrinsic load balancing to oc-

cur (filtering induced by constraint propagation would affect each processor
pretty much in the same way).

– The method provides robustness (if a processor dies, it can be replaced by
a new one that must however restart the work allocated to this processor).

– It offers good scaling: adding additional processors can never slow down the
global process, unlike approaches using communication.

These properties make PDS a scalable algorithm that we used to solve in-
dustrial problems from the forest products industry (see [4,5]) using a massively
parallel supercomputer called Colosse deployed at Université Laval.

The remainder of this paper is organized as follows. Section 2 reviews basic
concepts related to parallel tree search. Sections 3 and 4 describe the original
algorithm and the parallel version. Section 5 reports theoretical results and eval-
uates statistically the performance of the algorithm in order to illustrate different
characteristics. Section 6 describes the experiments run on industrial problems
and their results. Section 7 concludes the paper.

2 Basic Concepts

This section provides an overview of the main approaches regarding parallel tree
search. We then give an overview of previous attempts that were made in order
to parallelize discrepancy-based strategies.

2.1 Search Space in Shared Memory

The simplest method for parallel tree search is implemented by having many
cores share a list of open nodes (nodes for which there is at least one of the chil-
dren that is still unvisited). Starved processors just pick up the most promising
node in the list and expand it. By defining different node evaluation functions,
one can implement different strategies (DFS, BFS and others). A comprehensive
framework based on this idea was proposed in [9]. Good performance is often
reported, as in [10] where a parallel Best First Search was implemented, and
evaluated up to 64 processors.

Although this kind of mechanism intrinsically provides excellent load balanc-
ing, it is known not to scale beyond a certain number of processors; beyond
that point, performance starts to decrease. For this reason, the approach cannot
easily be adapted for massively parallel supercomputers with thousands of cores.
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2.2 Search Space Splitting / Work Stealing

This family of approaches is often reported as the most frequently seen in the
literature [11]. The main idea is to have the search tree split into different regions
allocated to processors (e.g. one processor branches to the left, the other proces-
sor branches to the right). As it is unlikely those subtrees will be of equal size,
a work stealing mechanism (see [12,13]) is needed. Because it uses both com-
munication and computation time, this cannot easily be scaled up to thousands
of processors. In practice, we observe a decrease in performance when reaching
a certain number of processors. However, interesting work was reported in [14];
the authors allocated specific processors to coordination tasks, allowing more
processors to be used before performance starts to decline.

Another promising approach is reported in [11]. The authors used a search
space splitting mechanism allowing good load balancing without needing a work
stealing approach. They use a hashing function allocating implicitly the leaves to
the processors. Each processor applies the same search strategy in its allocated
search space, which solves the load balancing problem. However, like previous
approaches, leaves are globally visited in a different order than they would be on a
single-processor system. This could be a pity in situations where we know a really
good domain-oriented search strategy, a strategy that the parallel algorithm
failed to exploit to its full potential.

2.3 Las Vegas Algorithms / Portfolios

This approach consists in allocating the same search space to each processor.
Each processor explores it using a different strategy, leading to a different vis-
iting order of the leaves. No communication is required and an excellent level
of load balancing is achieved (they all search the same search space). Even if
this approach causes a high level of redundancy between processors, it shows re-
ally good performance in practice. Shylo et al. [15] greatly improves the method
using randomized restart [16,17,18] on each processor.

As there is no communication between processors, this approach is fully scal-
able, although on small multi-core computers some authors increase the efficiency
of the method by allowing processors to share information learned during the
search (e.g. nogoods, see [19]).

In general, the main advantage of the algorithm portfolio approach is that
one does not need to know a good search strategy beforehand: many strategies
will be automatically tried at the same time by the parallel system, thanks
to randomization. This is very useful because, as mentioned by [20] and [21],
defining good domain-specific labelling strategies (that is, variable and value
ordering heuristic) is a difficult task.

However, for complex applications where general strategies are inefficient and
where very good domain-specific strategies are known (e.g. [4,5]) one would like
to have the parallel algorithm exploit the domain-specific strategy.

To the best of our knowledge, it is the first time that LDS is parallelized this
way. In [14] LDS was used locally by processors to search in the trees allocated
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to them (by a tree splitting / work stealing algorithm) but the global system did
not replicate an LDS strategy. The original centralized LDS being an iterative
algorithm, Boivin [22] tried running the first k iterations at the same time on k
processors. The approach did not prove to be efficient for the following reason:
when LDS is provided with a good labelling strategy, the kth iteration of LDS
visit leaves that have considerably less expected probability of success than those
in the first iterations. For domain-specific problems where centralized LDS is
known to be good, only the first few processors were really helpful in the parallel
implementation. Moreover, they were experiencing load balancing problems.

Finally, LDS was adapted for distributed optimization in [23,24]. However,
distributed problems (DisCSP [25], DCOP [26] and HDCOP [27]) refers to a dif-
ferent context than parallel computing. These are problems that are distributed
by nature; different agents are responsible for establishing the value of distinct
variables and communication/coordination are inherent to those approaches.
Therefore, the algorithm called MacDS we proposed in [23,24,27] could not serve
as a basis for a scalable parallel LDS algorithm.

The next section provides a comprehensive description of the centralized ver-
sion of LDS that will be parallelized in Section 4.

3 LDS

Harvey and Ginsberg [6] describe LDS with binary search trees, i.e. trees where
each non-leaf node has two children. We present a generalization of LDS to n-
ary trees which includes a modification by Walsh [7] that prevents visiting a leaf
more than once. The search space of a problem can be represented as a tree where
each node corresponds to a partial assignment. The root is the empty partial
assignment and the leaves are complete assignments (also called solutions). Each
child has one more variable assigned than its parent.

The value ordering heuristic is a function that orders the children of a node
from the most likely one to lead to a solution to the least likely one. When
represented graphically, the left child is the most likely one to lead to a solution
and the right child is the least likely one. A discrepancy is a deviation from
the first choice of the heuristic. We say that the first choice of the heuristic
has zero discrepancy, the second choice has one discrepancy, the third choice
has two discrepancies and so on. The discrepancy of a node is the sum of the
discrepancies associated to each choice on the path from the root of the tree
to the node. Figure 1 shows a search tree where the number of discrepancies is
shown for each node.

Harvey and Ginsberg demonstrated that, with a good value ordering heuristic,
the expected quality of a leaf decreases as the number of discrepancies increases.
For that reason, they proposed to visit the leaves with the fewest discrepancies
first and to keep the leaves with the most discrepancies for the end. Algorithm 2
visits all the leaves that have exactly k discrepancies. Algorithm 1 launches the
search to visit all leaves in increasing number of discrepancies.
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Fig. 1. Search tree. The discrepancy of each node is written inside the node.

4 PDS

We want to run an LDS search over multiple processors. Parallelization can be
achieved in multiple ways but we set four goals that will influence our choices.

1. Search Strategy Preservation. We want the leaves of the search tree to
be visited in the same order as they are on a single processor. Suppose that
we mark each leaf of the tree with the time as it appears on a wall clock at
the moment the leaf is visited. We assume that the clock is precise enough
to break any ties. The ordering of the leaves by their visiting time should be
the same regardless of the number of processors used.

2. Workload Balancing. We want the amount of work assigned to each pro-
cessor to be evenly spread. This goal is particularly difficult to reach when
the constraints filter the variable domains and make the search tree unbal-
anced.

3. Robustness. We aim at running the search on a large cluster of computers.
It is frequent on those computers that a processor fails for different reasons
and that the program must be restarted on another processor. It must be
possible to identify which part of the search tree must be reassigned to
another processor.

4. Minimizing the Communication.We aim at minimizing the communica-
tion between the processors. We actually want to avoid any communication.
We make no assumptions about the geographical location of the processors
and their ability to communicate. Communication should be limited to the
broadcast of a solution.

Algorithm 1. LDS([dom(X1), . . . , dom(Xn)])

for k = 0..n do
s ← LDS-Probe([dom(X1), . . . ,dom(Xn)], k)
if s �= ∅ then return s

return ∅
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Algorithm 2. LDS-Probe([dom(X1), . . . , dom(Xn)], k)

Candidates ← {Xi | |dom(Xi)| > 1}
if Candidates = ∅ then

if dom(X1), . . . , dom(Xn) satisfies all the constraints then
return dom(X1), . . . ,dom(Xn)

return ∅
Choose a variable Xi ∈ Candidates
Let v0, . . . , v|dom(Xi)|−1

be the values in dom(Xi) sorted by the heuristic.

d ← max(0, k −
∑

Xa∈Candidates\{Xi}(|dom(Xa)| − 1))

d ← min(|dom(Xi)| − 1, k)
for d = d..d do

s ← LDS-Probe([dom(X1), . . . ,dom(Xi−1), {vd},
dom(Xi+1), . . . ,dom(Xn)], k − d)

if s �= ∅ then return s

return ∅

We define a variation of LDS that we call PDS. We label ρ processors with an
integer between 0 and ρ− 1 called the processor id. There is exactly one process
running on each processor. The number of processors ρ and the processor id are
given as input to each process. These two parameters are sufficient to identify
which nodes of the search tree will be explored by each process.

We label each leaf s of the search tree by its visit time t(s) in a centralized
LDS. The first leaf to be visited has a visit time of t(s0) = 0, the second leaf
has a visit time of 1 and so on. We assign each leaf to a processor in a round-
robin way by assigning a leaf s to processor t(s)mod ρ. A processor j is only
allowed to visit a leaf s that satisfies t(s)mod ρ = j or an ancestor of such a
leaf. Consequently, before branching on a child node, a processor j has to check
whether this child leads to a leaf it can visit. We show how to perform this test.

Let C(X1, . . . , Xn, k) be the number of leaves with exactly k discrepancies in
a search tree formed by the variablesX1, . . . , Xn. The function C(X1, . . . , Xn, k)
is recursively defined as follows.

C(X1, . . . , Xn, k) =

⎧⎨
⎩

0 if k < 0
1 if k = 0∑|dom(Xn)|−1

i=0 C(X1, . . . , Xn−1, k − i) otherwise

(1)

When all domains have cardinality two, the recursion becomesC(X1, . . . , Xn, k)
= C(X1, . . . , Xn−1, k) +C(X1, . . . , Xn−1, k− 1). This recursion is the same that
appears in Pascal’s triangle to compute the binomial coefficients. We therefore
have C(X1, . . . , Xn, k) =

(
n
k

)
when |dom(Xi)| = 2. Intuitively, since each variable

generates at most one discrepancy, the number of solutions with k discrepancies is
the number of ways one can choose k variables among the n variables. When the
domains have cardinalities greater than two, the recursion can be understood as
follows: the variable Xn can generate a number of discrepancies i between 0 and
|dom(Xn)| − 1. For each possible value of i, we count the number of solutions in
the subtree of height n− 1 that have exactly k − i discrepancies.
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In equation (1), it seems that we consider a fixed ordering of the variables
X1, . . . , Xn. However, the variable ordering imposed by the heuristic does not
need to be static, but is required to be deterministic.

Consider a node a where a value is going to be assigned to Xn and none of
the variables X1, . . . , Xn are assigned. The node a has for children the nodes
c0, . . . , c|dom(Xn)|−1. Let l(a, k) be the processor assigned to the left-most leaf

with k discrepancies in the subtree rooted at a. From this construction, we
have l(a, k) = l(c0, k) since branching from a to c0 adds no discrepancies to
the partial assignment and that both expressions refer to the same leaf. There
are C(X1, . . . , Xn−1, k) leaves with k discrepancies in the subtree rooted at c0.
Since each of these leaves are assigned to the processors in a round-robin way,
the processor assigned to the first leaf in the subtree rooted at c1 is therefore
(l(c0, k) + C(X1, . . . , Xn−1, k))mod ρ. The same reasoning applies for the other
children leading to the following recursion.

l(ci, k − i) =

{
l(a, k) if i = 0
(l(ci−1, k − i+ 1) + C(X1, . . . , Xn−1, k − i+ 1))mod ρ otherwise

We now have all the tools to present how the search strategy PDS proceeds.
Each call to Algorithm 4 corresponds to the visit of a node in the search tree.
The parameter k corresponds to the number of discrepancies that must lie on
the path between this node and the leaves. Each processor visits only the nodes
that lead to one of its assigned leaves. For each node a with children c0, c1, . . .,
Algorithm 4 computes which processor will treat the left-most leaf of the subtree
rooted at ci. This allows computing a range of processors that will visit each
child. If the current processor is among that range, then it branches to the child.

5 Analysis

This Section provides an analysis of PDS in order to illustrate different properties
of the algorithm. Section 4 showed how parallel cores can globally visit the leaves
in the same order as the centralized algorithm would do. We now demonstrate the
quality of the intrinsic workload balance that is achieved. First, when exploring

Algorithm 3. PDS([dom(X1), . . . , dom(Xn)])

l ← 0
for k = 0..n do

Candidates ← {Xi | |dom(Xi)| > 1}
z ← C(Candidates \ {Xi}, k)
if (currentProcessor − l)mod ρ < z then

s ← PDS-Probe([dom(X1), . . . ,dom(Xn)], k, l)
l ← l + C({X1, . . . , Xn}, k)mod ρ
if s �= ∅ then return s

return ∅



Parallel Discrepancy-Based Search 37

Algorithm 4. PDS-Probe([dom(X1), . . . , dom(Xn)], k, l)

Candidates ← {Xi | |dom(Xi)| > 1}
if Candidates = ∅ then

if dom(X1), . . . , dom(Xn) satisfies all the constraints then
return dom(X1), . . . ,dom(Xn)

return ∅
Choose a variable Xi ∈ Candidates
Let v0, . . . , v|dom(Xi)|−1

be the values in dom(Xi) sorted by the heuristic.

d ← max(0, k −
∑

Xj∈Candidates\{Xi}(|dom(Xj)| − 1))

d ← min(|dom(Xi)| − 1, k)
for d = d..d do

z ← C(Candidates \ {Xi}, k − d)
if (currentProcessor − l)mod ρ < z then

s ← PDS-Probe([dom(X1), . . . ,dom(Xi−1), {vd},
dom(Xi+1), . . . ,dom(Xn)], k − d, l)

if s �= ∅ then return s

l ← l + zmod ρ

return ∅

the whole tree, the round-robin assignation of the processors ensures that the
difference between the number of leaves visited by two processors is at most one.
Workload balancing is easy to achieve when considering a complete search tree.
However, it becomes harder to evenly divide the work among the processors
when the tree is unbalanced. Search trees are often unbalanced when domain
filtering and consistency technique are applied. We prove that when a value is
filtered out of a variable domain and that a branch is cut from the tree, the
workload is evenly reduced among all processors.

Theorem 1. Let n be the number of variables in the problem. If a branch is cut
from the search tree, the number of leaves removed from the workload of each
processor differs by at most n+ 1.

Proof. The round-robin affection of the leaves with k discrepancies in a subtree
guarantees that the number of leaves for each processor differs by at most one.
Since we explore a subtree n+1 times for solutions with 0, 1, ..., n discrepancies,
the difference of workload between the processors is at most n+ 1 leaves. 	


5.1 Overhead

We do an overhead comparison of PDS, LDS, and DFS by counting the number of
times a node is visited in a complete search tree associated to n binary variables.

A DFS in a tree with n variables visits the root and performs a DFS on two
subtrees of n− 1 variables. Let DFS(n) be the number of visited nodes.

DFS(n) =

{
1 if n = 0
2DFS(n) + 1 if n > 0

(2)
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This non-homogeneous linear recurrence of first order solves to DFS(n) =
2n+1 − 1, i.e. the number of nodes in a complete binary tree of height n.

We consider a PDS with ρ processors. Let PDSprobeρ(n, k, j) be the number
of nodes visited by processors j ∈ {0, 1, . . . , ρ − 1} on a tree with n binary
variables for which we seek leaves of k discrepancies. We assume that the left-
most leaf must be visited by processor 0. If the left-most leaf has to be visited
by processor a, one can retrieve the number of visited nodes by relabeling the
processors and computing PDSprobeρ(n, k, j − a mod ρ). When k ∈ {0, n}, the
tree has a unique leaf with k discrepancies and only the processor j = 0 visits
the n + 1 nodes between the root and the leaf. If the number of leaves with k
discrepancies,

(
n
k

)
, is smaller than or equal to j, then the processor j does not

have to visit the tree. In all other cases, the number of visited nodes depends on
the number of visited nodes in the left and right subtrees. We have the following
recurrence.

PDSprobeρ(n, k, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n+ 1 if j = 0 ∧ k ∈ {0, n}
0 if

(
n
k

)
≤ j

PDSprobeρ(n− 1, k, j) otherwise
+PDSprobeρ(n− 1, k − 1,

j −
(
n−1
k

)
mod ρ) + 1

Let PDSρ(n) be the total number of nodes visited by the ρ processors.

PDSρ(n) =
n∑

k=0

ρ−1∑
j=0

PDSprobeρ(n, k, j) =
n−1∑
k=1

ρ−1∑
j=0

PDSprobeρ(n, k, j) + 2(n+ 1)

=

n−1∑
k=1

ρ−1∑
j=0

PDSprobeρ(n− 1, k, j)

+

n−1∑
k=1

ρ−1∑
j=0

PDSprobeρ(n− 1, k − 1, j −
(
n− 1

k

)
mod ρ)

+
n−1∑
k=1

min(ρ,(nk))−1∑
j=0

1 + 2(n+ 1)

One can replace j −
(
n−1
k

)
mod ρ by j since we sum over j = 0..ρ− 1. We also

perform a change of indices for k in the same summation.

PDSρ(n) =

n−1∑
k=1

ρ−1∑
j=0

PDSprobeρ(n− 1, k, j) +

n−2∑
k=0

ρ−1∑
j=0

PDSprobeρ(n− 1, k, j)

+
n−1∑
k=1

min(ρ,

(
n

k

)
) + 2n+ 2

=2PDSρ(n− 1) +
n−1∑
k=1

min(ρ,

(
n

k

)
) + 2
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Using backward substitutions solves the recurrence.

PDSρ(n) =2n + 2n
n∑

i=1

i∑
k=0

1

2i
min(ρ,

(
i

k

)
)

When solved for ρ = 1, we retrieve the number of visited nodes with LDS.
We also simplify for ρ ∈ {2, 3} assuming n ≥ 3.

LDS(n) = 2n+2 − n− 3 PDS2(n) = 5 · 2n − 2n− 4 PDS3(n) =
23

4
2n − 3n− 5

We observe that, as the number of variables grows, a LDS visits twice the
number of nodes than a DFS. Therefore, when DFS finishes to visit the entire
tree, LDS visited half of the leaves. However, these leaves have fewer than n

2
discrepancies. So if the heuristic makes no mistakes at least half of the time,
LDS finds a solution by the time DFS visits the entire tree. The overhead of
LDS compared to DFS is therefore compensated by the search of more promising
parts of the search tree.

As n grows, the ratios PDS2(n)

LDS(n)
and PDS3(n)

LDS(n) tend to 1.25 and 1.43. These

overheads of 25% and 43% grow slower than the number of processors and implies
that 2 and 3 processors will visit the search tree in 62% and 48% of the time
taken by one processor. Should the search visit the entire search tree, Figure 2
shows the speedup of PDS over LDS as the number of processors increases. We
see that the speedup grows linearly except in the degenerate case where the
number of leaves equal the number of processors.

To get a more accurate idea of the speedup, one needs to consider the quality of
the solution (in an optimization problem) or the probability of finding a solution
(in a satisfaction problem). This is done in the next section.

5.2 Statistical Analysis

We provide statistical results showing that the performance of the algorithm
never declines, except in the degenerated case where there are more processors
than leaves. It is therefore a worst-case analysis where the entire tree is explored.

Harvey and Ginsberg [6] showed, by analyzing binary SCP search trees from
different problems, that the quality of a heuristic can be approximated/described
by the probability p of finding a solution in the left subtree if no mistakes were
made in the current partial assignment. Similarly, we say that the probability
of finding a solution in the right subtree is q. If the solution is unique, we have
p+ q = 1. If there is more than one solution, we have p+ q ≥ 1 since there is a
probability of having a solution both in the left subtree and the right subtree.

The better a heuristic is, the greater the ratio p
q is. The extreme situation

where p
q = 1 corresponds to a heuristic that does no better than random vari-

able/value selection (all leaves share the same probability of being a solution,
and using an LDS would not be a logical choice). The probability that a leaf
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Fig. 2. Speedup for some number of processors

with k discrepancies is a solution is pn−kqk since it involves branching k times
on the right and n− k times on the left.

Figure 3 shows the probability that a solution is found according to the num-
ber of visited nodes per processor. The probability that a leaf si with k deviations
is a solution is P (si) = pn−kqk. The probability of finding a solution after visit-
ing the leaves s1, . . . , sm is 1−

∏m
i=1(1− P (si)). For a given computation time,

increasing the number of processors increases the probability that a solution has
been found.

This clearly illustrates that increasing the number of processors increases the
performance until ρ reaches the number of leaves in the search tree. From that
point there is no more gain.

As the expected quality of a leaf decreases exponentially with its number of
discrepancies (recall Section 3), adding more processors makes us visit additional
leaves in the same computation time, but those leaves have smaller probability
of success than the previous ones. This is a natural (and desired) consequence
of using a good variable/value selection heuristics and a backtracking strategy
visiting leaves in order of expected quality.

Figure 4 presents the speedup obtained for some probability that a solution is
found. A lot of variation is present for low probability values. This is due to the
use of the heuristic that points toward good solutions quickly. The speedup then
converges towarda single value as the probability that a solution is found increases.

The next experiment studies the performance of the algorithm according to
the quality of the variable/value selection heuristics used. We recall from Sec-
tion 3 that the higher the p

q ratio is, the more likely the solutions will be con-
centrated in leaves having few discrepancies. In contrast, the extreme situation
where p = q simulates the use of a heuristic that does no better than random
variable/value selection (all leaves share the same probability of being a solution,
and using an LDS would not be a logical choice).
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where p+ q = 1 with 15 variables

On Figure 6, the curve for 1 processor shows that computation time decreases
exponentially when p

q increases. Other curves show that when we provide addi-
tional processors, the computation time still decreases exponentially, but much
more quickly.

6 Experimentation with Industrial Data

In a lumber finishing facility, lumbers are planed and sorted according to their
grade (i.e. quality). It may be trimmed in order to produce a shorter lumber
of a higher grade and value. The operation that improves a piece of lumber
only depends on the piece of lumber itself with no consideration for the actual
customer demand. This causes the production of multiple finished products at
the same time (co-production) from a single raw product (divergence). This
makes the production very difficult to plan according to the customer demand.
There is a finite set of processes that can be used to transform one raw product
into many finished products. The plant can only process lumber of a single
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category in a given production shift. Mills prefer long campaigns of a single
category as it reduces costs: once the mill is configured for a given setup, they
want to stay in this configuration for as many shifts as possible. The plant
maintains an inventory of raw and finished products. For each customer order,
a given quantity of a finished product has to be delivered at a specific time.

To sum up, the decisions that must be taken in order to plan the finishing
operations are the following: (1) select a lumber category to process during a
campaign, (2) decide when the campaign starts and for how long it lasts, and (3)
for each campaign, decide the quantities of each compatible products to process.
It is a single machine planning and scheduling problem. Each planning period
corresponds to one ”production shift” (approximatively 4 hours). The objec-
tive is to minimize orders lateness (modelled as a penalty cost) and production
costs. The problem is fully described in [4] which provides a good heuristic for
this problem. In [5], the heuristic is used to guide the search using constraint
programming (applying LDS) and it outperforms the DFS and the mathematical
programming approach.

Industrial instances are huge and there is a need for good solutions in shorter
computation time. The instances have 65,142 variables and 50,238 constraints.
Among them, there are 42 discrete decision variables whose domains have car-
dinality 6 and 4200 continuous decision variables. As we have a really good
branching heuristic for which LDS works really well, this problem is an ideal
candidate for PDS. This search heuristic first branches on variable/values for
the integer variables (decisions 1 and 2 in the previous paragraph). Once the
values for these variables are known, the remaining continuous variables (3) de-
fine a linear program that can be easily solved to optimality using the simplex
method. Therefore, each time we have a valid assignment of the integer variables,
we consider we have reached a leaf and we solve a linear program to evaluate the
value of this solution. This implies that the leaves have a heavier computation
time than the inner nodes. This situation differs from Section 5.1 where all nodes
have the same computation time.

We implemented PDS and ran it on Colosse, a supercomputer with more than
8000 cores (dual, quad-core Intel Nehalem CPUs, 2.8 GHz with 24 GB RAM).
Two Canadian lumber companies involved in the project provided the industrial
instances. The four datasets have from 30 to 42 production shifts, from 20 to
133 processes, from 60 to 308 customer orders, from 20 to 68 raw products, and
from 60 to 222 finished products.

6.1 Results and Discussion

Figures 7 to 10 show the objective value according to the computation time
(maximum of one hour) for different numbers of processors. We also computed
the best solution for LDS on these instances and the curve is indistinguishable
from the PDS(1) curve. In Figure 10, we can see that a solution of quality of
1.1× 107 is not found with 1 processor even after an hour but can be found in
10 minutes with 4096 processors. Furthermore, 1 processor obtained a solution
of 1.5× 107 in one hour while the same solution is found in a few seconds with
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512 processors. This is a major improvement from an industrial point of view
where computation time is the real constraint.

The harder instances are those where the heuristic has more difficulties and
a good solution is obtained later in the search (Figure 7 is the easiest instance,
Figure 10 is the hardest one). The absolute time saving is greater on harder
instances when using PDS.

For each Figure from 7 to 10, the curves for 512, 1024, and 2048 processors have
the same shape but get more compressed over time as the number of processors
increases. This shows that the heuristic and the search strategies remains the
same even in its parallelized version.

Table 1 lists statistics we computed during these experiments. The speedup is
the ratio of the number of leaves visited by multiple processors over the number
of leaves visited by one processor. PDS scales well: even with 4096 processors,
the speedup is still increasing almost linearly.

One hour was insufficient to visit the entire search tree. With 4096 processors,
we reached solutions with 6 discrepancies but did not visit all of them. Therefore,
there is no idle time. However, we want to measure how the workload, in terms
of visited leaves, differs between processors. Let χj be the number of leaves
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Table 1. Industrial datasets experiments statistics. The column χ is the average num-
ber of leaves visited by each processor. The column max(χ)−min(χ) is the maximum
difference of leaves treated between processors. The column χ

min(χ)
is the average per-

centage of leaves differences between each processor and the minimal number of leaves
treated by one processor.

dataSet ρ speedup χ max(χ)−min(χ) χ
min(χ)

(%)

K1 512 338.9 4668.6 550 8.6
K1 1024 585.9 4036.0 441 7.97
K1 2048 941.9 3244.4 363 7.79

M3 512 446.4 725.4 24 1.89
M3 1024 863.1 701.3 57 6.09
M3 2048 1601.1 650.4 25 2.92

M2 512 432.7 920.3 53 3.98
M2 1024 823.2 875.5 40 3.49
M2 2048 1604.7 853.3 23 1.94

M1 512 447.7 729.3 42 4.03
M1 1024 869.1 707.9 42 4.25
M1 2048 1656.1 674.4 79 11.1
M1 4096 3152.3 641.9 57 6.44

processed by processor j. Let min(χ) be the minimum value of χj for every
j ∈ 0, 1, . . . , ρ−1. Let χ be the average number of leaves visited by each processor.
The relative difference between min(χ) and χ is χ

min(χ) . This measure shows

processors have visited roughly the same number of leaves.
We had hardware failures during the experiments and we have been able to

restart a single processor while leaving the other ones running.

7 Conclusion

The contributions of this paper are twofold. First, we proposed a new paral-
lelization scheme based on the LDS backtracking strategy. This parallelization
does not alter the strategy since the visit order of the nodes remains unchanged.
Moreover, PDS provides an intrinsic workload balancing, it scales on multiple
processors, and it is robust to hardware failures. We provided a theoretical anal-
ysis that evaluated the performance of PDS based on the quality of the heuristic.
This showed that adding more processors always provides a speedup.

Secondly, we experimented with a difficult industrial problem from the forest
products industry for which an excellent problem-specific variable/value selec-
tion heuristics is known. This has been done by using as many as 4096 processors
on a supercomputer. It shows the great potential of constraint programming in
a massively parallel environment for which good search strategies are known.
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Abstract. EnergeTIC is a recent industrial research project carried out in Greno-
ble on optimizing energy consumption in data-centres. The efficient management
of a data-centre involves minimizing energy costs while ensuring service quality.
We study the problem formulation proposed by EnergeTIC. First, we focus on a
key sub-problem: a bin packing problem with linear costs associated with the use
of bins. We study lower bounds based on Linear Programming and extend the bin
packing global constraint with cost information. Second, we present a column
generation model for computing the lower bound on the original energy manage-
ment problem where the pricing problem is essentially a cost-aware bin packing
with side constraints. Third, we show that the industrial benchmark provided so
far can be solved to near optimality using a large neighborhood search.

1 Introduction

Energy consumption is one of the most important sources of expense in data centers.
The ongoing increase in energy prices (a 50% increase is forecasted by the French sen-
ate by 2020) and the growing market for cloud computing are the main incentives for the
design of energy efficient centers. We study a problem associated with the EnergeTIC1

project which was accredited by the French government (FUI) [2]. The objective is to
control the energy consumption of a data center and ensure that it is consistent with ap-
plication needs, economic constraints and service level agreements. We focus on how
to reduce energy cost by taking variable cpu requirements of client applications, IT
equipment and virtualization techniques into account.

There are a variety of approaches to energy management in data centres, the most
well-studied of which is energy-aware workload consolidation. A Mixed Integer Pro-
gramming (MIP) approach to dynamically configuring the consolidation of multiple
services or applications in a virtualised server cluster has been proposed in [16]. That
work focused on power efficiency and considered the costs of turning on/off the servers.
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However, workloads were entirely homogeneous and there was little uncertainty around
the duration of tasks. Constraint Programming is used in [8] with a different cost model.

A combinatorial optimisation model for the problem of loading servers to a desired
utilisation level has, at its core, a bin packing (BP) problem [20]. In such a model each
server is represented by a bin with a capacity equal to the amount of resource available.
Bin packing is a very well studied NP-Hard problem. A significant amount of work has
been conducted on lower bounds [13], approximation and exact algorithms. Although
this research is still very active as demonstrated by the recent progress [17], researchers
have started to look at variants involved in industrial applications.

In Section 2 we present an extension of bin packing which is a key sub-problem
of the application domain and we show how to handle it efficiently with Constraint
Programming (CP). In Section 3 we study the formulation of the EnergeTIC problem. In
particular a lower bound computation technique is designed to assert the quality of the
upper bounds found by a large neighborhood search. Section 4 reports the experiments
on a real data-set followed by conclusions in Section 5.

2 Bin Packing with Linear Usage Costs

We consider a variant of the Bin Packing problem (BP) [20], which is the key sub-
problem of the application investigated here. We denote by S = {w1, . . . ,wn} the integer
sizes of the n items such that w1 ≤ w2 ≤ . . .wn. A bin j is characterized by an integer
capacity C j, a non-negative fixed cost f j and a non-negative cost c j for each unit of used
capacity. We denote by B = {{C1, f1, c1}, . . . , {Cm, fm, cm}} the characteristics of the m
bins. A bin is used when it contains at least one item. Its cost is a linear function f j+c jl j,
where l j is the total size of the items in bin j. The total load is denoted by W =

∑n
i=1 wi

and the maximum capacity by Cmax = max1≤ j≤mC j. The problem is to assign each item
to a bin subject to the capacity constraints so that we minimize the sum of the costs of
all bins. We refer to this problem as the Bin Packing with Usage Cost problem (BPUC).
BP is a special case of BPUC where all f j are set to 1 and all c j to 0. The following
example shows that a good solution for BP might not yield a good solution for BPUC.

Example 1. In Figure 1, Scenario 1, B ={(9,0,1),(3,0,2),(3,0,2),(3,0,2),(3,0,2)} and S =
{2,2,2,2,3,3,3}. Notice that ∀ j, f j = 0. The packing (P1) : {{2,2,2,2}, {3}, {3}, {3}, {}} is
using the minimum number of bins and has a cost of 26 (8*1 + 3*2 + 3*2 + 3*2). The
packing (P2): {{3,3,3}, {2}, {2}, {2}, {2}} is using one more bin but has a cost of 25 (9 +
2*2 + 2*2 + 2*2 + 2*2). Here, (P2) is better than (P1) and using the minimum number
of bins is not a good strategy. Now change the last unit cost to c5 = 3 (see Figure 1,
Scenario 2). The cost of (P1) remains unchanged since it does not use bin number 5 but
the cost of (P2) increases to 27, and thus (P1) is now better than (P2).

Literature Review. A first relevant extension of BP for the current paper is called Vari-
able Size Bin-Packing, where bins have different capacities and the problem is to mini-
mize the sum of the wasted space over all used bins [15]. It can be seen as a special case
of BPUC where all f j = C j and c j = 0. Recent lower bounds and an exact approach are
examined in [11]. A generalization to any kind of fixed cost is presented in [5], which
can be seen as a special case of BPUC where all c j = 0. Concave costs of bin utilization
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Fig. 1. Example of optimal solutions in two scenarios of costs. In Scenario 1, the best solution
has no waste on the cheapest bin. In Scenario 2, it does not fill completely the cheapest bin.

studied in [12] are more general than the linear cost functions of BPUC. However [12]
does not consider bins of different capacities and deals with the performance of classical
BP heuristics whereas we are focusing on lower bounds and exact algorithms. Secondly,
BP with general cost structures have been introduced [3] and studied [9]. The authors
investigated BP with non-decreasing and concave cost functions of the number of items
put in a bin. They extend it with profitable optional items in [4]. Their framework can
model a fixed cost but does not relate to bin usage.

2.1 Basic Formulation and Lower Bounds

Numerous linear programming models have been proposed for BP [7]. We first present
a formulation for BPUC. For each bin a binary variable y j is set to 1 if bin j is used in
the packing, and 0 otherwise. For each item i ∈ {1, . . . , n} and each bin j ∈ {1, . . . ,m}
a binary variable xi j is set to 1 if item i is packed into bin j, and 0 otherwise. We add
non-negative variables l j representing the load of each bin j. The model is as follows:

Minimize z1 =
∑m

j=1( f jy j + cjl j)
(1.1)

∑m
j=1 xi j = 1, ∀i ∈ {1, . . . , n}

(1.2)
∑n

i=1 wi xi j = l j, ∀ j ∈ {1, . . . ,m}
(1.3) l j ≤ C jyj, ∀ j ∈ {1, . . . ,m}
(1.4) xi j ∈ {0, 1}, yj ∈ {0, 1}, l j ≥ 0 ∀ j ∈ {1, . . . ,m},∀i ∈ {1, . . . , n}

(1)

Constraint (1.1) states that each item is assigned to one bin whereas (1.2) and (1.3)
enforce the capacity of the bins. We now characterize the linear relaxation of the model.
Let r j = f j/C j + c j be a real number associated with bin j. If bin j is filled completely,
r j is the cost of one unit of space in bin j. We sort the bins by non-decreasing r j:
ra1 ≤ ra2 ≤ . . . ≤ ram ; a1, . . . , am is a permutation of the bin indices 1, . . . ,m. Let k be
the minimum number of bins such that

∑k
j=1 Caj ≥ W.

Proposition 1. Let z∗1 be the optimal value of the linear relaxation of the formula-
tion (1). We have z∗1 ≥ Lb1 with Lb1 =

∑k−1
j=1 Caj raj + (W −∑k−1

j=1 Caj )rak .

Proof. z∗1 =
∑m

j=1( f jy j + c jl j) ≥ ∑m
j=1( f j

l j

C j
+ c jl j) because of the constraint l j ≤ C jy j,

so z∗1 ≥
∑m

j=1( f j

C j
+ c j)l j ≥ ∑m

j=1 r jl j. Lb1 is the quantity minimizing
∑m

j=1 r jl j under the
constraints

∑
j l j = W where each l j ≤ C j. To minimize the quantity we must split W

over the l j related to the smallest coefficients r j. Hence, z∗1 ≥
∑m

j=1 r jl j ≥ Lb1. �	
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Lb1 is a lower bound of BPUC that can be easily computed. Also notice that Lb1 is the
bound that we get by solving the linear relaxation of formulation (1).

Proposition 2. Lb1 is the optimal value of the linear relaxation of the formulation (1).

Proof. For all j < k, we set each yaj to 1 and la j to C j. We fix lak to (W −∑k−1
j=1 Caj ) and

yak to lak/Cak . For all j > k we set yaj = 0 and la j = 0. Constraints (1.3) are thus satisfied.

Finally we fix xi,aj =
la j

W for all i, j so that constraints (1.2) and (1.1) are satisfied. This
is a feasible solution of the linear relaxation of (1) achieving an objective value of Lb1.
We have, therefore, Lb1 ≥ z∗1 and consequently z∗1 = Lb1 from Proposition 1. �	
Adding the constraint xi j ≤ y j for each item i and bin j, strengthens the linear relaxation
only if W < Cak . Indeed, the solution given in the proof is otherwise feasible for the

constraint, (∀ j < k, xi,aj =
la j

W ≤ yaj = 1 and for j = k we have
lak
W ≤

lak
Cak

if W ≥ Cak ).

2.2 Two Extended Formulations of BPUC

The Cutting Stock Model. The formulation of Gilmore and Gomory for the cutting
stock problem [10] can be adapted for BPUC. The items of equal size are now grouped
and for n

′ ≤ n different sizes we denote the number of items of sizes w
′
1, . . . ,w

′
n′ by

q1, . . . , qn′ respectively. A cutting pattern for bin j is a combination of item sizes that
fits into bin j using no more than qd items of size w

′
d. In the i-th pattern of bin j,

the number of items of size w
′
d that are in the pattern is denoted gdi j. Let I j be the

set of all patterns for bin j. The cost of the i-th pattern of bin j is therefore equal to

coi j = f j + (
∑n

′

d=1 gdi jw
′
d)c j. The cutting stock formulation is using a variable pi j for the

i-th pattern of bin j:

Minimize z2 =
∑m

j=1

∑
i∈I j

coi j pi j

(2.1)
∑m

j=1
∑

i∈I j
gdi j pi j = qd ∀d ∈ {1, . . . , n′ }

(2.2)
∑

i∈I j
pi j = 1 ∀ j ∈ {1, . . . ,m}

(2.3) pi j ∈ {0, 1} ∀ j ∈ {1, . . . ,m}, i ∈ I j

(2)

Constraint (2.1) states that each item has to appear in a pattern (thus in a bin) and (2.2)
enforces one pattern to be designed for each bin (convexity constraints). A pattern pi j

for bin j is valid if
∑n

′

d=1 gdi jw
′
d ≤ C j and all gdi j are integers such that qd ≥ gdi j ≥ 0.

The sets I j have an exponential size so the linear relaxation of this model can be solved
using column generation. The pricing step is a knapsack problem that can be solved
efficiently by dynamic programming if the capacities are small enough.

The Arc-FlowModel. Carvalho introduced an elegant Arc-Flow model for BP [6,7].
His model explicitly uses each unit of capacity of the bins. In the following we show
how to adapt it for BPUC. Consider a multi-graph G(V, A), where V = {0, 1, ...,Cmax} ∪
{F} is the set of Cmax + 2 nodes labeled from 0 to Cmax and a final node labeled F, and
A = I∪ J is the set of two kinds of edges. An edge (a, b) ∈ I between two nodes labelled
a ≤ Cmax and b ≤ Cmax represents the use of an item of size b−a. An edge of (a, F) ∈ J
for each bin j represents the usage a of the bin j, and therefore a ≤ C j. An example of
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Fig. 2. (a) An example of the graph underlying the Arc-Flow model for S = {2, 2, 3, 5}, B =
{{3, 1, 2}, {4, 3, 1}, {7, 3, 3}} so that Cmax = 7. A packing is shown using a dotted line: {3} is put in
the first bin for a cost of 7, {2, 2} is in the second bin for a cost of 7 and {5} in the last bin for a
cost of 18. (b) The graph underlying the Arc-Flowmodel after the elimination of symmetries.

such a graph is shown in Figure 2(a). Notice that this formulation has symmetries since
a packing can be encoded by many different paths. Some reduction rules were given by
Carvalho [6], which help in reducing such symmetries (see Figure 2(b)).

BPUC can be seen as a minimum cost flow between 0 and F with constraints enforc-
ing the number of edges of a given length used by the flow to be equal to the number of
items of the corresponding size. We have variables xab for each edge (a, b) ∈ I as well
as variables ya j for each pair of bin j ∈ {1, . . . ,m} and a ∈ V . The cost of using an edge
(a, F) ∈ J for bin j with a > 0 is coa j = f j+a · c j and co0 j = 0. The model is as follows:

Minimize z3 =
∑m

j=1

∑k=Cmax
k=0 cok jyk j

(3.1)
∑

(a,b)∈A xab −∑(b,c)∈A xbc −∑m
j=1 yb j =

{
0 ∀b ∈ {1, 2, . . . ,Cmax}
−m for b = 0

(3.2)
∑C j

a=0 ya j = 1 ∀ j ∈ {1, . . . ,m}
(3.3)

∑
(k,k+w

′
d )∈A xk,k+w

′
d
= qd ∀d ∈ {1, 2, . . . , n′ }

(3.4) ya j = 0 ∀( j, a) ∈ {1, . . . ,m} × {C j + 1, . . . ,Cmax}
(3.5) xab ∈ N ∀(a, b) ∈ A
(3.6) ya j ∈ {0, 1} ∀( j, a) ∈ {1, . . . ,m} × {0, . . . ,Cmax}

(3)

Constraint (3.1) enforces the flow conservation at each node, and Constraint (3.2) states
that each bin should be used exactly once. Constraint (3.3) ensures that all the items
are packed, while Constraint (3.4) enforces that bin j is not used beyond its capacity
C j. A solution can be obtained again by decomposing the flow into paths. The number
of variables in this model is in O((n

′
+ m) · Cmax) and the number of constraints is

O(Cmax + m + n
′
). Although its LP relaxation is stronger than that of Model (1), it

remains dominated by that of Model (2).

Proposition 3. z∗3 ≤ z∗2. The optimal value of the linear relaxation of (3) is less than the
optimal value of the linear relaxation of (2).

Proof. Let (p∗) be a solution of the linear relaxation of (2). Each pattern p∗i j is mapped to
a path of the Arc-Flowmodel. A fractional value p∗i j is added on the arcs corresponding
to the item sizes of the pattern (the value of the empty patterns for which all gdi j = 0 is
put on the arcs y0 j). The flow conservation (3.1) is satisfied by construction, so is (3.2)
because of (2.2) and so are the demand constraints (3.3) because of (2.1). Any solution
of (2) is thus encoded as a solution of (3) for the same cost so z∗3 ≤ z∗2. �	
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Proposition 4. z∗2 can be stronger than z∗3 i.e there exist instances such that z∗2 > z∗3.

Proof. Consider the following instance: S = {1, 1, 2} and B = {{3, 1, 1}, {3, 4, 4}}. Two
items of size 1 occurs so that n

′
= 2, q1 = 2, q2 = 1 corresponding to w

′
1 = 1,w

′
2 = 2.

The two bins have to be used and the first dominates the second (the maximum possible
space is used in bin 1 in any optimal solution) so the optimal solution is the packing
{{2, 1}, {1}} (cost of 12). Let’s compute the value of z∗2. It must fill the first bin with the
pattern [g111, g211] = [1, 1] for a cost of 4. Only three possible patterns can be used to
fill the second bin: [0, 0], [1, 0] and [2, 0] (a valid pattern pi2 is such that g1i2 ≤ 2). The
best solution is using [g112, g212] = [2, 0] and [g122, g222] = [0, 0] taking both a 0.5 value
to get a total cost z∗2 = 4+ 6 = 10. The Arc-Flowmodel uses a path to encode the same
first pattern [1,1] for bin 1. But it can build a path for bin 2 with a 1

3 unit of flow taking
three consecutive arcs of size 1 to reach a better cost of 1

3 ∗ 16 ≈ 5, 33. This path would
be a pattern [3,0] which is not valid for (2). So z∗3 ≈ 9.33 and z∗2 > z∗3. �	
The Arc-Flow model may use a path containing more than qd arcs of size w

′
d with a

positive flow whereas no such patterns exist in (3) because the sub-problem is subject
to the constraint 0 ≤ gdi j ≤ qd. The cutting stock formulation used in [6] ignores this
constraint and therefore the bounds are claimed to be equivalent.

2.3 Extending the Bin Packing Global Constraint

A bin packing global constraint was introduced in CP by [19]. We present an extension
of this global constraint to handle BPUC. The scope and parameters are as follows:

BinPackingUsageCost([x1, . . . , xn], [l1, . . . , lm], [y1, . . . , ym], b, z, S , B)

Variables xi ∈ {1, . . . ,m}, l j ∈ [0, . . . ,C j] and b ∈ {1, . . . ,m} denote the bin assigned
to item i, the load of bin j, and the number of bins used, respectively. These variables
are also used by the BinPacking constraint. Variables yi ∈ {0, 1} and z ∈ R are due to
the cost. They denote whether bin j is open, and the cost of the packing. The last two
arguments refers to BPUC and give the size of the items as well as the costs (fixed and
unit). In the following, x (resp. x) denotes the lower (resp. upper) bound of variable x.

Cost-Based Propagation Using Lb1. The characteristics of the bins of the restricted
BPUC problem based on the current state of the domains of the variables is denoted by
B
′
, and defined by B

′
= {{C′

1, f
′
1, c1}, . . . , {C′

m, f
′
m, cm}} where C

′
j = l j − l j, and f

′
j = (1 −

y j) f j. The total load that remains to be allocated to the bins is denoted W
′
= W−∑m

j=1 l j.
Notice that we use the lower bounds of the loads rather than the already packed items.
We assume it is strictly better due to the reasonings of the bin packing constraint.

Lower Bound of z. The first propagation rule is the update of the lower bound z of z.
The bound is summing the cost due to open bins and minimum loads with the value of
Lb1 on the remaining problem. It gives a maximum possible cost increase gap:

Lb
′
1 =
∑m

j=1(l jc j + y j f j) + Lb1(W
′
, B

′
); z← max( z, Lb

′
1); gap = z − Lb

′
1 (4)
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Bounds of the load variables. We define the bin packing problem B
′′

obtained by ex-
cluding the space supporting the lower bound Lb1(W

′
, B

′
). Lb1 is using L j units of

space on bin a j. The bins a1, . . . , ak−1 are fully used so ∀ j < k, L j = C
′
aj

, for bin ak

we have Lk = W
′ − ∑k−1

j=1 C
′
aj

and ∀ j > k, L j = 0. The resulting bins are defined as

B
′′
= {{C′′

1 , f
′
1, c1}, . . . , {C′′

m, f
′
m, cm}} where C

′′
aj
= 0 for all j < k, C

′′
ak
= C

′
ak
− Lk and

C
′′
aj
= C

′
aj

for all j > k. Lower and upper bounds of loads are adjusted with rules (5).
Let q1

aj
be the largest quantity that can be removed from a bin a j, with j ≤ k, and put

at the other cheapest possible place without overloading z. Consequently, when j < k,
q1

aj
is the largest value in [1, L j] such that (Lb1(q1

aj
, B

′′
) − q1

aj
ra j ) ≤ gap. When j = k,

the same reasonning can be done by setting C
′′
ak
= 0 in B

′′
.

Similarly, let q2
aj

be the largest value in [1,C
′
aj

] that can be put on a bin a j, with j ≥ k,
without triggering a contradiction with the remaining gap of cost. q2

aj
is thus the largest

value in [1,C
′
aj

] such that (q2
aj

ra j − (Lb1(W
′
, B

′
) − Lb1(W

′ − q2
aj
, B

′
))) ≤ gap.

∀ j ≤ k, la j ← la j + L j − q1
aj

; ∀ j ≥ k, la j ← la j + q2
aj
. (5)

Channeling. The constraint ensures two simple rules relating the load and open-close
variables (a bin of zero load can be open): y j = 0 =⇒ l j = 0 and l j > 0 =⇒ y j = 1.

Bounds of the open-close variables. The propagation rule for l j can derive l j > 0 from
(5), which in turn (because of the channeling between y and l) will force a bin to open
i.e yaj ∈ {0, 1} will change to yaj = 1. To derive that a y j has to be fixed to 0, we can
use Lb1 similarly to the reasonings presented for the load variables (checking that the
increase of cost for opening a bin remains within the gap).

Tightening the bounds of the load variables can trigger the existing filtering rules of
the bin packing global constraint thus forbidding or committing items to bins. Notice
that items are only increasing the cost indirectly by increasing the loads of the bins
because the cost model is defined by the state of the bins (rather than the items). The
cost-based propagation on x is thus performed by the bin packing global constraint
solely as a consequence of the updates on the bin related variables, i.e. l and y.

Algorithms and Complexity. Assuming that B
′

and W
′

are available, Lb1(W
′
, B

′
) can

be computed in O(m log(m)) time. Firstly we compute the r j values corresponding to
B
′

for all bins. Secondly, we sort the bins in non-decreasing r j. Finally, the bound is
computed by iterating over the sorted bins and the complexity is dominated by the
sorting step. After computing Lb1(W

′
, B

′
), the values a j (the permutation of the bins)

such that ra1 ≤ ra2 ≤ . . . ≤ ram are available as well as the critical k and Lk = W
′ −

∑k−1
j=1 C

′
. The propagation of la j and la j can then be done in O(m) as shown in Figure 3.

3 Application – Energy Optimization in a Data Centre

The system developed by EnergeTIC is based on a model of the energy consumption of
the various components in a data centre, a prediction system to forecast the demand and
an optimization component computing the placement of virtual machines onto servers.
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Algorithm 1: UpdateMinimumLoad

Input: aj with j ≤ k, B
′
, gap

Output: a lower bound of la j

1. costInc = 0; q = 0; b = k;
2. If ( j == k) {b = k + 1;}
3. While (q < Lj && b ≤ m)
4. loadAdd = min(Lj − q,C

′
ab
− Lb);

5. costIncb = loadAdd × (rab − ra j );
6. If ((costIncb + costInc) > gap)
7. q = q + � gap−costInc

rab−ra j
�;

8. return Lj + la j − q;

9. costInc = costInc + costIncb;
10. q = q + loadAdd; b = b + 1;
11. return la j

Algorithm 2: UpdateMaximumLoad

Input: aj with j ≥ k , B
′
, gap

Output: an upper bound of la j

1. costInc = 0; q = 0; b = k;
2. If ( j == k) {q = Lk; b = k − 1;}
3. While (q < C

′
a j
&& b ≥ 0)

4. loadAdd = min(Lb,C
′
a j
− q);

5. costIncb = loadAdd × (ra j − rab );
6. If ((costIncb + costInc) > gap)
7. q = q + � gap−costInc

ra j−rab
�;

8. return la j + q;

9. costInc = costInc + costIncb;
10. q = q + loadAdd; b = b − 1;
11. return la j

Fig. 3. Propagation algorithms for updating the lower and upper bounds of the load variables

Energy Model. In the last decade green data centres have focused on limiting the
amount of energy that is not used for running the client’s applications. The Power Us-
age Effectiveness (PUE) is a key indicator introduced by the Green Grid consortium [1]
which measures the ratio between the total energy consumption of the data centre and
the energy used by its IT systems (e.g., servers, networks, etc.). A value of 1 is the
perfect score. The current average in industry is around 1.7 and the most efficient data
centres are reaching 1.4 or even 1.2. As not all electrical power consumed by the IT
equipment is transformed into a useful work product, the need to refine such a metric
arose quickly. Therefore, the Green Grid proposed a very fine grained indicator for that
purpose [1]. This metric, although very accurate, is not really used in practice because
of its complexity and no consensus has been reached for a practical and relevant indi-
cator. The EnergeTIC project introduced a new energy indicator which is defined as the
ratio between the total energy consumed and the energy really used to run clients’ ap-
plications. This indicator however relies on a model of the energy consumption of each
equipment. A system, based on three different servers (quad-, bi- and mono- processor)
with different energy behaviors, was provided by Bull to perform the measurements.
As an example, the energy cost of the power consumption of three different servers at
different cpu loads taken from one of the problem instances is shown in Figure 4.

Demand Model. The demands of the real benchmarks used in the experimental sec-
tion are coming from the Green Data Centre of Business & Decision Eolas located in
Grenoble. It was used to study and validate the system operationally. It is instrumented
with thousands of sensors spread over the site to monitor the energy consumption of
the centre and claims a PUE between 1.28 and 1.34. It deals with an heterogeneous
demand: web applications, e-commerce, e-business, e-administrations. An example
showing variable requirements of CPU usage over 24 time-periods for multiple virtual
machines taken from one of the problem instances is shown in Figure 5.
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Fig. 5. Variable demands of virtual machines

3.1 Problem Description and Notation

The problem is to place a set of virtual machines on a set of servers over multiple time-
periods to minimize the energy cost of the data center. The cpu usage of a VM is chang-
ing over time. At each period, we must ensure that the virtual machines have enough
resources (cpu and memory). Let VM = {v1, . . . , vn} be the set of virtual machines,
SE = {s1, . . . , sm} be the set of servers and T = {p1, . . . , ph} be the set of periods.

Virtual Machines. A virtual machine vi is characterized by a memory consumption Mi

independent of the time-period, a set SAi ⊆ S of allowed servers where it can be hosted,
and a potential initial server (for time-period p0) denoted by Iservi (which might be
unknown). A virtual machine vi has a cpu consumption Uit at time-period t.

Servers. A server s j can be in two different states: ON=1 or STBY=0 (stand-by). It
is characterized by: a cpu capacity Umax j; a memory capacity Mmax j; a fixed cost of
usage Emin j (in Watts); a unit cost τ j per unit of used capacity; a basic cpu consumption
Ca j when it is ON (to run the operating system and other permanent tasks); an energy
consumption Esby j when it is in state STBY; an energy consumption Esta j to change
the state of the server from STBY to ON; an energy consumption Esto j to change the
state of the server from ON to STBY; a maximum number Nmax j of virtual machines
that can be allocated to it at any time period; a set of periods P j ⊆ T during which s j is
forced to be ON; and a potential initial state Istate j ∈ {0, 1}.

If a server is ON, its minimum cost is Emin j + τ jCa j, and if it is STBY, its cost is
Estby j. For the sake of simplicity, to compute the fixed energy cost of an active server
we include the basic consumption Ca j and the standby energy Estby j in Emin j so that
Emin

′
j = Emin j − Estby j + τ jCa j. This way we can state the BinPackingUsageCost

directly with the semantic given earlier by adding the constant
∑

s j∈SE Estby j in the final
objective value. We also shift the cpu capacity of the servers: Umax

′
j = Umax j −Ca j.

Migrations. The maximum number of changes of servers among all virtual machines
from one period to the next is denoted by N and the cost of a migration by Cmig.

The problem can be seen as a series of cost-aware bin packing problems (one per
period) in two dimensions (cpu and memory) that are coupled by the migration con-
straints and the cost for changing the state of a server. Figure 6 gives an overview of the
problem. This example has four servers, each shown by a rectangle whose dimensions
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Fig. 6. A solution over three time periods. Virtual machines migrate to turn off two servers at t+1.

Minimize
∑

s j∈SE
∑

t∈T (Estajbtojt + Estojotbjt + τ jcpujt + Emin
′
jo jt) +Cmig(

∑
vi∈VM

∑
t∈T ait)

(6.1)
∑

s j∈SE xi jt = 1 (∀ vi ∈ VM, pt ∈ T )
(6.2) xi jt = 0 (∀ vi ∈ VM, pt ∈ T, s j � SAi)
(6.3) xi jt ≤ ojt (∀ vi ∈ VM, pt ∈ T, s j ∈ SE)
(6.4) cpujt =

∑
vi∈VM Uit xi jt (∀ s j ∈ SE, pt ∈ T )

(6.5) cpujt ≤ Umax
′
jo jt (∀ s j ∈ SE, pt ∈ T )

(6.6)
∑

vi∈VM Mi xi jt ≤ Mmaxjojt (∀ s j ∈ SE, pt ∈ T )
(6.7)

∑
vi∈VM xi jt ≤ Nmaxjojt (∀ s j ∈ SE, pt ∈ T )

(6.8) migi jt ≥ xi jt − xi jt−1 (∀ vi ∈ VM, s j ∈ SE, pt ∈ T )
(6.8

′
) ait ≥ ∑s j∈SE migi jt (∀ vi ∈ VM, pt ∈ T )

(6.9)
∑

vi∈VM ait ≤ N (∀ pt ∈ T )
(6.10) btojt ≥ ojt − ojt−1 (∀ s j ∈ SE, pt ∈ T )
(6.11) otbjt ≥ ojt−1 − ojt (∀ s j ∈ SE, pt ∈ T )
(6.12) ojt = 1 (∀ s j ∈ SE, pt ∈ Pj)
(6.13) xi j0 = 0 (∀ vi ∈ VM, s j ∈ SE − {I servi})
(6.14) xi,Iservi ,0 = 1 (∀ vi ∈ VM)
(6.15) oj0 = Istate j (∀ s j ∈ SE)

(6)

are representing the cpu and memory capacities. A virtual machine is a small rectangle
whose height (its cpu) varies from one period to the next. In this scenario, the cpu needs
of some virtual machines decrease allowing to find better packings and turn off two
servers at t + 1.

3.2 An Integer Linear Model

We present the integer linear model of the problem in which the following variables are
used: xi jt ∈ {0, 1} indicates whether virtual machine vi is placed on server s j at time t.
cpu jt ∈ [0,Umax

′
j] gives the cpu consumption of s j at period t. o jt ∈ {0, 1} is set to 1 if

s j is ON at time t, 0 otherwise. bto jt ∈ {0, 1} is set to 1 if s j was in STBY at t − 1 and
is turned ON at t. otb jt ∈ {0, 1} is set to 1 if s j was in ON at t − 1 and is put STBY at
t. migi jt ∈ {0, 1} is set to 1 if vi is on s j at time t and was on a different server at t − 1.
ait ∈ {0, 1} is set to 1 if vi is on a different server at t than the one it was using at t − 1.

The initial state is denoted by t = 0. The model is summarized in Model (6). We omit
the constant term

∑
s j∈SE Estby j from the objective function. Constraint (6.1) states that

a virtual machine has to be on a server at any time; (6.2) enforces the forbidden servers
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for each machine; (6.3) enforces a server to be ON if it is hosting at least one virtual
machine; (6.4) links the cpu load of a server to the machines assigned to it. (6.5–6.7)
are the resource constraints (cpu, memory and cardinality) of each server; (6.8,6.8

′
,6.9)

allow us to count the number of migrations and state the limit on N (6.8 and 6.8
′
together

give a stronger linear relaxation than the single ait ≥ xi jt−xi jt−1); (6.10-6.11) keeps track
of the change of states of the servers; (6.12) states the periods where a server has to be
ON; (6.13–6.15) enforce the initial state (t = 0). The number of constraints of this model
is dominated by the n × m × h number of (6.8) and (6.3).

3.3 Lower Bound – An Extended Formulation

Solving large-sized instances of this application domain within short time limits is be-
yond the capability of exact algorithms. Therefore, one is generally forced to use an in-
complete approach. Although an incomplete approach like large neighborhood search
can usually find feasible solutions quickly, their qualities are often not evaluated as
no bounds or provable approximation ratio can be found in the literature. Hence, it is
important to be able to compute tighter lower bounds. In this section we present a col-
umn generation-based approach for computing a lower bound. Although we focus on
a lower bound for the particular formulation (6), we believe it is generic enough to be
relevant to other closely related problems of the literature that have at their core a series
of cost-aware bin packing problems coupled with cost/migration constraints.

Let bkt ∈ {0, 1} be a variable for each bin packing of each time period to know
whether the packing k is used for time period t. The set of all packings for period t is
denoted byΩt. The packing k of period t is characterized by its cost ckt, the server where
each virtual machine is run and the state of each server. We use xki jt = 1 if vi is placed
on s j in the packing k at time period t and ok jt = 1 if server s j is ON in the packing k. In
addition to bkt, the variables bto jt, otb jt, ait and migi jt that we have already introduced
for (6) are used in the column generation model (7). The restricted master problem is
defined for a restricted number of packing variables (∀t ≤ m, bkt ∈ Ω′t ⊂ Ωt):

Minimize z4 =
∑

t∈T (
∑

s j∈SE(Estajbtojt + Estojotbjt) +
∑

k∈Ωt cktbkt +
∑

vi∈VM Cmigait)

(7.1)
∑

k∈Ωt
bkt = 1 (∀ pt ∈ T ) (λt)

(7.2) migi jt ≥ ∑k∈Ωt xki jtbkt −∑k∈Ωt xk,i, j,t−1bk,t−1 (∀ vi ∈ VM, s j ∈ SE, pt ∈ T ) (πi jt)
(7.3) ait ≥ ∑s j∈SE migi jt (∀ vi ∈ VM, pt ∈ T )
(7.4)

∑
vi∈VM ait ≤ N (∀ pt ∈ T )

(7.5) btojt ≥ ∑k∈Ωt ok jtbkt −∑k∈Ωt ok, j,t−1bk,t−1 (∀ s j ∈ SE, pt ∈ T ) (α jt)
(7.6) otbjt ≥ ∑k∈Ωt ok, j,t−1bk,t−1 −∑k∈Ωt ok jtbkt (∀ s j ∈ SE, pt ∈ T ) (β jt)

(7)

Let λt, πi jt, α jt and β jt be the dual variables of constraints (7.1), (7.2), (7.5) and (7.6)
respectively. We have h independent pricing problems and for each time period t we
are looking for a negative reduced cost packing. The number of constraints (7.2) can
prevent us from solving the relaxation of the master problem alone. We therefore turned
to a relaxation of the migration constraints. The rationale is that the migration cost is
really dominated by the server costs. Let nmig jt ∈ N be the number of migrations
occurring on server j and uk jt =

∑
i∈VM xki jt the number of virtual machines allocated



58 H. Cambazard et al.

to server j in the k-th packing of time t. We suggest removing the a and mig variables
from formulation (7), adding the nmig variables instead and replacing (7.2)–(7.4) by :

(7.2′) nmigjt ≥ ∑k∈Ωt
uk jtbkt −∑k uk, j,t−1bk,t−1 (s j ∈ SE, pt ∈ T ) (π jt)

(7.3′)
∑

j∈SE nmigjt ≤ N (∀ pt ∈ T ) (γt)

The last term in the objective is replaced by Cmig(
∑

t∈T
∑

j∈SE nmig jt). The pricing prob-
lem for period t can now be seen as a cost-aware bin packing problem with an extra cost
related to the number of items assigned to a bin and two side constraints: a cardinality
and memory capacity constraint. The reduced cost rkt of packing bkt is equal to

rkt = ckt −
∑

j∈SE

(ok jt(−α jt + α j,t+1 + β jt − β j,t+1) + uk jt(−π jt + π j,t+1)) − λt (8)

For each bin j, the fixed and unit costs can be set to f j = Emin
′
j− (−α jt+α j,t+1+β jt−

β j,t+1) and c j = τ j respectively. The cost depending on the number of items placed in
bin j is denoted τc j = −(−π jt + π j,t+1). Ignoring the constant term −λt of the objective
function, we summarize the pricing problem of period t by a CP model:

Minimize rt = ccpu + ccard
(9.1) BinPackingUsageCost([x1, . . . , xn], [cpu1, . . . , cpum], [y1, . . . , ym], nbb, ccpu,

[U1t, . . . ,U1n], [( f1, τ1), . . . , ( fm, τm)])
(9.2) BinPackingUsageCost([x1, . . . , xn], [oc1, . . . , ocm], [y1, . . . , ym], nbb, ccard,

[1, . . . , 1], [(0, τc1), . . . , (0, τcm)])
(9.3) BinPacking([x1, . . . , xn], [mem1t, . . . ,memmt], nbb

′
, [M1t, . . . ,Mnt])

(9.4) nbb ≥ nbb
′

(9.5) GlobalCardinality([x1, . . . , xn], [oc1, . . . , ocm])

(9.6) yj

{
= 1 if pt ∈ Pj or f j ≤ 0
∈ {0, 1} otherwise

(∀ s j ∈ SE)

(9)

Each variable xi ∈ SAi gives the bin where item vi is placed. cpu j ∈ [0,Umax
′
j] and

mem j ∈ [0,Mmax j] encode the cpu and memory load of bin j, respectively. The number
of items placed in bin j is given by oc j ∈ {0, . . . , n} and y j ∈ {0, 1} indicates if bin j is
ON or not. The number of bins used is nbb ∈ {1, ...,m} (nbb

′
is an intermediate vari-

able). Finally ccpu ≥ 0 and ccard ≥ 0 are real variables representing the costs related
to cpu and cardinality. The costs are expressed by the state of the bins, thus matching
the model of Section 2. A negative f j is handled by pre-fixing y j to 1 (constraint (9.6)).

Dual Bound. The bottleneck of this method is the hardness of the pricing step, as prov-
ing that no negative reduced cost packing exist is unlikely to be tractable. At any it-
eration, if the optimal reduced costs r∗ = (r∗1, . . . , r

∗
h) are known, a well-known lower

bound of the linear relaxation of the master is w4 = z∗4 +
∑

t∈Pt
r∗t where z∗4 is the cur-

rent optimal value of the restricted master at this iteration. Indeed, since r∗t is the best
reduced cost for period t, ∀k ∈ Ωt, rkt ≥ r∗t , and using (8) we have the following:

∀k ∈ Ωt, ctk ≥ r∗t +
∑

j∈SE

(ok jt(−α jt + α j,t+1 + β jt − β j,t+1) + uk jt(−π jt + π j,t+1)) + λt.

This shows that the solution (γ, π, α, β, λ + r∗) is dual feasible for the master which
explains w4. Now this reasoning also holds for any value smaller than r∗t . Therefore
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we still get a valid lower bound w4 if we use a lower bound r∗t of each r∗t and w4 =

z∗4 +
∑

t∈Pt
r∗t ≤ w4. We note that this algorithm can therefore return a valid bound

without succeeding in solving a single pricing problem to optimality. At the moment,
the pricing problem is solved using a linear solver with a time-limit of three seconds so
the best bound is used for r∗t if the time limit is reached. This is critical for scaling with
sub-problem size. We can always return the best w4 found over all iterations. In practice
we terminate when the gap between w4 and z∗4 is less than 0.1%.

3.4 Upper Bounds

The EnergeTIC team initially designed a MIP model that was embedded in their plat-
form but it failed to scale. The details of this model are not reported here. We inves-
tigated three different approaches for computing upper bounds. The first approach is
the MIP model (6) of Section 3.2 which is an improvement of the model designed by
EnergeTIC. The second approach which we call Temporal Greedy (TG) is currently
employed in their platform. It proceeds by decomposing time and is more scalable. It
greedily solves the problem period by period using model (6) restricted to one period
(enforcing the known assignment of the previous period). Each time-period is used as
a starting period as long as there is time left, and therefore, if required, the assign-
ment is extended in both directions (toward the beginning and toward the end). The last
one is a large neighborhood search (LNS)[14], which was originally developed for the
machine reassignment problem of 2012 ROADEF Challenge which had only 1 time-
period. Therefore we extended it in order to handle multiple time-periods.

4 Experimental Results

Cost-Aware Bin Packing Benchmarks. We first compare on randomly generated in-
stances the lower bounds z∗1, z

∗
2, z
∗
3 as well as exact algorithms: Model (1), Arc-Flow

Model (3) and a CP model using the BinPackingUsageCost constraint. Standard sym-
metry/dominance breaking techniques for BP are applied to the MIP [18] of Model (1)
and CP [19]. A random instance is defined by (n,m, X), where n is the number of items
(n ∈ {15, 25, 200, 250, 500}), m is the number of bins (m ∈ {10, 15, 25, 30}), and pa-
rameter X ∈ {1, 2, 3} denotes that the item sizes are uniformly randomly generated in
the intervals [1, 100], [20, 100], and [50, 100] respectively. The capacities of the bins are
picked randomly from the sets {80, 100, 120, 150, 200, 250} and {800, 1000, 1200, 1500,
2000, 2500} when n ∈ {15, 25} and n ∈ {200, 250, 500} respectively. The fixed cost of
each bin is set to its capacity and the unit cost is randomly picked from the interval
[0, 1[. For each combination of (n,m) ∈ {(15, 10), (25, 15), (25, 25), (200, 10), (250, 15),
(500, 30)} and X ∈ {1, 2, 3} we generated 10 instances giving 180 instances in total.

The time-limit was 600 seconds. If an approach failed to solve an instance within the
time-limit then 600 was recorded as its solution time. All the experiments were carried
out on a Dual Quad Core Xeon CPU, running Linux 2.6.25 x64, with 11.76 GB of
RAM, and 2.66 GHz processor speed. The LP solver used was CPLEX 12.5 (default
parameters) and the CP solver was Choco 2.1.5. Table 1 reports results for some classes
due to lack of space. We report the average cpu time (denoted cpu) and the average
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Table 1. Comparison of bounds obtained using MIP, Arc-Flow, CP, and Cutting-Stock ap-
proaches on random bin packing with usage cost problem instances with 600 seconds time-limit

n m X best ub MIP CP Arc-Flow Cutting-Stock
z∗1 ub #nu cpu ub #nu cpu z∗3 ub #nu cpu z∗2

15 10 1 1005.2 956.8 1005.2 0 (0) 1.2 1005.2 0 (0) 0.5 959.6 1005.2 0 (0) 2.1 960.3
15 10 2 1267.4 1230.5 1267.4 0 (0) 1.1 1267.4 0 (0) 0.2 1244.5 1267.4 0 (0) 0.7 1245.0
15 10 3 1574.5 1522.3 1574.5 0 (0) 0.8 1574.5 0 (0) 0.7 1553.0 1574.5 0 (0) 0.6 1553.5
25 15 1 1665.6 1636.3 1665.6 0 (0) 35.1 1665.6 0 (0) 24.0 1638.9 1665.6 1 (0) 42.7 1639.0
25 15 2 2127.1 2086.4 2127.1 0 (0) 74.2 2127.1 0 (0) 12.9 2094.6 2127.1 0 (0) 61.2 2094.9
25 15 3 2682.8 2613.1 2682.8 0 (0) 22.6 2685.6 2 (0) 144.0 2657.9 2682.8 0 (0) 11.3 2657.9

500 30 1 32387.2 32187.0 32387.2 0 (0) 18.1 32387.2 0 (0) 57.6 32187.0 - 10 (10) 600 32187.0
500 30 2 40422.7 40235.8 40513.5 3 (0) 301.2 40422.7 0 (0) 34.2 40235.8 - 10 (10) 600 40235.8
500 30 3 53395.6 53236.3 - 9 (2) 558.5 53395.6 3 (0) 201.3 53236.3 - 10 (10) 600 53236.3

value of upper/lower-bounds found (denoted ub / z∗x) (when a value is found for each
instance of the class). Column #nu is a pair x(y) giving the number of instances x (resp.
y) for which an approach failed to prove optimality (resp. to find a feasible solution).

For the cutting-stock approach upper-bounds are not shown as the branch-and-price
algorithm was not implemented. The CP approach shows better performance when scal-
ing to larger size instances (and capacities) than the MIP and Arc-Flow models.

EnergeTIC Benchmarks. The industry partners provided 74 instances, where the max-
imum number of virtual machines (items), servers (bins), and time-periods are 242, 20
and 287 respectively. 2 The time-limit is 600 seconds. As mentioned previously, we
compared three approaches for computing upper bounds: the MIP model, the Temporal
Greedy approach (TG) currently used by EnergeTIC, and large neighborhood search
(LNS) [14]. We also analyzed the lower bounds provided by the linear relaxation of
the MIP model (LP), the best lower bound established by MIP when reaching the time-
limit (MIP LB), and the bound provided by the linear relaxation of formulation (7)
(CG). Table 2 gives an overview of the results by reporting (over the 74 instances) the
average/median/max values of the gap to the best known bound3, the cpu time, and
the number of instances #nu when an approach fails to return any results within the
time-limit. Table 2 also gives the results for a few hard instances.

Upper Bounds. Out of 74 instances, MIP was able to find solutions for 71 instances
within the time-limit out of which 54 are proved optimal. It thus failed for 3 instances
where the space requirement for CPLEX exceeded 11GB. Notice that the largest size
instance has 1, 389, 080 decision variables. Clearly, MIP-based systematic search can-
not scale in terms of time and memory. TG is able to find solutions for 73 instances
(so it failed on one instance), out of which 26 are optimal. Its quality deteriorates
severely when one should anticipate expensive peaks in demand by placing adequately
virtual machines several time periods before the peak. This can be seen in Table 2
where the maximum gap is 119.35%. LNS succeeds to find feasible solutions for all in-
stances within 2 seconds, on average, but it was terminated after 600 seconds and for 41

2 The benchmarks are available from http://www.4c.ucc.ie/$\sim$dm6/energetic.tar.gz
3 The gaps for lower and upper bounds are computed as 100×(best ub−lb)

best ub and 100×(ub−best lb)
best lb ) respec-

tively. To compute mean/average/max values of gaps or time of a given approach, we exclude
the instances where it fails to return any value (no feasible solution or a zero lower bound).

http://www.4c.ucc.ie/$\sim $dm6/energetic.tar.gz
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Table 2. Comparison between lower and upper bounds of the various approaches with 600 sec-
onds time-limit (over 74 instances in the first part of the table and on a few specific instances in
the second part)

Lower bounds Upper bounds
LP CG MIP LB LNS MIP TG

gap cpu gap cpu gap cpu gap gap cpu gap cpu
Mean 9,64 3,13 0,32 23,31 0,90 191,92 0,51 0,03 191,92 7,00 42,50

Median 8,33 0,23 0,10 1,3 0 2,67 0 0 2,67 0,06 1,45
Max 58,36 95,66 7,14 600 26,42 600 4,58 0,74 600 119,35 600
#nu 3 0 3 0 3 1

n m h value cpu value cpu value cpu value value cpu value cpu
32 3 96 23492,8 9,5 25404,7 15,2 25043,6 600 25586,7 25575,7 600 36049,7 112,3
36 3 287 122831,3 4,5 126716,8 132,2 126597,9 600 127018,6 127654,4 600 127036,6 600

242 20 24 0 600 37482,5 600 0 600 40362,5 - 600 43027,6 14,2
242 20 24 0 600 36890,8 24,2 0 600 37701,6 - 600 36897,4 600
242 20 287 0 600 431704,0 600 0 600 439926,2 - 600 - 600
90 7 8 10420,7 14,4 11431,9 0,2 11236,3 600 11728,2 11435,3 600 11435,5 1,5

instances it found optimal solutions. Its average gap to the best known lower bound is
less than 0.5% showing that LNS scales very well both in quality and problem size.

Lower bounds. The LP bound can be very far from the optimal value (its maximum gap
is 58.36%) and does not scale since it fails on 3 instances even with 2 hour time-limit.
The MIP obviously fails if the LP has failed. However, when solving the MIP, CPLEX
automatically strengthens the formulation which allows us to solve many instances opti-
mally where the LP bound was initially quite bad. Nevertheless, even after search there
are cases where the gap can remain quite large (maximum of 26.42%). CG exhibits very
good behaviour. Firstly, its gap clearly outperforms other bounds. Secondly, it can be
stopped at any time and returns its current best master dual bound which is why #nu is
0 even though the time limit is reached on two cases (shown in Table 2). The first would
improve to 38614.3 in 2000s whereas the second converges in 700 seconds without any
improvement. Tables 2 shows that CG scales well both in terms of quality and size.

5 Conclusion and Future Work

Many optimisation problems in data centres can be described as a series of consecutive
multi-dimensional Bin Packing with Usage Costs (BPUC) problems coupled by migra-
tion constraints and costs. First, we studied the lower bounds of a critical variant of bin
packing for this domain that includes linear usage costs. We designed a CP approach
that gives, so far, the best algorithm to solve BPUC exactly. Secondly, the usefulness of
the exact algorithm and the efficient bounds for BPUC is shown within a column gener-
ation approach for the energy cost optimisation problem arising in data centres. These
bounds are evaluated experimentally on real benchmarks and they assert the efficiency
of the LNS approach [14] which was extended to handle consecutive BPUC problems.

The next step is to generalize the Martello and Toth bound L2 [13] to the linear
cost function which should improve the BinPackingUsageCost global constraint. We
also plan to evaluate both column generation and LNS approaches on even larger size
instances. We intend to solve the pricing problem with CP as we believe it can scale
better for larger size problems.
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Abstract. This paper introduces a propagator which filters a conjunc-
tion of difference constraints and an AtMostNValue constraint. This prop-
agator is relevant in many applications such as the Shift Minimisation
Personnel Task Scheduling Problem, which is used as a case study all
along this paper. Extensive experiments show that it significantly im-
proves a straightforward CP model, so that it competes with best known
approaches from Operational Research.

Keywords: AtMostNValue, Constraints Conjunction, Global Constraints,
Shift Minimisation Personnel Task Scheduling Problem.

1 Introduction

The problem of minimising the number of distinct values among a set of vari-
ables subject to difference constraints occurs in many real-life contexts, where an
assignment of resources to tasks has to be optimised. For instance, in transports,
crews have to be assigned to trips [25]. In schools, classes have to be assigned
to rooms [6]. In airports, maintenance tasks have to be assigned to ground crew
employees [9,10]. In some factories, fixed jobs have to be assigned to machines
[12,13,22]. In a more theoretical context, one may need to color a graph, such
that adjacent vertices have distinct colors and not every color can be taken by
every node [15,16].

In order to illustrate our contribution, we consider the Shift Minimisation
Personnel Task Scheduling Problem (SMPTSP). This problem belongs to the
set of personnel scheduling problems (see [11,32] for an overview). It arises when
a set of tasks, fixed in time, have to be assigned to a set of shifts so that over-
lapping tasks should not be assigned to the same shift. Each shift is associated
with a given subset of assignable tasks. The objective is to minimise the number
of used shifts. This problem typically occurs as the second step of decomposition
methods which handle the creation of rosters in a first step and the assignment
of tasks in a second one. With this kind of methods, side constraints, related to

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 63–79, 2013.
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personnel roster design, are considered in the first step only, hence the simplicity
of the SMPTSP formulation. Nonetheless, current exact approaches from Oper-
ational Research fail to solve large scale instances. This is the main motivation
for investigating a Constraint-Programming (CP) approach.

The core idea of CP is to design independent constraints that can be combined
through common variables, in order to model constrained problems. However,
in practice, it is often more interesting to design global constraints [3]. These
constraints are able to consider a larger part of the problem, hence their filter-
ing impact is increased. For instance, the AllDifferent global constraint is the
conjunction over a clique of difference binary constraints, and it has been proved
highly relevant within CP solvers [29]. However, developing effective global con-
straints is often difficult, and it also tends to make CP solver maintenance more
expensive, which is one of the greatest concerns of the CP community [27].
Consequently, from a practical point of view, one would rather adapt existing
constraints than to implement brand new ones, in order to capitalise over pre-
vious work. In this paper we investigate the interest of considering difference
constraints when filtering the well known AtMostNValue constraint [2,4,28]. We
introduce a new propagator whose implementation is based on the state-of-the-
art AtMostNValue propagator [4]. A wide range of experiments show that our
propagator significantly improves the CP model, so that it competes with the
most recent SMPTSP dedicated approaches.

The remainder of the paper is organised as follows: Section 2 is devoted to the
description of the SMPTSP, in Section 3 we show how the straightforward CP
model of the SMPTSP can be improved with a new propagator. Our approach
is validated by an extensive experimental study in Section 4, followed by our
conclusions.

2 Description of the SMPTSP

In the following, T and W refer respectively to the set of tasks and workers
(shifts may be seen as workers with specific skills). Given a task t ∈ T , we refer
to the set of workers that can be assigned to t asWt ⊆ W . Since tasks are fixed,
it is easy to find the set of maximal sets of overlapping tasks, which is referred
to as C. Actually, it amounts to finding the set of maximal cliques in an interval
graph. The size of the largest clique, which provides a trivial lower bound on the
required number of workers, is referred to as LB �=. For instance, if we consider
the example given of Figure 1, we have C = {K1,K2,K3} with K1 = {t1, t2, t3},
K2 = {t1, t3, t4}, K3 = {t4, t5} and LB �= = 3. This example will be used all along
the article to illustrate our points.

The SMPTSP may be stated in Mathematical Programming, by using binary
variables xt,w and yw which specify respectively if the task t is assigned to the
worker w and if the worker w is used. Based on these variables, the number
of used workers is given by (1) and the assignment of tasks to qualified workers
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Wt1 = {w2, w3, w4}

Wt2 = {w1, w2, w3}

Wt3 = {w1, w3}

Wt4 = {w3, w4, w5}

Wt5 = {w1, w2, w5}

Time

(a) Input data.

Task Worker
t1 w2

t2 w3

t3 w1

t4 w3

t5 w1

(b) Optimal solution
with three workers.

Fig. 1. A basic example with 5 workers (w1..5) and 5 tasks (t1..5)

is ensured by (2). The purpose of the constraint (3) is twofold: first it prevents
workers to work on overlapping tasks, then it ensures that workers assigned to
at least one task are counted as used. We refer to this model as MIP model :

minimise
∑

w∈W yw (1)
subject to:

∑
w∈Wt

xt,w = 1 , ∀t ∈ T (2)∑
t∈K xt,w ≤ yw , ∀w ∈ W , ∀K ∈ C (3)

xt,w ∈ {0, 1} , ∀t ∈ T , ∀w ∈ Wt (4)
yw ∈ {0, 1} , ∀w ∈ W (5)

3 A CP Model Based on the AtMostNValue Constraint

This section first introduces a straightforward CP formulation of the SMPTSP.
Next, it recalls the former AtMostNValue propagator our approach is based on,
and provides a new formalism to define propagators of the same family. Then,
it introduces a new propagator which filters AtMostNValue while considering a
set of difference constraints. We show how to improve and diversify its impact
on variables. Finally, we discuss the case of dynamic difference constraints and
provide some implementation guidelines.

3.1 A Straightforward CP Formulation

The SMPTSP can be formulated within CP with a set of |T | integer variables
X and one objective variable z. For each task ti ∈ T , the variable xi gives the
worker assigned to the task ti. The objective variable z gives the number of
workers assigned to at least one task. We refer to this model as CP model :

minimise z (6)
subject to: AllDifferent({xi | i ∈ K}) ,∀K ∈ C (7)

AtMostNValue(X , z) (8)
Dom(z) = [LB�=, |W|] (9)
Dom(xi) = Wti ,∀ti ∈ T (10)

The expressive language offered by CP enables to model the problem through two
global constraints. In (7), AllDifferent constraints [29] are used to forbid workers
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ubiquity, i.e., tasks which overlap in time need to be assigned to different workers. In
(8), the AtMostNValue constraint [4] is used to restrict the number of workers that are
involved in the schedule. Then, variable initial domain definitions are given by (9) and
(10). More precisely, trivial lower and upper bounds for z are respectively the maximum
number of overlapping tasks and the number of available workers.

3.2 State-of-the-Art Filtering of the AtMostNValue Constraint

The AtMostNValue constraint belongs to the Number of Distinct Values constraint fam-
ily [2]. It has been introduced in [28] to specify music programs but the first filtering
algorithm was provided in [2]. Then, the AtMostNValue constraint has been widely
investigated in [4], where the authors proved that ensuring the generalised arc con-
sistency (GAC) of AtMostNValue is NP-hard, and provide various filtering algorithms.
According to this study, the greedy propagator they introduced provides a good tradeoff
between filtering and runtime. Thus, we use it as the reference propagator for filtering
the AtMostNValue constraint. Before describing this propagator we need to recall a few
definitions:

Definition 1. The intersection graph of a set of variables X , GI(X ) = (V,EI), is
defined by a vertex set V where each variable xi ∈ X is associated with a vertex i ∈ V ,
and an edge set EI representing domain intersections: for any (i, j) ∈ V 2, there is an
edge (i, j) ∈ EI if and only if Dom(xi) ∩Dom(xj) �= ∅.

Definition 2. An independent set of a graph G = (V,E) is a subset, A ⊆ V , of disjoint
vertices, i.e., for any (i, j) ∈ A2 such that i �= j, (i, j) /∈ E.

Definition 3. A maximum independent set of a graph G is an independent set whose
cardinality is maximal. The cardinality of a maximum independent set of a graph G is
noted α(G).

In the following, the set of all independent sets of a graph G, is referred to as
IS(G). The filtering algorithm proposed in [4] stems from the search of a maximum
independent set in GI(X ). Since this problem is NP-Hard [14], it actually computes an
independent set A of GI(X ), in a greedy way, by selecting nodes of minimum degree
first [17]. This heuristic is referred to as MD. Then, the propagator filters according to
the following rules:

– R1: z ← max(z, |A|)
– R2: |A| = z ⇒ ∀i ∈ V,Dom(xi) ← Dom(xi) ∩

⋃
a∈A Dom(xa)

Where z and z respectively refer to the lower bound and the upper bound of the
variable z. R1 states that the cardinality of A is a valid lower bound for z. R2 states
that whenever the cardinality of the independent set A is equal to the upper bound
of z, then variables in X have to take their values among the subset of values induced
by A. Indeed, variables associated with an independent set of an intersection graph
take different values, by definition. Thus, using a value outside of this subset of values
would lead to use at least |A|+ 1 values, which is a contradiction.

Thus, the greedy propagator of AtMostNValue takes a graph G as input, calls a
function F to compute independent sets in G and then filters variable domains with a
set of rules R. Therefore, we introduce the notation AMNV〈G|F |R〉 to define such a family
of propagators. Consequently, the greedy propagator introduced in [4] is referred to as
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AMNV〈GI |MD|R1,2〉. In the following, we suggest improvements for G, F and R, leading
to a new propagator which filters AtMostNValue and a set of difference constraints.

To illustrate the state-of-the-art propagator, we now apply it to our example (cf.
Figure 2). Because of variables domain definition, the intersection graph corresponding
to our example, is a complete graph. Thus, MD select only one node, x3 for instance.
Then R1 states that the number of workers required is at least one. If we now assume
that the number of workers required is at most one, then R2 states that values w2, w4

and w5 must be removed from the domain of the variables (cf. Figure 2a). Consequently,
the edges (x1, x2), (x1, x5) and (x5, x4) have to be removed in order to obtain the new
intersection graph. Based on this new graph, if we assume that x1 and x5 are then used
as a new independent set (cf. Figure 2b) then R1 states that the number of required
workers is at least two, leading to fail, since z = 1.

x1

x2

x3

x4

x5

z = 1
x1 = {��w2, w3,��w4}
x2 = {w1,��w2, w3}
x3 = {w1, w3}
x4 = {w3,��w4,��w5}
x5 = {w1,��w2,��w5}

(a) First propagation

x1

x2

x3

x4

x5

z = 1
z ≥ 2
Contradiction

(b) Second propagation

Fig. 2. Applying AMNV〈GI |MD|R1,2〉 to our example when z = 1

3.3 Embedding Difference Constraints into AtMostNValue

AstheSMPTSPonly considers twokindof constraints (AtMostNValueandAllDifferent),
filtering their conjunctionmaybeveryprofitable.For thatpurpose, this section introduces
an implied propagator, in the form AMNV〈G|F |R〉, which considers difference constraints.
As a first step,we suggest to consider a new graph, referred to as a constrained intersection
graph (Definition 4), instead of the intersection graph of variables.

Definition 4. Given a set of variables X and a set of difference constraints D, the
constrained intersection graph, GCI(X ,D) = (V,ECI), of X and D is defined by a
vertex set V where each variable xi ∈ X is associated with a vertex i ∈ V , and an edge
set ECI representing possible classes of equivalence: for any (i, j) ∈ V 2, there is an
edge (i, j) ∈ ECI if and only if Dom(xi) ∩Dom(xj) �= ∅ and neq(xi, xj) /∈ D.

In this paper, we consider a single set of variables X and a single set of difference
constraints D, thus, for the sake of clarity GCI(X ,D) and GI(X ) will be respectively
noted GCI and GI . It is worth noticing that GCI ⊆ GI .

Proposition 1. IS(GI) ⊆ IS(GCI), hence α(GI) ≤ α(GCI).

Proof. Let AI be an independent set in GI . Since GCI and GI are based on the
same variable set, they share the same vertex set, so AI is also a subset of vertices
of GCI . Since vertices of AI are pairwise disjoint in GI (by assumption) and since all
edges of GCI also belong to GI , then vertices of AI are also pairwise disjoint in GCI .
Consequently, AI is an independent set of GCI . Thus, all independent sets of GI are
independent sets of GCI , so max

I∈IS(GI)
|I | ≤ max

Ic∈IS(GCI)
|Ic|, hence α(GI) ≤ α(GCI). ��
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Note that a maximum independent set in GI , is not necessarily maximal in GCI . For
instance, one may consider a non-empty set of variables with identical domains and
with a difference constraint over each pair of distinct variables. Then GI is a complete
graph, whereas there are no edges, but loops, in GCI . Consequently, α(GI) = 1 whereas
α(GCI) = |V |. It is worth noticing that in our context, the bigger the independent set,
the higher the chance to filter variable domains. Thus, using GCI is apriori better
than using GI to filter AtMostNValue when difference constraints figure in the model
(Proposition 2).

To illustrate the interest of GCI , we now use it on our example (cf. Figure 3). Because
of difference constraints, GCI is sparser than GI (cf. 3a). Thus, MD is now able to com-
pute a larger independent set, leading to find a better lower bound of z. For instance,
if we consider the independent set {x1, x2, x3} (cf. Figure 3b) then AMNV〈GCI |MD|R1,2〉
states that the number of required workers is at least three. Moreover, if we assume
that the number of required workers is at most three, then the value w5 has to be
removed from the variable domains.

x1

x2

x3

x4

x5

x1 = {w2, w3, w4}
x2 = {w1, w2, w3}
x3 = {w1, w3}
x4 = {w3, w4, w5}
x5 = {w1, w2, w5}

z = [1, 3]

(a) Constrained intersection graph

x1

x2

x3

x4

x5

x1 = {w2, w3, w4}
x2 = {w1, w2, w3}
x3 = {w1, w3}
x4 = {w3, w4,��w5}
x5 = {w1, w2,��w5}

z = 3

(b) Filtering from an independent set

Fig. 3. Use of AMNV〈GCI |MD|R1,2〉 on our example

Proposition 2. Given an oracle O which computes all maximum independent sets of
any graph, then AMNV〈GCI |O|R1,2〉 dominates AMNV〈GI |O|R1,2〉

Proof. First of all, since O is able to compute all maximum independent sets of any
graph, then the lower bound given by R1 in GCI is equal to α(GCI) whereas the lower
bound given by R1 in GI is equal to α(GI). Since α(GI) ≤ α(GCI) (Proposition 1),
then AMNV〈GCI |O|R1〉 dominates AMNV〈GI |O|R1〉. Second, since O is able to compute
all maximum independent sets of any graph, and since IS(GI) ⊆ IS(GCI) (Propo-
sition 1), then values filtered by AMNV〈GI |O|R2〉 are also filtered by AMNV〈GCI |O|R2〉.
Consequently, AMNV〈GCI |O|R2〉 dominates AMNV〈GI |O|R2〉 and thus AMNV〈GCI |O|R1,2〉
dominates AMNV〈GI |O|R1,2〉. ��

Proposition 3. Given an independent set A in GCI such that |A| = z, any solution
of the conjunction of AtMostNValue and D satisfies the following formula: ∀i ∈ V \A,
∃a ∈ Ai s.t. xi = xa, where Ai denotes {a ∈ A|(i, a) ∈ ECI}.

Proof. Given an independent set A in GCI such that |A| = z. Let’s assume that there
exists a solution S to the conjunction of AtMostNValue and D such that there exists a
vertex i ∈ V \A for which ∀a ∈ Ai, xi �= xa. Thus, S is solution of the conjunction of
AtMostNValue and D∪{neq(xi, xa)|a ∈ Ai}. Consequently, A∪{i} is a valid independent
set in GCI . Then R1 states that z ← |A ∪ {i}|, i.e., z ← z + 1 which is not possible.
Consequently, such a solution S does not exist, hence Proposition 3 holds. ��
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From a filtering perspective, Proposition 3 leads to consider the following rule:

– R3: |A| = z ⇒ ∀i ∈ V \A
{
Dom(xi) ← Dom(xi) ∩

⋃
a∈Ai

Dom(xa)

Ai = {a} ⇒ Dom(xa) ← Dom(xa) ∩Dom(xi)

This rule is actually a refined variant of R2. While this change is quite simple,
it may have a significant impact in practice, especially on large scale problems were,
presumably, ∀i ∈ V \A, |Ai| << |A|. Note the particular case that occurs when, for
some node i ∈ V \A, Ai = {a} enables to learn the valid equality xi = xa. This way, it
is possible to filter the domain of the variable xa of the independent set as well. From
a theoretical point of view R3 is also stronger than R2 (cf Proposition 4).

Proposition 4. Given a deterministic heuristic H which computes a set of independent
sets in GCI, then AMNV〈GCI |H|R3〉 dominates AMNV〈GCI |H|R2〉

Proof. Since AMNV〈GCI |H|R3〉 and AMNV〈GCI |H|R2〉 use the same deterministic heuristic
H in the same graph GCI , then they filter with the same independent set A. Since, for
any node i ∈ V , Ai = {a ∈ A|(i, a) ∈ ECI}, then Ai ⊆ A. Consequently, any value
filtered by R2 is also filtered by R3. ��

To illustrate this rule, we now apply it on our example (cf. Figure 4). If we con-
sider the independent set {x1, x3, x4} (cf. Figure 4a) and an objective z = [1, 3],
then AMNV〈GCI |MD|R1,2〉 deduces that z = 3 but cannot filter X domains. However,
AMNV〈GCI |MD|R1,3〉 enables to filter the value w5, which is not included in Dom(x1) ∪
Dom(x3) = {w1, w2, w3, w4}, from the domain of x5 and values w1 and w2 for variable
x2 because they do not figure in Dom(x4) = {w3, w4, w5} (cf. Figure 4b). Moreover,
AMNV〈GCI |MD|R1,3〉 also enables to learn the valid equality x2 = x4, which enables to
remove values w4 and w5 from the domain of x4.

x1

x2

x3

x4

x5

z = 3
x1 = {w2, w3, w4}
x2 = {w1, w2, w3}
x3 = {w1, w3}
x4 = {w3, w4, w5}
x5 = {w1, w2, w5}

(a) Filtering with AMNV〈GCI |MD|R1,2〉

x1

x2

x3

x4

x5

=

z = 3
x1 = {w2, w3, w4}
x2 = {��w1,��w2, w3}
x3 = {w1, w3}
x4 = {w3,��w4,��w5}
x5 = {w1, w2,��w5}

(b) Filtering with AMNV〈GCI |MD|R1,3〉

Fig. 4. Using AMNV〈GCI |MD|R1,3〉 on our example

3.4 Diversifying Filtering

CP frameworks traditionally perform a fix point over constraints at each branching
node [30]. This implies that our model may compute thousands of independent sets
during the search process. Thus, it is advised to use a greedy algorithm, such as MD,
to filter the AtMostNValue constraint [4]. This heuristic is quite efficient but it lacks
diversification for both its bound and the resulting filtering, which depend on the
computed independent set. This may lead to unfortunate results when the considered
graph does not suit this deterministic heuristic.
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Proposition 5. Given two functions F1 and F2 which compute a set of independent
sets in GCI, respectively noted A1 and A2. Let a set A22 denote A2 \ A1.
If max

I2∈A22

|I2| < max
I1∈A1

|I1|, then AMNV〈GCI |F1|R1,3〉 dominates AMNV〈GCI |F2|R1,3〉.

Proof. First, maxI2∈A22 |I2| < maxI1∈A1 |I1| implies that maxI2∈A2 |I2| ≤ maxI1∈A1

|I1|, hence AMNV〈GCI |F1|R1〉 dominates AMNV〈GCI |F2|R1〉. Second, let’s now assume
that a value is removed from a domain of a variable in X , by AMNV〈GCI |F2|R3〉. If
this filtering occurs while considering an independent set of A1 ∩ A2, then the same
filtering is performed by AMNV〈GCI |F1|R1,3〉. Else, this filtering occurs when considering
an independent set I2 of A22. A necessary condition so that R3 triggers filtering is
that, |I2| = z. As |I2| < maxI1∈A1 |I1|, then the problem is actually infeasible, which is
captured by AMNV〈GCI |F1|R1〉. Thus, AMNV〈GCI |F1|R1,3〉 dominates AMNV〈GCI |F2|R1,3〉.

��

As highlighted by the Proposition 5, it may be interesting to obtain several independent
sets to apply filtering rules over a greater set of variables. The simplest way to get
diversification would be to randomly break ties of MD. However, it turns out that this
does not bring enough diversification to improve results. Thus, we introduce the Rk

algorithm (cf. Algorithm 1), which keeps the philosophy of a fast and simple greedy
algorithm, while providing diversification. This heuristic performs k iterations, each one
computes an independent set by selecting nodes randomly, with a uniform probability
distribution. It thus provides a set of k independent sets. Note that we also tried to use
a weighted random that favors nodes with a small degree, but it does not outperform
Rk, while being more complicated, and thus it is not presented in this paper. From a
theoretical point of view, this approach presents several interesting properties. First, it
offers control over its runtime complexity and its expected quality. Second, computing
independent sets randomly tends to impact variable domains homogeneously. Note
that, when k → ∞, then the method tends to enumerate and filter with all maximum
independent sets, which is optimal with the given filtering rules. However, from a
practical point of view, one has to bound the number of iterations in order to get a
reasonable runtime. We suggest the default setting k = 30, which seems to perform
better than MD, on average, without introducing a significant overhead. However, MD
offers a good approximation ratio [17], hence we recommend to use both.

3.5 The Case of Dynamic Difference Constraints

Our approach focuses on the SMPTSP which considers a set of tasks that are al-
ready fixed in time. Thus, difference constraints are given as input through a set of
AllDifferent constraints. However, one may be interested in filtering AtMostNValue
when difference constraints appear dynamically during the search. For instance, in
disjunctive scheduling problems where tasks have to be fixed in time, difference con-
straints implicitly appear as variable domains are reduced. It is worth noticing that
in this situation, difference constraints would no longer be well propagated because of
the absence of AllDifferent constraints in the model. Fortunately, the AtMostNValue
propagator can help to get back a global view of the problem and thus a powerful
filtering thanks to Proposition 6.

Proposition 6. If A is an independent set of GCI , let XA denote {xi ∈ X |i ∈ A},
then the constraint AllDifferent(XA) holds.
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Algorithm 1. Rk algorithm to compute independent sets
Global variables:

GCI , the constrained intersection graph of which independent sets have to be computed
k, the number of iterations (and thus the number of independent sets to compute)

1: A ← ∅ // Creates a set of independent sets, initially empty
2: count← k
3: while (count ≥ 0) do
4: count← count− 1
5: G← GCI .copy() // Copies the constrained intersection graph
6: A← ∅ // Creates an independent set A, initially empty
7: while (G �= ∅) do
8: x← randomNode(G)// Randomly selects a node x in G
9: A← A ∪ {x}// Adds x to the independent set A
10: G← G \ {y|(x, y) ∈ G} // Removes x’s neighbors from G (including x itself)
11: end while
12: A ← A∪ {A} // adds the independent set A to A
13: end while
14: return A // returns a set of independent sets of GCI

Proof. By definition of a constrained intersection graph, an independent set represents
variables that are either already different or constrained to be. ��

From Proposition 6, we derive a new filtering rule for AtMostNValue which calls a
filtering algorithm of AllDifferent over variables corresponding to the independent
set A it has computed:

– R4: AllDifferent({xi ∈ X |i ∈ A})

Note that this rule can either directly call a filtering algorithm of AllDifferent over
the appropriate subset of variables or post dynamically an AllDifferent constraint
into the solver. The first option is the simplest one, but cannot filter incrementally, so
a bound-consistent filtering algorithm of AllDifferent, such as the one presented in
[26], would presumably be more relevant than the GAC one [29]. Moreover, the subset
of variables to be different is lost right after filtering and the next propagation may
involve a worse independent set. Instead, the second option can involve incremental
GAC AllDifferent constraints which would remain in the current search branch.
However, since each independent set can post an AllDifferent constraint, it has the
drawback of leading to a potential explosion over the number of such constraints. Thus,
one needs to set up a constraint pool to manage those constraints, by retaining only the
most interesting constraints and removing dominated ones. One can see a parallel with
Cut pools of MIP solvers [1]. For solver maintenance simplicity purposes, we recommend
the first option.

3.6 Implementation

So far, we have seen that it was possible to tune the original greedy AtMostNValue prop-
agator. We now suggest a simple and non-intrusive implementation (see Algorithm 2).
In this implementation, no assumption is made on the set of difference constraints D
which can thus grow during the resolution process. For instance, D can be modified
by the user or other constraints. Note also that no assumption is made about the kind
of variables in X , which can then be multidimensional continuous variables, as in [7].
The constrained intersection graph is stored as a backtrackable structure which is up-
dated at the beginning of the filtering algorithm, i.e., after potentially many domain
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modifications. This turns out to be much faster than updating GCI incrementaly on
each domain modification or rebuilding it from scratch. Once the graph has been up-
dated, the propagator computes a set of independent sets with a function F . For each
independent set, the propagator filters the lower bound of z and filters X with a set of
rules R. Thus, one can see that this propagator is flexible and not intrusive.

Algorithm 2. AMNV〈GCI |F |R〉 - filtering algorithm
Global variables:

z, an integer variable
X , a set of variables
D, a set of difference constraints
GCI = (V,ECI), a backtrackable graph
F , a function that computes a set of independent sets in a given graph
R, a set of filtering rules

1: if (first call of the propagator) then
2: // graph generation
3: V ← [1, |X |]
4: ECI ← ∅
5: for ((i, j) ∈ V 2) do
6: if (Dom(xi) ∩Dom(xj) �= ∅ ∧ neq(xi, xj) /∈ D) then
7: ECI ← ECI ∪ {(i, j)}
8: end if
9: end for
10: GCI ← (V,ECI)
11: else
12: //graph lazy update
13: for ((i, j) ∈ ECI) do
14: if (Dom(xi) ∩Dom(xj) = ∅ ∨ neq(xi, xj) ∈ D) then
15: ECI ← ECI\{(i, j)}
16: end if
17: end for
18: end if
19: A ← F (GCI)// computes a set A of independent sets
20: for (A ∈ A) do
21: filter(X , z, GCI , A,R) // rule-based filtering
22: end for

4 Experimental Study

In order to evaluate the interest of our contribution, we have performed extensive tests.
First, Section 4.1 introduces and motivates a new benchmark data set for the SMPTSP.
Second, Section 4.2 describes the search strategies that were used in this study. Next,
in Section 4.3, we focus on the objective lower bound quality at root node. We show
that it changes completely depending on the model that is used. Section 4.4 highlights
the potential benefit of strengthening the filtering with Rk. Section 4.5 focuses on the
scalability issue, i.e., it investigates the ability of our approach to compute tight bounds,
even on large instances. Finally, in Section 4.6 we compare our approach to the best
known results on the state-of-the-art SMPTSP instances.

Our algorithms have been implemented in JAVA, we have used Cplex 12.4 with
default settings to test MIP model and Choco 13-03 [8] to perform every test related
to CP model . All our implementations are available online at [23]. In the following
line-graphs, instances are sorted in order to ease graphs reading. Moreover, in or-
der to simplify result analysis, we note respectively z∗ and zr the optimal objective
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and the objective lower bound at root node. Finally, a CP model using a propaga-
tor AMNV〈G|F|R〉, is noted ↓AMNV〈G|F|R〉 when used within a top-down minimisation
strategy and ↑AMNV〈G|F|R〉 when used within a bottom-up minimisation strategy.

4.1 A New Set of Challenging SMPTSP Instances

Very recently, Smet et. al. have shown in [31] that the 137 instances provided by
Krishnamoorthy et. al. in [20] admit a feasible solution with an objective value equal
to LB�=. Since worker skills are taken into account in [20], this result is somehow
surprising: one may expect that considering worker skills would have an impact on the
optimum, but actually, it only makes it harder to find a feasible solution. Consequently,
these instances do not provide much challenge regarding to the search of interesting
lower bounds. Therefore, we propose a new set of challenging instances whose maximal
number of overlapping tasks does not provide a good lower bound.

In order to generate this new benchmark we used a dedicated procedure based on
some of the empirical results presented in [20] and [31]. First of all, it is specified in
[20] that the average tightness, defined as the sum of processing times over the sum of
shift lenghts should be close to 90% in order to obtain challenging instances. Another
hardness analysis [31] shows that the smaller the average task processing time, the more
difficult instances are to solve. Based on these two conclusions, we designed a dedicated
procedure able to generate instances for which the maximum number of overlapping
tasks does not provide a good lower bound.

The procedure which is given in details in [23] generates randomly a set of tasks
ranging from 15 minutes to 2 hours. We consider six different kinds of shift. The first
three aim at splitting a working day into shifts of 8 hours which is very common in
personnel scheduling [32]. The other three are obtained from the previous ones by
introducing an offset of 2 hours to their starting time, so that each task is entirely
contained in at least one shift. Based on this simple procedure, we provide 100 new
instances with a number of tasks ranging from 70 to 1600 and a number of available
workers ranging from 60 to 950. These instances along with our generator are available
online [23]. In the following, we refer to the instances of Krishnamoorthy et. al. as
Data_137, and our generated instances as Data_100.

4.2 Search Strategies

Our contribution mainly concerns the lower bounding of the problem, and the lower
the objective upper bound, the stronger our filtering. Hence, we naturally employed a
bottom-up minimisation approach. It tries to compute a solution involving k workers,
where k is initialised to the root lower bound of z and incremented by one each time
the solver proved unsatisfiability. Thus, the first solution found is optimal.

It is worth noticing that when using a bottom-up approach, most part of the search
concerns infeasible regions of the search space. In order to get out of them as quickly as
possible, it seems wiser to use intensification processes within the branching heuristic,
following the Fail First principle [18]. Thus, our bottom-up approach uses a sequential
heuristic: a first heuristic randomly determines which subset of workers will be used in
the solution, then a first-fail heuristic is used to assign tasks to workers: the variable
associated with the smallest domain is selected first, and then fixed to its lower bound.
The overall branching scheme is reinforced by the Last Conflict heuristic of [24] which
aims at identifying critical variables.
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4.3 Impact of Suggested Improvements on the Root Lower Bound
In order to evaluate the pratical interest of our contribution, we have compared the
value of zr for several settings, on Data_100. Results are reported on Figure 5. Using
AMNV〈GCI |MD,R30|R1,3〉 instead of AMNV〈GI |MD|R1,2〉 dramatically improves the value
of zr: on average, our approach is able to increase LB�= by a factor two, whereas the
former approach is not able to reach this trivial lower bound. Moreover, our approach
scales much better than the classical one which is not able to increase zr whatever
the size of the instance. Actually, this is not really surprising since AMNV〈GI |MD|R1,2〉
is blind to AllDifferent constraints, which represent a big part of the problem. Us-
ing GCI instead of GI makes these AllDifferent constraints visible to AtMostNValue,
hence the increased of zr. Finally, to a lesser extent, combining R30 and MD also con-
tributes to improves zr by 7%. Given the high quality of the lower bound reached by
AMNV〈GCI |MD|R1,3〉, an increase of 7% is already significant. Moreover, considering the
simplicity of this modification, it is very interesting.
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Fig. 5. Value of zr depending on the propagator of AtMostNValue.

One may wonder if the straightforward CP model is able to catch up with our
approach after a few minutes. Hence, we have evaluated the evolution of z after five
minutes of bottom-up resolution. It turned out that its best improvement was by 7
units only, which is far too small to catch up with LB�=.

4.4 Managing the Tradeoff between Filtering and Runtime
As explained in Section 3.4, using the heuristic Rk is a simple and effective way to
obtain diversification in filtering. The parameter k enables to manage the tradeoff be-
tween expected filtering power and runtime. Since Rk is suggested as a complement to
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MD, it must be seen as an improvement opportunity. Back to our case, many values of k
have been tested, within a time limit of 5 minutes (Table 1). Interestingly, the optimal
setting changes quite a lot from one data set to another, hence using an automatic algo-
rithm configuration program [19] seems relevant to get the best results. More precisely,
it can be seen that for Data_100 instances, the more filtering the better. The time
spent in Rk is compensated by the search space reduction it provides. Thus, it may be
worth strengthening even more the filtering, by filtering conjunctions of AllDifferent
constraints for instance [5]. Instead, Data_137 instances are well solved by our model,
hence the faster Rk the better. We report that using R800 with R1,2 instead of R1,3,
leads to finding 7 optima only. Thus, the interest of Rk lies not only in finding large
independent sets (R1), but mostly in diversifying the filtering (R3).

Table 1. Number of optima found with ↑AMNV〈GCI |MD,Rk|R1,3〉. For reference, MIP
model finds respectively 65 and 46 optima on Data_137 and Data_100.

Benchmark Data_137 Data_100
k 10 30 50 70 90 100 200 400 800 1600
Nb Opt. 101 109 106 99 95 19 22 28 35 31

4.5 Scalability Study

We now evaluate the ability of our approach to provide good bounds on large scale
instances. For that, we compare the values of z and z obtained with MIP model ,
with those obtained with ↑AMNV〈GCI |MD,R800|R1,3〉 and ↓AMNV〈GCI |MD,R30|R1,3〉, after
5 minutes of resolution. For this last one, we did not use the branching heuristic de-
scribed in section 4.2 which is no longer relevant in a top-down mode. Instead we used
first-fail to select a task and then we assign it to any worker, preferably already
used in the schedule. Moreover, our propagator is unlikely to filter significantly in a
top-down approach, since the upper bound is presumably too high to enable filtering.
Consequently, we set k to 30 so that it improves MD at least expense.
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Fig. 6. Objective value after a 5 minutes resolution, on Data_100
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Figure 6 gives general trends regarding the ability to scale of MIP model and CP
model . It shows that MIP model fails to solve about half of instances: it is not able to
provide either lower bounds or upper bounds. Regarding this scalability issue, the top-
down and bottom-up CP approaches perform very well. Their relative gap varies around
2%. Moreover, it does not increase much with the instance size. Consequently, using
↑AMNV〈GCI |MD,R800|R1,3〉 and ↓AMNV〈GCI |MD,R30|R1,3〉 leads to finding tight bounds for
z, even on large instances.

4.6 A Competitive Approach

In order to estimate the quality of our approach, we consider state-of-the-art SMPTSP
instances [21]. We compare the performances of ↑AMNV〈GCI |MD,R30|R1,3〉 and MIP
model , but we also compare our results to those of Krishnamoorthy et. al. and Smet
et. al. who use two different metaheuristics. As illustrated on Figure 7, the CP model
clearly dominates MIP model on this data set, since it is able to reach the optimum
of all but one instance within the time limit. It is important to notice that the only
other method that is able to solve these instances to optimality is the metaheuristic
given in [31]. This metaheuristic is actually faster than our approach, since it is able to
reach all optima in 5 minutes, whereas our approach, after 5 minutes, has proved 80%
of optima. However, it provides no lower bound, hence it does not prove optimality,
except when LB�= equals z∗.
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Fig. 7. Number of optima found, depending on runtime, on Data_137

As the SMPTSP often occurs as a subproblem of a more general method, it seems
critical to provide a good lower bound in a short time. To evaluate the quality of zr, we
compare its value and its required runtime with those of the lower bounding procedure
given in [21]. This procedure is based on a Lagrangean relaxation, therefore, we refer to
its lower bound as zL. To have a fair comparison, we do not use LB�= in our model, since
it gives the optimal value on the state-of-the-art instances. As illustrated by Figure 8a,
the absolute gap between zr and z∗ is on average smaller than the gap between zL and
z∗. More precisely zL is on average seven times larger than zr. Moreover the empirical
worst-case gap of zr is also much better than the one of zL, since there is a factor 6
between these two values. Finally, as illustrated by Figure 8b the runtime of zr is much
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smaller than the one of zL: the average runtime of our lower bounding procedure is
thirty times quicker than the one presented in [21].
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Fig. 8. Overall quality of zr and zL on Data_137

5 Conclusions

In this paper, we have presented a new propagator to filter the conjunction of an
AtMostNValue constraint and difference constraints. This propagator relies on a more
appropriate graph structure, as well as refined filtering rules. We provide a simple
way to diversify filtering, in order to improve the overall approach. Moreover, this
propagator gives control over the tradeoff between filtering and runtime. Since it is
simple to implement, effective and relevant for many applications, we believe that this
propagator would benefit the CP community.

Furthermore, we have introduced a CP approach to solve the SMPTSP. This model
outperforms previous exact approaches on state-of-the-art benchmarks. Furthermore,
it provides very good lower bounds, even on large instances, in a short time. Thus, the
CP approach competes with both exact and heuristic state-of-the-art approaches.

Future work may focus on the application of this propagator in the context of
dynamic difference constraints, which occurs in many disjunctive scheduling problems.
Another research perspective would be to investigate how to adapt the parameter k of
Rk during the search, to improve even more the tradeoff between filtering and runtime.
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Abstract. Adequate encodings for high-level constraints are a key ingredient for
the application of SAT technology. In particular, cardinality constraints state that
at most (at least, or exactly) k out of n propositional variables can be true. They
are crucial in many applications. Although sophisticated encodings for cardinality
constraints exist, it is well known that for small n and k straightforward encodings
without auxiliary variables sometimes behave better, and that the choice of the
right trade-off between minimizing either the number of variables or the number
of clauses is highly application-dependent. Here we build upon previous work
on Cardinality Networks to get the best of several worlds: we develop an arc-
consistent encoding that, by recursively decomposing the constraint into smaller
ones, allows one to decide which encoding to apply to each sub-constraint. This
process minimizes a function λ · num vars+ num clauses, where λ is a parameter
that can be tuned by the user. Our careful experimental evaluation shows that
(e.g., for λ = 5) this new technique produces much smaller encodings in variables
and clauses, and indeed strongly improves SAT solvers’ performance.

1 Introduction

This paper presents a new encoding into SAT of cardinality constraints, that is, con-
straints of the form x1+ · · ·+ xn # k, where k is a natural number, the xi are propositional
variables, and the relation operator # belongs to {<, >,�,�,=}. Cardinality constraints
are present in many practical SAT applications, such as cumulative scheduling [17] or
timetabling [4]. They also arise as components of some SAT-based techniques, e.g., for
MaxSAT [11].

Here we are interested in encoding a cardinality constraint C with a clause set S (pos-
sibly with auxiliary variables) that is not only equisatisfiable, but also arc-consistent:
given a partial assignment A, if xi is true (false) in every extension of A satisfying C,
then unit propagating A on S sets xi to true (false)1. Enforcing arc-consistency by unit
propagation in this way has of course an important positive impact on the practical
efficiency of SAT solvers.

A straightforward encoding of a cardinality constraint x1 + · · · + xn � k is to state,
for each subset Y of {x1, . . . , xn} with |Y | = k + 1, that at least one variable of Y must
be false. This can be done by asserting

� n
k+1

�
clauses of the form xi1 ∨ . . . ∨ xik+1 . This

kind of construction frequently works well, although it is of course not reasonable for

1 Sometimes this notion is called generalized arc-consistency.

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 80–96, 2013.
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large n and k, which is our aim in this work. Successively more sophisticated encodings
using auxiliary variables have been defined that require fewer clauses (see Section 2).
But still, for small n and k the straightforward encodings may behave better in practice.
An additional issue is that, for the efficiency of the SAT solver, the choice of the right
trade-off between minimizing either the number of auxiliary variables or the number of
clauses is highly application-dependent.

Here we build upon and improve previous work on encoding cardinality constraints
with Cardinality Networks [2,3], which use O(n log2 k) variables and clauses (see Sec-
tion 3). The idea is to get the best of several worlds: we develop a hybrid arc-consistent
encoding that, by recursively decomposing the constraint into smaller ones, allows
one to decide whether to apply a recursive (see Section 4) or a direct (see Section
5) encoding to each sub-constraint. This process minimizes a function λ · num vars +
num clauses, where λ is a parameter that can be tuned by the user (see Section 6). Our
experimental evaluation shows that (e.g., for λ = 5) this new technique produces much
smaller encodings in variables and clauses, and indeed strongly improves the perfor-
mance of SAT solvers (see Section 7).

2 Related Work

Because of their practical importance, encodings of cardinality constraints into SAT
have been thoroughly studied over the last few years. In this section we review some of
the most important works in the literature.

In [20], Warners considered the more general pseudo-Boolean case, where con-
straints are of the form a1x1+ . . .+anxn ≤ k, being the ai’s and the k integer coefficients
and the xi’s Boolean variables. The encoding is based on using adders for numbers
represented in binary. For cardinality constraints the encoding uses O(n) clauses and
variables, but does not preserve arc consistency.

Bailleux and Boufkhad presented in [5] an arc-consistent encoding of cardinality
constraints that uses O(n log n) variables and O(n2) clauses. The encoding consists of a
totalizer and a comparator. The totalizer can be seen as a binary tree, where the leaves
are the xi’s variables. Each inner node is labeled with a number s and uses s auxiliary
variables to represent, in unary, the sum of the leaves of the corresponding subtree. As
for the comparator, it is easily encoded thanks to the unary representation, which also
allows handling constraints of the form k1 ≤ x1 + . . . + xn ≤ k2 without splitting.

A more applied work is the one of Büttner and Rintanen [19]. Although their main
interest was in planning, they suggested two encodings of cardinality constraints. The
first one is based on encoding an injective mapping between the true xi’s variables and
k elements. It uses O(nk) clauses and variables and is not arc-consistent. The other
encoding is a small modification of [5]. Based on the observation that counting up to
k + 1 suffices, they can reduce the number of variables and clauses used in each node.
The resulting encoding requires O(nk) variables and O(nk2) clauses, which improves on
[5] if k is small enough.
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In [18], Sinz proposed two different encodings, both based on counters. The first
encoding uses a sequential counter where numbers are represented in unary. It needs
O(nk) clauses and variables and is arc-consistent. The second one is based on a parallel
counter, where numbers are represented in binary. It requires O(n) clauses and variables,
but is not arc-consistent.

Another kind of encoding was used in [6], where a BDD-like technique was pro-
posed for pseudo-Boolean constraints. The encoding is arc-consistent, and uses O(n2)
clauses and variables when applied to cardinality constraints. The idea is as follows:
given a pseudo-Boolean constraint a1x1 + . . .+ anxn ≤ k, the root of the BDD is labeled
with variable Dn,k, expressing that the sum of the first n terms is at most k. The two cor-
responding children are Dn−1,k and Dn−1,k−an , indicating the two cases that correspond
to setting xn to false and true, respectively. Then the necessary clauses are added to
express the relationship between the variables, and trivial cases are treated accordingly.

The same authors presented in [7] a polynomial and arc-consistent encoding of
pseudo-Boolean constraints. When restricted to cardinality constraints it is similar to [5],
but the latter is better in terms of size.

Yet another approach for encoding cardinality constraints was suggested in [1]. The
authors revisit the idea of using totalizers, and realize that totalizers require two param-
eters: the encoding used (unary or binary) and the way the totalizers are grouped (e.g.
(a + b) + (c + d) or (((a + b) + c) + d) ). A thorough experimentation is performed,
to which they add two extra aspects: (i) how to order the variables; and (ii), the use of
encodings in parallel, hoping the SAT solver will focus on the most appropriate one for
each problem.

Finally, Eén and Sörensson [10] presented three encodings for pseudo-Boolean con-
straints. The first encoding is BDD-based, similar to [6]. The second one, based on adder
networks, improves that of [20] in that it uses less adders, but is still linear and does not
preserve arc consistency. Finally, their third encoding uses Sorting Networks [8]. A
Sorting Network takes input variables (x1 . . . xn) and returns as outputs (y1 . . . yn) the
sorted input values in decreasing order. Hence, an output variable yk will become true
iff there are at least k true input variables, and false iff there are at least n − k + 1
false ones. Now, to express x1 + · · · + xn � k, it suffices to add a unit clause yk; simi-
larly, for x1 + · · · + xn � k one adds yk+1, and both are added if the relation is =. This
encoding, when restricted to cardinality constraints, preserves arc consistency and re-
quires O(n log2 n) clauses and variables. The Cardinality Networks of [2,3] reduce this
to O(n log2 k), which is important as often n � k.

A similar approach uses so-called Pairwise Cardinality Networks [9], which are
based on Pairwise Sorting Networks [15] instead of Sorting Networks. By means of
partial evaluation, this method also achieves O(n log2 k) variables and clauses. Finally,
we were recently informed that a hybrid approach based on Pairwise Cardinality Net-
works similar to that presented here was implemented in the BEE system [13]. However,
no detailed description or experimental evaluation is available. Moreover, our proposal
in this paper is more general, in the sense that it allows the user to tune the parameter λ
when minimizing the objective function λ · num vars + num clauses.
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3 Preliminaries

In this work we describe a method for producing cardinality networks that generalizes
the construction of [3]. The core idea of these approaches, which dates back to [8],
consists in encoding a circuit that implements mergesort by means of a set of clauses.
The most basic components of these circuits are 2-comparators.

A 2-comparator is a sorting network of size 2, i.e., it has 2 input variables (x1 and
x2) and 2 output variables (y1 and y2) such that y1 is true if and only if at least one of
the input variables is true, and y2 is true if and only if both two input variables are true.
In the following, 2-comparators are denoted by (y1, y2) = 2-Comp(x1, x2). As pointed
out in [3], for encoding �-constraints, only the three clauses on the first row of Fig. 1
are needed to guarantee arc-consistency. The three clauses on the second row suffice for
�-constraints and all six must be present when encoding =-constraints. Note that the
usual polarity argument [16] cannot be directly applied here, as we are interested not
only in preserving satisfiability, but also arc-consistency under unit propagation.

x1 → y1, x2 → y1, x1 ∧ x2 → y2,
x1 → y2, x2 → y2, x1 ∧ x2 → y1

x1

x2

y1

y2

Fig. 1. A 2-comparator: clauses (left) and graphical representation (right)

4 Arbitrary-Sized Recursive Cardinality Networks

In this section we generalize the recursive construction of cardinality networks given in
[3] by allowing inputs and outputs of any size, not necessarily a power of two. Not only
does this avoid adding dummy variables that are not actually needed (which, as will be
seen in Section 7, has an impact on performance on its own), but also becomes useful
when combining with the direct (non-recursive) constructions of Section 5.

In what follows, we denote by �r� and �r� the floor and ceiling functions respec-
tively. Moreover, for simplicity, we will assume that the constraint to be encoded is a
�-constraint. However, similar constructions for the other constraints can be devised.

4.1 Merge Networks

A merge network takes as input two (decreasingly) ordered sets of sizes a and b and
produces a (decreasingly) ordered set of size a + b. We can build a merge network with
inputs (x1, . . . , xa) and (x′1, . . . , x′b) in a recursive way as follows2:

– If a = b = 1, a merge network is a 2-comparator:

Merge(x1; x′1) := 2-Comp(x1, x′1).

– If a = 0, a merge network returns the second input:

Merge(; x′1, x′2, . . . , x′b) := (x′1, x′2, . . . , x′b).

2 Notice we use the notation Merge(X; X′) instead of Merge((X), (X′)) for simplicity.
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– If a and b are even, a > 0, b > 0 and either a > 1 or b > 1, let us define

(z1, z3, . . . , za−3, za−1,
za+1, za+3, . . . , za+b−1)

=
Merge(x1, x3, . . . , xa−1;
x′1, x′3, . . . , x′b−1),

(z2, z4, . . . , za−2, za,
za+2, za+4, . . . , za+b)

=
Merge(x2, x4, . . . , xa;
x′2, x′4, . . . , x′b),

(y2, y3) = 2-Comp(z2, z3),
. . .

(ya+b−2, ya+b−1) = 2-Comp(za+b−2, za+b−1).

Then,

Merge(x1, x2, . . . , xa; x′1, x′2, . . . , x′b) := (z1, y2, y3, . . . , ya+b−1, za+b).

– If a is even, b is odd, a > 0, b > 0 and either a > 1 or b > 1, let us define

(z1, z3, . . . , za−1,
za+1, za+3, . . . , za+b)

=
Merge(x1, x3, . . . , xa−1;
x′1, x′3, . . . , x′b),

(z2, z4, . . . , za, za+2,
za+4, . . . , za+b−1)

=
Merge(x2, x4, . . . , xa;
x′2, x′4, . . . , x′b−1),

(y2, y3) = 2-Comp(z2, z3),
. . .

(ya+b−1, ya+b) = 2-Comp(za+b−1, za+b).

Then,

Merge(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b) := (z1, y2, y3, . . . , ya+b−1, ya+b).

– If a and b are odd, a > 0, b > 0 and either a > 1 or b > 1, let us define

(z1, z3, . . . , za−2, za,
za+1, za+3, . . . , za+b)

=
Merge(x1, x3, . . . , xa;
x′1, x′3, . . . , x′b),

(z2, z4, . . . , za−3, za−1,
za+2, za+4, . . . , za+b−1)

=
Merge(x2, x4, . . . , xa−3, xa−1;
x′2, x′4, . . . , x′b−1),

(y2, y3) = 2-Comp(z2, z3),
. . .

(ya+b−2, ya+b−1) = 2-Comp(za+b−2, za+b−1).

Then,

Merge(x1, x2, . . . , xa; x′1, x′2, . . . , x′b) := (z1, y2, y3, . . . , ya+b−1, za+b).

– The remaining cases are defined thanks to the symmetry of the merge function, i.e.,
due to Merge(X, X′) = Merge(X′, X).

The base cases do not require any explanation. As regards the recursive ones, first
notice that the set of values x1, x2, . . . , xa, x′1, x

′
2, . . . , x

′
b is always preserved. Further, the
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Fig. 2. Different examples of merge networks

output bits are sorted, as z2i ≥ z2(i+1), z2i ≥ z2(i+1)+1, z2i+1 ≥ z2(i+1) and z2i+1 ≥ z2(i+1)+1

imply that min(z2i, z2i+1) ≥ max(z2(i+1), z2(i+1)+1). Figure 2 shows examples of some of
these recursive cases.

The number of auxiliary variables and clauses of a merge network defined in this
way can be recursively computed. A merge network with inputs of size (1, 1) needs 2
variables and 3 clauses. A merge network with inputs of size (0, b) needs no variables
and clauses. A merge network with inputs of size (a, b) with a > 1 or b > 1 needs
V1 +V2 + 2

�
a+b−1

2

�
variables and C1 +C2 + 3

�
a+b−1

2

�
clauses, where V1 and C1 are the

number of variables and clauses in a merge network with inputs of size
��

a
2

�
,
�

b
2

��
,

and V2,C2 are idem in a merge network with inputs of size
��

a
2

�
,
�

b
2

��
.

In comparison to [3], in that work it was assumed that a = b = 2m for some m ≥ 0.
Thanks to this, only one base case (a = b = 1) and one recursive case (a, b even) were
considered there. All the other cases introduced here are needed for arbitrary a and b.

4.2 Sorting Networks

A sorting network takes an input of size n and sorts it. It can be built in a recursive way
as follows, using the same strategy as in mergesort:

– If n = 1, the output of the sorting network is its input:

Sorting(x1) := x1
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– If n = 2, a sorting network is a single merge (i.e., a 2-comparator):

Sorting(x1, x2) := Merge(x1; x2).

– For n > 2, take l with 1 � l < n: Let us define

(z1, z2, . . . , zl) = Sorting(x1, x2, . . . , xl),
(zl+1, zl+2, . . . , zn) = Sorting(xl+1, xl+2, . . . , xn),

(y1, y2, . . . , yn) = Merge(z1, z2, zl; zl+1, . . . , zn).

Then,

Sorting(x1, x2, . . . , xn) := (y1, y2, . . . , yn).

Again, the number of auxiliary variables and clauses needed in these networks can be
recursively computed. A sorting network of input size 1 needs no variables and clauses.
A sorting network of input size 2 needs 2 variables and 3 clauses. A sorting network
of input size n composed by a sorting network of size l and a sorting network of size
n − l needs V1 + V2 + V3 variables and C1 + C2 + C3 clauses, where (V1,C1), (V2,C2)
are the number of variables and clauses used in the sorting networks of sizes l and n− l,
and (V3,C3) are the number of variables and clauses needed in the merge network with
inputs of sizes (l, n − l).

In comparison to [3], in that work n is assumed to be a power of two. Moreover, in
the recursive case l is always chosen to be n/2, while here we can build sorting networks
of any size, and have the additional freedom of choosing the sizes of the two sorting
network components.

4.3 Simplified Merge Networks

A simplified merge is a reduced version of a merge, used when we are only interested in
some of the outputs, but not all. Recall that we want to encode a constraint of the form
x1 + . . . + xn � k, and hence we are only interested in the first k + 1 bits of the sorted
output. Thus, in a c-simplified merge network, the inputs are two sorted sequences of
variables (x1, x2, . . . , xa; x′1, x′2, . . . , x′b), and the network produces a sorted output of the
desired size, c, (y1, y2, . . . , yc). The network satisfies that yr is true if there are at least r
true inputs. We can build a recursive simplified merge as follows:

– If a = b = c = 1, let us add the clauses x1 → y, x′1 → y3. Then:

SMerge1(x1; x′1) := y.

– If a > c, we can ignore the last a − c bits of the first input (similarly if b > c):

SMergec(x1, x2, . . . , xa; x′1, . . . , x′b) = SMergec(x1, x2, . . . , xc; x′1, . . . , x′b).

– If a + b � c, the simplified merge is a merge:

SMergec(x1, . . . , xa; x′1, . . . , x′b) = Merge(x1, . . . , xa; x′1, . . . , x′b).

3 Notice that these clauses correspond to the bit of the 2-comparator with lower index. Clause
x1 ∧ x2 → y does not need to be included here following the reasoning given in Section 3.
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– If a, b � c, a + b > c and c is even: Let us define
(z1, z3, . . . , zc+1) = SMergec/2+1(x1, x3, . . . ; x′1, x′3, . . .),

(z2, z4, . . . , zc) = SMergec/2(x2, x4, . . . ; x′2, x′4, . . .),
(y2, y3) = 2-Comp(z2, z3),

. . .
(yc−2, yc−1) = 2-Comp(zc−2, zc−1).

and add the clauses zc → yc, zc+1 → yc. Then,

SMergec(x1, x2, . . . , xa; x′1, x′2, . . . , x′b) := (z1, y2, y3, . . . , yc),

– If a, b � c, a + b > c and c > 1 is odd: Let us define

(z1, z3, . . . , zc) = SMerge c+1
2

(x1, x3, . . . ; x′1, x′3, . . .),
(z2, z4, . . . , zc−1) = SMerge c−1

2
(x2, x4, . . . ; x′2, x′4, . . .),

(y2, y3) = 2-Comp(z2, z3),
. . .

(yc−1, yc) = 2-Comp(zc−1, zc).

Then,
SMergec(x1, x2, . . . , xa; x′1, x

′
2, . . . , x

′
b) := (z1, y2, y3, . . . , yc).
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Fig. 3. Two examples of simplified merge networks

Figure 3 shows two examples of simplified merges: The first one shows a 6-simplified
merge with inputs of sizes 3 and 4. The second one corresponds to a 5-simplified merge
with inputs of sizes 2 and 4.

We can recursively compute the auxiliary variables and clauses needed in simplified
merge networks. In the recursive case, we need V1 +V2 + c − 1 variables and C1 +C2 +

C3 clauses, where (V1,C1), (V2,C2) are the number of clauses and variables needed in
simplified merge networks of sizes

��
a
2

�
,
�

b
2

�
,
�

c
2

�
+ 1

�
,
��

a
2

�
,
�

b
2

�
,
�

c
2

��
, and

C3 =

	
3c−3

2 if c is odd,
3c−2

2 + 2 if c is even.

Compared to [3], there it was assumed that a = b = 2m for some m ≥ 0, and
c = 2m + 1. Similarly to merge networks, only one base case and one recursive case
were considered. All the other cases introduced here are needed for arbitrary a, b and c.
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4.4 m-Cardinality Networks

An m-cardinality network takes an input of size n and outputs the first m sorted bits. Re-
cursively, an m-cardinality network with input x1, x2, . . . , xn can be defined as follows:

– If n � m, a cardinality network is a sorting network:

Cardm(x1, x2, . . . , xn) := Sorting(x1, x2, . . . , xn).

– If n > m, take l with 1 � l < n. Let us define

(z1, z2, . . . , zA) = Cardm(x1, x2, . . . , xl),
(z′1, z′2, . . . , z′B) = Cardm(xl+1, xl+2, . . . , xn),
(y1, y2, . . . , ym) = SMergem(z1, z2, . . . , zA; z′1, z′2, . . . , z′B),

where A = min{l,m} and B = min{n − l,m}. Then,

Cardm(x1, x2, . . . , xn) := (y1, y2, . . . , ym).

Again, the number of auxiliary variables and clauses needed in these networks can be
recursively computed. An m-cardinality network of size n composed by an m-cardinality
network of size l and an m-cardinality network of size n − l needs V1 + V2 + V3 vari-
ables and C1 +C2 +C3 clauses, where (V1,C1), (V2,C2) are the number of variables and
clauses used in the m-cardinality networks of sizes l and n − l, and (V3,C3) are idem in
the m-simplified merge network with inputs of sizes (min{l,m},min{n − l,m}).

Compared to [3], in that work m is assumed to be a power of two, and n a multiple
of m. Moreover, similarly to sorting networks, in the recursive case l is always chosen
to be m, while here we have an additional degree of freedom.

Using the same techniques in [3] one can easily prove the arc-consistency of the
encoding.

Theorem 1. The Recursive Cardinality Network encoding is arc-consistent: consider
a cardinality constraint x1 + . . . + xn � k, its corresponding cardinality network (y1,
y2, ..., yk+1) = Cardk+1(x1, x2, . . . , xn), and the unit clause ¬yk+1. If we now set to true k
input variables, then unit propagation sets to false the remaining n − k input variables.

Proof (sketch). The proof relies on the following lemmas, which formalize the propa-
gation properties of the building blocks of cardinality networks:

Lemma 1 (Merge Networks). Let S be the set of clauses of

(y1, y2, . . . , ya+b) = Merge(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b).

Let p, q ∈ N with 0 ≤ p ≤ a and 0 ≤ q ≤ b. Then:

1. S ∪ {x1, . . . , xp, x′1, . . . , x′q} |=UP y1, . . . , yp+q.

2. If p < a and q < b then S ∪ {x1, . . . , xp, x′1, . . . , x′q, yp+q+1} |=UP xp+1, x′q+1.

3. If p = a and q < b then S ∪ {x1, . . . , xp, x′1, . . . , x′q, yp+q+1} |=UP x′q+1.
4. If p < a and q = b then S ∪ {x1, . . . , xp, x′1, . . . , x′q, yp+q+1} |=UP xp+1.
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Lemma 2 (Sorting Networks). Let X = (x1, x2, . . . , xn), X′ ⊆ X and S be the set of
clauses of (y1, y2, . . . , yn) = Sorting(X). Let p = |X′|. Then:

1. S ∪ X′ |=UP y1, . . . , yp.
2. If p = |X′| < n, then S ∪ X′ ∪ {yp+1} |=UP xi for all xi � X′.

Lemma 3 (Simplified Merge Networks). Let S be the set of clauses of

(y1, y2, . . . , yc) = SMergec(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b).

Let p, q ∈ N be such that 0 ≤ p ≤ a, 0 ≤ q ≤ b. Then:

1. If p + q ≤ c, then S ∪ {x1, . . . , xp, x′1, . . . , x′q} |=UP y1, . . . , yp+q.

2. If p < a, q < b and p+q < c, then S ∪{x1, . . . , xp, x′1, . . . , x′q, yp+q+1} |=UP xp+1, x′q+1.

3. If p = a, q < b and p + q < c, then S ∪ {x1, . . . , xp, x′1, . . . , x′q, yp+q+1} |=UP x′q+1.
4. If p < a, q = b and p + q < c, then S ∪ {x1, . . . , xp, x′1, . . . , x′q, yp+q+1} |=UP xp+1.

Lemma 4 (Cardinality Networks). Let X = (x1, x2, . . . , xn), X′ ⊆ X and S be the set
of clauses of (y1, y2, . . . , ym) = Cardm(X). Let p = |X′|. Then:

1. If p ≤ m, then S ∪ X′ |=UP y1, . . . , yp.
2. If p < m, then S ∪ X′ ∪ {yp+1} |=UP xi for all xi � X′.

Each lemma is proved by induction and using the corresponding lemmas of the inner
building blocks. The proofs of Lemmas 1 and 3 require considering four cases according
to the parities of p and q. Finally, the theorem follows as a corollary of Lemma 4.

For the sake of illustration, let us prove the case a, b � c, a + b > c, with c even, of
the inductive case of property 1 in Lemma 3. So, let us consider the set of clauses of

(z1, y2, y3, . . . , yc) = SMergec(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b)

consisting of the clauses zc → yc, zc+1 → yc and those in

(z1, z3, . . . , zc+1) = SMergec/2+1(x1, x3, . . . ; x′1, x′3, . . .),
(z2, z4, . . . , zc) = SMergec/2(x2, x4, . . . ; x′2, x′4, . . .),

(y2, y3) = 2-Comp(z2, z3),
. . .

(yc−2, yc−1) = 2-Comp(zc−2, zc−1).

Let p, q ∈ N such that 0 ≤ p ≤ a, 0 ≤ q ≤ b and p + q ≤ c. If p = q = 0 there
is nothing to prove. Otherwise let us show S ∪ {x1, . . . , xp, x′1, . . . , x′q} |=UP z1, yi for all
2 ≤ i ≤ p + q.

Here we focus on the subcase p and q even, being the other three cases analo-
gous. Hence, let p = 2p′ and q = 2q′. In x1, x2, . . . , xp there are p′ odd indices and
p′ even indices. Similarly, in x′1, x′2, . . . , x′q there are q′ odd indices and q′ even in-
dices. Thus, using the IH (note p′ + q′ ≤ c/2 < c/2 + 1), we have that the clauses
of the subnetwork (z1, z3, . . . , zc+1) = SMergec/2+1(x1, x3, . . . ; x′1, x′3, . . .) propagate by
unit propagation the literals z1, ..., z2(p′+q′)−1; and that the clauses of (z2, z4, . . . , zc) =
SMergec/2(x2, x4, . . . ; x′2, x′4, . . .) propagate by unit propagation the literals z2, ..., z2(p′+q′).
Altogether, all literals z j with 1 ≤ j ≤ p + q can be propagated by unit propagation.

Let us take 2 ≤ i ≤ p + q. If i is odd then, thanks to literals zi−1 and zi and clause
zi−1 ∧ zi → yi of the 2-comparator (yi−1, yi) = 2-Comp(zi−1, zi), literal yi is propagated.
If i is even, then thanks to literal zi and clause zi → yi, literal yi is propagated too.
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5 Direct Cardinality Networks

In this section we introduce an alternative technique for building cardinality networks
which we call direct, as it is non-recursive. This method uses many fewer auxiliary vari-
ables than the recursive approach explained in Section 4. On the other hand, the number
of clauses of this construction makes it competitive only for small sizes. However, this
is not a problem as we will see in Section 6, as the two techniques can be combined.

As in the recursive construction described in Section 4, the building blocks of direct
cardinality networks are merge, sorting and simplified merge networks:

– Merge Networks. They are defined as follows4:

Merge(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b) := (y1, y2, y3, . . . , ya+b−1, ya+b),

with clauses {xi → yi, x′j → y j, xi ∧ x′j → yi+ j : 1 � i � a, 1 � j � b}. Notice we
need a + b variables and ab + a + b clauses.

– Sorting Networks. A sorting network can be built as follows:

Sorting(x1, x2, . . . , xn) := (y1, y2, . . . , yn),

with clauses {xi1 ∧ xi2 ∧ · · · ∧ xik → yk : 1 � k � n, 1 � i1 < i2 < · · · < ik � n}.
Therefore, we need n auxiliary variables and 2n − 1 clauses.

– Simplified Merge Networks. The definition of c-simplified merge is the same as
in Section 4, except for the cases in which a, b � c and a + b > c, where:

SMergec(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b) := (y1, y2, . . . , yc),

with clauses {xi → yi, x′j → y j, xi ∧ x′j → yi+ j : 1 � i � a, 1 � j � b, i + j � c}.
This approach needs c variables and (a + b)c − c(c−1)

2 − a(a−1)
2 − b(b−1)

2 clauses.

– m-Cardinality Networks. As in Section 4, except for the case n > m, where:

Cardm(x1, x2, . . . , xn) := (y1, y2, . . . , ym)

with clauses {xi1 ∧ xi2 ∧ · · · ∧ xik → yk : 1 � k � m, 1 � i1 < i2 < · · · < ik � n}.
This approach needs m variables and

�n
1

�
+
�n

2

�
+ · · · + �n

m

�
clauses.

As regards the arc-consistency of the encoding, the following can be easily proved:

Theorem 2. The Direct Cardinality Network encoding is arc-consistent.

Proof (sketch). The proof uses lemmas analogous to Lemmas 1, 2, 3 and 4. For illus-
tration purposes, let us show property 1 in Lemma 3. Let us consider the clause set of
(y1, y2, . . . , yc) = SMergec(x1, x2, . . . , xa; x′1, x′2, . . . , x′b), i.e.,

{xi → yi, x′j → y j, xi ∧ x′j → yi+ j : 1 � i � a, 1 � j � b, i + j � c}.
Let p, q ∈ N be such that 0 ≤ p ≤ a, 0 ≤ q ≤ b and p + q ≤ c. If p = q = 0 there is

nothing to prove. Otherwise let us consider 1 ≤ k ≤ p + q. Let 0 ≤ i ≤ p and 0 ≤ j ≤ q
be such that i+ j = k. If i = 0 then j = k and the clause x′j → y j propagates yk. Similarly,
if j = 0 then i = k and the clause xi → yi propagates yk. Finally, if i ≥ 1 and j ≥ 1 the
clause xi ∧ x′j → yi+ j propagates yk.

4 Direct merge networks are similar to the totalizers of [7].
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6 Combining Recursive and Direct Cardinality Networks

The recursive approach produces shorter networks than the direct approach when the
input is middle-sized. Still, the recursive method for building a network needs to induc-
tively produce networks for smaller and smaller input sizes. At some point, the networks
we need have a sufficiently small number of inputs such that the direct method can build
them using fewer clauses and variables than the recursive approach. Here a mixed en-
coding is presented: large cardinality networks are build with the recursive approach but
their components are produced with the direct approach if their size is small enough.

In more detail, assume a merge of input sizes a and b is needed. We can use the
direct approach, which needs VD = a + b auxiliary variables and CD = ab + a + b
clauses; or we could use the recursive approach. With the recursive approach, we have
to built two merge networks of sizes

��
a
2

�
,
�

b
2

��
and

��
a
2

�
,
�

b
2

��
. These networks are

also built with this mixed approach. Then, we compute the clauses and variables needed
in the recursive approach, VR and CR, with the formula of Section 4.1: VR = V1 + V2 +

2
�

a+b−1
2

�
, CR = C1 +C2 + 3

�
a+b−1

2

�
, where (V1,C1) and (V2,C2) are, respectively, the

number of variables and clauses needed in the recursive merge networks.
Finally, we compare the values of VR, VD, CR and CD, and decide which method is

better for building the merge network. Notice that we cannot minimize both the number
of variables and clauses; therefore, here we try to minimize the function λ · V + C, for
some fixed value λ > 0.5 The parameter λ allows us to adjust the relative importance of
the number of variables with respect to the number of clauses of the encoding. Notice
that this algorithm for building merge networks (and similarly, sorting, simplified merge
and cardinality networks) can easily be implemented with dynamic programming. See
Section 7 for an experimental evaluation of the numbers of variables and clauses in
cardinality networks built with this mixed approach.

The arc-consistency of the mixed encoding easily follows from the arc-consistency
of the two encodings it is based on.

Theorem 3. The Mixed Cardinality Network encoding is arc-consistent.

Proof (sketch). The proof uses lemmas analogous to Lemmas 1, 2, 3 and 4. In turn,
these lemmas are proved by combining the proofs outlined in Theorems 1 and 2.

7 Experimental Evaluation

In previous work [3], it was shown that power-of-two (Recursive) Cardinality Networks
have overall better performance than other well-known methods such as Sorting Net-
works [10], Adders [10] and the BDD-based encoding of [6]. In what follows we will
show that the generalization of Cardinality Networks to arbitrary size and their combi-
nation with Direct Encodings, yielding what we have called the Mixed approach, makes
them significantly better, both in the size of the encoding and the SAT solver runtime.

We start the evaluation focusing on the size of the resulting encoding. In Figure 4 we
show a representative graph, which indicates the size, in terms of variables and clauses,
of the encoding of a cardinality network with input size 100 and varying output size m.

5 This function can be replaced by any other monotone function that can be efficiently evaluated.
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It can be seen that, since we minimize the function λ · V +C, where V is the number
of variables and C the number of clauses, the bigger λ is, the fewer variables we obtain,
at the expense of a slight increase in the number of clauses. Also, it can be seen that
using power-of-two Cardinality Networks as in [3] is particularly harmful when m is
slightly larger than a power of two.

Recursive with power-of-two size
Recursive with arbitrary size
Mixed, λ = 0.5
Mixed, λ = 5
Mixed, λ = 30

m
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Recursive with power-of-two size
Recursive with arbitrary size
Mixed, λ = 0.5
Mixed, λ = 5
Mixed, λ = 30

m
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10 20 40

2000

4000

Fig. 4. Number of variables and clauses generated by Mixed and the Recursive Cardinality Net-
works approaches with input size 100 and different output sizes m

Although having a smaller encoding is beneficial, this should be accompanied with
a reduction in SAT solver runtime. Hence, let us now move to assess how our new
encoding affects the performance of SAT solvers. In this evaluation, in addition to con-
sidering the power-of-two Recursive Cardinality Networks in [3] (Power-of-two CN),
the (arbitrary-size) Recursive Cardinality Networks presented in Section 4 (Arbitrary-
sized CN) and the Mixed approach of Section 6, we have also included other well-
known encodings in the literature: the adder-based encoding (Adder) of [10] and the
BDD-based encoding (BDD) of [6]. We believe these encodings are representative of
all different approaches that have been used to deal with cardinality constraints. Other
works, like the adder-based encoding of [20], the BDD-based one of [10] or the work by
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Anbulagan and Grastien [1], are small variations or combinations of the encodings we
have chosen. Moreover, we have implemented an SMT-based approach (SMT) to Car-
dinality Constraints. In a nutshell, we have coupled a SAT solver with a theory solver
that handles all cardinality constraints. As soon as a cardinality constraint is violated
by the current partial assignment, the SAT solver is forced to backtrack and, when the
value of a variable can be propagated thanks to a cardinality constraint, this informa-
tion is passed to the SAT solver. In other words, cardinality constraints are not translated
into SAT, but rather tackled by a dedicated algorithm, similar in nature to what some
pseudo-Boolean solvers do. See [14] for more information about SMT.

The SAT solver we have used in this evaluation is Lingeling version ala, a state-of-
the-art CDCL (Conflict-Driven Clause Learning) SAT solver that implements several
in/preprocessing techniques. All experiments were conducted on a 2Ghz Linux Quad-
Core AMD with the three following sets of benchmarks:

1.-MSU4 Suite. These benchmarks are intermediate problems generated by an imple-
mentation of the msu4 algorithm [12], which reduces a Max-SAT problem to a series of
SAT problems with cardinality constraints. The msu4 implementation was run of a va-
riety of problems (filter design, logic synthesis, minimum-size test pattern generation,
haplotype inference and maximum-quartet consistency) from the Partial Max-SAT divi-
sion of the Third Max-SAT evaluation6. The suite consists of about 14000 benchmarks,
each of which contains multiple �-cardinality constraints.

2.-Discrete-Event System Diagnosis Suite. The second set of benchmarks we have
used is the one introduced in [1]. These problems come from discrete-event system
(DES) diagnosis. As it happened with the Max-SAT problems, a single DES problem
produced a family of “SAT + cardinality constraints” problems. This way, out of the
roughly 600 DES problems, we obtained a set of around 6000 benchmarks, each of
which contained a single very large �-cardinality constraint.

3.-Tomography Suite. The last set of benchmarks we have used is the one introduced
in [5]. The idea is to first generate an N×N grid in which some cells are filled and some
others are not. The problem consists in finding out which are the filled cells using only
the information of how many filled cells there are in each row, column and diagonal. For
that purpose, variables xi j are used to indicate whether cell (i, j) is filled and several =-
cardinality constraints impose how many filled cells there are in each row, column and
diagonal. We generated 2600 benchmarks (100 instances for each size N = 15 . . .40).

Results are summarized in Table 1, which compares the Mixed (with λ = 5) en-
coding with the aforementioned encodings. The time limit was set to 600 seconds per
benchmark and we only considered benchmarks for which at least one of the meth-
ods took more than 5 seconds. There are three tables, one for each benchmark suite.
In each table, columns indicate in how many benchmarks the Mixed encoding exhibits
the corresponding speed-up or slow-down factor with respect to the method indicated
in each row. For example, in the table for the MSU4 suite, the first row indicates that in
43 benchmarks, Power-of-two Cardinality Networks timed out (TO) whereas our new
encoding did not. The columns next to it indicate that in 732 benchmarks the novel
encoding was at least 4 times faster, in 2957 between 2 and 4 times faster, etc.

6 See http://www.maxsat.udl.cat/08/index.php?disp=submitted-benchmarks
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Table 1. Comparison of SAT solver runtime. Figures show number of benchmarks in which
Mixed shows the corresponding speed-up/slow-down factor w.r.t. other methods.

Speed-up factor of Mixed Slow-down factor of Mixed
TO 4 2 1.5 TOT. 1.5 2 4 TO TOT.

MSU4 suite
Power-of-two CN 43 732 2957 1278 5010 1 23 13 11 48
Arbitrary-sized CN 10 149 544 726 1429 3 106 43 80 232
Adder 985 1207 1038 1250 4480 0 13 36 40 89
BDD 187 1139 1795 1292 4413 4 10 31 36 81
SMT 1143 323 102 53 1621 0 1417 211 63 1691

DES suite
Power-of-two CN 13 21 265 638 937 6 12 7 46 71
Arbitrary-sized CN 19 21 75 404 519 5 12 11 45 73
Adder 218 235 611 1283 2347 0 5 3 42 50
BDD 705 3944 759 51 5459 0 0 0 0 0
SMT 3003 1134 262 73 4472 0 15 19 15 49

Tomography suite
Power-of-two CN 118 388 408 175 1089 64 82 159 121 426
Arbitrary-sized CN 104 430 432 169 1135 67 81 158 11 417
Adder 492 591 371 143 1597 14 20 39 35 108
BDD 0 0 0 0 0 112 1367 184 51 1714
SMT 0 10 25 11 46 112 1250 155 68 1585

We can see from the table that in the MSU4 and DES suites, which contain bench-
marks coming from real-world applications, our new encoding in general outperforms
the other methods (except for some instances in which Mixed times out and the other
cardinality network-based encodings do not; also, in MSU4, SMT and Mixed obtain
comparable results). We want to remark that the gain comes both from using arbitrary-
sized networks as well as from combining them with direct encodings, as can be seen
from the second row of each table. In particular, this shows the negative impact of the
dummy variables of [3], which hinder the performance in spite of the unit propagation
of the SAT solver. Finally, in the Tomography suite, the BDD-based encoding and the
SMT system outperform all other methods, but among the rest of the approaches the
Mixed encoding exhibits the best performance. Altogether, the Mixed encoding is the
most robust technique according to the results of this evaluation.

8 Conclusion and Future Work

The contributions of this paper are: (i) an extension of the recursive cardinality networks
of [3] to arbitrary input and output sizes; (ii) a non-recursive construction of cardinality
networks that is competitive for small sizes; (iii) a parametric combination of these two
approaches for producing cardinality networks that not only improves on the size of the
encoding, but also yields significant speedups in SAT solver performance.

As regards future work, we plan to develop encoding techniques for cardinality con-
straints that do not process constraints one-at-a-time but simultaneously, in order to
exploit their similarities. We foresee that the flexibility of the approach presented here
with respect to the original construction in [3], will open the door to sharing the internal
networks among the cardinality constraints present in a SAT problem.
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19. Büttner, M., Rintanen, J.: Satisfiability planning with constraints on the number of actions.
In: Biundo, S., Myers, K.L., Rajan, K. (eds.) 15th International Conference on Automated
Planning and Scheduling, ICAPS 2005, pp. 292–299. AAAI (2005)

20. Warners, J.P.: A Linear-Time Transformation of Linear Inequalities into Conjunctive Normal
Form. Information Processing Letters 68(2), 63–69 (1998)



To Encode or to Propagate?

The Best Choice for Each Constraint in SAT

Ignasi Ab́ıo1, Robert Nieuwenhuis2,
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Abstract. Sophisticated compact SAT encodings exist for many types of
constraints. Alternatively, for instances with many (or large) constraints,
the SAT solver can also be extended with built-in propagators (the SAT
Modulo Theories approach, SMT). For example, given a cardinality
constraint x1 + . . . + xn ≤ k, as soon as k variables become true,
such a propagator can set the remaining variables to false, generating a
so-called explanation clause of the form x1 ∧ . . . ∧ xk → xi. But certain
“bottle-neck” constraints end up generating an exponential number of ex-
planations, equivalent to a naive SAT encoding, much worse than using
a compact encoding with auxiliary variables from the beginning. There-
fore, Ab́ıo and Stuckey proposed starting off with a full SMT approach and
partially encoding, on the fly, only certain “active” parts of constraints.
Here we build upon their work. Equipping our solvers with some additional
bookkeeping to monitor constraint activity has allowed us to shed light on
the effectiveness of SMT: many constraints generate very few, or few dif-
ferent, explanations. We also give strong experimental evidence showing
that it is typically unnecessary to consider partial encodings: it is compet-
itive to encode the few really active constraints entirely. This makes the
approach amenable to any kind of constraint, not just the ones for which
partial encodings are known.

1 Introduction

The “SAT revolution” [Var09] hasmade SAT solvers a very appealing tool for solv-
ing constraint satisfaction and optimization problems. Apart from their efficiency,
SAT tools are push-button technology, with a single fully automatic variable selec-
tion heuristic. For many types of constraints, sophisticated compact SAT encod-
ings exist. Such encodings usually introduce auxiliary variables, which allows one
to obtain succinct formulations. Auxiliary variables frequently also have a positive
impact on the size and reusability of the learned clauses (lemmas), and, in com-
bination with the possibility of deciding (splitting) on them, on the quality of the
search.

Building in Constraints: SAT Modulo Theories (SMT). On problem
instances with many (or very large) constraints, where encodings lead to huge
numbers of clauses and variables, it may be preferable to follow an alternative ap-
proach: in SMT [NOT06,BHvMW09], the SAT solver is extended with a built-in

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 97–106, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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propagator for each constraint, making it amenable to sophisticated constraint-
specific reasoning (as in Constraint Programming). For example, given a cardi-
nality constraint x1 + . . . + xn ≤ k, as soon as k of its variables become true,
such a propagator can set any other variable xj to false. If at some later point
this propagated literal xj takes part in a conflict, a so-called explanation clause
of the form xi1 ∧ . . . ∧ xik → xj is used, thus fully integrating such propagators
in the SAT solver’s conflict analysis and backjumping mechanisms. As usual in
SMT, here we consider that such explanations are (i) only produced when needed
during conflict analysis and (ii) are not learned (only the resulting lemma is).

TheRemarkable Effectiveness of SMT. SMT is remarkably effective. The in-
tuitive reason is that, while searching for a solution for a given problem instance,
some constraints only block the current solution candidate very few times, and
moreover they do this almost always in the same way. In this paper we shed some
more light on this intuitive idea. We perform experiments with a number of no-
tions of constraint activity in this sense, that is, the (recent or total) number of
(different or all) explanations that each constraint generates. Indeed, as we will
see: A) many constraints generate very few, or few different, explanations, and B)
generating only these explanations can be much more effective than dealing with
a full encoding of the constraint.

The Dark Side of SMT. Frequently, there are also certain “bottle-neck” con-
straints that end up generating an exponential number of explanations, equiva-
lent to a naive SAT encoding. A theoretical but illustrative example is:

Lemma 1. An SMT solver will generate an exponential number of explanations
when proving the unsatisfiability of the input problem consisting of only the two
cardinality constraints x1 + . . .+ xn ≤ n/2 and x1 + . . .+ xn > n/2.

This lemma holds because any SMT solver, when proving unsatisfiability,
generates a propositionally unsatisfiable set of clauses (the input ones plus the
lemmas), and if a single one of the all

� n
k+1

�
+
� n
n−k

�
explanations (where k = n/2)

has not been generated, say, the explanation x1∨ . . .∨xk+1, then the assignment
that sets x1, . . . , xk+1 to true and the remaining n − k − 1 variables to false is
a model. Such situations indeed happen in practice: for some constraints SMT
ends up generating a full or close to full encoding, which is moreover a very naive
exponential one, with no auxiliary variables. If a polynomial-size encoding for
such a constraint exists (possibly with auxiliary variables), using it right from
the beginning is a much better alternative. This is shown in the following figure:
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It gives the number of conflicts needed to prove unsatisfiability of the previous
example, varying n, with our Barcelogic solver in SMT mode and with a SAT
encoding based on Cardinality Networks. SMT exhibits exponential behavior
(note the logarithmic scale). The encoding-based version scales up much better;
in fact, a polynomial-size refutation for it exists, although it is not clear from
the figure whether the solver always finds it or not.

Getting the Best of Both. In their conflict-directed lazy decomposition (LD)
approach [AS12], Ab́ıo and Stuckey proposed starting off the solver using an
SMT approach for all constraints of the problem instance, and partially encod-
ing (or decomposing), on the fly, only the “active” parts of some constraints.
The decision of when and which auxiliary variables to introduce during the solv-
ing process is taken with a particular concrete encoding in mind: if, according
to the explanations that are being generated, it is observed that an auxiliary
variable of the encoding and its corresponding part of the encoding would have
been “active”, then it is added to the formula, together with all of the involved
clauses of the encoding. In this way, fully active constraints end up being com-
pletely encoded using the compact encoding with auxiliary variables, and less
active ones are handled by SMT. In [AS12] it is shown that this can be done
for the Cardinality/Sorting Network encoding of cardinality constraints, and, al-
though in a complicated way, for BDD-encodings of pseudo-Boolean constraints,
performing essentially always at least as well as the best of SMT and encoding.

Going Beyond. A shortcoming of [AS12] is that it is highly dependent on the
constraint to be dealt with and the chosen encoding, making it unlikely to be ap-
plicable to other more complex constraints, and in any case equipping the theory
solver with the required features is a highly non-trivial task. Here we propose
another technique that is much simpler. It does not depend on the concrete con-
straint under consideration and can in fact be applied to any class of constraints
that can be either encoded or built in. As mentioned previously, we have devised
and analyzed bookkeeping methods for different notions of constraint activity
that are cheap enough not to slow down solving appreciably. As a result, here
we show, giving strong experimental evidence, that it is typically unnecessary
to consider partial encodings: the few really active constraints can usually be
encoded –on the fly– entirely. This makes the approach amenable to any kind of
constraint, not just the ones for which partial encodings are known. Results on
problems containing cardinality and pseudo-Boolean constraints are compara-
ble, and frequently outperform all three of its competitors: SMT, encoding, and
the partial lazy decomposition method of [AS12].

2 SAT and SAT Encoding

Let X = {x1, x2, . . . xn} be a finite set of propositional variables. If x ∈ X then
x and x are literals. The negation of a literal l, written l, denotes x if l is x, and
x if l is x. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A (CNF) formula is
a conjunction of clauses.
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An assignment A is a set of literals such that {x, x} ⊆ A for no x. A literal l
is true in A if l ∈ A, is false if l ∈ A, and is undefined otherwise. A clause C is
true in A if at least one of its literals is true in A. A formula F is true in A if all
its clauses are true in A, and then A is a model of F . The satisfiability (SAT)
problem consists in, given a formula F , to decide if it has a model. Systems that
decide the SAT problem are called SAT solvers.

A function C : {0, 1}n → {0, 1} is called a constraint. Given a constraint C, a
(SAT) encoding for it is a formula F (possibly with auxiliary variables) that is eq-
uisatisfiable. An important class of constraints are cardinality constraints, which
state that at most (or at least, or exactly) k out of n variables can be true. Com-
mon encodings for it are based on networks of adders [BB03,uR05,AG09,Sin05],
or Sorting Networks [ES06,CZI10,ANORC09,ANORC11]. Cardinality constraints
are generalized by pseudo-Boolean constraints, of the form a1x1+· · ·+anxn # k,
where the ai and k are integer coefficients, and # belongs to {≤,≥,=}. Again,
several encodings exist, based on performing arithmetic [War98,BBR09,ES06] or
computing BDD’s [BBR06,ES06,ANO+12]. Most convenient encodings are the
ones for which the SAT solver’s unit propagation mechanism preserves domain-
consistency.

3 To Encode or Not to Encode?

In this section we will discuss situations where encoding a constraint is better
than using a propagator for it or vice versa, and how to detect them. The rea-
soning will consist of both theoretical insights and experimental evaluation. For
the latter, 5 benchmarks suites will be used, in which all benchmarks solvable
in less than 5 seconds by both methods have been removed.

1.-MSU4: 5729 problems generated in the execution of the msu4 algorithm
[MSP08] for Max-SAT. Each benchmark contains very few �-cardinality con-
straints.
2.-Discrete-Event System Diagnosis: 4526 discrete-event system (DES) di-
agnosis [AG09] problems. Each benchmark contains a single very large
�-cardinality constraint.
3.-Tomography: 2021 tomography problems introduced in [BB03]. Each prob-
lem contains many =-cardinality constraints.
4.-PB Evaluation: 669 benchmarks from the pseudo-Boolean Competition1

2011 (category DEC-SMALLINT-LIN), with multiple cardinality and pseudo-
Boolean constraints.
5.-RCPSP: 577 benchmarks coming from the PSP-Lib2. These are scheduling
problems with a fixed makespan. Several pseudo-Boolean constraints are present.

To start with, let us experimentally confirm that SMT and encoding-based
methods are complementary, and so a hybrid method getting the best of both
is worth pursuing. For this purpose, we implemented an SMT-based system

1 http://www.cril.univ-artois.fr/PB11/
2 http://webserver.wi.tum.de/psplib

http://www.cril.univ-artois.fr/PB11/
http://webserver.wi.tum.de/psplib
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and encodings into SAT. For cardinality constraints, we used the Cardinality
Networks encoding of [ANORC11], whereas for pseudo-Boolean constraints, the
BDD-based one of [ANO+12]. The reason for this choice is that, according to
the experimental results of [ANORC11,ANO+12], these two encodings are the
globally most robust ones in practice. However, any other choice would have been
possible, since the approach we will present is encoding-independent. A time limit
of 600 seconds was set per benchmark and, in order to have a fair comparison,
in both systems the same underlying SAT solver was used (Barcelogic). Results
can be seen in Table 1, where one can observe that the encoding performs very
well in the MSU4 and DES suite, and is significatively worse in the other three.3

Table 1. Comparison between encoding and SMT. Table on the left indicate the
percentage of benchmarks where each method outperforms (is at least 1.5 times faster
than) the other. On the right, the geometric mean (in seconds) of the instances solves
by both methods.

Geometric mean
Benchmark suite Encoding ≥ 1.5x faster SMT ≥ 1.5x faster Encoding SMT
MSU4 39.37% 15.39% 1.71 23.53
DES 92.06% 0.28% 2.3 56.02
Tomography 5.93% 86.49% 46.95 4.37
PB evaluation 7.02% 43.49% 25.53 3.79
RCPSP 0.69% 46.62% 106.65 5.8

Lemma 1 explains why SMT is worse in some suites, but not why it is better
in some others. The latter happens on benchmarks with many constraints. A
possible explanation could be that many of these constraints are not very active,
i.e. they produce very few, if any, explanations. If this is the case, SMT has an
advantage over an encoding: only active constraints will generate explanations,
whereas an encoding approach would also have to encode all low-activity con-
straints right from the beginning. This notion of constraint activity, counting
the number of times the propagator generates an explanation, is very similar to
earlier activity-based lemma deletion policies in SAT solvers [GN02]. In order to
evaluate how often this situation happens, we ran our SMT system computing
the number of explanations each constraint generates. Results can be seen in
Table 2, where we considered a constraint to have low activity if it generates less
than 100 (possibly repeated) explanations.

Each row contains the data for each suite: e.g., in 74.6% of the MSU4 bench-
marks between 0 and 5% of the constraints had low activity. In the PB evalu-
ation and in the RCPSP benchmarks, the number of low-activity constraints is
high and hence, this might explain why SMT behaves better than the encod-
ing on these suites. However, in the Tomography suite, constraints tend to be
very active, which refutes our conjecture of why SMT performs so well on these
benchmarks.

3 Note that rows do not add up to 100 % as benchmarks in which the two methods
are comparable are not shown.
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Table 2. Number of low-activity constraints in distinct benchmarks suites

Perc. of benchs with this perc. of low-act. constr.
Suite 0-5% 5-10% 10-20% 20-40% 40-60% 60-80% 80-95% 95-100%
MSU4 74.6 0 0 0 24.9 0.5 0 0
DES 99.9 0 0 0 0 0 0 0.1
Tomography 100 0 0 0 0 0 0 0
PB evaluation 54 21.6 20.5 0.6 1.1 0.6 1.7 20.5
RCPSP 0 0 2.2 13.2 51.1 31.3 2.2 0

What happens in the Tomography suite is that although constraints are very
active, the SMT solver does not end up generating the whole naive encoding
because many explanations are repeated. Hence, a sophisticated encoding would
probably generate many more clauses, as the whole constraint would be decom-
posed, even irrelevant parts.

To confirm this hypothesis we ran our SMT solver counting repeated expla-
nations. Results can be seen in Table 3. Each row4 corresponds to a different
suite: e.g., the 100 in the third row indicates that all benchmarks in the Tomog-
raphy suite had at least half of its constraints producing between 80 and 95% of
repeated explanations. In general, if a constraint produces many repeated expla-
nations, it is unlikely that it might end up generating its whole naive encoding.
This explains why SMT has good results in this suite, as well as in PB evaluation
and RCPSP. Hence, the number of repeated explanations seems to be a robust
indicator of whether we should encode a constraint or use a propagator.

Table 3. The percentage of benchmark instances where more than half the constraints
have a given percentage of repeated explanations

Benchs with >50% of the ctrs. w./ this perc. of rep. expl.
Suite 0-5% 5-10% 10-20% 20-40% 40-60% 60-80% 80-95% 95-100%
MSU4 53.8 9.1 11.6 8.5 2 0.8 0.2 0
DES 21.4 29.8 35.2 13.6 0 0 0 0
Tomography 0 0 0 0 0 0 100 0
PB evaluation 6.2 0 0 0 0 0.6 14.2 51.7
RCPSP 0 0 0 0 0 5.5 52.7 1.1

4 Implementation and Experimental Evaluation

Taking into account Section 3, we implemented a system that processes SAT
problems augmented with cardinality and pseudo-Boolean constraints. Although
our approach is easily applicable much more generally, here we focus on these
two types of constraints in order to be able to compare with [AS12]. Our aim
is to show that a very simple approach gets the best of SMT and encoding
methods. The starting point for our implementation is an SMT solver equipped
with the ability of encoding cardinality constraints via Cardinality Networks and
pseudo-Boolean constraints via BDDs.

In order to know which constraints to encode we need to keep track of the
percentage of different explanations that the constraints generate. To do this we

4 Note that the percentages in each row do not need to add 100.
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attach to each constraint all the different explanations it produces. When an
explanation is generated, we traverse the list of previous explanations, check-
ing if it already exists. To speed up comparison, we first compare the size and
only if they are equal, we compare the explanations, which are sorted to make
comparison faster. This would be very expensive if constraints with many differ-
ent explanations existed, but those constraints end up being encoded and after
that do not cause any further bookkeeping overhead. Hence, more complex data
structures would not help here. In our implementation, we only collect informa-
tion during the first 2 minutes, since, according to our experiments, after that
the information stabilizes.

Another important source of information to consider is how large the ad-hoc
encoding of each constraint would be. If the number of generated explanations
becomes close to the number of clauses the encoding requires, according to our
experiments then it is advantageous to encode the constraint. Besides, if a con-
straint is producing many different explanations, we found that it is likely to
end up generating the full (or a large part of the) naive encoding. Discovering
and avoiding this situation is highly beneficial.

We also experimented with different ways of counting the number of recent
occurrences of a given explanation in conflicts, without any significant findings.

Finally, following all previous observations, we encode a constraint if at least
one of two conditions holds: (i) the number of different explanations is more than
half the number of clauses of the compact, sophisticated encoding, (ii) more than
70% of the explanations are new and more than 5000 explanations have already
been generated.

We compared the resulting system (New in the tables) with an SMT system,
another one which encodes all constraints from the start (Enc.) and Lazy De-
composition [AS12] (LD). Results can be seen in Table 4. Each cell contains the

Table 4. Comparison among different methods on all benchmarks suites

MSU4
<10s <30s <60s <120s <300s <600s

Enc. 5374 5525 5578 5621 5659 5677
SMT 4322 4530 4603 4667 4737 4767
LD 5196 5414 5528 5598 5655 5674
New 5222 5479 5585 5636 5666 5679

DES
<10s <30s <60s <120s <300s <600s

Enc. 2521 3333 3692 3903 4102 4228
SMT 362 654 850 1023 1256 1452
LD 570 1230 1761 2525 3558 4019
New 836 2156 3293 3800 4053 4166

Tomography
<10s <30s <60s <120s <300s <600s

Enc. 773 1112 1314 1501 1759 1932
SMT 1457 1748 1858 1962 2014 2021
LD 1027 1239 1399 1561 1763 1918
New 1556 1818 1935 1971 2012 2021

PB evaluation
<10s <30s <60s <120s <300s <600s

Enc. 268 337 358 376 399 414
SMT 364 377 386 392 409 414
LD 352 371 379 388 403 416
New 269 341 360 381 404 415

RCPSP
<10s <30s <60s <120s <300s <600s

Enc. 7 22 52 91 139 175
SMT 132 179 206 224 249 272
LD 114 160 178 189 216 228
New 111 169 202 225 249 271
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number of problems that could be solved in less than the number of seconds of
the corresponding column.

The first important conclusion is that we can obtain comparable, in some
cases better, results than the LD method. This is worth mentioning since our
approach is much simpler to implement and does not pose any requirement on
the encodings to be used. Secondly, our approach always solves a very similar
number of problems to the best option for each suite. Only in the DES suite, there
is some difference that can be explained by the fact that SMT has extraordinarily
poor performance on those benchmarks. Thus, just running the system in SMT
mode for few seconds before encoding the constraints, as our new system does
on these instances, has a strong negative impact because the many explanations
generated in this early stage hinder the search later on. This could be mitigated
by using more aggressive lemma deletion policies.

5 Conclusions and Other Related Work

This work is part of a project with the aim of deepening our understanding of
what choices between SMT and encodings are optimal in practical problems.
Here we have seen that the use of adaptive strategies is clearly advantageous.
Moreover, we have given a simpler approach for which it becomes possible to
handle many other types of constraints, as we plan to investigate next.

Another possibility for future work concerns the version of SMT in which
explanation clauses are generated and learned immediately when a constraint
propagates, as in the initial version of Lazy Clause Generation [OSC07], which
worked remarkably well on resource-constrained project scheduling problems
(RCPSPs). Indeed, we have now discovered that in these problems the number
of different explanations is specially low. It may turn out to be advantageous to
handle these constraints with clauses, which are prioritized in the solver with
respect to constraint propagators.

Related Work. Apart from [AS12], another related proposal is [MP11]: to solve
a propositional formula F plus additional pseudo-Boolean constraints, the SAT
solver first finds a model M for F (“unsat” if there is none); then a few of the
constraints that are false in M are picked (“sat” if there is none), simplified
using the unit clauses found so far, encoded, and added to F ; and the process
is iterated. A drawback of this method is that it may fully encode low-activity
constraints just because they happen to be false in M , whereas we really monitor
activity. Also, we only need one run of the solver. Finally, it is clear that any
method that encodes on the fly (including ours) can simplify constraints with
the unit clauses available at that point.
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Abstract. Constraint modelling is widely recognised as a key bottleneck in
applying constraint solving to a problem of interest. The CONJURE automated
constraint modelling system addresses this problem by automatically refining
constraint models from problem specifications written in the ESSENCE language.
ESSENCE provides familiar mathematical concepts like sets, functions and re-
lations nested to any depth. To date, CONJURE has been able to produce a set
of alternative model kernels (i.e. without advanced features such as symmetry
breaking or implied constraints) for a given specification. The first contribution
of this paper is a method by which CONJURE can break symmetry in a model as
it is introduced by the modelling process. This works at the problem class level,
rather than just individual instances, and does not require an expensive detection
step after the model has been formulated. This allows CONJURE to produce a
higher quality set of models. A further limitation of CONJURE has been the lack
of a mechanism to select among the models it produces. The second contribution
of this paper is to present two such mechanisms, allowing effective models to be
chosen automatically.

1 Introduction and Background

For constraint programming to achieve its potential widespread industrial and academic
use, reducing the modelling bottleneck [29] is of central importance. This is the problem
of formulating a problem of interest as a constraint model suitable for input to a con-
straint solver. There are typically many possible models for a given problem, and the
model chosen can dramatically affect the efficiency of constraint solving. This presents
a serious obstacle for non-expert users, who have difficulty in formulating a good (or
even correct) model from among the many possible alternatives. Therefore, automat-
ing constraint modelling is a desirable goal. Numerous approaches have been taken to
automate aspects of constraint modelling, including: case-based reasoning [23]; the-
orem proving [6]; automated transformation of medium-level solver-independent con-
straint models [27, 28, 30, 33]; and refinement of abstract constraint specifications [9]
in languages such as ESRA [8], ESSENCE [10], F [18] or Zinc [21, 25]. Some sys-
tems [2–4, 7, 22] aim to learn constraint models from positive or negative examples.

This paper focuses on the refinement-based approach, in which a user writes ab-
stract constraint specifications to describe a problem at a higher level than that where

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 107–116, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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modelling decisions are normally made. Abstract constraint specification languages,
e.g. ESSENCE and Zinc, support abstract variables with types for common mathematical
structures such as sets, multisets, functions, and relations, as well as nested types, such
as set of sets and multiset of functions. Problems can often be specified very concisely
in this way. For example, the Social Golfers Problem [17], which is to find a set of
partitions of golfers subject to some constraints, can be specified directly (see Fig. 1)
without the need to model the sets or partitions as matrices of Integer variables.

We use ESSENCE in this paper [10]. An ESSENCE specification, such as that in
Fig. 1, identifies: the input parameters of the problem class (given), whose values
define an instance; the combinatorial objects to be found (find); and the constraints
the objects must satisfy (such that). An objective function may also be specified
(min/maximising) and identifiers may be declared (letting). Abstract constraint
specifications must be refined into concrete constraint models for existing constraint
solvers. Our CONJURE system1 [1] uses refinement rules to convert an ESSENCE spe-
cification into the solver-independent constraint modelling language ESSENCE′ [30].
From ESSENCE′ we use SAVILE ROW2 to translate the model into input for a particular
constraint solver while performing solver-specific model optimisations.

CONJURE has been able to produce the kernels of constraint models, without ad-
vanced features like symmetry breaking often used by experts to improve model per-
formance. The first contribution of this paper is to automate the generation of symmetry-
breaking constraints. Much symmetry enters constraint models through the process of
constraint modelling [11]. CONJURE exploits this by breaking symmetry as it enters
the model. This obviates the need for an expensive symmetry detection step following
model formulation, as used by other approaches [24,26]. The added symmetry breaking
constraints hold for the entire parameterised problem class — not just a single problem
instance — without the need to identify graph automorphisms.

The second contribution of this paper is to automate model selection. Previously,
CONJURE has been able to produce a (typically large) set of alternative models through
the application of alternative refinement rules, but not to select among these models.
CONJURE can now automatically select the best models for a problem class.

2 Automated Symmetry Breaking

Symmetry enters constraint models in two ways. Some problems have inherent symmet-
ries, which if not broken get reflected in the model. Other symmetries are introduced
by the modelling process; in this case a single solution to the problem corresponds to
multiple assignments to the variables of the model. We call these model symmetries.
As an example, consider the Social Golfers Problem (Fig. 1), which requires finding a
set of w partitions. If this set is modelled as an array indexed by 1..w then all w! per-
mutations of the array correspond to the same set. This symmetry is introduced when
an arbitrary decision is made about which set element goes in which cell of the array.
Similarly, if the g ∗sGolfers are modelled by the Integers 1..g ∗s then g ∗s symmetries
are introduced because of the arbitrary decision of which golfer corresponds to which

1 https://bitbucket.org/stacs_cp/conjure-public/
2 http://savilerow.cs.st-andrews.ac.uk
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given w, g, s : int(1..)
letting Golfers be new type of size g * s
find sched : set (size w) of partition (regular, size g)

from Golfers
such that
forAll week1, week2 in sched, week1 != week2 .
forAll group1 in parts(week1) .

forAll group2 in parts(week2) .
|group1 intersect group2| < 2

Fig. 1. ESSENCE specification of the Social Golfers Problem

Integer. The problem-specification language ESSENCE has been designed such that, un-
like other modelling languages, problems can be specified without having to make the
arbitrary decisions that introduce model symmetries.

Frisch et al. [11] show how each modelling rule of CONJURE can be extended to gen-
erate a description of the symmetries it introduces and how the generated descriptions
can be composed to form a description of the symmetries introduced into the model. The
intention was that this could then be used to generate symmetry-breaking constraints,
though these descriptions were never fully developed into a method for automatically
generating symmetry-breaking constraints.

The current version of CONJURE takes a different approach to generating symmetry
breaking constraints: every rule that introduces symmetries also generates a constraint
to break those symmetries. CONJURE has 28 such rules. There is only one rule which
does not break all symmetries it introduces – the rule that refines an unnamed type, such
as Golfers , to a range of Integers. This is because each unnamed type can be used in
multiple places, and the symmetry of an unnamed type must be broken in a globally
consistent way. All the other symmetries we introduce are independent, so we can add
constraints which immediately break each introduced group of symmetries in a valid
and complete manner. This leads to globally valid and complete symmetry breaking.
We plan to handle unnamed types in the future.

To illustrate how CONJURE rules can be extended to generate symmetry-breaking
constraints, consider the rule given below to build the explicit representation of a set.

Representation: Set~Explicit~Sym
Matches: set (size &n, ..) of &tau
Produces: refn : matrix indexed by [int(1..&n)] of &tau
Constraint: allDiff(refn)

This rule transforms a set of a size n into a matrix with n index values, where each
value in the matrix is a member of the set. A constraint is imposed to ensure that the cells
of the matrix are all different. For any tau other than Integers or Booleans, CONJURE

has to further decompose the allDiff constraint into O(n2) not-equal constraints.
Now consider extending this rule to generate a constraint to break the symmetry

it introduces, that the index values of the matrix can be permuted in any way. The
simplest way to break this symmetry is to impose a total order on the elements of the
matrix. As the elements of the matrix can be any type tau we introduce two new op-
erators, ≤̇ and <̇. These operators provide a total ordering (and a strict version of the
same total ordering) for all types in CONJURE. These orderings are not intended to be
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“natural” and are not available to ESSENCE users. They are used only in refinement
rules to generate effective symmetry-breaking constraints. Using these orderings, the
Set~Explicit~Sym rule is modified to a rule that breaks all the symmetries it in-
troduces:
Representation: Set~Explicit
Matches: set (size &n, ..) of &tau
Produces: refn : matrix indexed by [int(1..&n)] of &tau
Constraint: forAll i : int(1..&n-1) . refn[i] .< refn[i+1]

Rather than introducing a chain of ≤̇ constraints, this rule exploits the fact that the
elements of the set are required to be all different and strengthens the ordering to <̇
constraint. This replaces O(n2) not-equal constraints with only O(n) <̇ constraints.

Other refinement rules can exploit the fact that symmetry breaking is performed im-
mediately to produce more efficient refinements. Consider refining the constraintS = T
by representing the sets S and T as matrices S′ and T ′ with the Set~Explicit~Sym
representation. To find if S′ and T ′ represent the same set we must check if each ele-
ment of S′ is equal to any element of T ′ and whether the two sets have the same car-
dinality, since the order of elements in the matrices can be different. However, when the
Set~Explicit representation is used we can refine S = T to the constraint S′ = T ′,
because each assignment of S is represented by exactly one assignment to S′, which
satisfies the symmetry breaking constraint. This gives a much smaller constraint, which
propagates much more efficiently.

We illustrate the new approach to symmetry-breaking by showing how the SGP spe-
cification (Fig. 1) is refined into a model with symmetry-breaking constraints. We con-
sider generating only one model. We will consider only how the decision variables are
refined, ignoring all constraints other than symmetry-breaking constraints. First, CON-
JURE replaces type of size g*s with int(1..g*s):
given w, g, s : int(1..)
find sched’ : set (size w) of partition (regular, size g) from int(1..g*s)

After this, CONJURE refines the type of the decision variable by rewriting the outer
set constructor using the Set~Explicit rule given in the previous section. This
generates the following refinement.
given w, g, s : int(1..)
find sched’ : matrix indexed by [int(1..w)] of

partition (regular, size g) from int(1..g*s)
such that forAll i : int(1..w-1). sched’[i] .< sched’[i+1]

This refinement step shows all of the important features of our method. CONJURE

has introduced a new, compact constraint which both breaks symmetry, and ensures all
members of the matrix are distinct. Next, it transforms the partition into a set of sets:
given w, g, s : int(1..)
find sched’’ : matrix indexed by [int(1..w)] of

set (size g) of set (size (g*s)/g) of int(1..g*s)
such that forAll i : int(1..w-1). sched’’[i] .< sched’’[i+1],

forAll j : int(1..w).
forAll k1,k2 in sched’’[j], k1 != k2. | k1 intersect k2 | = 0

This refinement does not appear to have changed the symmetry-breaking constraint
but it has in fact been refined from a partition to a set of sets. CONJURE has also added a
constraint to impose that the cells of the partition are distinct. This structural constraint
constrains the sets to be disjoint. CONJURE now applies Set~Explicit again.
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given w, g, s : int(1..)
find sched’’’ : matrix indexed by [int(1..w), int(1..g)]

of set (size (g*s)/g) of int(1..g*s)
such that forAll i : int(1..w-1). sched’’’[i,..] .< sched’’’[i+1,..],

forAll j : int(1..w). forAll k : int(1..g-1).
sched’’’[j,k] .< sched’’’[j,k+1]

The first constraint here is the refined version of the already existing symmetry-
breaking constraint. Once again by design the <̇ constraint maps naturally to the mat-
rices used in refinement. The second constraint is the symmetry breaking on matrix of
sets, now transformed into a matrix of matrices. CONJURE uses the same refinement
rule, even though we are now refining a set inside a matrix. CONJURE automatically
deals with the array indices and inserts the outer forAll j : int(1..w) in a
process called lifting. We finally apply Set~Explicit once more and change the <̇
and ≤̇ constraints to their final form – lexicographic ordering constraints on matrices
and ordering on Integers.

given w, g, s : int(1..)
find sched’’’ : matrix indexed by [int(1..w), int(1..g),int(1..(g*s/g))]

of int(1..g*s)
such that forAll i : int(1..w-1). sched’’’[i,..,..] <lex sched’’’[i+1,..,..],

forAll j : int(1..w). forAll k : int(1..(g*s)/g-1).
sched’’’[j,k,..] <lex sched’’’[j,k+1,..]

forAll j : int(1..w). forAll k : int(1..g)
forAll l : int(1..(g*s)/g-1). sched’’’[j,k,l] < sched’’’[j,k,l+1]

If CONJURE had not the broken symmetries immediately, but instead used the
Set~Explicit~Sym representation, the constraints requiring each partition in the
outermost set to be different would now be very complex. This shows the benefit of
breaking symmetries as soon as they are introduced, rather than delaying and using a
general technique for symmetry breaking after model generation is finished.

3 Automated Model Selection

Our previous work [1] shows that CONJURE can successfully refine a set of model
kernels (i.e. excluding symmetry breaking and implied constraints) from a given spe-
cification, and that this set contains the kernels of effective models. However, without
symmetry breaking the performance of these model kernels is poor since refinement of
abstract types naturally introduces a great deal of symmetry. Therefore, the symmetry
breaking approach described above is a necessary step in producing practically useful
models. Having thus enhanced CONJURE the natural next step is to provide a means to
select an effective model automatically. We propose and evaluate two such approaches:
a lightweight heuristic based purely on an analysis of model structure and an approach
that uses a set of training instances to perform model selection by means of a race.

3.1 The Compact Heuristic

If time is limited it is sensible to provide a rapid model selection method, avoiding both
generating all models and training using instance data. Our solution is a heuristic em-
ployed during refinement to commit greedily to promising modelling choices at each
point where an abstract type or a constraint expression may be refined in multiple ways.
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It is named Compact since it favours transformations that produce smaller expressions.
For an abstract type, we define an ordering as follows: concrete domains (such as bool,
matrix) are smaller than abstract domains; within concrete domains, bool is smal-
ler than int and int is smaller than matrix. These rules are applied recursively, so
that a one-dimensional matrix of int is smaller than any two-dimensional matrix. Ab-
stract type constructors have the ordering set < mset < function < relation

< partition, which is also applied recursively. Compact will select the smallest do-
main according to this order. For a constraint expression (and the objective), Compact
chooses the refinement with the most shallow abstract syntax tree.

3.2 Racing

Our second selection method takes as input a set of instances representative of the dis-
tribution of instances a user wishes to solve. Our measure of quality of a model with
respect to an instance is the time taken for SAVILE ROW to instantiate the model and
translate for input to the MINION constraint solver [13] plus the time taken for MINION

to solve the instance. We include the time taken by SAVILE ROW since it adds desirable
instance-specific optimisations to the model, such as common subexpression elimina-
tion [14]. Given a parameter ρ ≥ 1, a model is ρ-dominated on an instance by another
model if the measure for the second model is at least ρ times faster than the first.

We iterate over the set of instances and conduct a race [5] for each. The set of models
entered into the race for instance i are the winners of the race for instance i − 1, with
all models entered in the first race. The ‘winners’ of an instance race are the models
not ρ-dominated by any other model. After we have iterated over all of the supplied in-
stances, the subset of models remaining is selected for the specified class. This naturally
suggests the notion of a model portfolio, analogous to algorithm portfolios [16, 19].

A set of instances is ρ-fractured if every model is ρ-dominated on at least one in-
stance. If the supplied set of instances is fractured, races run with different instance
orderings can produce disjoint sets of models. We observe this experimentally in Sec-
tion 3.4 and discuss its consequences.

3.3 Case Study: Equidistant Frequency Permutation Arrays

We illustrate the model selection process using the Equidistant Frequency Permutation
Array (EFPA) problem [20]: ‘The problem has parameters v, q, λ, d and it is to find a
set E of size v, of sequences of length qλ, such that each sequence contains λ of each
symbol in the set {1, . . . , q}. For each pair of sequences in E, the pair are Hamming
distance d apart (i.e. there are d places where the sequences disagree)’.

This problem is specified in ESSENCE (see Fig. 2) with a single abstract decision
variable E and two constraints. The first ensures that each codeword must contain each
symbol λ times, the second that each pair of codewords must differ in exactly d places.
CONJURE refines this specification into 45 models. The type of E is a fixed size set of
total functions. The outer set is always modelled using the explicit representation (as a
vector of the inner type) and the symmetry is broken by constraining the elements of
the vector to be in increasing order according to <̇. The total function is refined in two
ways: to a vector, or to a relation. In the latter case the relation is refined in four different
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given d, lambda, q, v : int(1..)
letting Character be domain int(1..q)
letting Index be domain int(1..lambda * q)
letting String be domain function (total)

Index --> Character
find E : set (size v) of String
such that forAll s in E . forAll a : Character .

(sum i : Index . toInt(s(i) = a)) = lambda,
forAll s1, s2 in E, s1 != s2 .

(sum i : Index . toInt(s1(i) != s2(i))) = d

Fig. 2. ESSENCE specification of the EFPA Problem

ways, giving five representations of E in total. Subsets of these five are channelled and
constraints are stated on different representations to create 45 models.

For EFPA we use 24 instances from Huczynska et al. [20], and 12 easier instances
that were created by taking the satisfiable instances from Huczynska et al. and redu-
cing v by one. Identifying instances by the tuple 〈d, λ, q, v〉, the first instance we race
is 〈3, 7, 7, 5〉. This instance is exceptionally discriminating. The number of winners is
4, so we have eliminated 41 models at this stage. We will see in Section 3.4 that not all
problems converge so quickly. Second, the remaining models are raced on the instance
〈3, 8, 8, 6〉. This does not eliminate any models, although they are ranked in a different
order. This process is continued for another 30 instances that eliminate no models. In-
stance 〈6, 4, 3, 12〉 eliminates one model, leaving three. Finally, the last three instances
eliminate no more models so the final winning set has three models.

All of the final set of models contain the vector representation of the total function.
Two of the models refine the function to a relation, then to a two-dimensional matrix
of Boolean variables (which is channelled with the vector). These two models differ in
one constraint. The relative similarity of these three models shows that on this problem
there is a clear cluster of similar winners among a more diverse set of models.

For this problem, Compact generates the model which uses the vector representation
for the function variable without any channelling. Although it uses far less information
and is very quick in comparison to racing, it manages to find one of the ‘winner’ models.

3.4 Experimental Evaluation

In this section, we present the results of model selection for the five problem classes
presented in Table 1: EFPA [20], Social Golfers Problem (SGP) [15], Progressive Party
Problem (PPP) [32], the SONET network design problem [31], and Error Correcting
Codes (ECC) [12]. Although not generally feasible in practice, for the purpose of this
experiment we ran a race for every model on every instance with no pruning of models
between races. We set ρ = 2 and a timeout of one hour. Furthermore, a model that solves
an instance within ten seconds is considered to be non-dominated on that instance. The
results presented in the Winner set size column of Table 1 show the number of non-
dominated models in each case. For the second problem class, SGP, the set of instances
is fractured; every winner set contains either model 2 or model 3 but not both.

Now consider the performance of the racing scheme. Notice that the winner set of
a race must contain all the non-dominated models. It may contain further models that
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Table 1. Experimental results

Inputs Steps to convergence Results

Problem Models Instances Mean Std. Dev. Winner set size Compact

EFPA 45 36 9.64 4.65 1 Yes
SGP 4 37 5.14 1.78 Fractured Yes
PPP 81 11 5.67 1.47 4 No
ECC 108 26 2.75 0.43 4 No
SONET 27 47 4.30 1.93 1 Yes

were not eliminated because of the eager pruning policy. Such models are dominated
on some instance by models that were eliminated earlier in the racing process. The
number and identity of these extra models is dependent on the order that the instances
are considered. Also dependent on this order is the rate of convergence.

In order to test the importance of instance order, we ran 50 races with randomly-
selected instance orders. The racing scheme does not know if the problem instances
are fractured, though in some cases it may detect that it is. We make the distinction
solely for the sake of this study. For the four non-fractured problem classes, all 50
sample races yielded a winner set comprising exactly the non-dominated models. In
contrast, the SGP does exhibit fracturing. On the 50 runs every winner set is a singleton
comprising either model 1, 2 or 3. The mean and standard deviation of the number of
instances raced before reaching the final model set are given in Table 1 under the Steps
to convergence heading.

Table 1 also presents whether Compact manages to generate a model that is in one
of the winner sets found by racing. It finds a winner model for two out of four non-
fractured problem classes. Moreover, it finds a winner model for one of the subdivisions
in the fractured class, SGP. This is a promising result, considering that Compact works
with far less information than racing and is very cheap.

4 Conclusions

This paper has demonstrated significant progress towards the goal of automated con-
straint modelling. We have shown how symmetry can be broken cheaply and automat-
ically as it enters the model through the modelling process, increasing the quality of
the models that CONJURE can produce beyond model kernels. Furthermore, we have
shown how CONJURE can select effective models using a racing process and the Com-
pact heuristic.
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Abstract. Weighted Partial MaxSAT (WPMS) is an optimization
variant of the Satisfiability (SAT) problem. Several combinatorial
optimization problems can be translated into WPMS. In this paper
we extend the state-of-the-art WPM2 algorithm by adding several
improvements, and implement it on top of an SMT solver. In particular,
we show that by focusing search on solving to optimality subformulas
of the original WPMS instance we increase the efficiency of WPM2.
From the experimental evaluation we conducted on the PMS and WPMS
instances at the 2012 MaxSAT Evaluation, we can conclude that the new
approach is both the best performing for industrial instances, and for the
union of industrial and crafted instances.

1 Introduction

In the last decade Satisfiability (SAT) solvers have progressed dramatically in
performance due to new algorithms, such as, conflict directed clause learning [36],
and better implementation techniques. Thanks to these advances, nowadays the
best SAT solvers can tackle hard decision problems. Our aim is to push this
technology forward to deal with optimization problems.

The Maximum Satisfiability (MaxSAT) problem is the optimization version
of SAT. The idea behind this formalism is that sometimes not all constraints
of a problem can be satisfied, and we try to satisfy the maximum number of
them. The MaxSAT problem can be further generalized to the Weighted Partial
MaxSAT (WPMS) problem.

In the MaxSAT community, we find two main classes of algorithms: branch
and bound [17, 22, 24, 26, 27] and SAT-based [2, 14, 19–21, 31–33]. The latter
clearly dominate on industrial and some crafted instances, as we can see in the
results of the last 2012 MaxSAT Evaluation. SAT-based MaxSAT algorithms
basically reformulate a MaxSAT instance into a sequence of SAT instances. By
solving these SAT instances the MaxSAT problem can be solved [6].
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In this paper we revisit the SAT-based MaxSAT algorithm WPM2 [5]
which belongs to a family of algorithms that exploit the information from
the unsatisfiable cores the underlying SAT solver provides. This algorithm is
the natural extension to the weighted case of the Partial MaxSAT algorithm
PM2 [3, 4]. In our experimental investigation the original WPM2 algorithm
solves 796 out of 1474 from the whole benchmark of PMS and WPMS industrial
and crafted instances at the 2012 MaxSAT Evaluation. We have extended
WPM2 with several complementary improvements. First of all, we apply the
stratification approach described in [2], what results in solving 74 additional
instances. Secondly, we introduce a new criteria to decide when soft clauses can
be hardened, that provides 66 additional solved instances. The hardening of soft
clauses in MaxSAT SAT-based solvers has been previously studied in [2, 33].
Finally, our most effective contribution is to introduce a new strategy that
focuses search on solving to optimality subformulas of the original MaxSAT
instance. Actually, the new WPM2 algorithm is parametric on the approach
we use to optimize these subformulas. This allows to combine the strength
of exploiting the information extracted from unsatisfiable cores and other
optimization approaches. By solving these smaller optimization problems we
get the most significant boost in our new WPM2 algorithm. In particular,
we experiment with three approaches: (i) refine the lower bound on these
subformulas with the subsetsum function [5, 13], (ii) refine the upper bound
with the strategy applied in minisat+ [15], SAT4J [10], qmaxsat [21] or
ShinMaxSat [20], and (iii) a binary search scheme where the lower bound and
upper bound are refined as in the previous approaches. The best performing
approach in our experimental analysis is the second one and it allows to solve up
to 238 additional instances. As a summary, the overall speed-up we achieved on
the original WPM2 solver is about 378 additional solved instances, a 47% more.

As we mentioned, SAT-based MaxSAT algorithms reformulate a MaxSAT
instances into a sequence of SAT instances. Obviously, it is important to use
an efficient SAT solver. Also, most SAT-based MaxSAT algorithms require
the addition of Pseudo-Boolean (PB) linear constraints as a result of the
reformulation process. These PB constraints are used to bound the cost of
the optimal assignment. Currently, in most state-of-the-art SAT-based MaxSAT
solvers, PB constraints are translated into SAT. However, there is no known SAT
encoding which can guarantee the original propagation power of the constraint,
i.e, what we call arc-consistency, while keeping the translation low in size. The
best approach so far, has a cubic complexity [8]. This can be a bottleneck for
WPM2 [5] and also for other algorithms such as, BINCD [19] or SAT4J [10].

In order to treat PB constraints with specialized inference mechanisms and a
moderate cost in size, while preserving the strength of SAT techniques for the rest
of the formula, we use the Satisfiability Modulo Theories (SMT) technology [35].
Related work in this sense can be found in [34]. Also, in [1] a Weighted Constraint
Satisfaction Problems (WCSP) solver implementing the original WPM1 [4]
algorithm is presented.
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An SMT instance is a generalization of a Boolean formula in which
some propositional variables have been replaced by predicates with predefined
interpretations from background theories such as, e.g., linear integer arithmetic.
Most modern SMT solvers integrate a SAT solver with decision procedures
(theory solvers) for sets of literals belonging to each theory. This way, we can
hopefully get the best of both worlds: in particular, the efficiency of the SAT
solver for the Boolean reasoning and the efficiency of special-purpose algorithms
for the theory reasoning.

Another reasonable choice would be to use a PB solver, which can be
seen as a particular case of an SMT solver specialized on the theory of PB
constraints [28, 29]. However, if we also want to solve problems modeled with
richer formalisms like WCSP, the SMT approach seems a better choice since we
can take advantage of a wide range of theories [1].

In this work, we implemented both the last version of the WPM1 algorithm [2]
and the revisited version of the WPM2 algorithm on top the of the SMT solver
Yices. Then, we performed an extensive experimental evaluation comparing them
with the best two solvers for PMS and WPMS categories at the 2012 MaxSAT
Evaluation and with three additional solvers that did not take part but have
been reported to exhibit good performance: bincd2, which is the new version of
the BINCD algorithm [19] described in [33], with the best configuration reported
by authors,maxhs from [14], which consists in an hybrid SAT and Integer Linear
Programming (ILP) approach, and ilp which performs a translation of WPMS
into ILP solved with IBM-CPLEX studio124 [7].

We observe that the implementation on SMT of our new WPM2 algorithm
with the second approach for optimizing the subformulas is the best performing
solver for both PMS and WPMS industrial instances. We also observe that it
is the best performing for the union of PMS and WPMS industrial and crafted
instances, what shows this is a robust approach. These results make us conjecture
that by improving the interaction of our new WPM2 algorithm with diverse
optimization techniques applied on the subformulas we can get additional speed-
ups.

This paper proceeds as follows. Section 2 presents some preliminary concepts.
Section 3 describes WPM2 [5] and the new improvements. Section 4 describes
the SMT problem and discuss some implementation details of the SMT-based
MaxSAT algorithms. Section 5 presents the experimental evaluation. Finally,
Section 6 shows the conclusions and the future work.

2 Preliminaries

A literal is either a Boolean variable x or its negation x. A clause C is a
disjunction of literals. A weighted clause is a pair (C,w), where C is a clause
and w is a natural number or infinity, indicating the penalty for falsifying the
clause C. A Weighted Partial MaxSAT formula is a multiset of weighted clauses
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ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
where the first m clauses are soft and the last m′ clauses are hard. The set of
variables occurring in a formula ϕ is noted as var(ϕ).

A (total) truth assignment for a formula ϕ is a function I : var(ϕ) → {0, 1},
that can be extended to literals, clauses and SAT formulas. For MaxSAT
formulas is defined as I({(C1, w1), . . . , (Cm, wm)}) =

∑m
i=1 wi (1 − I(Ci)). The

optimal cost of a formula is cost(ϕ) = min{I(ϕ) | I : var(ϕ) → {0, 1}} and an
optimal assignment is an assignment I such that I(ϕ) = cost(ϕ).

The Weighted Partial MaxSAT problem for a Weighted Partial MaxSAT
formula ϕ is the problem of finding an optimal assignment.

3 WPM2 Algorithm

The WPM2 algorithm [5] is described in Algorithm 1. The fragments in gray
(lines 4, 10, 11, 13- 18 and 20) correspond to the new improvements we have
incorporated.

In the WPM2 algorithm, we extend soft clauses Ci with a unique fresh
auxiliary blocking variable bi obtaining ϕw = {Ci ∨ bi}i=1...m ∪ {Cm+i}i=1...m′ .
Notice that bi will be set to true by a SAT solver on ϕw if Ci is false. We
also work with a set AL of at-least PB constraints of the form

∑
i∈A wi bi ≥ k

on the variables bi, and a similar set AM of at-most constraints of the form∑
i∈A wi bi ≤ k, that are modified at every iteration of the algorithm.
Intuitively, the WPM2 algorithm refines at every iteration the lower bound on

ϕ till it reaches the optimum cost(ϕ). The AM constraints are used to bound the
cost of the falsified clauses. The AL constraints are used to impose that subsets
of soft clauses have a minimum cost and to compute the AM constraints, as
we will see later. The algorithm ends when ϕw ∪ CNF (AL ∪ AM) becomes
satisfiable1, where CNF is the translation to SAT of the PB constraints.

Technically speaking, the AL constraints give lower bounds on cost(ϕ). The
AM constraints enforce that all solutions of the set of constraints AL ∪ AM
are the solutions of AL of minimal cost. This ensures that any solution of the
formula sent to the solver, ϕw ∪ CNF (AL ∪ AM), if there is any, is an optimal
assignment of ϕ. Therefore, given a set of at-least constraints AL we compute
a corresponding set of at-most constraints AM as follows. First, we need to
introduce the notion of core and cover. A core is a set of indexes A such that∑

i∈A wi bi ≥ k ∈ AL. Function core(
∑

i∈A wi bi ≥ k) returns the core A and
function cores(AL) returns {core(al) | al ∈ AL}. Covers are defined from cores
as follows.

Definition 1. Given a set of cores L, we say that the set of indexes A is a cover
of L, if it is a minimal non-empty set such that, for every A′ ∈ L, if A′ ∩A �= ∅,
then A′ ⊆ A. Given a set of cores L, we denote the set of covers of L as SC(L).

1 The AL constraints are redundant, i.e., not required to be sent to the SAT solver
for the soundness of the algorithm but help to speed up the search.
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Algorithm 1. Revisited WPM2 algorithm.

Input: ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
1: if sat({Ci ∈ ϕ | wi = ∞}) = (UNSAT, , ) then return (∞, ∅)
2: ϕw := {C1 ∨ b1, . . . , Cm ∨ bm, Cm+1, . . . , Cm+m′} �Extend all soft clauses
3: AL := {w1 b1 ≥ 0, . . . , wm bm ≥ 0} �Set of at-least constraints
4: wmax := ∞
5: while true do
6: AM := ∅ �Set of at-most constraints
7: foreach (

∑
i∈A wi bi ≥ k) ∈ AL do

8: if A ∈ SC(cores(AL)) then
9: AM := AM ∪ {

∑
i∈A wi bi ≤ k}

10: (st, ϕc, I) := sat(ϕw\{Ci ∨ bi | (Ci, wi) ∈ ϕ ∧ wi < wmax}∪CNF (AL∪AM))
11: if st = sat and wmax = 0 then return (I(ϕ), I)
12: else
13: if st = sat then
14: W :=

∑
{wi | (Ci, wi) ∈ ϕ ∧ wi < wmax}

15: ϕh := harden(ϕ,AM,W )
16: wmax := decrease(wmax, ϕ)

17: else
18: A := {i | (Ci ∨ bi) ∈ (ϕc \ϕh)} �New core
19: A :=

⋃
A′∈cores(AL)

A′∩A�=∅
A′ �New cover

20: k := newbound(AL ∪ ϕw , A)
21: AL := {al ∈ AL | core(al) �= A} ∪ {

∑
i∈A wi bi ≥ k}

Given a set AL, the set AM is the set of at-most constrains
∑

i∈A wi bi ≤ k
such that A ∈ SC(cores(AL)) and k is the solution of minimizing

∑
i∈A wi bi

subject to AL and bi ∈ {0, 1}.
The algorithm starts with AL = {w1 b1 ≥ 0, . . . , wm bm ≥ 0} and the

corresponding AM := {w1 b1 ≤ 0, . . . , wm bm ≤ 0} that ensures that the unique
solution of AL ∪ AM is b1 = · · · = bm = 0 with cost 02. At every iteration,
the algorithm calls a SAT solver with ϕw ∪ CNF (AL ∪ AM). If it returns sat,
then the interpretation I is a MaxSAT solution of ϕ and we return the optimal
cost I(ϕ). If it returns unsat, then we use the information of the unsatisfiable
core ϕc obtained by the SAT solver to enlarge the set AL, excluding more
interpretations on the bi’s that are not partial solutions of ϕw. Before calling
again the SAT solver, we update AM conveniently, to ensure that solutions to
the new constraintsAL∪AM are still minimal solutions of the new AL constraint
set. Notice that in every iteration the set of solutions of {b1, . . . , bm} defined by
AL is decreased, whereas the set of solutions of AM is increased.

2 In the implementation, we do not add a blocking variable to a soft clause till it
appears into a core.
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One key point in WPM2 is to compute the newbound(AL,A) (line 20) which
corresponds to the following optimization problem:

minimize
∑
i∈A

wi · bi subject to {
∑
i∈A

wi · bi ≥ k} ∪ AL (1)

where k = 1 +
∑
{k′ |

∑
i∈A′ wi bi ≤ k′ ∈ AM ∧ A′ ⊆ A}.

Notice that by removing the AL constraints in (1), we get the subsetsum
problem [13]. In the original WPM2 algorithm [5], the subsetsum problem is
progressively solved until we get a solution that also satisfies the AL constraints.
This satisfiability check in the original WPM2 is performed with a SAT solver.

In what follows, we present how we have modified the original WPM2
algorithm (fragments in gray in Algorithm 1) by incorporating several
improvements: the application of a stratified approach, the hardening of soft
clauses and the optimization of the subformulas defined by the covers.

3.1 Stratified Approach

As in [4] for WPM1, we apply a stratified approach. The stratified approach
(lines 4, 10, 11 and 16) consists in sending to the SAT solver only those
soft clauses with weight wi ≥ wmax. Then, when the SAT solver returns sat,
if there are still unsent clauses, we decrease wmax to include additional clauses
to the formula. From [4], we also apply the diversity heuristic (line 16) which
supplies us with an efficient method to calculate how we have to reduce the
value of wmax in the stratified approach, so that, when there is a big variety of
distinct weights, wmax decreases faster, and, when there is a low diversity, wmax

is decreased to the following value of wi. Similar approach with an alternative
heuristic for grouping clauses can be found in [32].

3.2 Clause Hardening

The hardening of soft clauses in MaxSAT SAT-based solvers has been previously
studied in [2, 11, 18, 23, 25, 30, 33]. Inspired by these works we study a hardening
scheme for WPM2. While clause hardening was reported to have no positive
effect in WPM1 [2], we will see that it boosts efficiency in WPM2.

The clause hardening (lines 14, 15 and 18) consists in considering hard
those soft clauses whose satisfiability we know does not need to be reconsidered.
We need some lemma ensuring that falsifying those soft clauses would lead us to
suboptimal solutions. In the case of WPM1, all soft clauses satisfying wi > W ,
whereW =

∑
{wi | (Ci, wi) ∈ ϕ∧wi < wmax} is the sum of weights of clauses not

sent to the SAT solver, can be hardened. The correctness of this transformation
is ensured by the following lemma:

Lemma 1 (Lemma 24 in [6])
Let ϕ1 = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)} be a MaxSAT
formula with cost zero, let ϕ2 = {(C′1, w′1), . . . , (C′r, w′r)} be a MaxSAT formula
without hard clauses and W =

∑r
j=1 w

′
j . Let
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harden(w) =

{
w if w ≤W
∞ if w > W

and ϕ′1 = {(Ci, harden(wi)) | (Ci, wi) ∈ ϕ1}. Then, cost(ϕ1∪ϕ2) = cost(ϕ′1∪ϕ2),
and any optimal assignment for ϕ′1 ∪ ϕ2 is an optimal assignment of ϕ1 ∪ ϕ2.

However, this lemma is not useful in the case of WPM2 because we do not
proceed by transforming the formula, like in WPM1. Therefore, we generalize
this lemma. For this, we need to introduce the notion of optimal of a formula.

Definition 2. Given a MaxSAT formula ϕ = {(C1, w1), . . . , (Cm, wm),
(Cm+1,∞), . . . , (Cm+m′ ,∞)}, we say that k is a (possible) optimal of ϕ if there
exists a subset A ⊆ {1, . . . ,m} such that

∑
i∈A wi = k.

Notice that, for any interpretation I of the variables of ϕ, we have that I(ϕ)
is an optimal of ϕ. However, if k is an optimal, there does not exist necessarily
an interpretation I satisfying I(ϕ) = k. Notice also that, given ϕ and k, finding
the next optimal, i.e. finding the smallest k′ > k such that k′ is an optimal of ϕ
is equivalent to the subset sum problem.

Lemma 2. Let ϕ1 ∪ ϕ2 be a MaxSAT formula and k1 and k2 values such that:
cost(ϕ1∪ϕ2) = k1+k2 and any assignment I satisfies I(ϕ1) ≥ k1 and I(ϕ2) ≥ k2.
Let k′ be the smallest possible optimal of ϕ2 such that k′ > k2. Let ϕ3 be a set
of soft clauses with W =

∑
{wi | (Ci, wi) ∈ ϕ3}.

Then, if W < k′− k2, then any optimal assignment I ′ of ϕ1 ∪ϕ2 ∪ϕ3 assigns
I ′(ϕ2) = k2

Proof. Let I ′ be any optimal assignment of ϕ1 ∪ ϕ2 ∪ ϕ3. On the one hand, as
for any other assignment, we have I ′(ϕ2) ≥ k2.

On the other hand, any of the optimal assignments I of ϕ1∪ϕ2 can be extended
(does not matter how) to the variables of var(ϕ3) \ var(ϕ1 ∪ ϕ2), such that

I(ϕ1 ∪ ϕ2 ∪ ϕ3) = I(ϕ1) + I(ϕ2) + I(ϕ3) ≤ k1 + k2 +W < k1 + k′ (2)

Now, assume that I ′(ϕ2) �= k2, then I ′(ϕ2) ≥ k′. As any other assignment,
I ′(ϕ1) ≥ k1. Hence, I

′(ϕ1 ∪ ϕ2 ∪ ϕ3) ≥ k1 + k′ > I(ϕ1 ∪ ϕ2 ∪ ϕ3), but this
contradicts the optimality of I ′. Therefore, I ′(ϕ2) = k2.

	


In order to apply this lemma we have to consider partitions of the formula
ϕ1∪ϕ2 ensuring cost(ϕ1∪ϕ2) = k1+k2 and I(ϕ1) ≥ k1 and I(ϕ2) ≥ k2, for any
assignment I. This can be easily ensured, in the case of WPM2, if both ϕ1 and
ϕ2 are unions of covers. Then, we only have to check if the next possible optimal
k′ of ϕ2 exceeds the previous one k2 more than the sum W of the weights of
the clauses not sent to the SAT solver. In such a case, we can consider all soft
clauses of ϕ2 and their corresponding AM constraint with k2 as hard clauses. In
other words, we do not need to recompute the partial optimal k2 of ϕ2.
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Finally, in line 15 of Algorithm 1, function harden(ϕ,AM,W ) returns the
set of soft clauses ϕh that needs to be considered hard based on the previous
analysis according to: the current set of covers AM , the next optimals of these
covers and the sum of the weights W of soft clauses beyond the current wmax,
i.e., not yet sent to the SAT solver.

3.3 Cover Optimization

As we have mentioned earlier, one key point in WPM2 is how to compute the
newbound(AL,A) (line 20). Actually, we can solve to optimality the subformulas
defined by the union of the soft clauses related to the cover A and the hard
clauses.

Definition 3. Given a MaxSAT formula ϕ = {(C1, w1), . . . , (Cm, wm),
(Cm+1,∞), . . . , (Cm+m′ ,∞)} and a set of indexes A, we define the subformula,
ϕ[A], as follows: ϕ[A] = {(Ci, wi) ∈ ϕ | i ∈ A ∨ wi =∞)}

Solving to optimality ϕ[A] give us the optimal value k = cost(ϕ[A]) for the
AM constraint related to cover A. In order to do this, while taking advantage
of the AL constraints generated so far, we only have to extend the minimization
problem corresponding to the newbound (1) function, by adding ϕw to the
constraints, i.e, newbound(AL∪ ϕw, A)

3. Notice that newbound(AL∪ ϕw, A) ≥
newbound(AL,A).

In order to optimize ϕ[A], we can use any exact approach related to
MaxSAT, such as, MaxSAT branch and bound algorithms, MaxSAT SAT-based
algorithms, saturation under the MaxSAT resolution rule, or we can use other
solving techniques such as PB solvers or ILP techniques, etc. Our new WPM2
algorithm is parametric on any suitable optimization solving approach. In this
work, we present three approaches.

The first and natural approach consists in iteratively refining (increasing) the
lower bound on the optimal k for ϕ[A] by applying the subsetsum function as
in the original WPM2. The procedure stops when we satisfy the constraints
AL ∪ ϕw . Notice that since we have included ϕw into the set of constraints, the
solution we will eventually get has to be optimal for ϕ[A].

The second approach consists in iteratively refining (decreasing) the upper
bound following the strategy applied in minisat+ [15], SAT4J [10], qmaxsat [21]
or ShinMaxSat [20]. The upper bound ub is initially set to the sum of the weights
wi of the soft clauses in ϕ[A]. Then, we iteratively test whether k = ub − 1 is
feasible or not. Whenever we get a satisfying assignment, we update ub to the
sum of the weights wi of those soft clauses where bi evaluates to true under the
satisfying assignment. If we get an unsatisfiable answer, the previous ub is the
optimal value for ϕ[A].

The third approach applies a binary search scheme [12, 16, 19]. We
additionally refine the lower bound as in our first approach and the upper bound
as in the second approach.

3 We can actually exclude from ϕw all the soft clauses not in ϕ[A].
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The worst case complexity, in terms of the number of calls to the SAT solver, of
the new WPM2 algorithm is the number of times that the newbound function is
called (bounded by the number of clauses) multiplied by the number of SAT calls
needed in each call to the newbound function. This latter number is logarithmic
on the sum of the weights of the clauses of the core if we use a binary search,
hence essentially the number of clauses. Therefore, the worst case complexity,
when using a binary search to solve to optimality the subformulas, is quadratic
on the number of soft clauses.

In order to see that the number of calls to the newbound function is bounded
by the number of clauses we just need to recall that WPM2 merges the covers.
Consider a binary tree where the soft clauses are the leaves, and the internal
nodes represent the merges (calls to the newbound function). A binary tree of n
leaves has n-1 internal nodes.

Solving to optimality all the covers can be very costly since these are NP-hard
problems. Depending on the unsatisfiable cores we get in the general loop of the
WPM2 algorithm some covers have to be merged. Therefore, we may argue that
part of the work we did in order to optimize these covers can be useless4. For
example, a reasonable strategy is to optimize the current cover only if it was
not the result of merging other covers, i.e., when the last unsatisfiable core is
contained into a cover. In the experimental evaluation, we will see that although
the number of solved instances does not vary too much, the mean time for solving
some families can be decreased.

4 Engineering Efficient SMT-Based MaxSAT Solvers

We have implemented both the last version of the WPM1 algorithm [2] and the
revisited version of the WPM2 algorithm on top the of the SMT solver Yices.

As we have said, an SMT instance is a generalization of SAT where some
propositional variables are replaced by predicates with predefined interpretations
from background theories. Among the theories considered in the SMT library [9]
we are interested in QF LIA (Quantifier-Free Linear Integer Arithmetic). With
the QF LIA theory we can model the PB constraints that SAT-based MaxSAT
algorithms generate during their execution. Therefore, for the SMT-based
MaxSAT algorithm, we just need to replace the conversion to CNF (line 10
in Algorithm 1) by the proper linear integer arithmetic predicates.

As suggested in [16, 31], we can preserve some learned lemmas from previous
iterations that may help to reduce the search space. In order to do that, we
execute the SMT solver in incremental mode. Within this mode, we can call
the solve routine and add new clauses (assertions) on demand, while preserving
learned lemmas. However, notice that our algorithms delete parts of the formula
between iterations. For example, in lines 7 to 9 of Algorithm 1 we recompute the
set AM, possibly erasing some of the at-most constraints. Therefore, we have to
take care also of any learned lemma depending on them.

4 The related AL constraints can still be kept.



126 C. Ansótegui et al.

The SMT solver Yices gives the option of marking assertions as retractable. If
the SMT solver does not support the deletion of assertions but supports the usage
of assumptions, we can replace every retractable assertion C, with a→ C, where
a is an assumption. Before each call, we activate the assumptions of assertions
that have not been retracted by the algorithm. Notice that assertions that do
have been retracted will have a pure literal (a) such that a has not been activated.
Therefore, the solver can safely set to false a deactivating the clause. Moreover,
any learned lemma on those assertions will also include a. For example, Z3 and
Mathsat SMT solvers do not allow to delete clauses, but they allow the use of
assumptions.

5 Experimental Results

In this section we present an intensive experimental investigation on the PMS
and WPMS industrial and crafted instances from the 2012 MaxSAT Evaluation.
We provide results for our new WPM2 SMT-based MaxSAT solver, for a
WPM1 [2] SMT-based MaxSAT solver, the best two solvers for each category of
the 2012 MaxSAT Evaluation, and three solvers which did not participate but
the authors have reported to exhibit good performance. We run our experiments
on a cluster featured with 2.27 GHz processors, memory limit of 3.9 GB and a
timeout of 7200 seconds per instance.

The experimental results are presented in Tables 1 and 2 following the same
classification criteria as in the 2012 MaxSAT Evaluation. For each solver and
family of instances, we present the number of solved instances in parenthesis
and the mean solving time. Solvers are ordered from left to right according to
the total number of solved instances. The results for the best performing solver
in each family are presented in bold. The number of instances of every family
is specified in the column under the sign ’#’. Since different families may have
different number of instances, we also include for each solver the mean ratio of
solved instances.

Our new WPM2 algorithm is implemented on top of the Yices SMT
solver (version 1.0.29). The different versions of WPM2 and corresponding
implementations are named wpm2 where subindexes can be s that stands for
stratified approach with diversity heuristic and h for hardening. Regarding to
how we perform the cover optimization, l stands for lower bound refinement
based on subsetsum, u for upper bound refinement based on satisfying truth
assignment, and b for binary search. Finally, a stands for optimizing all the
covers and c for optimizing only covers that contain the last unsatisfiable core.

Table 1 shows our first experiment, where we evaluate the impact of each
variation on the original wpm2. By using a stratified approach with the diversity
heuristic (wpm2s) we solve some additional instances in all categories having
the best improvement in WPMS crafted. Overall, we solve 74 more instances.
By adding hardening (wpm2sh) we solve 66 more instances, mainly in WPMS
industrial family haplotyping-pedigrees.
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Table 3. Summary of solved instances and mean ratio % for best solvers

solvers pms wpms Ind. pms wpms Cra. Total

428 207 635 268 271 539 1174
wpm2shua 83.6 % 77.5 % 82.5 % 68.5 % 62.0 % 65.3 % 73.9 %

330 204 534 207 318 525 1059
wpm1 68.3 % 78.4 % 70.2 % 58.3 % 77.4 % 67.9 % 69.0 %

423 181 604 245 177 422 1026
bincd2 78.2 % 67.9 % 76.3 % 65.3 % 45.6 % 55.5 % 65.9 %

239 118 357 332 332 664 1021
ilp 48.9 % 39.3 % 47.1 % 76.5 % 78.6 % 77.6 % 62.3 %

374 194 568 228 222 450 1018
pwbo2.1 66.3 % 71.3 % 67.2 % 59.3 % 54.5 % 56.9 % 62.1 %

353 52 405 271 264 535 940
shinms 63.6 % 22.1 % 55.8 % 77.0 % 64.8 % 70.9 % 63.4 %

418 291
qms 83.0 % 81.1 %

Regarding our three approaches for optimizing the covers, we can see that by
optimizing with subsetsum (wpm2shla) we solve some additional instances in all
categories having the best improvement in WPMS industrial with 18 more and in
WPMS crafted with 106 more. It is important to highlight that optimizing covers
with subsetsum, instead of applying the subsetsum as in the original WPM2
algorithm, leads to a total improvement of 134 additional solved instances, with
respect to wpm2sh.

Optimizing all covers by refining the upper bound (wpm2shua), we get an
additional boost with respect to wpm2shla. We can see that we solve some
additional instances in all categories. We get the best improvement for PMS
industrial, solving 34 additional instances, and for WPMS crafted, 50 more.
Notice that the overall increase with respect to wpm2sh is of 238 additional
solved instances.

Binary search (wpm2shba) improves 10 instances in WPMS crafted with
respect to wpm2shua. But the global performance with respect to wpm2sh, 223,
is not as good as only refining the upper bound (wpm2shua).

Optimizing only covers that contain the last unsatisfiable core solves almost
the same instances as optimizing all covers but improves the average running
time in the WPMS industrial family upgradeability-problem by a factor of 4.

Table 2 shows the results of our second experiment where we compare the best
variation and implementation of our new WPM2 algorithm (wpm2shua) with
several solvers. In particular, we compare with the best two solvers for the PMS
and WPMS industrial and crafted instances of the 2012 MaxSAT Evaluation:
PMS industrial (qms0.21g2, pwbo2.1), WPMS industrial (pwbo2.1 [31, 32],
wpm1 [2]5), PMS crafted (qms0.21 [21], akms ls [22] and WPMS crafted (wpm1,
shinms [20]). We also compare with three additional MaxSAT solvers: bincd2,
which is the new version of the BINCD algorithm [19] described in [33], with
the best configuration reported by authors, maxhs from [14], which consists in
an hybrid SAT-ILP approach, and ilp, which translates WPMS into ILP and
applies the MIP solver IBM-CPLEX studio124 [7].

5 We present in this paper a version implemented on top of the Yices SMT solver.
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Table 2(a) presents the results for the PMS industrial instances. Our
wpm2shua is the first one in solved instances with 428 and mean ratio with
93.6%, closely followed by bincd2 and qms0.21g2.

Table 2(b) presents the results for the WPMS industrial instances. As we can
see, our wpm2shua and wpm1 dominate this category with 207 and 204 solved
instances and 77.5% and 78.4% mean ratio, resp.

As a summary of industrial instances, we can conclude that our wpm2shua
is the best performing solver with a total of 635 solved instances, followed by
bincd2 with a total of 604. We do not have results for any version of qms since
it only works for PMS instances. The closest solver to the search scheme of qms
would be shinms but it does not perform well for WPMS industrial.

Table 2(c) presents the results for the PMS crafted instances. The ilp approach
solves 332 of 372 instances, 35 more than akms ls. This is remarkable since
branch and bound solvers, like akms ls, have always dominated this category
since 2006. PMS solver qms0.21 is the third in solved instances but the first in
mean ratio with 81.1%. Our wpm2shua is the fifth in solved instances with 268
and the fourth in mean ratio with 68.5%.

Table 2(d) presents the results for the WPMS crafted instances. Again, the
ilp approach is the best one, solving 332 of 372 instances, 14 more than the
second one, wpm1. Our wpm2shua is the third in solved instances with 271 and
the fourth in mean ratio with 62.0%.

As a summary of crafted instances, we can conclude that ilp is the best
performing approach, and our wpm2shua is the second in total solved instances.

In Table 3 we can see a summary of the solved instances and mean ratio per
category for best solvers. We recall that all solvers accept weights except qms
that is only for PMS. Our wpm2shua is the first in solved instances for both PMS
industrial and WPMS industrial. In crafted categories it is the second in total
solved instances. However, for both PMS crafted and WPMS crafted categories
ilp is the first in solved instances. We can conclude that our wpm2shau is the most
robust solver across all four PMS and WPMS industrial and crafted categories,
followed by wpm1 and bincd2.

6 Conclusions and Future Work

From the experimental evaluation, we conclude that the new WPM2 solver is
the best performing solver for PMS and WPMS industrial instances and the best
on the union of PMS and WPMS industrial and crafted instances. In particular,
we have shown that solving to optimality the subformulas defined by covers
really works in practice. As future work, we will study how to improve the
interaction with the optimization of the subformulas. A portfolio that selects
the most suitable optimization approach depending on the structure of the
subformula seems another way of achieving additional speed-ups. Finally, we
have also shown that SMT technology is an underlying efficient technology for
solving the MaxSAT problem.
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Abstract. Despite their similarities, MaxSAT and MinSAT use different encod-
ings and solving techniques to cope with optimization problems. In this paper we
describe a new weighted partial MinSAT solver, define original MinSAT encod-
ings for relevant combinatorial problems, propose a new testbed for evaluating
MinSAT, report on an empirical investigation comparing MinSAT with MaxSAT,
and provide new insights into the duality between MinSAT and MaxSAT.

1 Introduction

MinSAT is the problem of finding a truth assignment that minimizes the number of sat-
isfied clauses in a CNF formula, and MaxSAT is the problem of finding a truth assign-
ment that maximizes the number of satisfied clauses. When hard and soft clauses, and
weights are considered, the problem is known as weighted partial MinSAT/MaxSAT.

The promising results on MaxSAT as a generic approach to solving combinatorial
optimization problems [6,16] led us to investigate the opportunities that MinSAT offers
in optimization [19,20]. At first sight, it may seem that MaxSAT and MinSAT are so
close that it does not pay off to devote efforts to MinSAT, but this is not completely cer-
tain. In [19,20], branch-and-bound MinSAT solvers apply upper bounding techniques
not applicable in MaxSAT solvers, and this provides a competitive advantage to Min-
SAT, which solves MaxClique and combinatorial auction instances (that are beyond the
reach of current MaxSAT solvers) even faster than using dedicated algorithms. Inter-
estingly, the MinSAT and MaxSAT encodings of these problems are almost identical
(the only difference is that the literals in the soft clauses, which are unitary, have op-
posite polarity). The superiority of MinSAT in [19,20] is due to the MinSAT solving
techniques, not to the encoding. The compared MinSAT and MaxSAT solvers use the
same data structures but implement different techniques. Since performance depends
on both solvers and encodings, our first goal is to define suitable MinSAT encodings of
NP-hard problems, and improve the performance by using more efficient encodings.

All the interesting genuine MinSAT encodings defined so far, except for random
Min-kSAT instances, only contain unit clauses in the soft part. In the literature we can
find experimental investigations solving instances with non-unit soft clauses, but the op-
timization problem that is actually being solved is a genuine or transformed MaxSAT
instance. The first contribution of the paper is the definition of genuine MinSAT en-
codings of practical optimization problems, containing non-unit soft clauses, that are
completely different from their MaxSAT counterparts, and a comparison that provides
empirical evidence of the gains that could be achieved. More specifically, we define
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novel encodings from weighted MaxCSP to MinSAT that fulfill our requirements. We
use weighted MaxCSP as a good source of benchmarks for MinSAT solvers, but not
with the aim of competing with weighted MaxCSP solvers in their own territory.

The second contribution is the incorporation of the inference rules defined in [17]
into MinSatz [19,20]. It turns out that MaxSAT inference rules can be applied to Min-
SAT too, because they preserve the cost distribution over all the models. As a result,
we have implemented a new version of MinSatz that incorporates inference rules, and
provided empirical evidence that inference rules may produce significant speedups.

Last but not least, we would like to highlight that MinSAT solving is a novel and
emerging technology with a remarkable potential in optimization. It allows to look at
problems from a different perspective because, in contrast to existing Boolean optimiza-
tion approaches, it works by maximizing the number of violated constraints instead of
working by minimizing that number. This fact leads to the definition of different encod-
ings and solving techniques that exploit the duality between MinSAT and MaxSAT.

Related Work: The work on MinSAT for solving optimization problems may be divided
into three categories: (I) Transformation between MinSAT and MaxSAT: Reductions
from MinSAT to PMaxSAT were defined in [18], but these reductions do not generalize
to WPMinSAT. This drawback was overcome with the definition of the natural encod-
ing [13], which was improved in [23]. Reductions of WPMinSAT to Group MaxSAT
were evaluated in [11]. (II) Branch-and-bound solvers: The only existing WPMinSAT
solver, MinSatz [19,20], is based on MaxSatz [17], and implements upper bounds that
exploit clique partition algorithms and MaxSAT technology. (III) SAT-based solvers:
There exist two WPMinSAT solvers of this class [2,11]. The main difference with SAT-
based MaxSAT solvers lies in the way of relaxing soft clauses.

2 Preliminaries

A weighted clause is a pair (c, w), where c is a is a disjunction of literals and w, its
weight, is a natural number or infinity. A clause is hard if its weight is infinity (for
simplicity, we omit infinity weights); otherwise it is soft. A Weighted Partial Min-
SAT (MaxSAT) instance is a multiset of hard clauses and weighted soft clauses. A
truth assignment assigns to each propositional variable either 0 or 1. The Weighted
Partial MinSAT (MaxSAT) problem, or WPMinSAT (WPMaxSAT), for an instance φ
consists in finding an assignment in which the sum of weights of the satisfied (falsi-
fied) soft clauses is minimal, and all the hard clauses are satisfied. The Weighted Min-
SAT (MaxSAT) problem, or WMinSAT (WMaxSAT), is the WPMinSAT (WPMaxSAT)
problem when there are no hard clauses. The Partial MinSAT (MaxSAT) problem, or
PMinSAT (PMaxSAT), is the WPMinSAT (WPMaxSAT) problem when all the soft
clauses have the same weight. The MinSAT (MaxSAT) problem is the Partial MinSAT
(MaxSAT) problem when there are no hard clauses.

A CSP instance is a triple 〈X ,D, C〉, where X = {X1, . . . , Xn} is a set of variables,
D = {d(X1), . . . , d(Xn)} is a set of finite domains, and C = {C1, . . . , Cm} is a
set of constraints. Each Ci = 〈Si, Ri〉 in C is a relation Ri over a subset of Si =
{Xi1 , . . . , Xik} ⊆ X , called the scope. Ri may be represented extensionally as a subset
of the Cartesian product d(Xi1)×· · ·×d(Xik). The tuples belonging to Ri represent the
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allowed values and are called goods, and the rest of tuples represent the forbidden values
and are called nogoods. An assignment v for a CSP instance 〈X ,D, C〉 is a mapping that
assigns to every variable Xi ∈ X an element v(Xi) ∈ d(Xi). It satisfies a constraint
〈{Xi1 , . . . , Xik}, Ri〉 ∈ C iff 〈v(Xi1), . . . , v(Xik)〉 ∈ Ri. The Constraint Satisfaction
Problem (CSP) for an instance P consists in finding a satisfying assignment for P .

A Weighted MaxCSP (WMaxCSP) instance is defined as a triple 〈X ,D, C〉, where
X and D are variables and domains as in CSP, and C is a set of weighted constraints.
A weighted constraint 〈c, w〉 is just a classical constraint c plus a weight w over natural
numbers. The cost of an assignment v is the sum of the weights of all constraints vi-
olated by v. An optimal solution is an assignment with minimal cost. In the particular
case where all the constraints have the same weight, it is called the MaxCSP problem.

3 Encodings from WMaxCSP to WPMinSAT

We define the MinSAT counterparts of the direct, minimal support and interval-based
minimal support encodings from WMaxCSP to WPMaxSAT defined in [5]. All these
encodings are correct: solving a WMaxCSP instance is equivalent to solving the WP-
MinSAT instance derived by any of our encodings. Other variants and encodings could
be tried. We selected them because they were superior in most of our tests. We assume
binary constraints, but the direct encoding is valid for non-binary constraints too.

Direct Encoding. A Boolean variable xi is associated with each value i that the CSP
variable X can take. If the domain d(X) has size m, the ALO clause of X is x1 ∨ · · · ∨
xm, and ensures that X is given a value. The AMO clauses of X are the set of clauses
{¬xi ∨ ¬xj |i, j ∈ d(X), i < j}, and ensure that X takes no more than one value.

Definition 1. The direct encoding of a WMaxCSP instance 〈X ,D, C〉 is the WPMin-
SAT instance that contains as hard clauses the ALO and AMO clauses for every CSP
variable inX , and a soft clause (¬xi∨¬yj , w) for every good (X = i, Y = j) of every
weighted constraint 〈C,w〉 of C with scope {X,Y }.

Since PMinSAT maximizes the number of falsified soft clauses, the idea behind the
PMinSAT encoding of a MaxCSP instance is that we want to force the violation of one
soft clause for every satisfied constraint, because of that we negate the goods instead
of the nogoods as is done for PMaxSAT encodings of MaxCSP instances in [5]. If an
interpretation is compatible with a good of a constraint, then one soft clause of the
clauses encoding the constraint is falsified, and if it is not compatible with any good,
then all the clauses are satisfied. The idea is the same when weights are added.

Example 1. Let 〈X ,D, C〉 be the WMaxCSP instance where X = {X,Y }, d(X) =
d(Y ) = {1, 2, 3}, C = {X = Y }, and the weight of X = Y is 3. The direct encoding
from WMaxCSP to WPMinSAT is formed by the hard clauses encoding the ALO and
AMO conditions of X and Y , and the soft clauses (¬x1 ∨¬y1, 3), (¬x2 ∨¬y2, 3), and
(¬x3∨¬y3, 3). In contrast to the WPMaxSAT direct encoding, which needs a quadratic
number of binary soft clauses in the domain size for encoding the equality constraint,
the WPMinSAT direct encoding just needs a linear number of binary clauses. So, this
example shows that certain constraints can be more compactly defined with MinSAT.
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Minimal Support Encoding. In the support encoding from CSP to SAT [12,9,22],
besides the ALO and AMO clauses, there are clauses that encode the support for a value
instead of encoding conflicts. The support for a value i of a variable X across a binary
constraint with scope {X,Y } is the set of values of Y which allow X = i. If v1, . . . , vk
are the supporting values of variable Y for X = i, the clause¬xi∨yv1∨· · ·∨yvk (called
support clause) is added. There is one support clause for each value in the domain
and for each pair of variables X,Y involved in a constraint. In the support encoding,
a clause in each direction is used: one for the pair X,Y and one for Y,X , while in
the minimal support encoding [5], for every constraint with scope {X,Y }, the added
clauses are the support clauses either for all the domain values ofX or for all the domain
values of Y . The minimal support encoding does not maintain arc consistency through
unit propagation but usually is better for SAT solvers with learning and for MaxSAT
solvers [5]. In our MinSAT setting, we focus on the minimal support encoding because
it greatly outperformed the support encoding in our tests. Before defining the encoding,
we need to define the negative support for a value j of a CSP variable X across a binary
constraint with scope {X,Y } as the set of values of Y which forbid X = j.

Definition 2. The minimal support encoding of a WMaxCSP instance 〈X ,D, C〉 is the
WPMinSAT instance that contains as hard clauses the ALO and AMO clauses for every
CSP variable in X and, for every constraint with scope {X,Y } and weight w, either
the soft clause (¬xi ∨ yv1 ∨ · · · ∨ yvn , w) for every value i ∈ d(X), where v1, . . . , vn is
the negative support for value i, or the soft clause (¬yj ∨xu1 ∨ · · · ∨xum , w) for every
value j ∈ d(Y ), where u1, . . . , um is the negative support for value j.

The main difference with the minimal support encoding from WMaxCSP to WP-
MaxSAT [5] is that the support clauses now include the negative support instead of the
positive support. This allows the violation of a soft clause for every satisfied constraint.
In the experiments, we select the variable that produces support clauses of smaller size.
To this end, we give a score of 16 to unit clauses, a score of 4 to binary clauses and a
score of 1 to ternary clauses, and select the variable with higher sum of scores.

Example 2. Let 〈X ,D, C〉 be the MaxCSP instance where X = {X,Y }, d(X) =
d(Y ) = {1, 2, 3}, C = {X �= Y }, and the constraint weight is 2. The minimal support
encoding from WMaxCSP to WPMinSAT is formed by the ALO and AMO hard clauses
of X and Y , and the soft clauses (¬x1 ∨y1, 2), (¬x2∨y2, 2), and (¬x3 ∨y3, 2). Notice
that we could also define the minimal support encoding by replacing the previous soft
clauses with (x1∨¬y1, 2), (x2∨¬y2, 2), and (x3∨¬y3, 2) if we add the support clauses
for the domain values of Y instead of the domain values of X . The length of the soft
clauses of the minimal support WPMaxSAT encoding is linear in the domain size for
the inequality constraint whereas in MinSAT all the soft clauses are binary.

If we replace C = {X �= Y } with C = {X ≤ Y }, we can derive the minimal support
encoding containing the soft clauses (¬x1, 2), (¬x2 ∨ y1, 2), and (¬x3 ∨ y1 ∨ y2, 2).
Interestingly, we derive a unit clause that can be very useful for applying inference
rules. In the minimal support encoding from WMaxCSP to WPMaxSAT no unit clause
is derived. It contains the soft clauses (¬x2 ∨ y2 ∨ y3, 2), and (¬x3 ∨ y3, 2).
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Interval-Based Minimal Support Encoding. An alternative for modeling a CSP vari-
able X is the use of Boolean variables of the form x≥i (instead of x = i), assuming a
total ordering on the domain. Variables of the form x≥i are called regular variables, and
their intended meaning is that x≥i is true iff X ≥ i [7,3,10]. For simplicity, we assume
here that domains are subsets of natural numbers.

One advantage of introducing regular literals (i.e.; regular variables and their nega-
tions) is that the number of clauses needed for each CSP variable is linear rather than
quadratic in the domain size, they may produce more compact encodings, and are par-
ticularly useful for dealing with large domains. We focus on the interval-based minimal
support encoding [5] because it outperformed other encodings with regular literals.

Given a MinSAT support clause ¬xj ∨ yv1 ∨ yv2 ∨ · · · ∨ yvk , the negative support
of variable Y for X = j is now encoded in intervals using regular literals. Let us
see an example: If the domain of Y is {1, 2, . . . , 10} and we are given the support
clause ¬x2 ∨ y2 ∨ y3 ∨ y6 ∨ y8 ∨ y9, then the negative support is represented by the
following intervals: [2, 3], [6, 6], and [8, 9]. The interval-based encoding for this clause is
as follows: x≥2 ∧¬x

≥
3 → y≥2 , x

≥
2 ∧¬x

≥
3 ∧y

≥
4 → y≥6 , x

≥
2 ∧¬x

≥
3 ∧y

≥
7 → y≥8 , x

≥
2 ∧¬x

≥
3 →

¬y≥10. Notice that the number of clauses needed for each support clause is linear in the
largest domain size, and each clause has at most four regular literals.

Definition 3. The interval-based minimal support encoding of a WMaxCSP instance
〈X ,D, C〉 is the WPMinSAT instance obtained from the minimal support encoding by
(i) replacing the ALO and AMO clauses for every variable X ∈ X with domain size
m with the clauses x≥m → x≥m−1, x

≥
m−1 → x≥m−2, . . . , x

≥
3 → x≥2 ; and (ii) replacing

every support clause with the corresponding interval-based regular clauses using the
negative support; i.e, if the negative support of variable Y for X = i can be represented
by the intervals [l1, u1], [l2, u2], . . . [lk, uk], we add the clauses x≥i ∧ ¬x

≥
i+1 → y≥l1 ,

x≥i ∧¬x
≥
i+1∧y

≥
u1+1 → y≥l2 , . . . , x≥i ∧¬x

≥
i+1∧y

≥
uk−1+1 → y≥lk , x≥i ∧¬x

≥
i+1 → ¬y

≥
uk+1.

Example 3. The WPMinSAT interval-based minimal support encoding for the
WMaxCSP instance of Example 2 with the constraint X �= Y is formed by the hard
clauses¬x≥3 ∨x

≥
2 and¬y≥3 ∨y

≥
2 , and the soft clauses (x≥2 ∨¬y

≥
2 , 2), (¬x

≥
2 ∨x

≥
3 ∨y

≥
2 , 2),

(¬x≥2 ∨ x
≥
3 ∨ ¬y

≥
3 , 2), and (¬x≥3 ∨ y

≥
3 , 2).

4 A New WPMinSAT Solver

We implemented a new version of MinSatz [20], which is the only existing branch-and-
bound WPMinSAT solver, by incorporating all the inference rules of MaxSatz [17].
Such rules preserve the number of falsified clauses over all the models and can be ap-
plied in MinSatz, to help detect contradictions earlier, because it works by maximizing
the number of falsified clauses (instead of minimizing that number as in MaxSAT).

For lack of space we just define one rule of [17]: The clauses x, y,¬x ∨ ¬y are
replaced with �, x ∨ y. The clause x ∨ y ensures that the number of falsified clauses is
preserved also when x = y = 0. In this case, two clauses are falsified.
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MinSatz is also characterized by incorporating the upper bounds, described in [20],
that exploit clique partition algorithms and MaxSAT technology. In a sense, the new
MinSatz combines efficient MaxSAT techniques with genuine MinSAT techniques.

To show the impact of inference rules in performance, Figure 1 compares the old and
new MinSatz solvers on weighted Min2SAT instances, generated uniformly at random,
having 2000 variables, and with a number of clauses ranging from 1000 to 3000, and
the weights ranging from 1 to 10. We used the computer described below, and solved
100 instances per point. MinSatz-ir refers to MinSatz without inference rules.

 0.1

 1

 10

 100

 1000

 1000  1500  2000  2500  3000

M
ea

n 
C

P
U

 ti
m

e 
in

 s
ec

on
ds

Number of clauses

Random Max2SAT with 2000 variables

MinSatz-ir
MinSatz

Fig. 1. Comparison of Minsatz with and without inference rules on weighted Min2SAT instances

5 Experimental Results

We compared the performance of the direct encoding (dir), the minimal support encod-
ing (supc), and the interval-based support encoding (isupc) of different optimization
problems with WCSP, WPMinSAT and WPMaxSAT solvers. Experiments were per-
formed on a cluster with Intel Xeon 2.67GHz processors with 4GB of memory.

The solved problems (that were first derived as MaxCSP instances and then trans-
lated to the mentioned WPMinSAT and WPMaxSAT encodings) are: (I) Random binary
MaxCSP (model B [21]): In the class 〈n, d, p1, p2〉 with n variables of domain size d,
we choose a random subset of exactly p1n(n− 1)/2 constraints (rounded to the nearest
integer), each with exactly p2d

2 conflicts; p1 may be thought of as the density and p2
as the tightness. (II) Graph coloring: unsatisfiable graph coloring instances of Culber-
son [8] with option IID (independent random edge assignment). The parameters of the
generator are: number of vertices (n), optimum number of colors to get a valid color-
ing (k), and number of colors we use to color the graph (c). We solved the problem of
finding a coloring that minimizes the number of adjacent vertices with the same color.
(III) Kbtrees: Clique tree instances with different constraint tightness (t), tested in [4].

We used the MaxSAT solvers MaxSatz and WPM1 [1] from the last MaxSAT Eval-
uation, the new version of MinSatz, and the WCSP solvers Abscon [15] and Toul-
bar2 [14]. For WPM1 we just show results with the best performing encoding. We also
tested WPMin1 [2] and the WPMinSAT instances produced by transforming the tested
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WPMaxSAT instances using the natural flow network encoding [23], but their perfor-
mance was not competitive.

Table 1 shows the results obtained. As a general comment for the solved testbed,
we should say that MinSAT outperforms MaxSAT, the minimal support and interval-
based minimal support encodings are better than the direct encoding in MinSAT, and
encodings containing fewer and smaller clauses are usually more efficient. Even when
our aim is to study the duality and complementarity between MaxSAT and MinSAT,
and not to compete with WCSP solvers in their own territory, it is worth mentioning the
good behavior of MinSatz wrt Abscon, as well as the still existing gap between MinSatz
and Toulbar2 that should stimulate further research on MinSAT. The efforts devoted to
WCSP solvers cannot be compared with the recent efforts on WPMinSAT solvers. Re-
call that WCSP is used here as a source for getting benchmarks for WPMinSAT solvers,
and for advancing in the construction of a challenging testbed of MinSAT instances.

In random MaxCSP, the performance of MinSAT versus MaxSAT depends on the
number of conflicts. The number of conflicts is related to the clause size in the sup-
port encodings, and is related to the number of clauses in the direct encoding. Also
observe that isupc is superior to supc on some subsets of instances on both MaxSAT
and MinSAT solvers, showing the relevance of using regular literals in some cases.

In graph coloring, MinSAT solves more instances than MaxSAT but MaxSAT is
faster in some subsets, providing again evidence of the complementarity between Min-
SAT and MaxSAT. We also observe that regular literals are relevant in some cases.
There are a substantial number of instances beyond the reach of the tested solvers, and
are a challenge for future experimental investigations. Observe that MinSAT outper-
forms Abscon on some sets.

In the clique tree results, all the MinSAT options are superior to the best MaxSAT
option, solving 152 additional instances. Our encodings allowed to solve for the first
time a number of instances not solved in [4].

6 Conclusions

We have defined original encodings from WMaxCSP to WPMinSAT, created a new
testbed for evaluating MinSAT solvers, developed a new WPMinSAT solver, and pro-
vided new insights into MinSAT such as the duality between MinSAT and MaxSAT
encodings. Our experiments indicate that MaxSAT solving and MinSAT solving are
complementary. Depending on the structure of the instances, more compact and effi-
cient encodings are produced either with MinSAT or with MaxSAT. In a similar way,
the solving techniques of MinSAT outperform the techniques of MaxSAT for some in-
stances, and vice versa.

MaxSAT and MinSAT are important optimization problems that deserve to be com-
pared, and their duality and complementarity deserve to be analyzed. Moreover, as
MinSAT-based problem solving is a new research topic, there are not as many avail-
able benchmarks as in MaxSAT for evaluating solvers and stimulating the development
of new ones. We hope the results of the paper could contribute to gain new insights
on these problems, advance the state of the art of MinSAT-based problem solving, and
provide tools for developing and evaluating MinSAT solvers.
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Abstract. State-of-the-art constraint solvers uniformly maintain the
same level of local consistency (usually arc consistency) on all the in-
stances. We propose parameterized local consistency, an original approach
to adjust the level of consistency depending on the instance and on which
part of the instance we propagate. We do not use as parameter one of
the features of the instance, as done for instance in portfolios of solvers.
We use as parameter the stability of values, which is a feature based on
the state of the arc consistency algorithm during its execution. Parame-
terized local consistencies choose to enforce arc consistency or a higher
level of local consistency on a value depending on whether the stability of
the value is above or below a given threshold. We also propose a way to
dynamically adapt the parameter, and thus the level of local consistency,
during search. This approach allows us to get a good trade-off between
the number of values pruned and the computational cost. We validate
our approach on various problems from the CSP competition.

1 Introduction

Enforcing constraint propagation by applying local consistency during search is
one of the strengths of constraint programming (CP). It allows the constraint
solver to remove locally inconsistent values. This leads to a reduction of the
search space. Arc consistency is the oldest and most well-known way of propa-
gating constraints [2]. It has the nice feature that it does not modify the structure
of the constraint network. It just prunes infeasible values. Arc consistency is the
standard level of consistency maintained in constraint solvers. Several other lo-
cal consistencies pruning only values and stronger than arc consistency have
been proposed, such as max restricted path consistency or singleton arc consis-
tency [7]. These local consistencies are seldom used in practice because of the
high computational cost of maintaining them during search. However, on some
problems, maintaining arc consistency is not a good choice because of the high
number of ineffective revisions of constraints that penalize the CPU time. For
instance, Stergiou observed that when solving the scen11 radio link frequency
assignment problem (RLFAP) with an algorithm maintaining arc consistency,
only 27 out of the 4103 constraints of the problem were identified as causing a
domain wipe out and 1921 constraints did not prune any value [10].
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Choosing the right level of local consistency for solving a problem requires
finding the good trade-off between the ability of this local consistency to remove
inconsistent values, and the cost of the algorithm that enforces it. Stergiou sug-
gests to take advantage of the power of strong consistencies to reduce the search
space while avoiding the high cost of maintaining them in the whole network. His
method results in a heuristic approach based on the monitoring of propagation
events to dynamically adapt the level of local consistency (arc consistency or max
restricted path consistency) to individual constraints. This prunes more values
than arc consistency and less than max restricted path consistency. The level of
propagation obtained is not characterized by a local consistency property. De-
pending on the order of propagation we can converge on different closures. When
dealing with global constraints, some work propose to weaken arc consistency
instead of strengthening it. In [8], Katriel et al. proposed a randomized filtering
scheme for AllDifferent and Global Cardinality Constraint. In [9], Sellmann in-
troduced the concept of approximated consistency for optimization constraints
and provided filtering algorithms for Knapsack Constraints based on bounds
with guaranteed accuracy.

In this paper we define the notion of stability of values. This is an original no-
tion not based on characteristics of the instance to solve but based on the state
of the arc consistency algorithm during its propagation. Based on this notion,
we propose parameterized consistencies, an original approach to adjust the level
of consistency inside a given instance. The intuition is that if a value is hard to
prove arc consistent (i.e., the value is not stable for arc consistency), this value
will perhaps be pruned by a stronger local consistency. The parameter p specifies
the threshold of stability of a value v below which we will enforce a higher con-
sistency to v. A parameterized consistency p-LC is thus an intermediate level of
consistency between arc consistency and another consistency LC, stronger than
arc consistency. The strength of p-LC depends on the parameter p. This approach
allows us to find a trade-off between the pruning power of the local consistency
and the computational cost of the algorithm that achieves it. We apply p-LC
to the case where LC is max restricted path consistency. We describe the algo-
rithm p-maxRPC3 (based on maxRPC3 [1]) that achieves p-max restricted path
consistency. Then, we propose ap-LC, an adaptive variant of p-LC which adapts
dynamically and locally the level of local consistency during search. Finally, we
experimentally assess the practical relevance of parameterized local consistency.
We show that by making good choices for the parameter p we take advantage of
both arc consistency light computational cost and LC effectiveness of pruning.
In the best cases, a solver using p-LC explores the same number of nodes as
LC with a number of constraint checks lower than LC, resulting in a CPU-time
lower than both arc consistency-based or LC-based solvers.

2 Background

A constraint network is defined as a set of n variables X = {x1, ..., xn}, a
set of ordered domains D = {D(x1), ..., D(xn)}, and a set of e constraints
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C = {c1, ..., ce}. Each constraint ck is defined by a pair (var(ck), sol(ck)), where
var(ck) is an ordered subset of X , and sol(ck) is a set of combinations of values
(tuples) satisfying ck. In the following, we restrict ourselves to binary constraints
because the local consistency (maxRPC) we use here to instantiate our approach
is defined on the binary case only. However, the notions we introduce can be ex-
tended to non-binary constraints, by using maxRPWC for instance [4]. A binary
constraint c between xi and xj will be denoted by cij , and Γ (xi) will denote the
set of variables xj involved in a constraint with xi.

A value vj ∈ D(xj) is called an arc consistent support (AC support) for vi ∈
D(xi) on cij if (vi, vj) ∈ sol(cij). A value vi ∈ D(xi) is arc consistent (AC)
if and only if for all xj ∈ Γ (xi) vi has an AC support vj ∈ D(xj) on cij . A
domain D(xi) is arc consistent if it is non empty and all values in D(xi) are arc
consistent. A network is arc consistent if all domains in D are arc consistent. If
enforcing arc consistency on a network N leads to a domain wipe out, we say
that N is arc inconsistent.

A tuple (vi, vj) ∈ D(xi)×D(xj) is path consistent (PC) if and only if for any
third variable xk there exists a value vk ∈ D(xk) such that vk is an AC support
for both vi and vj . In such a case, vk is called witness for the path consistency
of (vi, vj).

A value vj ∈ D(xj) is a max restricted path consistent (maxRPC) support for
vi ∈ D(xi) on cij if and only if it is an AC support and the tuple (vi, vj) is path
consistent. A value vi ∈ D(xi) is max restricted path consistent on a constraint
cij if and only if ∃vj ∈ D(xj) maxRPC support for vi on cij . A value vi ∈ D(xi)
is max restricted path consistent iff for all xj ∈ Γ (xi) vi has a maxRPC support
vj ∈ D(xj) on cij . A domain D(xi) is maxRPC if it is non empty and all values
in D(xi) are maxRPC. A network is maxRPC if all domains in D are maxRPC.

We say that a local consistency LC1 is stronger than a local consistency LC2

(LC2 � LC1) if LC2 holds on any constraint network on which LC1 holds.
The problem of deciding whether a constraint network has solutions is called

the constraint satisfaction problem (CSP), and it is NP-complete. Solving a CSP
is done by backtrack search that maintains some level of consistency between
each branching step.

3 Parameterized Consistency

In this section we present an original approach to parameterize a level of consis-
tency LC stronger than arc consistency so that it degenerates to arc consistency
when the parameter equals 0, to LC when the parameters equals 1, and to levels
in between when the parameter is between 0 and 1. The idea behind this is to be
able to adjust the level of consistency to the instance to be solved, hoping that
such an adapted level of consistency will prune significantly more values than
arc consistency while being less time consuming than LC.

Parameterized consistency is based on the concept of stability of values. We
first need to define the ’distance to end’ of a value in a domain. This captures
how far a value is from the last in its domain. In the following, rank(v, S) is the
position of value v in the ordered set of values S.
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Fig. 1. Stability of supports on the example of the constraint x1 ≤ x2 with the domains
D(x1) = D(x2) = {1, 2, 3, 4}. (x1, 4) is not p-stable for AC.

Definition 1 (Distance to end of a value). The distance to end of a value
vi ∈ D(xi) is the ratio

Δ(xi, vi) = (|Do(xi)| − rank(vi, Do(xi)))/|Do(xi)|,

where Do(xi) is the initial domain of xi.

We see that the first value in Do(xi) has distance (|Do(xi)| − 1)/|Do(xi)| and
the last one has distance 0. Thus, ∀vi ∈ D(xi), 0 ≤ Δ(xi, vi) < 1.

We can now give the definition of what we call the parameterized stability
of a value for arc consistency. The idea is to define stability for values based
on the distance to the end of their AC supports. For instance, consider the
constraint x1 ≤ x2 with the domainsD(x1) = D(x2) = {1, 2, 3, 4} (see Figure 1).
Δ(x2, 1) = (4 − 1)/4 = 0.75, Δ(x2, 2) = 0.5, Δ(x2, 3) = 0.25 and Δ(x2, 4) = 0.
If p = 0.2, the value (x1, 4) is not p-stable for AC, because the first and only AC
support of (x1, 4) in the ordering used to look for supports, that is (x2, 4), has
a distance to end smaller than the threshold p. Proving that the pair (4, 4) is
inconsistent (by a stronger consistency) could lead to the pruning of (x1, 4). In
other words, applying a stronger consistency on (x1, 4) has more chances to lead
to its removal than applying it on for instance (x1, 1), which had no difficulty to
find its first AC support (distance to en of (x2, 1) is 0.75).

Definition 2 (p-stability for AC). A value vi ∈ D(xi) is p-stable for AC on
cij iff vi has an AC support vj ∈ D(xj) on cij such that Δ(xj , vj) ≥ p. A value
vi ∈ D(xi) is p-stable for AC iff ∀xj ∈ Γ (xi), vi is p-stable for AC on cij.

We are now ready to give the first definition of parameterized local consistency.
This first definition can be applied to any local consistency LC for which the
consistency of a value on a constraint is well defined. This is the case for instance
for all triangle-based consistencies [6,2].

Definition 3 (Constraint-based p-LC). Let LC be a local consistency
stronger than AC for which the LC consistency of a value on a constraint is
defined. A value vi ∈ D(xi) is constraint-based p-LC on cij iff it is p-stable for
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AC on cij, or it is LC on cij. A value vi ∈ D(xi) is constraint-based p-LC iff
∀cij, vi is constraint-based p-LC on cij. A constraint network is constraint-based
p-LC iff all values in all domains in D are constraint-based p-LC.

Theorem 1. Let LC be a local consistency stronger than AC for which the LC
consistency of a value on a constraint is defined. Let p1 and p2 be two parameters
in [0..1]. If p1 < p2 then AC � constraint-based p1-LC � constraint-based p2-
LC � LC.

Proof. Suppose that there exist two parameters p1, p2 such that 0 ≤ p1 < p2 ≤
1, and suppose that there exists a p2-LC constraint network N that contains
a p2-LC value (xi, vi) that is p1-LC inconsistent. Let cij be the constraint on
which (xi, vi) is p1-LC inconsistent. Then, �vj ∈ D(xj) that is an AC support
for (xi, vi) on cij such that Δ(xj , vj) ≥ p1. Thus, vi is not p2-stable for AC on
cij . In addition, vi is not LC on cij . Therefore, vi is not p2-LC, and N is not
p2-LC.

Definition 3 can be modified to a more coarse-grained version that is not de-
pendent on the consistency of values on a constraint. It will have the advantage
to apply to any type of strong local consistency, even those, like singleton arc
consistency, for which the consistency of a value on a constraint is not defined.

Definition 4 (Value-based p-LC). Let LC be a local consistency stronger
than AC. A value vi ∈ D(xi) is value-based p-LC if and only if it is p-stable
for AC or it is LC. A constraint network is value-based p-LC if and only if all
values in all domains in D are value-based p-LC.

Theorem 2. Let LC be a local consistency stronger than AC. Let p1 and p2 be
two parameters in [0..1]. If p1 < p2 then AC � value-based p1-LC � value-based
p2-LC � LC.

Proof. Suppose that there exist two parameters p1, p2 such that 0 ≤ p1 < p2 ≤
1, and suppose that there exists a p2-LC constraint network N that contains a
p2-LC value (xi, vi) that is p1-LC-inconsistent. vi is p1-LC-inconsistent means
that:

1. vi is not p1-stable for AC: ∃cij on which vi is not p1-stable for AC. Then
�vj ∈ D(xj) that is an AC support for (xi, vi) on cij such thatΔ(xj , vj) ≥ p1.
Therefore, vi is not p2-stable for AC on cij , then vi is not p2-stable for AC.

2. vi is LC inconsistent

(1) and (2) imply that vi is not p2-LC, and N is not p2-LC.

For both types of definitions of p-LC, we have the following property on the
extreme cases (p = 0, p = 1).

Corollary 1. Let LC1 and LC2 be two local consistencies stronger than AC.
We have: value-based 0-LC2 = AC and value-based 1-LC2 = LC. If the LC1

consistency of a value on a constraint is defined, we also have: constraint-based
0-LC1 = AC and constraint-based 1-LC1 = LC.



148 A. Balafrej et al.

4 Parameterized maxRPC: p-maxRPC

To illustrate the benefit of our approach, we apply parameterized consistency to
maxRPC to obtain the p-maxRPC level of consistency that achieves a consis-
tency level between AC and maxRPC.

Definition 5 (p-maxRPC). A value, a network, are p-maxRPC if and only if
they are constraint-based p-maxRPC.

From Theorem 1 and Corollary 1 we derive the following corollary.

Corollary 2. For any two parameters p1, p2, 0 ≤ p1 < p2 ≤ 1, AC � p1-
maxRPC � p2-maxRPC � maxRPC. 0-maxRPC = AC and 1-maxRPC =
maxRPC.

Algorithm 1. Initialization(X,D,C,Q)

1 begin
2 foreach xi ∈ X do
3 foreach vi ∈ D(xi) do
4 foreach xj ∈ Γ (xi) do
5 p-support ← false
6 foreach vj ∈ D(xj) do
7 if (vi, vj) ∈ cij then
8 LastACxi,vi,xj← vj
9 if Δ(xj , vj) ≥ p then

10 p-support ← true
11 LastPCxi,vi,xj← vj
12 break;

13 if searchPCwit(vi, vj) then
14 p-support ← true
15 LastPCxi,vi,xj← vj
16 break;

17 if ¬p-support then
18 remove vi from D(xi)
19 Q ← Q ∪ {xi}
20 break;

21 if D(xi) = ∅ then return false

22 return true

We propose an algorithm for p-maxRPC, based on maxRPC3, the best ex-
isting maxRPC algoritm. We do not describe maxRPC3 in full detail as it can
be found in [1]. We only describe procedures where changes to maxRPC3 are
necessary to design p-maxRPC3, a coarse grained algorithm that performs p-
maxRPC. We use light grey to emphasize the modified parts of the original
maxRPC3 algorithm.
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Algorithm 2. checkPCsupLoss(vj, xi)

1 begin
2 if LastACxj,vj ,xi∈ D(xi) then bi ← max(LastPCxj,vj ,xi+1,LastACxj,vj ,xi)
3 else bi ← max(LastPCxj,vj ,xi+1,LastACxj,vj ,xi+1)
4 foreach vi ∈ D(xi), vi ≥ bi do
5 if (vj , vi) ∈ cji then
6 if LastACxj,vj ,xi /∈ D(xi) & LastACxj,vj ,xi>LastPCxj,vj ,xi then
7 LastACxj,vj ,xi← vi

8 if Δ(xi, vi) ≥ p then LastPCxj,vj ,xi← vi return true
9 if searchPCwit(vj , vi) then LastPCxj,vj ,xi← vi return true

10 return false

Algorithm 3. checkPCwitLoss(xj, vj , xi)

1 begin
2 foreach xk ∈ Γ (xj) ∩ Γ (xi) do
3 witness ← false
4 if vk ←LastPCxj,vj ,xk∈ D(xk) then
5 if Δ(xk, vk) ≥ p then witness ← true
6 else
7 if LastACxj,vj ,xi∈ D(xi) & LastACxj,vj ,xi=LastACxk,vk,xi

8 OR LastACxj,vj ,xi∈ D(xi) & ( LastACxj,vj ,xi , vk) ∈ cik
9 OR LastACxk,vk,xi∈ D(xi) & ( LastACxk,vk,xi , vj) ∈ cij

10 then witness ← true
11 else
12 if searchACsup(xj , vj , xi) & searchACsup(xk, vk, xi) then
13 foreach vi ∈ D(xi), vi ≥ max(LastACxj,vj ,xi , LastACxk,vk,xi)

do
14 if (vj , vi) ∈ cji & (vk, vi) ∈ cki then
15 witness ← true
16 break;

17 if ¬witness & ¬checkPCsupLoss(vj , xk) then return false

18 return true

maxRPC3 uses a propagation list Q where it inserts the variables whose do-
mains have changed. It also uses two other data structures: LastAC and LastPC.
For each value (xi, vi) LastACxi,vi,xj stores the smallest AC support for (xi, vi)
on cij and LastPCxi,vi,xj stores the smallest PC support for (xi, vi) on cij (i.e.,
the smallest AC support (xj , vj) for (xi, vi) on cij such that (vi, vj) is PC). This
algorithm consists in two phases: initialization and propagation.
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In the initialization phase (algorithm 1) maxRPC3 checks if each value (xi, vi)
has a maxRPC-support (xj , vj) on each constraint cij . If not, it removes vi from
D(xi) and inserts xi in Q. To check if a value (xi, vi) has a maxRPC-support
on a constraint cij , maxRPC3 looks first for an AC-support (xj , vj) for (xi, vi)
on cij , then it checks if (vi, vj) is PC. In this last step, changes were necessary
to obtain p-maxRPC3 (lines 9-12). We check if (vi, vj) is PC (line 13) only if
Δ(xj , vj) is smaller than the parameter p (line 9).

The propagation phase of maxRPC3 consists in propagating the effect of
deletions. While Q is non empty, maxRPC3 extracts a variable xi from Q and
checks for each value (xj , vj) of each neighboring variable xj ∈ Γ (xi) if it is
not maxRPC because of deletions of values in D(xi). A value (xj , vj) becomes
maxRPC inconsistent in two cases: if its unique PC-support (xi, vi) on cij has
been deleted, or if we deleted the unique witness (xi, vi) for a pair (vj , vk) such
that (xk, vk) is the unique PC-support for (xj , vj) on cjk. So, to propagate dele-
tions, maxRPC3 checks if the last maxRPC support (last known support) of
(xj , vj) on cij still belongs to the domain of xi, otherwise it looks for the next
support (algorithm 2). If such a support does not exist, it removes the value vj
and adds the variable xj to Q. Then if (xj , vj) has not been removed in the
previous step, maxRPC3 checks (algorithm 3) whether there is still a witness
for each pair (vj , vk) such that (xk, vk) is the PC support for (xj , vj) on cjk. If
not, it looks for the next maxRPC support for (xj , vj) on cjk. If such a support
does not exist, it removes vj from D(xj) and adds the variable xj to Q.

In the propagation phase also, we modified maxRPC3 to check if the values
are still p-maxRPC instead of checking if they are maxRPC. In p-maxRPC3, the
last p-maxRPC support for (xj , vj) on cij is the last AC support if (xj , vj) is p-
stable for AC on cij . If not, it is the last PC support. Thus, p-maxRPC3 checks if
the last p-maxRPC support (last known support) of (xj , vj) on cij still belongs
to the domain of xi. If not, it looks (algorithm 2) for the next AC support
(xi, vi) on cij , and checks if (vi, vj) is PC (line 9) only when Δ(xi, vi) < p
(line 8). If no p-maxRPC support exists, p-maxRPC3 removes the value and
adds the variable xj to Q. If the value (xj , vj) has not been removed in the
previous phase, p-maxRPC3 checks (algorithm 3) whether there is still a witness
for each pair (vj , vk) such that (xk, vk) is the p-maxRPC support for vj on cjk
and Δ(xk, vk) < p. If not, it looks for the next p-maxRPC support for vj on cjk.
If such a support does not exist, it removes vj from D(xj) and adds the variable
xj to Q.

5 Experimental Validation of p-maxRPC

To validate the approach of parameterized local consistency, we made a first basic
experiment. The purpose of this experiment is to see if there exist problems on
which a given level of p-maxRPC, with a p uniform on all the constraint network
and static during the whole search is more efficient than AC or maxRPC, or both.
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We have implemented the algorithms that achieve p-maxRPC as described in
the previous section in our own binary constraint solver, in addition to maxRPC
(maxRPC3 version [1]) and AC (AC2001 version [3]). All these algorithms are
maintained during search. We tested these algorithms on several classes of prob-
lems of the International Constraint Solver Competition 091. We have only se-
lected problems involving binary constraints. To isolate the effect of propagation,
we used the lexicographic ordering for variables and values. We set the CPU time-
out to one hour. Our experiments were conducted on a 12-core Genuine Intel
machine with 16Gb of RAM running at 2.92GHz.

On each instance of our experiment, we ran AC, max-RPC, and p-maxRPC
for all values of p in {0.1, 0.2, . . . , 0.9}. Performance has been measured in terms
of CPU time in seconds, the number of visited nodes (NODE) and the number
of constraint checks (CCK). Results are presented as ”CPU time (p)”, where p
is the parameter for which p-maxRPC gives the best result.

Table 1 reports the performance of AC, maxRPC, and p-maxRPC for the
value of p producing the best CPU time, on Radio Link Frequency Assignment
Problems (RLFAPs), Geom problems, and queens knights problems. The CPU
time of the best algorithm is highlighted with bold. On RLFAP and Geom, we
observe the existence of a parameter p where p-maxRPC is faster than both AC
and maxRPC for most instances of these two classes of problems. On the queens-
knight problem, however, AC is always the best algorithm. In Figures 2 and 3, we
try to understand more closely what makes p-maxRPC better or worse than AC
and maxRPC. Figures 2 and 3 plot the performance (CPU, NODE and CCK)
of p-maxRPC for all values of p from 0 to 1 by steps of 0.1 against performance
of AC and maxRPC. Figure 2 shows an instance where p-maxRPC solves the
problem faster than AC and maxRPC for values of p in the range [0.3..0.8]. We
observe that p-maxRPC is faster than AC and maxRPC when it reduces the size
of the search space as much as maxRPC (same number of nodes visited) with a
number of CCK closer to the number of CCK produced by AC. Figure 3 shows
an instance where the CPU time for p-maxRPC is never better than both AC
and maxRPC. We see that if the CPU time for p-maxRPC is two to three times
better than maxRPC, it fails to improve AC because the number of constraint
checks performed by p-maxRPC is much higher than the number of constraint
checks performed by AC, whereas the number of nodes visited by p-maxRPC is
not significantly reduced compared to the number of nodes visited by AC. From
these observations, it thus seems that p-maxRPC outperforms AC and maxRPC
when it finds a compromise between the number of nodes visited (the power of
maxRPC) and the number of CCK needed to maintain (the light cost of AC).

In Figures 2 and 3 we can see that the CPU time for 1-maxRPC (respec-
tively 0-maxRPC) is greater than the CPU time for maxRPC (respectively AC)
although the two consistencies are equivalent. The reason is that p-maxRPC
performs tests on the distances. For p = 0, we also explain this difference by the
fact that p-maxRPC maintains data structures that AC does not use.

1 http://cpai.ucc.ie/09/

http://cpai.ucc.ie/09/
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Table 1. Performance (CPU time, nodes and constraint checks) of AC, p-maxRPC,
and maxRPC on various instances

AC p-maxRPC maxRPC

scen1-f8 CPU(s) Time-out 1.39 (0.2) 6.10
#nodes – 927 917
#ccks – 1,397,440 26,932,990

scen2-f24 CPU(s) Time-out 0.13 (0.3) 0.65
#nodes – 201 201
#ccks – 296,974 3,462,070

scen3-f10 CPU(s) Time-out 0.89 (0.5) 2.80
#nodes – 469 408
#ccks – 874,930 13,311,797

geo50-20d4-75-26 CPU(s) 111.48 17.80 (1.0) 15.07
#nodes 477,696 3,768 3,768
#ccks 96,192,822 40,784,017 40,784,017

geo50-20d4-75-43 CPU(s) 1,671.35 1,264.36 (0.5) 1,530.02
#nodes 4,118,134 555,259 279,130
#ccks 1,160,664,461 1,801,402,535 3,898,964,831

geo50-20d4-75-46 CPU(s) 1,732.22 371.30 (0.6) 517.35
#nodes 3,682,394 125,151 64,138
#ccks 1,516,856,615 584,743,023 1,287,674,430

geo50-20d4-75-84 CPU(s) 404.63 0.44 (0.6) 0.56
#nodes 2,581,794 513 333
#ccks 293,092,144 800,657 1,606,047

queensK10-5-add CPU(s) 27.14 30.79 (0.2) 98.44
#nodes 82,208 81,033 78,498
#ccks 131,098,933 148,919,686 954,982,880

queensK10-5-mul CPU(s) 43.89 83.27 (0.1) 300.74
#nodes 74,968 74,414 70,474
#ccks 104,376,698 140,309,576 1,128,564,278

6 Adaptative Parameterized Consistency: ap-maxRPC

In the previous section, we have defined p-maxRPC, a version of parameterized
consistency where the strong local consistency is maxRPC. We have performed
some initial experiments where p has the same value during the whole search and
everywhere in the constraint network. However, the algorithm we proposed to
enforce p-maxRPC does not specify how p is chosen. In this section, we propose
two possible ways to dynamically and locally adapt the parameter p in order to
solve the problem faster than both AC and maxRPC. Instead of using a single
parameter p during the whole search and for the whole constraint network, we
propose to use several local parameters and to adapt the level of local consis-
tency by dynamically adjusting the value of the different local parameters during
search. The idea is to concentrate the effort of propagation by increasing the level
of consistency in the most difficult parts of the instance. We can determine these
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Fig. 2. Instance where p-maxRPC out-
performs both AC and maxRPC
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Fig. 3. Instance where AC outperforms p-
maxRPC

difficult parts using heuristics based on conflicts in the same vein as the weight
of a constraint or the weighted degree of a variable in [5].

6.1 Constraint-Based ap-maxRPC : apc-maxRPC

The first technique we propose, called constraint-based ap-maxRPC, assigns a
parameter p(ck) to each constraint ck in C. We define this parameter to be
correlated to the weight of the constraint. The idea is to apply a higher level of
consistency in parts of the problem where the constraints are the most active.

Definition 6 (The weight of a constraint [5]). The weight w(ck) of a con-
straint ck ∈ C is an integer that is incremented every time a domain wipe out
occurs while performing propagation on this constraint.

We define the adaptive parameter p(ck) local to constraint ck in such a way that
it is greater when the weight w(ck) is higher wrt to other constraints.

∀ck ∈ C, p(ck) =
w(ck)−minc∈C(w(c))

maxc∈C(w(c)) −minc∈C(w(c))
(1)

Equation 1 is normalized so that we are guaranteed that 0 ≤ p(ck) ≤ 1 for
all ck ∈ C and that there exists ck1 with p(ck1) = 0 (the constraint with lowest
weight) and ck2 with p(ck2) = 1 (the constraint with highest weight).

We are ready to define adaptive parameterized consistency based on con-
straints.
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Definition 7 (constraint-based ap-maxRPC). A value vi ∈ D(xi) is
constraint-based ap-maxRPC (or apc-maxRPC) on a constraint cij if and only
if it is constraint-based p(cij)-maxRPC. A value vi ∈ D(xi) is apc-maxRPC
iff ∀cij, vi is apc-maxRPC on cij . A constraint network is apc-maxRPC iff all
values in all domains in D are apc-maxRPC.

6.2 Variable-Based ap-maxRPC: apx-maxRPC

The technique proposed in Section 6.1 can only be used on consistencies where
the consistency of a value on a constraint is defined. We give a second technique
which can be used on constraint-based or variable-based local consistencies in-
differently. We instantiate our definitions to maxRPC but the extension to other
consistencies is direct. We call this new technique variable-based ap-maxRPC.
We need to define the weighted degree of a variable as the aggregation of the
weights of all constraints involving it.

Definition 8 (The weighted degree of a variable [5]). The weighted degree
wdeg(xi) of a variable xi is the sum of the weights of the constraints involving
xi and one other uninstantiated variable.

We associate each variable with an adaptive local parameter based on its
weighted degree.

∀xi ∈ X, p(xi) =
wdeg(xi)−minx∈X(wdeg(x))

maxx∈X(wdeg(x)) −minx∈X(wdeg(x))
(2)

As in Equation 1, we see that the local parameter is normalized so that we are
guaranteed that 0 ≤ p(xi) ≤ 1 for all xi ∈ X and that there exists xk1 with
p(xk1) = 0 (the variable with lowest weighted degree) and xk2 with p(xk2) = 1
(the variable with highest weighted degree).

Definition 9 (variable-based ap-maxRPC). A value vi ∈ D(xi) is variable-
based ap-maxRPC (or apx-maxRPC) if and only if it is value-based p(xi)-
maxRPC. A constraint network is apx-maxRPC iff all values in all domains
in D are apx-maxRPC.

7 Experimental Evaluation of ap-maxRPC

In Section 5 we have shown that maintaining a static form of p-maxRPC during
the whole search can lead to a promising trade-off between computational effort
and pruning when all algorithms follow the same static variable ordering. In this
section, we want to put our contributions in the real context of a solver using
the best known variable ordering heuristic, dom/wdeg, though it is known that
this heuristic is so good that it reduces a lot the differences in performance that
other features of the solver could provide. We have compared the two variants of
adaptive parameterized consistency introduced in Section 6 to AC and maxRPC.
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We ran the four algorithms on radio link frequency assignment problems, geom
problems, and queens knights problems.

Table 2 reports some representative results. A first observation is that, thanks
to the dom/wdeg heuristic, we were able to solve more instances before the cutoff
of one hour, especially the scen11 variants of RLFAP. A second observation is
that apc-maxRPC and apx-maxRPC are both faster than at least one of the
two extreme consistencies (AC and maxRPC) on all instances except scen7-
w1-f4 and geo50-20-d4-75-30. Third, when apx-maxRPC and/or apc-maxRPC
are faster than both AC and maxRPC (scen1-f9, scen2-f25, scen11-f9, scen11-
f10 and scen11-f11), we observe that the gap in performance in terms of nodes
and CCKs between AC and maxRPC is significant. Except for scen7-w1-f4, the
number of nodes visited by AC is three to five times greater than the number
of nodes visited by maxRPC and the number of constraint checks performed by
maxRPC is twelve to sixteen times greater than the number of constraint checks
performed by AC. For the Geom instances the CPU time of the ap-maxRPC
algorithms is between AC and maxRPC, and it is never lower than the CPU
time of AC. This probably means that when solving these instances with the
dom/wdeg heuristic, there is no need for sophisticated local consistencies. In
general we see that the ap-maxRPC algorithms fail to improve both the two
extreme consistencies simultaneously for the instances where the performance
gap between AC and maxRPC is low.

If we compare apx-maxRPC to apc-maxRPC, we observe that although apx-
maxRPC is coarser in its design than apc-maxRPC, apx-maxRPC is often faster
than apc-maxRPC. We can explain this by the fact that the constraints initially
all have the same weight equal to 1. Hence, all local parameters ap(ck) initially
have the same value 0, so that apc-maxRPC starts resolution by applying AC
everywhere. It will start enforcing some amount of maxRPC only after the first
wipe-out occurred. On the contrary, in apx-maxRPC, when constraints all have
the same weight, the local parameter p(xi) is correlated to the degree of the vari-
able xi. As a result, apx-maxRPC benefits from the filtering power of maxRPC
even before the first wipe-out.

In Table 2, we reported only the results on a few representative instances.
Table 3 summarizes the whole set of experiments. It shows the average CPU
time for each algorithm on all instances of the different classes of problems
tested. We considered only the instances solved before the cutoff of one hour by
at least one of the four algorithms. To compute the average CPU time of an
algorithm on a class of problems, we add the CPU time needed to solve each
instance solved before the cutoff of one hour, and for the instances not solved
before the cutoff, we add one hour. We observe that the adaptive approach is,
on average, faster than the two extreme consistencies AC and maxRPC, except
on the Geom class.

In apx-maxRPC and apc-maxRPC, we update the local parameters p(xi) or
p(ck) at each node in the search tree. We could wonder if such a frequent update
does not produce too much overhead. To answer this question we performed a
simple experiment in which we update the local parameters every 10 nodes only.
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Table 2. Performance (CPU time, nodes and constraint checks) of AC, variable-
based ap-maxRPC (apx-maxRPC), constraint-based ap-maxRPC (apc-maxRPC), and
maxRPC on various instances

AC apx-maxRPC apc-maxRPC maxRPC

scen1-f9 CPU(s) 90.34 31.17 33.40 41.56
#nodes 2,291 1,080 1,241 726
#ccks 3,740,502 3,567,369 2,340,417 50,045,838

scen2-f25 CPU(s) 70.57 46.40 27.22 81.40
#nodes 12,591 4,688 3,928 3,002
#ccks 15,116,992 38,239,829 8,796,638 194,909,585

scen6-w2 CPU(s) 7.30 1.25 2.63 0.01
#nodes 2,045 249 610 0
#ccks 2,401,057 1,708,812 1,914,113 85,769

scen7-w1-f4 CPU(s) 0.28 0.17 0.54 0.30
#nodes 567 430 523 424
#ccks 608,040 623,258 584,308 1,345,473

scen11-f9 CPU(s) 2,718.65 1,110.80 1,552.20 2,005.61
#ccks 103,506 40,413 61,292 32,882
#nodes 227,751,301 399,396,873 123,984,968 3,637,652,122

scen11-f10 CPU(s) 225.29 83.89 134.46 112.18
#ccks 9,511 3,510 4,642 2,298
#nodes 12,972,427 17,778,458 6,717,485 156,005,235

scen11-f11 CPU(s) 156.76 39.39 93.69 76.95
#ccks 7,050 2,154 3,431 1,337
#nodes 7,840,552 10,006,821 5,143,592 91,518,348

scen11-f12 CPU(s) 139.91 69.50 88.76 61.92
#ccks 7,050 2,597 3,424 1,337
#nodes 7,827,974 11,327,536 5,144,835 91,288,023

geo50-20d4-75-19 CPU(s) 242.13 553.53 657.72 982.34
#nodes 195,058 114,065 160,826 71,896
#ccks 224,671,319 594,514,132 507,131,322 2,669,750,690

geo50-20d4-75-30 CPU(s) 0.84 1.01 1.07 1.02
#nodes 359 115 278 98
#ccks 261,029 432,705 313,168 1,880,927

geo50-20d4-75-84 CPU(s) 0.02 0.09 0.05 0.29
#nodes 59 54 59 52
#ccks 33,876 80,626 32,878 697,706

queensK20-5-mul CPU(s) 787.35 2,345.43 709.45 Time-out
#codes 55,596 40,606 41,743 –
#ccks 347,596,389 6,875,941,876 379,826,516 –

queensK15-5-add CPU(s) 24.69 17.01 14.98 35.05
#codes 24,639 12,905 12,677 11,595
#ccks 90,439,795 91,562,150 58,225,434 394,073,525



Adaptive Parameterized Consistency 157

Table 3. Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC),
constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of each
class of problems tested, when the local parameters are updated at each node

AC apx-maxRPC apc-maxRPC maxRPC

geom 69.28 180.57 191.03 279.30
Average(CPU) scen 18.95 9.63 8.30 13.94

scen11 810.15 325.90 467.28 564.17
queensK 135.95 395.41 121.75 610.51

Table 4. Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC),
constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of each
class of problems tested, when the local parameters are updated every 10 nodes

AC apx-maxRPC apc-maxRPC maxRPC

geom 69.28 147.20 189.42 279.30
Average(CPU) scen 18.95 7.40 8.86 13.94

scen11 810.15 311.74 417.97 564.17
queensK 135.95 269.51 117.18 610.52

We re-ran the whole set of experiments with this new setting. Table 4 reports
the CPU time average results. We observe that when the local parameters are
updated every 10 nodes, the gain for the adaptive approach is, on average, greater
than when the local parameters are updated at each node. This gives room for
improvement, by trying to adapt the frequency of update of these parameters.

8 Conclusion

We have introduced the notion of stability of values for arc consistency, a notion
based on the depth of their supports in their domain. We have used this notion
to propose parameterized consistency, a technique that allows to define levels
of local consistency of increasing strength between arc consistency and a given
strong local consistency. We have instantiated the generic parameterized con-
sistency approach to max restricted path consistency. We have experimentally
shown that the concept of parameterized consistency is viable. Then we have
introduced two techniques which allow us to make the parameter adaptable dy-
namically and locally during search. We have evaluated these two techniques
experimentally and we have observed that adapting the level of local consis-
tency during search using the parameterized consistency concept is a promising
approach that can outperform both MAC and a strong local consistency on many
problems.



158 A. Balafrej et al.

References

1. Balafoutis, T., Paparrizou, A., Stergiou, K., Walsh, T.: New algorithms for max
restricted path consistency. Constraints 16(4), 372–406 (2011)

2. Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming, ch. 3, Elsevier (2006)
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Abstract. Some applications require the interactive resolution of a constraint
problem by a human user. In such cases, it is highly desirable that the person who
interactively solves the problem is not given the choice to select values that do
not lead to solutions. We call this property global inverse consistency. Existing
systems simulate this either by maintaining arc consistency after each assignment
performed by the user or by compiling offline the problem as a multi-valued de-
cision diagram. In this paper, we define several questions related to global inverse
consistency and analyse their complexity. Despite their theoretical intractability,
we propose several algorithms for enforcing global inverse consistency and we
show that the best version is efficient enough to be used in an interactive setting
on several configuration and design problems. We finally extend our contribution
to the inverse consistency of tuples.

1 Introduction

Constraint Programming (CP) is widely used to express and solve combinatorial prob-
lems. Once the problem is modelled as a constraint network, efficient solving techniques
generate a solution satisfying the constraints, if such a solution exists. However, there
are situations where the user has strong opinions about the way to build good solu-
tions to the problem but some of the desirable/undesirable combinations will become
clear only once some of the variables are assigned. In this case, the constraint solver
should be there to assist the user in the solution design and to ensure her choices re-
main in the feasible space, removing the combinatorial complexity from her shoulders.
See the Synthia system for protein design as an early example of using CP to interac-
tively solve a problem [12]. Another well known example of such an interactive solving
of constraint-based models is product configuration [7,1]. The person modelling the
product as a constraint network for the company knows its technical and marketing re-
quirements. She models the feasibility, availability and/or marketing constraints about
the product. This constraint network captures the catalog of possible products, which
may contain billions of solutions, but in an intentional and compact way. Nevertheless,
the modeller does not know the constraints or preferences of the customer(s). Now, this
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is the customer who will look for solutions, with her own constraints and preferences
on the price, the colour, or any other configurable feature.

These applications refer to an interactive solving process where the user selects val-
ues for variables according to her own preferences and the system checks the constraints
of the network, until all variables are assigned and satisfy all constraints of the network.
This solving policy raises an important issue: the person who interactively solves the
problem should not be led to a dead-end where satisfying all constraints of the network
is impossible. Existing interactive solving systems address this issue either by compil-
ing the constraint network into a multivalued decision diagram (MDD) at the modelling
phase [1,9,10] or by enforcing arc consistency on the network after each assignment
performed by the user [12]. Compiling the constraint network as a MDD can require
a significant amount of time and space. That is why compilation is performed offline
(before the solving session). As a consequence, configurators based on a MDD compi-
lation are restricted to static constraint networks: non-unary constraints can neither be
added nor removed once the network compiled. It is thus not possible for the user to per-
form complex requirements, e.g., she is interested in travelling to Venezia only during
the carnival period. Arc and dynamic arc consistencies require a lighter computational
effort but the user can be trapped in dead-ends, which is very risky from a commercial
point of view. It has been shown in [5] that arc consistency (and even higher levels of
local consistency) can be very bad approximations of the ideal state where all values
remaining in the network can be extended to solutions.

The message of our paper is that for many of the problems that require interactive
solving of the problem, and especially for real problems, it is computationally feasible
to maintain the domains of the variables in a state where they only contain those values
which belong to a complete solution extending the current choices of the user. Inspired
by the nomenclature used in [6] and [15], we call this level of consistency global inverse
consistency (GIC).

Our contribution addresses several aspects. First, we formally characterise the ques-
tions that underlie the interactive constraint solving loop and we show that they are all
NP-hard. Second, we provide several algorithms with increasing sophistication to ad-
dress those tasks and we experimentally show that the most efficient one is efficient
enough to be used in an interactive constraint solving loop of several non trivial con-
figuration and design problems. Third, we finally extend all these contributions to the
positive consistency of constraints, which is a problem closely related to GIC that ap-
pears in configuration.

2 Background

A (discrete) constraint network (CN) N is composed of a finite set of n variables, de-
noted by vars(N), and a finite set of e constraints, denoted by cons(N). Each variable
x has a domain which is the finite set of values that can be assigned to x. The initial
domain of a variable x is denoted by dominit(x) whereas the current domain of x is
denoted by dom(x); we always have dom(x) ⊆ dominit(x). The maximum domain
size for a given CN will be denoted by d. To simplify, a variable-value pair (x, a) such
that x ∈ vars(N) and a ∈ dom(x) is called a value of N . Each constraint c involves
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an ordered set of variables, called the scope of c and denoted by scp(c), and is semanti-
cally defined by a relation, denoted by rel(c), which contains the set of tuples allowed
for the variables involved in c. The arity of a constraint c is the size of scp(c), and will
usually be denoted by r.

An instantiation I of a set X = {x1, . . . , xk} of variables is a set {(x1, a1), . . .,
(xk, ak)} such that ∀i ∈ 1..k, ai ∈ dominit(xi); X is denoted by vars(I) and each
ai is denoted by I[xi]. An instantiation I on a CN N is an instantiation of a set X ⊆
vars(N) ; it is complete if vars(I) = vars(N). I is valid on N iff ∀(x, a) ∈ I, a ∈
dom(x). I covers a constraint c iff scp(c) ⊆ vars(I), and I satisfies a constraint c with
scp(c) = {x1, . . . , xr} iff (i) I covers c and (ii) the tuple (I[x1], . . . , I[xr]) ∈ rel(c).
An instantiation I on a CN N is locally consistent iff (i) I is valid on N and (ii) every
constraint of N covered by I is satisfied by I . A solution of N is a complete locally
consistent instantiation on N ; sols(N) denotes the set of solutions of N . A CN N is
satisfiable iff sols(N) �= ∅.

The ubiquitous example of constraint propagation is enforcement of generalised arc
consistency (GAC) which removes values from domains without reducing the set of
solutions of the constraint network. A value (x, a) of a CN N is GAC on N iff for every
constraint c of N involving x, there exists a valid instantiation I of scp(c) such that I
satisfies c and I[x] = a. N is GAC iff every value of N is GAC. Enforcing GAC means
removing GAC-inconsistent values from domains until the constraint network is GAC.
In this paper, we shall refer to MAC which is an algorithm considered to be among the
most efficient generic approaches for the solution of CNs. MAC [17] explores the search
space depth-first and enforces (generalised) arc consistency after each decision taken
(variable assignment or value refutation) during search. A past variable is a variable
explicitly assigned by the search algorithm whereas a future variable is a variable not
(explicitly) assigned. The set of future variables of a CN N is denoted by varsfut(N).

3 Problems Raised by Interactive Constraint Solving

In this section we formally characterise the questions that underlie the interactive con-
straint solving loop and we study their theoretical complexity.

3.1 Formalization

We first need to define global inverse consistency.

Definition 1 (Global Inverse Consistency). A value (x, a) of a CN N is globally in-
verse consistent (GIC) iff ∃I ∈ sols(N) | I[x] = a. A CN N is GIC iff every value of
N is GIC.

The GIC closure of N is the CN obtained from N by removing all the values that do
not belong to a solution of N . The obvious problems that follow are to check whether a
constraint network is GIC or not, and to enforce GIC.

Problem 1 (Deciding GIC). Given a CN N , is N GIC?
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Problem 2 (Computing GIC). Given a CN N , compute the GIC closure of N .

As we are interested in interactive solving, we define the problem of restoring (main-
taining) GIC after the user has performed a variable assignment.

Problem 3 (Restoring GIC). Given a CN N that is GIC, and a value (x, a) of N ,
restore GIC after the assignment x = a has been performed.

In a configuration setting, as soon as some mandatory variables have been set, the
user can ask for an automatic completion of the remaining variables. Hence the defini-
tion of following problem:

Problem 4 (Solving a GIC network). Given a CN N that is GIC, find a solution to N .

3.2 Complexity Results

Not surprisingly, the basic questions related to GIC (Problems 1 and 2) are intractable.

Theorem 1 (Problem 1). Deciding whether a constraint network N is GIC is NP-
complete, even if N is satisfiable.

Proof. We first prove membership to NP. For each value (x, a) of N , it is sufficient to
provide a solution I of N such that the projection I[x] of I on variable x is equal to a.
This certificate has size n · n · d and can be checked in polynomial time.

Completeness for NP is proved by reducing 3COL to the problem of deciding whether
a satisfiable CN is GIC. Take any instance of the 3COL problem, that is, a graph
G = (V,E). Consider the CN N where vars(N) = {xi | i ∈ V }, dom(xi) =
{0, 1, 2, 3}, ∀i ∈ V , and cons(N) = {(xi �= xj) ∨ (xi = 0 ∧ xj = 0) | (i, j) ∈ E}.
Clearly [0, . . . , 0] is a solution of N , and by construction, N has other solutions iff G
is 3-colourable. Now, if G is 3-colourable, N is GIC because colours are completely
interchangeable. Therefore, N is GIC iff G is 3-colourable. 	

Our proof shows that hardness for deciding GIC holds for binary CNs (i.e., CNs only in-
volving binary constraints). We have another proof, inspired from that used in Theorem
3 in [2], that shows that deciding GIC is still hard for Boolean domains and quaternary
constraints.

Theorem 2 (Problem 2). Computing the GIC closure of a constraint network N is
NP-hard and NP-easy, even if N is satisfiable.

Proof. We prove NP-easiness by showing that a polynomial number of calls to a NP
oracle are sufficient to build the GIC closure of N . For each value (x, a) of N , we ask
the NP oracle whether N with the extra constraint x = a is satisfiable (we call this
an inverse check). Once all values have been tested, we build the GIC closure of N
by removing from each dom(x) all values a for which the oracle test returned ’no’.
Hardness is a direct corollary of Theorem 1. 	

Notice that the two previous intractability results are still valid when the CN is satisfi-
able, as is the case at the beginning of an interactive resolution session.

We finally show that Problems 3 and 4 are unfortunately not easier than checking
GIC or enforcing GIC from scratch. But they are not harder.
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Theorem 3 (Problem 3). Given a CN N that is GIC, and a value (y, b) of N , com-
puting the GIC closure of the CN N ′, where vars(N ′) = vars(N) and cons(N ′) =
cons(N) ∪ {y = b} is NP-hard and NP-easy.

Proof. NP-easiness is proved as in the proof of Theorem 2 by showing that a polyno-
mial number of calls to a NP oracle are sufficient to build the GIC closure of N ′. For
each value (x, a) of N (except values (y, a) with a �= b), we ask the NP oracle whether
N ′ with the extra constraint x = a is satisfiable. Once all values have been tested, we
build the closure of N ′ by removing from dom(y) all values a �= b and removing from
each dom(x) all values a for which the oracle test returned ’no’. Hardness is a direct
corollary of Theorem 7 in [2]. 	


Theorem 4 (Problem 4). Generating a solution to a GIC constraint network cannot
be done in polynomial time, unless P = NP .

Proof. The following proof is derived from [16]. But it is also a corollary of the recent
and more complex Theorem 3.1 in [8].

Suppose we have an algorithm A that generates a solution to a GIC constraint net-
work N in time bounded by a polynom p(|N |). Take any instance of the 3COL prob-
lem, that is, a graph G = (V,E). Consider the CN N where vars(N) = {xi | i ∈ V },
dom(xi) = {0, 1, 2}, ∀i ∈ V , and cons(N) = {xi �= xj | (i, j) ∈ E}. N has a solu-
tion iff G is 3-colourable. Now, if G is 3-colourable,N is GIC because colours are com-
pletely interchangeable. Thus, it is sufficient to run A during p(|N |) steps. If it returns
a solution to N , then the 3COL instance is satisfiable. Otherwise, the 3COL instance
is unsatisfiable. Therefore, as 3COL is NP-complete, there cannot exist a polynomial
algorithm for generating a solution to a GIC constraint network, unless P = NP . 	


4 GIC Algorithms

In this section, we introduce four algorithms to enforce global inverse consistency.
These GIC algorithms use increasingly sophisticated data structures and techniques that
have recently proved their worth in filtering algorithms proposed in the literature; e.g.,
see [14,18]. To simplify our presentation, we assume that the CNs are satisfiable, which
is the case in interactive resolution, allowing us to avoid handling domain wipe-outs in
the GIC procedures. Note that these algorithms can be used to enforce GIC, but also to
maintain it during a user-driven search. This is why we refer to the set varsfut(N) of
future variables in some instructions.

The first algorithm, GIC1, described in Algorithm 1, is really basic: it will be used
as our baseline during our experiments. For each value a in the domain of a future vari-
able x, a solution for the CN N where x is assigned the value a, denoted by N |x=a,
is sought using a complete search algorithm. This search algorithm, called here search-
SolutionFor, either returns the first solution that can be found, or the special value nil.
Our implementation choice will be the algorithm MAC that maintains (G)AC during a
backtrack search [17]. Hence, in Algorithm 1, when it is proved with searchSolutionFor
that no solution exists, i.e., I = nil, the value a can be deleted. Note that, in contrary to
weaker forms of consistency, when a value is pruned there is no need for GIC to repeat
the process of iterating over the values remaining in the CN.
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Algorithm 1. GIC1(N : CN)

1 foreach variable x ∈ varsfut(N) do
2 foreach value a ∈ dom(x) do
3 I ← searchSolutionFor(N |x=a)
4 if I = nil then
5 remove a from dom(x)

Algorithm 2. handleSolution2/3(x: variable, I: instantiation)

1 foreach variable y ∈ varsfut(N) | y is revised after x do
2 if stamp[y][I [y]] �= time then
3 stamp[y][I [y]] ← time

4 nbGic[y] + +

Algorithm 3. isValid(X : set of variables, I : instantiation): Boolean

1 foreach variable x ∈ X do
2 if I [x] /∈ dom(x) then
3 return false

4 return true

Algorithm 4. GIC2/3(N : CN)
Data: GIC3 is obtained by considering light grey coloured instructions between lines 5

and 6, and after line 10
1 time++

2 foreach variable x ∈ varsfut(N) do
3 nbGic[x] ← 0

4 foreach variable x ∈ varsfut(N) | nbGic[x] < |dom(x)| do
5 foreach value a ∈ dom(x) | stamp[x][a] < time do

if isValid(vars(N),residue[x][a]) then
handleSolution2/3(x,residue[x][a])
continue

6 I ← searchSolutionFor(N |x=a)
7 if I = nil then
8 remove a from dom(x)
9 else

10 handleSolution2/3(x,I)
residue[x][a] ← I
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The second algorithm, GIC2 described in Algorithm 4 (ignoring light grey lines),
uses timestamping. This is useful when GIC is maintained during a user-driven search.
We use an integer variable time for counting time, and we introduce a two-dimensional
array stamp that associates with each value (x, a) of the CN the last time (value of
stamp[x][a]) a solution was found for that value. We also assume that variables are
implicitly totally ordered (for example, in lexicographic order). Then, the idea is to
increment the value of the variable time whenever a new call to GIC2 is performed (see
line 1) and to test time against each value (x, a) of the CN (see line 5) to determine
whether it is necessary or not to search for a solution for (x, a). When a solution I
is found, function handleSolution2/3 is called at line 10 in order to update stamps.
Actually, we only update the stamps of values in I corresponding to variables that are
processed after x in the loop of revisions (line 4) in Algorithm 4. These are the variables
that have not been processed yet by the loop at line 4 of Algorithm 4. Finally, by further
introducing a one-dimensional array nbGic that associates with each variable x of the
CN the number of values in dom(x) that have been proved to be GIC, it is possible
to avoid some iterations of loop 5; see initialization at lines 2-3, testing at line 4 and
update at line 4 of Algorithm 2.

The third algorithm, GIC3, described in Algorithm 4 when considering light grey
lines, can be seen as a refinement of GIC2 obtained by exploiting residues, which
correspond to solutions that have been previously found. Here, we introduce a two-
dimensional array residue that associates with each value (x, a) of the CN the last
solution found for this value (potentially, during another call to GIC3). Because resid-
ual solutions may not be valid anymore, for each value (x, a) we need to test the validity
of residue[x][a] by calling the function isValid; see instructions between lines 5 and
6. If the residue is valid, we call handleSolution2/3 to update the other data structures,
and we continue with the next value in the domain of x. A validity test, Algorithm 3,
only checks that all values in a given complete instantiation are still present in the cur-
rent domains. Of course, when a new solution is found, we record it as a residue; see
instruction after line 10.

Our last algorithm, GIC4 described in Algorithm 6, is based on an original use of
simple tabular reduction [18]. The principle is to record all solutions found during the
enforcement of GIC in a table, so that an (adaptation of an) algorithm such as STR2
[13] can be applied. The current table is given by all elements of an array solutions

at indices ranging from 1 to nbSolutions. As for STR2, we introduce two sets of vari-
ables called Sval and Ssup. The former allows us to limit validity control of solutions
to the variables whose domains have changed recently (i.e., since the last execution of
GIC4). This is made possible by reasoning from domain cardinalities, as performed at
lines 3 and 26–27 with the array lastSize. The latter (Ssup) contains any future vari-
able x for which at least one value is not in the array gicValues[x], meaning that it
has still to be proved GIC. Related details can be found in [13]. After the initialization
of Sval and Ssup (lines 1–8), each instantiation solutions[i] of the current table is
processed (lines 11–16). If it remains valid (hence, a solution), we update structures
gicValues and Ssup by calling the function handleSolution4. Otherwise, this instanti-
ation is deleted by swapping it with the last one. The rest of the algorithm (lines 17–25)
just tries to find a solution support for each value not present in gicValues. When a
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Algorithm 5. handleSolution4(I : instantiation)

1 foreach variable x ∈ Ssup do
2 if I [x] /∈ gicValues[x] then
3 gicValues[x] ← gicValues[x] ∪ {I [x]}
4 if |gicValues[x]| = |dom(x)| then
5 Ssup ← Ssup \ {x}

Algorithm 6. GIC4(N : CN)

// Initialization of structures

1 Sval ← ∅
2 foreach variable x ∈ vars(N) do
3 if |dom(x)| �= lastSize[x] then
4 Sval ← Sval ∪ {x}

5 Ssup ← ∅
6 foreach variable x ∈ varsfut(N) do
7 gicValues[x] ← ∅
8 Ssup ← Ssup ∪ {x}
// The table of current solutions is traversed

9 i ← 1
10 while i ≤ nbSolutions do
11 if isValid(Sval,solutions[i]) then
12 handleSolution4(solutions[i])
13 i++

14 else
15 solutions[i] ← solutions[nbSolutions]
16 nbSolutions −−

// Search for values not currently supported is performed
17 foreach variable x ∈ Ssup do
18 foreach value a ∈ dom(x) \ gicValues[x] do
19 I ← searchSolutionFor(N |x=a)
20 if I = nil then
21 remove a from dom(x)
22 else
23 nbSolutions ++
24 solutions[nbSolutions] ← I
25 handleSolution4(I)

26 foreach variable x ∈ varsfut(N) do
27 lastSize[x] ← |dom(x)|
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new solution is found, it is recorded in the current table (lines 23–24) and handleSolu-
tion4 is called (line 25).

Theorem 5. Algorithms GIC1, GIC2, GIC3 and GIC4 enforce GIC.

Proof. (sketch) This is immediate for GIC1. For GIC2 and GIC3, the use of timestamps
and residues permits us to avoid useless inverse checks. For GIC4, the same arguments
as those used for proving that STR2 enforces GAC hold. Simply, additional inverse
checks are performed for values not collected (in gicValues) during the traversal of
the current table. 	

The worst-case space complexity (for the specific data structures) of GIC1 is O(1).
For GIC2 and GIC3, this is O(nd) because nbGic is O(n), stamp and residue are
O(nd). For GIC4, Sval, Ssup and lastSize are O(n), gicValues is O(nd), and the
structure solutions is O(n2d). The time complexity of the GIC algorithms can be
expressed in term of the number of calls to the (oracle) searchSolutionFor. For GIC1,
this is O(nd). For GIC2, in the best-case, only d calls are necessary, one call permitting
to prove (through timestamping) that n values are GIC. For GIC3 and GIC4, still in
the best-case and assuming the case of maintaining GIC (i.e., after the assignment of a
variable by the user), no call to the oracle is necessary (residues and the current table
permit alone to prove that all values are GIC). This rough analysis of time complexity
suggests that GIC3 and GIC4 might be the best options.

5 Tuple Inverse Consistency

Up to this point, we have based our analysis on the last part of the interactive resolution
process, i.e., the specification of a solution of the constraint network by the user. This
allowed us to make the simplifying assumptions that the user is only looking at the
domains of the variables. After each variable assignment, she just wants to know which
values remain feasible for non assigned variables.

The situation is different at the modelling phase, e.g., the engineers of the company
dynamically build the set of constraints that define the configurable product. At this
point, GIC is also a crucial functionality, not for deriving a solution (a end product),
but to ensure that each of the options proposed in the catalog (each of the values in the
domains of the constraint network) is present in at least one end product. It is meaningless
to propose (and advertise on) a sophisticated air bag system when it cannot equip any
car in practice.

In that modelling phase, the need for information on the extensibility to solutions is
not restricted to domains, but extends to (some of) the constraints of the model. Many
constraints have actually a double meaning. Following the standard semantics of con-
straints, the first one is negative: technical constraints forbid combinations of variables.
The second one is positive: the possibilities that are left by some (generally, table) con-
straints have to be effective. Let us assume, for instance, that a constraint means ’The
level of equipment of vehicles with type M3 engine can be middle level or luxurious’.
If some other constraint excludes the vehicles M3 engine for luxurious level of equip-
ment, the specification of the product is considered as inconsistent. This property has
been called positive consistency in [2] and actually refers to the extensibility to a solu-
tion of each of the tuples allowed by the constraint of interest:
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Definition 2 (Tuple Inverse Consistency). Given a CN N , a tuple τ on a set of vari-
able X is said to be inverse consistent (TIC) in N iff there exists a solution I of N such
that ∀x ∈ X, I[x] = τ [x].

Definition 3 (Positive Consistency). A constraint c is positively consistent in N iff for
any valid tuple τ ∈ rel(c), τ is TIC.

The positive closure of a constraint c is the constraint obtained from c by removing
from rel(c) all the valid tuples that are not TIC in N . The obvious problem that follows
is to check whether a constraint is positively consistent or not.

Problem 5 (Deciding Positive Consistency). Given a CN N and a constraint c of N ,
is c positively consistent in N?

Deciding positive consistency has been shown to be NP-hard, even when the con-
straint network is known to be satisfiable ([2]). The other problem of interest is to re-
store positive consistency on a constraint after the user has refined her model by adding
a constraint to the network.

Problem 6 (Restoring Positive Consistency). Given a CN N , given a positive consis-
tent constraint c in N , given any extra constraint c′ not in cons(N), compute the new
positive closure of c in the network obtained from N by adding c′ to cons(N).

6 Experiments

In order to show the practical interest of our approach, we have performed several exper-
iments mainly using a computer with processors Intel(R) Core(TM) i7-2820QM CPU
2.30GHz; for random instances, we used a cluster of Xeon 3.0GHz with 13GB of RAM.
Our main purpose was to determine whether maintaining GIC is a viable option for
configuration-like problem instances and for interactive puzzle creation, as well as to
compare the relative efficiency of the four GIC algorithms described in Section 4.

Table 1. Features of six Renault configuration instances

n d e r t D T

souffleuse 32 12 35 3 55 145 350
megane 99 42 113 10 48,721 396 194,838
master 158 324 195 12 26,911 732 183,701

small 139 16 147 8 222 340 3,044
medium 148 20 174 10 2,718 424 9,532
big 268 324 332 12 26,881 1,273 225,989

In Table 1, we show relevant features of car configuration instances, generated with
the help of our industrial partner Renault. For each of the six instances currently avail-
able,1 we indicate

1 See http://www.irit.fr/˜Helene.Fargier/BR4CP/benches.html

http://www.irit.fr/~Helene.Fargier/BR4CP/benches.html
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– the number of variables (n),
– the size of the greatest domain (d),
– the number of constraints (e),
– the greatest constraint arity (r),
– the size of the greatest table (t),
– the total number of values (D =

∑
x∈vars(N) |dom(x)|),

– and the total number of tuples (T =
∑

c∈cons(N) |rel(c)|).

The left part of Table 2 presents the CPU time required to establish GIC on the
six Renault configuration instances. Clearly GIC1 is outperformed by the three other
algorithms, which have here rather similar efficiency. The right part of Table 2 aims
at simulating the behaviour of a configuration software user who makes the variable
choices and value selections. It presents the CPU time required to maintain GIC along
a single branch built by performing random variable assignments (random variable as-
signment simulates the user, who chooses the variables and the values according to her
preference). Specifically, variables and values are randomly selected in turn, and after
each assignment, GIC is systematically enforced to maintain this property. Of course,
no conflict (dead-end) can occur along the branch due to the strength of GIC, which
is why we use the term of greedy executions. CPU times are given on average for 100
executions (different random orderings). For all instances, GIC3 and GIC4 are main-
tained very fast, whereas on the biggest instances, GIC2 requires a few seconds and
GIC1 around ten seconds.

Table 2. CPU time (in seconds) to establish GIC on Renault configuration instances, and to
maintain it (average over 100 random greedy executions)

Establishing GIC with Maintaining GIC with
GIC1 GIC2 GIC3 GIC4 GIC1 GIC2 GIC3 GIC4

souffleuse 0.02 0.01 0.01 0.01 0.13 0.07 0.02 0.02
megane 2.94 0.71 0.72 0.71 4.26 1.18 0.05 0.04
master 2.45 1.35 1.33 1.33 9.81 3.57 0.07 0.06

small 0.14 0.02 0.03 0.03 0.32 0.05 0.01 0.01
medium 0.26 0.04 0.05 0.04 0.35 0.04 0.01 0.01
big 4.19 1.16 1.10 1.10 12.6 2.60 0.05 0.05

One great advantage of GIC is that it guarantees that a conflict can never occur
during a configuration session. However, one may wonder whether the risk of failure(s)
is really important in user-driven searches that use a weaker consistency such as GAC
or a partial form of it (Forward Checking). Table 3 shows the number of conflicts (sum
over 100 executions using random orderings) encountered when following a MAC or a
nFC2 [3] strategy. The number of conflict situations can be very large with nFC2 (for
two instances, we even report the impossibility of finding a solution within 10 minutes
with some random orderings). For MAC, the number of failures is rather small but the
risk is not null (for example, the risk is equal to 5% for megane).
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Table 3. Number of conflicts encountered when running nFC2 and MAC (sum over 100 random
executions)

souffleuse megane master small medium big

nFC2 252,605 313,910 time-out 3,728 7,824 time-out
MAC 0 7 5 0 3 3

The encouraging results obtained on Renault configuration instances led us to test
other problems, in particular to get a better picture of the relative efficiency of the
various GIC algorithms. For example, on classical Crossword instances (see Table 4),
GIC1 is once again clearly outperformed while the three other algorithms are quite
close, where there is still a a small benefit of using GIC4.

Table 4. CPU time (in seconds) to establish GIC on some Crosswords instances, and to maintain
it on average over 100 random greedy executions

Establishing GIC with Maintaining GIC with
GIC1 GIC2 GIC3 GIC4 GIC1 GIC2 GIC3 GIC4

ogd-vg5-5 2.25 0.67 0.67 0.67 2.34 0.79 0.73 0.70
ogd-vg5-6 6.40 2.18 2.19 2.19 7.42 2.82 2.58 2.48
ogd-vg5-7 25.8 9.91 9.87 9.84 33.4 15.2 14.3 13.8

Table 5. CPU time (in seconds) to establish GIC on Puzzle instances, and to maintain it on
average over 100 random greedy executions until a unique solution is found

Establishing GIC with Maintaining GIC with
GIC1 GIC2 GIC3 GIC4 GIC1 GIC2 GIC3 GIC4

sudoku-9x9 1.58 0.32 0.32 0.31 15.3 2.71 2.10 1.74
sudoku-16x16 6.04 0.51 0.50 0.50 246 25.5 26.5 18.9
magicSquare-4x4 0.96 0.26 0.28 0.28 1.63 0.69 0.71 0.71
magicSquare-5x5 14.7 3.01 3.10 2.99 55.1 15.9 15.6 13.7

It is worthwhile to note that GIC is a nice property that can be useful when puzzles,
where hints are specified, have to be conceived. Typically, one looks for puzzles where
only one solution exists. One way of building such puzzles is to add hints in sequence,
while maintaining GIC, until all domains become singleton. For example, this is a pos-
sible approach for constructing Sudoku and Magic Square grids, with the advantage
that the user can choose freely the position of the hints.2 On the left part of Table 5,
we report the time to enforce GIC on empty Sudoku grids of size 9x9 and 16x16, and
on empty Magic square of size 4x4 and 5x5, and on the right part, the average time
required to maintain GIC until a fixed point is reached, meaning that after several hints
have been randomly selected and propagated, we have the guarantee of having a one-
solution puzzle. GIC4 is a clear winner, with for example, a 30% speedup over GIC2

2 However, we are not claiming that maintaining GIC is the unique answer to this problem.
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and GIC3 on sudoku-16x16, and more than one order of magnitude over GIC1. Overall,
the results we obtain show that MIC, i.e., maintaining GIC, is a practicable solution (at
least for some problems) as the average time between each decision of the user is small
with GIC4.

The efficiency of MIC on structured under-constrained instances piqued our curios-
ity. So we decided to compare MIC (embedding GIC4) and MAC on series of binary
random instances generated from Model RB [20]. For the class RB(2, 30, 0.8, 3, t), see
[19], we obtain instances with 30 variables, 15 values per domain and 306 binary con-
straints of tightness t, and for the class RB(2, 40, 0.8, 3, t), instances with 40 variables,
19 values per domain and 443 binary constraints of tightness t. For each value of t rang-
ing from 0.01 to 0.50 (step of 0.01), a series of 100 instances was generated so as to ob-
serve the behaviour of MIC on both under-constrained instances and over-constrained
instances; the theoretical threshold is around 0.23. Figure 1 shows the average CPU
time of MIC and MAC on series of class RB(2, 30, 0.8, 3, t). On the left, Figure 1(a),
the ordering of variables and values is random (simulating a free user-driven search).
MIC outperforms MAC when the ordering is random and the tightness is greater than
or equal to 0.23. That means that the strong inference capability of MIC do pay off
for the unsatisfiable instances. On the right, Figure 1(b), the variable ordering heuris-
tic is dom/wdeg [4] and the value ordering heuristic is lexico. Obviously, MAC with
dom/wdeg is clearly faster than MIC. However, if used in a context of interactive reso-
lution, the dom/wdeg ranking of the variables drives the user, who is not free anymore
in the choices of its variables. It may ask her to assign first variables that are mean-
ingless to her, restricting her future choices on important variables. The outcome will
be a solution which is very bad with respect to the preferences of the user. All of this
suggests that MIC can be efficient enough to be used in practice, except for a (small)
region of satisfiable instances lying at the left of the threshold point. Figure 2 shows
similar results with respect to series of class RB(2, 40, 0.8, 3, t).

One other practical issue we are interested in is the effectiveness of positive con-
sistency. Hence, we tested to establish positive consistency on existing constraints of
the Renault configuration instances, see Table 6. The algorithm we used here is a sim-
ple adaptation of GIC1 to tuples (so, certainly, several optimizations are possible). A
few hundreds of seconds are necessary to ensure the positive consistency of all existing
constraints of the biggest instances.

Table 6. CPU time (in seconds) and filtering in term of the number of tuples deleted when estab-
lishing positive consistency on Renault configuration instances

souffleuse megane master small medium big

CPU 0.68 352 368 2.6 4.2 613
# tuples removed 0 138,493 90,874 240 5,425 105,020

Finally, in our last experiment, for each constraint network, we randomly select a
constraint of interest ci for which positive consistency must be ensured (as if the mod-
eller were asking for the positive consistency of this constraint), and we randomly select
a set C containing 10% of the set of constraints. We initially consider the CN without



172 C. Bessiere, H. Fargier, and C. Lecoutre

 0

 5

 10

 15

 20

 25

 5  10  15  20  25  30

C
P

U
 t

im
e
 (

in
 s

e
c
o

n
d

s)

Tightness t (in %)

MAC
MIC

(a) With random ordering

 0

 2

 4

 6

 8

 10

 12

 14

 5  10  15  20  25  30
C

P
U

 t
im

e
 (

in
 s

e
c
o

n
d

s)

Tightness t (in %)

MAC
MIC

(b) With heuristic dom/wdeg

Fig. 1. Mean search cost (100 instances) of solving instances in class RB(2, 30, 0.8, 3, t) with
MAC and MIC
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the constraints in C, and we enforce positive consistency on ci. Then we simulate a ses-
sion of product modelling: we post each constraint in C in turn and maintain positive
consistency on ci. In our implementation (not detailed here due to lack of space), we
use residues, i.e., a solution stored for each tuple of ci. The first line of Table 7 shows
the average CPU time to maintain positive consistency on the constraint of interest. For
the second line, the constraint of interest is not randomly chosen but set to the constraint
with the largest table. The obtained results are rather promising (except for the instance
megane).

Table 7. Dynamic positive consistency filtering on Renault configuration instances (average CPU
time over 100 executions)

megane master big

random 9.97 10.1 36.4
largest 106.6 11.4 20.6

7 Conclusion

We have analysed the problems that arise in applications that require the interactive
resolution of a constraint problem by a human user. The central notion is global inverse
consistency of the network because it ensures that the person who interactively solves
the problem is not given the choice to select values that do not lead to solutions. We
have shown that deciding, computing, or restoring global inverse consistency, and other
related problems are all NP-hard. We have proposed several algorithms for enforcing
global inverse consistency and we have shown that the best version is efficient enough
to be used in an interactive setting on several configuration and design problems. This
is a great advantage compared to existing techniques usually used in configurators. As
opposed to techniques maintaining arc consistency, our algorithms give an exact picture
of the values remaining feasible. As opposed to compiling offline the problem as a
multi-valued decision diagram, our algorithms can deal with constraint networks that
change over time (e.g., an extra non-unary constraint posted by a customer who does
not want to buy a car with more than 100,000 miles except if it is a Volvo). We have
finally extended our contribution to the inverse consistency of tuples, which is useful at
the modelling phase of configuration problems.

One direct perspective of this work is to try computing diverse solutions when en-
forcing GIC. This should permit, on average, to reduce the number of search runs. Some
techniques developed in [11] might be useful.
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Abstract. Counting-based branching heuristics such as maxSD were
shown to be effective on a variety of constraint satisfaction problems.
These heuristics require that we equip each family of constraints with
a dedicated algorithm to compute the local solution density of variable
assignments, much as what has been done with filtering algorithms to
apply local inference. This paper derives an exact polytime algorithm to
compute solution densities for a spanning tree constraint, starting from
a known result about the number of spanning trees in a graph. We then
empirically compare branching heuristics based on that result with other
generic heuristics.

1 Introduction

Constraint programming is a powerful approach that can be used to solve com-
binatorial problems. However its success depends heavily on heuristics that can
guide the search toward promising areas of the search tree. One can design a
heuristic dedicated to the particular problem at hand or rely on out-of-the-box
generic heuristics that have shown good performance on a variety of problems.
The last decade has witnessed renewed interest in the design of robust generic
branching heuristics (e.g. [9,6]). In particular Zanarini and Pesant[15] introduced
branching heuristics based on the concept of solution density, i.e. the proportion
of solutions local to a constraint featuring a given variable-value assignment.

Definition 1 (solution density). Given a constraint c(x1, . . . , xn), its number
of solutions #c(x1, . . . , xn), respective finite domains Di 1≤i≤n, a variable xi in
the scope of c, and a value d ∈ Di, we will call

σ(xi, d, c) =
#c(x1, . . . , xi−1, d, xi+1, . . . , xn)

#c(x1, . . . , xn)

the solution density of pair (xi, d) in c. It measures how often a certain assign-
ment is part of a solution to c.

Specialized algorithms have been designed to compute solution densities for sev-
eral families of constraints[8]. In this paper we propose an exact polytime algo-
rithm that computes solution densities for a spanning tree constraint.

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 175–183, 2013.
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Definition 2 (Spanning Tree Constraint (adapted from [4])). Given an
undirected graph G(V,E) and set variable T ⊆ E, constraint spanningTree(G, T )
restricts T to be a spanning tree of G.

For the sake of conforming to the previous definition of solution density, espe-
cially important if we are to allow the combination of solution density informa-
tion from different constraints, we instead represent T as an array of boolean
variables.

The rest of the paper is organized as follows: Section 2 exposes the related
work, Section 3 describes our algorithm to compute solution densities for the
spanning tree constraint, Section 4 discusses how our data structures are updated
in the course of backtrack search, and Section 5 provides supporting empirical
evidence of branching based on solution density.

2 Related Work

Research in the CP community about imposed tree structures has focused so
far on filtering algorithms and not on branching heuristics. Beldiceanu et al.[2]
introduced the tree constraint, which addresses the digraph partitioning prob-
lem from a constraint programming perspective. In their work a constraint that
enforces a set of vertex-disjoint anti-arborescences is proposed. They achieve do-
main consistency in O(nm) time, where n is the number of vertices and m is
the number of edges in the graph. Their pruning relies on the identification of
strong articulation points in the graph and of roots and sinks (to evaluate the
minimum and maximum number of trees required to partition the graph).

Dooms and Katriel[3] introduced the MST constraint, requiring the tree vari-
able to represent a minimum spanning tree of the graph on which the constraint
is defined. Many variants of the minimum spanning tree problem, such as mini-
mum k-spanning tree and Steiner tree are known to be NP-hard, even though its
basic version can be solved in polynomial time. Those problems can be modeled
by combining the MST constraint and other constraints. The authors proposed
polytime bound consistent filtering algorithms for several restrictions of this con-
straint. They proceed by classifying edges in three sets: mandatory, possible, and
forbidden. Afterwards Dooms and Katriel[4] proposed a weighted spanning tree
constraint, in which both the tree and the weight of the edges are variables,
and considered several filtering algorithms. In their work a set variable is used,
indicating which edges are tree edges.

The filtering proposed by Dooms and Katriel[4] was then simplified and im-
proved by Régin[10], who proposed an incremental filtering algorithm by main-
taining a connected component tree which represents disjoint trees merging op-
erations in Kruskal’s algorithm, and by computing lowest common ancestors on
that tree. Domain consistency was thus achieved in O(m+n logn) time. Subse-
quently, Régin et al.[11] improved the time complexity of that filtering and also
considered mandatory edges.
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3 Computing Solution Densities

The Laplacian matrix L(G) of a graph G is formed by subtracting the adjacency
matrix of G from the diagonal matrix whose ith entry is equal to the degree of
vertex i in G. Henceforth for notational convenience we will refer to it simply as
L. For example Figure 1 shows a graph and its Laplacian matrix.

1

2 3

4

L =

⎛
⎜⎜⎝

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

⎞
⎟⎟⎠

Fig. 1. The kite graph and its Laplacian matrix

The (i, j)-minor of a square matrix M , denoted Mij , is the determinant of
the sub-matrix obtained by removing from M its ith row and jth column. The
Laplacian matrix has the interesting property that its (i, j)-minor, for any row
i and column j, is equal to the number of spanning trees of the corresponding
graph.

Theorem 1 (Kirchhoff’s Matrix-Tree Theorem [13]). Denote by τ(G) the
number of spanning trees of graph G on n vertices. For any 1 ≤ i, j ≤ n,

τ(G) = Lij .

So the number of solutions to a spanningTree constraint can be computed as
the determinant of a (n− 1)× (n− 1) matrix, in O(n3) time.

If we remove the first row and column of the Laplacian matrix at Figure 1,
the resulting minor is 2× (3× 2− (−1)× (−1))− (−1)× (−1× 2− (−1)× 0) = 8
and one can easily verify that there are eight possible spanning trees for that
graph.

But we are interested in computing the solution density of an edge (i, j) ∈ E.
One way to approach this is by counting the number of spanning trees not using
that edge, τ(G\{(i, j)}), and then dividing that by the total number of spanning
trees, yielding the solution density of the corresponding variable being assigned
value 0 (i.e. (i, j) /∈ T ):

σ((i, j), 0, spanningTree(G, T )) =
τ(G \ {(i, j)})

τ(G)
.

Let L′ = L(G\{(i, j)}). How different is L′ from L? It will be identical except
for entries �ii, �jj , �ij , and �ji. Since we can choose any row and column of
L to compute our minor, consider removing row and column i. Then the only
difference is �′jj = �jj − 1. The Sherman-Morrison formula [12] tells us that if
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M ′ is obtained from matrix M by replacing its jth column, (M)j , by column
vector u then

det(M ′) = (1 + e�j M
−1(u− (M)j))det(M).

In our case (u − (M)j) = −ej so the right-hand side of the previous equation
simplifies to (1− e�j M

−1ej)det(M) = (1−m−1
jj )det(M). So finally we have

σ((i, j), 0, spanningTree(G, T )) =
L′ii
Lii

=
(1−m−1

jj )Lii

Lii
= 1−m−1

jj ,

and of course
σ((i, j), 1, spanningTree(G, T )) = m−1

jj .

Computing solution densities turns out to be quite simple: for each edge (i, j)
incident with vertex i such that j < i (respectively j > i), the corresponding
value is the jth (respectively (j − 1)th) entry on the diagonal of the inverse of
M , the sub-matrix of Laplacian matrix L obtained by removing its ith row and
column. Repeating this from every vertex of a vertex cover of G provides solution
densities for every edge. If γ is the size of the vertex cover used then the whole
procedure takes O(γn3) time.

Example 1. Let M be the sub-matrix of L obtained by removing its first row
and column as before. Then

M−1 =

⎛
⎝5/8 2/8 1/8

2/8 4/8 2/8
1/8 2/8 5/8

⎞
⎠

and the solution density of edges (1, 2), (1, 3), and (1, 4) being used in T is
respectively 5

8 ,
4
8 , and

5
8 .

4 Integration into Backtrack Search

In this section we describe some of the implementation details and issues. As
branching decisions are made and domain filtering is applied, some edges of G
will be required in T and others, forbidden. These changes must be reflected in
our data structures. Our data structures are reversible so that they are restored
upon backtracking.

We use a heuristic greedy algorithm to compute our initial vertex cover —
it may be worthwhile spending the time to compute a minimum vertex cover
but that cover will need to be revised as vertices are merged following edge
contractions. A simple way to update a vertex cover containing vertex j when
edge (i, j) is contracted is to replace it with vertex i.
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4.1 Updating the Laplacian Matrix

If edge (i, j) is forbidden it is simply removed from the graph. To reflect that
in the Laplacian matrix we simply add one to entries �ij and �ji. The degree of
each endpoint is also updated by subtracting one to �ii and �jj .

If edge (i, j) is required we contract it in the graph, so that (i, j) is implicitly
part of the spanning tree. To update the Laplacian matrix we start by adding
to vertex i all the edges (j, k): �ik ← �ik + �jk. This may create multiple edges.
The degree of vertex i, �ii, is also updated accordingly. Then, since vertex j is
now merged with i, we remove all the edges connected to it, by setting to zero
row and column j of the Laplacian matrix. Finally we set �jj to 1 so that minors
will be computed correctly when they include row and column j.

Example 2. Recall Figure 1 and suppose edge (1, 2) is now required for the span-
ning tree: we contract it and merge vertex 2 with 1. The new Laplacian matrix
will be (note the double edge (1, 3)):

L =

⎛
⎜⎜⎝

3 0 −2 −1
0 1 0 0
−2 0 3 −1
−1 0 −1 2

⎞
⎟⎟⎠

4.2 Updating Solution Densities

The solution densities will change and we would like to avoid recomputing them
from scratch. Given the inverse of matrix M can we incrementally compute
the inverse of a slightly different matrix M ′? The Sherman-Morrison formula
further reveals that if M ′ is obtained from M by replacing its ith column, (M)i,
by column vector u as before then

M ′−1 = M−1 − (M−1(u − (M)i))(e
�
i M

−1)

1 + e�i M
−1(u− (M)i)

.

This can be computed in O(n2) time.
In some cases we can lower that time complexity considerably. Consider forbid-

den edge (i, j). For any edge (i, k) whose solution density was obtained through
the inverse of a sub-matrix removing row and column i from L, removing edge
(i, j) only changes one entry in that sub-matrix, as we saw before, and the pre-
vious formula simplifies to

M ′−1 = M−1 −
(M−1 · (−ej)) · (e�j ·M−1)

1−m−1
jj

= M−1 +
1

1−m−1
jj

·Q

where Q = (qhk) is an (n−1)×(n−1) matrix with qhk = m−1
hj ·m

−1
jk . Because we

only need the kth entry on the diagonal, m−1
kk + (m−1

kj )
2/(1−m−1

jj ), the update
for that edge takes constant time. What preceded equally applies for any edge
(j, k) with a sub-matrix removing row and column j from L.
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Example 3. Recall that for the graph at Figure 1 the solution density of edge
(1, 4) is 5

8 . Suppose edge (1, 2) is now forbidden in the spanning tree. The updated

solution density will be 5
8 + (m−1

42 )
2/(1−m−1

22 ) =
5
8 + (18 )

2/(1− 5
8 ) =

2
3 .

5 Experiments

To demonstrate the effectiveness of using solution density information from a
spanningTree constraint to guide a branching heuristic on some constrained
spanning tree problems, we consider finding degree-constrained spanning trees of
a graph. Note that the special case of a maximum degree of 2 corresponds to the
Hamiltonian path problem. We created some graphs using a generator designed
to produce hard Hamiltonian path instances for backtracking algorithms [14].
We used the IBM ILOG CP v1.6 solver for our implementation and performed
our experiments on a AMD Opteron 2.2GHz with 1GB of memory. Our current
implementation does not include the incremental algorithm described in Section
4.2 so the times reported are with matrix inversions computed from scratch at
every search tree node. We report comparative results between maxSD, impact-
based search (IBS), and random variable and value selection (random). Heuristic
maxSD considers solution density information from each constraint and branches
on the variable-value pair corresponding to the highest solution density observed.
For IBS impacts are initialized by probing at the root node. At a search tree node
the five best variables according to the approximated impact are identified. For
that subset, we compute node impacts and branch on the best variable (highest
impact) and value (lowest impact). This is consistent with what is suggested in
the IBM ILOG solver documentation. For random we report the average of ten
runs.

We used simple filtering rules for our constraint — our objective is not to solve
that problem in the best way possible but rather to evaluate a counting-based
branching heuristic. The first one forces each vertex to have degree at least one
in the tree by lower bounding the sum of the variables corresponding to the
edges incident to it. The second one fixes the number of edges that can be part
of the spanning tree: as a spanning tree is formed by n− 1 edges, the sum of all
variables must equal that value. Finally, since a tree is acyclic, we maintain the
connected component in which each vertex lies, removing any extraneous intra
connected component edges. In addition to the spanningTree constraint, we
add to our model for each vertex i an upper bound on the sum of the variables
corresponding to the edges incident to i.

We first generated random graphs of 15, 20, 25, 30, and 35 vertices (10 in-
stances each). The generator ensures the existence of a Hamiltonian path. Turn-
ing first to a degree-2 bound, Table 1 left indicates that using maxSD effectively
guides the search to a solution in several orders of magnitude fewer backtracks
than the other two branching heuristics. Even though maxSD appears slower on
small graphs, as displayed in Table 1 right, as the graphs become larger, this
approach becomes faster than IBS and random.
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Table 1. Number of backtracks (left) and time in seconds (right) before finding a
spanning tree of maximum degree 2. Each line represents an average over 10 instances.

n maxSD IBS random

15 0.2 229.8 49.0
20 1.5 533.0 976.6
25 2.1 1772.3 5919.6
30 71.7 12517.1 91454.4
35 112.2 18405.4 139861.3

n maxSD IBS random

15 0.029 0.001 0.001
20 0.080 0.012 0.020
25 0.187 0.085 0.173
30 0.815 0.897 1.873
35 1.769 4.742 14.646

Table 2. Number of backtracks (left) and time in seconds (right) before finding a
spanning tree of maximum degree 3. Each line represents an average over 10 instances.

n maxSD IBS random

15 0.0 225.6 1.3
20 0.0 315.2 53.2
25 0.0 446.7 882.0
30 0.0 495.1 18589.8
35 0.0 566.8 20001.4

n maxSD IBS random

15 0.039 0.002 0.001
20 0.100 0.013 0.001
25 0.222 0.021 0.311
30 0.441 0.039 0.093
35 0.852 0.063 2.333

We then turn to a degree-3 bound (see Table 2). It clearly demonstrates that
using solution densities to find spanning trees in random graphs is a very effec-
tive approach. A maximum degree of 3 is much less restrictive than a maximum
degree of 2 and more spanning trees in that graph will have that property. There-
fore the first few spanning trees found satisfy all constraints. For all graphs, the
solution density branching heuristic finds a spanning tree without any backtrack,
unlike the other approaches. Despite not having to backtrack, maxSD remains
slower than IBS on these instances since the latter only requires a few hundred
backtracks.

Table 3. Number of backtracks (left) and time in seconds (right) before finding a
Hamiltonian path in crossroad graphs. Each line represents an average over 10 in-
stances.

n maxSD IBS random

3 0.2 7721.9 8530.5
4 0.1 262011.7 191195.8
5 0.4 162353.0 -

n maxSD IBS random

3 0.085 0.255 0.062
4 0.280 26.379 3.674
5 0.676 586.679 -

We also generated crossroad graphs using the same graph generator. These
graphs are made up of small subgraphs only connected to each other via ”bridge”
edges. We generated 10 instances each of crossroad graphs containing 3, 4, and 5
subgraphs (with up to 35 vertices in total) and then tried to find a Hamiltonian
path (spanning tree of degree 2). Results are shown in Table 3.
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Using maxSD on these hard graphs is very effective, always finding a solution
in much fewer backtracks than the other approaches. For the instances made
up of 5 subgraphs, random could not solve a single instance within 2 hours of
computing time. Here maxSD is also orders of magnitude faster than the other
two branching heuristics.

6 Conclusion

We presented a new algorithm that computes exact solution densities for the
spanning tree constraint in O(γn3) time, where γ is the size of a vertex cover
for the graph, and updates solution densities in O(γn2) time, even in some cases
achieving constant time updates per edge. Building the Laplacian matrix of
a graph and inverting selected sub-matrices, the proportion of spanning trees
including a certain edge of the graph can be calculated. By relying on that
information, search can be oriented towards areas of the search space with high
solution density with respect to the spanning tree structure and we gave some
empirical evidence that this helps solve constrained spanning tree problems.

As future work we would like to try other types of constrained spanning tree
problems. There are several application areas that involve finding spanning trees,
such as network design, telecommunication, or transportation. Examples of these
problems are the degree-constrained problem [7], the hop-constrained problem
[5] or the diameter-constrained minimum spanning tree [1]. We also plan to in-
vestigate the compatibility of our solution density algorithm with more powerful
filtering algorithms and variants of the constraint as proposed in the literature.
For example the Matrix-Tree Theorem to count the number of spanning trees
has already been generalized to directed graphs.
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10. Régin, J.-C.: Simpler and incremental consistency checking and arc consistency
filtering algorithms for the weighted spanning tree constraint. In: Trick, M.A. (ed.)
CPAIOR 2008. LNCS, vol. 5015, pp. 233–247. Springer, Heidelberg (2008)
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Abstract. It is well known that the constraint satisfaction problem over
general relational structures can be reduced in polynomial time to di-
graphs. We present a simple variant of such a reduction and use it to show
that the algebraic dichotomy conjecture is equivalent to its restriction to
digraphs and that the polynomial reduction can be made in logspace. We
also show that our reduction preserves the bounded width property, i.e.,
solvability by local consistency methods. We discuss further algorithmic
properties that are preserved and related open problems.

1 Introduction

A fundamental problem in constraint programming is to understand the com-
putational complexity of constraint satisfaction problems (CSPs). While it is
well known that the class of all constraint problems is NP-complete, there are
many subclasses of problems for which there are efficient solving methods. One
way to restrict the instances is to only allow a fixed set of constraint relations,
often referred to as a constraint language [5] or fixed template. Classifying the
computational complexity of fixed template CSPs has been a major focus in the
theoretical study of constraint satisfaction. In particular it is of interest to know
which templates produce polynomial time solvable problems to help provide
more efficient solution techniques.

The study of fixed template CSPs dates back to the 1970’s with the work
of Montanari [18] and Schaefer [19]. A standout result from this era is that of
Schaefer who showed that the CSPs arising from constraint languages over 2-
element domains satisfy a dichotomy. The decision problem for fixed template
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CSPs over finite domains belong to the class NP, and Schaefer showed that in
the 2-element domain case, a constraint language is either solvable in polynomial
time or NP-complete. Dichotomies cannot be expected for decision problems in
general, since (under the assumption that P �=NP) there are many problems in
NP that are neither solvable in polynomial time, nor NP-complete [15]. Another
important dichotomy was proved by Hell and Nešetřil [9]. They showed that if
a fixed template is a finite simple graph (the vertices make up the domain and
the edges make up the only allowable constraints), then the corresponding CSP
is either polynomial time solvable or NP-complete. The decision problem for a
graph constraint language can be rephrased as graph homomorphism problem (a
graph homomorphism is a function from the vertices of one graph to another such
that the edges are preserved). Specifically, given a fixed graph H (the constraint
language), an instance is a graph G together with the question “Is there a graph
homomorphism from G to H?”. In this sense, 3-colorability corresponds to H
being the complete graph on 3 vertices. The notion of graph homomorphism
problems naturally extends to directed graph (digraph) homomorphism problems
and to relational structure homomorphism problems.

These early examples of dichotomies, by Schaefer, Hell and Nešetřil, form the
basis of a larger project of classifying the complexity of fixed template CSPs. Of
particular importance in this project is to prove the so-called CSP Dichotomy
Conjecture of Feder and Vardi [8] dating back to 1993. It states that the CSPs
relating to a fixed constraint language over a finite domain are either polynomial
time solvable or NP-complete. To date this conjecture remains unanswered, but
it has driven major advances in the study of CSPs.

One such advance is the algebraic connection revealed by Jeavons, Cohen and
Gyssens [13] and later refined by Bulatov, Jeavons and Krokhin [5]. This connec-
tion associates with each finite domain constraint language A a finite algebraic
structure A. The properties of this algebraic structure are deeply linked with the
computational complexity of the constraint language. In particular, for a fixed
constraint language A, if there does not exist a particular kind of operation,
known as a Taylor polymorphism, then the class of problems determined by A
is NP-complete. Bulatov, Jeavons and Krokhin [5] go on to conjecture that all
other constraint languages over finite domains determine polynomial time CSPs
(a stronger form of the CSP Dichotomy Conjecture, since it describes where
the split between polynomial time and NP-completeness lies). This conjecture
is often referred to as the Algebraic CSP Dichotomy Conjecture. Many impor-
tant results have been built upon this algebraic connection. Bulatov [6] extended
Schaefer’s [19] result on 2-element domains to prove the CSP Dichotomy Con-
jecture for 3-element domains. Barto, Kozik and Niven [3] extended Hell and
Nešetřil’s result [9] on simple graphs to constraint languages consisting of a fi-
nite digraph with no sources and no sinks. Barto and Kozik [2] gave a complete
algebraic description of the constraint languages over finite domains that are
solvable by local consistency methods (these problems are said to be of bounded
width) and as a consequence it is decidable to determine whether a constraint
language can be solved by such methods.
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In their seminal paper, Feder and Vardi [8] not only conjectured a dichotomy,
they also reduced the problem of proving the dichotomy conjecture to the par-
ticular case of digraph homomorphism problems, and even to digraph homo-
morphism problems where the digraph is balanced (here balanced means that
its vertices can be partitioned into levels). Specifically, for every template A (a
finite relational structure of finite type) there is a balanced digraph (digraphs
are particular kinds of relational structures) D(A) such that the CSP over A is
polynomial time equivalent to that over D(A).

2 The Main Results

In general, fixed template CSPs can be modelled as relational structure homo-
morphism problems [8]. For detailed formal definitions of relational structures,
homomorphisms and polymorphisms, see Section 3.

Let A be a finite structure with signature R (the fixed template), then the
constraint satisfaction problem for A is the following decision problem.

Constraint Satisfaction Problem for A.
CSP(A)

INSTANCE: A finite R-structure X.
QUESTION: Is there a homomorphism from X to A?

The dichotomy conjecture [8] can be stated as follows:

CSP Dichotomy Conjecture. Let A be a finite relational structure. Then
CSP(A) is solvable in polynomial time or NP-complete.

The dichotomy conjecture is equivalent to its restriction to digraphs [8], and
thus can be restated as follows:

CSP Dichotomy Conjecture. Let H be a finite digraph. Then CSP(H) is
solvable in polynomial time or NP-complete.

Every finite relational structure A has a unique core substructure A′ (see Sec-
tion 3.3 for the precise definition) such that CSP(A) and CSP(A′) are identical
problems, i.e., the “yes” and “no” instances are precisely the same. The algebraic
dichotomy conjecture [5] is the following:

Algebraic CSP Dichotomy Conjecture. Let A be a finite relational struc-
ture that is a core. If A has a Taylor polymorphism then CSP(A) is solvable in
polynomial time, otherwise CSP(A) is NP-complete.

Indeed, perhaps the above conjecture should be called the algebraic tractability
conjecture since it is known that if a core A does not possess a Taylor polymor-
phism, then CSP(A) is NP-complete [5].

Feder and Vardi [8] proved that every fixed template CSP is polynomial time
equivalent to a digraph CSP. This article will provide the following theorem,
which replaces “polynomial time” with “logspace” and reduces the algebraic
dichotomy conjecture to digraphs.
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Theorem 1. Let A be a finite relational structure. There is a finite digraph D(A)
such that

(i) CSP(A) and CSP(D(A)) are logspace equivalent,
(ii) A has a Taylor polymorphism if and only if D(A) has a Taylor polymor-

phism, and
(iii) A is a core if and only if D(A) is a core.

Furthermore, if A is a core, then CSP(A) has bounded width if and only if
CSP(D(A)) has bounded width.

Proof. To prove (i), one reduction follows from Lemma 3 and Lemma 1. The
other reduction is Lemma 4.

To prove (ii) we employ Theorem 2; it suffices to show that A has a WNU
polymorphism if and only if D(A) has a WNU polymorphism. The forward
implication (which is the crucial part of our proof) is proved in Lemma 8 and
the converse follows from Lemma 3 and Lemma 2. Item (iii) is Corollary 1.

The preservation of bounded width follows from Corollary 1, Lemma 8 and
Theorem 3. 	


See Remark 1 in Section 4 for the size of D(A). The “Taylor polymorphism”
in Theorem 1 (ii) can be replaced by many other polymorphism properties, but
space constraints do not allow us to elaborate here.

As a direct consequence of Theorem 1 (ii) and (iii) above, we can restate the
algebraic dichotomy conjecture:

Algebraic CSP Dichotomy Conjecture. Let H be a finite digraph that is a
core. If H has a Taylor polymorphism then CSP(H) is solvable in polynomial
time, otherwise CSP(H) is NP-complete.

3 Background and Definitions

We approach fixed template constraint satisfaction problems from the “homo-
morphism problem” point of view. For background on the homomorphism ap-
proach to CSPs, see [8], and for background on the algebraic approach to CSP,
see [5].

A relational signature R is a (in our case finite) set of relation symbols Ri,
each with an associated arity ki. A (finite) relational structure A over relational
signature R (called an R-structure) is a finite set A (the domain) together with
a relation Ri ⊆ Aki , for each relation symbol Ri of arity ki in R. A CSP template
is a fixed finite R-structure, for some signature R.

For simplicity we do not distinguish the relation with its associated relation
symbol, however to avoid ambiguity, sometimes we write RA to indicate that R
belongs to A. We will often refer to the domain of relational structure A simply
by A. When referring to a fixed relational structure, we may simply specify it as
A = (A;R1, R2, . . . , Rk). For technical reasons we require that all the relations
of a relational structure are nonempty.



188 J. Buĺın et al.

3.1 Notation

For a positive integer n we denote the set {1, 2, . . . , n} by [n]. We write tuples
using boldface notation, e.g. a = (a1, a2, . . . , ak) ∈ Ak and when ranging over
tuples we use superscript notation, e.g. (r1, r2, . . . , rl) ∈ Rl ⊆ (Ak)l, where
ri = (ri1, r

i
2, . . . , r

i
k), for i = 1, . . . , l.

Let Ri ⊆ Aki be relations of arity ki, for i = 1, . . . , n. Let k =
∑n

i=1 ki and
li =

∑
j<i kj . We write R1 × · · · ×Rn to mean the k-ary relation

{(a1, . . . , ak) ∈ Ak | (ali+1, . . . , ali+ki) ∈ Ri for i = 1, . . . , n}.

An n-ary operation on a set A is simply a mapping f : An → A; the number
n is the arity of f . Let f be an n-ary operation on A and let k > 0. We define
f (k) to be the n-ary operation obtained by applying f coordinatewise on Ak.
That is, we define the n-ary operation f (k) on Ak by

f (k)(a1, . . . , an) = (f(a11, . . . , a
n
1 ), . . . , f(a

1
k, . . . , a

n
k )),

for a1, . . . , an ∈ Ak.
We will be particularly interested in so-called idempotent operations. An n-

ary operation f is said to be idempotent if it satisfies the equation

f(x, x, . . . , x) = x.

3.2 Homomorphisms, Cores and Polymorphisms

We begin with the notion of a relational structure homomorphism.

Definition 1. Let A and B be relational structures in the same signature R. A
homomorphism from A to B is a mapping ϕ from A to B such that for each n-
ary relation symbol R in R and each n-tuple a ∈ An, if a ∈ RA, then ϕ(a) ∈ RB,
where ϕ is applied to a coordinatewise.

We write ϕ : A → B to mean that ϕ is a homomorphism from A to B, and
A→ B to mean that there exists a homomorphism from A to B.

An isomorphism is a bijective homomorphism ϕ such that ϕ−1 is a homomor-
phism. A homomorphism A → A is called an endomorphism. An isomorphism
from A to A is an automorphism. It is an easy fact that if A is finite, then every
surjective endomorphism is an automorphism.

A finite relational structure A′ is a core if every endomorphism A′ → A′ is
surjective (and therefore an automorphism). For every A there exists a relational
structure A′ such that A → A′ and A′ → A and A′ is minimal with respect to
these properties. The structure A′ is called the core of A. The core of A is unique
(up to isomorphism) and CSP(A) and CSP(A′) are the same decision problems.
Equivalently, the core of A can be defined as a minimal induced substructure
that A retracts onto. (See [10] for details on cores for graphs, cores for relational
structures are a natural generalisation.)

The notion of polymorphism is central in the so called algebraic approach to
CSP. Polymorphisms are a natural generalization of endomorphisms to higher
arity operations.
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Definition 2. Given an R-structure A, an n-ary polymorphism of A is an
n-ary operation f on A such that f preserves the relations of A. That is, if
a1, . . . , an ∈ R, for some k-ary relation R in R, then f (k)(a1, . . . , an) ∈ R.

Thus, an endomorphism is a 1-ary polymorphism.
In this paper we will be interested in the following kind of polymorphisms.

Definition 3. A weak near-unanimity (WNU ) polymorphism is an n-ary idem-
potent polymorphism ω, for some n ≥ 3, that satisfies the following equations
(for all x, y):

ω(x, . . . , x, y) = ω(x, . . . , x, y, x) = · · · = ω(y, x, . . . , x).

We call the above WNU equations.

Note that since we assume that a WNU polymorphism ω is idempotent it also
satisfies the equation

ω(x, x, . . . , x) = x.

Of particular interest, with respect to the algebraic dichotomy conjecture, are
Taylor polymorphisms. We will not need to explicitly define Taylor polymor-
phisms (and only need consider WNU polymorphisms) by the following theorem.

Theorem 2. [17] A finite relational structure A has a Taylor polymorphism if
and only if A has a WNU polymorphism.

Weak near-unanimity polymorphisms can be also used to characterise CSPs of
bounded width (see [2] for a detailed explanation of the bounded width algo-
rithm).

Theorem 3. [2,17] Let A be a finite relational structure that is a core. Then
CSP(A) is of bounded width if and only if A has WNU polymorphisms of all but
finitely many arities.

3.3 Primitive Positive Definability

A first order formula is called primitive positive if it is an existential conjunc-
tion of atomic formulæ. Since we only refer to relational signatures, a primitive
positive formula is simply an existential conjunct of formulæ of the form x = y
or (x1, x2, . . . , xn) ∈ R, where R is a relation symbol of arity n.

For example, if we have a binary relation symbol E in our signature, then the
formula

ψ(x, y) = (∃z)((x, z) ∈ E ∧ (z, y) ∈ E),

pp-defines a binary relation in which elements a, b are related if there is a directed
path of length 2 from a to b in E.

Definition 4. A relational structure B is primitive positive definable in A (or A
pp-defines B) if
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(i) the set B is a subset of A and is definable by a primitive positive formula
interpreted in A, and

(ii) each relation R in the signature of B is definable on the set B by a primitive
positive formula interpreted in A.

The following result relates the above definition to the complexity of CSPs.

Lemma 1. [13] Let A be a finite relational structure that pp-defines B. Then,
CSP (B) is polynomial time (indeed, logspace) reducible to CSP(A).

It so happens that, if A pp-defines B, then B inherits the polymorphisms of A.
See [5] for a detailed explanation.

Lemma 2. [5] Let A be a finite relational structure that pp-defines B. If ϕ is a
polymorphism of A, then its restriction to B is a polymorphism of B.

In particular, if A pp-defines B and A has a WNU polymorphism ω, then ω
restricted to B is a WNU polymorphism of B.

In the case that A pp-defines B and B pp-defines A, we say that A and B are pp-
equivalent. In this case, CSP(A) and CSP(B) are essentially the same problems
(they are logspace equivalent) and A and B have the same polymorphisms.

Example 1. Let A = (A;R1, . . . , Rn), where each Ri is ki-ary, and define R =
R1 × · · · ×Rn. Then the structure A′ = (A;R) is pp-equivalent to A.

Indeed, let k =
∑n

i=1 ki be the arity of R and li =
∑

j<i kj for i = 1, . . . , n.
The relation R is pp-definable from R1, . . . , Rn using the formula

Ψ(x1, . . . , xk) =

n∧
i=1

(xli+1, . . . , xli+ki) ∈ Ri.

The relation R1 can be defined from R by the primitive positive formula

Ψ(x1, . . . , xk1) = (∃yk1+1, . . . , ∃yk)((x1, . . . , xk1 , yk1+1, . . . , yk) ∈ R)

and the remaining Ri’s can be defined similarly.

Example 1 shows that when proving Theorem 1 we can restrict ourselves to
relational structures with a single relation.

3.4 Digraphs

A directed graph, or digraph, is a relational structure G with a single binary
relation symbol E as its signature. We typically call the members of G and EG

vertices and edges, respectively. We usually write a → b to mean (a, b) ∈ EG, if
there is no ambiguity.

A special case of relational structure homomorphism (see Definition 1), is
that of digraph homomorphism. That is, given digraphs G and H, a function
ϕ : G→ H is a homomorphism if (ϕ(a), ϕ(b)) ∈ EH whenever (a, b) ∈ EG.
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Definition 5. For i = 1, . . . , n, let Gi = (Gi, Ei) be digraphs. The direct prod-
uct of G1, . . . ,Gn, denoted by

∏n
i=1 Gi, is the digraph with vertices

∏n
i=1 Gi (the

cartesian product of the sets Gi) and edge relation

{(a,b) ∈ (

n∏
i=1

Gi)
2 | (ai, bi) ∈ Ei for i = 1 . . . , n}.

If G1 = · · · = Gn = G then we write Gn to mean
∏n

i=1 Gi.

With the above definition in mind, an n-ary polymorphism on a digraph G is
simply a digraph homomorphism from Gn to G.

Definition 6. A digraph P is an oriented path if it consists of a sequence of
vertices v0, v1, . . . , vk such that precisely one of (vi−1, vi), (vi, vi−1) is an edge,
for each i = 1, . . . , k. We require oriented paths to have a direction; we denote
the initial vertex v0 and the terminal vertex vk by ιP and τP, respectively.

Given a digraph G and an oriented path P, we write a
P−→ b to mean that

we can walk in G from a following P to b, i.e., there exists a homomorphism
ϕ : P → G such that ϕ(ιP) = a and ϕ(τP) = b. Note that for every P there

exists a primitive positive formula ψ(x, y) such that a
P−→ b if and only if ψ(a, b)

is true in G. If there exists an oriented path P such that a
P−→ b, we say that

a and b are connected. If vertices a and b are connected, then the distance from
a to b is the number of edges in the shortest oriented path connecting them.
Connectedness forms an equivalence relation on G; its classes are called the
connected components of G. We say that a digraph is connected if it consists of
a single connected component.

A connected digraph is balanced if it admits a level function lvl : G → N,
where lvl(b) = lvl(a) + 1 whenever (a, b) is an edge, and the minimum level
is 0. The maximum level is called the height of the digraph. Oriented paths are
natural examples of balanced digraphs.

By a zigzag we mean the oriented path •→ •← •→ • and a single edge is
the path •→ •. For oriented paths P and P′, the concatenation of P and P′,
denoted by P� P′, is the oriented path obtained by identifying τP with ιP′.

Our digraph reduction as described in Section 4 relies on oriented paths ob-
tained by concatenation of zigzags and single edges. For example, the path in
Figure 1 is a concatenation of a single edge followed by two zigzags and two
more single edges (for clarity, we organise its vertices into levels).

4 The Reduction to Digraphs

In this section we take an arbitrary finite relational structure A and construct
a balanced digraph D(A) such that CSP(A) and CSP(D(A)) are logspace equiv-
alent.



192 J. Buĺın et al.

Fig. 1. A minimal oriented path

Let A = (A;R1, . . . , Rn) be a finite relational structure, where Ri is of arity ki,
for i = 1, . . . , n. Let k =

∑n
i=1 ki and let R be the k-ary relation R1 × · · · ×Rn.

For I ⊆ [k] define QI,l to be a single edge if l ∈ I, and a zigzag if l ∈ [k] \ I.
We define the oriented path QI (of height k + 2) by

QI = •→ •� QI,1 � QI,2 � . . . � QI,k � •→ •
Instead of Q∅,Q∅,l we write just Q,Ql, respectively. For example, the oriented
path in Figure 1 is QI where k = 3 and I = {3}. We will need the following
observation.

Observation. Let I,J ⊆ [k]. A homomorphism ϕ : QI → QJ exists, if and
only if I ⊆ J . In particular Q→ QI for all I ⊆ [k]. Moreover, if ϕ exists, it is
unique and surjective.

We are now ready to define the digraph D(A).

Definition 7. For every e = (a, r) ∈ A×R we define Pe to be the path Q{i:a=ri}.
The digraph D(A) is obtained from the digraph (A∪R;A×R) by replacing every
e = (a, r) ∈ A×R by the oriented path Pe (identifying ιPe with a and τPe with
r).

(We often write Pe,l to mean QI,l where Pe = QI .)

Example 2. Consider the relational structure A = ({0, 1};R) where R = {(0, 1),
(1, 0)}, i.e., A is the 2-cycle. Figure 2 is a visual representation of D(A).

Remark 1. The number of vertices in D(A) is (3k+1)|R||A|+ (1− 2k)|R|+ |A|
and the number of edges is (3k+2)|R||A|−2k|R|. The construction of D(A) can
be performed in logspace (under any reasonable encoding).

Proof. The vertices of D(A) consist of the elements of A ∪ R, along with ver-
tices from the connecting paths. The number of vertices lying strictly within
the connecting paths would be (3k + 1)|R||A| if every Pe was Q. We need to
deduct 2 vertices whenever there is a single edge instead of a zigzag and there
are

∑
(a,r)∈A×R |{i : a = ri}| = k|R| such instances. The number of edges is

counted very similarly. 	
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0

(0,1)

1

(1,0)

Fig. 2. D(A) where A is the 2-cycle

Remark 2. Note that if we apply this construction to itself (that is, D(D(A)))
then we obtain balanced digraphs of height 4. When applied to digraphs, the D
construction is identical to that given by Feder and Vardi [8, Theorem 13].

The following lemma, together with Lemma 1, shows that CSP(A) reduces to
CSP(D(A)) in logspace.

Lemma 3. A is pp-definable from D(A).

Proof. Example 1 demonstrates that A is pp-equivalent to (A;R). We now show
that D(A) pp-defines (A;R), from which it follows that D(A) pp-defines A.

Note that Q→ Pe for all e ∈ A ×R, and Q{i} → P(a,r) if and only if a = ri.

The set A is pp-definable in D(A) by A = {x | (∃y)(x Q−→ y)} and the relation R

can be defined as the set {(x1, . . . , xk) | (∃y)(xi
Q{i}−→ y for all i ∈ [k])}, which is

also a primitive positive definition. 	


It is not, in general, possible to pp-define D(A) from A.1 Nonetheless the
following lemma is true.

Lemma 4. CSP(D(A)) reduces in logspace to CSP(A).

The proof of Lemma 4 is rather technical, though broadly follows the polynomial
process described in the proof of [8, Theorem 13] (as mentioned, our construction
coincides with theirs in the case of digraphs). Details of the argument will be
presented in a subsequent expanded version of this article.

Lemma 3 and Lemma 4 complete the proof of part (i) of Theorem 1. As this
improves the oft-mentioned polynomial time equivalence of general CSPs with
digraph CSPs, we now present it as stand-alone statement.

Theorem 4. Every fixed finite template CSP is logspace equivalent to the CSP
over some finite digraph.

1 Using the definition of pp-definability as described in this paper, this is true for
cardinality reasons. However, a result of Kazda [14] can be used to show that the
statement remains true even for more general definitions of pp-definability.
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5 Preserving Cores

In what follows, let A be a fixed finite relational structure. Without loss of
generality we may assume that A = (A;R), where R is a k-ary relation (see
Example 1).

Lemma 5. The endomorphisms of A and D(A) are in one-to-one correspon-
dence.

Proof. We first show that every endomorphism ϕ of A can be extended to an
endomorphism ϕ of D(A). Let ϕ(a) = ϕ(a) for a ∈ A, and let ϕ(r) = ϕ(k)(r) for
r ∈ R. Note that ϕ(k)(r) ∈ R since ϕ is an endomorphism of A.

Let c ∈ D(A) \ (A ∪ R) and let e = (a, r) be such that c ∈ Pe. Define
e′ = (ϕ(a), ϕ(k)(r)). If Pe,l is a single edge for some l ∈ [k], then rl = a and
ϕ(rl) = ϕ(a), and therefore Pe′,l is a single edge. Thus there exists a (unique)
homomorphism Pe → Pe′ . Define ϕ(c) to be the image of c under this homomor-
phism, completing the definition of ϕ.

We now show that every endomorphism Φ of D(A) is of the form ϕ, for
some endomorphism ϕ of A. Let Φ be an endomorphism of D(A). Let ϕ be the
restriction of Φ to A. By Lemma 2 and Lemma 3, ϕ is an endomorphism of A.
For every e = (a, r), the endomorphism Φ maps Pe onto P(ϕ(a),Φ(r)). If we set
a = rl, then Pe,l is a single edge. In this case it follows that P(ϕ(a),Φ(r)),l is also

a single edge. Thus, by the construction of D(A) the lth coordinate of Φ(r) is
ϕ(a) = ϕ(rl). This proves that the restriction of Φ to R is ϕ(k) and therefore
Φ = ϕ. 	


The following corollary is Theorem 1 (iii).

Corollary 1. A is a core if and only if D(A) is a core.

Proof. To prove the corollary we need to show that an endomorphism ϕ of A is
surjective if and only if ϕ (from Lemma 5) is surjective. Clearly, if ϕ is surjective
then so is ϕ.

Assume ϕ is surjective (and therefore an automorphism of A). It follows that
ϕ(k) is surjective on R and therefore ϕ is a bijection when restricted to the set
A ∪ R. Let a ∈ A and r ∈ R. By definition we know that ϕ maps P(a,r) homo-

morphically onto P(ϕ(a),ϕ(k)(r)). Since ϕ has an inverse ϕ−1, it follows that ϕ−1

maps P(ϕ(a),ϕ(k)(r)) homomorphically onto P(a,r). Thus P(a,r) and P(ϕ(a),ϕ(k)(r))

are isomorphic, completing the proof. 	


To complete the proof of Theorem 1, it remains to show that our reduction
preserves WNUs.

6 The Reduction Preserves WNUs

For m > 0 let Δm denote the connected component of the digraph D(A)m
containing the diagonal (i.e., the set {(c, c, . . . , c) | c ∈ D(A)}).
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Lemma 6. The elements of the diagonal are all connected in D(A)m. Further-
more, Am ⊆ Δm and Rm ⊆ Δm.

Proof. The first statement follows from the fact that D(A) is connected. To see
that Am ⊆ Δm and Rm ⊆ Δm, fix a ∈ A, and so by definition, (a, a, . . . , a) ∈
Δm. Let (r1, . . . , rm) ∈ Rm and for every i ∈ [m] let ϕi : Q → P(a,ri). The

homomorphism defined by x �→ (ϕ1(x), . . . , ϕm(x)) witnesses (a, . . . , a)
Q−→

(r1, . . . , rm) in D(A)m. Hence Rm ⊆ Δm. A similar argument gives Am ⊆ Δm. 	


The following lemma shows that there is only one non-trivial connected com-
ponent of D(A)m that contains tuples (whose entries are) on the same level in
D(A); namely Δm.

Lemma 7. Let m > 0 and let Γ be a connected component of D(A)m containing
an element c such that lvl(c1) = · · · = lvl(cm). Then every element d ∈ Γ is of
the form lvl(d1) = · · · = lvl(dm) and the following hold.

(i) If c → d is an edge in Γ such that c /∈ Am and d /∈ Rm, then there exist
e1, . . . , em ∈ A×R and l ∈ [k] such that c,d ∈

∏m
i=1 Pei,l.

(ii) Either Γ = Δm or Γ is one-element.

Proof. First observe that if an element d is connected in D(A)m to an element c

with lvl(c1) = · · · = lvl(cm), then there is an oriented path Q′ such that c
Q

′
→ d

from which it follows that lvl(d1) = · · · = lvl(dm).
To prove (i), let c → d be an edge in Γ such that c /∈ Am and d /∈ Rm.

For i = 1, . . . ,m let ei be such that ci ∈ Pei and let l = lvl(c1). The claim now
follows immediately from the construction of D(A).

It remains to prove (ii). If |Γ | > 1, then there is an edge c → d in Γ . If
c ∈ Am or d ∈ Rm, then the result follows from Lemma 6. Otherwise, from (i),
there exists l ∈ [k] and ei = (ai, r

i) such that c,d ∈
∏m

i=1 Pei,l.
For every i ∈ [m] we can walk from ci to ιPei,l following the path •→ •← •;

and so c and (ιPe1,l, . . . , ιPem,l) are connected. For every i ∈ [m] there exists
a homomorphism ϕi : Q → Pei such that ϕi(ιQ) = ai and ϕi(ιQl) = ιPei,l.
The homomorphism Q→ D(A)m defined by x �→ (ϕ1(x), . . . , ϕm(x)) shows that
(a1, . . . , am) and (ιPe1,l, . . . , ιPem,l) are connected. By transitivity, (a1, . . . , am)
is connected to c and therefore (a1, . . . , am) ∈ Γ . Using (i) we obtain Γ = Δm.	


We are now ready to prove the main ingredient of Theorem 1 (ii). The proof
of Lemma 8 is similar in essence to the proof of Lemma 5, although more com-
plicated.

Lemma 8. If A has an m-ary WNU polymorphism, then D(A) has an m-ary
WNU polymorphism.

Proof. Let ω be an m-ary WNU polymorphism of A. We construct an m-ary
operation ω on D(A). We split the definition into several cases and subcases. Let
c ∈ D(A)m.
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Case 1. |{lvl(c1), . . . , lvl(cm)}| > 1.

1a If there exists i ∈ [m] such that |{lvl(cj) | j �= i}| = 1, we define ω(c) = ci.

1b Else let ω(c) = c1.

Case 2. lvl(c1) = · · · = lvl(cm), but c /∈ Δm.

2a If there exists i ∈ [m] such that |{cj | j �= i}| = 1, we define ω(c) = ci.

2b Else let ω(c) = c1.

Case 3. c ∈ Δm.

3a If {c1, . . . , cm} ⊆ A, we define ω(c) = ω(c).

3b If {c1, . . . , cm} ⊆ R, we define ω(c) = ω(k)(c).

3c Else, there exists d ∈ Δm \ (Am∪Rm) such that c→ d or d→ c in D(A)m.
By Lemma 7 (ii), there exist l ∈ [k] and ei = (ai, r

i) such that c ∈
∏m

i=1 Pei,l.
Let e = (a, r), where a = ω(a1, . . . , am) and r = ω(k)(r1, . . . , rm). We set ω(c) =
Φ(c), where Φ :

∏m
i=1 Pei,l → Pe,l is defined as follows.

1. If Pe,l is a single edge, then we set

Φ(u) =

{
ιPe,l if lvl(u1) = · · · = lvl(um) = lvl(ιPe,l)

τPe,l otherwise.

2. If Pe,l is a zigzag, then let I = {i ∈ [m] | Pei,l is a zigzag}. For every i ∈ I
let φi : Pei,l → Pe,l be the unique isomorphism. We define Φ(u) to be the
vertex from {φi(ui) : i ∈ I} with minimal distance from ιPe,l.

Let us first comment on correctness of the definition. In subcase 3b , ω(k)(c) ∈
R follows from the fact that ω preserves R. In subcase 3c , if Pe,l is a zigzag,
then I �= ∅. Indeed, if all the Pei,l’s were single edges, then rl = ω(r1l , . . . , r

m
l ) =

ω(a1, . . . , am) = a and so Pe,l would also be a single edge. The ei’s are uniquely
determined by c, and the choice of l is unique as well, with one exception: if
l < k and ci = τPei,l = ιPei,l+1 for every i ∈ [m], then we have d → c → d′

for some d,d′ ∈ D(A)m and we can choose l + 1 instead of l. However, it is not
hard to see that the value assigned to ω(c) is the same in both cases, namely it
is the vertex τPe,l = ιPe,l+1 (see property (b) below).

We need the following properties of the mapping Φ defined in 3c .

(a) Φ is a homomorphism.
(b) Φ(ιPe1,l, . . . , ιPem,l) = ιPe,l and Φ(τPe1,l, . . . , τPem,l) = τPe,l.
(c) Φ does not depend on the ordering of the tuple (e1, . . . , em).
(d) If e1 = · · · = em = e, then Φ : Pm

e,l → Pe,l is idempotent, i.e., Φ(u, . . . , u) = u
for all u ∈ Pe,l.

All of the above properties follow easily from the definition of Φ. We leave the
verification to the reader. It remains to prove that ω is a WNU polymorphism
of D(A).

Claim. ω is idempotent and satisfies the WNU equations.
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Let c, d ∈ D(A). Note that all of the tuples (c, . . . , c, d), (c, . . . , d, c), . . . ,
(d, c, . . . , c) fall into the same subcase; the possibilities are 3a , 3b , 3c and if
c �= d, then also 1a or 2a . In subcases 1a and 2a the definition does not depend
on the ordering of the input tuple at all; therefore the WNU equations hold (and
since c �= d, idempotency does not apply).

In case 3 we use the fact that ω and ω(k) are idempotent and satisfy the
WNU equations. In 3a and 3b the claim follows immediately. In 3c note that e
is the same for all of the tuples (c, . . . , c, d), . . . , (d, c, . . . , c), and if c = d, then
e1 = · · · = em = e. The WNU equations follow from property (c) of the mapping
Φ, and idempotency follows from (d).

Claim. ω is a polymorphism of D(A).
Let c,d ∈ D(A)m be such that c→ d is an edge in D(A)m, that is, ci → di for
all i ∈ [m]. Both the tuples c and d fall into the same case and, by Lemma 7 (iii),
it cannot be case 2. If it is case 1, then they also fall into the same subcase and
it is easily seen that ω(c)→ ω(d).

If c falls into subcase 3a , then d falls into 3c . Let ei be such that di ∈ Pei .
As ci → di, it follows that ei = (ci, r

i) for some ri ∈ R and di = ιPei,1. Let us
define c = ω(c), r = ω(k)(r1, . . . , rm) and e = (c, r). Now ω(d) is the result of
the mapping Φ applied to the tuple of initial vertices of the Pei,1’s, which (by
property (b)) is the initial vertex of Pe,1. So ω(c) = c → ιPe,1 = ω(d). The
argument is similar if d falls into 3b .

It remains to verify that ω(c) → ω(d) if both c and d fall into subcase 3c .
Both ω(c) and ω(d) are defined using the mapping Φ :

∏m
i=1 Pei,l → Pe,l. Since

Φ is a homomorphism, we have ω(c) = Φ(c) → Φ(d) = ω(d), concluding the
proof. 	


7 Discussion

The algebraic dichotomy conjecture proposes a polymorphism characterisation
of tractability for core CSPs. A number of other algorithmic properties are also
either proved or conjectured to correspond to the existence of polymorphisms
with special equational properties. For instance, solvability by the few subpow-
ers algorithm (a generalization of Gaussian elimination) as described in Idziak et
al. [11] has a polymorphism characterisation [4], as well as problems of bounded
width (see Theorem 3). The final statement in Theorem 1 already shows that A
has bounded width if and only if D(A) has bounded width. Kazda [14] showed
that every digraph with a Maltsev polymorphism must have a majority poly-
morphism, which is not the case for finite relational structures in general. In a
later version of the present article we will show that Theorem 1(ii) extends to
include almost all commonly encountered polymorphism properties aside from
Maltsev. For instance the CSP over A is solvable by the few subpowers algorithm
if and only if the same is true for D(A). Among other conditions preserved under
our reduction to digraphs is that of arc consistency (or width 1 problems [7])
and problems of bounded strict width [8]. The following example is a powerful
consequence of the result.
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Example 3. Let A be the structure on {0, 1} with a single 4-ary relation

{(0, 0, 0, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1)}.
Clearly A is a core. The polymorphisms of A can be shown to be the idempotent
term functions of the two element group, and from this it follows that CSP(A)
is solvable by the few subpowers algorithm of [11], but is not bounded width.
Then the CSP over the digraph D(A) is also solvable by few subpowers but is
not bounded width (that is, is not solvable by local consistency check).

Prior to the announcement of this example it had been temporarily conjectured
by some researchers that solvability by the few subpowers algorithm implied solv-
ability by local consistency check in the case of digraphs (this was the opening
conjecture in Maróti’s keynote presentation at the Second International Con-
ference on Order, Algebra and Logics in Krakow 2011 for example). With 78
vertices and 80 edges, Example 3 also serves as a simpler alternative to the 368-
vertex, 432-edge digraph whose CSP was shown by Atserias in [1, §4.2] to be
tractable but not solvable by local consistency check.

There are also conjectured polymorphism classifications of the property of
solvability within nondeterministic logspace and within logspace; see Larose and
Tesson [16]. The required polymorphism conditions are among those we can show
are preserved under the transition from A to D(A). It then follows that these
conjectures are true provided they can be established in the restricted case of
CSPs over digraphs.

Open Problems.We conclude our paper with some further research directions.
It is possible to show that the logspace reduction in Lemma 4 cannot be replaced
by first order reductions. Is there a different construction that translates general
CSPs to digraph CSPs with first order reductions in both directions?

Feder andVardi [8] andAtserias [1] provide polynomial time reductions of CSPs
to digraphCSPs.We vigorously conjecture that their reductions preserve the prop-
erties of possessing a WNU polymorphism (and of being cores; but this is rou-
tinely verified). Do these or other constructions preserve the precise arity of WNU
polymorphisms? What other polymorphism properties are preserved? Do they
preserve the bounded width property? Can they preserve conservative polymor-
phisms (the polymorphisms related to list homomorphism problems)? The third
and fourth authors with Kowalski [12] have recently shown that a minor variation
of the D construction in the present article preserves k-ary WNU polymorphisms
(and can serve as an alternative to D in Theorem 1), but always fails to preserve
many other polymorphism properties (such as those witnessing strict width).

Acknowledgements. The authors would like to thank Libor Barto, Marcin
Kozik, Miklós Maróti and Barnaby Martin for their thoughtful comments and
discussions.
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Abstract. Propositional model counting (#SAT), i.e., counting the num-
ber of satisfying assignments of a propositional formula, is a problem of
significant theoretical and practical interest. Due to the inherent com-
plexity of the problem, approximate model counting, which counts the
number of satisfying assignments to within given tolerance and confi-
dence level, was proposed as a practical alternative to exact model count-
ing. Yet, approximate model counting has been studied essentially only
theoretically. The only reported implementation of approximate model
counting, due to Karp and Luby, worked only for DNF formulas. A few
existing tools for CNF formulas are bounding model counters; they can
handle realistic problem sizes, but fall short of providing counts within
given tolerance and confidence, and, thus, are not approximate model
counters.

We present here a novel algorithm, as well as a reference implemen-
tation, that is the first scalable approximate model counter for CNF
formulas. The algorithm works by issuing a polynomial number of calls
to a SAT solver. Our tool, ApproxMC, scales to formulas with tens of
thousands of variables. Careful experimental comparisons show that
ApproxMC reports, with high confidence, bounds that are close to the
exact count, and also succeeds in reporting bounds with small tolerance
and high confidence in cases that are too large for computing exact model
counts.

1 Introduction

Propositional model counting, also known as #SAT, concerns counting the num-
ber of models (satisfying truth assignments) of a given propositional formula.
This problem has been the subject of extensive theoretical investigation since its
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introduction by Valiant [35] in 1979. Several interesting applications of #SAT
have been studied in the context of probabilistic reasoning, planning, combinato-
rial design and other related fields [24,4,9]. In particular, probabilistic reasoning
and inferencing have attracted considerable interest in recent years [13], and
stand to benefit significantly from efficient propositional model counters.

Theoretical investigations of #SAT have led to the discovery of deep connec-
tions in complexity theory [3,29,33]: #SAT is #P-complete, where #P is the
set of counting problems associated with decision problems in the complexity
class NP. Furthermore, P#SAT, that is, a polynomial-time machine with a #SAT
oracle, can solve all problems in the entire polynomial hierarchy. In fact, the
polynomial-time machine only needs to make one #SAT query to solve any
problem in the polynomial hierarchy. This is strong evidence for the hardness of
#SAT.

In many applications of model counting, such as in probabilistic reasoning, the
exact model count may not be critically important, and approximate counts are
sufficient. Even when exact model counts are important, the inherent complexity
of the problem may force one to work with approximate counters in practice.
In [31], Stockmeyer showed that counting models within a specified tolerance
factor can be achieved in deterministic polynomial time using a Σp

2 -oracle. Karp
and Luby presented a fully polynomial randomized approximation scheme for
counting models of a DNF formula [18]. Building on Stockmeyer’s result, Jerrum,
Valiant and Vazirani [16] showed that counting models of CNF formulas within
a specified tolerance factor can be solved in random polynomial time using an
oracle for SAT.

On the implementation front, the earliest approaches to #SAT were based on
DPLL-style SAT solvers and computed exact counts. These approaches consisted
of incrementally counting the number of solutions by adding appropriate mul-
tiplication factors after a partial solution was found. This idea was formalized
by Birnbaum and Lozinkii [6] in their model counter CDP. Subsequent model
counters such as Relsat [17], Cachet [26] and sharpSAT [32] improved upon this
idea by using several optimizations such as component caching, clause learning,
look-ahead and the like. Techniques based on Boolean Decision Diagrams and
their variants [23,21], or d-DNNF formulae [8], have also been used to com-
pute exact model counts. Although exact model counters have been successfully
used in small- to medium-sized problems, scaling to larger problem instances has
posed significant challenges in practice. Consequently, a large class of practical
applications has remained beyond the reach of exact model counters.

To counter the scalability challenge, more efficient techniques for counting
models approximately have been proposed. These counters can be broadly
divided into three categories. Counters in the first category are called (ε, δ)
counters, following Karp and Luby’s terminology [18]. Let ε and δ be real num-
bers such that 0 < ε ≤ 1 and 0 < δ ≤ 1. For every propositional formula F
with #F models, an (ε, δ) counter computes a number that lies in the interval
[(1 + ε)−1#F, (1 + ε)#F ] with probability at least 1 − δ. We say that ε is the
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tolerance of the count, and 1− δ is its confidence. The counter described in this
paper and also that due to Karp and Luby [18] belong to this category. The
approximate-counting algorithm of Jerrum et al. [16] also belongs to this cat-
egory; however, their algorithm does not lend itself to an implementation that
scales in practice. Counters in the second category are called lower (or upper)
bounding counters, and are parameterized by a confidence probability 1− δ. For
every propositional formula F with #F models, an upper (resp., lower) bound-
ing counter computes a number that is at least as large (resp., as small) as
#F with probability at least 1 − δ. Note that bounding counters do not pro-
vide any tolerance guarantees. The large majority of approximate counters used
in practice are bounding counters. Notable examples include SampleCount [14],
BPCount [20], MBound (and Hybrid-MBound) [12], and MiniCount [20]. The final
category of counters is called guarantee-less counters. These counters provide no
guarantees at all but they can be very efficient and provide good approxima-
tions in practice. Examples of guarantee-less counters include ApproxCount [36],
SearchTreeSampler [10], SE [25] and SampleSearch [11].

Bounding both the tolerance and confidence of approximate model counts is
extremely valuable in applications like probabilistic inference. Thus, designing
(ε, δ) counters that scale to practical problem sizes is an important problem.
Earlier work on (ε, δ) counters has been restricted largely to theoretical treat-
ments of the problem. The only counter in this category that we are aware of
as having been implemented is due to Karp and Luby [22]. Karp and Luby’s
original implementation was designed to estimate reliabilities of networks with
failure-prone links. However, the underlying Monte Carlo engine can be used to
approximately count models of DNF, but not CNF, formulas.

The counting problems for both CNF and DNF formulae are #P-complete.
While the DNF representation suits some applications, most modern applica-
tions of model counting (e.g. probabilistic inference) use the CNF representa-
tion. Although exact counting for DNF and CNF formulae are polynomially
inter-reducible, there is no known polynomial reduction for the corresponding
approximate counting problems. In fact, Karp and Luby remark in [18] that it
is highly unlikely that their randomized approximate algorithm for DNF formu-
lae can be adapted to work for CNF formulae. Thus, there has been no prior
implementation of (ε, δ) counters for CNF formulae that scales in practice. In
this paper, we present the first such counter. As in [16], our algorithm runs in
random polynomial time using an oracle for SAT. Our extensive experiments
show that our algorithm scales, with low error, to formulae arising from several
application domains involving tens of thousands of variables.

The organization of the paper is as follows. We present preliminary material
in Section 2, and related work in Section 3. In Section 4, we present our algo-
rithm, followed by its analysis in Section 5. Section 6 discusses our experimental
methodology, followed by experimental results in Section 7. Finally, we conclude
in Section 8.
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2 Notation and Preliminaries

Let Σ be an alphabet and R ⊆ Σ∗×Σ∗ be a binary relation. We say that R is an
NP-relation if R is polynomial-time decidable, and if there exists a polynomial
p(·) such that for every (x, y) ∈ R, we have |y| ≤ p(|x|). Let LR be the language
{x ∈ Σ∗ | ∃y ∈ Σ∗, (x, y) ∈ R}. The language LR is said to be in NP if R is
an NP-relation. The set of all satisfiable propositional logic formulae in CNF is
a language in NP . Given x ∈ LR, a witness or model of x is a string y ∈ Σ∗

such that (x, y) ∈ R. The set of all models of x is denoted Rx. For notational
convenience, fix Σ to be {0, 1} without loss of generality. If R is an NP-relation,
we may further assume that for every x ∈ LR, every witness y ∈ Rx is in {0, 1}n,
where n = p(|x|) for some polynomial p(·).

Let R ⊆ {0, 1}∗ × {0, 1}∗ be an NP relation. The counting problem cor-
responding to R asks “Given x ∈ {0, 1}∗, what is |Rx|?”. If R relates CNF
propositional formulae to their satisfying assignments, the corresponding count-
ing problem is called #SAT. The primary focus of this paper is on (ε, δ) counters
for #SAT. The randomized (ε, δ) counters of Karp and Luby [18] for DNF for-
mulas are fully polynomial, which means that they run in time polynomial in the
size of the input formula F , 1/ε and log(1/δ). The randomized (ε, δ) counters
for CNF formulas in [16] and in this paper are however fully polynomial with
respect to a SAT oracle.

A special class of hash functions, called r-wise independent hash functions,
play a crucial role in our work. Let n,m and r be positive integers, and let
H(n,m, r) denote a family of r-wise independent hash functions mapping {0, 1}n
to {0, 1}m. We use Pr [X : P ] to denote the probability of outcome X when sam-

pling from a probability space P , and h
R←− H(n,m, r) to denote the prob-

ability space obtained by choosing a hash function h uniformly at random
from H(n,m, r). The property of r-wise independence guarantees that for all
α1, . . . αr ∈ {0, 1}m and for all distinct y1, . . . yr ∈ {0, 1}n, Pr [

∧r
i=1 h(yi) = αi

: h
R←− H(n,m, r)

]
= 2−mr. For every α ∈ {0, 1}m and h ∈ H(n,m, r), let

h−1(α) denote the set {y ∈ {0, 1}n | h(y) = α}. Given Rx ⊆ {0, 1}n and
h ∈ H(n,m, r), we use Rx,h,α to denote the set Rx ∩ h−1(α). If we keep h fixed
and let α range over {0, 1}m, the sets Rx,h,α form a partition of Rx. Following
the notation in [5], we call each element of such a partition a cell of Rx induced
by h. It was shown in [5] that if h is chosen uniformly at random from H(n,m, r)
for r ≥ 1, then the expected size of Rx,h,α, denoted E [|Rx,h,α|], is |Rx|/2m, for
each α ∈ {0, 1}m.

The specific family of hash functions used in our work, denoted Hxor(n,m, 3),
is based on randomly choosing bits from y ∈ {0, 1}n and xor-ing them. This
family of hash functions has been used in earlier work [12], and has been shown to
be 3-independent in [15]. Let h(y)[i] denote the ith component of the bit-vector
obtained by applying hash function h to y. The family Hxor(n,m, 3) is defined as
{h(y) | (h(y))[i] = ai,0 ⊕ (

⊕n
k=1 ai,k · y[k]), ai,j ∈ {0, 1}, 1 ≤ i ≤ m, 0 ≤ j ≤ n},

where ⊕ denotes the xor operation. By randomly choosing the ai,j ’s, we can
randomly choose a hash function from this family.
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3 Related Work

Sipser pioneered a hashing based approach in [30], which has subsequently been
used in theoretical [34,5] and practical [15,12,7] treatments of approximate
counting and (near-)uniform sampling. Earlier implementations of counters that
use the hashing-based approach areMBound and Hybrid-MBound [12]. Both these
counters use the same family of hashing functions, i.e.,Hxor(n,m, 3), that we use.
Nevertheless, there are significant differences between our algorithm and those
of MBound and Hybrid-MBound. Specifically, we are able to exploit properties
of the Hxor(n,m, 3) family of hash functions to obtain a fully polynomial (ε, δ)
counter with respect to a SAT oracle. In contrast, both MBound and Hybrid-
MBound are bounding counters, and cannot provide bounds on tolerance. In
addition, our algorithm requires no additional parameters beyond the tolerance
ε and confidence 1 − δ. In contrast, the performance and quality of results of
both MBound and Hybrid-MBound, depend crucially on some hard-to-estimate
parameters. It has been our experience that the right choice of these parameters
is often domain dependent and difficult.

Jerrum, Valiant and Vazirani [16] showed that if R is a self-reducible NP
relation (such as SAT), the problem of generating models almost uniformly is
polynomially inter-reducible with approximately counting models. The notion
of almost uniform generation requires that if x is a problem instance, then for
every y ∈ Rx, we have (1 + ε)−1ϕ(x) ≤ Pr[y is generated] ≤ (1 + ε)ϕ(x), where
ε > 0 is the specified tolerance and ϕ(x) is an appropriate function. Given an
almost uniform generator G for R, an input x, a tolerance bound ε and an error
probability bound δ, it is shown in [16] that one can obtain an (ε, δ) counter
for R by invoking G polynomially (in |x|, 1/ε and log2(1/δ)) many times, and
by using the generated samples to estimate |Rx|. For convenience of exposition,
we refer to this approximate-counting algorithm as the JVV algorithm (after the
last names of the authors).

An important feature of the JVV algorithm is that it uses the almost uniform
generator G as a black box. Specifically, the details of how G works is of no conse-
quence. Prima facie, this gives us freedom in the choice of G when implementing
the JVV algorithm. Unfortunately, while there are theoretical constructions of
uniform generators in [5], we are not aware of any implementation of an almost
uniform generator that scales to CNF formulas involving thousands of variables.
The lack of a scalable and almost uniform generator presents a significant hur-
dle in implementing the JVV algorithm for practical applications. It is worth
asking if we can make the JVV algorithm work without requiring G to be an
almost uniform generator. A closer look at the proof of correctness of the JVV
algorithm [16] shows it relies crucially on the ability of G to ensure that the
probabilities of generation of any two distinct models of x differ by a factor in
O(ε2). As discussed in [7], existing algorithms for randomly generating models
either provide this guarantee but scale very poorly in practice (e.g., the algo-
rithms in [5,37]), or scale well in practice without providing the above guarantee
(e.g., the algorithms in [7,15,19]). Therefore, using an existing generator as a
black box in the JVV algorithm would not give us an (ε, δ) model counter that
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scales in practice. The primary contribution of this paper is to show that a scal-
able (ε, δ) counter can indeed be designed by using the same insights that went
into the design of a near uniform generator, UniWit [7], but without using the
generator as a black box in the approximate counting algorithm. Note that near
uniformity, as defined in [7], is an even more relaxed notion of uniformity than
almost uniformity. We leave the question of whether a near uniform generator
can be used as a black box to design an (ε, δ) counter as part of future work.

The central idea of UniWit, which is also shared by our approximate model
counter, is the use of r-wise independent hashing functions to randomly partition
the space of all models of a given problem instance into “small” cells. This idea
was first proposed in [5], but there are two novel insights that allow UniWit [7]
to scale better than other hashing-based sampling algorithms [5,15], while still
providing guarantess on the quality of sampling. These insights are: (i) the use
of computationally efficient linear hashing functions with low degrees of inde-
pendence, and (ii) a drastic reduction in the size of “small” cells, from n2 in [5]
to n1/k (for 2 ≤ k ≤ 3) in [7], and even further to a constant in the current
paper. We continue to use these key insights in the design of our approximate
model counter, although UniWit is not used explicitly in the model counter.

4 Algorithm

We now describe our approximate model counting algorithm, called ApproxMC.
As mentioned above, we use 3-wise independent linear hashing functions from
the Hxor(n,m, 3) family, for an appropriate m, to randomly partition the set
of models of an input formula into “small” cells. In order to test whether the
generated cells are indeed small, we choose a random cell and check if it is
non-empty and has no more than pivot elements, where pivot is a threshold
that depends only on the tolerance bound ε. If the chosen cell is not small,
we randomly partition the set of models into twice as many cells as before by
choosing a random hashing function from the family Hxor(n,m + 1, 3). The
above procedure is repeated until either a randomly chosen cell is found to be

non-empty and small, or the number of cells exceeds 2n+1

pivot . If all cells that were
randomly chosen during the above process were either empty or not small, we
report a counting failure and return ⊥. Otherwise, the size of the cell last chosen
is scaled by the number of cells to obtain an ε-approximate estimate of the model
count.

The procedure outlined above forms the core engine of ApproxMC. For conve-
nience of exposition, we implement this core engine as a function ApproxMCCore.
The overall ApproxMC algorithm simply invokes ApproxMCCore sufficiently many
times, and returns the median of the non-⊥ values returned by ApproxMCCore.
The pseudocode for algorithm ApproxMC is shown below.
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Algorithm ApproxMC(F, ε, δ)
1: counter ← 0;C ← emptyList;
2: pivot ← 2× ComputeThreshold(ε);
3: t← ComputeIterCount(δ);
4: repeat:
5: c← ApproxMCCore(F, pivot);
6: counter ← counter + 1;
7: if (c �= ⊥)
8: AddToList(C, c);
9: until (counter < t);
10:finalCount ← FindMedian(C);
11:return finalCount ;

Algorithm ComputeThreshold(ε)

1: return
⌈
3e1/2

(
1 + 1

ε

)2⌉
;

Algorithm ComputeIterCount(δ)
1: return �35 log2(3/δ)�;

Algorithm ApproxMC takes as inputs a CNF formula F , a tolerance ε (0 < ε ≤ 1)
and δ (0 < δ ≤ 1) such that the desired confidence is 1 − δ. It computes two
key parameters: (i) a threshold pivot that depends only on ε and is used in
ApproxMCCore to determine the size of a “small” cell, and (ii) a parameter
t (≥ 1) that depends only on δ and is used to determine the number of times
ApproxMCCore is invoked. The particular choice of functions to compute the
parameters pivot and t aids us in proving theoretical guarantees for ApproxMC
in Section 5. Note that pivot is in O(1/ε2) and t is in O(log2(1/δ)). All non-⊥
estimates of the model count returned by ApproxMCCore are stored in the list C.
The function AddToList(C, c) updates the list C by adding the element c. The
final estimate of the model count returned by ApproxMC is the median of the
estimates stored in C, computed using FindMedian(C). We assume that if the
list C is empty, FindMedian(C) returns ⊥.

The pseudocode for algorithm ApproxMCCore is shown below.

Algorithm ApproxMCCore(F, pivot)
/* Assume z1, . . . zn are the variables of F */
1: S ← BoundedSAT(F, pivot + 1);
2: if (|S| ≤ pivot)
3: return |S|;
4: else
5: l ← �log2(pivot )� − 1; i← l − 1;
6: repeat
7: i← i+ 1;
8: Choose h at random from Hxor(n, i− l, 3);
9: Choose α at random from {0, 1}i−l;
10: S ← BoundedSAT(F ∧ (h(z1, . . . zn) = α), pivot + 1);
11: until (1 ≤ |S| ≤ pivot) or (i = n);
12: if (|S| > pivot or |S| = 0) return ⊥ ;
13: else return |S| · 2i−l;
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Algorithm ApproxMCCore takes as inputs a CNF formula F and a threshold
pivot, and returns an ε-approximate estimate of the model count of F . We as-
sume that ApproxMCCore has access to a function BoundedSAT that takes as
inputs a proposition formula F ′ that is the conjunction of a CNF formula and
xor constraints, as well as a threshold v ≥ 0. BoundedSAT(F ′, v) returns a set S
of models of F ′ such that |S| = min(v,#F ′). If the model count of F is no larger
than pivot , then ApproxMCCore returns the exact model count of F in line 3 of
the pseudocode. Otherwise, it partitions the space of all models of F using ran-
dom hashing functions from Hxor(n, i− l, 3) and checks if a randomly chosen cell
is non-empty and has at most pivot elements. Lines 8–10 of the repeat-until loop
in the pseudocode implement this functionality. The loop terminates if either a
randomly chosen cell is found to be small and non-empty, or if the number of

cells generated exceeds 2n+1

pivot (if i = n in line 11, the number of cells generated

is 2n−l ≥ 2n+1

pivot ). In all cases, unless the cell that was chosen last is empty or not
small, we scale its size by the number of cells generated by the corresponding
hashing function to compute an estimate of the model count. If, however, all
randomly chosen cells turn out to be empty or not small, we report a counting
error by returning ⊥.
Implementation Issues: There are two steps in algorithm ApproxMCCore (lines
8 and 9 of the pseudocode) where random choices are made. Recall from Section 2
that choosing a random hash function from Hxor(n,m, 3) requires choosing ran-
dom bit-vectors. It is straightforward to implement these choices and also the
choice of a random α ∈ {0, 1}i−l in line 9 of the pseudocode, if we have access
to a source of independent and uniformly distributed random bits. Our imple-
mentation uses pseudo-random sequences of bits generated from nuclear decay
processes and made available at HotBits [2]. We download and store a sufficiently
long sequence of random bits in a file, and access an appropriate number of bits
sequentially whenever needed. We defer experimenting with sequences of bits
obtained from other pseudo-random generators to a future study.

In lines 1 and 10 of the pseudocode for algorithm ApproxMCCore, we invoke
the function BoundedSAT. Note that if h is chosen randomly from Hxor(n,m, 3),
the formula for which we seek models is the conjunction of the original (CNF)
formula and xor constraints encoding the inclusion of each witness in h−1(α).
We therefore use a SAT solver optimized for conjunctions of xor constraints
and CNF clauses as the back-end engine. Specifically, we use CryptoMiniSAT
(version 2.9.2) [1], which also allows passing a parameter indicating the maximum
number of witnesses to be generated.

Recall that ApproxMCCore is invoked t times with the same arguments in
algorithm ApproxMC. Repeating the loop of lines 6–11 in the pseudocode of
ApproxMCCore in each invocation can be time consuming if the values of i− l for
which the loop terminates are large. In [7], a heuristic called leap-frogging was
proposed to overcome this bottleneck in practice. With leap-frogging, we register
the smallest value of i− l for which the loop terminates during the first few invo-
cations of ApproxMCCore. In all subsequent invocations of ApproxMCCore with
the same arguments, we start iterating the loop of lines 6–11 by initializing i− l
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to the smallest value registered from earlier invocations. Our experiments indi-
cate that leap-frogging is extremely efficient in practice and leads to significant
savings in time after the first few invocations of ApproxMCCore. A theoretical
analysis of leapfrogging is deferred to future work.

5 Analysis of ApproxMC

The following result, a minor variation of Theorem 5 in [28], about Chernoff-
Hoeffding bounds plays an important role in our analysis.

Theorem 1. Let Γ be the sum of r-wise independent random variables, each of
which is confined to the interval [0, 1], and suppose E[Γ ] = μ. For 0 < β ≤ 1, if
r ≤

⌊
β2μe−1/2

⌋
≤ 4 then Pr [ |Γ − μ| ≥ βμ ] ≤ e−r/2.

Let F be a CNF propositional formula with n variables. The next two lem-
mas show that algorithm ApproxMCCore, when invoked from ApproxMC with
arguments F , ε and δ, behaves like an (ε, d) model counter for F , for a fixed
confidence 1− d (possibly different from 1− δ). Throughout this section, we use
the notations RF and RF,h,α introduced in Section 2.

Lemma 1. Let algorithm ApproxMCCore, when invoked from ApproxMC, re-
turn c with i being the final value of the loop counter in ApproxMCCore. Then,

Pr
[
(1 + ε)−1 · |RF | ≤ c ≤ (1 + ε) · |RF |

∣∣∣ c �= ⊥ and i ≤ log2 |RF |
]
≥ 1− e−3/2.

Proof. Referring to the pseudocode of ApproxMCCore, the lemma is trivially
satisfied if |RF | ≤ pivot . Therefore, the only non-trivial case to consider is when
|RF | > pivot and ApproxMCCore returns from line 13 of the pseudocode. In this
case, the count returned is 2i−l.|RF,h,α|, where l = �log2(pivot)�−1 and α, i and
h denote (with abuse of notation) the values of the corresponding variables and
hash functions in the final iteration of the repeat-until loop in lines 6–11 of the
pseudocode.

For simplicity of exposition, we assume henceforth that log2(pivot) is an inte-
ger. A more careful analysis removes this restriction with only a constant factor
scaling of the probabilities. From the pseudocode of ApproxMCCore, we know

that pivot = 2
⌈
3e1/2

(
1 + 1

ε

)2⌉
. Furthermore, the value of i is always in {l, . . . n}.

Since pivot < |RF | ≤ 2n and l = �log2 pivot� − 1, we have l < log2 |RF | ≤ n.
The lemma is now proved by showing that for every i in {l, . . . �log2 |RF |�},
h ∈ H(n, i − l, 3) and α ∈ {0, 1}i−l, we have Pr

[
(1 + ε)−1 · |RF | ≤ 2i−l|RF,h,α|

≤ (1 + ε) · |RF |] ≥ (1 − e−3/2).
For every y ∈ {0, 1}n and for every α ∈ {0, 1}i−l, define an indicator vari-

able γy,α as follows: γy,α = 1 if h(y) = α, and γy,α = 0 otherwise. Let us fix
α and y and choose h uniformly at random from H(n, i − l, 3). The random
choice of h induces a probability distribution on γy,α, such that Pr [γy,α = 1] =
Pr [h(y) = α] = 2−(i−l), and E [γy,α] = Pr [γy,α = 1] = 2−(i−l). In addition, the
3-wise independence of hash functions chosen from H(n, i− l, 3) implies that for
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every distinct ya, yb, yc ∈ RF , the random variables γya,α, γyb,α and γyc,α are
3-wise independent.

Let Γα =
∑

y∈RF
γy,α and μα = E [Γα]. Clearly, Γα = |RF,h,α| and μα =∑

y∈RF
E [γy,α] = 2−(i−l)|RF |. Since |RF | > pivot and i ≤ log2 |RF |, using the

expression for pivot , we get 3 ≤
⌊
e−1/2(1 + 1

ε )
−2 · |RF |

2i−l

⌋
. Therefore, using The-

orem 1, Pr
[
|RF |.

(
1− ε

1+ε

)
≤ 2i−l|RF,h,α| ≤ (1 + ε

1+ε )|RF |
]
≥ 1− e−3/2. Sim-

plifying and noting that ε
1+ε < ε for all ε > 0, we obtain Pr

[
(1 + ε)−1 · |RF | ≤

2i−l|RF,h,α| ≤ (1 + ε) · |RF |
]
≥ 1− e−3/2.

Lemma 2. Given |RF | > pivot , the probability that an invocation of
ApproxMCCore from ApproxMC returns non-⊥ with i ≤ log2 |RF |, is at least
1− e−3/2.

Proof. Let us denote log2 |RF | − l = log2 |RF | − (�log2(pivot)� − 1) by m.
Since |RF | > pivot and |RF | ≤ 2n, we have l < m + l ≤ n. Let pi (l ≤
i ≤ n) denote the conditional probability that ApproxMCCore(F, pivot ) ter-
minates in iteration i of the repeat-until loop (lines 6–11 of the pseudocode)
with 1 ≤ |RF,h,α| ≤ pivot , given |RF | > pivot . Since the choice of h and
α in each iteration of the loop are independent of those in previous itera-
tions, the conditional probability that ApproxMCCore(F, pivot ) returns non-⊥
with i ≤ log2 |RF | = m + l, given |RF | > pivot , is pl + (1 − pl)pl+1 + · · · +
(1 − pl)(1 − pl+1) · · · (1 − pm+l−1)pm+l. Let us denote this sum by P . Thus,

P = pl +
∑m+l

i=l+1

∏i−1
k=l(1 − pk)pi ≥

(
pl +

∑m+l−1
i=l+1

∏i−1
k=l(1− pk)pi

)
pm+l +∏m+l−1

s=l (1− ps)pm+l = pm+l. The lemma is now proved by using Theorem 1 to
show that pm+l ≥ 1− e−3/2.

It was shown in Lemma 1 that Pr
[
(1 + ε)−1 · |RF | ≤ 2i−l|RF,h,α|

≤ (1 + ε) · |RF |] ≥ 1 − e−3/2 for every i ∈ {l, . . . �log2 |RF |�}, h ∈ H(n, i − l, 3)
and α ∈ {0, 1}i−l. Substituting log2 |RF | = m + l for i, re-arranging terms
and noting that the definition of m implies 2−m|RF | = pivot/2, we get
Pr

[
(1 + ε)−1(pivot/2) ≤ |RF,h,α| ≤ (1 + ε)(pivot/2)] ≥ 1 − e−3/2. Since 0 <

ε ≤ 1 and pivot > 4, it follows that Pr [1 ≤ |RF,h,α| ≤ pivot ] ≥ 1− e−3/2. Hence,
pm+l ≥ 1− e−3/2.

Theorem 2. Let an invocation of ApproxMCCore from ApproxMC return c. Then
Pr

[
c �= ⊥ and (1 + ε)−1 · |RF | ≤ c ≤ (1 + ε) · |RF |

]
≥ (1− e−3/2)2 > 0.6.

Proof sketch: It is easy to see that the required probability is at least as large
as Pr

[
c �= ⊥ and i ≤ log2 |RF | and (1 + ε)−1 · |RF | ≤ c ≤ (1 + ε) · |RF |

]
. From

Lemmas 1 and 2, the latter probability is ≥ (1− e−3/2)2.
We now turn to proving that the confidence can be raised to at least 1 − δ

for δ ∈ (0, 1] by invoking ApproxMCCore O(log2(1/δ)) times, and by using the
median of the non-⊥ counts thus returned. For convenience of exposition, we
use η(t,m, p) in the following discussion to denote the probability of at least
m heads in t independent tosses of a biased coin with Pr [heads ] = p. Clearly,
η(t,m, p) =

∑t
k=m

(
t
k

)
pk(1 − p)t−k.
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Theorem 3. Given a propositional formula F and parameters ε (0 < ε ≤ 1) and

δ (0 < δ ≤ 1), suppose ApproxMC(F, ε, δ) returns c. Then Pr
[
(1 + ε)

−1 · |RF | ≤ c

≤ (1 + ε) · |RF |] ≥ 1− δ.

Proof. Throughout this proof, we assume that ApproxMCCore is invoked t times
from ApproxMC, where t = �35 log2(3/δ)� (see pseudocode for ComputeIterCount
in Section 4). Referring to the pseudocode of ApproxMC, the final count re-
turned by ApproxMC is the median of non-⊥ counts obtained from the t in-
vocations of ApproxMCCore. Let Err denote the event that the median is not
in

[
(1 + ε)−1 · |RF |, (1 + ε) · |RF |

]
. Let “#non⊥ = q” denote the event that

q (out of t) values returned by ApproxMCCore are non-⊥. Then, Pr [Err] =∑t
q=0 Pr [Err | #non⊥ = q] · Pr [#non⊥ = q].
In order to obtain Pr [Err | #non⊥ = q], we define a 0-1 random variable

Zi, for 1 ≤ i ≤ t, as follows. If the ith invocation of ApproxMCCore returns c,
and if c is either ⊥ or a non-⊥ value that does not lie in the interval [(1 +
ε)−1 · |RF |, (1 + ε) · |RF |], we set Zi to 1; otherwise, we set it to 0. From The-
orem 2, Pr [Zi = 1] = p < 0.4. If Z denotes

∑t
i=1 Zi, a necessary (but not suf-

ficient) condition for event Err to occur, given that q non-⊥s were returned by
ApproxMCCore, is Z ≥ (t−q+�q/2�). To see why this is so, note that t−q invoca-
tions of ApproxMCCoremust return⊥. In addition, at least �q/2� of the remaining
q invocations must return values outside the desired interval. To simplify the ex-
position, let q be an even integer. A more careful analysis removes this restriction
and results in an additional constant scaling factor for Pr [Err]. With our simpli-
fying assumption, Pr [Err | #non⊥ = q] ≤ Pr[Z ≥ (t−q+q/2)] = η(t, t−q/2, p).
Since η(t,m, p) is a decreasing function of m and since q/2 ≤ t − q/2 ≤ t,
we have Pr [Err | #non⊥ = q] ≤ η(t, t/2, p). If p < 1/2, it is easy to verify
that η(t, t/2, p) is an increasing function of p. In our case, p < 0.4; hence,
Pr [Err | #non⊥ = q] ≤ η(t, t/2, 0.4).

It follows from above that Pr [Err] =
∑t

q=0 Pr [Err | #non⊥ = q]

·Pr [#non⊥ = q] ≤ η(t, t/2, 0.4)·
∑t

q=0 Pr [#non⊥ = q] = η(t, t/2, 0.4). Since(
t

t/2

)
≥

(
t
k

)
for all t/2 ≤ k ≤ t, and since

(
t

t/2

)
≤ 2t, we

have η(t, t/2, 0.4) =
∑t

k=t/2

(
t
k

)
(0.4)k(0.6)t−k ≤

(
t

t/2

)∑t
k=t/2(0.4)

k(0.6)t−k ≤
2t

∑t
k=t/2(0.6)

t(0.4/0.6)k≤ 2t · 3 · (0.6 × 0.4)t/2 ≤ 3 · (0.98)t. Since t =

�35 log2(3/δ)�, it follows that Pr [Err] ≤ δ.

Theorem 4. Given an oracle for SAT, ApproxMC(F, ε, δ) runs in time polyno-
mial in log2(1/δ), |F | and 1/ε relative to the oracle.

Proof. Referring to the pseudocode for ApproxMC, lines 1–3 take time no more
than a polynomial in log2(1/δ) and 1/ε. The repeat-until loop in lines 4–9 is
repeated t = �35 log2(3/δ)� times. The time taken for each iteration is dominated
by the time taken by ApproxMCCore. Finally, computing the median in line
10 takes time linear in t. The proof is therefore completed by showing that
ApproxMCCore takes time polynomial in |F | and 1/ε relative to the SAT oracle.

Referring to the pseudocode for ApproxMCCore, we find that BoundedSAT is
called O(|F |) times. Each such call can be implemented by at most pivot + 1
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calls to a SAT oracle, and takes time polynomial in |F | and pivot + 1 relative
to the oracle. Since pivot + 1 is in O(1/ε2), the number of calls to the SAT
oracle, and the total time taken by all calls to BoundedSAT in each invocation of
ApproxMCCore is a polynomial in |F | and 1/ε relative to the oracle. The random
choices in lines 8 and 9 of ApproxMCCore can be implemented in time polynomial
in n (hence, in |F |) if we have access to a source of random bits. Constructing
F ∧ h(z1, . . . zn) = α in line 10 can also be done in time polynomial in |F |.

6 Experimental Methodology

To evaluate the performance and quality of results of ApproxMC, we built
a prototype implementation and conducted an extensive set of experiments.
The suite of benchmarks represents problems from practical domains as well
as problems of theoretical interest. In particular, we considered a wide range
of model counting benchmarks from different domains including grid net-
works, plan recognition, DQMR networks, Langford sequences, circuit syn-
thesis, random k-CNF and logistics problems [27,20]. The suite consisted of
benchmarks ranging from 32 variables to 229100 variables in CNF representa-
tion. The complete set of benchmarks (numbering above 200) is available at
http://www.cs.rice.edu/CS/Verification/Projects/ApproxMC/.

All our experiments were conducted on a high-performance computing cluster.
Each individual experiment was run on a single node of the cluster; the cluster
allowed multiple experiments to run in parallel. Every node in the cluster had
two quad-core Intel Xeon processors with 4GB of main memory. We used 2500
seconds as the timeout for each invocation of BoundedSAT in ApproxMCCore, and
20 hours as the timeout for ApproxMC. If an invocation of BoundedSAT in line
10 of the pseudo-code of ApproxMCCore timed out, we repeated the iteration
(lines 6-11 of the pseudocode of ApproxMCCore) without incrementing i. The
parameters ε (tolerance) and δ (confidence being 1− δ) were set to 0.75 and 0.1
respectively. With these parameters, ApproxMC successfully computed counts for
benchmarks with upto 33, 000 variables.

We implemented leap-frogging, as described in [7], to estimate initial values
of i from which to start iterating the repeat-until loop of lines 6–11 of the pseu-
docode of ApproxMCCore. To further optimize the running time, we obtained
tighter estimates of the iteration count t used in algorithm ApproxMC, com-
pared to those given by algorithm ComputeIterCount. A closer examination of
the proof of Theorem 3 shows that it suffices to have η(t, t/2, 0.4) ≤ δ. We there-
fore pre-computed a table that gave the smallest t as a function of δ such that
η(t, t/2, 0.4) ≤ δ. This sufficed for all our experiments and gave smaller values
of t (we used t=41 for δ=0.1) compared to those given by ComputeIterCount.

For purposes of comparison, we also implemented and conducted experiments
with the exact counter Cachet [26] by setting a timeout of 20 hours on the same
computing platform. We compared the running time of ApproxMC with that
of Cachet for several benchmarks, ranging from benchmarks on which Cachet
ran very efficiently to those on which Cachet timed out. We also measured the

http://www.cs.rice.edu/CS/Verification/Projects/ApproxMC/
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quality of approximation produced by ApproxMC as follows. For each bench-
mark on which Cachet did not time out, we obtained the approximate count
from ApproxMC with parameters ε = 0.75 and δ = 0.1, and checked if the ap-
proximate count was indeed within a factor of 1.75 from the exact count. Since
the theoretical guarantees provided by our analysis are conservative, we also
measured the relative error of the counts reported by ApproxCount using the L1

norm, for all benchmarks on which Cachet did not time out. For an input formula
Fi, let AFi (resp., CFi) be the count returned by ApproxCount (resp., Cachet).

We computed the L1 norm of the relative error as
∑

i |AFi
−CFi

|∑
i CFi

.

Since Cachet timed out on most large benchmarks, we compared ApproxMC
with state-of-the-art bounding counters as well. As discussed in Section 1, bound-
ing counters do not provide any tolerance guarantees. Hence their guarantees
are significantly weaker than those provided by ApproxMC, and a direct com-
parison of performance is not meaningful. Therefore, we compared the sizes of
the intervals (i.e., difference between upper and lower bounds) obtained from
existing state-of-the-art bounding counters with those obtained from ApproxMC.
To obtain intervals from ApproxMC, note that Theorem 3 guarantees that if
ApproxMC(F, ε, δ) returns c, then Pr[ c

1+ε ≤ |RF | ≤ (1+ε) · c] ≥ 1− δ. Therefore,
ApproxMC can be viewed as computing the interval [ c

1+ε , (1+ε) ·c] for the model
count, with confidence δ. We considered state-of-the-art lower bounding coun-
ters, viz. MBound [12], Hybrid-MBound [12], SampleCount [14] and BPCount [20],
to compute a lower bound of the model count, and used MiniCount [20] to obtain
an upper bound. We observed that SampleCount consistently produced better
(i.e. larger) lower bounds than BPCount for our benchmarks. Furthermore, the
authors of [12] advocate using Hybrid-MBound instead of MBound. Therefore,
the lower bound for each benchmark was obtained by taking the maximum of
the bounds reported by Hybrid-MBound and SampleCount.

We set the confidence value forMiniCount to 0.99 and SampleCount and Hybrid-
MBound to 0.91. For a detailed justification of these choices, we refer the reader
to the full version of our paper. Our implementation of Hybrid-MBound used
the “conservative” approach described in [12], since this provides the best lower
bounds with the required confidence among all the approaches discussed in [12].
Finally, to ensure fair comparison, we allowed all bounding counters to run for
20 hours on the same computing platform on which ApproxMC was run.

7 Results

The results on only a subset of our benchmarks are presented here for lack of
space. Figure 1 shows how the running times of ApproxMC and Cachet com-
pared on this subset of our benchmarks. The y-axis in the figure represents time
in seconds, while the x-axis represents benchmarks arranged in ascending or-
der of running time of ApproxMC. The comparison shows that although Cachet
performed better than ApproxMC initially, it timed out as the “difficulty” of
problems increased. ApproxMC, however, continued to return bounds with the
specified tolerance and confidence, for many more difficult and larger problems.
Eventually, however, even ApproxMC timed out for very large problem instances.
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Our experiments clearly demonstrate that there is a large class of practical prob-
lems that lie beyond the reach of exact counters, but for which we can still obtain
counts with (ε, δ)-style guarantees in reasonable time. This suggests that given
a model counting problem, it is advisable to run Cachet initially with a small
timeout. If Cachet times out, ApproxMC should be run with a larger timeout.
Finally, if ApproxMC also times out, counters with much weaker guarantees but
shorter running times, such as bounding counters, should be used.

Figure 2 compares the model count computed by ApproxMC with the bounds
obtained by scaling the exact count obtained from Cachet by the tolerance factor
(1.75) on a subset of our benchmarks. The y-axis in this figure represents the
model count on a log-scale, while the x-axis represents the benchmarks arranged
in ascending order of the model count. The figure shows that in all cases, the
count reported by ApproxMC lies within the specified tolerance of the exact
count. Although we have presented results for only a subset of our benchmarks
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arranged in increasing order of running time of ApproxMC.

1.0e+02

1.0e+03

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

1.0e+10

 0  5  10  15  20  25  30  35

#
 o

f S
ol

ut
io

ns

Benchmarks

ApproxMC
Cachet/1.75
Cachet*1.75

Fig. 2. Quality of counts computed by ApproxMC. The benchmarks are arranged in
increasing order of model counts.



214 S. Chakraborty, K.S. Meel, and M.Y. Vardi

(37 in total) in Figure 2 for reasons of clarity, the counts reported by ApproxMC
were found to be within the specified tolerance of the exact counts for all 95
benchmarks for which Cachet reported exact counts. We also found that the
L1 norm of the relative error, considering all 95 benchmarks for which Cachet
returned exact counts, was 0.033. Thus, ApproxMC has approximately 4% error
in practice – much smaller than the theoretical guarantee of 75% with ε = 0.75.

Figure 3 compares the sizes of intervals computed using ApproxMC and us-
ing state-of-the-art bounding counters (as described in Section 6) on a subset
of our benchmarks. The comparison clearly shows that the sizes of intervals
computed using ApproxMC are consistently smaller than the sizes of the cor-
responding intervals obtained from existing bounding counters. Since smaller
intervals with comparable confidence represent better approximations, we con-
clude that ApproxMC computes better approximations than a combination of
existing bounding counters. In all cases, ApproxMC improved the upper bounds
from MiniCount significantly; it also improved lower bounds from SampleCount
and MBound to a lesser extent. For details, please refer to the full version.
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Fig. 3. Comparison of interval sizes from ApproxMC and those from bounding counters.
The benchmarks are arranged in increasing order of model counts.

8 Conclusion and Future Work

We presented ApproxMC, the first (ε, δ) approximate counter for CNF formu-
lae that scales in practice to tens of thousands of variables. We showed that
ApproxMC reports bounds with small tolerance in theory, and with much smaller
error in practice, with high confidence. Extending the ideas in this paper to
probabilistic inference and to count models of SMT constraints is an interesting
direction of future research.
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Abstract. Recently, a generic method for identifying and exploiting dominance
relations using dominance breaking constraints was proposed. In this method,
sufficient conditions for a solution to be dominated are identified and these con-
ditions are used to generate dominance breaking constraints which prune off the
dominated solutions. We propose to use these dominance relations in a different
way in order to boost the search for good/optimal solutions. In the new method,
which we call dominance jumping, when search reaches a point where all solu-
tions in the current domain are dominated, rather than simply backtrack as in the
original dominance breaking method, we jump to the subtree which dominates
the current subtree. This new strategy allows the solver to move from a bad sub-
tree to a good one, significantly increasing the speed with which good solutions
can be found. Experiments across a range of problems show that the method can
be very effective when the original search strategy was not very good at finding
good solutions.

1 Introduction

Recently, a generic method for identifying and exploiting dominance relations using
dominance breaking constraints was proposed in [3]. This method analyzes the effects
of different assignment mappings on the satisfiability and objective value of solutions,
and finds sufficient conditions under which a solution is dominated by (i.e., no better
than) another one. Dominance breaking constraints are then generated which prune off
these dominated solutions.

While symmetry and dominance breaking constraints are very powerful and can pro-
duce orders of magnitude speedup on a wide range of problems, it is well known that
static symmetry breaking constraints (e.g., [20,4,14,21,8]) can conflict with the search
strategy, leading to less speedup or even a slowdown [10]. Static dominance breaking
constraints, which are a generalization of static symmetry breaking constraints, suffer
from a similar problem. In optimization problems, dominance breaking constraints pre-
vent the solver from finding any solution which is dominated. While such dominated
solutions may not be optimal, they may nevertheless improve the current best solution
and allow additional pruning through branch and bound. If the search strategy quickly
guides the search to good/optimal non-dominated solutions, then there is no conflict be-
tween the search and the dominance breaking constraints. However, if we have a search
strategy which keeps pushing the search into subtrees with only dominated solutions,
then the search will potentially conflict with the dominance breaking constraints.

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 217–229, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Consider a situation where the next 100 solutions in the search tree are all dominated,
but one or more of them does improve the current best solution. A search without dom-
inance breaking constraints will go through that portion of the search space without
the pruning provided by the dominance breaking constraints, but once one of these bet-
ter solutions are found, it will gain some additional pruning from branch and bound.
A search with dominance breaking constraints will have the pruning provided by the
dominance breaking constraints, but none of the pruning from the better solution that it
could have found among these 100 solutions. Thus it is possible that the solver is ac-
tually slower at finding the optimal solution with dominance breaking constraints than
without.

In symmetry breaking, the potential conflict between search strategy and static sym-
metry breaking constraints can be overcome by using a dynamic symmetry breaking
method such as symmetry breaking during search (SBDS) [1,11] or symmetry breaking
by dominance detection (SBDD) [5]. In this paper, we propose a different way to over-
come this problem in the dominance case. We propose an altered method called domi-
nance jumping, which exploits the information contained in the dominance relations in
a different way. When a dominance breaking constraint prunes a partial assignment (be-
cause it is dominated by another), instead of simply backtracking as a normal CP solver
would do, we jump to the subtree represented by the partial assignment which domi-
nates the current one. Then, rather than getting stuck in a subtree where all the solutions
are dominated and therefore not discoverable by a search with dominance breaking con-
straints, the dominance jumping can take us to a subtree with non-dominated solutions,
allowing the search to find good non-dominated solutions and benefit from the addi-
tional pruning provided by branch and bound.

The rest of the paper is organized as follows: in the next section we introduce nota-
tion, and recall the approach to creating dominance breaking constraint described in [3].
In Section 3 we describe dominance jumping. In Section 4 we give experimental results
comparing dominance breaking and dominance jumping. In Section 5 we examine re-
lated work, and finally in Section 6 we conclude.

2 Definitions

2.1 Constraints, Literals, and COPs

Let ≡ denote syntactical identity,⇒ denote logical implication and⇔ denote logical
equivalence. We define variables and constraints in a problem independent way. A vari-
able v is a mathematical quantity capable of assuming any value from a set of values
called the default domain of v. Each variable is typed, e.g., Boolean or Integer, and its
type determines its default domain, e.g., {0,1} for Boolean variables and Z for Integer
variables. Given a set of variables V , let ΘV denote the set of valuations over V where
each variable in V is assigned to a value in its default domain. A constraint c over a set
of variables V is defined by a set of valuations solns(c)⊆ΘV . Given a valuation θ over
V ′ ⊃ V , we say θ satisfies c if the restriction of θ onto V is in solns(c). Otherwise, we
say that θ violates c. A domain D over variables V is a set of unary constraints, one for
each variable in V . In an abuse of notation, if a symbol A refers to a set of constraints
{c1, . . . ,cn}, we will often also use the symbol A to refer to the constraint c1∧ . . .∧ cn.
This allows us to avoid repetitive use of conjunction symbols.



Dominance Driven Search 219

A Constraint Satisfaction Problem (CSP) is a tuple P ≡ (V,D,C), where V is a set
of variables, D is a domain over V , and C is a set of n-ary constraints. A valuation θ
over V is a solution of P if it satisfies every constraint in D and C. The aim of a CSP
is to find a solution or to prove that none exist. In a Constraint Optimization Problem
(COP) P≡ (V,D,C, f ), we also have an objective function f mapping ΘV to an ordered
set, e.g., Z or R, and we wish to minimize or maximize f over the solutions of P. In
this paper, we deal with finite domain problems only, i.e., where the initial domain D
constrains each variable to take values from a finite set of values.

CP solvers solve CSP’s by interleaving search with inference. We begin with the
original problem at the root of the search tree. At each node in the search tree, we
propagate the constraints to try to infer variable/value pairs which can no longer be
taken in any solution in this subtree. Such pairs are removed from the current domain.
If some variable’s domain becomes empty, then the subtree has no solution and the
solver backtracks. If all the variables are assigned and no constraint is violated, then a
solution has been found and the solver can terminate. If inference is unable to detect
either of the above two cases, the solver further divides the problem into a number of
more constrained subproblems and searches each of those in turn. COP’s are typically
solved via branch and bound where we solve a series of CSP’s with increasingly tight
bounds on the objective value.

2.2 Dominance Breaking

Without loss of generality, assume that we are dealing with a minimization problem.
We say that assignment θ1 dominates θ2 if either: 1) θ1 is a solution and θ2 is a non-
solution, or 2) they are both solutions or both non-solutions and f (θ1) ≤ f (θ2). In [3],
a generic method for identifying and exploiting dominance relations via dominance
breaking constraints was proposed. The method can be briefly outlined as follows:

Step 1 Choose a refinement of the objective function f ′ with the property that
∀θ1,θ2, f (θ1)< f (θ2) implies f ′(θ1)< f ′(θ2).

Step 2 Find mappings σ : ΘV →ΘV which are likely to map solutions to better solu-
tions.

Step 3 For each σ , find a constraint scond(σ) s.t. if θ ∈ solns(C∧D∧ scond(σ)), then
σ(θ ) ∈ solns(C∧D).

Step 4 For each σ , find a constraint ocond(σ) s.t. if θ ∈ solns(C∧D∧ocond(σ)), then
f ′(σ(θ ))< f ′(θ ).

Step 5 For each σ , post the dominance breaking constraint db(σ) ≡ ¬(scond(σ)∧
ocond(σ)).

The method analyzes the effects of different assignment mappings σ on the satis-
fiability and objective value of solutions, and finds sufficient conditions scond(σ)∧
ocond(σ) under which a solution is dominated by another one. Dominance breaking
constraints db(σ)≡¬(scond(σ)∧ocond(σ)) are then generated which prune off these
dominated solutions. We now restate the main theorem from [3] showing the correct-
ness of the dominance breaking constraints generated by this method.

Theorem 1. Given a finite domain COP P≡ (V,D,C, f ), a refinement of the objective
function f ′ satisfying ∀θ1,θ2, f (θ1)< f (θ2) implies f ′(θ1)< f ′(θ2), a set of mappings
S, and for each mapping σ ∈ S constraints scond(σ) and ocond(σ) satisfying: ∀σ ∈ S,
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if θ ∈ solns(C∧D∧scond(σ)), then σ(θ )∈ solns(C∧D), and: ∀σ ∈ S, if θ ∈ solns(C∧
D∧ ocond(σ)), then f ′(σ(θ )) < f ′(θ ), we can add all of the dominance breaking
constraints db(σ) ≡ ¬(scond(σ)∧ ocond(σ)) to P without changing its satisfiability
or optimal value.

A proof of this theorem and more details on the method can be found in [3].

Example 1. Consider the 0-1 knapsack problem where xi are 0-1 variables, we have
constraint ∑wixi≤W and we have objective f =−∑vixi, where wi and vi are constants.

Step 1 Initially, let us not refine the objective function leaving f ′ = f .

Step 2 Consider mappings which swap the values of two variables, i.e., ∀i < j,σi, j
swaps xi and x j.

Step 3 A sufficient condition for σi, j to map the current solution to another solution is:
scond(σi, j)≡ wix j +wjxi ≤ wixi +wjx j. Rearranging, we get: (wi−wj)(xi− x j)≥ 0.

Step 4 A sufficient condition for σi, j to map the current solution to an assignment with
a better objective value is: ocond(σi, j)≡ vix j + v jxi > vixi + v jx j. Rearranging, we get:
(vi− v j)(xi− x j)< 0.

Step 5 For each σi, j, we can post the dominance breaking constraint: db(σi, j) ≡
¬(scond(σi, j)∧ocond(σi, j)). After simplifying, we have db(σi, j)≡ xi ≤ x j if wi ≥ wj
and vi < v j, db(σi, j) ≡ xi ≥ x j if wi ≤ wj and vi > v j, and db(σi, j) ≡ true for all other
cases.

These dominance breaking constraints ensure that if one item has worse value and
greater or equal weight to another, then it cannot be chosen without choosing the other
also.

We can refine the objective to get stronger dominance breaking constraints.
In Step 1, we can tie break solutions with equal objective value by the weight used,
and then lexicographically, i.e., f ′ = lex( f ,∑ wixi,x1, . . . ,xn). In Step 4, we have: ∀i <
j,ocond(σi, j) ≡ σ( f ′) < f ′ ≡ ((vi− v j)(xi− x j) < 0)∨ ((vi− v j)(xi− x j) = 0∧ (wi−
wj)(xi− x j)> 0)∨ ((vi− v j)(xi− x j) = 0∧ (wi−wj)(xi− x j) = 0∧x j < xi). In Step 5,
after simplifying, in addition to the dominance breaking constraints we had before, we
would also have: db(σi, j)≡ xi ≤ x j if wi > wj and vi = v j, db(σi, j)≡ xi ≥ x j if wi < wj
and vi = v j, and db(σi, j)≡ xi ≤ x j if wi = wj and vi = v j which is a symmetry breaking
constraint. �

3 Dominance Jumping

A propagator for a dominance breaking constraint can do two things: 1) it can check the
consistency of the current domain w.r.t. the dominance breaking constraint, producing
failure if it is inconsistent, and 2) it can prune off variable/value pairs which, if taken,
will cause inconsistency. In the original method, the failure and propagation produced
by these propagators are treated the same as any other propagator in the system. In our
altered method, whenever dominance jumping is active, we modify this behavior as
follows: 1) we check consistency only and never prune any values using the dominance
breaking constraints, 2) when a failure is detected, we perform a dominance jump rather
than a normal backtrack.
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As can be seen from the definitions in Section 2, each dominance breaking constraint
db(σ) is generated from an assignment mapping σ . When a domain D is failed by
db(σ), it means that every solution θ in D is dominated by a corresponding solution
σ(θ ). Rather than simply failing and backtracking, we can instead perform a dominance
jump to get to the part of the search tree that contains these better solutions. Let us extend
σ to also map domains to domains via solns(σ(D))≡ {σ(θ ) | θ ∈ solns(D)}. Then, if
D is failed by db(σ), the domain σ(D) must contain solutions which dominate those in
the current domain D. We want to calculate this new domain σ(D) and jump to there.
In this paper, we consider only σ which are literal mappings, i.e., assignment mappings
which map each equality literal x = v to the same or another equality literal x′ = v′ in
all assignments. All of the σ used in [3] are literal mappings, and indeed we expect
that most practically useful mappings for the method proposed in [3] will be literal
mappings. Let us extend σ to map equality literals to equality literals and disequality
literals to disequality literals such that if σ(x = v) = (x′ = v′), then σ(x �= v) = (x′ �= v′).

Any domain D can be expressed as a set of disequality literals litsD representing
which variable/value pairs from the original domain has been pruned. For example,
suppose the initial domain Dinit of x1,x2 were {1,2,3,4,5} and the current domain D
is x1 ∈ {1,3,5},x2 ∈ {2,3,4}. Then litsD ≡ {x1 �= 2,x1 �= 4,x2 �= 1,x2 �= 5}. Using the
set of literals σ(litsD) ≡ {σ(l) | l ∈ litsD} as decisions from the root node will take us
to the search space σ(D). We do this by backtracking to the deepest level such that
all previous decisions in the current search path are in σ(litsD). We then suspend the
normal search strategy and draw decisions from σ(litsD) until it is either exhausted,
or some conflict occurs. After that, we resume the normal search strategy. If D had
variables which were fixed, we can use those equality literals in litsD instead so we need
to make fewer decisions to get to σ(D). Similarly, if σ happens to also map inequality
literals to inequality literals (e.g., in a mapping which swaps variables), we can use
those to reduce the number of decisions.

Example 2. Consider the Photo problem. A group of people wants to take a group photo
where they stand in one line. Each person has preferences regarding who they want to
stand next to. We want to find the arrangement which satisfies the most preferences.

We can model this as follows. Let xi ∈ {1, . . . ,n} for i= 1, . . . ,n be variables where xi
represent the person in the ith place. Let p be a 2d integer array where p[i][ j] = p[ j][i] =
2 if person i and j both want to stand next to each other, p[i][ j] = p[ j][i] = 1 if only one
of them wants to stand next to the other, and p[i][ j] = p[ j][i] = 0 if neither want to stand
next to each other. The only constraint is: alldiff ([x1, . . . ,xn]). The objective function to
be maximised is given by: f = ∑n−1

i=1 p[xi][xi+1]. In MiniZinc [18] it would be modelled
as:

int: n; % number of people
set of int: Person = 1..n;
array[Person,Person] of 0..2: p; % preferences

array[Person] of Person: x; % person in position i;

constraint alldifferent(x);

solve maximize sum(i in 1..n-1)(p[x[i],x[i+1]]);
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As described in [3], if we consider the mappings σi, j which flip a subsequence of
the x’s from the ith position to the jth (i.e., map xi to x j, xi+1 to x j−1, . . ., x j to xi),
we can generate a number of dominance breaking constraints. For 2 ≥ i < j ≤ n−
1, db(σi, j) ≡ p[xi−1][xi] + p[x j][x j+1] + (xi < x j) > p[xi−1][x j] + p[xi][x j+1]. For i =
1,2≤ j, db(σi, j)≡ p[x j][x j+1]+(xi < x j)> p[xi][x j+1]. For i≤ n−1, j = n, db(σi, j)≡
p[xi−1][xi]+ (xi < x j)> p[xi−1][x j]. For i = 1, j = n, db(σi, j)≡ (xi < x j)> 0.

We now illustrate the difference between dominance breaking and dominance jump-
ing on a simple example. Suppose n = 6 and person 1 wants to stand next to person
6, person 6 wants to stand next to person 2, person 2 wants to stand next to person 5,
person 5 wants to stand next to person 3, and person 3 wants to stand next to person 4.
This is expressed by the MiniZinc data file:

n = 6;
p = [| 0, 0, 0, 0, 0, 1

| 0, 0, 0, 0, 1, 1
| 0, 0, 0, 1, 1, 0
| 0, 0, 1, 0, 0, 0
| 0, 1, 1, 0, 0, 0
| 1, 1, 0, 0, 0, 0 |];

Suppose we use a naive search strategy such as labelling the xi in order, trying
the lowest value available in the domain first. With neither dominance breaking nor
dominance jumping, it takes the search 51 conflicts to reach an optimal solution x1 =
1,x2 = 6,x3 = 2,x4 = 5,x5 = 3,x6 = 4. With dominance breaking, the search pro-
ceeds as follows. At the first decision level, we try x1 = 1. At the second decision
level, we try x2 = 2. At this point, the constraint p[x1][x2] + (x2 < x6) > p[x1][x6]
propagates to force p[x1][x6] = 0, which forces x6 �= 6. At the third decision level,
we try x3 = 3. At this point, the constraint p[x2][x3] + (x3 < x6) > p[x2][x6] prop-
agates to force p[x2][x6] = 0, which forces x6 �= 5, which forces x6 = 4. The con-
straint p[x3][x4]+(x4 < x6)> p[x3][x6] now propagates and forces p[x3][x4]≥ 2 because
p[x3][x6] = p[3][4] = 1, and x4 is either 5 or 6 so (x4 < x6) = 0. But then x4 �= 5 and
x4 �= 6 and we have a failure. We then backtrack and continue the search. After another
25 conflicts, we reach the optimal solution. The search tree is shown in Figure 1.

With dominance jumping, the search proceeds as follows. We make the 5 decisions
x1 = 1,x2 = 2,x3 = 3,x4 = 4,x5 = 5, which forces x6 = 6. At this point, a number
of dominance breaking constraints are detected to be violated, telling us that certain
mappings can improve the solution. For example, db(σ2,6) is violated. Using the map-
ping σ2,6 to perform a jump means that we backtrack to decision level 1, and then try
the decisions x2 = 6,x3 = 5,x4 = 4,x5 = 3,x6 = 2. After these, we again detect that a
dominance breaking constraint is violated, e.g., db(σ3,6). Performing this jump means
that we backtrack to decision level 2 and try x3 = 2,x4 = 3,x4 = 4,x6 = 5. This vio-
lates db(σ4,6). Applying this jump causes us to backtrack to decision level 3 and try
x4 = 5,x5 = 4,x6 = 3. This violates db(σ5,6). Applying this jump causes us to back-
track to decision level 4 and try x5 = 3,x6 = 4, finally giving a non-dominated solution
of x1 = 1,x2 = 6,x3 = 2,x4 = 5,x5 = 3,x6 = 4. In this case, it only took 4 conflicts and
4 jumps to bring us to the optimal solution. The search tree is shown in Figure 2. �
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Fig. 1. Search tree with dominance breaking

The effect of dominance jumping is significantly different from dominance breaking.
When a “bad” decision is made (e.g., x2 = 2 after x1 = 1 in Example 2), dominance
breaking is incapable of “fixing” the problem. Instead, it just helps the solver to fail
that bad subtree quicker so that it can backtrack out of the bad decision. However, in
general, it still takes exponential time to undo the bad decision. Dominance jumping on
the other hand, can potentially fix a bad decision and replace it with a good one very
quickly. In Example 2, after x1 = 1,x2 = 2, if some xi is set to 6, it is likely that flipping
the subsequence from 2 to i improves the objective. Thus dominance jumping will jump
to a subtree where x1 = 1,x2 = 6, immediately undoing the bad decision x2 = 2.

Note that dominance jumping does not require all variables involved in the domi-
nance breaking constraint to be fixed in order to jump.

Example 3. Consider a simple problem: x1 + x2 + x3 + x4 ≤ 9∧ alldiff (x1,x2,x3,x4)
with D(xi) = [1..6]. All variables are symmetric. So σi, j which swaps the values of xi
and x j is a mapping that preserves solutions. Using a lexicographic objective f ′ we
can compute db(σi, j) = xi ≤ x j for i < j. Imagine we label x2 = 1, then propagation
causes D(x1) = [2..6] and db(σ1,2) fails. We compute σ1,2(D) as D(x2) = [2..6] and
D(x1) = {1}. The dominance jump goes to the root and then sets x1 = 1 (which will
set D(x2) = [2..6]) and then continues its search. Of course for this trivial example
dominance breaking is clearly superior. 	


Both dominance breaking and dominance jumping are optimality preserving. As The-
orem 1 states, the addition of dominance breaking constraints to the problem does
not change its satisfiability or optimal value. Performing dominance jumping will not
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Fig. 2. Search tree with dominance jumping

change its satisfiability or optimal value either. When a dominance jump is performed,
nothing is actually pruned. We are only doing a restart and temporarily using a different
search strategy to guide the solver to another part of the search space. The subtree we
jumped away from is not counted as fully searched, so dominance jumping can never
prune off optimal solutions of the problem. However, there can be issues of termination
when dominance jumping is used, as if we keep jumping, we may never complete a
full search of the search tree. Nogood learning techniques such as [13,19,6]) can be
used to overcome this problem. Such techniques record nogoods which tell us which
parts of the search tree the solver has proved contains no solution better than the current
best solution. Such nogoods allow the solver to keep track of which subtrees have been
exhaustively searched. If we keep all such nogoods permanently, the search will always
terminate and will be complete, guaranteeing that the correct optimal value is found.
We implemented dominance jumping in the nogood learning solver CHUFFED which
already has nogood learning built in, and thus it is capable of performing a complete
search with dominance jumping.

The effectiveness of dominance jumping depends significantly on how good the orig-
inal search strategy was. If the original search strategy was already good enough that it
very quickly leads the search to an optimal solution, then dominance jumping is largely
pointless. On the other hand, if the original search strategy was quite naive, or is not
designed for finding good solutions, then dominance jumping can be very useful. It
is quite common that the search strategies used in CP solvers are not good at find-
ing good solutions. This is because many of them are designed to reduce the size of
the search tree, rather than to order the subtrees so that good solutions are found first.
Many of the common dynamic search strategies such as first fail [12], dom/wdeg and
its variants [2], and activity based search [17] are purely designed to make the search
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tree smaller and makes no effort whatsoever to try to guide the solver to good solutions
quickly. But when dominance jumping is used on top of them, even very naive search
strategies which are bad at finding solutions can turn into good ones, as a significant
amount of information about the objective and the structure of the problem is contained
in the dominance relations. By exploiting this through dominance jumping, we can
bring the solver to a good subtree even if the search strategy initially sent it to a bad
one.

While dominance jumping can be effective in the solution finding phase of an op-
timization problem, it is completely useless in the proof of optimization phase. In that
phase, we are no longer trying to find any solutions. Jumping around in the search
space will simply make it more difficult to complete the proof of optimality. Nogood
learning can prevent thrashing behavior caused by the jumping and allow a complete
proof of optimality to be derived. However, for large/hard problems, this may require
an unreasonably large number of nogoods to be stored, causing the solver to run out
of memory. Ideally, if a proof of optimality is desired, we should use some dynamic
method to switch off dominance jumping and go back to pure dominance breaking.
Such strategies will be explored in future work.

4 Experiments

The experiments were performed on Xeon Pro 2.4GHz processors using the state of the
art CP solver CHUFFED. We use a time out of 600 seconds. We compare the base solver
vs dominance breaking and dominance jumping. We use the 7 optimization problems
used in [3]: Photo-n the photo problem of Example 2 with n people, Knapsack-n
0-1 knapsack problem of Example 1 with n objects, Nurse-n nurse scheduling prob-
lem [15] with 15 nurses and n days, RCPSP resource constrained scheduling problem
J120 instances, Talent-n talent scheduling problem [9] with n scenes, SteelMill-n
steel mill scheduling [10] with n orders, and PCBoard-n-m PB board manufacturing
problem with n components and m devices. We use basic inorder fixed search strategies
that are not specifically designed to find good solutions. MiniZinc models and data for
the problems can be found at: www.cs.mu.oz.au/~pjs/dom-jump/

Results are shown in Table 1: opt is average of the best solution found; otime is the
geometric mean of time to find the best solution; etime is the geometric mean of time
to find a solution at least as good as the worst of the best solution found by dominance
breaking and the best solution found by dominance jumping, so we can directly com-
pare etime to see how much time each took to get the same quality solution; stime is the
geometric mean of the time to solve the instance completely (timeouts count as 600);
and finally svd the number of instances solved to optimality is given in brackets. The
best values out of the three methods are given in bold. When there is a tie on the best
value, we tie-break on the time required to achieve the value.

The results show that both dominance breaking and dominance jumping substan-
tially improve upon solving without dominance information. Dominance jumping is
clearly better at finding good solutions faster. The average best solution found is almost
always better. Dominance jumping almost always wins in etime, the only exception is
in smaller knapsacks and in nurse scheduling where dominance breaking is obviously
far superior. Notice how, as the difficulty of the instances grows with size, dominance
jumping becomes more advantageous.

www.cs.mu.oz.au/~pjs/dom-jump/
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Table 1. Comparison of the solver with nothing (none), with dominance breaking constraints
(dominance breaking), and with dominance jumping. dominance jumping.

Problem none dominance breaking dominance jumping
opt otime stime svd opt otime etime stime svd opt otime etime stime svd

Photo-16 19.5 16.43 50.13 18 19.7 1.03 1.03 11.40 20 19.7 0.10 0.10 16.64 20
Photo-18 21.4 39.45 182.7 15 21.5 2.27 2.27 76.26 20 21.5 0.29 0.29 80.62 19
Photo-20 21.4 179.6 393.3 5 23.15 31.06 31.06 262.4 7 23.15 1.16 1.16 232.9 9
Photo-22 22.8 185.1 368.7 4 25.15 51.56 38.9 294.7 6 25.4 2.18 0.76 244.4 7
Photo-24 21.55 213.5 596.5 1 26.75 147.9 147.9 586.7 3 27.15 2.00 0.52 495.6 4
Knapsack-100 1827.95 222.3 600 0 2583.2 0.30 0.30 0.93 20 2583.2 0.60 0.60 1.52 20
Knapsack-150 3605.75 240.6 600 0 5810.35 13.8 13.82 47.62 19 5810.35 27.71 27.71 82.26 19
Knapsack-200 5910.55 299.2 600 0 10422.4 180.1 126.2 261.0 3 10415.8 220.7 206.2 491.9 2
Knapsack-250 8732.25 342.4 600 0 16235.25 253.9 186.2 600 0 16235.5 327.1 151.7 600 0
Knapsack-300 12000 288.9 600 0 23212 272.6 157.2 600 0 23294.9 302.2 123.0 600 0
Nurse-14 149.2 61.35 61.82 18 151.35 50.99 49.14 52.33 19 150.2 72.45 72.45 74.06 18
Nurse-21 137.1 416.5 600 0 172.7 248.0 217.6 600 0 172.4 280.7 254.3 600 0
Nurse-28 161.5 400.5 600 0 222.4 245.1 213.5 600 0 222.45 310.2 277.6 600 0
Nurse-35 187.5 355.0 600 0 275.75 339.8 164.7 600 0 275.1 223.7 196.4 600 0
Nurse-42 213.1 382.3 600 0 321.9 377.4 193.3 600 0 320.55 332.9 332.9 600 0
RCPSP 110.9 31.37 41.62 72 114.17 7.51 7.51 13.97 57 110.86 12.44 3.92 15.83 72
Talent-16 106.1 7.58 19.03 20 106.05 0.92 0.92 3.25 20 106.05 0.41 0.41 2.79 20
Talent-18 149.45 127.1 239.3 16 147 5.22 5.22 17.26 20 147 2.73 2.73 15.81 20
Talent-20 270.2 321.4 497.3 5 184.45 27.22 27.22 81.48 20 184.45 14.85 14.85 73.40 20
Talent-22 387.1 369.2 600 0 270.9 34.32 34.32 353.2 13 204.05 51.4 21.10 310.5 14
Talent-24 566.65 323.8 600 0 322.25 161.6 154.9 547.1 2 260.1 123.4 18.27 510.7 3
SteelMill-40 5.45 71.02 129.3 10 1.6 42.30 40.80 54.60 15 0.65 20.24 9.33 21.75 17
SteelMill-45 8.2 105.7 269.6 6 1.55 121.7 121.7 134.1 14 0.35 46.44 31.92 52.83 18
SteelMill-50 16.35 319.6 560.1 1 9.85 91.00 90.73 332.1 10 1.1 142.1 30.75 198.9 16
SteelMill-55 25.95 305.0 600 0 16.05 67.26 60.19 419.3 6 2.9 212.2 23.59 275.6 13
SteelMill-60 32.55 274.4 584.8 1 19.9 59.56 54.65 497.0 2 5 224.7 23.82 399.0 8
PCBoard-6-8 206.25 298.8 341.1 8 217.7 17.50 17.50 24.36 20 217.7 1.29 1.29 68.19 14
PCBoard-6-9 225.9 440.2 532.8 2 246.7 84.81 80.04 142.5 20 246.6 8.39 8.39 438.5 3
PCBoard-7-9 242.15 418.6 600 0 277.7 123.5 111.4 498.5 7 282.5 21.95 5.56 600 0
PCBoard-7-10 266.9 383.7 600 0 282.55 6.32 6.32 600 0 319.15 28.48 0.86 600 0
PCBoard-8-10 293.9 379.2 600 0 308.4 4.35 4.35 597 1 357.9 30.32 0.38 600 0

Unsuprisingly dominance jumping is usually better at proving optimality having bet-
ter stime in most of the smaller instances. Suprisingly dominance jumping actually turns
out to be preferable to dominance breaking even for proving optimality on RCPSP, Tal-
ent and SteelMill. For these problems the proof of optimality is not the larger part of
the search space, that is once we find the optimal solution for these problems it is often
not too difficult to prove it optimal.

Next we compare the three methods using 3 different search heuristics for the Photo
problem, to see how the search strategy affects the effectiveness of dominance breaking
and dominance jumping. The first is the basic inorder fixed search used above (inorder).
The second greedily finds a person who most wants to stand next to an already assigned
person and assigns them next to them (greedy). The third uses the first fail heuristic to
pick which variable to assign next (first-fail).

The results in Table 2 show that dominance jumping is still much better at reaching
a good solution than dominance breaking, regardless of the search strategy. The results
clearly illustrate that the biggest advantage of dominance jumping arises in the inorder
search, which does not try to look for good solutions. But dominance jumping is still
advantageous over dominance breaking using the greedy search, although to a lesser
degree. Using first-fail dominance breaking is better at proving optimality, since first-
fail search also concentrates on reducing the search space, but as the size of the problem
grows, its advantage reduces, until for Photo-24 dominance jumping is superior in prov-
ing optimality as well.
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Table 2. Comparison of dominance breaking and dominance jumping given different search
heuristics

Problem Search none dominance breaking dominance jumping
opt otime stime svd opt otime etime stime svd opt otime etime stime svd

inorder 19.65 7.37 11.47 18 19.70 0.79 0.79 2.35 20 19.70 0.08 0.08 0.98 20
Photo-16 greedy 19.70 1.29 3.44 19 19.70 0.45 0.45 1.71 20 19.70 0.04 0.04 0.56 20

first-fail 19.70 0.72 1.22 20 19.70 0.24 0.24 0.65 20 19.70 0.13 0.13 0.76 20
inorder 21.45 18.47 45.25 19 21.50 1.42 1.42 9.71 20 21.50 0.20 0.20 5.60 20

Photo-18 greedy 21.50 0.69 7.80 19 21.50 0.39 0.39 4.09 20 21.50 0.08 0.08 2.72 20
first-fail 21.50 1.05 2.79 20 21.50 0.28 0.28 0.97 20 21.50 0.24 0.24 1.62 20
inorder 22.50 161.35 228.98 10 23.20 16.74 16.74 54.97 16 23.20 1.23 1.23 15.92 16

Photo-20 greedy 23.00 5.36 38.38 12 23.20 3.26 3.26 19.01 18 23.20 0.10 0.10 3.29 18
first-fail 23.20 4.90 12.95 17 23.20 1.17 1.17 3.45 20 23.20 0.54 0.54 3.46 20
inorder 23.70 137.69 254.99 55 25.35 44.46 44.46 102.18 13 25.40 2.09 1.57 12.27 14

Photo-22 greedy 25.15 8.28 60.94 11 25.40 9.54 9.54 36.68 15 25.45 0.60 0.60 5.38 15
first-fail 25.45 13.94 19.71 16 25.50 3.36 3.36 6.42 20 25.50 2.33 2.33 6.55 20
inorder 22.45 216.79 519.93 3 26.85 87.71 87.71 350.3 7 27.10 1.36 0.71 61.88 8

Photo-24 greedy 26.60 11.75 184.26 7 26.95 16.52 16.52 171.90 8 27.35 0.66 0.23 27.71 12
first-fail 26.55 43.17 88.59 12 27.45 13.10 13.10 33.29 19 27.45 5.12 5.12 20.97 19

5 Related Work

Dominance breaking constraints were introduced only recently in [3] and there has been
little work analyzing how they may conflict with the search or how that problem can
be overcome. The closest related work is that for the special case of symmetry break-
ing. In this case, potential conflicts between the search and static symmetry breaking
constraints can be overcome by using dynamic symmetry breaking techniques such as
SBDS [1,11] or SBDD [5]. However, neither of these methods obviously generalize
to the dominance case. In the case of symmetry, we have sets of equally good sym-
metric subtrees. The policy in SBDS/SBDD is to search the first member of each such
set encountered during search, and to prune all other members as soon as they are en-
countered. In dominance breaking however, we have pairs of subtrees where one may
be strictly better than the other (i.e., contains a strictly better solution). The ordering
between them is not up to us to decide as it is determined by the search strategy, and
we cannot simply decide to always search the first of the pair and prune the second. We
could try a different policy such as: if we encounter the good one first, we prune the bad
one later, and if we encounter the bad one first, we search both. Indeed, such a policy
was proposed in [7]. However, checking whether a subtree is dominated by any of the
previously searched subtrees is extremely complex in general, and is much harder than
simply determining whether it is dominated by some (possibly not yet explored) sub-
tree. In [7], it is shown how an incomplete version of such a dominance check can be
performed using greedy local search for the Travelling Salesman Problem. However, it
is not clear how complete it is or whether it can generalise to other problems. Also, even
if the dominance check can be performed efficiently, such a method will still perform
more search in general than the dominance jumping method presented here. In domi-
nance jumping, regardless of the order in which we encounter the pair of subtrees, we
will only search the good one and will always skip the bad one, because if we encounter
the bad one first, we will simply immediately jump to the good one.

Dominance jumping shares some features with local search/repair methods such as
min-conflict search [16]. However, such methods typically travel through the space of
infeasible solutions and jump at every node. Dominance jumping on the other hand is
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a systematic search which remains within feasible space, and only occasionally jumps
when we are guaranteed to get to a better subtree.

Dominance jumping is also related to best first search. When best first search reaches
a node which is recognized as possibly dominated (since the lower bound on the objec-
tive is substantially worse than another part of the search tree), it jumps to what it thinks
is the best node and explores from there. In this case the jump is a heuristic, unlike in
dominance jumping where we have a proof that the current node is suboptimal and we
jump to a strictly better node.

6 Conclusion

We have developed a new method called dominance jumping to exploit the dominance
relations identified by the method proposed in [3]. Rather than failing and backtracking
as in the original method, we use the dominance relation to jump to a different part
of the search tree that dominates the current subtree. Unlike static dominance break-
ing constraints, the new method will not conflict with the search strategy. Experimen-
tal evidence shows that the method allows good/optimal solutions to be found much
more quickly on a wide range of problems. Important future work is to examine how
to automatically determine when during search to switch from dominance jumping to
dominance breaking, so that we can take advantage of the strengths of both approaches.
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Abstract. We study the complexity of constraint satisfaction problems
involving global constraints, i.e., special-purpose constraints provided by
a solver and represented implicitly by a parametrised algorithm. Such
constraints are widely used; indeed, they are one of the key reasons for
the success of constraint programming in solving real-world problems.

Previous work has focused on the development of efficient propagators
for individual constraints. In this paper, we identify a new tractable class
of constraint problems involving global constraints of unbounded arity.
To do so, we combine structural restrictions with the observation that
some important types of global constraint do not distinguish between
large classes of equivalent solutions.

1 Introduction

Constraint programming (CP) is widely used to solve a variety of practical prob-
lems such as planning and scheduling [23,30], and industrial configuration [1,22].
The theoretical properties of constraint problems, in particular the computa-
tional complexity of different types of problem, have been extensively studied
and quite a lot is known about what restrictions on the general constraint sat-
isfaction problem are sufficient to make it tractable [2,7,11,17,20,25].

However, much of this theoretical work has focused on problems where each
constraint is represented explicitly, by a table of allowed assignments.

In practice, however, a lot of the success of CP is due to the use of special-
purpose constraint types for which the software tools provide dedicated algo-
rithms [28,16,31]. Such constraints are known as global constraints and are usu-
ally represented implicitly by an algorithm in the solver. This algorithm may take
as a parameter a description that specifies exactly which kinds of assignments a
particular instance of this constraint should allow.

Theoretical work on global constraints has to a large extent focused on de-
veloping efficient algorithms to achieve various kinds of local consistency for
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individual constraints. This is generally done by pruning from the domains of
variables those values that cannot lead to a satisfying assignment [5,29]. Another
strand of research has explored when it is possible to replace global constraints
by collections of explicitly represented constraints [6]. These techniques allow
faster implementations of algorithms for individual constraints, but do not shed
much light on the complexity of problems with multiple overlapping global con-
straints, which is something that practical problems frequently require.

As an example, consider the following family of constraint problems involving
clauses and cardinality constraints of unbounded arity.

Example 1. Consider a family of constraint problems on a set of Boolean vari-
ables {x1, x2, . . . , x3n} (where n = 2, 3, 4, . . .), with the following five constraints:

– C1 is the binary clause x1 ∨ x2n+1;
– C2 is a cardinality constraint on {x1, x2, . . . , xn} specifying that exactly one

of these variables takes the value 1;
– C3 is a cardinality constraint on {x2n+1, x2n+2, . . . , x3n} specifying that ex-

actly one of these variables takes the value 1;
– C4 is a cardinality constraint on {x2, x3, . . . , x3n}− {x2n+1} specifying that

exactly n+ 1 of these variables takes the value 1;
– C5 is the clause ¬xn+1 ∨ ¬xn+2 ∨ · · · ∨ ¬x2n.

This problem is illustrated in Figure 1.
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Fig. 1. The structure of the constraint problems in Example 1

This family of problems is not included in any previously known tractable
class, but will be shown to be tractable using the results of this paper.
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As discussed in [9], when the constraints in a family of problems have un-
bounded arity, the way that the constraints are represented can significantly
affect the complexity. Previous work in this area has assumed that the global
constraints have specific representations, such as propagators [19], negative con-
straints [10], or GDNF/decision diagrams [9], and exploited properties particular
to that representation. In contrast, here we investigate the conditions that yield
efficiently solvable classes of constraint problems with global constraints, with-
out requiring any specific representation. Many global constraints have succinct
representations, so even problems with very simple structures are known to be
hard in some cases [24,29]. We will therefore need to impose some restrictions
on the properties of the individual global constraints, as well as on the problem
structure.

To obtain our results, we define a notion of equivalence on assignments and a
new width measure that identifies variables that are constrained in exactly the
same way. We then show that we can replace variables that are equated under our
width measure with a single new variable whose domain represents the possible
equivalence classes of assignments. Both of these simplification steps, merging
variables and equating assignments, can be seen as techniques for eliminating
symmetries in the original problem formulation. We describe some sufficient
conditions under which these techniques provide a polynomial-time reduction to
a known tractable case, and hence identify new tractable classes of constraint
problems involving global constraints.

2 Global Constraints and Constraint Problems

In order to be more precise about the way in which global constraints are rep-
resented, we will extend the standard definition of a constraint problem.

Definition 1 (Variables and assignments). Let V be a set of variables, each
with an associated set of domain elements. We denote the set of domain elements
(the domain) of a variable v by D(v). We extend this notation to arbitrary subsets
of variables, W , by setting D(W ) =

⋃
v∈W

D(v).

An assignment of a set of variables V is a function θ : V → D(V ) that maps
every v ∈ V to an element θ(v) ∈ D(v). We denote the restriction of θ to a set
of variables W ⊆ V by θ|W . We also allow the special assignment ⊥ of the empty
set of variables. In particular, for every assignment θ, we have θ|∅ = ⊥.

Global constraints have traditionally been defined, somewhat vaguely, as con-
straints without a fixed arity, possibly also with a compact representation of
the constraint relation. For example, in [23] a global constraint is defined as “a
constraint that captures a relation between a non-fixed number of variables”.

Below, we offer a precise definition similar to the one in [5], where the authors
define global constraints for a domain D over a list of variables σ as being
given intensionally by a function D|σ| → {0, 1} computable in polynomial time.
Our definition differs from this one in that we separate the general algorithm of
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a global constraint (which we call its type) from the specific description. This
separation allows us a better way of measuring the size of a global constraint,
which in turn helps us to establish new complexity results.

Definition 2 (Global constraints). A global constraint type is a parametrised
polynomial-time algorithm that determines the acceptability of an assignment of
a given set of variables.

Each global constraint type, e, has an associated set of descriptions, Δ(e).
Each description δ ∈ Δ(e) specifies appropriate parameter values for the algo-
rithm e. In particular, each δ ∈ Δ(e) specifies a set of variables, denoted by
vars(δ).

A global constraint e[δ], where δ ∈ Δ(e), is a function that maps assignments
of vars(δ) to the set {0, 1}. Each assignment that is allowed by e[δ] is mapped to
1, and each disallowed assignment is mapped to 0. The extension or constraint
relation of e[δ] is the set of assignments, θ, of vars(δ) such that e[δ](θ) = 1. We
also say that such assignments satisfy the constraint, while all other assignments
falsify it.

When we are only interested in describing the set of assignments that satisfy
a constraint, and not in the complexity of determining membership in this set,
we will sometimes abuse notation by writing θ ∈ e[δ] to mean e[δ](θ) = 1.

As can be seen from the definition above, a global constraint is not usually
explicitly represented by listing all the assignments that satisfy it. Instead, it is
represented by some description δ and some algorithm e that allows us to check
whether the constraint relation of e[δ] includes a given assignment. To stay within
the complexity class NP, this algorithm is required to run in polynomial time.
As the algorithms for many common global constraints are built into modern
constraint solvers, we measure the size of a global constraint’s representation by
the size of its description.

Example 2 (EGC). A very general global constraint type is the extended global
cardinality constraint type [26,29]. This form of global constraint is defined by
specifying for every domain element a a finite set of natural numbers K(a), called
the cardinality set of a. The constraint requires that the number of variables
which are assigned the value a is in the set K(a), for each possible domain
element a.

Using our notation, the description δ of an EGC global constraint specifies
a function Kδ : D(vars(δ)) → P(N) that maps each domain element to a set of
natural numbers. The algorithm for the EGC constraint then maps an assign-
ment θ to 1 if and only if, for every domain element a ∈ D(vars(δ)), we have
that |{v ∈ vars(δ) | θ(v) = a}| ∈ Kδ(a).

The cardinality constraint C2 from Example 1 can be expressed as an EGC
global constraint with description δ such that Kδ(1) = {1}, and Kδ(0) = {n−1}.

Example 3 (Clauses). We can view the disjunctive clauses used to define propo-
sitional satisfiability problems as a global constraint type in the following way.
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The description δ of a clause is simply a list of the literals that it contains,
and vars(δ) is the corresponding set of variables. The algorithm for the clause
then maps any Boolean assignment θ of vars(δ) that satisfies the disjunction of
the literals specified by δ to 1, and all other assignments to 0.

Note that a clause forbids precisely one assignment to vars(δ) (the one that
falsifies all of the literals in the clause). Hence the extension of a clause contains
2|vars(δ)|−1 assignments, so the size of the constraint relation grows exponentially
with the number of variables, but the size of the constraint description grows
only linearly.

Example 4 (Table and negative constraints). A rather degenerate example of a
a global constraint type is the table constraint.

In this case the description δ is simply a list of assignments of some fixed set
of variables, vars(δ). The algorithm for a table constraint then decides, for any
assignment of vars(δ), whether it is included in δ. This can be done in a time
which is linear in the size of δ and so meets the polynomial time requirement.

Negative constraints are complementary to table constraints, in that they
are described by listing forbidden assignments. The algorithm for a negative
constraint e[δ] decides, for any assignment of vars(δ), whether it is not included
in δ. Observe that the clauses described in Example 3 are a special case of the
negative constraint type, as they have exactly one forbidden assignment.

We observe that any global constraint can be rewritten as a table or negative
constraint. However, this rewriting will, in general, incur an exponential increase
in the size of the description.

Definition 3 (CSP instance). An instance of the constraint satisfaction prob-
lem (CSP) is a pair 〈V,C〉 where V is a finite set of variables, and C is a set of
global constraints such that for every e[δ] ∈ C, vars(δ) ⊆ V . In a CSP instance,
we call vars(δ) the scope of the constraint e[δ].

A solution to a CSP instance 〈V,C〉 is an assignment θ of V which satisfies
every global constraint, i.e., for every e[δ] ∈ C we have θ|vars(δ) ∈ e[δ].

The general constraint satisfaction problem is clearly NP-complete, so in the
remainder of the paper we shall look for more restricted versions of the problem
that are tractable, that is, solvable in polynomial time.

3 Restricted Classes of Constraint Problems

First, we are going to consider restrictions on the way that the constraints in
a given instance interact with each other, or, in other words, the way that
the constraint scopes overlap; such restrictions are known as structural restric-
tions [11,17,20].

Definition 4 (Hypergraph). A hypergraph 〈V,H〉 is a set of vertices V to-
gether with a set of hyperedges H ⊆ P(V ).

Given a CSP instance P = 〈V,C〉, the hypergraph of P , denoted hyp(P ), has
vertex set V together with a hyperedge vars(δ) for every e[δ] ∈ C.
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One special class of hypergraphs that has received a great deal of attention
is the class of acyclic hypergraphs [3]. This notion is a generalisation of the idea
of tree-structure in a graph, and has been very important in the analysis of
relational databases. A hypergraph is said to be acyclic if repeatedly removing
all hyperedges contained in other hyperedges, and all vertices contained in only
a single hyperedge, eventually deletes all vertices [3].

Solving a CSP instance P whose constraints are represented extensionally (i.e.,
as table constraints) is known to be tractable if the hypergraph of P , hyp(P ),
is acyclic [21]. Indeed, this has formed the basis for more general notions of
“bounded cyclicity” [21] or “bounded hypertree width” [18], which have also been
shown to imply tractability for problems with explicitly represented constraint
relations. However, this is no longer true if the constraints are global, not even
when we have a fixed, finite domain, as the following examples show.

Example 5. Any hypergraph containing only a single edge is clearly acyclic (and
therefore has hypertree width one [18]), but the class of CSP instances consisting
of a single EGC constraint over an unbounded domain is NP-complete [26].

Example 6. The NP-complete problem of 3-colourability [15] is to decide, given
a graph 〈V,E〉, whether the vertices V can be coloured with three colours such
that no two adjacent vertices have the same colour.

We may reduce this problem to a CSP with EGC constraints (cf. Example 2)
as follows: Let V be the set of variables for our CSP instance, each with domain
{r, g, b}. For every edge 〈v, w〉 ∈ E, we post an EGC constraint with scope
{v, w}, parametrised by the function K such that K(r) = K(g) = K(b) =
{0, 1}. Finally, we make the hypergraph of this CSP instance acyclic by adding
an EGC constraint with scope V parametrised by the function K ′ such that
K ′(r) = K ′(g) = K ′(b) = {0, . . . , |V |}. This reduction clearly takes polynomial
time, and the hypergraph of the resulting instance is acyclic.

These examples indicate that when dealing with implicitly represented con-
straints we cannot hope for tractability using structural restrictions alone. We
are therefore led to consider hybrid restrictions, which restrict both the nature
of the constraints and the structure at the same time.

Definition 5 (Constraint catalogue). A constraint catalogue is a set of
global constraints. A CSP instance 〈V,C〉 is said to be over a constraint cat-
alogue C if for every e[δ] ∈ C we have e[δ] ∈ C.

Previous work on the complexity of constraint problems has restricted the
extensions of the constraints to a specified set of relations, known as a constraint
language [7]. This is an appropriate form of restriction when all constraints
are given explicitly, as table constraints. However, here we work with global
constraints where the relations are often implicit, and this can significantly alter
the complexity of the corresponding problem classes, as we will illustrate below.
Hence we allow a more general form of restriction on the constraints by specifying
a constraint catalogue containing all allowed constraints.
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Definition 6 (Restricted CSP class). Let C be a constraint catalogue, and
let H be a class of hypergraphs. We define CSP(H, C) to be the class of CSP
instances over C whose hypergraphs are in H.

Using Definition 6, we will restate an earlier structural tractability result,
which will form the basis for our results in Section 5.

Definition 7 (Treewidth). A tree decomposition of a hypergraph 〈V,H〉 is a
pair 〈T, λ〉 where T is a tree and λ is a labelling function from nodes of T to
subsets of V , such that

1. for every v ∈ V , there exists a node t of T such that v ∈ λ(t),
2. for every hyperedge h ∈ E, there exists a node t of T such that h ⊆ λ(t), and
3. for every v ∈ V , the set of nodes {t | v ∈ λ(t)} induces a connected subtree

of T .

The width of a tree decomposition is max({|λ(t)| − 1 | t node of T }). The
treewidth tw(G) of a hypergraph G is the minimum width over all its tree de-
compositions.

Let H be a class of hypergraphs, and define tw(H) to be the maximum treewidth
over the hypergraphs in H. If tw(H) is unbounded we write tw(H) =∞; otherwise
tw(H) <∞.

We can now restate using the language of global constraints the following
result, from Dalmau et al. [12], which builds on several earlier results [13,14].

Theorem 1 ([12]). Let C be a constraint catalogue and H a class of hyper-
graphs. CSP(H, C) is tractable if tw(H) <∞.

Observe that the family of constraint problems described in Example 1 is not
covered by the above result, because the treewidth of the associated hypergraphs
is unbounded.

4 Cooperating Constraint Catalogues

Whenever constraint scopes overlap, we may ask whether the possible assign-
ments to the variables in the overlap are essentially different. It may be that
some assignments extend to precisely the same satisfying assignments in each of
the overlapping constraints. If so, we may as well identify such assignments.

Definition 8 (Disjoint union of assignments). Let θ1 and θ2 be two as-
signments of disjoint sets of variables V1 and V2, respectively. The disjoint
union of θ1 and θ2, denoted θ1 ⊕ θ2, is the assignment of V1 ∪ V2 such that
(θ1 ⊕ θ2)(v) = θ1(v) for all v ∈ V1, and (θ1 ⊕ θ2)(v) = θ2(v) for all v ∈ V2.

Definition 9 (Projection). Let Θ be a set of assignments of a set of variables
V . The projection of Θ onto a set of variables X ⊆ V is the set of assignments
πX(Θ) = {θ|X | θ ∈ Θ}.
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Note that when Θ = ∅ we have πX(Θ) = ∅ for any set X , but when X = ∅
and Θ �= ∅, we have πX(Θ) = {⊥}.

Definition 10 (Assignment extension). Let e[δ] be a global constraint, and
X ⊆ vars(δ). For every assignment μ of X, let ext(μ, e[δ]) = πvars(δ)−X({θ ∈
e[δ] | θ|X = μ}).

In other words, for any assignment μ of X , the set ext(μ, e[δ]) is the set of
assignments of vars(δ) − X that extend μ to a satisfying assignment for e[δ];
i.e., those assignments θ for which μ⊕ θ ∈ e[δ].

Definition 11 (Extension equivalence). Let e[δ] be a global constraint, and
X ⊆ vars(δ). We say that two assignments θ1, θ2 to X are extension equivalent
on X with respect to e[δ] if ext(θ1, e[δ]) = ext(θ2, e[δ]). We denote this equivalence
relation by equiv[e[δ], X ]; that is, equiv[e[δ], X ](θ1, θ2) holds if and only if θ1 and
θ2 are extension equivalent on X with respect to e[δ].

In other words, two assignments to some subset of the variables of a constraint
e[δ] are extension equivalent if every assignment to the rest of the variables
combines with both of them to give either two assignments that satisfy e[δ], or
two that falsify it.

Example 7. Consider the special case of extension equivalence with respect to a
clause (cf. Example 3).

Given any clause e[δ], and any non-empty set of variables X ⊆ vars(δ), any
assignment to X will either satisfy one of the corresponding literals specified by δ,
or else falsify all of them. If it satisfies at least one of them, then any extension
will satisfy the clause, so all such assignments are extension equivalent. If it
falsifies all of them, then an extension will satisfy the clauses if and only if it
satifies one of the other literals. Hence the equivalence relation equiv[e[δ], X ] has
precisely 2 equivalence classes, one containing the single assignment that falsifies
all the literals corresponding to X, and one containing all other assignments.

Definition 12 (Intersecting variables). Let S be a set of global constraints.
We write iv(S) for the set of variables common to all of their scopes, that is,
iv(S) =

⋂
e[δ]∈S

vars(δ).

Definition 13 (Join). For any set S of global constraints, we define the join
of S, denoted join(S), to be a global constraint e′[δ′] with vars(δ′) =

⋃
e[δ]∈S

vars(δ)

such that for any assignment θ to vars(δ′), we have θ ∈ e′[δ′] if and only if for
every e[δ] ∈ S we have θ|vars(δ) ∈ e[δ].

The join of a set of global constraints may have no simple compact description,
and computing its extension may be computationally expensive. However, we
introduce this construct simply in order to describe the combined effect of a set
of global constraints in terms of a single constraint.
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Example 8. Let V = {v1, . . . , vn}, for some n ≥ 3, be a set of variables with
D(vi) = {a, b, c}, and let S = {e1[δ1], e2[δ2]} be a set of two global constraints
as defined below:
– e1[δ1] is a table constraint with vars(δ1) = {v1, . . . , vn−1} which enforces

equality, i.e., δ1 = {θa, θb, θc}, where for each x ∈ D(V ) and v ∈ vars(δ1),
θx(v) = x.

– e2[δ2] is a negative constraint with vars(δ2) = {v2, . . . , vn} which enforces a
not-all-equal condition, i.e., δ2 = {θa, θb, θc}, where for each x ∈ D(V ) and
v ∈ vars(δ2), θx(v) = x.

We will use substitution notation to write assignments explicitly; thus, an
assignment of {v, w} that assigns a to both variables is written {v/a, w/a}.

We have that iv(S) = {v2, . . . , vn−1}. The equivalence classes of
assignments to iv(S) under equiv[join(S), iv(S)] are {{v2/a, . . . , vn−1/a}},
{{v2/b, . . . , vn−1/b}}, and {{v2/c, . . . , vn−1/c}}, each containing the single as-
signment shown, as well as (for n > 3) a final class containing all other assign-
ments, for which we can choose an arbitrary representative assignment, θ0, such
as {v2/a, v3/b, . . . , vn−1/b}.

Each assignment in the first 3 classes has just 2 possible extensions that
satisfy join(S), since the value assigned to v1 must equal the value assigned to
v2, . . . , vn−1, and the value assigned to vn must be different. The assignment θ0
has no extensions, since ext(θ0, e1[δ1]) = ∅.

Hence the number of equivalence classes in equiv[join(S), iv(S)] is at most 4,
even though the total number of possible assignments of iv(S) is 3n−2

Definition 14 (Cooperating constraint catalogue). We say that a con-
straint catalogue C is a cooperating catalogue if for any finite set of global con-
straints S ⊆ C, we can compute a set of assignments of the variables iv(S) con-
taining at least one representative of each equivalence class of equiv[join(S), iv(S)]
in polynomial time in the size of iv(S) and the total size of the constraints in S.

Note that this definition requires two things. First, that the number of equiv-
alence classes in the equivalence relation equiv[join(S), iv(S)] is bounded by some
fixed polynomial in the size of iv(S) and the size of the constraints in S. Sec-
ondly, that a suitable set of representatives for these equivalence classes can be
computed efficiently from the constraints.

Example 9. Consider a constraint catalogue consisting entirely of clauses (of
arbitrary arity). It was shown in Example 7 that for any clause e[δ] and any
non-empty X ⊆ vars(δ) the equivalence relation equiv[e[δ], X ] has precisely 2
equivalence classes.

If we consider some finite set, S, of clauses, then a similar argument shows
that the equivalence relation equiv[join(S), iv(S)] has at most |S| + 1 classes.
These are given by the single assignments of the variables in iv(S) that falsify
the literals corresponding to the variables of iv(S) in each clause (there are at
most |S| of these — they may not all be distinct) together with at most one
further equivalence class containing all other assignments (which must satisfy at
least one literal in each clause of S).
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Hence the total number of equivalence classes in the equivalence relation
equiv[join(S), iv(S)] increases at most linearly with the number of clauses in
S, and a representative for each class can be easily obtained from the descrip-
tions of these clauses, by projecting the falsifying assignments down to the set of
common variables, iv(S), and adding at most one more, arbitrary, assignment.

By same argument, if we consider some finite set, S, of table constraints,
then the equivalence relation equiv[join(S), iv(S)] has at most one class for each
assignment allowed by each table constraint in S, together with at most one
further class containing all other assignments.

In general, arbitrary EGC constraints (cf. Example 2) do not form a cooper-
ating catalogue. However, we will show that if we bound the size of the variable
domains, then the resulting EGC constraints do form a cooperating catalogue.

Definition 15 (Counting function). Let X be a set of variables with domain
D =

⋃
x∈X D(x). A counting function for X is any function K : D → N such

that
∑

a∈D K(a) = |X |.
Every assignment θ to X defines a corresponding counting function Kθ given

by Kθ(a) = |{x ∈ X | θ(x) = a}| for every a ∈ D.

It is easy to verify that no EGC constraint can distinguish two assignments
with the same counting function; for any EGC constraint, either both assign-
ments satisfy it, or they both falsify it. It follows that two assignments with
the same counting function are extension equivalent with respect to EGC con-
straints.

Definition 16 (Counting constraints). A global constraint e[δ] is called a
counting constraint if, for any two assignments θ1, θ2 of vars(δ) which have the
same counting function, either θ1, θ2 ∈ e[δ] or θ1, θ2 �∈ e[δ].

EGC constraints are not the only constraint type with this property. Con-
straints that require the sum (or the product) of the values of all variables in
their scope to take a particular value, and constraints that require the minimum
(or maximum) value of the variables in their scope to take a certain value, are
also counting constraints.

Another example is given by the NValue constraint type, which requires that
the number of distinct domain values taken by an assignment is a member of a
specified set of acceptable numbers.

Example 10 (NValue constraint type [4,6]). In an NValue constraint, e[δ], the
description δ specifies a finite set of natural numbers Lδ ⊂ N. The algorithm e
maps an assignment θ to 1 if |{θ(v) | v ∈ vars(δ)}| ∈ Lδ.

The reason for introducing counting functions is the following key property,
previously noted by Bulatov and Marx [8].

Property 1. The number of possible counting functions for a set of variables X
is at most

(|X|+|D|−1
|D|−1

)
= O(|X ||D|), where D =

⋃
x∈X D(x).
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Proof. If every variable x ∈ X has D as its set of domain elements, that is,
D(x) = D, then every counting function corresponds to a distinct way of parti-
tioning |X | variables into at most |D| boxes. There are

(|X|+|D|−1
|D|−1

)
ways of doing

so [27, Section 2.3.3]. On the other hand, if there are variables x ∈ X such that
D(x) ⊂ D, then that disallows some counting functions.

Theorem 2. Any constraint catalogue that contains only counting constraints
with bounded domain size, table constraints, and negative constraints, is a coop-
erating catalogue.

Proof. Let C be a constraint catalogue containing only global constraints of the
specified types, and let S ⊆ C be a finite subset of C. Partition S into two
subsets: SC , containing only counting constraints and S± containing only table
and negative constraints.

Let K be a set containing assignments of iv(S), such that for every counting
function K for iv(S), there is some assignment θK ∈ K with Kθ = K. By
Property 1, the number of counting functions for iv(S) is bounded by O(|iv(S)|d),
where d is the bound on the domain size for the counting constraints in C. Hence
such a set K can be computed in polynomial time in the size of iv(S).

For each constraint in S± we have that the description is a list of assignments
(these are the allowed assignments for the table constraints and the forbidden
assignments for the negative constraints, see Example 4).

As we described in Example 9, for each table constraint e[δ] ∈ S, we can
obtain a representative for each equivalence class of equiv[e[δ], iv(S)] by taking
the projection onto iv(S) of each allowed assignment, which we can denote by
πiv(S)(δ), together with at most one further, arbitrary, assignment, θ0, that is not
in this set. This set of assignments contains at least one representative for each
equivalence class of equiv[e[δ], iv(S)] (and possibly more than one representative
for some of these classes).

Similarly, for each negative constraint e[δ] ∈ S, we can obtain a representative
for each equivalence class of equiv[e[δ], iv(S)], by taking the projection onto iv(S)
of each forbidden assignment, which we can again denote by πiv(S)(δ), together
with at most one further, arbitrary, assignment, θ0, that is not in this set.

Now consider the set of assignmentsA = K∪{θ0}∪
⋃

e[δ]∈S±
πiv(S)(δ), where θ0 is

an arbitrary assignment of iv(S) which does not occur in πiv(S)(δ) for any e[δ] ∈ S
(if such an assignment exists). We claim that this set of assignments contains
at least one representative for each equivalence class of equiv[join(S), iv(S)] (and
possibly more than one for some classes).

To establish this claim we will show that any assignment θ of iv(S) that is not
in A must be extension equivalent to some member of A. Let θ be an assign-
ment of iv(S) that is not in A (if such an assignment exists). If S± contains any
positive constraints, then θ has an empty set of extensions to these constraints,
and hence is extension equivalent to θ0. Otherwise, any extension of θ will sat-
isfy all negative constraints in S±, so the extensions of θ that satisfy join(S)
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are completely determined by the counting function Kθ. In this case θ will be
extension equivalent to some element of K.

Moreover, the set of assignments A can be computed from S in polynomial
time in the the size of iv(S) and the total size of the descriptions of the constraints
in S±. Therefore, C is a cooperating catalogue as described in Definition 14.

Example 11. By Theorem 2, the constraints in Example 1 form a cooperating
catalogue.

5 Polynomial-Time Reductions

In this section, we will show that, for any constraint problem over a cooperating
catalogue, a set of variables that all occur in exactly the same set of constraint
scopes can be replaced by a single new variable with an appropriate domain, to
give a polynomial-time reduction to a smaller problem.

Definition 17 (Dual of a hypergraph). Let G = 〈V,H〉 be a hypergraph. The
dual G∗ of G is a hypergraph with vertex set H and a hyperedge {h ∈ H | v ∈ h}
for every v ∈ V . For a class H of hypergraphs, let H∗ = {G∗ | G ∈ H}.

Example 12. Consider the hypergraphG in Figure 1. The dual, G∗, of this hyper-
graph has vertex set {C1, C2, C3, C4, C5} and five hyperedges {C1, C2}, {C1, C3},
{C2, C4}, {C3, C4} and {C4, C5}. This transformation is illustrated in Figure 2.
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Fig. 2. G and G∗ from Example 12

Note that the dual of the dual of a hypergraph is not necessarily the original
hypergraph, since we do not allow multiple identical hyperedges.

Example 13. Consider the dual hypergraph G∗ defined in Example 12. Taking
the dual of this hypergraph yields G∗∗, with vertex set {h1, . . . , h5} (correspond-
ing to the 5 hyperedges in G∗) and 5 distinct hyperedges, as shown in Figure 3.
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Fig. 3. G∗ and G∗∗ from Example 13

In the example above, taking the dual of a hypergraph twice had the effect of
merging precisely those sets of variables that occur in the same set of hyperedges.
It is easy to verify that this is true in general: Taking the dual twice equates
precisely those variables that occur in the same set of hyperedges.

Lemma 1. For any hypergraph G, the hypergraph G∗∗ has precisely one vertex
corresponding to each maximal subset of vertices of G that occur in the same set
of hyperedges.

Next, we combine the idea of the dual with the usual notion of treewidth to
create a new measure of width.

Definition 18 (twDD). Let G be a hypergraph. The treewidth of the dual of
the dual (twDD) of G is twDD(G) = tw(G∗∗).

For a class of hypergraphs H, we define twDD(H) = tw(H∗∗).

Example 14. Consider the class H of hypergraphs of the family of problems
described in Example 1. Whatever the value of n, the dual hypergraph, G∗
is the same, as shown in Figure 2. Hence for all problems in this family the
hypergraph G∗∗ is as shown in Figure 3, and can be shown to have treewidth 3.
Hence twDD(H) = 3.

When replacing a set of variables in a CSP instance with a single variable, we
will use the following definition.

Definition 19 (Quotient of a CSP instance). Let P = 〈V,C〉 be a CSP
instance and X ⊆ V be a non-empty subset of variables that all occur in the
scopes of the same set S of constraints. The quotient of P with respect to X,
denoted PX , is defined as follows.

– The variables of PX are given by V X = (V − X) ∪ {vX}, where vX is
a fresh variable, and the domain of vX is the set of equivalence classes of
equiv[join(S), X ].
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– The constraints of PX are unchanged, except that each constraint e[δ] ∈ S is
replaced by a new constraint eX [δX ], where vars(δX) = (vars(δ)−X)∪{vX}.
For any assignment θ of vars(δX), we define eX [δX ](θ) to be 1 if and only
if θ|vars(δ)−X ⊕ μ ∈ e[δ], where μ is a representative of the equivalence class
θ(vX).

We note that, by Definition 11, the value of eX [δX ] specified in Definition 19
is well-defined, that is, it does not depend on the specific representative chosen
for the equivalence class θ(vX), since each representative has the same set of
possible extensions.

Lemma 2. Let P = 〈V,C〉 be a CSP instance and X ⊆ V be a non-empty
subset of variables that all occur in the scopes of the same set of constraints.
The instance PX has a solution if and only if P has a solution.

Proof (Sketch). Let P = 〈V,C〉 and X be given, and let S ⊆ C be the set of
constraints e[δ] such that X ⊆ vars(δ).

Construct the instance PX as specified in Definition 19. Any solution to P
can be converted into a corresponding solution for PX , and vice versa. This
conversion process just involves replacing the part of the solution assignment
that gives values to the variables in the set X with an assignment that gives a
suitable value to the new variable vX .

Theorem 3. Any CSP instance P can be converted to an instance P ′ with
hyp(P ′) = hyp(P )∗∗, such that P ′ has a solution if and only if P does. Moreover,
if P is over a cooperating catalogue, this conversion can be done in polynomial
time.

Proof. Let P = 〈V,C〉 be a CSP instance. For each variable v ∈ V we define
S(v) = {e[δ] ∈ C | v ∈ vars(δ)} We then partition the vertices of P into subsets
X1, . . . , Xk, where each Xi is a maximal subset of variables v that share the
same value for S(v).

We initially set P0 = P . Then, for each Xi in turn, we set Pi = (Pi−1)
X .

Finally we set P ′ = Pk. By Lemma 1, hyp(P ′) = hyp(P )∗∗, and by Lemma 2, P ′
has a solution if and only if P has a solution.

Finally, if P is over a cooperating catalogue, then by Definition 14, we can
compute the domains of each new variable introduced in polynomial time in the
size of each Xi and the total size of the constraints. Hence we can compute P ′

in polynomial time.

Using Theorem 3, we can immediately get a new tractable CSP class by
extending Theorem 1.

Theorem 4. Let C be a constraint catalogue and H a class of hypergraphs.
CSP(H, C) is tractable if C is a cooperating catalogue and twDD(H) <∞.

Proof. Let C be a cooperating catalogue, H a class of hypergraphs such that
twDD(H) < ∞, and P ∈ CSP(H, C). Reduce P to a CSP instance P ′ using
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Theorem 3. By Definition 18, since hyp(P ′) = hyp(P )∗∗, tw(hyp(P ′)) < ∞,
which means that P ′ satisfies the conditions of Theorem 1, and hence can be
solved in polynomial time.

Recall the family of constraint problems described in Example 1 at the start
of this paper. Since the constraints in this problem form a cooperating catalogue
(Example 11), and all instances have bounded twDD (Example 14), this family
of problems is tractable by Theorem 4.

6 Summary and Future Work

We have identified a novel tractable class of constraint problems with global
constraints. In fact, our results generalize several previously studied classes of
problems [12]. Moreover, this is the first representation-independent tractability
result for constraint problems with global constraints.

Our new class is defined by restricting both the nature of the constraints and
the way that they interact. As demonstrated in Example 5, instances with a
single global constraint may already be NP-complete [26], so we cannot hope
to achieve tractability by structural restrictions alone. In other words, notions
such as bounded degree of cyclicity [21] or bounded hypertree width [18] are not
sufficient to ensure tractability in the framework of global constraints, where the
arity of individual constraints is unbounded. This led us to introduce the notion
of a cooperating constraint catalogue, which is sufficiently restricted to ensure
that an individual constraint is always tractable.

However, this restriction on the nature of the constraints is still not enough
to ensure tractability on any structure: Example 6 demonstrates that not all
structures are tractable even with a cooperating constraint catalogue. In fact, a
family of problems with acyclic structure (hypertree width one) over a cooper-
ating constraint catalogue can still be NP-complete. This led us to investigate
restrictions on the structure that are sufficient to ensure tractability for all in-
stances over a cooperating catalogue. In particular, we have shown that it is
sufficient to ensure that the dual of the dual of the hypergraph of the instance
has bounded treewidth.

An intriguing open question is whether there are other restrictions on the
nature of the constraints or the structure of the instances that are sufficient
to ensure tractability in the framework of global constraints. Very little work
has been done on this question, apart from the pioneering work of Bulatov and
Marx [8], which considered only a single global cardinality constraint, along
with arbitrary table constraints, and of Chen and Dalmau [9] on two specific
succinct representations. Almost all other previous work on tractable classes has
considered only table constraints. This may be one reason why such work has
had little practical impact on the design of constraint solvers, which rely heavily
on the use of in-built special-purpose global constraints.

We see this paper as a first step in the development of a more robust and
applicable theory of tractability for global constraints.
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Abstract. maxsat is an optimization version of sat that can represent
a wide variety of important optimization problems. A recent approach
for solving maxsat is to exploit both a sat solver and a Mixed Integer
Programming (mip) solver in a hybrid approach. Each solver generates
information used by the other solver in a series of iterations that termi-
nates when an optimal solution is found. Empirical results indicate that
a bottleneck in this process is the time required by the mip solver, arising
from the large number of times it is invoked. In this paper we present
a modified approach that postpones the calls to the mip solver. This in-
volves substituting non-optimal solutions for the optimal ones computed
by the mip solver, whenever possible. We describe the new approach
and some different instantiations of it. We perform an extensive empir-
ical evaluation comparing the performance of the resulting solvers with
other state-of-the-art maxsat solvers. We show that the best performing
versions of our approach advance the state-of-the-art in maxsat solving.

1 Introduction

maxsat, the optimization version of Satisfiability (sat), is the problem of finding
a minimum cost truth assignment for a set of clauses where a cost is incurred for
every falsified clause. It is called maxsat since in the simplest case where every
clause is equally costly to falsify, a solution will satisfy a maximum number of
clauses. In the most general version of maxsat some clauses are hard incurring
an infinite cost if they are falsified, while the other clauses are soft incurring
some integer cost greater than zero. This most general version of maxsat is
often called weighted partial maxsat (WPMS) and is what we address in
this paper. Many practical problems can be encoded in maxsat, so developing
effective ways to solve maxsat is an important research topic.

There are two standard methods for solving maxsat: using Branch and Bound
search (e.g. [9,14]), and using a sequence of decision problems, usually encoded as
sat (e.g. [2,3,5,15,10]). In [6] an alternative algorithm for solving maxsat, called
maxhs, was presented. maxhs also solves a sequence of sat decision problems,
but in contrast to existing approaches the sat problems do not become more
difficult for the sat solver to solve. This is accomplished via a hybrid approach,
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whereby a sat solver and a Mixed Integer Linear Program (mip) solver are
used to cooperatively solve the maxsat problem using an approach similar to
Bender’s Decomposition [11]. The mip solver is used to find optimal solutions
which the sat solver then tests for feasibility. If the solution is not feasible the
sat solver computes a new constraint to add to the mip model and the mip
solver is invoked again to find a new optimal solution that additionally satisfies
the new constraint.

In this paper we investigate a new technique for improving the performance of
this hybrid approach. In [7] it has already been shown that the hybrid approach
is one of the state-of-the-art approaches to solving maxsat, and thus improving
this approach is one way of advancing the state-of-the-art.

Analyzing the performance of the hybrid approach indicates that the main
bottleneck is the time spent by the mip solver. This time mostly accumulates
from the number of times that the mip solver must be called: it is called every
time the sat solver computes a new feasibility constraint, in order to derive a
new optimal solution satisfying this additional constraint. Although these calls
often take relatively little time, after hundreds of separate calls the total time
becomes quite significant.

Inspired by an idea presented by Moreno-Centeno and Karp [16] we devel-
oped a method for delaying the calls to the mip solver for as long as possible.
We accomplish this by recognizing situations where non-optimal solutions can
be used in place of the optimal solutions produced by the mip solver without
impacting the algorithm’s correctness. The sat solver can use these non-optimal
solutions to compute its feasibility constraints and the iterations of feasibility
and “optimization” can continue. However, since the optimization phase is now
an approximation that can be computed cheaply, each iteration is much more
efficient. Eventually, however, an optimal solution must be computed to ensure
correctness. So our technique postpones, rather than removes, optimization.

We show that our new technique yields a significant improvement in the
performance of the hybrid algorithm and makes it the most robust current
approach to solving maxsat. One of the reasons why we obtain such a good
performance improvement is that the mip solver is not perfectly incremental. By
using non-optimal solutions we collect many feasibility constraints before having
to compute their optimal solution. This means that each additional call to the
mip solver involves a model that has been augmented by many feasibility con-
straints, whereas in the previous approach the model was only augmented by a
single feasibility constraint. Although the mip solver can take advantage of its
previous computations when called again, it is not perfectly incremental. That
is, its solving time when given k new constraints is typically significantly smaller
than the sum of its k solving times when it is given these constraints one at a
time and asked to compute an optimal solution each time.

The remainder of the paper is organized as follows. Section 2 provides basic
definitions. The maxhs approach is then reviewed in Section 3 and we show that
its main bottleneck is the mip solving time. Section 4 presents the new algorithm,
which addresses this issue by allowing the mip optimization to be postponed.
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An effective additional enhancement, seeding the mip model with constraints
[7], is described in Section 5. The empirical results are reported in Section 6.

2 Background

A maxsat instance is specified by a set of propositional clauses F each having a
positive integer or infinite weight wt(c), c ∈ F . Clauses with infinite weight are
called hard clauses and are collectively denoted by hard(F). The other clauses
of F all have finite weight and are called soft clauses, soft(F) (F = hard(F) ∪
soft(F)).

We define the function cost as follows: (a) if H is a set of clauses then cost(H)
is the sum of the weights of the clauses in H (cost(H) =

∑
c∈H wt(c)); and (b)

if π is a truth assignment to the variables of F then cost(π) is the sum of the
weights of the clauses falsified by π (

∑
{c | π �|=c} wt(c)). A solution for F is a truth

assignment π to the variables of F that satisfies hard(F) and is of minimum cost.
We let mincost(F) denote the cost of such a solution. If hard(F) is unsatisfiable,
then F has no solution. In the remainder of the paper, we assume that hard(F)
is satisfiable (this is easy to test in practice and facilitates clarity). A core κ of
a maxsat formula F is a subset of soft(F) such that κ∪hard(F) is unsatisfiable.
Note that since hard(F) is satisfiable, any solution to F must falsify at least one
clause in κ.

maxsat solvers that solve a sequence of decision problems typically insert
blocking variables (b-variables) into the soft clauses of the maxsat instance.

Definition 1. If F is a maxsat problem, then its b-variable relaxation is a
sat problem Fb = {(ci ∨ bi) : ci ∈ soft(F)} ∪ hard(F) where all clause weights
are removed. The b-variable bi appears in the relaxed clause (ci ∨ bi) and no
where else in Fb.

The b-variable relaxation Fb allows cores of the original maxsat formula F
to be computed conveniently, using the Assumption mechanism provided by
minisat [8]. minisat can take as input a set of assumptions A, specified as a set
of literals, along with a CNF formula F and then determine if F∧A is satisfiable.
It will return a satisfying truth assignment for F ∧A if one exists. Otherwise it
will report unsatisfiability and return a learnt clause c which is a disjunction of
negated literals of A. This clause has the property that F |= c. Thus in order
to find a core of maxsat instance F , we can pass minisat the CNF formula
Fb and the set of all negated b-variables as the assumptions. If F has a core,
minisat will return unsat along with a clause c = (bi1 ∨ · · · ∨ bik) such that
Fb |= c and κ = {ci1 , ..., cik} is a core of F . Any clause over positive b-variables
that is entailed by Fb, e.g., c = (bi1 ∨ · · · ∨ bik), is called a core constraint.

Besides supporting the computation of cores, the relaxed formula Fb can
also be used to find solutions for the original maxsat formula F . To accom-
plish this we define an objective function bcost(π) over truth assignments π to
the variables of Fb, equal to the sum of the costs of the clauses whose b-variables
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are set to true: bcost(π) =
∑

bi:π|=bi
wt(ci). The minimum bcost models of Fb

are maxsat solutions.1

Proposition 1. mincost(F) = minπ|=Fb bcost(π). Furthermore, if π |= Fb

achieves a minimum value of bcost(π), then π restricted to the variables of F is
a solution for F .

However, Fb has many models whose bcost is greater than necessary. For
example, if a model π assigns bi to true even though it also satisfies the soft
clause ci, then the bcost of π could be reduced by instead assigning bi to false.
We can eliminate such models by modifying Fb so that the b-variables are forced
to be equivalent to the negation of their corresponding soft clauses.

Definition 2. Let F be a maxsat formula. Then

Fb
eq = Fb ∪

⋃
ci∈soft(F)

{(¬bi ∨ ¬�) : � ∈ ci}

is the relaxation of F with b-variable equivalences.

Again, the minimum bcost models of Fb
eq are maxsat solutions.

Proposition 2. mincost(F) = minπ|=Fb
eq
bcost(π). Furthermore, if π |= Fb

eq

achieves a minimum value of bcost(π), then π restricted to the variables of F is
a solution for F .

Propositions 1 and 2 show that we can solve the maxsat problem F by
searching for a bcost minimal satisfying assignment to Fb or to Fb

eq. Note also
that Fb

eq is a stronger theory enabling more inferences than Fb.

3 The maxhs Approach

In maxhs [6] a sat solver is called at every iteration to find a new core of F . A
mip solver is then invoked to find a minimum bcost assignment to the b-variables
that satisfies all of the core constraints found so far. This optimization problem
corresponds to a Minimum Cost Hitting Set (MCHS) problem,2 where the goal
is to find a minimum cost set of clauses that hits each of the known cores. The
optimal hitting set found by the mip solver is tested by the sat solver. If the
sat solver is unable to find another core, it means the maxsat solution has been
found. Otherwise, the sat solver returns a new core, the mip solver re-optimizes,
and the iterations continue.

This algorithm is shown in Algorithm 1. The set of cores is initialized on line
2 to the empty set. In the main loop of maxhs, the mip solver is invoked to find
1 Recall we assume hard(F) is satisfiable, so Fb is satisfiable.
2 An instance of MCHS is given by a universe of weighted elements U and a collection

of subsets of these elements, K = {κ1, ..., κm}, κi ⊆ U . The goal is to find a minimum
weight set of elements hs ⊆ U such that hs ∩ κi �= ∅ for all κi ∈ K.
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Algorithm 1. The maxhs algorithm for solving maxsat.
1 MaxHS

(
F
)

2 K = ∅
3 while true do
4 hs = FindMinCostHittingSet(K)
5 (sat?,κ) = SatSolver(F \ hs)

// If sat, κ contains the satisfying truth assignment.
// If unsat, κ is a new core.

6 if sat? then
7 break // Exit While Loop, κ is a maxsat solution.
8 K = K ∪ {κ}
9 return

(
κ, cost(κ)

)

a minimum cost hitting set hs of K, on line 4. If removing hs from F results in
a satisfiable formula (tested by the sat solver on line 5), we break out of the
loop on line 7 and return the satisfying assignment as the maxsat solution on
line 9. Otherwise, the sat solver will return a new core, κ to add to K on line 8
and the loop repeats.

The correctness of Algorithm 1 is established by the following theorem.

Theorem 1. [6] If K is a set of cores for the maxsat problem F , hs is a
minimum cost hitting set of K, and π is a truth assignment satisfying F \ hs
then mincost(F) = cost(π) = cost(hs).

This theorem shows that when Algorithm 1 breaks out of its loop, κ is a maxsat
solution. The argument that the loop must eventually terminate is based on
observing that every time the sat solver returns a core κ, it must be distinct
from all previously returned cores (because a hitting set for all previous cores
does not hit κ). Since there is a finite number of distinct cores, the sat solver
must eventually be unable to find another new core and the loop will terminate.

3.1 Behaviour of maxhs

The behaviour of maxhs in influenced by three potential sources of exponential
complexity. These include the time required by the sat solver to solve F \ hs ,
the time required by the mip solver to solve the NP-hard MCHS problem, and
the number of iterations required. The examples below illustrate that each of
these factors can, in the worst case, cause exponential runtime.

Example 1. Let F be an instance of the Pigeon Hole Principle, where all clauses
are considered soft with weight 1. Removing any single clause from F will make
the remaining clauses satisfiable. Therefore, maxhs will terminate after the first
core is found. So only one MCHS problem will be solved, and it is trivial. How-
ever, the time spent by the sat solver to find a single core will be exponential.
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Example 2. Let K be a MCHS instance. We construct a maxsat instance F that
is equivalent to K as follows. For each set κ ∈ K, where κ = {e1, ..., ek}, there is
a hard clause (e1∨· · ·∨ek). Finally, there is a soft clause (¬e) with weight wt(e)
for each element e ∈

⋃
κ∈K κ. A minimal core is a core such that any proper

subset is not a core. It is easy to see that the minimal cores of F correspond
to the hard clauses of F and therefore the total number of minimal cores is
equal to |K|. The sat solver can find each of the minimal cores in polynomial
time, by using unit propagation alone. The number of minimal cores required
by maxhs is at most |K|. So the only possible source of exponential runtime on
K is solving the MCHS problems. Assuming that P �= NP, there must be some
MCHS instance K on which maxhs will take exponential time and this must
arise when maxhs solves the MCHS problem.

To show that exponential run time can be generated from the number of
iterations required we need the following proposition.

Proposition 1. Let n be an even number and let E = {e1, ..., en} be a universe
of equally weighted elements. Let Kn,r = {κ ⊂ E : |κ| = r} be an instance of the
MCHS problem where r = n

2 . Let K′ = Kn,r \ κ′ for some κ′ ∈ Kn,r. Then the
MCHS of K′ is strictly smaller than the MCHS of Kn,r.

Example 3. Let F be a maxsat instance with an even number n of soft unit
clauses with weight 1, (x1), ..., (xn) and let the hard clauses of F form a CNF
encoding of the cardinality constraint Σn

i=1xi < n/2. On this family of problems,
an exponential number of cores will always be required by maxhs, as we explain
next. The solutions to F are the truth assignments that set as many of the
variables to true as possible without violating the hard cardinality constraint.
Thus a solution to F will set exactly n

2 − 1 of the xi variables to true and the
rest to false, and n

2 + 1 is the optimal cost. Any subset of the n soft clauses,
with size greater than or equal to n

2 , is a core of F . Therefore, F has at least(
n

n/2

)
cores. By Proposition 1, for any number of cores k <

(
n

n/2

)
, the cost of

their MCHS is less than the optimum. Therefore, maxhs will require at least(
n

n/2

)
cores, which is exponential in n.

However, our empirical observations are much more encouraging. In practice,
we find that the sat solving time is typically small.3 Instead, the performance
of maxhs is most affected by the number of iterations and the time to solve the
MCHS problems. Histograms of the percentage of total runtime spent by the
sat solver and the mip solver are shown in Figure 1 over a set of 4502 Indus-
trial and Crafted instances (the details of the experimental setup are described
in Section 6). In order to study the baseline behaviour of Algorithm 1, the im-
provements presented in prior work [6] are omitted from this implementation.
We observe in Figures 1b and 1d that on instances maxhs failed to solve within

3 If a maxsat instance is difficult for a state-of-the-art sat solver to refute, then any
maxsat solver that uses a sequence of sat instance approach will be unable to solve
it efficiently.
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(d) Unsolved Instances

Fig. 1. Histograms over 4502 instances of the percentage of runtime spent in sat solving
and in calls to the mip solver cplex, for Algorithm 1

the resource limits, the time spent by cplex is a much larger proportion of the
total runtime than the time spent on sat solving. This is true of the solved
instances as well, as shown in Figures 1a and 1c. Thus we are motivated to find
ways to reduce the time spent solving the MCHS problems, since this has the
greatest potential to reduce the total runtime and thus allow more instances to
be solved.

4 Postponing Optimization

We have seen in the previous section that in practice, the execution time of Al-
gorithm 1 is dominated by its multiple calls to the mip solver. The mip solver
must optimize an NP-hard problem, Minimum Cost Hitting Set, at each itera-
tion. Therefore, in order to improve the performance of maxhs it is natural to
ask if an approximation to MCHS can ever be used instead. In this section we
show that by applying a similar approach to [16] the maxhs algorithm can be
modified to use such approximations, in order to postpone the expensive calls
to the mip solver.
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Algorithm 2. An algorithm for solving maxsat that uses non-optimal hitting sets.

1 MaxHS-nonOPT
(
F
)

2 K = DisjointCores(F)
3 while true do
4 hs = FindMinCostHittingSet(K) /* Find optimal solution */
5 (sat?, κ) = SatSolver(F \ hs)

// If sat, κ contains the satisfying truth assignment.
// If unsat, κ is a new core.

6 if sat? then
7 break // Exit While Loop, κ is a maxsat solution.
8 κ = Minimize(κ)
9 K = K ∪ {κ}

10 nonOptLevel = 0
// Begin a series of non-optimal solutions

11 while true do
12 switch nonOptLevel do
13 case 0
14 hs = FindIncrementalHittingSet(K, κ, hs)
15 case 1
16 hs = FindGreedyHittingSet(K)
17 (sat?, κ) = SatSolver(F \ hs)
18 if sat? then
19 switch nonOptLevel do
20 case 0
21 nonOptLevel= 1
22 case 1
23 break /* Exit inner while loop */
24 else
25 κ = Minimize(κ)
26 K = K ∪ {κ}
27 nonOptLevel= 0
28 return (κ, cost(κ))

The maxhs algorithm from Algorithm 1 can be modified to use non-optimal
hitting set computations, as shown in Algorithm 2. The algorithm operates just
like maxhs in that it terminates at line 7 if F is satisfiable after removing from it
an optimal hitting set (computed at line 4). It varies from Algorithm 1 in that
if a new core κ is discovered at line 5, it enters an inner loop where non-optimal
hitting sets are used in place of optimal ones.

A simpler version of the algorithm uses only one method for computing ap-
proximate hitting sets rather than two. This version, which we explain first, is
obtained from the version shown, by (1) replacing the switch statement on lines
12–16 by only one of lines 14 or 16 (i.e., we perform a single type of approxi-
mate hitting set computation); and (2) replacing the switch statement on lines
19–23 with a break statement. The resultant simpler version repeatedly finds
an approximate hitting set and calls the sat solver again to find a new core.
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Eventually, the sat solver will fail to find any more cores, the inner loop will be
terminated, and we will return to line 4 where an optimal hitting set will then
be computed. The simple version thus finds as many cores as possible before
optimizing.

The more complex version (as shown) uses two levels of approximation: incre-
mental and greedy. It is assumed that the second level (on line 16) computes a
better (i.e., smaller) hitting set than the first. The idea here is that we compute
a cheap incremental approximate hitting set until the sat solver can’t find any
more cores. Then we compute the more expensive greedy approximate hitting
set, which because it can be smaller might allow the sat solver to find a new core.
If a new core is found, we continue with the cheap incremental approximation
(on line 27 nonOptLevel is reset to zero), until we once again fail to find cores
with the sat solver. If the sat solver fails to find a new core even when using
the more expensive greed approximate hitting set (line 23), the inner while loop
terminates and we finally return to line 4 to compute an optimal hitting set.4

Two other improvements to the basic Algorithm 1 are worth mentioning (orig-
inally presented in [7]). First, at line 2, we can use the sat solver to find a set of
disjoint cores. This is accomplished by blocking every clause in the cores found
so far (by setting the b-variables for the cores’ clauses to true) and finding an-
other core: the new core will not have any clauses in common with the previous
cores. This can only be done at the start before the main loop finds other cores.
Second, at lines 8 and 25, after each core is found we use the sat solver to
minimize it. This is accomplished by using a simple minimal unsatisfiable core
(MUS) algorithm [17]. This results in a stronger constraint for the mip solver.5

In our implementation we use two different methods for computing approxi-
mate hitting sets, both of which are very cheap. FindIncrementalHittingSet
(line 14), simply adds a clause in the newest core to the current hitting set. The
chosen clause can be any clause in κ: we choose the clause that appears most
frequently in the set K of cores found so far. The intuition for this policy is
that it takes away clauses that appear in many known cores, so that the next
cores found can not use these clauses and thus are more likely to intersect with
only a few of the known cores. The second method of computing non-optimal
hitting sets, FindGreedyHittingSet (line 16), ignores the current hitting set,
and instead applies a standard greedy algorithm for the MCHS problem [12].

Theorem 2. Algorithm 2 returns a solution to the maxsat problem F .

Proof. This proof relies on the same argument as the correctness of Algorithm 1.
If the algorithm returns on line 28, it must have broken out of the outer while loop
at line 7. In this case, κ is a solution of F \hs (by line 5), where hs is a minimum
cost hitting set of K (by line 4). K is a collection of cores of F : it is initialized
on line 2, and augmented only on lines 9 and 26 with κ, a core of F \ hs (thus

4 As can be seen from the algorithm specification we could add more cases to the
switch statements if we had multiple approximation algorithms we wished to use.

5 There are future possibilities for using upper and lower bounds in the algorithm
(e.g., at line 17 if we find a satisfying solution its cost is an upper bound).
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κ is also a core of F). Therefore, if the algorithm returns, by Theorem 1, κ is a
maxsat solution. It remains to show that the algorithm eventually terminates.
Each time SatSolver is called (line 5 or line 17), hs is a hitting set of all cores in
K. So if SatSolver returns a core κ ⊆ F \ hs it must be distinct from all cores
in K. There is a finite number of cores, so SatSolver can not return sat? = false
forever and therefore both while loops must eventually terminate.

5 Additional Enhancements

In previous work we also investigated an alternative approach to reduce the time
maxhs spends in MCHS solving, that was based on using more general, non-
core, constraints [7]. In [7] it is shown that a very effective technique is to seed
cplex with many non-core constraints as a preprocessing step. In this section
we show how seeding can also be applied before Algorithm 2 in order to achieve
the same benefit.

Definition 3. A non-core constraint for maxsat instance F is a linear inequal-
ity constraint over b-variables, c, such that Fb

eq |= c.

It is sound to add non-core constraints to the mip model in the maxhs algo-
rithm. This is easy to see from Proposition 2, which states that a minimum bcost
solution to Fb

eq corresponds to a maxsat solution, and the fact that the non-core
constraints are entailed by Fb

eq. We obtain a theorem similar to Theorem 1.

Theorem 3. If K is a set of core and non-core constraints for the maxsat
problem F , π is minimum bcost assignment to the b-variables that satisfies K,
and π′ is a truth assignment extending π and satisfying Fb then mincost(F) =
bcost(π) and π′ restricted to the variables of F is a maxsat solution.

Proof. Since π is a minimum bcost assignment to the b-variables that satisfies
K, and all constraints in K are entailed by Fb

eq, by Proposition 2 mincost(F) ≥
bcost(π). On the other hand, π′ extends π to a satisfying assignment of Fb, and
since π′ sets the same b-variables as π, we have bcost(π′) = bcost(π). So by
Proposition 1, mincost(F) ≤ bcost(π′) = bcost(π). Thus mincost(F) = bcost(π).
Finally, π′ restricted to the variables of F is a maxsat solution by Proposition 1,
since π′ is a minimum bcost satisfying assignment of Fb.

This theorem allows us to modify Algorithm 2 by adding a preprocessing step
that identifies a collection of non-core constraints N as shown in Algorithm 3.
Now, when the mip solver is invoked to find an optimal solution, it no longer
solves a pure MCHS problem because it must take into account the seeded non-
core constraints N in addition to the cores K. On line 6, the mip solver returns
an optimal assignment to the b-variables, A, that is then passed as a set of
assumptions to the sat solver on line 7. Note that the sat solver uses Fb as
input which allows the settings of the b-variables in A to relax the right set of
soft clauses. By Theorem 3, if the sat solver returns a satisfying assignment it
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Algorithm 3. An algorithm for solving maxsat that uses non-optimal hitting sets
and seeded non-core constraints.
1 MaxHS-nonOPT-seed

(
F
)

2 K = DisjointCores(F)
3 N = NonCoreConstraints(Fb

eq)
4 obj = wt(ci) ∗ bi + . . .+ wt(ck) ∗ bk
5 while true do
6 A = Optimize(K ∪N , obj ) /* Find optimal solution */
7 (sat?, κ) = AssumptionSatSolver(Fb,A)

// Subsequent lines identical to Algorithm 2 lines 6–28

corresponds to the maxsat solution. Otherwise, the sat solver will return a new
core constraint κ. Thus once the main loop begins, no more non-core constraints
will be derived (this differs from the previous work on non-core constraints) and
the rest of the algorithm proceeds as before. The argument that the algorithm
terminates remains the same as well.

Theorem 4. Algorithm 3 returns a solution to the maxsat problem F .

It remains to specify how a collection of non-core constraints are to be found
by NonCoreConstraints. We use Eq-Seeding [7] because it was found to be the
most effective overall. In Eq-Seeding, we exploit the equivalence between original
literals of F that appear in soft unit clauses, and their b-variables. In Fb

eq, bi ≡ ¬x
if there is a unit soft clause (x) ∈ F . So to generate a collection of constraints,
we consider each clause c of Fb, and check whether each literal in c has an
equivalent b-literal (or is itself a b-literal). If so, we can derive a new b-variable
constraint from c by replacing every original literal by its equivalent b-literal.
This constraint is a clause over the b-variables that is entailed by F b

eq and it can
be added to N .

6 Experimental Results

We performed an empirical study of ten existing maxsat solvers: cplex (version
12.2), wpm1 [1], wpm2 (versions 1 and 2 [3]), bincd [10], wbo [15], minimaxsat
[9], sat4j [5], akmaxsat [13], maxhs-Orig [6], and maxhs+ [7]. All of these
solvers are able to solve maxsat in its most general form, i.e., weighted partial
maxsat, and thus have the widest range of applicability. Our study includes
recently developed solvers utilizing a sequence of sat approach (bincd, wpm1,
wpm2, maxhs-Orig and maxhs+), some older solvers (sat4j and wbo), and
two prominent Branch and Bound based solvers (akmaxsat and minimaxsat).
Also included is the mip solver cplex, which is invoked after applying a standard
translation of maxsat to mip [7].

We experiment with three versions of Algorithm 2, that differ by how the
non-optimal hitting sets are computed. The first and second versions use the
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Fig. 2. Performance of solvers on all Crafted and Industrial instances

simple form of Algorithm 2 where only one method for computing approximate
hitting sets is used. The first version, maxhs-incr, uses FindIncrementalHit-
tingSet for this computation, and the second version, maxhs-greedy, uses
FindGreedyHittingSet. The third version is called maxhs-incr-greedy and it
uses the more complex version of Algorithm 2, as specified in the pseudo-code.
Finally, we also experiment with the version described in Section 5 that adds Eq-
Seeding to maxhs-incr-greedy. This version uses the same algorithm as the solver
submitted to the 2013 maxsat Evaluation, and will be called maxhs-eval13.6

We obtained all problems from the previous seven maxsat evaluations [4],
discarding all instances in the Random category. After removing duplicate prob-
lems (as many as we could find) we ended up with 4502 problems divided into
58 families.7 The family names and the number of instances in each family are
shown in Tables 1 and 2. Our experiments were performed on 2.1 GHz AMD
Opteron machines with 98GB RAM shared between 24 cores (about 4GB RAM
per core). Each problem was run under a 1200 second timeout and with a mem-
ory limit of 2.5GB.

The overall results are shown in Figure 2. We see that the earliest maxhs-
Orig is a reasonable but not distinguished solver. The improvement presented
in [7], maxhs+, is a very good solver being slightly better over all problems
than any previous solver. Finally, we see that the best of the versions developed
6 All versions of maxhs in this study use minisat-2.0 and cplex version 12.2. The

solver submitted to the 2013 Evaluation uses cplex version 12.5 and it performs
slightly better than the version we report on here.

7 We include results on 17 families within the Crafted category that were omitted
in [7].
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Table 1. Results for the Industrial category instances. Shows the number of instances
solved by each solver in each benchmark family. The final row gives the total number
of instances solved over both the Industrial and Crafted categories.

Family # mini cplex wpm1 bincd maxhs
Orig + Alg. 2 Alg. 3

incr grdy i+g eval 13
ms/Safar 112 3 19 88 71 75 33 33 34 33 33

ms/circdebug 9 0 1 9 7 9 3 4 3 4 3
pms/bcp-fir 59 13 58 53 55 16 18 32 18 33 33

pms/bcp-msp 148 108 110 60 117 62 121 90 87 95 123
pms/bcp-mtg 215 208 193 215 215 150 212 215 214 215 215
pms/bcp-syn 74 27 71 40 45 65 71 69 69 69 71

pms/pb/logic-syn 17 2 16 7 7 16 16 16 16 16 16
pms/pbo-rout 15 14 14 15 15 10 13 12 10 10 13

pms/pseudo/rout 15 14 15 15 15 7 15 11 11 10 12
pms/circtracecomp 4 1 0 3 4 0 0 0 1 1 1

pms/pb/primes 86 76 78 46 76 59 80 77 74 78 81
pms/pb-nencdr 128 64 23 69 116 48 104 118 128 128 127

pms/pb-nlogencdr 128 103 24 88 128 78 111 128 128 128 128
pms/aes 7 1 2 0 1 1 2 2 2 3 2

pms/hap-asmbly 6 0 2 4 0 5 5 5 5 5 5
pms/bcp-hipp 1183 982 962 1154 1164 1125 1142 1141 1138 1137 1140

wpms/haplo-ped 100 0 9 91 23 27 28 26 33 25 22
pms/protein-ins 12 11 1 1 2 1 1 2 1 2 2

wpms/protein-ins 12 10 1 1 2 1 2 2 1 2 1
wpms/timetabling 32 0 0 13 12 9 8 7 7 7 6

wpms/upgrade 100 0 100 100 97 100 100 100 100 100 100
wpms/up-u98 80 0 80 80 79 80 80 80 80 80 80

Total 2542 1637 1779 2152 2251 1944 2165 2170 2160 2181 2214
Indust + Craft Total 4502 3130 3249 3097 3106 2682 3257 3288 3297 3419 3578

in this paper, maxhs-eval13 achieves a significant performance improvement.
Although not shown on the plot, the other versions we develop here all improve
over maxhs+, but are not as good as maxhs-eval13 (see Tables 1 and 2).

The results are broken down by benchmark family in Tables 1 and 2. Included
in the tables are the four competing solvers that performed best overall (as shown
in Figure 2): cplex, minimaxsat, bincd and wpm1. Observe that all versions of
maxhs that use non-optimal hitting sets (Alg. 2 and Alg. 3) outperform maxhs+,
which uses non-core constraints more extensively than maxhs-eval13. Yet when
the technique of seeding the mip model with non-core constraints is added to the
use of non-optimal hitting sets, performance is improved (see “Alg. 2 i+g” vs. “Alg.
3 eval 13”). We see that on the industrial problems (Table 1) there is still quite a lot
of variance in performance between the different solvers across the different fam-
ilies; that maxhs-eval13 has fairly robust good performance across the different
families; and that the maxhs approach can be significantly better than just using
cplex alone, indicating the value of our hybrid approach. On the crafted problems
(Table 2) we see that the Branch and Bound approach of minimaxsat is most ef-
fective. These problems tend to be smaller than the industrial problems and have
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Table 2. Results for the Crafted category instances. Shows the number of instances
solved by each solver in each benchmark family. The benchmark families with an as-
terisk (*) are those we classify as having “random” structure [7]. The final row gives
the total number of instances solved over both the Industrial and Crafted categories.

Family # bincd wpm1 cplex mini maxhs
Orig + Alg. 2 Alg. 3

incr grdy i+g eval 13
*ms/spin 20 0 0 19 20 0 0 1 4 10 10

*ms/cut/spin 5 1 1 3 3 0 1 1 2 2 2
*wms/cut/spin 5 0 0 4 4 0 1 1 2 3 3

*pms/frb 25 0 0 9 5 0 8 5 0 5 9
*wms/kexu/frb 35 9 5 20 15 10 20 16 15 15 20

*pms/csp/sprsls 20 20 20 20 20 19 11 20 20 20 20
*pms/csp/dsls 20 20 16 20 20 5 0 15 15 16 16

*pms/csp/sprstgt 20 20 20 20 20 0 0 15 12 20 20
*pms/csp/dstgt 20 19 19 20 20 0 0 3 6 20 20

*ms/ramsey 48 34 34 34 35 34 34 34 34 34 34
*wms/ramsey 48 36 34 36 37 34 35 34 34 34 34

*pms/clq/rand 96 67 0 96 96 4 96 4 44 59 96
*ms/bcut-630 100 0 0 0 83 0 0 0 0 0 0
*pms/kbtree 54 15 14 54 22 11 15 12 12 12 14

*pms/max1/3sat 80 80 71 80 80 20 80 45 44 57 80
*ms/cut/rand 40 0 0 4 40 0 0 0 0 0 0

*wms/cut/rand 40 0 0 12 40 0 0 0 0 0 0
ms/cut/dimacs 62 6 5 20 48 4 4 4 4 4 3

wms/cut/dimacs 62 4 5 22 55 3 3 4 5 8 9
pms/max1/struc 60 59 30 52 60 5 60 54 57 60 60
pms/clique/struc 62 18 8 32 36 10 29 12 17 17 34

pms/queens 7 7 7 7 7 2 3 5 4 5 5
wpms/QCP 25 25 25 25 20 25 25 25 25 25 23

pms/pb/gardn 7 5 5 6 5 5 6 5 6 6 6
wpms/pb/mip 16 7 6 6 5 6 7 7 7 7 5

wpms/pb/factor 186 186 168 186 186 186 186 186 186 186 172
wpms/KnotPip 350 0 161 245 117 57 52 290 260 290 289
wpms/spot5log 21 11 12 6 4 6 6 6 6 6 6
wpms/spot5dir 21 11 10 17 3 6 6 6 6 6 6

pms/jobshop 4 4 3 0 2 4 3 4 4 4 4
wpms/plan 71 65 64 70 71 46 71 71 71 71 61

wpms/aucreg 84 6 0 84 84 34 84 4 13 2 76
wpms/aucsch 84 66 84 84 84 82 84 76 77 78 75

wpms/aucpath 88 0 52 88 88 88 88 88 88 88 78
wpms/ware 18 1 14 18 2 1 18 9 1 12 18
wpms/plan 56 53 52 51 56 31 56 56 56 56 56

Total 1960 855 945 1470 1493 738 1092 1118 1137 1238 1364
Indust + Craft Total 4502 3106 3097 3249 3130 2682 3257 3288 3297 3419 3578
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Fig. 3. Histograms over all instances for the percentage of runtime spent in calls to
cplex for Algorithms 2 and 3. (a) Alg. 2, solved instances; (b) Alg. 2, unsolved in-
stances; (c) Alg. 3, solved instances; (d) Alg. 3, unsolved instances.

tightly interacting variables yielding cores containing a large fraction of the total
clauses. The data also shows that although the traditional sequence of sat solvers
bincd and wpm1 do not perform particularly well on these problems, cplex is
quite effective, as is the hybrid approach of maxhs.

The good performance of maxhs-incr-greedy and maxhs-eval13, implement-
ing Algorithms 2 and 3 respectively, appears to be due to a significant reduction
in the total time spent by cplex. In Figure 3 we show the percentage of the
total runtime that was spent in calls to cplex. Comparing these histograms to
those in Figure 1, we observe that the time spent solving the MCHS problems
to optimality is now almost always a low percentage of the total runtime. The
number of calls to cplex generally decreases when we use non-optimal hitting
sets, as expected. On average (over all 4502 instances), each run of maxhs-incr-
greedy gave a total of 5419 constraints to cplex but solved the optimization
problem only 14 times. In contrast, each run of Algorithm 1 gave on average
only 972 cores to cplex, thus having to solve the MCHS problem 972 times.

In conclusion, we have presented a technique for improving the hybrid maxhs
approach to solving maxsat. Our method yields an improvement in the state-of-
the-art for maxsat solving. Although our method successfully shifts the balance
of the runtime away from the mip solver, a promising avenue for future work is
to examine the structure of the constraints given to the mip solver to see if they
could be made more effective.
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Abstract. Soft neighborhood substitutability (SNS) is a powerful tech-
nique to automatically detect and prune dominated solutions in combi-
natorial optimization. Recently, it has been shown in [26] that enforcing
partial SNS (PSNSr) during search can be worthwhile in the context of
Weighted Constraint Satisfaction Problems (WCSP). However, for some
problems, especially with large domains, PSNSr is still too costly to en-
force due to its worst-case time complexity in O(ned4) for binary WCSP.
We present a simplified dominance breaking constraint, called restricted
dead-end elimination (DEEr), the worst-case time complexity of which
is in O(ned2). Dead-end elimination was introduced in the context of
computational biology as a preprocessing technique to reduce the search
space [13, 14, 16, 17, 28, 30]. Our restriction involves testing only one
pair of values per variable instead of all the pairs, with the possibility
to prune several values at the same time. We further improve the orig-
inal dead-end elimination criterion, keeping the same time and space
complexity as DEEr. Our results show that maintaining DEEr during a
depth-first branch and bound (DFBB) search is often faster than main-
taining PSNSr and always faster than or similar to DFBB alone.

Keywords: combinatorial optimization, dominance rule, weighted con-
straint satisfaction problem, soft neighborhood substitutability.

1 Introduction

Pruning by dominance in the context of combinatorial optimization involves re-
ducing the solution space of a problem by adding new constraints to it [19]. We
study dominance rules that reduce the domains of variables based on optimality
considerations (in relation to the optimization of an objective function). The
idea is to automatically detect values in the domain of a variable that are domi-
nated by another dominant value of the domain such that any solution using the
dominant value instead of the dominated ones has a better score. Various domi-
nance rules have been studied recently by the Constraint Programming commu-
nity [5, 6, 26]. In particular, soft neighborhood substitutability (SNS) [3, 26] allows
us to detect dominated values in polynomial time under specific conditions for
Weighted Constraint Satisfaction Problems (WCSP). In a different community,

� This work has been partly funded by the “Agence nationale de la Recherche”, ref-
erence ANR-10-BLA-0214 and the European Union, reference FP7 ePolicy 288147.

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 263–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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similar dominance rules and others, called dead-end elimination (DEE) crite-
ria, have been studied for many years in the context of computational protein
design [1, 13, 14, 16, 17, 28, 30]. However to the best of our knowledge, these
criteria have never been used during search, possibly due to their high computa-
tional cost. Following the work done in [26] showing the interest of maintaining
such dominance rule during search, we propose a faster pruning by dominance
algorithm combining SNS and DEE in a partial and optimistic way.

2 Weighted Constraint Satisfaction Problems

AWeighted Constraint Satisfaction Problem (WCSP) P is a triplet P = (X,F, k)
where X is a set of n variables and F a set of e cost functions. Each variable
x ∈ X has a finite domain, domain(x), of values that can be assigned to it.
The maximum domain size is denoted by d. For a set of variables S ⊆ X , l(S)
denotes the set of all labelings of S, i.e., the Cartesian product of the domain
of the variables in S. For a given tuple of values t, t[S] denotes the projec-
tion of t over S. A cost function fS ∈ F , with scope S ⊆ X , is a function
fS : l(S) �→ [0, k] where k is a maximum integer cost used for forbidden as-
signments. A cost function over one (resp. zero) variable is called a unary (resp.
nullary, i.e., a constant cost payed by any assignment) cost function, denoted
either by f{x} or fx (resp. by f∅). We denote by Γ (x) the set of cost functions
on variable x, i.e., Γ (x) = {fS ∈ F |{x} ⊆ S}.

The Weighted Constraint Satisfaction Problem consists in finding a complete
assignment tminimizing the combined (sum) cost function

∑
fS∈F fS(t[S]). This

optimization problem has an associated NP-complete decision problem.
Enforcing a given local consistency property on a problem P involves trans-

forming P = (X,F, k) into a problem P ′ = (X,F ′, k) that is equivalent to
P (all complete assignments keep the same cost) and that satisfies the con-
sidered local consistency property. This enforcing may increase f∅ and pro-
vide an improved lower bound on the optimal cost. It is achieved using Equiv-
alence Preserving Transformations (EPTs) that move costs between different
scopes [8–12, 21, 22, 24, 31]. In particular, node consistency [21] (NC) satisfies
∀x ∈ X, mina∈domain(x) fx(a) = 0, ∀a ∈ domain(x), f∅ + fx(a) < k. Soft arc
consistency (AC∗) [21, 31] satisfies NC and ∀fS ∈ F, ∀x ∈ S, ∀a ∈ domain(x),
mint∈l(S\{x}) fS(t ∪ {(x, a)}) = 0.

3 Dead-End Elimination

The original dead-end elimination criterion is [14]:

∑
fS∈Γ (x)

max
t∈l(S\{x})

fS(t ∪ {(x, a)}) ≤
∑

fS∈Γ (x)

min
t∈l(S\{x})

fS(t ∪ {(x, b)}). (1)
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This condition implies that value b can be safely removed from the domain of x
since the total cost of all the cost functions on x taking their best assignment
with x assigned b is still worse than that produced by their worst assignment
with x assigned a. This condition was further improved in [17]:∑

fS∈Γ (x)

max
t∈l(S\{x})

fS(t ∪ {(x, a)})− fS(t ∪ {(x, b)}) ≤ 0. (2)

where the best and worst-cases are replaced by the worst difference in costs for
any labeling of the remaining variables in the scope of each cost function. It is
easy to see that this condition is always stronger than the previous one.

More recently, the authors in [26] reformulated Equation 2 in the specific
context of WCSP with bounded cost addition a⊕ b = min(k, a+ b) proving that
the reformulated criterion1 is equivalent to soft neighborhood substitutability
when Γ (x) is separable (i.e., ∀fS , fS′ ∈ Γ (x) × Γ (x), S ∩ S′ = {x}) and α < k.
In practice, testing Eq. 2 or its reformulation will prune the same values.

They also noticed that if the problem is soft arc consistent then the worst-cost
differences are always positive. Equation 1 can be further simplified thanks to
soft AC because all the best-case terms are precisely equal to zero:∑

fS∈Γ (x)

max
t∈l(S\{x})

fS(t ∪ {(x, a)}) ≤ fx(b). (3)

We propose a stronger condition than Eq. 2 or Eq. 3 by discarding forbidden
partial assignments with x assigned b when computing the worst-cost difference:

∑
fS∈Γ (x)

max
t∈l(S\{x}) st. C(fS ,t∪{(x,b)})<k

fS(t ∪ {(x, a)})− fS(t ∪ {(x, b)}) ≤ 0. (4)

where C(fS , t) = fs(t) +
∑

y∈S,|S|>1 fy(t[y]) + f∅. This new condition is equiv-
alent to Eq. 2 except that some tuples have been discarded from the max op-
eration. These discarded tuples t are forbidden partial assignments when x is
assigned b because the sum of the associated cost function fS(t ∪ {(x, b)}) plus,
if |S| > 1, all the unary costs on the variables in S assigned by t ∪ {(x, b)} plus
the current lower bound f∅ is greater than or equal to the current upper bound
k. Such tuples t do not need to be considered by the max operation because
t∪ {(x, b)} does not belong to any optimal solution, whereas t∪ {(x, a)} can be.

For CSP (i.e., k = 1), Eq. 2 and Eq. 4 are both equivalent to neighborhood
substitutability [15]. For Max-SAT, Eq. 3 and Eq. 2 are equivalent if the problem
is soft AC, and correspond to the Dominating 1-clause rule [29]. In the general
case, Eq. 4 is stronger2 (more domain values can be pruned) than Eq. 2, which is

1 They replace the maximum of cost differences α−β by the opposite of the minimum
of cost pairs (β, α), ordered by the relation (β, α) ≤ (β′, α′) ≡ β − α < β′ − α′ ∨
(β − α = β′ − α′ ∧ α < α′). Equation 2 becomes

∑
fS∈Γ (x)∪fx

mint∈l(S\{x})(fS(t ∪
{(x, b)}), fS(t ∪ {(x, a)})) ≥ 0 where (β, α) ≥ 0 if β ≥ α.

2 The definition of soft AC on fair VCSPs [12] makes Eq. 4 and Eq. 2 equivalent.
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stronger than Eq. 3. More complex dominance criteria have been defined in the
context of protein design (e.g., a value being dominated by a set of values instead
of a single one, see [30] for an overview), but they all incur higher computational
costs. In the next section, we recall how to enforce Eq. 2 in WCSP, as originally
shown in [26]. Then, in Section 5, we present a modified version to partially
enforce the two conditions, Eq. 4 and 3, with a lower time complexity.

4 Enforcing Soft Neighborhood Substitutability

Assuming a soft arc consistent WCSP (see e.g., W-AC*2001 algorithm in [24]),
enforcing partial3 soft neighborhood substitutability (PSNSr) is described by
Algorithm 1. For each variable x, all the pairs of values (a, b) ∈ domain(x) ×
domain(x) with a < b are checked by the function DominanceCheck to see if b
is dominated by a or, if not, vice versa (line 3). At most one dominated value
is added to the value removal queue Δ at each inner loop iteration (line 2).
Removing dominated values (line 4) can make the problem arc inconsistent,
requiring us to enforce soft arc consistency again. We successively enforce soft
AC and PSNSr until no value removals are made by both enforcing algorithms.

Algorithm 1: Enforce PSNSr [26]

Procedure PSNSr(P : AC∗ consistent WCSP)
Δ := ∅ ;
foreach x ∈ variables(P ) do1

foreach (a, b) ∈ domain(x)× domain(x) such that a < b do2
R := DominanceCheck(x, a→ b) ;
if R = ∅ then R := DominanceCheck(x, b→ a) ;3
Δ := Δ ∪ R ;

foreach (x, a) ∈ Δ do remove (x, a) from domain(x) ;4

/* Check if value a dominates value b */
Function DominanceCheck(x, a→ b): set of dominated values

if fx(a) > fx(b) then return ∅ ;5
δa→b := fx(a) ;
foreach fs ∈ F such that {x} ⊂ S do

δ := getDifference(fs , x, a→ b) ;
δa→b := δa→b + δ ;
if δa→b > fx(b) then return ∅ ;6

return {(x, b)} /* δa→b ≤ fx(b) */ ;

/* Compute largest difference in costs when using a instead of b */
Function getDifference(fs , x, a→ b): cost

δa→b := 0 ;7
foreach t ∈ l(S \ {x}) do

δa→b := max(δa→b, fs(t ∪ {(x, a)})− fs(t ∪ {(x, b)})) ;

return δa→b ;

Function DominanceCheck(x, a → b) computes the sum of worst-cost differ-
ences as defined by Equation 2 and returns a non-empty set containing value b if
Eq. 2 is true, meaning that b is dominated by value a. It exploits early breaks as

3 Enforcing complete soft neighborhood substitutability is co-NP hard as soon as
k �= +∞ (i.e., no restriction on α in the reformulated Equation 2).
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soon as Eq. 2 can be falsified (lines 5 and 6). Worst-cost differences are computed
by the function getDifference(fs, x, a→ b) applied to every cost function related
to x. Worst-cost differences are always positive (line 7) due to soft AC.

The worst-case time complexity of getDifference is O(dr−1) for WCSP with
maximum arity r. DominanceCheck is O(qdr−1) where q = |Γ (x)|. Thus, the
time complexity of one iteration of Algorithm 1 (PSNSr) is O(nd2qdr−1+nd) =
O(edr+1) where e = nq. Interleaving PSNSr and soft AC until a fixed point is
reached is done at most nd times, resulting in a worst-case time complexity of
PSNSr in O(nedr+2). Its space complexity is O(nd2) when using residues [26].

In the following, we always consider PSNSr using the better condition given
by Equation 4 instead of Eq. 2. This does not change the previous complexities.

5 Enforcing Partial SNS and Dead-End Elimination

In order to reduce the time (and space) complexity of pruning by dominance,
we test only one pair of values per variable. The new algorithm is described in
Algorithm 2. We select the pair (a, b) ∈ domain(x) × domain(x) in an opti-
mistic way such that a is associated with the minimum unary cost and b to the
maximum unary cost (lines 8 and 9). Because arc consistency also implies node
consistency, we always have fx(a) = 0.4 When all the unary costs (including the
maximum) are null (line 10), we select as b the maximum domain value (or its
minimum if this value is already used by a). By doing so, we should favor more
pruning on max-closed or submodular subproblems5.

Instead of checking the new Equation 4 for the pair (a, b) alone, we also check
Eq. 3 for all the pairs (a, u) such that u ∈ domain(x) \ {a}. This is done in
the function MultipleDominanceCheck (lines 16 and 17). This function computes
at the same time the sum of maximum costs uba for value a (lines 12 and 13)
and the sum of worst-cost differences δa→b for the pair (a, b). The new func-
tion getDifference-Maximum(fs, x, a → b) now returns the worst-cost difference,
discarding forbidden assignments with t ∪ {(x, b)} (line 18), as suggested by
Eq. 4, and also the maximum cost in fS for x assigned a. By construction of
the two criteria, we have δa→b ≤ uba, so the stopping condition is unchanged at
line 14. When the maximum cost of a value is null for all its cost functions, we
can directly remove all the other values in the domain avoiding any extra work
(line 15). Finally, if the selected pair (a, b) prunes b, then a new pair is checked.

Notice that DEEr is equivalent to PSNSr on problems with Boolean variables,
such as Weighted Max-SAT. For problems with non-Boolean domains, DEEr is
still able to detect and prune several values per variable. Clearly, its time (resp.
space) complexity is O(nedr) (resp. O(n) using only one residue per variable),
reducing by a factor d2 the time and space complexity compared to PSNSr.

4 In fact, we set the value a to the unary support offered by NC [21] or EDAC [22].
5 Assuming a problem with two variables x and y having the same domain and a single
submodular cost function f(x, y) = 0 if x ≤ y else x− y or a single max-closed con-
straint x < y, then DEEr assigns x = min(domain(x)) and y = max(domain(y)).
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Algorithm 2: Enforce DEEr

Procedure DEEr(P : AC∗ consistent WCSP)
Δ := ∅ ;
foreach x ∈ variables(P ) do

a := argminu∈domain(x) fx(u) ;8

b := arg maxu∈domain(x) fx(u) ;9

if a = b /* ∀u ∈ domain(x), fx(u) = 0 */ then10
if a = max(domain(x)) then

b := min(domain(x)) ;
else

b := max(domain(x)) ;

R := MultipleDominanceCheck(x, a→ b) ;
if R = ∅ then R := MultipleDominanceCheck(x, b→ a) ;11
Δ := Δ ∪ R ;

foreach (x, a) ∈ Δ do remove (x, a) from domain(x) ;

/* Check if value a dominates value b and possibly other values */
Function MultipleDominanceCheck(x, a→ b): set of dominated values

if fx(a) > fx(b) then return ∅ ;
δa→b := fx(a) ;
uba := fx(a) ;12
foreach fs ∈ F such that {x} ⊂ S do

(δ, ub) := getDifference-Maximum(fs, x, a→ b) ;
δa→b := δa→b + δ ;
uba := uba + ub ;13
if δa→b > fx(b) then return ∅ ;14

if uba = 0 then return {(x, u)|u ∈ domain(x)} \ {(x, a)} ;15
R := {(x, b)} /* δa→b ≤ fx(b) */ ;
foreach u ∈ domain(x) such that u �= a do16

if (fx(u) ≥ uba) then R := R ∪ {(x, u)} ;17

return R ;

/* Compute largest cost difference and maximum cost for value */
Function getDifference-Maximum(fs , x, a→ b): pair of costs

δa→b := 0 ;
uba := 0 ;
foreach t ∈ l(S \ {x}) do

if fs(t ∪ {(x, b)}) + f∅ + fx(b) +
∑

y∈S\{x} fy(t[y]) < k then18
δa→b := max(δa→b, fs(t ∪ {(x, a)})− fs(t ∪ {(x, b)})) ;

uba := max(uba, fs(t ∪ {(x, a)})) ;

return (δa→b, uba) /* δa→b ≤ uba */ ;

6 Experimental Results

We implemented PSNSr and DEEr in toulbar26. All methods use residues and
variable queues with timestamps as in [26]. PSNSr uses MultipleDominanceCheck
and getDifference-Maximum instead of DominanceCheck and getDifference. Mul-
tipleDominanceCheck prunes the dominated values directly instead of queuing
them into R. It speeds-up further dominance checks without assuming soft AC
anymore during the process (soft AC being restored at the next iteration until a
fixed point is reached for AC and SNS/DEE). We compared PSNSr and DEEr on
a collection of binary WCSP benchmarks (http://costfunction.org) (except

6 C++ solver version 0.9.6 mulcyber.toulouse.inra.fr/projects/toulbar2/

http://costfunction.org
mulcyber.toulouse.inra.fr/projects/toulbar2/
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for spot5 using ternary cost functions). The celar [4] (n ≤ 458, d ≤ 44) and com-
putational protein design [1] (n ≤ 55, d ≤ 148) have been selected as they offer
good opportunities for neighborhood substitutability, at least in preprocessing
as shown in [14, 20]. We added Max SAT combinatorial auctions using the CATS
generator [27] with 60 goods and a varied number of bids from 70 to 200 (100
to 230 for regions) [23]. Other benchmarks were selected by [26] and include:
DIMACS graph coloring (minimizing edge violations) (n ≤ 450, d ≤ 9), optimal
planning [7] (n ≤ 1433, d ≤ 51), spot5 (n ≤ 1057, d = 4) [2], and uncapacitated
warehouse location [22] (n ≤ 1100, d ≤ 300). Experiments were performed on a
cluster of AMD Opteron 2.3 GHz under Linux.

In Table 1, we compared a Depth First Branch and Bound algorithm using
EDAC [22] alone (EDAC column), EDAC and DEEr (EDAC+DEEr), EDAC and
PSNSr in preprocessing only (EDAC+PSNSr

pre), EDAC and PSNSr in prepro-
cessing and DEEr during search (EDAC+PSNSr

pre+DEEr), EDAC and PSNSr

(EDAC+PSNSr), and no initial upper bound for all. For each benchmark, we
report the number of instances, and for each method, the number of instances
optimally solved in less than 1,200 seconds. In parentheses, average CPU time
over the solved instances (in seconds), average number of nodes, and average
number of value removals per search node are reported where appropriate. First,
we used a static lexicographic variable ordering and a binary branching scheme
(toulbar2 options -nopre -svo -d:). DEEr solved always a greater or equal num-
ber of instances compared to EDAC alone, and it performed better than PSNSr

on celar, planning, protein, and warehouse benchmarks, all having large domains.
We also give the results, when available, in terms of the number of solved in-
stances by PSNSr over the total number of instances solved by at least one
method as reported in [26], showing the good performance of our approach. They
used the same settings except a cluster of Xeon 3.0 GHz and max degree static
variable ordering (only identical to our lexicographic ordering for warehouse). In
addition, we solved the celar7-sub1 instance with the same max degree ordering:
EDAC+DEEr solved in (7.7 seconds, 57,584 nodes, 0.96 removals per node),
and EDAC+PSNSr in (69.5, 39,346, 7.2), or (86.4, 70,896, 6) as reported in [26].
Secondly, we used a dynamic variable ordering combining Weighted Degree with
Last Conflict [25] and an initial Limited Discrepancy Search (LDS) phase [18]
with a maximum discrepancy of 2 (option -l=2, except for protein using also
-sortd -d: as in [1]). This greatly improved the results for all the methods and
benchmarks except for warehouse where LDS slowed down the methods. DEEr

remained the best method in terms of the number of solved instances; PSNSr

in preprocessing and DEEr during search being a good alternative, especially
on the protein benchmark. We compared a subset of our results with the last
Max SAT 2012 evaluation (http://maxsat.ia.udl.cat:81/12). With roughly
the same computation time limit (20 min. with 2.3 GHz instead of 30 min. with
AMD Opteron 1.5 GHz), for auction/paths and auction/scheduling, DEEr solved
85+82 instances among 170, being in 3rd position among 11 Max SAT solvers.

http://maxsat.ia.udl.cat:81/12
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7 Conclusion

We have presented a lightweight algorithm for automatically exploiting a dead-
end elimination dominance criterion for WCSPs. Experimental results show that
it can lead to significant reductions in search space and run-time on several
benchmarks. In future work, we plan to study such dominance criteria applied
during search in integer linear programming.
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Abstract. In this paper we present a new algorithm for solving weighted
csps (wcsp). This involves first creating an ordinary unweighted csp, P ,
by hardening all soft constraints of the wcsp. P has a solution if and
only if the wcsp has a cost zero solution. The algorithm then proceeds
by solving relaxations of P each allowing a particular cost to be incurred.
If the relaxation has no solution, a set of its forbidden tuples sufficient
to rule out all solutions is computed. From this set of culprit tuples we
show how to compute a new relaxation of P that can again be tested for
a solution. If the new relaxation is optimal, incurring a minimum cost,
any solution found will also be an solution to the wcsp.

In contrast with traditional branch and bound algorithms our algo-
rithm is a hybrid approach in which a standard csp solver is used to
solve the relaxation and a mixed integer program solver (mip) is used to
compute optimal new relaxations. Our approach is most closely related
to unsatisfiable core techniques that have been developed for solving
maxsat. However by exploiting the fact that at most one tuple in a
constraint can be satisfied by any variable assignment we are able to
develop a more compact encoding of the optimization problem used to
compute the optimal relaxation. We prove that the algorithm is sound,
and provide some preliminary empirical results on its performance.

1 Introduction

Many practical problems involve some degree of optimization. That is, typically
we are not only interested in finding a solution but in finding low cost solutions,
or even optimal solutions, when we can compute them. Weighted csps (wcsp)
or soft csps are a csp based formalism geared towards representing optimiza-
tion problems. In this formalism constraints are replaced by cost functions (soft
constraints) and instead of aiming to find a solution that satisfies all constraints
one aims to find a solution that incurs lowest total cost from the cost functions.

The most prominent methods for solving wcsp employ branch and bound
search, e.g., Toulbar [1]. These solvers depend on sophisticated methods for
computing lower bounds [2] during search.

A wcsp can be viewed as being the csp version of weighted maxsat. In
weighted maxsat we have a set of clauses each with a weight and are trying to
find a truth assignment that falsifies the lowest total weight of clauses. Research
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in maxsat has also pursued branch and bound solvers, e.g., [3, 4], however
an effective alternative is to solve maxsat by solving a sequence of decision
problems (typically sat decision problems), e.g., [5–7]. Empirically, it has been
found that on larger problems the sequence of decision problems approach works
better. For example in the maxsat evaluations [8] branch and bound solvers are
not as effective on the larger problems in the industrial category.

In this paper we present a sequence of decision problems approach to solving
wcsp. Our approach is based on the ideas presented in [7, 9], but involves some
key innovations aimed at better exploiting the additional structure of wcsps.
The approach is a hybrid one in which both a hard-csp solver and a mixed
integer program solver (mip) solver are used. The idea is similar to the general
paradigm of Logic Based Benders Decomposition [10]. In particular, we use the
mip solver to generate candidate optimal solutions and the csp solver to test
their feasibility. If the candidate is feasible we have solved the wcsp.

The novelty of our approach lies in the manner in which we construct the mip
and csp subproblems: our models are designed to exploit the structure of wcsps.
In the paper we present our approach and prove it to be sound. We close the
paper with some preliminary empirical results that indicate the approach has
some potential, although more work needs to be done to make it competitive
with the far more well developed branch and bound solvers.

2 Background

A weighted csp (wcsp), wtP = (C, V ) is specified by a set of variables V =
{v1, . . . , vn}, each with an associated domain of values Di, and a set of soft
constraints or cost functions C = {c1, . . . , cm}. Each c ∈ C is a function over
a subset scope(c) of V , called its scope; c maps tuples of assignments τ over
the variables in scope(c) to positive numbers or infinity. If c(τ) = ∞ then τ is
forbidden by c. Otherwise c(τ) is the cost incurred by τ from c.

An assignment π is a mapping v → d ∈ Di for all v ∈ V . A partial assignment
is a mapping of some subset of the variables. If an assignment π includes all
of the variables in scope(c) for some cost function c, then costc(π) denotes the
value of c evaluated on those assignments.

We restrict our attention to cost functions specified extentionally as tables
that list all assignment tuples over the function’s variables that have non-zero
cost (the table also specifies the cost of each such tuple). Tuples that have infinite
cost are hard tuples. Tuples that specify finite non-zero costs are soft tuples.
Hard constraints are constraints containing only hard tuples. We may harden
tuples, constraints, or weighted csps increasing the weight of the corresponding
soft tuples to infinity.

The cost of a complete assignment π is the sum of the costs it incurs from
cost functions: cost(π) =

∑
c∈C costc(π). An assignment π is a solution to wtP

if it has finite cost. A solution is an optimal solution if no other solution has
lower cost. Solving a wcsp means finding an optimal solution.

One successful method of solving weighted csp problems is branch and bound
search which uses lower bounds to prune the search space. Soft arc consistency
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techniques [2] such as EDAC, VAC, and OSAC transform a problem preserving
the cost of all solutions, but where as much cost as possible is moved into a special
0-ary cost function c∅ incurred by all assignments. Hence, c∅ provides a lower
bound on the optimal cost. Applying these techniques during search provides a
lower bound on the solutions extending the current partial assignment. EDAC
and VAC used in this manner form the basis of the successful Toulbar2 solver.

In maxsat solving a successful alternative solution technique consists of solv-
ing a sequence of decision problems. In the sequence of decision problems ap-
proach all soft costs are hardened and a proof of unsatisfiability is derived using
a SAT solver. The proof of unsatisfiability takes the form of a core, a set of cul-
prit soft clauses at least one of which must be falsified. Either new constraints
are added to the maxsat problem based on the core, e.g, [5, 6], or a relaxation
of the hard problem is derived from the set of known cores [9]. This repeats until
the decision problem becomes satisfiable.

In adapting the sequence of decision problems approach to weighted csps we
define a new concept of a core specific to weighted csps, as well as a formal
definition of a relaxation of the hardened wcsp.

Definition 1. A weight vector for wtP = (C, V ), where C = {c1, . . . , cm} is
a vector 〈w1, . . . , wm〉 of numbers where wi is a cost value that could be assigned
by ci, or zero, or infinity: wi ∈ {0,∞} ∪ {v|∃τ s.t. ci(τ) = v}. Note that there
are only a finite number of weight vectors for wtP.

Definition 2. For a cost function c and weight w, 0 ≤ w ≤ ∞, let ceiling(c, w)
be the tightened cost function generated by hardening all tuples τ in c with c(τ) ≥
w, i.e., ceiling(c, w)(τ) =∞ if c(τ) ≥ w and ceiling(c, w)(τ) = c(τ) if c(τ) < w.
Note that ceiling(c,∞) = c and ceiling(c, 0) forbids all tuples.

A core of wtP = (C, V ) is a weight vector w such that there is no solution
(finite cost complete assignment) of the wcsp ({ceiling(ci, wi)|ci ∈ C}, V ). That
is, if we tighten each cost function ci by wi, then all complete assignments have
infinite weight.

This differs from cores in a maxsat problem. In maxsat each tuple in a
cost function corresponds to a soft clause. A core containing many soft clauses
corresponds to a collection of hardened tuples sufficient to cause the csp to have
no solution. Such cores might, and typically will, contain many tuples from each
cost function. In our formulation, in contrast, there is only one element in the
core per cost function. These elements correspond to sets of tuples of related
weight within the cost function. This more compact representation of a core
is possible because the tuples of each cost function are mutually exclusive—no
assignment can contain more than one tuple of the cost function.

Definition 3. A relaxation of wtP = (C, V ) is an unweighted csp Pw gener-
ated by a weight vector w. The csp Pw is formed by converting each ci ∈ C to
a true/false constraint cwi

i of P with cwi

i (τ) = true iff ci(τ) ≤ wi. The cost of a
relaxation Pw, cost(Pw), is

∑
i wi.
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Algorithm 1. Algorithm for solving a wcsp wtP
1 wtcsp-Solver(wtP)
2 begin
3 Cores ←− ∅
4 w = 0
5 while true do
6 (solvable?, newcore) ←− relaxAndSolve(wtP , w)
7 if solvable? then
8 return extractLastSolution()
9 cores ←− cores ∪ {newcore}

10 w ←− getOptimalWtVec(cores)

The relaxation P0, in which all weights are zero, admits only assignments
incurring zero cost in the wcsp as solutions, and when the weights are all infinite
the relaxation admits all assignments as solutions. In general, for weights w, Pw

is a weakening of P0 that admits as solutions only those assignments that incur
a cost ≤ wi from cost function ci. For convenience we have defined Pw to be a
relaxation of the wcsp, although technically it is a relaxation of the csp P0.

Definition 4. A weight vector w satisfies a set of cores K if for every core
(weight vector) v ∈ K we have that wi ≥ vi at some index i. The vector w is
optimal for K if it satisfies K and for all other weight vectors w′ that satisfy
K we have

∑
iwi ≤

∑
iw
′
i.

3 Relaxation Based Algorithm for Solving wcsp

To solve a weighted csp as a sequence of decision problems we rely on two op-
erations, extracting cores from a hard csp instance with no solution and finding
an optimal relaxation of a set of cores. This solve and relax approach has a num-
ber of similarities with the maxhs solver for maxsat problems [7, 9]. Starting
with the zero cost relaxation P0 we extract a core from it, calculate an optimal
satisfying weight vector w for the current set of cores, form the new relaxation
Pw, and repeat until we find a relaxation that has a solution. We will assume
for the sake of clarity that the wcsp has at least one solution.

Lemma 1. Let π be any complete assignment for wtP, and wπ = 〈costc1(π),
. . . costcm(π)〉, then wπ satisfies all cores of wtP = (C, V ).

Proof. Let w be any core. By definition of a core π must incur infinite cost on
({ceiling(ci, wi)|ci ∈ C}, V ). This means that costci(π) ≥ wi for some index i,
and thus wπ satisfies w.

Lemma 2. Let Pw be a relaxation generated by the weight vector w. If π is a
solution of Pw, then cost(π) ≤

∑
iwi.

Proof. For every ci all tuples of cost greater than wi are forbidden in Pw. There-
fore, costci(π) ≤ wi for every ci.
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Lemma 3. Let K be a set of cores of wtP and w be an optimal weight vector
satisfying K. If π is a solution to the relaxation Pw then cost(π) =

∑
iwi.

Proof. By Lemma 1 the weight vector 〈costc1(π), . . . , costcm(π)〉 satisfies K.
Since w is optimal for K we must have cost(π) ≥

∑
i wi. By Lemma 2 cost(π) ≤∑

iwi.

Theorem 1. Let K be any set of cores of wtP, and w be an optimal weight
vector satisfying K. If π is a solution to the relaxation Pw then π is an optimal
solution for wtP.

Proof. Any solution for wtP generates a weight vector satisfying K by Lemma 1.
Therefore, every solution must have cost at least

∑
i wi. By Lemma 3, π has cost

equal to
∑

i wi, therefore π has optimal cost.

Each relaxation computed by “getOptimalWtVec” satisfies all previous dis-
covered cores, so the same core cannot be discovered again. Since there are only
a finite number of cores (there are only a finite number of weight vectors), the
algorithm must terminate. Theorem 1 shows that when the algorithm terminates
it has found an optimal solution to wtP .

3.1 Extracting Cores

To extract a core from an unsolvable csp instance we need to determine a set
of culprit tuples sufficient to make the current relaxation Pw unsatisfiable. The
subroutine “relaxAndSolve” in Algorithm 1 uses the clause learning csp solver
minicsp [11] operating on the strictest relaxation P0.

In P0 each cost function is converted to a constraint that forbids all non-zero
cost assignments, and minicsp encodes each of these forbidden tuples as a clause
blocking that set of assignments. If the clause C arises from the tuple τ in cost

function ci with 0 < ci(τ) <∞, then a special “blocking variable” b
ci(τ)
i is added

to C, otherwise C is unchanged. For each cost function ci and finite non-zero
weight w that could be assigned by ci, we have a single blocking variable bwi : all
clauses arising from tuples with cost w are “blocked” by the same variable bwi .

We use the assumption mechanism of minicsp in which a set of literals can
be given as assumptions. If the csp is unsatisfiable a subset of these assumptions
sufficient to cause unsatisfiablity is returned. In particular, to extract a core from
the relaxation Pw we use the set of assumptions: {¬bvi |v > wi} ∪ {bvi |v ≤ wi}.

When bvi is true all clauses of weight v from cost function ci are “blocked”.
That is, these clauses are immediately satisfied and no longer constrain the
theory. When bvi is false the clauses of weight v are enforced. Thus any solution
to the problem under this set of assumptions must be a solution of wtP that
incurres no more than cost wi from ci, for all i.

If there is no solution then minicsp will return a subset of the assump-
tions causing unsatisfiablity. The blocking variables appear only positively in the
clauses, so no positive bvi assumption can contribute to unsatisfiablity. Hence,
the subset returned is a set of negated blocking variables asserting that at least
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one of these variables bvi must be made true, i.e., we must incur at least one of
these costs in any solution of wtP .

Let U be the set of negated blocking variables causing unsatisfiablity returned
by minicsp. We convert this into the core κ = {wi|wi = minv({bvi ∈ U})}. That
is, the weight vector is determined by the minimum weight tuple of ci contained
in U : to find an optimal cost solution we need only consider U ’s lower bound
on the cost that could be incurred from ci. If no tuples of ci contributed to
unsatisfiability, we use wi =∞ in the core.

3.2 Finding Optimal Relaxations

Finding an optimal relaxation of a set of cores is similar to finding a minimum
weight hitting set over the cores with some additional constraints. The set of
blocking variables, B, used to extract the cores are used again as 0/1 variables
in this optimization problem, along with the added constraint that higher cost
variables imply the lower cost variables of the same cost function. We use the
mip solver CPLEX to solve this optimization problem.

Assume that the blocking variables within a cost function are sorted in in-
creasing order of cost. Define ρ(bvi ) for b

v
i ∈ B to be the next smaller cost blocking

variable for ci or ∅ if v is the smallest non-zero cost of ci. ρ will act as a prede-
cessor function, returning the variable which came before it in a cost function.
Using ρ we can define δ, a function assigning an adjusted cost to blocking vari-
ables. δ compensates for the fact that larger cost variables imply smaller cost
variables.

δ(bwi ) =

{
cost(bwi ) if ρ(bwi ) = ∅
cost(bwi )− cost(ρ(bwi )) otherwise

(1)

The objective function is the sum of the adjusted costs of all blocking variables.
The constraints are that one variable from each core must be selected and larger
cost variables imply smaller cost variables within a cost function. For a set of
blocking variables B and cores K we get the following mip:

minimize
∑
bwi ∈B

δ(bwi ) (2)

Subject to:
ρ(bwi )− bwi ≥ 0 for bwi ∈ B such that ρ(bwi ) �= ∅ (3)

∀w ∈ K :
∑

wi∈w s.t. wi<∞

bwi

i ≥ 1 (4)

The term ρ(bwi ) − bwi ≥ 0 in Equation 3 is logically equivalent to bwi ⇒
ρ(bwi ) since bwi and ρ(bwi ) are binary variables. These constraints ensure that a
higher cost variable in a cost function implies all lower cost variables. Equation
2 combined with Equation 3 will cause all cost(bwi ) terms in

∑
δ(bwi ) to cancel

out except for the largest cost in each cost function. Thus Equation 2 minimizes
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the sum of the largest cost incurred by each cost function. Equation 4 states that
for each core w, a cost greater than or equal to wi for at least one cost function
ci must be incurred. It can never be optimal to incur cost wi when wi = ∞ so
they can be omitted from the constraint.

The solution S to this optimization problem is a setting of the 0/1 B vari-
ables. From this setting we generate an optimal weight vector for K {wi|wi =
maxv{bvi = 1 ∈ S}}. If in S we have that bvi = 0 for all v, we set wi = 0: the
cores can be satisfied without incurring any cost from ci.

3.3 Improving Cores

We have found that computing an optimal weight vector for the current set
of cores is typically the most time consuming part of our approach. Spending
additional effort in the csp solver to produce stronger cores can often yield better
results by reducing the overall effort required in the optimization phase [7].

As described in Sec. 3.1 we compute a core forPw by solvingP0 augmentedwith
blocking variables under the assumptions {¬bvi |v > wi} ∪ {bvi |v ≤ wi}. minicsp
returns a set U of negated blocking variables from which we compute a core.

To produce stronger cores we sort U so that for each cost function its smaller
cost blocking variables appear before its higher cost blocking variables: ¬bvi ap-
pears before ¬bwi if v < w. We then test the blocking variables of U in this order
to see if they can be removed.

To test if blocking variable b can be removed we solve the csp again under the
new set of assumptions U −{b}∪{bwi |bwi �∈ {U −{b}}}. These assumptions block
all clauses except those in U−{b}. If we obtain unsatisfiability we remove b from
U and otherwise we retain it. In either case we move on to the next blocking
variable of U and test it in the same manner.1 When we find that bwi is necessary
for unsatisfiability, we can avoid testing all later variables of the form bvi with
v > w. Intuitively, if we can satisfy the problem by incurring cost w from cost
function ci (i.e., the csp becomes satisfiable) then we can satisfy the problem
by incurring an even higher cost v from ci.

Once we have updated U by trying to remove each of its variables, we form a
core from it exactly as described in Sec. 3.1.

4 Results

The solver described in this paper was implemented and tested on available
weighted csp instances. A few additional optimizations were made. In the maxhs
approach for maxsat [7] it was found that computing a new relaxation for every
core was time consuming. A technique proposed by Karp [12] was to use a
greedy approach for determining the relaxation so as to acquire multiple cores
per optimal calculation of the relaxation. Optimal relaxations are generated
after a solution is found to a greedy relaxation. Toulbar2 was also used as a
preprocessor to provide virtual arc consistency [2].

1 If the csp solver returns a subset of U we can also reduce U to this subset.
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Table 1. Time(s) for selected instances from the Spot5 and Linkage benchmarks

Problem csp-Seq Toulbar2 Problem csp-Seq Toulbar2

Spot5 404 6.14 209.17 Linkage pedigree 18 14.61 119.15
Spot5 503 0.48 - Linkage pedigree 14 8.92 0.52
Spot5 505 562.75 - Linkage pedigree 30 27.09 240.71
Linkage pedigree 25 11.64 - Linkage pedigree 9 63.47 223.85
Linkage pedigree 39 36.14 3.32 Linkage pedigree 20 15.04 0.76
Linkage pedigree 31 - 779.63 Linkage pedigree 44 145.11 -
Linkage pedigree 7 1.52 6.98 Linkage pedigree 13 4.06 0.56
Linkage pedigree 41 270.22 969.88 Linkage pedigree 33 0.76 10.58
Linkage pedigree 51 19.83 -

Tests were run on the celar, spot5, and linkage benchmarks. The celar bench-
mark [13] consists of radio frequency link assignment problems and features
primarily soft constraints. The spot5 benchmark [14] is about managing satel-
lites and mixes hard and soft constraints. The linkage benchmark problems are
about probabilistic inference for genetic linkage. The entries of Table 1 give time
in seconds for our solver (csp-Seq) and Toulbar2 for problems in the spot5 and
linkage benchmarks. Excluded are 16 spot5 problems which both solvers time
out on, 3 spot5 benchmarks both solvers completed in under 1s, 2 linkage prob-
lems both solvers time out on, and 6 linkage problems both solvers completed
in under 3s. Tests were run with a 1800s time limit on a AMD Opteron 2435. A
table entry of “-” indicates the solver timed out on that problem instance.

Our solver performed poorly on the celar benchmark, with performance dom-
inated by the Toulbar2 solver. We conjecture that this problem set is more well
suited to the techniques used in the Toulbar2 solver, and that our technique
will be useful for other types of problems, especially those featuring a significant
number of hard constraints.

5 Conclusion

We have presented a new method for solving wcsps based on methods that
have been employed in maxsat. The main innovation of our approach is to
recognize that the notion of a relaxation and a core can be specialized to exploit
the specific structure of wcsps. In particular, in a cost function at most one
tuple can be activated by any solution. Thus we can compress the cores down to
simply a relaxation weight for each constraint. For future work we are examining
a number of methods for improving the performance of the approach. Primary
among them is take better advantage of the implication relationships between
the b-variables associated with the same constraint. Currently these are encoded
directly as implications in the mip model, but are exploited only via generic
methods employed in the mip solver.
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Abstract. This paper introduces a constraint language H for finite par-
tial maps (a.k.a. heaps) that incorporates the notion of separation from
Separation Logic. We use H to build an extension of Hoare Logic for rea-
soning over heap manipulating programs using (constraint-based) sym-
bolic execution. We present a sound and complete algorithm for solving
quantifier-free (QF) H-formulae based on heap element propagation. An
implementation of the H-solver has been integrated into a Satisfiability
Modulo Theories (SMT) framework. We experimentally evaluate the im-
plementation against Verification Conditions (VCs) generated from sym-
bolic execution of large (heap manipulating) programs. In particular, we
mitigate the path explosion problem using subsumption via interpolation
– made possible by the constraint-based encoding.

Keywords: Heap Manipulating Programs, Symbolic Execution, Sepa-
ration Logic, Satisfiability Modulo Theories, Constraint Handling Rules.

1 Introduction

An important part of reasoning over heap manipulating programs is the ability
to specify properties local to separate (i.e. non-overlapping) regions of mem-
ory. Most modern formalisms, such as Separation Logic [20], Region Logic [2],
and (Implicit) Dynamic Frames [16][22], incorporate some encoding of sepa-
ration. Separation Logic [20] explicates separation between regions of memory
through separating conjunction (∗). For example, the Separation Logic formula
list(l)∗tree(t) represents a program heap comprised of two separate sub-heaps:
one containing a linked-list and the other a tree data-structure.

In this paper we explore a reformulation of Separation Logic in terms of a
first-order constraint language H over heaps (i.e. finite partial maps between
pointers and values). Under this approach, separating conjunction (∗) is re-
encoded as a constraint H � H1∗H2 between heaps, indicating that: (1) heaps
H1 and H2 are separate (i.e. disjoint domains) and (2) H is the heap union
of H1 and H2. We can therefore re-encode the above Separation Logic formula
as list(l, L) ∧ tree(t, T ) ∧ H̄ � L∗T where list and tree are redefined to be
predicates over heaps, and the special variable H̄ represents the global heap at
the program point where it appears. We can also represent a singleton heap as
a constraint H̄ � (p �→ v).

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 282–298, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The motivation behind H is to lift some of the benefits of Separation Logic
to constraint-based reasoning techniques for heap manipulating programs, such
as constraint-based symbolic execution. Our method is based on an extension of
Hoare Logic [11] defined in terms of the constraint language H. Whilst Sepa-
ration Logic guarantees total correctness w.r.t. memory safety (e.g. no memory
errors such as dereferencing dangling pointers, etc.), our reformulation allows for
weaker axiomatizations, such as a version that drops the memory-safety require-
ment. This allows for a Strongest Post Condition (SPC) predicate transformer
semantics [7] to be defined in terms of H, which forms the basis of symbolic
execution. The resulting Verification Conditions (VCs) can then be discharged
using a suitable H-constraint solver/theorem prover. This is illustrated with a
simple example:

Example 1 (Heap Equivalence). Consider the following Hoare triple:

{H = H̄} x := alloc(); free(x) {H = H̄} (1)

This triple states that the global heap before the code fragment is equal to the
heap after the fragment, i.e. the global heap is unchanged. Here H is a ghost
variable representing the initial state of the global heap H̄. Symbolic execution
of the precondition P ≡ (H = H̄) yields the following H-constraints:

Q ≡
(
H = H0 ∧H1 � (x �→ )∗H0 ∧H1 � (x �→ )∗H̄

)
Here H0 and H1 represent the initial and intermediate values for H̄ respectively.
The underlined H-constraints encode the alloc() and free() respectively. Next
we can employ an H-constraint solver to prove that the postcondition is implied
by Q, i.e. the Verification Condition (VC) Q → H = H̄ holds, thereby proving
the triple (1) valid. 	


In order to discharge the VCs generated from symbolic execution we need a
solver for the resulting H-formulae. For this we present a simple decision proce-
dure for Quantifier Free (QF) H-formulae based on the idea of heap membership
propagation. We show that the algorithm is both sound and complete, and is
readily implementable using Constraint Handling Rules (CHR) [10]. We present
an implementation of an H-solver that has been integrated into a Satisfiability
Modulo Theories (SMT) framework using SMCHR [8]. Our decision procedure
is related to established algorithms for finite sets.

We use the H-solver as the basis of a simple program verification tool using
symbolic execution. In contrast to Separation Logic-based symbolic execution [4],
which is based on a set of rearrangement rules, our version is based on constraint
solving using the H-solver as per Example 1 above. Our encoding allows for
some optimization. Namely, we mitigate the path explosion problem of symbolic
execution by employing subsumption via interpolation [14][17] techniques.

This paper is organized as follows: Section 2 introduces Hoare and Separation
Logic, Section 3 formally introduces the H-language, Section 4 introduces an
extension of Hoare Logic based on the H-language, Section 5 presents an H-
solver algorithm and implementation, and Section 6 experimentally evaluates the
implementation. In summary, the contributions of this paper are the following:
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– We define the H-language that encodes separation as a constraint between
heaps. We show that satisfiability of quantifier-free H-formulae is decidable,
and present a complete algorithm for solving H-formulae.

– We present an extension of Hoare Logic based on the H-language. Our exten-
sion is similar to Separation Logic, but allows for strongest post conditions,
and is therefore suitable for program reasoning via constraint-based symbolic
execution.

– We present an implementation of the H-solver that has been integrated
into an SMT framework. We experimentally evaluate the solver against VCs
generated from symbolic execution of heap manipulating programs.

2 Preliminaries

This section presents a brief overview of Hoare and Separation Logic.
Hoare Logic [11] is a formal system for reasoning about program correctness.

Hoare Logic is defined in terms of axioms over triples of the form {φ} C {ϕ},
where φ is the pre-condition, ϕ is the post-condition, and C is some code frag-
ment. Both φ and ϕ are formulae over the program variables in C. The mean-
ing of the triple is as follows: for all program states σ1, σ2 such that σ1 |= φ
and executing σ1 through C derives σ2, then σ2 |= ϕ. For example, the triple
{x < y} x := x + 1 {x ≤ y} is valid. Note that under this definition, a triple is
automatically valid if C is non-terminating or otherwise has undefined behavior.
This is known as partial correctness.

Separation Logic [20] is a popular extension of Hoare Logic for reasoning over
heap manipulating programs. Separation Logic extends predicate calculus with
new logical connectives (namely empty heap (emp), singleton heap (p �→ v), and
separating conjunction (H1∗H2)) such that the structure of assertions reflects
the structure of the underlying heap. For example, the pre-condition in the valid
Separation Logic triple {x �→ ∗ y �→ 2} [x] := [y]+1 {x �→ 3 ∗ y �→ 2} represents
a heap comprised of two disjoint singleton heaps, indicating that both x and y
are allocated and that location y points to the value 2. Here the notation [p]
represents pointer dereference. In the post-condition we have that x points to
value 3, as expected. Separation Logic also allows recursively-defined heaps for
reasoning over data-structures, such as list(l) and tree(t) from Section 1.

Separation Logic triples also have a slightly different meaning versus Hoare
triples regarding memory-safety. A Separation Logic triple {φ} C {ϕ} addi-
tionally guarantees that any state satisfying φ will not cause a memory access
violation in C. For example, the triple {emp} [x] := 1 {x �→ 1} is invalid since
x is a dangling pointer in any state satisfying the pre-condition.

3 Heaps with Separation

This section formally introduces the syntax and semantics of heaps with sep-
aration, which we denote by H, that encodes some of the logical connectives
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of Separation Logic. We assume as given a countably infinite set Values denot-
ing values, e.g. Values = Z. A heap is a finite partial map between Values, i.e.
Heaps = Values ⇀fin Values. This is the same definition as used by Separation
Logic. Given a heap h ∈ Heaps with domain D = dom(h), we sometimes treat h
as the set of pairs {(p, v) | p ∈ D ∧ v = h(p)}.

The H-language is the first-order language over heaps defined as follows:

Definition 1 (Heap Language). We define the H-signature ΣH as follows:
– sorts : Values, Heaps;
– constants : (empty heap) ∅ of sort Heaps;
– functions : (singleton heap) ( �→ ) of sort Values× Values �→ Heaps.
– predicates : (heap constraint) ( ∗. . .∗ � ∗. . .∗ ) of sort Heaps×· · ·×Heaps �→
{true, false}.

The H-language is the first-order language over ΣH. 	

Example 1 used heap constraints of the form H � H1∗H2, where H , H1, and
H2 are variables. Throughout this paper we shall use upper-case letters H , I, J ,
etc., to denote heap variables, and lower-case letters p, v, etc., for value variables.

A valuation s (a.k.a. variable assignment) is a function mapping values to
Values ∪ Heaps. We define the semantics of the H-language as follows:

Definition 2 (Heap Interpretation). Given a valuation s, the H-interpreta-
tion I is a ΣH-interpretation such that:
– I(v, s) = s(v), where v is a variable;
– I(∅, s) = ∅ (as a Heap);
– I(p �→ v, s) = {(q, w)} where q = I(p, s) and w = I(v, s);
– I(H1 ∗ . . .∗Hi � Hi+1 ∗ . . .∗Hn, s) = true iff for hi = I(Hi, s) we have that:

1. dom(h1) ∩ . . . ∩ dom(hi) = ∅ and dom(hi+1) ∩ . . . ∩ dom(hn) = ∅; and
2. h1 ∪ . . . ∪ hi = hi+1 ∪ . . . ∪ hn 	


Note that we treat each configuration of (∗) and (�) as a distinct predicate.
Intuitively, a constraint like H � H1∗H2 treats (∗) in essentially the same way
as separating conjunction from Separation Logic, except that we give a name H
to the conjoined heaps H1∗H2.

We define |=H . . . [s] as the satisfaction relation such that |=H φ [s] holds iff
I(φ, s) = true for all heap formulae φ. We also say that φ is valid if |=H φ [s]
holds for all s, and satisfiable if |=H φ [s] holds for at least one s.

3.1 Normalization

In the absence of quantifiers, we can restrict consideration of H-formula to a
subset in normal form defined as follows:

Definition 3 (Normal Form). A quantifier-free (QF) H-formula φ is in nor-
mal form if (1) all heap constraints are restricted to three basic forms:

H � ∅ H � (p �→ v) H � H1∗H2

where p, v, H , H1, and H2 are distinct variables, and (2) there are no negated
heap constraints. 	
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H � E1 ∗ E2 ∗ S −→ H ′ � E1 ∗E2 ∧H � H ′ ∗ S
H � E1 ∗E2 −→ H ′ � E1 ∧H � H ′ ∗ E2 (E1 non-variable)

H � H1 ∗E2 −→ H ′ � E2 ∧H � H1 ∗H ′ (E2 non-variable)

H1 � H2 −→ H ′ � ∅ ∧H1 � H2 ∗H ′

H �� E1 ∗ E2 ∗ S −→ ∨
{
E1 � (s �→ t) ∗H ′

1 ∧E2 � (s �→ u) ∗H ′
2

H ′ � E1 ∗E2 ∧H �� H ′ ∗ S
H �� E1 ∗E2 −→ H ′ � E1 ∧H �� H ′ ∗ E2 (E1 non-variable)

H �� H1 ∗E2 −→ H ′ � E2 ∧H �� H1 ∗H ′ (E2 non-variable)

H �� ∅ −→ H � (s �→ t) ∗H ′

H �� (p �→ v) −→ ∨
{
H � ∅
H � (s �→ t) ∗H ′ ∧ (p �= s ∨ v �= t)

H �� H1 ∗H2 −→ ∨
{
H1 � (s �→ t) ∗H ′

1 ∧H2 � (s �→ u) ∗H ′
2

H ′ � H1 ∗H2 ∧H �� H ′

H1 �� H2 −→ ∨
{
H1 � (s �→ t) ∗H ′

1 ∧H1 � (s �→ u) ∗H ′
2 ∧ t �= u

H1 � I ∗H ′
1 ∧H2 � I ∗H ′

2 ∧H ′ � H ′
1 ∗H ′

2 ∧H ′ �� ∅

Fig. 1. H-formulae normalization rewrite rules

Any given QF H-formula φ can be rewritten into normal form using the
following steps: (1) push negation inwards using De Morgan’s laws, and (2)
transform the resulting formula using the rewrite rules from Figure 1. Here each
rewrite rule is of the form (head −→ body), and Ei runs over heap expressions
(H , ∅, (p �→ v)), S runs over (∗)-sequences of heap expressions (E, E∗E, etc.),
and everything else runs over the variable symbols. A variable that appears in
a rule body, but not the rule head, is taken to represent a fresh variable symbol
that is introduced each time the rule is applied. For brevity we omit some rules,
namely: normalizing the RHS of a (�) to a heap variable (as this mirrors the
LHS rules), and making variables unique. The main result for normalization is
as follows:

Proposition 1 (Normal Form). For all QF H-formulae φ there exists a QF
H-formula ϕ such that (1) ϕ is in normal form and (2): for all valuations s
there exists a valuation s′ such that |=H φ [s] iff |=H ϕ [s′] and s(v) = s′(v) for
all v ∈ vars(φ).

Proof. (Sketch) By the correctness of, and induction over, the normalization
steps from Figure 1. 	


Proposition 1 means that, at the expense of an increased formula size, we need
only consider a limited subset of the H-language that lacks negation.
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3.2 Extensions

We may extend Definitions 1 and 2 to include other kinds of heap constraints,
such as:
– Heap union H � H1 
 H2 holds iff there exists a h ∈ Heaps such that

h = s(H1) ∪ s(H2) as sets and s(H) = h.
– Heap intersection H � H1 	H2 holds iff s(H) = s(H1) ∩ s(H2) as sets.
– Heap subset H1 $ H2 holds iff s(H1) ⊆ s(H2) as sets.

These constraints can similarly be reduced to the normal form from Definition 3.
For some applications we may extend H with ad hoc user-defined heap con-

straints. For this we can use Constraint Logic Programming (CLP) [13] over H,
i.e. CLP(H). For example, the following CLP(H) predicate list(l, L) specifies a
skeleton list constraint under the standard least model semantics of CLP:

list(0, L) :- L � ∅
list(l, L) :- l �= 0 ∧ L � (l �→ n)∗L′ ∧ list(n, L′)

We can similarly define predicates for trees and arrays. The inclusion of CLP
predicates requires stronger reasoning power in contrast to the base H-language.
For this we can employ standard (yet incomplete) methods such as [15].

4 Program Reasoning with H

The core motivation of the H-language is reasoning over heap manipulating
programs. For this we consider the following extensions of Hoare Logic [11].

4.1 Direct Separation Logic Encoding

Separation Logic [20] is itself an extension of Hoare Logic. Given the similarity
in the heap representations, we can re-encode the axioms of Separation Logic
directly into Hoare axioms overH-formulae, as shown in Figure 2(B). Each axiom
is defined in terms of one of five auxiliary constraints: namely alloced, access,
assign, alloc, and free defined in Figure 2(A), which are themselves defined in
terms of H-formulae. The alloced(H,x) constraint represents that pointer x is
allocated in heap H , i.e. H � (x �→ v)∗H ′ for some v and H ′. The remaining
auxiliary constraints encode a heap manipulation statement as an H-formula.
The statements are:
– heap access (x := [y]) sets x to be the value pointed to by y;
– heap assignment ([x] := y) sets the value pointed to by x to be y;
– heap allocation (x:=alloc()) sets x to point to a freshly allocated heap cell.1

– heap free free(x) deallocates the cell pointed to by x.
These axioms manipulate the global heap that is represented by a distinguished
heap variable H̄. Under this treatment, H̄ is an implicit program variable2 of type

1 Here we assume the (de)allocation of single heap cells. This can be generalized.
2 The variable is “implicit” in the sense that it is not explicitly represented in the
syntax of the programming language.
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(A)

alloced(H,p)
def
= ∃H ′, v : H � (p �→ v)∗H ′

access(H,p, v)
def
= ∃H ′ : H � (p �→ v)∗H ′

assign(HOLD , p, v,HNEW )
def
= ∃H ′′, w :

{
HOLD � (p �→ w)∗H ′′

HNEW � (p �→ v)∗H ′′ ∧

alloc(HOLD , p,HNEW )
def
= ∃v : HNEW � (p �→ v)∗HOLD

free(HOLD , p,HNEW )
def
= ∃v : HOLD � (p �→ v)∗HNEW

(B)

{φ ∧ alloced(H̄, y)} x := [y] {∃x′ : access(H̄, y, x) ∧ φ[x′/x]}

{φ ∧ alloced(H̄, x)} [x] := y {∃H ′ : assign(H ′, x, y, H̄) ∧ φ[H ′/H̄]}

{φ} x := alloc() {∃x′,H ′ : alloc(H ′, x, H̄) ∧ φ[H ′/H̄, x′/x]}

{φ ∧ alloced(H̄, x)} free(x) {∃H ′ : free(H ′, x, H̄) ∧ φ[H ′/H̄]}

(C)
{p(H̄)} C {q(H̄)}

{H̄ � P∗R ∧ p(P ) ∧ r(R)} C {∃Q,R′ : H̄ � Q∗R′ ∧ q(Q) ∧ r(R′)}

Fig. 2. (A) Auxiliary constraint definitions, (B) basic Hoare inference rules, and (C)
the Frame Rule

Heap that is assumed to be threaded throughout the program. Other axioms of
Separation Logic, such as the Frame Rule [20], can similarly be re-encoded, as
shown in Figure 2(C).

It is not surprising that Separation Logic can be re-formulated as Hoare
axioms over the H-language. However, there are some important differences
to consider. Notably, the H-encoding allows for explicit heap variables to ex-
press relationships between heaps across triples. In Example 1, we use the triple
{H � H̄} C {H � H̄} to express the property that the code fragment C does not
change the global heap H̄ through an explicit variable H . Such a global property
would require second order Separation Logic, e.g., ∀h : {h} C {h}. Furthermore,
with explicit heap variables, we can strengthen the Frame Rule by R′ for R in
the post-condition of Figure 2(C).

The H-based encoding tends to be more verbose compared to Separation
Logic, which favors more concise formulae. Whilst not so important for auto-
mated systems, the H-based encoding is likely less suitable for manual proofs of
correctness.



Constraint-Based Program Reasoning with Heaps and Separation 289

{φ} x := [y] {∃x′ : access(H̄, y, x) ∧ φ[x′/x]}

{φ} [x] := y {∃H ′ : assign(H ′, x, y, H̄) ∧ φ[H ′/H̄]}

{φ} free(x) {∃H ′ : free(H ′, x, H̄) ∧ φ[H ′/H̄]}

Fig. 3. Alternative Hoare inference rules

4.2 Strongest Post-condition Encoding

Separation Logic and the corresponding H-encoding from Figure 2 (B) enforces
total correctness w.r.t. memory safety. That is, a valid triple {φ} C {ϕ} addi-
tionally ensures that any state satisfying φ will not cause a memory fault (e.g.
dereferencing a dangling pointer) when executed by C. This is enforced by the
access, assignment, and free axioms of Figure 2 (B) by requiring that the pointer
x be allocated in the global heap H in the pre-condition via the alloced(H̄, x)
constraint.

Memory safety has implications for forward reasoning methods such as sym-
bolic execution. For example, to symbolically execute a formula φ through an
assignment [x] := v, we must first prove that φ→ alloced(H̄, x). Such a proof can
be arbitrarily difficult in general, e.g. for formulae with quantifiers or recursively-
defined CLP(H) predicates. Furthermore, if memory safety is not a property of
interest, this extra work is unnecessary.

By decoupling the heap representation (H) from the logic, we can experiment
with alternative axiomatizations. One such axiomatization that is partially cor-
rect modulo memory safety is shown in Figure 3.3 This version drops the require-
ment that x be allocated in H̄ in the pre-condition, and therefore treats memory
errors the same way as undefined behavior (or non-termination) in classic Hoare
Logic.

There are several advantages to the weaker axiomatization of Figure 3. Firstly,
the axioms of Figure 3 specify a Strongest Post Condition (SPC) predicate trans-
former semantics and is therefore immediately suitable for automated forward
based reasoning techniques such as symbolic execution. This is in contrast to
symbolic execution in Separation Logic [4] (or the corresponding axioms from
Figure 2), where symbolic execution requires the alloced condition to be sepa-
rately proven. The SPC axiomatization allows for weaker, more concise, specifi-
cations.

Example 2 (Double List Reverse). For example, consider the following triples in
the spirit of Example 1:

3 The axiom for heap allocation is the same as Figure 2 (B).
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{H � H̄} l := reverse(reverse(l)) {H � H̄} (2)

{H̄ � L∗H ′ ∧ list(L, l) ∧H � H̄} l := reverse(reverse(l)) {H � H̄} (3)

Both attempt to state the same property: that double in-place list-reverse leaves
the global heap H̄ unchanged. Suppose that the only property of interest is
the heap equivalence (i.e. not memory safety). Triple (2) is valid under the
weaker Figure 3 axiomatization, but not the stronger Figure 2 (B) version which
requires memory safety. The latter requires a more complex specification, such
as Triple (3), where the recursively defined property list(L, l) ensures l points
to a valid allocated list. 	


There are also some disadvantages to consider. For obvious reasons, the SPC
axiomatization is unsuitable if memory safety is a property of interest. Further-
more, the soundness of Separation Logic’s Frame Rule (or Figure 2 (C)) depends
on memory safety, and thus is not valid under the new interpretation. Therefore
the SPC axiomatization is not suitable for Separation Logic-style local reasoning
proofs. In essence, this is a trade-off between local reasoning vs. making symbolic
execution “easier”, highlighting the flexibility of our overall approach.

5 A Solver for H-Formulae

Automated symbolic execution depends on an H-solver to discharge the gen-
erated Verification Conditions (VCs). In this section we present a simple, yet
sound and complete, algorithm for solving the quantifier-free (QF) fragment of
the H-language.

Algorithm. The H-solver algorithm is based on the propagation of heap mem-
bership and (dis)equality constraints. Heap membership (a.k.a. heap element) is
represented by an auxiliary in(H, p, v) constraint, which is defined as follows:

Definition 4 (Heap Membership). We extend Definitions 1 and 2 to include
the heap membership constraint in(H, p, v) defined as follows:

|=H in(H, p, v) [s] iff (s(p), s(v)) ∈ s(H)

where H , p, and v are variables. 	


Heap element in(H, p, v) is analogous to set membership x ∈ S from set theory.
(Dis)equality is propagated via the usual x = y and x �= y constraints.

The H-solver operates over conjunctions of normalized H-constraints as per
Definition 3. Arbitrary QF H-formula φ can be normalized to a ϕ using the rules
from Figure 1, such that the solutions to φ and ϕ correspond as per Proposition 1.
The arbitrary Boolean structure of ϕ can be handled using the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [6] modulo the H-solver.



Constraint-Based Program Reasoning with Heaps and Separation 291

in(H,p, v) ∧ in(H,p,w) =⇒ v = w (1)

H � ∅ ∧ in(H, p, v) =⇒ false (2)

H � (p �→ v) =⇒ in(H, p, v) (3)

H � (p �→ v) ∧ in(H, q,w) =⇒ p = q ∧ v = w (4)

H � H1∗H2 ∧ in(H, p, v) =⇒ in(H1, p, v) ∨ in(H2, p, v) (5)

H � H1∗H2 ∧ in(H1, p, v) =⇒ in(H, p, v) (6)

H � H1∗H2 ∧ in(H2, p, v) =⇒ in(H, p, v) (7)

H � H1∗H2 ∧ in(H1, p, v) ∧ in(H2, q, w) =⇒ p �= q (8)

Fig. 4. H-solver CHR propagation rules

We specify the H-solver as a set of Constraint Handling Rules [10] with dis-
junction (CHR∨) [1] as shown in Figure 4. Here each rule (Head =⇒ Body)
encodes constraint propagation, where the constraints Body are added to the
store whenever a matching Head is found. Rule (1) encodes the functional de-
pendency for finite partial maps; rules (2)–(4) encode propagation for heap empty
H = ∅ and heap singleton H � (p �→ v) constraints; and rules (5)–(8) encode
heap membership propagation through heap separation H � H1∗H2 constraints.
Most of these rules are self-explanatory, e.g., rule (6) states that if H � H1∗H2

and in(H1, p, v), then it must be the case that in(H, p, v), since H1 is a sub-heap
of H . We assume a complete solver for the underlying equality theory (x = y,
x �= y).

The H-solver employs the standard CHR∨ execution algorithm with the rules
from Figure 4. We shall present a semi-formal summary below. The input is a
constraint store S defined to be a set4 of constraints (representing a conjunction).
Let Rules be the rules from Figure 4, then the algorithm hsolve(S) is recursively
defined as follows:
– (Propagation Step) If there exists R ∈ Rules of the form (h1 ∧ . . . ∧ hn =⇒

Body), a subset {c1, . . . , cn} ⊆ S of constraints, a subset E ⊆ S of equality
constraints, and a matching substitution θ such that: E → (θ.hi = ci) for
i ∈ 1..n then rule R is applicable to the store S. We apply rule R as follows:
• If Body = false then return false;
• If Body = d1 ∧ . . . ∧ dm then return hsolve(S ∪ θ.{d1, . . . , dm}); else
• If Body = d1 ∨ . . . ∨ dm then let Si := hsolve(S ∪ θ.{di}) for i ∈ 1..m. If
there exists an Si �= false then return Si, else return false .

– Else if no such R exists, return S.
Propagation proceeds until failure occurs or a fixed point is reached.

Example 3 (H-Solving). Consider the following goal G:

H � (p �→ v) ∧H � I∗J ∧ J � (p �→ w) ∧ v �= w

4 We assume a set-based CHR semantics.
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{H� (p �→v),H�I∗J, J�(p �→w), v �=w} (3)

{H� (p �→v),H�I∗J, J�(p �→w), v �=w, in(H,p, v)} (3)

{H�(p �→v),H�I∗J, J�(p �→w), v �=w, in(H,p, v), in(J, p,w)} (7)

{H�(p �→v),H�I∗J, J�(p �→w), v �=w, in(H,p, v), in(J, p, w), in(H,p,w)} (1)

{H� (p �→v),H�I∗J, J� (p �→w), v �=w, in(H,p, v), in(J, p, w), v=w} (E)

false

Fig. 5. H-solving constraint propagation steps

We wish to show that this goal is unsatisfiable using the H-solver from Figure 4.
Initially the constraint store contains the initial goal G. Constraint propagation
proceeds as shown in Figure 5. Here we apply rules (3), (3), (7), (1), (E) to
the underlined constraint(s) in order, where (E) represents an inference made
by the underlying equality solver. Propagation leads to failure, and there are no
branches – therefore goal G is unsatisfiable. 	


Since all the rules from Figure 4 are propagation rules, the solving algorithm
hsolve(G) will always terminate with some final store S. The H-solver is both
sound and complete w.r.t. (un)satisfiability.

Proposition 2 (Soundness). For all G, S, if hsolve(G) = S, then for all
valuations s, |=H G [s] iff |=H S [s].

Proof. (Sketch) By the correctness of the rules from Figure 4 w.r.t. Definitions 2
and 4. 	


Proposition 3 (Completeness). For all G, S such that hsolve(G) = S, then
�|=H G [s] for all valuations s (i.e. G is unsatisfiable) iff S = false.

Proof. (Sketch) The “⇐” direction follows from Proposition 2. We consider the
“⇒” direction. The rest is proof by contrapositive: assuming S �= false we show
that there exists a valuation s such that |=H G [s]. Let sE be a valuation for the
underlying equality subset of S over integer variables, then let s(v) = sE(v) for
integer variables, and

s(H) = {(sE(p), sE(v)) | in(H, p, v) ∈ S} (4)

for all heap variables H . Assume that �|=H S [s]. By case analysis of Definition 2
we find that a rule must be applicable:
– Case s(H) �∈ Heaps: Rule (1);
– Case H � ∅ and s(H) �= ∅: Rule (2);
– Case H � (p �→ v) and s(H) �= {(p, v)}: Rules (3) or (4);
– Case H � H1∗H2 and s(H) �= s(H1) ∪ s(H2): Rules (5), (6), or (7);
– Case H � H1∗H2 and dom(s(H1)) ∩ dom(s(H2)) �= ∅: Rule (8)

This contradicts the assumption that S is a final store, therefore if S �= false
then |=H S [s], and therefore |=H G [s] by Proposition 2 completes the proof. 	
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H �� ∅ =⇒ in(H,s, t) (9)

H �� (p �→ v) =⇒ ∨
{
H � ∅
in(H,s, t) ∧ (s �= p ∨ t �= v)

(10)

H �� H1∗H2 =⇒ ∨

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
in(H,s, t) ∧ ¬in(H1, s, t) ∧ ¬in(H2, s, t)

in(H1, s, t) ∧ ¬in(H,s, t)

in(H2, s, t) ∧ ¬in(H,s, t)

in(H1, s, t) ∧ in(H2, s, u)

(11)

access(H,p, v) ⇐⇒ in(H,p, v) (12)

assign(H0, p, v,H1) =⇒ in(H0, p, w) ∧ in(H1, p, v) (13)

assign(H0, p, v,H1) ∧ in(H0, q, w) =⇒ p = q ∨ in(H1, q, w) (14)

assign(H0, p, v,H1) ∧ in(H1, q, w) =⇒ p = q ∨ in(H0, q, w) (15)

alloc(H0, p,H1) =⇒ in(H1, p, v) (16)

alloc(H0, p,H1) ∧ in(H0, q, w) =⇒ p �= q ∧ in(H1, q, w) (17)

alloc(H0, p,H1) ∧ in(H1, q, w) =⇒ p = q ∨ in(H0, q, w) (18)

free(H0, p,H1) ⇐⇒ alloc(H1, p,H0) (19)

Fig. 6. Extended H-solver propagation rules

The proof for Proposition 3 is constructive; namely, (4) can be used to construct a
solution for a satisfiable goal G. Furthermore, we can combine the normalization
of Proposition 1 and DPLL(hsolve) to derive a sound and complete algorithm
for solving arbitrary QF H-formulae φ.

5.1 Extensions

The propagation rules from Figure 4 define a solver for the base H-language.
We can use heap membership propagation to define rules for other kinds of
H-constraints, as shown in Figure 6.

Rules (9)–(11) handle the negations of the base H-constraints from Defi-
nition 3. These rules are an alternative to the decomposition from Figure 1.
We can also define rules for directly handling the auxiliary constraints from
Figure 2 (A) for program reasoning. For example, rules (13)–(15) handle the
assign(H0, p, v,H1) constraint. We similarly provide rules for the other auxiliary
constraints. Here, variables appearing in a rule body but not in the rule head
are interpreted the same way as with Figure 1.

6 Experiments

In this section we test an implementation of theH-solver against verification con-
ditions (VCs) derived from symbolic execution. We compare against Verifast [12]
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(version 12.12), a program verification system based on Separation Logic. Our
motivation for the comparison is: (1) Verifast is based on forward symbolic ex-
ecution, and (2) Verifast incorporates the notion of separation (via Separation
Logic). That said, the Verifast execution algorithm [12] is very different from the
H-solver.

We have implemented a version of the H-solver as part of the Satisfiability
Modulo Constraint Handling Rules (SMCHR) [8] system.5 SMCHR is a Satis-
fiability Modulo Theories (SMT) framework that supports theory (T) solvers
implemented in CHR. The SMCHR system also supports several “built-in” the-
ories, such as a linear arithmetic solver based on [9], that can be combined with
the H-solver to handle the underlying (dis)equality constraints. The SMCHR
system has also been extended to support disjunctive propagators [19] for rules
with disjunctive bodies, such as Rule (5).

For these benchmarks we either restrict ourselves to the fragment of Verifast
that is fully automatable, or we provide the minimal annotations where appro-
priate. For the H-solver, we have implemented a prototype symbolic execution
tool as a GCC plug-in. Our tool symbolically executes GCC’s internal GIMPLE
representation to generate path constraints. Given a safety condition ϕ, we gen-
erate the corresponding verification condition (∃x̄ : φ) |= ϕ, which is valid iff
φ∧¬ϕ is unsatisfiable. Here x̄ represents existential variables introduced during
symbolic execution. Unsatisfiability is tested for using the H-solver.

A well-known problem with forward symbolic execution is the so-called path
explosion problem. The number of paths through a (loop-free) program fragment
can easily be exponential. We can mitigate this problem using subsumption via
interpolation [14][17]. The basic idea is as follows: given a VC φ1 |= ϕ that holds
for path φ1, we generate an interpolant ψ1 for φ1, that, by definition, satisfies
φ1 |= ψ1 |= ϕ. As symbolic execution continues, we can prune (subsume) all
other paths with constraints φ2 such that φ2 |= ψ1. The key is that this pruning
can occur early, as we construct the constraint for each path.

Our interpolation algorithm is based on an improved version of the constraint
deletion idea from [14]. Given a path constraint φ = c1∧ . . .∧cn we find a subset
I ⊆ {c1, . . . , cn} such that I∧¬ϕ remains unsatisfiable. For this we simply re-use
the SAT solver’s Unique Implication Point UIP algorithm over the implication
graph formed by the H-solver propagation steps.

We test several programs that exhibit the path explosion problem. These
include: subsets N - sum-of-subsets size N ; expr N - simple virtual machine
executing N instructions; stack N - for all M ≤ N , do N -pushes, then N -
pops; filter N - filter for TCP/IP packets; sort N - bubble-sort of length N ;
search234 N - 234-tree search; insert234 N - 234-tree insert. Most of our examples
are derived from unrolling loops of smaller programs.

The results are shown in Figure 7. Here Safety indicates the safety condition
(defined below), LOC indicates the number of lines-of-code, type indicates heap
operations used (with r = read, w = write, and a = allocation/deallocation),#bt
is the number of backtracks for our prototype tool, and #forks is the number of

5 SMCHR is available from http://www.comp.nus.edu.sg/~gregory/smchr/

http://www.comp.nus.edu.sg/~gregory/smchr/
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Heaps Verifast

Bench. Safety LOC type time(s) #bt time(s) #forks

subsets 16 F 50 rw- 0.00 17 10.69 65546
expr 2 F 69 rw- 0.05 124 18.38 136216
stack 80 F 976 rwa 8.66 320 68.20 9963
filter 1 F 192 r-- 0.03 80 0.75 8134
filter 2 F 321 r-- 0.11 307 – –
sort 6 F 178 rw- 0.03 54 2.66 35909

search234 3 F 251 r-- 0.02 46 0.67 1459
search234 5 F 399 r-- 0.05 76 90.65 118099
insert234 5 F 839 rwa 1.19 120 52.87 36885

expr 2 � 69 rw- 0.20 1329 n.a. n.a.
stack 80 � 976 rwa 8.07 322 n.a. n.a.

filter 2 OP 321 r-- 0.00 2 n.a. n.a.

stack 80 A 976 rwa 8.90 320 65.68 9801
insert234 5 A 839 rwa 1.50 60 40.64 55423

subsets 16 ∅ 50 rw- 0.00 33 n.a. n.a.

Fig. 7. Theorem proving and symbolic execution benchmarks

symbolic execution forks for Verifast, and corresponds to the number of paths
through the code. All experiments were run on GNU/Linux x86 64 with a Intel R©

Core
TM

i5-2500K CPU clocked at 4GHz. A timeout of 10 minutes is indicated by
a dash (–). The safety conditions correspond to (some variant of) the following
triples:
– Framing (F ) with {H̄ � (p �→ v)∗F}C{∃F ′ : H̄ � (p �→ v)∗F ′} where p is

outside the footprint of the code C;
– Operations (OP) where OP ∈ {$,&,�} with {H � H̄}C{H OP H̄};
– Allocation (A) with {. . .}C{∃F ′, v : H̄ � (p �→ v)∗F ′} for p allocated by C;
– Empty (∅) with {H̄ � ∅} C {false}, i.e. C will always fault on memory.

Some safety conditions, namely (OP) and (∅), cannot be encoded directly in
Separation Logic or Verifast, and are marked by “n.a.”.

Overall our tests exhibit significant search-space pruning thanks to interpo-
lation. In contrast Verifast explores the entire search-space, and thus has ex-
ponential runtime behavior. However the time-per-path ratio favors Verifast,
suggesting that Verifast would perform better on examples that do not have a
large search-space, or when interpolation fails to subsume a significant number
of branches. Our tool and SMT solver implementation are preliminary and can
likely be further optimized.

7 Related Work

Several systems [3][5][12] implement Separation Logic-based symbolic execution,
as described in [4]. However, due to the memory-safety requirements of Separa-
tion Logic, symbolic execution is limited to formulae over the footprint of the
code. Our symbolic execution is based on the SPC Hoare Logic extension and
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therefore works for arbitrary formulae. This is convenient when memory-safety
is not a property of interest, such as Example 2.

Several automatic theorem provers for Separation Logic triples/formulae have
been developed, including [4][5][18]. These systems generally rely on a set of
rearrangement rules, and are usually limited to a subset of all formulae, e.g.
those with no non-separating conjunction, etc. In contrast our H-solver uses
a different algorithm based on heap-membership propagation, and handles any
arbitrary QF H-formulae.

Other formalisms, such as (Implicit) Dynamic Frames [16][22] and Region
Logic [2], also encode separation. The underlying approach is to represent the
heap H as a (possibly implicit) total map over all possible addresses, and to
represent access or modification rights as sets of addresses F . Separation is rep-
resented as set disjoint-ness, i.e. F1 ∩ F2 = ∅. One difficulty is that we must
relate H with F , which can make reasoning comparatively more difficult. For
example, consider the following VCs:

p �∈ F ∧ list(H,F, l) ∧ assign′(H, p, v,H ′) |= list(H ′, F, l) (5)

H � L∗R ∧R � (p �→ w)∗R′ ∧ list(L, l) ∧ assign(H, p, v,H ′) |= L $ H ′ (6)

where assign′ is a suitable re-encoding of assign for total heaps. Both VCs are
natural encodings of the same problem: we wish to prove that l is still a list after
writing to a (separate) pointer p. VC (6) holds independently of the recursively
defined list relation, and can be trivially disposed of using our H-solver. In
contrast, VC (5) depends on the recursively-defined list predicate as it relates
H with F , and is therefore more difficult to prove.

Our H-solving algorithm is related to analogous algorithms for finite sets,
such as [23]. Although formalized differently, the basic idea is similar, i.e. based
on the propagation of set membership x ∈ S constraints. In [21] this idea was
adapted into a decision procedure for Region Logic. Our approach works directly
with heaps rather than indirectly via sets.

8 Future Work and Conclusions

In this paper we presented a reformulation of the key ideas behind Separation
Logic as a first-order constraint-language H over heaps. Here we express separa-
tion as a constraint between heaps. We present an SPC extension of Hoare Logic
based on encoding of heap-manipulating statements in terms of H-formulae. Our
extension is suitable for forward reasoning via constraint-based symbolic execu-
tion. We present a sound and complete solver for QF H-formulae and have
implemented a version as part of an SMT framework. Experimental evaluation
yields promising results.

There is significant scope for future work, such as: building theorem provers
for recursively-defined properties based on the H-solver, or further developing
program verification tools using H-language-based symbolic execution.
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Abstract. In recent years, Cml, G12 and Simpl, have achieved sig-
nificant progress in automating the generation of hybrid solvers from
high-level model specifications. This paper pushes this research direc-
tion one step further and introduces the concept of model combinators
to provide principled model compositions. These model combinators rely
on runnables capturing executable models, runnable signatures that cap-
ture what runnables can produce and consume, and model hierarchies,
which track relationships among models. These concepts make it possi-
ble to enforce the soundness of model compositions and to determine the
best model compositions automatically. A prototype of the framework
on top of the Objective-CP optimization system is presented.

1 Introduction

The Comet Modeling Language (CML) [6] demonstrated that the burden of writ-
ing a suitable solver for hard industrial problems can be greatly mitigated with
high-level language abstractions. With Cml, models are specified abstractly in a
technology agnostic manner, and then concretized into one or more models based
on Constraint Programming (CP), Integer Programming (IP) or Constraint-
Based Local Search (CBLS) technologies. Concretization typically relied on trans-
formation and reformulation based on rewrite rules [4].

The value of Cml primarily resides in the ease with which users can manip-
ulate and combine models into complex hybrid solvers. It is clear that systems
such as Cml are moving in the direction of providing something akin to combi-
nators [8] over models. The ultimate aim is to deliver a clean, well defined and
semantically sound collection of operators that allow models to be combined
in a multitude of ways into hybrids that expose a clean interface for further
composition. Cml fell short of this goal due to two shortcomings:

1. First, model composition was based on syntax rather than semantics and the
system was not endowed with the ability to track model relationships such as
relaxations. In essence, semantics were opaque to end-users and correctness
hinged on the modeler’s ability to write sound composition expressions.

2. Second,Cml did not require the user to specify any property for the inputs or
outputs of operators. Instead, most operators relied on implicit assumptions
about the models capabilities and functioned by plugging models into static
templates.
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The purpose of this paper is to push beyond Cml’s limitations and realize the
vision of true model combinators with sound semantics and complete compo-
sitionality. This introduces two requirements. First, the paper postulates the
existence of runnables as first class objects that encapsulate a model and a
signature specifying their capabilities. Second, it mandates the introduction of
combinators specifying how to derive new runnables from their inputs and what
the properties of the derived runnable are. The keystone is based on metadata
maintained in the runnables and the leverage it provides to check the soundness
of the operators application.

The remainder of the paper is organized as follows. Section 2 first discusses
the related work. Section 3 introduces the notion of models and program while
Section 4 focuses on runnables. Section 5 turns to combinators with Section 6
discussing implementation and Section 7 presenting empirical results. Section 8
concludes the paper.

2 Related Work

Several systems aim to facilitate solver independent modeling, model reformula-
tion and automated hybrid generation. The Comet Modeling Language (Cml)
[6] is unique in that it strives to provide a full programming language in which
models can be specified and easily manipulated and composed in sophisticated
ways without the need for annotations. The work in this paper directly builds
off of what was done in Cml.

G12 models written with Zinc and mini-Zinc feature solver independent ca-
pabilities and model rewriting, which can be achieved via Cadmium [3]. G12
has been used for column generation and branch-and-price hybrid models [10].
SIMPL [14] is a high level modeling language based on search-infer-relax. Users
write models at a very high level and rely on constraint-based relaxations and
inference rules to assemble a model for a chosen technology. Essence [7] is de-
signed for model specification using combinatorial constructs rather than CP
specific constructs like global constraints. It has recently been combined with
Conjure [1] to automate the generation of constraint models from a combinato-
rial problem specification. The Z3 SMT [2] engine allows user to specify tactics
which are used to direct the search procedure. Tactics are capable of relaxing
parts of the SMT problem and determining whether a particular relaxed sub-
problem will provide an upper or lower bound for the original problem. These
tactics can be queried at runtime to determine how the search should proceed
and what to invoke next. Finally, work has already been done in providing a rich
language of combinators within the context of search [12] and is revisited in [13].

3 Models and Programs

This section reviews the concepts of models and programs from Objective-CP
which serves as the foundations for Ocpmcl.
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Flatten Flattening a model decomposes complex expressions into simpler
ones, often adding variables and constraints in the process.

Continuous Performs a continuous relaxation of a model, replacing integer-
valued domain constraints with continuous interval domains.

Linear Creates a linear reformulation to replace global constraints and
logical constraints with a set of equivalent linear constraints [11].

Fig. 1. Examples of commonly used model operators

Definition 1. A model M is of the form 〈X,C,O〉 where X is the set of model
variables, C the model constraints and O the (optional) objective function.

Definition 2. A model transformation τ transforms a model M = 〈X,C,O〉
into another model τ(M) = 〈Xo, Co, Oo〉 satisfying X ⊆ Xo.

Examples of model transformations performed by Objective-CP are shown in
Figure 1. When models are in flattened form (sufficiently decomposed), they can
be concretized in an optimization program.

Definition 3. A model concretization γ takes a model M in a flattened form and
concretizes M into a program P = 〈M,γ〉, where P = γ(M). The concretization
associates a concrete variable with every model variable, a concrete constraint to
every model constraint, and a concrete objective with the model objective.

To obtain an optimization program P from a modelM ,Objective-CP performs
a series of model transformations followed by a concretization, e.g.,

P = γ(τk−1(· · · τ0(M) · · · )).

Model transformations in Objective-CP always extend the set of variables,
which is convenient both from a semantic and implementation standpoint. In
this paper, we ignore that Objective-CP can provide a search procedure since
it is not relevant for model combinators. Hence, we define a program as a pair
(model,concretization).

Definition 4 (Program). A program is a pair P = 〈M,γ〉, where M is a model
in flattened form and γ is a concretization.

Model transformations impose a natural partial order between models through
the concept of relaxation and tightening. These concepts are critical to define
sound combinators [8].

Definition 5 (Solution Set). A solution for a model M = 〈X,C,O〉 is an
assignment of all variables in X satisfying C. The set of solutions of model M
is denoted by Sol(M).

Definition 6 (Projection of Solution Sets). Consider a model M = 〈X,C,O〉
along with a solution s and X ′ ⊆ X. Then, Sol|X′(s) and Sol|X′(M) denotes
the projection of solution s and the solution set of M on the variables in X ′,
respectively.



302 D. Fontaine, L. Michel, and P. Van Hentenryck

We now formalize the concept of relaxation, tightening, and equivalence of trans-
formed models.1 Without loss of generality, optimization problems are all mini-
mization problems in this paper.

Definition 7 (Relaxations and Tightenings of Satisfaction Problems).
Let M = 〈X,C〉 and τ be a transformation. The model τ(M) = M ′ = 〈X ′, C′〉
is a relaxation of M , denoted by M ′'M , iff Sol(M) ⊆ Sol|X (M ′). It is a tight-
ening, denoted by M ′∇M , iff Sol|X (M ′) ⊆ Sol(M). M and M ′ are equivalent,
denoted by M ≡M ′, if M ′ is both a relaxation and a tightening of M .

Definition 8 (Relaxations and Tightenings of Minimization Problems).
Let M = 〈X,C,O〉 and τ be a transformation. The model τ(M) = M ′ =
〈X ′, C′, O′〉 is a relaxation of M , denoted M ′'M , iff 〈X ′, C′〉 '〈X,C〉 and

∀s ∈ Sol(M), s′ ∈ Sol(M ′) : Sol|X (s′) = s ⇒ O′(s′) ≤ O(s).

M ′ is a tightening of M , denoted by M ′∇M , if 〈X ′, C′〉 ∇〈X,C〉 and

∀s ∈ Sol(M), s′ ∈ Sol(M ′) : Sol|X′ (s) = s′ ⇒ O′(s′) ≥ O(s).

M and M ′ are equivalent, denoted by M ≡M ′, if M ′ is both a relaxation and a
tightening of M .

The definitions of these concepts are transitive, reflexive and, for equivalences,
commutative. We use'∗ (resp. ∇∗) to denote the reflexive and transitive closure
of ' (resp. ∇). We use ≡∗ to denote the reflexive, commutative, and transitive
closure of ≡. Our combinators use these relations to enforce pre-conditions and
post-conditions on their models.

4 Runnables and Runnable Signatures

This section introduces the concept of a runnable. Informaly, a runnable can
be thought of as a producer/consumer process that uses a program to solve an
optimization problem, consuming from a number of input pipes, and producing
into a number of output pipes (see Figure 2(a)). The pipes deal with runnable
products that are concepts such as solutions and bounds, as well as streams or
sets of these products. A runnable is associated with a signature that specifies
its inputs and outputs, i.e., the products that it consumes and produces. The
implementation creates pipes for each of these inputs and outputs. If a runnable
is executed directly, its input and output pipes are not used; the runnable pipes
are only useful when it is combined with other runnables through combinators
(see see Figure 2(b)). Note that stream pipes consume or produce products
during the lifetime of a runnable; this is the case when exchanging solutions and
bounds during the search.

1 Note that the model M ′ always has at least the same variables as M since M ′ is
obtained through a transformation of M . Tightenings are only obtained by adding
constraints, while relaxations can be obtained by adding variables or removing con-
straints.
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Runnable

SearchModel Output pipe
Input pipe

Runnable Signature

(a) A runnable for solving a process

Child Runnable 1

Child Runnable 2

Combinator

Child Runnable 1

Child Runnable 2

Parent Runnable

(b) A composite from a combinator.

Fig. 2. Basic and Composite Runnables

Definition 9 (Runnable Products). A runnable product is specified by the
grammar

〈runnable product〉 ::= 〈basic product〉 | [〈basic product〉] | {〈basic product〉}
〈basic product〉 ::= UBD | LBD | COL | CST | SOL

where the basic products UBD,LBD,COL,CST,SOL represent upper bounds, lower
bounds, columns, constraints and solutions, [p] represents a stream of products
of type p, and {p} a set of products of type p.

Definition 10 (Runnable Signature). A runnable signature is a pair S =
〈I, O〉, where I is a set of input runnable products and O is a set of output
runnable products.

Definition 11 (Runnable). A runnable is a pair R = 〈P, S〉, where P is an
optimization program and S is a runnable signature.

We often abuse language and talk about the model of a runnable to denote the
model of its program.

Definition 12 (Pipes of a Runnable). Let R be a runnable 〈P, 〈I, O〉〉. R
provides the set of input pipes {in(p,R) | p ∈ I} and the set of output pipes
{out(p,R) | p ∈ O}.

Our implementation provides a number of primitive runnables. They can be
created from a model M , a flattening, and a concretization. For instance, the
CPRunnable has a program 〈flatten(M), γCP 〉 and a predefined signature.

5 Model Combinators

This section describes model combinators. We restrict our attention to binary
operators for simplicity but it is easy to generalize our results for non-binary
combinators. A model combinator R = C(R1, R2) combines two runnables R1

and R2 to produce another runnable. The combinator requires some properties
from its runnables, establishes the links between the pipes of its runnables and
its own, and specifies how its model relates to the models of its runnables. Figure
3 illustrates the piping intuitively. More precisely, the specification of a model
combinator consists of several parts:
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Child Runnable 1

Child Runnable 2

Parent Runnable

input pipe
output pipe

internal pipe

input pipe output pipe

Fig. 3. A Composite Runnable and Its Input, Output and Internal Pipes

1. a precondition that specifies the required relationships between the runnable
models and the existence of some input/output products;

2. a set of piping rules for linking the input pipes of the combinators to the
input pipes of its runnables;

3. a set of piping rules for linking the output pipes of its runnables to its output
pipes;

4. a set of piping rules for linking the pipe of the runnables;
5. a relationship between the model of the combinator and the model of the

runnables.

A piping rule is an expression of the form π1 → π2 which specifies that pipe π1
produces products that are consumed by pipe π2. For instance, the rule

in(SOL,R) → in(SOL,R1)

specifies that the input pipe for solutions in R produces solutions that are con-
sumed by the input pipe for solution in R1. If p is a product, an input pipe rule
is of the form

in(p, R) → in(p,Ri)

an output pipe rule is of the form

out(p,Ri) → out(p,R)

and an internal pipe rule is of the form

out(p,Ri) → in(p,Rj)

It is also useful to allow output piping rules with no antecedent, i.e.,

→ out(p,R)

for situations where the combinator products are not directly taken from the
runnables but computed by the combinator itself.

These piping rules have two main purposes: To establish the plumbing inside
the combinators and to synthesize the signature of the combinator. It is im-
portant to state that the combinator does not have a static signature. Rather
Ocpmcl synthesizes the most general signature based on the functionalities of
its runnables.
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R1 R2

UBD

UBD SOL

Sequential Runnable

Fig. 4. The Runnable of the Sequential Combinator

Definition 13 (Combinator Specification). Let R1 and R2 be two runnables
with signatures Si = 〈Ii, Oi〉 and models Mi (1 ≤ i ≤ 2). The specification of a
combinator C(R1, R2) is a tuple 〈P , I,O, E ,M〉, where P is a precondition on
Mi, Ii, and Oi, I, O, E are sets of input, output, and internal piping rules, and
M specifies the model relationship.

Obviously, the combinator does not have a model on its own: It combines, some-
times in complex ways, the models of its runnable. Hence, the model relation-
ship specifies the semantics of its products, such as its solutions, its bounds,
and streams thereof. For instance, a model relationship R'R1 specifies that the
(implicitly defined) combinator model is a relaxation of the model of R1. The
new information is propagated through the transitive closures of ' in order to
verify preconditions involving R in subsequent combinations. We are now ready
to synthesize the combinator signature.

Definition 14 (Combinator Signature). Let R1 and R2 be two runnables
with signatures Si = 〈Ii, Oi〉 and a combinator R = C(R1, R2) with specification
〈P , I,O, E ,M〉. The signature of R is 〈I, O〉 where

I = { p | in(p,R)→ in(p,Ri) ∈ I ∧ p ∈ Ii ∧ 1 ≤ i ≤ 2}
O = { p | out(p,Ri)→ out(p,R) ∈ O ∧ p ∈ Oi ∧ 1 ≤ i ≤ 2}.

Observe once again that the definition of input/output is dynamic: The piping
rules defines what is possible and the actual input/output definitions are derived
from the actual input and output functionalities of the combined runnables. If a
runnable does not provide a certain product (e.g., streams of lower bounds), this
product is not synthesized in the signature, even if a piping rule was specified.
We are now ready to present some combinators.

5.1 Sequential Combinator

This section presents a sequential combinator R = R1 � R2 which uses R1 to
compute an upper bound which is then passed as an input to R2 . This combi-
nator (see Figure 4) is often used in practice when a heuristic search first finds
a high-quality upper bound which is then used to seed a systematic search. The
combinator specification is as follows:

R = R1 � R2
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R1

R2

Parallel Composition

(a) Parallel Composition

R1

R2

Parallel Composition : Relaxation

[LBD]

[LBD]

[SOL]

(b) Parallel Composition: Relaxation

Fig. 5. Combinators for Parallel Composition

P� = R1∇∗R2 ∧UBD ∈ O1 ∧UBD ∈ I2 ∧ SOL ∈ O2

I� = {in(UBD , R) → in(UBD , R2)}
O� = {out(SOL, R2) → out(SOL, R)}
E� = {out(UBD , R1) → in(UBD , R2)}
M� = R ≡ R2

The precondition requires that M1 be a tightening of M2 to ensure that the
upper bound of M1 is indeed an upper bound for M2. The input piping rule
allows the upper bound of R to be consumed by R2; It cannot be passed to R1

since R1 is a tightening of M2. The output piping rule allows the solution of R2

to be produced as a solution to R. The internal piping rule specifies that the
upper bound produced by R1 can be consumed by R2. The model relationship
specifies that the resulting combinator is equivalent to R2.

The signature that is synthesized here is trivial, since the piping rules are only
concerned with required inputs and outputs. It will simply be 〈{UBD}, {SOL}〉.
If the output piping rule

out(LBD , R2)→ out(LBD , R)

had been present, and LBD would belong to O2, the synthesized signature would
have been 〈{UBD}, {SOL,LBD}〉.

5.2 Parallel Combinator

We now turn to the parallel composition of two equivalent runnables exchanging
solutions (see Figure 5(a)). Its specification is

R = R1 ‖ R2
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P‖ = R1 ≡∗ R2 ∧ [SOL] ∈ I1 ∧ [SOL] ∈ O1 ∧ [SOL] ∈ I2 ∧ [SOL] ∈ O2

I‖ = {in([SOL], R) → in([SOL], R1), in([SOL], R) → in([SOL], R2),

in([UBD ], R) → in([UBD ], R1), in([UBD ], R) → in([UBD ], R2),

in([LBD ], R) → in([LBD ], R1), in([LBD ], R) → in([LBD ], R2)}
O‖ = {out([SOL], R1) → out([SOL], R), out([SOL], R2) → out([SOL], R),

out([UBD ], R1) → out([UBD ], R), out([UBD ], R2) → out([UBD ], R),

out([LBD ], R1) → in([LBD ], R), out([LBD ], R2) → out([LBD ], R)}
E‖ = {out([SOL], R1) → in([SOL], R2), out([SOL], R2) → in([SOL], R1),

out([UBD ], R1) → in([UBD], R2), out([UBD ], R2) → in([UBD ], R1),

out([LBD ], R1) → in([LBD ], R2), out([LBD ], R2) → in([LBD ], R1)}
M‖ = R ≡ R1

The precondition P‖ ensures that the two runnables are equivalent and the input
and output of both runnables include a stream of solutions. The piping rules are
very explicit this time and allow for the exchanges of upper and lower bounds as
well. In particular, if the runnables provide lower bounds, the implementation
will ensure that the internal piping provides that functionality. Similarly, the
input and output piping will synthesize streams of upper and lower bounds if
the combined runnables provide these products.

Observe that this combinator can be used for composing three runnables: It
suffices to use (R1 ‖ R2) ‖ R3, since the parallel combinator will satisfy its own
precondition. Also, Figure 5(a) shows the flow of solutions within this parallel
runnable using black arrows, The small clouds waiting at the outputs of the child
runnables represents small blocks of code used by the parent to intercept output
solutions coming from the children.

5.3 Relaxed Parallel Combinator

The relaxed parallel combinator runs two optimization programs concurrently
but one of the models is a relaxation of the other and streams lower bounds.
The specification of the combinator is

R = R1 * R2

P	 = R2�∗R1 ∧ [SOL] ∈ O1 ∧ [LBD ] ∈ I1 ∧ [LBD ] ∈ O2

I	 = {in([LBD ], R) → in([LBD ], R1), in([UBD], R) → in([UBD ], R1),

in([SOL], R) → in([SOL], R1)}
O	 = {out([SOL], R1) → out([SOL], R), out([UBD ], R1) → out([UBD ], R),

out([LBD ], R1) → in([LBD ], R)}
E	 = {out([LBD ], R2) → in([LBD ], R1)}
M	 = R ≡ R1

The precondition P� ensures that R2 is a relaxation of R1, R1 produces a
stream of solutions, and R2 produce lower bounds. The input piping rules I�
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states that streams of lower bounds, upper bounds or solutions consumed by R�
can be consumed by R1. The output piping rules O� state that R� produces the
output streams produced by R1. The internal piping rules ensure that the stream
of lower bounds produced by R2 can be consumed by R1. The combinator then
produces a model equivalent to R1. Figure 5(b) illustrates the flow of runnable
products through this runnable assuming the children meet only the minimum
preconditions for simplicity.

5.4 Column-Generation Combinator

Automating column-generation solvers has been done previously in systems such
as CML [6] and the G12 Project [9], but the use of runnables allows for a cleaner
expression of the semantics as well as a much more compositional interface. The
column-generation combines a master problem and a slave problem. The master
runnable consumes columns and generates solutions, while the slave runnable
consumes solutions and produces columns. The column-generation combinator
produces a solution and a stream of upper bounds on its own. An implementa-
tion of the combinator copies the master runnable, before starting the column-
generation process, in order to allow the master runnable to be reused in other
combinators. As a result, the combinator does not use the output of its runnables
but generates products on its own. The common terminology for the resulting
model is the Restricted Master Problem (RMP), but this paper will refer to it
as a relaxation of the master model, since column generation adds new columns
(i.e., variables). Note that the column-generation combinator is very general: It
does not impose how the slave process uses the solution (though the dual values
are captured in the solution). As a consequence, it can implement a traditional
column-generation algorithm or use a heuristic approach to generate columns
based on the problem structure.

R = MA �� SL with MA = 〈Im, Om〉 and SL = 〈Is, Os〉
P�� = COL ⊆ Im ∧ SOL ⊆ Om ∧ SOL ⊆ Is ∧ COL ⊆ Os

I�� = {}
O�� = {→ out(SOL,R),→ out([UBD ], R)}
E�� = {out({COL}, SL) → in({COL},MA), out(SOL,MA) → in(SOL, SL)}
M�� = R�MA

Figure 6 illustrates the combinator.

5.5 Logical Benders Decomposition

Consider now a combinator for implementing Logical Benders decomposition.
Logical Benders decomposition was not supported in CML but this section high-
lights that it is in fact the dual of the column-generation combinator and is easily
supported in Ocpmcl. Informally speaking, in its simplest form, a Benders de-
composition features a master that relaxes some of the constraints of an original
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△MA

SL{COL}

SOL

[UBD]

SOL

Column Generation Runnable

Barrier

Fig. 6. The Column-Generation Combinator

▽MA

SL{CST}

SOL

SOL

Logic-Based Benders Runnable

Barrier

[LBD]

Fig. 7. A Combinator for Logical Benders Decomposition

model and a slave that checks if the solution produces by this master are feasible
for the relaxed constraints. If these constraints are infeasible, the slave generates
new constraints that are added to the master. The process is repeated until a
feasible (and optimal) solution is found. Once again, the combinator receives a
master and a slave runnable. The master runnable is copied and the combinator
implementation keeps adding constraints to the master until an optimal solution
is found. The slave receives the solutions to the master and generates new con-
straints. The combinator produces a stream of lower bounds and a final solution.
The model specification closely mirrors the combinator for column generation,
with upper bounds being replaced by lower bounds. Moreover, the combinator is
now a tightening of the master program since the Benders decomposition adds
new constraints. Figure 7 illustrates the combinator.

R = MA⊗ SL with MA = 〈Im, Om〉 and SL = 〈Is, Os〉
P⊗ = CST ⊆ Im ∧ SOL ⊆ Om ∧ SOL ⊆ Is ∧ CST ⊆ Os

I⊗ = {}
O⊗ = {→ out(SOL,R),→ out([LBD ], R)}
E⊗ = {out({CST}, SL) → in({CST},MA), out(SOL,MA) → in(SOL, SL)}
M⊗ = R∇MA
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1 id<ORModel > root = ... // Def. of AP Model
2 id<ORModel > L = [ORFactory linearizeModel: root];
3 id<ORModel > C = [ORFactory continuousRelax: root];
4 id<ORRunnable > r0 = [ORFactory CPRunnable: root];
5 id<ORRunnable > r1 = [ORFactory IPRunnable: L];
6 if<ORRunnable > r2 = [ORFactory LPRunnable: C];
7 id<ORRunnable > cmp = [ORCombinator parallel : cp0 with: ip1];
8 id<ORRunnable > rlx = [ORCombinator relaxedParallel: complete with: lp2];
9 [relaxed run];

Fig. 8. A parallel hybrid for the Asymmetric Traveling Salesman Problem

The structure of the benders runnable is shown in figure 7. The precondition
P⊗ checks that the master accepts a pool of constraints and generates a solution.
The input relations I⊗ states that the master can receive a stream of constraints.
The output relations O⊗ states that the output pipe of R⊗ produces a solution
taken from the master. Finally, the internal pipe relations ensures that the master
outputs a solution to the slave closure. The slave closure will use the solved
master problem to generate and run a slave problem before outputting a set of
constraints (cuts) which will be injected into the master.

6 Implementation

Ocpcml offers a combinator model library built atop Objective-CP. The li-
brary provides protocols for all the concepts including abstract models (ORModel),
runnables (ORRunnable), runnable signatures (ORSignature), runnable specifi-
cation (ORSpecification) and combinators (ORCombinator). The delicate part
of the implementation is focused on interpreting the signatures to synthesize the
pipes connecting components within a combinator.

Example. Consider as an example the simple Assignment Problem (AP) given
as an abstract model (ORModel) that should be solved with the parallel combi-
nation of three models: a complete CP model, a complete IP model and a linear
relaxation. This can be achieved with the Objective-CP code in Figure 8. Line
2 linearizes the root model into L while line 3 stores in C a continuous relaxation.
Lines 4–6 concretize the three models with a CP solver (Objective-CP), an
integer-programming solver (using Gurobi) and a linear-programming solver
(using Gurobi too). Lines 7–8 combines the first two models with the parallel
combinator which is fed to the relaxedParallel combinator alongside runnable
r2 which holds the linear relaxation. Line 10 executes the resulting code. The
excerpt shows that, with only a few lines of code, three models are easily com-
posed in parallel, producing and consuming solutions, upper bounds and lower
bounds. The combinators automatically account for the fact that one model is
a relaxation of the other two. (see Figure 11).

Precondition and Signature. Figure 9 shows the OCPCML code for the precon-
dition of the relaxed parallel combinator. It is simply a function working on the
signatures of the runnables and verifying that the required properties hold.
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1 BOOL pre(id<ORRunnable > r1, id<ORRunnable > r2) {
2 return [r2 isRelaxationOf: r1] && [r1.sig acceptsLowerBoundsStream] &&
3 [r1.sig producesSolutionStream]&&[r2.sig producesLowerBoundStream];
4 }

Fig. 9. Precondition closure for ORRelaxedParallelCombinator

1 void internal (id<ORRunnable > parent,id <ORRunnable > r1, id<ORRunnable > r2) {
2 if([[r1 sig] providesSolutionStream] && [[r2 sig] acceptsSolutionStream])
3 [[r1 outSolutionStream] wheneverNotifiedDo: ^void(id<ORSolution > s) {
4 [[r2 inSolutionStream] notifyWith: s];
5 }];
6 ...
7 if([[r1 sig] providesSolutionStream])
8 [[r1 outSolutionStream] wheneverNotifiedDo: ^void(id<ORSolution > s) {
9 [[parent outSolutionStream] notifyWith: s];

10 }];
11 }

Fig. 10. Internal pipe closure for ORCompleteParallelCombinator

The Piping Infrastructure. Communication relies heavily on an event infrastruc-
ture provided byObjective-CP and is similar toComet events. InObjective-
CP, an ORInformer object embodies a thread-safe event delivery mechanism and
meshes with Objective-C closures. Two operations are available on an informer.
One can notify the occurrence of the event it represents and one can register
a closure to listen and respond to an event occurrence. The arguments of the
closure offer a simple way to hand-off data. In Ocpcml, runnables provide in-
formers to represent the input and output pipes of their signature. Combinators
then generate the right producer/consumer glue to transmit the solutions.

Figure 10 highlights fragments responsible for setting up the plumbing infras-
tructure for a parallel combinator. Lines 3–5 setup the pipelining for the output
solution pipe from r1 into the input solution pipe of r2. This is realized with a
simple closure relaying solutions from one informer to the other. The plumbing
code is only generated when needed (line 2). Naturally, the other plumbing code
(from r2 to r1) is generated similarly. Lines 7–10 install the output pipe con-
necting r1’s output solution stream to the output solution stream of the parent.
This is realized with a simple closure that listens to inbound solutions from r1
and relays them. The other connections are similar but not shown for brevity.

7 Empirical Results

This section presents benchmark results to assess the practicality of Ocpmcl.
The goal is not to give comprehensive results on a wide variety of benchmarks
but to give preliminary evidence that Ocpmcl is a promising approach to ease
the building of hybrid optimization algorithms.

The first benchmark is the Location-Allocation Problem implemented using
the logical Benders approach in [5]. It will allow us to compare the efficiency of an
Ocpmcl model with a hand-crafted implementation. The experiments feature 6
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R1

R2

||
Com.

R1

R2
||

Relax.

R3

R3

R1

R2

Fig. 11. Nested Parallel composition of two equivalent models with a linear relaxation

Instance # min max avg

1 19.69 21.23 20.23
2 22.53 26.66 23.82
3 11.26 13.30 11.92
4 5.81 7.61 6.37
5 94.81 110.13 99.31
6 67.28 79.73 70.91

overall avg 38.76

(a) Logic-Based Bender’s

Inst min max avg min ‖ max ‖ avg ‖
8× 20 2.2 2.5 2.3 1.8 2.3 2.1
8× 30 6.1 6.5 6.3 2.5 4.3 3.5
8× 40 7.9 16.2 9.7 4.5 9.5 5.7
9× 20 72.0 89.8 75.3 48.6 62.3 55.5
9× 30 27.6 30.2 28.3 21.8 27.9 24.1
9× 40 155.2 174.5 165.6 72.6 89.5 80.2

(b) Assignment Problem

Fig. 12. Benchmarks for Objective-CP runnables

instances from the original paper, namely, the uncorrelated 20× 10 (20 clients,
10 facilities) instances2. The authors reported an average running time of 33
seconds for these instances. The OCPCML results are based on 20 runs of each
instance and are given in Table 12(a). The Bender’s runnable runs in about 39
seconds on average which is remarkably close to the results for the hand-written
model. The experiment was carried out on a 2.13 Ghz Intel Core 2 Duo with
4 GB of RAM running Mac OS X (10.8) which is comparable to the machines
in the original paper (Duo Core AMD 270 CPU, 4 GB Ram, Red Hat Linux).
Table 13 reports the results of an instrumentation of code to measure the time
spent in the master, in the slave, and otherwise, considering that the remainder
of time was attributed to the combinator. This is an overestimate of the true
combinator cost as any other overhead is attributed to the combinator. The
Master columns report the total time spent in the master. The % column report
the fraction of the total that this represents. The same applies for the Slave and
Combinator columns. For any row, the percentages add up to 100%. Overall, the
combinator overhead never exceeds 1

2% of the runtime and demonstrates that
the approach is competitive. This should be contrasted with the brief Ocpmcl-
based implementation which weighs in at 90 lines of Objective-C code (without
data reading) to create the models and setup the Bender’s combinator.

The second benchmark is a simple Assignment Problem (AP) in which we
run a standard CP implementation [6] in parallel with a CP linear reformulation
using the Complete Parallel Combinator. Note that there are better approaches
to solving the AP, we only aim to show the benefit of using Ocpmcl combinators

2 A detailed description of the problem can be found in [5].
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Master Slave Combinator

Instance# μ σ % μ σ % μ σ %
1 20.12 0.40 99.41 0.09 0.02 0.42 0.12 0.40 0.17
2 23.72 0.90 99.57 0.06 0.02 0.25 0.10 0.90 0.18
3 11.84 0.46 99.37 0.04 0.01 0.31 0.08 0.47 0.32
4 6.31 0.57 99.10 0.03 0.01 0.43 0.05 0.57 0.47
5 99.14 3.68 99.82 0.14 0.05 0.14 0.18 3.71 0.04
6 70.80 3.10 99.84 0.07 0.03 0.12 0.11 3.10 0.04

Fig. 13. Time allocation between Master/Slave/Combinator

to generate a parallel runnable. The linear reformulation is substantially slower
(particularly as a CP model). The table gives the running time of solving the
linear model alone and within the parallel runnable. Results are based on random
instances with sizes n×m where n is the number of agents/tasks and m is the
maximum allowed cost (cost range ∈ [1,m]). Columns min, max, avg in Table
12(b) represent the minimum maximum and average running time (in secs) of
the standalone linear CP problem, while min ‖, max ‖, avg ‖ refer to the parallel
runnable.

8 Conclusion

This paper proposes the concept of model combinators, and its implementation
inOcpmcl, to simplify the design of hybrid optimization algorithms and provide
a foundation for combining complex models. In earlier work, such as in CML, se-
mantic ambiguity prevented models from being truly composible, as they lacked
systematic mechanisms for synthesizing input/output interfaces and verifying
preconditions on models. To address these shortcomings, this paper introduces
a number of concepts:

1. The definition of relationships between models, tightenings and relaxations,
which are derived through model transformations. The transitive closures of
these relationships enables Ocpmcl to verify preconditions on the models.
Combinators can also specify their relationship with the underlying models.

2. The concept of runnable and runnable signatures that specify the function-
alities supported by an optimization program and its model.

3. The concept of model specifications, including input/output/internal pipes
and pipe rules, that enables the synthesis of the signature of the combinators
from the signature of their components.

These concepts were used to specify a number of model combinators, including
sequential and parallel composition, column generation, and Benders decompo-
sition. These high-level concepts are implemented in Ocpmcl using thread-safe
informers, an event mechanism provided by Objective-CP. Preliminary ex-
perimental results on logical Benders decomposition algorithms presented in the
literature and artificial benchmarks indicates that the approach promises to be
practical.
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É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 180–194. Springer, Heidelberg (2012)

7. Frisch, A., Harvey, W., Jefferson, C., Mart́ınez-Hernández, B., Miguel, I.: Essence:
A constraint language for specifying combinatorial problems. Constraints 13,
268–306 (2008)

8. Seldin, J.P., Roger Hindley, J.: Lambda-Calculus and Combinators An Introduc-
tion, 2nd edn. Cambridge University Press (2008)

9. Puchinger, J., Stuckey, P.J., Wallace, M., Brand, S.: From high-level model to
branch-and-price solution in g12 (2008)

10. Puchinger, J., Stuckey, P.J., Wallace, M.G., Brand, S.: Dantzig-wolfe decomposi-
tion and branch-and-price solving in g12. Constraints 16(1), 77–99 (2011)

11. Refalo, P.: Linear Formulation of Constraint Programming Models and Hybrid
Solvers. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 369–383. Springer,
Heidelberg (2000)

12. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combina-
tors. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 774–788. Springer, Heidelberg
(2011)

13. Hentenryck, P.V., Michel, L.: Search = Continuations + Controllers. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, Springer, Heidelberg (2013)

14. Yunes, T., Aron, I.D., Hooker, J.N.: An integrated solver for optimization problems.
Oper. Res. 58(2), 342–356 (2010)
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Abstract. Translating procedural object oriented code into constraints
is required for many processes that reason about the execution of this
code. The most obvious is for symbolic execution of the code, where the
code is executed without necessarily knowing the concrete values. In this
paper, we discuss translations from procedural object oriented code to
constraints in the context of solving optimisation problems defined via
simulation. A key difficulty arising in the translation is the modelling of
state changes. We introduce a new technique for modelling destructive as-
signments that outperforms previous approaches. Our results show that
the optimisation models generated by our technique can be as efficient
as equivalent hand written models.

1 Introduction

Symbolic reasoning has been the crux of many software applications such as
verifiers, test-case generation tools, and bug finders since the seminal papers of
Floyd and Hoare [6,8] in program verification and King [10] in symbolic execution
for testing. Common to these applications is their translation of the program or
some abstraction of it into equivalent constraints which are then fed into a
constraint solver to be checked for (un)satisfiability.

The principal challenge for this translation is effective handling of destructive
state changes. These both influence and depend on the flow of control, making
it necessary to reason disjunctively across possible execution paths. In object
oriented languages with field assignments, the disjunctive nature of the problem
is further compounded by potential aliasing between object variables.

In this paper we introduce a new, demand-driven technique for modelling de-
structive assignments, designed specifically to be effective for the difficult case
of field assignments. The key idea is to view the value stored in a variable not
as a function of the current state, but as a function of the relevant assignment
statements. This allows us to avoid maintaining a representation of the entire
program state, instead only producing constraints for expressions which are ac-
tually required.

The particular application we consider for our new technique is the tool in-
troduced in [7], which aims to provide Java programmers with more convenient
access to optimisation technology. The tool allows an optimisation problem to be
expressed in simulation form, as Java code which computes the objective value
given the decisions. This code could be used directly to solve the optimisation
problem by searching over possible combinations of decisions and comparing the
computed results, but this is likely to be very inefficient. Instead, the tool in [7]

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 315–330, 2013.
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translates the simulation code into constraints, and then uses an off-the-shelf
CP solver to find a set of decisions resulting in the optimal return value.

Experimental results using examples from this tool demonstrate that our
new technique for modelling destructive assignments is superior to previous ap-
proaches, and can produce optimisation models comparable in efficiency to a
simple hand written model for the same problem.

1.1 Running Example

As a running example throughout the paper we consider a smartphone app for
group pizza ordering. Each member of the group nominates a number of slices
and some ingredient preferences. The app automatically generates a joint order
of minimum cost which provides sufficient pizza for the group, assuming that a
person will only eat pizza with at least one ingredient they like and no ingredients
they dislike. After approval from the user, the order is placed electronically.

Our focus is on the optimisation aspect of the application: finding the cheapest
acceptable order. We assume that for each type of pizza both a price per pizza
and a price per slice is specified. The order may include surplus pizza if it is
cheaper to buy a whole pizza than the required number of individual slices.

Figure 1 shows a Java method defining this optimisation problem, called build-
Order. The problem parameters are the contents of the people list and the details
stored in the menu object when buildOrder is called. Each call to the method
choiceMaker.chooseFrom indicates a decision to be made, where the possible op-
tions are the OrderItem objects included in the list pizzas (the Order constructor
creates an OrderItem for each pizza on the menu, all initially for 0 slices). The
objective is to minimise the return value, which is the total cost of the order.

1.2 Translating Code into Constraints

To evaluate different possible translations from procedural code to constraints
we use examples from the tool in [7]. This tool actually performs the translation
on demand at run-time (not as a compile time operation), which complicates
the translation process somewhat. For the purpose of this paper we will ignore
such implementation details, using the following abstraction to simplify the de-
scription of the different translations.

We consider the translation to be split into two phases. In the first phase
the code is flattened into a linear sequence of assignment statements, each of
which has some conditions attached. We describe this transformation briefly in
Section 2. In the second phase, which is the main focus of the paper, the flattened
sequence of assignments is translated into constraints.

2 Flattening

In the Java programming language only the assignment statement changes the
state of the program. All other constructs simply influence which other state-
ments will be executed. It is therefore possible to emulate the effect of a piece of
Java code using a sequence of assignment statements, each with an attached set
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int buildOrder() {
order = new Order(menu);
for(Person person : people) {
// Narrow down acceptable pizzas
pizzas.clear();
for(OrderItem item : order.items)
if(person.willEat(item))
pizzas.add(item);

// Choose from these for each slice
for(int i = 0; i < person.slices; i++) {
OrderItem pizza =
choiceMaker.chooseFrom(pizzas);

pizza.addSlice();
} }
return order.totalCost();

}

class Order {
List<OrderItem> items;
int totalCost() {
int totalcost = 0;
for(OrderItem item : items)
totalcost += item.getCost();

return totalcost;
}

}

class OrderItem
{
int pizzaPrice;
int slicePrice;
int fullPizzas = 0;
int numSlices = 0;

void addSlice() {
numSlices = numSlices + 1;
if(numSlices == slicesPerPizza) {
numSlices = 0;
fullPizzas = fullPizzas + 1;

} }

int getCost() {
int cost = fullPizzas ∗ pizzaPrice;
if(numSlices > 0) {
int slicesCost =
numSlices ∗ slicePrice;

if(slicesCost > pizzaPrice)
slicesCost = pizzaPrice;

cost = cost + slicesCost;
} }

}

Fig. 1. A Java simulation of a pizza ordering optimisation problem

of conditions controlling whether or not it should be executed. The conditions
reflect the circumstances under which this statement would be reached during
the execution of the original code.

The flattening process involves unrolling loops1, substituting method bodies
for method calls, and removing control flow statements after adding appropri-
ate execution conditions for the child statements. As an example, consider the
method getCost shown in Figure 1. To flatten an if statement we simply add the
if condition to the execution conditions of every statement within the then part.
The body of getCost can be flattened into the following sequence of conditional
assignment statements.

Conditions Variable Assigned Value
1. cost := fullPizzas × pizzaPrice
2. (numSlices > 0) : slicesCost := numSlices × slicePrice
3. (numSlices > 0, slicesCost>pizzaPrice) : slicesCost := pizzaPrice
4. (numSlices > 0) : cost := cost + slicesCost

1 The tool in [7] only supports loops with exit conditions unaffected by the decisions,
or iteration over bounded collections. This means the number of loop iterations is
always bounded. For unbounded loops partial unrolling can be performed, and the
final model will be an under-approximation of the behaviour of the program.
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Note that each assignment statement applies to a specific variable. This may
be a local variable identified by name (as above), or an object field o.f where o
is a variable storing an object, and f is a field identifier. We call an assignment
to an object field a field assignment. The value of the object variable o may
depend on the decisions, so the concrete object whose field is updated by a field
assignment is not necessarily known.

An important optimisation is to consider the declaration scope of variables.
For example, if a variable is declared inside the then part of an if statement
(as is the case for the slicesCost variable above), assignments to that variable
need not depend on the if condition. In any execution of the original code where
the if condition does not hold, this variable would not be created, and therefore
its value is irrelevant. This means assignments 2 and 3 above do not need the
condition numSlices > 0.

We also need to record the initial program state. For variables which exist
outside the scope of the code being analysed, we add an unconditional assignment
at the beginning of the list setting the variable to its initial value. We call this
an initialising assignment. For object fields we add an initialising assignment for
each concrete object.

Figure 2 shows the sequence of assignments produced by flattening our exam-
ple function buildOrder for an instance with two people and three pizza types.
Note that calls to ChoiceMaker methods are left untouched (these represent the
creation of new decision variables), and expressions which do not depend on the
decisions are calculated upfront. For example, the code used to find acceptable
order items for each person does not depend on any decisions, so rather than
including assignments originating in this part of the code in the flattened se-
quence, we simply calculate these lists and then use them as constants. Where
these expressions are used as if conditions or loop exit conditions we exclude
from the translation any unreachable code.

In the following sections, we assume our input is this flattened list of condi-
tional assignment statements. We also use the notation Dom(v , i) to refer to the
set of possible values for variable v at (just before) assignment i. This is easily
calculated from the list of assignments. A conditional assignment adds values
to the domain of the assigned-to variable, while an unconditional assignment
replaces the domain.

3 Modelling Assignments: Existing Techniques

Using the flattening transformation described above and a straightforward trans-
lation of mathematical and logical expressions, we reduce the problem of repre-
senting Java code by constraints to that of modelling (conditional) assignment
statements. In this section we describe two existing approaches to this, while in
the next section we introduce a new proposed approach.

3.1 Typical CP Approach

One obvious technique for modelling assignments, and that used in [7,2,4], is to
create a new version of the assigned-to variable for each assignment, and then
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Cond Object Field/Var Assigned Value
1. Veg . fullPizzas := 0
2. Marg . fullPizzas := 0
3. Mush . fullPizzas := 0

4-12. other initialisation assignments (for numSlices, pizzaPrice, slicePrice)
13. pizzas1 := [Veg,Marg]
14. pizza1 := chooseFrom(pizzas1)
15. pizza1 . numSlices := pizza1.numSlices + 1
16. b1 := pizza1.numSlices == slicesPerPizza
17. (b1) : pizza1 . numSlices := 0
18. (b1) : pizza1 . fullPizzas := pizza1.fullPizzas + 1

19-23. repeat assignments 14-18 for 2nd slice (using vars pizza2 and b2)
24. pizzas2 := [Marg,Mush]
25. pizza3 := chooseFrom(pizzas2)
26. pizza3 . numSlices := pizza3.numSlices + 1
27. b3 := pizza3.numSlices == slicesPerPizza
28. (b3) : pizza3 . numSlices := 0
29. (b3) : pizza3 . fullPizzas := pizza3.fullPizzas + 1

30-34. repeat assignments 25-29 for 2nd slice (using vars pizza4 and b4)
35-39. repeat assignments 25-29 for 3rd slice (using vars pizza5 and b5)

40. totalcost := 0
41. cost1 := Veg.fullPizzas × Veg.pizzaPrice
42. b6 := Veg.numSlices > 0
43. slicesCost1 := Veg.numSlices × Veg.slicePrice
44. b7 := slicesCost1>Veg.pizzaPrice
45. (b7) : slicesCost1 := Veg.pizzaPrice
46. (b6) : cost1 := cost1 + slicesCost1
47. totalcost := totalcost + cost1

48-54. repeat assignments 41-47 for 2nd order item (Marg)
55-61. repeat assignments 41-47 for 3rd order item (Mush)

62. objective := totalcost

Fig. 2. Flattened version of buildOrder method. We assume an instance where themenu
lists three different types of pizza (vegetarian, margharita and mushroom), meaning
the order will contain three OrderItems [Veg, Marg, Mush ], and where the people list
contains two Person objects, the first willing to eat vegetarian or margharita and re-
quiring two slices, and the second willing to eat margharita or mushroom and requiring
three slices. The b variables have been introduced to store branching conditions. Vari-
ables from methods called more than once and those used as the iteration variable in
a loop are numbered to distinguish between the different versions.

use the latest version whenever a variable is referred to as part of an expression.
If the assignment has some conditions, the new version of the variable can be
constrained to equal either the assigned value or the previous version, depending
on whether or not the conditions hold. This is easily achieved using a pair of
implications, or alternatively using an element constraint with the condition as
the index. The element constraint has the advantage that some propagation is
possible before the condition is fixed, so we will use this translation.

The constraint arising from a local variable assignment is shown below, where
localvar0 is the latest version of localvar before the assignment, and localvar1 is
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the new variable that results from the assignment, which will become the new
latest version of localvar. Note that we assume arrays in element constraints are
indexed from 1. For convenience, in the rest of the paper we use a simplified
syntax for these constraints (also shown below).

assignment: condition : localvar := expression
constraint: element(bool2int(condition)+1, [localvar0, expression], localvar1)
simple syntax: localvar1 = [localvar0, expression][condition]

This translation is only correct for local variables. Field assignments are more
difficult to handle due to the possibility of aliasing between objects. However,
if the set of concrete objects which may be referred to by an object variable is
finite (which is the case for our application), then it is possible to convert all
field assignments into equivalent assignments over local variables, after which
the translation above can be applied.

For each concrete object, a local variable is created to hold the value of each
of its fields. In the following we name these variables using the object name
and the field name separated by an underscore. Then every field assignment is
replaced by a sequence of local variable assignments, one for each of the possibly
affected concrete objects. These new assignments retain the original conditions,
and each also has one further condition: that its corresponding concrete object is
the one referred to by the object variable. Where necessary to avoid duplication,
an intermediate variable is created to hold the assigned expression.

An example of this conversion is shown below, where we assume the assign-
ment is on line n and Dom(objectvar, n) = {Obj1, Obj2, Obj3}.

field assignment: condition : objectvar.field := expression
assignments: condition ∧ (objectvar = Obj1) : Obj1 field := expression

condition ∧ (objectvar = Obj2) : Obj2 field := expression
condition ∧ (objectvar = Obj3) : Obj3 field := expression

The final requirement is to handle references to object fields. We need to look
up the field value for the concrete object corresponding to the current value of the
object variable. To achieve this we use a pair of element constraints sharing an
index as shown below, where fieldrefvar is an intermediate variable representing
the retrieved value. We assume the same domain for objectvar.

field reference: objectvar.field
constraints: element(indexvar, [Obj1,Obj2,Obj3], objectvar)

element(indexvar, [Obj1 field,Obj2 field,Obj3 field], fieldrefvar)

In summary, this approach involves two steps. First the list of assignments is
modified to replace field assignments with equivalent local variable assignments,
introducing new variables as required. Then the new list (now containing only
local variable assignments) is translated into constraints, with special handling
for field references. This approach is quite simple, but can result in a very large
model if fields are used extensively. To see the result of applying this translation
to a portion of our running example, see Figure 3(a).
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3.2 Typical SMT Approach

One of the main reasons for the significant advances in program symbolic reason-
ing (e.g. verification and testing) during the last decade has been the remarkable
progress in modern SMT solvers (we refer the reader to [1] for details).

When using SMT, local variable assignments can be translated in the same
way as for the CP approach (adding a new version of the variable for each
assignment), but using an if-then-else construct (ite below) instead of an element
constraint.

assignment: condition : localvar := expression
formula: localvar1 = ite(condition, expression, localvar0)

For field assignments, it is more convenient to use the theory of arrays. This
theory extends the theory of uninterpreted functions with two interpreted func-
tions read and write. McCarthy proposed [11] the main axiom for arrays:

∀a, i, j, x (where a is an array, i and j are indices and x is a value )
i = j → read(write(a, i, x), j) = x
i �= j → read(write(a, i, x), j) = read(a, j)

Note that since we are not interested in equalities between arrays we only focus
on the non-extensional fragment.

Following the key idea of Burstall [3] and using the theory of arrays, we define
one array variable for each object field. Conceptually, this array contains the
value of the field for every object, indexed by object. Note however that there
are no explicit variables for the elements.

An assignment to a field is modelled as a write to the array for that field, using
the object variable as the index. The result is a new array variable representing
the new state of the field for all objects. This is much more concise and efficient
than creating an explicit new variable for each concrete object.

We still need to handle assignments with conditions. If the condition does
not hold all field values should remain the same, so we can simply use an ite to
ensure that in this case the new array variable is equal to the previous version.

field assignment: cond : objectvar.field := expression
formula: field1 = ite(cond, write(field0, objectvar, expression), field0)

A reference to an object field is represented as a read of the latest version of
the field array, using the object variable as the lookup index.

field reference: objectvar.field
formula: read(field0, objectvar)

For a more complete example, see Figure 3(b). This example clearly demon-
strates that the SMT formula can be much more concise than the CP model
arising from the translation discussed in the previous section. Its weakness is its
inability to reason over disjunction (compared to element in the CP approach).
The approaches are compared further in Section 4.3.
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pizza1 in {Veg, Marg}
element(index1, [Veg,Marg], pizza1)
element(index1, [Veg numSlices0,Marg numSlices0], pizza1 numSlices0)
temp1 = pizza1 numSlices0 + 1
Marg numSlices1 = [Marg numSlices0,temp1][pizza1 = Marg]
Veg numSlices1 = [Veg numSlices0,temp1][pizza1 = Veg]
element(index2, [Veg,Marg], pizza1)
element(index2, [Veg numSlices1,Marg numSlices1], pizza1 numSlices1)
b1 = (pizza1 numSlices1 == slicesPerPizza)
Marg numSlices2 = [Marg numSlices1,0][b1 ∧ pizza1 = Marg]
Veg numSlices2 = [Veg numSlices1,0][b1 ∧ pizza1 = Veg]

(a) CP Translation: Constraints

(pizza1 = Marg) ∨ (pizza1 = Veg)
numSlicesArray1 = write(numSlicesArray0, pizza1, read(numSlicesArray0,pizza1)+1)
b1 = ( read(numSlicesArray1,pizza1) = slicesPerPizza )
numSlicesArray2 = ite(b1, write(numSlicesArray1,pizza1,0), numSlicesArray1)

(b) SMT Translation: Formula

Fig. 3. Translation of assignments 14-17 of the running example (Figure 2) using (a)
the obvious CP approach, and (b) the SMT approach

4 A New Approach to Modelling Assignments

The main problem with the CP approach presented earlier is the excessive num-
ber of variables created to store new field values for every object possibly affected
by a field assignment. Essentially we maintain a representation of the complete
state of the program after each execution step.

This is not actually necessary. Our only real requirement is to ensure that
the values retrieved by variable references are correctly determined by the as-
signment statements. Maintaining the entire state is a very inefficient way of
achieving this, since we may make several assignments to a field using different
object variables before ever referring to the value of that field for a particu-
lar concrete object. To take advantage of this observation, we move away from
the state-based representation, instead simply creating a variable for each field
reference, and constraining this to be consistent with the relevant assignments.

4.1 The General Case

We first need to define which assignment statements are relevant (i.e. may affect
the retrieved value) for a given variable reference. Let ai be the assignment on
line i of the flattened list, and oi, fi and ci be the object, field identifier and set
of conditions for this assignment. For a reference to variable obj.field occurring
on line n, assignment aj is relevant iff the following conditions hold.

j < n and fj=field (occurs before the reference, uses the correct field)
Dom(obj,n) ∩ Dom(oj , j ) �= ∅ (assigns to an object which may equal obj)
�u : ou=obj,fu=field,cu=∅,j<u<n (not overwritten by an unconditional assignment)
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As an example, consider the reference to Veg.fullPizzas on line 41 in Figure 2.
Of the eight assignments to the fullPizzas field (all of which occur before this
reference), the following three are relevant. The others cannot affect the retrieved
value as they use object variables (e.g. pizza3) whose domains do not include Veg.

1. Veg . fullPizzas := 0
18. (b1) : pizza1 . fullPizzas := pizza1.fullPizzas + 1
23. (b2) : pizza2 . fullPizzas := pizza2.fullPizzas + 1

For a correct model we need constraints ensuring that the retrieved value
(Veg fullPizzas) corresponds to the most recent assignment which updated the
read variable. To achieve this we introduce a new integer variable indexvar whose
value indicates which of the relevant assignments this is. We use three element
constraints to ensure that the selected assignment applies to the correct object,
has true execution conditions, and assigns a value equal to the result.

element(indexvar, [Veg,pizza1,pizza2], Veg)
element(indexvar, [true,b1,b2], true)
element(indexvar, [0, pizza1 fullPizzas + 1, pizza2 fullPizzas + 1], Veg fullPizzas)

Note that pizza1 fullPizzas and pizza2 fullPizzas are the variables introduced
for the field references used as part of the assigned values. These would be
constrained using their own list of relevant assignments.

The only remaining requirement is that we must choose the latest applica-
ble assignment. Using the natural order for the arrays this corresponds to the
greatest index. We therefore add constraints stating that if at index i the object
variables are equal and the execution condition is true, then the selected index
must be no less than i.

(b1 ∧ pizza1 = Veg) → indexvar ≥ 2
(b2 ∧ pizza2 = Veg) → indexvar ≥ 3

The general form of the constraints used for field references is shown below.
References to local variables are treated as field references where the object
variable is the same as that used for all relevant assignments. When this is the
case the first element constraint is not required (as it is trivially satisfied), and
the implications can be simplified. Other obvious simplifications are also applied.

field reference: queryobj.field
relevant assignments: cond1 : obj1.field := expr1

...
condn : objn.field := exprn

constraints: element(indexvar, [obj1, ..., objn], queryobj)
element(indexvar, [cond1, ..., condn], true)
element(indexvar, [expr1, ..., exprn], queryobj field)

(cond2 ∧ queryobj = obj2) → indexvar ≥ 2
...

(condn ∧ queryobj = objn) → indexvar ≥ n

As an optimisation, when the code contains more than one reference to some
variable v, we insert an unconditional assignment to v at the time of the ear-
lier read, using the read result as the assigned value. This will become the
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earliest relevant assignment for the later read, which helps to avoid duplication
of expressions and constraints.

There is some similarity between our extraction of relevant assignments and
the dynamic slicing technique proposed in [9]. Note however that slicing is used
only to reduce the number of statements to be translated into constraints. The
actual translation is still based on the standard CP approach.

4.2 Special Cases

In some cases, we can detect a pattern to the relevant assignments which allows
us to use a more specialised constraint. The three special cases we look for are
Boolean variables, sequences of assignments representing a sum calculation, and
sequences of assignments representing a maximum or minimum calculation. The
translation of assignments automatically detects the cases described below and
uses the more efficient translation.

Boolean Variables. When the referenced variable is of type bool, we can define
a Boolean expression for the retrieved value rather than using element constraints
and implications. The expression (shown below) is true if some assignment with
a true value applies and no later assignment with a false value applies.

field reference: q.field
assignments: ci : oi.field := ei i ∈ 1..n

expression:
∨

i∈1..n

⎛
⎝ci ∧ ei ∧ (oi = q) ∧

∧
j∈i+1..n

(ej ∨ ¬cj ∨ (oj �= q))

⎞
⎠

Local variables are handled in the same way except without the object equal-
ities. Using this constraint instead of the generic constraint eliminates the need
to introduce an index variable, and allows simplifications to be performed when
objects are known to be equal, an assigned value is fixed, or an assignment is
unconditional.

Sum Calculations. Computations often involve taking the sum of a set of
numbers. In a procedural language, sums are commonly calculated by iteratively
adding each number to a variable representing the total. This coding pattern
results in a sequence of writes where each written value is an addition of the
previous value of this variable and some other number. When this pattern is
detected, we can replace the usual constraints with a sum constraint.

relevant assignments: total := 0
total := total + value1
total := total + value2
total := total + value3

constraint: finaltotal = sum([0,value1,value2,value3])

In the example above all assignments were unconditional and used exactly the
same variable (the local variable total). It is also possible to use a general form
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of this constraint for sequences of assignments which do not represent a pure
sum but a related calculation, such as counting the objects which satisfy some
condition. Consider again the relevant writes for the reference to Veg.fullPizzas
discussed earlier. A better constraint for Veg fullPizzas is shown below.

assignments: Veg . fullPizzas := 0
(b1) : pizza1 . fullPizzas := pizza1.fullPizzas + 1
(b2) : pizza2 . fullPizzas := pizza2.fullPizzas + 1

constraint: Veg fullPizzas =
sum([0, bool2int(b1 ∧ pizza1=Veg), bool2int(b2 ∧ pizza2=Veg)])

A major advantage of this constraint is that it removes the need to create
and constrain the variables pizza1 fullPizzas and pizza2 fullPizzas. These can be
excluded from the model entirely as they were only used to re-assign to the same
variable, and are now not required to define the values retrieved from this field.

The general form of the alternative constraint used for sums is given below.
The first assignment gives the initial value of qobj.field. If not already present it
is created from the initialisation assignments for objects in the domain of qobj.

field reference: qobj.field
assignments: qobj.field := init

condi : obji.field := obji.field + expri i ∈ 1..n
constraint: q field = sum([init, expri×bool2int(condi∧ obji = qobj) |i ∈ 1..n])

Max/Min Calculations. Another common coding pattern is to calculate a
maximum or minimum by iterating through a list of values overwriting a variable
each time a smaller/larger value is found. As with sum, we can detect this pattern
when building the constraints for the final read of the variable. This time in order
for the alternative constraint to apply, every non-initialisation assignment must
have a condition which compares the current value of the variable with the
assigned value. When there are no other assignment conditions, and the variable
is a local variable (or the assigned-to object is known to equal the read object
for all relevant assignments), we can use a max/min constraint as shown below.

assignments: max := init
(value1 > max) : max := value1
(value2 > max) : max := value2

constraint: finalmax = max([init, value1, value2])

We can again extend this to apply to field assignments and assignments with
additional conditions. When extra conditions are present, we are calculating the
maximum or minimum value for which these additional conditions hold. For a
maximum, we constrain the result to be no less than any value for which the
extra conditions hold, and to equal one of the values for which the conditions
hold. Minimum is handled equivalently.

field reference: queryobj.field
assignments: (condi ∧ valuei > obji.field) : obji.field := valuei i ∈ 1..n
constraints:

∨
i∈1..n condi ∧ (obji = queryobj) ∧ (queryobj field = valuei)∧
i∈1..n(condi ∧ obji = queryobj) → queryobj field ≥ valuei
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Table 1. Comparing three approaches to modelling destructive assignments
Time (secs) Failures (000s)

Problem smt orig orig+ new new+ hand orig orig+ new new+ hand

proj1 200 2.2 23.0 0.1 12.1 0.1 0.1 56 0 34 0 0
225 2.4 3.2 0.1 1.5 0.1 0.1 9 0 4 0 0
250 1.6 61.93 0.1 61.73 0.1 0.1 99 0 127 0 0

proj2 22 115.62 84.81 42.71 51.72 23.71 7.6 39 31 110 35 22
24 221.17 286.99 167.65 170.96 129.24 92.24 92 89 368 239 280
26 262.78 376.216 293.310 255.911 137.96 128.95 120 144 583 251 452

pizza 3 56.0 37.41 25.1 7.0 3.1 2.0 175 118 30 14 0
4 226.48 180.97 175.77 138.04 79.32 2.1 544 541 377 252 1
5 480.922 411.818 407.518 343.413 298.312 2.2 1170 1216 865 945 7

4.3 Comparison with Earlier Approaches

We compared the three presented translation techniques experimentally, us-
ing the pizza ordering example plus two benchmarks used in [7] (the other
benchmarks require support for collection operations, as discussed in the next
section). We used 30 instances for each of several different sizes to evaluate
scaling behaviour. For the original and new CP approaches we show the ef-
fect of adding special cases (orig+ and new+). Special cases can be detected
in the original method, but only for local variables. Using the new transla-
tion makes these cases also recognisable for fields. As a reference we also in-
clude a fairly naive hand written model for each problem. The Java code defin-
ing the problems and all compared constraint models are available online at
www.cs.mu.oz.au/~pjs/optmodel.

The CP models were solved using the lazy clause generation solver Chuffed.
The SMT versions were solved using Z3 [5]. Z3, like most SMT solvers, does not
have built-in support for optimisation. We used a technique similar to [12] to
perform optimisation using SMT: in incremental mode, we repeatedly ask for a
solution with a better objective value until a not satisfiable result is returned.

Table 1 shows average time to solve and failures for the different models.
The small number next to the time indicates the number of timeouts (> 600s).
These were included in the average calculations. The results show that while
the SMT approach does compete with the original approach, with special case
treatment it does not. The new approach is quite superior and in fact has a
synergy with special cases (since more of them are visible). new+ competes with
hand except for pizza where it appears that the treatment of the relationship
between slices and full pizzas used in hand is massively more efficient than the
iterative approach in the simulation.

5 Collection Operations

The code for the pizza ordering example makes use of collection classes from the
Java Standard Library: Set, List and Map. In this case no special handling is
required as all collection operations are independent of the decisions, but often
it is more natural to write code where that is not the case. For example, say

www.cs.mu.oz.au/~pjs/optmodel
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we wished to extend our application to choose between several possible pizza
outlets, each with a different menu. We could do this by adding one extra line
at the beginning of the buildOrder function.

menu = chooseFrom(availableMenus);

This change means the contents of the OrderItem list in the Order class will
depend on the decisions, so the for loop iterating over this list (in buildOrder)
will perform an unknown (though bounded) number of iterations, and the result
of any query operation on this list will also depend on the decisions.

In [7], collection operations were supported by introducing appropriately con-
strained variables representing the state of each collection after each update
operation (e.g. List.add). Query operations (e.g. List.get) were represented as a
function of the current state of the relevant collections. This is analogous to the
way field assignments were handled, with the same drawbacks.

Fortunately our new technique can also be extended to apply to collection
operations, resulting in a much more efficient representation. Where previously
the flattened list of state changing operations contained only assignments, we
now also include collection update operations. Then every query operation on
a collection is treated analogously to a field reference. That is, a new variable
is created to hold the returned value, and constraints are added to ensure that
this value is consistent with the relevant update operations.

Below we provide details of the constraints used for List operations. Set and
Map operations are treated similarly; a detailed description is omitted for brevity.
We then give experimental results using collection-related benchmarks from [7].

5.1 Example: List

For the List class we support update operations add (at end of list) and replace
(item at index), and query operations get (item at index) and size.

A code snippet containing one of each operation type is shown below. Also
shown are the assumed possible variable values and initial list contents, and
the flattened list of collection update operations. Each update operation has an
associated condition, list, index and item. For the add operation, the index is a
variable size1 holding the current size of list1. The first three operations in the
table reflect the original contents of the lists.

if(cond) {
list1.add(A);
list1.replace(0, item);
}
if(list2.size() > ind)
item = list2.get(ind);

(a) Code

list1 ∈ {L1,L2,L3}
ind ∈ {0,1,2}
list2 ∈ {L1,L2,L3}
item ∈ {A,B,C}
cond ∈ {true,false}
L1:[A,B], L2:[C], L3:[]

(b) Variables

Cond List Index Item
L1 [0] := A (add)
L1 [1] := B (add)
L2 [0] := C (add)

cond : list1 [size1] := A (add)
cond : list1 [0] := item (repl)

(c) Update Operations

With our limited set of supported update operations (which is nevertheless
sufficient to cover all code used in the benchmarks from [7]), the size of a list is
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Table 2. Comparison on examples which use variable collections
Time (secs) Failures (000s)

Benchmark orig+ new new+ hand orig+ new new+ hand

bins 12 2.6 5.3 1.1 1.2 8.1 32.5 6.2 13.8
14 82.8 1 129.6 3 7.6 18.0 95.4 612.9 75.1 169.9
16 327.2 15 391.6 15 84.8 141.6 5 315.1 1617.6 749.5 1355.0

golf 4,3 0.7 0.2 0.2 21.3 0.7 0.8 0.7 159.7
4,4 3.4 2.0 0.3 0.1 0.8 6.7 0.0 0.0
5,2 2.4 0.8 0.3 1.5 0.4 0.3 0.0 12.3

golomb 8 1.3 1.2 1.2 1.2 10.8 10.4 10.4 24.0
9 14.0 12.9 12.9 13.7 55.4 51.9 51.9 149.4

10 161.5 144.1 151.8 178.8 281.1 284.5 284.5 1211.0
knap1 70 2.1 8.3 2.8 1.8 33.3 2.2 1.9 33.3

80 7.5 18.4 7.1 6.8 95.7 3.5 3.5 95.7
90 14.2 31.9 12.7 13.9 180.2 4.5 4.5 180.2

knap2 70 20.9 23.2 22.4 34.7 247.8 245.4 245.4 425.8
80 88.4 2 87.7 2 93.9 2 117.5 3 935.2 901.8 915.0 1253.1
90 223.6 5 229.9 5 230.9 5 207.0 5 2263.9 2182.7 2199.3 2085.5

knap3 40 26.2 0.9 0.3 0.2 14.3 0.5 0.4 1.3
50 81.1 2.2 1.3 0.1 25.0 0.8 0.6 2.4
60 295.2 6 4.2 1.8 0.4 58.7 1.4 1.2 10.2

proj3 10 153.9 5 2.3 2.4 0.1 289.3 9.3 11.6 0.1
12 509.4 24 28.0 20.7 0.1 778.5 83.5 92.1 0.2
14 600.0 30 133.9 2 102.9 1 0.1 807.3 299.5 394.5 0.5

route 5 34.2 1.7 1.7 0.2 34.0 6.3 6.3 2.3
6 338.3 3 43.7 43.1 0.8 195.8 57.5 57.5 7.6
7 600.0 30 536.9 20 502.5 17 2.7 263.2 286.9 333.1 19.2

talent 3,8 11.1 3.4 0.9 0.8 25.9 17.2 5.0 8.9
4,9 170.8 42.7 8.8 7.3 159.7 127.3 31.1 52.4

4,10 545.5 22 223.0 1 77.9 54.6 459.7 510.8 178.1 212.5

simply the number of preceding add operations applying to this list and having
true execution conditions. Note that the replace operation is not relevant to size.

query: sizeresult := list2.size()
constraint: sizeresult = sum([ bool2int(list2=L1), bool2int(list2=L1),

bool2int(list2=L2), bool2int(list2=list1∧cond) ])

A get query is treated almost exactly like a field reference. The value returned
must correspond to the most recent update operation with true execution con-
dition which applied to the correct list and index. There is however one extra
complication to be considered. Constraining the get result to correspond to an
update operation has the effect of forcing the index to be less than the size of
the list. This is only valid if the get query is actually executed.

In the constraints shown below, the final element of each array has been added
to leave the index unconstrained and assign an arbitrary value A to our result
variable when the get would not be executed (sizeresult>ind is false). Without
this the constraints would force ind to correspond to an operation on list2 re-
gardless of whether or not the get query is actually executed, incorrectly causing
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failure when list2 is empty. We fix the result rather than leaving it unconstrained
to avoid searching over its possible values.

query : getresult := list2.get(ind)
constraints: element(indexvar, [L1,L1,L2,list1,list1,list2], list2)

element(indexvar, [0,1,0,size1,0,ind], ind)
element(indexvar, [true,true,true,cond,cond,¬(sizeresult>ind)], true)
element(indexvar, [A,B,C,A,item,A], getresult)
(list2=L1) ∧ (ind=1) → indexvar ≥ 2
(list2=L2) ∧ (ind=0) → indexvar ≥ 3
(list2=list1) ∧ (ind=size1) ∧ cond → indexvar ≥ 4
(list2=list1) ∧ (ind=0) ∧ cond → indexvar ≥ 5
¬(sizeresult>ind) → indexvar ≥ 6

5.2 Comparison on Benchmarks with Collections

Table 2 compares the various translation approaches (excluding smt and orig
which were shown to be not competitive in Table 1) and hand written models,
using problems involving collections from [7]. It is clear that the new translation
substantially improves on the old in most cases, and is never very much worse
(bins,knap1). With the addition of special case treatment the new translation
is often comparable to the hand written model, though certainly not always
(proj3,route). In a few instances it is superior (bins,golf), this may be because
it uses a sequential search based on the order decisions are made in the Java
code, or indeed that the intermediate variables it generates give more scope for
reusable nogood learning.

6 Conclusion

Effective modelling of destructive assignment is essential for any form of rea-
soning about procedural code. We have developed a new encoding of assign-
ment and state that gives effective propagation of state-related information. We
demonstrate the effectiveness of this encoding for the automatic generation of
optimisation models from simulation code, showing that the resulting model can
be comparable in efficiency to a hand-written optimization model.

In the future we will investigate the use of this encoding for applications such
as test generation. The main difference is the lack of a known initial state. This
will require the creation of variables to represent unknown initial field values,
with constraints ensuring that if a pair of object variables are equal then their
corresponding initial field variables are also equal. Uncertainty about the initial
state will also affect the number of relevant assignments for field references. For a
query object with unbounded domain all assignments to the same field occurring
prior to the read are relevant, unless one of these is an unconditional assignment
using this exact variable. These differences may mean that redundant constraints
relating reads to each other (which we have not discussed due to their lack of
impact for our application) become more important for effective propagation.
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An Improved Search Algorithm for Min-Perturbation

Alex Fukunaga

The University of Tokyo

Abstract. In many scheduling and resource assignment problems, it is necessary
to find a solution which is as similar as possible to a given, initial assignment. We
propose a new algorithm for this minimal perturbation problem which searches
a space of variable commitments and uses a lower bound function based on the
minimal vertex covering of a constraint violation graph. An empirical evaluation
on random CSPs show that our algorithm significantly outperforms previous al-
gorithms, including the recent two-phased, hybrid algorithm proposed by Zivan,
Grubshtein, and Meisels.

1 Introduction

In many CP applications it is necessary to find solutions that are as similar as possible
to a given, initial assignment of values to variables. For example, in a meeting schedul-
ing problem or resource scheduling problem, constraints can change unexpectedly after
a solution has been generated. This is a type of dynamic constraint satisfaction prob-
lem. Similarly, there are situations where there is an “ideal” (but possibly infeasible)
assignment of values to variables for a CSP, and the goal is to find an assignment which
differs as little as possible from the target. Another scenario where a solution similar
to a given initial state is desired occurs in staff scheduling. Employees express prefer-
ences regarding when they want to work, but their preferences must be balanced against
the staffing demands and constraints of the business, requiring a schedule that satisfies
staffing requirements while deviating minimally from employee preferences.

This paper considers search algorithms for this class of minimal perturbation prob-
lem (MPP) for CSPs, where we seek a solution that minimizes the number of vari-
ables whose values differ from a target assignment, or equivalently, the minimal num-
ber of variable changes that are necessary to a CSP solution when some of the con-
straints change unexpectedly. In particular, we focus on minimal perturbation for binary
CSPs. Previously, Ran et al. proposed an iterated deepening algorithm for the MPP that
searches the space of variable assignments that differ from the target/initial assignment
by at most d assignments, where d is the iterative deepening bound [9]. More recently,
Zivan, Grubshtein, and Meisels proposed a two-phased algorithm that interleaves the
problem of bounding the number of necessary perturbations from the initial assign-
ment, and the problem of testing if such an assignment is possible [11].

We propose a new search algorithm for the MPP, where the main features are (1) a
search space where nodes represent a set of committed variable assignments, (2) a lower
bound based on the minimal vertex covering of the current set of violated constraints,
which dominates the lower bound by Zivan et al. This generalizes an earlier, domain-
specific MPP algorithm proposed in [4].

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 331–339, 2013.
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2 Problem Definition and Preliminaries

The Minimal Perturbation Problem (MPP) is defined as follows: Let C = (V,D,C)
be a CSP, where V = v1, ..., vn is a set of variables, D = D1, ..., Dn is a set of
domains where Di is a finite discrete set of possible values for variable vi, and C =
c1, ..., cm is a set of constraints which restricts the set of values that the variables can
be simultaneously assigned.

Let I be a complete assignment for C. The objective of the MPP is to find an assign-
ment A such that all of the constraints are satisfied, and the number of variables in A
whose value differs from I is minimized. Following [11], the value of variable v in the
original assignment is called the Starting Variable Assignment of v, or its SVA.

While previous work [9,11] defined the MPP more generally, i.e., a general distance
function, and a partial initial assignment, the lower bound functions used in the previ-
ous work assume the definition above, and the actual experimental evaluations of the
previous algorithms were performed on binary CSPs based on this definition.

3 Previous Algorithms for the MPP

The first algorithm which specifically addressed the MPP defined in Sec 2 was the
Repair-Based algorithm with Arc-Consistency (RB-AC), by Ran et al. [9]. Given an
initial variable assignment I = {x1 = v1, ..., xn = vn}, let Di be the set of states which
have exactly i variables whose value are different from that of the initial state I . We call
the set D = D1 ∪ ...Dn the difference space, or D-space. The root node of this search
space is I . Nodes at depth d of the search tree contain variable assignments which differ
by d assignments from I . Each edge in the tree changes the value of one variable which
has not yet been changed by any ancestor. RB-AC searches D-space using a depth-first
iterative deepening strategy, IDA* [7]. The d-th iteration of IDA* explores the subset
of the depth-first branch-and-bound D-space search tree where at each node, the sum
f = g+h ≤ d, where g is the number of differences from the initial state in the current
solution, and h is the lower bound on the additional number of differences required
to find a conflict-free solution. RB-AC uses a simple lower bound, L1, which is the
number of variables that do not have the SVA in its domain.

Zivan, Grubshtein, and Meisels proposed HS MPP, a “hybrid” search algorithm for
the MPP [11]. Their algorithm consists of two, interleaved phases: The first phase per-
forms branch-and-bound on a binary search tree where each node represents a variable,
and the branches correspond to a decision regarding whether to assign the variable to
the same value as in the initial assignment. At each node, HS MPP-Phase1 computes
a lower bound on the number of perturbations, and prunes the search if this exceeds or
equals the current upper bound. Then, v, variable such that SVA(v) ∈ dom(v) is se-
lected. If there is no such variable (i.e., all remaining variables must be perturbed), then
HS PP-Phase2, described below, is called to test for feasibility. Otherwise, HS MPP
branches: The left branch assigns v its SVA and recursively searches the remaining
variables; the right branch of the binary search tree, HS MPP eliminates the SVA from
the domain of v, and recursively searches the remaining variables.

The HS MPP algorithm uses a lower bound, which we denote LZ , to prune the
branch-and-boundtree in HS MPP-Phase1. This bound improves uponL1 by exploiting
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the fact that if there is a pair of variables which have the SVA in the domain, but the
SVAs conflict with each other, then one of these variables must be assigned a non-SVA,
so the bound can be increased relative to L1 by accounting for such pairs (see [11]).

After each decision in Phase 1, the following, limited filtering function is applied:
For each remaining variable v, SVA(v) is removed from domain(v) if SVA(v) is in-
consistent with the current assignment of SVAs.

HS MPP-Phase2 applies a standard MAC (maintaining-arc-consistency) algorithm
to the remaining variables (i.e., variables which do not have the SVA in the domain and
must be perturbed). If the MAC algorithm finds a satisfying assignment of values to vr,
then this is a solution to the MPP.

Finally, a third previous approach is by Hebrard, O’Sullivan and Walsh, who pro-
posed a GAC for distance constraints [6]. Zivan et al compared HS MPP to this GAC
method and showed that HS MPP performed significantly better on random binary
CSPs (30-40 variables) and meeting rescheduling problems.

Related Work

Other previous work has addressed problems that are related to (but different from) the
MPP formulation treated in this paper. A Dynamic CSP is a sequence of constraint sat-
isfaction problems where each instance is derived from the previous instance by mod-
ifying some constraints [2]. Verfaillie and Schiex solved Dynamic CSPs by repairing
the solution to the previous CSP instance [10]. They proposed a depth-first backtrack-
ing algorithm in D-space. Since the goal is to solve the Dynamic CSP instance, there
is no mechanism to guarantee minimal perturbation, although they incorporate variable
ordering heuristics that tend to bias the search towards a minimal perturbation solution.
El Sakkout and Wallace [3] investigated a minimal cost repair problem for scheduling.
They consider difference functions that can be expressed linearly (our MPP difference
count objective is nonlinear). Their probe backtracking algorithm does not explicitly
consider the initial schedule, and reschedules from scratch [3]. Barták et al. investi-
gated overconstrained CSPs for which there is likely to be no feasible solution without
violated constraints [1], and studied methods to seek a maximal assignment of consis-
tent variables which also differs minimally from an initial state. They also studied an
iterative repair (local search) algorithm biased to seek minimal perturbation solutions
for course timetabling [8].

4 A Commitment-Space Search Algorithm for the MPP

We now describe our algorithm for the MPP. Unlike RB-AC, which searches D-space,
and HS MPP, which searches a 2-phase search in the space of variable assignments, our
algorithm searches the space of variable commitments.

In a commitment-based search space (C-space) for the MPP, each node in the search
tree represents a complete assignment of values to variables, where some subset of the
variables are committed to their current value. Edges in the search tree represent a de-
cision to commit a variable to some value. For each variable, we represent its current
value, as well as whether a commitment has been made to the value. The root node of
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this search space is the initial assignment I . We say that a variable x is committed to
value v at node N if x is assigned to v at N and every descendant of N , and uncommit-
ted otherwise.

Each node represents the result of committing some variable to a particular value.
Thus, this search space has a branching factor of d, the domain size, and a maximum
depth of n, the number of variables. We originally proposed C-space for minimal pertur-
bation in [4]. However that previous work focused on a specific type of MPP (bin packing
constraint repair e.g., virtual machine reassignment in data centers), and C-space has not
been evaluated for standard, domain-independent binary CSPs. C-space has a narrower
structure (smaller branching factor) compared to D-space, at the cost of some redun-
dancy. See [4] for an analysis, as well as a figure illustrating example search trees.

We evaluated both a standard depth-first branch-and-bound strategy, as well as an
iterative deepening (IDA*) strategy [7] for C-space. Although iterative deepening can
repeatedly visit the same state, in cases where the minimal perturbation solution is
close to the initial solution, the IDA* search strategy would be expected to be faster
than depth-first branch-and-bound.

For both of these strategies, a standard, most-constrained variable ordering is used,
and a min-conflicts (with respect to the original values in the initial assignment) value
ordering is used. At each node, arc consistency (AC-3) is applied for filtering. The
depth-first branch-and-bound version is shown in Algorithm 1.

Lower Bound

The new lower bound function is based on a constrained vertex covering of a constraint
violation graph. At every node in the search tree, there is a non-empty set of violated
constraints. Given the set of all violated constraints, we construct a constraint violation
graph G where each variable corresponds to a vertex in G, and there is an edge between
vertex vi and vj if a constraint between variables xi and xj is violated. A vertex cover
(VC) of a graph is a subset vc ⊂ V of the vertices such that for every edge e = (va, vb)
in G, either va ∈ vc or vb ∈ vc. A minimal vertex cover of G is a covering of G which
has minimal cardinality.

The minimal VC of a constraint violation graph is clearly a relaxation of the MPP.
The minimal VC identifies a subset of variables that could possibly eliminate all con-
straint violations, without identifying the actual values that must be assigned. The cov-
ering has one additional constraint: variables which no longer have the SVA in the
domain are forced to be included in the covering. Thus, the cardinality of the (con-
strained) minimal VC is a lower bound on the number of perturbations required to re-
sult in a conflict-free assignment of values to variables. It is easy to see that this bound
dominates the LZ bound [11].

Although computing a minimal vertex cover is NP-complete [5], computing the min-
imal VC of a graph is much easier than solving the MPP (the search space is a binary
tree with depth= #vars, as opposed to a tree with branch factor |Domain| for the MPP
C-space search), so the minimal VC can be used as the basis for a lower bound. Our cur-
rent implementation performs a straightforward branch-and-bound search where each
node determines whether a variable is included or excluded from the cover. A simple fil-
tering/pruning rule is used: for every edge (va, vb), if va is excluded from the covering,
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then vb must be included; conversely, if vb is excluded, then va must be included. No other
lower-bounding techniques or optimizations are used in the minimal VC computation,
but as shown below, this simple implementation suffices in practice.

Algorithm 1. C-space Search Algorithm
mpp search(uncommittedVars,committedVars,numChanges)

if get conflicts(uncommittedVars,committedVars)==∅ then
if count num perturbations(committedVars) < minimalChanges then

minimalChanges = count num perturbations(commitedVars) {replace best-so-far solution}
return s uccess

if lowerbound(uncommitedVars,committedVars) > minimalChanges then
return f ailure {pruning based on lower bound}

V = select(uncommittedVars)
for all val in Order(domain(V)) do

commit(V,val) {commitment also applies filtering (arc-consistency)}
r = mpp search(uncommittedVars \ V, committedVars ∪ V)
if r==success then

return s uccess
return f ailure

5 Experimental Evaluation

We evaluated the performance of the MPP algorithms using problems derived from
standard, randomly generated binary CSPs. The classes of MPPs used in the experi-
ments are defined by 5 parameters (n, k, p1, p2, δ). The first 4 parameters are used to
first generate a random, uniform binary CSP, C, where n is the number of variables, k
is domain size of all variables, p1 is the constraint density (probability that any 2 vari-
ables have a constraint), and p2 is the tightness (probability that any 2 values in a pair
of constraint variables are a nogood). Then, C is solved using a standard CSP solver. If
C is unsatisfiable, then it is discarded. If C is satisfiable, then the solution that is found
is used as I , the initial assignment for the MPP. Then, C is perturbed by replacing some
fraction δ of the constraints, resulting in a perturbed CSP C′, and the MPP instance is
(C′, I). For n=30 and 40 variables, we generated 30 candidate binary CSPs each for all
combinations of p1, p2, δ, where p1 ∈ 0.3, 0.4, 0.5, 0.6, 0.7, p2 ∈ 0.3, 0.4, 0.5, 0.6, 0.7,
and δ ∈ 0.05, 0.10, 0.25, 0.50, 0.75, 1.00. All of these were tested for solvability us-
ing a standard CSP solver (i.e., whether there is any satisfying assignment, regard-
less of distance from the initial configuration I). Of these, 2676 of the 30-variable
instances and 1578 of the 40-variable instances were satisfiable MPPs. Similarly, for
n=50 variables, we generated 30 candidate MPPs for all combinations of p1, p2 taken
from p1 ∈ 0.3, 0.4, 0.5, p2 ∈ 0.3, 0.4, 0.5, δ ∈ 0.05, 0.10, 0.25, 0.50, 0.75, 1.00. and
936 were satisfiable.

In the experiments below, we compare the algorithms in such a way that only these
solvable instances matter, i.e., comparisons of the time to find solutions, with a time
limit of 900 seconds. This is because unsolvable instances can be detected by running
a standard CSP solver much more quickly than any of the MPP algorithms (clearly,
checking satisfiability is a simpler problem than seeking a minimal perturbation). Our
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new algorithm is at least as fast as the previous algorithms in detecting unsatisfiability.
In practice, the best strategy would be to first run a standard CSP to check for satisfia-
bility, then run a dedicated MPP solver to minimize the perturbations.

We compared the following algorithms:

– C-space/Lvc - our C-space search algorithm using the new Lvc lower bound and
depth-first branch-and-bound.

– C-space/Lvc/ID - Iterative Deepening C-space search algorithm using theLvc lower
bound.

– HS MPP - The hybrid algorithm by Zivan et al [11].
– RB-AC/Lvc - A modified version of RB-AC algorithm by Ran et al [9], which uses

use our LV C lower bound instead of the L1 bound [9] and searches D-space using
iterative-deepening.

– C-space/LZ - C-space search algorithm using the LZ lower bound [11]. This com-
parison isolates the effect of the lower bound function Lvc compared to Lz .
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Fig. 1. n=50, cumulative number of problems that can be solved after a given time

Each algorithm was executed on each of the 30, 40, and 50-variable random binary
MPP instances, with a 900 second time limit per run. Note that although we focus
on runtime due to space restrictions, comparisons of the number of backtracks and
constraint checks are qualitatively similar to the runtime results.

Figure 1 shows an overall comparison of the MPP algorithms, and plots the cumu-
lative number of problems solved (y-axis) as the amount of time increases (x-axis) by
each algorithm for the 50-variable problems. For example, the C-space/Lvc algorithm
solved around 500 instances within 500 seconds. Overall, C-space/Lvc performed best
on the hardest instances (which require > 400 seconds), while C-space/Lvc/ID per-
formed best on problems requiring less than 400 seconds. Another interesting result is
that RB-AC with the Lvc bound performs significantly better than HS MPP, suggesting
that the success of HS MPP compared to the original RB-AC algorithm was due much
more to the lower bound than to the hybrid search strategy.
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While results for 30 and 40 variable problems are not shown due to space, they look
similar, except that C-space/Lvc/ID performs relatively better with fewer variables.

Figure 2 plots average runtime required to solve instances as a function of the dis-
tance of the solution found to the initial assignment. This only includes successful runs
and excludes runs that timed out, so some of the lines appear truncated (otherwise, for
the less successful algorithms, it is difficult to see the impact of distance because there
were so many failed runs). Overall, if the distance to a solution is within 10-15 variable
assignment changes (i.e., the amount of repair required is small), the faster algorithms
such as C-space/Lvc can solve the problems within 10 seconds (if at all).

Figure 3 compares key pairs of MPP algorithms on all of the 30, 40, and 50 variable
problems. Each figure plots the runtimes for all instances on a pair of algorithmsA1,A2,
where the x-coordinate is the runtime of A1 on the instance, and the y-coordinate is the
runtime of A2. An x or y value of 900 indicates failure to solve the instance. The straight
diagonal line is (x=y), i.e., points above the line indicate that C-space/Lvc performed
better, while points below the line indicate that the other algorithm performed better.

Figure 3a shows that C-space/Lvc clearly outperforms HS MPP, the previous state-
of-the art algorithm. The average ratio of runtimes for HS MPP vs C-space/Lvc is 86.48
for all problems that were solved by at least 1 of these solvers, and 160.35 for problems
that took more than 60 seconds for the faster solver on each instance.

Figure 3d compares C-space/Lvc/ID and RB-AC/Lvc. These two algorithms, which
both use iterative deepening search and the same lower bound (Lvc) differ mainly in the
choice of search space (C-space and D-space, respectively). Figure 3d shows that C-
space/Lvc/ID clearly outperforms RB-AC/Lvc on almost every problem instance, sug-
gesting that C-space is better structured for search than D-space. However, the advan-
tage of C-space over D-space seems to be less pronounced for this class of benchmarks
compared to the virtual machine reassignment problem in [4].

Figure 3b compares C-space/Lvc and C-space/LZ . Combined with Figures. 1, and 2
the results show that iterative deepening is a good strategy for quickly solving relatively
easy problems (problems where the distance from I to a solution is small); however,
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Fig. 3. Pairwise comparison of MPP algorithms (includes all 30,40, and 50 variable problems)

for harder problems (where the distance from I to a solution is large), straightforward
depth-first branch-and-bound seems to be a more robust choice.

Figure 3c compares C-space/Lvc and C-space/LZ . The results show that the new
vertex-cover based lower bound Lvc clearly outperforms the previous lower bound LZ

by Zivan et al [11]. The average ratio of runtimes using lower bound LZ vs Lvc is 1.73
for all instances solved by at least one solver, and 2.10 for instances that required 60
seconds or more for the faster solver.

6 Discussion and Conclusions

We proposed a search algorithm for optimal solutions to the min-perturbation prob-
lem. Our main contributions are: (1) We showed that our new CSpace/Lvc algorithm
significantly improves upon the previous state of the art (HS MPP) for random binary
CSPs generated with a wide range of parameters. (2) We showed that both Lvc, the new
lower bound for the MPP based on vertex covering of the constraint graph, as well as
the C-space search space contribute significantly to the performance of the new algo-
rithm (Fig. 3). Future work includes evaluation on applications such as employee shift
rescheduling and meeting rescheduling.
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Abstract. Propagators that combine reasoning about satisfiability and
reasoning about the cost of a solution, such as weighted all-different, or
global cardinality with costs, can be much more effective than reasoning
separately about satisfiability and cost. The cost-mdd constraint is a
generic propagator for reasoning about reachability in a multi-decision di-
agram with costs attached to edges (a generalization of cost-regular).
Previous work has demonstrated that adding nogood learning for mdd
propagators substantially increases the size and complexity of problems
that can be handled by state-of-the-art solvers. In this paper we show
how to add explanation to the cost-mdd propagator. We demonstrate
on scheduling benchmarks the advantages of a learning cost-mdd global
propagator, over both decompositions of cost-mdd and mdd with a sep-
arate objective constraint using learning.

1 Introduction

Optimization constraints merge the checking of feasibility and optimization con-
ditions into a single propagator. A propagator for an optimization constraint
filters decisions for variables which cannot take part in a solution which is better
than the best known solution. They also propagate the bounds on the cost vari-
able to keep track of its lower bound, and hence allow fathoming of the search,
when no better solution can be found. There is a significant body of work on
optimization constraints including: weighted alldifferent [1] and global cardinality
with costs [2]. In this paper we examine the cost-mdd optimization constraint
which is a generalization of the cost-regular [3] constraint.

Previous work has explored the use of Boolean Decision Diagrams (BDDs) [4,5]
and Multi-valued Decision Diagrams (MDDs) [6] for automatically constructing
efficient global propagators. But these propagators do not handle costs. And
adding a separate objective function constraint to encode the costs, leads to
significantly weaker propagation.

cost-mdd is a generic constraint that can be used to encode many problems
where the feasibility of a sequence of decisions is represented by an MDD, and
the costs of the sequence of decisions is given by the sum of the weights on the
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edges taken in this MDD. cost-regular [3] is encoded as a particular form of
cost-mdd where the set of states at each level is uniform, and the transition
from one level to another is uniform. The weighted-grammar constraint [7] is
a similar optimization constraint which permits a more concise encoding of some
constraints than cost-mdd, but is less convenient to construct and manipulate.

In this paper we investigate how to incorporate cost-mdd global propagators
into a lazy clause generation [8] based constraint solver. The principle challenge
is to be able to explain propagations as concisely as possible, in order that the
nogoods learnt are as reusable as possible. We give experimental evidence that
explaining cost-mdd propagators outperform both decompositions of cost-
mdd and previous mdd-based propagators.

2 Preliminaries

Constraint programming solves constraint satisfaction problems by interleaving
propagation, which remove impossible values of variables from the domain, with
search, which guesses values. All propagators are repeatedly executed until no
change in domain is possible, then a new search decision is made. If propagation
determines there is no solution then search undoes the last decision and replaces
it with the opposite choice. If all variables are fixed then the system has found
a solution to the problem. For more details see e.g. [9].

We assume we are solving a constraint satisfaction problem over set of vari-
ables x ∈ V , each of which takes values from a given initial finite set of values
or domain Dinit(x). The domain D keeps track of the current set of possible
values D(x) for a variable x. Define D $ D′ iff D(x) ⊆ D′(x), ∀x ∈ V . We
let lbD(x) = minD(x) and ubD(x) = maxD(x), and will omit the D subscript
when D is clear from the context. The constraints of the problem are repre-
sented by propagators f which are functions from domains to domains which
are monotonically decreasing f(D) $ f(D′) whenever D $ D′, and contracting
f(D) $ D.

We make use of constraint programming with learning using the lazy clause
generation [8] approach. Learning keeps track of what caused changes in domain
to occur, and on failure computes a nogood which records the reason for failure.
The nogood prevents search making the same incorrect set of decisions later.

In a lazy clause generation solver integer domains are also represented using
Boolean variables. Each variable x with initial domain Dinit(x) = [l..u] is repre-
sented by two sets of Boolean variables [[x = d]], l ≤ d ≤ u and [[x ≤ d]], l ≤ d < u
which define which values are inD(x). We use �x �= d� as shorthand for ¬ �x = d�,
and �x ≥ d� as shorthand for ¬ �x ≤ d− 1�. A lazy clause generation solver
keeps the two representations of the domain in sync. For example if variable
x has initial domain [0..5] and at some later stage D(x) = {1, 3} then the liter-
als [[x ≤ 3]], [[x ≤ 4]],¬[[x ≤ 0]],¬[[x = 0]], ¬[[x = 2]],¬[[x = 4]],¬[[x = 5]] will hold.
Explanations are defined by clauses over this Boolean representation of the
variables.
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Example 1. Consider a simple constraint satisfaction problem with constraints
b ↔ x + y ≤ 2, x + y ≤ 2, b′ ↔ x ≤ 1, b → b′, with initial domains
Dinit(b) = Dinit(b

′) = {0, 1}, and Dinit(x) = Dinit(y) = {0, 1, 2}. There is
no initial propagation. Setting x = 2 makes the third constraint propagate
D(b′) = {0} with explanation �x = 2�→ �b′ = 0�, this makes the last constraint
propagate D(b) = {0} with explanation �b′ = 0�→ �b = 0�. The first constraint
propagates that D(y) = {1, 2} with explanation �b = 0�→ �y ≥ 1� and the sec-
ond constraint determines failure with explanation �x = 2� ∧ �y ≥ 1� → false .
The graph of the implications is

�b′ = 0� �� �b = 0� �� �y ≥ 1�

����
���

�

�x = 2�

��������
�� false

Any cut separating the decision �x = 2� from false gives a nogood. The simplest
one is �x = 2�→ false or equivalently �x �= 2�. �

2.1 Edge-Valued Decision Diagrams

A Multi-valued Decision Diagram (MDD) encodes a propositional formula as
a directed acyclic graph with a single terminal T representing true (the false
terminal is typically omitted for MDDs). In an MDD G, each internal node
n = node(xi, [(v1, n1), (v2, n2), . . . , (vk, nk)]) is labelled with a variable xi, and
outgoing edges consisting of a value vj and destination node nj . Each node
represents the formula

〈n〉 ⇔
k∨

j=1

(x = vj ∧ 〈nj〉)

where 〈n〉 is a Boolean representing the reachability of node n, and 〈T 〉 = true.
The MDD constraint enforces 〈G.root〉 = true where G.root is the root of the
MDD.

In this paper we restrict ourselves to layered MDDs. In a layered MDD G each
node n is assigned to a layer k and all its child nodes must be at layer k+1. Each
node at layer k is labelled with the same variable xk, and the root node G.root
is at layer 1. This encodes an ordered MDD with no long edges, which typically
propagate faster than MDDs with long edges [6]. Each assignment satisfying
the constraint represented by G corresponds to a path from the root G.root to
the terminal T . If, at the i-th layer, the path follows an edge with value vj , the
corresponding assignment has xi = vj .

An Edge-valued MDD (EVMDD) G is a (layered)MDD with a weight attached
to each edge. Hence nodes are of the form

n = node(xi, [(v1, w1, n1), (v2, w2, n2), . . . , (vk, wknk)]),

where wj is the weight of the j
th outgoing edge. The cost of a solution θ = [x1 =

d1, x2 = d2, . . . , xn = dn] which defines a path from the root of G to T is given
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Tx1 x2 x3

0 0 0

2 2 2

Fig. 1. A simple EVMDD with only paths of even cost

by the sum of the weights along the corresponding path in the EVMDD. Each
node n enforces the constraint:

〈〈n〉〉 =
{
0 n = T
min{wj + 〈〈nj〉〉 | j = 1, .., k ∧ xi = vj} otherwise

where 〈〈n〉〉 holds the cost of the minimal weight path from n to T .
For convenience, we denote edges by 4-tuples (n, xi = vj , wj , nj), represent-

ing the edge with source n (in layer i), destination nj (in layer i + 1) and
weight wj corresponding to the value vj . We will refer to the components as
(e.begin, e.var = e.val, e.weight, e.end).

We use s.out edges to refer to all the edges of the form (s, , , ), i.e. those
leaving node s, and d.in edges to refer to edges of the form ( , , , d), i.e. those
entering node d. We use G.edges(xi, vj) to record the set of edges of the form
( , xi = vj , , ) in EVMDD G.

The cost-mdd constraint cost-mdd(G, [x1, . . . , xn], ��, C) requires that
〈〈G.root〉〉 �� C where ��∈ {≤,=,≥}. Note that the constraint (except the ≥
incarnation) enforces satisfiability, i.e., that there is a path from G.root to T ,
since otherwise 〈〈G.root〉〉 = ∞. The cost-mdd constraint can represent cost-
regular as well as other constraints representable by automata with counters.

Our definition of EVMDDs differs from the standard treatment of edge-valued
BDDs [10], apart from the extension from Boolean variables to finite-domain
variables. We do not require the graph to be deterministic; a single node may
have multiple edges annotated with the same value. Also, we do not require the
edge weights to be normalized; normalization may reduce the size of the graph
by inducing additional sharing, but does not affect propagation or explanation.

3 EVMDD Propagation

An incremental algorithm for propagating cost-regular constraints was de-
scribed in [3]. This algorithm essentially converts the cost-regular constraint
into a cost-mdd constraint where �� is =, then performs propagation on this
transformed representation. This algorithm operates by incrementally maintain-
ing the distance of the shortest up[n] and longest lup[n] path from the root to
each node n, and the distance of the shortest dn[n] and longest ldn[n] path from
each node n to T . Given a constraint cost-mdd(G, [x1, . . . , xn],=, C), an edge
e may be used to build a path from G.root to T only if up[e.start] + e.weight+
dn[e.end] ≤ ub(C) and lup[e.start] + e.weight+ ldn[e.end] ≥ lb(C).

The description in [3] does not mention how changes to the bounds of C are
handled. When the upper bound of C is reduced, the lengths of all shortest



344 G. Gange, P.J. Stuckey, and P. Van Hentenryck

paths remain the same; however, the domains of variables xi may change, if the
shortest path through xi = vj is longer than the updated bound.

Example 2. Consider the EVMDD (EVBDD) G shown in Figure 1 where edges
for value 0 are shown dotted, and edges for value 1 are shown full. The constraint
cost-mdd(G, [x1, x2, x3],=, C) encodes the equation 2x1 + 2x2 + 2x3 = C. If
we initially have D(C) = [0..2], no values may be eliminated, as every edge can
occur on a path of cost at most 2. However, if we reduce ub(C) to 1, we must
eliminate xi = 1 from the domain of each variable.

The authors claim that their propagation algorithm enforces domain consis-
tency on the x variables in a cost-mdd constraint. This statement is not correct.

Example 3. Consider again the EVMDD G shown in Figure 1. The algorithm
of [3] makes no propagation for the constraint cost-mdd(G, [x1, x2, x3],=, C)
when D(C) = {3}. This is because every edge can take part in a path which is
both longer (length 4) or shorter (length 2) than the bounds of C. But there is
no support for any value of xi since there is no path of length exactly 3. �

In fact even bounds propagation is NP-hard for cost-mdd where �� is =, using
any applicable definition of bounds consistency [11].

Theorem 1. Domain propagation, bounds(Z) or bounds(D) consistent propa-
gation for cost-mdd(G, [x1, . . . , xn],=, C) is NP-hard

Proof. We map SUBSETSUM to cost-mdd propagation. Given a set S =
{s1, . . . , sm} of numbers and target T we build an EVBDD with m 0-1 vari-
ables x1, . . . , xm and m nodes n1, . . . , nm (nm+1 = T ) with 2m edges (ni, xi =
0, 0, ni+1) and (ni, xi = 1, si, ni+1). Enforcing domain (or equivalently in this
case bounds(Z) or bounds(D)) consistency on cost-mdd(G, [x1, . . . , xn],=, C)
with D(C) = {T } generates a false domain unless the SUBSETSUM holds. �

In this paper we restrict consideration to the cost-mdd constraint of the form
cost-mdd(G, [x1, . . . , xn],≤, C). This is the critical form of the constraint when
we are trying to minimize costs. Treatment of cost-mdd(G, [x1, . . . , xn],≥, C)
is identical by negating each edge weight and the cost variable; the treatment of
cost-mdd(G, [x1, . . . , xn],=, C) in [3] is effectively combining propagators for
each of cost-mdd(G, [x1, . . . , xn],≤, C) and cost-mdd(G, [x1, . . . , xn],≥, C).

We give a non-incremental propagation algorithm for the constraint
cost-mdd(G, [x1, . . . , xn],≤, C) in Figure 2.1 evmdd prop first records the short-
est path (given the current domain D) from each node n to T in dn[n] using
mark paths. It returns the shortest path from G.root to T . It then visits using
infer all the edges reachable from G.root that appear on paths of length less
than ub(C). Initially the negation of all edge labels are placed in inferences .
When an edge that appears on a path of length less than or equal to ub(C) is
discovered, the negation of its label is removed from inferences . The algorithm
returns the a lower bound of C (which may not be new) and any new inferences
on xi variables.

1 This is not novel with respect to [3] but they don’t formally define their algorithm.
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Example 4. Consider the propagation that occurs with the EVMDD of Fig-
ure 1 with C ≤ 2 when we set x1 �= 1 (x1 = 0) and x2 �= 0 (x2 = 1).
mark paths sets dn[T ] = 0, dn[x3] = 0 (using the variable name for the node
name), dn[x2] = 2 and dn[x1] = 2 and returns 2. infer initially starts with
inferences = {�x1 �= 0� , �x1 �= 1� , �x3 �= 0� , �x3 �= 1�}. It sets up[x1] = 0 then
removes �x1 �= 0� from inferences setting up[x2] = 0. It then removes �x2 �= 2�
from inferences setting up[x3] = 2. It removes �x3 �= 0� from inferences , but then
when examining the full edge from x3 the distance test fails. Hence it returns
{�x3 �= 1�}. The final inferences are {�C ≥ 2� , �x3 �= 1�}.

Proposition 1. evmdd prop maintains domain consistency for
cost-mdd(G, [x1, . . . , xn],≤, C).

Proof. After evmdd prop finishes if vj ∈ D(xi) then there is an edge (s, xi =
vj , w, d) in G where up[s] + w + dn[d] ≤ ub(C). Hence there is a path of edges
from G.root to s of length up[s] and a path of edges from d to T of length dn[d].
If we set each variable to the value given on this path and C = ub(C) we have
constructed a solution supporting xi = vj. Similarly, given l = lb(C) then after
evmdd prop finishes there is a path from G.root to T of length l. If we set each
variable to the value given on this path, and C to any value d ∈ D(C) domain
we have constructed a solution supporting C = d. �

It is straightforward to make the above algorithm incremental in changes in x
variables. A removed edge e = (s, x = v, w, d) forces the recalculation of dn[s]
which may propagates upward, and up[s] which may propagate downwards. If a
change reaches G.root or T then the lower bound on C may change. When the
upper bound of C changes, we simply scan the edges for each value until we find
one that is still feasible (infeasible edges are not checked on later calls).

4 Explaining EVMDD Propagation

A nogood learning solver, upon reaching a conflict, analyses the inference graph
to determine some subset of assignments that results in a conflict. This subset
is then added to the solver as a nogood constraint, preventing the solver from
making the same set of assignments again, and reducing the search space. In
order to be incorporated in a nogood learning solver, the EVMDD propagator
must be able to explain its inferences.

4.1 Minimal Explanation

The explanation algorithm is similar in concept to that used for BDDs and
MDDs. To explain �x �= v� we assume �x = v� and hence make the EVMDD
unsatisfiable. A correct explanation is (the negation of) all the values for other
variables which are currently false. We then progressively remove assignments
(unfix literals) from this explanation while ensuring the constraint as a whole
remains unsatisfiable. We are guaranteed to create a minimal explanation (but
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evmdd prop(G, [x1, . . . , xn], C,D)
ĉ := mark paths(G,D)
L := infer(G, [x1, . . . , xn], D, ub(C))
return {�C ≥ ĉ�} ∪ L

mark paths(G,D)
for(n ∈ G.nodes) dn[n] := ∞
dn[T ] := 0; queue := {T }
while(queue �= ∅)

nqueue := {} % Record nodes of interest on the next level.
for(node in queue)

for(e in node.in edges)
if(e.val ∈ D(e.var))

dn [e.begin] := min(dn[s.begin], e.weight+ dn[node])
nqueue ∪={e.begin}

queue := nqueue
return dn[G.root]

infer(G, [x1, . . . , xn], D, u)
inferences := {�xi �= vj� | 1 ≤ i ≤ n, vj ∈ D(xi)}
for(n ∈ G.nodes) up[n] := ∞
up[G.root] := 0; queue := {G.root}
while(queue �= ∅)

nqueue := {} % Record nodes of interest on the next level.
for(node in queue)

for(e ∈ node.out edges)
if(e.val ∈ D(e.var))

if(up[node] + e.weight+ dn[e.end] ≤ u)
inferences := inferences − {�e.var �= e.val�}
up[e.end] := min(up[e.end], e.weight+ up[node])
nqueue ∪={e.end}

queue := nqueue
return inferences

Fig. 2. Algorithm for inferring newly propagated literals

not the smallest minimal explanation)
∧

l∈expln l → �x �= v� since removing
any literal l′ from the expln would mean cost-mdd(G, [x1, . . . , xn],≤, C) ∧∧

l∈expln−{l′} l ∧ �x = v� is satisfiable. Constructing a smallest minimal expla-

nation for an EVMDD is NP-hard just as for BDDs [12].
We adapt the minimal MDD explanation algorithm used in [6] to cost-mdd

constraints. The propagator conflicts when the shortest path from G.root to
T (under the current domain) is longer than ub(C). To construct a minimal
explanation, we begin with the set of values that have been removed from variable
domains, and progressively restore any values which would not re-introduce a
path of length ≤ ub(C).

The minimal explanation algorithm is illustrated in Figure 3. To explain
�x �= v� under current domain D, we first create the domain D′ where D′(x) =
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evmdd explain(G,C,D, �x �= v�)
D′ := D with D(x) replaced by D′(x) = {v}
ĉ := mark paths(G,D′)
if(ĉ < ∞ or choice) u := ub(C) + 1
else u := ∞
return �x �= v� ← collect expln(G,C, x, v, u)

evmdd explain lb(G,C,D, �C ≥ l�)
mark paths(G,D) % unnecessary if just run evmdd prop
return �C ≥ l� ← collect expln(G,C,⊥,⊥, l)− {�C ≤ l − 1�}

collect expln(G,C, x, v, u)
queue := {G.root}; up[G.root] := 0; s := ∞
while(queue �= ∅)

for(node in queue)
for(e ∈ node.out edges)

up[e.end] := ∞
if(e.var �= x and up[node] + e.weight+ dn[e.end] < u)

explanation∪= �e.var �= e.val�
else s := min(s, up[node] + e.weight+ dn[e.end])

nqueue := {} % Record nodes of interest on the next level.
for(node in queue)

for(e ∈ node.out edges)
if ((e.var = x and e.val = v)

or (e.var �= x and �e.var �= e.val� /∈ explanation))
nqueue ∪={e.end}
up[e.end] := min(up[e.end], up[node] + e.weight)

queue := nqueue
return explanation ∪ �C ≤ s− 1�

Fig. 3. Algorithms for computing a minimal explanation

{v} and otherwise D′ agrees with D. With this domain the constraint is unsat-
isfiable. We use mark paths to compute the shortest path from each node n to T
and store this in dn[n]. It returns the shortest path ĉ from root to T . If ĉ is finite,
or we choose to (by setting global choice true) we use an upper bound of C in
the explanation, by setting u �=∞. collect expln traverses the EVMDD from the
root, building an explanation of literals which if not true would cause a path of
length < u to be created in the EVMDD. The algorithm examines all reachable
nodes on a level (initially just the root) and if adding an edge would create a
path shorter than u then the (negation of) the label on the edge is added to the
explanation, if not then we update s which records the shortest path found from
root to T with length ≥ u. The algorithm then adds all the nodes of the next
level which are still reachable, and updates the shortest path from the root to
each such node n storing this in up[n]. This continues while there are still some
reachable nodes. At the end the algorithm returns the collected explanation,
plus the relaxed upper bound literal �C ≤ s− 1�, which ensures that none of the
paths found from root to T can be traversed.
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Since the proceduresmark paths and collect expln perform one and two breadth-
first traversals of the graph, respectively, the explanation requires O(|G|) time.

Proposition 2. evmdd explain(G,C,D, �x �= v� returns a correct minimal
explanation for �x �= v�.

Proof. (Sketch) The algorithm implicitly maintains the invariant that there is
no path in G through an edge labelled x = v of length less than or equal to
lb(C) which does not make use of an edge in DE. Initially DE is the set of
edges e where e.var �= x and e.val �∈ D(e.var). The base case holds using the
correctness of evmdd prop. During collect expl we remove processed edges from
this implicit set DE, except those kept in explanation. Whenever we remove an
edge from DE the shortest path through the edge that uses an edge labeled x = v
and none of the edges in DE is > ub(C). This demonstrates the correctness of
the algorithm, since the explanation literals force that �x �= v� holds since there
is no feasible path through any edges labelled x = v.

For minimality we can reason that if we remove any literal from the expla-
nation, then we would have added a path that was too short passing through an
edge labelled x = v. The minimality of the bound constraint �C ≤ s− 1� follows
since if we relax it we will allow a path of length s through x = v. 	


Explaining a new lower bound l for C is similarly defined by evmdd explain lb.
We compute dn[n] for each reachable node using mark paths with the current
domain D, then choose a set of literals to ensure no shorter paths are allowed.
In this case collect expln will always return �C ≤ l − 1� in the explanation which
we can safely omit. Explaining failure of the whole constraint is identical to
explaining why C ≥ ∞.

Example 5. Consider the constraint defined by the EVMDD shown in Figure 4,
which encodes a simple scheduling constraint requiring shifts to be of even length.
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Fig. 4. (a) An EVMDD which requires shifts to be assigned in blocks of two. (b) We
compute the shortest path from each node to T . (c) Enqueued nodes are shown circled,
and have been annotated with the shortest path from n1 under the current assignment.
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Assume the solver first propagates C ≤ 2, then fixes �x1 �= 1� and �x2 �= 0�. The
only satisfying assignment is then [x1, x2, x3, x4] = [0, 1, 1, 0].

If we are asked to explain the inference x4 �= 1, we first compute the shortest
paths from each node to T through x4 = 1, using mark paths. This is shown in
Figure 4(b). Notice that the cost at the root node is∞. This indicates that, even
without a cost bound, there is no feasible path through x4 = 1. We have the
choice of either omitting the cost bound (obtaining an explanation not dependent
on C) or including it and possibly obtaining a smaller explanation.

Whether or not we include a bound on C, we proceed by sweeping down
level-by-level from the r1. Assuming we include the bound �C ≤ 2�, so u = 3,
we first check if any of the outgoing edges would introduce a path of length
less than 3. We find that the edge from n1 to n3 can safely be restored, since
up[n1] + 1 + dn[n3] = 4 ≥ u = 3. We update s = 4. As no edges introduce a
feasible path, we update up for both n2 and n3, and add them to the queue for
the next level.

At the second level, we discover that restoring the edge from n2 to n4 would
introduce a feasible path, as up[n2]+0+dn[n4] = 2 < u = 3. The literal �x2 �= 0�
must then be added to the explanation. Since n4 is still reachable via n3, both
n4 and n5 are added to the queue for the next level; however, up[n4] is only
updated by the edge from n3, and not from n2. This process continues until no
further nodes remain. At the end s = 4 so we didn’t need the bound on paths to
be ub(C) it could have been looser. Hence we add �C ≤ 3� to the explanation.
The explanation returned is �x4 �= 1� ← �C ≤ 3� ∧ �x2 �= 0�. This is a minimal
explanation.

If we omit the cost bound, then we cannot restore the edge from n1 to n3;
so we construct the alternate explanation �x4 �= 1�← �x1 �= 1�∧ �x2 �= 0� which
is also minimal. Note we omit the redundant literal �C ≤ ∞− 1� created by
collect expl. �

4.2 Incremental Explanation

Example 6. Unfortunately, on large EVMDDs, constructing a minimal explana-
tion can be expensive since explaining each inference may involve exploring the
entire EVMDD. For these cases, we present a greedy algorithm for constructing
valid, but not necessarily minimal, explanations in an incremental manner, often
only examining a small part of the EVMDD.

We adapt the incremental MDD algorithm of [6] to cost-mdd. As in the MDD
case, we explain �x �= v� beginning from the set of edges corresponding to x = v.
For all such edges e = (s, x = v, w, d), we know that up[s]+w+dn[d] > ub(C). If
we have up[s]+w+ dn[d] = ub(C)+ 1, then there is no flexibility in the bounds;
we must select an explanation which ensures the shortest path from G.root to s
has cost up[s], and the shortest path from e to T has cost dn[d]. We record the
amount of cost that needs to be explained on all paths to s; this is denoted by
upe[s]. We then sweep upwards, level-by-level, collecting an explanation which
guarantees this minimum cost. At each level, we maintain the set of edges which
need to be explained. If for some edge we have up[s] +w < upe[d], then �x �= v�
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mdd inc explain(G, x, v, u)
for(n ∈ G.nodes) upe[n] := ∞
for(n ∈ G.nodes) dne[n] := ∞
kfa := {} % edges killed from above
kfb := {} % edges killed from below
for(e in G.edges(x, v))

% Split possible supports
Assign pup, pdn subject to:

pup + e.weight+ pdn ≥ u ∧ pup ≤ up[e.begin] ∧ pdn ≤ dn[e.end]
if(pup > up0[e.begin])

kfa ∪={edge}
upe [e.begin] := max(upe[e.begin], pup)

if(pdn > dn0[e.end])
kfb ∪={edge}
dne [e.end] := max(dne[e.end], pdn)

% Explain all those killed from below
return explain down(kfb)
% And all those killed from above

∪ explain up(kfa)

Fig. 5. Top-level wrapper for incremental explanation

must be added to the current explanation; otherwise, a feasible path would be
introduced. We perform an initial pass over the edges at the current level to
determine which values must be included in the explanation; during the second
pass, we update upe for the source node of each edge that hasn’t been excluded,
and enqueue the set of incoming edges to be processed at the next level. If at
any point we have upe[s] is no greater than up0 [s] (the shortest path to s under
the initial variable domains), then we don’t need to enqueue the incoming edges,
as an empty explanation is sufficient.

If up[s] +w+ dn[d] > ub(C) + 1, then we can potentially relax the generated
explanation. Obviously, the amount by which we relax up[s] affects the amount
of slack available to dn[d]. To relax the bounds as far as possible, we would
initially allocate as much slack as possible to up[s], and collect the corresponding
explanation. Before performing the downward pass, we would then propagate the
newly reduced path lengths back to the current layer, to determine how much
slack remains for the explanation of d.

Instead, we determine a priori how the slack is allocated in the explanation.
If either up[s] or dn[d] is∞, then we build the explanation in only that direction
(if both, we arbitrarily explain upwards). Otherwise, we explain as much as
possible in the upward pass, and allocate all possible slack to the downwards
pass. Alternative strategies for relaxing the bounds is interesting future work.

Consider again the case described in Example 5. During incremental propa-
gation, we maintain up and dn for each node. These are shown in Figure 7(a).
To explain �x4 �= 1�, we need to eliminate some set of values which ensures that
up[n7] + 1 + dn[T ] ≥ 3.
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explain down(kfb)
reason = {}
% Traverse the MDD downwards, breadth first
while(¬is empty(kfb))

% Scan the current level for edges that will need explaining.
pending = {}
for(e in kfb)

% For each edge requiring explanation
if(e.val /∈ D(e.var) and

e.weight+ dn[e.end] < dne [e.begin])
% There is no later explanation,
% so add �e.var �= e.val� to the reason.
reason ∪={�e.var �= e.val�}

else
pending ∪={e}

next = {}
% Collect the edges that haven’t been explained at this level.
for(e in pending)

if(�e.var �= e.val� �∈ reason and e.weight+ dn0[e.end] < dne[e.begin])
% If e is not explained already collect its outgoing edges
next ∪= e.end.out edges
dne [e.end] := max(dne[e.end], dne [e.begin]− e.weight

% Continue with the next layer of edges.
kfb = next

return reason

Fig. 6. Pseudo-code for incremental explanation of EVMDDs. explain up acts in exactly
the same fashion as explain down, but in the opposite direction.
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Fig. 7. The EVMDD from Example 5. (a) Values of [up, dn] for each node. (b) Edges
enqueued while explaining �x4 �= 1�.
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Under the current assignment, up[n7] = ∞. However, as our current cost
bound is 2, we only need to ensure up[n7] + 1 ≥ 3. We set upe[n7] = 2, the
amount of cost that must be guaranteed from above, and add n7 to the queue.
Expanding n7, we find that it has only one parent, which is the edge from n4 with
weight 1. This edge cannot be eliminated, so we set upe[n4] = upe[n7] − 1 = 1,
and enqueue n4.

n4 has 2 incoming edges, so we first check both edges to determine if any
values must be added to the explanation. Examining the edge from n2 to n4, we
have upe[n4]−0 = 1 > up[n2]. This indicates that, if the edge from n2 to n4 were
restored, a path of length 2 would be introduced. �x2 �= 0� is therefore added to
the explanation. The edge from n3 to n4 is safe, as up[n3] =∞ ≥ upe[n3]− 1.

We then make a second pass through the edges, to determine which new nodes
must be enqueued. As �x2 �= 0� is in the explanation, we don’t need to expand
the node from n2 to n4. The edge from n3 to n4 is traversable, so we update
upe[n3]. However, since upe[n3] = 0, and the base cost to reach n3 is 1 (that is,
upe[n3] ≤ up0[n3]), we don’t need to enqueue n3, since the cost to n3 will always
be at least 0. Since we have no nodes enqueued, the upwards pass is finished.
Since there are no nodes which must be propagated downwards, this yields the
final explanation �x4 �= 1�← �C ≤ 2� ∧ �x2 �= 0�.

Observe that this is not minimal, since the explanation is still valid if we
replace �C ≤ 2� with �C ≤ 3�. �

5 Experimental Results

Experiments were conducted on a 3.00GHz Core2 Duo with 4 Gb of RAM run-
ning Ubuntu GNU/Linux 10.04. The propagators were implemented in chuffed,
a state-of-the-art lazy-clause generation [8] based constraint solver. All experi-
ments were run with a 10 minute time limit. For the minimal explanation algo-
rithm, we always selected to use upper bounds in the explanation if possible.

We evaluate the cost-mdd constraints on a standard set of shift scheduling
benchmarks. For the experiments, dec denotes propagation using a decomposi-
tion of cost-mdd like that of [13] but introducing a cost variable per layer of
the EVMDD and summing them to compute cost, and decmdd uses the domain-
consistent Boolean decomposition described in [14] (or equivalently in [6]) and a
separate cost constraint. mdd denotes using a separate MDD propagator [6] and
cost constraint, ev-mdd denotes cost-mdd using incremental propagation and
minimal explanations, ev-mddI denotes cost-mdd using incremental propaga-
tion and greedy explanations. We also tried a domain consistent decomposition
of cost-mdd based on [7] but it failed to solve any of the shown instances, and
is omitted.

5.1 Shift Scheduling

Shift scheduling, a problem introduced in [3], allocates n workers to shifts such
that (a) each of k activities has a minimum number of workers scheduled at
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Table 1. Comparison of different methods on shift scheduling problems

Inst. dec decmdd mdd ev-mdd ev-mddI

time fails time fails time fails time fails time fails

1,2,4 — — 14.51 39700 3.49 21888 0.20 607 0.17 635
1,3,6 — — 11.25 40675 19.00 76348 0.87 4045 0.91 4156
1,4,6 36.48 86762 2.62 7582 0.69 3518 0.11 350 0.27 1077
1,5,5 5.64 32817 0.41 1585 0.52 3955 0.07 239 0.06 238
1,6,6 7.32 35064 0.40 1412 0.21 1161 0.08 249 0.11 413
1,7,8 27.58 77757 4.03 13149 2.43 12046 0.73 3838 0.83 4279
1,8,3 67.74 126779 0.85 5002 0.39 3606 0.06 219 0.07 262
1,10,9 321.44 441884 17.55 44222 19.77 68688 1.23 5046 1.31 7419
2,1,5 1.29 12520 0.14 691 0.24 1490 0.02 78 0.01 45
2,2,10 — — — — 131.29 286747 43.62 99583 49.05 100958
2,3,6 — — 188.77 187760 144.99 289568 2.39 6443 5.94 13695
2,4,11 — — — — 391.59 918438 42.38 111567 92.89 220568
2,5,4 — — 25.85 59635 12.18 50340 0.65 1545 0.48 1541
2,6,5 — — 83.78 104911 30.27 80046 6.18 12100 7.63 16074
2,8,5 — — 90.28 153331 34.69 110917 4.99 15507 10.02 26565
2,9,3 — — 6.10 20472 9.17 42105 0.86 1898 0.47 1593
2,10,8 — — 349.88 303227 95.61 168720 8.85 26331 17.22 37356

Total — — — — 896.53 2139581 113.29 289645 187.44 436874
Mean — — — — 52.74 125857.71 6.66 17037.94 11.03 25698.47
Geom. — — — — 7.92 31465.82 0.86 2667.65 1.03 3428.35

any given time, and (b) the overall cost of the schedule is minimised, without
violating any of the additional constraints:

– An employee must work on a task (Ai) for at least one hour, and cannot
switch tasks without a break (b).

– A part-time employee (P ) must work between 3 and 5.75 hours, plus a 15
minute break.

– A full-time employee (F ) must work between 6 and 8 hours, plus 1 hour for
lunch (L), and 15 minute breaks before and after.

– An employee can only be rostered while the business is open.

These constraints can be formulated as a grammar constraint as follows:

S → RP [13,24]R | RF [30,38]R

F → PLP P →WbW

W → A
[4,...]
i Ai → aiAi | ai

L → llll R → rR | r

We convert the grammar constraint into a Boolean formula, as described
in [13]; however, we convert the formula directly into an MDD, rather than
a s-DNNF circuit; the MDD and cost-MDD propagators, as well as the decom-
positions, are all constructed from this MDD. This process is similar to the
reformulation described in [15]. Note that some of the productions for P , F
and Ai are annotated with restricted intervals – while this is no longer strictly
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context-free, it can be integrated into the graph construction with no additional
cost.

The coverage constraints and objective function are implemented using the
monotone BDD decomposition described in [16].

The model using mdd is substantially better than the cost-mdd decompo-
sition, and also superior to the mdd decomposition. It already improves upon
the best published CP/SAT models for these problems2 in [15]. The results for
ev-mdd show that modelling the problem using cost-mdd is substantially bet-
ter than separately modelling cost and an mdd constraint. Incremental greedy
explanation can improve on minimal explanations, but the results demonstrate
that minimal explanations are preferable. This contrasts with results for explain-
ing mdd [6] where greedy incremental explanations were almost always superior.
This may be because the presence of path costs in EVMDDs means that deci-
sions higher in the graph have a greater impact on explanations further down
(whereas for MDDs, the explanation only changes if a node is rendered com-
pletely unreachable).

6 Conclusion

In this paper we have defined how to explain the propagation of an EVMDD.
Interestingly we have a trade-off between using cost bounds or literals on x to
explain the same propagation. We define non-incremental minimal and incre-
mental non-minimal explanation algorithms for EVMDDs. Using EVMDD with
explanation to define a cost-mdd constraint, we are able to substantially im-
prove on other modelling approaches for solving problems with cost-mdd with
explanation.
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Economy and the Australian Research Council.
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Abstract. The multibin packing constraint captures a fundamental
substructure of many assignment problems, where a set of items, each
with a fixed number of dimensions, must be assigned to a number of bins
with limited capacities. In this work we propose a simple decomposition
for multibin packing that uses a bin packing constraint for each di-
mension, a set of all different constraints automatically derived from
a conflict graph, plus two alternative symmetry breaking approaches.
Despite its simplicity, the proposed decomposition is very effective on a
number of instances recently proposed in the literature.

1 Introduction

Given a set I = {1, . . . , n} of items and a set K = {1, . . . , k} of dimensions,
where each item i has a weight wi,l for every dimension l, and given a set B =
{1, . . . ,m} of bins j with a capacity cj,l for every dimension l, the multibin pa-

cking constraint states that every item must be packed into a single bin while the
sum of weights for each bin and for each dimension cannot exceed the correspond-
ing bin capacity. In particular, we extend the formulation of the bin packing

constraint from [10] by using the following signature:

multibin packing([yj,l], [xi], [wi,l]) (1)

where xi = j if item i is assigned to bin j and yj,l is a load variable ranging in
[0, cj,l] that represents the total weight packed on bin j for dimension l. Indeed,
the semantic of constraint (1) is equivalent to the following relations:∑

i∈I:xi=j

wi,l = yj,l ≤ cj,l ∀j ∈ B, ∀l ∈ K. (2)

The case of a single dimension k = 1 reduces (1) to the well-known bin packing

constraint. Therefore, a natural decomposition of (1) is to use a single
bin packing for each dimension as follows:

bin packing([y1,l, . . . , ym,l], [xi], [wi,l]) ∀l ∈ K. (3)

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 356–364, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This decomposition is used for instance in [6] to formulate the Machine Reassign-
ment problem proposed in the Roadef Google Challenge 20121. In the Machine
Reassignment problem, each item represents an application to be (re)assigned to
a server, and each dimension represents a resource consumed by an application,
such as, for instance, CPU time, memory, and bandwidth. Since every server has
a limited capacity for each resource, the multibin packing constraint captures
a fundamental substructure of the Machine Reassignment problem.

In [2], the authors propose a constraint based on Multivalued Decisions Di-
agrams (MDD) for multidimensional bin packing problems and they show that
the approach is very effective on a set of randomly generated instances. The
MDD approach definitely outperforms a basic CP model based on decomposi-
tion (3) and solved with a basic first-unassigned min-value branching strategy. In
several cases, the model with the MDD constraint outperforms a Mixed Integer
Programming approach as well. In particular, the MDD approach is attractive
for hard instances on the transition phases from infeasible to feasible, likely
due to the ability of MDD to handle symmetries. While their approach is very
interesting, it is hard to embed into existing CP solvers.

The first filtering algorithm for the bin packing constraint was presented
by Shaw in [10], where the author combined the algorithm for the Knapsack
constraint introduced in [11] with a well-known lower bound on the minimum bin
packing problem (e.g., see Chapter 10 in [5]). Shaw’s algorithm is implemented
in several CP solvers, it is listed in the global constraint catalog [1], and it is
useful for several industrial applications (e.g., see [9]).

The contribution of this paper is to propose a simple decomposition for the
multibin packing constraint that, in addition to constraints (3), uses a collec-
tion of all different constraints automatically derived from a conflict graph,
and that posts symmetry breaking constraints. The benefits of the all different

constraints are twofold: they perform additional filtering and they help the branch-
ing to identify “most-conflicting” variables. We show experimentally that our
approach is very effective on the instances recently presented in [2]. Since the pro-
posed multibin packing decomposition is based on existing constraints, it can
be easily implemented in any existing CP solver.

The outline of the paper is as follows: Section 2 introduces the problem decom-
position, while Section 3 presents two alternative symmetry breaking strategies.
Section 4 reports computational results and concludes the paper.

2 Constraint Decomposition

The multibin packing constraint naturally decomposes into k independent
bin packing constraints. However, this basic decomposition does not account
for the different dimensions of each item: while two items may fit in the same
bin while considering a given dimension l1, they may be in conflict while consid-
ering a different dimension l2, since the sum of their weights might exceed the

1 http://challenge.roadef.org/2012/en/, last visited April, 24-th, 2013.

http://challenge.roadef.org/2012/en/
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bin capacity for l2. However, the interdependencies among the item dimensions
across the bins can be exploited systematically via a conflict graph.

Given an instance of the multibin packing constraint, we build an undirected
conflict graph G = (V,E) by looking for pairs of conflicting items. The conflict
graph G is constructed as follows. First, for each item i in I, we add a vertex to
V : we have a one-to-one mapping between items and vertices of G. Second, we
add an edge {i1, i2} to E for each pair of items with i1, i2 ∈ I and i1 < i2, and
such that the following relation holds:

∀j ∈ B. ∃l ∈ K : wi1,l + wi2,l > cj,l (4)

Indeed, two items i1 and i2 are in conflict if for each bin there exists at least a
dimension l such that the sum of the two item weights exceed the bin capacity
for dimension l.

We show next how we use the conflict graph. Recall that a clique is complete
subgraph of G, and that a clique is maximal if it is not a subset of any other
clique. Given a subset of items J ⊆ I, we denote by xJ the subset of the [xi]
variables corresponding to the items in J .

Proposition 1. Given an instance of multibin packing, the cardinality ω(G)
of the maximum clique, denoted by C∗, of the conflict graph gives a lower bound
on the number of bins necessary in any feasible assignment of items to bins.

Clearly, every pair of items corresponding to vertices in C∗ must be assigned to
different bins, therefore we need at least ω(G) bins to have a feasible assignment.
However, we do not really need a maximum clique in order to detect infeasibility,
as shown next.

Proposition 2. Given an instance of multibin packing, if the conflict graph
G contains a clique C of cardinality strictly greater than the number of available
bins, that is |C| > m, then the multibin packing constraint cannot hold.

Therefore, to declare infeasibility of a given instance of multibin packing, we
are interested in a finding clique of cardinality equal to m+1. Despite finding a
clique of a given size is an NP-complete problem [3], we have thatm- n and that
the conflict graph is sparse (otherwise the multibin packing instance would
be likely infeasible). In practice, exact algorithms (e.g., see [7]) are extremely
efficient in checking if a clique of size m + 1 exists in the multibin packing

instances taken from the literature. For easy instances, the set of edges E may
even be empty.

It is possible to exploit the cliques in G for more than pure consistency check-
ing. Specifically, since for any clique C with 1 < |C| ≤ m, it is possible to post
an all different constraint on the item variables corresponding to the vertices
in the clique. More formally:

Proposition 3. Given an instance of multibin packing, every subset J ⊂ I
of items corresponding to vertices of any (maximal) clique C of G, with 1 <
|C| ≤ m, must be assigned to different bins, that is the corresponding subset of
item variables xJ must take a different value: all different([xJ]) must hold.
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The proposition holds for any clique, but it is better to consider maximal cliques
only, since they are fewer in number.

While the number of maximal cliques of G is, in theory, exponential in the
number of vertices, in many practical cases their number is definitely reasonable.
In addition, we are not forced to list every maximal cliques, and it is easy to
devise heuristics that limit the number of cliques considered. For instance, it is
possible to look for every vertex i of G a maximal clique that contains vertex
i. Simple greedy heuristics for finding maximal cliques have worst-case time
complexity of O(n2).

3 Symmetry Breaking

In case the bins have identical capacities for every dimension, that is whenever
cjl = cl for all j in B, and in case there is not other special constraint nor
costs on the assignment of items to bins, then the multibin packing constraint
admits several symmetric assignments, since every possible permutation of bin
assignment gives equivalent solutions. For instance, given a feasible assignment,
if we exchange all the items assigned to the first bin with all the items assigned
to the second bin, we get another feasible solution. This kind of situation seems
to occur quite often in practice.

3.1 Symmetry Breaking by Variable Fixing

In order to partially break symmetries, we can again exploit the conflict graph
G. In practice, we can take the largest clique C with cardinality smaller than
or equal to m (otherwise the constraint is infeasible) and we can fix every item
variable corresponding to vertices in C to a different value from its own domain.
Let dom(xi) be the domain of variable xi; initially, every variables has the same
domain. We take the first variable in C, and we assign it the minimum value in
its domain; then we take the second variable in C and we assign it the second
value in its domain; and so on. With a small abuse of notation, we write:

xi ← min{dom(xi)} for i ∈ C. (5)

where after each assignment, propagation reduces the other variable domains.
Note that whenever it is possible to use this variable fixing technique, then,

once the variables have been fixed and all other problem constraints have propa-
gated, it is possible to construct a new conflict graph G using the residual bin ca-
pacity obtained by considering the fixing in (5). The new conflict graph can again
be used for consistency checking and, likely, to post additional all different

constraints.

3.2 Symmetry Breaking Constraints

If the assignment of items to bins is symmetrical, as discussed previously, a
different but standard way to break symmetries during search consists in posting
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an additional constraint that invalidates equivalent feasible assignments (e.g., see
Chapter 10 in [8]).

If we consider a single dimension l, for instance the first dimension l = 1, we
can post an ordering constraint on the corresponding subset of load variables:

yj,1 ≥ y(j+1),1 ∀j ∈ {1, . . . ,m− 1}. (6)

However, no ordering constraint can be posted on the other load variables.
Note that constraint (6) reduces the number of equivalent feasible assignments

of items to bins, and therefore on easy instances of multibin packing it might
have a negative effect when looking for a single feasible solution. We will discuss
this issue in the computational results section.

The symmetry breaking constraints based on (6) are only applicable when
every bin has the same capacity for every dimension. If we perform an item-
bin variable fixing for statically break some symmetries, as described in Section
3.1, we are in practice modifying the problem and, as a consequence, the bins
have no longer an identical capacity for each dimension. For this reason, the two
symmetry breaking strategies are incompatible.

4 Computational Results

In order to evaluate our approach, we have implemented the proposed decom-
position of multibin packing within the Gecode constraint system v.3.7.3 [4].
Note that Gecode has a very efficient implementation of the Shaw’s Bin Pack-
ing constraint [10]. In order to list every maximal cliques of the conflict graph
we used cliquer-1.21 that is the state-of-the-art exact clique finder for sparse
graphs [7]. Everything was compiled using the gnu-gcc v4.7.2 compiler. All the
tests were run on standard computer with Linux as operating system, with 4GB
of RAM and an AMD Opteron 2.4GHz CPU, but using a single thread and
limiting the process memory size to 1GB. Our implementation of the constraint
decomposition is available online2.

We have run experiments using combinations of the following decomposition:

multibin packing([yj,l], [xi], [wi,l]) =

bin packing([y1,l, . . . , ym,l], [xi], [wi,l]) ∀l ∈ K (7)

all different([xC ]) ∀C ∈ C (8)

yj,1 ≥ y(j+1),1 ∀j ∈ {1, . . . ,m− 1} (9)

where C is the collection of all maximal cliques of the conflict graph defined for
the given instance of multibin packing.

We denote by:

(A) the decomposition using only constraints (7)
(B) the decomposition using constraints (7) and (8)

2 http://github.com/stegua/binpacking/tree/master/release

http://github.com/stegua/binpacking/tree/master/release
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(C) the decomposition using constraints (7) and (9)
(D) the decomposition using constraints (7), (8), and (9)
(E) the decomposition using constraints (7), (8), and (5)

The rationale for studying decompositions (B) and (C) is to assess the impact
of the additional constraints (7) and (8), and for decompositions (D) and (E) is
to compare the two alternative symmetry breaking strategies.

In order to make a fair comparison between the different decomposition strate-
gies, in our computational results, we did not update the conflict graph for strat-
egy (E). In practice, constraints (8) are posted on the same collection of maximal
clique for method (B), (D), and (E).

We consider a set of instances taken from [2] that corresponds to randomly
generated instances with 18 items, 6 dimensions, and 6 bins. In order to have a
range of instances from “easy infeasible” to “easy feasible” while passing through
a “hard” phase transition, the instances differ on the tightness of the bin capac-
ities (i.e. the bin slacks), according to a parameter β (for the details on the
instances generation see [2]). The values of β range in {0, . . . 35}, and for each
value of β there are 52 instances, for a total of 1872. The phase transition hap-
pens for β ∈ {16, . . . , 24}.

Figures (1.a)–(1.d) show the average computation times in seconds (vertical
axis) in function of the percentage of bin slacks, that is, for value of β from 0
to 35. Plot (1.a) clearly shows that the hard instances correspond to values of β
ranging from 15 to 25, while the plots (1.b)–(1.d) show that:

– For the hard instances (1.b) and the easy infeasible instances (1.c) the de-
composition (E) that exploits both the all different constraints and the
variable fixing on the maximum clique, outperforms the other decomposi-
tions by a large margin: the average computation time is below 1 second
also for the instances with β = 20, and, hence, it is a simple and effective al-
ternative to the multibin packing constraint based on Multivalues Decision
Diagrams proposed in [2].

– For the easy infeasible (1.c) and the easy feasible instances (1.d), the sym-
metry breaking constraint (9) does not always pay off, while it plays an
important role on the hard instances (1.b), since decomposition (C) and (D)
are always more efficient than (A) and (B).

– As expected, for the easy feasible instances (1.d), the simplest decomposition
(A) is quite efficient, since in this case the filtering algorithms play a minor
role.

Figures (2.a) and (2.b) give a different view of the same results by showing the
empirical cumulative distributions of the fraction of instances solved as a function
of the run times. Figure (2.a) are the distributions for all the 1872 instances
proposed in [2], while Figure (2.b) considers only the instances with β = 20,
i.e. among the hardest instances. Again decomposition (E) outperforms all the
others by a large margin. The decomposition (B) based on the all different

constraints outperforms the simple decomposition (A) for a large number of
instances, but not for all of them. The decomposition (C) and (D) that exploit
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the symmetry breaking constraints are useful on the hard instances, as shown in
Figure (2.b), but in some cases the overhead of constraints (9) does not pay off.

Finally, since the main contribution of our approach is based on detecting max-
imal cliques in the conflict graph and on posting an all different constraint
for every clique found, Figure 3 characterizes the instances in terms of average
clique number and average clique size as a function of the bin slack. Note that
for the easy infeasible instances (i.e. β < 15), there are many and large cliques,
while for the easy feasible instances (i.e. β > 25) the cliques are few and rather
small (sometimes are not even present). Clearly, our decomposition approach is
better suited for instances with several large cliques.
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Abstract. Gutierrez and Meseguer show how to enforce consistency in BnB-
ADOPT+ for distributed constraint optimization, but they consider unconditional
deletions only. However, during search, more values can be pruned conditionally
according to variable instantiations that define subproblems. Enforcing consis-
tency in these subproblems can cause further search space reduction. We intro-
duce efficient methods to maintain soft arc consistencies in every subproblem
during search, a non trivial task due to asynchronicity and induced overheads.
Experimental results show substantial benefits on three different benchmarks.

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) have been applied in modeling
and solving a substantial number of multiagent coordination problems, such as meeting
scheduling [1], sensor networks [2] and traffic control [3]. Several distributed algo-
rithms for optimal DCOP solving have been proposed: ADOPT [4], DPOP [5], BnB-
ADOPT [6], NCBB [7] and others.

BnB-ADOPT+-AC/FDAC [8] incorporate consistency enforcement during search
into BnB-ADOPT+ [9], obtaining substantial efficiency improvements. Enforcing con-
sistency allows to prune some values, making the search space smaller. This previ-
ous work considers unconditional deletions only so as to avoid overhead in handling
assignments and backtracking. However, values that could be deleted conditioned to
some assignments will not be pruned with this strategy, so that search space reduction
opportunities are missed. In this paper, we propose an efficient way to maintain soft
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arc consistencies, considering any kind of deletions resulting from enforcing consis-
tency in asynchronous distributed constraint solving, something that—to the best of our
knowledge—has not been explored before.

A search-based constraint solving algorithm forms subproblems of the original prob-
lem by assignments. We maintain soft arc consistencies in each subproblem, so that
variable assignments during search are also considered in consistency enforcement.
As a result, we can explore more value pruning opportunities and thus further reduce
the search space. Gutierrez and Meseguer introduce an extra copy of cost functions in
each agent, so that search and consistency enforcement are done asynchronously. Our
contribution goes further maintaining soft arc consistencies in each subproblem dur-
ing search, so that (i) search and consistency enforcement are done asynchronously,
introducing some extra copies of cost functions; (ii) the induced overhead caused by
backtracking and undoing assignments and deletions is minimized. The asynchronicity
requirement and different cost measurements require us to introduce novel techniques
over those used in centralized CP. Experimentally, we show the benefits of our proposal
on benchmarks usually unamenable to solvers without consistency.

2 Preliminaries

DCOP. A DCOP is defined by 〈X ,D, C,A, α〉, where X = {x1, . . . , xn} is a set of
variables; D = {D1, . . . , Dn} is a set of finite domains for X ; C is a set of cost func-
tions; A = {1, ..., n} is a set of n agents and α : X → A maps each variable to
one agent. We use binary and unary cost functions only, which produce non-negative
costs. The cost of a complete assignment is the sum of all unary and binary cost func-
tions evaluated on it. An optimal solution is a complete assignment with minimum cost.
Each agent holds exactly one variable, so that variables and agents can be used inter-
changeably. Agents communicate through messages, which are never lost and delivered
in the order they were sent, for any agent pair.

DCOPs can be arranged in a pseudo-tree, where nodes correspond to variables and
edges correspond to binary cost functions. There is a subset of edges, called tree-edges,
that form a rooted tree. The remaining edges are called back-edges. Variables involved
in the same cost function appear in the same branch. Tree edges connect parent-child
nodes. Back-edges connect a node with its pseudo-parents and pseudo-children.

BnB-ADOPT and BnB-ADOPT+. BnB-ADOPT [6] is an algorithm for optimal DCOP
solving. It uses the communication framework of ADOPT [4] (agents are arranged in
a pseudo-tree), but it changes the search strategy to depth first branch-and-bound. It
shows improvements over ADOPT. Each agent holds a context, as a set of assignments
involving some of the agent’s ancestors that is updated with message exchanges. Mes-
sage types are: VALUE, COST and TERMINATE. A BnB-ADOPT agent executes this
loop: it reads and processes all incoming messages and assigns its value. Then, it sends
a VALUE to each child or pseudochild and a COST to its parent. BnB-ADOPT+ [9] is a
version of BnB-ADOPT that prevents from sending most redundant messages, keeping
optimality and termination. It substantially reduces communication.

Soft Arc Consistency. Let (i, a) represents xi taking value a, . is the lowest unac-
ceptable cost, Cij is the binary cost function between xi and xj , Ci is the unary cost
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function on xi values, Cφ is a zero-ary cost function (lower bound of the cost of any
solution). We consider the following local consistencies [10,11]:

– Node Consistency (NC): (i, a) is NC if Cφ + Ci(a) < .; xi is NC if all its values
are NC and ∃b ∈ Di s.t. Ci(b) = 0. P is NC if every variable is NC.

– Arc Consistency (AC): (i, a) is AC w.r.t. Cij if ∃b ∈ Dj s.t. Cij(a, b) = 0; b is
a support of a; xi is AC if all its values are AC w.r.t. every binary cost function
involving xi; P is AC if every variable is AC and NC.

– Directional Arc Consistency (DAC): (i, a) is DAC w.r.t. Cij , j > i, if ∃b ∈ Dj s.t.
Cij(a, b) + Cj(b) = 0; b is a full support of a; xi is DAC if all its values are DAC
w.r.t. every Cij ; P is DAC if every variable is DAC and NC.

– Full DAC (FDAC): P is FDAC if it is DAC and AC.

AC/DAC can be reached by forcing supports/full supports to NC values and pruning
values that are not NC. Supports can be forced by projecting the minimum cost from
its binary cost functions to its unary costs, and then projecting the minimum unary cost
into Cφ. Full supports can be forced in the same way, but first it is needed to extend from
the unary costs of neighbors to the binary cost functions the minimum cost required to
perform in the next step the projection over the value. The systematic application of
projection and extension does not change the optimum cost [10,11]. When we prune
a value from xi, we need to recheck AC/DAC on every variable that xi is constrained
with, since the deleted value could be the support/full support of a value of a neighbor
variable. So, a deleted value in one variable might cause further deletions in others. The
AC/DAC check must be done until no further values are deleted.

BnB-ADOPT+ and Soft Arc Consistencies. BnB-ADOPT+ has been combined with
AC and FDAC [8]. Search is based on BnB-ADOPT+, maintaining the same data and
communication structure. Soft arc consistencies are enforced on a copy of the original
cost functions, limited to unconditional deletions. This combination has caused a num-
ber of modifications in the original algorithm, both in messages and in computation.

Regarding messages, (i) COST messages include subtreeContr that aggregates the
costs of unary projections to Cφ made on every agent; (ii) VALUE messages include
. and Cφ; (iii) a new DEL message is added to inform of value deletions; when re-
ceived, neighbors recheck AC/FDAC, which may lead to further deletions; (iv) a new
UCO message is added when FDAC is enforced, to inform the unary costs needed for
enforcing DAC; when received, agents enforce DAC with any other higher constrained
agents and recheck FDAC, which may lead to further deletions.

Regarding computation, each agent holds one copy of constrained agents’ domains
and related binary cost functions for consistency enforcement. Handling value deletions
require some extra effort. Only the agent owner of a variable can modify its domain.

3 Maintaining Soft Arc Consistencies

We enforce AC and FDAC asynchronously in all subproblems during search by utilizing
additional copies of variable domains and cost functions in each agent. To explain our
Maintaining AC (MAC) and Maintaining FDAC (MFDAC) algorithms, we first outline
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Fig. 1. Left: The pseudo-tree of a DCOP with five variables, the variable domains and cost func-
tions copies they maintain. Right: Search tree (a/b domains), subproblems and classes of sub-
problems. Subproblems at the same depth belong to same class.

an agent classing scheme based on the position of an agent in the problem structure. The
scheme governs the required number of copies of variable domains and cost functions.
Second, we provide the information of messages in our methods and an overview of the
changes in the overall message handling mechanism after adopting our new methods
in BnB-ADOPT+. Third, we provide methods for reinitializing variable domains and
cost functions copies in an agent when the context of a subproblem changes. Such reini-
tialization is needed since conditional deletions are no longer valid. Thus, consistency
enforcement has to start from scratch again using the new context. Fourth, we propose a
new message type and the handling mechanism for backtracking, when an agent arrives
at the empty domain within a subproblem. This means that the assignments of some
ancestor agents cannot lead to the optimal solution and should be pruned. Fifth, we
reduce costs by transferring deletions from subproblems to inner subproblems. Sixth,
we present an ordering scheme and asynchronous messaging mechanism to ensure that
the two separate copies of the same cost function stored in the two constrained agents
are identical even in the presence of simultaneous consistency operations. Finally, we
describe how we ensure optimality and termination after introducing the new methods.

3.1 Classes of Subproblems

In BnB-ADOPT+ [9], all agents are organized in a pseudo-tree (Fig. 1 Left). The vari-
able ordering of the corresponding AND-OR search tree [6] (Fig. 1 Right) follows the
(partial) order defined in the pseudo-tree. When an agent is assigned a value, the de-
scendant agents together with the current assignments form a subproblem. Notations:
P 0 is the original DCOP; P is a subproblem of P 0; T 0 is a pseudo-tree that defines
the variable ordering in P 0; dj is the depth of agent j in T 0 as the distance from the
root node to j excluding back-edges; vars(P ) is the set of variables of P ; depth(P )
is the smallest depth among all variables in vars(P ); ancestors(P ) is the set of an-
cestor variables satisfying (1) they are in vars(P 0) but not in vars(P ), (2) they have
depths smaller than depth(P ), and (3) they are constrained with at least one variable
in vars(P ); context(P ) is the variable assignments of ancestors(P ); contextj , the
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context of agent j, is the set {(i, a, t)|i = j or i is an ancestor of j, a is agent i value
which is assigned to i at timestamp t}. Two contexts are compatible if no agent takes on
different values in the two contexts. Every subproblem P of P 0 is uniquely identified
by (depth(P ), ancestors(P ), context(P ), vars(P )).

Fig. 1 Right illustrates the search tree and subproblems of a DCOP with 5 agents.
Each circular node is the root node of a subproblem and there are 19 such subprob-
lems (including the original problem) in the example. The original problem P 0 is
(0, ∅, ∅, {1, 2, 3, 4, 5}) and (2, {1, 2}, {(1, b), (2, b)}, {4, 5}) (labeled Q in the figure)
is the subproblem of P 0 after instantiating agent 1 and agent 2 to value b. We define a
class of subproblems as follows. A subproblem P of P 0 is of Class d if depth(P ) = d.
We further define Class(d) = {P |depth(P ) = d}.

Fig. 1 Right also illustrates the classes of subproblems of the DCOP. There are four
classes of subproblems:Class(0) involves the original problem only.Class(1) includes
two subproblems (0, {1}, {(1, a)}, {2, 3, 4, 5}) and (0, {1}, {(1, b)}, {2, 3, 4, 5}),
Class(2) includes eight subproblems in which four are rooted at node 3 and the other
four are rooted at node 4. All Class(2) subproblems hold the assignment information
of agents 1 and 2 (their context). Class(3) includes eight subproblems which are all
rooted at node 5 and hold assignment information of agents 1, 2 and 4.

In BnB-ADOPT+-AC/FDAC [8], search and consistency enforcement are done asyn-
chronously: an extra copy of each cost function is used for consistency enforcement and
they do not interfere with the original copy used for search. We use the same idea for
MAC and MFDAC: we include extra copies of variable domains and cost functions for
enforcing consistency in different subproblems, but not a copy for each subproblem.
Each agent i of depth di will hold one copy Copy(d) for each class Class(d) of sub-
problems where d ≤ di. For instance, in Fig. 1 Left, agents keep the following copies of
cost functions and domains: agent 1 one copy, agent 2 two copies, agent 3 and 4 three
copies, and agent 5 four copies. Then, each agent i will hold di + 1 copies of variable
domains and cost functions and the space complexity of each agent is O(dhm2) where
d is the agent’s depth, h is the pseudo-tree’s height and m is the maximum domain size
of agents. These copies will play a key role in reinitializing domains and cost functions
when conditional deletions are no longer valid in a context change.

3.2 Maintaining Consistencies in All Subproblems: An Overview

To maintain soft arc consistencies in every subproblem, extra operations and informa-
tion exchanges are needed. The major additional operations include (1) reinitialization,
(2) backtracking to the culprit when an empty domain is detected and (3) transferring

Table 1. Messages of AC, FDAC, MAC and MFDAC. New fields are underlined. DEL messages
contain ACC or DACC depending on the AC or FDAC consistency level enforced.

AC/FDAC MAC/MFDAC
VALUE(src,dest,value,threshold,�,Cφ) VALUE(src,dest,value,threshold,�,Cφ[],context)

COST(src,dest,lb,ub,reducedContext,subtreeContr) COST(src,dest,lb,ub,context,subtreeContr[])
DEL(src,dest,value,ACC|DACC) DEL(src,dest,depth,values[],context,ACC[]|DACC[])
UCO∗(src,dest,vectorOfExtensions,ACC) UCO∗∗(src,dest,depth,vectorOfExtensions,context,ACC)

BTK(src,dest,targetDepth,context)
∗ Only in FDAC ∗∗ Only in MFDAC
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procedure ProcessVALUE(msg)
do the work as in BnB-ADOPT+

Reinitialize(msg.src,msg.context)
update� and Cφ if applicable

procedure ProcessCOST(msg)
do the work as in BnB-ADOPT+

Reinitialize(msg.src,msg.context)
aggregate Cφ from msg.subtreeContr
update Cφ if applicable

procedure ProcessDEL(msg)
Reinitialize(msg.src,msg.context)
d← msg.depth
vars← set of variables i in contextself where di ∈ [0,msg.depth− 1]
if values of vars in msg.context are compatible with those in contextself then

for d′ = d→ dself do
delete msg.values[] from msg.src’s domain in Copy(d′)
undo disordered operations in Copy(d′) if necessary
perform projection in Copy(d′)
update ACC counter if necessary

procedure ProcessUCO(msg)
Reinitialize(msg.src,msg.context)
d← msg.depth
vars← set of variables i in contextself where di ∈ [0,msg.depth− 1]
if values of vars in msg.context are compatible with those in contextself then

if ACCself→msg.src = msg.ACC then
perform extension in Copy(d)
update DACC counter if necessary

Fig. 2. Pseudocode for handling VALUE, COST, DEL and UCO messages

deletions to subproblems. Reinitialization is needed for ensuring the correctness of the
algorithm. Backtracking to the culprit and transferring deletions to subproblems are
not necessary for correctness but they can improve performance. Besides, to ensure the
agents maintain the same cost functions in each copy, Gutierrez and Meseguer [12] pro-
posed to include two new messages to synchronize deletions. However, these messages
introduce an extra overhead and slow down the consistency enforcement. We propose
a new method to allow agents to undo and reorder some of their operations in order to
ensure identical cost functions copies.

Consistency enforcement in each subproblem is similar to that of Gutierrez and
Meseguer [8], in which consistency is only enforced in the copy for the original prob-
lem. In our case, consistency is enforced in the copy for every class of subproblems at
the same time. Extra information is embedded in the existing messages (TERMINATE
message same as the one in BnB-ADOPT+ and UCO only in FDAC and MFDAC) and
only one new message type (BTK) is added. Table 1 summarizes the information per
type. Fig. 2 shows the pseudocode for handling these messages (pseudocode for BTK
appears in Section 3.4).

When an agent receives a VALUE or COST message, it first performs the BnB-
ADOPT+ process, and then it checks for reinitialization. When an agent receives a
DEL message, it does the following steps (1) reinitialization checking, (2) compatibil-
ity checking, (3) value deletions, (4) maintaining identical cost function copies, (5) pro-
jections and (6) update projection counter. Similarly, when an agent receives an UCO
message, it checks for reinitialization first and then performs the extension and exten-
sion counter update. After an agent i has processed a VALUE, COST, DEL or UCO
message, AC/DAC may be re-enforced in Copy(d) where d ∈ [1, di] if (1) Copy(d) is
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reinitialized, (2) a better . or Cφ is found in Copy(d), (3) some values are deleted in
Copy(d), and (4) some unary costs are increased in Copy(d) (only apply for DAC).

3.3 Reinitialization

When enforcing consistencies in a subproblem P (excluding the original problem),
the conditional deletions generated depend on the variable assignments information
(context(P )) that P holds. These conditional deletions may not occur in other sub-
problems in Class(depth(P )), when the variable assignments have changed. There-
fore, conditionally deleted values have to be recovered when values of ancestor agents
change. When an agent i ∈ ancestors(P ) of a subproblem P in Class(d) changes its
value, the context no longer matches that of P . Search should be now switched to an-
other P ′ ∈ Class(d) such that context(P ′) matches the new value of agent i and other
existing assignments. In addition, the copies of cost functions owned by the agents in
vars(P ′) should be reset using the corresponding copies from upper classes and up-
dated with the variable assignments in context(P ′). Otherwise, the search algorithm
will search for solution based on obsolete value pruning information and may result in
suboptimal solution. This rationale justifies our next rule.

Rule 1. When an agent i changes its value, all agents j ∈ vars(P ) where P ∈ {P ′|i ∈
ancestors(P ′)} should reinitialize Copy(d) where di < d ≤ dj to be the correspond-
ing subproblem based on the updated context. The reinitialization in j is done in a
top-down sequence as follows. For d = di + 1 to dj : (1) Copy(d) = Copy(d − 1);
(2) Transform each binary cost function Cjk where k ∈ ancestors(P ′) to unary cost
functions Cj by assigning each k to value a where (k, a) ∈ context(P ′).

Next we describe how to implement Rule 1 in BnB-ADOPT+ with MAC and MF-
DAC. Rule 1 affects an agent when there is a context change. We use VALUE, COST,
DEL and UCO messages to carry the context information.

Receiving a VALUE message always signifies a context change in i’s parent or
pseudo-parent. Thus, agent i always performs reinitialization before deciding whether
to change its own value. Receiving a COST message from any of its children may cause
a context change. Agent i should always first compare the timestamps of the child’s con-
text and i’s own context. If the child’s context is older than or equal to i’s context, i per-
forms nothing. Otherwise, there is a context change and i will perform reinitialization
before performing other BnB-ADOPT+ operations. When receiving a DEL or UCO
message, an agent performs similar checking before proceeding to consistency enforce-
ment operations—if any—. Strictly speaking, reinitialization in an agent is needed only
when handling VALUE and COST messages to ensure correctness of the solving result;
skipping the reinitialization step for DEL and UCO messages will only miss pruning
opportunities, and thus losing efficiency.

Agents need to have the context of all ancestors to check for context changes and
to do reinitialization. In our VALUE, COST, DEL and UCO messages we include the
context of the sender agent, instead of the agent’s reduced context as used in BnB-
ADOPT+, which does not necessarily contain the information of all ancestors.

Fig. 3 shows how to reinitialize, and Reinitialize(src,contextsrc) is called
whenever an agent self receives a VALUE, COST, DEL or UCO message from src
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procedure Reinitialize(src,contextsrc)
mindepth =∞
for d = dsrc → 0 do

if d >= dself then continue
var ← variable of depth d in contextself
if Time(contextsrc, var) > Time(contextself , var) then

contextself (var)← contextsrc(var)
mindepth← d + 1

if mindepth �=∞ then
for d′ = mindepth → dself do

Copy(d′)← Copy(d′ − 1)
var′ ← variable of depth (d′ − 1) in contextself
TransformBinaryToUnary(Copy(d′), var′, contextself )

function Timestamp(context, var) return t where (var, a, t) ∈ context

procedure TransformBinaryToUnary(Copy,var, context)
if self is constrained with var and (var, a, t) ∈ context then

for each b ∈ Dself do
Copy.Cself(b)← Copy.Cself(b) + Copy.Cself,var(b, a)

Fig. 3. Pseudocode for performing reinitialization

(as shown in Fig. 2 and 3). When self receives contextsrc, it first checks whether the
variable assignments that src holds are the latest information by comparing the times-
tamps of each variable assignment in contextsrc and contextself . If the information
in contextsrc is more updated, self updates contextself according to contextsrc. If
self ’s context is updated, it has to perform reinitialization starting from the class of
subproblemsClass(mindepth) where mindepth is the smallest depth di and agent i’s
context has been changed in contextself . The operations for reinitializing Copy(d) are
described in Rule 1. We do not reinitialize the subproblem from the original problem
but by duplicating from Copy(d − 1). Thus the works done in the current subproblem
of Class(d− 1) will not have to be repeated in Class(d).

3.4 Backtracking

Enforcing consistencies in a subproblem P can lead to an empty domain in some agent
of P . In this case, context(P ) is inconsistent and it should be changed. Upon back-
tracking, the current assigned value a to the parent, say j, of the root of P should be
changed: value a is removed from Dj , and agent j can then pick another value from
Dj . This justifies our next rule.

Rule 2. If an agent i obtains an empty domain in the subproblem P during consistency
enforcement, the agent j ∈ ancestors(P ) with dj = depth(P )− 1 can delete its value
a from its domain in Copy(dj), where (j, a) ∈ context(P ), provided that contextj is
compatible with context(P ).

We add a new message BTK to notify backtrackings. When agent i obtains an empty
domain in P , i sends a message BTK(i,k,depth(P ) − 1, context(P )) to its parent k.
The BTK message is sent to the parent agent for propagation because agents can only
communicate with constrained agents but the targeted agent may not be a constrained
agent. Therefore, this message is propagated up the pseudo-tree until it reaches agent
j ∈ ancestors(P ) where dj = depth(P )− 1.

Fig. 4 shows how to handle an incoming BTK message. When an agent other than
j receives a BTK message, it forwards the message to its parent. When j receives that
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procedure ProcessBTK(msg)
if dself �= msg.targetDepth then

sendMsg:(BTK, self, parent,msg.targetDepth, msg.context)
else

if msg.context is compatible with contextself then
DeleteValue(Copy(msg.targetDepth), a) where (self, a, t) ∈ msg.context

Fig. 4. Pseudocode for handling the BTK message

message, j checks whether the attached context is compatible with its own context. If
yes, it knows that its current assignment (j, a) ∈ context(P ) will not lead to an optimal
solution and it deletes a from Copy(dj). Otherwise, j ignores the message.

3.5 Transferring Deletions to Subproblems

Redundant deletions may appear in embedded subproblems. It is easy to see that if P ′ is
a subproblem of P , the values deleted in P can also be deleted in P ′. We can transfer the
deletions in P to P ′ and no need to send out redundant information of these deletions
for P ′. Transferring deletions to subproblems not just avoid redundant DEL messages,
it may also increase the chance of reducing more search space. Since the consistency
enforcement in different subproblem is different, the suboptimal values found in P may
not be found in P ′. If we transfer these suboptimal values from P to P ′, more pruning
opportunities may be found in P ′.

When an agent deletes values in subproblem P , depth(P ) = d, it can also apply the
deletions to subproblems P ′ where depth(P ′) > d. A DEL message is labeled by d.
When other agents receive that message, they apply the deletions to all the subproblems
P ′ s.t. depth(P ′) ≥ d. The pseudocode of transferring deletions to subproblems when
receiving a DEL message is covered in the ProcessDEL() procedure in Fig. 2.

3.6 Keeping Cost Functions Copies Identical

Each of the two agents constrained by a cost function holds a separate copy of the cost
function for consistency enforcement. It is thus of paramount importance to ensure the
two copies being identical but this task is made difficult by the asynchronous nature of
the search algorithm. Fig. 5 gives a simple example of simultaneous deletions [12] in
constrained agents i and j, which cause projections from Cij to Ci in agent j and Cj

in agent i respectively. The asynchronous nature of message exchanges can result in
the projections/extensions performed in different order and thus different Cij copies in
agents i and j respectively.

Gutierrez and Meseguer [12] propose to include two new messages to synchronize
deletions but the overhead is high. by allowing one of the two agents to undo and reorder
the operations. With this Undo Mechanism we keep the asynchronicity and avoid extra
messages. We give preference to one of the two agents. The operations will be done in
the order of the preferred agent, while the non-preferred one must undo the operations
that do not follow that order.

Let us consider two constrained agents i and j, and the cost function between them
Cij ; i and j each holds a copy of it, denoted by Ci

ij and Cj
ij respectively. Both agents

maintain AC. The projection from Cij to Ci has to be done on both Ci
ij and Cj

ij . Ci
ij ⇒
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Fig. 5. Left: issue by two simultaneous deletions Right: proposed solution when maintaining AC

Ci represents i performs projection from Cij to Ci on i’s copy and Cj
ij ⇒ Ci represents

j performs projection fromCij to Ci on j’s copy. If value v is deleted fromDi and value
w from Dj simultaneously, both i and j will process these deletions (which imply each
agent projecting from Cij to each other) and they will send DEL messages to each other
(Fig. 5 Left). If i is the preferred agent, upon receipt of the DEL message from j, it
performsCi

ij ⇒ Ci and updates Ci
ij . However, when j receives the DEL message from

i, if j realizes that it has done more projections Cj
ij ⇒ Ci than the agent i, then it has to

undo some of these projections, until both have done the same number of projections.
The proposed solution appear in Fig. 5 Right. The same ordering of operations in both
agents is achieved as follows. Agent i keeps a counter ACCj→i to record the number
of projections Ci

ij ⇒ Ci (and DACCj→i to record the number of extensions from
agent j to i in FDAC/MFDAC cases). These counter and stack are stored in the copy
of each class of subproblems. Agent j keeps a stack P j

j→i that records each projection

operation Cj
ij ⇒ Ci. The operations of the Undo Mechanism on Cij between agents i

and j for AC and MAC are:
Agent i:

– When there is a value deletion, perform projection Ci
ij ⇒ Cj . Attach ACCi

j→i in a
DEL message and send it to j. Then, reset ACCi

j→i to zero.
– When i receives a DEL message from j, perform projectionCi

ij ⇒ Ci and increment
ACCi

j→i by 1.

Agent j:

– When there is a value deletion, perform projection Cj
ij ⇒ Ci. Push this projection in

the stack P j
j→i. Send the DEL message to i.

– When j receives a DEL message from i, pop and undo |P j
j→i|−ACCi

j→i number of

projection records from the stack P j
j→i, where |P j

j→i| is the size of the stack P j
j→i,

and clear the stack. Then, the DEL message is processed, projecting Cj
ij ⇒ Cj . If

there is at least one pop/undo performed, then perform projection Cj
ij ⇒ Ci.

To maintain FDAC between two constrained agents i and j, DAC is maintained in one
direction (e.g. j to i) and AC in the other (e.g. i to j). In FDAC, preference should be
given to agent i if AC is enforced from Cij to Cj since the enforcement of DAC from j
to i is ensured under the assumption that i is AC w.r.t. Cij [10] (in AC, any agent i or j
may be preferred). Due to space limits, we skip the details for FDAC and MFDAC.
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3.7 Optimality and Termination

Enforcing MAC and MFDAC during BnB-ADOPT+ search maintains the optimality
and termination properties of BnB-ADOPT+, as we see next.

Projections and extensions to maintain MAC and MFDAC are done on a copy of the
cost functions. In this way, the search process is based on the unmodified original copy
of the cost functions. The only changes with respect to the BnB-ADOPT+ operations
come from the fact that inconsistent values discovered by local consistency enforcement
are removed from the domain of agents.

Termination is justified as follows. BnB-ADOPT+ always terminates [6,9] and the
only change that BnB-ADOPT+-MAC introduces is AC enforcement after variable as-
signments. AC enfocement terminates, because the number of agents involved is finite
and their domains are also finite. When enforcing AC in a particular subproblem, after
a finite amount of time all subproblem variables become AC (possibly after some value
deletions) reaching a fixpoint.

Optimality is justified as follows. In the case of unconditional deletions, deleted val-
ues are suboptimal values which will not be present in the optimal solution, so it is
completely legal to remove them. In the case of conditional deletions, deleted values
are values proved inconsistent conditioned to the current assignment of ancestor agents.
They are properly restored using a reinitialization mechanism when the assignments of
ancestors change. Operation is as follows. An agent may change its assigned value, se-
lecting another one from its domain, only after it receives a VALUE or COST message.
Reinitialization is done whenever an agent receives a VALUE or COST message and
there is context change. Thus, reinitialization is guaranteed to be performed before any
agent changes its value, so that no obsolete value deletions will be considered. Then, in
both cases all solutions potentially optimal are visited. Next we detail these operations,
showing they do not affect optimality and termination.

In MAC (both unconditional and conditional deletions), we perform projections over
the cost functions (projections from binary to unary cost functions, and from unary to
Cφ). Projection is an equivalence preserving transformation [11]. Its application main-
tains the optimum cost and the set of optimal solutions. In our approach (distributed
context), we assure identical copies of any binary cost function in the two involved
agents: cost projections are performed in the same order in the two agents (Section
3.6). Therefore, costs cannot be duplicated when projections are performed inside each
agent (equivalence is preserved) or when costs are propagated to other agents. Since
each agent contributes to Cφ projecting on its unary cost functions, we can conclude
that projections of different agents into Cφ does not duplicate costs. Proving that a
value a of variable xi is not NC involves its unary cost Ci(a) and Cφ. Since we have
seen that, neither Ci(a) nor Cφ contains duplicated costs, the NC detection is correct
and a’s deletion is legal. Because of the NC definition, the first found optimal solution
can never be pruned, since the cost of their values will never reach ..

In the case of conditional deletions, the reinitialization mechanism (Section 3.3) en-
sures the correctness of values deletions in different copies. For each copy, projections
and deletions are performed conditioned to the ancestor assignments. For example, in
Copy(0), projections are performed contemplating no previous assignments, and only
unconditional deletions are detected; in Copy(1), inconsistent values are discovered
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Fig. 6. Directions of enforcing AC/FDAC consistencies

and deleted conditioned to the first-level ancestor’s assignment; in Copy(2), inconsis-
tent values are deleted conditioned to the first and second level agent’s assignment, and
so on. Each time an agent of depth d changes its variable assignment, the Copy(d) of
descendant agents are restored to Copy(d− 1). In this way, all modifications that were
performed according to the previous variable assignment are undone.

Regarding values pruned by backtracking messages, the justification of its correct-
ness is as follows. When an empty domain is found in Copy(d) in one agent, we have
discovered that the current assignment of the ancestor at depth d is inconsistent, and so
it must be removed. This is implemented by sending a BTK message to that ancestor.
Note that only BTK messages containing a compatible context are accepted in the an-
cestor. In this way, it is assured that the ancestor agent changes its value if the empty
domain of the descendant agent was generated considering a compatible context. Oth-
erwise, either the descendant or the ancestor is missing one or several messages that
will properly update their contexts. Upon receipt of these messages, proper actions,
depending on the missing messages, will be taken by the ancestor/descendant.

Regarding MFDAC, in addition to projections, we have to take into account exten-
sions, another equivalence preserving transformation [10]. Our approach (distributed
case) is correct, since each agent can extend its own unary costs only. So no cost du-
plication may occur. The process is done in such a way that the copies of any binary
cost function are kept identical in the two involved agents. From this point on, only
projections are done, and arguments from previous paragraphs apply.

4 Experimental Results

We evaluate the efficiency of BnB-ADOPT+-MAC/MFDAC (abbrev as MAC/MFDAC)
by comparing to BnB-ADOPT+-AC/FDAC (abbrev as AC/FDAC). For AC and MAC
algorithms, AC is enforced in both directions of each binary cost function. The direc-
tion of DAC enforcement matters in FDAC and MFDAC algorithms. Fig. 6 shows the
direction of AC and DAC enforcement between agents, where i (j) is the parent or
pseudo-parent of j (k). For FDAC algorithm, we use the direction as shown in Fig. 6
Middle. DAC is enforced bottom-up so that the unary costs are pushed upward so as
to hopefully increase the opportunities of pruning more values in upper agents (prun-
ing values in upper agents is more preferred because BnB-ADOPT+ is a depth-first
search algorithm). For MFDAC, we evaluate both directions: MFDAC1 uses the di-
rection shown in Fig. 6 Middle and MFDAC2 uses the direction in Fig. 6 Right. We
evaluate both because of the possible tradeoff between backtracking and direct pruning
in upper agents. With MFDAC1, unary costs will float upward and increase the opportu-
nities of pruning values directly in upper agents. However, MFDAC2 pushes the unary
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costs downward and increases the opportunities of reaching empty domains in lower
agents, which can possibly increase the pruning opportunities in upper agents.

Our simulator runs in cycles, during which every agent reads its incoming messages,
performs computation and sends its outcoming messages. Without delays, a message
sent in a cycle is delivered in the next cycle. To make a more realistic evaluation, a ran-
dom delay of [0, 50] cycles is introduced to each message in our experiments. Besides,
we have an extensive number of instances over three benchmarks. Since AC is too slow
to generate results for hard or large-scale problems within a reasonable time, we set a
2 × 108 NCCCs limit in our simulator. One can expect that setting the NCCCs limit is
to our disadvantage since MAC/MFDAC can improve even more on harder or larger-
scale problems (normally taking bigger effort to solve but some of these problems are
skipped because of the NCCCs limit). Three measures of performance are thus com-
pared: (1) the number of messages to evaluate the communication cost, (2) the number
of non-concurrent constraint checks (NCCCs) to evaluate the computation effort, and
(3) the number of instances that can be solved within the 2×108 NCCCs limit to evalu-
ate the general efficiency of each algorithm. In addition, we assume that each randomly
delayed cycle costs 100 NCCCs and it is counted in the total NCCCs accordingly.

We test our algorithms on three sets of benchmarks: binary random DCOPs [8],
Soft Graph Coloring Problems (SGCP) and Radio Link Frequency Assignment Problem
(RLFAP) [13]. We run 50 instances for each parameter setting. Results are reported in
Tables 2, 3 and 4. The columns show (from left to right) the problem, algorithm, the
number of instances that can be solved within limit, the number of commonly solved
instances (the number of messages and NCCCs are averaged over this number), total
number of messages, number of VALUE, COST, DEL, BTK and UCO messages, and
NCCCs. The best results for each measure are highlighted in bold.

Binary random DCOPs [8] are characterized by 〈n, d, p〉, where n is the number
of variables, d is the domain size and p is the network connectivity. We have gener-
ated random DCOP instances: 〈n = 10, d = 10, p ∈ {0.3, 0.4, 0.5, 0.6}〉. Costs are
selected from a uniform cost distribution. Following Guiterrez and Meseguer [8], two
types of binary cost functions are used, small and large. Small cost functions randomly
extract costs from the set {0, ..., 10} while large ones randomly extract costs from the
set {0, ..., 1000}. The proportion of large cost functions is 1/4 of the total number of
cost functions. Results are reported in Table 2.

Soft Graph Coloring Problems are the softened version of graph coloring problems
by allowing the inequalities to return costs from the violation measure M2 − |vi −
vj |2, where M is the maximum domain size, vi and vj are the values of agent i and j
respectively. Each SGCP is also characterized by 〈n, d, p〉, where n is the number of
variables, d is the domain size and p is the network connectivity. We evaluate four sets
of instances: 〈n ∈ {6, 7, 8, 9}, d= 8, p = 0.4〉. Results are shown in Table 3.

We generate the Radio Link Frequency Assignment Problems according to two small
but hard CELAR sub-instances [13], which are extracted from CELAR6. All instances
are generated with parameters 〈i, n, d〉, where i is the index of the CELAR sub-instances,
n is an even number of links, and d is an even number of allowed frequencies. For each
instance, we randomly extract a sequence of n links from the corresponding CELAR
sub-instance and fix a domain of d frequencies. If two links are restricted not to take



378 P. Gutierrez et al.

Table 2. Random DCOPs

p Algorithm
#instances

solved within
NCCCs limit

Avg. over
(common
instances)

#Msgs #VALUE #COST #DEL #BTK #UCO NCCCs

0.3

AC 50

50

6,802 1,619 5,099 59 0 0 5,622,762
FDAC 50 4,645 1,062 3,389 117 0 53 3,857,078
MAC 50 5,610 1,124 3,569 760 134 0 4,203,119

MFDAC1 50 3,656 726 2,346 338 13 184 2,738,511
MFDAC2 50 5,036 923 2,911 495 249 435 3,511,191

0.4

AC 47

47

56,632 11,581 44,946 79 0 0 42,210,453
FDAC 48 39,560 8,043 31,188 195 0 105 29,477,148
MAC 50 36,309 6,692 25,564 2,399 1,628 0 24,845,040

MFDAC1 50 28,493 5,271 20,541 1,430 236 967 19,236,541
MFDAC2 50 29,814 5,116 20,255 1,523 1,441 1,451 19,434,413

0.5

AC 35

34

106,194 20,796 85,260 106 0 0 78,603,224
FDAC 38 75,074 14,412 60,231 247 0 152 55,129,851
MAC 43 63,571 11,238 46,279 2,694 3,329 0 43,949,687

MFDAC1 44 54,564 9,490 39,791 2,926 286 2,018 36,699,194
MFDAC2 46 57,150 9,497 39,535 2,245 3,651 2,191 37,488,828

0.6

AC 9

9

124,222 26,839 97,268 86 0 0 91,145,921
FDAC 16 90,850 14,867 55,465 277 0 211 51,437,525
MAC 20 47,586 8,973 35,153 2,143 1,288 0 34,059,166

MFDAC1 24 37,697 6,883 27,900 1,141 463 1,255 27,122,566
MFDAC2 20 45,988 8,093 31,699 2,011 2,047 2,109 31,074,814

Table 3. Soft Graph Coloring Problems

n Algorithm
#instances

solved within
NCCCs limit

Avg. over
(common
instances)

#Msgs #VALUE #COST #DEL #BTK #UCO NCCCs

6

AC 50

50

459 123 321 8 0 0 572,082
FDAC 50 376 91 240 29 0 7 438,002
MAC 50 358 81 190 67 11 0 361,607

MFDAC1 50 287 51 127 54 9 30 248,106
MFDAC2 50 367 71 161 70 17 40 333,807

7

AC 50

50

1,349 370 961 9 0 0 1,534,451
FDAC 50 875 225 594 37 0 8 974,678
MAC 50 888 213 507 143 14 0 841,000

MFDAC1 50 628 127 314 95 20 51 521,659
MFDAC2 50 883 185 437 143 27 81 733,084

8

AC 50

50

8,611 2,072 6,523 5 0 0 8,562,373
FDAC 50 5,764 1,359 4,354 29 0 11 5,727,394
MAC 50 4,955 1,044 3,166 625 109 0 4,261,463

MFDAC1 50 4,359 905 2,942 287 61 138 3,799,575
MFDAC2 50 4,695 857 2,615 613 163 437 3,553,383

9

AC 46

46

39,199 8,659 30,525 3 0 0 32,353,604
FDAC 46 30,189 6,580 23,559 23 0 14 24,858,245
MAC 47 23,164 4,554 15,882 2,545 170 0 17,448,119

MFDAC1 47 25,738 5,265 19,124 795 69 453 19,829,021
MFDAC2 47 20,219 3,547 12,624 2,081 493 1,461 13,863,427

frequencies fi and fj with distance less than t, we measure the costs of interference
using a binary cost function max(0, t − |fi − fj|). Results of evaluating three sets of
instances, A〈0, 10, 12〉, B〈1, 6, 6〉, and C〈1, 6, 8〉, are reported in Table 4.

As we see in Tables 2, 3 and 4, MAC, MFDAC1 and MFDAC2 substantially further
reduce the total number of messages and NCCCs, and be able to solve the same number
or more instances within the NCCCs limit over all three benchmarks. Moreover, MAC
outperforms FDAC in almost all cases even when MAC is maintaining a weaker form
of consistency than FDAC. Although our methods introduce overhead, i.e., increase in
the number of DEL, BTK and UCO messages, the reduction in the number of VALUE
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Table 4. Radio Link Frequency Assignment Problems

Algorithm
#instances

solved within
NCCCs limit

Avg. over
(common
instances)

#Msgs #VALUE #COST #DEL #BTK #UCO NCCCs

A

AC 50

50

28,837 5,064 23,751 0 0 0 24,522,945
FDAC 50 28,894 5,069 23,790 0 0 13 24,621,897
MAC 50 22,840 ,3802 16,540 1,954 522 0 17,447,513

MFDAC1 50 18,054 2,937 12,000 1,606 378 1,090 13,051,121
MFDAC2 50 19,233 2,888 11,711 1,861 1,250 1,501 12,845,773

B

AC 21

21

56,943 10,466 46,455 11 0 0 67,658,716
FDAC 21 57,964 10,635 47,267 39 0 9 69,091,598
MAC 50 29,120 4,930 21,521 1,061 1,596 0 37,861,737

MFDAC1 50 18,080 3,228 13,900 403 433 100 20,881,354
MFDAC2 50 25,430 4,490 19,489 541 702 197 2,937,7041

C

AC 18

18

29,385 5,505 23,853 15 0 0 34,158,516
FDAC 18 31,133 5,814 25,250 47 0 9 36,259,302
MAC 50 13,914 2,464 10,787 297 356 0 15,890,040

MFDAC1 50 11,964 2,183 9,394 177 123 71 14,067,760
MFDAC2 50 13,454 2,431 10,496 220 207 89 15,731,062

and COST messages (and thus search space) outweighs the overhead. Therefore, we
conclude that maintaining soft arc consistencies during search is beneficial.

We also observe that the improvement of MFDAC over AC and FDAC in random
DCOPs increases as constraint density increases. More constraints in the problem im-
plies more pruning opportunities and thus substantial smaller search space. Similar ob-
servations cannot be concluded for Soft Graph Coloring and Radio Link Frequency
Assignment Problems since these problems have particular problem structures affect-
ing the efficiency and power of consistency enforcement.

To compare the different directions of DAC enforcement, we can see MFDAC1 out-
performs MFDAC2 in some instances while MFDAC2 outperforms MFDAC1 in oth-
ers. For random DCOPs and Radio Link Frequency Assignment Problem, MFDAC1
performs the best in almost all instances. However, for Soft Graph Coloring Problem,
MFDAC2 performs better for instances with n = 9 and MFDAC1 performs better on
another three sets of instances. From these results we can see that the directions of DAC
enforcement can affect the efficiency and the effects are problem-specific.

5 Conclusion

In this paper, we propose methods to maintaining soft arc consistencies in every sub-
problem during search. In order to preserve the asynchronicities of search and consis-
tency enforcement, we propose to include extra copies (a small number) of variable
domains and cost functions. Besides, we minimize the induced overhead caused by
backtracking and undoing assignments and deletions by attaching information in the
existing messages rather than creating new ones. We present the issues and solutions for
maintaining consistencies in subproblems and ensure their correctness: (i) reinitializing
variables’ domains and cost functions after context changes in subproblems to ensure
the search algorithm would not search on values using obsolete value pruning informa-
tion, (ii) backtracking when an agent arrives at the empty domain within a subproblem
so as to prune the value in upper agents which could not lead to an optimal solution,
(iii) transferring deletions from subproblems to further subproblems to avoid redundant
messages, and (iv) asynchronous methods to ensure identical cost functions copies in
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different agents by ensuring the ordering of consistency operations between every two
agents. Our experimental results show that our methods can substantially further reduce
the communication and computation efforts compared to BnB-ADOPT+-AC/FDAC,
which only consider unconditional deletions. These results allow us to consider the
proposed methods as important steps to maintain consistencies in every subproblems
asynchronously during search and improve the efficiency of optimal DCOP solving. As
a future work, we may go further to maintain the even stronger Existential Directional
Arc Consistency (EDAC) [14] during distributed and asynchronous search, but preserv-
ing privacy is a concern [15]. The study of how DAC enforcement directions affect
efficiency and the possible heuristics for such ordering is a worthwhile direction.
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Abstract. We improve an existing propagator for the context-free
grammar constraint and demonstrate experimentally the practicality of
the resulting propagator. The underlying technique could be applied to
other existing propagators for this constraint. We argue that constraint
programming solvers are more suitable than existing solvers for verifi-
cation tools that have to solve string constraints, as they have a rich
tradition of constraints for membership in formal languages.

1 Introduction

For constraint programming (CP) languages, user-level extensibility has been an
important goal for over a decade. Global constraints for formal languages are
promising for this purpose. The Regular constraint [16] requires a sequence of
decision variables to belong to a regular language, specified by a deterministic
finite automaton (DFA) or a regular expression; the Automaton constraint [2]
takes a DFA with counters. The CFG constraint [17,20] requires a sequence of
decision variables to belong to a context-free language, specified by a context-free
grammar (CFG). For many applications, the length n of a sequence constrained
to belong to some formal language is known in advance. Since every fixed-size
language is finite and hence regular, the need for a CFG constraint in such
applications depends on the grammar and the complexities of the propagators. It
takes O(n |A|) time to achieve generalised arc consistency (GAC) for a Regular

constraint with an automaton A, but O(n3 |G|) time for a CFG constraint with a
grammar G. In [12], the authors introduce a reformulation of a grammar into an
automaton for a fixed length n, and show that this reformulation is preferable if
the resulting automaton is not huge. However, their reformulation itself needs a
CFG propagator to achieve domain consistency at the root of the search tree so
that the resulting automaton is smaller. In [7], the authors introduce a forklift
scheduling problem, where there is no tractable reformulation of a grammar into
an automaton as the size of the resulting automaton is exponential in n. Hence,
a CFG propagator is necessary in this case. To the best of our knowledge, no
CP solver includes the CFG constraint.

In the analysis, testing, and verification of string-manipulating programs, con-
straints on sequences (strings) of decision variables arise. Kieżun et al. [14] argue
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that custom string solvers should not be designed any more, for sustainabil-
ity reasons, since powerful off-the-shelf solvers are available: their tool, Hampi,
translates a Regular or CFG constraint on a fixed-size string into bit-vector con-
straints so as to solve them using the SMT solver STP [6], much more efficiently
than three custom tools and even up to three orders of magnitude faster than the
SAT-based CFGAnalyzer tool [1]. The solver Kaluza [19] handles constraints
over multiple string variables, unlike the restriction of Hampi to one such vari-
able, and it also generates bit-vector constraints that are passed to STP. Fu et
al. [5] argue that it is important to model regular replacement operations, which
are not supported by Hampi and Kaluza, and introduce the custom string
solver Sushi, which models string constraints via automata instead of a bit-
vector encoding. So the question arises whether the formal language constraints
of CP are competitive with Hampi, Kaluza, and Sushi.

In this paper, we revisit the CFG constraint and make the following contri-
butions :

– We improve the CFG propagator of [11], which improves the one of [20],
by exploiting an idea of [14] for reformulating a grammar into a regular
expression for a fixed string length. We conjecture that this idea also applies
to the CFG propagators of [7,13,17,18]. (Section 3)

– We implement our CFG propagator for the Gecode [8] open-source CP
solver, and demonstrate experimentally its practicality. (Sections 4.1 to 4.3)

– We show that the CP solver Gecode with our CFG propagator (or even its
ancestor [11]) systematically beats Hampi and Kaluza, by up to four orders
of magnitude, on Hampi’s benchmark (Section 4.3). We show that Gecode
with the built-in Regular propagator systematically beats Kaluza and
Sushi, by a factor up to 130, on Sushi’s benchmark (Section 4.4).

2 Background

We first give some background material on grammars (e.g., see [10]).

2.1 Context-Free Grammars

A CFG is a tuple 〈Σ,N, P, S〉, where Σ is the alphabet and any value v ∈ Σ is
called a terminal, N is the finite set of non-terminals, P ⊆ N × (Σ ∪N)

∗
is the

finite set of productions, and S ∈ N is the start non-terminal. A CFG is said to
be in Chomsky normal form (CNF) iff P ⊆ N ×

(
Σ ∪N2

)
. Every CFG can be

converted into an equivalent grammar in CNF.

Example 1. Consider the CFG GB = 〈Σ,N, P, S〉, where Σ = {�, r}, N = {S},
and P = {S → �r, S → SS, S → �Sr}. It defines a language of correctly
bracketed expressions (e.g., �r�r and ��rr), with ‘�’ denoting the left bracket
and ‘r’ the right one. Its CNF is G′B = 〈Σ,N ′, P ′, S〉, where N ′ = {L,M,R, S}
and P ′ = {S → LR, S → SS, S →MR, M → LS, L→ �, R→ r}.
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Fig. 1. The CYK-based propagator parses a sequence 〈X1, . . . , X4〉 of n = 4 decision
variables with the same domain {, r} under the CFG G′

B of Example 1

The Cocke-Younger-Kasami (CYK) algorithm is a parser for CFGs in CNF.
We describe it for a sequence of decision variables instead of values. Given a CFG
〈Σ,N, P, S〉 in CNF and a sequence 〈X1, . . . , Xn〉 of n decision variables, the
CYK parser computes a table V , where Vi,j (with 1 ≤ j ≤ n and 1 ≤ i ≤ n+1−j)
is the set of non-terminals (or at most the start non-terminal S for i = 1 and
j = n) that can be parsed using a sequence of j values in the domains of Xi

to Xi+j−1 respectively, using dynamic programming:

Vi,j =

⎧⎪⎨
⎪⎩
{W | (W → b) ∈ P ∧ b ∈ dom (Xi)} if j = 1
j−1⋃
k=1

{
W

∣∣∣∣∣ (W → Y Z) ∈ P ∧ (j < n ∨ W = S)

∧ Y ∈ Vi,k ∧ Z ∈ Vi+k,j−k

}
otherwise

For example, Figure 1 gives the CYK table V when parsing a sequence X of
4 decision variables with the same domain {�, r} under the grammar G′B of
Example 1. We have V1,1 = {L,R} and V1,4 = {S}. Note that we use dom (Xi)
to denote the domain of the decision variable Xi.

Given a word w ∈ Σn, let wi (with 1 ≤ i ≤ n) denote the letter at position i
of w. If all decision variables Xi have dom(Xi) = {wi}, then w is accepted by G
iff V1,n = {S}.

2.2 The CFG Constraint

The CFG constraint is defined as CFG(X,G), where X is a sequence of decision
variables and G is a grammar. An assignment w to X is a solution iff w is a
word accepted by G.

Given a CFG G = 〈Σ,N, P, S〉 in CNF and a sequence X of n variables, let
|G| =

∑
p∈P |p| be the size of G, and |p| the number of (non-)terminals in the

production p. The propagator of [11] achieves GAC for the CFG(X,G) constraint
in O

(
n3 |G|

)
time with O

(
n2 |G|

)
space, which is better than the propositional

satisfiability (SAT) based propagator of [18], which decomposes and achieves
GAC for the CFG constraint in O

(
n3 |G|

)
time and space. More recently, an-

other SAT-based propagator is introduced in [7], which works similarly to the
propagator of [11] and outperforms the propagator of [18].
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In this paper, we use the propagator of [11] as an example to show how to
improve a CFG propagator. We conjecture that the same idea can be used to
improve the propagators of [7,13,17,18].

To describe elegantly the propagator of [11] and ours (given in Section 3), we
first introduce a novel concept. Informally, given a non-terminal W in Vi,j of the
CYK table, a low support for this W , namely (W → Y Z, k), denotes that two
non-terminals lower down in V , namely Y in Vi,k and Z in Vi+k,j−k , support the
existence of W in Vi,j ; and this low support corresponds to two high supports,
namely (W → Y Z, j) of Y in Vi,k and Z in Vi+k,j−k . Formally:

Definition 1 (Support). For any 1 < j ≤ n, 1 ≤ i ≤ n + 1 − j, and non-
terminal W in Vi,j of the CYK table, the set LSi,j (W ) = {(W → Y Z, k) |
(W → Y Z) ∈ P ∧ 0 < k < j} is called the candidate low-support set for W
in Vi,j . The set LSi,j (W ) = {(W → Y Z, k) ∈ LSi,j (W ) | Y ∈ Vi,k ∧ Z ∈
Vi+k,j−k} is called the low-support set for W in Vi,j. For j = 1 and any 1 ≤
i ≤ n and non-terminal W in Vi,1, we define LSi,1 (W ) = {(W → b) ∈ P} and
LSi,1 (W ) = {(W → b) ∈ LSi,1 (W ) | b ∈ dom(Xi)}.

For any 1 ≤ j < n, 1 ≤ i ≤ n + 1 − j, and non-terminal W in
Vi,j of the CYK table, the set HSi,j (W ) = {(Y → QZ, k) | (Y → QZ) ∈
P ∧ (W = Q ∨ W = Z) ∧ j < k ≤ n} is called the candidate high-support set
of W in Vi,j. The set HSi,j (W ) = {(Y → QZ, k) ∈ HSi,j (W ) | (W = Q ∧ Y ∈
Vi,k ∧ Z ∈ Vi+j,k−j) ∨ (W = Z ∧ Y ∈ Vi−j,k ∧ Q ∈ Vi−j,k−j)} is called the high-
support set of W in Vi,j . For any 1 ≤ i ≤ n and value b in dom(Xi), we define
HSi (b) = {(W → b) ∈ P} and HSi (b) = {(W → b) ∈ HSi (b) | b ∈ dom(Xi)}. 	


For example, in the CYK table V of Figure 1, LS1,4 (S) =
{S → LR, S → SS, S →MR} × {1, 2, 3} has 9 candidate low supports; only 2
thereof are low supports for non-terminal S in V1,4, namely (S → SS, 2) (de-
picted by the solid arcs), and (S →MR, 3) (depicted by the dash-dotted arcs).
The low support (S → SS, 2) for S in V1,4 denotes that it is supported by S
in V1,2 and V3,2, hence the low support corresponds to 2 high supports, namely
(S → SS, 4) of S in V1,2 and V3,2.

The propagator of [11] achieves GAC for the CFG(X,G) constraint as follows:
(1) The CYK parser computes the table V . (2) A bottom-up process finds the
first low support in every LSi,j (W ). A top-down process finds the first high
support in every HSi,j (W ). All non-terminals W with no support are removed
from V . (3) The first high support in every HSi (b) is found, and all values b in
any dom (Xi) with no high support are removed from dom(Xi). When a support
is found in steps 2 and 3, its position in the candidate support set is recorded.
When a support is lost as the domains shrink, the next support is to be found
starting after the previous support in the candidate support set. The propagator
is incremental, and explores all candidate supports at most once.

3 An Improved Propagator

Inspired by [14], we present, verify, and analyse an improved version of the
propagator of [11] for the CFG constraint.
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3.1 Motivation and Theoretical Foundation

There are two dependent opportunities for improving the propagator of [11].

Encoding the Support Sets Space-Efficiently. The propagator of [11] explores all
candidate supports once in the worst case, hence its time complexity is bounded by∣∣LS∣∣+ ∣∣HS∣∣ = n∑

j=1

n+1−j∑
i=1

∑
W∈Vi,j

∣∣LSi,j (W )
∣∣+ ∣∣HSi,j (W )

∣∣ = O
(
n3 |G|

)
. If we can

make the propagator run on the small support sets instead of the large candidate
support sets, then the propagator probably runs faster. Consider that LSi,j (W ) ⊇
LSi,j (W ) and HSi,j (W ) ⊇ HSi,j (W ) (from Definition 1), and that the gaps may
be huge. For example in Figure 1, LS1,4 (S) = {(S → SS, 2) , (S →MR, 3)} is
of size 2, while LS1,4 (S) = {S → LR, S → SS, S →MR} × {1, 2, 3} is of size 9;
HS2,1 (R) = {(S → LR, 2)} is of size 1, while HS2,1 (R) = {S → LR, S →MR}×
{2, 3, 4} is of size 6. However, the challenge is to avoid having to pay with space
what we save in time.

Given a CFG G = 〈Σ,N, P, S〉 in CNF and n decision variables, Kadıoğlu and
Sellmann [11] claim that storing all support sets takes O

(
n3 |G|

)
space, which is

expensive. Their propagator thus runs on the large candidate support sets, which
can be encoded very space-efficiently. Two sets Out (W ) = {(W → Y Z) ∈ P}
and In (W ) = {(Y → QZ) ∈ P | W = Q ∨ W = Z} are computed for
any W ∈ N , so that LSi,j (W ) = Out (W ) × {1, . . . , j − 1} and HSi,j (W ) =
In (W ) × {j + 1, . . . , n}. For any j, the sets {1, . . . , j − 1} and {j + 1, . . . , n}
need not be stored. Hence encoding all candidate support sets only takes O (|G|)
space by storing all Out (W ) and In (W ). As it takes O

(
n2 |G|

)
space to store

the CYK table V , the overall space complexity is O
(
n2 |G|

)
.

However, we can decrease the space requirement for encoding all low-support
sets and a superset of all high-support sets (given in Theorem 2 below) from
O

(
n3 |G|

)
to O

(
n2 |G|

)
, which is the same as the one needed to store the CYK

table V , by using an idea of [14] for reformulating a grammar into a regular
expression for a fixed string length n. In that reformulation, a regular expression
is obtained by using the same domains: dom(Xi) = Σ for all 1 ≤ i ≤ n.
A regular expression E1,j for the sub-sequence 〈X1, . . . , Xj〉 is computed and
stored as a template for every 1 ≤ j ≤ n, and then the regular expression Ei,j

for the sub-sequence 〈Xi, . . . , Xi+j−1〉 turns out to be equal to E1,j for every
1 < i ≤ n+1− j. Similarly, in Figure 1, we find that Vi,j = V1,j and every non-
terminal in Vi,j has the the same low supports as in V1,j . For example, V3,2 =
V2,2 = V1,2 = {S} and LS3,2 (S) = LS2,2 (S) = LS1,2 (S) = {(S → LR, 1)}.
Based on this observation, we give the following theorem (we show in Section 3.2
how to lift the same-domain restriction):

Theorem 1. Given a CFGG = 〈Σ,N, P, S〉 in CNF and a sequence 〈X1, . . . , Xn〉
of n decision variables, if all Xi have the same domain, then for any 1 ≤ j ≤ n
and 1 < i ≤ n+ 1− j:
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1. Vi,j = V1,j

2. ∀W ∈ Vi,j : LSi,j (W ) = LS1,j (W )

Proof: We prove claim 1 by complete induction on j.
(Base: j = 1) For any non-terminal W , we have W ∈ Vi,1 iff there exists a

production (W → b) ∈ P such that b ∈ dom(Xi). As dom(Xi) = dom(X1), we
have W ∈ Vi,1 iff W ∈ V1,1.

(Step: 1 < j ≤ n) For any 1 ≤ j′ < j, the induction hypothesis is Vi,j′ = V1,j′

for any 1 < i. We want to prove Vi,j = V1,j for any 1 < i ≤ n + 1 − j. For any
non-terminal W , we have W ∈ Vi,j iff there exists a production (W → Y Z) ∈ P
and 1 ≤ k < j such that Y ∈ Vi,k and Z ∈ Vi+k,j−k . As Vi,k = V1,k and
Vi+k,j−k = V1,j−k = V1+k,j−k, we have W ∈ Vi,j iff W ∈ V1,j .

Using this, claim 2 follows from Definition 1. 	


The next theorem enables a space-efficient encoding of the support sets (again,
we show in Section 3.2 how to lift the same-domain restriction).

Theorem 2. Given a CFGG = 〈Σ,N, P, S〉 in CNF and a sequence 〈X1, . . . , Xn〉
of n decision variables, if all Xi have the same domain, then it takes O

(
n2 |G|

)
space to encode the CYK table V and all support sets.

Proof: For any 1 ≤ j ≤ n and 1 < i ≤ n+ 1− j:
By Theorem 1, we have Vi,j = V1,j . Hence we obtain the whole CYK ta-

ble V by storing all V1,j in
∑n

j=1 |V1,j | = O (n |N |) = O (n |G|) space, as
|G| =

∑
p∈P |p| > |N |.

By Theorem 1, we have LSi,j (W ) = LS1,j (W ). Hence we obtain all low sup-

ports by storing all LS1,j (W ) in
n∑

j=1

∑
W∈V1,j

|LS1,j (W )| ≤
n∑

j=1

|P × {k | 1 ≤ k < j}|

=

n∑
j=1

O (n |G|) = O
(
n2 |G|

)
space, as |G| =

∑
p∈P
|p| > |P | and each low support

takes constant space.
Considering the high-support set HSi,j (W ), it takes O

(
n3 |G|

)
space to store

all HSi,j (W ) as HSi,j (W ) = HS1,j (W ) is not true for all 1 ≤ j ≤ n and i > 1.
For example in Figure 1, we have HS2,1 (R) = {(S → LR, 2)}, while HS1,1 (R) =

∅. To save space, we compute the set HS′i,j (W ) =
⋃n+1−j

k=1 HSk,j (W ) instead

of HSi,j (W ), as we can encode HS′i,j (W ) efficiently. Note that we still have

HS′i,j (W ) ⊆ HSi,j (W ) as HSi,j (W ) = HS1,j (W ) (its formulation in Definition 1

is independent of i) and HS′i,j (W ) =
⋃n+1−j

k=1 HSk,j (W ) ⊆
⋃n+1−j

k=1 HSk,j (W ) =

HS1,j (W ). Hence we obtain all HS′i,j (W ) by computing and storing all HS′1,j (W )

in O
(
n2 |G|

)
space, as HS′i,j (W ) = HS′1,j (W ) and

n∑
j=1

∑
W∈V1,j

∣∣HS′1,j (W )
∣∣ ≤

2

n∑
j=1

∑
W∈V1,j

|LS1,j (W )| = O
(
n2 |G|

)
(the definition of HS′i,j (W ) is independent

of i and one low support corresponds to at most two high supports).
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Hence we can encode the CYK table V , all LSi,j (W ), and all HS′i,j (W ) in

O
(
n2 |G|

)
space. 	


Using Theorem 2, it is practical to make the propagator run on LSi,j (W )
and HS′i,j (W ), which are subsets of the candidate support sets, with O

(
n2 |G|

)
space. Although Theorem 2 requires all dom(Xi) to be the same, this is not an
obstacle in practice, as shown in Section 3.2 below. Note that |LS| +

∣∣HS′∣∣ and∣∣LS∣∣+ ∣∣HS∣∣ are asymptotically the same (as shown in Section 3.3 below), hence
we cannot improve the propagator of [11] asymptotically.

Counting the Supports. For each non-terminal W in the CYK table, the prop-
agator of [11], which is based on the arc-consistency (AC) algorithm AC-6 [3],
decides whether W has low and high supports by exhibiting two actual supports
(one low and one high). However, this is not necessary. We can simply count the
supports for W as in AC-4 [15], and then just decrease the counter by one when
a support is lost. Although Bessière [3] shows that AC-4 is worse than AC-6 for
binary CSPs given extensionally because initialising the counters is expensive, in
our case initialisation is much cheaper because we have |LSi,j (W )| = |LS1,j (W )|
initially when using our efficient encoding of the support sets. However, by using
counters, we do not need complex data structures and operations to trace which
non-terminal in the CYK table is currently supporting and supported by which
non-terminal(s), as in [11]. Indeed, our experiments (omitted for space reasons,
see Appendix C of [9]) show that counting with our efficient encoding of the
support sets works better (up to 12 times) than using only the latter, which
already works better (up to 20 times) than the propagator of [11].

3.2 Description and Proof of Our Propagator

Consider a CFG G = 〈Σ,N, P, S〉 in CNF and a sequence X = 〈X1, . . . , Xn〉 of
n decision variables. We introduce a propagator for the CFG(X,G) constraint
using the AC-4 framework, which computes all supports and counts them when
posting the constraint (see Algorithm 1), and then only decreases the support
counters during propagation (see Algorithm 2), without changing the support
sets. Hence, to satisfy the condition of Theorem 2, we only need to make all de-
cision variables temporarily take the same domain when posting the constraint.
Our propagator has no limitation on the initial domains of the decision vari-
ables, as we will show how our propagator lifts the temporary restriction at no
asymptotic overhead.

Let CLS
i,j (W ) (or CHS

i,j (W )) denote the number of low (or high) supports for
(or of) a non-terminal W in Vi,j of the CYK table during propagation. Simi-
larly, let CLS

i (b) (or CHS
i (b)) denote the number of low (or high) supports for

(or of) a terminal b in dom (Xi). Note that every (non-)terminal has two coun-
ters and there is no sharing of counters between any two (non-)terminals, as
the counters will be changed independently during propagation. Using Theo-
rem 2, Algorithm 1 posts the CFG(X,G) constraint, encodes the CYK table



388 J. He et al.

and support sets, counts the supports, and achieves GAC. Given all propaga-
tor state variables, which are also shared by Algorithm 2, initialised so that
V1,j = LS1,j (W ) = HS′1,j (W ) = ∅ and CHS

i,j (W ) = 0 (lines 2 to 4), Algorithm 1

works as follows. First, it constructs a virtual domain Dom′ =
⋃n

i=1 dom (Xi)
(line 5), and uses it to post the CFG(X,G) constraint, hence the condition of
Theorem 2 is satisfied as all domains are now the same. Using the virtual do-
main may introduce extra solutions, and we show in the last step how to avoid
this. Second, it uses a bottom-up process (lines 6 to 17) based on the CYK
parser to compute all V1,j , LS1,j (W ), HS′1,j (W ), and CLS

i,j (W ). Note that we
only need to compute V1,j by Theorem 1, and any reference to Vi,j is replaced
by V1,j . The same holds for LSi,j (W ), and HS′i,j (W ) (by its definition inde-
pendently of i in Theorem 2). If the start non-terminal S is not in V1,n, then
it fails (line 18; no word from the current domains is accepted by G, hence no
solution exists). Third, it uses a top-down process (lines 19 to 25) to compute all
CHS

i,j (W ). Fourth, it removes all values with no high support from the domains
(lines 26 to 28). Finally, it constructs a set Δ of all variable-value pairs that
are not in the domains of X but in the virtual domain (line 29), and calls the
function filterFromUpdate (in Algorithm 2, discussed next) to re-establish GAC
after removing all such variable-value pairs (line 30). Hence the side effect of us-
ing the virtual domain is lifted; we show in Section 3.3 that calling the function
filterFromUpdate does not increase the asymptotic complexity of Algorithm 1.

Given a set Δ of all recently filtered variable-value pairs by other propagators
or a branching of the search tree, the function filterFromUpdate in Algorithm 2
incrementally re-establishes GAC for the CFG(X,G) constraint as follows. First,
it creates two arrays QLS and QHS of initially empty queues (line 2), with QLS[j]
(or QHS[j]) storing all non-terminals W in the j-th row of the CYK table with
no low (or high) supports due to the domain changes Δ. Second, it iterates over
all removed values in Δ, decreasing the counter CLS

i,1 (W ) for all non-terminalsW
in the bottom row supported by a removed value, and adding all W with no low
support to the queue QLS[1] (lines 3 to 7). Third, a bottom-up process (lines 8
to 11) calls the procedure rmNoLS handling all W in the queue QLS[j]. Given
a non-terminal W with no low support, rmNoLS iterates over each high sup-
port of W , decreasing the three counters related with this lost high support,
and enqueuing QLS[j] (or QHS[j]) whenever a low (or high) support counter is
zero (lines 22 to 33). Fourth, a top-down process (lines 12 to 14) calls the proce-
dure rmNoHS (omitted for space reasons, see Appendix C of [9]), which works
similarly to rmNoLS, handling all W in the queue QHS[j]. Finally, it removes in-
consistent values (with no high support) from the domains of X (lines 15 to 20),
and reaches a fixpoint (line 21). Note that Algorithm 2 is a direct usage of the
AC-4 framework. Once Algorithm 1 initialises the support sets and counters
correctly, the correctness of Algorithm 2 is guaranteed by the AC-4 framework.

Theorem 3. Our propagator achieves GAC for CFG(X,G).

Proof: A value is removed by our propagator from the domains of X iff it has
no high supports, as with the propagator of [11]. Hence the two propagators are
equivalent. The result follows from Theorem 2 on page 132 of [11]. 	
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Algorithm 1. An improved propagator for the CFG(X,G) constraint, where
X = 〈X1, . . . , Xn〉 is a sequence of n decision variables and G = 〈Σ,N, P, S〉 is
a CFG in CNF
1: function post(CFG(X,G))
2: for all W ∈ N and j ← 1 to n do
3: V1,j ← LS1,j (W ) ← HS′

1,j (W ) ← ∅
4: for all i ← 1 to n+ 1− j do CHS

i,j (W ) ← 0
5: Dom′ ←

⋃n
i=1 dom (Xi)

6: V1,1 ← {W | (W → b) ∈ P ∧ b ∈ Dom′}
7: LS1,1 (W ) ← {W → b | (W → b) ∈ P ∧ b ∈ Dom′}
8: HS′

1 (b) ← {W → b | (W → b) ∈ P ∧ b ∈ Dom′}
9: for all j ← 2 to n do
10: for all (W → Y Z) ∈ P and k ← 1 to j − 1 do
11: if Y ∈ V1,k ∧ Z ∈ V1,j−k ∧ (j < n ∨W = S) then
12: V1,j ← V1,j ∪ {W }
13: LS1,j (W ) ← LS1,j (W ) ∪ {(W → Y Z, k)}
14: HS′

1,k (Y ) ← HS′
1,k (Y ) ∪ {(W → Y Z, j)}

15: HS′
1,j−k (Z) ← HS′

1,j−k (Z) ∪ {(W → Y Z, j)}
16: for all j ← 1 to n and W ∈ V1,j do
17: for all i ← 1 to n+ 1− j do CLS

i,j (W ) ← |LS1,j (W )|
18: if S /∈ V1,n then return failed
19: for all j ← n to 2, W ∈ V1,j , and i ← 1 to n+ 1− j do
20: if CHS

i,j (W ) > 0 ∨ j = n then
21: for all (W → Y Z, k) ∈ LS1,j (W ) do
22: CHS

i,k (Y ) ++; CHS
i+k,j−k (Z) ++

23: for all W ∈ V1,1 and i ← 1 to n do
24: if CHS

i,1 (W ) > 0 then
25: for all (W → b) ∈ LS1,1 (W ) do CHS

i (b) ++
26: for all i ← 1 to n and b ∈ dom(Xi) do
27: if CHS

i (b) = 0 then dom (Xi) ← dom (Xi) \ {b}
28: if dom (Xi) = ∅ then return failed
29: Δ ← {(Xi, b) | Xi ∈ X ∧ b ∈ Dom′ \ dom (Xi)}
30: return filterFromUpdate(CFG(X,G),Δ)

3.3 Complexity Analysis

We first investigate the worst-case time complexity of our propagator for
the CFG(X,G) constraint. In Algorithm 1, the time complexity of lines 2
to 29 is dominated by lines 19 to 25, which explore at most all low-support

sets LSi,j (W ) (referenced as LS1,j (W )) once in
n∑

j=1

n+1−j∑
i=1

∑
W∈V1,j

|LS1,j (W )| <

n

n∑
j=1

∑
W∈V1,j

|LS1,j (W )| = O
(
n3 |G|

)
time, by Theorem 2; line 30 calls the

function filterFromUpdate in Algorithm 2, which explores once all LSi,j (W )
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Algorithm 2. Given a set Δ of domain changes, the function filterFromUpdate
incrementally re-establishes GAC for the CFG(X,G) constraint on a se-
quence X = 〈X1, . . . , Xn〉 of n decision variables.

1: function filterFromUpdate(CFG(X,G),Δ)
2: for all j ← 1 to n do QLS[j] ← [ ]; QHS[j] ← [ ]
3: for all (Xi, b) ∈ Δ do
4: CHS

i (b) ← 0
5: for all (W → b) ∈ HS′

1 (b) do
6: if CLS

i,1 (W ) > 0 then
7: if −−CLS

i,1 (W ) = 0 then QLS[1].enqueue((W, i))
8: for all j ← 1 to n do
9: while QLS[j] �= [ ] do
10: if j = n then return failed as S1,n has no low support
11: (W, i) ← QLS[j].dequeue(); rmNoLS(W, i, j,QLS, QHS)
12: for all j ← n− 1 to 2 do
13: while QHS[j] �= [ ] do
14: (W, i) ← QHS[j].dequeue(); rmNoHS(W, i, j, QLS, QHS)
15: while QHS[1] �= [ ] do
16: (W, i) ← QHS[1].dequeue()
17: for all (W → b) ∈ LS1,1 (W ) do
18: if CHS

i (b) > 0 then
19: if −−CHS

i (b) = 0 then dom (Xi) ← dom (Xi) \ {b}
20: if dom (Xi) = ∅ then return failed
21: return at-fixpoint

22: procedure rmNoLS(W, i, j,QLS, QHS)
23: if CHS

i,j (W ) > 0 then
24: for all (F → Y Z, k) ∈ HS′

1,j (W ) do
25: if W = Y ∧ F ∈ Vi,k ∧ Z ∈ Vi+j,k−j then
26: (iF , jF , B, iB , jB) ← (i, k, Z, i+ j, k − j)
27: else if W = Z ∧ F ∈ Vi−j,k ∧ Y ∈ Vi−j,k−j then
28: (iF , jF , B, iB , jB) ← (i− j, k, Y, i− j, k − j)
29: else skip lines 30 to 33
30: if CLS

iF ,jF
(F ) > 0 ∧ CHS

iB ,jB
(B) > 0 ∧ CHS

i,j (W ) > 0 then
31: if −−CLS

iF ,jF
(F ) = 0 then QLS[jF ].enqueue((F, iF ))

32: if −−CHS
iB ,jB (B) = 0 then QHS[jB ].enqueue((B, iB))

33: if −−CHS
i,j (W ) = 0 then QHS[j].enqueue((W, i)); return

and HS′i,j (W ) in the worst case, hence takes

n∑
j=1

n+1−j∑
i=1

∑
W∈Vi,j

|LS1,j (W )| +∣∣HS′1,j (W )
∣∣ = O

(
n3 |G|

)
time, for similar reasons. Hence there is no asymp-

totic overhead by line 30, and the overall time complexity is O
(
n3 |G|

)
.

Consider now the worst-case space complexity of our propagator. By The-
orem 2, encoding the CYK table V , all LSi,j (W ), and all HS′i,j (W ) takes

O
(
n2 |G|

)
space. There are

n∑
j=1

n+1−j∑
i=1

|Vi,j | =
n∑

j=1

n+1−j∑
i=1

|V1,j | = O
(
n2 |N |

)
=
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O
(
n2 |G|

)
non-terminals in V , hence storing the support counters for all non-

terminals takes O(n2 |G|) space. There are n |Σ| terminals in the domains, hence
storing the support counters for all terminals takes O(n |G|) space. The two ar-
rays QLS and QHS of queues contain at most all non-terminals in V , hence take
O(n2 |G|) space. The overall space complexity is thus O

(
n2 |G|

)
.

Although our propagator has the same worst -case time and space complexity
as the one of [11], which is probably optimal anyway, our experiments below show
that our propagator systematically beats it in practice (by up to two orders of
magnitude), which might be confirmed by an average-case complexity analysis.

4 Experimental Evaluation

We now demonstrate the speed-up of our CFG propagator over its ancestor [11].
We implemented our propagator and the one of [11] in Gecode [8]. Katsirelos
et al. [12] show how to reformulate a CFG into a DFA for a fixed length, as
propagation for the Regular constraint is much cheaper than for CFG. This
reformulation needs a propagator for the CFG constraint to shrink the initial
domains of all decision variables to achieve GAC for all constraints at the root
of the search tree, so that the obtained DFA is smaller. Hence this reformulation
also benefits from a more efficient propagator for the CFG constraint.

Note that Sections 4.3 and 4.4 demonstrate that CP outperforms some state-
of-the-art solvers from the verification literature by orders of magnitude on their
own benchmarks. Our experimental results show that those benchmarks are
trivial, but these benchmarks were not known to be trivial before this paper, and
we have neither discarded any non-trivial benchmarks (of Hampi and Sushi)
nor included the benchmarks that were in the meantime known to be trivial.

We use the Gecode built-in Regular propagator. We ran the experiments
of Sections 4.1, 4.2, and 4.3 under Gecode 3.7.3, Hampi 20120213, and Ubuntu
Linux 11.10 on 1.8 GHz Intel Core 2 Duo with 3GB RAM; and we ran the
experiment of Section 4.4 under Gecode 3.7.3, Kaluza, Sushi 2.0, and Ubuntu
Linux 10.04 with 1GB RAM in Oracle VirtualBox 4.2.4 (recommended by the
Sushi developers) on the same hardware. As our chosen search heuristics do not
randomise, all instances of Sections 4.1, 4.2, and 4.3 were run once. However, for
Section 4.4, we ran each instance 10 times and recorded the average runtime, as
the performance of the virtual machine might vary significantly.

4.1 A Shift Scheduling Problem

Demassey et al. [4] introduce a real-life shift scheduling problem for staff in a
retail store. Let w be the number of workers, p the number of periods of the
scheduling horizon, and a the number of work activities. The aim is to construct
a w×p matrix of values in [1, . . . , a+ 3] (there are 3 non-work activities, namely
break, lunch, and rest) to satisfy work regulation constraints, which can be
modelled with a CFG constraint for each worker over the p periods and some
global cardinality constraints (GCC).
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Katsirelos et al. [12] model this problem as an optimisation problem, so that
the reformulation of the grammar into a DFA takes only a tiny part of the
runtime; they show that this optimisation problem is extremely difficult for CP-
based CFG and Regular propagators. We are here, like [11], primarily interested
in the first solution to the satisfaction version of this problem. We use the search
heuristic of [11], namely selecting the second-largest value from the first deci-
sion variable with the minimum domain size in the last period with unassigned
variables. Hampi cannot handle multiple variables, while Hampi, Kaluza, and
Sushi cannot model GCC, so we do not compare with them.

Table 1 gives our results: each row gives the instance, the search tree size, the
DFA size after the reformulation of [12] of CFG into Regular, and the runtimes
of four methods in seconds, namely our propagator (denoted by G++), the one
of [11] (denoted by G), and the reformulation, using the two CFG propagators
respectively (denoted by DFAG++ and DFAG). We find that G++ always works
much better (up to 18 times) than G; DFAG++ always works much better (up to
10 times) than DFAG, as the reformulation of [12] itself needs a CFG propagator
to shrink the initial domains at the root of the search tree (the reformulation,
which is instance-dependent, is here taken on-line and takes about 85% of the
total runtime) and as G++ works better than G; overall, G++ wins on 15
instances, and DFAG++ wins on the other 2 instances. When solving for all or
best solutions, DFAG++ gradually takes over as the best method, as predicted
by [12], but G++ continues to dominate G, and DFAG++ decreasingly dominates
DFAG, as instances get harder.

4.2 A Forklift Scheduling Problem

Gange and Stuckey [7] introduce a forklift scheduling problem. Let s be the
number of stations, i the number of items, and n the length of the scheduling
horizon. There is a unique forklift and a shipping list giving the initial and final
stations of each item. The aim is to construct an array of n actions, where an
action can move the forklift from a station to any other station with a cost
of 3, load an item from the current station onto the top of the forklift tray with
a cost of 1, unload the item from the top of the forklift tray at the current
station with a cost of 1, or do nothing with a cost of 0, so that the shipping
list is accomplished with a minimised cost under forklift behaviour constraints,
which can be modelled with one CFG constraint and i Regular constraints. We
use the first-fail search heuristic, namely selecting the smallest value from the
first decision variable with the minimum domain size, to solve this optimisation
problem. Since Hampi, Kaluza, and Sushi cannot solve optimisation problems,
we do not compare with them.

Table 2 gives our results over the instances solvable in one CPU hour: each row
specifies the instance and gives the runtimes of two methods in seconds, namely
our propagator (denoted by G++) and the one of [11] (denoted by G). We
find that G++ always works better (up to 5 times) than G. The reformulation
of [12] of the CFG constraint into the Regular constraint is not suitable for this
problem, as the resulting automaton is of size exponential in n.
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Table 1. Runtimes for the shift scheduling problem

benchmark (p = 96) search tree size DFA runtimes of four methods in seconds

instance a w #nodes #propagations #fails |A| G++ DFAG++ DFAG G

1 1 1 1 11 438 1 446 0.24 0.49 4.26 3.93
1 2 1 3 133 2123 33 998 0.90 3.78 15.38 12.87
1 3 1 4 349 5790 137 998 1.68 4.10 19.48 19.49
1 4 1 5 95 1836 7 814 1.18 2.41 21.99 20.53
1 5 1 4 71 1332 3 722 0.92 1.75 16.95 16.32
1 6 1 5 76 1567 3 722 1.17 2.01 21.16 20.17
1 7 1 6 3623 56635 1773 814 7.87 2.97 25.56 47.48
1 8 1 2 57 1005 10 998 0.52 3.59 10.76 8.47
1 9 1 1 19 460 1 630 0.22 0.80 4.41 3.94
1 10 1 7 12699 209988 6305 814 23.31 4.02 30.14 100.95
2 1 2 2 46 1414 8 984 0.93 1.69 16.76 15.97
2 5 2 4 83 2208 20 1209 1.02 3.15 18.51 16.41
2 6 2 5 89 1801 12 1207 1.35 2.94 23.03 21.57
2 7 2 6 258 5847 104 944 1.97 2.63 32.22 32.03
2 8 2 2 1046 28691 500 1774 2.86 7.75 23.09 24.09
2 9 2 1 35 1249 8 1460 0.63 4.11 14.21 11.03
2 10 2 7 4690 100007 2302 1506 7.64 7.82 43.24 53.90

Table 2. Runtimes for the forklift scheduling problem

instance runtimes in seconds instance runtimes in seconds

s i n G++ G s i n G++ G

3 4 15 4.35 20.02 3 4 16 22.64 103.75
3 4 17 20.98 100.48 3 4 18 76.77 382.31
3 4 19 72.66 338.69 3 4 20 197.98 1013.78
3 5 16 67.54 297.55 3 5 17 81.67 368.65
3 5 18 200.91 1058.17 3 6 18 1134.58 5008.90
4 5 17 388.92 1631.94 4 5 18 819.82 3876.87

4.3 Intersection of Two Context-Free Languages

Hampi [14] selects a subset of 100 CFG pairs (from the benchmark of CFGAn-
alyzer [1]), where a string of length 1 ≤ n ≤ 50 accepted by both CFGs in each
pair is to be found (8 instances are satisfiable and 92 are unsatisfiable; disjoint-
ness of two context-free languages is undecidable). The CFGs of this benchmark
have 10 to 600 productions in CNF and up to 18 alphabet symbols. This problem
can also be solved using tools from automata theory. On this benchmark, Hampi
beats CFGAnalyzer by a large margin. Hampi also beats other ad hoc solvers
on other benchmarks, which are too easy (Hampi solves them in one second),
hence any improvements might be subject to runtime measurement errors.

Instead of running each CFG pair 50 times with the n-th run to find a string
of length n accepted by both CFGs, we search once, namely for the first solution
string of length up to 50 for each pair. Given a CFG G = 〈Σ,N, P, S〉, we create
a new CFG G′ = 〈Σ′, N ′, P ′, S′〉 with Σ′ = Σ∪{#} (let # /∈ Σ denote a dummy
symbol), N ′ = N ∪ {S′}, and P ′ = P ∪ {S′ → S | S′#}. If a string s′ of length
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n is accepted by G′, then the string s obtained by removing all ‘#’ at the end
of s′ has a length up to n and is accepted by G.

Given a CFG pair (G1, G2), our model is CFG(X,G′1) ∧ CFG(X,G′2), where
X is a sequence of n decision variables with dom (Xi) = Σ′1 ∪ Σ′2. Our search
heuristic is to select the first value from the last unassigned variable. Figure 2
gives the runtimes of Hampi and the two CFG propagators for the 55 instances
where Hampi takes at least one second. Each ‘×’ (or ‘+’) denotes the compar-
ison between our propagator (or the one of [11]) and Hampi; each ‘Δ’ denotes
the solving time of the bit-vector solver STP. For all 100 instances, the two
propagators always work much better (up to 9000 times) than Hampi, and even
always work much better than STP when the fixed-sizing of the grammar into a
regular expression and the transformation into bit-vector constraints are taken
off-line; our propagator always works much better (up to 250 times) than the
one of [11]. As 97 instances turn out to be solvable at the root of the search tree,
the reformulation of [12] of the CFG constraint into the Regular constraint has
similar results; for the other 3 instances, our CFG propagator is 3 to 5 orders
of magnitude faster (details omitted for space reasons, see Appendix C of [9]).
The two CFG propagators always beat Hampi for all n < 50 (up to 380 times
even with n = 10), and whether run on the CFG pair (G′1, G

′
2) or the original

pair (G1, G2). We get similar speed-ups (details omitted for space reasons, see
Appendix C of [9]) over 99% of the CFG pairs even with the first-fail search
heuristic. Note that Kaluza uses Hampi’s functionality to solve the CFG con-
straint, hence Kaluza has the same performance as Hampi on this benchmark.

4.4 Solving String Equations

Fu et al. [5] introduce just one benchmark of 5 string equations with a parameter
1 ≤ n ≤ 37 to demonstrate the practicality of their string solver Sushi against
Kaluza. Sushi handles string variables of unbounded length. Like Kaluza, we
expect a user-given parameter n and look for the first solution string of up to
n symbols. Unlike Kaluza, which tries all lengths until n, we allow strings to
end with dummy symbols ‘#’ (as in Section 4.3) and add length constraints.
For a sequence X = 〈X1, . . . , Xn〉, let decision variable nX with dom(nX) =
{0, . . . , n} denote the index of the right-most non-dummy symbol in X . The
length constraint is ∀1 ≤ i ≤ n : Xi = # ⇔ nX < i. String concatenation X =
Y +Z is modelled as nX = nY +nZ∧〈X1, . . . , XnX 〉 = 〈Y1, . . . , YnY , Z1, . . . , ZnZ 〉
with reification constraints. Regular language membership X ∈ L(R), where
L(R) denotes the language accepted by the regular expression R, is modelled
as Regular(X,R#∗). We use the first-fail search heuristic. Table 3 gives the
runtimes of Gecode, Sushi, and Kaluza for equations 1 to 3 with the hardest
setting n = 37 and the Kaluza models (for a fair comparison). As Kaluza
solves the equations for some n ≤ n < 3n, we pessimistically set n = 4n for
Gecode, and Gecode still beats Sushi and Kaluza, by up to 130 times.
Gecode solves our better models than the Kaluza ones of equations 4 and 5
within 0.10 seconds, beating Sushi and Kaluza by up to 3000 times.
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Fig. 2. Runtimes for the CFG-intersection problem

Table 3. Runtimes (in seconds) for solving string equations

eq1: 3 string variables eq2: 2 string variables eq3: 4 string variables
n Gecode Sushi Kaluza Gecode Sushi Kaluza Gecode Sushi Kaluza

37 0.15 1.34 10.40 0.05 1.82 3.94 0.07 2.52 5.71

5 Conclusion

We argue that CP solvers are more suitable than existing solvers for verification
tools that solve string constraints. Indeed, CP has a rich tradition of constraints
for membership in formal languages: their propagators run directly on descrip-
tions, such as automata and grammars, of these languages. Apparently tricky
features, such as string equality or multiple string variables (with shared char-
acters), pose no problem to CP. Future work includes designing propagators for
string constraints over strings of (un)bounded length.
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Abstract. We consider methods for constructing NP-intermediate
problems under the assumption that P �= NP. We generalize Ladner’s
original method for obtaining NP-intermediate problems by using param-
eters with various characteristics. In particular, this generalization allows
us to obtain new insights concerning the complexity of CSP
problems. We begin by fully characterizing the problems that admit NP-
intermediate subproblems for a broad and natural class of parameteriza-
tions, and extend the result further such that structural CSP restrictions
based on parameters that are hard to compute (such as tree-width) are
covered. Hereby we generalize a result by Grohe on width parameters and
NP-intermediate problems. For studying certain classes of problems, in-
cluding CSPs parameterized by constraint languages, we consider more
powerful parameterizations. First, we identify a new method for obtain-
ing constraint languages Γ such that CSP(Γ ) are NP-intermediate. The
sets Γ can have very different properties compared to previous construc-
tions (by, for instance, Bodirsky & Grohe) and provides insights into
the algebraic approach for studying the complexity of infinite-domain
CSPs. Second, we prove that the propositional abduction problem pa-
rameterized by constraint languages admits NP-intermediate problems.
This settles an open question posed by Nordh & Zanuttini.

1 Introduction

Ladner [20] explicitly constructed NP-intermediate problems (under the assump-
tion P �= NP) by removing strings of certain lengths from NP-complete languages
via a diagonalization technique that is colloquially known as blowing holes in
problems. The languages constructed via blowing are unfortunately famous for
being highly artificial: Arora and Barak [1] write the following.

We do not know of a natural decision problem that, assuming NP �= P, is
proven to be in NP \ P but not NP-complete, and there are remarkably
few candidates for such languages

More natural examples are known under other complexity-theoretic assump-
tions. For instance, LogClique (the problem of deciding whether an n-vertex
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graph contains a clique of size logn) is NP-intermediate under the exponential-
time hypothesis (ETH). The lack of natural NP-intermediate computational
problems makes it important to investigate new classes of NP-intermediate prob-
lems and, hopefully, increase our understanding of the borderline between P and
NP.

We begin (in Section 3) by presenting a diagonalization method for obtaining
NP-intermediate problems, based on parameterizing decision problems in dif-
ferent ways. In our framework, a parameter, or a measure function, is simply
a function ρ from the instances of some decision problem X to the non-empty
subsets of N. We say that such a function is single-valued if ρ(I) is a singleton
set for every instance of X , and multi-valued otherwise. Depending on the pa-
rameter one obtains problems with different characteristics. Simple applications
of our method include the connection between the complexity class XP and NP-
intermediate problems observed by Chen et al. [9]. Even though our method
is still based on diagonalization we claim that the intermediate problems ob-
tained are qualitatively different from the ones obtained by Ladner’s original
method, and that they can be used for gaining new insights into the complexity
of computational problems. We demonstrate this on different CSP problems in
the following sections.

In Section 4, we analyze the applicability of the diagonalization method for
single-valued measure functions. Under mild additional assumptions, we obtain
a full understanding of when NP-intermediate problems arise when the measure
function is single-valued and polynomial-time computable. Unfortunately, CSPs
under structural restrictions (i.e. when considering instances with bounded width
parameters) are not captured by this result since width parameters are typically
not polynomial-time computable. To remedy this, we present a fairly general
method for obtaining NP-intermediate problems based on structurally restricted
CSPs in Section 4.2. This is a generalization of a result by Grohe [15] who has
shown that, under the assumption that FPT �= W[1], NP-intermediate CSP
problems can be obtained by restricting the tree-width of their corresponding
primal graphs. Our result imply that this holds also under the weaker assump-
tion that P �= NP and for many different width parameters. NP-intermediate
problems based on structural restrictions have also been identified by Bodirsky
& Grohe [4].

Multi-valued measure functions are apparently much harder to study and a
full understanding appears difficult to obtain. Despite this, multi-valued measure
functions have highly useful properties and we exploit them for studying con-
straint satisfaction problems parameterized by constraint languages. Our first
result is inspired by Bodirsky & Grohe [4] who have proved that there exists
an infinite constraint language Γ such that CSP(Γ ) is NP-intermediate. We
extend this and prove that whenever an infinite language Γ does not satisfy
the so called local-global property, i.e. when CSP(Γ ) �∈ P but CSP(Γ ′) ∈ P for
all finite Γ ′ ⊂ Γ , then there exists a language closely related to Γ such that
the resulting CSP problem is NP-intermediate. The only requirement is that Γ
can be extended by certain operators 〈·〉. We then provide two very different



400 P. Jonsson, V. Lagerkvist, and G. Nordh

extension operators. The first operator 〈·〉pow works for languages over both fi-
nite and infinite domains but gives relations of arbitrarily high arity. The second
operator 〈·〉+ is limited to idempotent languages over infinite domains but does
have the advantage that the arity of any relation is only increased by a small
constant factor. Together with the language Γ ◦ from Jonsson & Lööw [18] which
does not satisfy the local-global property we are thus able to identify a concrete
language 〈Γ ◦〉+ such that CSP(〈Γ ◦〉+) is NP-complete, CSP(Γ ′) ∈ P for any
finite Γ ′ ⊂ 〈Γ ◦〉+, and there exists a Γ ′′ ⊂ 〈Γ ◦〉+ such that CSP(Γ ′′) is NP-
intermediate. The so-called algebraic approach [3,6] has been very successful in
studying the computational complexity of both finite- and infinite-domain CSPs.
However, this approach is, to a large extent, limited to constraint languages that
are finite. If one only considers tractable finite subsets of 〈Γ ◦〉+, we miss that
there are both NP-intermediate and NP-complete problems within CSP(〈Γ ◦〉+).
Hence the constraint language 〈Γ ◦〉+ clearly shows the algebraic approach in its
present shape is not able to give a full understanding of CSP(〈Γ ◦〉+) and its
subclasses.

Our second result (which is presented in Section 5.3) is the propositional
abduction problem Abd(Γ ). This problem can be viewed as a non-monotonic
extension of propositional logic and it has numerous important applications rang-
ing from automated diagnosis, text interpretation to planning. The complexity of
propositional abduction has been intensively studied from a complexity-theoretic
point of view (cf. [13,23]) and the computational complexity is known for ev-
ery finite Boolean constraint language Γ and many infinite languages [23]. In
Nordh & Zanuttini [23], the question of whether such a classification is possi-
ble to obtain for infinite languages was left open. Since the abduction problem
can loosely be described as a combination of the SAT and UNSAT problems, it
might be expected that it, like the parameterized SAT(·) problem, does not con-
tain any NP-intermediate problems. By exploiting our diagonalization method,
we present a constraint language Γ such that Abd(Γ ) is NP-intermediate.

2 Preliminaries

Let Γ denote a (possibly infinite) set of finitary relations over some (possibly
infinite) set D. We call Γ a constraint language. Given a relation R ⊆ Dk, we
let ar(R) = k. The reader should note that we will sometimes express Boolean
relations as conjunctions of Boolean clauses. The constraint satisfaction problem
over Γ (abbreviated as CSP(Γ )) is defined as follows.

Instance: A set V of variables and a set C of constraint applicationsR(v1, . . . , vk)
where R ∈ Γ , k = ar(R), and v1, . . . , vk ∈ V .
Question: Is there a total function f : V → D such that (f(v1), . . . , f(vk)) ∈ R
for each constraint R(v1, . . . , vk) in C?

For an arbitrary decision problem X , we let I(X) denote its set of instances,
and ||I|| to denote the number of bits needed for representing I ∈ I(X). By a
polynomial-time reduction from problem X to problem X ′, we mean a Turing
reduction from X to X ′ that runs in time O(p(||I||)) for some polynomial p.
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Definition 1. Let X be a decision problem. A total and computable function
ρ : I(X)→ 2N \ {∅} is said to be a measure function.

If ρ(I) is a singleton set for every I ∈ I(X), then we say that ρ is single-valued,
and otherwise that it is multi-valued. We abuse notation in the first case and
simply assume that ρ : I(X) → N. The measure function ρ combined with a
decision problem X yields a problem Xρ(S) parameterized by S ⊆ N.

Instance. Instance I of X such that ρ(I) ⊆ S.
Question. Is I a yes-instance?

For examples of both single- and multi-valued measure functions we refer the
reader to Section 3.2. Finally, we prove a simple lemma regarding single-valued
measure functions that will be important later on.

Lemma 2. Let ρ be a single-valued and polynomial-time computable measure
function. Let S ⊆ N and let T be a non-empty subset of S such that S \ T =
{s1, . . . , sk}. If Xρ({si}), 1 ≤ i ≤ k, is in P, then there is a polynomial-time
reduction from Xρ(S) to Xρ(T ).

Proof. Let I be an arbitrary instance of Xρ(S). Compute (in polynomial time)
ρ(I). If ρ(I) ∈ {s1, . . . , sk}, then we can compute the correct answer in polyno-
mial time. Otherwise, I is an instance of Xρ(T ) and the reduction is trivial. 	


3 Generation of NP-Intermediate Problems

We will now extend Ladner’s method to parameterized problems. Section 3.1
contains the main result and Section 3.2 contains some examples.

3.1 Diagonalization Method

Theorem 3. Let Xρ(·) be a computational decision problem with a measure
function ρ. Assume that Xρ(·) and S ⊆ N satisfies the following properties:

P0: I(X) is recursively enumerable.
P1: Xρ(S) is NP-complete.
P2: Xρ(T ) is in P whenever T is a finite subset of S.
P3: Xρ(S) is polynomial-time reducible to Xρ(T ) whenever T ⊆ S and S \ T is
finite.

Then, if P �= NP, there exists a set S′ ⊂ S such that Xρ(S
′) is in NP \ P and

Xρ(S) is not polynomial-time reducible to Xρ(S
′).

Before the proof, we make some observations that will be used without explicit
references. If ρ is single-valued and polynomial-time computable, then P2 implies
P3 by Lemma 2. In many examples, S = N which means that P1 can be restated
as NP-completeness ofX . If P1 holds, then property P3 simply states thatXρ(T )
is NP-complete for every cofinite T ⊆ S. Finally, we remind the reader that the
polynomial-time bounds may depend on the choice of S in the definitions of P2
and P3.
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The proof is an adaption of Papadimitriou’s [24] proof where we use the
abstract properties P0 – P3 instead of focusing on the size of instances. Pa-
padimitriou’s proof is, in turn, based on Ladner’s original proof [20]. It may also
be illuminating to compare with Schöning [25] and Bodirsky & Grohe [4].

In the sequel, we let Xρ(·) be a computational decision problem that together
with S ⊆ N satisfies properties P0 – P3. Let AX be an algorithm for Xρ(S),
let M1,M2, . . . be an enumeration of all polynomial-time bounded deterministic
Turing machines, and let R1, R2, . . . be an enumeration of all polynomial-time
Turing reductions. Such enumerations are known to exist, cf. Papadimitriou [24].

We define a function f : N→ N that is computed by a Turing machine F and
the input n is given to F in unary representation. We let f(0) = f(1) = 0. The
computation of f(n) starts with the computation of f(0), f(1), f(2), . . . , until
the total number of steps F has used in computing this sequence exceeds n.
This is possible since F has access to its own description by Kleene’s fixed point
theorem. Let i be the largest value for which F was able to completely compute
f(i) (during these n steps) and let k = f(i).

In the final phase of the execution of the machine F we have two cases de-
pending on whether k is even or odd. In both cases, if this phase requires F to
run for more than n computation steps, F stops and returns k (i.e., f(n) = k).

The first case is when k is even: here, F enumerates all instances I of Xρ(S)
— this is possible by property P0. For each instance I, F simulates Mk/2 on the
encoding of I, determines whether AX(I) is accepted, and finally, F computes
f for all x ∈ ρ(I). If Mk/2 rejects and AX(I) was accepted, and f(x) is even for
all x ∈ ρ(I), then F returns k + 1 (i.e., f(n) = k + 1). F also returns k + 1 if
Mk/2 accepts and I is not accepted by AX and f(x) is even for all x ∈ ρ(I).

The second case is when k is odd. Again, F enumerates all instances I of
Xρ(S). Let E = ∅. Now, for each instance I, F begins simulating R�k/2� on
the encoding of I with an oracle for AX . Whenever the simulation notices that
R�k/2� enters an oracle state, we calculate ρ(I ′) = E′ (where I ′ is the Xρ(S)
instance corresponding to the input of the oracle tape), and add the members of
E′ to E. When the simulation is finished we first calculate f(x) for every x ∈ E.
If the result of any f(x) operation is odd we return k + 1. We then compare
the result of the reduction with AX(I). If the results do not match, i.e. if one is
accepted or rejected while the other is not, we return k + 1. This completes the
definition of f . Note that f can be computed in polynomial time (regardless of
the time complexity of computing ρ and AX) since the input is given in unary.

We now show that f is increasing, i.e. for all n ≥ 0, f(n) ≤ f(n + 1) and
{f(n) | n ∈ N} is an unbounded set, unless P = NP. To see this, we first
prove by induction that f(n) ≤ f(n+ 1) for all n ≥ 0. This obviously holds for
n = 0 and n = 1. Assume that this holds for an arbitrary number i > 1. By
definition f(i + 1) cannot return a smaller number than f(i) in the first phase
of the computation, since the Turing machine F simulates f(i′) for all i′ < i,
and returns the largest k for which f(i′) was successfully computed within the
allotted time. In the second phase, the argument to f is used to determine the
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total amount of computation steps, and since f will either return the k from the
first phase, or k + 1, there is no possibility that f(i) > f(i+ 1).

Let Se = {x | x ∈ S and f(x) is even}. We continue by showing that there
is no n0 such that f(n) = k0 for all n > n0 unless P = NP. If there is such a
n0, then there is also a n1 such that for all n > n1 the value k computed in the
phase where F computes f(1), f(2), . . . (in n steps) is k0. If k0 is even, then on
all inputs n > n1 the machine Mk0/2 correctly decides Xρ(Se) and thus Xρ(Se)
is in P. But since f(n) = k0 for all n > n1, we have that S \ Se is finite, and
thus Xρ(S) is polynomial-time reducible to Xρ(Se) by Property P3, which is a
contradiction since Xρ(S) is NP-complete by Property P1. Similarly if k0 is odd,
then on all inputs n > n1 the function R�k0/2� is a valid reduction from Xρ(S)
to Xρ(Se) and thus Xρ(Se) �∈ P. But since f(n) = k0 for all n > n1, we have
that Se is finite, and we conclude that Xρ(Se) is in P by Property P2, which is
a contradiction since Xρ(S) is NP-complete by Property P1.

We conclude the proof by showing that Xρ(Se) is neither in P, nor is Xρ(S)
polynomial-time reducible to Xρ(Se), unless P = NP. By Property P1, Xρ(Se)
is in NP since Se ⊆ S. Assume now that Xρ(Se) is in P. Then there is an i such
that Mi solves Xρ(Se). Thus, by the definition of f , there is an n1 such that for
all n > n1 we have f(n) = 2i; this contradicts that f is increasing. Similarly,
assume that Xρ(S) is polynomial-time reducible to Xρ(Se). Then, there is an i
such that Ri is a polynomial-time reduction from Xρ(S) to Xρ(Se). It follows
from the definition of f that there is an n1 such that f(n) = 2i−1 for all n > n1,
and this contradicts that f is increasing. 	

If the measure function is polynomially bounded (e.g. ρ(I) ≤ p(||I||) for some
polynomial p), then checking whether an integer x written in binary is in Se or
not can be decided in polynomial time. This follows from the fact that x written
in binary can be converted to x written in unary in polynomial time. Another
useful observation is the following: it follows from the proof that property P1 (i.e.
the NP-hardness of the original problem) can be replaced by hardness for other
complexity classes within NP. By noting that Xρ(Se) is recursively enumerable,
this implies that we can construct infinite chains of problems Xρ(T1), Xρ(T2), . . .
such that Se = T1 ⊃ T2 ⊃ . . ., there does not exist any polynomial-time reduc-
tions from Xρ(Ti) to Xρ(Ti+1), and Xρ(Ti) is not in P for any i ≥ 1.

3.2 Examples

Ladner’s result is now a straightforward consequence of Theorem 3. Let X be
an arbitrary NP-complete problem such that I(X) is recursively enumerable.
For an arbitrary instance I ∈ I(X), we let the single-valued measure function
ρ be defined such that ρ(I) = ||I||. We verify that Xρ(N) satisfies properties
P0 – P3 and conclude that there exists a set T ⊆ N such that Xρ(T ) is NP-
intermediate. Properties P0 and P1 hold by assumption and property P2 holds
since Xρ(U) can be solved in constant time whenever U is finite. If U ⊆ N and
N \U = {x1, . . . , xk}, then Xρ({xi}), 1 ≤ i ≤ k, is solvable in constant time and
we can apply Lemma 2(2). Thus, property P3 holds, too.
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Another straightforward application of single-valued measure functions is the
following: Chen et al. [9] have discovered a striking connection between NP-
intermediate problems and the parameterized complexity class XP (XP denotes
the class of decision problems X that are solvable in time O(||I||f(k)) for some
polynomial-time computable parameter k and some computable function f).

Proposition 4. Let X be a decision problem and ρ a polynomial-time com-
putable single-valued measure function such that Xρ(·) satisfies conditions P0
and P1, and Xρ ∈ XP. Then there exists a T ⊆ N such that Xρ(T ) is NP-
intermediate.

Proof. We note that Xρ(S) is in P whenever S is a finite subset of N. Hence, Xρ

satisfies P2 and consequently P3. The result follows from Theorem 3. 	


To illustrate multi-valued measure functions, we turn our attention to the
Subset-Sum problem [19].

Instance: A finite set Y ⊆ N and a number k ∈ N.
Question: Is there a Y ′ ⊆ Y such that

∑
Y ′ = k?

We define a multi-valued measure function by letting ρ((Y, k)) = Y . Once again,
properties P0 and P1 hold by assumption so it is sufficient to prove that Subset-
Sumρ(N) satisfies P2 and P3. Property P2: instances of Subset-Sum can be
solved in time O(poly(||I||) · c(I)), where c(I) denotes the difference between
the largest and smallest number in Y [14]. This difference is finite whenever
we consider instances of Subset-Sumρ(S) where S ⊆ N is finite. Property P3:
arbitrarily choose S ⊆ N such that that N\S is finite. We present a polynomial-
time Turing reduction from Subset-Sumρ(N) to Subset-Sumρ(S). Let I =
(Y, k) be an instance of Subset-Sumρ(N). Let T = Y \ S, i.e. the elements of
the instance which are not members of the smaller set S. Since N \S is finite, T
is a finite set, too. Let Z = Y ∩ S. For every subset T ′i = {x1, . . . , xim} of T , we
let I ′i = (Z, k′i), where k′i = k − (x1 + . . . + xim). Then, it is easy to see that I
is a yes-instance if and only if at least one I ′i is a yes-instance. Finally, we note
that the reduction runs in time O(poly(||I||) · 2c), where c = |N \ S|, and this is
consequently a polynomial-time reduction for every fixed S.

4 Single-Valued Measure Functions

This section is divided into two parts: Section 4.1 is concerned with polynomial-
time computable single-valued measure functions and Section 4.2 is concerned
with structurally restricted CSPs.

4.1 Polynomial-Time Computable Measure Functions

By Theorem 3, we know that properties P0 – P3 are sufficient to assure the
existence of NP-intermediate problems. A related question is to what degree the
properties are also necessary. Here, we investigate the scenario when P2 and P3
do not necessarily hold.
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Theorem 5. Assume X is a decision problem and ρ is a single-valued measure
function such that Xρ(N) satisfies P0 and P1. Let SP = {s ∈ N | Xρ({s}) ∈
P} and assume membership in SP is a decidable problem. Then, at least one
of the following holds: (1) there exists a set T ⊆ SP such that Xρ(T ) is NP-
intermediate, (2) there exists a t ∈ N such that Xρ({t}) is NP-intermediate, or
(3) Xρ admits no NP-intermediate subproblems.

Proof. If Xρ({s}) is NP-complete for every s ∈ N, then we are in case (3) so
we assume this is not the case. If there exists s ∈ N such that Xρ({s}) is NP-
intermediate, then we are in case (2) so we assume this does not hold either.
Thus, we may henceforth assume that there exists s ∈ N such that Xρ({s}) ∈ P
and that Xρ({u}) is NP-complete whenever u ∈ N \ SP . This implies that SP

is non-empty. Once again, we single out two straightforward cases: if Xρ(SP ) is
NP-intermediate, then we are in case (1), and if Xρ(SP ) is in P, then we are
in case (3) (since Xρ({u}) is NP-complete whenever u �∈ SP ). Hence, we may
assume that Xρ(SP ) is NP-complete (note that Xρ(SP ) ∈ NP since Xρ(N) ∈ NP
by P1), i.e. Xρ(SP ) satisfies P1. Furthermore, Xρ(SP ) satisfies P0 since SP is
a decidable set and the instances of X are recursively enumerable. To generate
the instances of Xρ(SP ), we generate the instances of X one after another and
output instance I if and only if ρ(I) is in SP .

We finally show that Xρ(SP ) satisfies P2 and P3. It is sufficient to prove
that Xρ(SP ) satisfies P2 since ρ is single-valued. Assume there exists a finite
set K ⊆ SP such that Xρ(K) �∈ P. Let ∅ ⊂ K ′ ⊆ K be a subset such that
Xρ(K

′) is a member of P; such a set exists since K ⊆ SP . For every k′ ∈ K ′, we
know that Xρ({k′}) ∈ P. Hence, we can apply Lemma 2 and deduce that there
exists a polynomial-time reduction from Xρ(K) to Xρ(K

′). This contradicts the
fact that Xρ(K) is not a polynomial-time solvable problem. We can now apply
Theorem 3 and conclude that there exists a set T ⊆ SP such that Xρ(T ) is
NP-intermediate, i.e. we are in case (1). 	


Problems parameterized by multi-valued measure functions are apparently very
different from those parameterized by single-valued functions. For instance,
Lemma 2 breaks down which indicates that the proof strategy used in Theo-
rem 5 is far from sufficient to attack the multi-valued case.

4.2 Structurally Restricted CSPs

When identifying tractable (i.e. polynomial-time solvable) fragments of con-
straint satisfaction problems and similar problems, two main types of results
have been considered in the literature. The first one is to identify constraint lan-
guages Γ such that CSP(Γ ) ∈ P, and the second one is to restrict the structure
induced by the constraints on the variables. The second case is often concerned
with associating some structure with each instance and then identifying sets
of structures that yield tractable problems. The classical example of this ap-
proach is to study the primal graph or hypergraph of CSP instances. Given a
CSP instance I with variable set V , we define its primal graph G = (V,E) such
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that (vi, vj) ∈ E if and only if variables vi, vj occur simultaneously in some
constraint, and we define the hypergraph H = (V, E) such that the hyperedge
{vi1 , ..., vik} ∈ E if and only if there is a constraint R(vi1 , . . . , vik) in I.

When it comes to defining structurally restricted problems that are tractable,
one is typically interested in certain parameters of these (hyper)graphs such
as tree-width, fractional hypertree width [16], or submodular width [22]. It is,
for instance, known that any finite-domain CSP instance I with primal graph
G = (V,E) can be solved in ||I||O(tw(G)) time [11] where tw(G) denotes the tree-
width of G, and it can be solved in ||I||O(fhw(H)) time [16] where fhw(H) denotes
the fractional hypertree width ofH. Since these results rely on the domains being
finite, we restrict ourselves to finite-domain CSPs throughout this section. Now
note that if given a finite constraint language Γ , then the instances of CSP(Γ )
are recursively enumerable and CSP(Γ ) is in NP. If Γ is infinite, then this is
not so evident and it may, in fact, depend on the representation of relations.
We adopt a simplistic approach and represent a relation by listing its tuples.
Under this assumption, the instances of CSP(Γ ) are recursively enumerable and
CSP(Γ ) is in NP.

By restricting the CSP problem to instances with tree-width or fractional hy-
pertree width ≤ k (for some constant k), it is known that the resulting problem is
solvable in polynomial time. This immediately implies that problems like CSPtw

and CSPfhw
1 have property P2. If the width parameter under consideration is

polynomial-time computable, then we have property P3 (via Lemma 2), too, and
conclude that NP-intermediate fragments exist. Unfortunately, this is typically
not the case. It is for instance NP-complete to determine whether a given graph
G has treewidth at most k or not [2] if k is part of the input. This is a common
feature that holds for, or is suspected to hold for, many different width param-
eters. Hence, width parameters are a natural source of single-valued measure
functions that are not polynomial-time computable. Such measure functions are
problematic since we cannot prove the existence of NP-intermediate subproblems
by using simplifying results like Proposition 4 or Theorem 5. By a few additional
assumptions we can however still prove the applicability of Theorem 3. Note that
if k is fixed, and thus not part of the input, then the graphs with tree-width ≤ k
can be recognized in linear time [5]. This is not uncommon when studying width
parameters — determining the width exactly is computationally hard but it can
be computed or estimated in polynomial time under additional assumptions. We
arrive at the following result.

Proposition 6. Assume that X is a decision problem and ρ is a single-valued
measure function such that Xρ(·) satisfies conditions P0 and P1. Furthermore
suppose that for each set {0, . . . , k} there exists a promise algorithm Ak for
Xρ({0, . . . , k}) with the following properties:

– if ρ(I) ≤ k, then Ak returns the correct answer in pk(||I||) steps where pk is
a polynomial only depending on k, and

1 We slightly abuse notation since tw and fhw are not directly defined on problem
instances.
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– if ρ(I) > k, then Ak either return a correct answer or do not answer at all.

Then there exists a set S ⊂ N such that Xρ(S) is NP-intermediate.

Proof. Let Xk denote the computational problem X restricted to instances I ∈
I(X) such that ρ(I) ≥ k. Assume there exists a k such that Xk ∈ P and let B
be an algorithm for this problem running in time q(||I||) for some polynomial
q. For Xρ({0, . . . , k − 1}), we have algorithm Ak−1 described above. Given an
arbitrary instance I of X , we may not be able to compute ρ(I) and choose which
algorithm to run. Do as follows: run algorithm Ak−1 for pk−1(||I||) steps on input
I. If Ak−1 produces an answer, then this is correct. If Ak−1 does not produce an
answer, then we know that ρ(I) > k−1 and we can apply algorithm B. All in all,
this takes O(pk−1(||I||)+ q(||I||)) time so X ∈ P which leads to a contradiction.

If Xk is in NPI for some k, then we simply let S = {k, k + 1, . . .}. We can
henceforth assume that Xk is NP-complete for all k. Obviously, Xρ(N) satisfies
property P2 since algorithm Ak, k ≥ 0, runs in polynomial time. We show that it
satisfies property P3, too. Let T ⊆ N be a finite set and letm = maxT . We know
that Xm+1 is NP-complete. Hence, there exists a polynomial-time reduction
from the NP-complete problem Xρ(N) to Xm+1 which, in turn, admits a trivial
polynomial-time reduction to Xρ(N \ T ) since {m + 1,m+ 2, . . .} ⊆ N \ T . We
can now apply Theorem 3 and obtain the set S. 	


We apply this result to CSPtw and CSPfhw, respectively. Clearly, both these
problems satisfy properties P0 and P1 due to the assumptions that we have
made. For CSPtw, we let Ak work as follows: given a CSP instance I, check
whether I has treewidth ≤ k using Bodlaender’s [5] algorithm. If the algorithm
answers “no”, then go into an infinite loop. Otherwise, decide whether I has a
solution or not in ||I||O(k) time. Proposition 6 implies that there exists a set
T ⊆ N such that CSPtw(T ) is NP-intermediate. We observe that Grohe [15] has
shown a similar result under the assumption that FPT �=W[1] instead of P �= NP.
Many other width parameters can also be used for obtaining NP-intermediate
problems. One example is CSPfhw for which the proof is very similar but is
instead based on Theorem 4.1 in Marx [21].

5 Multi-valued Measure Functions

In this section we turn our attention to multi-valued measure functions and apply
them to constraint problems. Throughout this section we assume that P �= NP.
Here, we want to associate the complexity of CSPs with constraint languages
and multi-valued measure functions are convenient for this purpose. Given a
constraint satisfaction problem parameterized with a constraint language Γ , let
ρ denote the single-valued measure function defined to return the highest arity
of any constraint in a given instance: ρ((V,C)) = max{k | R(v1, . . . , vk) ∈ C}.
Let CSP∗ρ(X) denote the CSP(Γ ) problem restricted to instances I such that
ρ(I) ∈ X , and assume there exists a set X ⊂ N such that CSP∗ρ(X) is NP-
intermediate. Can we from this conclude that there exists a constraint language
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Γ ′ ⊂ Γ such that CSP(Γ ′) is NP-intermediate? In general, the answer is no since
the set of valid instances of CSP∗ρ(X) are not in a one-to-one correspondence with
any constraint language restriction. Note that CSP∗ρ(X) is not the same problem
as CSP({R ∈ Γ | ar(R) ∈ X}). If we on the other hand define the multi-valued
measure function σ((V,C)) = {k | R(v1, . . . , vk) ∈ C}, then for every X ⊂ N the
problem CSP∗σ(X) is equivalent to CSP({R ∈ Γ | ar(R) ∈ X}).

5.1 Constraint Satisfaction Problems and the Local-Global
Conjecture

A constraint language Γ is said to have the local-global property [4] if CSP(Γ ′) ∈
P for every finite set Γ ′ ⊂ Γ implies CSP(Γ ) ∈ P. The non-existence of languages
not having the local-global property is known as the local-global conjecture. In
Bodirsky & Grohe [4] it is proven that if Γ is a constraint language over a finite
domain D that does not exhibit the local-global property, then there exists a
constraint language Γ ′ over D such that CSP(Γ ′) is NP-intermediate. In this
section we prove a more general result not restricted to finite domains based
on the notion of extension operators. If R is a k-ary relation and Γ a constraint
language over a domain D we say that R has a primitive positive (p.p.) definition
in Γ if R(x1, . . . , xk) ≡ ∃y1, . . . , yl . R1(x1)∧ . . . Ri(xi), where each Rj ∈ Γ ∪{=}
and each xi is a vector over x1, . . . , xk, y1, . . . , yl.

Definition 7. Let Γ be a recursively enumerable constraint language (with a
suitable representation of relations in Γ ). We say that 〈·〉 is an extension oper-
ator if (1) 〈Γ 〉 is a recursively enumerable set of p.p. definable relations over Γ
and (2) whenever Δ ⊂ 〈Γ 〉 and 〈Γ 〉 \Δ is finite, then every R ∈ 〈Γ 〉 \Δ is p.p.
definable in Δ.

Another way of viewing this is that the expressive power of 〈Γ 〉 does not
change when removing finitely many relations. Since Γ and 〈Γ 〉 are recursively
enumerable we can enumerate relations in Γ or 〈Γ 〉 as R1, R2, . . ., and it is not
hard to see that this implies that instances of CSP(Γ ) and CSP(〈Γ 〉) are also
recursively enumerable. Given an instance I of CSP(Γ ) containing the relations
Ri1 , . . . , Rik , we let ρ(I) = {i1, . . . , ik}. Let CSP∗ρ(S) denote the CSP(Γ ) problem
over instances I such that ρ(I) ⊆ S. Define the measure function ρ′ analogous to
ρ but for instances over CSP(〈Γ 〉), and let CSP×ρ′(S) be the CSP(〈Γ 〉) problem
restricted to instances I such that ρ′(I) ⊆ S.

Theorem 8. Assume Γ is a constraint language such that CSP∗ρ(N) satisfies

property P0 – P2. Let 〈·〉 be an extension operator such that CSP×ρ′ (〈Γ 〉) satisfies
property P0 – P1. Then there exists a Γ ′ ⊂ 〈Γ 〉 such that CSP(Γ ′) is NP-
intermediate.

Proof. We prove that CSP×ρ′(N) satisfies property P0 – P3. The first two prop-
erties are trivial by assumption. For property P2 let T = {i1, . . . , ik} be an
arbitrary finite subset of N and let Θ = {Ri1 , . . . , Rik}. Note that Θ might con-
tain relations which are not included in Γ . For every such relation R ∈ Θ we can
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however replace it by its p.p. definition in Γ . Let the resulting set of relations be
Θ′ and let S = {i | Ri ∈ Θ′}. Then CSP×ρ′(T ) and CSP∗ρ(S) are polynomial-time
equivalent since T is a finite set. Since CSP∗ρ(S) is solvable in polynomial time

by assumption, CSP×ρ′(T ) is polynomial-time solvable too.
For property P3 let T ⊂ N such that N \ T = {t1, . . . , tk}. To see that there

exists a polynomial-time reduction from CSP×ρ′(N) to CSP×ρ′(T ), we let I be an ar-

bitrary instance of CSP×ρ′(N). Assume I contains the constraint Ri(x1, . . . , xm),
i ∈ N \ T . Since 〈·〉 is an extension operator the relation Ri is p.p. definable in
〈Γ 〉 \Δ where Δ = {Ri | i ∈ N \ T }. Thus, we can replace Ri(x1, . . . , xm) with
its p.p. definition in 〈Γ 〉 \Δ, and by doing this for all constraints that are not
allowed by T , we end up with an instance I ′ of CSP×ρ′(T ) that is satisfiable if
and only if I is satisfiable. This is a polynomial-time reduction since N \ T is a
finite set.

By applying Theorem 3, we can now identify a set S ⊂ N such that CSP×ρ′(S)
is NP-intermediate. This implies that CSP(Γ ′) is NP-intermediate when Γ ′ =
{Ri ∈ 〈Γ 〉 | i ∈ S}. 	


Our first extension operator is based on the idea of extending a relation
into a relation with higher arity. For any relation R ⊆ Dn, we define the
kth power of R to be the relation Rk(x0, . . . , xk·n−1) ≡ R(x0, . . . , xn−1) ∧
R(xn, . . . , xn+n−1) ∧ R(x2n, . . . , x2n+n−1) ∧ . . . ∧ R(x(k−1)n, . . . , x(k−1)n+n−1).

Given a constraint language Γ , let 〈Γ 〉pow = {Rk | R ∈ Γ and k ∈ N}.
We represent each relation in 〈Γ 〉pow as a pair (R, k). It is easy to see that
CSP(〈Γ 〉pow) ∈ NP if CSP(Γ ) ∈ NP from which it follows that CSP(〈Γ 〉pow)
is NP-complete. Now assume that Δ ⊂ 〈Γ 〉pow and that 〈Γ 〉pow \ Δ is finite.
First, for every Rk ∈ 〈Γ 〉pow \Δ we can p.p. define Rk in Δ as R(x1, . . . , xn) ≡
∃xn+1, . . . , xk′·n+n−1.R

k′+1(x1, . . . , xn, xn+1, . . . , xk′·n+n−1), where k
′ > k. Such

a k′ must exist since we have only removed finitely many relations from 〈Γ 〉pow.
Hence 〈·〉pow is an extension operator. Extension operators are not uncommon
in the literature. Well studied examples (provided relations can be suitably rep-
resented) include closure under p.p. definitions (known as co-clones) and closure
under p.p. definitions without existential quantification (known as partial co-
clones). These are indeed extension operators since 〈Γ 〉pow is always a subset
of the partial co-clone of Γ and hence also of the co-clone of Γ . For a general
introduction to the field of clone theory we refer the reader to Lau [26].

Let Ra,b,c,U = {(x, y) ∈ Z2 | ax − by ≤ c, 0 ≤ x, y ≤ U} for arbitrary
a, b, U ∈ N and c ∈ Z. Furthermore let Γ ′U = {Ra,b,c,U | a, b ∈ N, c ∈ Z} for
any U ∈ N and the language Γ ◦ be defined as Γ ◦ =

⋃∞
i=0 Γ

′
i . Note that we can

represent each relation in Γ ◦ compactly by four integers written in binary. Due
to Jonsson & Lööw [18] it is known that Γ ◦ does not satisfy the local-global
property. By combining the language Γ ◦ and the extension operator 〈·〉pow with
Theorem 8 we thus obtain the following result.

Theorem 9. There exists a Γ ′ ⊂ 〈Γ ◦〉pow such that CSP(Γ ′) is NP-intermediate.

Due to the work of Bodirsky & Grohe [4] we already know that the CSP
problem over infinite domains is non-dichotomizable. Their result is however



410 P. Jonsson, V. Lagerkvist, and G. Nordh

based on reducing an already known NP-intermediate problem to a CSP problem
while our language Γ ′ ⊂ 〈Γ ◦〉pow is an explicit example of a locally tractable
language obtained via blowing holes.

5.2 Locally Tractable Languages with Bounded Arity

The downside of the 〈·〉pow operator is that the construction creates relations of
arbitrary high arity even if the language only contain relations of bounded arity.
In this section we show that simpler extensions are sometimes applicable for
constraint languages over infinite domains. For any k-ary relation R we define
the (k+1)-ary relation Ra as Ra(x1, . . . , xn, y) ≡ R(x1, . . . , xn)∧ (y = a), where
a ∈ D and (y = a) is the constraint application of the relation {(a)}. Let 〈Γ 〉+ =
{Ra | R ∈ Γ, a ∈ D}. If we represent each relation in 〈Γ 〉+ as a tuple (R, a) then
obviously 〈Γ 〉+ is recursively enumerable if Γ is recursively enumerable. Now
assume that Γ is an infinite constraint language and that 〈Γ 〉+ \ Δ is finite.
For any relation Ra ∈ 〈Γ 〉+ \ Δ we first determine a b such that Rb ∈ Δ. By
construction there exists such a b since 〈Γ 〉+\Δ is finite. Then, since Γ is infinite,
there exists anm-ary relationR′ ∈ Γ such that R′a ∈ Δ. Hence we can implement
Ra as Ra(x1, . . . , xn, y) ≡ ∃y′, x′1, . . . , x′m.Rb(x1, . . . , xn, y

′) ∧ R′a(x′1, . . . , x′m, y),
by which it follows that 〈·〉+ is an extension operator.

Say that a language Γ is idempotent if for all a ∈ D it holds that {(a)} is p.p.
definable in Γ . We assume that we can find the p.p. definition of {(a)}) in Γ in
polynomial time.

Theorem 10. Let Γ be an idempotent language over an infinite domain such
that Γ does not satisfy the local-global property. Then there exists a constraint
language Γ ′ such that (1) CSP(Γ ′) is NP-intermediate and (2) Γ ′ contains only
relations of arity k + 1, where k is the highest arity of a relation in Γ .

Proof. Let R1, R2, . . . be an enumeration of Γ and define the measure function ρ
over an instance I containing the relationsRi1 , . . . , Rik as ρ(I) = {i1, . . . , ik}. We
note that Γ must be infinite since it does not satisfy the local-global property. Let
CSP∗ρ(S) denote the CSP(Γ ) problem over instances I such that ρ(I) ⊆ S. Then
CSP∗ρ(N) obviously satisfies property P0–P2, and since 〈·〉+ is an extension oper-
ator, we only need to prove that CSP(〈Γ 〉+) is NP-complete. NP-hardness is easy
since CSP(Γ ) is trivially polynomial-time reducible to CSP(〈Γ 〉+). For member-
ship in NP we give a polynomial-time reduction from CSP(〈Γ 〉+) to CSP(Γ ). Let
I be an arbitrary instance of CSP(〈Γ 〉+). For any constraint Ra(x1, . . . , xn, y)
we replace it by R(x1, . . . , xn)∧φ(x′1 , . . . , x′m, y), where ∃x′1, . . . , x′m.φ is the p.p.
definition of y = a, which is computable in polynomial time by assumption. If
we repeat the procedure for all Ra in I we get an instance I ′ of CSP(Γ ) which is
satisfiable if and only if I is satisfiable. Hence there exists a Γ ′ ⊂ 〈Γ 〉+ such that
CSP(Γ ′) is NP-intermediate by Theorem 8. Let k denote the highest arity of a
relation in Γ . By definition every relation in 〈Γ 〉+ then has its arity bounded by
k + 1, which trivially also holds for Γ ′. 	
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It is not hard to see that for the constraint language Γ ◦ defined in the previous
section any constant relation is p.p. definable in polynomial time. For any a ∈ N
we simply let (y = a) ≡ ∃x.R0,1,a,a(x, y), i.e. the relation 0 · x − 1 · y ≤ a ∧ 0 ≤
x, y ≤ a. By Theorem 10 and the fact that Γ ◦ only contains relations of arity 2
we therefore obtain the following.

Theorem 11. There exists a Γ ′ ⊂ 〈Γ ◦〉+ such that (1) CSP(Γ ′) is NP-
intermediate and (2) Γ ′ contains only relations of arity 3.

5.3 Propositional Abduction

Abduction is a fundamental form of nonmonotonic reasoning whose computa-
tional complexity has been thoroughly investigated [10,13,23]. It is known that
the abduction problem parameterized with a finite constraint language is always
in P, NP-complete, coNP-complete or ΣP

2 -complete. For infinite languages the
situation differs and the question of whether it is possible to obtain a similar
classification was left open in [23]. We will show that there exists an infinite con-
straint language such that the resulting abduction problem is NP-intermediate.

Let Γ denote a constraint language and define the propositional abduction
problem Abd(Γ ) as follows.

Instance. An instance I of Abd(Γ ) consists of a tuple (V,H,M,KB), where
V is a set of Boolean variables, H is a set of literals over V (known as the set
of hypotheses), M is a literal over V (known as the the manifestation), and KB
is a set of constraint applications C1(x1) ∧ ... ∧ Ck(xk) where Ci denotes an
application of some relation in Γ and xi, 1 ≤ i ≤ k, is a vector of variables in V
(KB is known as the knowledge base).
Question. Does there exist an explanation for I, i.e., a set E ⊆ H such that
KB∧

∧
E is satisfiable and KB∧

∧
E |= M , i.e. KB∧

∧
E∧¬M is not satisfiable.

Let ΓIHSB− be the infinite constraint language consisting of the relations
expressed by the clauses (x), (¬x ∨ y) and all negative clauses, i.e., {(¬x1 ∨
· · · ∨ ¬xn) | n ≥ 1}. We may represent each relation is ΓIHSB− with a nat-
ural number in the obvious way. Let the finite constraint language ΓIHSB−/k

be the subset of ΓIHSB− that contains all clauses C such that ar(C) = k.
In light of this we define the multi-valued measure function ρ(I) = {ar(C) |
C is a negative clause of KB in I}. With the chosen representation of relations,
ρ is obviously polynomial-time computable. We define the corresponding param-
eterized abduction problem Abd∗ρ(Γ ) such that I(Abd∗) is the set of abduction
instances over ΓIHSB−. We now verify that Abd∗ρ(N) fulfills property P0 – P3.

Property P0 holds trivially while property P1 follows from [23]. For property
P2, we note that if T is an arbitrary finite subset of N, then there exists a k ∈ T
such that the clauses of every Abd∗ρ(T ) instance is bounded by k. By [23], we
know that Abd(ΓIHSB−/k) is in P for every k, and hence that Abd∗ρ(T ) is in P
for every finite subset of S. To show property P3, we present a polynomial-time
reduction from Abd∗ρ(N) to Abd∗ρ(T ) when N \ T is finite. Let k = max(N \ T ).
Arbitrarily choose an instance I = (V,H,M,KB) of Abd∗ρ(N). Then, for every
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clause C = (¬x1∨ . . .∨¬xl) ∈ KB such that l ∈ S \T , replace C by the logically
equivalent clause C′ = (¬x1 ∨ . . .∨¬xl−1 ∨¬xl ∨ ¬xl . . . ∨ ¬xl︸ ︷︷ ︸

k + 1− l ¬xl’s

) of length k+1.

If we let the resulting knowledge base be KB ′ then I ′ = (V,H,M,KB ′) is an
instance of Abd∗ρ(T ) which has a solution if and only if I has a solution.

From this and Theorem 3 it follows that that there exists a S′ ⊂ N such that
Abd∗ρ(S

′) is NP-intermediate. Hence we conclude the following.

Theorem 12. There exists a constraint language Γ ′IHSB− ⊂ ΓIHSB− such that
Abd(Γ ′IHSB−) is NP-intermediate.

6 Future Work

One way of obtaining genuinely new NP-intermediate problems is to consider
other complexity-theoretic assumptions than P �= NP. We have pointed out that
the LogClique problem is NP-intermediate under the ETH, and that the main
difficulty is to provide a lower bound, i.e. proving that LogClique �∈ P. One may
suspect that providing lower bounds is the main difficulty also when considering
other problems. We have seen that CSP problems constitute a rich source of NP-
intermediate problems via different kinds of parameterization, Hence, it appears
feasible that methods for studying the complexity of parameterized problems
will become highly relevant. In particular, linear fpt-reductions [7,8] have been
used for proving particularly strong lower bounds which may be used for linking
together NP-intermediate problems, parameterized problems, and lower bound
assumptions. Another way is to adapt and use recent methods for studying the
time complexity of Boolean CSP problems [17]. These methods aim at obtaining
reductions that provide a fine-grained picture of time complexity and this may
be useful when studying NP-intermediate problems. Additionally, recent results
by Dell and van Melkebeek [12] can be used for proving the non-existence of
such reductions.

We have shown that the propositional abduction problem has NP-intermediate
fragments. One may view abduction as a problem that is closely related to
Boolean CSPs. However, there is an important difference: the CSP(Γ ) problem
is either a member of P or NP-complete for all choices of Boolean Γ . Hence,
it would be interesting to determine which finite-domain CSP-related problems
can be used for obtaining NP-intermediate problems and which of them have
the local-global property. Inspired by our result on the abduction problem, we
view other forms of non-monotonic reasoning such as circumscription and de-
fault logic as potential candidates. Unfortunately, many problems of this type
are polynomial-time solvable only in very restricted cases, which makes it hard
to find a candidate language resulting in a problem not having the local-global
property. Thus, more powerful methods than blowing may be needed for identi-
fying NP-intermediate problems in this and similar cases.
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Abstract. An open quantified boolean formula (QBF) is a QBF that
contains free (unquantified) variables. A solution to such a QBF is a
quantifier-free formula that is logically equivalent to the given QBF.
Although most recent QBF research has focused on closed QBF, there
are a number of interesting applications that require one to consider
formulas with free variables. This article shows how clause/cube learning
for DPLL-based closed-QBF solvers can be extended to solve QBFs with
free variables. We do this by introducing sequents that generalize clauses
and cubes and allow learning facts of the form “under a certain class
of assignments, the input formula is logically equivalent to a certain
quantifier-free formula”.

1 Introduction

In recent years, significant effort has been invested in developing efficient solvers
for Quantified Boolean Formulas (QBFs). So far this effort has been almost
exclusively directed at solving closed formulas — formulas where each variable is
either existentially or universally quantified. However, in a number of interesting
applications (such as symbolic model checking and automatic synthesis of a
boolean reactive system from a formal specification), one needs to consider open
formulas, i.e., formulas with free (unquantified) variables. A solution to such a
QBF is a formula equivalent to the given one but containing no quantifiers and
using only those variables that appear free in the given formula. For example, a
solution to the open QBF formula ∃x. (x ∧ y) ∨ z is the formula y ∨ z.

This article shows how DPLL-based closed-QBF solvers can be extended to
solve QBFs with free variables. In [14], it was shown how clause/cube learning
for DPLL-based QBF solvers can be reformulated in terms of sequents and ex-
tended to non-CNF, non-prenex formulas. This technique uses ghost variables
to handle non-CNF formulas in a manner that is symmetric between the exis-
tential and universal quantifiers. We show that this sequent-based technique can
be naturally extended to handle QBFs with free variables.

A näıve way to recursively solve an open QBF Φ is shown in Figure 1. Roughly,
we Shannon-expand on the free variables until we’re left with only closed-QBF
problems, which are then handed to a closed-QBF solver. As an example, con-
sider the formula (∃x. x ∧ y), with one free variable, y. Substituting y with true
in Φ yields (∃x. x); this formula is given to a closed-QBF solver, which yields
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function solve(Φ) {

if (Φ has no free variables) {return closed_qbf_solve(Φ);}
x := (a free variable in Φ);
return ite(x, solve(Φ with x substituted with True),

solve(Φ with x substituted with False));
}

Fig. 1. Naive algorithm. The notation “ite(x, φ1, φ2)” denotes a formula with an
if-then-else construct that is logically equivalent to (x ∧ φ1) ∨ (¬x ∧ φ2).

true. Substituting y with false in Φ immediately yields false. So, our final answer
is the formula (y ? true : false), which simplifies to y. In general, if the free vari-
ables are always branched on in the same order, then the algorithm effectively
builds an ordered binary decision diagram (OBDD) [7], assuming that the ite

function is memoized and performs appropriate simplification.
The above-described näıve algorithm suffers frommany inefficiencies. In terms

of branching behavior, it is similar to the DPLL algorithm, but it lacks non-
chronological bracktracking and an equivalent of clause learning. The main
contribution of this paper is to show how an existing closed-QBF algorithm can
be modified to directly handle formulas with free variables by extending the
existing techniques for non-chronological backtracking and clause/cube/sequent
learning.

2 Preliminaries

Grammar. We consider prenex formulas of the form Q1X1...QnXn. φ, where
Qi ∈ {∃, ∀} and φ is quantifier-free and represented as a DAG. The logical
connectives allowed in φ are conjunction, disjunction, and negation. We say
that Q1X1...QnXn is the quantifier prefix and that φ is the matrix.

Assignments. Let π be a partial assignment of boolean values to variables. For
convenience, we identify π with the set of literals made true by π. For example,
we identify the assignment {(e1, true), (u2, false)} with the set {e1,¬u2}. We
write “vars(π)” to denote the set of variables assigned by π.

Quantifier Order. In a formula such as ∀x.∃y. φ, where the quantifier of y
occurs inside the scope of the quantifier of x, and the quantifier type of x is
different from the quantifier type of y, we say that y is downstream of x.
Likewise, we say that x is upstream of y. All quantified variables in a formula
are considered downstream of all free variables in the formula. In the context of
an assignment π, we say that a variable is an outermost unassigned variable iff
it is not downstream of any variables unassigned by π.
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QBF as a Game. A closed QBF formula Φ can be viewed as a game between
an existential player (Player ∃) and a universal player (Player ∀):
– Existentially quantified variables are owned by Player ∃.
– Universally quantified variables are owned by Player ∀.
– Players assign variables in quantification order (starting with outermost).

– The goal of Player ∃ is to make Φ be true.

– The goal of Player ∀ is to make Φ be false.

– A player owns a literal � if the player owns var (�).

If both players make the best moves possible, then the existential player will win
iff the formula is true, and the universal player will win if the formula is false.

Substitution. Given a partial assignment π, we define “Φ|π” to be the result
of the following: For every assigned variable x, we replace all occurrences of x
in Φ with the assigned value of x (and delete the quantifier of x, if any).

Gate Variables. We label each conjunction and disjunction with a gate vari-
able. If a formula φ is labelled by a gate variable g, then ¬φ is labelled by
¬g. The variables originally in the formulas are called “input variables”, in
distinction to gate variables.

2.1 Tseitin Transformation’s Undesired Effects in QBF

The Tseitin transformation [20] is the usual way of converting a formula into
CNF. In the Tseitin transformation, all the gate variables (i.e., Tseitin variables)
are existentially quantified in the innermost quantification block and clauses are
added to equate each gate variable with the subformula that it represents. For
example, consider the following formula:

Φin := ∃e. ∀u. (e ∧ u)︸ ︷︷ ︸
g1

∨ (¬e ∧ ¬u)︸ ︷︷ ︸
g2

This formula is converted to:

Φ′in = ∃e. ∀u. ∃g. (g1 ∨ g2) ∧ (g1 ⇔ (e ∧ u)) ∧ (g2 ⇔ (¬e ∧ ¬u)) (1)

The biconditionals defining the gate variables are converted to clauses as follows:

(g1 ⇔ (e ∧ u)) = (¬e ∨ ¬u ∨ g1) ∧ (¬g1 ∨ e) ∧ (¬g1 ∨ u)

Note that the Tseitin transformation is asymmetric between the existential and
universal players: In the resulting CNF formula, the gate variables are existen-
tially quantified, so the existential player (but not the universal player) loses if
a gate variable is assigned inconsistently with the subformula that it represents.
For example, in Equation 1, if e|π = false and g1|π = true, then the existential
player loses Φ′in|π. This asymmetry can be harmful to QBF solvers. For example,
consider the QBF

∀x. ∃y. y ∨ ψ(x)︸ ︷︷ ︸
g1

(2)
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This formula is trivially true. A winning move for the existential player is to
make y be true, which immediately makes the matrix of the formula true, re-
gardless of ψ. Under the Tseitin transformation, Equation 2 becomes:

∀x. ∃y. ∃g. (y ∨ g1) ∧ (clauses equating gate variables)

Setting y to be true no longer immediately makes the matrix true. Instead, for
each assignment of universal variables x, the QBF solver must actually find a
satisfying assignment to the gate variables. This makes it much harder to detect
when the existential player has won. Experimental results [1,22] indicate that
purely CNF-based QBF solvers would, in the worst case, require time exponential
in the size of ψ to solve the CNF formula, even though the original problem
(before translation to CNF) is trivial.

3 Ghost Variables and Sequents

We employ ghost variables to provide a modification of the Tseitin transforma-
tion that is symmetric between the two players. The idea of using a symmetric
transformation was first explored in [22], which performed the Tseitin transfor-
mation twice: once on the input formula, and once on its negation. Similar ideas
have been used to handle non-prenex formulas in [14] and to handle “don’t care”
propagation in [12].

For each gate variable g, we introduce two ghost variables : an existentially
quantified variable g∃ and a universally quantified variable g∀. We say that g∃

and g∀ represent the formula labeled by g. Ghost variables are considered to be
downstream of all input variables.

We now introduce a semantics with ghost variables for the game formulation
of QBF. As in the Tseitin transformation, the existential player should lose if an
existential ghost variable g∃ is assigned a different value than the subformula that
it represents. Additionally, the universal player should lose if an universal ghost
variable g∀ is assigned a different value than the subformula that it represents.

In this paper, we never consider formulas (other than single literals) in which
ghost variables occur as actual variables. In particular, if Φ is the input formula
to the QBF solver, then in a substitution Φ|π, ghost variables in π have no effect.

Definition 1 (Consistent assignment to ghost literal). Given a quantifier
type Q ∈ {∃, ∀} and an assignment π, we say that a ghost literal gQ is assigned
consistently under π iff gQ|π = (the formula represented by gQ)|π.

Definition 2 (Winning under a total assignment). Given a formula Φ, a
quantifier type Q ∈ {∃, ∀}, and an assignment π to all the input variables and a
subset of the ghost variables, we say “Player Q wins Φ under π” iff:

• Φ|π = true if Q is ∃, and
• Φ|π = false if Q is ∀, and
• Every ghost variable owned by Q in vars(π) is assigned consistently.

(Intuitively, a winning player’s ghost variables must “respect the encoding”).
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For example, if Φ = ∃e.∀u. (e∧ u) and g labels (e∧ u) then neither player wins
Φ under {¬e, u, g∀,¬g∃}. The existential player loses because Φ|π = false, and
the universal player loses because g∀|π �= (the formula represented by g∀)|π.

Definition 3 (Losing under a total assignment). Given a formula Φ and
an assignment π that assigns all the input variables, we say “Player Q loses Φ
under π” iff Player Q does not win Φ under π.

Definition 4 (Losing under a partial assignment). Given a formula Φ, an
assignment π, and an outermost unassigned input variable x, we say “Player Q
loses Φ under π” iff either:

• Player Q loses Φ under both π ∪ {(x, true)} and π ∪ {(x, false)}, or
• Q’s opponent owns x and Player Q loses Φ under either π ∪ {(x, true)} or
π ∪ {(x, false)}.

For example, consider a formula Φ = ∃e. x ∧ e, where x is a free variable. The
existential player loses Φ under {¬x} and under {¬e}. Neither player can be
said to lose Φ under the empty assignment, because the value of Φ depends on
the free variable x. Now let us make a few general observations about when a
player loses under an arbitrary partial assignment.

Observation 1. If Φ|π = true, then Player ∀ loses Φ under π.

Observation 2. If Φ|π = false, then Player ∃ loses Φ under π.

Observation 3. If a ghost variable owned by Q in vars(π) is assigned inconsis-
tently under π, then Player Q loses Φ under π.

Observation 4. If the opponent of Q owns a literal � that is unassigned under
π, and Q loses Φ under π ∪ {�}, then Q loses Φ under π.

Definition 5 (Game-State Specifier, Match). A game-state specifier is
a pair 〈Lnow, Lfut〉 consisting of two sets of literals, Lnow and Lfut. We say that
〈Lnow, Lfut〉 matches an assignment π iff:

1. for every literal � in Lnow, �|π = true, and
2. for every literal � in Lfut, either �|π = true or � �∈ vars(π).

For example, 〈{u}, {e}〉 matches the assignments {u} and {u, e}, but does not
match {} or {u,¬e}. Note that, for any literal �, if {�,¬�} ⊆ Lfut, then
〈Lnow, Lfut〉 matches an assignment π only if π doesn’t assign �. The intuition
behind the names “Lnow” and “Lfut” is as follows: Under the game formulation of
QBF, the assignment π can be thought of as a state of the game, and π matches
〈Lnow, Lfut〉 iff every literal in Lnow is already true in the game and, for every
literal � in Lfut, it is possible that � can be true in a future state of the game.

Definition 6 (Game Sequent). The sequent “〈Lnow, Lfut〉 |= (Q loses Φ)”
means “Player Q loses Φ under all assignments that match 〈Lnow, Lfut〉.”
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As an example, let Φ be the following formula:

∀u. ∃e. (e ∨ ¬u) ∧ (u ∨ ¬e) ∧
g3︷ ︸︸ ︷

(x1 ∨ e)

Note that sequent 〈{u}, {e}〉 |= (∀ loses Φ) holds true: in any assignment π that
matches it, Φ|π = true. However, 〈{u},∅〉 |= (∀ loses Φ) does not hold true: it
matches the assignment {u,¬e}, under which Player ∀ does not lose Φ. Finally,
〈{g∀3}, {e,¬e}〉 |= (∀ loses Φ) holds true. Let us consider why Player ∀ loses Φ
under the assignment {g∀3}. The free variable x1 is the outermost unassigned
variable, so under Definition 4, Player ∀ loses under {g∀3} iff Player ∀ loses under
both {g∀3 , x1} and {g∀3 ,¬x1}. Under {g∀3 , x1}, Player ∀ loses because Φ|{g∀3 , x1}
evaluates to true. Under {g∀3 ,¬x1}, Player ∀ loses because e is owned by the
opponent of Player ∀ and g∀3 is assigned inconsistently under {g∀3 ,¬x1,¬e}.

Note that a clause (�1 ∨ ... ∨ �n) in a CNF formula Φin is equivalent to the
sequent 〈{¬�1, ...,¬�n}, ∅〉 |= (∃ loses Φin). (Sequents in this form can also be
considered similar to nogoods [19].) Likewise, a cube (�1 ∧ ... ∧ �n) in a DNF
formula Φin is equivalent to the sequent 〈{�1, ..., �n}, ∅〉 |= (∀ loses Φin).

3.1 Sequents with Free Variables

Above, we introduced sequents that indicate if a player loses a formula Φ. Now,
we will generalize sequents so that they can indicate that Φ evaluates to a
quantifier-free formula involving the free variables. To do this, we first intro-
duce a logical semantics for QBF with ghost variables. Given a formula Φ and
an assignment π that assigns all the input variables, we want the semantic eval-
uation �Φ�π to have the following properties:

1. �Φ�π = true iff the existential player wins Φ under π.

2. �Φ�π = false iff the universal player wins Φ under π.

Note that the above properties cannot be satisfied in a two-valued logic if both
players lose Φ under π. So, we use a three-valued logic with a third value dontcare.
We call it “don’t care” because we are interested in the outcome of the game
when both players make the best possible moves, but if both players fail to win,
then clearly at least one of the players failed to make the best possible moves.
In our three-valued logic, a conjunction of boolean values evaluates to false if
any conjunct is false, and otherwise it evaluates to dontcare if any conjunct
is dontcare. Disjunction is defined analogously. The negation of dontcare is
dontcare. In a truth table:

x y x ∧ y x ∨ y
true dontcare dontcare true
false dontcare false dontcare
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Definition 7. Given an assignment π to all the input variables and a subset of
the ghost variables, we define �Φ�π as follows:

�Φ�π :=

⎧⎪⎨
⎪⎩
true if Player ∃ wins Φ under π

false if Player ∀ wins Φ under π

dontcare if both players lose Φ under π

For convenience in defining �Φ�π for a partial assignment π, we assume that the
formula is prepended with a dummy “quantifier” block for free variables. For
example, (∃e. e∧ z) becomes (Fz. ∃e. e∧ z), where F denotes the dummy block
for free variables. If Φ contains free variables unassigned by π then �Φ�π is a
formula in terms of these free variables. We define �Φ�π as follows for a partial
assignment π that assigns only a proper subset of the input variables:

�Qx.Φ�π = �Φ�π if x ∈ vars(π)

�∃x. Φ�π = �Φ�(π ∪ {x}) ∨ �Φ�(π ∪ {¬x}) if x �∈ vars(π)

�∀x. Φ�π = �Φ�(π ∪ {x}) ∧ �Φ�(π ∪ {¬x}) if x �∈ vars(π)

�Fx. Φ�π = x ? �Φ�(π ∪ {x}) : �Φ�(π ∪ {¬x}) if x �∈ vars(π)

The notation “x ? φ1 : φ2” denotes a formula with an if-then-else construct that
is logically equivalent to (x ∧ φ1) ∨ (¬x ∧ φ2). Note that the branching on the
free variables here is similar to the Shannon expansion [17].

Remark. Do we really need to add the dummy blocks for free variables and
have the rule for �Fx. Φ�π in Definition 7? Yes, because if π contains a ghost
literal gQ that represents a formula containing variables free in Φ, then it doesn’t
make sense to ask if gQ is assigned consistently under π unless all the variables
in the formula represented by gQ are assigned by π.

Definition 8 (Sometimes-Dontcare). A formula φ is said to be sometimes-
dontcare iff there is an assignment π under which φ evaluates to dontcare. For
example, (x ∨ dontcare) is sometimes-dontcare, while (x ∨ (x ∧ dontcare)) is not
sometimes-dontcare (because it evaluates to true if x is true and evaluates to
false if x is false).

Definition 9 (Free Sequent). The sequent “〈Lnow, Lfut〉 |= Φ ⇔ ψ” means
“for all assignments π that match 〈Lnow, Lfut〉, if �Φ�π is not sometimes-dontcare,
then �Φ�π is logically equivalent to ψ|π”.

Remark. The sequent definitions in Definitions 9 and 6 are related as follows:

• “〈Lnow, Lfut〉 |= (∃ loses Φ)” means the same as “〈Lnow, Lfut〉 |= (Φ⇔ false)”.

• “〈Lnow, Lfut〉 |= (∀ loses Φ)” means the same as “〈Lnow, Lfut〉 |= (Φ⇔ true)”.

We treat a game sequent as interchangeable with the corresponding free sequent.

Sequents of the form 〈Lnow, Lfut〉 |= Φ ⇔ ψ extend clause/cube learning by
allowing ψ to be a formula (in terms of the variables free in Φ) in addition to the
constants true and false. This enables handling of formulas with free variables.
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4 Algorithm

The top-level algorithm, shown in Figure 2, is based on the well-known DPLL
algorithm, except that sequents are used instead of clauses. Similar to how
SAT solvers maintain a clause database (i.e., a set of clauses whose conjunction
is equisatisfiable with the original input formula Φin), our solver maintains a
sequent database. A SAT solver’s clause database is initialized to contain exactly
the set of clauses produced by the Tseitin transformation of the input formula
Φin into CNF. Likewise, our sequent database is initialized (§ 4.1) to contain a
set of sequents analogous to the clauses produced by the Tseitin transformation.

In the loop on lines 4–7, the solver chooses an outermost unassigned literal,
adds it to πcur, and performs boolean constraint propagation (BCP). BCP may
add further literals to πcur, as described in detail in § 4.4; such literals are referred
to as forced literals , in distinction to the literals added by DecideLit, which are
referred to as decision literals . The stopping condition for the loop is when the
current assignment matches a sequent already in the database. (The analogous
stopping condition for a SAT solver would be when a clause is falsified.) When
this stopping condition is met, the solver performs an analysis similar to that of
clause learning [18] to learn a new sequent (line 8). If the Lnow component of
the learned sequent is empty, then the solver has reached the final answer, which
it returns (line 9). Otherwise, the solver backtracks to the earliest decision level
at which the newly learned sequent will trigger a forced literal in BCP. (The
learning algorithm guarantees that this is possible.) The solver then performs
BCP (line 11) and returns to the inner loop at line 4.

The intuition behind BCP for quantified variables is fairly straightforward; a
literal owned by Q is forced by a sequent if the sequent indicates that Q need to
make � true to avoid losing. For free variables, the intuition is slightly different.
Free variables are forced to prevent the solver from re-exploring parts of the

1. initialize_sequent_database();

2. πcur := ∅; Propagate();

3. while (true) {

4. while (πcur doesn’t match any database sequent) {

5. DecideLit();

6. Propagate();

7. }

8. Learn();

9. if (learned seq has form 〈∅, Lfut〉 |= (Φin ⇔ ψ)) return ψ;
10. Backtrack();

11. Propagate();

12. }

Fig. 2. Top-Level Algorithm. Details have been omitted for sake of clarity.
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search space that it has already seen, so that the solver is continuously making
progress in exploring the search space, thereby guaranteeing it would eventually
terminate (given enough time and memory). (Actually, this intuition also applies
to quantified variables.)

The solver maintains a list of assigned literals in the order in which they were
assigned; this list is referred to as the trail [9]. Given a decision literal �d, we
say that all literals that appear in the trail after �d but before any other decision
literal belong to the same decision level as �d.

For prenex formulas without free variables, the algorithm described here is
operationally very similar to standard DPLL QBF solvers, except that Lnow and
Lfut do not need to be explicitly separated, since Lnow always consists exactly of
all the loser’s literals. However, for formulas with free variables, it is necessary
to explicitly record which literals belong in Lnow and which in Lfut.

4.1 Initial Sequents

We initialize the sequent database to contain a set of initial sequents , which
correspond to the clauses produced by the Tseitin transformation of the input
formula Φin. The set of initial sequents must be sufficient to ensure the loop on
line 4–6 of Figure 2 (which adds unassigned literals to the current assignment
until it matches a sequent in the database) operates properly. That is, for every
possible total assignment π, there must be at least one sequent that matches π.

First, let us consider a total assignment π in which both players assign all
their ghost variables consistently (Definition 1). In order to handle this case, we
generate the following two initial sequents, where gin is the label of the input

formula Φin: 〈{¬g∃in},∅〉 |= (∃ loses Φin) and 〈{g∀in},∅〉 |= (∀ loses Φin).

Since all ghost variables are assigned consistently in π, it follows that, for each
gate g, g∃|π must equal g∀|π, since both g∃ and g∀ must each be assigned the
same value as the formula that g labels. In particular, g∃in|π must be equal to
g∀in|π, so π must match exactly one of the two above initial sequents.

Now let us consider a total assignment π in which at least one player assigns
a ghost variable inconsistently. In order to handle this case, we generate a set of
initial sequents for every conjunction and disjunction in Φin. Let g∗ be the label
of an arbitrary conjunction in Φin of the form(

x1 ∧ ... ∧ xn ∧ φ1︸︷︷︸
g1

∧ ... ∧ φm︸︷︷︸
gm

)

where x1 through xn are input literals. The following initial sequents are pro-
duced from this conjunction for each Q ∈ {∃, ∀}:

1. 〈{gQ∗ , ¬xi},∅〉 |= (Q loses Φin) for i ∈ {1, ..., n}
2. 〈{gQ∗ , ¬gQi },∅〉 |= (Q loses Φin) for i ∈ {1, ...,m}

3. 〈{¬gQ∗ , x1, ..., xn, gQ1 , ..., gQm},∅〉 |= (Q loses Φin)
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Now let gQ∗ denote a ghost literal such that (1) gQ∗ is inconsistently assigned under

π and (2) no proper subformula of the formula represented by gQ∗ is labelled by
a inconsistently-assigned ghost variable. Then π must match one of the above-
listed initials sequents.

4.2 Normalization of Initial Sequents

Note that all the initial sequents have the form 〈Lnow, Lfut〉 |= (Q loses Φ) where
Lfut = ∅. We normalize these sequents by moving all literals owned by Q’s
opponent from Lnow to Lfut, in accordance with the following inference rule:

The opponent of Q owns �, and ¬� �∈ Lfut

〈Lnow ∪ {�}, Lfut〉 |= (Q loses Φ)

〈Lnow, Lfut ∪ {�}〉 |= (Q loses Φ)

To prove the above inference rule, we consider an arbitrary assignment π that
matches 〈Lnow, Lfut ∪ {�}〉, assume that the premises of inference rule hold true,
and prove that Player Q loses under π:

1. π matches 〈Lnow, Lfut ∪ {�}〉 (by assumption).

2. π ∪ {�} matches 〈Lnow ∪ {�}, Lfut〉 (using the premise that ¬� �∈ Lfut).

3. Q loses Φ under π ∪ {�} (by the premise 〈Lnow ∪ {�}, Lfut〉 |= (Q loses Φ)).

4. Q loses Φ under π (by Observation 4 on page 419).

4.3 Properties of Sequents in Database

After the initial sequents have been normalized (as described in § 4.2), the solver
maintains the following invariants for all sequents in the sequent database, in-
cluding sequents added to the database as a result of learning (§ 4.5):

1. In a sequent of the form 〈Lnow, Lfut〉 |= (Q loses Φin):
(a) Every literal in Lnow either is owned by Q or is free in Φin.
(b) Every literal in Lfut is owned by the opponent of Q.

2. In a sequent of the form 〈Lnow, Lfut〉 |= (Φin ⇔ ψ), every variable in ψ
appears both positively and negatively in Lfut (i.e., if r occurs in ψ, then
{r,¬r} ⊆ Lfut). This is guaranteed by the learning algorithm in § 4.5.

4.4 Propagation

The Propagate procedure is similar to that of closed-QBF solvers. Consider a
sequent 〈Lnow, Lfut〉 |= (Φin ⇔ ψ) in the sequent database. If, under πcur,

1. there is exactly one unassigned literal � in Lnow, and
2. no literals in Lnow ∪ Lfut are assigned false, and
3. � is not downstream of any unassigned literals in Lfut,
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then ¬� is forced — it is added to the current assignment πcur. In regard to the
3rd condition, if an unassigned literal r in Lfut is upstream of �, then r should get
assigned before �, and if r gets assigned false, then � shouldn’t get forced at all by
the sequent. Propagation ensures that the solver never re-explores areas of the
search space for which it already knows the answer, ensuring continuous progress
and eventual termination. It is instructive to consider how the propagation rule
applies in light of the properties of sequents discussed in § 4.3:

1. A sequent of the form 〈Lnow, Lfut〉 |= (Q loses Φin) can force a literal that
is either owned by Q or free in Φin; it cannot force a literal owned by Q’s
opponent. If � is owned by Q, then the reason for forcing ¬� is intuitive: the
only way for Q to avoid losing is to add ¬� to the current assignment. If �
is free in Φin, then ¬� is forced because the value of �Φin�πcur ∪ {�} is already
known and the solver shouldn’t re-explore that same area of the search space.

2. A sequent of the form 〈Lnow, Lfut〉 |= (Φin ⇔ ψ), where ψ contains free
variables, can only force a literal that is free in Φin. Although Lnow can
contain literals owned by Player ∃ and Player ∀, such literals cannot be
forced by the sequent. To prove this, we consider two cases: either there
exists a variable v that occurs in ψ and is assigned by πcur, or all variables
that occur ψ are left unassigned by πcur. If there is variable v in ψ that is
assigned by πcur, then πcur cannot match 〈Lnow, Lfut〉 |= (Φin ⇔ ψ), since
{v,¬v} ⊆ Lfut. If there is a variable v in ψ that is left unassigned by πcur,
then 〈Lnow, Lfut〉 |= (Φin ⇔ ψ) cannot force any quantified variable, since v
occurs in Lfut and all quantified variables are downstream of free variable v.

We employ a variant of the watched-literals rule designed for SAT solvers [16]
and adapted for QBF solvers [10]. For each sequent 〈Lnow, Lfut〉 |= (Φ⇔ ψ), we
watch two literals in Lnow and one literal in Lfut.

4.5 Learning

In the top-level algorithm in Figure 2, the solver performs learning (line 8) after
the current assignment πcur matches a sequent in the database. The learning
procedure is based on the clause learning introduced for SAT in [18] and adapted
for QBF in [24]. We use inference rules shown in Figure 4 to add new sequents
to the sequent database. These rules, in their Lnow components, resemble the
resolution rule used in SAT (i.e., from (A∨r)∧(¬r∨B) infer A∨B). The learning
algorithm ensures that the solver remembers the parts of the search space for
which it has already found an answer. This, together with propagation, ensures
that solver eventually covers all the necessary search space and terminates.

The learning procedure, shown in Figure 3, works as follows. Let seq be the
database sequent that matches the current assignment πcur. Let r be the literal
in the Lnow component of seq that was most recently added to πcur (i.e., the
latest one in the trail). Note that r must be a forced literal (as opposed to a
decision literal), because only an outermost unassigned literal can be picked as
a decision literal, but if r was outermost immediately before it added to πcur,
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func Learn() {

seq := (the database sequent that matches πcur);
do {

r := (the most recently assigned literal in seq.Lnow)
seq := Resolve(seq, antecedent[r]);

} until (seq.Lnow = ∅ or has good UIP(seq));

return seq;

}

Fig. 3. Procedure for learning new sequents

Resolving on a literal r owned by Player Q (case 1):

The quantifier type of r in Φ is Q

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Q loses Φin)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Q loses Φin)

r is not downstream of any � such that � ∈ Lfut
1 and ¬� ∈ (Lfut

1 ∪ Lfut
2 )

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 |= (Q loses Φin)

Resolving on a literal r owned by Player Q (case 2):

The quantifier type of r in Φ is Q

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Q loses Φin)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φin ⇔ ψ)

r is not downstream of any � such that � ∈ Lfut
1 and ¬� ∈ (Lfut

1 ∪ Lfut
2 )

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {¬r}〉 |= (Φin ⇔ ψ)

Resolving on a variable r that is free in Φin:

Literal r is free

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Φin ⇔ ψ1)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φin ⇔ ψ2)

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {r,¬r}〉 |= (Φin ⇔ (r ? ψ1 : ψ2))

Fig. 4. Resolution-like inference rules
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then no unassigned literal in the Lfut component of seq was upstream of r, so
seq would have forced ¬r in accordance with § 4.4. We use the inference rules
in Figure 4 to infer a new sequent from seq and the antecedent of r (i.e., the
sequent that forced r). This is referred to as resolving due to the similarity of
the inference rules to the clause resolution rule. We stop and return the newly
inferred sequent if it has a “good” unique implication point (UIP) [24], i.e., if
there is a literal � in the Lnow component such that

1. Every literal in (Lnow \ {�}) belongs to an earlier decision level than �,
2. Every literal in Lfut upstream of � belongs to a decision level earlier than �.
3. If seq has the form 〈Lnow, Lfut〉 |= (Q loses Φin), then the decision variable

of the decision level of � is not owned by the opponent of Q.

Otherwise, we resolve the sequent with the antecedent of the most recently as-
signed literal in its Lnow component, and continue this process until the stopping
conditions above are met or Lnow is empty. Note that if the most recently as-
signed literal in Lnow is a decision literal, then it is a good UIP.

Note that in the resolution rule for resolving on a free variable r, we add
both r and ¬r to Lfut. This is not necessary for soundness of the resolution
itself. Rather, it is to ensure that the properties in § 4.3 hold true. Without
these properties, a quantified variable could be forced by a sequent that is not
equivalent to a clause or a cube.

Example. Below, we give several applications of the resolution rules. For
brevity, we omit free variables from the Lfut component.

∃e3. (i1 ∧ e3)︸ ︷︷ ︸
g5

∨ (i2 ∧ ¬e3)︸ ︷︷ ︸
g4

1. Start: 〈{¬i1,¬i2}, {}〉 |= (Φin ⇔ false)

2. Resolve ¬i1 via 〈{i1,¬g∀5}, {e3}〉 |= (Φin ⇔ true)

Result: 〈{¬i2,¬g∀5}, {e3}〉 |= (Φin ⇔ i1)

3. Resolve ¬i2 via 〈{i2,¬g∀4}, {¬e3}〉 |= (Φin ⇔ true)

Result: 〈{¬g∀5 ,¬g∀4}, {e3,¬e3}〉 |= (Φin ⇔ (i1 ∨ i2))

4. Resolve ¬g∀4 via 〈{g∀4}, {}〉 |= (Φin ⇔ true)

Result: 〈{¬g∀5}, {e3,¬e3,¬g∀4}〉 |= (Φin ⇔ (i1 ∨ i2))

5. Resolve ¬g∀5 via 〈{g∀5}, {}〉 |= (Φin ⇔ true)

Result: 〈{}, {e3,¬e3,¬g∀4 ,¬g∀5}〉 |= (Φin ⇔ (i1 ∨ i2))

4.6 Justification of Inference Rules

The first inference rule in Figure 4 is analogous to long-distance resolution [23]
and can be proved by similar methods (e.g., [2]). Intuitively, if the current



428 W. Klieber et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  200  400  600  800  1000 1200 1400 1600 1800

C
P

U
 t

im
e

 (
s
)

instances

learner
learner-d
learner-c

GQ

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

G
Q

learner-c

Fig. 5. Time and size comparisons, instances solved by all solvers in less than 10 s are
not included in the time comparison

assignment matches 〈Lnow
1 ∪Lnow

2 , Lfut
1 ∪Lfut

2 〉, then the opponent of Q can make
Q lose Φin by assigning true to all the literals in Lfut

1 that are upstream of r. This
forces Q to assign r = false to avoid matching the first sequent in the premise of
the inference rule, but assigning r = false makes the current assignment match
the second sequent in the premise.

If the current assignment πcur matches the sequent in the conclusion of the
second inference rule, there are two possibilities. For simplicity, assume that
πcur assigns all free variables and that neither Lfut

1 nor Lfut
2 contains any free

literals (since, as mentioned earlier, free literals can be removed from Lfut without
affecting soundness of the sequent). If Q loses ψ under πcur, then the situation
is similar to first inference rule. If the opponent of Q loses ψ under πcur, then
Q can make his opponent lose Φin by assigning r = false, thereby making the
current assignment match the second sequent of the premise.

For the third inference rule, we don’t need a condition about r not being
downstream of other literals, since no free variable is downstream of any variable.

5 Experimental Results

We extended the existing closed-QBF solver GhostQ [14] to implement the tech-
niques described in this paper. For comparison, we used the solvers and load-
balancer benchmarks from [3].1 The benchmarks contain multiple alternations
of quantifiers and are derived from problems involving the automatic synthesis
of a reactive system from a formal specification. The experimental results were
obtained on Intel Xeon 5160 3-GHz machines with 4GB of memory. The time
limit was 800 seconds and the memory limit to 2GB.

1 The results do not exactly match the results reported in [3] because we did not
preprocess the QDIMACS input files. We found that sometimes the output of the
preprocessor was not logically equivalent to its input. With the unpreprocessed
inputs, the output formulas produced by the learner family of solvers were always
logically equivalent to the output formulas of GhostQ.
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There are three solvers from [3], each with a different form of the output:
CDNF (a conjunction of DNFs), CNF, and DNF. We will refer to these solvers
as “Learner” (CNDF), “Learner-C” (CNF), and “Learner-D” (DNF). Figure 5
compares these three solvers with GhostQ on the “hard” benchmarks (those
that not all four solvers could solve within 10 seconds). As can be seen on the
figure, GhostQ solved about 1600 of these benchmarks, Learner-C solved about
1400, and Learner-D and Learner each solved about 1200. GhostQ solved 223
instances that Learner-C couldn’t solve, while Learner-C solved 16 instances
that GhostQ couldn’t solve. GhostQ solved 375 instances that neither Learner-
DNF nor Learner could solver, while there were only 2 instances that either
Learner-DNF or Learner could solve but GhostQ couldn’t solve.

Figure 5 shows a comparison of the size of the output formulas for GhostQ and
Learner-C, indicating that the GhostQ formulas are often significantly larger.
The size is computed as 1 plus the number of edges in the DAG representation
of the formula, not counting negations, and after certain simplifications. E.g.,
the size of x is 1, the size of ¬x is also 1, and the size of x ∧ y is 3.

6 Related Work

Ken McMillan [15] proposed a method to use SAT solvers to perform quantifier
elimination on formulas of the form ∃x. φ, generating CNF output. This problem
(i.e, given a formula ∃x. φ, return a logically equivalent quantifier-free CNF
formula) has received attention recently. Brauer, King, and Kriener [6] designed
an algorithm that combines model enumeration with prime implicant generation.
Goldberg and Manolios [11] developed a method based on dependency sequents ;
experimental results show that it works very well on forward and backward
reachability on the Hardware Model Checking Competition benchmarks. For
QBFs with arbitrary quantifier prefixes, the only other work of which we are
aware is that of Becker, Ehlers, Lewis, and Marin [3], which uses computational
learning to generate CNF, DNF, or CDNF formulas, and that of Benedetti and
Mangassarian [5], which adapts sKizzo [4] for open QBF. The use of SAT solvers
to build unordered BDDs [21] and OBDDs [13] has also been investigated.

7 Conclusion

This paper has shown how a DPLL-based closed-QBF solver can be extended
to handle free variables. The main novelty of this work consists of generaliz-
ing clauses/cubes (and the methods involving them), yielding sequents that can
include a formula in terms of the free variables. Our extended solver GhostQ
produces unordered BDDs, which have several favorable properties [8]. However,
in practice, the formulas tended to fairly large in comparison to equivalent CNF
representations. Unordered BDDs can often be larger than equivalent OBDDs,
since logically equivalent subformulas can have multiple distinct representations
in an unordered BDD, unlike in an OBDD. Although our BDDs are necessar-
ily unordered due to unit propagation, in future work it may be desirable to
investigate techniques aimed at reducing the size of the output formula.
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1. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ Heel of QBF. In: AAAI
2005 (2005)

2. Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications.
Formal Methods in System Design 41(1), 45–65 (2012)

3. Becker, B., Ehlers, R., Lewis, M., Marin, P.: ALLQBF Solving by Computational
Learning. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 370–384. Springer, Heidelberg (2012)

4. Benedetti, M.: sKizzo: A Suite to Evaluate and Certify QBFs. In: Nieuwenhuis,
R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg
(2005)

5. Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and
Perspectives. In: JSAT (2008)

6. Brauer, J., King, A., Kriener, J.: Existential Quantification as Incremental SAT.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207.
Springer, Heidelberg (2011)

7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 100(8), 677–691 (1986)

8. Darwiche, A., Marquis, P.: A Knowledge Compilation Map. J. Artif. Intell. Res
(JAIR) 17, 229–264 (2002)
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Abstract. We present a method that, given a constraint model, suggests global
constraints to replace parts of it. This helps non-expert users to write higher-level
models that are easier to reason about and may result in better solving perfor-
mance. Our method exploits the structure of the model by considering combi-
nations of the constraints, collections of variables, parameters and loops already
present in the model, as well as parameter data from several data files. We assign a
score to a candidate global constraint by comparing a sample of its solution space
with that of the part of the model it is intended to replace. The top-scoring global
constraints are presented to the user through an interactive display, which shows
how they could be incorporated into the model. The MiniZinc Globalizer, our
implementation of the method for the MiniZinc modelling language, is available
on the web.

1 Introduction

Constraint problems can usually be modelled in many different ways, and the choice
of model can have a significant impact on the effectiveness of the resulting constraint
program. Developing good models is often a very challenging iterative process that re-
quires considerable levels of expertise and consumes significant amounts of resources.
This paper introduces a method that supports users through this iterative process: given
a constraint problem model and a few input data files, the method suggests global con-
straints as possible replacements for certain sets of constraints in the model.

Replacing simpler constraints by global constraints — “globalizing” the model —
has three significant advantages. First, many solvers implement specialised algorithms
for global constraints. Therefore, having the global constraint in the model can improve
the efficiency of the solving process considerably. Second, more information is made
available regarding the underlying structure of the model. The additional information
can help, for example, to detect symmetries, which can then be broken either by adding
symmetry breaking constraints or by modifying the search. As another example, even if
the chosen solver does not yet support the inferred global constraint, its presence in the
model can be used to select better decompositions than the ones originally used by the
modeller. And third, the higher-level model obtained by the globalization may improve
the modeller’s understanding of the problem and even make it more readable.
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Our method is based on splitting a constraint model into submodels, generating can-
didate global constraints for each submodel, and ranking and filtering these candidates
to produce the output returned to the user. Critically, each of these steps makes extensive
use of the existing structure in the model, such as loops and collections of variables, as
well as the provided instance data. Note that the correctness of replacing constraints in
the model by the candidate global constraints needs to be determined by the user. This
approach is similar to that successfully used for symmetry detection [10], which anal-
yses several small instances of a model (i.e., several combinations of model with input
data) to obtain candidate symmetries, and then lifts this information from the instances
to the model itself.

Our method has many novel characteristics when compared to other automatic model
transformation methods (e.g., [6,8,9,7,4,5,2,1]; see Section 6 for a detailed discussion).
First, other methods focus on directly inferring a combination of constraints for the
entire model, rather than on splitting it into submodels. Splitting allows us to directly
associate the candidate global constraint with the group of constraints it replaces (those
in the submodel). Second, the generation of arguments for the candidate global con-
straints uses the variables, parameters and collections of variables appearing in the as-
sociated submodel. This allows us to generate likely constraint arguments efficiently.
Further, it means the candidate global constraints are defined at the model level rather
than at the instance level. This is important not only for the user, but also for our third
novel characteristic: our method uses the solutions from different instances (rather than
from a single one) to generate, rank and filter the candidates. This increases its accuracy
considerably (as shown experimentally in Section 5).

We have implemented the method for the MiniZinc modelling language [11]. The
resulting tool – the MiniZinc Globalizer – can be accessed through a web interface at
http://www.minizinc.org/globalizer/. The presented techniques are how-
ever not specific to MiniZinc and apply to any representation of a constraint model.

2 Background

We distinguish between constraint problems, models, and instances. A constraint (sat-
isfaction or optimization) problem is the abstract problem we want to solve, e.g., the
Graph-colouring problem. A model is a concrete specification of the problem in terms
of variables, domains, constraints, and parameters. For the Graph-colouring problem, a
model could have variables representing the nodes, domains representing the colours,
parameters for the graph and number of colours used, and constraints stating that no
two connected nodes can have the same colour. A model together with one concrete set
of input data – such as a concrete graph and set of colours – is an instance.

All models used herein are written in MiniZinc. A MiniZinc model consists of a
list of variable declarations, parameter declarations, and constraints, as well as a solve
item that may specify an objective function. The subset of MiniZinc used in this paper
should be mostly self-explanatory.

http://www.minizinc.org/globalizer/
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1 int: p; int: nh; int: ng;
2 set of int : HostBoats = 1..nh;
3 set of int : GuestCrews = 1..ng;
4 set of int : Time = 1..p;
5 array [GuestCrews] of int : crew;
6 array [HostBoats] of int : capacity;
7
8 array [GuestCrews, Time] of var HostBoats : hostedBy;
9 array [GuestCrews, HostBoats, Time] of var 0..1 : visits;

10 constraint forall (g in GuestCrews, h in HostBoats, t in Time)
11 (visits[g,h,t] = 1 <-> hostedBy[g,t]=h); % channel
12
13 constraint forall (h in HostBoats)
14 ( forall (g in GuestCrews)
15 (sum (t in Time) (visits[g,h,t]) <= 1) % distinct_visits
16 /\ forall (t in Time)
17 (sum (g in GuestCrews) (crew[g]*visits[g,h,t]) <= capacity[h]));
18 % capacity
19
20 array [GuestCrews, GuestCrews, Time] of var 0..1 : meet;
21 constraint forall (k, l in GuestCrews where k<l) (
22 forall (t in Time)
23 (hostedBy[k,t] = hostedBy[l,t] -> meet[k,l,t] = 1) % will_meet
24 /\ sum (t in Time) (meet[k,l,t]) <= 1 ); % meet_once

Fig. 1. A Progressive Party model in MiniZinc

Running Example: The Progressive Party Problem

Throughout the paper, we will use a version of the Progressive Party Problem as a
running example. This problem can be described as follows: to organise a party at a
yacht club, certain boats are designated as hosts, while the crews of the remaining boats
in turn visit the host boats for several successive fixed-time periods. Every boat has
a given maximum capacity for hosting guests, a guest crew cannot revisit a host, and
guest crews cannot meet more than once.

As shown in [12], the first known model for this problem was a zero-one integer
program by the University of Southampton. Since this model introduced a huge number
of constraints, an alternative one was given [12] which found a 13-host solution.

A MiniZinc version of the second model is shown in Fig. 1. Lines 1–6 introduce
the parameters: number of time periods, host boats, and guest crews, as well as the
sets of designated host boats and guest crews. The main decision variables (line 8)
express that at time t, guest crew g is hosted by boat hostedBy[g,t]. Lines 9–
11 introduce auxiliary zero-one variables visits[g,h,t] that are 1 if and only if
hostedBy[g,t]=h. These variables are used in line 15 to express that each guest
crew visits each host boat at most once; and in line 17 to model the capacity constraints.
Finally, lines 20–24 model that guest crews can meet at most once.

The expert modeller can immediately see that line 15 expresses an alldifferent con-
straint on the hostedBy variables for each g in GuestCrews. The fact that line 17
can be expressed using a set of bin packing constraints is slightly less obvious.

To simplify the discussion of our running example, the remaining sections will use
the following shorthand notation to express the main structure of the above model:
(∀GHT : channel) ∧ (∀H : (∀G : distinct_visits) ∧ (∀T : capacity)) ∧ (∀GG : (∀T :
will_meet) ∧ meet_once), where channel denotes the constraint appearing in lines 10–
11, distinct_visits that in line 15, capacity that in line 17, will_meet that in line 23
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int: p; int: nh; int: ng;

set of int : Hosts = 1..nh;

set of int : Guests = 1..ng;

array [Guests] of int : crew;

array [Hosts]  of int : capacity;

array [Guests, 1..p] of var Hosts : hostedBy;

array [Guests, Hosts, 1..p] of var 0..1 : visits;

constraint forall (g in Guests, h in Hosts, t in 1..p)

  (visits[g,h,t] = 1 <-> hostedBy[g,t]=h);@

constraint forall (g in Guests, h in Hosts)

  (sum (t in 1..p) (visits[g,h,t]) <= 1);

constraint forall (h in Hosts, t in 1..p)

  (sum (g in Guests) (crew[g]*visits[g,h,t]) <= capacity[h]);

solve satisfy;

output [show(hostedBy)];

submodel group 
generation

candidate 
generation

ranking / filtering

Model 

Web interface

include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";
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Data sets

globalize(M,Data,Lib) =
(Constrs,Decls)← normalize(M)
Groups← generate_groups(Constrs,

Decls,
Data)

Candidates← /0
for each Gr ∈ Groups:

Candidates←Candidates ∪
process_group(Gr,

Lib)
return Candidates

Fig. 2. An overview of model globalization

and meet_once that in line 24. Universal quantifications over G,H and T correspond to
loops over the sets GuestCrews, HostBoats, and Time, respectively. We call G,H
and T the index sets of their loops. For simplicity, we always write nested forall
loops using a single quantifier and disregard the order of their index sets, e.g., ∀GHT is
equivalent to ∀T ∀G∀H, to ∀G∀T ∀H, and so on.

3 Globalization

Figure 2 provides a graphical and algorithmic view of the main steps of our method,
which are as follows. First, the input model file M together with one or more data files
Data are read. Then, M is normalized by splitting conjoined constraints and separat-
ing the constraints Constrs from the variable and parameter declarations Decls. After
normalization, several submodel instance groups are generated, where each such group
Gr ∈ Groups corresponds to the instantiation of a single submodel with each of the
data files in Data. A submodel is formed by the combination of Decls with a subset of
Constrs. For each group Gr, the method generates a set of candidate global constraints
from those present in the constraint library Lib, where each global constraint in this set
is a candidate for equivalence to the submodel associated to Gr. The generated candi-
dates are then scored according to how well their solution space matches that of the
submodel, and are filtered out if their score is below a given threshold. Finally, the re-
sulting candidates are shown to the user by means of an interactive GUI. The following
sections discuss each of these steps in detail.

3.1 Generating Submodel Instance Groups

The algorithms for normalizing a model M and generating its submodel instance groups
Groups are shown in Fig. 3. The normalize procedure partitions M into two sets: the
set Constrs of normalized constraints and the set Decls of original variable and pa-
rameter declarations. Constraints are normalized by exhaustively applying two rewrit-
ing rules that (a) turn top-level conjunctions into individual constraints and (b) split
forall loops that contain conjunctions into individual forall loops. For example,
after normalizing the Progressive Party model, Constrs will contain the following five
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normalize(M)
Constrs← set of constraints in M
while one of the following rules applies:

if there is a c ∈ Constrs of the form (c1 ∧ . . .∧ cn):
replace c with ci for each i

if there is a c ∈ Constrs of the form (∀A1 . . .∀An : c1 ∧ . . .∧ cm):
replace c with (∀A1 . . .∀An : ci) for each i

Decls← set of all variable and parameter declarations in M
return (Constrs,Decls)

generate_groups(Constrs,Decls,Data)
Groups← /0
for each SC ⊆ Constrs such that SC is connected:

Groups← Groups ∪ { instantiate( /0,SC,Decls,Data) }
∪ unroll_loops( /0,SC,Decls,Data)

return Groups

unroll_loops(Fix,SC,Decls,Data)
Groups← /0
for each A such that (∀ . . .A . . . : d) is in all c ∈ SC:

for each combination L of loops ∀A, one for each c ∈ SC:
Groups← Groups ∪ { instantiate({L}∪Fix,SC \L,Decls,Data) }

∪ unroll_loops({L}∪Fix,SC \L,Decls,Data)
return Groups

instantiate(Fix,SC,Decls,Data)
Gr← /0
for all combinations of min,max for all L ∈ Fix and all D ∈ Data

create submodel instance SI from submodel (SC∪Decls)
Gr← Gr ∪ {SI}

return Gr

Fig. 3. Splitting a model M into groups of submodel instances

constraints ∀GHT : channel, ∀GH : distinct_visits, ∀HT : capacity, ∀GGT : will_meet
and ∀GG : meet_once.

Normalization is vital for discovering global constraints that describe parts of a
top level constraint. For example, we said that the combination of constraint ∀GH :
distinct_visits with channelling constraint ∀GHT : channel in the Progressive Party is
equivalent to a conjunction of alldifferents. To discover this, we need to consider
each component constraint separately, so that we can combine them appropriately.

Once normalization is complete, generate_groups produces every connected subset
of constraints in Constrs.1 Two constraints are connected if they share at least one vari-
able. A set of constraints is connected if for each pair of constraints c,c′ in the set, a
path of constraints can be found starting with c and ending with c′, such that consecutive
constraints on the path are connected. For example, the subset of normalized constraints

1 Our implementation has a parameter to limit the maximum size of the generated subsets (the
default is 3 as our experiments have not found globals from larger conjunctions of constraints).
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SC = {∀GHT : channel,∀GG : meet_once} in the Progressive Party is not connected,
since their sets of variables are {visits, hostedBy} and {meet}, respectively. Since
the set of global constraints inferred for a non-connected SC would at best be identical
to the union of those found for each of its constraints separately, we can discard SC.

Every connected subset SC ∈ Constrs is passed to instantiate, together with the set
of declarations Decls and the input data files Data, to create a group of related submodel
instances: one per combination of the submodel SC∪Decls with a data file D in Data.

Considering all connected subsets of the normalized top-level constraints is, how-
ever, not enough. This can be illustrated with the Progressive Party model: since no
global constraint describes a conjunction of alldifferent constraints, the normal-
ized constraints ∀GH : distinct_visits and ∀GHT : channel must be combined, un-
rolled and instantiated in such a way as to make them discoverable. Loop unrolling
achieves this by recursively combining and instantiating the loops in each SC subset
of Constrs as follows. For each index set A that appears in every constraint of SC,
it computes each combination L of forall loops over A, choosing one from each
constraint c ∈ SC. Let us explain how such a combination is computed for subset
SC = {∀GHT : channel,∀GH : distinct_visits,∀GGT : will_meet,∀GG : meet_once}
and loop G (which appears in every constraint of SC). We first label the individual
loops to be able to identify them: ∀G1HT : channel, ∀G2H : distinct_visits, ∀G3G4T :
will_meet, ∀G5G6 : meet_once. We then compute all combinations of G that have one
index set from each constraint, obtaining 4 combinations: L1 = {∀G1,∀G2,∀G3,∀G5},
L2 = {∀G1,∀G2,∀G3,∀G6}, L3 = {∀G1,∀G2,∀G4,∀G5}, and L4 = {∀G1,∀G2,∀G4,
∀G6}.

For each combination L, loop unrolling calls instantiate with L added to the set of
combinations Fix to be fixed, and removed from SC. Fixing a loop means instantiating
its index variable to a particular value from its index set. Our algorithm fixes indices to
two values: the minima and maxima of their index set. Consider, for example, index set
G and SC = {∀G1HT : channel,∀G2H : distinct_visits}. The only combination L for G
is L = {∀G1,∀G2}. Thus, instantiate will fix the index variable g of G1 and G2 to the
same value resulting in the following two submodels:

(g = min(G))∧ (∀HT : channel)∧ (∀H : distinct_visits)
(g = max(G))∧ (∀HT : channel)∧ (∀H : distinct_visits)

each describing an alldifferent constraint over the variables HostedBy[g,h],
for a fixed value of g. Both submodels are then instantiated with any provided data,
resulting in submodel instances that are added to the same group. Each will also be
submitted to further loop unrolling leading to the following submodels:

(g = min(G)∧h = min(H))∧ (∀T : channel)∧ (distinct_visits)
(g = min(G)∧h = max(H))∧ (∀T : channel)∧ (distinct_visits)
(g = max(G)∧h = min(H))∧ (∀T : channel)∧ (distinct_visits)
(g = max(G)∧h = max(H))∧ (∀T : channel)∧ (distinct_visits)

This process is repeated recursively until all loops have been unrolled.
A special case to be considered is what the algorithm should do upon fixing all

the loops in a constraint when the original forall loop had a where clause. During
unrolling, and as long as there is one forall the algorithm leaves the where clause
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generate_candidates(SI,Decls, Lib)=
Candidates← /0
Solutions← random sample of solutions of submodel instance SI
Template← (SI \Decls)∪Solutions
Base_arguments←

(variable and parameter collections in SI) ∪
(variable and parameter sub-collections in constraints of SI) ∪

Arguments← Base_arguments ∪
(array accesses of elements of Base_arguments) ∪
{ constant 0 } ∪
{ blank symbol }

for each constraint cons in Lib:
for each tuple args that can be built from Arguments:

Replace blank symbols in args by their value
Instance← Template ∪ (constraints for cons(args))
if Instance is satisfiable

add cons(args) to Candidates
return Candidates

Fig. 4. Generating candidate constraints for a submodel instance

as part of that forall, but when there is no forall left, the resulting constraint gets
wrapped in an if-then-else expression to avoid creating incorrect submodels.

3.2 Candidate Generation

As explained in the previous section, once generate_groups finishes, Groups has all
submodel instance groups, where each group contains different instances of the same
submodel. Recall that each instance has different parameter values due either to differ-
ent data files given by the user, or to the different minima and maxima values chosen
during loop unrolling. Each group Gr in Groups is then processed to generate a set
of candidate constraints, which are added to the final set Candidates. The algorithm
for generating candidate constraints for each submodel instance SI ∈ Gr, given the set
Decls of declarations of the original model M, and the library of global constraints Lib,
is shown in Fig. 4. Note that each constraint entry in Lib has a name, arity, and type of
arguments. In addition, arguments can have associated information indicating whether
they are functionally dependent on other arguments, and stating conditions that must be
met for the argument to be used. See Section 4.2 for details on the particular Lib used
by our implementation.

The algorithm proceeds as follows. After finding a random sample of solutions of
SI, we build a template model by replacing the parameters and variables in Decls by
the sample solutions. The template includes all the sample solutions, as we want the
candidate global constraint to satisfy all of these sample solutions: a single sample
solution that violates the constraint is sufficient evidence to discard the constraint. This
template model is trivially satisfiable. Intuitively, a global constraint will be considered
as a candidate if it is satisfied by the sample solutions of SI — that is, if after adding
the candidate, the template model remains satisfiable.
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Candidate constraints are obtained by combining each constraint cons in Lib with
an A-tuple args of arguments, where A is the arity of the constraint. The arguments are
drawn from the identifiers that appear in SI. These include the variable and parameter
collections whose identifiers appear in SI, those same collections restricted to their sub-
sets that are actually used in the constraints of SI, array access expressions composed
from the two previous groups (referred to as base_arguments), the constant zero, and a
special blank symbol. This blank symbol is used as a place-holder for arguments known
to be functionally defined by the others. Once all non-blank arguments are selected, the
blank symbol is replaced by its corresponding value. Note that this value must be the
same for all sample solutions. If the constraint is not functional, or if the sample so-
lutions disagree on what the value should be, args is discarded. Functionally-defined
arguments are further required to take the same value across all instances. This is how-
ever not a significant issue, as they are only used when no named parameter is found.

Finally, the candidate global constraint cons(args) is added to the template model
and the resulting model is evaluated. If the constraint holds, cons(args) is added to the
list of candidate global constraints for SI.

Let us illustrate this process with the subinstance SI formed by combining the con-
straint (g=min(G))∧(∀HT : channel) of the Progressive Party model (where min(G)=
1) with the variable and parameter declarations in the model, and some data file D ∈
Data. The base arguments for SI include the variable collections hostedBy and vis-
its, the variable sub-collections hostedBy[1,t] and visits[1,h,t], and the parameter col-
lections HostBoats, GuestCrews, p, nh, ng, Time, and the index g itself (with value
1). The arguments are the constant 0, the blank symbol, the base arguments, and ar-
ray accesses formed by combining an array with a parameter, e.g., crew[nh] and host-
edBy[p,capacity]. After considering all constraints in Lib with these arguments, the fol-
lowing candidate constraints are generated (among many others):

– lex2(hostedBy)
– alldifferent([hostedBy[g,1],hostedBy[g,2],. . . ,hostedBy[g,p]])
– sliding_sum(0, p, g, [hostedBy[g,1],hostedBy[g,2],. . . ,hostedBy[g,p]])

Note that in the first constraint the entire hostedBy array is used as an argument, while
in the second and third constraints only that subset of the array that participates in the
constraints of the submodel – where g is fixed to 1 – is used as an argument.

An alternative to this form of candidate generation is to syntactically match groups
of constraints to known (correct) reformulations. We do not take this approach as it
would be much too restrictive, requiring the modeler to have implemented exactly the
constraints we are looking for.

3.3 Ranking and Filtering

As shown in Figure 5, submodel instances are processed in groups, where each group
Gr contains submodel instances of the same model. This allows us to accurately de-
termine the candidate constraints for Gr by taking the intersection of the candidate
constraints found for each submodel instance SI in Gr. For the first SI being processed,
the full set of constraints and argument tuples (written as the special symbol Universe)
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process_group(Gr,Decls,Lib)=
Candidates← Universe
for each submodel instance SI in group Gr:

Candidates← Candidates ∩ generate_candidates(SI,Decls,Lib)
for each candidate constraint cons(args) in Candidates:

SolutionsC← random sample of solutions of cons(args)
SolutionsM ← subset of SolutionsC that are also solutions of SI
if |SolutionsM|÷ |SolutionsC|< equivalenceThreshold

Delete cons(args) from Candidates
for each possible context B:

SolutionsC← random sample of solutions of cons(args) ∧ B
SolutionsM ← subset of SolutionsC that are also solutions of SI
if |SolutionsM|÷ |SolutionsC| ≥ equivalenceThreshold

Add cons(args) with context B to Candidates
return Candidates

Fig. 5. Ranking and filtering constraints

is considered, so that the intersection is the candidate set generated for this SI. Due to
filtering the set decreases for subsequent instances in the group and, after processing
the final one, the remaining candidates are exactly the intersection we seek to compute.

For each candidate constraint cons(args) inferred for a given SI, process_group
measures how closely it matches SI. To achieve this, we collect a random sample of
solutions of cons(args), and compute the fraction of these solutions that are also so-
lutions to SI. If the constraint is equivalent to the submodel of SI, this fraction must
be 1; if the constraint is a poor match, the fraction should be close to 0. We filter the
candidates by keeping only those constraints whose matching fraction is greater than a
given threshold. A threshold of 0.5 has been shown experimentally to be sufficient to
eliminate imperfect matches, and we use that value in our implementation.

In some cases a constraint in a model is equivalent to a candidate global constraint
only in the context of another constraint. Consider a submodel instance SI contain-
ing constraints A and B, and a candidate global constraint cons(args), where A is not
equivalent to cons(args), but the conjunction A∧ B is equivalent to the conjunction
cons(args)∧B. We call B the context in which A is equivalent to cons(args). For exam-
ple, let SI have the constraints (t =min(1..p))∧∀GH : channel∧∀H : capacity from the
Progressive Party. The global constraint bin_packing_capa(capacity,hostedBy[1..ng,t],
crew) is equivalent to ∀H : capacity, but only in the context of ∀GH : channel. In gen-
eral, a contextually-equivalent constraint cons(args) will be implied by SI but appear
weaker than the instance and, thus, will score badly during ranking. In this case, we try
using one of SI’s constraints as the context constraint B, and test via sampling whether
cons(args)∧B implies the submodel instance. If this scores well, we say that A is equiv-
alent to cons(args) under the context of B, and add this to the list of candidates.

For the purpose of scoring and filtering, a candidate constraint should now be con-
sidered a pair of the cons(args) and its context. Note that the context may be empty.
This means that for a context-dependent constraint to pass the filtering tests, it must
pass with the same context in all instances of the group.
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Table 1. Library of global constraints

alldifferent circuit global_cardinality nvalue
alldifferent_except_0 count increasing sliding_sum
all_equal cumulative inverse sort
atleast decreasing lex_less strict_lex2
atmost diffn lex_lesseq subcircuit
bin_packing distribute lex2 unary
bin_packing_capa element maximum value_precede
bin_packing_load exactly minimum
channel gcc member

4 Implementation

We have implemented the globalization system for MiniZinc models. We use the libmzn
C++ library for parsing and manipulating MiniZinc model and data files. The model
evaluator is written in Haskell, and uses bindings to call libmzn.

4.1 Checking versus Solving

As shown before, when generating the candidates of a given submodel instance SI of
group Gr, our method first solves SI to find a random sample of its solutions. To do
this, our implementation uses the standard MiniZinc tool mzn2fzn to flatten SI, and
the Gecode constraint solver to find 30 random solutions for it. Theses are found with a
search that selects values in random order, and restarts from scratch whenever a solution
is found. If the search is not complete within 60 seconds, SI is discarded.

Later in the process our method checks the satisfiability of the instance resulting
from adding to the template the possible candidate constraints. Since this template has
no variables, and the added constraints are simply evaluated, no search is required. Such
checks are performed very often, and the expense of flattening the instance and calling a
full constraint solver is crippling. To avoid this, we have implemented a simple evaluator
of MiniZinc instances known not to have variables. In practice, this optimization is
crucial, as the number of evaluations is usually in the hundreds of thousands.

4.2 Library of Global Constraints

Table 1 lists the global constraints in our implementation of Lib, which is used for
candidate generation. These are all the global constraints defined in MiniZinc’s standard
library (version 1.6) over integer arguments (sets are not handled yet by our prototype
implementation), with the addition of the following constraints:

– channel(x,a): channels an integer variable x to an array of 0-1 variables a.
– gcc(x,counts): a special case of global_cardinality where the “cover” argument,

which specifies a map from indices to values, is fixed to the identity map.
– unary(s,d): a special case of cumulative where the resource capacity and the usage

for each task are fixed to 1, implementing a unary resource constraint.
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We are able to evaluate most of the constraints using the default decomposition given
in the MiniZinc library. However, some decompositions introduce variables which are
not handled by our simple satisfiability check evaluator (recall that our satisfiability
check does not perform search). Thus, in these cases we evaluate the constraint directly.

As mentioned in Section 3.3, each constraint is annotated with conditions for its
use to prevent the constraint being considered as a candidate when it is trivially true
or otherwise useless. For example, the alldifferent constraint specifies that its argument
must be an array of variables with arity greater than one since, otherwise, the constraint
is trivially true or nonsensical. As another example, the sliding_sum(l,u,n,x) constraint
specifies that every n-length subsequence of x must sum to a value between l and u.
When generating candidates, we ensure that l < u, 1 < n < length(x), and l > n ×
lb_array(x) ∨ u < n × ub_array(x). The first two conditions ensure that the parameters
make sense, while the third one ensures that the constraint is tighter than what is already
imposed by the domains of the variables in x. This last condition is added for efficiency
reasons, as the ranking and filtering process would have taken care of it.

4.3 Web Interface

The MiniZinc Globalizer is implemented as an asynchronous web server that queues the
requests made by clients and can execute several requests in parallel. Requests can be
cancelled by the user and are automatically cancelled when the session is terminated, for
instance, when a user closes the browser window. The Globalizer is publicly available
at http://www.minizinc.org/globalizer/.

Figure 6 shows a screen shot of the web interface. Users can enter their model and in-
stance data through an embedded editor (seen on the left). Clicking ANALYZE launches
the request, initiating a progress bar that provides the user periodic progress updates.
When the analysis finishes, the right hand side of the window displays the results. Click-
ing on any candidate constraint highlights in yellow the part of the original model that
the constraint could replace, and highlights in orange the candidate’s context, if any.
The interface allows the user to select parts of the model and restrict the analysis to the
selected parts by selecting “Only selection” in the lower left corner of the window. The
analysis will then only use the selected constraints. This is useful when the analysis is
taking a long time, or the user wants to focus on a particular part of the model.

Fig. 6. The web interface to the MiniZinc Globalizer

http://www.minizinc.org/globalizer/
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Table 2. Experimental Results

problem time |Groups| calls evals top candidates

Cars 215 12 2910 31335 gcc(step_class,cars_in_class)
count(step_class,c,cars_in_class[c])
sliding_sum(sliding_sum(0,option_max_per_block[p],
option_block_size[p],step_option_use[1..10,*])

Jobshop 23 16 410 3620 unary(s[1..n,*], d[1..n,*])
Party 691 48 4214 36429 bin_packing_capa(spareCapacity,hostedBy[i..n,*],crew)

alldifferent(hostedBy[*,1..4])
channel(hostedBy[*,*], visits[*,1..4,*])
unary(hostedBy[*,1..4],visits[*,*,1..4])

Packing 1659 29 32174 114597 diffn(x,y,pack_s,pack_s)
diffn(y,x,pack_s,pack_s)

Schedule 174 13 3077 22835 gcc(x,[1,0,1,0,1,0,1])
Sudoku 1 3996 166 6305 24465 alldifferent(p[*,1..9])

gcc(p[*,1..9], [1,1,1,1,1,1,1,1,1])
alldifferent(p[1..9,*])
gcc(p[1..9,*], [1,1,1,1,1,1,1,1,1])

Sudoku 2 335 7 338 2347 -
Warehouses 245 24 3853 69871 gcc(supplier,use)

5 Experiments

This section evaluates the accuracy and practicality of the prototype implementation of
our MiniZinc Globalizer. The evaluation is performed over a set of constraint problems,
each with a number of different data sets. The MiniZinc models used for these problems
are available at the MiniZinc Globalizer website.

The results are shown in Table 2, where for each problem model we show: the name
of the problem (problem), the time in seconds to run the MiniZinc Globalizer (time),
the number of submodel instance groups obtained (|Groups|), the number of calls to
Gecode to obtain sample solutions of either submodel instances or global constraint
candidates (calls), the number of satisfiability tests performed (evals), and the global
constraints proposed as candidates with score 1 (top candidates), where high quality
candidates appear in bold. We have manually simplified the output, and excluded some
duplicate constraints where the system was unable to distinguish two parameters that
appear different, but actually refer to the same value. The set of problems used in the
table is as follows.

Cars is a version of the car sequencing problem (CSPLib 001) as implemented in the
MiniZinc distribution. It uses simple arithmetic and counting constraints to express the
capacity and sequence restrictions of the problem. The Globalizer finds the correspond-
ing sliding_sum and global_cardinality constraints.

Jobshop is a simple job-shop scheduling problem taken from the MiniZinc distribu-
tion. It implements the non-overlapping of two tasks on a unary resource using simple
reified constraints. Globalization finds the unary scheduling constraint.

Party is our running example from Figure 1. As discussed earlier, the Globalizer
finds the bin packing and alldifferent constraints. It also finds the channel
global constraint.

Packing packs n squares into a rectangle. The source code was taken from the
MiniZinc distribution. The Globalizer finds diffn constraints that express the non-
overlapping of rectangles.
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Schedule is a contrived scheduling example from [4]. The schedule is constrained
in a way that one task needs to start on every even time point, which implies a global
cardinality constraint with argument [1,0,1,0,...]. Our analysis can find this con-
straint as long as all instances have the same schedule length, as otherwise the argu-
ments differ in length between instances and are thus discarded. The generalization of
such sequences is left to future work.

Sudoku 1 and 2 are different models for the Sudoku puzzle. The first one uses
a zero-one integer linear programming formulation, and the Globalizer finds some
alldifferent constraints. The second model posts binary not-equal constraints on
variables that are organised by row and column, in a complicated set of nested forall
loops. Here, the loop unrolling is not strong enough to generate candidates that corre-
spond to individual rows, columns, or blocks. As a result, Globalizer cannot find any
replacement global constraints.

Warehouses is a warehouse allocation problem (CSPLib 034), whose source code
was taken from the MiniZinc distribution. The Globalizer finds that a loop containing
counting constraints can be aggregated into one global cardinality constraint.

Discussion

The models discussed here are taken either from the literature or from the example suite
that comes with MiniZinc. In most cases, the Globalizer has been able to find the global
constraints that an expert modeller would have used.

The current prototype is not optimized for performance. The time to analyse a rea-
sonably complex model with 3-4 data sets is in the range of minutes up to an hour,
depending mainly on the number of candidates that need to be checked for satisfiability
(a number that grows considerably with the number of possible arguments). There is
still great potential for improving performance by both avoiding and parallelizing un-
necessary candidate checks and parameter instantiations which, as indicated, make up
for the bulk of the run time.

The number of generated groups is relatively small (usually less than 50), which
means that the problem splitting algorithm achieves a good level of pruning. Generating
only a small number of groups and top scoring constraints is important since the results
are meant to be presented to a human user.

Looking at the number of satisfiability tests, which can reach hundreds of thousands,
it becomes clear that each check needs to be very efficient. This justifies the introduction
of a dedicated constraint evaluator as discussed in Section 4.1.

It is interesting to note the effect of using more than one data file for a given prob-
lem. For example, analysing the packing problem with a single data file results in 54
candidate global constraints with a score of 1. Adding the additional data files increases
the discriminative power of the system by reducing the candidates with a score of 1
to the two shown in Table 2. Similarly, analysing Warehouses with only one data file
results in 6 candidate global constraints with a score of 1, as opposed to one as in the
table above. For the Schedule and Jobshop problems, however, a single data file was
enough to narrow the candidates down to a single constraint with a score of 1.
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6 Related Work

There are two main lines of research related to this work: constraint acquisition and
automatic model transformation.

In the acquisition line of work, Constraint Seeker [1] infers global constraints from
positive and negative examples of solutions, and Model Seeker [2] infers an entire
model (i.e., conjunctions of constraints) from complete solutions to a constraint prob-
lem. This differs from the method presented in this paper both in motivation and method-
ology. Our motivation is to identify parts of a given model that can be replaced by global
constraints. Having access to an initial model significantly affects our methodology, as
it allows us to make extensive use of the information contained in the model. In par-
ticular, it allows us to (a) focus on submodels that are equivalent to a single global
constraint, as opposed to a conjunction of them, (b) significantly reduce the search for
possible combinations of global constraint arguments, while increasing the likelihood
of obtaining meaningful ones, and (c) consider not only the solution variables, but any
other intermediate variables in the model and its input data. Having the input data also
affects our methodology, as it allows us to (a) better generate candidates and (b) au-
tomatically generate as many solutions as we require for our rankings. For example,
the input data enables us to derive bin packing constraints for the Progressive Party
problem, while Model Seeker cannot infer these from just the solutions.

Note that we could use Model Seeker to generate more complex candidates for each
submodel, and Constraint Seeker to infer and rank candidate constraints. We would like
to experimentally evaluate and compare these approaches to our own submodel and
constraint generators when the two tools become publicly available.

Our method is also related to the CGRASS system [6,8], which among other model
transformations, includes a specialised component to detect alldifferent global con-
straints for instances of the problem. The main differences are that our Globalizer aims
at inferring any of a set of global constraint using a general (rather than specialised)
method, and does so for a model, rather than for each of its instances.

Other acquisition approaches focus on the automatic generation of implied con-
straints. A general method is described in [5], where machine learning is used to induce
constraints for the solutions for small problems, and a theorem prover is then used to
show the constraints hold for the model. The generality of the method results in appli-
cability restrictions: the model data can only be a single integer, and the model needs to
be expressible in first order logic. In our case the constraints are already pre-determined
(the list of global constraints considered) and, thus, the data can be as complex as nec-
essary. Further, we do not attempt to prove the correctness of the constraints as this
reduces to proving the equivalence of two models, which is undecidable.

Another related method is that of CONACQ [3] which, given examples of solutions
and non-solutions for a target problem and a library of constraints, acquires constraint
networks, that is, conjunctions of constraints in the library that are consistent with the
given solutions and non-solutions. CONACQ uses SAT-based version space algorithm,
where the version space is the set of all constraint networks defined from the library that
are consistent with the examples. While general and powerful, it considers instances of
models, rather than models themselves. Further, it relies on the library of constraints be-
ing relatively small. This is not the case for our approach. As far as we know, CONACQ
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currently only handles binary constraints and is not publicly available. Finally, [4] de-
scribes how implied parametric constraints can be learned by adding a large disjunction
of constraints with different parameters that together are guaranteed to be implied, and
then successively pruning that disjunction by checking if certain sets of parameters can
be removed without changing the solution space. This method goes further than what
we attempt in that it infers parameters from solutions, while we only try to match pa-
rameters that are already given in the model. For functional dependencies, however, we
can infer parameter sets, as in the Schedule example in Section 5.

In the area of model transformations, the work on Essence [9,7] is somewhat related.
These systems transform a model specified in a highly abstract manner into a more
concrete one. Our method moves in the opposite direction: we detect parts of a concrete
model that are instances of a more generic model pattern. While currently this generic
pattern is restricted to global constraints, it is straightforward to extend the method
to use any other useful constraint pattern. In fact, globalization and automatic trans-
formation are complementary: starting from a low-level model, globalization yields a
high-level model that is then amenable to automatic transformation.

7 Conclusion

This paper has introduced a method for globalizing constraint models. Given a con-
straint model, the method proposes global constraints to replace parts of it. This helps
users improve their models, since global constraints capture the inherent structure of a
model and can thus help obtain a better translation to the underlying solving technology
and faster solving using specialised algorithms.

The inference process is based on splitting a model into submodels that correspond
to subsets of its constraints, potentially unrolling loops, and instantiating each of the
resulting submodels with different data sets into a group of submodel instances. From
these groups of instances, candidate constraints are generated by sampling the solution
space of both the group and the candidate constraints. The candidates are ranked and
filtered based on how well their search spaces match.

We have presented experimental evidence that the method is both practical and ac-
curate. Our implementation, the MiniZinc Globalizer, is available as a web-based tool.

Regarding future work, while the system already provides useful results, there are
some improvements we are planning to explore. First, we would like to incorporate
ranking techniques from Constraint Seeker, such as using known implications between
constraints to eliminate more imperfect candidates. Second, in order to make contexts
more useful, we need to detect global constraints on alternative viewpoints by automat-
ically introducing channeling constraints (Model Seeker follows a similar approach).
Third, we would like to generalise argument sequences (such as the [1,0,1,0...]
in the simple scheduling example from Section 5) and to detect more complex expres-
sions as constraint arguments. Fourth, the confidence in the suggested constraints may
be improved by using theorem proving or other techniques to prove equivalence in cases
where it is possible. Finally, we would like to integrate the system into an IDE that lets
users refactor models automatically using the suggestions generated by the Globalizer.



Globalizing Constraint Models 447

References

1. Beldiceanu, N., Simonis, H.: A constraint seeker: Finding and ranking global constraints
from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26. Springer, Heidelberg
(2011)

2. Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models from pos-
itive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer,
Heidelberg (2012)

3. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space algorithm
for acquiring constraint satisfaction problems. In: Gama, J., Camacho, R., Brazdil, P.B.,
Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 23–34. Springer,
Heidelberg (2005)

4. Bessiere, C., Coletta, R., Petit, T.: Learning implied global constraints. In: Veloso, M.M.
(ed.) IJCAI, pp. 44–49 (2007)

5. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints. In: Euro-
pean Conference on Artificial Intelligence, ECAI, vol. 141, pp. 73–77. IOS Press (2006)

6. Frisch, A., Miguel, I., Walsh, T.: Extensions to proof planning for generating implied con-
straints. In: Calculemus 2001 (2001)

7. Frisch, A.M., Jefferson, C., Martínez-Hernández, B., Miguel, I.: The rules of constraint mod-
elling. In: International Joint Conference on Artificial Intelligence, vol. 19, pp. 109–116.
Lawrence Erlbaum Associates LTD. (2005)

8. Frisch, A.M., Miguel, I., Walsh, T.: CGRASS: A system for transforming constraint satisfac-
tion problems. In: O’Sullivan, B. (ed.) CologNet 2002. LNCS (LNAI), vol. 2627, pp. 15–30.
Springer, Heidelberg (2003)

9. Gent, I.P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models: A case
study with ESSENCE′ and MINION. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS
(LNAI), vol. 4612, pp. 184–199. Springer, Heidelberg (2007)

10. Mears, C., Garcia de la Banda, M., Wallace, M., Demoen, B.: A novel approach for detect-
ing symmetries in CSP models. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS,
vol. 5015, pp. 158–172. Springer, Heidelberg (2008)

11. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards
a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529–543. Springer, Heidelberg (2007)

12. Smith, B.M., Brailsford, S.C., Hubbard, P.M., Williams, H.P.: The progressive party prob-
lem: Integer linear programming and constraint programming compared. Constraints 1(1),
119–138 (1996)



A New Propagator for Two-Layer Neural

Networks in Empirical Model Learning

Michele Lombardi1 and Stefano Gualandi2
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Abstract. This paper proposes a new propagator for a set of Neuron
Constraints representing a two-layer network. Neuron Constraints are
employed in the context of the Empirical Model Learning technique, that
enables optimal decision making over complex systems, beyond the reach
of most conventional optimization techniques. The approach is based on
embedding a Machine Learning-extracted model into a combinatorial
model. Specifically, a Neural Network can be embedded in a Constraint
Model by simply encoding each neuron as a Neuron Constraint, which
is then propagated individually. The price for such simplicity is the lack
of a global view of the network, which may lead to weak bounds. To
overcome this issue, we propose a new network-level propagator based on
a Lagrangian relaxation, that is solved with a subgradient algorithm. The
approach is tested on a thermal-aware dispatching problem on multicore
CPUs, and it leads to a massive reduction of the size of the search tree,
which is only partially countered by an increased propagation time.

1 Introduction

Pushed by research advancements in the last decades, Combinatorial Opti-
mization techniques have been successfully applied to a large number of in-
dustrial problems. Yet, many real-world domains are still out-of-reach for such
approaches. To a large extent, this is due to difficulties in the formulation of an
accurate declarative model for the system to be optimized.

The Empirical Model Learning technique (EML), introduced in [1], has been
designed to enable optimal decisions making over complex systems considered
beyond the reach of traditional combinatorial approaches. In EML, an approx-
imate model of the target system is extracted via Machine Learning. Such em-
pirical model captures the effect of the user decisions on one or more observables
of interest (e.g. a cost measure or a constrained parameter). Then, the empir-
ical model is encoded using a combinatorial technology and embedded into a
combinatorial model to perform optimization.

Currently, the EML approach has been instantiated using Artificial Neural
Networks (ANN) and Constraint Programming, respectively as Machine Learn-
ing and Combinatorial Optimization technologies. Specifically, in [1] an ANN is

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 448–463, 2013.
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employed to learn the effect of task mapping decisions on the temperature of a
quad-core CPU. In [2], the authors tackle a workload dispatching problem on
a 48-core system with thermal controllers: in this case, bad mapping decisions
may lead to overheating, which may cause a loss of efficiency when the con-
trollers slow down the cores to decrease their temperature. ANNs are employed
to predict the mapping-dependent efficiency loss, i.e the combined effect of the
thermal physics and the action of the on-line controllers.

The use of automatically extracted models for cost computation has been
previously employed in the context of metaheuristic methods. EML stands out
from those approaches for two main reasons: 1) because it makes the empirical
model a component, easy to integrate with traditional constraints; 2) because
it makes the empirical model active, rather than an simple function evaluator.
In [1] an [2], this is achieved by encoding each neuron in the ANN as a Neuron
Constraint, which is then propagated to narrow the search space.

Using individual constraints for the neurons is simple, but the loss of the
network global view may degrade the propagation effectiveness. To address this
issue, we propose a new propagator for the most common ANN structure in
practice, i.e. a two-layer, feed forward network. We assume to have sigmoid
neurons in the hidden layer, since they are a common choice [15], but the method
easily extends to any differentiable activation function. The new propagator
does not replace the use of multiple Neuron Constraints, but provides tighter
bounds (hence stronger filtering) on the network output variables. The bounds
are obtained via a Lagrangian relaxation, with the Lagrangian multipliers being
optimized via a subgradient method. We test the approach on a simplified version
of the thermal-aware dispatching problem from [2]: the new propagator leads to a
substantial (sometimes massive) reduction of the search tree size, in particular for
larger instances. This is however partially countered by an increased propagation
time. Fortunately, on the basis of a rather strong conjecture that we give at the
end of the paper, we believe a complexity reduction is possible.

The paper is structured as follows: Section 2 provides background information.
Section 3 describes our Lagrangian relaxation and its solution method, while Sec-
tion 4 explains how the Lagrangian multipliers are optimized. Section 5 provides
our experimental results and Section 6 the concluding remarks.

2 Background and Related Works

Artificial Neural Neworks: An ANN is a system emulating the behavior of
a biological network of neurons. Each ANN unit (artificial neuron) corresponds
to the following function:

z = f

(
b +

n−1∑
i=0

wixi

)
(1)

where xi are the neuron inputs and wi are their weights, b is called the bias
and z is the neuron output. All the terms are ∈ R. Besides, f : R → R is
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z

(c)

(c)

x0 ∈ [−1, 1]
x1 ∈ [−1, 1]
max(y) 0 1.515

x0 = −1
x1 = −1
x0 = −1
x1 = 1

y∗0 = 2

y∗1 = 2
z∗ 0 1.928(a)

A B C

Fig. 1. A A two-layer, feed forward ANN. B Domains for the ANN inputs and actual
output maximum. C Output bound computed by the existing propagators.

called activation function and is monotone non-decreasing. Some examples of
activation functions follow:

(a) f(y) = y (b) f(y) =

{
1 if y ≥ 0

− 1 otherwise
(c) f(y) =

2

1 + e−2y
− 1 (2)

Case (a), (b) and (c) respectively correspond to a linear, step and sigmoid neuron.
Function (c) is called tansig and it is an accurate, faster to compute, approxi-
mation of tanh(y). The neurons are connected in a network structure, the most
common being an acyclic (i.e. feed-forward), two-layer graph. The first layer is
referred as hidden, the second is called the output layer (because it provides
network output). Typically, sigmoid neurons are employed in the hidden layer.
Figure 1A shows an example of such a network. Each node represents a neuron,
the weights are reported as label on the arcs, xi are the network input and z is
the network output. The weights of an ANN can be assigned automatically by
minimizing the average square error on a known set of examples: there are many
specifically designed, readily available, algorithms for this purpose [13,3,11].

Neuron Constraints: A Neuron Constraint is a constraint that encodes and
propagates Equation (1) and is equivalent to the following pair of constraints:

(c0) z = f(y) (c1) y = b+
n−1∑
i=0

wixi (3)

where z, y and xi are real-valued decision variables1 with interval domain, i.e.
z ∈ [z, z], y ∈ [y, y] and xi ∈ [xi, xi]. The term y is called the neuron activity. It
is possible to embed an ANN in a CP model by building a Neuron Constraint for
each node in the network and by introducing decision variables to represent the
output of each hidden neuron. Each Neuron Constraint is implemented either as
a single entity or as an actual pair of constraints. In the second case, we must
explicitly introduce a decision variable to model each neuron activity.

Motivating Example: The propagator for a Neuron Constraint enforces bound
consistency on (c0) and (c1). For a single neuron, this leads to the tightest
possible bounds on all the variables. However, this approach is much less effective
once more complex networks are taken into account. Consider the two layer

1 Note that real-valued variables with fixed precision can be modeled via integer vari-
ables (e.g. a number in [0, 1] with precision 0.01 corresponds to a number ∈ {0..100}).
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network from Figure 1A, having tansig neurons in the hidden layer and a single
linear neuron connected to the output.

Assuming both x0 and x1 range in [−1, 1], the maximum possible value for
the output z is 0 1.515 (see Figure 1B). Now, let yj denote the activity of the
j-th hidden neuron. The upper bound on z computed by the output neuron (i.e.
z∗), is obtained by fixing both y0 and y1 to their maximum possible values (i.e.
y∗0 and y∗1). We have y∗0 = 2, obtained by fixing both x0 and x1 to −1. We have
also y∗1 = 2, corresponding to x0 = −1 and x1 = 1. Therefore, z∗ is 0 1.928. The
loose bound is obtained since each neuron is propagated separately, thus allowing
the network inputs to take incompatible values. This issue can be overcome by
employing a global, network-level propagator, which is what this paper is about.

Related Works: Neural Networks have been used as cheap-to-compute cost
function evaluators in the context of metaheuristics: in [4] a Genetic Algorithm
exploits an ANN to estimate the performance of an absorption chiller. The work
[14] proposes a custom heuristic for workload dispatching in a data center and
uses an ANN for temperature estimation. In Control Theory, ANNs are employed
on-line as predictors (i.e. dynamic system models) and their parameters are
continuously adjusted according to the prediction error [6]. This is a specific case
of system identification [12], which is the process of learning a (typically linear)
system model to be used for on-line control, mostly at a local scale. A few works,
such as [10], have employed ANNs for solution checking. Others have used ANNs
as a surrogate system model for the back-computation of hidden parameters: in
[8], this is done to estimate the condition of road pavement layers. Finally, in
the OptQuest metaheuristic system [7], a neural network is trained during search
with the aim to avoid trivially bad solutions.

As a common trait, in all the mentioned approaches the ANN is exploited
in a rather limited fashion, namely as black-box function evaluator. Conversely,
Empirical Model Learning has the ability to actively employ the extracted model
to improve the performance of the optimization process.

3 Computing Bounds for the Network Output

In this work, we design a new propagator for computing bounds to the output
of a two-layer, feed-forward network. Without loss of generality, we consider the
problem of finding an upper bound for a single output variable, i.e. on solving:

P0 : max z = b̂+

m−1∑
j=0

ŵjf(yj) (4)

s.t. yj = bj +

n−1∑
i=0

wj,ixi ∀j = 0..m− 1 (5)

xi ∈ [xi, xi] ∀i = 0..n− 1 (6)
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where xi are the network inputs (n in total), yj are the activities of the hidden
layer neurons (m in total). The term wj,i is the weight of the i-th input in activity
of the j-th hidden neuron and bj is the bias for the j-th hidden neuron. The term
ŵj is the weight of the output of the j-th hidden neuron in the activity of the

output neuron and b̂ is the bias for the output neuron. The z variable represents
the activity of the output neuron: since all activation functions are monotone
non-decreasing, an upper bound on z corresponds to an upper bound on the
network output.

Problem Relaxation: Problem P0 is non-linear, non-convex and cannot be
solved in polynomial time in general. Therefore, we resort to a relaxation in order
to obtain a scalable solution approach. Specifically, we employ a Lagrangian
relaxation for Constraints (5), obtaining:

LP0(λ) : max
x,y

z(λ) = b̂+

m−1∑
j=0

ŵjf(yj)+ (7)

+

m−1∑
j=0

λj

(
bj +

n−1∑
i=0

wj,ixi − yj

)
(8)

xi ∈ [xi, xi] ∀i = 0..n− 1 (9)

yj ∈ [y
j
, yj ] ∀j = 0..m− 1 (10)

where λ is the vector of Lagrangian multipliers λj , acting as parameters for the
relaxation. The notations x and y refer to the vectors of the xi and yj variables.
Constraints (10) have been added to prevent LP0(λ) from becoming unbounded.
The values y

j
and yj are chosen so that Constraints (10) are redundant in the

original problem. In particular:

y
j
= bj +

∑
i

{
wj,ixi if wj,i ≥ 0

wj,ixi otherwise
(11)

and the value yj is computed similarly. Now, since problem LP0(λ) is a relax-
ation, its feasible space includes that of P0. Additionally, for all points where
Constraints (5) are satisfied, we have z = z(λ), for every possible λ. Therefore,
the set of solutions of LP0(λ) contains all the solutions of P0, with the same
objective value. Hence the optimal solution z∗(λ) of LP0(λ) is always a valid
bound on the optimal solution z∗ of P0.

Solving the Relaxation: Problem LP0(λ) can be decomposed into two inde-
pendent subproblems LP1(λ) and LP2(λ) such that:

z∗(λ) = b̂+

m−1∑
j=0

λjbj + z∗LP1(λ) + z∗LP2(λ) (12)
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with:

z∗LP1(λ) = max
x

zLP1(λ) =

n−1∑
i=0

⎛
⎝m−1∑

j=0

λjwj,i

⎞
⎠xi LP1(λ) (13)

s.t. xi ∈ [xi, xi] ∀i = 0..n− 1 (14)

z∗LP2(λ) = max
y

zLP2(λ) =
m−1∑
j=0

(ŵjf(yj)− λjyj) LP2(λ) (15)

s.t. yj ∈ [y
j
, yj ] ∀j = 0..m− 1 (16)

The two subproblems can be addressed separately.

Solving LP1(λ): Problem LP1(λ) can be solved by assigning each xi either to

xi or to xi, depending on the sign of the reduced weight w̃i(λ) =
∑m−1

j=0 λjwj,i.
In detail:

z∗LP1(λ) =

n−1∑
i=0

{
w̃i(λ)xi if w̃i(λ) ≥ 0

w̃i(λ)xi otherwise
(17)

The process requires nm steps to compute the reduced weights and n steps to
obtain the final solution, for a worst case time complexity of O(nm).

Solving LP2(λ): Problem LP2(λ) can be further decomposed into a sum of
maximization problems of non-linear, non-convex, monovariate functions with
box constraints. Each of the subproblems is in the form:

max
yj

gj(yj , λ) = ŵjf(yj)− λjyj (18)

s.t. yj ∈ [y
j
, yj ] (19)

Each subproblem can be solved analytically, in case f is differentiable, which
is a very realistic assumption given that in most practical applications f is a
sigmoid. In such case, the objective function from Equation (18) will have a
shape similar to the one depicted in Figure 2A. Hence the maximum can be
found by comparing the value of gj(yj , λ) on y

j
, on yj (depending on the value

of ŵj and λj) or on the yj value corresponding to a local maximum. The presence
of at most one local maximum is guaranteed by the fact that both f(yj) and
λjyj are mononote. Now, for the local minimum and maximum the derivative
of gj(yj , λ) will be null, i.e. ŵjf

′(yj) − λj = 0. Assuming a tansig activation
function, this means that:

ŵj
4e−2yj

(1 + e−2yj )
2 − λj = 0 (20)

By substituting u = e−2yj in Equation (20), we get:

4ŵju− λj

(
1 + 2u+ u2

)
= 0 (21)
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ŵj = 1

λj = 0.3

y
j yj y

j yj

ŵ
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Fig. 2. Shapes for the cost function in the decomposition of LP2(λ)

Note that if λj = 0, then no local maximum exists. The same holds if ŵj = 0.
Hence it is safe to assume λj , ŵj �= 0 and we can get:

u2 +

(
2− 4

ŵj

λj

)
u+ 1 = 0 (22)

Which can be solved via the classic quadratic formula for second degree equa-
tions, yielding two solutions u′ and u′′. The solutions are non-complex iff:(

2− 4
ŵj

λj

)2

− 4 ≥ 0 ⇔ ŵj

λj

(
ŵj

λj
− 1

)
≥ 0 (23)

I.e. if ŵj and λj are equal in sign and if |ŵj | ≥ λj (or equivalently if ŵj/λj > 1).
In this case, the yj values corresponding to the local minimum and maximum
are given by:

y′j = −
1

2
log u′, y′′j = −1

2
log u′′ (24)

It can be shown that u′ and u′′ are guaranteed to be positive. If the conditions
to have a real-valued solution for Equation (22) do not hold, then the maximum
corresponds to either y

j
or yj : in detail, if sign(ŵj) �= sign(λj), then this hap-

pens because both f(yj) and −λjyj are non-decreasing or non-increasing (see
Figure 2B). If |ŵj | < λj no local maximum exists (see Figure 2C), because the
derivative of the tansig is always ≤ 1.

Hence, the solution of each subproblem in the decomposition of LP2(λ) can
be found by solving Equation (20) (if the conditions are met) and by comparing
the value of gj(yjλ) for at most four yj values. The process takes constant time.
Solving LP2(λ) requires m such computations, plus nm iterations to obtain all
y
j
and yj . The overall worst case time complexity is O(nm).

Summary: For a fixed value of all the Lagrangian multipliers λ, the relaxed
subproblem LP0(λ) can therefore be solved via the process described in Al-
gorithm 1, to yield an upper bound on z. In the algorithm, z∗(λ) denotes the
bound, while x∗i (λ) and y∗j (λ) are the values of xi and yj in the corresponding
solution. We recall that a feasible solution for LP0(λ) may be infeasible for P0.
The algorithm to compute a lower bound is analogous.
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Algorithm 1. (Computing an upper bound on z by solving LP0(λ))

initialize z∗(λ) = b̂+
∑m−1

j=0 λjbj
for i = 0..n− 1 do

set x∗
i (λ) =

{
xi if w̃i(λ) ≥ 0

xi otherwise

update z∗(λ) = z∗(λ) + w̃i(λ)x
∗
i (λ)

for j = 0..m − 1 do
compute y

j
and yj

set y∗
j (λ) = argmax{gj(y

j
, λ), gj(yj , λ)}

if λj �= 0 and ŵj /λj > 1 then

set y′
j , y

′′
j = − 1

2
log

(
−β±

√
β2−4

2

)
, with β = 2− 4

ŵj

λj

if y′
j ∈ ]y

j
, yj [ and gj(y

′
j , λj) > gj(y

∗
j (λ), λj) then y∗

j (λ) = y′
j

if y′′
j ∈ ]y

j
, yj [ and gj(y

′′
j , λj) > gj(y

∗
j (λ), λj) then y∗

j (λ) = y′′
j

set z∗(λ) = z∗(λ) + gj(y
∗
j (λ), λ)

return z∗(λ)

4 Optimizing the Lagrangian Multipliers

Any assignment of the multipliers λ yields a valid bound on the output variable
z. Hence it is possible to improve the bound quality by optimizing the multiplier
values, i.e. by solving the following unconstrained minimization problem:

L0 : min
λ

z∗(λ) (25)

Where z∗(λ) is here a function that denotes the optimal solution of LP0(λ).
Problem L0 is convex in λ and hence has a unique minimum. This is true
even if LP0(λ) is non-convex: in fact, the two problems are defined on different
variables (i.e. λ versus x and y). The minimum point can therefore be found via
a descent method. Now, let λ′ be an assignment of λ such that the corresponding
solution of LP0(λ) does not change for very small variations of the multipliers,
i.e. x∗(λ′) = x∗(λ′′) and y∗(λ′) = y∗(λ′′), with ‖λ′ − λ′′‖ → 0. Then z∗(λ) is
differentiable in λ′ and in particular:

∂z∗(λ′)

∂λj
= sj = bj +

n−1∑
i=0

wj,ix
∗
i (λ

′)− y∗j (λ
′) (26)

Equation (26) is obtained by differentiating the objective of LP0(λ) under the
above mentioned assumptions. When such assumptions do not hold, the sj values
provide a valid subgradient. The optimum value of L0 can therefore be found
via a subgradient method, by starting from an assignment λ(0) and iteratively
applying the update rule:

λ(k+1) = λ(k) − σ(k)s(k) (27)
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where λ(k) denotes the multipliers for the k-th step, s(k) is the vector of all sj
(i.e. the subgradient) and σ(k) is a scalar, representing a step length.

Step Update Policy: We have chosen to employ the corrected Polyak step
size policy with non-vanishing threshold from [5]. This guarantees the conver-
gence to the optimal multipliers (given infinitely many iterations), with bounded
error. Other policies from the literature are more accurate, but have a slower
convergence rate, which is in our case the critical parameter (since we will run
the subgradient method within a propagator). In detail, we have:

σ(k) = β
z∗(λ(k))− (zbest − δ(k))

‖s(k)‖2 (28)

where β is a scalar value in ]0, 2[. The term zbest − δ(k) is an estimate of the
L0 optimum: it is computed as the difference between the best (lowest) bound
found so far zbest, and a scalar δ(k) dynamically adjusted during search. Hence,
the step size is directly proportional to the distance of the current bound from
the estimated optimal one, i.e. z∗(λ(k))−(zbest−δ(k)). The larger δ(k), the larger
the estimated gap w.r.t the best bound and the larger the step size.

The value of δ(k) is non-vanishing, which means it is constrained to be larger
than a threshold δ∗. This ensures to have σ(k) > 0 and prevents the subgradient
optimization from getting stuck. We determine the δ∗ value when the propagator
is first executed at the root of the search tree. Specifically, we choose δ∗ =
γz∗(λ(0)), with γ being a small positive value. During search, we compute δ(k)

according to the following rules:

δ(k+1) =

{
max(δ∗, νδ(k)) if z∗(λ(k)) > zbest − δ(k)

max(δ∗, μz∗(λ(k))) otherwise
(29)

where ν, μ ∈ ]0, 1[. In practice, if the last computed bound z∗(λ(k))) does not
improve over the estimated optimum zbest − δ(k), then we reduce the current
δ(k) value, i.e. we make the estimated optimum closer to zbest. Conversely, when
an improvement is obtained, we “reset” δ(k), i.e. we assume that the estimated
optimum is μ% lower than zbest.

Deflection: Subgradient methods are known to exhibit a zig-zag behavior when
close to an area where the cost function is non-differentiable. In this situation
the convergence rate can be improved via deflection techniques. In its most
basic form (the one we adopt), a deflection technique consists in replacing the
subgradient in Equation (27) and (28) with the following vector (see [5]):

d(k) = αs(k) + (1 − α)d(k−1) (30)

where d(k) is called search direction and α is a scalar in ]0, 1], meaning that d(k)

is a convex combination of the last search direction and the current subgradient.
The components sj having alternating sign in consecutive gradients (such that

s
(k)
j s

(k−1)
j < 0) tend to cancel one each other in the deflected search direction.
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Fig. 3. A Subgradient optimization trace (10 iterations, no deflection). B Subgradi-
ent optimization trace (10 iterations, with deflection).

This behavior can be observed in Figure 3. This depicts the bound value as a
function of λ for the network from Figure 1, together with the trace of the first
10 subgradient iterations. The use of the deflection allows to get considerably
closer to the best possible bound (0 1.523 in this case). Note that bound is
not tight (the actual network maximum is 0 1.515), but it remarkably better
than the value obtained from the propagation of individual neuron constraints
(0 1.928). When using the deflection technique, the value β from Equation (28)
must be ≤ α for the method to converge.

Propagator Configuration: We stop the subgradient optimization after a
fixed number of steps. At the end of the process, we keep the best multipli-
ers λ∗ we have found and the corresponding bound z∗(λ∗). We compute both
an upper and a lower bound on the network output. The bound computation al-
gorithm does not replace the propagation of individual neuron constraints, that
we implement as pair of separated constraints as from Equation (3). We rely
on individual neuron constraints to perform propagation on the network inputs,
and for computing the bounds y

j
, yj on the activity of the hidden neurons.

The new propagator is scheduled with the lowest possible priority in the tar-
get Constraint Solver. When the constraint is propagated for the first time, we

perform 100 subgradient iterations, starting with all-zero multipliers (λ
(0)
j =

0 ∀j = 0..m − 1). After that, when the constraint is triggered we perform only
3 iterations, starting from the best multipliers λ∗ from the last activation. We
keep the multipliers also when branching from a node of the search tree to one
of its children, as a simple (but important) form of incremental computation.

We always use α = 0.5 for the deflection and we keep β = α. We re-initialize
δ∗ every time the constraint is triggered, using γ = 0.01. Therefore, the cor-
rection factor δ(k) is always at least 1% of the computed bound computed at
the first subgradient iteration. The attenuation factor ν for δ(k), used when no
improvement is obtained, is fixed to 0.75. The μ factor, used to reset δ(k) when
the estimated bound is improved, is 0.25 for the first constraint propagation
and 0.05 for all the following ones. This choice is done on the basis that small
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updates of the network inputs (such as those occurring during search) result in
small modifications of the optimal multipliers.

5 Experimental Results

Target Problem: We have tested the new propagator on a simplified version
of the thermal-aware workload dispatching problem from [2]. A number of tasks
need to be executed on a multi-core CPU. Each CPU core has a thermal con-
troller, which reacts to overheating by reducing the operating frequency until
the temperature is safe. The frequency reduction causes a loss of efficiency that
depends on the workload of the core, on that of the neighboring cores, on the
thermal physics, and on the controller policy itself. An ANN is used to obtain an
approximate model of the efficiency of each core, as a function of the workload
and the room temperature. We target a synthetic quad core CPUs, simulated via
an internally developed tool based on the popular Hotspot system [9]. A training
set has been generated by mapping workloads at random on the platform and
then obtaining the corresponding core efficiencies via the simulator. We have
then trained a two-layer ANN for each core, with tansig neurons in the hidden
layer and a single linear neuron in the output layer.

Each task i is characterized by a value cpii, measuring the degree of its CPU
usage: lower cpii values correspond to more computation intensive (and heat
generating) tasks. An equal number of tasks must be mapped on each core. The
input of the ANN is the average cpii of each core and the room temperature
t. The goal is to find a task-to-core mapping such that no efficiency is below a
minimum threshold θ. We use the vector of integer variables p to model the task
mapping, with pi = k iff task i is mapped to core k. Our model is as follows:

gcc (p, [0..nc − 1],nt /nc) (31)

acpik =
nc

nt

nt−1∑
i=0

cpii(pi = k) ∀k = 0..nc − 1 (32)

ek = b̂k +

nh−1∑
j=0

ŵk,jyk,j ∀k = 0..nc − 1 (33)

yk,j = tansig

(
bk,j +

nc−1∑
h=0

wk,j,hacpih + wk,j,nc t

)
∀k = 0..nc − 1,

∀j = 0..nh − 1
(34)

ek ≥ θ ∀k = 0..nc − 1 (35)

pi ∈ {0..nc − 1} ∀i = 0..nt (36)

where nt is the number of tasks and nc is the number of cores (4 in our case).
In (31) we use the gcc global constraint to have exactly nt/nc tasks per core. For
simplicity, we assume nt is a multiple of nc. Constraints (32) are used to obtain
the average cpii per core (i.e. the acpik variables). Constraints (33) and (34)
define the ANN structure and are implemented using Neuron Constraints. The



A New Propagator for Two-Layer Neural Networks in EML 459

16 tasks ptf0 ptf1 ptf2
tim

e 
b

as
e

time lagrangian

#b
ra

nc
he

s 
b

as
e

#branches lagrangian

Fig. 4. Results for the 16 task workloads, on platforms 0-2

value nh is the number of hidden neurons per ANN (nh = 5 in our case), b̂k is
the bias of the output neuron in the ANN for core k, ŵk,j are the neuron weights.
Similarly, bk,j is bias of the hidden neuron j in the neural network for core k,
while wk,j,h, wk,j,nc are the weights. The value t is the room temperature, which
is fixed for each problem instance. Each ek variable represents the efficiency of
the core k and is forced to be higher than θ by Constraints (35).

Experimental Setup: We tested two variants of the above model, where the
new Lagragian propagator is respectively used (lag) and not used (base). A com-
parison with an alternative approach (e.g. a meta-hueristic using the ANN as a
black-box), although very interesting, is outside the scope of this paper, which is
focused on improving a filtering algorithm. We solve the problem via depth-first
search by using a static search heuristic, namely by selecting for branching the
first unbounded variable and always assigning the minimum value in the domain.
The choice of a static heuristic allows a fair comparison of different propagators:
pruning a value at a search node has the effect of skipping the corresponding
sub-tree, but does not affect the branching decisions in an unpredictable fashion.
As an adverse side effect, static heuristics are not well suited to solve this specific
problem. Therefore, we limit ourselves to relatively small instances with either
16 or 20 tasks, which are nevertheless be sufficient to provide a sound evalua-
tion. We consider 100 task sets for each size value. We performed experiments
on 6 synthetic quad-core platforms, effectively testing 4 × 6 = 24 networks. For
each combination of task set size and platform, we have empirically determined
an efficiency threshold θ such that finding a feasible solution is non-trivial in
most cases. Each experiment is run with a 60 seconds time limit. This is usually
enough to find a solution, but it is never sufficient for proving infeasibility (which
appears to take a very long time, mainly due to the chosen search heuristic). We
have implemented everything on top of the Google or-tools solver. All the tests
are run on a 2.8 GHz Intel Core i7.
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Fig. 5. Results for the 20 task workloads, on platforms 0-2
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Fig. 6. Results for the 16 task workloads, on platforms 3-5

Results: The results of our experimentation are reported in Figures 4, 5, 6, 7.
Each of them refers to 100 instances (with either 16 or 20 tasks) tested on three
different platforms, and contains two scatter plots in log scale. The left-most
diagram reports the solution times, with lag on the x axis and base on the y
axis. Each instance is represented by a point and different colors and markers
are used to distinguish between different platforms. Points above the diagonal
represent instances where an improvement was obtained. A horizontal and a
vertical line highlight the position of 1-second run times. The right-most plot
is similar, except that it shows the number of branches and refers only to the
instances for which a solution was found by both approaches. Each of the dotted
diagonal lines represents a one-order-of-magnitude improvement.

The dramatic good news here is that the novel propagator achieves an impres-
sive reduction in the number of branches, in a significant number cases. The gain
may be as large as 2-3 orders or magnitude. This is an important result, pointing
out that the bound improvement provided by the Lagrangian relaxation is far
from negligible. Interestingly, the benefits tend to be higher for larger instances:
a reasonable explanation for this behavior is that additional propagation is
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Fig. 7. Results for the 20 task workloads, on platforms 3-5

performed relatively high in the search tree, thus pruning larger subtrees as
the instance size grows.

On the flip side, the new propagator comes with a considerable computational
burden at each search node. As a general trend, on the 16 task instances this
is sufficient to counter the benefits of the smaller number of branches: the lag
approach therefore tends to be slower than the base one, although not much
slower. For the 20 task workloads, there is a significant gain in solution time on
platform 2 and 1, and a slight improvement on platform 0. The novel propagator
behaves nicely on platform 3 and 4 as well, solving more instances than base
respectively for the first 28 and 47 seconds. The method reports however a
larger number of time-outs at the end of the 60 seconds. The base approach
considerably outperforms the lag one on platform 5.

In general, the effectiveness of the Lagrangian propagator is non-uniform
across different platforms: the reduction in the number of branches is much
larger for platforms 0, 2, 3 and 4 than it is for platforms 1 and 5. This rises
interest in investigating techniques to identify the network weight configurations
that are more likely to benefit from the new propagator. The results seem to be
much more consistent for different workloads on a single platform, although this
may be due in part to the way our task sets are generated.

Finally, it is worth noting that the higher scalability (on the time side) of the
Lagrangian approach is in part due to the use of subgradient optimization. We
recall from Section 4 that for each constraint activation (except for the first one)
we perform only 3 subgradient iterations. Since such number is fixed regardless
of the number of tasks, the computational cost of the new propagator grows
proportionally slower as the instances become larger.

6 Concluding Remarks

Summary: We have introduced a novel propagator for two-layer, feed forward
ANNs, to be used in Empirical Model Learning. The new propagator is based on
a Lagrangian relaxation, which is solved for a fixed assignment of the multipliers
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via a fast, dedicated, approach. The multipliers themselves are optimized via a
subgradient method. The current implementation works for tansig sigmoids in
the hidden layer, but targeting other activation functions should be easy enough,
provided they are differentiable.

The novel propagation does not replace the existing ones, but allows the com-
putation of tighter bound on the ANN output variables. The approach manages
to obtain a substantial reduction of the number of branches (up to 2-3 orders of
magnitude) in our test set. The method seems to work best for comparatively
larger instances. On the other side, the new propagation is computationally
expensive, countering in part the benefits of the smaller search tree. Neverthe-
less, a gain in terms of solution time is obtained in a significant number of
cases.

Future Work: A natural direction for future research is devising a way to fil-
ter the xi variables, based on the Lagrangian relaxation. Second, the highest
priority for future developments is achieving a reduction in the computation
time, in order to fully exploit the reduction in the number of branches. This
goal can be pursued (1) via the application of additional incremental techniques
or (2) by improvements in the multiplier optimization routine. The computa-
tion of y

j
, yj can be easily be made incremental, since they are linear ex-

pression. The incremental update of the LP0(λ) solution upon changes in λ
is trickier, since all the multipliers tend to change after every subgradient it-
erations. We believe however that the convergence of the multiplier optimiza-
tion routine offers large room for improvements, on the basis of the following
conjecture.

The Conjecture: Let us assume that the relaxed problem z∗(λ) from Sec-
tion 4 is differentiable for the optimal multipliers λ∗. As a consequence, it must

hold ∂z∗(λ∗)
∂λj

= 0 for every λj . Now, the partial derivatives are given by Ex-

pressions (26), which also represents the violation degree of Constraints (5).
Therefore, if z∗(λ) is differentiable in λ∗, then the relaxation solution x∗(λ∗),
y∗(λ∗) is feasible for the original problem and the bound is tight. This means
that the original problem can be solved via convex optimization.

Since we know problem P0 is non-convex and hard to solve in general, we
expect the above situation to be symptomatic of tractable subclasses, which can
be probably identified by an analysis of the network weights. For example we
know that, if the products wj,i ŵj have constant sign ∀j, then propagating the
individual Neuron Constraints is sufficient to compute tight bounds on z.

Therefore, we expect that non-trivial Lagrangian bounds correspond to non-
differentiable points of z∗(λ). Such non-differentiable areas are given in our case
by a set of hyperplanes in Rm (i.e. on the space of the multipliers), with the
coefficients of the hyperplanes being easy to compute. This information can be
exploited to focus the search for the optimal λ to a much smaller space, improving
the rate of convergence and decreasing the overall computation time.
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Abstract. Constraint Programming (CP) solvers classically explore the
solution space using tree-search based heuristics. Monte-Carlo Tree
Search (MCTS), aimed at optimal sequential decision making under un-
certainty, gradually grows a search tree to explore the most promising
regions according to a specified reward function. At the crossroad of
CP and MCTS, this paper presents the Bandit Search for Constraint
Programming (BaSCoP) algorithm, adapting MCTS to the specifics of
the CP search. This contribution relies on i) a generic reward function
suited to CP and compatible with a multiple restart strategy; ii) the use
of depth-first search as roll-out procedure in MCTS. BaSCoP, on the
top of the Gecode constraint solver, is shown to significantly improve
on depth-first search on some CP benchmark suites, demonstrating its
relevance as a generic yet robust CP search method.

Keywords: adaptive search, value selection, bandit, UCB, MCTS.

1 Introduction

A variety of algorithms and heuristics have been designed in constraint program-
ming (CP), determining which (variable, value) assignment must be selected at
each step, how to backtrack on failures, and how to restart the search [1]. The
selection of the algorithm or heuristics most appropriate to a given problem
instance, intensively investigated since the late 70s [2], most often relies on su-
pervised machine learning (ML) [3–7].

This paper advocates the use of another ML approach, namely reinforcement
learning (RL) [8], to support the CP search. Taking inspiration from earlier work
[9–12], the paper contribution is to extend the Monte-Carlo Tree Search (MCTS)
algorithm to control the exploration of the CP search tree.

Formally, MCTS upgrades the multi-armed bandit framework [13, 14] to se-
quential decision making [15], leading to breakthroughs in the domains of e.g.
games [16, 17] or automated planning [18]. MCTS proceeds by growing a search
tree through consecutive tree walks, gradually biasing the search toward the
most promising regions of the search space. Each tree walk, starting from the
root, iteratively selects a child node depending on its empirical reward estimate
and the confidence thereof, enforcing a trade-off between the exploitation of the
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best results found so far, and the exploration of the search space (more in section
2.3). The use of MCTS within the CP search faces two main difficulties. The first
one is to define an appropriate reward attached to a tree node (that is, a partial
assignment of the variables). The second difficulty is due to the fact that the
CP search frequently involves multiple restarts [19]. In each restart, the current
search tree is erased and a brand new search tree is built based on a new vari-
able ordering (reflecting the variable criticality after e.g. their weighted degree,
impact or activity). As the rewards attached to all nodes cannot be maintained
over multiple restarts for tractability reasons, MCTS cannot be used as is.

A first contribution of the presented algorithm, named Bandit-based Search
for Constraint Programming (BaSCoP), is to associate to each (variable, value)
assignment its average relative failure depth. This average can be maintained
over the successive restarts, and used as a reward to guide the search. A second
contribution is to combine BaSCoP with a depth-first search, enforcing the
search completeness in the no-restart case. A proof of principle of the approach is
given by implementing BaSCoP on the top of the Gecode constraint solver [20].
Its experimental validation on three benchmark suites, respectively concerned
with the job-shop (JSP) [21], the balanced incomplete block design (BIBD) [22],
and the car-sequencing problems, comparatively demonstrates the merits of the
approach.

The paper is organized as follows. Section 2 discusses the respective relevance
of supervised learning and reinforcement learning with regard to the CP search
control, and describes the Monte Carlo Tree Search. Section 3 gives an overview
of theBaSCoP algorithm, hybridizing MCTS with CP search. Section 4 presents
the experimental setting for the empirical validation of BaSCoP and discusses
the empirical results. The paper concludes with some perspectives for further
research.

2 Machine Learning for Constraint Programming

This section briefly discusses the use of supervised machine learning and re-
inforcement learning for the control of CP search algorithms. For the sake of
completeness, the Monte-Carlo Tree Search algorithm is last described.

2.1 Supervised Machine Learning

Most approaches to the control of search algorithms exploit a dataset that
records, for a set of benchmark problem instances, i) the description of each
problem instance after appropriate static and dynamic features [3, 23]; ii) the
associated target result, e.g. the runtime of a solver. Supervised machine learn-
ing is applied on the dataset to extract a model of the target result based on
the descriptive features of the problem instances. In SATzilla [3], a regression
model predicting the runtime of each solver on a problem instance is built from
the known instances, and used on unknown instances to select the solver with
minimal expected run-time. Note that this approach can be extended to ac-
commodate several restart strategies [24]. CPHydra [4] uses a similarity-based
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approach (case-based reasoning) and builds a switching policy based on the most
efficient solvers for the problem instance at hand. In [5], ML is likewise applied
to adjust the CP heuristics online. The Adaptive Constraint Engine [25] can
be viewed as an ensemble learning approach, where each heuristic votes for a
possible (variable,value) assignment to solve a CSP. The methods Combining
Multiple Heuristics Online [6] and Portfolios with Deadlines [26] are designed
to build a scheduler policy in order to switch the execution of black-box solvers
during the resolution process. Finally, optimal hyper-parameter tuning [7, 27]
is tackled by optimizing the estimate of the runtime associated to parameter
settings depending on the current problem instance.

2.2 Reinforcement Learning

A main difference between supervised learning and reinforcement learning is
that the former focuses on taking a single decision, while the latter is interested
in sequences of decisions. Reinforcement learning classically considers a Markov
decision process framework (S,A, p, r), where S and A respectively denote the
state and the action spaces, p is the transition model (p(s, a, s′) being the prob-
ability of being in state s′ after selecting action a in state s in a probabilistic
setting; in a deterministic setting, tr(s, a) is the node s′ reached by selecting
action a in state s) and r : S �→ IR is a bounded reward function. A policy
π : S �→ A, starting in some initial state until arriving in a terminal state or
reaching a time horizon, gathers a sum of rewards. The RL goal is to find an
optimal policy, maximizing the expected cumulative reward.

RL is relevant to CP along two frameworks, referred to as offline and online
frameworks. The offline framework aims at finding an optimal policy w.r.t. a
family of problem instances. In this framework, the set of states describes the
search status of any problem instance, described after static and dynamic feature
values; the set of actions corresponds e.g. to the CP heuristics to be applied for a
given lapse of time. An optimal policy associates an action to each state, in such
a way that, over the family of problem instances (e.g., on average), the policy
reaches optimal performances (finds a solution in the satisfiability setting, or
reaches the optimal solution in an optimization setting) as fast as possible.

The online framework is interested in solving a single problem instance. In this
framework, the set of states corresponds to a partial assignment of the variables
and the set of admissible actions corresponds to the (variable, value) assignments
consistent with the current state. An optimal policy is one which finds as fast as
possible a solution (or, the optimal solution) for the problem instance at hand.

In the remainder of the paper, only the online framework will be considered;
states and nodes will be used interchangeably. This online framework defines a
specific RL landscape. Firstly, the transition model is known and deterministic;
the next state s′ = tr(s, a) reached from a state s upon the (variable,value)
assignment action a, is the conjunction of s and the (variable,value) assignment.
Secondly, and most importantly, there is no clearly defined reward to be attached
to intermediate states: e.g. in the satisfiability context, intrinsic rewards (satisfi-
ability or unsatisfiability) can only be attached to terminal states. Furthermore,
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such intrinsic rewards are hardly informative (e.g. all but a negligible fraction of
the terminal states are unsatisfiable; and the problem is solved in general after
a single satisfiable assignment is found).

The online framework thus makes it challenging for mainstreamRL approaches
to adjust the Exploration vs Exploitation trade-off at the core of RL. For this
reason, the Monte-Carlo Tree Search approach is considered.

2.3 Monte Carlo Tree Search

The best known MCTS algorithm, referred to as Upper Confidence Tree (UCT)
[15], extends the Upper Confidence Bound algorithm [14] to tree-structured
spaces. UCT simultaneously explores and builds a search tree, initially restricted
to its root node, along N tree-walks. Each tree-walk involves three phases:

The bandit phase starts from the root node (initial state) and iteratively
selects a child node (action) until arriving in a leaf node of the MCTS tree.
Action selection is handled as a multi-armed bandit problem. The set As of
admissible actions a in node s defines the child nodes (s, a) of s; the selected
action a∗ maximizes the Upper Confidence Bound:

r̄s,a + C
√
log(ns)/ns,a (1)

over a ranging in As, where ns stands for the number of times node s has been
visited, ns,a denotes the number of times a has been selected in node s, and
r̄s,a is the average cumulative reward collected when selecting action a from
node s. The first (respectively the second) term in Eq. (1) corresponds to the
exploitation (resp. exploration) term, and the exploration vs exploitation trade-
off is controlled by parameter C. In a deterministic setting, the selection of the
child node (s, a) yields a single next state tr(s, a), which replaces s as current
node.

The tree building phase takes place upon arriving in a leaf node s; some
action a is (randomly or heuristically) selected and tr(s, a) is added as child node
of s. The growth rate of the MCTS tree can be controlled through an expand
rate parameter k, by adding a child node after the leaf node has been visited
k times. Accordingly, the number of nodes in the tree is N/k, where N is the
number of tree-walks.

The roll-out phase starts from the leaf node tr(s, a) and iteratively (ran-
domly or heuristically) selects an action until arriving in a terminal state u; at
this point the reward ru of the whole tree-walk is computed and used to update
the cumulative reward estimates in all nodes (s, a) visited during the tree-walk:

ns,a ← ns,a + 1; ns ← ns + 1
r̄s,a ← r̄s,a + (ru − r̄s,a)/ns,a

(2)

Additional heuristics have been considered, chiefly to prevent over-exploration
when the number of admissible arms is large w.r.t the number of simulations
(the so-called many-armed bandit issue [28]). Notably, the Rapid Action Value
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Estimate (RAVE) heuristics is used to guide the exploration of the search space
and the tree-building phase [16] when node rewards are based on few samples
(tree-walks) and are thus subject to a high variance. In its simplest version,
RAVE(a) is set to the average reward taken over all tree-walks involving action
a. The action selection is based on a weighted sum of the RAVE and the Upper
Confidence Bound (Eq. (1)), where the RAVE weight decreases with the number
ns of visits to the current node [16].

A few work have pioneered the use of MCTS to explore a tree-structured
assignment search space, in order to solve satisfiability or combinatorial opti-
mization problem instances. In [9], MCTS is applied to boolean satisfiability;
the node reward is set to the ratio of clauses satisfied by the current assignment,
tentatively estimating how far this assignment goes toward finding a solution.
In [11], MCTS is applied to Mixed Integer Programming, and used to control
the selection of the top nodes in the CPLEX solver; the node reward is set to
the maximal value of solutions built on this node. In [10], MCTS is applied to
Job Shop Scheduling problems; it is viewed as an alternative to Pilot or roll-out
methods, featuring an integrated and smart look-ahead strategy. Likewise, the
node reward is set to the optimal makespan of the solutions built on this node.

3 The BaSCoP Algorithm

This section presents the BaSCoP algorithm (Algorithm 1), defining the pro-
posed reward function and describing how the reward estimates are exploited
to guide the search. Only binary variables will be considered in this section for
the sake of simplicity; the extension to n-ary variables is straightforward, and
will be considered in the experimental validation of BaSCoP (section 4). Before
describing the structure of the BaSCoP search tree, let us first introduce the
main two ideas behind the proposed hybridization of MCTS and the CP search.

Among the principles guiding the CP search [29], a first one is to select vari-
ables such that an eventual failure occurs as soon as possible (First Fail princi-
ple). A second principle is to select values that maximize the number of possible
assignments. The First Fail principle is implemented by hybridizing MCTS with
a mainstream variable-ordering heuristics (wdeg is used in the experiments). The
latter principle will guide the definition of the proposed reward (section 3.2).

A second issue regards the search strategy used in the MCTS roll-out phase.
The use of random search is not desirable, among other reasons as it does not
enforce the search completeness in the no-restart context. Accordingly, the roll-
out strategy used in BaSCoP implements a complete strategy, the depth first
search.

3.1 Overview

The overall structure of the BaSCoP search space is displayed in Fig. 1. BaS-
CoP grows a search tree referred to as top-tree (the filled nodes in Fig. 1), which
is a subtree of the full search tree. Each node is a partial assignment s (after
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Algorithm 1. BaSCoP

input : number N of tree-walks, restart schedule, selection rule SR,
expand rate k.

data structure: a node stores
- a state : partial assignment as handled by the solver,
- the variable to be assigned next,
- children nodes corresponding to its admissible values,
- a top flag marking it as subject to SR or DFS,
- statistics: number n of visits, average failure depth avg.
Every time a new node must be created (first visit), its state is
computed in the solver by adding the appropriate literal, and
its variable is fetched from the solver.
All numeric variables are initialized to zero.

main loop :
search tree T ← new Node(empty state)
for N tree-walks do

if restart then T ← new Node(empty state)

if Tree-walk(T ).state.success then
process returned solution

function Tree-walk(node) returns (depth, state) :
if node.state is terminal (failure,success) then

close the node, and its ancestors if necessary
return (0, node.state)

if node.top = false then
once every k, node.top ← true
otherwise, return DFS(node)

node.n ← node.n+ 1
Use SR to select value among admissible ones
(d, s) = Tree-walk(node’s child associated to value)
node.avg ← node.avg + (d− node.avg)/node.n
if d > node.avg then reward = 1
else reward = 0
let  = (node.variable, value):

n	 ← n	 + 1
RAVE 	 ← RAVE 	 + (reward −RAVE 	)/n	

return (d+ 1, s)

function DFS(node) returns (depth, state) :
if node.state is terminal (failure,success) then

close the node, and its ancestors if necessary
return (0, node.state)

(d, s) = DFS(leftmost admissible child)
return (d+ 1, s)
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Fig. 1. Overview of the BaSCoP search space. The top tree (filled nodes) is explored
and extended along the MCTS framework. The bottom tree involves the tree paths
under the top-tree leaves, iteratively updated by depth-first search. The status of a
bottom-node is open (unfilled) or closed (dotted).

the constraint propagation achieved by the CP solver). The possible actions in
s are to assign a fixed variable X (fetched from the variable-ordering heuristics)
to value true or false, respectively represented as �X and �X̄ literals. Each child
node of s (noted s ∧ � with � = �X or �X̄) is associated a status: closed if the
sub-tree associated to s∧ � has been fully explored; open if the sub-tree is being
explored; to-be-opened if the node has not yet been visited. The value assigned
to X is selected depending on the reward of the child nodes (section 3.2) and
the selection rule (section 3.3).

BaSCoP simultaneously explores and extends the top-tree along the MCTS
framework, following successive tree-walks from the root until reaching a leaf
node of the top-tree. The growth of the top-tree is controlled through the expand
rate parameter k (section 2.3), where a child node is added below a leaf node s
after s has been visited k times.

Upon reaching a leaf node of the top-tree, the BaSCoP roll-out phase is
launched until reaching a terminal state (failure or complete assignment). The
roll-out phase uses the depth-first-search (DFS) strategy. DFS only requires to
maintain a tree path below each leaf node; specifically, it requires to maintain the
status of every node in these tree paths, referred to as bottom nodes (depicted
as unfilled nodes in Fig. 1). By construction, DFS proceeds by selecting the left
child node unless it is closed. Thereby,BaSCoP enables a systematic exploration
of the subtrees below its leaf nodes, thus enforcing a complete search in the no-
restart setting.

3.2 Relative Failure Depth Reward

In the MCTS spirit, the choice among two child nodes must be guided by the
average performance or reward attached to these child nodes, and the confidence
thereof. Defining a reward attached to a partial assignment however raises sev-
eral difficulties, as discussed in section 2. Firstly, the performance attached to
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the terminal states below a node might be poorly informative, e.g. in the satisfi-
ability context. Secondly and most importantly, a heuristics commonly involved
in the CP search is that of multiple restarts. Upon each restart, the current CP
search tree is erased; the memory of the search is only reflected through some
indicators (e.g. weighted degree, weighted dom-degree, impact, activity or no-
goods) maintained over the restarts. When rebuilding the CP search tree from
scratch, a new variable ordering is computed from these indicators, expectedly
resulting in more efficient and shorter tree-paths. Naturally, BaSCoP must ac-
commodate multiple restarts in order to define a generic CP search strategy. For
tractability reasons however, BaSCoP can hardly maintain all top-trees built
along multiple restarts, or the rewards attached to all nodes in these top-trees.
On the other hand, estimating node rewards from scratch after each restart is
poorly informative too, as the rewards are estimated from insufficiently many
tree-walks.

Taking inspiration from the RAVE heuristics (section 2.3), it thus comes to
associate a reward to each �X and �X̄ literals, where X ranges over the variables
of the problem. The proposed reward measures the impact of the literal on the
depth of the failure, as follows. Formally, let s denote a current node with �X
and �X̄ as possible actions. Let d̄s,f denote the average depth of the failures
occurring below s. Literal � (with � = �X or �X̄) receives an instant reward 1
(respectively, 0) if the failure of the current tree-path occurs at depth d > d̄s,f
(resp., d < d̄s,f ). The rationale for this reward definition is twofold. On the one
hand, the values to be assigned to a variable only need to be assessed relatively to
each other (recall that the variable ordering is fixed and external to BaSCoP).
On the other hand, everything else being equal, the failure due to a (variable,
value) assignment should occur later than sooner: intuitively, a shorter tree-walk
likely contains more bad literals than a longer tree-walk, everything else being
equal.

Overall, the BaSCoP reward associated to each literal �, noted r(�), averages
the instant rewards gathered in all tree-paths where � is selected in a top-tree
node s. Indicator n(�) counts the number of times literal � is selected in a top
tree node. As desired, reward r(�) and indicator n(�) can be maintained over
multiple restarts, and thus based on sufficient evidence. Their main weakness
is to aggregate the information from different contexts due to dynamic variable
ordering (in particular the top-tree nodes s where literal � is selected might be
situated at different tree-depths) and due to multiple restarts. The aggregation
might blur the estimate of the literal impact; however, the blurring effect is
mitigated as the aggregation affects both �X and �X̄ literals in the same way.

3.3 Selection Rules

Let s andX respectively denote the current node and the variable to be assigned.
BaSCoP uses different rules in order to select among the possible assignments
of X (literals �X and �X̄) depending on whether the current node s belongs to
the top or the bottom tree.
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In the bottom tree, the depth-first-search applies, always selecting the left
child node unless its status is closed. Note that DFS easily accommodates value
ordering: in particular, the local neighborhood search [21] biased toward the
neighborhood of the last found solution (see section 4.2) can be enforced by
setting the left literal to the one among �X and �X̄ which is satisfied by this last
solution.

In the top-tree, several selection rules have been investigated:

– Balanced SR alternatively selects �X and �X̄ ;
– ε-left SR selects �X with probability 1 − ε and �X̄ otherwise, thus imple-

menting a stochastic variant of the limited discrepancy search [30];
– UCB SR selects the literal with maximal reward upper-bound (Eq. (1))

select arg max
�∈{�X ,�X̄}

r(�) + C

√
log(n(�X) + n(�X̄))

n(�)

– UCB-Left SR: same as UCB SR, with the difference that different ex-
ploration constants are attached to literals �X and �X̄ in order to bias the
exploration toward the left branch. Formally, Cleft = ρCright with ρ > 1 the
strength of the left bias.

Note that balanced and ε-left selection rules are not adaptive; they are considered
to comparatively assess the merits of the adaptive UCB and UCB-Left selection
rules.

3.4 Computational Complexity

BaSCoP undergoes a time complexity overhead compared to DFS, due to the
use of tree-walks instead of the optimized backtrack procedure, directly jumping
to a parent or ancestor node. A tree-walk involves: i) the selection of a literal
in each top-node; ii) the creation of a new node every k visits to a leaf node;
iii) the update of the reward values for each literal. The tree-walk overhead thus
amounts to h arithmetic computations, where h is the average height of the
top-tree.

However, in most cases these computations are dominated by the cost of
creating a new node, which involves constraint propagation upon the considered
assignment.

With regard to its space complexity, BaSCoP includes N/k top nodes after
N tree-walks, where k is the expand rate; it also maintains the DFS tree-paths
behind each top leaf node, with complexity O(Nh′/k), where h′ is the aver-
age height of the full tree. The overall space complexity is thus increased by a
multiplicative factor N/k; however no scalability issue was encountered in the
experiments.

4 Experimental Validation

This section reports on the empirical validation of BaSCoP on three binary and
n-ary CP problems: job shop scheduling problems (JSP) [31], balance incomplete
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block design (BIBD) and car sequencing (the last two problems respectively
correspond to problems 28 and 1 in [32]).

4.1 Experimental Setting

BaSCoP is implemented on the top of the state-of-the-art Gecode framework
[20]. The goal of the experiments is twofold. On the one hand, the adaptive
exploration vs exploitation MCTS scheme is assessed comparatively to the depth-
first-search baseline. On the other hand, the relevance of the relative-depth-
failure reward (section 3.2) is assessed by comparing the adaptive selection rules
to the fixed balanced and ε-left selection rules (section 3.3).

The BaSCoP expand rate parameter k is set to 5, after a few preliminary
experiments showing good performances in a range of values around 5. The per-
formances (depending on the problem family) are reported versus the number
of tree-walks, averaged over 11 independent runs unless otherwise specified. The
computational time is similar for all considered approaches, being granted that
the DFS baseline uses the same tree-walk implementation as BaSCoP1. The
comparison of the runtimes is deemed to be fair as most of BaSCoP computa-
tional effort is spent in the tree-walk part, and will thus take advantage of an
optimized implementation in further work.

4.2 Job Shop Scheduling

Job shop scheduling, aimed at minimizing the schedule makespan, is modelled
as a binary CP problem [21]. Upon its discovery, a new solution is used to i)
update the model (requiring further solutions to improve on the current one); ii)
bias the search toward the neighborhood of this solution along a local neighbor-
hood search strategy. The search is initialized using the solutions of randomized
Werner schedules, that is, using the insertion algorithm of [33] with randomized
flips in the duration-based ranking of operations. The variable ordering heuris-
tics is based on wdeg-max [34]. Multiple restarts are scheduled along a Luby
sequence with factor 64.

The performance indicator is the mean relative error (MRE), that is the rela-
tive distance to the best known makespan m∗ ((makespan −m∗)/m∗), averaged
over the runs and problem instances of a series. MRE is monitored over 50 000
BaSCoP tree-walks, comparing the following selection rules: none, which corre-
sponds to DFS standalone; balanced, which corresponds to a uniform exploration
of the top nodes; ε-left, where the exploration is biased towards the left child
nodes, and the strength of the bias is controlled from parameter ε; UCB-left,
where the exploration-exploitation trade-off based on the relative-depth-failure
reward is controlled from parameter C, and the bias toward the left is controlled
from parameter ρ. The results on the first four series of Taillard instances are

1 This implementation is circa twice longer than the optimized tree-walk Gecode im-
plementation − which did not allow however the solution-guided search procedure
used for the JSP and car sequencing problems at the time of the experiments.
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Table 1. BaSCoP experimental validation on the Taillard job shop problems: mean
relative error w.r.t. the best known makespan, averaged on 11 runs (50 000 tree walks)

Results on instance sets
Selection rule 1-10 11-20 21-30 31-40

None (DFS) 0.51 2.07 2.31 13.55

Balanced 0.39 1.76 2.00 3.29

ε-left

ε
0.05 0.57 1.58 1.58 2.56
0.1 0.45 1.65 1.74 2.24
0.15 0.58 1.46 1.63 2.37
0.2 0.46 1.67 1.88 2.55

average 0.51 1.59 1.71 2.43

UCB

ρ C
1 0.05 0.35 1.61 1.59 2.24
1 0.1 0.39 1.53 1.51 2.34
1 0.2 0.41 1.52 1.65 2.57
1 0.5 0.42 1.39 1.71 2.37
2 0.05 0.32 1.51 1.47 2.22
2 0.1 0.40 1.57 1.49 2.16
2 0.2 0.43 1.48 1.48 2.37
2 0.5 0.55 1.77 1.67 2.38
4 0.05 0.34 1.57 1.60 2.19
4 0.1 0.43 1.55 1.68 2.33
4 0.2 0.44 1.53 1.63 2.39
4 0.5 0.40 1.40 1.42 2.46
8 0.05 0.36 1.51 1.62 2.04
8 0.1 0.45 1.52 1.59 2.33
8 0.2 0.46 1.51 1.62 2.39
8 0.5 0.29 1.51 1.65 2.55
average 0.40 1.53 1.59 2.33

Table 2. Best makespans obtained out of 11 runs of 200 000 tree-walks on the 11-20
series of Taillard instances, comparing DFS and BaSCoP with UCB-Left selection rule
with parameters C = 0.05, ρ = 2. Bold numbers indicate best known results so far.

Ta11 Ta12 Ta13 Ta14 Ta15 Ta16 Ta17 Ta18 Ta19 Ta20

DFS 1365 1367 1343 1345 1350 1360 1463 1397 1352 1350
BaSCoP 1357 1370 1342 1345 1339 1365 1462 1407 1332 1356

reported in Table 1, showing that BaSCoP robustly outperforms DFS for a
wide range of parameter values. Furthermore, the adaptive UCB-based search
improves on average on all fixed strategies, except for the 1-10 series.

Complementary experiments displayed in Table 2,show that BaSCoP dis-
covers some of the current best-known makespans, previously established using
dedicated CP and local search heuristics [35], at similar computational cost (circa
one hour on Intel Xeon E5345, 2.33GHz for 200 000 tree-walks).
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4.3 Balance Incomplete Block Design (BIBD)

BIBD is a family of challenging Boolean satisfaction problems, known for their
many symmetries. We considered instances from [22], characterized from their
v, k, and λ parameters. A simple Gecode model with lexicographic order of the
rows and columns is used. Instances for which no solution could be discovered
by any method within 50 000 tree-walks are discarded. Two goals are tackled:
finding a single solution; finding them all.

Table 3. BaSCoP experimental validation on BIBD: number of tree-walks needed to
find the first solution. Best results are indicated in bold; ’-’ indicates that no solution
was found after 50 000 tree-walks.

BaSCoP
v k λ DFS bal. C 0.05 C 0.1 C 0.2 C 0.5 C 1

9 3 2 49 49 49 49 49 49 49
9 4 3 45 45 45 45 45 45 45
10 3 2 63 63 63 63 63 63 63
10 4 2 45 45 45 45 45 45 45
10 5 4 333 669 357 355 355 256 509
11 5 2 45 45 45 45 45 45 45
13 3 1 161 331 176 176 176 243 265
13 4 1 40 40 40 40 40 40 40
13 4 2 202 935 216 216 216 499 463
15 3 1 131 131 131 131 131 131 131
15 7 3 567 1579 233 233 233 451 370
16 4 1 164 166 164 164 164 164 164
16 4 2 639 12583 1297 1279 1282 1324 2492
16 6 2 503 821 315 315 315 314 407
16 6 3 7880 - 3200 3198 2559 2594 4394
19 3 1 671 - 493 493 493 709 3541
19 9 4 - - 26251 25310 25383 2004 -
21 3 1 - - 779 779 779 1183 6272
21 5 1 261 634 217 217 217 217 277
25 5 1 3425 11168 636 636 636 643 541
25 9 3 - - - 35940 - 30131 -
31 6 1 13889 36797 882 882 882 953 893

After preliminary experiments, neither variable ordering nor value ordering
(e.g. based on the local neighborhood search) heuristics were found to be effec-
tive. Accordingly, BaSCoP with UCB selection rule is assessed comparatively
to the DFS standalone and BaSCoP with balanced selection rule.

Table 3 reports the number of iterations needed to find the first solution; a
single run is considered. Satisfactory results are obtained for low values of the
trade-off parameter C. On-going experiments consider lower C values.

The All-solution setting is considered to investigate the search efficiency of
BaSCoP. On easy problems where all solutions can be found after 50 000 tree-
walks, same number of tree-walks is needed to find all solutions. The search
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Table 4. BaSCoP experimental validation on BIBD: Number of tree-walks needed to
find 50% of the solutions when all solutions are found in 50 000 tree-walks

BaSCoP
v k λ DFS bal. C 0.05 C 0.1 C 0.2 C 0.5 C 1

9 3 2 8654 8000 8862 8860 7473 7317 7264
9 4 3 13291 15144 12821 12824 12794 13524 13753
10 4 2 156 215 153 153 153 153 181
11 5 2 45 45 45 45 45 45 45
13 4 1 40 40 40 40 40 40 40
15 7 3 5007 5254 1877 1878 1877 1961 2773
16 4 1 322 394 377 379 378 392 340
16 6 2 1677 1947 1130 1131 1133 1139 1270
21 5 1 507 799 484 484 484 495 537

average 3300 3538 2865 2866 2709 2785 2911

Table 5. BaSCoP experimental validation on BIBD: Number of solutions found in
50 000 tree-walks

BaSCoP
v k λ DFS bal. C 0.05 C 0.1 C 0.2 C 0.5 C 1

10 3 2 19925 11136 17145 17172 17031 18309 22672
10 5 4 1454 1517 1552 1554 1550 1556 1558
13 4 2 824 1457 16597 16654 16596 2063 1898
15 3 1 21884 2443 22496 22505 22497 23142 15273
16 4 2 190 6 4726 4727 4725 247 392
16 6 3 180 - 416 416 425 306 64
19 3 1 18912 - 19952 19952 19952 15794 10190
19 9 4 - - 18 18 18 36 -
21 3 1 - - 16307 16289 16329 14764 9058
25 5 1 416 260 460 460 460 460 420
25 9 3 - - - 12 - 8 -
31 6 1 253 34 347 342 347 347 342

average 7388 3279 9173 8473 9166 6684 6516

efficiency is therefore assessed from the number of tree-walks needed to find 50%
of the solutions, displayed in Table 4. Likewise, there exists a plateau of good
results for low values of parameter C.

For more complex problems, the number of solutions found after 50 000 tree-
walks is displayed in Table 5.

Overall,BaSCoP consistently outperforms DFS, particularly so for low values
of the exploration constant C, while DFS consistently outperforms the non-
adaptive balanced strategy. For all methods, the computational cost is ca 2
minutes on Intel Xeon E5345, 2.33GHz for 50 000 tree-walks).

4.4 Car Sequencing

Car sequencing is a CP problem involving circa 200 n-ary variables, with n
ranging over [20, 30]. As mentioned, the UCB decision rule straightforwardly
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Table 6. BaSCoP experimental validation on car-sequencing: top line: violation after
10 000 tree-walks, averaged over 70 problem instances. bottom line: significance of the
improvement over DFS after Wilcoxon signed-rank test.

BaSCoP
DFS bal. C 0.05 C 0.1 C 0.2 C 0.5

average gap 17.1 17.1 16.6 16.7 16.6 16.5
p-value - 0 10−3 5 10−3 10−3 10−3

extends beyond the binary case. After preliminary experiments, multiple restart
strategies were not considered as they did not bring any improvements. Variable
ordering based on activity [36] was used together with a static value ordering.
70 instances (ranging in 60-01 to 90-10 from [32]) are considered; the algorithm
performance is the violation of the capacity constraint (number of extra stalls)
averaged over the solutions found after 10 000 tree-walks.

The experimental results (Table 6) show that CP solvers are far from reach-
ing state-of-the-art performance on these problems, especially when using the
classical relaxation of the capacity constraint [37]. Still, while DFS and balanced
exploration yield same results, BaSCoP with UCB selection rule significantly
improves on DFS after a Wilcoxon signed-rank test; the improvement is robust
over a range of parameter settings, with C ranging in [.05, .5].

5 Discussion and Perspectives

The generic BaSCoP scheme presented in this paper achieves the adaptive
control of the variable-value assignment in the CP search along the Monte-Carlo
Tree Search ideas. The implementation of BaSCoP on the top of the Gecode
solver and its comparative validation on three families of CP problems establish,
as a proof of principle that cues about the relevance of some (variable,value)
assignments can be efficiently extracted and exploited online.

A main contribution of the proposed scheme is the proposed (variable,value)
assignment reward, enforcing the BaSCoP compatibility with multiple restart
strategies. Importantly,BaSCoP can (and should) be hybridized with CP heuris-
tics, such as dynamic variable ordering or local neighborhood search; the use of
the depth-first search strategy as roll-out policy is a key issue commanding the
completeness of the BaSCoP search, and its efficiency.

This work opens several perspectives for further research. Focussing on the
no-restart CP context, a first perspective is to apply the proposed relative fail-
ure depth reward to partial assignments. Another extension concerns the use
of progressive-widening [38] or X-armed bandits [39] to deal with respectively
many-valued or continuous variables.

A mid-term perspective concerns the parallelization of BaSCoP, e.g. through
adapting the parallel MCTS approaches developed in the context of games [40].
In particular, parallel BaSCoP could be hybridized with the parallel CP ap-
proaches based on work stealing [41], and contribute to the collective identifica-
tion of the most promising parts of the search tree.
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Abstract. Stochastic local search (SLS) algorithms, especially those adopting
the focused random walk (FRW) framework, have exhibited great effectiveness
in solving satisfiable random 3-satisfiability (3-SAT) instances. However, they
are still unsatisfactory in dealing with huge instances, and are usually sensitive
to the clause-to-variable ratio of the instance. In this paper, we present a new
FRW algorithm dubbed FrwCB, which behaves more satisfying in the above
two aspects. The main idea is a new heuristic called CCBM, which combines
a recent diversification strategy named configuration checking (CC) with the
common break minimum (BM) variable-picking strategy. By combining CC
and BM in a subtle way, CCBM significantly improves the performance of
FrwCB, making FrwCB achieve state-of-the-art performance on a wide range of
benchmarks. The experiments show that FrwCB significantly outperforms state-
of-the-art SLS solvers on random 3-SAT instances, and competes well on random
5-SAT, random 7-SAT and structured instances.

1 Introduction

The satisfiability problem (SAT) is a prototypical NP-complete problem, and has been
widely studied due to its significant importance in both theories and applications. Given
a propositional formula in conjunctive normal form (CNF), the SAT problem consists
in finding an assignment to the variables such that all clauses are satisfied.

Algorithms for solving SAT can be mainly categorized into two classes: complete
algorithms and stochastic local search (SLS) algorithms. Although SLS algorithms
are incomplete in that they cannot prove an instance to be unsatisfiable, they are very
efficient in solving satisfiable instances. The basic schema of an SLS algorithm for SAT
works as follows. After initializing a random (complete) assignment, the algorithm flips
a variable in each step according to a heuristic for selecting the flipping variable, until
it seeks out a satisfiable assignment or timeout.
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There has been much interest in studying the performance of SLS algorithms on
uniform random k-SAT instances, especially 3-SAT ones. The random 3-SAT instances,
at the phase transition region, have been cited as the hardest group of SAT problems
[16]. The random 3-SAT problem is an important special case of SAT, and is also a
classic problem in combinatorics, at the heart of computational complexity studies [1].
Random 3-SAT instances have been widely used as a testing ground in the literature
[22,6,18,2,3,8,20], as well as in SAT competitions1.

In the past two decades, there have been numerous works devoted to improving
SLS algorithms, especially for random 3-SAT instances. Heuristics in SLS algorithms
for SAT can be divided into three categories: GSAT [24,18], focused random walk
(FRW) [23,12,3] and dynamic local search (DLS) [14]. Recent solvers usually combine
these three kinds of heuristics, such as the winners of SAT Competition 2011 and SAT
Challenge 2012 namely Sparrow [2] and CCASat [8].

FRW algorithms conduct the search by always selecting a variable to flip from
an unsatisfied clause chosen randomly in each step [21]. On solving random 3-SAT
instances, the FRW framework performs better than others. WalkSAT [23], as the first
practical FRW algorithm and one of the most influential representatives, still shows
state-of-the-art performance in solving random 3-SAT instances. The recent FRW
algorithm probSAT [3] makes progress in this field and, to the best of our knowledge,
is the current best SLS solver for solving random 3-SAT. However, the performance of
probSAT is still not satisfactory on huge instances with more than one million variables
and the ones with different clause-to-variable ratios near the phase transition.

This work is devoted to improving the effectiveness and robustness of FRW algo-
rithms. We propose a new heuristic, called CCBM, which combines the configuration
checking (CC) strategy [7] and the break minimum (BM) strategy effectively in a
subtle way. The BM strategy prefers to pick the variable which brings fewest number
of clauses from satisfied to unsatisfied, and is a commonly used strategy in FRW
algorithms, such as WalkSAT. Originally proposed in [10], the CC strategy reduces
the cycling problem by checking the circumstance information. It has been successfully
used in non-FRW algorithms, leading to several state-of-the-art SLS solvers such as
CCASat. However, the direct application of CC in the FRW framework does not work.
This work combines CC and BM in a novel way to improve FRW algorithms.

We utilize the CCBM heuristic to develop a new algorithm named FrwCB (focused
random walk with configuration checking and break minimum). We compare FrwCB
against five state-of-the-art solvers, namely WalkSAT, probSAT, CCASat, Swqcc [20]
and Sattime [19] on a broad range of instances. The experiments illustrate that FrwCB
significantly outperforms its competitors on huge random 3-SAT instances with up to
4 million variables. Also, FrwCB demonstrates a satisfactory robustness by performing
best on the benchmark consisting of 3-SAT instances with different clause-to-variable
ratios near the phase transition from SAT Challenge 2012. Additionally, FrwCB can
cooperate well with the survey propagation (SP) algorithm [5], and their combination
can push forward state of the art in solving huge random 3-SAT (with 107 variables).

The robustness of FrwCB is further demonstrated by its good performance on other
kinds of instances, including random 5-SAT instances, random 7-SAT instances and

1 http://www.satcompetition.org

http://www.satcompetition.org
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structured instances. On these instances, FrwCB is highly competitive with state-of-
the-art solvers.

The remainder of this paper is structured as follows. In the following, we provide
necessary definitions and the clause states based CC strategy. Then, we present
the CCBM heuristic combining focused random walk with configuration checking.
After that, we use the CCBM heuristic to develop an SLS algorithm called FrwCB.
Experiments demonstrating the performance of FrwCB and some discussions about
CCBM are presented next. Finally we conclude the paper and give some future work.

2 Preliminaries

In this section, we first give some basic definitions and notations in local search for
SAT. Then we introduce the details of clause states based configuration checking.

2.1 Definitions and Notations

Given a set of n Boolean variables V = {x1, x2, · · · , xn} and also the set of literals
L = {x1,¬x1, x2,¬x2, · · · , xn,¬xn} corresponding to these variables, a clause is
a disjunction of literals. Using clauses and the logical operation AND (∧), we can
construct a CNF formula, i.e., F = c1 ∧ · · · ∧ cm, where the number of clauses in
F is denoted as m, and r = m/n is its clause-to-variable ratio. A formula can be
described as a set of clauses. A k-SAT formula is a formula in which each clause
has exactly k literals. We use V (F ) to denote the set of all variables appearing in
formula F . Two variables are neighbors when they appear in at least one clause, and
N (x ) = {y | y ∈ V (F ), y and x are neighbors} is the set of all neighbors of variable
x. We also denote CL(x ) = {c | c is a clause which x appears in}.

A mapping α : V (F )→ {True,False} is called an assignment. If α maps all
variables to a Boolean value, it is complete. For local search algorithms for SAT, a
candidate solution is a complete assignment. Given a complete assignment α, each
clause has two possible states: satisfied or unsatisfied: A clause is satisfied if at least
one literal in that clause is true under α; otherwise, it is unsatisfied. An assignment α
satisfies a formula F if α satisfies all clauses in F . Given a CNF formula F , the SAT
problem is to find an assignment that satisfies all clauses in F .

The method of selecting the flipping variable in each step is usually guided by a
scoring function. In each step, the flipping variable is usually selected based on its
properties, such as make , break and score. For a variable x, the property make(x ) is
defined as the number of clauses that would become satisfied if the variable is flipped;
the property break(x ) is the number of clauses that would become unsatisfied if the
variable is flipped; the property score(x ) is the increment in the number of satisfied
clauses if the variable is flipped, and can be understood as make(x )− break(x ). The
heuristic in FrwCB utilizes break and score to select the flipping variable.

2.2 Clause States Based Configuration Checking

Configuration checking (CC) techniques have proven successful in SLS algorithms
[7,8,20,9]. The main idea of configuration checking is to forbid flipping any variable
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whose circumstance information has not been changed since its last flip. For each vari-
able, the circumstance information is formally defined as the concept of configuration .

In the context of SAT, the first definition of configuration was introduced in [7],
where the configuration of a variable x refers to a vector consisting of Boolean values
of N (x ) (x’s all neighboring variables). This original CC strategy has been successfully
used in non-FRW algorithms [7,8]. However, when applied to FRW algorithms, this
variable based strategy makes almost all candidate variables configuration changed
during the search process, and thus loses its power.

An alternative CC strategy was proposed in [20], where the configuration of a
variable x refers to a vector consisting of Boolean values of CL(x ) (the clauses x
appears in). This paper also adopts the clause states based configuration.

Definition 1. Given a CNF formula F and a complete assignment α to V (F ), the
configuration of a variable x ∈ V (F ) is a vector configuration(x ) consisting of the
states of all clauses in CL(x ) under assignment α.

For a variable x, a change on any bit of configuration(x ) is considered as a change
on the whole configuration(x ) vector. For a variable x ∈ V (F ), if the configuration
of x has not been changed since x’s last flip, then x should not be flipped.

An implementation of the clause states based CC strategy is to employ an integer
array ConfTimes for variables. For each variable x, ConfTimes(x ) measures the
frequency (i.e., the number of times) that configuration(x ) has been changed since
x’s last flip. The array ConfTimes is maintained as follows.

– Rule 1: In the beginning, for each variable x ∈ V (F ), ConfTimes(x ) is set to 1.
– Rule 2: Whenever a variable x is flipped, ConfTimes(x ) is reset to 0. Then each

clause c ∈ CL(x ) is checked whether its state is changed by flipping x. If this is
the case, for each variable y (y �= x) in c, ConfTimes(y) is increased by 1.

Apparently, a variable x’s configuration has been changed since its last flip if
and only if ConfTimes(x ) > 0. An important notion is the concept of configuration
changed decreasing (CCD) variables, which is defined as follows.

Definition 2. Given a CNF formula F and a complete assignment α to V (F ), a
variable x is configuration changed decreasing (CCD) if and only if score(x ) > 0 and
ConfTimes(x ) > 0.

This work uses CCDVars(c) to denote the set of all CCD variables in clause c.

3 The CCBM Heuristic and The FrwCB Algorithm

In this section, we utilize the clause states based CC strategy in a novel way, so that
the CC strategy cooperates well with FRW algorithms. Especially, we combine the CC
strategy with the common break minimum variable-picking strategy, resulting in the
CCBM (configuration checking with break minimum) heuristic. We then utilize CCBM
to develop an FRW algorithm called FrwCB for SAT. Finally, we discuss the differences
between the FrwCB algorithm and the Swqcc algorithm [20], which also employs a
clause states based CC strategy.
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3.1 The CCBM Heuristic

In this subsection, we propose a new heuristic which combines focused random walk
with configuration checking effectively, and is referred to as CCBM. We first give the
definition of the BM variable of a clause, and it is an important concept in CCBM.

Definition 3. Given a CNF formula F and a complete assignment α to V (F ), for each
clause c, a variable x is the break minimum (BM) variable of clause c if and only if
break(x ) = min{break(y) | y appears in c}.

In this work, we use BMVars(c) to denote the set of all BM variables of clause c.
The main idea of the CCBM heuristic is to prefer to flip CCD variables and BM

variables from a random unsatisfied clause. Flipping a CCD variable brings down
the number of unsatisfied clauses, and at the same time prevents the algorithm from
revisiting the scenario the algorithm recently faced. Although previous works such
as [7,8] also prefer to flip CCD variables, they survey CCD variables globally, i.e.,
searching CCD variables from all the variables. In contrast, the CCBM heuristic picks
a CCD variable from an unsatisfied clause. Whenever no CCD variable is present,
CCBM prefers to pick a BM variable of a random unsatisfied clause to flip, leading
the algorithm to search deeply.

In more detail, the CCBM heuristic works as follows. After selecting an unsatisfied
clause c, it switches between two levels, namely the CCD level and the probability
(PROB) level, depending on whether CCDVars(c) is empty or not. If CCDVars(c) is not
empty, CCBM works in the CCD level; otherwise it works in the PROB level. In the
CCD level, CCBM does a gradient decreasing walk, i.e., selecting the variable with the
greatest score in CCDVars(c) to flip. In the PROB level, with a probability p, CCBM
chooses the variable with the greatest ConfTimes in BMVars(c); in the remaining
case, it employs a diversification strategy to pick a variable in c. In this work, this is
accomplished by selecting the one with the greatest ConfTimes from clause c.

3.2 The FrwCB Algorithm

In this subsection, we use the CCBM heuristic to develop a new focused random walk
algorithm named FrwCB (Focused Random Walk with Configuration Checking and
Break Minimum). The FrwCB algorithm is outlined in Algorithm 1, as described below.

At the beginning of the algorithm, a complete assignment α is generated randomly,
and ConfTimes(x ) is initialized as 1 for each variable x.

After the initialization, the algorithm executes search steps iteratively until it seeks
out a satisfiable assignment or the number of search steps exceeds maxSteps, which is
the step limit. In each search step, FrwCB first picks an unsatisfied clause c randomly,
and then it employs the CCBM heuristic to select a variable to flip from c as follows.

The CCD Level: If CCDVars(c) is not empty, the FrwCB algorithm selects the variable
x with the greatest score(x ) appearing in CCDVars(c) to flip, breaking ties by preferring
the one with the greatest ConfTimes(x ) (lines 7-8).

The PROB Level: If CCDVars(c) is empty, with a fixed probability p, FrwCB selects
the variable x with greatest ConfTimes(x ) in BMVars(c), breaking ties by preferring
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the least recently flipped one; otherwise FrwCB diversifies the search by selecting
the variable x in clause c with the greatest ConfTimes(x ) to flip, breaking ties by
preferring the least recently flipped one (lines 9-12).

After picking the flipping variable, the algorithm flips the chosen variable. FrwCB
repeats picking and flipping a variable and updating ConfTimes until it seeks out
a satisfiable assignment or reaches the step limit. If the algorithm finds a satisfiable
assignment, it outputs the satisfiable assignment; otherwise it reports Unknown .

Algorithm 1. FrwCB
Input: CNF-formula F , maxSteps
Output: A satisfiable assignment α of F or Unknown
begin1

generate a random assignment α;2

initialize ConfTimes(x) as 1 for each variable x;3

for step ← 1 to maxSteps do4

if α satisfies F then return α;5

c ← an unsatisfied clause chosen randomly;6

if CCDVars(c) is not empty then7

v ← x with the greatest score(x) in CCDVars(c), breaking ties by preferring8

the one with the greatest ConfTimes(x);

else if with the fixed probability p then9

v ← x with the greatest ConfTimes(x) in BMVars(c), breaking ties by10

preferring the least recently flipped one;

else11

v ← x with the greatest ConfTimes(x) in clause c, breaking ties by12

preferring the least recently flipped one;

flip v and update ConfTimes;13

return Unknown ;14

end15

3.3 Discussion on Differences between Swqcc and FrwCB

The most related work is the Swqcc algorithm [20], which adopts a clause states
based configuration checking heuristic named QCC. In the following, we discuss the
differences between the Swqcc algorithm and the FrwCB algorithm.

The most important difference is that Swqcc and FrwCB adopt different local search
paradigms. While Swqcc is a two-mode (GSAT-like + random walk) SLS algorithm
[20], FrwCB is a single-mode (focused random walk) one.

The two algorithms employ different heuristics to pick a variable to flip. Swqcc
employs the QCC heuristic: if there exist candidate variables (described in [20]) for the
greedy mode, QCC selects the one with greatest score; otherwise QCC always picks
a variable with the greatest ConfTimes in a random unsatisfied clause. In contrast,
FrwCB uses the CCBM heuristic: after picking an unsatisfied clause c randomly, if
there exist candidate variables (i.e., CCD variables) in c, CCBM selects the one with
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greatest score; otherwise CCBM selects either a variable with the greatest ConfTimes
in c or a variable with the minimum break in c.

Also, we conduct a direct comparison between Swqcc and FrwCB, referring to
Section 4. Additionally, we compare the underlying heuristic in Swqcc, namely QCC,
with the CCBM heuristic in this work, and the experimental analysis can be found in
Section 5.2.

4 Experimental Results

In this section, we first introduce the benchmarks and some preliminaries about our
experiments. Then we divide the experiments into four parts. Part 1 is to compare
FrwCB with its competitors on random 3-SAT instances. Part 2 is to compare FrwCB
with its competitors on 5-SAT and 7-SAT instances. Part 3 is to compare FrwCB against
its competitors on structured instances. In part 4, we combine FrwCB with the SP
algorithm, resulting in a new solver called SP+FrwCB, and then we investigate the
performance of different solvers combining SP with different SLS solvers on random
3-SAT instances with 10 million variables.

4.1 The Benchmarks

We evaluate FrwCB on random instances as well as structured ones. Random 3-SAT
instances are the best studied random instances and thus we have four different sets of
random 3-SAT instances. Specifically, we adopt the following benchmarks:

1. all 100 large satisfiable 3-SAT instances in the random category of SAT Competi-
tion 20112 (r = 4.2, 2500 � #var � 50000, 10 instances each size);

2. all 120 satisfiable random 3-SAT instances in SAT Challenge 20123 (4.2 � r �
4.267, 2000 � #var � 40000, 12 instances each ratio);

3. 200 huge satisfiable random 3-SAT instances (r = 4.2, 0.1M � #var � 4.0M
where 1.0M = 106, 20 instances each size), generated according to the fixed clause
length random model (no duplicate clauses, no duplicate literals in a clause);

4. 20 extremely huge satisfiable random 3-SAT instances (r = 4.2, #var =
10.0M = 107), generated according to the fixed clause length random model.

The medium-sized satisfiable random 3-SAT instances in SAT Competition 2011 are
too easy for modern SLS solvers, and thus are not included in our experiments.

For random 5-SAT and 7-SAT instances, we adopt the testing benchmark used in
[25,3]. The benchmark contains 250 satisfiable random 5-SAT instances4 (r = 20,
#var = 500) and 250 satisfiable random 7-SAT instances5 (r = 85, #var = 90).

2 http://www.cril.univ-artois.fr/SAT11/bench/
SAT11-Competition-SelectedBenchmarks.tar

3 http://baldur.iti.kit.edu/SAT-Challenge-2012/
downloads/sc2012-random.tar

4 http://people.cs.ubc.ca/~davet/captain-jack/
5sat500.test.tar.gz

5 http://people.cs.ubc.ca/~davet/captain-jack/7sat90.test.tar.gz

http://www.cril.univ-artois.fr/SAT11/bench/SAT11-Competition-SelectedBenchmarks.tar
http://www.cril.univ-artois.fr/SAT11/bench/SAT11-Competition-SelectedBenchmarks.tar
http://baldur.iti.kit.edu/SAT-Challenge-2012/downloads/sc2012-random.tar
http://baldur.iti.kit.edu/SAT-Challenge-2012/downloads/sc2012-random.tar
http://people.cs.ubc.ca/~{}davet/captain-jack/5sat500.test.tar.gz
http://people.cs.ubc.ca/~{}davet/captain-jack/5sat500.test.tar.gz
http://people.cs.ubc.ca/~davet/captain-jack/7sat90.test.tar.gz
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For structured instances, we adopt satisfiable crafted instances from SATLIB6,
including the ais, blocksworld, gcp, jnh, logistics, par8, par8-c, par16 and par16-c
classes, which have been widely tested in the literature [13,27,26], as well as the largest
and thus the most difficult frb instances7 (frb50-23, frb53-24, frb56-25 and frb59-
26). Note that these frb instances are generated randomly in the phase transition area
according to the Model RB [28], and are very difficult to solve by current techniques in
spite of their relative small size. These frb instances have been extensively used in the
SAT competitions and MAX-SAT evaluations, and in the literature [17,15,11].

4.2 Experimental Preliminaries

The FrwCB algorithm is implemented in programming language C and statically
compiled by gcc with the ‘-O3’ option. We set the parameter probability p to 0.6 for
3-SAT with r < 4.26, 0.63 for 3-SAT with r � 4.26, 0.65 when FrwCB cooperates
with SP, 0.8 for 5-SAT, 0.9 for 7-SAT and 0.95 for structured instances.

We compare FrwCB with five state-of-the-art SLS solvers, including WalkSAT,
probSAT, CCASat, Swqcc and Sattime. WalkSAT is the most famous FRW solver, and
is still highly competitive with the state of the art on random 3-SAT instances. The
probSAT solver is the current best SLS solver for random 3-SAT instances especially
the huge ones. CCASat is the winner of the random track in SAT Challenge 2012 and
the current best solver using the CC strategy. Swqcc is the other solver that adopts the
clause states based configuration checking strategy. The Sattime solver is the current
best SLS solver for solving crafted instances.

For WalkSAT, we adopt the latest version (Version 50) from its author’s website8,
and we set the noise parameter to 0.567 for 3-SAT, 0.25 for 5-SAT and 0.1 for both
7-SAT and structured instances, as reported in [3]. The binary of probSAT is provided
by its author, and that of CCASat is downloaded online9. The parameters of Swqcc are
identical to those reported in [20]. The Sattime solver we adopt is the one submitted to
SAT Competition 201110. We get the source code of SP from its author’s website11.

All the experiments are carried out on a machine with Intel Core i7 2.7GHz CPU and
7.8GB RAM under Linux. We report the number of successful runs (‘#suc’) as well as
averaged run time (‘avg time’) for each solver on each instance class, as most works on
SLS for SAT do.

4.3 Results on Random 3-SAT Instances

On the Instances from SAT Competition 2011: Table 1 shows experimental results
on the large random 3-SAT instances from the SAT Competition 2011, where each

6 http://www.satlib.org/
7 http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/benchmarks.htm
8 http://www.cs.rochester.edu/~kautz/walksat/Walksat_v50.zip
9 http://shaoweicai.net/research.html

10 http://www.cril.univ-artois.fr/SAT11/solvers/
SAT2011-sources.tar.gz

11 http://www.ictp.trieste.it/~zecchina/SP/sp-1.4b.tgz

http://www.satlib.org/
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/benchmarks.htm
http://www.cs.rochester.edu/~kautz/walksat/Walksat_v50.zip
http://shaoweicai.net/research.html
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-sources.tar.gz
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-sources.tar.gz
http://www.ictp.trieste.it/~zecchina/SP/sp-1.4b.tgz
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Table 1. Comparative results on large random 3-SAT instances from SAT Competition 2011.
Each solver is performed 100 times on each instance class.

Instance Class
WalkSAT probSAT CCASat Swqcc FrwCB

#suc avg time #suc avg time #suc avg time #suc avg time #suc avg time

3SAT-v2500 95 152 99 88 100 9 100 6 100 37
3SAT-v5000 100 31 100 13 100 11 100 13 100 12

3SAT-v10000 100 19 100 21 100 19 100 37 100 10
3SAT-v15000 100 24 100 24 100 29 100 73 100 13
3SAT-v20000 100 35 100 37 100 44 100 118 100 26
3SAT-v25000 100 54 100 56 100 73 100 172 100 36
3SAT-v30000 100 56 100 63 100 92 100 186 100 42
3SAT-v35000 100 122 100 108 100 147 100 279 100 61
3SAT-v40000 100 114 100 84 100 125 100 240 100 56
3SAT-v50000 99 206 100 145 100 250 99 403 100 99

Table 2. Comparative results on all the random 3-SAT instances from the SAT Challenge 2012

# Total Runs
WalkSAT probSAT CCASat Swqcc FrwCB

#suc avg time #suc avg time #suc avg time #suc avg time #suc avg time

1200 964 658 1003 598 967 693 986 731 1043 499

solver is performed 10 runs for each instance with a cutoff time of 2000 seconds. On
the instances with #var = 2500, CCASat and Swqcc outperform all FRW algorithms,
among which FrwCB performs best. On the instances with #var = 5000, FrwCB
outperforms its competitors (but CCASat). On the other hand, FrwCB significantly
outperforms its competitors on the instances with #var > 5000. Especially, on the
largest sized instances (with #var = 50000), FrwCB performs about 4 times as fast as
Swqcc does, about 2.5 times as fast as CCASat does, about 2 times as fast as WalkSAT
does, and about 1.5 times as fast as probSAT does. Indeed, FrwCB is so efficient that
it solves all large random 3-SAT instance classes in SAT Competition 2011 with an
averaged time less than 100 seconds.

On the Instances from SAT Challenge 2012: Table 2 reports experimental results
on all random 3-SAT instances from SAT Challenge 2012, whose clause-to-variable
ratios range from 4.2 to 4.267. Each solver is performed 10 runs for each instance
with a cutoff time of 2000 seconds. FrwCB outperforms its competitors in terms of
both success rate and averaged run time on this benchmark. FrwCB succeeds in 1043
(out of 1200) runs, 40 more than the second best solver probSAT does. Moreover, the
overall averaged run time of FrwCB on this benchmark is only 499 seconds, while
this number is 598 for probSAT, 658 for WalkSAT, 693 for CCASat and 731 for Swqcc.
The excellent performance of FrwCB on these instances with various clause-to-variable
ratios indicates its good robustness on random 3-SAT instances.

On the Huge Instances: To evaluate the genuine solving ability on random 3-SAT, we
compare FrwCB with its competitors on the huge instances. The experimental results
are reported in Table 3 and summarized in Figure 1, where each solver is performed
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Table 3. Comparative results on huge random 3-SAT instances. Each solver is performed 20 times
for each instance class. Swqcc fails to solve any instance in this benchmark, so we do not report
its results.

Instance Class WalkSAT probSAT CCASat FrwCB
(1.0M = 106) #suc avg time #suc avg time #suc avg time #suc avg time

3SAT-v0.1M 20 375 20 266 20 955 20 227
3SAT-v0.3M 20 920 20 934 10 9064 20 393
3SAT-v0.5M 20 2150 20 1905 0 >10000 20 789
3SAT-v1.0M 20 4691 20 4358 0 >10000 20 1865
3SAT-v1.5M 20 7696 20 6838 0 >10000 20 3248
3SAT-v2.0M 3 9964 15 9360 0 >10000 20 4197
3SAT-v2.5M 0 >10000 0 >10000 0 >10000 20 5045
3SAT-v3.0M 0 >10000 0 >10000 0 >10000 20 6463
3SAT-v3.5M 0 >10000 0 >10000 0 >10000 20 7797
3SAT-v4.0M 0 >10000 0 >10000 0 >10000 15 9530

one run for each instance with a cutoff time of 10000 seconds (less than 3 hours). We
would like to note that Swqcc fails to solve any instance in this benchmark, so we do not
report its results in both Table 3 and Figure 1. FrwCB stands out as the best solver and
dramatically outperforms others. While other solvers all fail to solve any instance with
#var � 2.5M , FrwCB consistently solves all instances with up to 3.5M variables, and
the results clearly show the superiority of FrwCB to other solvers. Furthermore, FrwCB
remains effective on the instances with 4.0M variables. This is, to our best knowledge,
the first time that such huge random 3-SAT instances are solved by an SLS algorithm
in reasonable time. We conclude this section by remarking that the averaged run time
of FrwCB seems to scale linearly (or close to that) in the number of variables of the
instance.
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Fig. 1. Averaged time of FrwCB and other competitors on the huge random 3-SAT instances.
Swqcc fails to solve any instance in this benchmark, so we do not report its results.
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4.4 Results on Random 5-SAT and 7-SAT Instances

Table 4 reports experimental results on the benchmark of random 5-SAT and 7-SAT
instances, where each solver is performed one run for each instance with a cutoff time of
2000 seconds. On the 5-SAT and 7-SAT instances, FrwCB is competitive with state-of-
the-art solvers for random SAT. In a conclusion, FrwCB shows promising performance
on random k-SAT instances with k > 3. We believe that the performance of FrwCB on
these instances can be improved by tuning the parameter p.

Table 4. Comparative results on 5-SAT and 7-SAT instances. The number of total runs on each
instance class is 250.

Instance Class
WalkSAT probSAT CCASat Swqcc FrwCB

#suc avg time #suc avg time #suc avg time #suc avg time #suc avg time

5SAT-v500 250 17.7 250 9.0 250 7.0 250 37.8 250 13.1
7SAT-v90 250 28.7 250 37.4 250 43.2 250 14.4 250 25.8

4.5 Results on Structured Instances

We compare FrwCB with WalkSAT, probSAT, CCASat, Swqcc and Sattime on a broad
range of structured instances. Table 5 illustrates the results on structured instances,
where each solver is performed 10 runs for each instance with a cutoff time of 2000
seconds. On these structured instances, although FrwCB performs worse than Sattime
on structured instances, it does show improvement over WalkSAT, probSAT, CCASat
and Swqcc, especially on frb instances, indicating that the CCBM heuristic does
improve the FRW algorithms on structured instances.

We also note that Sattime performs pre-process before local search, which is helpful
for solving structured instances. To investigate the influence of pre-process on par16
instances, we run the pre-processor in lingeling12 [4] to simplify the instances. It turns
out that the simplified par16 instances can be solved by WalkSAT, CCASat, Swqcc
and FrwCB (probSAT is able to solve 4 instances), compared to the fact that all
solvers but Sattime cannot solve the original instances. Specially, the averaged time
of FrwCB on solving the simplified par16 instances is 13.2 seconds, while those of
WalkSAT, probSAT, CCASat, Swqcc and Sattime are 102.6 seconds, 1294.4 seconds,
90.8 seconds, 18.9 seconds and 2.3 seconds, respectively.

4.6 Results of SP+FrwCB on Random 3-SAT Instances with 107 Variables

Although SP exhibits the best performance on random 3-SAT instances, it needs to call
an SLS solver (such as WalkSAT) to solve the sub-formula after it simplifies the original
formula. We also perform some experiments to show the good cooperation of SP and
FrwCB. As reported in [5], SP calls WalkSAT to solve the simplified formula, and we
refer to this hybrid solver as SP+WalkSAT. We replace WalkSAT with probSAT, CCASat,
Swqcc and FrwCB, and then obtain four new hybrid solvers which are referred to as

12 http://fmv.jku.at/lingeling/
lingeling-ala-b02aa1a-121013.tar.gz

http://fmv.jku.at/lingeling/lingeling-ala-b02aa1a-121013.tar.gz
http://fmv.jku.at/lingeling/lingeling-ala-b02aa1a-121013.tar.gz
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Table 5. Comparative performance results on the structured instances

Instance Class #inst.
WalkSAT probSAT CCASat Swqcc Sattime FrwCB

#suc #suc #suc #suc #suc #suc
avg time avg time avg time avg time avg time avg time

ais 4
40 40 40 40 40 40
0.3 2.6 <0.1 <0.1 0.3 0.3

blocksworld 7
70 70 70 63 70 70
2.8 1.2 0.6 214.7 0.5 1.4

gcp 4
40 21 40 32 40 40
2.7 984.6 61.5 483.5 2.2 1.3

jnh 16
160 160 160 160 160 160

0.11 <0.1 <0.1 <0.1 <0.1 <0.1

logistics 4
40 40 40 40 40 40
0.3 0.1 <0.1 <0.1 <0.1 0.2

par8 5
50 50 50 50 50 50
8.0 23.5 16.8 4.6 <0.1 2.1

par8-c 5
50 50 50 50 50 50

<0.1 <0.1 <0.1 <0.1 <0.1 <0.1

par16 5
0 0 0 0 50 0

>2000 >2000 >2000 >2000 23.7 >2000

par16-c 5
6 50 45 50 50 50

1898.4 264.9 310.9 161.6 16.0 99.4

frb50-23 5
42 38 40 39 49 47

553.6 765.0 571.6 744.2 248.7 332.8

frb53-24 5
35 19 34 20 47 46

880.4 1598.2 990.6 1550.5 539.7 624.0

frb56-25 5
34 24 30 15 43 40

992.6 1364.3 1137.8 1555.8 656.7 739.1

frb59-26 5
17 10 15 11 34 27

1555.5 1697.8 1627.6 1771.6 1094.9 1317.2

Table 6. Comparative results on the extremely huge random 3-SAT instances (r = 4.2, #var =
107). ‘a.t.sls’ means the averaged time of the SLS component in SP+SLS hybrid solver.

# Total Runs
SP+WalkSAT SP+probSAT SP+CCASat SP+Swqcc SP+FrwCB
#suc a.t.sls #suc a.t.sls #suc a.t.sls #succ a.t.sls #suc a.t.sls

20 20 810.5 20 685.2 0 >2000 0 >2000 20 251.7

SP+probSAT, SP+CCASat, SP+Swqcc and SP+FrwCB, respectively. The results of all
the five SP+SLS hybrid solvers on 20 extremely huge random 3-SAT instances (r = 4.2,
#var = 107) are summarized in Table 6, where each solver is performed one run for each
of the 20 instances. Each SLS solver is given 2000 seconds to solve each sub-formula
simplified by SP using the parameter f = 5% (with 6320 seconds on average).

To solve the simplified instances, the averaged time of FrwCB is 251.7 seconds,
while those of WalkSAT and probSAT are 810.5 and 685.2 seconds, respectively. Also,
CCASat and Swqcc fail to solve all these simplified instances within the cutoff time.
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The results show that FrwCB cooperates well with SP, and SP+FrwCB is the best solver
for huge random 3-SAT instances (with r = 4.2) to the best of our knowledge.

5 Discussions

In this section, we analyze effectiveness of each component adopted in the CCBM
heuristic; we also discuss the differences between the CCBM heuristic and the QCC
heuristic in Swqcc, both of which are based on clause states.

5.1 Effectiveness of Each Component in CCBM

There are three components in CCBM: the CCD component corresponding to the CCD
level, the BM component choosing a BM variable of a random unsatisfied clause in the
PROB level, and the diversification component based on ConfTimes . We perform three
additional experiments to analyze the effectiveness of these components. Our analysis
suggests that the good performance of FrwCB is mainly due to the first two components.

Effectiveness of the CCD Component: Recalling that FrwCB works in two levels,
i.e., the CCD level and the PROB level. We modify FrwCB to obtain an alternative
algorithm Frw1 which works without the CCD level, that is, deleting lines 7 and 8 in
Algorithm 1. The probability p is set to 0.86 for Frw1 according to some tunings. We
run Frw1 on the first benchmark, one time for each instance within 2000 seconds, and it
fails to solve any instance when #var � 15000, indicating the importance of the CCD
component.

Effectiveness of the BM Component: By removing the BM component (deleting lines
9 and 10 in Algorithm 1), we obtain another degenerating algorithm Frw2, which differs
from FrwCB only in the PROB level. Specifically, in the PROB level of Frw2, it always
selects the variable with the greatest ConfTimes in the chosen unsatisfied clause to
flip. We test Frw2 on the first benchmark, one time for each instance within 2000
seconds. Our experimental results show that Frw2 fails to solve any instance from the
first benchmark, demonstrating the significance of the BM component.

Effectiveness of the Diversification Component Based on ConfTimes: We replace
the diversification component based on ConfTimes in FrwCB with the one based on
age, resulting in the third alternative algorithm Frw3. Frw3 differs from FrwCB in lines
8, 10 and 12 in Algorithm 1: in line 8, Frw3 selects the variable x with the greatest
score(x ) appearing in CCDVars(c) to flip, breaking ties by preferring the least recently
flipped one; in line 10, Frw3 selects the least recently flipped variable in BMVars(c); in
line 12, Frw3 selects the least recently flipped variable in clause c. We set the parameter
p to 0.6 for Frw3 according to some tunings. We test Frw3 on the first benchmark,
one time for each instance within 2000 seconds. The results show that Frw3 succeeds
in all runs, and the averaged time of Frw3 is 69 seconds. These observations suggest
that the performance of Frw3 is comparable with that of FrwCB (at least on the large
random 3-SAT benchmark from SAT Competition 2011). This also indicates that the
CCBM heuristic is a general heuristic and can work well with different diversification
strategies, presenting its good extendibility.
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5.2 Experimental Analysis of QCC and CCBM on Focused Random Walk

In this subsection, we perform some experiments to analyze the performance of the
QCC and CCBM heuristics on FRW algorithms.

If we apply the QCC heuristic to design an FRW algorithm, we would obtain the
Frw2 algorithm. As mentioned in the preceding subsection, Frw2 works as follows. It
first picks an unsatisfied clause c. If there exist CCD variables in c, it flips the one with
the greatest score , corresponding to the greedy mode; otherwise, it picks the variable
with the greatest ConfTimes in c, corresponding to the random mode.

Now we can see the differences between QCC and CCBM heuristics on FRW algo-
rithms concerning about their behaviors when no CCD variable exists. In this situation,
QCC simply selects the variable with the greatest ConfTimes in an unsatisfied clause,
whilst CCBM adopts a hybrid strategy which selects the variable with the minimum
break or the one with the greatest ConfTimes in the unsatisfied clause. While picking
the variable with the greatest ConfTimes contributes to diversification, picking the one
with the minimum break is quite greedy.

This hybrid strategy plays a key role in CCBM, as the CC strategy based on clause
states is too strict for FRW algorithms. We test FrwCB on 20 random 3-SAT instances
with 0.1 million variables. For each instance, FrwCB is performed 5 runs within 2000
seconds. The experiments are summarized in Table 7 and show that for FrwCB, only in
approximately 20% steps exist CCD variables. Therefore, if the algorithm always picks
the variable with the greatest ConfTimes when no CCD variable exists, it would bias
too much towards diversification, which is not reasonable. By employing the hybrid
strategy, FrwCB strikes a good balance between diversification and intensification.

As mentioned in the preceding subsection, FrwCB performs significantly better than
its alternative algorithm Frw2, which directly uses the QCC heuristic. Actually, Frw2
fails to solve any random 3-SAT instance from SAT Competition 2011. To the best of
our knowledge, the CCBM heuristic, which is carefully designed for FRW algorithms,
is the only CC heuristic that can be used to improve FRW algorithms.

Table 7. Frequencies of each type of search steps in FrwCB

Instance Class CCD BM Diversification
(1.0M = 106) avg step freq avg step freq avg step freq

3SAT-v0.1M 23251674 19.6% 57479605 48.3% 38203681 32.1%

6 Conclusions and Future Work

We proposed an effective heuristic named CCBM which combines two strategies
namely configuration checking and break minimum to improve FRW algorithms.
We utilized CCBM to develop a new SLS algorithm called FrwCB. It is the first
time to apply CC in the FRW framework. According to the experimental results,
FrwCB significantly outperforms state-of-the-art solvers including WalkSAT, probSAT,
CCASat and Swqcc on huge random 3-SAT instances with up to 4 million variables.
Our experiments indicate that the run time of FrwCB seems to scale linearly in the
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number of variables of an instance. Also, FrwCB cooperates well with SP on random
3-SAT instances with 10 million variables.

Moreover, the experiments show that FrwCB performs better than its competitors on
random 3-SAT instances with different clause-to-variable ratios from SAT Challenge
2012, indicating its robustness. The robustness of FrwCB is further confirmed by
the experimental results on structured instances, where FrwCB performs better than
WalkSAT, probSAT, CCASat and Swqcc, and is competitive with Sattime on structured
instances.

Some preliminary experiments also suggest that CCBM cooperates well with other
diversification strategies, such as age. Our algorithm FrwCB cannot handle industrial
instances well, and we would like to improve the performance of FrwCB on industrial
instances.
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Abstract. In this paper, we consider the extension of multi-objective constraint
optimization algorithms to the case where there are additional tradeoffs, reducing
the number of optimal solutions. We focus especially on branch-and-bound algo-
rithms which use a mini-buckets algorithm for generating the upper bound at each
node (in the context of maximizing values of objectives). Since the main bottle-
neck of these algorithms is the very large size of the guiding upper bound sets we
introduce efficient methods for reducing these sets, yet still maintaining the upper
bound property. We also propose much faster dominance checks with respect to
the preference relation induced by the tradeoffs. Furthermore, we show that our
tradeoffs approach which is based on a preference inference technique can also
be given an alternative semantics based on the well known Multi-Attribute Util-
ity Theory. Our comprehensive experimental results on common multi-objective
constraint optimization benchmarks demonstrate that the proposed enhancements
allow the algorithms to scale up to much larger problems than before.

1 Introduction

Multi-objective Constraint Optimization (MOCOP) is a general framework that can be
used to model many real-world problems involving multiple, conflicting and sometimes
non-commensurate objectives that need to be optimized simultaneously. The solution
space of these problems is typically only partially ordered and can contain many non-
inferior or undominated solutions which must be considered equally good in the ab-
sence of information concerning the relevance of each objective relative to the others.

Solutions are compared on more than one (real-valued) objective, so that each com-
plete assignment to the decision variables has an associated multi-objective utility value,
represented by a vector in Rp, where p is the number of objectives. The utility vectors
associated to solutions can be compared using the Pareto ordering. However, the Pareto
ordering is rather weak, which can lead to the Pareto-undominated set becoming too
large for the decision maker (DM) to handle. At the other extreme, it can be undesirable
to force the decision maker to define precise tradeoffs between objectives, since they
may have no clear idea about them, and it may lead to somewhat arbitrary decisions.

The approach we take, based on that of [1], is to allow as input a number of prefer-
ences between utility vectors, which may come e.g., from a brief elicitation procedure.
These input preferences are used to strengthen the preference relation over Rp; even a
small number of such tradeoffs can greatly reduce the size of the undominated set.
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In this paper, we extend MOCOP algorithms for the case with tradeoffs, including
both branch-and-bound and variable elimination algorithms. The branch-and-bound al-
gorithms perform a depth-first traversal of an AND/OR search tree that captures the
underlying structure of the problem, and use a mini-buckets algorithm for generating
an upper bound, which is a set of utility vectors, at each node of the search tree. The
main contributions of the paper are as follows. First, the guiding upper bound sets can
become quite large and therefore can have a dramatic impact on the performance of
the search algorithms. To remedy this issue, we propose efficient methods for reducing
these sets, yet still ensuring the upper bound property for both the Pareto and tradeoffs
case. Second, the MOCOP algorithms need to make many dominance checks with re-
spect to the preference relation induced by the tradeoffs. For computational efficiency
we compile this dominance check by use of a matrix and show that in practice it can
achieve almost an order of magnitude speed up over the current approach of [1] which
is based on solving a linear program. Third, we show that our approach for handling
tradeoffs can be given an alternate semantics based on the well known Multi-Attribute
Utility Theory. Fourth, we show empirically on a variety of MOCOP benchmarks that
our improved algorithms outperform the current state-of-the-art solvers by a significant
margin and therefore they can scale up to much larger problems than before.

Following background on MOCOPs and on AND/OR search spaces for MOCOPs
(Section 2), Section 3 defines the formalism for tradeoffs and shows how the induced
notion of preference domination can be computed. Section 4 describes our proposed
methods for reducing the size of the upper bound sets used by branch-and-bound search
algorithms. Section 5 presents our empirical evaluation. Section 6 overviews related
work, while Section 7 provides a summary and concluding remarks.

2 Background

2.1 Multi-objective Constraint Optimization

Consider an optimization problem with p objectives. A utility vector u = (u1, . . . , up)
is a vector with p components where each component ui ∈ R represents the utility
(or value) with respect to objective i ∈ {1, . . . , p}. We assume the standard point-
wise arithmetic operations, namely u + v = (u1 + v1, . . . , up + vp) and q × u =
(q × u1, . . . , q × up), where q ∈ R is a real-valued scalar.

A Multi-objective Constraint Optimization Problem (MOCOP) is a tuple M =
〈X,D,F〉, where X = {X1, . . . , Xn} is a set of decision variables having finite do-
mains of values D = {D1, . . . , Dn} and F = {f1, . . . , fr} is a set of utility functions.1

A utility function fi(Y ) ∈ F is defined over a subset of variables Y ⊆ X, called its
scope, and associates a utility vector to each assignment of Y . The objective function
is F(X) =

∑r
i=1 fi(Yi). A solution is a complete assignment x̄ = (x1, . . . , xn) and

is characterized by a utility vector u = F(x̄). Therefore, the comparison of solutions
reduces to that of their corresponding p-dimensional vectors.

We are interested in partial orders� on Rp satisfying the following two monotonicity
properties, where u,v,w ∈ Rp are arbitrary vectors:

1 Since we are expressing the optimization in terms of maximizing rather than minimizing, we
use the terminology utility function/vector as opposed to cost function/vector.
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Fig. 1. A MOCOP instance with 2 objectives

Independence: if u � v then u+w � v +w;
Scale-Invariance: if u � v and q ∈ R, q ≥ 0 then q × u � q × v.

An important example of such a partial order is the weak Pareto order, defined as
follows.

Definition 1 (weak Pareto order). Let u,v ∈ Rp such that u = (u1, . . . , up) and
v = (v1, . . . , vp). We define the binary relation ≥ on Rp by u ≥ v ⇐⇒ ∀i ∈
{1, . . . , p}, ui ≥ vi.

Given u,v ∈ Rp, if u � v then we say that u dominates v. As usual, the symbol
1 refers to the asymmetric part of �, namely u 1 v if and only if u � v and it is not
the case that v � u. Given finite sets U, V ⊆ Rp, we say that U dominates V , denoted
U � V , if ∀v ∈ V ∃u ∈ U such that u � v. In particular, relation ≥ (resp. >) is also
called weak Pareto dominance (resp. Pareto dominance).

Definition 2 (maximal/Pareto set). Given a partial order � and a finite set of vectors
U ⊆ Rp, we define the maximal set, denoted by max�(U), to be the set consisting of
the undominated elements in U , i.e., max�(U) = {u ∈ U | �v ∈ U,v 1 u}. When �
is the weak Pareto ordering ≥, we call max�(U) the Pareto set (or Pareto frontier).

Solving a MOCOP instance means finding the set of optimal solutions that generate
maximal utility vectors, namely values in the set max�{F(x̄) | solution x̄}.

Given a MOCOP instanceM = 〈X,D,F〉, the scopes of the utility functions in F
imply a primal graph G (nodes correspond to the variables and edges connect any two
nodes whose variables belong to the same function) with certain induced width [2].

Example 1. Figure 1 shows a MOCOP instance with 5 bi-valued variables {X0, X1,
X2, X3, X4} and 3 ternary utility functions f1(X0, X1, X2), f2(X0, X1, X3), and
f3(X1, X3, X4), respectively. Its corresponding primal graph is depicted in Figure 1(b).
The Pareto set of the problem contains 8 solutions with undominated utility vectors:
(3,24), (8,21), (9,19), (10,16), (11,14), (12,12), (13,8) and (14,6), respectively.

2.2 AND/OR Search Spaces for MOCOPs

The concept of AND/OR search spaces for graphical models [3] has been extended re-
cently to multi-objective constraint optimization to better capture the problem structure
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Fig. 2. Weighted AND/OR search tree

during search [4]. The search space is defined using a pseudo tree of the primal graph
which captures problem decomposition as follows.

Definition 3 (pseudo tree). A pseudo tree of an undirected graph G = (V,E) is a
directed rooted tree T = (V,E′), such that every arc of G not included in E′ is a back-
arc in T , namely it connects a node in T to an ancestor in T . The arcs in E′ may not
all be included in E.

Weighted AND/OR Search Tree. Given a MOCOP instanceM = 〈X,D,F〉, its primal
graph G and a pseudo tree T of G, the associated AND/OR search tree ST has alternat-
ing levels of OR and AND nodes. Its structure is based on the underlying pseudo tree.
The root node of ST is an OR node labeled by the root of T . The children of an OR
node 〈Xi〉 are AND nodes labeled with value assignments 〈Xi, xj〉; the children of an
AND node 〈Xi, xj〉 are OR nodes labeled with the children of Xi in T , representing
conditionally independent subproblems. The OR-to-AND arcs in ST are annotated by
weights derived from the input utility functions, while each node n ∈ ST is associated
with a value v(n), defined as the set of utility vectors corresponding to the optimal so-
lutions of the conditioned subproblem rooted at n. The node values can be computed
recursively based on the values of their successors, as shown in [4].

The size of the AND/OR search tree associated with a MOCOP instance with pseudo
tree of depth d is O(n · kd), where n is the number of variables and k bounds the
domain size [3]. Figure 2 shows the AND/OR search tree of the MOCOP instance from
Figure 1, relative to the pseudo tree given in Figure 1(c). The utility vectors displayed
on the OR-to-AND arcs are the weights corresponding to the input utility functions.
An optimal solution tree corresponding to the assignment (X0 = 0, X1 = 1, X2 =
1, X3 = 0, X4 = 0) with utility vector (3,24) is highlighted.

Multi-objective AND/OR Branch-and-Bound. One of the most effective methods for
solving MOCOPs is the multi-objective AND/OR Branch-and-Bound (MOAOBB) in-
troduced recently by [4]. For completeness, we next review the algorithm. As usual,
each node n in the search tree is associated with a heuristic estimate h(n) of v(n).
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Algorithm 1. MOAOBB
Data: M = 〈X,D,F〉, pseudo tree T , heuristic h.
Result: Maximal set of M, max�{F(x̄) | solution x̄}.

1 create an OR node s labeled by the root of T
2 OPEN ← {s}; CLOSED ← ∅
3 while OPEN �= ∅ do
4 move top node n from OPEN to CLOSED
5 expand n by creating its successors succ(n)
6 foreach n′ ∈ succ(n) do
7 evaluate h(n′) and add n′ on top of OPEN
8 let T ′ be the current partial solution tree with tip n′

9 if v(s) � f(T ′) then
10 remove n′ from OPEN and succ(n)

11 while ∃n ∈ CLOSED s.t. succ(n) = ∅ do
12 remove n from CLOSED and let p be n’s parent
13 if p is AND then v(p) ← v(p) + v(n)
14 else v(p) ← max�{v(p) ∪ {w(p, n) + v(n)}}
15 remove n from succ(p)

16 return v(s)

MOAOBB is described by Algorithm 1. Assuming maximization of the objective
values, MOAOBB traverses the weighted AND/OR search tree in a depth-first manner
while maintaining at the root node s of the search tree the set v(s) of best solution
vectors found so far. During node expansion, the algorithm uses the h(n) values to
compute an upper bound set f(T ′) on the set of optimal solutions extending the current
partial solution tree T ′, and prunes the subproblem below the current tip node n′ if
f(T ′) is dominated by v(s) (i.e., all utility vectors in f(T ′) are dominated by at least
one element in v(s)). The node values are updated recursively in a bottom-up manner,
starting from the terminal nodes in the search tree - AND nodes by summation, OR
nodes by maximization (undominated closure wrt �).

The time complexity of MOAOBB is bounded by O(n · kd), the size of the weighted
AND/OR search tree. Since the utility vectors are in Rp, it is not easy to predict the
size of the maximal set max�{F(x̄) | solution x̄}, and therefore MOAOBB may use
prohibitively large amounts of memory to store it.

Mini-Bucket Heuristics. The heuristic function h(n) that we used in our experiments
is the multi-objective mini-bucket heuristic [4, 5]. It was shown that the intermediate
functions generated by the mini-bucket approximation of multi-objective variable elim-
ination can be used to derive a heuristic function that is admissible, namely in a max-
imization context it generates a set of utility vectors (upper bound set) such that the
utility vectors of any optimal solution below node n in the search tree is dominated by
some element in h(n). A control parameter, called i-bound, allows a tradeoff between
accuracy of the heuristic and its time-space requirements.
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3 Handling Imprecise Tradeoffs

In this section, we present our approach for handling tradeoffs between the objectives of
a MOCOP. We first introduce some notation. For W ⊆ Rp, define C(W ), the positive
convex cone generated by W , to be the set consisting of all vectors u such that there ex-
ists k ≥ 0 and non-negative real scalars q1, . . . , qk and wj ∈ W with u ≥

∑k
j=1 qjwj ,

where ≥ is the weak Pareto relation (and an empty summation is taken to be equal
to 0, the zero vector (0, . . . , 0) in Rp). C(W ) is the set of vectors that weakly-Pareto
dominate some (finite) positive linear combination of elements of W .

For W ⊆ Rp, define W ∗ to be the set of vectors u ∈ Rp such that u · v ≥ 0 for all
v ∈ W , where u · v means

∑p
i=1 uivi. A standard result for finitely generated convex

cones (see e.g., [6]) states that for finite W ⊆ Rp, W ∗∗ (i.e., (W ∗)∗) equals C(W ).

3.1 Deducing Preferences from Additional Inputs

We assume that we have learned some preferences of the decision maker (DM), i.e., a
set Θ of pairs of the form (u,v) meaning that the decision maker prefers u to v. We
will use this input information to deduce further preferences, in two different ways, the
first taken from [1], the second based on a multi-attribute utility theory model.

Partial Order-Based Inference: We will use the input preferences Θ to infer a pref-
erence relation �Θ extending Θ. Here we assume that the DM has some unknown
partial order � over Rp, representing their preferences. We further assume that � ex-
tends Pareto (i.e., extends the weak Pareto order), and satisfies Independence and Scale-
Invariance. We are given the information that the DM’s preference relation includes
pairs Θ, i.e., � extends Θ. This naturally leads to the following definitions:

– We say that Θ is consistent if there exists some partial order � (on Rp) that extends
Θ, extends Pareto, and satisfies Scale-Invariance and Independence.

– For consistent Θ, we define the induced preference relation �Θ on Rp by u �Θ v
⇐⇒ u � v for all partial orders � such that � extends Pareto and Θ, and satisfies
Independence and Scale-Invariance.

MAUT-Based Inference: Here we take a different approach: we assume that the DM
uses a weighted sum of the objectives to compare objective vectors, as in the additive
form of the Multi-attribute Utility Theory (MAUT) model [7]. We say that pre-order
� on Rp is MAUT-based if there exists some vector w ∈ Rp with only non-negative
values, such that, for all u,v ∈ Rp, u � v ⇐⇒

∑p
i=1 uiwi ≥

∑p
i=1 viwi. If we

knew the weights vector w, the problem would reduce to a single-objective problem.
However, all we know is that the induced preference relation satisfies the pairs Θ. This
leads to the induced preference relation �2

Θ defined as follows:

u �2
Θ v if and only if u � v holds for all MAUT-based � extending Θ.

Thus u is preferred to v if and only if the preference holds for every compatible MAUT
ordering.

Let WΘ = {u− v : (u,v) ∈ Θ}. The following result from [1] gives a characteri-
zation of the first induced preference relation �Θ.
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Proposition 1. Let Θ be a consistent set of pairs of vectors in Rp. Then u 2Θ v if and
only if u− v ∈ C(WΘ).

In fact, for finite consistent Θ, the two induced preference relations are equal:

Proposition 2. For finite Θ, we have u �2
Θ v ⇐⇒ u− v ∈ C(WΘ). Therefore, if Θ

is consistent then the relations 2Θ and �2
Θ are equal.

Proof. Any MAUT-based order � has an associated vector w, so we write � as �w.
We then have u �w v ⇐⇒ (u−v) ·w ≥ 0. Relation �w extendsΘ if and only if, for
all u ∈ WΘ, w · u ≥ 0, i.e., iff w ∈ (WΘ)

∗. Thus u �2
Θ v ⇐⇒ (u− v) ·w ≥ 0 for

all w ∈ (WΘ)
∗, i.e., iff u− v ∈ (WΘ)

∗∗. Since (WΘ)
∗∗ = C(WΘ), the result follows.

Example 2. Suppose that the decision maker has told us that she prefers (0, 1) to (1, 0),
so that a unit of the second objective is considered more valuable than a unit of the
first objective. Θ is then equal to {

(
(0, 1), (1, 0)

)
}. The Independence property implies

(0, 0) �Θ (1,−1), and also, for example, (8, 21) �Θ (9, 20), and thus (8, 21) 2Θ

(9, 19) since 2Θ extends Pareto. In Example 1 the additional preference implies that
(3, 24) and (8, 21) are the only �Θ-undominated solutions, illustrating that even a sin-
gle tradeoff can greatly reduce the number of undominated solutions.

3.2 Implementing Dominance Tests

For multi-objective constraint optimization, we will need to make many dominance
checks with respect to the induced preference relation 2Θ . In [1], a dominance check
is performed using a linear programming (LP) solver, based on Proposition 1. For com-
putational efficiency we compile this dominance check by use of a matrix. Specifically,
we generate a matrix A that represents 2Θ in the sense that u 2Θ v if and only if
A(u − v) ≥ 0 (which is if and only if Au ≥ Av). Lemma 1 below shows that we can
construct such a matrix A by finding a generating set of the dual cone (C(WΘ))

∗, where
(C(WΘ))

∗ is the set of vectors u in Rp such that
∑p

i=1 uivi ≥ 0 for all v ∈ C(WΘ).
We use the approach from [8] for this task.

Lemma 1. Matrix A represents 2Θ if and only if the dual cone (C(WΘ))
∗ is equal to

the cone generated by the rows of A, i.e., every row of A is in (C(WΘ))
∗ and every

element of (C(WΘ))
∗ is a positive convex combination of rows of A.

Proof. Let R be the set of rows of matrix A. We have u ∈ R∗ if and only if Au ≥ 0.
Abbreviate C(WΘ) to C. It easily follows from Proposition 1, that matrix A represents
2Θ if and only if the following equivalence holds for all vectors u ∈ Rp: u ∈ C ⇐⇒
Au ≥ 0. Thus A represents 2Θ if and only C = R∗. Now, C = R∗ implies that
C∗ = R∗∗ = C(R). Conversely, if C∗ = C(R) then C = C∗∗ = (C(R))∗ = R∗.
Therefore, A represents 2Θ if and only if C∗ = C(R).

Figure 3 compares the proposed matrix based dominance checks against the LP
based ones on random multi-objective influence diagrams from [1]. These problems
have 5 decisions, an increasing number of chance variables, and involve 3 and 5 ob-
jectives, respectively. Each data point represents an average over the number of solved
instances by both methods out of 100 instances generated for the respective problem
size. We can see that the former method clearly dominates the latter across all reported
problem sizes, and in some cases it can achieve almost one order of magnitude speedup.
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Fig. 3. Comparing matrix based versus LP based dominance checks on problems with 3 and 5
objectives. CPU time in seconds as a function of problem size. Time limit 20 minutes.

4 Reducing the Upper Bound Sets

Branch-and-bound algorithms such as MOAOBB involve use of an upper bound set
during search, i.e., a set of utility vectors in Rp such that the utility vector for every
assignment below the current node is weakly dominated by some element in the set.
The upper bound sets can grow quite large and thus their manipulation during search
may become computationally very expensive. In this section, we will require the upper
bound set to have restricted cardinality, at most B (≥ 1). We thus need a method for
taking a larger upper bound set U , with |U| > B, and reducing it to have cardinality at
most B, whilst maintaining its property of being an upper bound set at the node.

We do this by iteratively choosing a selection v1, . . . ,vk of elements and producing
an element u that is an upper bound of all of them. Elements v1, . . . ,vk are then re-
moved from the upper bound set, along with the elements that u dominates, and u is
added. The new set is still an upper bound set. This gets repeated until we have |U| ≤ B.
(For the last iteration we reduce the cluster size k to being |U|−B+1 to avoid excessive
“overshooting”, so as to achieve a final upper bound set with cardinality closer to B.)
For the case when B = 1, we use a single iteration with k = |U|.

We go into more detail for the Pareto and tradeoffs cases below. Both make use of
the Pareto least upper bound v of vectors v1, . . . ,vk, given by v = maxkj=1 vj , where
the max is applied point-wise.

4.1 Pareto (No Tradeoffs) Case

We remove only two elements from U in each iteration. We choose randomly v ∈ U ,
and find w ∈ U that minimizes the Manhattan distance from v, i.e., that minimizes∑p

i=1 |vi − wi|, where vi and wi are the ith components of v and w, respectively. We
add u, the Pareto least upper bound of v and w, to U , and remove v and w from U and
the elements that are dominated by u; this procedure is iterated until |U| ≤ B.

We also implemented a number of variations of this method, which seemed to per-
form slightly less well, including replacing every two elements of U with their Pareto
least upper bound that are randomly selected, minimizing the Manhattan distance, max-
imizing the dot product value and maximizing the dot product value of the normalized
vectors.
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4.2 Tradeoffs Case

We assume a consistent set of inputs Θ, leading to a preference relation 2Θ which we
abbreviate to �. As described above, we make use of matrix A to represent �. The key
step is to choose a selection of k elements in U and to generate an upper bound of them.
We make use of the following result:

Proposition 3. Let v1, . . . ,vk be vectors in Rp, and let v = maxkj=1 vj be their Pareto
least upper bound, and let w = maxkj=1 Avj , (with max being applied pointwise in
both cases). Then,

(i) v � v1, . . . ,vk, i.e., the Pareto least upper bound is an upper bound with respect
to �;

(ii) for u ∈ Rp, u � v1, . . . ,vk ⇐⇒ Au ≥ w; and
(iii) Av ≥ w.

Proof. (i): Let j be an arbitrary element of {1, . . . , k}. By definition, v ≥ vj . Since �
extends Pareto, we have v � vj .
(ii): u � v1, . . . ,vk ⇐⇒ for all j = 1, . . . , k, u � vj , ⇐⇒ for all j = 1, . . . , k,

Au ≥ Avj ⇐⇒ Au ≥ maxkj=1 Avj .
(iii) follows immediately from (i) and (ii).

Our first approach for generating an upper bound u of vectors v1, . . . ,vk is to just
use u = v, the Pareto least upper bound, which is an upper bound (w.r.t. �) by Propo-
sition 3(i). However, especially if � is much stronger than the Pareto ordering, we may
be able to obtain a much tighter upper bound, leading to potentially much stronger
pruning. To obtain an upper bound, we minimize objective function min

∑
i ui (where

ui is the ith value of vector u), subject to Au ≥ w, plus the extra constraints that
u ≤ maxkj=1 vj , i.e., that u is weakly Pareto dominated by the Pareto least upper bound
v. Proposition 3(iii) shows that the constraints are satisfiable, since v is a solution, and
Proposition 3(ii) shows that the solution will be an upper bound.

Example 3. Continuing Example 2, suppose that we are wanting to replace the pair of
utility vectors {(21, 3), (3, 15)} by an upper bound. We have (9, 15) �Θ (21, 3), (3, 15)
so that (9, 15) is a much tighter upper bound than the Pareto least upper bound (21, 15).

The cluster v1, . . . ,vk is chosen randomly. We again tried a number of variations of
this approach. This included (1) replacing an element and its k − 1 nearest neighbors
(with respect to Manhattan distance) minimizing the sum of Manhattan distances (be-
tween the element and its neighbors) with their upper bound generated using the linear
programming approach; (2) we set k to 2 and iteratively replace pairs of elements with
their upper bound generated using the linear programming approach.

5 Experiments

In this section, we evaluate empirically the performance of the proposed improvements
to branch-and-bound algorithms on problem instances derived from three classes of
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MOCOP benchmarks: random networks, combinatorial auctions and vertex covering
problems. All algorithms were implemented in C++ (32 bit) and the experiments were
run on a 2.6GHz quad-core processor with 4 GB of RAM.

For our purpose, we consider the following random problem generators:

– Random Networks: Our random networks are characterized by parameters 〈n, c〉,
where n is the number of variables and c is the number of binary utility functions.
For consistency, we used similar parameters to [4] and generated random instances
with n ∈ [10, 160] and c = 1.6n having 2, 3, 4 and 5 objectives. The components
of the utility vectors were uniformly distributed between 0 and 10. The induced
width of these problems ranged between 5 and 14, respectively.

– Vertex Coverings: Given a graph G = (V,E), the task is to find a vertex covering
S ⊆ V such that ∀(u, v) ∈ E, either u ∈ S or v ∈ S, and F (S) =

∑
v∈S w(v)

is maximized, where w(v) = (w1, . . . , wp) is a p-dimensional utility vector cor-
responding to vertex v ∈ V . Following [4], we generated random graphs with
|V | ∈ [10, 180] vertices, |E| = 1.6|V | edges and having 2, 3, 4 and 5 objectives.
The components of the utility vectors were generated randomly between -10 and 0.
The induced width of these problems ranged between 9 and 25, respectively.

– Combinatorial Auctions: In our multi-objective combinatorial auctions each bid
is associated with the price, the probability of failing the payment upon acceptance,
and the quality of service measure. The task is to determine the subset of winning
bids that simultaneously maximize the profit, minimize the risk of not getting the
full revenue and maximize the overall quality of the services represented by the
selected bids. We generated auctions with 30 goods and increasing number of bids
from the paths distribution of the CATS suite [9] and randomly added failure prob-
abilities to the bids in the range (0,0.3) while the quality of service associated with
each bid was set uniformly at random between 1 and 10. The induced width of these
problems ranged between 6 and 61, respectively.

– Tradeoffs: Given a problem instance we generated consistent random tradeoffs
between its objectives, using the generator from [1] with parameters (K,T ) where
K and T are the number of pairwise and 3-way tradeoffs, respectively. For a pair
(i, j) of objectives picked randomly out of p objectives we generate two tradeoffs
aei − bej and bej − acei, where ei and ej are the i-th and j-th unit vectors.
Intuitively, one of the tradeoffs indicates how much of objective i one sacrifices to
gain a unit of objective j, and the other is vice versa. We generate a 3-way tradeoff
between three objectives (i, j, k) picked randomly as well in the form of the tradeoff
vector aei + bej − cek, where a, b, c ∈ [0.1, 1).

We consider the following solving alternatives:

– MOAOBB(i) – the multi-objective AND/OR Branch-and-Bound from Section 2,
where parameter i is the mini-bucket i-bound and controls the accuracy of the
heuristic. Larger values of i typically yield more accurate estimates but they are
more expensive to compute.

– B=b (PLUB) – the extension of MOAOBB(i) that uses the Pareto least upper bound
based method described in Section 4.1 to reduce the upper bound set to at most b
(≥ 1) utility vectors, for both the Pareto and tradeoffs cases.
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Table 1. CPU time in seconds as a function of the upper bound set cardinality (B) for vertex
covering problems with 3 and 5 objectives. Mini-bucket i-bound is 10. Time limit 20 minutes.

B=1 B=2 B=4 B=10 B=50 B=100
vertex coverings (110 vars) - 3 obj - pareto

PLUB 59 67 70 95 188 238
vertex coverings (110 vars) - 5 obj - pareto

PLUB 270 581 598 646 894 983

vertex coverings (160 vars) - 3 obj - (K = 2, T = 1) tradeoffs
LP 496 243 227 269 340 341
PLUB 552 94 150 268 340 340
vertex coverings (160 vars) - 5 obj - (K = 5, T = 2) tradeoffs
LP 629 370 346 376 485 493
PLUB 972 166 211 345 487 495

– B=b (LP) – the extension of MOAOBB(i) that uses the LP based method from
Section 4.2 to compute the upper bound sets, for the tradeoffs case only. The cluster
size was set to 30.

– VE – the variable elimination algorithm introduced recently by [1] for evaluating
multi-objective influence diagrams, which we adapted here to solve MOCOPs. Un-
like the branch-and-bound algorithms which can operate in linear space (ignoring
the optimal solution sets), VE is time and space exponential in the induced width
of the problem instance.

All competing algorithms were restricted to a static variable ordering obtained as a
depth-first traversal of the guiding pseudo tree which was computed using a min-fill
heuristic [3, 4]. The AND/OR search algorithms order the subproblems rooted at each
node in the search tree in lexicographic order. In all our experiments we report the
average CPU time in seconds and the number of problem instances solved (we omit the
nodes expanded for space reasons). The best performance points are highlighted.

Impact of the Upper Bound Set Size. Table 1 displays the average CPU time as a func-
tion of the upper bound set size (B) for vertex covering problems with 3 and 5 objec-
tives, respectively. We consider both the Pareto (top two rows) and tradeoffs (bottom
two rows) cases. For each problem size we generated 10 random instances and for
each instance we generated 10 random sets of tradeoffs using the (K,T ) parameters
shown in the table. The mini-bucket i-bound was set to 10. We can see clearly that
using a singleton upper bound set which has a reduced computational overhead is best
for the Pareto case. For example, on problems with 110 variables and 5 objectives,
MOAOBB(10) manipulates very large upper bound sets with more than 5000 elements
and consequently is able to solve only one instance within the 20 minute time limit. In
contrast, algorithm B=1 (PLUB) solves all problem instances in less than 5 minutes on
average. When looking at the tradeoffs case, we can see a different picture. Namely,
the best option is to use an upper bound set with small cardinality (up to 5 elements)
for both the Pareto and the LP based bounds. The singleton upper bound set, although
less expensive to compute, is highly inaccurate and causes the algorithms to explore a
much larger search space thus deteriorating their performance considerably. The results
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Fig. 4. CPU time in seconds (left) and number of problem instances solved (right) for random net-
works with 5 objectives, combinatorial auctions with 3 objectives and vertex covering problems
with 5 objectives, respectively. Using the Pareto ordering. Time limit 20 minutes.

obtained on the other problem classes displayed a similar pattern and therefore were
omitted for space reasons.

Comparison with State-of-the-Art Approaches. Figure 4 shows the results obtained for
random networks with 5 objectives, combinatorial auctions with 3 objectives and ver-
tex covering problems with 5 objectives, respectively, using the Pareto ordering. Each
data point represents an average over 10 random instances of the corresponding prob-
lem size (number of variables). The mini-bucket i-bounds were chosen as follows: 8
for random networks, 10 for vertex covering and 12 for combinatorial auctions, re-
spectively. We can see that algorithm B=1 (PLUB) using a singleton upper bound set
outperforms the state-of-the-art MOAOBB by a significant margin and thus offers the
overall best performance. The second best algorithm across all reported problem sizes
is B=2 (PLUB) which is slightly slower than B=1 (PLUB) due to computational over-
head issues. For example, both B=1 (PLUB) and B=2 (PLUB) scale up to auctions with
140 bids, whereas MOAOBB runs out of time beyond problems with 100 bids. VE is
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Fig. 5. CPU time in seconds (left) and number of problem instances solved (right) for random
networks with 5 objectives, combinatorial auctions with 3 objectives and vertex covering prob-
lems with 5 objectives, respectively. Tradeoffs generated with parameters (K = 6, T = 3) for
random networks, (K = 2, T = 1) for combinatorial auctions and (K = 5, T = 2) for vertex
covering. Time limit 20 minutes.

competitive only for medium size problems and quickly runs out of memory on larger
problems (e.g., combinatorial auctions) because of larger induced widths.

In Figure 5, we summarize the results for the same problem classes using tradeoffs
generated with parameters (K,T ) shown in the caption. The singleton upper bounds are
very weak in this case and consequently algorithms B=1 (PLUB) and B=1 (LP) perform
very poorly. The best performance is offered by the algorithms using upper bound sets
with 5 (random networks) and 2 (auctions and vertex covering) elements, respectively.
In summary, the algorithms using upper bound sets of relatively small cardinality, which
are much less expensive to compute and manipulate during search, are superior to the
current state-of-the-art solvers over a wide range of problem instances, and in many
cases they scale up to much larger problems.

Impact of the Number of Tradeoffs. Figure 6 plots the CPU time as a function of the
number of pairwise tradeoffs K for vertex covering problems with 160 variables and
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Fig. 6. CPU time in seconds (left) and number of problem instances solved (right) as a function of
the number of pairwise tradeoffs (K) for vertex covering problems with n = 160 and 5 objectives
(T = 1). The mini-bucket i-bound is 10. Time limit 20 minutes.

Fig. 7. CPU time in seconds (left) and number of problem instances solved (right) as function
of the mini-bucket i-bound for vertex covering problems with n = 160, 5 objectives and (K =
5, T = 2) tradeoffs. Time limit 20 minutes.

5 objectives for fixed number of 3-way tradeoffs (T = 1). As more tradeoffs become
available, the running time of the algorithms decreases substantially because the �Θ-
dominance gets stronger and therefore it can prune the search space more effectively.
The singleton upper bounds are quite loose and therefore algorithms B=1 (PLUB) and
B=1 (LP) have a relatively flat performance across the different values of K . We ob-
served a similar behavior for fixed K = 1 and increasing number of 3-way tradeoffs T
(results omitted for lack of space).

Impact of the Heuristic Information. Figure 7 plots the CPU time (left) and number
of problem instances solved (right) as a function of the mini-bucket i-bound for ver-
tex covering problems with 160 variables and 5 objectives. We notice the U-shaped
curve characteristic of search algorithms using mini-bucket heuristics. As the i-bound
increases, the total time decreases because the heuristics get stronger and prune the
search space more effectively. But then as i increases further, the heuristic strength
does not outweigh its computational overhead and the time starts to increase again.

For the tradeoffs case, we observed that the LP-based upper bounds were typically
tighter than the corresponding Pareto-based ones across all benchmark problems, but
they incurred a much higher computational overhead. Therefore, the pruning power of
the former did not outweigh their overhead, except for the case when the upper bound
set was restricted to a single element (B = 1).
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6 Related Work

The optimization algorithms we use are built on the approach of [4]. The use of upper
bound sets in the context of mini-buckets for branch-and-bound was also developed
in [5, 10–12], and bound sets have been used in the approaches described in [13–16].
Constraint programming approaches for multi-criteria optimization include [17–19].

As mentioned in Section 3, the formalism for tradeoffs derives from that described in
[1], and relates to convex cone-based approaches for multi-objective preferences such
as [8, 20–22]. The variable elimination technique for the tradeoffs case derives from
that in [1] and the correctness follows from the results in [23]; it can also be related
with the general algorithmic approach described in [24].

7 Summary and Conclusion

We extended multi-objective constraint optimization algorithms – including a variable
elimination algorithm and variants of a branch-and-bound algorithm – to the case where
there are additional tradeoffs. The tradeoffs approach is based on a preference inference
technique. We show that the inference technique from [1] can be given an alternative
semantics based on Multi-Attribute Utility Theory, where it is assumed that the decision
maker compares utility vectors by a weighted sum of the individual values.

The branch-and-bound algorithms use a mini-buckets procedure for generating the
upper bound set at each node. Because the upper bound set can get large we consider
different methods for reducing its size. This is achieved by incrementally replacing a
selection of the elements by an upper bound of them. In almost all our experimental
results for the Pareto (no tradeoffs) case, we found that using a singleton upper bound
set is best, and this can considerably improve the current state-of-the-art. Although
using a larger upper bound set pruned slightly more, it was not sufficient to make up
for the additional overhead. For the tradeoffs case, our results suggest that it is usually
best to use a non-singleton upper bound set, but which has quite small cardinality; even
allowing a 2-element upper bound set can improve dramatically the efficiency of the
algorithm because of the extra pruning power.
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Abstract. Multidimensional bin packing is a challenging combinatorial
problem with applications to cloud computing, virtualized datacenters,
and machine reassignment. In contrast to the classical bin packing model,
item sizes and bin capacities both span a vector of values, requiring that
feasible assignments honor capacity constraints across all dimensions. Re-
cent work has yielded significant improvements over traditional CP and
MIP encodings by incorporating multivalued decision diagrams (MDDs)
into a heuristic-driven CSP-based search. In this paper, we consider a
radically different approach to multidimensional bin packing, in which
the complete contents of bins are considered sequentially and indepen-
dently. Our algorithm remains depth-first, yet adopts a powerful least
commitment strategy for items when their exclusion from a bin is at-
tempted. We abandon the use of MDDs, and instead aggregate capacity
over incomplete bins to establish significantly stronger bounds on the
solution quality of a partial assignment. Empirical results demonstrate
that our approach outperforms the state-of-the-art by up to four orders
of magnitude, and can even solve some previously intractable problems
within a fraction of a second.

1 Introduction

Within the scope of combinatorial optimization, applications and extensions of
bin packing have motivated considerable progress in the constraint programming
and operations research communities [20,30,6,16,7]. In the classical formulation,
a finite set of items (and their corresponding sizes) must be distributed across a
minimal number of bins with fixed capacities. Since the relative order of items
within a bin is irrelevant, a solution merely maps items to disjoint subsets such
that the sum of sizes within each subset respects the appropriate capacity con-
straints.

Inspired (in part) by the recent Google ROADEF/EURO challenge1, a more
expressive variant of bin packing has recently been introduced by Kell and van
Hoeve [18] in which both item sizes and bin capacities are augmented to pro-
vide multidimensional support. This enhanced encoding allows the modeling
of independent resource requirements (e.g., CPU time, RAM, etc.) that can-
not adequately be captured by simple scalar values. The authors develop a
novel heuristic-driven CSP-based search – utilizingmultivalued decision diagrams

1 Online at http://challenge.roadef.org/2012/en/

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 513–528, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(MDDs) – that is shown to yield significant improvements over conventional CP
and MIP approaches.

A key advantage that decision diagrams offer in the context of combinato-
rial search is their ability to model and manipulate the equivalence of par-
tial solutions. By merging isomorphic assignments, MDDs collapse symmetric
and/or dominated solutions into shared paths to prevent the creation and ex-
ploration of redundant search nodes. However, this flexibility often comes at a
high price, since the exponentially-many variable combinations are continually
maintained in memory and can impose a substantial footprint. Even if approxi-
mation schemes are employed, the resource requirements for a moderately-sized
instance can easily eclipse the capabilities of a modern high-end workstation.
Furthermore, the use of decision diagrams alone does not necessarily serve as
a substitute for the pruning power offered by strong inference procedures; this
issue is of particular importance in a heavily quantitative domain such as bin
packing, where the ability to establish tight lower bounds can have a profound
effect on the efficiency of search. Despite a simplification made in recent works
that fixes the number of bins to a constant, existing techniques for inference in
the multidimensional case remain relatively weak.

In this paper, we consider a radically different approach to multidimensional
bin packing. In contrast to previous schemes that branch on the assignment
of individual items, our technique branches on the complete contents of indi-
vidual bins, resurrecting a set-CSP reformulation originally proposed for one-
dimensional bin packing more than a decade ago [14]. The resulting algorithm
remains depth-first, yet adopts a powerful least commitment strategy for individ-
ual items when their exclusion from a bin is attempted. We abandon the use of
MDDs altogether, and instead aggregate capacity over incomplete bins to estab-
lish significantly stronger bounds on the solution quality of partial assignments.
Our algorithm is simple and compact, yet empirical results demonstrate that it
outperforms the state-of-the-art by up to four orders of magnitude, and can even
solve some previously intractable problems within a fraction of a second.

The remainder of the paper is organized as follows. In Section 2 we formally
define the multidimensional bin packing problem and review prior work on this
topic. In Section 3, we explore the limitations of conventional search and the
challenges required to perform inference on partial assignments in the CSP for-
mulation. Our new approach is presented in Section 4, where we describe our
reformulation and several techniques to increase efficiency in this alternative
search space. Experimental results are provided in Section 5, in which we com-
pare the performance of our algorithm to the previous state-of-the-art. We briefly
review related work in Section 6, and finally conclude in Section 7.

2 Background

We consider the formulation proposed in [18] which specifies n item sizes (s1, . . . ,
sn) andm bin capacities (c1, . . . , cm). Each item size si is a d-tuple of nonnegative
integers (si,1, . . . , si,d), and likewise for each bin capacity cj = (cj,1, . . . , cj,d).
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Fig. 1. Solving multidimensional bin packing as a CSP. Nodes correspond to items,
branches correspond to bins.

The objective is to produce an assignment S such that each of the n items is
assigned to exactly one of the m bins without exceeding the capacity of any
bin/dimension pair:

∑
S(i)=j

si,k ≤ cj,k ∀j ∈ [1,m], k ∈ [1, d]

Since a constant number of bins is specified in advance, this formulation is a
strict decision problem, as opposed to the optimization variant that has been
more commonly studied in the literature on one-dimensional bin packing.

Multidimensional bin packing formulations are far from new, with some dat-
ing back even to the late 1970’s. Kou and Markowsky [24] considered a tra-
ditional limitation that constrains each si,k to the range [0, 1], and adapted
popular heuristics from the one-dimensional case (e.g., first fit, best fit, etc.)
to accommodate all dimensions. Several studies have considered geometric va-
rieties [25,26,1,2] in which orthogonal dimensions are tightly coupled; in such
models, two- and three- dimensional items respectively correspond to rectangles
and boxes in Euclidean space. Chekuri and Khanna [9] obtained a variety of
approximability and inapproximability results for vector scheduling and vector
bin packing.

More recently, Kell and van Hoeve [18] transform multidimensional bin pack-
ing into a constraint satisfaction problem (CSP) where a variable xi is created
for each item whose domain Di = {y1, ..., ym} corresponds to the set of available
bins. The CSP has m× d constraints over the subsets that compose each bin.

Definition:A partial assignment P at depth p in the CSP formulation of
multidimensional bin packing is a mapping (x1, ..., xp)→ (yP (1), ..., yP (p))
of a subset of items to their respective bins such that

∑
P (xi)=yj

si,k ≤
cj,k for all j ∈ [1,m] and k ∈ [1, d]. A complete assignment is any P
where |P | = n. �
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(b)

Fig. 2. MDD representations of bin packing with item sizes {6, 4, 2, 1} and two bins
with capacity 8. (a) A Direct MDD, where nodes are labeled by ullage vectors and
edges are labeled by bin indices. (b) A Ullage MDD, where nodes are labeled by ullage
multiplicities and edges are labeled by ullage references.

2.1 An MDD Approach

Constraint satisfaction problems are traditionally solved in a depth-first search
manner (see Figure 1) in which variables are selected sequentially and each value
leads to a separate branch of search. The search state is encoded implicitly in the
call stack, with each recursive call forming a node along a partial path. When
applied to the domain of one-dimensional bin packing, a generic CSP approach
mirrors the combinatorial search formulation originally championed by Martello
and Toth [27].

For the CSP formulation of multidimensional bin packing, Kell and van Ho-
eve take a different approach, in which the various combinations of item-bin as-
signments are stored explicitly in a multivalued decision diagram (MDD) [17,3].
For a problem with n variables, the MDD is comprised of n + 1 layers denoted
L1, . . . , Ln+1. Each layer contains a set of nodes, and each edge connects nodes
in adjacent layers Li and Li+1 reflecting an assignment to the variable xi. The fi-
nal layer Ln+1 contains a single node (the sink) representing feasibility. Any path
in the MDD from root to sink corresponds to a complete solution, whose values
can be derived from the labels of edges along the path. Partial paths, of course,
correspond only to partial solutions that may or may not extend to feasibility.

In a direct MDD representation, nodes in each layer are labeled with states
that map each bin to its remaining multidimensional capacities (its “ullage”
vector). Edges are labeled with the index of the bin yj corresponding to the
appropriate assignment for xi. Hence, the ullage vectors of two nodes u and v
at respective layers Li and Li+1 that are connected by an edge yj differ only
at position j (i.e., vj = uj − si). Note that if two nodes at the same layer were
to share identical ullage vectors across all bins, the set of feasible completions
beneath these nodes would be identical. To prevent the construction and expan-
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sion of duplicate structures, the MDD stores only one copy of each node at a
layer, effectively merging the paths of isomorphic partial assignments. This not
only decreases the MDD’s overall size, but also reduces the effort required to
find a complete path from root to sink.

Example: In Figure 2(a) the node (2, 2) at layer L4 reflects a merger of
two partial assignments: the extension of (2, 4) at layer L3 with x3 ← y2,
and the extension of (4, 2) at layer L3 with x3 ← y1. �

Kell and van Hoeve explore a variety of MDD representations, including ap-
proximate MDDs that represent a relaxation to the original problem instance,
and also ullage MDDs like the one in Figure 2(b) that exploit bin symmetry by
collapsing nodes with identical ullage multiplicities.

In order to create the MDD, the algorithm maintains a set of nodes whose
children have yet to be constructed, akin to an open set in traditional breadth-
first search. As each node is processed, all possible extensions for each subse-
quent child node are enqueued. A unique table serves to prevent equivalent (and
therefore redundant) nodes from being regenerated. This process continues un-
til all nodes have been expanded, at which point an optimal solution may be
extracted from the MDD. To enable exploratory construction, the ordering of
node expansion is not required to populate complete layers one-by-one. Instead,
a heuristic estimate that resembles nested monte-carlo search [8] is used to guide
search toward the early consideration of favorable solutions: remaining items are
randomly assigned to bins with sufficient available capacity, and nodes that min-
imize the total number of unplaced items are given higher priority. Because the
layers of the MDD are tightly bound to specific items, a static variable ordering
strategy is employed, interleaving the position of large and small items.

Empirical results have shown that the performance of the MDD-based ap-
proach is quite competitive with traditional methods; orders of magnitude im-
provement were observed over an industrial constraint solver, and moderate (but
nevertheless significant) gains were produced in comparison to mixed-integer
programming formulations using CPLEX.

3 Limitations of Conventional and MDD-Based Search

A fundamental challenge that arises in any practical implementation of multidi-
mensional bin packing is the computation of strong lower bounds, i.e., estimating
the minimum number of additional bins ultimately needed to extend a partial
assignment. Even in the decision variant of the problem where precisely m bins
are available, such bounding is critical in determining wasted space and pruning
nodes for which any complete extension is incapable of remaining within the
available resource envelope.

Example: Consider a d-dimensional bin packing instance with m bins
and n = pm + 2 items for some p ≥ 1. For all 1 ≤ i ≤ n − 2 and
1 ≤ k ≤ d, we set si,k to m. For the final two items (sn−1 and sn),
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Fig. 3. An example for which only n− 1 items can be successfully packed into m bins

we set their sizes across all dimensions to m− 1 and 1 respectively. Bin
capacities cj,k are set to pm + 1 for all 1 ≤ j ≤ m and 1 ≤ k ≤ d. By
construction, the combined capacity for this instance appears sufficient
to accommodate all items; for any dimension k, the quantity

∑
j cj,k is

equal to m(pm + 1) = pm2 + m, which is equivalent to the combined
demand across all pm+2 items. However, each bin can accommodate at
most p items of size m if m > 1, requiring at least one unit of wasted
space in all but a single bin. �

The above example is clearly contrived to be infeasible, as demonstrated in
Figure 3 for the case where m = 6 and p = 3. In any partial assignment, only
19 of the 20 items can be packed into the bins without overflow.

In a conventional approach using direct combinatorial search – that is, one
where each of the m branches for an item are issued consecutively (including
the aforementioned CSP and MDD frameworks) – effective lower bounds can
be difficult to compute. Only at leaf nodes in search are all items bound to
individual bins; until this point, the provable amount of wasted space for any
single bin typically cannot be determined. Our pathological example illustrates
an extreme case of this limitation, as the number of partial assignments that
successfully place all but the last two items grows exponentially with p and m:(

pm

p

)
×

(
p(m− 1)

p

)
×

(
p(m− 2)

p

)
× · · · × 1

Even if slightly improved inference rules are adopted, these often depend heavily
on structural properties of the instance. For example, if it were not for our unit-
sized item sn, modulo arithmetic of the kind suggested by Gent and Walsh [13]
could quickly detect that the maximum capacity utilized by any bin is at most
pm. However, in typical bin packing benchmarks produced by random generators
[7], it is unlikely that item sizes will share a large common denominator, and even
less probable when considering the compounding effect of multiple dimensions.
Kell and van Hoeve remove the unused capacity of dead bins if and only if none
of the remaining items will fit; our example demonstrates that this technique is
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Fig. 4. Solving multidimensional bin packing as a set-CSP. Nodes correspond to bins,
branches correspond to item subsets.

of little use if small items exist whose assignment is deferred until the tail end
of search.

4 An Alternative Approach

Since precise calculation of wasted space is difficult for conventional forms of
search, we consider an entirely different solution space for multidimensional bin
packing. Conceptually, our alternative model may be viewed as a variant of a
set-CSP [4,29,5] in which each set variable Sj corresponds to the contents of bin
j, and each value v ∈ Dj corresponds to a complete subset of items (Dj ⊆ 2n).
We impose a constraint Cj,j′ between every pair of set variables Sj and S′j to
ensure that subset contents are disjoint (i.e., Sj ∩ Sj′ = ∅). Finally, we enforce
a constraint over all set variables to ensure that every item is assigned to some
bin in any complete assignment:

⋃
Sj = {x1, . . . , xn}.

Definition: A partial assignment P at depth p in our alternative refor-
mulation of multidimensional bin packing is a sequence of item subsets
(S1, ..., Sp) such that

∑
xi∈S(j) si,k ≤ cj,k for all j ∈ [1, p] and k ∈ [1, d],

and Sj ∩ Sj′ = ∅ for any j �= j′. A complete assignment is any such P
where |P | = m and

⋃
Sj = {x1, . . . , xn}. �

In contrast to the original CSP where the contents of each bin are subject to
change until leaves of search, our reformulation commits to specific complete
subsets as each branch is explored (see Figure 4). The above transformation
to set-CSPs should come as little surprise, since one-dimensional bin packing
constituted one of several key applications motivating early work on the sub-
ject [14]. A similar technique known as bin completion [20,11] remains one of
the best known algorithms for one-dimensional packing and covering problems,
motivating its use in the broader multidimensional case.
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4.1 Dynamic Domain Generation

If the domains of our set variables were to be represented explicitly (and subse-
quently modeled by a generic set-CSP solver2), as many as 2n values reflecting
each possible subset of items would be required for a multidimensional bin pack-
ing problem containing n items. Although it may be possible to enumerate all
such subsets in advance if n is relatively small, this process clearly becomes
intractable for sufficiently large n.

One common method to avoid this exhaustive encoding is to represent the
domain of a set variable S by an interval [L(S), U(S)] expressing its lower and
upper bounds [32]. This is the approach taken in the original Conjunto solver
[14]. However, note that our reformulation embodies a special case of a set-
CSP where in any feasible solution, the set variables’ assignments form a com-
plete partition over the n items [33,4]. Since bin contents must be mutually
exclusive and collectively exhaustive (therefore covering each item xi exactly
once), this enables a specialized implementation that dynamically populates
each value for a set variable Sj on-the-fly through nested recursion. To achieve
this, our search procedure maintains a global set U of as-yet unassigned items
(e.g., items not consumed by previously instantiated set variables) and branches
on subsets selected from this set. Specifically, each item xi ∈ U invokes a
disjunction:

include(xi, Sj) ∨ exclude(xi, Sj)

that is resolved by exploring an inclusion / exclusion tree. Every leaf node of
this tree corresponds to a fully instantiated value for Sj . Partial combinations of
items are tested for feasibility by incrementally subtracting the demand of each
item from an available capacity vector that begins at 〈cj,1, · · · , cj,d〉. Subsets are
pruned whenever the remaining capacity along any dimension becomes negative,
ensuring that only a fraction of the full 2|U| subsets are considered. In this way,
we implicitly ensure that set variables will ultimately assume disjoint values,
and avoid the potential overhead that would otherwise be required to propagate
constraints across their respective domains.

It is useful to compare the order in which partial assignments are expanded
in our reformulation versus the original CSP. Once an item xi is excluded from
subset Sj in the conventional approach, it is immediately committed to inclusion
in some other specific subset Sj′ . In contrast, our implementation effectively
defers the ultimate assignment of xi, taking a least commitment approach and
instead selecting some replacement xi′ for inclusion in Sj . As will be shown in
subsequent sections, this strategy allows substantial inference to be performed
on partial assignments.

2 Support for set variables in modern CP solvers has waned in recent years; for in-
stance, they are no longer modeled in IBM’s ILOG CP Optimizer [31], despite earlier
support in the ILOG Solver (its predecessor).
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4.2 Aggregating Capacities to Improve Inference

The nodes explored while searching our alternative CSP roughly correspond to
the same nodes explored in the CSP formulation (albeit in a different order): in
both cases, combinations of items to bins are considered exhaustively with basic
pruning rules serving to prohibit bin overflow along any partial path.

However, since each partial assignment P = (S1, ..., Sp) in our search space
corresponds to a sequence of complete subsets, our search procedure is prohibited
from retroactively inserting items into previously assigned bins, mandating that
all remaining items must be distributed across only the remaining (uninstanti-
ated) set variables {Sp+1, ..., Sm}. This knowledge can be leveraged to strengthen
the inference performed at intermediate nodes.

Theorem: Consider a partial assignment P = (S1, ..., Sp) that leaves
U = {x1, ..., xn} −

⋃
Sj items unassigned. For any complete (and sat-

isfying) assignment P ′ that descends from P , it must be the case that∑
xi∈U si,k ≤

∑
j∈[p+1,m] cj,k for all k ∈ [1, d]. �

The proof of this theorem is trivial: if there exists any dimension for which
the total amount of remaining demand exceeds the total amount of remaining
capacity, no feasible assignment of items to bins can be achieved that is capable
of respecting all capacity constraints. We use this rule as the basis for a stronger
pruning criterion that aggregates capacities of uninstantiated bins and abandons
search if the cumulative sum of deferred item sizes exceeds this calculation.

Returning to our previous example, we observe that is impossible for search
to populate more than two bins without consuming a nonzero amount of wasted
space, regardless of the ordering of items. In Figure 5(a), the first bin is only
partially occupied, and because the total bin capacity is precisely equal to cumu-
lative item size, this assignment will be pruned immediately. If the unit item is
included in the initial bin, search may descend one additional level to reach the
solution shown in Figure 5(b), but can proceed no further if the limited capacity
of remaining bins are taken into account.

4.3 Pruning Dominated Solutions

As is the case with the classical CSP formulation, our search space prohibits bin
contents from becoming oversubscribed by pruning any intermediate node that
violates the capacity constraints in one or more bins. However, the potential still
remains for a bin to be assigned too few elements. Solutions that needlessly defer
the assignment of viable items are often fruitless, and therefore it is helpful to
explicitly prevent wasted space from being carelessly accumulated.

Example: Consider the trace shown in Figure 4; following the assign-
ment S1 ← {x1, x2, x3}, a (weaker) assignment S1 ← {x1, x2} is sub-
sequently attempted. Provided that both solutions honor all capacity
constraints, the latter partial assignment is clearly dominated by the
former; while it may indeed lead to a feasible solution, any such solution
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Fig. 5. Terminal partial assignments in the reformulation of our toy example. When
the capacity of uninstantiated set variables are aggregated and used for pruning, search
will abort immediately after wasted space is consumed by any bin.

would have been found already by exploring extensions to the assignment
for which S1 also included x3. �

In response, we avoid expanding any search node (S1, ..., Sp) whenever there ex-
ists an item xi excluded from Sj such that

∑
i′∈Sj∪{i} si′,k ≤ cp,k for all k ∈ [1, d].

If such an item exists, the most recently instantiated bin is undersubscribed, and
is therefore dominated by partial assignments considered earlier in search.

4.4 Exploiting Symmetry

The multidimensional bin packing formulation considered in this work makes
no explicit assumption regarding the similarity of bin capacities. However, in
one-dimensional bin packing, it is common to assume that all bins are identical.
Indeed, the benchmarks produced by Kell and van Hoeve [18] assign the same
capacity profile to all m bins, and heavily exploit this property in their MDD
representation by merging nodes with identical ullage multiplicities.

Within our alternative encoding, symmetry can be exploited in a similar man-
ner by forcing one specific unassigned item into the bin currently under consid-
eration. For instance, at the topmost level in search in Figure 4, the inclusion of
item x1 in S1 can be imposed upon all partial assignments, pruning cases such
as S1 ← {x4, x5} whose extensions are isomorphic to assignments previously
considered.

4.5 The Complete Algorithm

In Algorithm 1, we present the complete pseudocode for our approach to mul-
tidimensional bin packing. The recursive function Solve accepts j as the index
of the bin whose contents are being considered, U as the remaining items to
assign, Sj as the items to be included in bin j, and Sj as the items to be
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Algorithm 1: Solve(j, U , Sj , Sj)

Data: j (bin index), U (remaining items to assign), Sj (items included in bin
j), Sj (items excluded from bin j)

Result: SAT or UNSAT
1 begin
2 if ∃k(

∑
i∈Sj

si,k > cj,k) then

3 return UNSAT

// Section 4.24 if ∃k(
∑

i∈Sj
si,k >

∑
j′>j cj′,k) then

5 return UNSAT

6 if U = ∅ then
7 if j = m then
8 return SAT

// Section 4.39 if ∃i∈Sj

∑
i′∈Sj∪{i} si′,k ≤ cj,k then

10 return UNSAT

11 return Solve(j + 1, Sj ,∅,∅)

// Section 4.112 i ← Select(U)

13 if Solve(j, U − {i}, Sj ∪ {i}, Sj) then
14 return SAT

// Section 4.415 if Sj �= ∅ then
16 if Solve(j, U − {i}, Sj , Sj ∪ {i}) then
17 return SAT

18 return UNSAT

excluded from bin j. The top-level call to Solve is invoked with the parame-
ters 〈j, U, Sj , Sj〉 = 〈1, {x1, ..., xn},∅,∅〉. Lines 2-3 and 4-5 check capacity con-
straints for the current and remaining bins, respectively. Lines 6-11 handle the
case where all numbers have been included in (or excluded from) bin j; if there
are no additional bins to complete, a solution has been found and the algorithm
terminates. Otherwise, dominance detection is tested before invoking a recursive
call to establish the contents of subset j + 1.

If there are items in U to be assigned, one is selected (line 12) and recursively
explored in the inclusion branch (lines 13-14) and exclusion branch Sj (lines
15-17). In our implementation, we choose the item whose average size across all
dimensions is largest, as its placement has the largest impact on the bounding
criteria used for pruning. To exploit symmetry, this latter branch is taken only
if Sj is non-empty. If neither of these attempts leads to a satisfying assignment,
the failed partial assignment is abandoned (line 18).

We note that in contrast to the MDD approach, our algorithm avoids the
creation of large or complex data structures, and therefore is not constrained by
memory limitations. Since we consider bin contents dynamically and indepen-
dently, our approach also extends easily to optimization problems with variable
numbers of bins.
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Fig. 6. Hardness profiles for instances having 6 dimensions, 18 items, and 6 bins

5 Experimental Results

In order to evaluate the efficacy of our approach, we compare our algorithm
against the most recently published results for multidimensional bin packing as
reported by Kell and van Hoeve [18]. Our solver is implemented in C++, and all
experiments were executed on a 64-bit 3GHz AMD Opteron Processor. We use
the same test case generator in prior work that accepts parameters 〈d, n,m, β〉,
where d is the number of dimensions, n is the number of items, m is the number
of bins, and β is the so-called bin slack percentage. For every item si, sizes along
each dimension si,k are randomly and uniformly chosen from the range [0, 1000].
All bins are assigned identical capacity vectors such that:

cj,k = �(1 + β/100)×
n∑

i=1

si,k/m�

We begin with the original benchmarks where 〈d, n,m〉 = 〈6, 18, 6〉.3 These
benchmarks assign values to β in the range of 0 to 35, and include 52 instances
for each setting. As shown in Figure 6, our approach dramatically outperforms
the MDD-based solver across all benchmarks. The latter requires more than one
second per instance on average for the hardest problems, whereas our solver con-
sistently consumes negligible runtime (on the order of milliseconds) regardless
of problem difficulty.

Since average runtime provides only limited insight into the performance dis-
tribution exhibited by these algorithms, we produce a runtime profile for both
solvers over all 52 instances at the hardness peak where β = 20%. These pro-
files are shown in Figure 7, which relates the fraction of instances solved with
cumulative solver runtime (note the logarithmic scale). Our approach success-
fully completes the entire suite of problems in less time than is required for the

3 Available for download from
http://www.math.cmu.edu/~bkell/6-18-6-instances.txt
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Fig. 7. Performance profile on the subset of instances having 20% bin slack

MDD-based approach to solve just the first instance. Since our combined run-
time over all problems remains well under one second, these benchmarks should
be classified as trivial, and are unlikely to provide meaningful comparisons for
future studies of multidimensional bin packing.

To obtain a more complete analysis of the runtime behavior of these solvers,
we significantly increased the spectrum of problem sizes by varying n in the range
{18, . . . , 40} and m in the range {6, . . . , 9}. Through empirical observation, we
devised the following formula for the bin-slack percentage β that appears to
maintain a relatively consistent phase transition:

βn,m = 4.53−n/18 ∗ 2(m−6)/3

Results of these experiments are shown in Table 1. The runtime of the MDD-
based solver reaches over a minute for the setting 〈n,m〉 = 〈22, 6〉. This is over
10000× slower than our approach, which requires only ten milliseconds on av-
erage. Problems with larger n are intractable for the MDD solver, which tends
to eclipse its self-imposed 512 MB memory limit after several minutes and is
therefore unable to produce a definitive result for most cases. In contrast, our
algorithm scales to as many as 33 items without exceeding an average runtime
of one second, and nearly doubles the size of problems that can be solved in
under a minute from 21 to 40. Similar behavior is observed for larger values of
m, although the highest achievable n for the MDD solver increases slightly.

6 Related Work

A number of subset-oriented exploration techniques have been developed in prior
work for various incarnations of partitioning [22,23,28], knapsack [10], and one-
dimensional bin packing problems [14,20,21,11]. A recent approach to the steel
mill slab problem [12] enumerates all possible slab designs in a preprocessing
phase, and subsequently encodes these candidates as 0/1 variables in an integer
linear program [15]. The approach bears some resemblance to our formulation,
although a principal reason for its scalability is the presence of color constraints
that severely constrain the space of feasible slab combinations.
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Table 1. Average runtime (in seconds) across problems with varying n and m

m = 6 m = 7 m = 8 m = 9

n Kv’13 Ours Ratio Kv’13 Ours Ratio Kv’13 Ours Ratio Kv’13 Ours Ratio

18 1.457 0.002 904× 0.798 0.002 510× 0.579 0.001 412× 0.368 0.001 292×
19 3.107 0.002 1750× 1.247 0.002 772× 1.000 0.002 439× 0.620 0.002 378×
20 7.323 0.003 2798× 2.783 0.002 1348× 1.915 0.005 349× 0.796 0.002 483×
21 42.75 0.006 7771× 8.750 0.004 1996× 3.317 0.006 597× 2.071 0.003 739×
22 106.6 0.010 10879× 22.91 0.005 4712× 7.635 0.006 1207× 4.005 0.009 439×
23 — 0.008 136.5 0.012 11561× 42.67 0.015 2852× 8.883 0.014 625×
24 — 0.016 — 0.051 133.4 0.017 8061× 45.89 0.035 1305×
25 — 0.033 — 0.046 — 0.046 81.69 0.025 3306×
26 — 0.046 — 0.094 — 0.102 — 0.085

27 — 0.079 — 0.140 — 0.357 — 0.107

28 — 0.065 — 0.256 — 0.337 — 0.185

29 — 0.168 — 0.297 — 0.609 — 0.794

30 — 0.146 — 0.761 — 1.008 — 1.192

31 — 0.351 — 1.120 — 2.085 — 2.749

32 — 0.715 — 1.081 — 2.160 — 3.458

33 — 0.951 — 3.789 — 4.892 — 6.195

34 — 1.511 — 4.628 — 8.638 — 8.074

35 — 2.346 — 6.266 — 16.96 — 13.49

36 — 3.785 — 13.75 — 21.25 — 15.46

37 — 5.798 — 18.30 — 28.80 — 23.95

38 — 14.78 — 30.03 — 26.62 — 51.66

39 — 24.12 — 39.02 — 32.32 — 54.26

40 — 42.68 — 67.14 — 53.91 — 71.28

Several aspects of our implementation can be viewed as employing a variant
of set branching, originally proposed by Kitching and Bacchus [19] for general-
purpose constraint optimization problems. Values of each variable’s domain are
clustered into sets, thereby allowing branch-and-bound to branch on assignments
to these sets rather than on the original individual values. The structure of bin
packing allows our algorithm to adopt a special case of this policy, where all
variables in the classical CSP formulation (i.e., the items) share an identical
domain space (i.e., the bins), and all bins aside from the one currently being
populated are collectively grouped into a single exclusion set.

7 Conclusions

In this paper, we have considered a radically different approach to multidimen-
sional bin packing. In contrast to previous approaches that branch on the as-
signment of individual items, our technique instantiates the contents of bins
sequentially and independently. Our algorithm remains depth-first, yet adopts
a powerful least commitment strategy for individual items when their exclusion
from a bin is attempted. We abandon the use of MDDs, and instead aggregate
capacity over incomplete bins to establish significantly stronger bounds on the
solution quality of a partial assignment. Empirical results have shown that our
approach outperforms the state-of-the-art by several orders of magnitude.
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Abstract. We introduce a propagator for abstract pairs of Sum con-
straints, where the expressions in the sums respect a form of convexity.
This propagator is parametric and can be instantiated for various con-
crete pairs, including Deviation, Spread, and the conjunction of Sum
and Count. We show that despite its generality, our propagator is com-
petitive in theory and practice with state-of-the-art propagators.

1 Introduction

Many constraint problems involve a Sum constraint, along with other con-
straints. It is however well-known that a Sum constraint taken in isolation is not
able to perform a lot of pruning since the estimation of the minimum or maxi-
mum of a sum does not take other constraints into account. Several authors have
studied how to include other constraints (sharing some variables) in the propa-
gator for Sum, either in particular cases (e.g., Spread [9], IncreasingSum [11],
and Sum with cliques [12]), or in general (e.g., ObjectiveSum [15]).

In the present work, we focus on a parametric problem, which can be cast as∑
i∈[1,n]

fi(xi) ≤ f (1)

g ≤
∑

i∈[1,n]
gi(xi) ≤ g (2)

for any n ≥ 1. The fi and gi are functions from integers to integers and the
fi (resp. gi) can differ for each i. In this work, f , g, and g are constants, but
Section 5 shows how to use variables instead. In Section 5, we also consider a
lower bound f on the first sum.

Finding a solution to the conjunction of (1) and (2) is in general NP-complete
as it includes as a special case the knapsack problem. There is however a large
class of fi and gi functions for which either domain consistency or bounds(Z)
consistency (see, e.g., [19] for definitions) can be achieved in polynomial time.
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In this paper, we present a parametric propagator for this class of functions
and show how to instantiate it for various functions fi and gi. We show that the
considered class of problems includes among others the (bounds(Z) consistent)
constraints Deviation [17], Spread [9], and WeightedAverage [3] (with
variable weights and constant values) and the (domain consistent) conjunction
of Linear and Count [13]. In several cases, we match the theoretical complexity
and practical efficiency of previously published specialised propagators.

Our approach for propagating the conjunction of (1) and (2) contains two
parts. First (as discussed in Section 2), we compute a sharp lower bound on∑

i∈[1,n] fi(xi) under constraint (2), together with a witnessing assignment. The
conjunction is feasible if this lower bound, which we call the feasibility bound,
is at most f . To compute this feasibility bound, we introduce new functions
derived from the fi and gi. We show that the feasibility bound can be greedily
computed if the newly introduced functions are discretely convex.

In the second part of the propagator (discussed in Section 3), the domain of
each variable xj is filtered by computing for each value u in its domain a sharp
lower bound on

∑
i∈[1,n] fi(xi) under constraint (2) when xj is assigned u. If

this lower bound is larger than f , then u is removed from the domain of xj . The
lower bound for each pair (xj , u) is computed incrementally from the witnessing
assignment for the feasibility bound thanks to the discrete convexity property.
We also present an improved propagator for an additional property of fj and gj .

The resulting propagator is parametric, depending on the fi and gi. The time
complexity and the achieved level of consistency depend on the shape of the
fi and gi and on the values given to the parameters. We study the complexity
in Section 4 and give some implementation notes. Afterwards, we present in
Section 5 several instantiations of the propagator, including a case study of
Deviation. Finally, Section 6 presents some experimental results showing that
the genericity of our approach is not detrimental to performance.

2 Feasibility Test

Given a variable x, let Dx denote the current domain of that variable. For a func-
tion f and value v, we write f−1(v) for the set of values {u | f(u) = v}. For a
function f and set S, we write f(S) for {f(u) | u ∈ S}. We use xi, vi, fi to repre-
sent single variables, values, and functions, while x, v, f represent the respective
vectors of all variables, values, and functions (e.g., x = 〈x1, x2, . . . , xn〉).

The conjunction of (1) and (2) is satisfiable if and only if the cost (i.e., the
value of the objective function) of an optimal solution to the following problem
is at most f :

minimise
∑

i∈[1,n]
fi(xi)

such that g ≤
∑

i∈[1,n]
gi(xi) ≤ g

xi ∈ Dxi , ∀i ∈ [1, n]

(3)
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We gradually show in the next sub-sections how to compute greedily this cost,
called the feasibility bound, together with a witnessing assignment.

2.1 Problem Reformulation

We reformulate problem (3) in two steps. The first step introduces for each i a
new function hi that captures the relation between fi and gi. The second step
splits the resulting reformulated problem into two subproblems.

First Step. After introducing new variables yi, so that yi = gi(xi) for each i, we
propose the following new problem:

minimise
∑

i∈[1,n]
hi(yi)

such that g ≤
∑

i∈[1,n]
yi ≤ g

yi ∈ gi(Dxi), ∀i ∈ [1, n]

(4)

where we introduce a new function hi : gi(Dxi)→ fi(Dxi) for each i. This func-
tion is defined as hi(v) = min fi(g

−1
i (v)) = min{fi(u) | u ∈ Dxi ∧ gi(u) = v},

that is hi(v) is the smallest value of fi(xi) that can be attained when gi(xi) is
equal to v. Note that the definition of hi depends on the current domain of xi.
We now prove that the feasibility bound can also be computed from problem (4).

Lemma 1. All optimal solutions to problems (3) and (4) have the same cost.

Proof. Let v denote a vector of values for the vector y of variables. For each
value vi, we choose an arbitrary value ui in Dxi such that gi(ui) = vi and
fi(ui) = hi(vi). Such a value ui always exists, by the definition of hi. Then the
vector u is a feasible solution to problem (3) if and only if v is a feasible solution
to problem (4), and they have the same cost. In addition, any other assignment
u′ such that gi(u

′
i) = vi for each i has a cost larger than or equal to the cost of u

and v, by the definition of hi. Hence u is optimal if and only if v is optimal. 	


Second Step. We define a new function, called H , from integers to integers:

H(b) = min

⎧⎨
⎩ ∑

i∈[1,n]
hi(yi)

∣∣∣∣∣∣
∑

i∈[1,n]
yi = b ∧ ∀i ∈ [1, n] : yi ∈ gi(Dxi)

⎫⎬
⎭ (5)

That is, H(b) is the minimum of the sum of the hi(yi) when the sum of the yi
is equal to b. For a given b, we define wb to be an assignment of y such that
b =

∑
i∈[1,n]w

b
i and H(b) =

∑
i∈[1,n] hi(w

b
i ), i.e., an optimal solution to (5). We

call wb a witnessing assignment of b. We propose the following new problem:

minimise H(z)

such that g ≤ z ≤ g
(6)
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Table 1. Several instantiations of fi and gi, and the corresponding hi. The notation
[cond] uses the Iverson bracket and is defined to be 1 if cond is true, and 0 otherwise.

Common Name fi(u) gi(u) hi(v)

Linear ai · u 0

{
ai ·minDxi if ai > 0

ai ·maxDxi if ai ≤ 0

WeightedAverage [3] ai · u u ai · v
Deviation [17] |n · u− n · μ| u |n · v − n · μ|
Spread [9] (n · u− n · μ)2 u (n · v − n · μ)2
Lp-Norm, 0 < p < +∞ |n · u− n · μ|p u |n · v − n · μ|p

Linear and Count [13] ai · u [u ∈ V]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ai ·min (Dxi \V) if v = 0 ∧ ai > 0

ai ·max (Dxi \V) if v = 0 ∧ ai ≤ 0

ai ·min (Dxi ∩V) if v = 1 ∧ ai > 0

ai ·max (Dxi ∩V) if v = 1 ∧ ai ≤ 0
Linear and Maximum ai · u [u ≥ m] (omitted, similar to previous pair)
ModAndDiv (ai > 0) u− ai · �u/ai �u/ai max (0,minDxi −ai · v)

where z is a fresh variable. The feasibility bound can also be computed from
problem (6), as the latter has the same optimal cost as problem (4), and thus as
problem (3): this is shown by replacing H(z) by its definition (5) in the formula-
tion of problem (6). Problems (4) and (6) are more interesting than problem (3)
in three respects. First, it is simpler to reason with only one function per variable
(namely hi) instead of two (namely fi and gi). Second, the domain Dyi , which is
equal to gi(Dxi), might be much smaller than Dxi . Third, introducing H allows
us to compute the feasibility bound in two steps: (i) construct H from the hi,
and (ii) find an optimal solution to (6). This can be done greedily if all hi are
discretely convex.

Definition 1. A function f : A → B, where A,B ⊆ Z, is discretely convex if
1. A is an interval, and
2. ∀v ∈ A : (v − 1) ∈ A ∧ (v + 1) ∈ A⇒ 2 · f(v) ≤ f(v − 1) + f(v + 1).

The notion of discrete convexity is an adaptation of the usual convexity from
the reals to the integers. This notion has been studied in depth, for instance
in [7]. It is also related to the notion of submodular functions on sets [4].

The first condition in Definition 1 restricts in some cases the application of
our approach to domains with no holes. This is discussed further in Section 5.1.

Table 1 presents the fi, gi, and hi for several pairs. The hi are convex for all
those examples. Before providing algorithms, we need to introduce some notions.

2.2 Deltas, Segments, Slopes, Breakpoints, Reasoning on Infinity

Let f : A → B be a function with A,B ⊆ Z. Given some value v in A, we call
right delta (resp. left delta) the increase of f when v increases (resp. decreases)
by 1. Formally: Δ+(f, v) = f(v+ 1)− f(v) and Δ−(f, v) = f(v− 1)− f(v); the
value of Δ+(f, v) (resp. Δ−(f, v)) is +∞ when v + 1 (resp. v − 1) is not in A.
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f(v − 1)

f(v)
f(v + 1)

Δ−(f, v)

Δ+(f, v)

v − 1 v v + 1bp−(f, v) bp+(f, v)
segments

Fig. 1. Illustration of the notions of Section 2.2. Filled points are at breakpoints.

A segment of f is a maximal interval [�, u] of its domain where the (right or
left) delta is constant. Formally:Δ+(f, v) = Δ+(f, v+1) for all v ∈ [�, u−1], with
� ≤ u,Δ+(f, �−1) �= Δ+(f, �), andΔ+(f, u−1) �= Δ+(f, u). The endpoints � and
u of a segment [�, u] of f are called breakpoints of f . The length of a segment
[�, u] is u − �. The slope of a segment [�, u] is Δ+(f, �). Hence the slope of a
function is constant inside any of its segments and changes at its breakpoints.

The domain of f can be uniquely partitioned into its segments, and each value
of the domain belongs to one or two segments. For a value v, the breakpoint on
the right of v, denoted by bp+(f, v), is u if v is in some segment [�, u] with
u �= v, and otherwise undefined, denoted by +∞. Similarly, bp−(f, v) denotes
the breakpoint on the left of v, if any, otherwise −∞.

Let f be a discretely convex function. For any two contiguous segments, the
slope of the former is smaller than the slope of the latter, hence no two segments
have the same slope. Also, Δ+(f, v) = +∞ only for the largest value v in A, as
A is an interval, and Δ−(f, v) = +∞ only for the smallest value v in A.

Figure 1 illustrates these notions on a discretely convex function.
The basic properties of +∞ and −∞ used in our algorithms are, for any

v ∈ Z: −∞ < v < +∞, v + (+∞) = +∞, v + (−∞) = −∞, v − (−∞) = +∞,
v − (+∞) = −∞, min(v,+∞) = v, and v/ +∞ = 0.

2.3 Characterisation of the H Function

When the hi are discretely convex, problem (6) is easy to solve by greedy search,
because H is then also discretely convex and can be calculated efficiently.

Before proving those claims, we need to study the relationship between H(b),
H(b+ 1), and H(b − 1), and their respective witnessing assignments. For any j
and k �= j, the sum wb

1 + · · ·+ (wb
j +1)+ · · ·+ (wb

k − 1) + · · ·+wb
n equals b, and

hence by definition of H (since wb
i are the values that minimise H(b)), we have

H(b) ≤ h1(w
b
1) + · · ·+ hj(w

b
j + 1) + · · ·+ hk(w

b
k − 1) + · · ·+ hn(w

b
n).

Rearranging and cancelling out common terms gives

hk(w
b
k)− hk(w

b
k − 1) ≤ hj(w

b
j + 1)− hj(w

b
j) (7)
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If hj is discretely convex, then we have that hk(w
b
k)− hk(w

b
k − 1) ≤ hj(w

b
j +

1)− hj(w
b
j) ≤ hj(w

b
j + 2)− hj(w

b
j + 1). Thus h1(w

b
1) + · · ·+ hj(w

b
j + 1) + · · ·+

hk(w
b
k)+· · ·+hn(w

b
n) ≤ h1(w

b
1)+· · ·+hj(w

b
j+2)+· · ·+hk(w

b
k−1)+· · ·+hn(w

b
n),

so that adding two to any single wb
j and reducing another wb

k by one to arrive

at the sum b+ 1 will have a higher cost than simply adding one to a single wb
j .

Because each hi is discretely convex, this is true for any increment larger than
one. Hence it is possible to find a witnessing assignment wb+1 for b + 1 from a
witnessing assignment wb for b by increasing any suitable wb

i by one. Similarly
it is possible to find a wb−1 by subtracting one from any suitable wb

i .

Lemma 2. H is discretely convex whenever each hi is discretely convex.

Proof. The domain of each hi is an interval [�i, ui], so that the domain of H is

the interval
[∑

i∈[1,n] �i,
∑

i∈[1,n] ui

]
. We need to show that H(b)−H(b − 1) ≤

H(b+1)−H(b). If wb
i is a witnessing assignment for some b then by the discussion

above there are some k and j such that H(b− 1) = h1(w
b
1) + · · ·+ hk(w

b
k − 1)+

· · ·+hn(w
b
n) and H(b+1) = h1(w

b
1)+ · · ·+hj(w

b
j +1)+ · · ·+hn(w

b
n). Therefore

H(b)−H(b−1) = hk(w
b
k)−hk(w

b
k−1) and H(b+1)−H(b) = hj(w

b
j+1)−hj(w

b
j)

and by (7) H(b)−H(b−1) ≤ H(b+1)−H(b). Hence H is discretely convex. 	


We now show how to calculate H efficiently by giving a characterisation of
its minimum and segments. Here, for any set S and function f , the expression
argmini∈S f(i) returns one (arbitrary) value i ∈ S that minimises f(i).

Lemma 3. A witnessing assignment wb∗ of a value b∗ that minimises H is such
that wb∗

i = argminvi∈gi(Dxi
) hi(vi).

Proof. Ifwb∗ is a witnessing assignment of b∗, then b∗ is equal to
∑

i∈[1,n] w
b∗
i and

H(b∗) =
∑

i∈[1,n] hi(w
b∗
i ). Since each wb∗

i = argminyi∈gi(Dxi
) hi(yi) corresponds

to the minimum value obtainable by hi, it is not possible to reduce the value∑
i∈[1,n] hi(w

b∗
i ) by picking a different value for any wb∗

i . 	


There exist potentially several wb∗ that minimise H . The correctness of our
approach does not depend on a particular choice for those values.

We now characterise the segments of H .

Lemma 4. If wb is a witnessing assignment for b, then Δ+(hi, w
b
i ) ≥ Δ+(H, b)

and Δ−(hi, w
b
i ) ≥ Δ−(H, b) for all i ∈ [1, n].

Proof. If b is increased by one, then one of the wb
i must be increased by one as

discussed previously. To reach the minimum value for b+1, one needs to increase
the value of a variable yk that has the smallest Δ+(hk, w

b
k). So the increase of

H , namely Δ+(H, b), is equal to Δ+(hk, w
b
k), which is smaller than or equal to

Δ+(hi, w
b
i ) for any other i. A similar argument is used for a decrease of b. 	


Lemma 5. The length of each segment of H is equal to the sum of the lengths
of the segments in the hi functions with the same slope.
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Proof. As in the proof of Lemma 4, Δ+(H, b) is equal to a minimal Δ+(hk, w
b
k).

If one wants to increase b by more than one, the increase per unit stays constant
as long as there is at least one variable with slope equal to Δ+(H, b). This defines
a segment of slope Δ+(H, b), whose length is equal to the sum of the lengths of
the segments of all hi functions with the same slope. 	


We can use Lemmas 3 and 5 to construct H efficiently. Section 4 presents two
ways to implement this construction in practice.

2.4 Computing the Feasibility Bound and a Witnessing Assignment

We can now show a case when problem (6) can be solved in a greedy way.

Theorem 1. Problem (6) can be solved greedily if each hi is discretely convex.

Proof. If each function hi is discretely convex, then the function H is also dis-
cretely convex (by Lemma 2) and can be constructed from the hi (by Lemmas 3
and 5). Finding the minimum of a discretely convex function under some bound
constraints can be done greedily, as a local minimum of a discretely convex func-
tion is also a global minimum (see, e.g., Theorem 2.2 in [7]). 	


Given the function H , problem (6) can be solved by first finding b∗ minimising
H , and then greedily increasing or decreasing b∗ if b∗ is not in [g, g]. In addition,

it is useful for the filtering to compute the witnessing assignment wb∗ of b∗.
Thanks to Lemma 4, this can be achieved as in Algorithm 1. From now on,

we simply write w to refer to wb∗ . An assignment w that minimises the value of
H without considering the bounds of b is initially constructed (lines 2–4). If b is
in [g, g], then the initial assignment is the final one. Otherwise the assignment is
iteratively modified in order to satisfy the bounds of b. We assume b < g in line 5
(the case b > g is symmetrical and not shown). Then some wi must be increased
until b is equal to g. This is done in two steps. In lines 6–10, the segment of
H where g lies is found. Its slope is stored in Δmax, and the distance between

bp−(H, g) and g is stored in slack. Those two values allow us then to modify
each wi separately (lines 11–17). For each i, first wi is moved from breakpoint
to breakpoint of hi while the slope of the segment is smaller than Δmax. Next,
if the slope of the segment on the right of wi is equal to Δmax, then wi is moved
further on this segment, without exceeding the remaining slack (line 15).

The algorithm returns the witnessing assignment w (line 20), or “null” if the
constraint is unsatisfiable (line 8), which triggers propagator failure and happens
if there exists no value in the domains of the hi such that b ∈ [g, g].

3 Domain Filtering

To filter the domain of a variable, we extend the reasoning presented in Sec-
tion 2.1. Indeed, variable xj can take the value u if the cost of an optimal
solution to the following problem is smaller than or equal to f :
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Algorithm 1. Greedy algorithm to compute a witnessing assignment

1: function GetWitnessLowerBound(h,H, g, g)
2: for all i ∈ [1, n] do
3: wi := argminv∈gi(Dxi

) hi(v)

4: b :=
∑

i∈[1,n] wi

5: if b < g then

6: while Δ+(H, b) < +∞ and bp+(H, b) < g do

7: b := bp+(H, b)

8: if Δ+(H, b) = +∞∧ b < g then return null

9: Δmax := Δ+(H, b)
10: slack := g − b
11: for all i ∈ [1, n] do
12: while Δ+(hi, wi) < Δmax do
13: wi := bp+(hi, wi)

14: if Δ+(hi, wi) = Δmax and slack > 0 then
15: w′ := min

(
bp+(hi, wi), wi + slack

)
16: slack := slack − wi + w′

17: wi := w′

18: else if b > g then
19: [analogous algorithm]

20: return w

initial bound

sharp bound

modifying w

minimise fj(u) +
∑

i�=j∈[1,n]
fi(xi)

such that g ≤ gj(u) +
∑

i�=j∈[1,n]
gi(xi) ≤ g

xi ∈ Dxi , ∀i �= j ∈ [1, n]

(8)

Problem (8) resembles problem (3) but xj is fixed to u. Hence we can use the
same reformulation as in Section 2.1. We introduce the following new function:

Hj(b) = min

⎧⎨
⎩ ∑

i�=j∈[1,n]
hi(yi)

∣∣∣∣∣∣
∑

i�=j∈[1,n]
yi = b ∧ ∀i �= j ∈ [1, n] : yi ∈ gi(Dxi)

⎫⎬
⎭

That is, Hj(b) is similar to H(b) in (5) but it only uses the functions hi for
i different from j. The optimal cost of problem (8) is the optimal cost of the
following new problem:

minimise fj(u) +Hj(z)

such that g ≤ gj(u) + z ≤ g
(9)

where value u is given and z is the only variable. The result of the following
lemma can be used to compute Hj .
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Lemma 6. The function Hj is discretely convex if all hi are convex. The value
b∗j that minimises Hj is equal to the value b∗ that minimises H minus the value
v∗ that minimises hj. The length of each segment of Hj is equal to the length of
the linear segment of H of the same slope minus the length of the linear segment
of hj of the same slope (if any).

The proof (omitted for space reasons) of this lemma uses similar arguments
to the ones of Lemmas 2 to 5. We show hereafter two ways to use Hj to filter
the domains. The first way is applicable in general (provided Hj is discretely
convex). The second way makes use of an additional property of fj and gj .

3.1 Filtering in the General Case

As several values u of xj can have the same image v through gj, the set of values
in Dxj that are consistent with constraints (1) and (2) can be partitioned as:

⋃
v∈gj(Dxj

)

{
u

∣∣∣∣ gj(u) = v ∧ fj(u) ≤ f − min
g≤z+v≤g

Hj(z)

}

That is, for each v, we have the set of values u in g−1
j (v) such that the optimal

cost of problem (9) is no larger than f , hence which are consistent. The domain
of xj can be made domain consistent by filtering the following unary constraint
for each value v ∈ gj(Dxj ):

gj(xj) = v ⇒ fj(xj) ≤ f − min
g≤z+v≤g

Hj(z) (10)

The function Hj being discretely convex, one can compute ming≤z+v≤g Hj(z)

(which is independent from a particular u) incrementally from a value v to v+1.
In addition, if v is equal to wj , the value of yj in the witnessing assignment
w computed in Section 2.4, then Hj(

∑
i�=j∈[1,n] wi) + hj(wj) = H(

∑
i∈[1,n]wi).

This leads to Algorithm 2, which is used to filter the domain of xj for the values
v larger than wj . This algorithm traverses hj and Hj . The only complication
is that in some cases (captured by the Boolean variable decb defined in lines 6
and 11) reaching an optimal solution to ming≤z+v≤g Hj(z) involves decrement-

ing b, which is the current value of z (line 9). Domain filtering according to
constraint (10) takes place in lines 5 and 10. The algorithm ends when the op-
timal cost of problem (9) for v + 1 is larger than f (line 7). A complementary
algorithm is used for the values smaller than wj . Algorithm 2 achieves domain
consistency provided the hi are discretely convex. Section 5.1 discusses more
precisely the link between the shape of the hi and the consistency level.

3.2 Filtering in a Special Case

We now present a special case to avoid useless computation. Let us define kj(v) =
max fj(g

−1
j (v)), that is kj(v) is the largest value fj(u) for u such that gj(u) = v.

The function kj is similar to hj but the ‘max’ operator replaces the ‘min’ one.
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Algorithm 2. Filtering algorithm for values larger than wj (general case)

1: function ForwardFilter(j,h,w,H, f)
2: Hj := computeHj(H,hj)
3: b :=

∑
i∈[1,n] wi − wj

4: v := wj

5: Filter(gj(xj) = v ⇒ fj(xj) ≤ f −Hj(b))
6: decb := b+ v ≥ g ∨Δ−(Hj , b) < 0
7: while Hj(b) + hj(v) + (if decb then Δ−(Hj , b) else 0) +Δ+(hj , v) ≤ f do
8: v := v + 1
9: if decb then b := b− 1
10: Filter(gj(xj) = v ⇒ fj(xj) ≤ f −Hj(b))
11: decb := b+ v ≥ g ∨Δ−(Hj, b) < 0

12: Filter(gj(xj) ≤ v)

If hj(v) ≥ kj(v − 1) for any value v larger than v∗ = argminu∈gj(Dxj
) hj(u)

and hj(v) ≥ kj(v + 1) for any v smaller than v∗, then there exists a value vmax

such that for all values v ∈ gj(Dxj) smaller than vmax (but larger than or equal

to wj), all values u ∈ g−1
j (v) are consistent, and for all v larger than vmax,

there is no consistent u. We then need not consider all values but only find vmax

and filter according to the two constraints gj(xj) ≤ vmax and gj(xj) = vmax ⇒
fj(xj) ≤ f −ming≤z+vmax≤g Hj(z). A similar argument holds for a vmin.

Finding vmax amounts to computing the largest value v such that hj(v) +
ming≤z+v≤g Hj(z) ≤ f . As hj and Hj are both convex, this problem can be
solved by incrementally increasing v until the bound is reached. Algorithm 3
presents the steps to find vmax. This algorithm is very similar to Algorithm 2,
but it does not need to iterate over all the values v, only over the ones that are
at a breakpoint of hj or Hj . The increment is stored in � (lines 6, 11, and 12).

An example of the special case is when gj is the identity function. Then gj is
injective. Hence hj = kj and, by convexity, hj is non-decreasing right of v∗ and
non-increasing left of v∗.

4 A Parametric Propagator and Its Complexity

Our propagator is generic in the sense that it works correctly for any functions fi
and gi that respect the condition of Theorem 1. However, we call it a parametric
propagator, because rather than resorting to a fully generic implementation, we
use hook functions and procedures that need to be provided. This allows us to
get a lower time complexity. The parameters to provide for an instantiation are
shown in Table 2: they are used in Algorithms 1 to 3. We now study the time
and space complexity of our propagator, based on a few implementation notes.

Feasibility Test. We implement the H function as a linked list of segments, plus
two integers for the values b∗ and H(b∗). The value of H(b) is never queried for
arbitrary values of b, but only for b∗ and for incrementally modified values of b,
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Algorithm 3. Filtering algorithm for values larger than wj (special case)

1: function ForwardFilter(j,h,w,H, f)
2: Hj := computeHj(H,hj)
3: b :=

∑
i∈[1,n] wi − wj

4: v := wj

5: decb := b+ v ≥ g ∨Δ−(Hj , b) < 0
6:  := min

{
b− bp−(Hj , b), bp+(hj , v)− v, if decb then +∞ else g − b− v

}
7: while Hj(b)+hj(v)+  · ((if decb then Δ−(Hj , b) else 0)+Δ+(hj , v)) ≤ f do
8: v := v + 
9: if decb then b := b− 
10: decb := b+ v ≥ g ∨Δ−(Hj, b) < 0
11:  :=min

{
b−bp−(Hj , b), bp+(hj , v)−v, if decb then +∞ else g − b− v

}
12:  := (f −Hj(b)− hj(v))/(Δ

+(hj , v) + (if decb then Δ−(Hj , b) else 0))
13: v := v + 
14: Filter(gj(xj) ≤ v)
15: Filter(gj(xj) = v ⇒ fj(xj) ≤ f −Hj(b))

Table 2. Parameters to instantiate

Functions Procedures

argminv∈gi(Dxi
) hi(v) Filter(gi(xi) ≤ v)

Δ+(hi, v) Filter(gi(xi) ≥ v)
Δ−(hi, v) Filter(gi(xi) = v ⇒ fi(xi) ≤ u)
bp+(hi, v)
bp−(hi, v)

so that H(b) can also be computed incrementally. This is also true for hi, and
is reflected by the absence of hi(u) from the parameters in Table 2. Using that
linked list and some bookkeeping, the computation ofH(b), Δ+(H, b), Δ−(H, b),
bp+(H, b), and bp−(H, b) can be performed in constant time for all values of b
used in the algorithms.

Constructing the linked list of H can be done in various ways. A first way is
to traverse each function hi in turn and to build H incrementally by traversing
the linked list in parallel. This takes O(n · (s(h) · p+ s(H))) time, where s(h) is
the maximum number of segments among the hi functions, s(H) is the number
of segments of H , and p is the highest complexity of the parametric functions.
A second way is to collect all the segments from all the functions in a list, to
sort this list, and to construct H by traversing the list. This takes O(n · s(h) ·
(p + log(n · s(h)))) time and is asymptotically better than the first way when
s(H) > s(h) · log(n · s(h)).

Algorithm 1 computes a witnessing assignment in O(s(H) + n · s(h)) time.
This is dominated by the prior construction of H , as s(H) ≤ n · s(h).

Filtering. We implement Algorithm 2 to run in O(r(h) · c) time, where r(h) =∣∣gj(Dxj )
∣∣ and c is the highest complexity of the procedures in Table 2. The

segments of Hj are computed on the fly from hj and H . The sum in line 3 of
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Table 3. Time complexity of the different versions of the propagator

Propagator Time complexity

Traversing, general case O(n · (s(h) · p+ s(H) + r(h) · c)
Sorting, general case O(n · (s(h) · p+ s(h) · log(n · s(h)) + r(h) · c))
Traversing, special case O(n · (s(h) · p+ s(H) + c))
Sorting, special case O(n · (s(h) · p+ s(h) · log(n · s(h)) + s(H) + c))

Algorithm 2 is actually provided by our implementation of H , so it need not be
recomputed each time. Algorithm 3 takes O(s(h) + s(H) + c) time.

The Whole Propagator. The time complexity of our propagator is obtained by
multiplying the filtering complexity by n (the number of variables) and adding
the complexity of computingH . Table 3 summarises this for the different versions
of the propagator. Note that s(h) ≤ r(h) ≤ |Dx| and s(H) ≤ n · s(h).

The space complexity of our propagator is O(n + s(H)), as we need to store
a constant amount of information (namely wi) for each variable and the whole
function H (which amounts to a constant amount for each of its segments). The
functions hi and Hj are not stored explicitly.

5 Instantiating the Parametric Propagator

We now show how our propagator can be used for particular pairs of constraints.
Note that if hi is a linear function, then −hi is also discretely convex. This

means that one can put a lower bound f on
∑

i∈[1,n] fi(xi) and run the propa-

gator twice, first with constraint (1) being
∑

i∈[1,n] fi(xi) ≤ f , then with con-

straint (1) being −
∑

i∈[1,n] fi(xi) ≤ −f .
Our propagator can also be extended to handle variables as the upper and

lower bounds of the constraints. In such a case, the largest values in the domains
of f and g, and the smallest values in the domains of f and g are used in the
propagator. In addition, the other bound of each variable can be constrained by
the H function. Only bounds(Z) consistency can be achieved on those variables.

5.1 Instantiations and Consistency

We now discuss for which functions fi and gi our propagator can be used and
how it affects the consistency of the propagator. The required discrete convexity
of the hi functions puts a strong restriction on the shape of the gi. Recall that
gi(Dxi) must be an interval by the first condition in Definition 1. Note that the
discrete convexity must be respected for all Dxi that arise during the search.

If Dxi can be any set of integers, then the only instantiations of gi satisfying
the first condition of Definition 1 are those whose image contains only two values,
which must be consecutive. We call these characteristic functions. In such a case,
the second condition of Definition 1 is always respected and the fi can be any
(integer) functions.
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If Dxi can only be an interval, then the class of gi functions satisfying the first
condition of Definition 1 is more general, namely all functions where

|gi(u)− gi(u+ 1)| ≤ 1 ∀u, u+ 1 ∈ Dxi (11)

If there are holes in a domain Dxi , then Dxi can be relaxed to the smallest con-
taining interval without losing the correctness of the approach. Some propagation
may be lost, but this compromise is often acceptable for global constraints. In
particular, we do not achieve domain consistency, but bounds(Z) consistency.

Among others, the identity function respects equation (11). If gi is the iden-
tity function, then fi must be discretely convex, because hi = fi. For other
instantiations of gi satisfying (11), the restrictions on fi are varying.

5.2 Example Instantiations

We now show that many existing (pairs of) constraints fit our parametric prob-
lem, optionally extended with a lower bound f and with variable bounds. Table 1
presents several instantiations of fi and gi, together with the derived hi. We
discuss below various constraints and their time complexity. The concrete com-
plexities are derived from the complexities in Table 3 by replacing s(h), s(H),
r(h), p, and c by suitable values derived from the hi.

If gi(u) = 0 for all i, then the second constraint vanishes and we can use our
propagator for a single sum constraint, e.g., a linear inequation. Our parametric
propagator is however too general for this simple case, as it runs in O(n · logn)
time, while a dedicated bounds(Z) consistent propagator runs in O(n) time [6].

The case gi(u) = u covers many interesting constraints already presented in
the literature. In particular, it covers the bounds(Z) consistent propagators for
the statistical constraints Deviation and Spread with a fixed rational mean.
Interestingly, it can be generalised to any Lp-norm, with p > 0 (except L+∞).
One can also give a different penalty for deviations over and under the average.
The time complexity of our propagator is O(n) for Deviation, which matches
the best published propagator [17]. For Spread (and higher norms), the time
complexity of our propagator is O(n · d), with d =

∣∣∪i∈[1,n] Dxi

∣∣. This is in-
comparable to the complexity O(n · logn) of the best published propagator [9].
Note that our propagator achieves bounds(Z) consistency, which has only been
achieved very recently in the case of Spread [18].

As an example, we show in Table 4 the instantiation of the parameters for
Deviation (symmetric parameters are omitted). For Deviation, hi has (up to)
three segments, joining at the breakpoints �μ� and �μ�.

The case gi(u) = u and fi(u) = ai ·u can be used to model a restricted version
of the WeightedAverage constraint [3], where the weight are variables, the
values are constants, and the average must take an integer value. The time
complexity of our bounds(Z) consistent propagator is O(n · logn), though the
dedicated propagator runs in O(n) time.

If gi is a characteristic function, then fi can be any function. A characteristic
function may be used to count, as is the case of the Count family of constraints
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Table 4. Expressions for instantiating a propagator for Deviation. The conditions
are not always mutually exclusive and are to be evaluated in top-down order.

Parameter Instantiation

argminv∈gi(Dxi
) hi(v)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
!μ" if minDxi ≤ μ ≤ maxDxi ∧!μ" − μ < μ− �μ 
�μ if minDxi ≤ μ ≤ maxDxi ∧!μ" − μ ≥ μ− �μ 
minDxi if μ < minDxi

maxDxi if μ > maxDxi

Δ+(hi, v)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
+∞ if v = maxDxi

−n if v < �μ 
n · (!μ"+ �μ )− 2 · n · μ if v = �μ ∧ �μ �= !μ"
n if v ≥ !μ"

bp+(hi, v)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
+∞ if v = maxDxi

min (maxDxi , �μ ) if v < �μ 
!μ" if v = �μ ∧ �μ �= !μ"
maxDxi if v ≥ !μ"

Filter(gi(xi) ≤ v) Filter(xi ≤ v)

Filter(gi(xi) = v ⇒ Filter(|n · v − n · μ| > u ⇒ xi �= v)
mmmmmmmifi(xi) ≤ u)

(e.g., Among [1,2]). But characteristic functions can also be used to represent
the Maximum constraint. Indeed, the constraint m = maxi∈[1,n] xi can be de-
composed as ∀i ∈ [1, n] : m ≥ xi ∧

∑
1∈[1,n](if xi ≥ m then 1 else 0) ≥ 1.

Table 1 gives the definition of hi for Linear and Exactly, in which case our
propagator is domain consistent and runs in O(n · (logn+ p+ c)) time, as does
the dedicated propagator presented in [13].

Many other pairs can be instantiated. Note that the fi or gi functions can
differ for each i, i.e., one can mix in the same sum terms of different forms (e.g.,
some linear and some quadratic), as long as each function hi is discretely convex.

6 Experimental Evaluation

To show that the genericity of our propagator is not detrimental not only to
asymptotic complexity (as seen in Section 5) but also to performance, we pro-
pose a small experiment to compare custom propagators with instantiations of
our parametric propagator. We selected the Deviation [17] and Spread [18]
constraints as their bounds(Z)-consistent propagators are freely available in the
distribution of OscaR [8]. We performed the comparison on the 100 instances
of the Balanced Academic Curriculum Problem (BACP) that were introduced
in [16],1 modelled as in the OscaR distribution (we only slightly modified the
search heuristic to make it deterministic, so that the search trees are the same).

1 They are available from http://becool.info.ucl.ac.be/resources/bacp

http://becool.info.ucl.ac.be/resources/bacp
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For Deviation, we used the 44 instances that are solved to optimality in
more than 1 second (to avoid measurement errors) but less than 12 hours (3
instances timed out). When using our parametric propagator, the time to solve
an instance is on average only 7% longer than when using the custom propagator
(with a standard deviation of 5%). The numbers of nodes in the search tree and
calls to the propagator are exactly the same for both propagators due to their
common level of consistency and the deterministic search procedure.

For Spread, we used the 33 instances that are solved to optimality in more
than 1 second but less than 12 hours (2 instances timed out). When using our
parametric propagator, the time to solve an instance is on average 28% shorter
than when using the custom propagator (with a standard deviation of 10%).
Again, the numbers of nodes in the search tree and calls to the propagator
are exactly the same for both propagators. This improvement is explained by a
different algorithmic approach, which is in our favour when the domains of the
variables are small, as is the case for the BACP instances.

Our Java implementation is available at http://www.it.uu.se/research/

group/astra/software/convexpairs and a package for replication at
http://recomputation.org [5].

7 Conclusion, Related Work, and Future Work

We have studied how to propagate pairs of sum constraints that respect a dis-
crete convexity condition. From this condition, we have derived a parametric
propagator, which can be instantiated to be competitive with previously pub-
lished propagators, often matching their time complexity, despite its generality.

Our approach of first computing a feasibility bound and then incrementally
adapting it is not new and has been used in the design of several propagators.
Among others, this is the case for the constraints covered by our own propagator.
However, the novelty of our work is that for the first time we abstract from the
details of each constraint to focus on their common properties. This is close in
spirit to what has been done with SeqBin [10] for another class of constraints.

When the gi are characteristic functions, our conjunction of sum constraints
can be represented using CostGCC [14]. However, this requires the explicit
representation of all variable-value pairs and induces a larger time complexity
than our propagator. On the other hand, CostGCC can handle more than one
counting constraint in one propagator.

There are a number of open questions we plan to address in the future. Can we
automatically generate the instantiation of the parameters from the definitions
of the fi and gi? Can we make an incremental propagator that has a better
time complexity along a branch of the search tree? Can we extend the approach
to functions that take more than one argument, say fi(xi, yi) for variables yi
distinct from each other, or fi(xi, y) for a shared variable y? Can we deal with
more than two sum constraints in one propagator? Beside when there are holes
in the domains, when is it correct and useful to use a relaxation of hi when this
function is not discretely convex?

http://www.it.uu.se/research/group/astra/software/convexpairs
http://www.it.uu.se/research/group/astra/software/convexpairs
http://recomputation.org
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Abstract. We can break symmetry by eliminating solutions within each sym-
metry class. For instance, the Lex-Leader method eliminates all but the smallest
solution in the lexicographical ordering. Unfortunately, the Lex-Leader method
is intractable in general. We prove that, under modest assumptions, we cannot
reduce the worst case complexity of breaking symmetry by using other order-
ings on solutions. We also prove that a common type of symmetry, where rows
and columns in a matrix of decision variables are interchangeable, is intractable
to break when we use two promising alternatives to the lexicographical order-
ing: the Gray code ordering (which uses a different ordering on solutions), and
the Snake-Lex ordering (which is a variant of the lexicographical ordering that
re-orders the variables). Nevertheless, we show experimentally that using other
orderings like the Gray code to break symmetry can be beneficial in practice as
they may better align with the objective function and branching heuristic.

1 Introduction

Symmetry occurs in many combinatorial problems. For example, when coloring a
graph, we can permute the colors in any proper coloring. Symmetry can also be in-
troduced by modelling decisions (e.g. using a set of finite domain variables to model a
set of objects will introduce the symmetries that permute these variables). A common
method to deal with symmetry is to add constraints which eliminate symmetric solu-
tions (e.g. [1–13]). Unfortunately, breaking symmetry by adding constraints to elim-
inate symmetric solutions is intractable in general [2]. More specifically, deciding if
an assignment is the smallest in its symmetry class for a matrix with row and col-
umn symmetries is NP-hard, supposing rows are appended together and compared lex-
icographically. There is, however, nothing special about appending rows together or
comparing solutions lexicographically. We could use any total ordering over assign-
ments. For example, we could break symmetry with the Gray code ordering. That is,
we add constraints that eliminate symmetric solutions within each symmetry class that
are not smallest in the Gray code ordering. This is a total ordering over assignments
used in error correcting codes. Such an ordering may pick out different solutions in
each symmetry class, reducing the conflict between symmetry breaking, problem con-
straints, objective function and the branching heuristic. The Gray code ordering has
some properties that may be useful for symmetry breaking. In particular, neighbouring
assignments in the ordering only differ at one position, and flipping one bit reverses the
ordering of the subsequent bits.
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As a second example, we can break row and column symmetry with the Snake-Lex
ordering [14]. This orders assignments by lexicographically comparing vectors con-
structed by appending the variables in the matrix in a “snake like” manner. The first
row is appended to the reverse of the second row, and this is then appended to the third
row, and then the reverse of the fourth row and so on. As a third example, we can break
row and column symmetry by ordering the rows lexicographically and the columns with
a multiset ordering [15]. This is incomparable to the Lex-Leader method.

We will argue theoretically that breaking symmetry with a different ordering over
assignments cannot improve the worst case complexity. However, we also show that
other orderings can be useful in practice as they pick out different solutions in each
symmetry class. Our argument has two parts. We first argue that, under modest assump-
tions which are satisfied by the Gray code and Snake-Lex orderings, we cannot reduce
the computational complexity from that of breaking symmetry with the lexicograph-
ical ordering which considers variables in a matrix row-wise. We then prove that for
the particular case of row and column symmetries, breaking symmetry with the Gray
code or Snake-Lex ordering is intractable (as it was with the lexicographical ordering).
Many dynamic methods for dealing with symmetry are equivalent to posting symmetry
breaking constraints “on the fly” (e.g. [16–24]).

Hence, our results have implications for such dynamic methods too.

2 Background

A symmetry of a set of constraints S is a bijection σ on complete assignments that
maps solutions of S onto other solutions of S. Many of our results apply to the more
restrictive definition of symmetry which considers just those bijections which map in-
dividual variable-value pairs [25]. However, this more general definition captures also
conditional symmetries [26]. In addition, a few of our results require this more general
definition. In particular, Theorem 3 only holds for this more general definition1. The set
of symmetries form a group under composition. Given a symmetry groupΣ, a subset Π
generates Σ iff any σ ∈ Σ is a composition of elements from Π . A symmetry group Σ
partitions the solutions into symmetry classes (or orbits). We write [A]Σ for the symme-
try class of solutions symmetric to the solution A. Where Σ is clear from the context,
we write [A]. A set of symmetry breaking constraints is sound iff it leaves at least one
solution in each symmetry class, and complete iff it leaves at most one solution in each
symmetry class.

We will study what happens to symmetries when problems are reformulated onto
equivalent problems. For example, we might consider the Boolean form of a problem
in which Xi = j maps onto Zij = 1. Two sets of constraints, S and T over possibly
different variables are equivalent iff there is a bijection between their solutions. Suppose
Ui and Vi for i ∈ [1, k] are partitions of the sets U and V into k subsets. Then the two
partitions are isomorphic iff there are bijections π : U �→ V and τ : [1, k] �→ [1, k]
such that π(Ui) = Vτ(i) for i ∈ [1, k] where π(Ui) = {π(u) | u ∈ Ui}. Two symmetry
groups Σ and Π of constraints S and T respectively are isomorphic iff S and T are
equivalent, and their symmetry classes of solutions are isomorphic.

1 We thank an anonymous reviewer for pointing this out.
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3 Using Other Orderings

The Lex-Leader method [2] picks out the lexicographically smallest solution in each
symmetry class. For every symmetry σ, it posts a lexicographical ordering constraint:
〈X1, . . . , Xn〉 ≤lex σ(〈X1, . . . , Xn〉) where X1 to Xn is some ordering on the vari-
ables in the problem. Many static symmetry breaking constraints can be derived from
such Lex-Leader constraints. For example, DOUBLELEX constraints to break row and
column symmetry can be derived from them [27]. As a second example, PRECEDENCE

constraints to break the symmetry due to interchangeable values can also be derived
from them [5, 8]. Efficient algorithms exist to propagate such lexicographical con-
straints (e.g. [28–30]).

We could, however, break symmetry by using another ordering on assignments like
the Gray code ordering. We define the Gray code ordering on Boolean variables. For
each symmetry σ, we could post an ordering constraint:

〈X1, . . . , Xn〉 ≤Gray σ(〈X1, . . . , Xn〉)

Where the k-bit Gray code ordering is defined recursively as follows: 0 is before 1,
and to construct the k + 1-bit ordering, we append 0 to the front of the k-bit ordering,
and concatenate it with the reversed k-bit ordering with 1 appended to the front. For
instance, the 4-bit Gray code orders assignments as follows:

0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,

1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000

The Gray code ordering is well founded. Hence, every set of complete assignments will
have a smallest member under this ordering. This is the unique complete assignment
in each symmetry class selected by posting such Gray code ordering constraints. Thus
breaking symmetry with Gray code ordering constraints is sound and complete.

Proposition 1. Breaking symmetry with Gray code ordering constraints is sound and
complete.

In Section 6, we propose a propagator for the Gray code ordering constraint. We
cannot enforce the Gray code ordering by ordering variables and values, and using a
lexicographical ordering constraint. For example, we cannot map the 2-bit Gray code
onto the lexicographical ordering by simply re-ordering variables and values. To put it
another way, no reversal and/or inversion of the bits in the 2-bit Gray code will map it
onto the lexicographical ordering. The 2-bit Gray code orders 00, 01, 11 and then 10.
We can invert the first bit to give: 10, 11, 01 and then 00. Or we can invert the second
bit to give: 01, 00, 10, and then 11. Or we can invert both bits to give: 11, 10, 00, and
then 01. We can also reverse the bits to give: 00, 10, 11, and then 01. And we can then
invert one or both bits to give: 10, 00, 01, and then 10; or 01, 11, 10, and then 00; or
11, 01, 00, and then 10. Note that none of these re-orderings and inversions is the 2-bit
lexicographical ordering: 00, 01, 10, and then 11.
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4 Complexity of Symmetry Breaking

We will show that, under some modest assumptions, we cannot make breaking sym-
metry computationally easier by using a new ordering like the Gray code ordering.
Our argument breaks into two parts. First, we observe how the symmetry of a problem
changes when we reformulate onto an equivalent problem. Second, we argue that we
can map onto an equivalent problem on which symmetry breaking is easier.

Proposition 2. If a set of constraints S has a symmetry group Σ, S and T are equiv-
alent sets of constraints, π is any bijection between solutions of S and T , and Π ⊆ Σ
then:

(a) πΣπ−1 is a symmetry group of T ;
(b) Σ and πΣπ−1 are isomorphic symmetry groups;
(c) if Π generates Σ then πΠπ−1 generates πΣπ−1.

We will use this proposition to argue that symmetry breaking with any ordering
besides the lexicographical ordering is intractable. We consider only simple orderings.
In a simple ordering, we can compute the position of any assignment in the ordering in
polynomial time, and given any position in the ordering we can compute the assignment
at this position in polynomial time. We now give our main result.

Proposition 3. Given any simple ordering �, there exists a symmetry group such that
deciding if an assignment is smallest in its symmetry class according to � is NP-hard.

Proof. Deciding if an assignment is smallest in its symmetry class according to ≤lex is
NP-hard [2]. Since � and ≤lex are both simple orderings, there exist polynomial func-
tions f to map assignments onto positions in the ≤lex ordering, and g to map positions
in the� ordering to assignments. Consider the mapping π defined by π(A) = g(f(A)).
Now π is a permutation that is polynomial to compute which maps the total ordering of
assignments of ≤lex onto that for�. Similarly, π−1 is a permutation that is polynomial
to compute which maps the total ordering of assignments of � onto that for ≤lex. Let
Σrc be the row and column symmetry group. By Theorem 2, the problem of finding the
lexicographical least element of each symmetry class for Σrc is equivalent to the prob-
lem of finding the least element of each symmetry class according to � for πΣrcπ

−1.
Thus, for the symmetry group πΣrcπ

−1 deciding if an assignment is smallest in its
symmetry class according to � is NP-hard. �

It follows that there exists an infinite family of symmetry groups such that checking
a constraint which is only satisfied by the smallest member of each symmetry class is
NP-hard. Note that the Gray code and Snake-Lex orderings are simple. Hence, break-
ing symmetry with either ordering is NP-hard for some symmetry groups. Note that
we are not claiming that deciding if an assignment is smallest in its symmetry class
is NP-complete. First, we would need to worry about the size of the input (since we
are considering the much larger class of symmetries that act on complete assignments
rather than on literals). Second, to decide that an assignment is the smallest, we are also
answering a complement problem (there is no smaller symmetric assignment). This will
take us to DP-completeness or above.



Breaking Symmetry with Different Orderings 549

5 Breaking Matrix Symmetry

We next consider a common type of symmetry. In many models, we have a matrix
of decision variables in which the rows and columns are interchangeable [31–33]. We
will show that breaking row and column symmetry specifically is intractable with the
Gray code and the Snake-Lex orderings, as it is with the lexicographical ordering that
considers the variables in a row-wise order.

Proposition 4. Finding the smallest solution up to row and column symmetry for the
Snake-Lex ordering is NP-hard.

Proof. We reduce from the problem of finding the Lex-Leader solution of a matrix B.
Let B be an n ×m matrix of Boolean values. W.l.o.g. we assume B does not contain
a row of only ones since any such row can be placed at the bottom of the matrix. We
embed B in the matrix M such that finding σ(M), denoted M ′, the smallest row and
column symmetry of M in the Snake-Lex ordering is equivalent to finding the Lex-
Leader of B. We ensure that even rows in the Snake-Lex smallest symmetric solution
of M are taken by dummy identical rows. Then in odd rows, where Snake-Lex moves
from the left to the right along a row like Lex does, we embed the Lex-Leader solution
of B.

Let z be the maximum number of zeros in any row of B. We constructM with 2n+1
rows and (z + 2) + (z + 1) + m columns so that it contains three sets of rows. The
first set consists of a single row that contains z + 2 zeros followed by (z + 1) + m
ones. The second set contains n identical rows with z + 2 +m ones followed by z + 1
zeros in each row. The third set of rows contains n rows such that at the ith row the first
(z+2) positions are ones, the next m positions are the ith row from B and the last z+1
positions are ones again. Schematic representation of M is shown at Figure 1(a).

We determine positions of rows and columns that must be fixed in M ′ up to permu-
tation of identical rows and columns. The first row of M has to be the first row of M ′

as no other row contains z + 2 zeros. Note that this also fixes the position of columns
from 1 to z + 2 in M to be the first columns in the M ′. Note also that these columns
are identical and each of them contains the zero in the first row only.

One of the rows in the second set has to be the second row of M ′, as none of the
rows that embed rows from B contains z + 1 zeros. As we move from the right to the
left on even rows, this also makes sure that last z +1 columns from M must be the last
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Fig. 1. (a) Construction of M (b) Partial construction of M ′. The first and all even rows are fixed.
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columns in M ′. We summarise that at this point the first two rows are fixed and the first
z + 2 columns and the last z + 1 columns in M ′ must be equal to a permutation of the
first z + 2 identical columns and the last z + 1 identical columns in M , respectively.

By assumption, B does not contain rows with all ones. Moreover, only rows that
embed rows from B can have the value zero at columns from (z+2)+1 to (z+2)+m
in M ′. Hence, a row from the third set that embeds a row from B has to be the third
row in M ′. We do not specify which row it is at this point. The fourth row has to be
again a row from the second set as any of remaining rows from the second set has z+1
zeros in the last z + 1 columns in M ′ while any row that embeds B has at most z
zeros. We can repeat this argument for the remaining rows. A schematic representation
of the positions of rows from the first and second sets are shown in Figure 1(b). Note
that the first and all even rows in M ′ are fixed. The only part of M ′ not yet specified is
the ordering of odd rows of m columns from (z + 2) + 1 to (z + 2) + m. These are
exactly all rows from B. Hence, finding M ′ is reduced to ordering of this set of rows
and columns that embed B. Now, all columns from (z + 2) + 1 to (z + 2) + m are
interchangeable, all odd rows except the first are interchangeable, and all elements of
M ′ except elements of B are fixed by construction. As the Snake-Lex ordering goes
from the left to the right on odd rows like the Lex ordering, finding M ′ is equivalent to
finding the Lex-Leader of B �

To show that finding the smallest row and column symmetry in the Gray code or-
dering is NP-hard, we need a technical lemma about cloning columns in a matrix. We
use rowwise ordering in a matrix. Suppose we clone each column in a n×m Boolean
matrix B to give the matrix Bc. Let Bc

gl be the smallest row and column symmetry of
Bc in the Gray code ordering.

Lemma 1. Any original column of B is followed by its clone in Bc
gl ignoring permuta-

tion of identical original columns.

Proof. By contradiction. Suppose there exists an element Bc
gl[j, i + 1] such that the

original column i and the next column i + 1 are different at the jth row. We denote by
k the [j, i + 1] element of Bc

gl in its row-wise linearization. We ignore the rows from
j + 1 to n at this point as they are not relevant to this discrepancy.

Each pair of columns coincide on the first j rows for the first i − 1 columns and on
the first j − 1 rows for the columns from i to m. We conclude that (1) i is odd and
i+1 is even; (2) the number of ones between the first and the (k− 2)th positions in the
linearization of Bc

gl is even as each value is duplicated; (3) the clone of the ith column
cannot be among the first i − 1 columns as each such column is followed by its clone
by assumption. Hence, the clone of the ith column is among columns from i+ 2 to m.

Suppose the clone of the ith column is the pth column. Note that the pth column
must coincide with the i + 1th column at the first j − 1 rows. We consider two cases.
In the first case, Bc

gl[j, i] = 1 and Bc
gl[j, i + 1] = 0. Note that the total number of ones

at the positions from 1 to k − 1 is odd as we have one in the position k − 1 and the
number of ones in the first k − 2 positions is even. Next we swap the (i + 1)th and pth
columns in Bc

gl. This will not change the first k − 1 elements in the linearization as the
pth column must coincide with the i + 1th column at the first j − 1 rows. Moreover,
this swap puts 1 in position k. As the number of ones up to the (k− 1)th position is odd



Breaking Symmetry with Different Orderings 551

then 1 goes before 0 at position k in the Gray code ordering. Hence, by swapping the
(i+ 1)th and pth columns we obtain a matrix that is smaller than Bc

gl in the Gray code
ordering. This is a contradiction. In the second case, Bc

gl[j, i] = 0 and Bc
gl[j, i+1] = 1.

Note that the total number of ones at positions 1 to k − 1 in the linearization is even as
we have zero at the position k− 1 and the number of ones in the first k − 2 positions is
even. Therefore, 0 precedes 1 at position k in the Gray code ordering. By swapping the
(i+ 1)th and pth columns we obtain a matrix that is smaller than Bc

gl in the Gray code
ordering as 0 appears at the position k instead of 1. This is a contradiction. �

Proposition 5. Finding the smallest solution up to row and column symmetry for the
Gray code ordering is NP-hard.

Proof. We again reduce from the problem of finding the Lex-Leader solution of a
matrix B. We clone every column of B and obtain a new matrix Bc. Let Bc

gl be the
smallest row and column symmetry of Bc in the Gray code ordering. Lemma 1 shows
that each original column is followed by its clone in Bc

gl. Next we delete all clones by
removing every second column. We call the resulting matrix Bl. We prove that Bl is
the Lex-Leader of B by contradiction. Suppose there exists a matrix M which is the
Lex-Leader of B that is different from Bl. Hence, M is also the Lex-Leader of Bl. We
find the first element M [j, i] where Bl[j, i] �= M [j, i] in the row-wise linearization of
M and Bl, so that Bl[j, i] = 1 and M [j, i] = 0. We denote by k the position of the
[j, i] element of M in its row-wise linearization. We clone each column of M once and
put each cloned column right after its original column. We obtain a new matrix M c. We
show that M c is smaller than Bc

gl in the Gray code ordering to obtain a contradiction.
As Bl[j, i] = 1 and M [j, i] = 0 then Bc

gl[j, 2i − 1] = 1 and M c[j, 2i − 1] = 0
because the matrices Bc

gl and M c are obtained from Bl and M by cloning each column
and putting each clone right after its original column. As Bl and M coincide on the first
k− 1 positions then Bc

gl and M c coincide in the first 2k− 2 positions. By transforming
Bl and M to Bc

gl and M c, we duplicated each value in positions from 1 to k−1. Hence,
the total number of ones in positions from 1 to 2k − 2 in Bc

gl[j, i] and M c[j, i] is even.
Therefore, the value zero precedes the value one at position 2k − 1 in the Gray code
ordering. By assumption, the value in the position 2k−1 in Bc

gl, which is Bc
gl[j, 2i−1],

is 1, and the position 2k − 1 in M c, which is M c[j, 2i− 1], is 0. Hence, M c is smaller
than Bc

gl in the Gray code ordering. �

We conjecture that row and column symmetry will be intractable to break for other
simple orderings. However, each such ordering may require a new proof.

6 Other Symmetry Breaking Constraints

Despite these negative theoretical results, there is still the possibility for other orderings
on assignments to be useful when breaking symmetry in practice. It is interesting there-
fore to develop propagation algorithms for different orderings. Propagation algorithms
are used to prune the search space by enforcing properties like domain consistency. A
constraint is domain consistent (DC) iff when a variable is assigned any value in its
domain, there exist compatible values in the domains of the other variables.
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6.1 Gray Code Constraint

We give an efficient encoding for the new global constraint
Gray([X1, . . . , Xn], [Y1, . . . , Yn]) that ensures 〈X1, . . . , Xn〉 is before or equal
in position to 〈Y1, . . . , Yn〉 in the Gray code ordering where Xi and Yj are 0/1
variables. We encode the transition relation of an automaton with 0/1/-1 state variables,
Q1 to Qn+1 that reads a sequence 〈X1, Y1, . . . , Xn, Yn〉 and ensures that the two
sequences are ordered appropriately. We consider the following decomposition where
1 ≤ i ≤ n:

Q1 = 1, Qi �= 1 ∨Xi ≤ Yi, Qi �= −1 ∨Xi ≥ Yi,

Xi = Yi ∨Qi+1 = 0, Xi = 0 ∨ Yi = 0 ∨Qi+1 = −Qi.

We can show that this decomposition not only preserves the semantics of the con-
straint but also does not hinder propagation.

Proposition 6. Unit propagation on this decomposition enforces domain consistency
on Gray([X1, . . . , Xn], [Y1, . . . , Yn]) in O(n) time.

Proof. (Correctness) Qi = 0 as soon as the two vectors are ordered correctly. Qi = 1
iff Xi and Yi are ordered in the Gray code ordering with 0 before 1. Qi = −1 iff the ith
bits, Xi and Yi are ordered in the Gray code ordering with 1 before 0. Qi+1 stays the
same polarity as Qi iff Xi = Yi = 0 and flips polarity iff Xi = Yi = 1.

(Completeness) This follows from the completeness of CNF encoding of the corre-
sponding automaton [34] and the fact that unit propagation on this set of constraints
enforces DC on a table constraint that encodes the transition relation.

(Complexity) There areO(n) disjuncts in the decomposition. Hence unit propagation
takes O(n) time. In fact, it is possible to show that the total time to enforce DC down a
branch of the search tree is O(n). �

Note that this decomposition can be used to break symmetry with the Gray code
ordering in a SAT solver.

6.2 Snake-Lex Constraint

For row and column symmetry, we can break symmetry with the DOUBLELEX con-
straint that lexicographically orders rows and columns, or the SNAKELEX constraint.
This is based on the smallest row and column permutation of the matrix according
to an ordering on assignments that linearizes the matrix in a snake-like manner [14].
The (columnwise) SNAKELEX constraint can be enforced by a conjunction of 2m− 1
lexicographical ordering constraints on pairs of columns and n−1 lexicographical con-
straints on pairs of intertwined rows. To obtain the rowwise SNAKELEX constraint,
we transpose the matrix and then order as in the columnwise SNAKELEX. Note that
DOUBLELEX and SNAKELEX only break a subset of the row and colum symmetries.
However, they are very useful in practice. It was shown in [12], that enforcing DC on
the DOUBLELEX constraint is NP-hard. Hence we typically decompose it into sepa-
rate row and column constraints. Here, we show that enforcing DC on the SNAKELEX

constraint is also NP-hard. It is therefore also reasonable to propagate SNAKELEX by
decomposition.
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Proposition 7. Enforcing DC on the SNAKELEX constraint is NP-hard.

Proof. (Sketch) A full proof is in the online technical report. Let X be a n by m
matrix of Boolean variables. The main idea is to embed X in to a specially constructed
matrix in such a way that enforcing DC on the DOUBLELEX constraint on X (which we
already know is NP-hard) is equivalent to enforcing DC on the SNAKELEX constraint
on this larger matrix. �

7 Experimental Results

We tested two hypotheses that provide advice to the modeller when breaking symmetry.

1. other orderings besides the lexicographical ordered can be effective when breaking
symmetry in practice;

2. symmetry breaking should align with the branching heuristic, and with the objec-
tive function.

All our experiments report the time to find an optimal solution and prove it optimal.
We believe that optimisation is often a more realistic setting in which to illustrate the
practical benefits of symmetry breaking, than satisfaction experiments which either find
one or all solutions. Breaking symmetry in optimisation problems is important as we
must traverse the whole search space when proving optimality. All our experiments used
the BProlog 7.7 constraint solver. This solver took second place in the ASP 2011 solver
competition. The three sets of experiments took around one CPU month on a MacBook
Pro with an Intel Core i5 2 core 2.53 GHz processor, with 4GB of memory. The three
domains were chosen as representative of optimisation problems previously studied in
symmetry breaking. We observed similar results in these as well as other domains.

7.1 Maximum Density Still Life Problem

This is prob032 in CSPLib [35]. This problem arises in Conway’s Game of Life, and
was popularized by Martin Gardner. Given a n by n submatrix of the infinite plane, we
want to find and prove optimal the pattern of maximum density which does not change
from generation to generation. For example, an optimal solution for n = 3 is:

• •
• •
• •

This is a still life as every live square has between 2 and 3 live neighbours, and every
dead square does not have 3 live neighbours. We use the simple 0/1 constraint model
from [36]. This problem has the 8 symmetries of the square as we can rotate or reflect
any still life to obtain a new one. Bosch and Trick argued that “. . . The symmetry embed-
ded in this problem is very strong, leading both to algorithmic insights and algorithmic
difficulties. . . ”.
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Our first experiment used the default search strategy to find and prove optimal the
still life of maximum density for a given n. The default strategy instantiates variables
row-wise across the matrix. Our goal here is to compare the different symmetry break-
ing methods with an “out of the box” solver. We then compare the impact of the branch-
ing heuristic on symmetry breaking. We broke symmetry with either the lexicographical
or Gray code orderings, finding the smallest (lex, gray) or largest (anti-lex, anti-gray)
solution in each symmetry class. In addition, we linearized the matrix either row-wise
(row), column-wise (col), snake-wise along rows (snake), snake-wise along columns
(col-snake), or in a clockwise spiral (spiral). Table 1 gives results for the 20 different
symmetry breaking methods constructed by using 1 of the 4 possible solution orderings
and the 5 different linearizations, as well with no symmetry breaking (none).

Table 1. Backtracks required to find and prove optimal the maximum density still life of size n
by n using the default branching heuristic. Column winner is in emphasis.

Symmetry breaking n = 4 5 6 7 8

none 176 1,166 12,205 231,408 5,867,694
gray row 91 446 5,702 123,238 2,507,747

anti-lex row 84 424 5,473 120,112 2,416,266
anti-gray col-snake 68 500 5,770 72,691 2,332,085

gray spiral 86 541 6,290 120,051 2,311,854
gray snake 80 477 5,595 120,601 2,264,184

anti-lex col-snake 79 660 4,735 66,371 2,254,325
anti-lex spiral 81 507 6,174 119,262 2,241,660
anti-lex col 74 718 3,980 68,330 2,215,936

anti-lex snake 68 457 5,379 117,479 2,206,189
lex spiral 48 434 4,025 90,289 2,028,624

lex col-snake 77 359 5,502 76,400 2,003,505
lex col 80 560 4,499 83,995 2,017,935
lex row 33 406 2,853 87,781 1,982,698

lex snake 35 407 2,965 86,331 1,980,498
anti-gray col 70 522 5,666 75,930 1,925,613

gray col 65 739 3,907 87,350 1,899,887
gray col-snake 62 693 3,833 82,736 1,880,506
anti-gray row 26 269 2,288 38,476 1,073,659

anti-gray spiral 27 279 2,404 40,224 1,081,006
anti-gray snake 28 262 2,203 38,383 1,059,704

We make some observations about these results. First, the Lex-Leader method (lex
row) is beaten by many methods. For example, the top three methods all use the anti-
Gray code ordering. Second, lex tends to work better than anti-lex, but anti-gray better
than gray. We conjecture this is because anti-gray tends to align better with the maxi-
mization objective than gray, but anti-lex is too aggressive as the maximum density still
life can have more dead cells than alive cells. Third, although we eliminate all 7 non-
identity symmetries, the best method is only about a factor 6 faster than not breaking
symmetry at all.

To explore the interaction between symmetry breaking and the branching heuristic,
we report results in Table 2 using branching heuristics besides the default row-wise
variable ordering. We used the best symmetry breaking method for the default row-
wise branching heuristic (anti-gray snake), the worst symmetry breaking method for
the default branching heuristic (gray row), a standard method (lex row), as well as no
symmetry breaking (none). We compared the default branching heuristic (row heuristic)
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Table 2. Backtracks required to find the 8 by 8 still life of maximum density and prove optimality
for different branching heuristics and symmetry breaking constraints. Overall winner is in bold.

Branching/SymBreak none gray row lex row anti-gray snake

spiral-out heuristic 196,906,862 24,762,297 194,019,848 222,659,696
spiral-in heuristic 65,034,993 18,787,751 12,662,207 9,292,164
constr heuristic 5,080,541 2,816,355 3,952,445 8,590,077
degree heuristic 6,568,195 2,024,955 6,528,018 7,053,908

col-snake heuristic 5,903,851 1,895,920 1,849,702 2,127,122
col heuristic 5,867,694 2,212,104 1,634,016 1,987,864

snake heuristic 5,903,851 1,868,303 2,043,473 1,371,200
row heuristic 5,867,694 2,507,747 1,982,698 1,059,704

with branching heuristics that instantiate variables column-wise (col heuristic), snake-
wise along rows (snake heuristic), snake-wise along columns (col-snake heuristic), in
a clockwise spiral from top left towards the middle (spiral-in heuristic), in an anti-
clockwise spiral from the middle out to the top left (spiral-out heuristic), by order of
degree (degree heuristic), and by order of the number of attached constraints (constr
heuristic). Note that there is no value in reporting results for domain ordering heuristics
like fail-first as domains sizes are all binary.

We make some observations about these results. First, the symmetry breaking
method with the best overall performance (anti-gray snake + row heuristic) had the
worst performance with a different branching heuristic (anti-gray snake + spiral-out
heuristic). Second, we observed good performance when the branching heuristic aligned
with the symmetry breaking (e.g. anti-gray snake + snake heuristic). Third, a bad com-
bination of branching heuristic and symmetry breaking constraints (e.g. anti-gray snake
+ spiral-out heuristic) was worse than all of the branching heuristics with no symmetry
breaking constraints. Fourth, the default row heuristic was competitive. It was best or
not far from best in every column.

7.2 Low Autocorrelation Binary Sequences

This is prob005 in CSPLib [35]. The goal is to find the binary sequence of length n with
the lowest autocorrelation. We used a standard model from one of the first studies into
symmetry breaking [19]. This model contains a triangular matrix of 0/1 decision vari-
ables, in which the sum of the kth row equals the kth autocorrelation. Table 3 reports
results to find the sequence of lowest autocorrelation and prove it optimal. We used
the default variable ordering heuristic (left2right) that instantiates variables left to right
from the beginning of the sequence to the end. The model has 7 non-identity symme-
tries which leave the autocorrelation unchanged. We can reverse the sequence, we can
invert the bits, we can invert just the even bits, or we can do some combination of these
operations. We broke all 7 symmetries by posting the constraints that, within its sym-
metry class, the sequence is smallest in the lexicographical or Gray code orderings (lex,
gray) or largest (anti-lex, anti-gray). In addition, we also considered symmetry breaking
constraints that took the variables in reverse order from right to left (rev), alternated the
variables from both ends inwards to the middle (outside-in), and from the middle out to
both ends (inside-out).

We make some observations about these results. First, the best two symmetry break-
ing methods both look at variables starting from the middle and moving outwards to
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Table 3. Backtracks required to find the n bit binary sequence of lowest autocorrelation and prove
optimality with the default branching heuristic

Symmetry breaking n = 12 14 16 18 20 22 24

none 2,434 9,487 36,248 126,057 474,915 1,725,076 7,447,186
anti-gray outside-in 2,209 6,177 18,881 92,239 310,473 1,223,155 4,966,068

gray outside-in 1,351 5,040 19,152 68,272 350,790 903,441 4,526,114
lex outside-in 869 3,057 11,838 43,669 262,935 557,790 3,330,931

gray 704 2,400 10,158 36,854 158,080 468,317 3,048,723
lex 707 2,408 10,178 36,885 158,132 468,390 3,047,241

gray rev 699 1,790 9,892 25,551 147,911 329,897 2,706,466
anti-lex outside-in 1,262 2,704 14,059 67,848 179,219 544,116 2,579,981

anti-gray 1,036 2,226 9,889 45,375 167,916 606,977 2,436,236
anti-lex 1,522 3,087 10,380 51,162 281,789 920,543 2,415,736
lex rev 634 1,751 7,601 23,218 127,438 299,877 2,160,463

anti-lex rev 549 1,707 9,398 32,638 117,367 398,822 2,092,787
gray inside-out 662 1,582 6,557 25,237 89,365 248,135 1,667,262
lex inside-out 640 1,549 6,478 25,049 88,978 247,558 1,665,054
anti-gray rev 1,007 1,661 6,894 29,689 86,198 312,038 1,422,693

anti-gray inside-out 412 1,412 5,934 22,942 82,673 245,259 1,271,986
anti-lex inside-out 629 1,320 4,558 19,811 138,337 291,050 927,321

Table 4. Backtracks required to find the 22 bit sequence of lowest autocorrelation and prove
optimality with different branching heuristics and symmetry breaking constraints

Branching/SymBreak none anti-gray gray lex anti-gray anti-lex
outside-in inside-out inside-out

left2right heuristic 1,725,076 1,223,155 468,317 468,390 245,259 291,050
right2left heuristic 1,725,076 322,291 329,897 299,877 224,540 269,628

degree heuristic 2,024,484 603,857 329,897 400,228 500,415 268,173
constr heuristic 2,024,484 1,624,765 349,025 313,817 1,097,303 297,616

inside-out heuristic 1,786,741 2,787,164 1,406,831 1,055,918 326,938 268,206
outside-in heuristic 2,053,179 364,469 284,417 284,526 2,044,042 2,767,059

both ends (inside-out). By comparison, symmetry breaking constraints that reverse this
ordering of variables (outside-in) perform poorly. We conjecture this is because the
middle bits in the sequence are more constrained, appearing in more autocorrelations,
and so are more important to decide early in search. Second, although we only elimi-
nate 7 symmetries, the best method offers a factor of 8 improvement in search over not
breaking symmetry.

To explore the interaction between symmetry breaking and branching heuristics, we
report results in Table 4 to find the optimal solution and prove optimality using different
branching heuristics. We used the best two symmetry breaking methods for the default
left to right branching heuristic (anti-gray inside-out, and anti-lex inside-out), the worst
symmetry breaking method for the default branching heuristic (anti-gray outside-in), a
standard symmetry breaking method (lex), the Gray code alternative (gray), as well as
no symmetry breaking (none). We compared the default branching heuristic (left2right
heuristic) with branching heuristics that instantiate variables right to left (right2left
heuristic), alternating from both ends inwards to the middle (outside-in heuristic), from
the middle alternating outwards to both ends (inside-out heuristic), by order of degree
(degree heuristic), and by order of the number of attached constraints (constr heuristic).
Note that all domains are binary so there is again no value for a heuristic like ff that
considers domain size.
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We make some observations about these results. First, the best overall performance is
observed when we break symmetry with the anti-Gray code ordering (anti-gray inside-
out + right2left heuristic). Second, we observe better performance when the symmetry
breaking constraint aligns with the branching heuristic than when it goes against it (e.g.
anti-gray outside-in + outside-in heuristic is much better than anti-gray outside-in +
inside-out heuristic). Third, the default heuristic (left2right) is again competitive.

7.3 Peaceable Armies of Queens

The goal of this optimisation problem is to place the largest possible equal-sized armies
of white and black queens on a chess board so that no white queen attacks a black
queen or vice versa [37]. We used a simple model from an earlier study of symmetry
breaking [38]. The model has a matrix of 0/1/2 decision variables, in which Xij = 2 iff
a black queen goes on square (i, j), Xij = 1 iff a white queen goes on square (i, j), and
0 otherwise. Note that our model is now ternary, unlike the binary models considered
in the two previous examples. However, the Gray code ordering extends from binary
to ternary codes in a straight forward. Similarly, we can extend the decomposition to
propagate Gray code ordering constraints on ternary codes.

Table 5 reports results to find the optimal solution and prove optimality for peace-
able armies of queens. This model has 15 non-identity symmetries, consisting of any
combination of the symmetries of the square and the symmetry that swaps white queens
for black queens. We broke all 15 symmetries by posting constraints to ensure that we
only find the smallest solution in each symmetry class according to the lexicographi-
cal or Gray code orderings (lex, gray), or the largest solution in each symmetry class
according to the two orders (anti-lex, anti-gray). We also considered symmetry break-
ing constraints that take the variables in row-wise order (row), in column-wise order
(col), in a snake order along the rows (snake), in a snake order along the columns (col-
snake), or in a clockwise spiral (spiral). We again used the default variable ordering that
instantiates variables in the lexicographical row-wise order.

We make some observations about these results. First, finding the largest solution in
each symmetry class (anti-gray and anti-lex) is always better than finding the smallest
(gray and lex). We conjecture that this is because symmetry breaking lines up better
with the objective of maximizing the number of queens on the board. Second, sym-
metry breaking in a “conventional” way (lex, row) is beaten by half of the symmetry
breaking methods. In particular, all 10 methods which find the largest solution up to
symmetry in the Gray order (anti-gray) or lexicographical ordering (anti-lex) beat the
“conventional” method (lex row). Third, ordering the variables row-wise in the sym-
metry breaking constraint is best for lex, but for every other ordering (anti-lex, gray,
anti-gray) ordering variables row-wise is never best. In particular, anti-lex spiral beats
anti-lex row and all other anti-lex methods, gray snake beats gray row and all other
gray methods, and anti-gray col beats anti-gray row and all other anti-gray methods.
Fourth, a good symmetry breaking method (e.g. anti-gray col) offers up to a 12-fold
improvement over not breaking the 15 non-identity symmetries.

To explore the interaction between symmetry breaking and branching heuristics, we
report results in Table 6 using different branching heuristics. We used the best symmetry
breaking method for the default row-wise branching heuristic (anti-gray col), the worst
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Table 5. Backtracks required to solve the n by n peaceable armies of queens problem to optimal-
ity with the default branching heuristic

Symmetry breaking n = 3 4 5 6 7 8

none 19 194 2,588 37,434 679,771 19,597,858
lex col-snake 13 98 1,014 8,638 199,964 5,299,787

lex col 23 87 1,042 10,792 198,032 5,197,013
gray col 26 101 1,118 9,763 214,391 5,008,279

gray col-snake 13 100 1,059 8,973 205,453 4,877,014
gray spiral 18 104 913 10,795 169,725 4,690,071
lex spiral 18 93 887 10,694 169,293 4,674,458
gray row 19 73 680 6,975 116,725 3,705,591

gray snake 19 81 685 7,070 117,489 3,683,558
lex snake 19 80 661 7,043 117,590 3,682,438
lex row 19 73 679 6,880 115,999 3,652,269

anti-gray spiral 8 43 466 4,381 108,214 2,402,049
anti-gray snake 8 47 472 4,333 106,317 2,367,290
anti-gray row 8 44 452 4,326 105,837 2,357,024

anti-lex col-snake 18 59 560 4,513 70,950 2,346,875
anti-lex col 18 57 485 4,373 69,484 2,291,512
anti-lex row 9 29 315 3,417 101,530 2,037,336

anti-lex snake 9 34 314 3,366 100,472 2,010,354
anti-lex spiral 9 30 326 3,432 105,717 2,007,586

anti-gray col-snake 19 40 471 4,061 71,079 1,709,744
anti-gray col 19 40 385 4,317 70,632 1,698,492

symmetry breaking method for the default branching heuristic (lex col-snake), a stan-
dard method (lex row), the Gray code alternative (gray row), as well as no symmetry
breaking (none). We compared the same branching heuristics as with the maximum den-
sity still life problem. As domains are now not necessarily binary, we also included the
ff heuristic that order variables by their domain size tie-breaking with the row heuristic
(ff heuristic). Given the good performance of the spiral and ff heuristics individually, we
also tried a novel heuristic that combines them together, branching on variables by order
of the domain size and tie-breaking with the spiral-in heuristic (ff-spiral heuristic).

Table 6. Backtracks required to solve the 8 by 8 peaceable armies of queens problem to optimality
for different branching heuristics and symmetry breaking constraints

Branching/SymBreak none lex col-snake gray row lex row anti-gray col
col-snake heuristic 20,209,357 4,270,637 6,372,404 5,836,975 7,363,488

col heuristic 19,597,858 4,384,086 6,338,413 5,775,781 6,811,345
spiral-out heuristic 8,196,693 4,894,264 5,099,899 5,126,074 6,478,506

degree heuristic 19,597,858 3,129,599 4,216,463 4,343,792 6,351,547
snake heuristic 20,209,357 5,261,095 4,258,903 4,221,336 1,946,556
constr heuristic 7,305,061 2,757,360 2,650,590 2,645,054 1,789,444
row heuristic 19,597,858 5,299,787 3,705,591 3,652,269 1,698,492
ff heuristic 12,826,856 3,371,419 2,495,788 2,521,351 1,309,529

ff-spiral heuristic 13,400,485 2,447,867 3,147,237 2,162,657 1,222,607
spiral-in heuristic 15,577,982 1,787,653 2,387,067 2,430,499 1,193,988

We make some observations about these results. First, the best symmetry breaking
constraint with the default branching heuristic (anti-gray col + row heuristic) was either
very good or very bad with the other branching heuristics. It offers the best overall
performance in this experiment (viz. anti-gray col + spiral-in heuristic), and is the best
of all the symmetry breaking methods for 5 other heuristics. However, it also the worst
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of all the symmetry breaking methods with 4 other heuristics. Second, aligning the
branching heuristic with the symmetry breaking constraint at best offers middle of the
road performance (e.g. lex row + row heuristic) but can also be counter-productive
(e.g. anti-gray col + col heuristic). Third, the spiral-in heuristic offer some of the best
performance. This heuristic provided the best overall result, and was always in the top 2
for every symmetry breaking method. Recall that the spiral-in heuristic was one of the
worst heuristics on the maximum density still life problem. We conjecture that this is
because it delays constraint propagation on the still life problem constraints but not on
the constraints in the peaceable armies of queens problem. Fourth, a bad combination
of branching heuristic and symmetry breaking constraints is worse than not breaking
symmetry if we have a good branching heuristic (e.g. none + constr heuristic beats
anti-gray col + col-snake heuristic).

These results support both our hypotheses. Other orderings besides the simple lex-
icographical ordering can be effective for breaking symmetry, and symmetry breaking
should align with both the branching heuristic and the objective function. Unfortunately,
as the last example demonstrated, the interaction between problem constraints, symme-
try breaking and branching heuristic can be complex and difficult to predict. Overall,
the Gray code ordering appears useful. Whilst it is conceptually similar to the lexi-
cographical ordering, it looks at more than one bit at a time. This is reflected in the
automaton for the Gray code ordering which has more states than that required for the
lexicographical ordering.

8 Conclusions

We have argued that in general breaking symmetry with a different ordering over as-
signments than the usual lexicographical ordering does not improve the computational
complexity of breaking with symmetry. Our argument had two parts. First, we argued
that under modest assumptions we cannot reduce the worst case complexity from that of
breaking symmetry with a lexicographical ordering. These assumptions are satisfied by
the Gray code and Snake-Lex orderings. Second, we proved that for the particular case
of row and column symmetries, breaking symmetry with the Gray code or Snake-Lex
ordering is intractable (as it was with the lexicographical ordering). We then explored
algorithms to break symmetry with other orderings. In particular, we gave a linear time
propagator for the Gray code ordering constraint, and proved that enforcing domain
consistency on the SNAKELEX constraint, like on the DOUBLELEX constraint, is NP-
hard. Finally, we demonstrated that other orderings have promise in practice. We ran
experiments on three standard benchmark domains where breaking symmetry with the
Gray code ordering was often better than with the Lex-Leader or Snake-Lex methods.
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Abstract. We propose a new filtering algorithm for the cumulative constraint.
It applies the Edge-Finding, the Extended-Edge-Finding and the Time-Tabling
rules in O(kn log n) where k is the number of distinct task heights. By a proper
use of tasks decomposition, it enforces the Time-Tabling rule and the Time-Table
Extended-Edge-Finding rule. Thus our algorithm improves upon the best known
Extended-Edge-Finding propagator by a factor of O(log n) while achieving a
much stronger filtering.

1 Introduction

Scheduling problems consist of deciding when a task should start and which resource
should execute it. Many side constraints can enrich the problem definition. For instance,
a precedence constraint can force a task to complete before another can start. The need
to cope with side constraints makes constraint programming a very attractive tool since
it is handy to specify extra requirements in the problem without tweaking the scheduling
algorithms provided by the constraint solver.

The CUMULATIVE constraint encodes a large variety of scheduling problems. It al-
lows the tasks to request a portion of a cumulative resource. Tasks can execute concur-
rently as long as the workload is below the capacity of the resource.

There exist multiple techniques to filter the cumulative constraint. Most of these
techniques are filtering rules that reason over a time interval and that deduce the relative
positions between the tasks or the position relative to a given time point. Among the
popular rules, there are the not-first/not-last [1], the Time-Tabling [2,3,4,5], the Edge-
Finding [6,7], the Extended-Edge-Finding [8], and the Energetic Reasoning rule [9].
The later rule dominates them all except for the not-first/not-last. Vilı́m [10] proposes
to combine the Edge-Finding rule to the Time-Tabling rule to obtain a level of filtering
greater than what is obtained by individually applying the Edge-Finding and Time-
Tabling. He calls this new technique the Timetable Edge Finding. Schutt et al. [11]
combines the technique with the use of nogoods and obtain impressive results.

We propose an algorithm that performs both Edge-Finding and Extended-Edge-
Finding filtering. It is largely inspired by Vilı́m’s Edge-Finder [6] and is mostly an
extension of it. We also propose an algorithm that performs Time-Tabling and Time-
Table Extended-Edge-Finding, using the pruning rules from Vilı́m [10]. However, our
algorithm differs from [10] in three points: 1) the algorithm we present performs Time-
Tabling as well as Time-Table Extended Edge-Finding; 2) when the number of distinct
task heights is constant, the new algorithm runs in time O(n log n); 3) both algorithms
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are non-idempotent but the new algorithm guaranties to perform some filtering on all
tasks for which the Edge-Finding, Extended-Edge Finding, Time-Tabling, and Time-
Table Extended-Edge-Finding rules apply.

2 Preliminaries

We consider a set I of n non-preemptive tasks. A task i ∈ I is specified by its earliest
starting time (esti), its latest completion time (lcti), its processing time (pi), and its
height (hi). From the previous attributes, one can compute the earliest completion time
(ecti) of a task i with the relation ecti = esti +pi and its latest starting time (lsti) with
the relation lsti = lcti−pi. The energy (ei) of a task i is the amount of consumption of
the resource during its execution and satisfies ei = pihi. We extend this notation to a
subset of tasks Ω ⊆ I as follows.

estΩ = min
i∈Ω

esti lctΩ = max
i∈Ω

lcti eΩ =
∑
i∈Ω

ei (1)

A cumulative resource is characterized by its capacity C. A task i starts at time si and
executes during pi units of time. The task consumes hi units of the cumulative resource
over the time period [si, si + pi). Solving a cumulative scheduling problem consists of
finding, for each task i ∈ I, the starting times si such that esti ≤ si ≤ lsti and such
that at any time t, the cumulative usage of the resource does not exceed C.∑

i∈I|t∈[si,si+pi)

hi ≤ C ∀ t ∈ Z (2)

Deciding whether there exists a solution to the cumulative scheduling problem is
NP-Complete, even for the disjunctive case where C = 1.

The CUMULATIVE constraint encodes the cumulative scheduling problem (CuSP).
This constraint restrains the starting times to satisfy Equation (2). It takes as parame-
ter the vector of starting time variables, the vector of processing times, the vector of
heights, and the resource capacity. The earliest starting times and latest completion
times are encoded in the domains of the starting time variables by setting dom(Si) =
[esti, lsti].

CUMULATIVE([S1, . . . , Sn], [p1, . . . , pn], [h1, . . . , hn], C) (3)

2.1 Slack, E-Feasibility and Energy Envelope

For a given time interval [a, b), let Ω = {i ∈ I | a ≤ esti ∧ lcti ≤ b}, the slack
(SlΩ) is the remaining energy of the resource within the interval once all tasks in Ω are
processed.

SlΩ = C(b − a)− eΩ (4)

A CuSP is said to be energy-feasible (E-Feasible) if it has no interval of negative slack.
The envelope or energy envelope of a task i (Envi), is a measure of the potential

consumed energy of the resource up to the completion of i. It takes into account the full



564 P. Ouellet and C.-G. Quimper

resource capacity prior to the starting time of task i regardless of its effective usage. We
extend the definition of the envelope to a subset of tasks Ω ⊆ I.

Envi = Cesti + ei EnvΩ = max
Θ⊆Ω

(CestΘ + eΘ) (5)

2.2 Edge-Finding

Edge-Finding aims at finding necessary orderings within the tasks and deducing related
time-bound adjustments. The filtering usually occurs in two steps. The first step detects
a relation of precedence Ω � i where Ω ⊂ I and i ∈ I \Ω. Such a precedence implies
that task i finishes after all tasks in Ω are completed and is detected when the task i
cannot be scheduled in the interval [estΩ∪{i}, lctΩ] along with the other tasks in Ω.

C(lctΩ − estΩ∪{i}) < eΩ∪{i} ⇒ Ω � i (6)

The second step consists in pruning the domain of the task i based on the detected
precedence Ω � i. Although several techniques exist, the goal is to deduce the avail-
ability of the resource for the task i within the interval. Nuijten [12] uses the following
method. Given a set Θ ⊆ Ω, she divides and assigns the energy in eΘ into two blocks.
The first block of (C − hi)(lctΘ − estΘ) units of energy evenly consumes C − hi units
of the resource over the time interval [estΘ, lctΘ). The second block of energy is sched-
uled at its earliest time within the interval [estΘ, lctΘ) using the remaining hi units of
resource. When this second block completes, the task i can start its execution.

Ω � i⇒ est′i = max
Θ⊆Ω

estΘ +

⌈
eΘ − (C − hi)(lctΘ − estΘ)

hi

⌉
(7)

Vilı́m [6] detects all precedences in O(n logn) and shows how to perform the opti-
mal pruning in O(kn log n) where k = |{hi | i ∈ I}| is the number of distinct task
heights. By comparing tasks with minimum slack intervals, Kameugne et al. [7] produce
a single-step quadratic algorithm. It finds all tasks that need to be adjusted according
to the Edge-Finder rule and prunes them. Although their algorithm does not always de-
duce the best adjustment (7) on the first detection, multiple executions of their algorithm
converge to the same fixed point.

2.3 Extended-Edge-Finding

The Extended-Edge-Finding rule stipulates that if the task i, when starting at its earliest
time, overlaps the time interval [estΩ, lctΩ) and that the energy of task i over this
interval plus the energy eΩ overloads the resource, then i must finish after all tasks in
Ω have completed.

estΩ ∈ [esti, ecti) ∧ eΩ + hi(ecti− estΩ) > C(lctΩ − estΩ)⇒ Ω � i (8)

Mercier and Van-Hentenryck [8] detect and prune the precedences in time O(kn2)
where k = |{hi | i ∈ I}| is the number of distinct task heights.



Time-Table Extended-Edge-Finding for the Cumulative Constraint 565

2.4 Time Tabling

Time Tabling consists of finding the necessary usage of the resource over a time interval.
For a task that satisfies lsti < ecti, the interval [lsti, ecti) determines the fixed part of
the task. Let f(Ω, t) be the aggregate of the fixed parts that spans over time t by the
tasks in Ω and let f(Ω, [a, b)) be the aggregate of the fixed parts over the time interval
[a, b) by the tasks in Ω.

f(Ω, t) =
∑

i∈Ω|t∈[lsti,ecti)
hi f(Ω, [a, b)) =

∑
t∈[a,b)

f(Ω, t) (9)

If a task i cannot complete before time t and hi + f(I \ {i}, t) > C, then the task i
must start after time t.

ecti > t ∧ C < hi + f(I \ {i}, t)⇒ est′i > t (10)

Figure 1 depicts the Time-Tabling rule. Letort et al. [5] introduce a sweep tech-
nique that iterates over time and gradually enlarges the aggregate while pruning the
tasks. Their method is later improved [13] and copes with very large sets of tasks.
Beldiceanu et al. [4] propose an original technique reasoning over slack using a relation
with the problem of rectangles placement.

est

lct

ect

lst

p

p

Cfp

C-hΣ fp

fp

fp

fp

est’

A

ect’

Fig. 1. A task with a fixed part, all tasks with a fixed part, the aggregate of the fixed parts and the
Time-Tabling rule applied to task A

2.5 Time-Table Extended-Edge-Finding

Recent efforts [10,11] enhanced the Edge-Finding and Extended-Edge-Finding rules by
taking into account the necessary usage of the resource due to fixed parts. The Time-
Table Extended Edge-Finding combines the techniques of the Time-Tabling, the Edge-
Finding, and the Extended-Edge-Finding. Let efΩ be the energy of the tasks in Ω plus
the fixed energy of the tasks in I \Ω spent within the interval [estΩ, lctΩ).

efΩ = eΩ + f(I \Ω, [estΩ, lctΩ)) (11)

Substituting eΩ by efΩ in (6) and (8) leads to the Time-Table Extended-Edge-Finding
rules. Substituting eΘ by efΘ in (7) gives the new adjustment rule.
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2.6 The Cumulative Tree and the Overload Checking Test

The algorithm we propose utilizes a cumulative tree similar to those introduced by
Vilı́m [6,14,15]. The cumulative tree is an essentially complete binary tree with n
leaves. Its main purpose is to compute the time interval [a, b) that optimizes functions
of the form f(a, b, Ω, Λ). Its leaves from left to right are associated to the tasks sorted
in non-decreasing order of earliest starting time (est). The leaf of task i is labeled {i}
and their association holds throughout the execution of the algorithm. When the algo-
rithm moves a task from a set to another, values in its associated leaf are re-initialized
accordingly and the functions are updated from the leaf up to the root in O(log n). This
data structure has proven very effective in particular for the Overload Checking that
tests the E-feasibility. We illustrate in the following.

The function to optimize is the envelope of the subset Ω ⊆ I. From Equation (5).

EnvΩ = max
Θ∈Ω

(CestΘ + eΘ)

The algorithm initializes all tasks as member of Ω. It iterates over every task j in de-
creasing order of lctj . The algorithm ends an iteration by moving task j from Ω to
Λ triggering a sequence of updates from its associated leaf. It results in the root hold-
ing the maximum envelope value of all intervals [estΘ, lctΘ) ⊆ [estΩ, lctΩ) where
lctΘ = lctΩ = lctj at the beginning of any iteration. If EnvΩ > C lctj , the algorithm
detects an overload.

To achieve the computation (see Figure 2), an envelope value and an energy value
are required in every nodes. For a leaf {i}, these values are those of its corresponding
task e{i} = pihi and Env{i} = Cesti + ei when i ∈ Ω. They are set to zero when the
task is moved to Λ. For the inner nodes v, the values are computed from the ones held
by their left (l) and right (r) children as follows.

ev = el + er Envv = max{Envl +er , Envr}

A
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B
0 lct

θ
Ω

lctest
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C F
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B C
Env

D
e
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F
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G
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e

eEnv
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H
e

Fig. 2. A cumulative tree with its leaves sorted in increasing order of est (left) and a schematic
representation of the cumulative resource with the time axis labeled with the lct (right). The
algorithm moved task G to Λ at the previous iteration. It now iterates over task F . At this point,
all tested intervals are upper bounded by lctF . In this instance, the maximum envelope value is
induced by the leaf associated to task C. The right part of the figure shows the optimal interval
[estΘ, lctΘ) = [estC , lctF ). It is composed by the set of tasks {C,D,E, F,H}. The left part of
the figure shows all the values that are cumulated up to the root resulting in the optimal value.
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3 New Filtering Rules

The algorithm we present enforces the Edge-Finding and Extended-Edge-Finding rules
to filter the lower bound of the starting time variables. A symmetric algorithm can
filter the upper bounds. It proceeds by detecting any surplus of energy within a time
interval [estΩ, lctΩ) should a task i start at its earliest starting time esti. If the surplus
is positive, the algorithm detects that task i cannot start at time esti and performs the
exact adjustment to the lower bound of task i that erases the surplus.

We consider two cases where the Edge-Finding rule applies. The weak case occurs
when the Edge-Finding rule (6) applies and ecti < lctΩ holds. We denote this rule
EFw. The strong case occurs when ecti ≥ lctΩ and leads to the strong Edge-Finding
rule denoted EF s. The weak and strong cases also apply to the Extended-Edge-Finding
rule (8) and leads to the two detection rules EEFw and EEF s1. In all cases, the Edge-
Finding rules apply when estΩ < esti and the Extended-Edge-Finding rules apply
when estΩ ≥ esti.

When one of these four rules detects a surplus, we denote by σEFw (i, Ω),
σEEFw(i, Ω), σEF s(i, Ω), and σEEF s(i, Ω) the extra energy requirement in the time
interval [estΩ, lctΩ) should task i start at time esti.

σEFw (i, Ω) = eΩ∪{i} − C(lctΩ − estΩ) (12)

σEEFw(i, Ω) = eΩ + hi(ecti− estΩ)− C(lctΩ − estΩ) (13)

σEF s(i, Ω) = eΩ + hi(lctΩ − esti)− C(lctΩ − estΩ) (14)

σEEF s(i, Ω) = eΩ − (C − hi)(lctΩ − estΩ) (15)

These quantities are used to combine the detection and the adjustment rules into a
single rule that adjusts the earliest starting time of task i. In the weak case (ecti < lctΩ),
we obtain these two rules.

EFw : esti ≥ estΩ ∧σEFw (i, Ω) > 0⇒ est′i = lctΩ −pi +
⌈
σEFw(i, Ω)

hi

⌉
EEFw : esti < estΩ ∧σEEFw(i, Ω) > 0⇒

est′i = lctΩ −(ecti− estΩ) +

⌈
σEEFw(i, Ω)

hi

⌉

In the strong case (ecti ≥ lctΩ), we have this adjustment rule for the Edge-Finding

EF s : esti ≥ estΩ ∧σEF s(i, Ω) > 0⇒ est′i = esti +

⌈
σEF s(i, Ω)

hi

⌉

and the following one for the Extended-Edge-Finding

EEF s : esti < estΩ ∧σEEF s(i, Ω) > 0⇒ est′i = estΩ +

⌈
σEEF s(i, Ω)

hi

⌉
1 The rules EFw, EEFw, EF s, and EEF s respectively represents the cases inside, left, right,

and through in [10].
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We show that these new adjustment rules are identical to the adjustment rule (7)
when the relation Θ = Ω holds. The case when Θ ⊂ Ω is handled later.

Lemma 1. The rules EFw, EEFw, EF s, and EEF s are equivalent to the adjustment
rule (7) when Θ = Ω.

Proof. The adjustment for the rule EF s is

est′i = esti +

⌈
eΩ + hi(lctΩ − esti)− C(lctΩ − estΩ)

hi

⌉

= estΩ +

⌈
eΩ − (C − hi)(lctΩ − estΩ)

hi

⌉

which is equivalent to rule (7) when Θ = Ω. The adjustment for the rule EEF s is

est′i = estΩ +

⌈
eΩ − (C − hi)(lctΩ − estΩ)

hi

⌉
which is equivalent to rule (7) when Θ = Ω. The adjustment for the rule EFw is

est′i = lctΩ −pi +
⌈
eΩ + ei − C(lctΩ − estΩ)

hi

⌉
= lctΩ +

⌈
eΩ − C(lctΩ − estΩ)

hi

⌉

= estΩ +

⌈
eΩ − (C − hi)(lctΩ − estΩ)

hi

⌉
which is equivalent to rule (7) when Θ = Ω. The adjustment for the rule EEFw is

est′i = lctΩ −(ecti− estΩ) +

⌈
eΩ + hi(ecti− estΩ)− C(lctΩ − estΩ)

hi

⌉

= lctΩ +

⌈
eΩ − C(lctΩ − estΩ)

hi

⌉

This form was already proved equivalent to rule (7) when Θ = Ω. 	


We show that successively applying, in no particular order, the rules EFw, EEFw,
EF s, and EEF s leads to the same fixed point as the adjustment rule (7).

Lemma 2. After applying the rules EFw and EEFw, the inequality ect′i ≥ lctΩ holds,
where ect′i is the new earliest completion time of task i.

Proof. After applying the rule EFw, we obtain ect′i = lctΩ +
⌈
σEFw (i,Ω)

hi

⌉
. Since

σEFw(i, Ω) > 0, we have ect′i > lctΩ . The same applies for the rule EEFw. 	


Lemma 2 ensures that when there are tasks for which the weak rules EFw and EEFw

apply, after the adjustment of the rules, only the strong rules EF s and EEF s can apply.

Lemma 3. Successively applying the adjustment rules EFw, EEFw, EF s, and EEF s

leads to the same fixed point obtained by using the adjustment rule (7).
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Proof. Let Θ be the set that maximizes the expression in (7). Since Lemma 1 covers the
case whereΘ = Ω, we suppose that Θ ⊂ Ω. In the strong case, we have the inequalities
lctΘ ≤ lctΩ ≤ ecti. In the weak case, Lemma 2 ensures that these inequalities also hold
after applying the rules EFw or EEFw. Therefore, we only need to check whether the
rules EF s and EEF s can be applied with the set of tasks Θ. Since the set Θ leads to an
adjustment, the numerator in (7) is positive which implies eΘ > (C−hi)(lctΘ − estΘ).
If esti < estΘ then the rule EEF s applies and leads to the same filtering as rule (7).

Suppose that esti ≥ estΘ and that the adjustment rule (7) prunes the earliest starting
time esti further. Then this inequality holds.

esti < estΘ +
eΘ − (C − hi)(lctΘ − estΘ)

hi
(16)

This is equivalent to 0 < eΘ + hi(lctΘ − esti) − C(lctΘ − estΘ). Therefore,
σEF s(i, Θ) > 0 and the rule EF s prunes the est at the same position as rule (7) does.
Consequently, after adjusting esti, either Θ = Ω and the adjustment is equivalent to
the rule (7) or Θ ⊂ Ω and the rules EF s and EEF s can still be applied in a future
iteration. 	


4 A New Extended-Edge-Finding Algorithm

We present a new algorithm that performs the Extended-Edge-Finding. Algorithm 1 is
largely based on Vilı́m’s algorithm [6] for the Edge-Finding of the cumulative constraint
and its cumulative tree data structure. We broaden the scope of the cumulative tree with
two more sets, Ψ and Γ and substitute Ω for Θ to go along our notation. Therefore,
the algorithm uses a cumulative Ω,Λ, Ψ, Γ tree. These four sets are different status of
the tasks during the execution of the algorithm and serve computational purposes. The
mechanic of the cumulative tree is illustrated in Section 2.6.

An essentially complete binary tree of |I| leaves is built, with leaves from left to
right associated to the tasks sorted in non-decreasing order of est, breaking ties on the
smallest lct. The algorithm iterates on heights in {hi | i ∈ I ∧ ecti < lcti} in arbitrary
order, with h being the current height. These operations occur within an iteration.

The cumulative tree is initialized with all its tasks in Ω. It iterates through the tasks
in non-increasing order of latest completion time (lct). We say that j is the current task.
Thus, lctj is the upper bound of all optimized intervals at the current iteration.

The algorithm partitions the tasks I into four sets: Γ is the set of excluded tasks,
Ω = {i ∈ I \ Γ | lcti ≤ lctj} is the set of unprocessed tasks, Λ = {i ∈ I \ (Ω ∪ Γ ) |
hi = h, ecti < lctj} is the set of processed tasks of height h with earliest completion
time smaller than lctj , and Ψ = {i ∈ I \ (Ω ∪ Γ ) | hi = h, ecti ≥ lctj} is the
set of processed tasks of height h with earliest completion time greater than or equal
to lctj . As it iterates through the tasks, the current latest completion time lctj changes
and might result in moving tasks from Λ to Ψ . At any time, a task can move from Λ
and Ψ to the set of excluded tasks. Those are tasks that are ignored for the rest of the
iteration. At the end of the iteration, the task j is removed from Ω and added to Λ if
hj = h ∧ ectj < lctj , otherwise, the task cannot be further filtered and is added to Γ .
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The algorithm utilizes the cumulative tree to optimize the surplus functions (12)
to (15) and performs an overload check. Whenever a detection applies, the correspond-
ing task is pruned according to the adjustment rule and then moved to Γ . Then, the al-
gorithm updates the nodes from the leaf associated to the pruned task up to the root and
checks for an other detection. To efficiently compute the functions, eleven values are
held in the nodes. Some of these values are function of the horizon Hor = maxi∈I lcti,
i.e. the latest time when a task can complete. For a leaf node v, these values are.

ev =

{
ei if i ∈ Ω

0 otherwise
Envv =

{
C esti+ei if i ∈ Ω

−∞ otherwise

(17)

Envhv =

{
(C − h) esti +ei if i ∈ Ω

−∞ otherwise
eΛv =

{
ei if i ∈ Λ

−∞ otherwise
(18)

EnvΛ =

{
C esti +ei if i ∈ Λ

−∞ otherwise
exΛv =

{
h ecti if i ∈ Λ

−∞ otherwise
(19)

eΨv =

{
h(Hor− esti) if i ∈ Ψ

−∞ otherwise
EnvΨv =

{
C esti+e

Ψ if i ∈ Ψ

−∞ otherwise

(20)

exΨv =

{
hiHor if i ∈ Ψ

−∞ otherwise
(21)

EnvxΛv = −∞ EnvxΨv = −∞ (22)

For an inner node v, its left child and right child are denoted left(v) and right(v).
These values are computed recursively as follows.

ev = eleft(v) + eright(v) (23)

Envv = max(Envleft(v) +eright(v),Envright(v)) (24)

Envhv = max(Envhleft(v) +eright(v),Env
h
right(v)) (25)

eΛv = max(eΛleft(v) + eright(v), eleft(v) + eΛright(v)) (26)

EnvΛv = max(EnvΛleft(v) +eright(v),Envleft(v) +e
Λ
right(v),Env

Λ
right(v)) (27)

exΛv = max(exΛleft(v), ex
Λ
right(v)) (28)

eΨv = max(eΨleft(v) + eright(v), eleft(v) + eΨright(v)) (29)

EnvΨv = max(EnvΨleft(v) +eright(v),Envleft(v) +e
Ψ
right(v),Env

Ψ
right(v)) (30)

exΨv = max(exΨleft(v), ex
Ψ
right(v)) (31)

EnvxΛv = max(EnvxΛleft(v) +eright(v), ex
Λ
left(v) +Envhright(v),Envx

Λ
right(v)) (32)

EnvxΨv = max(EnvxΨleft(v) +eright(v), ex
Ψ
left(v) +Envhright(v),Envx

Ψ
right(v)) (33)
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Fig. 3. Geometric illustration of the values cumulated by the tree, the four filtering rules and
their detected surplus. The blue squares depict the cumulated energy of all tasks in Ω. The figure
shows the optimal interval [estΘ, lctΘ) within [estΩ , lctΩ). All four rules are a combination of
the energy of a task i �∈ Ω and an optimal envelope. In this figure, each rule detects a surplus of
2 units of energy.

At the root of the tree, four values are particularly important and have the following
equivalences. We use these relations to rewrite the conditions of the Edge-Finding and
Extended-Edge-Finding rules.

EnvΛ = max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Λ

estΘ≤esti

C estΘ +eΘ + ei (34)

EnvΨ = max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Ψ

estΘ≤esti

C estΘ +eΘ + h(Hor− esti) (35)

EnvxΛ = max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Λ

esti≤estΘ

(C − h) estΘ +eΘ + h ecti (36)

EnvxΨ = max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Ψ

esti≤estΘ

(C − h) estΘ +eΘ + hHor (37)

The functions σEFw (i, Ω), σEEFw(i, Ω), σEF s(i, Ω), and σEEF s(i, Ω) can be opti-
mized using the functions above.

max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Λ

estΘ≤esti

σEFw(i, Θ) = EnvΛ−C lctj (38)
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max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Ψ

estΘ≤esti

σEF s(i, Θ) = EnvΨ −C lctj −h(Hor− lctj) (39)

max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Λ

esti≤estΘ

σEEFw(i, Θ) = EnvxΛ−C lctj (40)

max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Ψ

esti≤estΘ

σEEF s(i, Θ) = EnvxΨ −C lctj −h(Hor− lctj) (41)

Using the above relations, Algorithm 1 computes the surplus and applies the rules
EFw, EF s, EEFw, and EEF s accordingly. The for loop on line 1 iterates k = |{hi |
i ∈ I}| times. Each time the repeat loop on line 2 executes, a task moves out from the
set Λ or Ψ which can happen only once for each task. Such an operation triggers the
update of the cumulative tree in time Θ(log n). The total running time complexity is
therefore O(kn log n).

5 Task Decomposition and Time-Tabling

We show how to decompose a problem with n tasks into a problem with at most
5n tasks. This decomposition facilitates the design of a new algorithm for the Time-
Tabling. It also allows to perform the Time-Table Extended-Edge-Finding not by chang-
ing the Algorithm 1, but rather by changing its input. Task decomposition is a technique
also used by Schutt et al. [1] and Vilı́m [10].

The tasks in I are decomposed into two sets of tasks: the depleted tasks T and the
fixed tasks F . For every task i such that lsti < ecti, there is a fixed energy of height hi

in the interval [lsti, ecti). We replace the task i ∈ I by the task i′ ∈ T with esti′ = esti,
lcti′ = lcti, pi′ = pi − ecti + lsti, and hi′ = hi. If lsti ≥ ecti, we create a task i′ ∈ T
that is a copy of the original task i. Let Z be the set of all time points esti, lsti, ecti, and
lcti. We consider two consecutive time points a and b in Z with positive fixed energy,
i.e. f(I, [a, b)) > 0. We create a fixed task f ∈ F with estf = a, lctf = b, pf = b− a,
hf = f(I, a). This task has no choice but to execute at its earliest starting time.

Since |Z| ≤ 4n, there are fewer than 4n fixed tasks and the decomposition has fewer
than 5n tasks. Two distinct tasks f1, f2 ∈ F produce two disjoint intervals [estf1 , lctf1)
and [estf2 , lctf2). Figure 4 depicts this transformation.

5.1 Task Decomposition Algorithm

Algorithm 2 takes as input the set of original tasks I and returns the set of depleted
tasks T and the set of fixed tasks F . The algorithm has a running time complexity of
O(n log n). Indeed, the dimension of vector r is at most 4n and requires O(n log n)
to sort. The function IndexOf can be implemented with a binary search with time
complexity O(log n) and is called at most n times. The first and second for loop have a
time complexity of O(n log n) and O(n) for a total of O(n logn).

5.2 Time-Tabling Algorithm

Algorithm 3 sorts the tasks T in non-decreasing heights and the fixed tasks F in non-
increasing heights. It maintains, using an AVL tree, a set S of time intervals in which
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Algorithm 1. ExtendedEdgeFinder(I)
Hor ← maxi∈I lcti;
for h ∈ {hi | i ∈ I ∧ ecti < lcti} do1

Ω ← I;
Λ ← ∅;
Ψ ← ∅;
for j ∈ I in non-increasing order of lctj do

if Env > C lctj then Fail;
Δ ← {i ∈ Λ | ecti ≥ lctj};
Λ ← Λ \Δ;
Ψ ← Ψ ∪Δ \ {i ∈ Ψ | esti ≥ lctj};
repeat2

σ(EFw) ← EnvΛ −C lctj ;
σ(EEFw) ← EnvxΛ −C lctj ;
σ(EF s) ← EnvΨ −C lctj −h(Hor− lctj);
σ(EEF s) ← EnvxΨ −C lctj −h(Hor− lctj);
m ← max{σ(EEFw), σ(EEF s), σ(EFw), σ(EF s), };
if σ(EEFw) = m > 0 then

Let i ∈ Λ be the unique task whose value exΛ is used for the
computation of EnvxΛ;
Let k ∈ Ω be the unique task whose value estk is used for the
computation of Envh;

est′i ← lctj −(ecti − estk) +
⌈

σ(EEFw)
hi

⌉
;

Λ ← Λ \ {i};
else if σ(EEF s) = m > 0 then

Let i ∈ Ψ be the task with smallest est whose value exΨ is used for the
computation of EnvxΨ ;
Let k ∈ Ω be the unique task whose value estk is used for the
computation of EnvΨ ;

est′i ← estk +
⌈

σ(EEF s)
hi

⌉
;

Ψ ← Ψ \ {i};
else if σ(EFw) = m > 0 then

Let i ∈ Λ be the unique task whose value eΛv is used for the computation
of EnvΛ;

est′i ← lctj −pi +
⌈

σ(EFw)
hi

⌉
;

Λ ← Λ \ {i};
else if σ(EF s) = m > 0 then

Let i ∈ Ψ be the unique task whose value eΨ is used for the computation
of EnvΨ ;
est′i ← esti +

⌈
σ(EF s)

hi

⌉
;

Ψ ← Ψ \ {i};

until m ≤ 0 ;
if hj = h ∧ ectj < lctj then Λ ← Λ ∪ {j};
Ω ← Ω \ {j};
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Fig. 4. A task with a fixed part, the same task after depletion of its fixed energy, and an energy
aggregate turned into a set of fixed tasks F

Algorithm 2. TimeTableTaskDecomposition(I)
Create the sorted vector r = {esti, ecti, lsti, lcti} for all i ∈ I without duplicates;
Create the null vector c of dimension |r|;
T ← ∅,F ← ∅;
for i ∈ I do

if ecti > lsti then
a ← IndexOf(lsti, r);
b ← IndexOf(ecti, r);
c[a] ← c[a] + hi;
c[b] ← c[b]− hi;
T ← T ∪ {Task(est = esti, lct = lcti, h = hi, p = pi − ecti + lsti)};

else
T ← T ∪ {Task(est = esti, lct = lcti, h = hi, p = pi};

for l = 1..|r| − 1 do
c[l] ← c[l] + c[l − 1];
if c[l − 1] > C then Failure;
if c[l − 1] > 0 then

F ← F ∪ {Task(est = r[l − 1], lct = r[l], h = c[l− 1], p = r[l]− r[l− 1])};

return (T ,F)

the unprocessed tasks in T cannot execute concurrently with the fixed tasks. The set
S grows as the algorithm iterates through T . While processing the task i′ ∈ T , if
there exists an interval [a, b) ⊆ S such that esti′ < b and esti′ +pi′ > a then the
algorithm retrieves the original task i ∈ I associated to i′ and performs the prun-
ing esti ← min(lsti, b). When lsti < b, the earliest starting time is set to lsti to
force the task to start at the beginning of its fixed part. The AVL tree finds the inter-
val [a, b) in O(log |F|). Sorting the tasks require O(|T | log |T |) and O(|F| log |F|).
Since |T |, |F| ∈ O(n), the overall complexity is O(n logn).

5.3 Time-Table Extended-Edge-Finding

We use the decomposition to perform Time-Table Extended-Edge-Finding. After reach-
ing a fixed point with Algorithm 2 and 3, we pass the tasks T ∪ F as input to
Algorithm 1. Since the fixed tasks will not be filtered, the for loop on line 1 can
restrict the iterations over the heights of the tasks in T . When the earliest starting
time of task i′ ∈ T is filtered to time t, we filter the est of the original task i ∈ I
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Algorithm 3. FilterTimeTabling(T ,F )
Sort the fixed tasks F in non-increasing order of heights;
S ← {∞}; j ← 0;
for i′ ∈ T in non-decreasing order of height do

while j < |F| ∧ hF[j] > C − hi′ do
S ← S ∪ [estF[j], lctF[j]);
j ← j + 1;

b ← min{b �∈ S | b− 1 ∈ S ∧ esti′ < b};
a ← min{a ∈ S | [a, b) ⊆ S};
if esti′ +pi′ > a then

if lsti ≥ ecti then esti ← b;
else esti ← min(lsti, b);

estA= 0 estC = 2

estB= 1 lct A= 12

lct D=10

lct B=7

lct C= 6

estD= 3
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Fig. 5. The left part depicts a CuSP with 4 tasks. The upper and lower parts of the time axis in-
dicates the earliest starting times and the latest completion times. The grid determines the energy
units. The processing times and heights are to scale. By not taking into account the fixed part of
task D, neither the Time-Tabling rule nor the Extended-Edge-Finding rule can deduct a pruning.
A decomposition of task D leads to two consecutive updates. The rule EEFw updates the lower
bound of Task A to 3 which creates 6 new units of fixed energy. Then, the Time-Tabling rule
adjusts the upper bound of task B to 6. The right part depicts the resulting CuSP.

to time esti ← min(t, lsti). This ensures to perform Time-Table Edge-Finding in
time O(kn logn). Figure 5 shows an example where a task is filtered by Time-Table
Extended-Edge-Finding.

6 Experiments

We tested the different versions of the algorithm with the PSLIB benchmark (Projection
Scheduling Problem Library) [16]. More precisely, we solved instances of the single-
mode resource-constrained project scheduling problem (SMRCPSP). Those instances
are based on series of tasks that can be completed before a given horizon limit. A num-
ber of resources is given with varying capacities of production. Each task has a duration
and an amount of a specific resources used during its execution. Each task also has a
list of other tasks, its successors, that can be started only after this task is completed.

The model is based on two constraints. We use a precedence constraint to ensure
the order of the successors is respected and we use a cumulative constraint for each
resource that ensures the execution of the tasks does not overload the resources. We
set the makespan to the best known value reported for the benchmark. We use a binary
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Table 1. Experimental results. Section Benchmark reports the number of tasks n, the number of
instances, and the time out (in seconds) used for the experiment. For each filtering algorithm, we
report the number of instances solved (solved). We report the cumulative number of backtracks
(bt) and the cumulative time (time) required to solve all instances that are commonly solved by
the three algorithms.

Benchmark Choco EEF+TT TTEEF
n #instances time out solved bt time solved bt time solved bt time

30 480 10 364 8757 223 377 8757 50 377 8379 54
60 480 20 332 3074 1527 340 3074 269 341 2861 291
90 480 50 321 5024 5522 327 5024 857 329 4635 913

variable to enforce a precedence between each relevant pair of tasks. We branch on the
precedence constraints that involve the tasks with the most similar resource consump-
tions and the largest processing times.

We used the CP solver Choco version 2.1.5 on a computer with a AMD Athlon(tm)
II P340 Dual-Core running at 2.20GHz. We ran simultaneously 2 experiments, one
per core. We used the cumulative constraint available in Choco that performs Time-
Tabling [5] and Extended-Edge-Finding [8] that we denote Choco. We denote the Al-
gorithm 1 combined with the Algorithm 3 EEF+TT and the Time-Table Extended-
Edge-Finding TTEEF. Table 1 reports the results.

Choco and EEF+TT produce the same number of backtracks since they offer the
same filtering. However, EEF+TT is significantly faster than Choco and solves more
instances. TTEEF is slightly slower in time than EEF+TT but solves few more instances
in fewer backtracks.

7 Conclusion

We presented three new algorithms that filter the CUMULATIVE constraint. The first
algorithm is an Extended-Edge-Finder with a time complexity of O(kn log n). The sec-
ond filtering algorithm performs Time-Tabling in time O(n log n). The third algorithm
performs Time-Table Extended-Edge-Finding in time O(kn log n). These new algo-
rithms proved to be very efficient in practice offering a fast and strong filtering.
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Abstract. In a previous work, we introduced a filtering for the Bin-
Packing constraint based on a cardinality reasoning for each bin com-
bined with a global cardinality constraint. We improve this filtering with
an algorithm providing tighter bounds on the cardinality variables. We
experiment it on the Balanced Academic Curriculum Problems demon-
strating the benefits of the cardinality reasoning for such bin-packing
problems.

Keywords: Constraint Programming, Global Constraints, Bin-Packing.

1 Introduction

The BinPacking([X1, ..., Xn], [w1, ..., wn], [L1, ..., Lm]) global constraint captures
the situation of allocating n indivisible weighted items to m capacitated bins:

– Xi is an integer variable representing the bin where item i, with strictly pos-
itive integer weight wi, is placed. Every item must be placed i.e. Dom(Xi) ⊆
[1..m].

– Lj is an integer variable representing the sum of items weights placed into
that bin.

The constraint enforces the following relations:

∀j ∈ [1..m] :
∑

i|Xi=j

wi = Lj

The initial filtering algorithm proposed for this constraint in [8] essentially
filters the domains of the Xi using a knapsack-like reasoning to detect if forcing
an item into a particular bin j would make it impossible to reach a load Lj for
that bin. This procedure is very efficient but can say that an item is OK for a
particular bin while it is not. A failure detection algorithm was also introduced
in [8] computing a lower bound on the number of bins necessary to complete the
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partial solution. This last consistency check has been extended in [2]. Cambazard
and O’Sullivan [1] propose to filter the domains using an LP arc-flow formulation.

In classical bin-packing problems, the capacity of the bins Lj are constrained
while the lower bounds Lj are usually set to 0 in the model. This is why existing

filtering algorithms use the upper bounds of the load variables Lj (i.e. capacity
of the bins) and do not focus much on the lower bounds of these variables Lj .

Recently [7] introduced an additional cardinality based filtering counting the
number of items in each bin. We can view this extension as a generalization
BinPacking([X1, ..., Xn], [w1, ..., wn], [L1, ..., Lm], [C1, ..., Cm]) of the constraint
where Cj are counting variables, that is defined by ∀j ∈ [1..m] : Cj = |{i|Xi =
j}|. This formulation for the BinPacking constraint is well suited when

– the lower bounds on load variables are also constrained initially Lj > 0,

– the items to be placed are approximately equivalent in weight (the bin-
packing is dominated by an assignment problem), or

– there are cardinality constraints on the number of items in each bin.

The idea of [7] is to introduce a redundant global cardinality constraint [5]:

BinPacking([X1, ..., Xn], [w1, ..., wn], [L1, ..., Lm], [C1, ..., Cm]) ≡
BinPacking([X1, ..., Xn], [w1, ..., wn], [L1, ..., Lm])∧

GCC([X1, . . . , Xn], [C1, . . . , Cm])

(1)

with a specialized algorithm used to adjust the upper and lower bounds of the
Cj variables when the bounds of the Lj’s and/or the domains of the Xi’s change.
Naturally the tighter are the bounds computed on the cardinality variables, the
stronger will be the filtering induced by the GCC constraint.

We first introduce some definitions, then we recall the greedy algorithm in-
troduced in [7] to update the cardinality variables.

Definition 1. We denote by packj the set of items already packed in bin j :
packj = {i|Dom(Xi) = {j}} and by candj the candidate items available to go in
bin j: candj = {i|j ∈ Dom(Xi) ∧ |Dom(Xi)| > 1} . The sum of the weights of a
set of items S is sum(S) =

∑
i∈S wi.

As explained in [7], a lower bound on the number of items that can be ad-
ditionally packed into bin j can be obtained by finding the size of the smallest
cardinality set Aj ⊆ candj such as sum(Aj) ≥ Lj − sum(packj). Then we have

Cj ≥ |packj |+ |Aj |. Thus we can filter the lower bound of the cardinality Cj as
follows:

Cj ← max(Cj , |packj|+ |Aj |).

This set Aj is obtained in [7] by scanning greedily elements in candj with
decreasing weights until an accumulated weight of Lj − sum(packj) is reached.
It can be done in linear time assuming the items are sorted initially by weight.

Example 1. Five items with weights 3, 3, 4, 5, 7 can be placed into bin 1 having
a possible load L1 ∈ [20..22]. Two other items are already packed into that bin
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with weights 3 and 7 (|pack1| = 2 and l1 = 10). Clearly we have that |A1| = 2
obtained with weights 5, 7. The minimum value of the domain of the cardinality
variable C1 is thus set to 4.

A similar reasoning can be used to filter the upper bound of the cardinality
variable Cj .

This paper further improves the cardinality based filtering, introducing

1. In Section 2, an algorithm computing tighter lower/upper bounds on the
cardinality variables Cj of each bin j, and

2. In Section 3, an algorithm to update the load variables Lj based on the
cardinality information.

The new filtering is experimented on the Balanced Academic Curriculum Prob-
lem in Section 4.

2 Filtering the Cardinality Variables

The lower (upper) bound computation on the cardinality Cj introduced in [7]
only considers the possible items candj and the minimum (maximum) load value
to reach i.e. Lj (Lj). Stronger bounds can possibly be computed by also consid-
ering the cardinality variables of other bins. Indeed, an item which is used for
reaching the minimum cardinality or minimum load for a bin j, may not be us-
able again for computing the minimum cardinality of another bin k as illustrated
on next example:

Example 2. A bin j can accept items having weights 3, 3, 3 with a minimum
load of 6 and thus a minimum cardinality of 2 items. A bin k with a minimum
load of 5 can accept the same items plus two items of weight 1. Clearly, the bin
k can not take more than one item with weight 3 for computing its minimum
cardinality because it would prevent the bin j to reach its minimum cardinality
of 2. Thus the minimum cardinality of bin k should be 3 and not 2 as would be
computed with the lower bound of [7].

Minimum Cardinality of bin j Algorithm 1 computes a stronger lower bound
also taking into account the cardinality variables of other bins Ck ∀k �= j. The
intuition is that it prevents to reuse again an item if it is required for reaching a
minimum cardinality in another bin. This is achieved by maintaining for every
other bin k the number of items this bin is ready to give without preventing it
to fulfill its own minimum cardinality requirement Ck.

Clearly if a bin k must pack at least Ck items and has already packed |packk|
items, this bin can not give more than |candk| − (Ck − |packk|) items to bin
j. This information is maintained into the variables availableForOtherBinsk
initialized at line 5.

Example 3. Continuing on Example 2, bin j will have
availableForOtherBinsj=3−(2−0) = 1 because this bin can give at most one of
its item to another bin.
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Since items are iterated in decreasing weight order at line 7, the other bins
accept to give first their ”heaviest” candidate items. This is an optimistic sit-
uation from the point of view of bin j, justifying why the algorithm computes
a valid lower bound on the cardinality variable Cj . Each time an item is used
by bin j, the other bins (where this item was candidate) reduce their quantities
availableForOtherBinsk since they ”consume” their flexibility to give items.
If at least one other bin k absolutely needs the current item i to fulfill its own
minimum cardinality (detected at line 13), available is set to false meaning
that this item can not be used in the computation of the cardinality of bin j to
reach the minimum load.

On the other hand, if the current item can be used (available=true), then
other bins which agreed to give this item have one item less available. The
availableForOtherBinsk numbers are decremented at line 22.

Finally notice that the algorithm may detect unfeasible situations when it is
not able to reach the minimum load at line 28.

Maximum Cardinality The algorithm to compute the maximum cardinality is
similar. The changes to bring to Algorithm 1 are:

1. The variable binMinCard should be named binMaxCard
2. The items are considered in increasing weight order at line 7, and
3. The stopping criteria at line 8 becomes binLoad+ wi > Lj .
4. There is no feasibility test at lines 27 - 29.

Complexity Assuming the items are sorted initially in decreasing weights, this
algorithm runs in O(n·m) with n the number of items and m the number of bins.
Hence adjusting the cardinality of every bins takes O(n · m2). This algorithm
has no guarantee to be idempotent. Indeed the bin j may consider an item i as
available, but the later adjustment of the minimum cardinality of another bin k
may cause this item to be unavailable if bin j is considered again.

Example 4. The instance considered - depicted in Figure 1 (a) - is the following:

BinPacking([X1, . . . , X4], [w1, . . . , w4], [L1, . . . , L3])

X1 ∈ {1, 2}, X2 ∈ {1, 2}, X3 ∈ {2, 3}, X4 ∈ {2, 3},
w1 = 1, w2 = 1, w3 = 3, w4 = 3

L1 ∈ {1, 2}, L2 ∈ {2, 3}, L3 ∈ {2, 4}

(2)

We consider first the computation of the cardinality of bin 2. This bin must
have at least one item to reach its minimum load. We now consider the maximum
cardinality of this bin. Items 1 and 2 can both be packed into bin 2 but doing
so would prevent bin 1 to achieve its minimum load requirement of 1. Hence
only one of these items can be used during the computation of the maximum
cardinality for bin 2. Assuming that item 1 is used, the next item considered
is item 3 having a weight of 3. But Adding this item together with item 1
would exceed the maximum load (4 > 3) (stopping criteria for the maximum
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Algorithm 1. Computes a lower bound on the cardinality of bin j

Data: j a bin index
Result: binMinCard a lower bound on the min cardinality for the bin j

1 binLoad ← sum(packj) ;
2 binMinCard ← |packj | ;
3 othersBins ← {1, . . . ,m} \ j ;
4 foreach k ∈ otherBins do
5 availableForOtherBinsk ← |candk| − (Ck − |packk|);
6 end
7 foreach i ∈ candj in decreasing weight order do
8 if binLoad ≥ Lj then

9 break ;
10 end
11 available ← true;
12 for k ∈ othersBins do
13 if k ∈ Dom(Xi) ∧ availableForOtherBinsk = 0 then
14 available ← false ;
15 end

16 end
17 if available then
18 binLoad ← binLoad+ wi ;
19 binMinCard ← binMinCard + 1 ;
20 for k ∈ othersBins do
21 if k ∈ Dom(Xi) then
22 availableForOtherBinsk ← availableForOtherBinsk − 1 ;
23 end

24 end

25 end

26 end
27 if binLoad < Lj then

28 The constraint is unfeasible ;
29 end

cardinality computation). Hence the final maximum cardinality for bin 2 is one.
The cardinality reasoning also deduces that bin 1 must have between one and
two items and bin 3 must have exactly one item. Based on these cardinalities,
the global cardinality constraint (GCC) is able to deduce that item 1 and 2 must
be packed into bin 1. This filtering is illustrated on Figure 1 (b).

The algorithm from [7] deduces that bin 2 must have between one and two
items (not exactly one as the new filtering). The upper bound of two items is
obtained with the two lightest items 1 and 2. As for the new algorithm, it deduces
that bin 1 must have between one and two items and bin 3 must have exactly
one item. Unfortunately, the GCC is not able to remove any bin from the item’s
domains based on these cardinality bounds. Thus, this algorithm is less powerful
than the new one.
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Fig. 1. (a) BinPacking instance with 3 bins and 4 items. The arcs represent for each
item, the possible bins. (b) Domains resulting from the filtering induced with the tighter
computation of the cardinalities. The grey in a bin stands for the minimum level to
reach.

3 Filtering the Load Variables

We introduce a filtering of the load variable taking the cardinality information
into account. No such filtering was proposed in [7]. Algorithm 2 is similar to
Algorithm 1 except that we try to reach the minimum cardinality requirements
by choosing first the ”lightest” items until the minimum cardinality Cj is reached

(line 8). Again a similar reasoning can be done to compute an upper bound on
the maximum load.

4 Experiments

The Balanced Academic Curriculum Problem (BACP) is recurrent in Univer-
sities. The goal is to schedule the courses that a student must follow in order
to respect the prerequisite constraints between courses and to balance as much
as possible the workload of each period. Each period also has a minimum and
maximum number of courses. The largest of the three instances available on
CSPLIB (http://www.csplib.org) with 12 periods, 66 courses having a weight
between 1 and 5 (credits) and 65 prerequisites relations, was modified in [6] to
generate 100 new instances1 by giving each course a random weight between
1 and 5 and by randomly keeping 50 out of the 65 prerequisites. Each period
must have between 5 and 7 courses. As shown in [3], a better balance property
is obtained by minimizing the variance instead of the maximum load. For each
instance, we test three different filtering configurations for bin-packing:

1 Available at http://becool.info.ucl.ac.be/resources/bacp

http://becool.info.ucl.ac.be/resources/bacp
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Algorithm 2. Computes a lower bound on load of bin j

Data: j a bin index
Result: binMinLoad a lower bound on the load of bin j

1 binCard ← |packj | ;
2 binMinLoad ← sum(packj) ;
3 othersBins ← {1, . . . ,m} \ j ;
4 foreach k ∈ otherBins do
5 availableForOtherBinsk ← |candk| − (Ck − |packk|);
6 end
7 foreach i ∈ candj in increasing weight order do
8 if binCard ≥ (Cj) then

9 break ;
10 end
11 available ← true;
12 for k ∈ othersBins do
13 if k ∈ Dom(Xi) ∧ availableForOtherBinsk = 0 then
14 available ← false ;
15 end

16 end
17 if available then
18 binMinLoad ← binLoad+ wi ;
19 binCard ← binCard+ 1 ;
20 for k ∈ othersBins do
21 if k ∈ Dom(Xi) then
22 availableForOtherBinsk ← availableForOtherBinsk − 1 ;
23 end

24 end

25 end

26 end
27 if binCard < Cj then

28 The constraint is unfeasible ;
29 end

Table 1. Number of instances for which is was possible to prove optimality within the
time limit

limit(s) A B C

15 13 27 41

30 18 34 46

60 21 37 51

120 25 43 57

1800 37 62 69

– A: The BinPacking constraint from [8] + a GCC constraint,

– B: A + the cardinality filtering from [7],

– C: A + the cardinality filtering introduced in this paper.

The experiments were conducted on a Macbook Pro 2.3 Ghz, I7. The solver
used is OscaR [4] running on JVM 1.7 of Oracle and implemented with Scala
2.10. The source code of the constraint is available on OscaR repository.
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Table 2. Detailed statistics obtained on some significant instances

time (ms) best bound number of failures

instance A B C A B C A B C

inst2.txt timeout timeout 679 3243 3247 3237 835459 1064862 829
inst14.txt timeout 45625 6925 3107 3105 3105 1043251 228294 8530
inst22.txt timeout 13971 281 3045 3041 3041 811852 48482 353
inst30.txt timeout 118964 192 3416 3402 3402 795913 707487 129
inst36.txt timeout timeout 337 2685 2685 2671 847641 915849 364
inst47.txt timeout timeout 112 3309 3309 3303 2561038 3812512 269
inst65.txt timeout timeout 222 3416 3414 3402 921694 1091396 168
inst70.txt timeout timeout 101060 3043 3043 3041 1917729 1516627 125270
inst87.txt 16275 15089 251 3643 3643 3643 109173 65493 207
inst98.txt timeout timeout 48 2987 2987 2979 7023383 8261509 261

Table 1 gives the number of solved instances for increasing timeout values.
Table 2 illustrates the detailed numbers (time, best bound, number of failures) for
some instances with a 30 minutes timeout. As can be seen, the new filtering allows
to solve more instances sometimes cutting the number of failures by several order
of magnitudes.

5 Conclusion

We introduced stronger cardinality bounds on the BinPacking constraint by also
integrating the cardinality requirements of other bins during the computation.
These stronger bounds have a direct impact on the filtering of placement vari-
ables through the GCC constraint. The improved filtering was experimented on
the BACP allowing to solve more instances and reducing drastically the number
of failures on some instances.
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Abstract. Several types of symmetry have been identified and exploited in Con-
straint Programming, leading to large reductions in search time. We present a
novel application of one such form of symmetry: detecting dynamic value inter-
changeability in the random variables of a 2-stage stochastic problem. We use
a real-world problem from the literature: finding an optimal investment plan to
strengthen a transportation network, given that a future earthquake probabilis-
tically destroys links in the network. Detecting interchangeabilities enables us
to bundle together many equivalent scenarios, drastically reducing the size of
the problem and allowing the exact solution of cases previously considered in-
tractable and solved only approximately.

1 Introduction

Constraint Programming (CP) and Mixed Integer Programming (MIP) usually address
deterministic problems, in which a solution is simply assignments to a set of decision
variables. However, many real-world problems are inherently stochastic: they contain
aspects outside our control, which are often represented as random variables in Stochas-
tic Programming (SP) and Stochastic Constraint Programming (SCP). We assume a ba-
sic knowledge of SP and/or SCP, and refer readers unfamiliar with these fields to [4]
and [26] respectively.

Much SP and SCP research is devoted to single-stage problems in which a solution
is simply a value for each decision variable. This solution is then evaluated by examin-
ing the scenarios generated by assigning values to the random variables. In multi-stage
problems we must set the values of the stage-1 decision variables, then explore alterna-
tive assignments to the stage-1 random variables, then move on to stage 2, and so on.
Multi-stage problems are particularly hard to solve exactly, because of the intractable
number of scenarios that must often be considered. Problems with many scenarios have
motivated scenario sampling techniques, which allow us to work with a manageable
subset of the scenarios but lose exactness.

In this paper we apply CP symmetry breaking methods to scenario generation. In
(non-stochastic) CP several symmetry breaking methods have been devised, and they
can lead to spectacular reduction in search times. The MIP literature also contains work
on symmetry (a recent survey is given in [18]), but we restrict our attention to the CP
literature which turns out to contain exactly the type of symmetry needed for the prob-
lem under consideration. Symmetry breaking on the decision variables of a stochastic
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problem is not essentially different to symmetry breaking on a deterministic problem.
However, symmetry breaking on the random variables could reduce the number of sce-
narios needed to evaluate a solution, possibly leading to an exact solution instead of an
inexact one found by scenario sampling. As far as we know this connection between
symmetry breaking and stochastic problems is unexplored.

We test the idea on a problem in the literature: finding an optimal investment plan for
a transportation network, given that a future disaster such as an earthquake will prob-
abilistically destroy links in the network. This can be modelled as a 2-stage stochastic
program, but the case we consider is challenging as it has over a billion scenarios. For
this reason it has previously been solved only by an approximation technique, and only
for a small scenario sample. We exploit symmetries between scenarios to reduce greatly
the size of the problem, allowing us to find exact solutions. Section 2 presents the prob-
lem, Section 3 describes our new method and gives experimental results, Section 4
discusses related work, and Section 5 concludes the paper and outlines future work.

2 A Pre-disaster Planning Problem

The problem was first described by Peeta et al. [21] who cite evidence that the prob-
ability of a major earthquake occurring in the next few decades with its epicentre in
Istanbul has been estimated as 62.6 ± 15%; that this is likely to cause tens of billions
of dollars worth of damage; that the Turkish government plans to invest $400 million to
strengthen infrastructure for earthquake resistance; and that a key element of this plan
is to retrofit selected highways to maximise accessibility after an earthquake.

The Istanbul road network is represented by an undirected graph G = (V,E) with
25 nodes V and 30 edges or links E. Each link represents a highway and may fail with
some given probability, while each node represents a junction. The failure probability
of a link can be reduced by investing money in it, but there is a budget limiting the
total investment. To maximise post-quake accessibility, an interesting objective is to
minimise the expected shortest path between a specified origin and destination node
in the network, by investing in carefully-chosen links. In fact the actual objective is to
minimise a weighted sum of shortest path lengths between several origin-destination
(O-D) pairs, the choice of which is based on likely earthquake scenarios in the Japan
International Cooperation Agency Report of 2002.

We now sketch the stochastic model. For each link e ∈ E define a binary decision
variable ye which is 1 if we invest in that link and 0 otherwise. Define a binary random
variable re which is 1 if link e survives and 0 if it fails. Denote the survival (non-failure)
probability of link e by pe without investment and qe with, the investment required
for link e by ce, the length of link e by te (the units used in [21] are not specified
but are proportional to the actual distances), and the budget by B. If the O-D pair are
unconnected then the path length is taken to be a fixed number M representing (for
example) the cost of using a helicopter. Actually, if they are only connected by long
paths then they are considered to be unconnected, as in practice rescuers would resort
to alternatives such as rescue by helicopter or sea. So Peeta et al. only consider a few
(4–6) shortest paths for each O-D pair, and we shall refer to these as the allowed paths.
In each case M is chosen to be the smallest integer that is greater than the longest
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allowed path length. They also consider a larger value of M = 120 that places a greater
importance on connectivity, though using the same paths as with the smaller M values.
To distinguish between these two usages we replace M by Ma (the length below which
a path is allowed) and Mp (the penalty imposed when no allowed path exists). We fix
Ma to the smaller values (not 120) for each O-D pair, and generate two sets of instances
using Mp = Ma and Mp = 120. All qe values are set to 1 based on feedback from
structural engineers. Three budget levels B1, B2, B3 are considered, corresponding to
10%, 20% and 30% of the total cost of investing in all links. All problem parameters
can be found in Peeta et al. and are based on the 2003 Master Earthquake Plan of the
Istanbul municipality.

The earthquake problem is a 2-stage problem. In the first stage we decide which
links to invest in by assigning values to the ye, then link failures occur randomly with
probabilities depending on the ye, causing values to be assigned to the re. In the sec-
ond stage we choose a shortest path between the O-D pair, given the surviving links.
If they are no longer connected by an allowed path then the value Mp is used instead
of a path length. For a given O-D pair the expected length is computed over all scenar-
ios, and minimising this value is the objective. This is a challenging problem because
each of the 30 links is independently affected by an earthquake, giving 230 scenarios.
Though optimisation time is not critical in pre-disaster planning, a billion scenarios is
intractable. Instead Peeta et al. sample a million scenarios, and approximate the objec-
tive function by a monotonic multilinear function. They show that their method gives
optimal or near-optimal results on smaller instances, and present results on the full-scale
problem.

3 Scenario Bundling

This section describes our new method. First we provide background on the CP sym-
metry breaking ideas on which it is based. An early form of symmetry that has received
considerable attention is (value) interchangeability [9]:

Definition. A value a for variable v is fully interchangeable with value b if and only
if every solution in which v = a remains a solution when b is substituted for a and
vice-versa.

If two values are interchangeable then one of them can be removed from the domain,
reducing the size of the problem; alternatively they can be replaced by a single meta-
value, and thus collected together in a Cartesian product representation of the search
space. Both approaches avoid revisiting equivalent solutions. Several variants of inter-
changeability were defined in [9] and subsequent work in this area is surveyed in [14].
The relevant variant here is called dynamic interchangeability:

Definition. A value a for variable v is dynamically interchangeable for b with respect
to a set A of variable assignments if and only if they are fully interchangeable in the
subproblem induced by A.



590 S.D. Prestwich, M. Laumanns, and B. Kawas

Values may become interchangeable during backtrack search after some variables
have been assigned values, so even a problem with no interchangeable values may ex-
hibit dynamic interchangeability under some search strategy. This is an example of the
more general concept of conditional symmetry [10] in which symmetry occurs at certain
nodes in a search tree.

Interchangeable values can be exploited to group similar solutions together in bun-
dles, a term used in [5,11,15] and other work. Bundles are Cartesian products of sets
of values, which have been used in CP to represent related solutions compactly in so-
lution bundles [11], cross product representations [13], maximal consistent decisions
[16], solution clusters [20] and the SAT maximal encoding [23]. A drawback with in-
terchangeability is that it does not seem to occur in many real applications [6,19,27] so
it has recieved less attention than (for example) variable and value symmetries. Proper-
ties related to dynamic interchangeability were also investigated in [2,22] but otherwise
little or no work has been done on it. One of the contributions of this paper is to demon-
strate the usefulness of dynamic interchangeability in a stochastic problem.

We shall detect and exploit dynamic interchangeability in the random variables of
the earthquake problem. As an illustration consider the simple example in Figure 1
with links e ∈ {1, . . . , 4}. We set te = 1, pe = 0.8, qe = 1, ce = 1 (∀e), B = 1 and
Ma = Mp = 3.5 so that both possible paths between nodes 1 and 4 are allowed. We
must choose 1 link to invest in, to minimise the expected shortest path length between
nodes 1–4. There are 16 scenarios and the optimal policy is to invest in link 1, giving
an expected shortest path length of 2.4888. This is computed as

∑16
i=1 pi�i where pi is

the probability and �i the path length in scenario i.

1

2 3

4

1

2

3

4

Fig. 1. A small network example

Some scenarios can be considered together instead of separately. For example con-
sider the four scenarios 1001, 1011, 1101 and 1111, where the numbers indicate the
survival (1) or failure (0) of links 1–4. Survival has probability 0.8 and failure 0.2
so these scenarios have probabilities 0.0256, 0.1024, 0.1024 and 0.4096 respectively.
As links 1 and 4 survive in all four scenarios, it is irrelevant whether or not links
2 and 3 survive because they cannot be part of a shortest path: the path containing
links 1 and 4 is shorter. We can therefore merge these four scenarios into a single ex-
pression 1**1 where the meta-value * denotes interchangeability: the values 0 and 1
for links 2 and 3 are interchangeable. The expression represents the Cartesian product
{1} × {0, 1} × {0, 1} × {1} of scenarios. The probability associated with this product
of scenarios is 0.8× (0.8+ 0.2)× (0.8+ 0.2)× 0.8 = 0.64, which is equal to the sum
of the 4 scenario probabilities.
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Table 1. Two scenario bundle sets for the small example

links
3 2 4 1 p

0 * 0 * 0.0400
0 * 1 0 0.0320
0 * 1 1 0.1280
1 0 0 * 0.0320
1 0 1 0 0.0256
1 0 1 1 0.1024
1 1 0 0 0.0256
1 1 0 1 0.1024
1 1 1 0 0.1024
1 1 1 1 0.4096

links
1 4 2 3 p

0 * * * 0.2000
1 0 0 * 0.0320
1 0 1 0 0.0256
1 0 1 1 0.1024
1 1 * * 0.6400

We shall call a product such as 1**1 a scenario bundle by analogy with solution
bundles in CP. Note that this usage is distinct from bundle methods in SP [24], which
are quite different and apply to the class of nonsmooth convex programming problems.

Bundling scenarios together may lead to faster solution of some stochastic problems.
However, for the earthquake problem it is impractical to enumerate a billion scenarios
then look for ways of bundling some of them together, as we did in the above example.
Instead we enumerate scenarios by tree search on the random variables (the scenario
tree) and apply symmetry breaking as we search.

Consider a node in the scenario tree at which links 1 . . . i − 1 have been realised,
so that random variables r1 . . . ri−1 have been assigned values, and we are about to
assign a value to ri corresponding to link i. Denote by Si the shortest O-D path length
including i, under the assumption that all unrealised links survive; and denote by Fi

the shortest O-D path length not including i, under the assumption that all unrealised
links fail (using Mp when no path exists). So Si is the minimum shortest path length
including i in all scenarios below this scenario tree node, while Fi is the maximum
shortest path length not including i in the same scenarios. They can be computed by
temporarily assigning ri . . . r|E| to 1 or 0 respectively, and applying a shortest path
algorithm. Now if Si ≥ Fi then the value assigned to ri is irrelevant: the shortest path
length in each scenario under this tree node is independent of the value of ri, so the
values are interchangeable. This observation is the core of our method.

The order in which we assign the s variables affects the cardinality of the bundle set.
Two bundle sets for the example are shown in Table 1 along with their link permutations,
where p is the bundle probability. Note that once we have obtained a bundle set we can
discard the permutation used to derive it. We can also replace the symbol * by any
domain value (we choose 0) and treat each bundle as an ordinary scenario. For example
the bundle 11** under link permutation (1,4,2,3) can be replaced by the scenario 1001
under link permutation (1,2,3,4), with the same associated probability.

The problem of finding the smallest cardinality scenario bundle set corresponds ex-
actly to the problem of finding a variable permutation that minimizes the number of
paths in a binary decision tree. This is known to be NP-complete [28] so we shall ap-
ply heuristic search to the problem. First we use a greedy heuristic to quickly find a
good permutation. We assign a score λoaλda + λobλdb to each link (a, b) given O-D
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Table 2. Bundle set sizes for the earthquake problem

instance O-D pair Ma bundles
1 14–20 31 67
2 14–7 31 45
3 12–18 28 79
4 9–7 19 26
5 4–8 35 124

pair (o, d), where λxy denotes the shortest path length between nodes x and y. Then we
sort the links into ascending order of score. The motivation is to realise links closest to
the O-D pair first, and in experiments this led to good results. We further improve the
permutation by a limited amount of hill-climbing: apply some number of 3-exchange
moves, accepting moves that improve or leave unchanged the number of bundle sets.

We now apply scenario bundling to the earthquake problem, using 1000 hill-climbing
moves to improve the bundle sets. The method is implemented in the Eclipse [1] con-
straint logic programming system (which provides a library of graph algorithms) and
executed on a 2.8 GHz Pentium 4 with 512 MB RAM. The results are given in Table
2 for each O-D pair considered separately, and took approximately 1 minute each to
compute. The table shows the instances numbered 1–5, the O-D pairs, the constant Ma,
and the size of the corresponding bundle set. For each O-D pair the bundle sets are
remarkably small, representing scenario reduction of several orders of magnitude.

However, Peeta et al. do not use a single O-D pair. Instead they minimise the ex-

pected weighted sum E
{∑5

i=1 wiλi

}
of shortest path lengths λi between several O-D

pairs for weights wi, which are all set to 1 [25]. Unfortunately, there is likely to be little
interchangeability in this problem, especially if (as we would expect) the O-D pairs are
chosen to cover most of the network: for a given link to be irrelevant to the lengths of
several paths is much less likely than for one path. But we can avoid this drawback by
exploiting linearity of expectation and rewriting the objective as

∑5
i=1 wiE{λi} so that

each expected path length can be computed separately using its own bundle set.
We have replaced 1 billion scenarios by a total of 341 bundles, so on average each

bundle replaces approximately 3 million scenarios. This reduction allows us to find
exact solutions to the problem using a MIP model (to be described in an extended
version of this paper). Solution times range between 14 and 26 seconds on a 2.4GHz
Intel Core i5-520M with 4GB RAM using IBM ILOG CPLEX Optimizer Version 12.31

so our total solution times are dominated by the scenario bundling phase. The total times
for both our method and that of Peeta et al. are a few minutes.

Table 3 show the approximate results of Peeta et al. and our exact results, including
our exact evaluation of the objective function values of their approximate solutions.
The results validate the method of Peeta et al. as their solutions are of good quality.
However, the exact solutions are roughly 1–10% better than the approximate solutions,
so the improvement is worthwhile.

1 IBM, ILOG, and CPLEX are trademarks of International Business Machines Corporation, reg-
istered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies.
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Table 3. Approximate and exact solutions

B link investment plan objective
approximate solutions (low Mp)

B1 20 21 22 23 86.7168
B2 10 17 20 21 22 23 25 70.0352
B3 10 13 16 17 20 21 22 25 59.5317

exact solutions (low Mp)
B1 10 17 21 22 23 25 83.0801
B2 4 10 12 17 20 21 22 25 66.1877
B3 3 4 10 16 17 20 21 22 25 57.6802

approximate solutions (high Mp)
B1 9 10 12 15 21 22 23 25 215.67
B2 4 9 10 17 20 21 22 23 25 121.818
B3 4 5 7 9 10 12 13 15 17 20 21 22 23 25 87.9268

exact solutions (high Mp)
B1 10 17 21 22 23 25 212.413
B2 3 4 10 12 17 20 21 22 25 120.08
B3 4 10 16 17 20 21 22 23 25 78.4017

Peeta et al. remark that links 10, 20, 21, 22, 23 and 25 are invested in under most
of their plans, and the same is true of ours. However, in some cases our plans look
quite different to theirs. For example with B1 and low Mp we invest in more links than
they do, while with B3 and high Mp the reverse is true. It is not obvious in either case
why one solution is better than another, illustrating the impracticality of finding good
solutions manually.

Further experiments on random road networks indicate that our method scales up
well to larger instances. On networks with up to 77 links and up to 5 allowed paths it
reduced the number of scenarios by up to 20 orders of magnitude. However, allowing
more paths causes the bundle sets to grow rapidly, which is a limitation of our method.

4 Related Work

Scenario bundling has connections to other work. One way of viewing symmetry among
random variables is as stochastic dominance [17], a concept from Decision Theory: the
objective function associated with one choice (0 or 1) is at least as good as with another
choice (1 or 0). Because this holds in every scenario, it is the simplest form of stochastic
dominance: statewise (or zeroth order) dominance. However, this is usually defined as
a strict dominance by adding an extra condition: that one choice is strictly better than
the other in at least one state (or scenario). In our case neither value is better so this
is a weak dominance. If both alternatives weakly dominate each other then they are
indifferent, and the indifference relation is of course a symmetric relation. There does
not seem to be an accepted term such as stochastic symmetry for this phenomenon, so
we propose using this term to describe symmetries between scenarios.

There has been considerable work on scenario reduction methods for convex SP
problems [8]. But these often start with a large set of scenarios then try to reduce it,
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rather than try to construct a reduced set from scratch. They also approximate the op-
timal solution, unlike our method. Sampling methods such as Monte Carlo sampling
and Latin hypercube sampling have been used in both SP [4] and Artificial Intelligence
approaches such as SCP [12] but these also approximate the optimal solution. The Net-
work Reliability literature [7] describes methods for evaluating and approximating the
reliability of a network. These include ways of pruning irrelevant parts of a network
and have similarities to our method, but they are usually concerned with connectivity
rather than path length. The literature on pre-disaster planning and robust networks is
too large to review here, but a survey is given in [21].

5 Conclusion

We showed that a type of symmetry from Constraint Programming called dynamic in-
terchangeability occurs in the random variables of a 2-stage stochastic program, and
can be exploited by a method we call scenario bundling. Though this form of symmetry
does not appear to occur significantly in constraint satisfaction problems, bundling can
reduce the number of scenarios in a stochastic program by many orders of magnitude.
This enables us to find exact solutions to a real-world pre-disaster planning problem
that was previously considered intractable, and solved only approximately.

Scenario bundling can potentially be developed in several directions. (1) We ex-
pect that it will be useful for other stochastic problems, in particular those involving
stochastic shortest paths. (2) It can be generalised so that, instead of performing tree
search on a permutation of the random variables, it uses a dynamic branching heuristic.
This should detect more interchangeability. (3) It could speed up the fitness computa-
tion in metaheuristics for stochastic problems [3]. (4) It establishes a new link between
SP/SCP scenario reduction and CP symmetry breaking, and further links might emerge.
We might call such a collection of techniques stochastic symmetry breaking,

Acknowledgments. This work was partly funded by the IBM/IDA-funded Risk Col-
laboratory project.
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Abstract. We propose the Embarrassingly Parallel Search, a simple and efficient
method for solving constraint programming problems in parallel. We split the
initial problem into a huge number of independent subproblems and solve them
with available workers, for instance cores of machines. The decomposition into
subproblems is computed by selecting a subset of variables and by enumerating
the combinations of values of these variables that are not detected inconsistent
by the propagation mechanism of a CP Solver. The experiments on satisfaction
problems and optimization problems suggest that generating between thirty and
one hundred subproblems per worker leads to a good scalability. We show that
our method is quite competitive with the work stealing approach and able to solve
some classical problems at the maximum capacity of the multi-core machines.
Thanks to it, a user can parallelize the resolution of its problem without modifying
the solver or writing any parallel source code and can easily replay the resolution
of a problem.

1 Introduction

There are two mainly possible ways for parallelizing a constraint programming solver.
On one hand, the filtering algorithms (or the propagation) are parallelized or distributed.
The most representative work on this topic has been carried out by Y. Hamadi [5]. On
the other hand, the search process is parallelized. We will focus on this method. For a
more complete description of the methods that have been tried for using a CP solver in
parallel, the reader can refer to the survey of Gent et al. [4].

When we want to use k machines for solving a problem, we can split the initial prob-
lem into k disjoint subproblems and give one subproblem to each machine. Then, we
gather the different intermediate results in order to produce the results corresponding to
the whole problem. We will call this method: simple static decomposition method. The
advantage of this method is its simplicity. Unfortunately, it suffers from several draw-
backs that arise frequently in practice: the times spent to solve subproblems are rarely
well balanced and the communication of the objective value is not good when solving
an optimization problem (the workers are independent). In order to balance the sub-
problems that have to be solved some works have been done about the decomposition
of the search tree based on its size [8,3,7]. However, the tree size is only approximated
and is not strictly correlated with the resolution time. Thus, as mentioned by Bordeaux
et al. [1], it is quite difficult to ensure that each worker will receive the same amount

� This work was partially supported by the Agence Nationale de la Recherche (Aeolus ANR-
2010-SEGI-013-01 and Vacsim ANR-11-INSE-004) and OSEO (Pajero).

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 596–610, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Embarrassingly Parallel Search 597

of work. Hence, this method lacks scalability, because the resolution time is the maxi-
mum of the resolution time of each worker. In order to remedy for these issues, another
approach has been proposed and is currently more popular: the work stealing idea.

The work stealing idea is quite simple: workers are solving parts of the problem and
when a worker is starving, it ”steals” some work from another worker. Usually, it is
implemented as follows: when a worker W has no longer any work, it asks another
worker V if it has some work to give it. If the answer is positive, then the worker V
splits its current problem into two subproblems and gives one of them to the starving
worker W . If the answer is negative then W asks another worker U , until it gets some
work to do or all the workers have been considered.

This method has been implemented in a lot of solvers (Comet [10] or ILOG Solver
[12] for instance), and into several ways [14,6,18,2] depending on whether the work
to be done is centralized or not, on the way the search tree is split (into one or several
parts), or on the communication method between workers.

The work stealing approach partly resolves the balancing issue of the simple static
decomposition method, mainly because the decomposition is dynamic. Therefore, it
does not need to be able to split a problem into well balanced parts at the beginning.
However, when a worker is starving it has to avoid stealing too many easy problems,
because in this case, it have to ask for another work almost immediately. This happens
frequently at the end of the search when a lot of workers are starving and ask all the
time for work. This complicates and slows down the termination of the whole search by
increasing the communication time between workers. Thus, we generally observe that
the method scales well for a small number of workers whereas it is difficult to maintain
a linear gain when the number of workers becomes larger, even thought some methods
have been developed to try to remedy for this issue [16,10].

In this paper, we propose another approach: the embarrassingly parallel search (EPS)
which is based on the embarrassingly parallel computations [15].

When we have k workers, instead of trying to split the problem into k equivalent sub-
parts, we propose to split the problem into a huge number of subproblems, for instance
30k subproblems, and then we give successively and dynamically these subproblems to
the workers when they need work. Instead of expecting to have equivalent subproblems,
we expect that for each worker the sum of the resolution time of its subproblems will
be equivalent. Thus, the idea is not to decompose a priory the initial problem into a set
of equivalent problems, but to decompose the initial problem into a set of subproblems
whose resolution time can be shared in an equivalent way by a set of workers. Note that
we do not know in advance the subproblems that will be solved by a worker, because
this is dynamically determined. All the subproblems are put in a queue and a worker
takes one when it needs some work.

The decomposition into subproblems must be carefully done. We must avoid sub-
problems that would have been eliminated by the propagation mechanism of the solver
in a sequential search. Thus, we consider only problems that are not detected inconsis-
tent by the solver.

The paper is organized as follows. First, we recall some principles about embarrass-
ingly parallel computations. Next, we introduce our method for decomposing the initial
problems. Then, we give some experimental results. At last, we make a conclusion.
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2 Preliminaries

2.1 A Precondition

Our approach relies on the assumption that the resolution time of disjoint subproblems
is equivalent to the resolution time of the union of these subproblems. If this condition
is not met, then the parallelization of the search of a solver (not necessarily a CP Solver)
based on any decomposition method, like simple static decomposition, work stealing or
embarrassingly parallel methods may be unfavorably impacted.

This assumption does not seem too strong because the experiments we performed do
not show such a poor behavior with a CP Solver. However, we have observed it in some
cases with a MIP Solver.

2.2 Embarrassingly Parallel Computation

A computation that can be divided into completely independent parts, each of which
can be executed on a separate process(or), is called embarrassingly parallel [15]. For
the sake of clarity, we will use the notion of worker instead of process or processor.

An embarrassingly parallel computation requires none or very little communication.
This means that workers can execute their task, i.e. any communication that is with-
out any interaction with other workers. Some well-known applications are based on
embarrassingly parallel computations, like Folding@home project, Low level image
processing, Mandelbrot set (a.k.a. Fractals) or Monte Carlo Calculations [15].

Two steps must be defined: the definition of the tasks (TaskDefinition) and the task
assignment to the workers (TaskAssignment). The first step depends on the application,
whereas the second step is more general. We can either use a static task assignment
or a dynamic one. With a static task assignment, each worker does a fixed part of the
problem which is known a priori. And with a dynamic task assignment, a work-pool
is maintained that workers consult to get more work. The work pool holds a collection
of tasks to be performed. Workers ask for new tasks as soon as they finish previously
assigned task. In more complex work pool problems, workers may even generate new
tasks to be added to the work pool.

In this paper, we propose to see the search space as a set of independent tasks and to
use a dynamic task assignment procedure. Since our goal is to compute one solution, all
solutions or to find the optimal solution of a problem, we introduce another operation
which aims at gathering solutions and/or objective values: TaskResultGathering. In this
step, the answers to all the sub-problems are collected and combined in some way to
form the output (i.e. the answer to the initial problem).

For convenience, we create a master (i.e. a coordinator process) which is in charge of
these operations: it creates the subproblems (TaskDefinition), holds the work-pool and
assigns tasks to workers (TaskAssignment) and fetches the computations made by the
workers (TaskResultGathering).

In the next sections, we will see how the three operations can be defined in order to
be able to run the search in parallel and in an efficient way.



Embarrassingly Parallel Search 599

3 Problem Decomposition

3.1 Principles

We have seen that decomposing the initial problem into the same number of subprob-
lems as workers may cause unbalanced resolution time for each worker. Thus, our idea
is to strongly increase the number of considered subproblems, in order to define an
embarrassingly parallel computation leading to good performance.

Before going into further details on the implementation, we would like to establish a
property. While solving a problem, we will call:

– active time of a worker the sum of the resolution times of a worker (the decompo-
sition time is excluded).

– inactive time of a worker the difference between the elapsed time for solving all
the subproblems (the decomposition time is excluded) and the active time of the
worker.

Our approach is mainly based on the following remark:

Remark 1. The active time of all the workers may be well balanced even if the resolu-
tion time of each subproblem is not well balanced

The main challenge of a static decomposition is not to define equivalent problems,
it is to avoid some workers without work whereas some others are running. We do not
need to know in advance the resolution time of each subproblem. We just expect that
the workers will have equivalent activity time. In order to reach that goal we propose to
decompose the initial problem into a lot of subproblems. This increases our chance to
obtain well balanced activity times for the workers, because we increase our chance to
be able to obtain a combination of resolution times leading to the same activity time for
each worker.

For instance, when the search space tends to be not balanced, we will have sub-
problems that will take a longer time to be solved. By having a lot of subproblems we
increase our chance to split these subproblems into several parts having comparable
resolution time and so to obtain a well balanced load of the workers at the end. It also
reduces the relative importance of each subproblem with respect to the resolution of the
whole problem.

Here is an example of the advantage of using a lot of subproblems. Consider a prob-
lem which requires 140s to be solved and that we have 4 workers. If we split the problem
into 4 subproblems then we have the following resolution times: 20, 80, 20, 20. We will
need 80s to solve these subproblems in parallel. Thus, we gain a factor of 140/80 =
1.75. Now if we split again each subproblem into 4 subproblems we could obtain the fol-
lowing subproblems represented by their resolution time: ((5, 5, 5, 5), (20, 10, 10, 40),
(2, 5, 10, 3), (2, 2, 8, 8)). In this case, we could have the following assignment: worker1
: 5+20+2+8 = 35; worker2 : 5+10+2+10 = 27; worker3 : 5+10+5+3+2+8 = 33
and worker4 : 5 + 40 = 45. The elapsed time is now 45s and we gain a factor of
140/45 = 3.1. By splitting again the subproblems, we will reduce the average res-
olution time of the subproblems and expect to break the 40s subproblem. Note that
decomposing more a subproblem does not increase the risk of increasing the elapsed
time.
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Property 1. Let P be an optimization problem, or a satisfaction problem for which we
search for all solutions. If P is split into subproblems whose maximum resolution time
is tmax, then

(i) the minimum resolution time of the whole problem is tmax
(ii) the maximum inactivity time of a worker is less than or equal to tmax.

Suppose that a worker W has an inactivity time which is greater than tmax. Consider
the moment where W started to wait after its activity time. At this time, there is no
more available subproblems to solve, otherwise W would have been active. All active
workers are then finishing their last task, whose resolution is bounded by tmax. Thus,
the remaining resolution time of each of these other workers is less than tmax. Hence
a contradiction.

3.2 Subproblems Generation

Suppose we want to split a problem into q disjoint subproblems. Then, we can use
several methods.

A Simple Method. We can proceed as follows:

1. We consider any ordering of the variables x1,...xn.
2. We define by Ak the Cartesian product D(x1)× ...×D(xk).
3. We compute the value k such that |Ak−1| < q ≤ |Ak|.

Each assignment of Ak defines a subproblem and so Ak is the sought decomposition.
This method works well for some problems like the n-queen or the Golomb ruler,

but it is really bad for some other problems, because a lot of assignments of A may be
trivially not consistent. Consider for instance that x1, x2 and x3 have the three values
{a, b, c} in their domains and that there is an alldiff constraint involving these three
variables. The Cartesian product of the domains of these variables contains 27 tuples.
Among them only 6 ((a, b, c), (a, c, b), (b, a, c),(b, c, a),(c, a, b), (c, b, a)) are not incon-
sistent with the alldiff constraint. That is, only 6/27 = 2/9 of the generated problems
are not trivially inconsistent. It is important to note that most of these inconsistent prob-
lems would never be considered by a sequential search. For some problems we have
observed more than 99% of the generated problems were detected inconsistent by run-
ning the propagation. Thus, we present another method to avoid this issue.

Not Detected Inconsistent (NDI) Subproblems. We propose to generate only sub-
problems that are not detected inconsistent by the propagation. The generation of q
such subproblems becomes more complex because the number of NDI subproblems
may be not related to the Cartesian product of some domains. A simple algorithm could
be to perform a Breadth First Search (BFS) in the search tree, until the desired number
of NDI subproblems is reached. Unfortunately, it is not easy to perform efficiently a
BFS mainly because a BFS is not an incremental algorithm like a Depth First Search
(DFS). Therefore, we propose to use a process similar to an iterative deepening depth-
first search [9]: we repeat a Depth-bounded Depth First Search (DBDFS), in other words
a DFS which never visits nodes located at a depth greater than a given value, increasing
the bound until generating the right number of subproblems. Each branch of a search
tree computed by this search defines an assignment. We will denote by NDIk the set
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of assignments computed for the depth k. For generating q subproblems, we repeat the
DBDFS until we reach a level k such that |NDIk−1| < q ≤ |NDIk|. For convenience
and simplicity, we use a static ordering of the variables.

We improve this method in three ways:

1. We try to estimate some good values for k in order to avoid repeating too many
DBDFS. For instance, if for a given depth u we produce only q/1000 subproblems
and if the size of the domains of the three next non assigned variables is 10, then
we can deduce that we need to go at least to the depth u+ 3.

2. In order to avoid repeating the same DFS for the first variables while repeating
DBDFS, we store into a table constraint the previous computed assignments. More
precisely, if we have computed NDIk then we use a table constraint containing all
these assignments when we look for NDIl with l > k.

3. We parallelize our decomposition algorithm in a simple way. Consider we have
w workers. We search for w NDI subproblems. Then, each worker receives one
of these subproblems and decomposes it into q/w NDI subproblems by using our
algorithm. The master gathers all computed subproblems. If a worker is not able to
generate q/w subproblems because it solves its root NDI problem by decomposing
it, the master asks the workers to continue to decompose their subproblems into
smaller ones until reaching the right number of subproblems. Note that the load
balancing of the decomposition is not really important because once a worker has
finished its decomposition work it begins to solve the available subproblems.

Large Domains. Our method can be adapted to large domains. A new step must be
introduced in the algorithm in the latest iteration. If the domain of the latest considered
variable, denoted by lx, is large then we cannot consider each of its values individually.
We need to split its domain into a fix number of parts and use each part as a value. Then,
either the desired number of subproblems is generated or we have not been able to reach
that number. In this latter case, we need to split again the domain of lx, for instance
by splitting each part into two new parts (this multiplies by at most 2 the number of
generated subproblems) and we check if the generated number of subproblems is fine
or not. This process is repeated until the right number of subproblems is generated or
the domain of lx is totally decomposed, that is each part corresponds to a value. In this
latter case, we continue the algorithm by selecting a new variable.

3.3 Implementation

Satisfaction Problems

– The TaskDefinition operation consists of computing a partition of the initial problem
P into a set S of subproblems.

– The TaskAssignment operation is implemented by using a FIFO data structure (i.e.
a queue). Each time a subproblem is defined it is added to the back of the queue.
When a worker needs some work it takes a subproblem from the queue.

– The TaskResultGathering operation is quite simple : when searching for a solution it
stops the search when one is found; when searching for all solutions, it just gathers
the solutions returned by the workers.
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Optimization Problems
In case of optimization problems we have to manage the best value of the objective
function computed so far. Thus, the operations are slightly modified.

– The TaskDefinition operation consists of computing a partition of the initial problem
P into a set S of subproblems.

– The TaskAssignment operation is implemented by using a queue. Each time a sub-
problem is defined it is added to the back of the queue. The queue is also associated
with the best objective value computed so far. When a worker needs some work,
the master gives it a subproblem from the queue. It also gives it the best objective
value computed so far.

– The TaskResultGathering operation manages the optimal value found by the worker
and the associated solution.

Note that there is no other communication, that is when a worker finds a better solution,
the other workers that are running cannot use it for improving their current resolution.
So, if the absence of communication may increase our performance, this aspect may
also lead to a decrease of performance. Fortunately, we do not observe this bad behavior
in practice. We can see here another argument for having a lot of subproblems in case
of optimization problems: the resolution of a subproblem should be short for improving
the transmission of a better objective value and for avoiding performing some work that
could have been ignored with a better objective value.

3.4 Size of the Partition

One important question is: how many subproblems do we generate? This is mainly an
experimental question. However, we can notice that if we want to have a good scala-
bility then this number should be defined in relation to the number of workers that are
involved. More precisely, it is more consistent to have q subproblems per worker than a
total of q subproblems.

3.5 Replay

One interesting advantage of our method in practice is that we can simply replay a
resolution in parallel by saving the order in which the subproblems have been executed.
This costs almost nothing and helps a lot the debugging of applications.

4 Related Work

The decomposition of some hard parts of the problem into several subproblems in order
to fill a work-pool has been proposed by [10] in conjunction with the work-stealing
approach.

Yun and Epstein proposed to parallelize a sequential solver in order to find one solu-
tion for a satisfaction problem [17]. Their approach strongly relies on a weight learning
mechanism and on the use of a restart strategy. A first portfolio phase allows to initialize
the weights as well as solving easy problems. In the splitting phase, the manager dis-
tributes subproblems to the worker with a given search limit. If the worker is not able
to solve the problem within the limit, it returns the problem to the manager for further
partitioning by iterative bisection partitioning.
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We can already notice three major differences with our approach. First, we partition
statically the problems at the beginning of the search whereas they use an on-demand
dynamic partitioning. Second, there is much more communication between the manager
and the workers since the workers have to notify the manager of encountered search
limit. Last, the same part of the search tree can be explored several times since the
worker do not learn clauses form the unsuccessful runs. Therefore, it really complicated
to adapt their approach for solution enumeration whereas it is straightforward with ours.

5 Experiments

Machines. All the experiments have been made on a Dell machine having four E7-
4870 Intel processors, each having 10 cores with 256 GB of memory and running un-
der Scientific Linux. Our experiments can be reproduced by downloading the program
EPSearch for Linux from [13].

Solvers. We implemented our method on the top of two CP solvers: or-tools rev2555
by Google and Gecode 4.0.0 (http://www.gecode.org/).

Experimental Protocol. Our code just performs three operations:

1. Read a FlatZinc model or create directly the model with the solver API.
2. Create the threads and define an instance of the solver for each thread
3. Compute the subproblems, feed the threads with them and gather the results.

For each problem, we will either search for all solutions of satisfaction problems or
solve the whole optimization problem (i.e. find the best solution and prove its optimal-
ity). The resolution times represent the elapsed time to solve the whole problem that
is they include the decomposition time and the times needed by the workers to solve
subproblems.

Note that testing the performance of a parallel method is more complex with an opti-
mization problem because the chance may play a role. It can advantage or disadvantage
us. However, in the real life, optimization problems are quite common therefore it is
important to test our method on them.

The means that are given are geometric means.

Selected Benchmarks. We selected a wide range of problems that are representative
of the types of problems solved in CP. Some are coming from the CSP lib and have
been modeled by Hakan Kjellerstrandk (http://www.hakank.org/) and some are coming
from the MiniZinc distribution (1.5 see [11]). We selected instances that are not too
easy (more than 20s) and that are not too long to be solved (less than 3600s) with the
Gecode solver.

The examples coming from Hakan Kjellerstrandk are: golombruler-13 ;
magicsequence-40000 ; sportsleague-10 ; warehouses (number of warehouses = 10,
number of stores = 20 and a fixed cost = 180) ; setcovering (Placing of fire stations with
80 cities and a min distance fixed at 24) ; allinterval-15 (the model of Regin and Puget
of the CSP Lib is used).
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Fig. 1. 17-queens: performance as a function of #sppw (10,20,50 and 100). We no longer observe
the limit of a gain factor of 29

The Flatzinc instances coming from the MiniZinc distribution are: 2DLevelPacking
(5-20-6), depotPlacement (att48-5; rat99-5), fastfood (58), openStacks (01-problem-
15-15;01-wbp-30-15-1), sugiyama (2-g5-7-7-7-7-2), patternSetMining (k1-german-
credit), sb-sb (13-13-6-4), quasigroup7-10, non-non-fast-6, radiation-03, bacp-7, talent-
scheduling-alt-film116.

Tests. Let #sppw denote the number of subproblems per worker. We will study the
following aspects of our method:

5.1 the scalability compared to other static decompositions
5.2 the inactivity time of the workers as a function of the value of #sppw
5.3 the difficulty of the subproblems when dealing with a huge number of them
5.4 the advantage of parallelizing the decomposition
5.5 the influence of the value of #sppw on the factor of improvements
5.6 its performance compared to the work-stealing approach
5.7 the influence of the CP solver that is used

5.1 Comparison with a Simple Static Decomposition

We consider the famous n-queens problem, because it is a classical benchmark and
because some proposed methods [6,1] were not able to observe a factor greater than
29 with a simple static decomposition of the problems even when using 64 workers.
Figure 1 shows that our method scales very well when #sppw is greater than 20. The
limit of the scalability (a maximum ratio of 29) described in [1] clearly disappeared.
Note that we used the same search strategy as in [1] and two 40-cores Dell machines
for this experiment.

5.2 Ratio of NDI Subproblems

Figure 2 shows the percentage of NDI problems generated by the simple method of
decomposition for all problems. The geometric mean is a bold line and the dashed lines
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Fig. 2. Percentage of NDI problems generated by the simple decomposition method
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Fig. 3. Percentage of maximum inactivity time of the workers (geometric mean)

represent the minimum and maximum values. We can see that this number depends a lot
on the considered instances. For some instances, the number is close to 100% whereas
for some others it can be really close to 0% which indicates a decomposition issue. The
mean starts at 55% and decreases according to the number of subproblems to end at
1%. Most of the inconsistent problems generated by the simple decomposition method
would not have been considered by a sequential search. Therefore, for some instances
this method should not be used. This is the reason why we do not generate any non NDI
problems.

5.3 The Inactivity Time as a Function of #sppw

Figure 3 shows that the percentage of the maximum inactivity time of the workers
decreases when the number of subproblems per worker is increased. The geometric
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Fig. 4. Percentage of the total time spent in the decomposition

��

��

���

���

���

���

���

���

�� �� �� ��� ��� ��� ��� ���� ����

	


�
�
�



�

��

�

��

��

���

���

���

���

���

���

�� �� �� ��� ��� ��� ��� ���� ����

����	

��

��

���

���

���

���

���

���

�� �� �� ��� ��� ��� ��� ���� ����

	


�
�
�



�

��

�

Fig. 5. Speed up as a function of the number of subproblems for finding all solutions of satis-
faction problems (top left), for finding and proving the optimality of optimization problems (top
right) and for all the problems (bottom).
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mean is a bold line, and the dashed lines represent the minimum and maximum values,
and the standard deviation is indcated by a gray area. From 20 subproblems per worker,
we observe that in average the maximum inactivity time represents less than 20% of the
resolution time

5.4 Parallelism of the Decomposition

Figure 4 compares the percentage of total time needed to decompose the problem when
only the master performs this operation or when the workers are also involved. We
clearly observe that the parallelization of the decomposition saves some time, especially
for a large number of subproblems per worker.

5.5 Influence of the Number of Considered Subproblems

Figure 5 describes the speed up obtained by the Embarrassignly Parallel Search (EPS)
as a function of the number of subproblems for Gecode solver. The best results are
obtained with a number subproblems per worker between 30 and 100. In other words,
we propose to start the decomposition with q = 30w, wherew is the number of workers.

It is interesting to note that a value of #sppw in [30,100] is good for all the considered
problems and seems independent from them.

The reduction of the performance when increasing the value of #sppw comes from
the fact that the decomposition process solves an increasing part of the problem; and
this process is slower than a resolution procedure.

Note that with our method, only 10% of the resolution time is lost if we use a se-
quential decomposition instead of a parallel one.

5.6 Comparison with the Work Stealing Approach

Table 1 presents a comparison between the EPS and the work stealing method available
in Gecode. The column t gives the solving time in seconds and the column s give the
speed-up. The last row shows the sum of the resolution times or the geometric mean
of the speed-ups. The geometric average gain factor with the work stealing method is
7.7 (7.8 for satisfaction problems and 7.6 for optimization problems) whereas with the
EPS it is 13.8 (18.0 for satisfaction problems and 12.3 for optimization problems). Our
method improves the work stealing approach in all cases but one.

5.7 Influence of the CP Solver

We also performed some experiments by using or-tools solver. With or-tools the speed
up of the EPS are increased (See Table 2). We obtain a geometric average gain factor of
13.8 for the Gecode solver and 21.3 for or-tools.
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Table 1. Resolution with 40 workers, and #sspw=30 using Gecode 4.0.0

Instance Seq. Work stealing EPS

t t s t s

allinterval 15 262.5 9.7 27.0 8.8 29.9
magicsequence 40000 328.2 592.6 0.6 37.3 8.8
sportsleague 10 172.4 7.6 22.5 6.8 25.4
sb sb 13 13 6 4 135.7 9.2 14.7 7.8 17.5
quasigroup7 10 292.6 14.5 20.1 10.5 27.8
non non fast 6 602.2 271.3 2.2 56.8 10.6

golombruler 13 1355.2 54.9 24.7 44.3 30.6
warehouses 148.0 25.9 5.7 21.1 7.0
setcovering 94.4 16.1 5.9 11.1 8.5
2DLevelPacking Class5 20 6 22.6 13.8 1.6 0.7 30.2
depot placement att48 5 125.2 19.1 6.6 10.2 12.3
depot placement rat99 5 21.6 6.4 3.4 2.6 8.3
fastfood ff58 23.1 4.5 5.1 3.8 6.0
open stacks 01 problem 15 15 102.8 6.1 16.9 5.8 17.8
open stacks 01 wbp 30 15 1 185.7 15.4 12.1 11.2 16.6
sugiyama2 g5 7 7 7 7 2 286.5 22.8 12.6 10.8 26.6
pattern set mining k1 german-credit 113.7 22.3 5.1 13.8 8.3
radiation 03 129.1 33.5 3.9 25.6 5.0
bacp-7 227.2 15.6 14.5 9.5 23.9
talent scheduling alt film116 254.3 13.5 18.8 35.6 7.1

total (t) or geometric mean (s) 488.2 1174.8 7.7 334.2 13.8
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Table 2. Resolution with 40 workers, and #sspw=30 using or-tools (revision 2555)

Instance Seq. EPS

t t s

allinterval 15 2169.7 67.7 32.1
magicsequence 40000 – – –
sportsleague 10 – – –
sb sb 13 13 6 4 227.6 18.1 12.5
quasigroup7 10 – – –
non non fast 6 2676.3 310.0 8.6

golombruler 13 16210.2 573.6 28.3
warehouses – – –
setcovering 501.7 33.6 14.9
2DLevelPacking Class5 20 6 56.2 3.6 15.5
depot placement att48 5 664.9 13.7 48.4
depot placement rat99 5 67.0 2.8 23.7
fastfood ff58 452.4 25.1 18.0
open stacks 01 problem 15 15 164.7 7.1 23.2
open stacks 01 wbp 30 15 1 164.9 6.3 26.0
sugiyama2 g5 7 7 7 7 2 298.8 20.5 14.6
pattern set mining k1 german-credit 270.7 12.8 21.1
radiation 03 416.6 23.5 17.7
bacp-7 759.7 23.8 32.0
talent scheduling alt film116 575.7 15.7 36.7

total (t) or geometric mean (s) 25677.2 1158.1 21.3

6 Conclusion

In this paper we have presented the Embarrassingly Parallel Search (EPS) a simple
method for solving CP problems in parallel. It proposes to decompose the initial prob-
lem into a set of k subproblems that are not detected inconsistent and then to send them
to workers in order to be solved. After some experiments, it appears that splitting the
initial problem into 30 such subproblems per worker gives an average factor of gain
equals to 21.3 with or-tools and 13.8 with Gecode while searching for all the solu-
tions or while finding and proving the optimality, on a machine having 40 cores. This is
competitive with the work stealing approach.

Acknowledgments. We would like to thank very much Laurent Perron and Claude
Michel for their comments which helped improve the paper.
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Abstract. Large neighborhood search (LNS) [25] is a framework that combines
the expressiveness of constraint programming with the efficiency of local search
to solve combinatorial optimization problems. This paper introduces an extension
of LNS, called multi-objective LNS (MO-LNS), to solve multi-objective combi-
natorial optimization problems ubiquitous in practice. The idea of MO-LNS is
to maintain a set of nondominated solutions rather than just one best-so-far solu-
tion. At each iteration, one of these solutions is selected, relaxed and optimized
in order to strictly improve the hypervolume of the maintained set of nondom-
inated solutions. We introduce modeling abstractions into the OscaR solver for
MO-LNS and show experimentally the efficiency of this approach on various
multi-objective combinatorial optimization problems.

Keywords: Constraint Programming, Multi-Objective Combinatorial Optimiza-
tion, Large Neighborhood Search.

Multi-Objective Combinatorial Optimization (MOCO) problems are ubiquitous in real-
world applications. Decision makers often face the problem of dealing with several
objectives e.g. the cost and the risk. In this situation, people are mostly interested to see
a set of solutions representing the optimal compromises between objectives instead of
one solution resulting from an a priori preference between these objectives.

Not surprisingly, the last decades have seen a growth of interest in the theory and
the methodology for MOCO problems (see [7,26] for a review). Currently, hybridized-
meta-heuristics between Evolutionary Algorithm (EA) and Local Search (LS) obtain
state-of-the-art results1 on most standard MOCO problems such as the traveling sales-
man, the binary knapsack, and the quadratic assignment problems (see [1] for a review
of these methods). However – despite the implementation facilities offered by libraries
such as ParadisEO [4] and jMetal [6] – these approaches are quite far from “model and
run” ones. Indeed, users still have to provide several implementation blocks (for cross-
over, mutations, moves and neighborhood, etc.) requiring a great knowledge and exper-
tise on the problems and the used algorithms. Furthermore, meta-heuristic methods for
MOCO problems are more and more specific and strongly related to the optimization
problem to solve [8]. This tendency increases the difficulty to design a single universal
method or solver.

1 The LS and EA communities are probably the most active ones on the domain of MOCO.

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 611–627, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



612 P. Schaus and R. Hartert

Conversely, Constraint Programming (CP) offers a high level declarative language
and has shown to be a competitive approach for solving single-objective constrained
optimization problems (COP). In particular, the LNS (Large Neighborhood Search)
framework [25] – which combines the efficiency of LS with the expressiveness of CP –
allowed to solve large scale problems such as vehicle routing [3,25], scheduling [14,21],
and assignment/bin-packing problems [18,23] successfully.

We believe that the expressiveness of CP can have a real added value to tackle some
MOCO problems by reducing the amount of work required from the modeler.2 This
work is one step in the direction of extending the LNS framework in the multi-objective
context (MO-LNS). The goal of MO-LNS is to quickly discover good nondominated
sets of solutions for large scale MOCO problems while keeping a declarative CP model.

This paper introduces the MO-LNS framework. We demonstrate experimentally its
flexibility on standard MOCO problems as well as on a real-world bi-objective version
of the Tank Allocation Problem (TAP) [24]. We also introduce modeling abstractions,
explaining in depth an MO-LNS model implemented with the OscaR open source li-
brary [20].

Outline. Section 1 gives definitions related to constraint programming and multi-
objective optimization. Section 2 reviews the related work of existing CP approaches to
solve MOCO problems. Section 3 introduces MO-LNS. Section 4 details an MO-LNS
model for the quadratic assignment problem in the OscaR [20] solver. Section 5 experi-
ments the MO-LNS approach on various MOCO problems. Section 6 gives perspectives
and concludes.

1 Definitions

The typical MOCO problem we want to solve has m integer objective variables to
minimize while satisfying some constraints:

Minimize obj = (obj1, obj2, . . . , objm)

Subject to constraints
(1)

Solutions of this problem are defined as follows:

Definition 1 (Solution). Let P be a MOCO problem, a solution of the problem P is an
assignment of the decision variables and objective variables of P that satisfies all the
constraint of this problem. In the following, sol(x) denotes the value assigned to the
variable x in the solution sol.

The conflicting nature of the objectives usually prevents the existence of a unique
solution sol∗ that is optimal in all objectives. Hence, one is usually interested in the set
of all the optimal compromises known as Pareto optimal solutions.

2 The lack of hybridization with CP approaches for solving MOCO problems was recently un-
derlined by Ehrgott in [8].
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Definition 2 (Pareto dominance). Let sol and sol′ be two solutions of a MOCO prob-
lem P . We say that sol dominates sol′, denoted sol ≺ sol′, if and only if:

∀j ∈ [1..m] : sol(objj) ≤ sol′(objj)

∧ ∃j ∈ [1..m] : sol(objj) < sol′(objj)
(2)

Besides, we say that sol weakly-dominates sol′, denoted sol � sol′, if and only if the
first part of Equation 2 holds.3

Definition 3 (Pareto optimality). Let sols(P) denotes all the feasible solutions of a
MOCO problem P . A solution sol∗ is Pareto optimal if and only if there is no solution
sol′ in sols(P) that dominates sol∗:

�sol′ ∈ sols(P) : sol′ ≺ sol∗ (3)

In other words, a solution is said to be Pareto optimal if it is impossible to improve the
value of one objective without degrading the value of at least one other objective.

The set of all the Pareto optimal solutions is known as the Pareto set and is defined
as follows:

Definition 4 (Pareto set). The Pareto set of a MOCO problem P is the set of all the
Pareto optimal solutions of this problem:

{sol ∈ sols(P) | �sol′ ∈ sols(P) : sol′ ≺ sol} (4)

Definition 5 (Pareto front). The Pareto front of a MOCO problem P is the projection
of its Pareto set in the objective space.

Unfortunately, discovering the exact Pareto set may be impracticable on difficult
MOCO problems. We are thus interested in finding an approximation of this set, also
known as the archive.

Definition 6 (Archive). An archiveA is a set of solutions such that there is no solution
in the archive that dominates an other solution in the archive. This property is known
as the domination-free property:

∀sol ∈ A, �sol′ ∈ A : sol′ ≺ sol (5)

As illustrated in Fig. 1, an archive can be used to partition the objective space into
three subspaces:

– The dominated subspace consists of all the solutions that are dominated by at least
one solution in the archive (see Fig. 1a);

– The diversification subspace consists of all the solutions that neither dominate nor
are dominated by any solution in the archive (see Fig. 1b);

– The intensification subspace consists of all the solutions that dominate at least one
solution in the archive (see Fig. 1c).

Clearly the archive quality can only be improved by adding new solutions from:

3 In the remainder of this paper, we abuse of these notations to compare solutions with vectors.
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Fig. 1. An archive partitions the objective space into three subspaces: (a) the dominated subspace,
(b) the diversification subspace, and (c) the intensification subspace

– the intensification subspace where a new solution replaces at least one solution in
the archive;

– the diversification subspace where a new solution is added into the archive without
replacing any other solutions.

In the following, we suppose that an archive maintains its domination-free property
by removing the solutions that are dominated by a new solution from the intensifica-
tion space. Therefore, adding new solutions into the archive increases the size of the
dominated subspace. The size of the dominated subspace is a common indicator used
to measure the quality of an archive known as the hypervolume indicatorH [30]:

Definition 7 (Hyper-volume indicator). The hypervolume H is an unary quality in-
dicator (to be maximized) which measures the volume of the objective subspace domi-
nated by a given archive.

The hypervolume indicator is mostly used for bi-objective problems since its computa-
tion increases exponentially with the number of objectives.

Every solution of the Pareto front is not equally difficult to discover. Supported solu-
tions can be discovered using a single objective optimization approach by minimizing
a linear aggregation of the objectives while non supported ones cannot [7]:

Definition 8 (Supported Pareto optimal solutions). A supported Pareto optimal so-
lution is an extreme point on the convex hull of the Pareto front.

The Pareto front has no guarantee to be convex, justifying the need for more advanced
techniques to tackle MOCO problems.

2 Related Work

While multi-objective combinatorial optimization problems have gained a lot of trac-
tion over last decade in the Local Search and Evolutionary Search communities (with
algorithms such as NSGA-II [5] and SPEA-II [29]), not so many methods have been
proposed for CP.
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One approach detailed in Section 2.1 has been initially proposed to solve bi-objective
problems by solving a sequence of problems. Another approach detailed in Section 2.2
allows to solve arbitrary multi-objective problems in one search using an adaptation of
Branch and Bound (BnB) search with a special global constraint to filter the objective
variables.

2.1 Bi-Objective Optimization

In bi-objective optimization problems, improving the value of the first objective of a
Pareto optimal solution cannot be done without degrading the value of the second ob-
jective. The approach proposed by van Wassenhove and Gelders [27] exploits this prop-
erty in order to find the exact Pareto optimal set of solutions of bi-objective optimization
problems. The idea is as follows:4

1. Find the Pareto optimal solution with the best value for the first objective;
2. If this solution exists, the search is restarted with an additional constraint enforcing

the value of the second objective to be strictly better than its value in the previous
solution.

2.2 Multiple-Objective Optimization with CP (MO-CP)

In [9], Gavanelli suggested a framework to solve multi-objective optimization with CP
allowing to find all the Pareto optimal solutions in a single search. This framework is
presented as a specialized BnB search making use of no-goods recording, correspond-
ing to nondominated solutions. Although not presented this way in [9], we view this
approach as the introduction of a new global constraint defined on the objective vari-
ables and an archiveA that is domination-free:

Pareto(obj1, . . . , objm,A = {sol1, . . . , soln}) (6)

where soli is a solution to Problem (1). The Pareto constraint ensures that the next
discovered solution is nondominated w.r.t. A:

�sol ∈ A : sol % (obj1, . . . , objm) (7)

Let objmin
i and objmax

i denote the lower and upper bounds of the objective variable
obji. The filtering of objmax

i achieved in [9] considers first the dominated point DPi

that is defined as follows:

DPi = (objmin
1 , . . . , objmin

i−1 , obj
max
i , objmin

i+1 , . . . , obj
min
m ) (8)

Then it finds a solution sol∗ ∈ A dominating the dominated point i.e. such that sol∗ �
DPi. If such a solution exists, sol∗(obji) − 1 is an upper bound for obji that can be
used to filter its domain:

objmax
i ← sol∗(obji)− 1. (9)

4 The approach of van Wassenhove and Gelders can be seen as a particular instance of the ε-
constraint method [10].
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Since we are interested in finding the tightest upper bound for objective i, the idem-
potent filtering rule is:

objmax
i ← min({objmax

i } ∪ {sol(obji)− 1 | sol ∈ A ∧ sol % DPi}) (10)

In this scheme, each time a new solution is found, it is added intoA possibly filtering
out dominated solutions to maintain its domination-free property.

It has been demonstrated in [9] that MO-CP, although more general, is also more ef-
ficient than the approach of van Wassenhove and Gelders to solve bi-objective knapsack
problems.5

Example 1. Consider Pareto(obj1, obj2, obj3,A) with domains D(obj1) = [3..5],
D(obj2) = [2..5], D(obj3) = [2..5] and A = {(1, 4, 2), (4, 2, 3), (2, 3, 1), (2, 1, 4)}.
No filtering for objmax

1 is possible because (objmax
1 = 5, objmin

2 = 2, objmin
3 = 2) is

not dominated by any point in A. For obj2 some filtering is possible since (objmin
1 =

3, objmax
2 = 5, objmin

3 = 2) is dominated by (1, 4, 2) and (2, 3, 1). We can set objmax
2 ←

min(4 − 1, 3 − 1) = 2. The domain of obj3 can also be filtered since (objmin
1 =

2, objmin
2 = 2, objmax

3 = 5) is dominated by (2, 1, 4). We can thus set objmax
3 ←

4− 1 = 3.

3 Multi-Objective LNS

Large Neighborhood Search (LNS) [25] is an hybridization between CP and LS. At
each iteration (called restart in the LNS context), a best-so-far solution is considered for
improvement by exploration of a neighborhood using CP. This solution is relaxed and
optimized again with CP, replacing the best-so-far solution on each improvement. This
process is repeated until a stopping criterion is met (for instance a maximum number of
restarts). LNS has the main advantage that the neighborhood to explore at each restart
is potentially very large, permitting to escape local minima most of the time. Every
CP optimization model can be turned easily into an LNS by providing the following
information/implementation to the solver:

– A relaxation procedure. This procedure (also called fragment selection) defines the
neighborhood to explore. It adds some constraints to the problem coming from
the structure of the best-so-far solution while allowing some flexibility for re-
optimization. This relaxation procedure generally includes some randomness.

– A search limit. This limit, although optional, prevents the search from spending too
much time in the exploration of the neighborhood. It can for instance be a time
limit, or a limit on the number of backtracks.

Finding the right relaxation procedure, relaxation size and search limit is a challeng-
ing problem (see [15,16,22] for attempts to automatize LNS parameters). This work
proposes to adapt the LNS scheme in a multi-objective context.

5 This is probably due to the fact that the approach of Gavanelli does not need to restart the
search at each discovered solution. Besides, the already discovered solutions provide some
supports to prune dominated branches of the search tree.
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3.1 Restarting from a Nondominated Solution

Instead of a unique best-so-far solution, the MO-LNS framework maintains a best-so-
far approximationA of the Pareto set i.e. an archive. The Pareto constraint (using the
set A) is added to the model ensuring that only new nondominated solutions w.r.t. A
can be discovered.

Any solution in A can be used as restarting point. We distinguish two kinds of im-
provements of the archive:

– finding a new point in the diversification subspace. We call this a diversification of
the archive. The resulting archive has one more element;

– finding a new point in the intensification subspace. We call this an intensification of
the archive. The resulting archive is not larger after this insertion since some points
may disappear fromA.

Notice that both improvements strictly increase the hypervolume (see Definition 7) and
both improvements are allowed by the Pareto constraint which guarantees that only
nondominated solutions w.r.t. the archive can be discovered.

3.2 Guiding Diversification-Intensification

The discovery of a new solution may contribute to diversify the archive, or it may im-
prove existing solutions. A good strategy in terms of filtering for the Pareto constraint
could consist in finding quickly a limited number of solutions very close to the Pareto
set. On the contrary, it would be less efficient to quickly discover a large number of
nondominated solutions while being far from the Pareto set. Those two situations are
illustrated in Fig. 2.

Fig. 2. Situations resulting from (left) a good diversification/intensification trade-off (right) too
much diversification at the early MO-LNS iterations. The exact Pareto front is represented with
the plain curve.

An archive with many solutions quite far from the Pareto set is the consequence of a
too large number of diversification at the early iterations of MO-LNS. It is thus impor-
tant to have a good trade-off between the number of diversification and intensification6.

6 Beck [2] also proposes to control diversification and intensification of a pool of elite solutions
for single objective problems. We owe this observation to an anonymous referee. Thanks!
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A first idea to control the ratio of diversification/intensification is to adapt the search
heuristic dynamically. One could for instance have two different search heuristics e.g.
one that favors intensification and the other one favoring diversification. This approach
has the main disadvantage of requiring a good knowledge of the problem and an ad-
ditional implementation work by the modeler. A better approach forces diversification
or intensification at each restart, based on a dynamic change of the filtering behavior
of the different objectives. Each objective can be set into three different filtering modes
during the BnB search:

1. No-Filtering: it means that the filtering of the objective is deactivated, having no
impact at all.

2. Weak-Filtering: each time a new solution is discovered during the search, the upper
bound of the objective is updated such that the next discovered solution has a lower
or equal upper bound for this objective.

3. Strong-Filtering: each time a new solution is discovered during the search, the up-
per bound of the objective is updated such that the next discovered solution strictly
improves the upper bound of this objective.

We propose to use this idea to control the diversification/intensification rates along the
restarts.

Intensification. The goal of intensification restarting from a solution sol is to discover
new solutions dominating it. We propose two different ways to guarantee that the next
discovered solution dominates sol by adjusting all the objective’s upper bounds to their
value in sol and setting the objectives in one of both following configurations:

– Strong Intensification. All the objectives are set in Strong-Filtering mode;
– Driven Intensification. All the objectives are set in Weak-Filtering mode except one

that is set into Strong-Filtering mode. This objective drives the intensification.

Both configuration are illustrated in Fig. 3 where a possible sequence of successive
discovered solutions is given.

sola
bc

sol
a

b
c

Fig. 3. Intensification. (left) obj1 is set in Strong-Filtering mode and obj2 is set in Weak-Filtering
mode. (right) obj1 and obj2 are both set in Strong-Filtering mode. For both configurations, a
possible sequence of successive discovered solutions is given.
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Diversification. The diversification mode attempts to find new nondominated solutions
without necessarily trying to dominate existing ones. To achieve this, we set all the
objectives in No-Filtering mode and we let the Pareto constraint force the discovery
of new nondominated solutions.

Fig. 4 illustrates the benefit of including intensification along the restarts on a bi-
objective knapsack (maximization) problem with 100 items from MOCOLib [28]. In
the first setting, only diversification restarts are used. In the second setting, 50% are
diversification, the others are intensification restarts. One can see on the left, that after 5
seconds, the quality of the nondominated solutions is clearly superior when using inten-
sification restarts. On the right the evolution of the hypervolume (averaged on 10 runs)
is depicted. As expected, the hypervolume grows faster when including intensification
restarts.
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Fig. 4. Impact of the diversification/intensification ratio on a 100 items bi-objective knapsack
problem. (left) Nondominated solutions obtained after 5 seconds. (right) Evolution of the hyper-
volume.

To summarize, the actions that must be taken at each MO-LNS restart are:

– select a solution sol from the set of nondominated solutions;
– relax sol;
– configure all objectives either in intensification or in diversification mode.

The question of selecting the nondominated solution sol is addressed next.

3.3 Selection of the Restarting Solution

Choosing the next solution to restart from can have a strong impact on the quality of
the archive. Intuitively, a relaxed solution has a higher chance to generate new solutions
close to this one in the objective space when doing diversification. We call this the lo-
cality effect. Having a final set of nondominated solutions spreading over the frontier
is a desired property supported by many researchers [17]. A very simple idea, quite
effective in practice, is to select randomly and uniformly the solution to restart from.
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a’

a
b c

d
e

b’
c’

d’

e’

Fig. 5. Selection of solutions according to the nearest neighbor strategy. The straight line repre-
sents the hyperplane defined by the extremities of the archive. The stars a, b, c, d, and e corre-
spond to possible points randomly generated on the hyperplane. The solutions a′, b′, c′, d′, and
e′ are the solutions that would be selected for each of the random points.

Unfortunately, this strategy might have negative side effects caused by the locality ef-
fect. If at some point, clusters of solutions in the archive appear in the objective space,
those clusters have high chances to be reinforced. We would prefer a selection strategy
helping to fill in the gaps between those clusters. We imagined another strategy, also
randomized (to ensure diversification), but tending to fill in the gaps more quickly. The
idea is to select an uniform random point on the hyperplane formed by the extremities
of the archive (i.e. on a line for a bi-objective problem). The solution selected to relax
is then the nearest (according to an Euclidean distance metric) one from this random
point. This nearest neighbor strategy is illustrated in Fig. 5.

Fig. 6 presents the benefits of the nearest neighbor strategy over the purely random-
ized selection strategy on a 200 items bi-objective knapsack problem from MOCOLib
[28]. We have initially added 6 Pareto optimal solutions in the archive, then 20 diversi-
fication restarts were executed with both strategies. While the pure randomized strategy
(right) quickly focuses on a particular region of the objective space, the nearest neighbor
strategy (left) diversifies better the objective space trying to discover solutions between
the gaps on the frontier. The reason is that with the randomized nearest neighbor strat-
egy, solutions close to the gaps are selected more frequently.

4 Modeling an MO-Quadratic Assignment Problem with MO-LNS

This section introduces the MO-LNS modeling of the Multi-Objective Quadratic As-
signment Problem (MOQAP) in OscaR [20] and provides some implementation details.

In this problem a set of n facilities must be assigned to n different locations. For each
pair of locations, a distance is specified and for each pair of facilities a weight or flow
is specified (e.g. , the amount of supplies transported between the two facilities). The
problem is to assign all facilities to different locations with the goal of minimizing the
sum of the distances multiplied by the corresponding weights. More formally, if x(i)
represents the location assigned to facility i, the objective is to minimize the weighted
sum

∑
i,j∈[1..n] w(i, j)·d(x(i), x(j)) with w and d respectively the weight and distance

matrices.
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MO−LNS solutions
Initial optimal solutions

MO−LNS solutions
Initial optimal solutions

obj
1

ob
j 2

obj
1
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j 2

Fig. 6. Impact of selection strategy after 20 restarts on a 200 items bi-objective knapsack problem
using 100% of diversification starting from 6 initial Pareto optimal solutions. (left) Using the
randomized nearest neighbor strategy. (right) Using a pure randomized strategy.

The multi-objective QAP with multiple weight matrices naturally models any facility
layout problem where we are concerned with the flow of more than one type of item or
agent [12]. The OscaR model for a bi-objective QAP is given in Statement 1.

The data declaration is specified in lines 1 - 6 and should be self-explanatory. The
distance matrix and the two weight matrices are declared. Then comes the CP model. A
solver object is created in line 8. An array x of n decision variables is created at line 10
representing the location of each facility. The distance variables between any two facil-
ity are initialized at line 11 using 2D element constraints. The two objective functions
are initialized in lines 12 - 13 multiplying each distance entry by the corresponding
weight and summing them all.

Notice that paretoMinimize, subjectTo and exploration are methods
of the CPSolver class each returning the CPSolver caller instance. This allows to
chain directly the calls. The paretoMinimizemethod call at line 15 implicitly adds
the Pareto global constraint (6) to the model. The search in the exploration block is
a nondeterministic search [11]. Although hidden from the user point of view, all the
discovered solutions are added into the archiveA used by the Pareto constraint. The
run method takes two optional arguments: a limit on the number of solutions and a
limit on the number of backtracks. Both are set to infinity by default. The search to find
the first feasible solution is started at line 23.

Lines 20 and 21 are iterated until all variables are bound and each iteration nonde-
terministically assigns a facility x(i) to a location v computed by the variable value
heuristic introduced in [19]. Notice that this heuristic receives a weight matrix in ar-
gument. In the non-deterministic search exploration block, the weight matrix is
randomly chosen between w1 and w2 at line 20.

The MO-LNS procedure is implemented at lines 30 - 40, after that the first feasi-
ble solution is found. The search executes 1000 LNS restarts. Each restart has a limit
of 200 failures and use the search defined in the exploration block. On each restart a
solution is selected from the current archive according to the nearest neighbor strat-
egy (line 32). Then, the objectives are configured into intensification or diversification
mode w.r.t. to a user defined probability. The runSubjectTomethod is similar to the
run method except that all the constraints added in its block are temporary constraints
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1 // DATA AND CONSTANTS
2 val N = 0 until n // number of locations
3 var w1: Array[Array[Int]] = ... // weight matrix 1
4 var w2: Array[Array[Int]] = ... // weight matrix 2
5 var d: Array[Array[Int]] = ... // distance matrix
6 val rand = Random(0) // random number generator
7 // CP MODEL
8 val cp = CPSolver()
9 // the location chosen for each facility

10 val x = Array.fill(n){CPVarInt(cp, N)}
11 val dist = Array.tabulate(n, n){(i, j) => d(x(i))(x(j))}
12 val obj1 = sum(n, n){(i, j) => dist(i)(j) * w1(i)(j)}
13 val obj2 = sum(n, n){(i, j) => dist(i)(j) * w2(i)(j)}
14 // CONSTRAINT AND EXPLORATION
15 cp.paretoMinimize(obj1, obj2) subjectTo {
16 cp.add(allDifferent(x), Strong)
17 } exploration {
18 // compute variable, value heuristic randomly on w1 or w2
19 while (!allBounds(x)) {
20 val (i, v) = heuristic(if (rand.nextBoolean) w1 else w2)
21 cp.branch(cp.post(x(i) == v))(cp.post(x(i) != v))
22 }
23 } run(nbSolution = 1) // only search for an initial solution
24 // MO LNS PARAMETERS
25 val maxRestarts = 1000 // number of restarts
26 val maxFailures = 200 // max number of failures at each restart
27 val relaxSize = 5 // number of relaxed variables at each restart
28 val probaIntensify = 30 // probability (%) of intensification
29 // MO LNS FRAMEWORK
30 for (restart <- 1 to maxRestarts) {
31 // next solution to restart from
32 val sol = nearestNeibhborSol()
33 // random selection between intensification or diversification
34 if (rand.nextInt(100) < probaIntensify) cp.objective.intensify(sol)
35 else cp.objective.diversify()
36 // search
37 cp.runSubjectTo(failureLimit = maxFailures) {
38 relaxRandomly(x, sol, relaxSize)
39 }
40 }

Statement 1. Model of the multi-objective QAP in OscaR/Scala.

that will be removed before the next restart. Some constraints are added through the
relaxRandomly at line 38 to restore the assignments on x from the selected solution
sol except for 5 randomly chosen variables.

5 Experiments

This section compares the performances of MO-LNS over MO-CP on bi-objective prob-
lems.7 The tested problems are: 1) the multi-objective QAP, 2) the multi-objective bi-
nary knapsack and 3) a bi-objective tank allocation problem. Although multi-objective

7 Instances and optimal fronts available at
http://becool.info.ucl.ac.be/resources/mo-lns

http://becool.info.ucl.ac.be/resources/mo-lns
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Table 1. Results on MO-QAP instances from [13] with MO-LNS and MO-CP

HS(108) |S| |S ∩ S∗|
Instance |S∗| HS∗ (108) MO-LNS MO-CP MO-LNS MO-CP MO-LNS MO-CP

KC10-2fl-1uni 13 117.38 115.43 99.09 9 15 6.6 0
KC10-2fl-2uni 1 91.56 87.11 76.99 1.4 2 0.6 0
KC10-2fl-3uni 130 90.50 87.42 78.79 84.4 65 30.6 0
KC10-2fl-1rl 58 606005.79 604932.58 598146.60 54 41 50.4 13
KC10-2fl-2rl 15 604864.40 604864.40 604864.40 15 15 15 15
KC10-2fl-3rl 55 623898.50 623076.50 565772.58 47 37 43 0
KC10-2fl-4rl 53 732716.05 732716.05 732716.05 53 53 53 53
KC10-2fl-5rl 49 1819669.88 1819669.88 1819669.88 49 49 49 49

heuristics are the methods of choice to tackle the two first problems, those are interest-
ing standard benchmarks to study, with known exact Pareto front. Problem 3 however,
is more constrained and probably more suited for constraint programming. All experi-
ments were conducted with the OscaR open-source solver [20] on an Intel� Core i7 TM

2.6GHz CPU.

5.1 Multi-Objective Quadratic Assignment Problem

We experiment the MO-LNS model introduced in Section 4 on instances.8 with 10 facil-
ities from [13] Table 1 reports the results obtained with a 30 seconds timeout, averaged
over 10 runs for MO-LNS. The size and the hypervolume of the exact Pareto fronts
are given in columns 2 and 3. The hypervolumes obtained with MO-LNS and MO-CP
(HS) are given in columns 4 and 5. The sizes of the archives obtained with MO-LNS
and MO-CP (|S|) are given in columns 6 and 7. The number of optimal solutions ob-
tained with each approach (|S ∩ S∗|) is presented in columns 8 and 9.

As can be seen, 3 instances are optimally solved with MO-CP. MO-LNS is also able
to solve these instances optimally and obtain strictly better results on the other instances.
The hypervolume values reached by MO-LNS are very close to the optimal ones.

5.2 Multi-Objective 0/1 Knapsack Problem

The multi-objective 0/1 knapsack problem is defined as follows:

Maximize obj = (obj1, . . . , objm) with objj =
n∑

i=1

xi · pij

Subject to
n∑

i=1

xi · wi ≤ C

(11)

with pij the profit of item i according to objective j, wi the weight of item i, and C
the capacity of the knapsack. The binary variables xi represent the selection status of
each item i.

MO-LNS Settings. The next solution sol to restart from is chosen in the archive with
the nearest neighbor strategy. The idea of the relaxation procedure is to keep fixed some
good items (w.r.t. to one objective) already selected in sol :

8 Only the ones for which the optimal Pareto front is available.
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Table 2. Comparison of MO-CP and MO-LNS on standard instances of the Bi-Objective Knap-
sack Problem

HS(108) |S| |S ∩ S∗|
Instance |S∗| HS∗ (108) MO-LNS MO-CP MO-LNS MO-CP MO-LNS MO-CP

2KP100A 172 15,59 15,59 15,05 172 128 172 112
2KP100B 174 15,12 15,12 14,62 170,6 124 164,7 93
2KP100C 64 16,68 16,68 16,68 64 64 64 64
2KP100D 76 16.31 16.31 16.28 76 73 76 73
2KP150A 244 39.66 39.66 35.42 226.2 88 187 31
2KP150B 348 41.46 41.46 36.31 303.3 91 192.4 51
2KP150C 166 34.17 34.17 33.15 155.6 83 127 34
2KP150D 207 36.04 36.04 32.88 199.8 88 155.6 62
2KP200A 439 64.34 64.34 57.43 361 86 178.2 34
2KP200B 397 65.78 65.77 58.82 345.2 108 232.8 54
2KP200C 328 57.48 57.46 48.30 297.8 60 187.1 18
2KP200D 361 73.42 73.40 62.71 304.1 64 176.9 29
2KP250A 629 94.37 94.34 78.68 433.5 70 95.5 12
2KP250B 629 89.67 89.65 74.81 410.9 90 107.9 44
2KP250C 528 91.25 91.24 75.30 383.3 72 108.9 22
2KP250D 424 66.56 66.55 56.98 303.4 51 142.8 26

1. select randomly one objective index j ∈ [1..m],
2. select randomly 90% of the items in the set {i ∈ [1..n] | sol(xi) = 1} according to

a probability function proportional to pij/wi,
3. keep fixed the items selected at step 2. i.e. force them to be in the knapsack,
4. chose randomly to diversify or intensify with equal probability.

The variable-value heuristic used when re-optimizing after the relaxation is depen-
dent of the selected objective j in the relaxation. The heuristic selects first the unbound
variable x(i)with the largest ratio pij/wi, selecting this item on the left and removing
it on the right branch. Each restart is given a limit of 1000 backtracks.

Results. We compare the MO-CP and MO-LNS approaches on instances from MO-
COLib [28] ranging from 50 to 250 items. Table 2 reports the results obtained with a
60 seconds timeout, averaged over 10 runs for MO-LNS. The size and the hypervolume
of the exact Pareto fronts9 are given in columns 2 and 3. The hypervolumes obtained
with MO-LNS and MO-CP (HS) are given in columns 4 - 5. The sizes of the archives
obtained with MO-LNS and MO-CP (|S|) are given in columns 6 - 7. The number of
optimal solutions obtained with each approach (|S ∩S∗|) is presented in columns 8 - 9.
As can be seen, MO-LNS consistently obtains better or equivalent results compared to
the MO-CP approach. The hypervolume values reached by MO-LNS are very close to
the optimal ones.

5.3 Tank Allocation Problem

The tank allocation problem involves the assignment of different cargoes (volumes of
chemical products to be shipped by the vessel) to the available tanks of the vessel [24]
while satisfying hard segregation constraints e.g. to avoid placing dangerous cargoes

9 The optimal fronts were provided by the creator of MOCOLib [28].
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Table 3. Comparison of MO-CP and MO-LNS on real-life instances of the Bi-Objective Tank
Allocation Problem. MO-LNS finds all the exact Pareto fronts.

HS(108) |S| |S ∩ S∗|
Instance |S∗| HS∗(108) MO-LNS MO-CP MO-LNS MO-CP MO-LNS MO-CP

chemicalA 6 1848 1848 1022 6 4 6 1
chemicalB 7 2976 2976 1010 7 3 7 0
chemicalC 8 3597 3597 852 8 2 8 0
chemicalD 8 5358 5358 555 8 1 8 0

in adjacent tanks. An ideal loading plan should maximize the total volume of unused
tanks (i.e. free space) to minimize cleaning costs (objective 1). Minimizing the number
of used tanks (objective 2) is also desirable in order to maximize the chances of accom-
modating other cargoes in next visited ports. The LNS model used in our experiment is
the same as the one introduced in [24] except that it is now bi-objective. The MO-LNS
parameters are:

– The relaxed solution is chosen randomly from the current archive.10

– Chose randomly to diversify or intensify with equal probability.

Results are given in Table 5.3. The columns have the same meaning as in previous
result tables. The exact Pareto fronts were generated with the van Wassenhove and
Gelders Algorithm using a MIP solver (Gurobi 5.02) that took about 3 minutes to run
on each instance. The MO-LNS framework finds the exact Pareto front of each instance
within a timeout of 60 seconds. We also indicate for the same model the results obtained
for a MO-CP approach with a timeout of 300 seconds. This MO-CP approach is only
able to discover one solution of the exact Pareto front of the first instance (chemicalA).
The hypervolume indicator shows that other nondominated solutions discovered with
MO-CP remain quite far from optimal ones.

6 Future Works and Conclusion

This paper introduced the MO-LNS framework; an extension of LNS to efficiently solve
MOCO problems with CP. MO-LNS uses the Pareto constraint to maintain a best-so-
far archive that is iteratively improved by diversification and intensification. Modeling
abstractions were presented into the OscaR solver to select at each restart a solution
in the archive, and to diversify or intensify the front MO-LNS was experimented on
various MOCO problems showing its superiority over MO-CP to get close to optimal
hypervolumes. The Scala source-code of our implementation as well as some complete
MO-LNS examples are available on OscaR repository [20].

As future work, we plan to study adaptive diversification/intensification strategies.
We would like to explore the parallelization of MO-LNS. Finally we want to tackle
more complex problems with MO-LNS, such as multi-objective scheduling or vehicle
routing problems.

10 No real impact since the optimal front is very small.
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Abstract. Many scheduling problems involve reasoning about tasks
which may or may not actually occur, so called optional tasks. The state-
of-the-art approach to modelling and solving such problems makes use
of interval variables which allow a start time of ⊥ indicating the task
does not run. In this paper we show we can model interval variables in
a lazy clause generation solver, and create explaining propagators for
scheduling constraints using these interval variables. Given the success
of lazy clause generation on many scheduling problems, this combination
appears to give a powerful new solving approach to scheduling problems
with optional tasks. We demonstrate the new solving technology on well-
studied flexible job-shop scheduling problems where we are able to close
36 open problems.

1 Introduction

Many resource-constrained scheduling problems involve reasoning about tasks
which may or may not actually occur, so called optional tasks. The state-of-the-
art approach in Constraint Programming (CP) to modelling and solving such
problems makes use of so-called interval variables [12] which represent a start
time, end time, and duration of a task, or ⊥ indicating the task does not run.
Propagation algorithms can update the possible start and end times of a task,
without knowing whether the task actually runs or not.

In 2008, Laborie and Rogerie [12] introduce interval variables for resource-
constrained scheduling to IBM ILOG CP Optimizer [11] as a “first-class citizen”
variable type for CP systems. In that work and later follow up work [13,14],
they show how to handle these variables in the context of planning and schedul-
ing. The benefits of interval variables are not only in giving a neat conceptual
model for representing optional tasks, but also the additional propagation ob-
tained that is possible by reasoning on start and end times even without knowing
whether a task executes. However, interval variables do not come for free, they
may introduce additional variables into a model, and their propagation is more
complex.

Standard CP systems that do not support interval variables are still able
to model and solve problems with optional tasks, but suffer from the weaker
propagation. For example, each optional task can be associated with a Boolean

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 628–644, 2013.
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variable representing whether it executes or not [1,2] or a non-optional task
composed of exclusive optional tasks can be associated with an index variable
representing which one of the optional tasks runs [16]. In order to strengthen the
propagation, special global constraints have been introduced (see, e.g., [1,2,16]).

For CP systems that support interval variables, propagation algorithms have
been proposed for the resource constraints disjunctive and cumulative with
optional tasks (see, e.g., [26,30,29,28]). These algorithms record tentative start
and end times of optional task and once the optional task is known to execute
these become the actual start and end time variables.

In this paper, we not only show how to mimic interval variables with integer
variables, but also how propagators defined for constraints on optional tasks can
be extended to explain their propagation, which is required for CP solvers with
learning. One of those solvers is a lazy clause generation (Lcg) (Lcg) [19] solver
which has proven to be remarkably effective on many scheduling problems defin-
ing the state-of-the-art in Rcpsp [24,23], Rcpsp/max [25], and RcpspDc [22]
problems. We implement the handling of optional tasks in the re-engineered Lcg
solver [7], and then demonstrate the combination on the well-studied flexible job
shop scheduling problem, where we are able to close a number of open instances.

2 Preliminaries

At first, we introduce lazy clause generation and then scheduling with optional
tasks.

2.1 Lazy Clause Generation

CP solves constraint satisfaction problems by interleaving propagation, which re-
move impossible values of variables from the domain, with search, which guesses
values. All propagators are repeatedly executed until no change in domain is
possible, then a new search decision is made. If propagation determines there is
no solution then search undoes the last decision and replaces it with the oppo-
site choice. If all variables are fixed then the system has found a solution to the
problem. For more details see, e.g., [21].

We assume we are solving a constraint satisfaction problem over set of vari-
ables x ∈ V , each of which takes values from a given initial finite set of values or
domain D0(x). The domain D keeps track of the current set of possible values
D(x) for a variable x. Define D $ D′ iff D(x) ⊆ D′(x), ∀x ∈ V . The constraints
of the problem are represented by propagators f which are functions from do-
mains to domains which are monotonically decreasing f(D) $ f(D′) whenever
D $ D′, and contracting f(D) $ D. If all values are removed from one domain
of a variable x, i.e., D(x) = ∅ then the constraints cannot be satisfied with
the search decisions made and a failure is triggered. Given a domain D then
lbD(x) = minD(x) and ubD(x) = maxD(x). We will omit the subscript D when
the domain is clear from the context.
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Wemake use of CP with learning using the Lazy Clause Generation (Lcg) [19]
approach. Learning keeps track of what caused changes in domain to occur, and
on failure computes a nogood which records the reason for failure. The nogood
prevents search making the same incorrect set of decisions again.

In an Lcg solver integer domains are also represented using Boolean variables.
Each variable x with initial domain D0(x) = [l..u] is represented by two sets of
Boolean variables �x = d�, l ≤ d ≤ u and �x ≤ d�, l ≤ d < u which define which
values are in D(x). We use �x �= d� as shorthand for ¬�x = d�, and �d ≤ x� as
shorthand for ¬�x ≤ d− 1�. An Lcg solver keeps the two representations of the
domain in sync. For example if variable x has initial domain [0..5] and at some
later stage D(x) = {1, 3} then the literals �x ≤ 3�, �x ≤ 4�,¬�x ≤ 0�,¬�x = 0�,
¬�x = 2�,¬�x = 4�,¬�x = 5� will hold. Explanations are defined by clauses over
this Boolean representation of the variables.

Example 1. Consider a simple constraint satisfaction problem with constraints
b → x + 3 ≤ y, ¬b → y + 3 ≤ x, b′ → y ≤ 3, ¬b′ → x ≤ 3, with initial domains
D0(b) = D0(b′) = {0, 1}, and D0(x) = D0(y) = {0, 1, 2, 3, 4, 5, 6}. There is no
initial propagation. Setting �y = 2� makes the first constraint propagate D(b) =
{0} with explanation �y = 2� → ¬b, then the second constraint propagates
D(x) = {5, 6} with explanation ¬b ∧ �y = 2� → �5 ≤ x�. The third constraint
propagates D(b′) = {0} with explanation �y = 2�→ ¬b′ and the last constraint
sets D(x) = ∅, with explanation �5 ≤ x� ∧ ¬b′ → false . The graph of the
implications is

¬b �� �5 ≤ x�

����
���

�

�y = 2�

��������
��

		�������������� ¬b′ �� false

Any cut separating the decision �y = 2� from false gives a nogood. The simplest
one is �y = 2�→ false . �

2.2 Scheduling and Optional Tasks

Scheduling applications deal with non-optional and optional tasks. A typical task
is specified by a start time variable Si and a processing time/duration di (which
may also be variable). For simplicity we assume durations are fixed, it is easy to
extend the results of the paper to variable durations. Given a task and current
domain D we define the earliest start time ecti = lbD(Si), earliest completion
time ecti = lbD(Si) + di, latest start time lsti = ubD(Si), and latest completion
time lsti = ubD(Si) + di.

Some tasks need resources, such as e.g., labour, space, or particular machinery,
from a limited pool for their execution. A schedule of those tasks must ensure
that the demand on a resource does not exceed the resource capacity in any
time period. In this work, we consider renewable resources characterised by the
constant resource capacity R over time. Such a resource can be modelled by the
cumulative constraint
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cumulative([S1, . . . , Sn], [d1, . . . , dn], [r1, . . . , rn], R)

≡
(
∀τ :

n∑
i=1

runsiτ · ri ≤ R

)
,

where τ is a time period, ri is the resource usage of task i, and runsiτ expresses
whether task i runs at time period τ .

The disjunctive constraint disjunctive, requiring that no two tasks are exe-
cuting at the same time, encodes the special case of cumulative when the resource
capacity is 1, and the resource usage for each task is 1.

disjunctive([S1, . . . , Sn], [d1, . . . , dn])

≡ cumulative([S1, . . . , Sn], [d1, . . . , dn], [1, . . . , 1], 1)

Specialised propagation algorithms [26,30] are available for the disjunctive

constraint.
Laborie and Rogerie [12] introduce interval variables to represent optional

tasks. The domain of an interval variable ranges over ⊥∪{[s, e) | s, e ∈ Z, e ≥ s}.
A fixed interval variable represents either an absent interval ⊥ or a present
interval [s, e). Accordingly, an optional task is absent or present if its interval
is absent or present respectively. If the interval [s, e) is present then s and e
respectively represent its start and end time and e− s its length and it must be
that s ≤ e. If a is an interval variable then let sa, ea, and xa denote the start
time, end time, and presence state, respectively.

A task 0 can be composed of other tasks 1, . . . , n and modelled with interval
variables a0 and a1, . . . , an, respectively. Then the relation between the tasks is
described via a span constraint [14]:

span(a0, {a1, . . . , an}) ≡

⎧⎪⎨
⎪⎩

(xa0 ↔
∨n

i=1 x
a
i )

∧ (sa0 = min1≤i≤n:xa
i
sai )

∧ (ea0 = max1≤i≤n:xa
i
eai )

(1)

That is, task 0 starts when the earliest task in {1, . . . , n} that is present starts,
and ends when the latest task that is present ends. It is present iff at least one
of tasks 1, . . . , n is present.

An important specialisation of the span constraint is the alternative con-
straint [14] which allows only one task 1, . . . , n to be present (thus representing
a choice for task 0).

alternative(a0, {a1, . . . , an}) ≡
{ ∑n

i=1 x
a
i ≤ 1

∧ span(a0, {a1, . . . , an})
(2)

Note if the task 0 is present then exactly one task in {1, . . . , n} is present too;
otherwise all are absent.
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3 Modelling Optional Tasks

The crucial requirement for effective modelling of optional tasks is to be able
to reason about finite domain integer variables which have an additional value
⊥, which we will call int⊥ variables. These variables can then represent start
times of optional tasks. They can also be useful for other reasoning, for example
reasoning about databases with null values. In this section we show how to
model int⊥ variables using integer and Boolean variables. We then discuss how
to model compositional constraints such as span and alternative. Finally we
discuss how tracking implications between presence of tasks can be modelled, to
help improve propagation.

3.1 Integers with Bottom

Lcg solvers do not currently support int⊥ variables. But we can make use
of existing integer and Boolean variables to model an int⊥ variable and thus
interval variables.

We model an int⊥ variable S with initial domain D0(S) = [lS..uS ] and ⊥ as
S = (S, S, xS) using two integer variables S, S, and a Boolean variable xS : S
holds the lower bound of the int⊥ variable S; while S holds the upper bound of
the int⊥ variable S; and xS holds the presence state of the int⊥ variable. The
initial domains are D0(S) = lS..uS + 1 are D0(S) = lS − 1..uS . The representa-
tives (S, S, xS) are constrained by

intbot(S) ≡ xS ↔ (S = S) ∧ ¬xS ↔ S > uS ∧ ¬xS ↔ S < lS

Thus if the int⊥ variable S is present, i.e., S �= ⊥, the lower and upper bounds
are identical. If the lower and upper bound are not compatible, i.e., S > S, then
the int⊥ variable must be absent, i.e., S = ⊥, and if the int⊥ variable is absent
we set the lower bound to uS + 1 and the upper bound to lS − 1. Note S < S
never holds.

The constraint S ≥ v represents that S ≥ v ∨ S = ⊥. The constraint S ≤ v
represents that S ≤ v ∨ S = ⊥.

Propagation on the int⊥ variable is enforced using the appropriate bound.
Hence a new (tentative) lower bound S ≥ v is enforced by S ≥ v, and a new
(tentative) upper bound S ≤ v is enforced as S ≤ v. Asserting that S �= v
is enforced by S �= v ∧ S �= v. Asserting S = v if S is present is enforced by
S ≥ v ∧ S ≤ v. Two integer variables are required to model an int⊥ variable
so that if the bounds cross we do not get a domain wipe-out, which would
incorrectly trigger a failure.

Care must be taken in using the tripartite representation of int⊥ variables,
because of the special role taken by the sentinel values uS + 1 for S and lS − 1
for S. If a propagator ever tries to set S ≥ k where k > uS + 1, this should
be replaced by setting S ≥ uS + 1. Similarly if a propagator ever tries to set
S ≤ k where k < lS − 1, we should instead set S ≤ lS − 1. Since propagators are
aware that they are dealing with int⊥ variables, they can be modified to act
accordingly, without changing the integer variables used to represent S and S.
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Given that we have int⊥ variables, we can model an interval variable a as
a pair (S, d) of an int⊥ variable S = (S, S, xS) and an integer d by xa = xS ,
sa = lb(S), and ea = ub(S) + d. Note that [12,13,14] introduce interval variables
as an abstract type for tasks and here we consider tasks with fixed duration,
thus an end time variable is not required.

3.2 Compositional Constraints

The span constraint can be modelled using int⊥ variables and constraints sup-
ported by most CP solvers as follows:

span((S0, d0), [(S1, d1), . . . , (Sn, dn)])

≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S0 ≥ min{Si + (1− xSi )(u
S
0 − uS

i ) | 1 ≤ i ≤ n} ∪ {uS
0 + 1}

∧ S0 ≤ max{Si + (1− xSi )(l
S
0 − lSi ) | 1 ≤ i ≤ n} ∪ {lS0 − 1}

∧ d0 ≥ min{Si + di − S0 + (1 − xSi )(u
d
0 + 1− di) | 1 ≤ i ≤ n} ∪ {ud

0 + 1}
∧ d0 ≤ max{Si + di − S0 + (1 − xSi )(l

d
0 − 1− di) | 1 ≤ i ≤ n} ∪ {ld0 − 1}

∧ xS0 ≥
∑n

i=1 x
S
i ,

The interval S0 is constrained to be lie around the Si that are present. The
duration interval d0 is constrained to be large enough to reach the minimal end
time of tasks that is present, and small enough not to reach beyond the last
possible end time of a task which is present. Note the last element in each line
ensures that none of the upper or lower bound variables is every bound too
strongly to remove the sentinel value.

The alternative constraint can be modelled similarly. It propagates more
strongly if it is modelled directly rather than making use of span. The model is:

alternative((S0, d0), [(S1, d1), . . . , (Sn, dn)])

≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S0 ≥ min{Si + (1− xSi )(u
S
0 − uS

i ) | 1 ≤ i ≤ n} ∪ {uS
0 + 1}

∧ S0 ≤ max{Si + (1− xSi )(l
S
0 − lSi ) | 1 ≤ i ≤ n} ∪ {lS0 − 1}

∧ d0 ≥ min{di + (1− xSi )(u
d
0 + 1− di) | 1 ≤ i ≤ n} ∪ {ud

0 + 1}
∧ d0 ≤ max{di + (1− xSi )(l

d
0 − 1− di) | 1 ≤ i ≤ n} ∪ {ld0 − 1}

∧ xS0 =
∑n

i=1 x
S
i ,

The duration d0 is easier to model since it must be one of the durations of
the alternatives. The last constraint enforces that exactly one optional task is
actually present if the task 0 is present.

3.3 Presence Implications

Laborie and Rogerie [12] illustrate how reasoning about the presence of optional
tasks can substantially improve propagation. The key knowledge is, given two
tasks, i and j, does the presence of i imply the presence of j, i.e., xSi → xSj .
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Such knowledge allows one to perform propagation on i using the information
of j even when the presence of both tasks is still unknown. This relationship
might initially be available in the modelling stage or might dynamically become
available during the solving stage.

Define impl(i, j) as the representation of xSi → xSj we shall use in explanation.
For models where there is no information about relative presence we just use
impl(i, j) = xSj . If presence implications can be statically determined from the
model we can define the representation statically, hence impl(i, j) = true if task
i is present then so must be j, and xSj otherwise. We also add the constraint

xSi → xSj to enforce the presence relationship.
For models where the relative execution information is dynamically de-

termined we introduce new Boolean variables Ii,j to represent the infor-
mation and let impl (i, j) = Ii,j . We also add a transitivity constraint
transitive(I, [xS1 , . . . , x

S
n ]) which ensures that Ii,j ∧ Ij,k → Ii,k and Ii,j ↔

(¬xSi ∨ xSj ). In practice the Boolean variables Ii,j can be created as required
during the execution, they do not all need to be created initially. Our use of
transitive corresponds to the logical network of [12].

Example 2. Suppose we have a model with tasks i, j, and k and variable sum
where we know that xSi → xSj , and if sum ≥ 0 then xSi → xSk , but nothing
else about presence implications. For this model we have that impl(i, j) = true,
impl(i, k) = Ii,k where sum ≥ 0 → Ii,k and Ii,k ↔ (¬xSi ∨ xSk ). Since we can
never determine any presence implications between j and k, impl(j, k) = xSk ,
and similarly impl(k, j) = xSj , impl(k, i) = impl(j, i) = xSi . �

4 Explanations for Propagation with Optional Tasks

Propagation with optional tasks requires the generation of explanations for use in
a CP solver with nogood learning. Here, we present explanations for pruning on
lower bounds of the start time variables making use of generalised precedences,
detectable precedences, and time-table, and energetic reasoning propagation.
Pruning on corresponding upper bounds is symmetric and thus omitted. These
explanations are extensions of the explanation presented in [24,23] and the same
generalisation steps apply for optional tasks for creating a strongest explanation
as possible. However, we omit consideration of generalisation here, since it works
equivalently to the non-optional tasks case.

For the remainder of this paper, we only consider optional tasks. A non-
optional task with a start time variable S and duration d can be represented
as an optional task with start time S = S = S and xS = true and duration d.
While we only consider fixed durations, the explanations can all be extended to
use variable durations by replacing d with lb(d) and adding literals �lb(d) ≤ d�
to explanations.

We assume a given domain D, for which we are defining explanations. We lift
the definitions of lsti and ecti to optional tasks.
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lsti := ub(Si) ecti := lb(Si) + di lcti := ub(Si) + di esti := lb(Si)

If lsti < ecti then we say the task i has a compulsory part [lsti, ecti).

Generalised Precedences. Given the constraint Sj + v ≤ Si where Si and Sj are
int⊥ variables and v is an integer, then we can propagate on the lower bound
of Si if impl (i, j) is currently known to be true. The lower bound is estj + v. In
order to prevent the wipe out of all values in Si if the new bound is greater than
uS
i +1 we reduce it to this. Consequently, only an update to min(estj+v, uS

i +1)
is permissible. The corresponding explanation is

impl (i, j) ∧ �estj ≤ Sj�→ �min(estj + v, uS
i + 1) ≤ Si�

Note that the explanation holds regardless of whether i or j executes.
We can extend this reasoning to half-reified [6] precedences of the form b →

Sj + v ≤ Si by simply adding b to the left hand of the explanation.

Example 3. Suppose that Sk + 3 ≤ Si for the tasks described in Example 2.
Suppose Ii,k is currently true, and D(Si) = [2..5] and D(Sk) = [6..10]. The we
propagate �9 ≤ Si� assuming uS

i ≥ 8 with an explanation Ii,k + �3 ≤ Sk� →
�9 ≤ Si�. Suppose instead that uS

i = 7, then we propagate with explanation
Ii,k + �3 ≤ Sk�→ �8 ≤ Si� which will cause xSi = false . �

Detectable Precedences. Given the constraint disjunctive([S1, . . . , Sn],
[d1, . . . , dn]) over n tasks with start time int⊥ variables Si and fixed duration
di, 1 ≤ i ≤ n. Then two tasks i, j can not be run concurrently if lstj < ecti and
we can conclude that j must finish before i (j - i) if they are both present. If we
detect that currently lstj < ecti holds and also impl(i, j) then we can propagate
as in the case above. The new bound is min(ectj , u

S
i + 1) with explanation:

impl (i, j) ∧ �t+ 1− di ≤ Si� ∧ �Sj ≤ t�→ �min(ectj , u
S
i + 1) ≤ Si�

where t can be any integer in [lstj, ecti).

Time-Table Propagation. Given n tasks which are competing for a resource with
capacityR. Then cumulative([S1, . . . , Sn], [d1, . . . , dn], [r1, . . . , rn], R) must hold.
Let i be a task for which we want to propagate the lower bound and Ω be subset
of tasks {j | 1 ≤ j �= i ≤ n} which are known to be present if i is present,
i.e., impl (i, j), j ∈ Ω are known to be true currently. If the tasks j ∈ Ω create
a compulsory part overlapping the interval [begin, end), i.e., lstj ≤ begin and
end ≤ ectj , and it holds that begin < ecti and ri +

∑
j∈Ω ri > R then the lower

bound of Si can be updated to min(end, uS
i +1). If ecti < end then Lcg solvers

break down the propagation in several steps, so that ecti ≥ end holds for the
interval considered (see [24] for details). Then, the point-wise explanation [24] is

�end− di ≤ Sj� ∧
∧
j∈Ω

impl(i, j) ∧ �end− dj ≤ Sj� ∧ �Sj ≤ end− 1�

→ �min(end, uS
i + 1) ≤ Si�
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Explaining conditional task overload requires a set of tasks Ω ⊆ {1, . . . , n}
that are all either present together or none present, that is all of impl(i, j) cur-
rently hold for {i, j} ∈ Ω, and all have a compulsory part overlapping [begin, end)
where

∑
i∈Ω ri > R. Then none of the tasks in Ω can be present, which can be

explained as:∧
{i,j}∈Ω

impl (i, j) ∧
∧
j∈Ω

�t− dj ≤ Sj� ∧ �Sj ≤ t− 1�→
∧
j∈Ω
¬xSj ,

where t can be any value in [begin, end). Note that this explanation creates |Ω|
clauses due to the conjunction on the right hand side.

Energetic Reasoning Propagation. Given n tasks which are competing for a re-
source with capacity R. Then cumulative([S1, . . . , Sn], [d1, . . . , dn], [r1, . . . , rn],
R) must hold. Let i be a task for which we want to propagate the lower bound
and Ω be subset of tasks {j | 1 ≤ j �= i ≤ n} which are known to be
present if i is present, i.e., impl (i, j), j ∈ Ω are known to be true currently.
If the tasks j ∈ Ω are partially processed in the interval [begin, end), i.e.,
begin < ectj and lstj < end for j ∈ Ω, then the lower bound of Si can
be updated to min(begin + �rest/ri�, uS

i + 1) if begin < ecti, rest > 0, and
min(di, end− begin) +

∑
j∈Ω rj · pj(begin, end) > R · (end− begin) where

rest =
∑
j∈Ω

rj · pj(begin, end)− (R− di) · (end− begin) and

pj(begin, end) = max(0,min(ectj − begin, end− lstj, end− begin)) j ∈ Ω .

Thus, the explanation is as follows with t = min(begin+ �rest/ri�, ui).

�begin− di < Si� ∧
∧
j∈Ω

impl (i, j) ∧ �Sj ≤ end− pj(begin, end)�∧

∧
j∈Ω

�begin+ pj(begin, end)− dj ≤ Sj�→ �t ≤ Si�

Note that t might not be the largest lower bound for this update, but just
as for time-table propagation, for Lcg solvers using energetic reasoning it is
preferable to perform a step-wise update (see [25] for details). Moreover, since
energetic reasoning generalises (extended) edge-finding and time-tabling edge-
finding propagation, the explanation presented covers these cases too.

5 Experiments on Flexible Job Shop Scheduling

Experiments were carried out on challenging flexible job-shop scheduling prob-
lems (FJSP) [5] where we seek a minimal makespan. FJSP consists of a set
of jobs J to be executed on a set of machines M . Each job j ∈ J is made up
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of a sequence of tasks Tj1, . . . Tjnj , and the tasks can be executed on different
machines which may cause them to have different duration. Executing a task
Tjk on machine m ∈M requires djkm time. The aim is to complete all the tasks
in the minimum amount of time.

5.1 Model

For FJSP instance, we model each task Tjk using a integer start time variable Sjk

and duration variable djk (if the processing time of the task differs on different
machines), as well as int⊥ start time variables Sjkm and fixed durations djkm
for the optional task of execution task Tjk on machine m. The constraints of the
model are∧

m∈M .disjunctive([Sjkm | j ∈ J, k ∈ [1..nj]], [djkm | j ∈ J, k ∈ [1..nj]]) ∧∧
j∈J,k∈[1..nj ]

. alternative(Sjk, djk, [Sjkm | m ∈M ], [djkm | m ∈M ]) ∧∧
j∈J,k∈[1..nj−1] .Sjkm + djkm ≤ Sjk+1m ∧∧
j∈J,k∈[1..nj ],m∈M intbot(Sjkm)

We can add a redundant cumulative constraint to improve propagation

cumulative([Sjk | j ∈ J, k ∈ [1..nj]], [djk | j ∈ J, k ∈ [1..nj]],

[1 | j ∈ J, k ∈ [1..nj]], |M |) .

In this model there are no presence implications and impl(ai, aj) = xaj and
similarly for b.

Example 4. Consider a FJSP problem with 2 machines (a, b) and 5 jobs each
made up of a single task where the durations (da, db) of each task if it is executed
on machine a,b respectively are given by (12,9), (5,11), (6,7), (9,6), (7,8). We aim
to schedule the tasks on the two machines with no two tasks on the same machine
overlapping within a makespan of at most 22. This is modelled with 5 (non-
optional) tasks with start times S1, S2, S3, S4, S5 and (variable) durations d1 ∈
[9..12], d2 ∈ 5..11, d3 ∈ 6..7, d4 ∈ 6..9, d5 ∈ 7..8. And 5 optional tasks with time-
intervals a1, a2, a3, a4, a5 and fixed durations da = [12, 5, 6, 9, 7] representing that
task i runs on machine a. And 5 optional tasks with time-intervals b1, b2, b3, b4, b5
with fixed durations db = [9, 11, 7, 6, 8] representing that task i runs on machine
b. This constraints of the model are:

disjunctive([a1, a2, a3, a4, a5], [12, 5, 6, 9, 6])

∧ disjunctive([b1, b2, b3, b4, b5], [9, 11, 7, 6, 8])

∧ cumulative([S1, S2, S3, S4, S5], [d1, d2, d3, d4, d5], [1, 1, 1, 1, 1], 2)

∧
∧5

i=1
alternative(Si, di, [ai, bi], [dai, dbi])

∧
∧5

i=1
intbot(ai) ∧

∧5

i=1
intbot(bi) ∧

∧5

i=1
Si + di ≤ 22
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Fig. 1. Implication graph for the search of Example 4. Literals above the dotted lines
are decisions.

The first disjunctive ensures that no tasks that run on machine a overlap,
while the second ensures the same for machine b. The cumulative is a redundant
constraint that ensures that at most two tasks run at any time. The alternative
constraints model the relationship between each (non-optional) task and its two
alternatives running on machines a and b. Finally the intbot constraints ensure
that the interval variables are accurately modelled by triples.

Suppose search first schedules task 1 on machine a, setting xa1 = true and
S1 = 0. This forces a1 = a1 = 0. The first disjunctive constraint then imposes
that a2 ≥ 12, a3 ≥ 12, a4 ≥ 12, a5 ≥ 12. Suppose search next schedules task
2 on machine b, setting xb2 = true and S2 = 0. This forces b2 = b2 = 0. The
second disjunctive constraint then imposes that b3 ≥ 11, b3 ≥ 11, b3 ≥ 11.
The alternative constraints enforce that S3 ≥ 11, S4 ≥ 11 and S5 ≥ 11. The
cumulative constraint discovers that task 3 has a compulsory part in [16, 17),
task 4 has a compulsory part in [16, 17) and task 5 has a compulsory part in
[15, 18). This leads to a resource overload at time 16 and failure is detected.
The (relevant part) of the implication graph is shown in Figure 1. The 1UIP
nogood is: �a3 ≥ 12� ∧ �a4 ≥ 12� ∧ �a5 ≥ 12� ∧ xb2 ∧ �S2 = 0� → false . Note
how the interval variables play an important role in propagation and in the final
nogood. �

5.2 Experiments

The experiments were run on a X86-64 architecture running GNU/Linux and
an Intel(R) Core(TM) i7 CPU processor at 2.8 GHz. The code was written
using the G12 Constraint Programming Platform [27]. The model was written
in MiniZinc [18] and executed by mzn-g12lazy, the Lcg solver described in [7].
The disjunctive propagator in the Lcg solver performs the time-table and
edge-finding consistency check before filtering the bounds on the start times via
edge-finding (denoted disjEF). We also ran the experiments with filtering via
detectable precedences and edge-finding, but the results were very similar to
disjEF. Thus, we present only the results of disjEF. We compare our results with
the current best known lower and upper bounds of the makespan.
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Table 1. Overview of the benchmark suites used

suite sub-suite #inst #mach #jobs #task #o-task

CB 21 11–18 10–15 100–225 110–270
Bm [4] 10 4–15 10–20 55–240 115–716
Hu [9] edata 43 5–10 6–20 36–225 42–341

rdata 43 5–10 6–20 36–225 74–592

We used different benchmark suites for which a brief overview is given in
Table 1 where #inst is the number of instances considered, #mach the range
of the number of machines, #jobs the range of the number of jobs, #task the
range of the number of task per job, and #o-task the range of the total number
of optional tasks.

5.3 Upper Bounds Computations

Upper bound computations approach the optimal solution by generating feasible
solutions, potentially sub-optimal, and then restricting the objective correspond-
ingly before continuing the search. Many methods (see, e.g., [15,20,32]) have been
proposed for finding feasible solutions. Most of them are incomplete, i.e., they
have no guarantee for finding the optimal solution and proving its optimality,
but they are fast.

We use branch and bound for minimising the makespan and an activity-based
search (an adaption of Vsids [17]) with restart. A geometric restart policy [31]
on the number of node failures was used with a factor of 2.0 and a base of
256. The upper bound on the makespan was initialised to the rounded up value
of the average makespan computed by [15], because [15] provides a method
that quickly finds high quality solutions. For each instance, a second run was
executed where the initial makespan was made looser by 5%. These are indicated
by UB0+5%.

Tables 2–4 are organised as follow: the column Inst provides the instance
names; the column LB-UB the best known lower and upper bound with respect
to [10,15,20,3,32]; the column Initial Sol presents the rounded up average UB
obtained by [15] over several runs and its average run time in seconds;1 the
column disjEF shows the best obtained UB and the run time in seconds in which
a bold UB indicates that disjEF could improve the best known bound or closed
the instance, and an asterisk after UB indicates that the disjEF was able to find
the optimal solution and prove it. An entry n/a in UB indicates that the Lcg
solver was not able to find a solution with the given initial UB within the run
time limit of 10 minutes. An entry t/o in time indicates that run was aborted
after hitting the run time limit.

1 The numbers were taken from the appendix of [15] provided at
http://www.idsia.ch/~monaldo/fjsp.html

http://www.idsia.ch/~monaldo/fjsp.html
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Table 2. Results on CB with initial UB from [15]

Inst #o-task LB-UB Initial Sol disjEF disjEF (UB0+5%)
UB time UB time UB time

mt10c1 110 655-927 928 2.33s 927* 4.47s 927* 7.02s
mt10cc 120 655-908 910 10.04s 908* 3.66s 908* 4.45s
mt10x 110 655-918 918 4.31s 918* 2.45s 918* 4.59s
mt10xx 120 655-918 918 1.73s 918* 2.21s 918* 6.86s
mt10xxx 130 655-918 918 1.10s 918* 2.87s 918* 7.16s
mt10xy 120 655-905 906 4.02s 905* 4.41s 905* 5.66s
mt10xyz 130 655-847 851 5.50s 847* 2.98s 847* 16.33s
setb4c9 165 857-914 920 14.02s 914* 12.45s 914* 20.26s
setb4cc 180 857-907 912 12.95s 907* 8.60s 907* 7.08s
setb4x 165 846-925 925 7.45s 925* 12.86s 925* 29.72s
setb4xx 180 846-925 927 14.87s 925* 14.31s 925* 22.15s
setb4xxx 195 846-925 925 7.99s 925* 15.02s 925* 23.13s
setb4xy 180 845-910 916 3.15s 910* 8.40s 910* 14.72s
setb4xyz 195 838-903 909 7.35s 902* 6.77s 902* 16.52s
seti5c12 240 1027-1171 1175 19.49s 1169* 54.68s 1169* 209.77s
seti5cc 255 955-1136 1137 11.91s 1135* 95.27s 1135* 175.97s
seti5x 240 955-1198 1204 15.85s 1198* 28.34s 1198* 35.1s
seti5xx 255 955-1197 1201 23.64s 1194* 12.43s 1194* 14.84s
seti5xxx 270 955-1197 1199 23.51s 1194* 8.84s 1194* 28.39s
seti5xy 255 955-1136 1137 11.91s 1135* 95.20s 1135* 175.95s
seti5xyz 270 955-1125 1127 17.13s 1125* 337.98s 1125* 486.92s

Table 3. Results on Bm with initial UB from [15]

Inst #o-task LB-UB Initial Sol disjEF disjEF (UB0+5%)
UB time UB time UB time

Mk01 115 40 40 0.01s 40* 0.25s 40* 0.25s
Mk02 238 24-26 26 0.73s n/a t/o n/a t/o
Mk03 451 204 204 0.01s 204* 2.10s 204* 7.99s
Mk04 172 48-60 60 0.08s 60* 0.45s 60* 0.57s
Mk05 181 168-172 173 0.96s 173 t/o 175 t/o
Mk06 490 33-57 59 3.26s 59 t/o 60 t/o
Mk07 283 133-139 147 8.91s n/a t/o n/a t/o
Mk08 322 523 523 0.02s 523* 4.95s 523* 5.7s
Mk09 606 307 307 0.15s 307* 9.69s 307* 143.75s
Mk10 716 165-196 200 7.69s n/a t/o n/a t/o

Our method performed exceptionally well on instances from CB (see Table 2),
all instances could be solved within the time limit given, even with the looser
initial UB. In contrast, the instances from Bm were harder to solve for our
method (see Table 3), although the instance Mk04 was closed. Only five instances
could be solved and a solution could be found for only one of the remaining five
instances.
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Table 4. Results on Hu with initial UB from [15]

Inst #o-task LB-UB Initial Sol disjEF disjEF (UB0+5%)
UB time UB time UB time

edata/la11 113 1087-1103 1103 1.91s 1103* 0.45s 1103* 5.92s
edata/la21 173 895-1009 1024 2.83s 1013 t/o 1014 t/o
edata/la22 173 832-880 883 4.29s 880* 6.21s 880* 12.28s
edata/la23 171 950 950 2.97s 950* 17.26s 950* 230.93s
edata/la24 174 881-908 912 3.88s 908* 80.21s 908* 83.92s
edata/la25 174 894-936 945 1.76s 936* 21.89s 936* 33.98s
edata/la26 227 1089-1107 1127 5.48s 1127 t/o 1147 t/o
edata/la27 227 1181 1189 9.25s 1189 t/o 1221 t/o
edata/la28 226 1116-1142 1149 3.44s 1144 t/o 1163 t/o
edata/la29 227 1058-1111 1121 5.47s 1121 t/o 1133 t/o
edata/la30 227 1147-1195 1214 9.22s 1208 t/o 1227 t/o
edata/la31 341 1523-1533 1541 9.58s 1538 t/o 1583 t/o
edata/la32 341 1698 1698 1.85s 1698* 101.44s 1762 t/o
edata/la33 339 1547 1547 1.40s 1547* 27.53s 1564 t/o
edata/la34 339 1592-1599 1600 9.35s 1599* 52.03s 1620 t/o
edata/la35 339 1736 1736 0.41s 1736* 3.37s 1736* 105.45s
edata/la36 258 1006-1160 1164 8.08s 1160* 26.01s 1160* 88.71s
edata/la37 258 1397 1397 3.48s 1397* 1.59s 1397* 6.41s
edata/la38 257 1019-1143 1147 6.90s 1141* 436.15s 1141* 485.95s
edata/la39 257 1151-1184 1186 8.68s 1184* 13.12s 1184* 26.96s
edata/la40 258 1034-1144 1152 7.78s 1144* 473.22s 1144* 505.94s

rdata/la02 94 529-530 531 1.31s 529* 431.20s 529* 464.95s
rdata/la19 196 647-700 702 1.90s 700* 1.35s 700* 4.42s
rdata/la21 301 808-833 841 7.81s n/a t/o 869 t/o
rdata/la22 306 737-758 764 5.14s 764 t/o 774 t/o
rdata/la23 306 816-832 846 6.50s n/a t/o 877 t/o
rdata/la24 297 775-801 814 4.06s n/a t/o 830 t/o
rdata/la25 302 752-785 795 3.38s 793 t/o 801 t/o
rdata/la26 391 1056-1061 1064 7.69s n/a t/o 1114 t/o
rdata/la27 392 1085-1090 1093 7.47s n/a t/o 1145 t/o
rdata/la28 402 1075-1080 1082 7.54s n/a t/o 1133 t/o
rdata/la29 399 993-997 999 4.03s n/a t/o 1029 t/o
rdata/la30 392 1068-1078 1081 7.78s n/a t/o 1126 t/o
rdata/la31 576 1520-1521 1522 8.61s n/a t/o 1578 t/o
rdata/la32 585 1657-1659 1660 12.67s n/a t/o 1735 t/o
rdata/la33 581 1497-1498 1500 11.48s n/a t/o n/a t/o
rdata/la34 584 1535-1536 1537 7.28s n/a t/o 1612 t/o
rdata/la35 592 1549-1550 1551 15.28s n/a t/o n/a t/o
rdata/la36 439 1016-1028 1032 4.90s 1023* 38.98s 1023* 73.6s
rdata/la37 437 989-1066 1081 9.52s 1077 t/o 1091 t/o
rdata/la38 444 943-960 968 9.32s 954* 44.19s 954* 168.92s
rdata/la39 436 966-1018 1034 2.78s 1011* 539.80s 1016 t/o
rdata/la40 441 955-956 974 6.11s 968 t/o 978 t/o
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Table 4 show the result on a subset of instances from Hu. Due to space limits,
we omit the instances mt06, mt10, mt20, and la01–la20 from the sub-suites
edata and rdata since they are easily solvable. We also omit the entire sub-suite
vdata, because no new results could be obtained. The Lcg solver disjEF solves all
instances of the sub-suite edata except 7 and closes 9 of them. For the sub-suite
rdata, the Lcg solver closes 5 instances, but for 13 instances it could not find a
solution within the time limit. If disjEF was started with the looser initial UB
then it finds a solution for each instance in edata and rdata except two and could
close only two instances less than before.

Overall we close 36 open instances and improve the best known upper bounds
of 11 instances. Our approach is strongest on examples without too many tasks,
we plan to investigate the combination with large neighbourhood search (as
in [20]) to improve results on larger problems.

6 Conclusion and Outlook

Scheduling with optional tasks generalises the case of scheduling with tasks that
must always execute. It provides considerable expressiveness for defining complex
scheduling problems. In this paper we show how to extend Lcg solvers to support
scheduling with optional tasks. The resulting system combines the advantages
of scheduling with optional tasks with learning. We demonstrate the power of
the combination on hard flexible job-shop scheduling problems. In the future
we plan to extend our implementation for optional tasks to more propagators,
and probably to implement a native int⊥ variable in our Lcg solvers (although
we do not expect the native implementation to be much more efficient than the
tripartite model we use here).
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Abstract. This paper considers a residential market with real-time elec-
tricity pricing and flexible electricity consumption profiles for customers.
Such a market raises an optimisation problem for home automation sys-
tems where they need to schedule consumption activities to reduce costs,
whilst maintaining a base level of comfort and convenience. This opti-
misation problem faces uncertainty in real-time prices, weather condi-
tions, and occupant behaviour. The paper presents two online stochastic
combinatorial optimisation algorithms that produce fast, high-quality
solutions to this problem. These algorithms are compared with reactive
control strategies and a clairvoyant controller. Our results demonstrate
the value of stochastic information and online stochastic optimisation in
residential demand response.

1 Introduction

Electricity consumption in residential markets will undergo fundamental changes
in the next decade due to the availability of solar panels and novel pricing mech-
anisms, progress in batteries and electric cars, and the emergence of smart ap-
pliances and home automation. These technologies provide residential customers
with the ability to actively participate in smart grid activities such as demand
response where loads are shifted to times favourable for the network as a whole.

Having an intelligent Home Automation System (HAS) within each home is
a key component in this vision. The HAS receives information about device op-
erating characteristics, usage requests and network signals, and can send control
requests back to smart devices. The HAS provides occupants with feedback on
their consumption habits and, more importantly, can make control decisions for
itself. This control can be used to meet one or more of the following objectives:

1. Improve occupant comfort,
2. Reduce overall electricity consumption,
3. Perform demand response for network.

These objectives are often conflicting, so occupants need to indicate how they
value comfort against cost savings in order to get the right balance for them
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overall. The task of the HAS is to decide on a series of control actions to take over
time, which produces an optimal solution to the combined objectives. The HAS
can implement simple policies to attempt to meet these conflicting objectives. Or,
more interestingly, it can use sophisticated stochastic optimisation technology
which exploits forecasts and observed patterns in prices, weather, residential
activities and smart device usage.

This paper aims to determine the benefits of online stochastic optimisation
for a HAS that is exposed to Real-Time Pricing (RTP) as a demand response
mechanism. A number of research projects have started examining this very issue
(see the related work section) but they often give an incomplete picture of the
benefits of optimisation and the value of stochastic information. These projects
often consider simpler uncertainty models, which give a partial understanding
of the true benefits that optimisation can bring to this setting. In contrast, this
paper makes two primary contributions: one conceptual and one algorithmic.

At the conceptual level, the paper presents a compositional architecture for
HAS optimisation, where each device can be modelled independently in terms of
a collection of functions that encapsulate its behaviour. These devices are then
assembled into a model of a home, from which optimisation problems for the
HAS can derive.

At the algorithmic level, the paper presents a comprehensive study of the
value of HAS optimisation in the presence of uncertainty about future prices,
occupant behaviour and environmental conditions. Our formulation uses models
representative of physical devices and stochastic models trained on real weather
and network demand data. These device and stochastic models are used in two
online stochastic optimisation algorithms which are compared to simple control
systems based on reactive policies.

The experimental results not only show the value of stochastic information,
but also that stochastic optimisation provides solutions that are close to the
clairvoyant solutions which have perfect knowledge of the future. The online
stochastic algorithms using MILP technology are fast and produce significantly
better solutions than the reactive controllers. Also of interest is the comparison
between the two online stochastic algorithms, and an experiment that investi-
gates the optimal rolling horizon duration.

The rest of the paper presents the deterministic HAS optimisation problem,
its stochastic version, the stochastic models and finally the experimental results.

2 Deterministic HAS Optimisation

A house contains a collection of controllable devices which influence the amount
of power consumed in the house and the level of comfort that residents expe-
rience. We consider the operation of these devices over discrete time steps1:
∀i ∈ Z : ti ∈ R where ti > ti−1 and ∀i ∈ Z : tstpi = ti − ti−1.

Given a real time price for electricity and other input parameters (e.g., ex-
ternal temperatures and device requests), optimal operation of these devices is

1 Variable time step sizes will be used to focus computational time where most needed.
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achieved by minimising the sum of monetary and comfort costs. The optimi-
sation decision variables are the device actions at each time step, which are
constrained by device characteristics and total power limits on the house.

2.1 Formal Definition

We start with a new formal definition of a device, which is a collection of func-
tions that govern the device operation. These include functions for permissible
device actions, state updates, electrical power consumption/generation, and any
non-power-related operation costs. The operation costs are always positive and
may include any occupant comfort costs, fuel consumption or wear and tear on
the equipment. By convention power consumed by the device is negative and
power generated (e.g., by a rooftop photovoltaic system) is positive.

Definition 1 (Device). A device is a tuple d=(Ad, Sd, Rd, qd, gd, fd, ld), where:

– Ad ⊆ Rmd × Zm′
d is the set of device actions

– Sd ⊆ Rkd × Zk′
d is the set of device states

– Rd ⊆ Rwd × Zw′
d is the set of device input parameters

– qd : Sd ×Rd −→ P(Ad) is the permissible action function
– gd : Ad × Sd ×Rd −→ Sd is the state update function
– fd : Ad × Sd −→ R is the electrical power function
– ld : Ad × Sd ×Rd × R −→ R is the operational cost function

A house is simply a set of devices, together with bounds on the instantaneous
amount of power the house can transfer to or from the grid:

Definition 2 (House). A house is a tuple h = (Dh, ph, p̄h), where:

– Dh is the set of devices
– p

h
, p̄h ∈ R are the lower and upper power limits

We now turn to the deterministic formulation of the HAS optimisation prob-
lem which will be later used as a building block for our stochastic formulation.
The deterministic formulation assumes that the input parameters are known
over a horizon of n time steps. The objective is to choose device actions to re-
duce the total cost over the horizon, which includes device operational costs and
monetary costs from trading power with the network.2 Inputs include the device
initial states, the RTP, the house background power usage3 and the device input
parameters at each time step. The variables at each time step include the device
actions and states, and the device and house power consumptions and costs.

We use the following notation: (a)+ = |a| if a > 0 and 0 otherwise, and
similarly (a)− = |a| if a < 0 and 0 otherwise, where a ∈ R.

2 The RTP for net consumption or generation can be different.
3 This aggregates uncontrollable electrical consumption, e.g., lighting, entertainment
and cooking.
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Definition 3 (Deterministic HAS Optimisation Problem)
For a house h = (Dh, ph, p̄h), the HAS optimisation problem over a horizon of
n ∈ N∗ time steps is the following:

Inputs
for each device d = (Ad, Sd, Rd, qd, gd, fd, ld) ∈ Dh

– sd,0 ∈ Sd is the device initial state
for each device d ∈ Dh and time step i ∈ {1 . . . n}
– rd,i ∈ Rd are the device input parameters

for each time step i ∈ {1 . . . n}
– pbh,i ∈ R− is the house background power

– vi ∈ R2 is the real-time price (buying, selling)
Decision variables

for each device d ∈ Dh and time step i ∈ {1 . . . n}
– ad,i ∈ Ad are the device action variables

Other variables
for each device d ∈ Dh and time step i ∈ {1 . . . n}
– sd,i ∈ Sd are the device state variables
– pd,i ∈ R is the device power
– cd,i ∈ R+ is the device operation cost

for each time step i ∈ {1 . . . n}
– ph,i ∈ [p

h
, p̄h] is the total power

– ch,i ∈ R is the total cost
Constraints

for each device d ∈ Dh and time step i ∈ {1 . . . n}
– ad,i ∈ qd(sd,i−1, rd,i) is the action permissibility constraint
– sd,i = gd(ad,i, sd,i−1, rd,i) is the state update constraint
– pd,i = fd(ad,i, sd,i) is the device power constraint
– cd,i = ld(ad,i, sd,i, rd,i, t

stp
i ) is the device cost constraint

for each time step i ∈ {1 . . . n}
– ph,i =

∑
d∈Dh

pd,i + pbh,i is the house power constraint
– p

h
≤ ph,i ≤ p̄h is the house power limits constraint

– ch,i =
∑

d∈Dh
cd,i + tstpi vi,1(ph,i)− − tstpi vi,2(ph,i)+ is the house cost

constraint
Objective

min
∑n

i=1 ch,i

2.2 Modelled Devices

In our experiments we consider a modern house with electrical HVAC, hot water
heating, solar panels, a washing machine, a clothes dryer and a dish washer. We
also include two devices that are expected to become popular within the next
decades: an electric vehicle (EV) and a dedicated battery for storing electri-
cal energy. Descriptions of these devices are given in this section. Some liberty
has been used in these descriptions to aid understanding, however note that
with slight reformulation they all fit into the rigorous device definition of the



Residential Demand Response under Uncertainty 649

previous section. Device electrical powers and operational costs are consistently
represented by the variables pi and ci, and power consumed by a device takes
on a negative number.

The physical behaviour of devices has been approximated by linearising their
physical equations and discretising time. Only significant steps of this process
are mentioned in the device descriptions. For the experiments parameters were
selected to be representative of typical devices. For example, the EV battery
capacity is equivalent to that of a Nissan Leaf, and the house floor area for
heating purposes is typical of an average-sized house. Some parameters were
difficult to source so had to be estimated such as the efficiency of the EV battery.

Battery. A battery has a stored energy state E ∈ [0, Ē] and a charge/discharge
power p ∈ [p, p̄] action variable. The battery has a fixed efficiency η ∈ [0, 1]. The
stored energy state update function is given by:

Ei = Ei−1 + tstpi (η(pi)− − (pi)+) (1)

A battery lifetime cost c is associated with power that is discharged from the
battery through a lifetime price v: ci = v(pi)+.

Electric Vehicle. An electric vehicle (EV) is like the battery above, but with
a few additional constraints. Firstly the input parameter xh ∈ {0, 1} indicates
whether the EV is home, and the battery can only be charged/discharged when
this is the case:

xhi = 0 =⇒ pi = 0 (2)

The input parameter pd ∈ R+ represents the power drawn from the battery
whilst driving. This modifies the state update function as follows:

Ei = Ei−1 + tstpi

(
η(pi)− − (pi)+ − pdi

)
(3)

The final constraint is on the amount of energy stored in the battery. The house
occupants provide an input parameter Em ∈ [0, Ē] that represents the minimum
energy that the EV battery should have in it at each time. This value represents
how much energy the occupant expects to need if they drive away in the car at
a given time. This is not a hard constraint as the draw from driving can bring
the battery charge below this limit, but it ensures that if the battery power does
fall below, then it charges back up as fast as possible.

xhi = 1 =⇒ Ei ≥ min
[
Ei−1 + tstpi

(
−ηp− pdi

)
, Em

i

]
(4)

Hot Water Heating. The hot water system is made up of a storage tank and
an electric heating element. We ignore the details of the interaction between
hot and cold water in the tank and consider the state of the tank as being the
amount of energy E ∈ [0, Ē] it contains above the inlet cold water temperature.
The tank is considered empty of hot water when this value is zero. The action
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variable is the power setting of the electric heater p ∈ [p, 0] at each time step.

The input parameter pd ∈ R+ is the amount of power drawn from the tank to
meet occupant demand. The energy state update function is given by:

Ei = Ei−1 + tstpi

(
−pi − pdi − pli + pui

)
(5)

The variable pl ∈ R+ represents thermal losses from the tank to the outdoor
environment. The rate of loss depends on how full the tank is and the difference
in temperature between the water set point T s ∈ R and the outdoor temperature
T o ∈ R through a resistivity R ∈ R+:

pli =
1

R

Ei

Ē
(T s − T o

i ) (6)

The variable pu ∈ R+ is a recourse variable that is used to indicate the amount
of hot water demand which goes unmet, i.e. water drawn from the tank when it
is empty. This is heavily penalised as a cost c through an unmet demand price
v: ci = vpui .

The hot water system has a minimum stored energy level Em ∈ [0, Ē], much
like the electric vehicle. If drawn water brings the energy level of the tank below
this value then the heater must work as hard as possible to bring the energy
back up. Occupants can adjust this input parameter to reduce the likelihood of
running out of hot water.

Ei ≥ min
[
Ei−1 + tstpi

(
−p− pdi − pli + pui

)
, Em

]
(7)

Under-Floor Heating/Cooling. The house temperature is controlled by a
heat pump that heats/cools water, which is then pumped through piping em-
bedded in the floor of the house. The temperatures of the floor and the air in
the room T f , T a ∈ R are the device state variables. The action variable is the
amount of thermal energy that is supplied to the floor of the house pt ∈ R. This
is limited by the heat pump electrical power consumption p ∈ [p, 0] through heat-

ing and cooling Coefficients of Performance (COP) ηh ∈ [ηh, η̄h], ηc ∈ [ηc, η̄c]:

pi = −
1

ηhi
(pti)+ −

1

ηci
(pti)− (8)

The COPs depend on the temperatures of the two thermal wells between which
the heat pump is operating. We assume that the internal thermal well is at a
constant temperature and that the external well is at the outdoor temperature
T o ∈ R. We approximate the COPs as linear functions of T o for some constants
ah, ac ∈ R+ and bh, bc ∈ R, with hard upper and lower limits:

ηhi = min
[
max

[
ahT o

i + bh, ηh
]
, η̄h

]
, ηci = min

[
max

[
−acT o

i + bc, ηc
]
, η̄c

]
(9)

Heat can transfer between the floor and the outdoor environment pfo ∈ R,
the floor and the air in the room pfa ∈ R, and the air in the room and
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the outdoor environment pao ∈ R. We use simple lumped thermal resistivities
Rfo, Rfa, Rao ∈ R+ to govern these heat flows:

pfoi =
1

Rfo
(T f

i − T o
i ), pfai =

1

Rfa
(T f

i − T a
i ), paoi =

1

Rao
(T a

i − T o
i ) (10)

The temperature state update functions are given by:

T f
i = T f

i−1 +
tstpi

mfκf

(
pti − pfoi − pfai +Af Ii

)
(11)

T a
i = T a

i−1 +
tstpi

maκa

(
pfai − paoi + pgi

)
(12)

where mf ,ma, κf , κa ∈ R+ are the floor and air, mass and specific heat capacity
coefficients respectively. Sunlight enters through the windows at an irradiance
I ∈ R+ and lands on a floor area Af ∈ R+. The input p

g ∈ R+ is thermal power
generated by occupant metabolisms and background electric appliances which
contributes to heating the air in the room.

The final relation we have is for the comfort cost c which depends on the
distance of the air temperature from an occupant specified set point temperature
T s ∈ R. The occupants also specify two time-varying comfort prices va, vb, one
of which is only included after a threshold temperature difference ΔT th:

ci =

{
vai |T a

i − T s
i | if |T a

i − T s
i | < ΔT th

(vai + vbi )|T a
i − T s

i | otherwise
(13)

Shiftable Loads. Shiftable loads are devices that need to run once within a
time window. An occupant sets two input parameters: a start time is and a last
allowed start time il, between which the controller must schedule the device to
run. Examples of this kind of device include washing machines, clothes dryers
and dish washers. We model non-preemptive shiftable loads which can have time
varying power consumptions.

The start of run indicators x ∈ {0, 1} act as both the device action and
state variables. A shiftable load has a cumulative energy consumption function
ψ : R+ −→ R+ which takes a run duration and returns the cumulative amount
of energy that the device has consumed up to that duration. Constraints on the
run indicator variables and the device power p ∈ R− are given by:

il∑
k=is

xk = 1, pi = −
i∑

k=is

xk
ψ(ti − tk−1)− ψ(ti−1 − tk−1)

tstpi

(14)

Photovoltaics. The photovoltaic (PV) panels have no action variables, the
amount of electricity they generate is purely determined by the solar irradiance
input parameter. We model a PV system ignoring temperature and shading
effects and by assuming the panels lay on a horizontal surface. The generated
electric power p ∈ R+ is then a simple function of the panel area A ∈ R+,
efficiency η ∈ [0, 1] and global irradiance input parameter I ∈ R+: pi = ηAIi.
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3 Stochastic HAS Optimisation

So far we have considered the deterministic HAS formulation that requires per-
fect foresight about what will happen over the time horizon. In practice, almost
all the input parameters are uncertain and their uncertainty is only revealed in
real time (e.g., outdoor temperature) or in some cases a few time steps in ad-
vance (e.g., RTP). This motivates the use of online stochastic optimisation [1],
which exploits statistical models of the uncertain parameters in order to make
the best decisions on average.

3.1 The Stochastic Model

In the stochastic HAS problem the RTP vi, background house power pbh,i and
device input parameters rd,i are random variables. We denote their real-world
realisations (i.e. their values when the uncertainty is revealed) with the symbol
∗. For instance, T o∗

i denotes the real outdoor temperature at time step i. For
notational convenience, all inputs are combined into one vector

zi = (vi, p
b
i,h, rd1,i, rd2,i, . . .)

T (15)

where we index elements with a k (e.g., zi,k). Random variables at time step i
may be dependent on each other and on the variables at previous time steps.
Therefore the joint distribution for random variables up to time step i is given
by:

P (zi, zi−1, . . .) (16)

Let t∗ represent the current real world time. Each input zi,k is revealed a fixed
amount of time Δtrevk ∈ R+ in advance (or in real time ifΔtrevk = 0). This means,
that for a given t∗ an input zi,k is known to be z∗i,k if ti ≤ t∗ +Δtrevk , otherwise
it is a random variable. Given i and t∗ we use Ki,t∗ = {k|ti ≤ t∗ + Δtrevk } to
denote the set of known input vector indices.

3.2 Online Stochastic Optimisation

In online stochastic optimisation decisions are made one step at a time using
stochastic information about future events. After each time step the uncertainty
and the effect of all actions is revealed, updating the state of the system. Deci-
sions for the next period are computed and the process is repeated. It has been
used successfully on a wide variety of problems (e.g., [2,1]).

Our algorithms use a rolling finite horizon as illustrated in Fig. 1, where
the time steps 1, . . . , n are aligned to each horizon with t0 = t∗. Optimisation
is performed for each horizon using stochastic information for any unrevealed
inputs and then the actions for the first time step are executed in the real world.

It might not be possible to execute actions produced by the optimisation if the
real world input parameters z∗1 differ from what the optimisation anticipated.
For example, if the optimisation decides to run the hot water heater at full power
and the tank unexpectedly reaches its capacity (due to less demand for hot water
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1 2
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1 2 n

n

n

Fig. 1. Rolling horizon for 3 consecutive iterations

than expected), then the power of the heating action will need to be reduced so
as to remain within the tank’s capacity. Our HAS handles this automatically in
the execution step, by using very simple executives for each device which select
the closest feasible action.

The following sections introduce two approaches to solving the stochastic
optimisation problem within each horizon: the expectation and the 2-stage al-
gorithms.

3.3 Expectation Formulation

The expectation online stochastic algorithm takes the conditional expected value
of any unrevealed inputs in the optimisation horizon, and solves the deterministic
version of the problem given in Definition 3. We use the term expected value
loosely because in truth we calculate the expected value only where it makes
sense, which is typically for continuous inputs. For the rest of the inputs the
most likely value is calculated instead. For example, expected value is used for
outdoor temperatures and most likely value for the washing machine requests.
Both of these calculations are performed using the joint distribution for inputs
in the horizon, conditioned on any known inputs in and prior to the horizon:

P (zn, zn−1, . . . , z1|(z∗n,k, ∀k ∈ Kn,t0), . . . , (z
∗
1,k, ∀k ∈ K1,t0), z

∗
0 , . . .) (17)

3.4 2-Stage Formulation

In this algorithm 2-stage stochastic programming is used within each horizon.
This provides an approximation to a full multi-stage stochastic program which
are, in general, known to be extremely challenging computationally [3]. The first
stage includes time step 1, and the second stage time steps 2, . . . , n. Traditionally,
in 2-stage stochastic programming there is no uncertainty in the first stage [4].
However, in our problem we are required to make decisions before all inputs in
the first stage are revealed. To resolve this, first stage inputs are set to their
real values if revealed, otherwise their conditional expected value is taken (as
described in Section 3.3).

The second stage uses sampled scenarios to represent the uncertainty in the
input parameters. We define a second stage scenario s as being a sample from
the joint distribution of random variables in the second stage, conditioned on
any revealed inputs in the second stage, and inputs in and prior to the first stage:

s ∼ P (zn, zn−1, . . . , z2|(z∗n,k, ∀k ∈ Kn,t0), . . . , (z
∗
2,k, ∀k ∈ K2,t0),

z1, z
∗
0 , . . .) (18)
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We use the Sample Average Approximation (SAA) [4] to limit the number of
scenarios S ∈ N that we need to consider in the second stage. Each scenario
in the second stage needs to have its own set of variables in the optimisation
problem. For example we denote the power of device d at time step i in scenario
s by pd,i,s. The 2-stage objective function is given by:

min

⎡
⎣c1 + 1

S

∑
s∈{s1,...,sS}

n∑
i=2

ci,s

⎤
⎦ (19)

3.5 Stochastic Inputs

Stochastic inputs include the real-time pricing (RTP), outdoor temperature,
solar irradiance, background power, internal heat generation, hot water demand,
EV usage and shiftable load requests. Accurately modelling any of these random
processes is a significant undertaking in itself. The models we developed, while
not the most sophisticated, suit the purposes of our experiments by capturing
the fundamental nature of these stochastic processes. We investigated a number
of different model types before settling on Generalised Additive Models (GAM)
[5] for the continuous variables like temperature, and Markov Models for the
more discrete occupant driven behaviours such as shiftable device requests.

Generalised Additive Models. In order to predict future values, the GAMs
take advantage of weather forecasts that can be readily obtained from national
weather services. These forecast values include daily maximum and minimum
temperatures, as well as morning and afternoon cloud cover and wind speeds.
The models also take in the value from the previous time step and temporal
information. The models were trained on data obtained from the Bureau of
Meteorology4 and Australian Energy Market Operator5 relevant to the states of
NSW and the ACT in Australia.

The best way of implementing RTP in retail markets is still an open ques-
tion and so is worth particular mention. It is unlikely that it will be a simple
replication of the wholesale spot market price due to its high volatility. More
likely it will be set by retailers, but it will have a shape that is representative of
the wholesale market. We designed our RTP to be a quadratic function6 of the
amount of power that fossil fuel sources must supply to meet total network load.
This is the total network demand minus the generation from renewable sources
such as wind and solar. We used a GAM for the total network demand and the
generation from renewables is a function of wind speed and solar irradiance. The
RTP is only revealed to a house 30 minutes in advance.

Markov Models. Semi-Markov models were used to capture the behaviour of
four occupants of a specific house in the ACT. These models provide the con-
sumption patterns and profiles for input parameters such as hot water demand,

4 Bureau of Meteorology (BOM), www.bom.gov.au
5 Australian Energy Market Operator (AEMO), www.aemo.com.au
6 The quadratic is representative of an increasing marginal supply price [6].

www.bom.gov.au
www.aemo.com.au
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shiftable load requests and EV usage. Each model identifies the key activities
of an occupant (e.g., sleeping, taking a shower and leaving for work), and spec-
ifies the probabilities of transiting from one activity to the next within certain
time windows. Each activity is associated with a series of actions (e.g., watching
TV and requesting the dish washer) that trigger changes in input parameters.
Conditional sampling through these models is used to generate scenarios.

Whilst this scheme was convenient for our experiments, other more data-
driven options are possible: we could simply gather and use a database of raw
scenarios, or learn model parameters from disaggregated demand data [7,8].

4 Experiments

We implemented the expectation and 2-stage online algorithms using Gurobi as
a backend to solve the MILP within each horizon. The devices in Section 2.2
were implemented and included in the experimental house, and conditional sam-
plers were created for the uncertain input parameters in Section 3.5. We created
a simple simulator that uses the same physical equations as the optimisation
to simulate the execution of actions in the real world. We compare the perfor-
mance of the expectation and 2-stage controllers with naive and smart reactive
controllers, and a controller that has perfect information.

The Naive reactive controller represents a household that either has no ability
or no desire to respond to a RTP. It starts shiftable devices as soon as a request
is received, fills up the hot water tank in off-peak hours, charges the EV only
if it is below the requested minimum level, maintains the room at the set point
temperature and never uses the battery bank.

The Smart reactive controller uses simple device action policies to decide
how to respond to changes in RTP. It delays running a shiftable device until
it reaches either a cheap price or the last available start time; uses thresholds
about a moving average of the RTP to decide when to charge or discharge energy
from the batteries, EV and hot water system; and maintains the room at the set
point temperature like the naive controller.

The Perfect controller has perfect foresight about what will happen in the
future. It optimises the deterministic problem in Definition 3 over the whole
experiment duration with full knowledge of z∗i . This controller (which is infeasible
in practice) is used to give a lower bound on the objective that can be achieved
by the other controllers.

4.1 Controller Comparison

A total of 9 sets of input parameters typical for the month of February were
generated. These were used in 9 separate experimental runs, each with a duration
of 7 days. The online algorithms had 16 hour optimisation horizons, with 15
minutes for the first two time steps and 30 minute time steps for the remainder
of the horizon.7 The reactive and perfect controllers had 15 minute time steps.

7 By using larger time steps for more uncertain values further into the future we reduce
the computational burden with only a minor reduction to solution quality.
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(b) Disaggregated costs.

Fig. 2. Costs for each experimental run and device costs averaged over runs

The 2-stage algorithm sampled 60 scenarios for each second stage. The amount
of time spent optimising in Gurobi per day was on average 1 second for the
expectation algorithm and 4 minutes for the 2-stage algorithm (using a single
core of an Intel i7-2600 3.4GHz CPU). Whilst the 2-stage is much slower, its
computational time can still be considered small when spread out over a day.

The controller costs are plotted in Fig. 2a for each experimental run. These
results are adjusted to account for any energy that remains in the battery, EV,
or hot water system at the end of an experimental run. This is done by valuing
the left-over energy at the average RTP for the last 24 hours. Without this
adjustment it would not be a fair comparison since any controller that anticipates
the need to store energy for a future purpose would perform poorly if it does
so just before the experiment ends. This is an artefact of the finite length of
our experimental runs; with very long durations this problem goes away as the
left-over energy costs become insignificant.

We see that the expectation and 2-stage algorithms get quite close to the
performance of the controller with perfect foresight and they achieve significant
cost reductions over the two reactive controllers (∼ 35% less than smart reac-
tive controller). The expectation controller outperforms the 2-stage controller on
average and in all runs except 9. This appears to suggest that the expectation
controller is superior as it requires less computation and achieves lower costs.
There are however a few subtleties to this that are worth discussing.

Fig. 2b shows the average split in costs between devices, ignoring the PV. The
costs for the expectation and 2-stage controllers are essentially identical except
when it comes to the hot water heater. The hot water heater is different from
the other devices because it has a recourse variable for unmet hot water demand
which has a very high cost associated with it. This recourse variable takes on a
non-zero value in run 5 for the expectation and 2-stage controllers, and run 9 for
the expectation controller, in all cases because the controllers fail to anticipate
large spikes in hot water demand until it is too late. The reactive controllers
have to be quite conservative with the amount of hot water they keep stored, so
they never encounter a demand that they cannot meet (at the expense of higher
prices paid for heating the water and greater thermal losses over time).
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Fig. 3. House power profiles for one day and experimenting with horizon lengths

We in general expect the 2-stage algorithm to be more conservative than the
expectation algorithm and to avoid having any unmet demand because through
sampling it can identify upcoming peaks. This is the case in all runs except 5.
With further investigation we found that in run 5 the 2-stage algorithm failed
to generate the scenario with high demand when it was needed. The reason for
this occurring was not due to too few second stage scenarios, but because of the
way that second stage scenarios are conditionally sampled from the first stage
which can take on expected values. In this instance, at a critical point in time,
the first stage expected values precluded the high demand scenario from being
able to occur in the second stage even though it was still physically possible.

What these results show is that the expectation algorithm typically does a
very good job, but there are certain types of devices and random processes for
which it performs poorly. We initially thought that the online 2-stage algorithm
presented in this paper would be able to overcome these limitations, but there
appears to be some problems associated with taking the expected value of first
stage variables.

Fig. 3a gives an example of the power exchanged between the house and the
grid for one day, along with the RTP. As expected, most consumption occurs
when the price is low and when the price is high power is sold back to the grid
from the battery, EV and PV. The expectation and 2-stage controllers follow
the general trend of the perfect controller with some small divergences.

Fig. 3b shows the results of an experiment where we investigated how per-
formance changes with the horizon duration. This plot shows the performance
of the perfect controller running as an online algorithm where it is restricted to
only having perfect foresight a certain distance into the future. The experiment
is performed on run 1 for a number of different horizon durations and the results
are compared to the original perfect controller that can see the full 7 days. The
results show that there is little to be gained by looking any further into the
future than 20 hours.
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5 Related Work

Much of the existing literature on residential demand response focuses on deter-
ministic formulations over fixed horizons where the scheduler has perfect fore-
sight [6,9]. Those that have considered uncertainty in the problem typically focus
on just one aspect (e.g., real-time pricing) [10], or use very simple models for
random variables [11].

Model-predictive control has been used to account for the uncertainty of esti-
mated device model parameters and measurement noise [12], but not the uncer-
tainty of the type we model. In general, model-predictive control is best suited
to unconstrained, purely continuous settings with limited uncertainty.

Dynamic programming [11,13] and Q-learning [14] have been used in con-
junction with Markov Decision Process (MDP) formulations of the residential
load scheduling problem, to generate policies that allocate power to each device.
MDP approaches suffer from severe scalability issues, especially since the state
space needs to be discretised. Moreover, MDPs seem somewhat excessive for our
problem, given that uncertainty does not depend on the decisions taken. Our
stochastic programming approach which uses scenario sampling is more scalable
and more natural in the presence of exogenous uncertainty.

One paper [11] found that acting on the basis of the optimal dynamic pro-
gramming solution did not provide any benefit over acting on expectations.
For the most part we found this to be true, but as discussed in the exper-
imental section we identified circumstances where the greedy nature of an ex-
pectation algorithm can lead to poor results. Our use of more complex
uncertainty models and different devices is likely the reason why we had this
extra observation.

The paper closest to ours compares two-stage stochastic programming and
robust optimisation techniques for scheduling residential loads [15]. Uncertainty
is restricted to the RTP which is known for the first stage but becomes uncertain
thereafter. The objective includes minimising expected price and the probability
mass of “risky” scenarios whose price exceeds a certain threshold. Comfort is
handled by imposing hard constraints under which appliances must run, rather
than by inclusion into the objective. In this setting, two-stage stochastic pro-
gramming was observed to provide benefits over robust scheduling.

The scope of our analysis goes significantly beyond these results, by exploring
uncertainty from a large range of sources and by identifying the value of stochas-
tic information. We enable richer sources of uncertainty to be considered in our
framework, by allowing inputs to be revealed at arbitrary points in time.

Commercially available residential DR solutions8 typically focus on direct
load control or simple reactive policies. Such systems could experience more
optimal DR performance and greater residential customer satisfaction by using
our algorithms.

8 E.g., comverge: www.comverge.com, nest: www.nest.com and Cooper Power Systems:
www.cooperindustries.com

www.comverge.com
www.nest.com
www.cooperindustries.com
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6 Conclusion and Future Work

This paper contributes to the growing body of work on residential control of loads
and storage under real-time pricing, by developing a framework that accounts
for uncertainty. To our knowledge, it is the first work that provides a scalable
and accurate solution in the presence of uncertainty about future prices, occu-
pant behaviour and environmental conditions. Using models representative of
physical devices and random processes, we have shown the monetary and com-
fort cost savings that can be achieved by using online stochastic algorithms over
reactive control, and the comparison of performance between a 2-stage approach
and acting on expectations. Studies such as the one in this paper are import
for rallying industry and customers towards more effective energy management
schemes.

Further research is needed to investigate how closely reality can be modelled
with random processes, and if in turn they are suitable for online learning. We
also need to further investigate how time step sizes and the number of second
stage scenarios influence performance, and to conduct more experiments for dif-
ferent months of the year. The experimental set up we have developed can be
used to experiment with and compare different pricing schemes. For example,
time of use pricing and RTP where the price for generation is different from that
for consumption. We also plan on investigating how multiple houses react to a
RTP and what sort of emergent behaviour develops when they are all learning
their statistical models online.
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Abstract. A wide range of problems can be modelled as constraint sat-
isfaction problems (CSPs), that is, a set of constraints that must be
satisfied simultaneously. Constraints can either be represented extension-
ally, by explicitly listing allowed combinations of values, or implicitly, by
special-purpose algorithms provided by a solver. Such implicitly repre-
sented constraints, known as global constraints, are widely used; indeed,
they are one of the key reasons for the success of constraint programming
in solving real-world problems.

In recent years, a variety of restrictions on the structure of CSP in-
stances that yield tractable classes have been identified. However, many
such restrictions fail to guarantee tractability for CSPs with global con-
straints. In this paper, we investigate the properties of extensionally rep-
resented constraints that these restrictions exploit to achieve tractability,
and show that there are large classes of global constraints that also pos-
sess these properties. This allows us to lift these restrictions to the global
case, and identify new tractable classes of CSPs with global constraints.

1 Introduction

Constraint programming (CP) is widely used to solve a variety of practical prob-
lems such as planning and scheduling [22,30], and industrial configuration [2,21].
Constraints can either be represented explicitly, by a table of allowed assign-
ments, or implicitly, by specialized algorithms provided by the constraint solver.
These algorithms may take as a parameter a description that specifies exactly
which kinds of assignments a particular instance of a constraint should allow.
Such implicitly represented constraints are known as global constraints, and a
lot of the success of CP in practice has been attributed to solvers providing
them [15,28, 31].

The theoretical properties of constraint problems, in particular the computa-
tional complexity of different types of problem, have been extensively studied and
quite a lot is known about what restrictions on the general constraint satisfac-
tion problem are sufficient to make it tractable [3, 6, 8, 16, 19, 25]. In particular,
many structural restrictions, that is, restrictions on how the constraints in a
problem interact, have been identified and shown to yield tractable classes of
� Work supported by EPSRC grant EP/G055114/1.
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CSP instances [17, 20, 25]. However, much of this theoretical work has focused
on problems where each constraint is explicitly represented, and most known
structural restrictions fail to yield tractable classes for problems with global
constraints, even when the global constraints are fairly simple [23].

Theoretical work on global constraints has to a large extent focused on de-
veloping efficient algorithms to achieve various kinds of local consistency for
individual constraints. This is generally done by pruning from the domains of
variables those values that cannot lead to a satisfying assignment [4,29]. Another
strand of research has explored conditions that allow global constraints to be re-
placed by collections of explicitly represented constraints [5]. These techniques
allow faster implementations of algorithms for individual constraints, but do not
shed much light on the complexity of problems with multiple overlapping global
constraints, which is something that practical problems frequently require.

As such, in this paper we investigate what properties of explicitly represented
constraints structural restrictions rely on to guarantee tractability. Identifying
such properties will allow us to find global constraints that also possess them,
and lift well-known structural restrictions to instances with such constraints.

As discussed in [7], when the constraints in a family of problems have un-
bounded arity, the way that the constraints are represented can significantly
affect the complexity. Previous work in this area has assumed that the global
constraints have specific representations, such as propagators [18], negative con-
straints [9], or GDNF/decision diagrams [7], and exploited properties particular
to that representation. In contrast, we will use a definition of global constraints
that allows us to discuss different representations in a uniform manner. Further-
more, as the results we obtain will rely on a relationship between the size of a
global constraint and the number of its satisfying assignments, we do not need
to reference any specific representation.

As a running example, we will use the connected graph partition problem
(CGP) [13, p. 209], defined below. The CGP is the problem of partitioning
the vertices of a graph into bags of a given size while minimizing the number of
edges that span bags. The vertices of the graph could represent components to be
placed on circuit boards while minimizing the number of inter-board connections.

Problem 1 (Connected graph partition (CGP)). We are given an undirected and
connected graph 〈V,E〉, as well as α, β ∈ N. Can V be partitioned into disjoint
sets V1, . . . , Vm with |Vi| ≤ α such that the set of broken edges E′ = {{u, v} ∈
E | u ∈ Vi, v ∈ Vj , i �= j} has cardinality β or less?

This problem is NP-complete [13, p. 209], even for fixed α ≥ 3. We are going
to use the results in this paper to show a new result, namely that the CGP is
tractable for every fixed β.

2 Global Constraints

In this section, we define the basic concepts that we will use throughout the pa-
per. In particular, we give a precise definition of global constraints, and illustrate
it with a few examples.
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Definition 1 (Variables and assignments). Let V be a set of variables, each
with an associated set of domain elements. We denote the set of domain elements
(the domain) of a variable v by D(v). We extend this notation to arbitrary subsets
of variables, W , by setting D(W ) =

⋃
v∈W

D(v).

An assignment of a set of variables V is a function θ : V → D(V ) that maps
every v ∈ V to an element θ(v) ∈ D(v). We denote the restriction of θ to a set
of variables W ⊆ V by θ|W . We also allow the special assignment ⊥ of the empty
set of variables. In particular, for every assignment θ, we have θ|∅ = ⊥.

Definition 2 (Projection). Let Θ be a set of assignments of a set of variables
V . The projection of Θ onto a set of variables X ⊆ V is the set of assignments
πX(Θ) = {θ|X | θ ∈ Θ}.

Note that when Θ = ∅ we have πX(Θ) = ∅, but when X = ∅ and Θ �= ∅, we
have πX(Θ) = {⊥}.

Definition 3 (Disjoint union of assignments). Let θ1 and θ2 be two assign-
ments of disjoint sets of variables V1 and V2, respectively. The disjoint union of θ1
and θ2, denoted θ1⊕θ2, is the assignment of V1∪V2 such that (θ1⊕θ2)(v) = θ1(v)
for all v ∈ V1, and (θ1 ⊕ θ2)(v) = θ2(v) for all v ∈ V2.

Global constraints have traditionally been defined, somewhat vaguely, as con-
straints without a fixed arity, possibly also with a compact representation of
the constraint relation. For example, in [22] a global constraint is defined as “a
constraint that captures a relation between a non-fixed number of variables”.

Below, we offer a precise definition similar to the one in [4], where the authors
define global constraints for a domain D over a list of variables σ as being
given intensionally by a function D|σ| → {0, 1} computable in polynomial time.
Our definition differs from this one in that we separate the general algorithm of
a global constraint (which we call its type) from the specific description. This
separation allows us a better way of measuring the size of a global constraint,
which in turn helps us to establish new complexity results.

Definition 4 (Global constraints). A global constraint type is a parameter-
ized polynomial-time algorithm that determines the acceptability of an assign-
ment of a given set of variables.

Each global constraint type, e, has an associated set of descriptions, Δ(e).
Each description δ ∈ Δ(e) specifies appropriate parameter values for the algo-
rithm e. In particular, each δ ∈ Δ(e) specifies a set of variables, denoted by
V(δ).

A global constraint e[δ], where δ ∈ Δ(e), is a function that maps assignments
of V(δ) to the set {0, 1}. Each assignment that is allowed by e[δ] is mapped to
1, and each disallowed assignment is mapped to 0. The extension or constraint
relation of e[δ] is the set of assignments, θ, of V(δ) such that e[δ](θ) = 1. We
also say that such assignments satisfy the constraint, while all other assignments
falsify it.
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When we are only interested in describing the set of assignments that satisfy
a constraint, and not in the complexity of determining membership in this set,
we will sometimes abuse notation by writing θ ∈ e[δ] to mean e[δ](θ) = 1.

As can be seen from the definition above, a global constraint is not usually
explicitly represented by listing all the assignments that satisfy it. Instead, it is
represented by some description δ and some algorithm e that allows us to check
whether the constraint relation of e[δ] includes a given assignment. To stay within
the complexity class NP, this algorithm is required to run in polynomial time.
As the algorithms for many common global constraints are built into modern
constraint solvers, we measure the size of a global constraint’s representation by
the size of its description.

Example 1 (EGC). A very general global constraint type is the extended global
cardinality constraint type [29]. This form of global constraint is defined by
specifying for every domain element a a finite set of natural numbers K(a), called
the cardinality set of a. The constraint requires that the number of variables
which are assigned the value a is in the set K(a), for each possible domain
element a.

Using our notation, the description δ of an EGC global constraint specifies
a function Kδ : D(V(δ)) → P(N) that maps each domain element to a set of
natural numbers. The algorithm for the EGC constraint then maps an assign-
ment θ to 1 if and only if, for every domain element a ∈ D(V(δ)), we have that
|{v ∈ V(δ) | θ(v) = a}| ∈ Kδ(a).

Example 2 (Table and negative constraints). A rather degenerate example of a
a global constraint type is the table constraint.

In this case the description δ is simply a list of assignments of some fixed
set of variables, V(δ). The algorithm for a table constraint then decides, for any
assignment of V(δ), whether it is included in δ. This can be done in a time which
is linear in the size of δ and so meets the polynomial time requirement.

Negative constraints are complementary to table constraints, in that they
are described by listing forbidden assignments. The algorithm for a negative
constraint e[δ] decides, for any assignment of V(δ), whether whether it is not
included in δ. Observe that disjunctive clauses, used to define propositional sat-
isfiability problems, are a special case of the negative constraint type, as they
have exactly one forbidden assignment.

We observe that any global constraint can be rewritten as a table or negative
constraint. However, this rewriting will, in general, incur an exponential increase
in the size of the description.

As can be seen from the definition above, a table global constraint is explicitly
represented, and thus equivalent to the usual notion of an explicitly represented
constraint.

Definition 5 (CSP instance). An instance of the constraint satisfaction prob-
lem (CSP) is a pair 〈V,C〉 where V is a finite set of variables, and C is a set of
global constraints such that for every e[δ] ∈ C, V(δ) ⊆ V . In a CSP instance,
we call V(δ) the scope of the constraint e[δ].
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A classic CSP instance is one where every constraint is a table constraint.
A solution to a CSP instance P = 〈V,C〉 is an assignment θ of V which

satisfies every global constraint, i.e., for every e[δ] ∈ C we have θ|V(δ) ∈ e[δ]. We
denote the set of solutions to P by sol(P ).

The size of a CSP instance P = 〈V,C〉 is |P | = |V |+
∑
v∈V
|D(v)| +

∑
e[δ]∈C

|δ|.

Example 3 (The CGP encoded with global constraints). Given a connected graph
G = 〈V,E〉, α, and β, we build a CSP instance 〈A∪B,C〉 as follows. The set A
will have a variable v for every v ∈ V with domain D(v) = {1, . . . , |V |}, while
the set B will have a boolean variable e for every edge in E.

The set of constraints C will have an EGC constraint Cα on A with K(i) =
{0, . . . , α} for every 1 ≤ i ≤ |V |. Likewise, C will have an EGC constraint Cβ

on B with K(0) = {0, . . . , |E|} and K(1) = {1, . . . , β}.
Finally, to connect A and B, the set C will have for every edge {u, v} ∈ E,

with corresponding variable e ∈ B, a table constraint on {u, v, e} requiring
u �= v → e = 1.

As an example, Figure 1 shows this encoding for the CGP on the graph C5,
that is, a simple cycle on five vertices.

This encoding follows the definition of Problem 1 quite closely, and can be
done in polynomial time.
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Fig. 1. CSP encoding of the CGP on the graph C5

3 Structural Restrictions

In recent years, there has been a flurry of research into identifying tractable
classes of classic CSP instances based on restrictions on the hypergraphs of CSP
instances, known as structural restrictions. Below, we present and discuss a few
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representative examples. To present the various structural restrictions, we will
use the framework of width functions, introduced by Adler [1].

Definition 6 (Hypergraph). A hypergraph 〈V,H〉 is a set of vertices V to-
gether with a set of hyperedges H ⊆ P(V ).

Given a CSP instance P = 〈V,C〉, the hypergraph of P , denoted hyp(P ), has
vertex set V together with a hyperedge V(δ) for every e[δ] ∈ C.

Definition 7 (Tree decomposition). A tree decomposition of a hypergraph
〈V,H〉 is a pair 〈T, λ〉 where T is a tree and λ is a labelling function from nodes
of T to subsets of V , such that

1. for every v ∈ V , there exists a node t of T such that v ∈ λ(t),
2. for every hyperedge h ∈ H, there exists a node t of T such that h ⊆ λ(t),

and
3. for every v ∈ V , the set of nodes {t | v ∈ λ(t)} induces a connected subtree

of T .

Definition 8 (Width function). Let G = 〈V,H〉 be a hypergraph. A width
function on G is a function f : P(V )→ R+ that assigns a positive real number
to every nonempty subset of vertices of G. A width function f is monotone if
f(X) ≤ f(Y ) whenever X ⊆ Y .

Let 〈T, λ〉 be a tree decomposition of G, and f a width function on G. The f -
width of 〈T, λ〉 is max({f(λ(t)) | t node of T }). The f -width of G is the minimal
f -width over all its tree decompositions.

In other words, a width function on a hypergraph G tells us how to assign
weights to nodes of tree decompositions of G.

Definition 9 (Treewidth). Let f(X) = |X | − 1. The treewidth tw(G) of a
hypergraph G is the f -width of G.

Let G = 〈V,H〉 be a hypergraph, and X ⊆ V . An edge cover for X is any set
of hyperedges H ′ ⊆ H that satisfies X ⊆

⋃
H ′. The edge cover number ρ(X)

of X is the size of the smallest edge cover for X . It is clear that ρ is a width
function.

Definition 10 ( [1, Chapter 2]). The generalized hypertree width hw(G) of a
hypergraph G is the ρ-width of G.

Next, we define a relaxation of hypertree width known as fractional hypertree
width, introduced by Grohe and Marx [20].

Definition 11 (Fractional edge cover). Let G = 〈V,H〉 be a hypergraph, and
X ⊆ V . A fractional edge cover for X is a function γ : H → [0, 1] such that∑
v∈h∈H

γ(h) ≥ 1 for every v ∈ X. We call
∑
h∈H

γ(h) the weight of γ. The fractional

edge cover number ρ∗(X) of X is the minimum weight over all fractional edge
covers for X. It is known that this minimum is always rational [20].
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Definition 12. The fractional hypertree width fhw(G) of a hypergraph G is the
ρ∗-width of G.

For a class of hypergraphs H and a notion of width α, we write α(H) for
the maximal α-width over the hypergraphs in H. If this is unbounded we write
α(H) =∞; otherwise α(H) <∞.

All the above restrictions can be used to guarantee tractability for classes of
CSP instances where all constraints are table constraints.

Theorem 1 ( [10, 17, 20]). Let H be a class of hypergraphs. For every α ∈
{hw, fhw}, any class of classic CSP instances whose hypergraphs are in H is
tractable if α(H) <∞.

To go beyond fractional hypertree width, Marx [24,25] recently introduced the
concept of submodular width. This concept uses a set of width functions satis-
fying a condition (submodularity), and considers the f -width of a hypergraph
for every such function f .

Definition 13 (Submodular width function). Let G = 〈V,H〉 be a hyper-
graph. A width function f on G is submodular if for every set X,Y ⊆ V , we
have f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ).

Definition 14 (Submodular width). Let G be a hypergraph. The submodular
width subw(G) of G is the maximum f -width of G taken over all monotone
submodular width functions f on G.

For a class of hypergraphs H, we write subw(H) for the maximal submodular
width over the hypergraphs in H. If this is unbounded we write subw(H) = ∞;
otherwise subw(H) <∞.

Unlike for fractional hypertree width and every other structural restriction
discussed so far, the running time of the algorithm given by Marx for classic CSP
instances with bounded submodular width has an exponential dependence on the
number of vertices in the hypergraph of the instance. The class of classic CSP
instances with bounded submodular width is therefore not tractable. However,
this class is what is called fixed-parameter tractable [11, 12].

Definition 15 (Fixed-parameter tractable). A parameterized problem in-
stance is a pair 〈k, P 〉, where P is a problem instance, such as a CSP instance,
and k ∈ N a parameter.

Let S be a class of parameterized problem instances. We say that S is fixed-
parameter tractable (in FPT) if there is a function f of one argument, as well as
a constant c, such that every problem 〈k, P 〉 ∈ S can be solved in time O(f(k)×
|P |c).

The function f can be arbitrary, but must only depend on the parameter k.
For CSP instances, a natural parameterization is by the size of the hypergraph
of an instance, measured by the number of vertices. Since the hypergraph of an
instance has a vertex for every variable, for every CSP instance P = 〈V,C〉 we
consider the parameterized instance 〈|V |, P 〉.
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Theorem 2 ( [24]). Let H be a class of hypergraphs. If subw(H) <∞, then a
class of classic CSP instances whose hypergraphs are in H is in FPT.

The three structural restrictions that we have just presented form a hierarchy
[20, 24]: For every hypergraph G, subw(G) ≤ fhw(G) ≤ hw(G).

As the example below demonstrates, Theorem 1 does not hold for CSP in-
stances with arbitrary global constraints, even if we have a fixed, finite domain.

Example 4. The NP-complete problem of 3-colourability [13] is to decide, given
a graph 〈V,E〉, whether the vertices V can be coloured with three colours such
that no two adjacent vertices have the same colour.

We may reduce this problem to a CSP with EGC constraints (cf. Example 1)
as follows: Let V be the set of variables for our CSP instance, each with domain
{r, g, b}. For every edge 〈v, w〉 ∈ E, we post an EGC constraint with scope {v, w},
parameterized by the function K such that K(r) = K(g) = K(b) = {0, 1}.
Finally, we make the hypergraph of this CSP instance have low width by adding
an EGC constraint with scope V parameterized by the function K ′ such that
K ′(r) = K ′(g) = K ′(b) = {0, . . . , |V |}. This reduction clearly takes polynomial
time, and the hypergraph G of the resulting instance has hw(G) = fhw(G) =
subw(G) = 1.

As the constraint with scope V allows all possible assignments, any solution
to this CSP is also a solution to the 3-colourability problem, and vice versa.

Likewise, Theorem 2 does not hold for CSP instances with arbitrary global
constraints if we allow the variables unbounded domain size, that is, change the
above example to k-colourability. With that in mind, in the rest of the paper
we will identify properties of extensionally represented constraints that these
structural restrictions exploit to guarantee tractability. Then, we are going to
look for restricted classes of global constraints that possess these properties. To
do so, we will use the following definitions.

Definition 16 (Constraint catalogue). A constraint catalogue is a set of
global constraints. A CSP instance 〈V,C〉 is said to be over a constraint catalogue
Γ if for every e[δ] ∈ C we have e[δ] ∈ Γ .

Definition 17 (Restricted CSP class). Let Γ be a constraint catalogue, and
let H be a class of hypergraphs. We define CSP(H, Γ ) to be the class of CSP
instances over Γ whose hypergraphs are in H.

Definition 17 allows us to discuss classic CSP instances alongside instances
with global constraints. Let Ext be the constraint catalogue containing all table
global constraints. The classic CSP instances are then precisely those that are
over Ext. In particular, we can now restate Theorems 1 and 2 as follows.

Theorem 3. Let H be a class of hypergraphs. For every α ∈ {hw, fhw}, the
class of CSP instances CSP(H,Ext) is tractable if α(H) < ∞. Furthermore, if
subw(H) <∞ then CSP(H,Ext) is in FPT.
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4 Properties of Extensional Representation

We are going to start our investigation by considering fractional hypertree width
in more detail. To obtain tractability for classic CSP instances of bounded frac-
tional hypertree width, Grohe and Marx [20] use a bound on the number of
solutions to a classic CSP instance, and show that this bound is preserved when
we consider parts of a CSP instance. The following definition formalizes what
we mean by “parts”, and is required to state the algorithm that Grohe and Marx
use in their paper.

Definition 18 (Constraint projection). Let e[δ] be a constraint. The pro-
jection of e[δ] onto a set of variables X ⊆ V(δ) is the constraint pjX(e[δ]) such
that μ ∈ pjX(e[δ]) if and only if there exists θ ∈ e[δ] with θ|X = μ.

For a CSP instance P = 〈V,C〉 and X ⊆ V we define pjX(P ) = 〈X,C′〉,
where C′ is the least set containing for every e[δ] ∈ C such that X ∩ V(δ) �= ∅
the constraint pjX∩V(δ)(e[δ]).

Their algorithm is given as Algorithm 1, and is essentially the usual recursive
search algorithm for finding all solutions to a CSP instance by considering smaller
and smaller sub-instances using constraint projections.

Algorithm 1. Enumerate all solutions of a CSP instance
procedure EnumSolutions(CSP instance P = 〈V,C〉) � Returns sol(P )

Solutions← ∅
if V = ∅ then

return {⊥} � The empty assignment
else

w ← chooseVar(V ) � Pick a variable from V
Θ = EnumSolutions(pjV−{w}(P ))
for θ ∈ Θ do

for a ∈ D(w) do
if θ ∪ 〈w, a〉 is a solution to P then

Solutions.add(θ ∪ 〈w, a〉)
end if

end for
end for

end if
return Solutions

end procedure

To show that Algorithm 1 does indeed find all solutions, we will use the
following property of constraint projections.

Lemma 1. Let P = 〈V,C〉 be a CSP instance. For every X ⊆ V , we have
sol(pjX(P )) ⊇ πX(sol(P )).
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Proof. Given P = 〈V,C〉, let X ⊆ V be arbitrary, and let C′ = {e[δ] ∈ C |
X ∩ V(δ) �= ∅}. For every θ ∈ sol(P ) and constraint e[δ] ∈ C′ we have that
θ|V(δ) ∈ e[δ] since θ is a solution to P . By Definition 18, it follows that for every
e[δ] ∈ C′, θ|X∩V(δ) ∈ pjX∩V(δ)(e[δ]). Since the set of constraints of pjX(P ) is
the least set containing for each e[δ] ∈ C′ the constraint pjX∩V(δ)(e[δ]), we have
θ|X ∈ sol(pjX(P )), and hence sol(pjX(P )) ⊇ πX(sol(P )). Since X was arbitrary,
the claim follows.

Theorem 4 (Correctness of Algorithm 1). Let P be a CSP instance. We
have that EnumSolutions(P ) = sol(P ).

Proof. The proof is by induction on the set of variables V in P . For the base
case, if V = ∅, the empty assignment is the only solution.

Otherwise, choose a variable w ∈ V , and let X = V − {w}. By induction,
we can assume that EnumSolutions(pjX(P )) = sol(pjX(P )). Since for every θ ∈
sol(P ) there exists a ∈ D(w) such that θ = θ|X ∪ 〈w, a〉, and furthermore θ|X ∈
πX(sol(P )), it follows by Lemma 1 that θ|X ∈ sol(pjX(P )). Since Algorithm 1
checks every assignment of the form μ ∪ 〈w, a〉 for every μ ∈ sol(pjX(P )) and
a ∈ D(w), it follows that EnumSolutions(P ) = sol(P ).

The time required for this algorithm depends on three key factors, which we
are going to enumerate and discuss below. Let

1. s(P ) be the maximum of the number of solutions to each of the instances
pjV−{w}(P ),

2. c(P ) be the maximum time required to check whether an assignment is a
solution to P , and

3. b(P ) be the maximum time required to construct any instance pjV−{w}(P ).

There are |V | calls to EnumSolutions. For each call, we need b(P ) time to
construct the projection, while the double loop takes at most s(P ) × |D(w)| ×
c(P ) time. Therefore, letting d = max({|D(w)| | w ∈ V }), the running time of
Algorithm 1 is bounded by O

(
|V | × (s(P )× d× c(P ) + b(P ))

)
.

Since constructing the projection of a classic CSP instance can be done in
polynomial time, and likewise checking that an assignment is a solution, the
whole algorithm runs in polynomial time if s(P ) is a polynomial in the size of
P . For fractional hypertree width, Grohe and Marx show the following.

Lemma 2 ( [20]). A classic CSP instance P has at most |P |fhw(hyp(P )) solu-
tions.

Since fractional hypertree width is a monotone width function, it follows that
for any instance P = 〈V,C〉 and X ⊆ V , fhw(hyp(pjX(P ))) ≤ fhw(hyp(P )).
Therefore, for classic CSP instances of bounded fractional hypertree width s(P )
is indeed polynomial in |P |.
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5 CSP Instances with Few Solutions in Key Places

Having few solutions for every projection of a CSP instance is thus a property
that makes fractional hypertree width yield tractable classes of classic CSP in-
stances. More importantly, we have shown that this property allows us to find
all solutions to a CSP instance P , even with global constraints, if we can build
arbitrary projections of P in polynomial time. In other words, with these two
conditions we should be able to reduce instances with global constraints to classic
instances in polynomial time.

However, on reflection there is no reason why we should need few solutions
for every projection. Instead, consider the following reduction.

Definition 19 (Partial assignment checking). A global constraint catalogue
Γ allows partial assignment checking if for any constraint e[δ] ∈ Γ we can decide
in polynomial time whether a given assignment θ to a set of variables W ⊆ V(δ)
is contained in an assignment that satisfies e[δ], i.e. whether there exists μ ∈ e[δ]
such that θ = μ|W .

As an example, a catalogue that contains arbitrary EGC constraints (cf. Ex-
ample 1) does not satisfy Definition 19, since checking whether an arbitrary EGC
constraint has a satisfying assignment is NP-hard [26]. On the other hand, a cat-
alogue that contains only EGC constraints whose cardinality sets are intervals
does satisfy Definition 19 [27].

If a catalogue Γ satisfies Definition 19, we can for any constraint e[δ] ∈ Γ build
arbitrary projections of it, that is, construct the global constraint pjX(e[δ]) for
any X ⊆ V(δ), in polynomial time.

Definition 20 (Intersection variables). Let 〈V,C〉 be a CSP instance. The
set of intersection variables of any constraint e[δ] ∈ P is iv(δ) =

⋃
{V(δ)∩V(δ′) |

e′[δ′] ∈ C − {e[δ]}}.

Definition 21 (Table constraint induced by a global constraint). Let
P = 〈V,C〉 be a CSP instance. For every e[δ] ∈ C, let μ∗ be the assignment to
V(δ)− iv(δ) that assigns a special value ∗ to every variable. The table constraint
induced by e[δ] is ic(e[δ]) = e′[δ′], where V(δ′) = V(δ), and δ′ contains for every
assignment θ ∈ sol(pjiv(δ)(P )) the assignment θ ⊕ μ∗.

If every constraint in a CSP instance P = 〈V,C〉 allows partial assignment
checking, then building ic(e[δ]) for any e[δ] ∈ C can be done in polynomial time
when |sol(pjX(P ))| is itself polynomial in the size of P for every subset X of iv(δ).
To do so, we can invoke Algorithm 1 on the instance pjiv(δ)(P ). The definition
below expresses this idea.

Definition 22 (Sparse intersections). A class of CSP instances P has sparse
intersections if there exists a constant c such that for every constraint e[δ] in any
instance P ∈ P, we have that for every X ⊆ iv(δ), |sol(pjX(P ))| ≤ |P |c.
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If a class of instances P has sparse intersections, and the instances are all
over a constraint catalogue that allows partial assignment checking, then we can
for every constraint e[δ] of any instance from P construct ic(e[δ]) in polynomial
time. While this definition considers the instance as a whole, one special case of it
is the case where every constraint has few solutions in the size of its description,
that is, there is a constant c and the constraints are drawn from a catalogue Γ
such that for every e[δ] ∈ Γ , we have that |{μ | μ ∈ e[δ]}| ≤ |δ|c.

Theorem 5. Let P be a class of CSP instances over a catalogue that allows
partial assignment checking. If P has sparse intersections, then we can in poly-
nomial time reduce any instance P ∈ P to a classic CSP instance PCL with
hyp(P ) = hyp(PCL), such that PCL has a solution if and only if P does.

Proof. Let P = 〈V,C〉 be an instance from such a class P . For each e[δ] ∈ C,
PCL will contain the table constraint ic(e[δ]) from Definition 21. Since P is over a
catalogue that allows partial assignment checking, and P has sparse intersections,
computing ic(e[δ]) can be done in polynomial time by invoking Algorithm 1 on
pjiv(δ)(P ).

It is clear that hyp(P ) = hyp(PCL). All that is left to show is that PCL has
a solution if and only if P does. Let θ be a solution to P = 〈V,C〉. For every
e[δ] ∈ C, we have that θ|iv(δ) ∈ pjiv(δ)(P ) by Definitions 18 and 20, and the

assignment μ that assigns the value θ(v) to each v ∈
⋃

e[δ]∈C
iv(δ), and ∗ to every

other variable is therefore a solution to PCL.
In the other direction, if θ is a solution to PCL, then θ satisfies ic(e[δ]) for

every e[δ] ∈ C. By Definition 21, this means that θ|iv(δ) ∈ sol(pjiv(δ)(P )), and
by Definition 18, there exists an assignment μe[δ] with μe[δ]|iv(δ) = θ|iv(δ) that
satisfies e[δ]. By Definition 20, the variables not in iv(δ) do not occur in any
other constraint in P , so we can combine all the assignments μe[δ] to form a
solution μ to P such that for e[δ] ∈ C and v ∈ V(δ) we have μ(v) = μe[δ](v).

From Theorem 5, we get tractable and fixed-parameter tractable classes of
CSP instances with global constraints.

Corollary 1. Let H be a class of hypergraphs, and Γ a catalogue that allows par-
tial assignment checking. If CSP(H, Γ ) has sparse intersections, then CSP(H, Γ )
is tractable or in FPT if CSP(H,Ext) is.

Proof. Let H and Γ be given. By Theorem 5, we can reduce any P ∈ CSP(H, Γ )
to an instance PCL ∈ CSP(H,Ext) in polynomial time. Since PCL has a solution
if and only if P does, tractability or fixed-parameter tractability of CSP(H,Ext)
implies the same for CSP(H, Γ ).

5.1 Applying Corollary 1 to the CGP

Recall the connected graph partition problem (Problem 1): Given a connected
graph G, as well as natural numbers α and β, can the vertices of G be partitioned
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into bags of size at most α, such that no more than β edges are broken. Using the
CSP encoding we gave in Example 3, as well as Corollary 1, we will show a new
result, that this problem is tractable if β is fixed. To simplify the analysis, we
assume without loss of generality that α < |V |, which means that any solution
has at least one broken edge.

We claim that if β is fixed, then the constraint Cβ = eβ [δβ ] allows partial
assignment checking, and has only a polynomial number of satisfying assign-
ments. The latter implies that for any instance P of the CGP, |sol(pjiv(δβ)(P ))|
is polynomial in the size of P for every subset of iv(δβ). Furthermore, we will
show that for the constraint Cα = eα[δα], we also have that |sol(pjiv(δα)(P ))| is
polynomial in the size of P . That Cα allows partial assignment checking follows
from a result by Régin [27], since the cardinality sets of Cα are intervals.

First, we show that the number of satisfying assignments to Cβ is limited.
Since Cβ limits the number of ones in any solution to β or fewer, the number of
satisfying assignments to this constraint is the number of ways to choose up to

β variables to be assigned one. This is bounded by
β∑

i=1

(
|E|
i

)
≤ (|E|+ 1)β, and

so we can generate them all in polynomial time.
Now, let θ be such a solution. How many solutions to P contain θ? Well, every

constraint on {u, v, e} with e = 1 allows at most |V |2 assignments, and there are
at most β such constraints. So far we therefore have at most (|E|+ 1)β × |V |2β
assignments.

On the other hand, a ternary constraint with e = 0 requires u = v. Consider
the graph G0 containing for every constraint on {u, v, e} with e = 0 the vertices
u and v as well as the edge {u, v}. Since the original graph was connected,
every connected component of G0 contains at least one vertex which is in the
scope of some constraint with e = 1. Therefore, since equality is transitive,
each connected component of G0 allows at most one assignment for each of the
(|E| + 1)β × |V |2β assignments to the other variables of P . We therefore get a
total bound of (|E| + 1)β × |V |2β on the total number of solutions to P , and
hence to pjiv(δα)(P ).

The hypergraph of any CSP instance P encoding the CGP has two hyperedges
covering the whole problem, so the hypertree width of this hypergraph is two.
Therefore, we may apply Corollary 1 and Theorem 1 to obtain tractability when
β is fixed. As this problem is NP-complete for fixed α ≥ 3 [13, p. 209], β is a
natural parameter to try and use.

As it happens, in this problem we can drop the requirement of partial assign-
ment checking for the constraint Cα. All its variables are intersection variables,
and the instance has few solutions even if we disregard Cα. Thus, we need only
check whether any of those solutions satisfy Cα, and checking whether an as-
signment to the whole scope of a constraint satisfies it can always be done in
polynomial time by Definition 4. In the next section, we turn this observation
into a general result.



674 E. Thorstensen

6 Back Doors

If a class of CSP instances includes constraints from a catalogue that is not
known to allow partial assignment checking, we may still obtain tractability in
some cases by applying the notion of a back door set. A (strong) back door
set [14,32] is a set of variables in a CSP instance that, when assigned, make the
instance easy to solve. Below, we are going to adapt this notion to individual
constraints.

Definition 23 (Back door). Let Γ be a global constraint catalogue. A back
door for a constraint e[δ] ∈ Γ is any set of variables W ⊆ V(δ) (called a back
door set) such that we can decide in polynomial time whether a given assignment
θ to a set of variables V(θ) ⊇W is contained in an assignment that satisfies e[δ],
i.e. whether there exists μ ∈ e[δ] such that μ|V(θ) = θ.

Trivially, for every constraint e[δ] the set of variables V(δ) is a back door set,
since by Definition 4 we can always check in polynomial time if an assignment
to V(δ) satisfies the constraint e[δ].

The key point about back doors is that given a catalogue Γ , adding to each
e[δ] ∈ Γ with back door set W an arbitrary set of assignments to W produces a
catalogue Γ ′ that allows partial assignment checking. Adding a set of assignments
Θ means to add Θ to the description, and modify the algorithm e to only accept
an assignment if it contains a member of Θ in addition to previous requirements.
Furthermore, given a CSP instance P containing e[δ], as long as Θ ⊇ πW (sol(P )),
adding Θ to e[δ] produces an instance that has exactly the same solutions. This
point leads to the following definition.

Definition 24 (Sparse back door cover). Let ΓPAC be a catalogue that
allows partial assignment checking and ΓBD a catalogue. For every instance
P = 〈V,C〉 over ΓPAC ∪ ΓBD, let P ∩ ΓPAC be the instance with constraint
set C′ = C ∩ ΓPAC and set of variables

⋃
{V ∩ V(δ) | e[δ] ∈ C′}.

A class of CSP instances P over ΓPAC ∪ ΓBD has sparse back door cover
if there exists a constant c such that for every instance P = 〈V,C〉 ∈ P and
constraint e[δ] ∈ C, if e[δ] �∈ ΓPAC , then there exists a back door set W for e[δ]
with |sol(pjX(P ∩ ΓPAC))| ≤ |P |c for every X ⊆W .

Sparse back door cover means that for each constraint that is not from a
catalogue that allows partial assignment checking, we can in polynomial time
get a set of assignments Θ for its back door set using Algorithm 1, and so
turn this constraint into one that does allow partial assignment checking. This
operation preserves the solutions of the instance that contains this constraint.

Theorem 6. If a class of CSP instance P has sparse back door cover, then we
can in polynomial time reduce any instance P ∈ P to an instance P ′ such that
hyp(P ) = hyp(P ′) and sol(P ) = sol(P ′). Furthermore, the class of instances
{P ′ | P ∈ P} is over a catalogue that allows partial assignment checking.
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Proof. Let P = 〈V,C〉 ∈ P . We construct P ′ by adding to every e[δ] ∈ C such
that e[δ] �∈ ΓPAC , with back door set W , the set of assignments sol(pjW (P ∩
ΓPAC)), which we can obtain using Algorithm 1. By Definition 24, we have for
every X ⊆W that |sol(pjW (P ∩ΓPAC))| ≤ |P |c, so Algorithm 1 takes polynomial
time since ΓPAC does allow partial assignment checking.

It is clear that hyp(P ′) = hyp(P ), and since sol(pjW (P∩ΓPAC)) ⊇ πW (sol(P )),
the set of solutions stays the same, i.e. sol(P ′) = sol(P ). Finally, since we have
replaced each constraint e[δ] in P that was not in ΓPAC by a constraint that
does allow partial assignment checking, it follows that P ′ is over a catalogue that
allows partial assignment checking.

One consequence of Theorem 6 is that we can sometimes apply Theorem 5
to a CSP instance that contains a constraint for which checking if a partial
assignment can be extended to a satisfying one is hard. We can do so when the
variables of that constraint are covered by the variables of other constraints that
do allow partial assignment checking — but only if the instance given by those
constraints has few solutions.

As a concrete example of this, consider again the encoding of the CGP that we
gave in Example 3. The variables of constraint Cα are entirely covered by the in-
stance P ′ obtained by removing Cα. As the entire set of variables of a constraint
is a back door set for it, and the instance P ′ has few solutions (cf. Section 5.1),
this class of instances has sparse back door cover. As such, the constraint Cα

could, in fact, be arbitrary without affecting the tractability of this problem. In
particular, the requirement that Cα allows partial assignment checking can be
dropped.

7 Summary and Future Work

In this paper, we have investigated properties that many structural restrictions
rely on to yield tractable classes of CSP instances with explicitly represented con-
straints. In particular, we identify a relationship between the number of solutions
and the size of a CSP instance as being one such property. Using this insight, we
show that known structural restrictions yield tractability for any class of CSP
instances with global constraints that satisfies this property. In particular, the
above implies that the structural restrictions we consider yield tractability for
classes of instances where every global constraint has few satisfying assignments
relative to its size.

To illustrate our result, we apply it to a known problem, the connected graph
partition problem, and use it to identify a new tractable case of this problem.
We also demonstrate how the concept of back doors, subsets of variables that
make a problem easy to solve once assigned, can be used to relax the conditions
of our result in some cases.

As for future work, one obvious research direction to pursue is to find a com-
plete characterization of tractable classes of CSP instances with sparse intersec-
tions. Another avenue of research would be to apply the results in this paper to
various kinds of valued CSP.
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Abstract. The Conflict Driven Clause Learning (CDCL) Boolean Sat-
isfiability (SAT) solvers are very effective in solving large and numerous
crafted and industrial instances. Paradoxically, we do not know much
about the reasons for their effectiveness and their running is hard to
trace. This paper participates in the quest to understand the CDCL
solvers. Specifically, we empirically study the behavior of one of their es-
sential components which is the conflict analysis module. We show that
this module returns generally a relevant backjump level whatever the
analyzed clause. We also classify the falsified clauses according to their
capacity to produce pertinent learned clauses. We use this classification
to induce the apparition of specific clauses in the implication graph by
ordering the list of clauses watched by the propagated literals. Finally,
we advance some explanations on the effectiveness of CDCL solvers.

Keywords: CDCL Solvers, Conflict Analysis, Empirical Study.

1 Introduction

The satisfiability problem (SAT) consists in deciding whether a Boolean formula
in Conjunctive Normal Form (CNF) is satisfiable. In recent decades, one of the
major advances in SAT is the great success of the so-called modern solvers, based
on the CDCL (Conflict Driven Clause Learning) scheme [6,11,12]. Indeed, in
the previous international SAT competitions1, such solvers showed their ability
to handle instances, mainly industrial and crafted ones, with many thousands
even millions of variables and clauses. However and despite the CDCL solver
improvements, only few works (for instance [2,10]) tried to understand why these
solvers are so efficient on most industrial instances.

Unlike lookahead SAT solvers, CDCL based algorithms are difficult to analyze
and their behavior is hardly predictable. Also, these solvers are the result of a
subtle mix of many components (clause learning [12,13], VSIDS heuristic [11],
restarts policies [8,9], etc.) but this combination remains sensitive to even slight
changes.

1 www.satcompetition.org
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One of the main components of CDCL solvers is the conflict analysis which
is launched when a conflict is detected during the propagation process. This
analysis aims to explain the failure by detecting the responsible literals and it
consequently produces an assertive clause (nogood) which is added to the set of
clauses of the instance. Also, one of the key successes of a CDCL solver is the
management of the set of the learned clauses to avoid its exponential increase
and to keep only useful clauses.

Usually, the conflict analysis is launched at the first empty clause encountered.
But is there any change in the solver behavior if we continue propagation, even
if a conflict is reached, and stop propagation according to the properties of the
reached falsified clause? Maybe analyzing the reason for falsifying the original
clauses is more suitable, which seems to be intuitive while the aim is to check
the satisfiability of the original formula2. Hence, in this paper we address the
question of the relevance of the falsified clause to analyze. To the best of our
knowledge, this is the first study on this question.

In this aim, we conduct several experimental studies on the glucose solver
[2] which is efficient, especially to solve industrial instances. Moreover, it incor-
porates several features that will be useful in our study. Firstly, we consider
the relationship between the falsified clause and the properties of the learned
clause generated by analyzing the conflict above. This learned clause is crucial
in the solving process because it is used to calculate the backjump level and
its properties (for instance, its size) determine its relevance to the search. One
of the major results of this first step of experiments will concern the relevance
of the backjump levels returned by the analysis of the falsified clauses, at each
reached conflict. Secondly and according to the observations above, we try to
predict the relevant falsified clause to analyze. One main finding of this phase
is the establishment of a classification of the falsified clauses according to their
ability to produce short clauses. Thirdly, we use this prediction to introduce an
ordering on the clauses watched by the literals to propagate. By this sorting, we
favor the apparition in the implication graph of the clauses which could be more
suitable for the conflict analysis. To the best of our knowledge, this is the first
attempt to impact the quality of the learned clauses by such ordering. We also
hope that this work is a progress in the understanding of the CDCL solvers.

We organize our paper by giving, in Section 2, the necessary background
for the rest of the paper. In Section 3, we present the empirical study on the
conflict analysis to identify the relationships between the analyzed clause and
the properties of the learned clause. According to the observed relationships, we
try to determine the most useful clauses to analyze when a conflict is reached.
In Section 4, we attempt to exploit the results obtained above by re-ordering
the clauses which are watched by the propagated literals. We finish Section 4 by
observing the behavior of the glucose solver when it is always forced to learn a
particular kind of clauses. Finally, we conclude in Section 5.

2 In the CDCL solver implementations, the propagation is usually started on the
original clauses of the formula.
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2 Definitions, Notations and Background

An instance F of the satisfiability problem (SAT) is defined by the pair F =
(X , C), such that X = {x1, x2, · · ·xn} is a set of Boolean variables (their values
belong to the set {true, false}) and C = {c1, c2, · · · cm} is a set of clauses. A
clause ci ∈ C is a finite disjunction of literals and a literal is either a variable
(xi) or its negation (¬xi). A clause is represented by the set of its literals. The
empty clause is denoted by � and it is always false.

An interpretation (or an assignment) I of the variables of F is defined by a
set of literals. If all the variables are assigned in I then I is complete, otherwise
it is partial. F|l denotes the formula F simplified by the assignment of the literal
l to true. Similarly, if I = {l1 . . . li}, F|I denotes the formula F simplified by the
assignment of the literals l1 . . . li to true. The clause cj ∈ C is satisfied by the
interpretation I iff it contains at least one satisfied literal and cj is falsified if all
its literals are falsified by I. A model of F is an interpretation that satisfies all
its clauses. Finally, the satisfiability problem (SAT) consists in deciding whether
F has a model. If this is the case then F is said to be satisfiable, otherwise F is
unsatisfiable.

The CDCL (Conflict Driven Clauses Learning) solvers are an extension of
the complete search method DPLL [4]. Furthermore, they involve a number
of additional key techniques such as clause learning mechanisms [12], activity
based heuristic VSIDS [11], lazy data structures (watched literals) [13] and
restart techniques [8,9]. The general structure of a CDCL solver is given in
Algorithm 1.

Algorithm 1. CDCL Solver

Input: F CNF formula, maxconflits.
Output: SAT(F is satisfiable) or UNSAT (F is unsatisfiable).
while true do

L ← ∅;
I ← ∅;
dl← 0;
nbconflits← 0;
while (nbconflits < maxconflits) do

confl← Unitpropagation(F ′,I); //F ′ = (X ,C ∪ L)
if (confl �= null) then

nbconflits + +;
if (dl = 0) then return UNSAT;
(α, bj )← ConflictAnalysis(confl);
L ← L ∪ {α} ;
dl← bj;
CancelUntil(dl);

end
else

if (|I| = |V|) then return SAT;
dl + +;
l← PickBranchLit(V,{0,1});
I ← I ∪ {l};

end

end
//restart

end
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At each step of the search, the algorithm selects, through the PickBranchLit()
function, a decision literal l (via the VSIDS heuristic). This literal is added to
the current interpretation I along with the literals involved by applying the
function Unitpropagation() to F ′|I , where F ′ = (X , C ∪ L) and L is the set
of the clauses learned during the search. As soon as a clause ci from F ′ is
falsified, the function Unitpropagation() is immediately interrupted and returns
this clause in confl. To explain the reasons of this failure, Algorithm 1 calls the
ConflictAnalysis(confl) function which generates an assertive clause (a nogood)
α and defines a backjump level bj which is assigned to dl. The unsatisfiability
of F is proven if a conflict occurs at the root of the tree search (dl = 0), in
which case Algorithm 1 returns UNSAT. Otherwise, the new learned clause α is
added to L and the function CancelUntil(dl) backjumps to the decision level dl.
When a maximum limit of conflicts is reached, Algorithm 1 performs a restart.
If all the variables are assigned without falsifying any clause then the algorithm
returns SAT, which means that F is satisfiable. Finally, Algorithm 1 iterates this
process until the satisfiability or the unsatisfiability of the formula is proven.

The mechanism of conflict analysis and clause learning requires the imple-
mentation of a strategy of management of the learned clauses to identify and
to remove the clauses assumed useless for the search. Otherwise, the set L can
increase exponentially. In this context, different approaches to reduce L have
been studied. Particularly in [2], the authors propose a relevant management
of the quality of learned clauses based on the notion of LBD (Literals Blocks
Distance). A LBD value is assigned to each learned clause, corresponding to the
number of different levels of literals belonging to this clause. The lower the LBD
of a clause, the more useful this clause is judged. Finally, a part of the clauses
with high LBD values are deleted from L.

3 Empirical Study of Conflict Analysis

As explained in the previous section, a CDLC solver starts the conflict analysis
process on the first falsified clause (which we will denote by cf0) reached during
the propagation phase of the enqueued literals. Classically, this analysis is done
according to the first implication point [13] by applying a sequence of resolution
steps between the clauses involved in the conflict. The clause cf0 is the first to be
used in this sequence. Also, for combinatorial reasons, keeping all learned clauses
during the search is shown to be unsuccessful. Hence, some learned clauses are
kept and others are deleted, according to some parameters (clause activities,
LBD values, etc.).

However, what about the relevance of learned clauses regarding conflict anal-
ysis? Is it relevant to accomplish the analysis on the first reached falsified clause?
Is there any difference in the behavior of a CDCL solver if we restrict the anal-
ysis on the basis of a particular falsified clause? To our knowledge, there is no
work in the state of the art of CDCL solvers which addresses such a study.

As it is well-known, the behavior of a CDCL solver is so variable that it
is hard to study formally its components. For this reason, we will attempt to
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answer the question above by the way of a large empirical study. The solver
used in our experiments is glucose 2.1 [2,3] with the SatElite preprocessing [5].
glucose is a minisat-like solver [6] with a particular learned clause set reduction
based on the LBD (Literals Blocks Distance) values. Indeed, glucose considers
that a learned clause with a small LBD (≤ 2) is of a better quality than a clause
having a higher LBD value. Accordingly, glucose deletes from L some learned
clauses having a size > 2 and a LBD value > 2 (for more details, a reader can
refer to [2,3]). Finally, like any CDCL solver, glucose propagates the enqueued
literals and stops the propagations at the first falsified clause.

3.1 Impact of the Analyzed Clause on the Properties of the
Learned Clause

In this Section, we study empirically the impact of the empty clause to analyze
on the features of the generated assertive clause, regarding three criteria: its
size, its LBD value and finally the backjump level it produces. Indeed, we know
that the lower the LBD and the smaller the size of a learned clause, the more
useful this clause could be for the search. Also, the higher the backjump level in
the search tree (small backjump level values), the more interesting it is for the
search [1].

For instance, suppose that the assignment of the literal x adds the literals x1,
x2 and x3 to the list of the enqueued literals. Now, let us consider what happens
when a conflict is reached by the satisfaction of x1. Such failure is obtained
because a clause, say ¬x1 ∨ ¬y1 ∨ ¬y2, has been falsified under the current
partial assignment (due to the assignment of the literal x1 to true). In a classical
CDCL solver, the UnitPropagation function is interrupted and the clause ¬x1 ∨
¬y1 ∨ ¬y2 is returned as a conflict. This clause is the first to be falsified by the
current assignment. However, other clauses would be falsified if we continue the
propagation of the two remaining enqueued literals x2 and x3. Nevertheless, this
is not done and these clauses are ignored, mainly for performance considerations.

In our study and in the case of a failure, we propose to continue the propaga-
tion of all enqueued literals and determine the set of the falsified clauses, which
we denote by Cf . Hence, at a given conflict k, we construct the set of the falsified
clauses Cf (k). In order to examine the impact of the empty clause to analyze
on the features of the generated assertive clause, we apply the ConflictAnaly-
sis() function to each falsified clause cfi ∈ Cf(k) and we record the backjump
level bji(k) generated by this analysis, as well as the LBD (lbdi(k)) and the size
(sizei(k)) of the learned clause obtained. When i = 0, cf0(k) corresponds to the
first falsified clause which is reached and usually analyzed by glucose.

Study 1. At a given conflict k, we want to know whether we can improve the
properties of the generated assertive clause (namely its size, its LBD and the
backjump level that it returns) by varying the clause cfi(k) to analyze. Thus,
for all falsified clauses cfi(k) (i = {1 . . . |Cf(k)|}), we observe whether there is
a backjump level bji(k) such that bji(k) < bj0(k) i.e. bji(k) improves bj0(k).
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If a such bji exists then we increment countbj (initialized to 0), which counts the
number of times when bj0 is improved during the search. Finally, we calculate
A+

bj = 100 × (countbj/ #conflicts)% the improvement rate of the backjump
levels overall #conflicts conflicts encountered since the starting of the search.

We proceed in the same way to calculate A+
lbd (the improvement rate of the

LBD values) and A+
size (the improvement rate of the clause sizes). We run glucose

on 300 crafted and industrial instances and on 30 random instances issued from
the SAT 2011 competition. We limit the search to the first 106 conflicts for the
industrial and crafted instances and to 1800 seconds for random ones.

Table 1 summarizes the results obtained: the column #inst. gives the number
of instances in a series and the columns b+, l+ and s+ correspond to the average
of A+

bj , A
+
lbd and A+

size respectively. Table 1 clearly shows that b+ is generally
low: it does not exceed 10% for the crafted and the random instances. Although
b+ is slightly higher for some industrial instances but does not exceed 19.50%.
The values of s+ and l+ are strongly related to the series of the instances: l+ is
between 13.56% and 45.40% while s+ ranges from 16.67% tp 78.37%. For some
series such as anton, jarvisalo, kullman, spence/sat and leberre, the high values
of s+ could suggest a possible improvement in the size of the learned clauses.

Study 2. In the previous study, we have observed the possible improvements
of the results of the analysis of cf0. We did not look for the best improvement.
For the backjump level and at the kth conflict, this improvement could be given
by a comparison to bjmin(k) = min{bji(k)}, i = {1 . . . |Cf (k)|}.

Table 1. Rate improvements of the properties of the first learned clause (i.e. bj0, lbd0
and size0) obtained by the analysis of the other falsified clauses at the same conflict

Series #inst. b+ l+ s+

Industrial Instances

fuhs/AProVE11 10 9.90% 16.60% 22.10%
fuhs/bottom 15 8.60% 31.13% 48.07%
fuhs/top 9 16.44% 38.56% 54.00%
jarvisalo 47 19.50% 40.50% 65.83%
kullmann/128 4 6.50% 20.75% 23.50%
kullmann/32 5 2.40% 22.20% 42.00%
kullmann/64 4 4.25% 30.00% 39.25%
leberre/ 17 16.89% 38.44% 60.44%
manthey/ 9 7.22% 30.00% 58.11%

Crafted Instances

anton 28 9.74% 43.58% 78.37%
kullmann/G* 10 6.88% 40.75% 58.13%
kullman/V* 26 6.92% 34.00% 65.85%
mosoi/sat 24 4.29% 24.14% 20.57%
mosoi/unsat 6 2.83% 17.67% 16.83%
skvortsov/automata 12 6.67% 23.08% 44.08%
skvortsov/battleship 24 8.08% 40.50% 54.58%
spence/sat 10 8.00% 45.40% 68.80%
spence/unsat 9 1.22% 13.56% 16.67%

Random Instances

3SAT/UNKNOWN/360 10 8.60% 42.70% 53.00%
5SAT/UNKNOWN/100 10 7.20% 41.90% 49.80%
7SAT/UNKNOWN/60 10 6.00% 36.30% 44.40%
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In the following, we want to know whether bjmin(k) is often reached by the
analysis of the first falsified clause. Also, we want to know whether the bjmin is of-
ten reached by the analysis of the other falsified clauses. For this purpose, we run
glucose on the same series of instances of Table 1. At each conflict k, we increment
the counter countbj0 by 1 if bj0(k) = bjmin(k) and the counter countbj by the
number of the other clauses that produce a backjump level bji(k) = bjmin(k), i ∈
{1 . . . |Cf (k)|}. Finally, we calculate E+

bj0 = 100×(countbj0/#conf)% the success

rate of cf0 to produce bjmin and E+
bj = 100 × (countbj /#conf)% the success

rate of the other falsified clauses to produce also bjmin. We proceed in the same
way to calculate E+

lbd0 (resp. E+
size0) which is the success rate of cf0 to reach

lbdmin (resp. sizemin) and E+
lbd (resp. E+

size) corresponding to the success rate
of the other falsified clauses to reach lbdmin (resp. sizemin). The results are given
in Tables 2 and 3, where bj+0 , bj+, lbd+0 , lbd

+, size+0 and size+ give respectively
the average of E+

bj0
, E+

bj , E
+
lbd0, E

+
lbd, E

+
size0

and E+
size over the instances in the

same series. We limit the search to the first 106 conflicts for the crafted and
industrial instances and to 1800 seconds for the random ones.

Table 2 shows that bj+0 is between 65% and 90% which means that bjmin is
often reached by the analysis of cf0. The values of lbd

+
0 is between 53% and 70%

for the industrial instances, while it is between 44% and 57% for the crafted
instances, except the series Skvortsov/automata (70%) and Kullman/V* (29%).
We note that lbd+0 is lower for the random instances with an average of 30%.
size+0 varies between 33% and 55% except in the case of anton instances (19.67%)
and Kullmann/128 instances (62%).

Table 3 shows that the bj+ values are generally high with an average of
86.87%. Hence, bjmin is also often reached by the analysis of the other falsified
clauses. lbd+ is between 24% and 47% for the industrial instances and between
20% and 53% for the crafted ones. We note that lbd+ is higher for random
instances with an average of 58.13%. The values of size+ vary between 20%
(kullman/32) and 50.20% except for some series in which size+ is very low (for
example anton, spence/sat and kullman/64 series).

Study 3. At this point of the discussion, we have showed that analyzing other
falsified clauses allows the features of the learned clauses (especially their size
and their LBD) to be improved, for some instances.

However, is it really a strong improvement or just a slight effect? To an-
swer this question, we focus on the cases where the values of lbd+0 and size+0
are high. According to this last criterion, we run glucose on a selection of 20
industrial and 53 crafted ones. For each instance and at each conflict k, we
firstly store the results (bji(k), lbdi(k) and sizei(k), i = 1 · · · |Cf |) returned by
ConflictAnalysis(cfi), cfi ∈ Cf (k). Secondly, we calculate bjmin(k), bjmax(k),
bjavg(k) and bjσ(k) which correspond respectively to the minimum, the maxi-
mum, the average and the standard deviation of the backjump levels bji(k), i =
1 · · · |Cf (k)|. We proceed in the same manner for the LBD and the size of the
assertive clauses and we compute: lbdmin(k) , sizemin(k), lbdmax(k), sizemax(k),
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Table 2. Success rate of the first analysis to produce a relevant assertive clause re-
garding its size and its LBD and the backjump level defined by this clause

Series #inst. bj+0 lbd+
0 size+0

Industrial Instances

fuhs/AProVE11 10 65.60% 59.10% 53.80%

fuhs/bottom* 15 82.73% 60.73% 44.13%

fuhs/top* 9 75.44% 53.78% 38.67%

jarvisalo 47 72.10% 53.60% 33.20%

kullmann/128/ 4 80.25% 66.00% 62.75%

kullmann/32 5 89.80% 70.40% 51.40%

kullmann/64 4 90.75% 65.00% 55.75%

leberre/ 17 76.33% 55.00% 33.33%

manthey/ 9 88.00% 65.22% 37.56%

Crafted Instances

anton 28 88.14% 54.19% 19.67%

kullmann/G* 10 90.00% 56.50% 39.25%

kullman/V* 26 81.92% 29.73% 33.92%

mosoi/sat/ 24 66.50% 52.00% 55.25%

mosoi/unsat/ 6 65.40% 44.93% 46.13%

skvortsov/automata 12 86.75% 70.92% 50.42%

skvortsov/battleship 24 69.05% 45.05% 48.50%

spence/sat 10 65.40% 46.80% 47.70%

spence/unsat 9 68.00% 57.00% 53.78%

Random Instances

3SAT/UNKNOWN/360 10 83.90% 28.10% 28.90%

5SAT/UNKNOWN/100 10 85.70% 30.30% 38.50%

7SAT/UNKNOWN/60 10 87.00% 37.50% 50.90%

lbdavg(k), sizeavg(k), lbdσ(k) and sizeσ(k). Finally, let n be the number of con-
flicts, we compute the following parameters concerning the backjump levels:

- δ1bj=
1
n

∑
k=1···n

bj0(k)− bjmin(k) - δ2bj= 1
n

∑
k=1···n

bj0(k)− bjmax(k)

- δ3bj=
1
n

∑
k=1···n

|bj0(k)− bjavg(k)| - bjσ = 1
n

∑
k=1···n

bjσ(k)

Concerning the LBD of the assertive clauses, the computed parameters are:

- δ1lbd=
1
n

∑
k=1···n

lbd0(k)− lbdmin(k) - δ2lbd= 1
n

∑
k=1···n

lbd0(k)− lbdmax(k)

- δ3lbd=
1
n

∑
k=1···n

|lbd0(k)− lbdavg(k)| - lbdσ = 1
n

∑
k=1···n

lbdσ(k)

For their sizes, the parameters are:

- δ1size=
1
n

∑
k=1···n

size0(k)− sizemin(k) - δ2size= 1
n

∑
k=1···n

size0(k)− sizemax(k)

- δ3size=
1
n

∑
k=1···n

|size0(k)− sizeavg(k)| - sizeσ = 1
n

∑
k=1···n

sizeσ(k)

The results are given in Table 4. δ1mbj (respectively δ2mbj , δ3
m
bj, bj

m
σ , δ1mlbd,

δ2mlbd, δ3
m
lbd, lbd

m
σ , δ1msize, δ2

m
size, δ3

m
size, size

m
σ ) indicates the average of δ1bj
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Table 3. Success rate of the analysis of the other falsified clauses to produce a relevant
assertive clause regarding its size and its LBD and the backjump level defined by this
clause

Series #inst. bj+ lbd+ size+

Instances Industrielles

fuhs/AProVE11 10 62.90% 47.40% 38.90%

fuhs/bottom 15 77.40% 39.87% 25.33%

fuhs/top 9 71.11% 33.11% 20.89%

jarvisalo 46 64.88% 36.94% 22.94%

kullmann/128 4 76.75% 38.25% 34.75%

kullmann/32 5 87.00% 43.20% 34.80%

kullmann/64 4 86.25% 24.50% 15.75%

leberre/ 17 67.44% 33.22% 20.78%

manthey/ 9 81.33% 44.00% 21.89%

Instances Crafted

anton 28 80.28% 32.48% 8.16%

kullmann/G* 10 80.00% 20.00% 20.33%

kullman/V* 26 81.92% 29.73% 33.92%

mosoi/sat/ 24 65.08% 45.83% 47.67%

mosoi/unsat/ 6 64.47% 39.87% 40.13%

skvortsov/automata 12 83.67% 47.08% 38.92%

skvortsov/battleship 24 77.54% 33.08% 22.21%

spence/sat 10 83.00% 24.40% 8.00%

spence/unsat 9 67.44% 53.22% 49.33%

Random Instances

3SAT/UNKNOWN/360 10 90.00% 56.40% 39.50%

5SAT/UNKNOWN/100 10 91.00% 57.00% 45.30%

7SAT/UNKNOWN/60 10 91.00% 61.00% 50.20%

Table 4. Measures of the dispersion of the backjump levels (resp. LBDs and sizes of
the learned clauses) obtained by the analysis of all the falsified clauses

Series #inst. δ1mbj δ2mbj bjmσ δ3mbj δ1mlbd δ2mlbd lbdm
σ δ3mlbd δ1msize δ2msize sizemσ δ3msize

Industrial Instances

fuhs/bottom* 15 0.71 -0.51 0.43 1.82 1.15 -3.41 1.62 2.07 3.14 -11.72 5.15 4.92

fuhs/top* 9 1.76 -1.32 1.03 2.82 1.45 -4.57 2.13 2.4 3.24 -12.35 5.15 4.76

javisalo 4 2.27 -1.41 1.27 3.85 1.73 -5.75 2.45 2.46 17.01 -90.50 33.28 18.71

leberre 7 1.46 -1.31 0.84 1.38 2.71 -7.34 3.21 2.90 11.45 -48.85 18.50 12.96

Crafted Instances

anton 28 0.27 -0.34 0.14 0.24 6.42 -10.24 3.65 3.60 39.52 -260.08 67.09 40.72

kullman/G* 10 0.19 -0.25 0.07 0.09 6.83 -79.3 16.09 5.41 10.64 -105.01 21.69 4.41

kullman/V* 26 0.11 -0.21 0.08 0.13 0.98 -3.71 1.04 0.45 8.17 -11.87 5.06 7.13

skvortsov 8 0.22 -0.17 0.11 0.36 6.37 -12.68 5.45 5.32 12.43 -27.64 10.74 8.66

spence 7 0.15 -0.16 0.09 0.22 2.23 -5.54 2.11 1.36 5.54 -17.24 6.159 2.92

(respectively δ2bj , δ3bj , bjσ, δ1lbd, δ2lbd, δ3lbd, lbdσ, δ1size, δ2size, δ3size, sizeσ)
over the instances in the same series.

The low values of δ1bj, δ2bj , δ3bj and bjσ indicate that the backjump level
values are close. Also, the values of δ1lbd, δ2lbd, δ3lbd and lbdσ are slightly higher.
However, the values of δ1size, δ2size, δ3size and sizeσ are generally higher. These
results confirm our findings from the previous studies.
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Partial Conclusion. These empirical results could be interpreted as follows:
first, accomplishing the analysis on the first reached empty clause is generally
sufficient to reach a relevant backjump level. Indeed, the backjump level provided
by the first emptied clause is poorly improved. This result is interesting and may
be one explanation of the efficiency of the CDCL solvers. Secondly, the choice of
the conflicting clause cfi may improve the LBD of the learned clause. Finally,
the size of the learned clause is more dependent on the analyzed clause and may
also be improved. This raises the question of which falsified clause is the most
suitable to analyze? We will try to respond to this question in Section 3.2

3.2 Identifying Good Clauses to Analyze

We have showed that the choice of the falsified clause to analyze does not signif-
icantly affect the backjump level, but may improve the LBD and the size of the
learned clause. In this section, our goal is to try to identify which clause is the
most suitable to analyze. More precisely, we want to know whether some classes
of clauses are more interesting than others.

In this order, we conduct the following experiment: we run glucose on the
instances selected in the previous sections. We limit the search to the first 106

conflicts. For each instance and at the kth conflict, we determine Cf (k), lbdmin(k)
and sizemin(k) as explained in Section 3.1. Then, we classify the clauses of Cf(k)
as described below:

– CfI (k) ={cfi ∈ Cf (k) ∩ C}
– CfL2(k) = {cfi ∈ Cf(k) ∩ L and lbdi(k) ≤ 2}
– CfL>2(k) = {cfi ∈ Cf(k) ∩ L and lbdi(k) > 2}
– CfS2(k) ={cfi ∈ Cf(k) and sizei(k) = 2}
– CfS3(k) = {cfi ∈ Cf (k) and sizei(k) = 3}
– CfS>3(k) ={cfi ∈ Cf(k) and sizei(k) > 3}

By this classification, we want to compare the results obtained by the analy-
sis of the initial clauses CfI to the ones obtained by the analysis of the learned
clauses. Similarly, we compare the results obtained by the analysis of short
clauses CfS2 and CfS3 to the ones obtained by the analysis of large ones CfS>3 .
Also, we compare the results obtained by the analysis of learned clauses with
LBD ≤ 2 CfL2 (because of the importance of such clauses [2]), to the ones ob-
tained by the analysis of learned clauses with LBD > 2, CfL>2 . For each class of
clauses Cfi , i ∈ {I, L2, L > 2, S2, S3, S > 3} and at each conflict k, we measure:

– rlbd(Cfi(k)): the number of clauses in Cfi(k) which produce a learned clause
whose LBD is equal to lbdmin(k), divided by the number of falsified clauses
in the same class.

– rsize(Cfi(k)): the number of clauses in Cfi(k) which produce a learned clause
whose size is equal to sizemin(k), divided by the number of falsified clauses
in the same class.
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Table 5. An estimate of good classes over Cfi , i ∈ {I, L2, L > 2, S2, S3, S > 3}

Series #inst. L+
L2 L+

L>2 L+
I L+

S2 L+
S3 L+

S>3 S+
L2 S+

L>2 S+
I S+

S2 S+
S3 S+

S>3

Industrial instances

fuhs/AProVE11 10 69.6 63.2 75.0 63.0 72.0 65.0 58.9 54.3 67.7 52.7 63.9 56.2

fuhs/bottom* 15 43.2 42.4 55.5 53.3 48.9 44.8 26.2 28.5 41.9 39.3 34.3 29.6

fuhs/top* 9 36.3 35.5 52.3 48.5 41.4 41.1 22.9 23.8 41.4 37.1 31.1 28.8

jarvisalo 46 27.1 25.3 36.9 30.9 29.1 31.7 12.4 12.1 22.9 17.8 16.0 17.5

kullmann 13 43.0 43.6 47.2 35.1 39.7 46.0 35.0 35.4 41.5 29.3 33.6 39.3

leberre 17 33.0 32.0 40.1 36.5 35.4 33.7 20.0 19.9 28.4 25.7 24.8 21.5

manthey 9 45.9 45.8 48.3 48.6 46.8 46.2 24.8 26.5 27.7 26.8 26.2 25.3

Crafted instances

anton 28 37.4 38.7 35.7 36.2 59.7 36.0 13.0 16.3 10.8 11.8 30.6 11.5

kullman/G* 10 22.4 23.3 23.4 - 26.5 23.1 21.4 21.4 22.1 - 23.8 22.0

kullman/V 3k* 10 26.0 32.3 28.0 - 28.0 28.2 31.6 29.5 30.3 - 29.4 30.2

kullman/V pd 3k 16 39.5 39.9 32.3 37.3 32.1 32.7 35.5 36.5 38.2 33.0 36.7 38.1

mosoi/sat 24 - 55.9 75.3 58.1 - 74.0 - 55.5 77.2 54.3 - 76.1

mosoi/unsat 6 - 49.7 80.1 41.1 - 77.6 - 49.5 80.6 39.8 - 78.3

skvortsov 36 53.4 45.3 46.6 47.1 53.1 43.2 40.2 34.3 38.1 38.6 40.0 34.3

spence 19 48.3 46.2 58.8 28.5 86.4 48.1 36.9 36.8 49.7 13.7 81.9 38.0

For example at conflict number 500, consider that sizemin(500) = 3 and
the number of initial falsified clauses is |CfI (k)| = 5 . If after the analysis of
these five clauses, only two have produced an assertive clause of size = 3 then
rsize(CfI (500)) is equal to 2/5.

At the end of the search, let n be the total number of conflicts, we consider:
Li =

1
n ×

∑
k=0···n

rlbd(Cfi(k)) and Si = 1
n ×

∑
k=0···n

rsize(Cfi(k)), i ∈ {I, L2, L >

2, S2, S3, S > 3}. These two parameters give an estimate of the good class of
clauses for the conflict analysis. For instance, the higher the Si value is, the more
interesting this class of clauses is. Indeed, this suggests that the majority of the
clauses of this class probably produces a learned clause with the smallest size.
This is also applicable to Li.

The results are summarized in Table 5. The symbol ’-’ indicates that, for a
given instance, the class Cfi = ∅, i ∈ {I, L2, L > 2, S2, S3, S > 3} . The results
concerning the LBD of the learned clause are contrasting and they differ ac-
cording to the category of instances (industrial or crafted). However, concerning
the size of the learned clauses for the industrial instances, the initial clauses CfI
are the most useful to produce clauses with sizemin. We rank the rest of the
classes according to their ability to produce clauses with sizemin as follows: CfS2

(except the case of fuhs/AProVE11 and Kullman series) then CfS3 (except the
case of Kullman and leberre series) and finally CfS>3 . For the crafted instances,
the results are mixed and differ according to the series.

4 Impact of the Empirical Results on a CDCL Solver

In this section, we attempt to take advantage of the results obtained in Section
3.2, where we have classified the clauses according to their originality, their size
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and also their LBD (for the learned clauses). Therefore, we propose an approach
that makes it possible to prefer the analysis of clauses which satisfy certain
characteristics. During the propagation of a literal l, a CDCL solver checks in
all clauses where the literal ¬l appears as a watched literal, if the assignment
of the literal l to true (¬l to false) falsifies or propagates other clauses. Let W
be the set of the clauses in which ¬l appears as a watched literal. We classify
the clauses in W according to their originality, their size and their LBD as
follows:

– WI = {ci ∈ W and ci ∈ C}
– WA = {ci ∈ W and ci ∈ L}
– WL2 = {ci ∈ W ∩L and lbdi ≤ 2}
– WS2 = {ci ∈ W and sizei = 2}
– WS3 = {ci ∈ W and sizei = 3}
– WS>3 = {ci ∈ W and sizei > 3}

Accordingly, we propose to impose a certain order on the handling of this set
W in order to propagate firstly the clauses that we consider the most useful for
the search. For example, we first propagate all the original clauses WI (while
a conflict is not reached) then we propagate the learned clauses WA. In this
way, we favor and stimulate the apparition in the implication graph of certain
clauses which could be more useful for the search without imposing additional
computing costs. We consider six variants of glucose which differ in the starting
criteria of the propagation process. The tested solvers are run on blade servers
with the GNU/Linux operating system. Each node (blade) has 2 Intel Xeon 2.4
Ghz processors and 24 GB of RAM. Each processor includes 4 physical cores.
The time limit is fixed to 5400 seconds. The glucose variants are:

– glucose o: while a conflict is not reached, propagate firstly the initial clauses
WI and secondly the learned clauses WA.

– glucose a: while a conflict is not reached, propagate firstly the assertive
clauses WA and secondly the initial clauses WI .

– glucose ol2 : while a conflict is not reached, propagate (1) initial clauses, (2)
assertive clauses with LBD ≤ 2 (WL2) and (3) the rest of the clauses in W .

– glucose s3l2o: while a conflict is not reached, propagate (1) clauses with size
≤ 3 (WS3), (2) assertive clauses with LBD ≤ 2 (WL2), (3) initial clauses and
(4) the rest of the clauses in W .

– glucose s3ol2 : while a conflict is not reached, propagate (1) clauses with size
≤ 3 (WS3), (2) initial clauses, (3) assertive clauses with LBD ≤ 2 (WL2) and
(4) propagate the rest of the clauses in W .

– glucose l2s3o: while a conflict is not reached, propagate (1) assertive clauses
with LBD ≤ 2 (WL2), (2) clauses with size ≤ 3 (WS3), (3) initial clauses
and (4) the rest of the clauses in W .

Note that glucose starts always the propagations under the binary clauses
WS2. We keep this treatment on all its variants presented above.
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The following cactus plots (Figures 1 and 2) give the results obtained by all the
solvers. We can remark, for both industrial and crafted instances, that the curves
are similar and close. Also, glucose and glucose s3ol2 have approximatively the
same performance. For the other solvers, the results are close.
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Fig. 1. Variants of glucose which differ in the order of propagation of clauses: results
on industrial instances

In this study, we have attempted to produce interesting clauses regarding
their size and their LBD. In this context, we have tried to favor the apparition
of certain types of clauses in the implication graph. Consequently, such clauses
are falsified first and analyzed first in the case of a conflict. The results show
that such preferences modify slightly the performances of glucose, without being
able to improve them significantly. This leads us to suppose that focusing on
analyzing or producing such clauses is not critical in a CDCL solver. Of course,
such interrogation must be handled gingerly. Indeed, it is implicitly assumed that
learning short clauses and/or clauses with small LBD could improve significantly
the performance of CDCL solvers. However, although this seems reasonable, it
is not strictly proven.

We examine this issue as follows: at each conflict, we firstly generate the set of
all the assertive clauses and secondly, we retain the shortest learned clause or the
one whose LBD value is the smallest. In this aim, we run glucose on 300 instances
used in the previous studies and, at conflict k, we continue the propagation of
all enqueued literals to determine the set of the falsified clauses Cf (k). Then,
we apply the ConflictAnalysis() function to each falsified clause cfi ∈ Cf (k) and
calculate sizemin(k) and lbdmin(k). Accordingly, we define the variant glucose S
(resp. glucose L) of glucose which learns, at each conflict k, the assertive clause
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Fig. 2. Variants of glucose which differ in the order of propagation of clauses: results
on crafted instances
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Fig. 3. At each conflict, glucose S (resp. glucose L) learns the clause with the minimum
size (resp. the clause with the minimum LBD)

with the minimum size, sizemin(k) (resp. the minimum LBD, lbdmin(k))
3. We

compare the number of the solved instances by glucose S, glucose L and glucose
regarding the necessary number of the conflicts.

3 The version of zChaff used in SAT 2004 Competition generates and analyzes all the
conflicting clauses and keeps the shortest assertive clause [7].
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Figure 3 gives the results obtained by these three solvers with a cutoff time
of 1800 seconds. It can be pointed out that the maximum number of conflicts is
105. This is caused by the time consumed to learn the clauses with the smallest
size/LBD.

For the industrial instances, glucose L and glucose have approximatively the
same performance. glucose S is the worst but remains close to glucose. For the
crafted instances, the performance gaps are not important and glucose is also
the best solver.

These results indicate that learning short clauses (glucose S ) or clauses with
the smallest LBD (glucose L) does not improve the performance of glucose. We
could conclude that, in a CDCL solver and when a conflict is analyzed, any
clause can be learned regardless of its quality and the solver has to manage
them during the search.

5 Conclusion

One of the goals of this paper is to contribute to understanding the behavior
of CDCL solvers. We have focused our study on one of their components which
is the conflict analysis. Our experiments showed that the choice of the falsified
clause to analyze does not affect significantly the backjump level defined by the
analysis and the conflict analysis module returns generally a relevant backjump
level. In a classical CDCL solver, the unit propagations are firstly accomplished
on the initial (original) clauses of the treated formula. We saw that these clauses
are the most able to produce learned clauses with short sizes. These two results
can be an explanation of the powerful of CDCL solvers. Concerning the relation-
ship between the LBD of the learned clause and the properties of the falsified
clause which causes its generation, it is difficult to draw a global conclusion while
the results are varying regarding the treated instances. Also, we have observed
that learning, at each conflict, the shortest clauses or clauses with the smallest
LBD does not improve the performance of the CDCL solver. A possible explana-
tion of this observation is that a CDLC solver learns relevant clauses (regarding
their sizes and LBD values) enough early. The irrelevant ones are deleted if the
solver manages nicely the set of learned clauses.
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Abstract. Quantified Boolean Formulas (QBF) provide a good lan-
guage for modeling many complex questions about deterministic
systems, especially questions involving control of such systems and opti-
mizing choices. However, translators typically have one set way to encode
the description of a system and a property, or question about the system,
often without distinguishing between the two. In many cases there are
choices about encoding methods, and one method will be much easier for
a particular solver. This paper shows how to encode a large class of prob-
lems into primal and dual versions with opposite answers, while avoiding
the blow-up associated with a simple negation of the first encoding.

The main point is that these encodings require knowledge of the un-
derlying application; they are not automatic translations on a QBF. Try-
ing to divide an arbitrary QBF into a system part and a property part
is actually co-NP-hard.

For proof of concept, primal and dual encodings were implemented for
several problem families in QBFLIB. (The primal encodings were already
in QBFLIB.) For leading publicly available QBF solvers, solving times
often differed by factors over 100, between the primal and dual encod-
ing of the same underlying problem. Therefore, running both encodings
in parallel and stopping when one encoding is solved is an attractive
strategy, even though CPU time on both processors is charged. For some
families and some solvers, this strategy was significantly faster than run-
ning only the primal on all problems, or running only the dual on all
problems. Implications for certificates are also discussed briefly.

1 Introduction

Quantified Boolean Formulas (QBF) provide a good language for modeling many
complex questions about deterministic systems, especially questions involving
control of such systems and optimizing choices. Recent progress in the strength
of QBF solvers is beginning to make this a method of choice for analyzing such
systems, in much the same way that progress in SAT solvers over the last decade
has made translation to SAT the method of choice for many hardware and soft-
ware design and verification problems. For example, Benedetti and Mangassarian
exploit QBF with free variables for model checking [3], while Marin et al. use
QBF to model designs with incomplete specifications [19]. However, there is a
tendency for research to focus on one area or another of the overall problem of
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using QBF effectively in applications. Many papers focus on improving solvers
[7,6,23,5,8,17,15], some investigate certificates [2,11,20,1,10], while others focus
on using QBF in applications [12,25,18,3,16]. Narizzano et al. give an extensive
survey and additional bibliography [20]. The purpose of this paper is to step
back a little and show how considering all aspects of the problem suggests a
better way for the parts to work together.

First, we show that many applications can encode both a primal and dual
version of their problem. The benefit of having both encodings is the extensive
experience with search-based solvers such as Qube and depqbf that valid QBFs
are usually more difficult to handle than invalid QBFs. For a given problem, the
primal and dual QBFs have opposite values.

In terms of certificates, invalid QBFs have a well understood proof system
called Q-resolution [13]. Methods to extract winning strategies from Q-resolution
refutations have been recently reported [10,1]. Jussila et al. report difficulties in
producing adequate certificates for valid formulas [11]. By having both the primal
and dual encoding to work with, every problem has a Q-resolution refutation to
serve as a certificate. Steps in this direction have appeared for non-prenex, non-
CNF solvers [15,10]. Our methodology is essentially independent of the encoding
used, and allows certificate methodologies for either valid or invalid formulas to
be brought to bear.

The basic idea of using the dual of a QBF is not new. The main novelty in our
approach is that the overall problem is partitioned into a deterministic system
and a property being queried. The deterministic system, which may be most of
the formula, is encoded identically in the primal and dual; only the property
is negated in the dual. In instances patterned after the widely used qdimacs

format, we propose “d” as a supplement to “a” and “e” to declare determin-
istic functional variables. Sabharwal et al. consider encoding certain two-player
games, but their duality is simply logical negation and the methodology consists
of a specific encoding that mixes CNF and DNF in a single QBF [24]. Goultiaeva
and Bacchus encode a QBF simultaneously as a primal circuit and a dual circuit
[8]. However, their duality is also simply the logical negation of the entire formula
and exists only as internal data structures in their solver. In more recent work,
the same authors use heuristics to attempt to identify a deterministic system
within the encoding [9].

We show in Section 5 that, in general, automated post-processing cannot de-
tect the deterministic system embedded in the encoding and construct the dual,
at least not efficiently. Therefore, both encodings must be designed with knowl-
edge of the application domain. Construction of the dual proposed in Section 3
involves negating a boolean formula and flipping some quantifiers, which is not
technically challenging. At the modeling stage the primal formula is not even
CNF. Therefore we believe this approach does not impose a major burden on
the developers of software that models their applications as QBF problems.

Empirical evaluations tentatively support the conjecture that having dual
encodings available should benefit many applications. In the future, we expect
systemmodelers to incorporate both primal and dual encodings for a wide variety
of applications.
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The second, and possibly more immediately fruitful, result of having both a
primal and a dual encoding for the same problem is that major CPU resource
savings might be realized by attempting to solve both in tandem (in parallel,
if multiple cores are available). One encoding might be unsolvable within any
reasonable time, while the other is quite tractable. Preliminary experimental
results, reported in Section 6 (see Table 2), show surprisingly high ratios of
solution times for the primal and dual encodings of the same problem. The ratios
are so large that, besides saving time on the clock, total CPU resources usually
are reduced by attempting to solve both encodings in tandem, then killing the
other process when one succeeds. Benchmark instances and generators for the
reported experiments are publicly available.1

2 QBF and Two-Player Game Strategies

A closed QBF formula Ψ =
−→
Q.F can be interpreted as a game with two players,

E (for ∃, or existential) and A (for ∀, or universal), whose “moves” involve
setting their variables. The variables are set in quantifier-prefix order, from outer
to inner scopes. This section briefly reviews this well-known interpretation.

The paper uses mostly standard logical operator notation, with “∧” for “and,”
“∨” for “or”, “¬” for “not”, “→” for “implies”, and occasionally “⊕” for “ex-
clusive or.” However, “≡” in some contexts means “is defined as.”

Besides the standard existential (∃x) and universal (∀x) quantifiers, we infor-
mally introduce functional quantifiers, denoted by ∗ x, explained in Section 3.
Functional quantifiers will become existential or universal, depending on the en-
coding strategy. The notation ∗ x conveys the information that the value for x
is functionally determined by the assignments to the variables that precede x in
the quantifier prefix. Part of the quantifier-free formula F defines the function
that determines x.

The quantifier prefix can be partitioned into quantifier blocks (blocks, for
short) of differing quantifier type. The quantifier depth of a block begins at
1 for the outermost block and increases by 1 with each alternation. It is known
that variable order within a quantifier block is immaterial in determining the
value of a QBF formula, so there is no loss of generality, and considerable sim-
plification, in assuming that each player sets all the variables in one block in a
single turn. Thus turns are taken in order of increasing quantifier depth, and the
quantifier type of the outermost unset block determines whose turn it is to play.
By the time all variables have been set, F , the body of the QBF, will be reduced
to a formula that evaluates either to true, in which case E is the winner, or to
false, in which case A is the winner, for a particular “play” of the game.

Every closed QBF formula is either valid (i.e., it evaluates to true) or invalid
(evaluates to false). If it is valid, then there exists a winning strategy for player E,
such that player E can win every play of the game, no matter how player A plays.
If it is invalid, then a winning strategy exists for player A. A strategy for player
E is a set of boolean functions, one for each existential variable in the QBF.

1 See http://www.cse.ucsc.edu/~avg/QBFdual/
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Fig. 1. A circuit represented by the quantifier-free formula G, and two QBFs encoding
questions about it

All existential variables in a single block have as parameters the variables in
blocks of lesser quantifier depth. Suppose A is an assignment to all variables of
lesser quantifier depth. The function for an existential variable ei in the outer-
most unassigned block, denoted by ei(A), specifies what assignment player E
should make for ei at this stage of the game. Strategies for player A are similar
except that they are functions that specify assignments for universal variables in
the outermost unassigned block. A winning strategy is a strategy that guarantees
that its player wins. In general terms, a winning strategy for player E tries to
satisfy all clauses, while a winning strategy for player A tries to falsify some
clause.

3 QBF Modeling and Duals

QBF is a good language for modeling complex questions about deterministic
systems. We use the circuit shown in Figure 1 as a first example. A more sub-
stantial example is developed in Section 4. In this example, G(q, v, w, c, d, x) is a
quantifier-free formula that encodes the behavior of a deterministic system, the
circuit in Figure 1. G must encode a boolean function from the inputs (q, v, w)
to the remaining state variables (c, d, x). That is, for each assignment to (q, v,
w) there must be exactly one assignment to (c, d, x) for which G evaluates to
true. We are not concerned with the details of this encoding, at this point.

Properties, or yes-no questions, about the deterministic system, can be en-
coded in QBF. We illustrate this idea with the following two questions about
the circuit:

1. Is there a value for q such that the output x has the same value (call it p)
for all settings of the remaining inputs, v and w? That is, property P1 is
(x = p). Ψ1 in Figure 1 encodes this question.

2. Same question, with the further restriction that the remaining inputs are
ganged (forced to the same value). That is, property P2 is ((v=w)→ (x= p)).
Ψ2 in Figure 1 encodes this question.
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The general pattern is (≡ should be read “is defined as”):

Ψ ≡ −→QP ∃G (G ∧ P ) . (1)

The quantifier prefix
−→
QP depends on the question or property, and includes

inputs to the deterministic system and variables local to P . The quantifier pre-
fix ∃G denotes existential quantification of the non-input state variables of the
deterministic system; if G is thought of as a function, these are its outputs. In
Section 4 we begin using the “functional quantifier” ∗G instead of ∃G for these
situations.

The key observation is that there is an alternative QBF representation of the
same problem:

Ψalt ≡
−→
QP ∀G (G→ P ) . (2)

Theorem 3.1. If G has the stated functional property, then Ψalt has the same
truth value as Ψ .

Proof. (Sketch) This is most easily realized by considering the associated two-
person games. In Ψalt the A player has control of the state variables, whereas
in Ψ the E player has control. Rewriting the body of Ψalt as (¬(G) ∨ P ), we see
that the A player tries to make ¬(G) false in Ψalt, while the E player tries to
make G true in Ψ . Given any assignment to the system inputs, we see that both
players will choose the unique setting of the state variables that allows G to
evaluate to true. The remaining parts of Ψ and Ψalt are identical, so the logical
equivalence is shown.

Now suppose we want to consider the negation of Ψ . For many QBF solvers,
the natural form of this negation is very cumbersome [8], so instead we define

Ψdual to be the negation of Ψalt. We use the notation that inverse(
−→
QP ) flips ∀

and ∃ keeping variables in the same order as
−→
QP .

Ψdual ≡ inverse(
−→
QP )∃G (G ∧ ¬(P )) . (3)

Notice that this expression differs from (1) in that property P is negated and the
non-G quantifiers are inverted. However the deterministic system is represented
the same as in Ψ .

Let us see the duals for our running example. Note that the non-G variables
whose quantifiers get flipped are the circuit inputs, q, v, w, and the property p.

Ψ1,dual ≡ ∀p ∀q ∃v ∃w ∃x∃c ∃d (G ∧ (x �= p))

Ψ2,dual ≡ ∀p ∀q ∃v ∃w ∃x∃c ∃d (G ∧ ((v = w) ∧ (x �= p)))

We anticipate that applications with tools that encode domain problems into
QBF will benefit by distinguishing between the deterministic systemG and prop-
erty P . They should generate both a primal and a dual formula, whatever the
underlying deterministic system is. One formula will be valid and the other will
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Fig. 2. A traffic controller for a three-way intersection. Inputs are Narrv, Sarrv, Warrv,
as well as Wright, not shown. The main state variables are Nrdy, Srdy, Wrdy, Ngrn,
Sgrn, Wgrn.

be invalid. Extracting additional information from the solution may proceed gen-
erally in the same way, whatever tools are available to the application, because
exactly one of the primal and dual is valid, and exactly one is invalid.

Experience indicates that most solvers handle one type of QBF (i.e., valid or
invalid) better than the other type. A possible additional benefit is that a solver
might be able to solve one encoding (i.e., primal or dual) much more easily
than another. One of the main contributions of this paper is the conjecture that
running one solver on the primal and dual in tandem will shorten the overall
time on a suite of valid and invalid formulas. Experimental evidence supporting
this conjecture is given in Section 6.

4 Example: Modeling a Traffic Controller

We illustrate the modeling process with a simple traffic controller for a three-way
intersection. This example is inspired by a tutorial by E. Nurvitadhi [21], but is
different in several ways from that tutorial. Many technical details are omitted
due to similarity to that tutorial, but the code to generate instances and the
QBF files that were tested are publicly available at the URL given in Section 1.
The setup is shown in Figure 2.

The variables are interpreted as follows. Nrdy is a state variable that means a
car is ready to enter the intersection from the north. Narrv is an input variable
that means Nrdy will be true at the next time step. Ngrn is a state variable that
is true when the north-facing light is green, meaning that a car from the north
passes the intersection by the next time step; in this case, Nrdy becomes false at
the next time step unless Narrv is also true. The “south” and “west” directions
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are similar. Wright is an input that enables “right turn on red” by a car at Wrdy
if there is no car at Nrdy, an exception to the rule that a green light is required
to proceed. This is an input because the car might wish to turn left, in which
case it remains there until Wgrn is true.

The traffic controller follows functional rules, depending on the inputs at the
current and preceding time steps. It uses a state variable NSlock to assist in the
computation. The intention is that if NSlock is true, then Wgrn is false. The
named state variables are persistent: if nothing occurs to change the value of
one of these variables, it keeps that value at the next time step. The encoding
into CNF introduces about 20 other functional variables per time step that are
not consistent unless the state variables obey the state transition functions.

The safety condition is that, if Ngrn or Sgrn is true, then Wgrn must not be
true in the same time step.

In the primal encoding, the A player controls (N,S,W)arrv, while the E player
controls Wright. The E player wins if the safety condition holds, and the formula
is valid in these cases.

The logic of the traffic controller has an intentional bug, in that it is possible
that NSlock is false in a configuration that allows both Wgrn and Ngrn to be
true at the next time step. To activate the bug requires a specific sequence of
arrivals over four time steps. It would be very easy for the A player to expose
the bug if the arrv inputs were unrestricted. Therefore, an additional functional
system limits the time steps at which Narrv, Sarrv, and Warrv are enabled. (When
an input is enabled it is still the A player’s choice whether to make it true.) To
permit variety, a set of initial conditions controls which arrv variables are enabled
at which time steps.

The system is simulated for a fixed number of time steps, n, which is cho-
sen so that about 50 percent of the various initial conditions allow the bug to
be manifested. Our generator is able to generate suites of problems with vary-
ing size parameters. Within a suite, all problems are about the same size, and
approximately half are valid and half are invalid, for the primal encoding.

In the reported tests, n = 21. There are 42 primal problems and 42 dual
problems in the suite. Each encoding uses 747 quantified variables; the number
of clauses is 2023 for the primals, 2043 for the duals.

Let us now step through the process of forming the primal and dual encodings.
Recall that we use ∗ x to denote that x is a system variable that is functionally
determined by the input variables that precede x in the quantifier prefix. The
pk below constitute initial conditions, so there are no preceding input variables;
they will be forced to take on certain constant values to satisfy the subformula
system0. At a high level the primal quantifier prefix takes the form shown in
Figure 3. The primal quantifier-free formula encodes

system0 ∧
(

n∧
i=1

systemi

)
∧

⎛
⎝ n∧

j=1

safej

⎞
⎠

Here, systemi is a quantifier-free formula that encodes a function from parame-
ters (N,S,W)arrvi, Wrighti, and earlier input variables, to output state variables
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∗ pk
∀ (N,S,W)arrv1 ∃Wright1 ∗ (N,S,W)rdy,(N,S,W)grn,NSlock1
∀ (N,S,W)arrv2 ∃Wright2 ∗ (N,S,W)rdy,(N,S,W)grn,NSlock2
· · ·
∀ (N,S,W)arrvn ∃Wrightn ∗ (N,S,W)rdy,(N,S,W)grn,NSlockn

Fig. 3. Traffic Controller primal quantifier prefix

∗ pk
∃ (N,S,W)arrv1 ∀Wright1 ∗ (N,S,W)rdy,(N,S,W)grn,NSlock1
∃ (N,S,W)arrv2 ∀Wright2 ∗ (N,S,W)rdy,(N,S,W)grn,NSlock2
· · ·
∃ (N,S,W)arrvn ∀Wrightn ∗ (N,S,W)rdy,(N,S,W)grn,NSlockn

Fig. 4. Traffic Controller dual quantifier prefix

(N,S,W)rdyi, (N,S,W)grni, NSlocki. That is, for each possible assignment to the
parameter variables, exactly one assignment to the output variables satisfies
systemi.

The formula safei encodes the mutual exclusion (¬Wgrni∨(¬Ngrni∧¬Sgrni)).
In the standard primal encoding, the functionally quantified variables are

assigned to the E player. That is, the “*” symbols become “∃”. Of course, the
E player has no real choice about these assignments because he or she loses
immediately if any part of systemi is false.

The alternate primal encoding has the same quantifier prefix with functional
quantifiers included, but the quantifier-free formula encodes

(
system0 ∧

n∧
i=1

systemi

)
→

⎛
⎝ n∧

j=1

safej

⎞
⎠

In the alternate primal encoding, the functionally quantified variables are as-
signed to the A player. That is, the “*” symbols become “∀”. As with the stan-
dard primal, the A player has no real choice about these assignments because
he or she loses immediately if any part of systemi is false. As stated in The-
orem 3.1, the alternate primal encoding is logically equivalent to the standard
primal encoding.

Finally, the dual encoding is the negation of the alternate primal encoding, so
the functional quantifiers are back to existential and the other quantifiers flip,
giving the prefix shown in Figure 4. The negated formula becomes

system0 ∧
(

n∧
i=1

systemi

)
∧

⎛
⎝ n∨

j=1

¬safej

⎞
⎠

That is, only the safety property needs to be negated. Note that negating the
“and” creates an n-way “or”.
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5 Dual Encoding Requires Domain Knowledge

A natural question is whether the dual encoding can be deduced automatically
from the primal. Both cirqit2 [8] and ghostq [15] make some attempt in this
direction, but do not have a way to distinguish the functional description of the
deterministic system from the property being queried. Partial duality, proposed
in [9] but for which code is not publicly available, also cannot make this distinc-
tion. We now argue that it is not feasible to detect this distinction automatically.

The traffic controller example illustrated the difficulty. In the primal encoding
Wright and Wrdy are both existential, but in the dual, only one of them becomes
universal. How does an automatic translator know this? In limited cases, the
translator can pattern match clauses to typical encodings of logic gates, and
perhaps deduce that Wright is an input, while Wrdy is a gate output. Theory
and experience both tell us this does not always succeed.

Essentially, to know that a certain set of clauses (or any quantifier-free sub-
formula) encodes a boolean function, the translator must be able to tell that
certain clauses have exactly one satisfying assignment. This problem is at least
as hard as satisfiability itself [14, Ch. 3.2, Problem 31], even if only one set of
clauses needs to be considered.

In practice, the translator would need to consider many subsets of the entire
set of clauses to try to identify those that define a deterministic system. We
cannot expect a translator to do this within reasonable time constraints.

Therefore, the people with domain knowledge of the application need to be
involved to identify the functional variables. We proposed the “*” quantifier
as mathematical notation for this purpose. In an instance patterned after the
widely used qdimacs format, we propose “d” as a supplement to “a” and “e.”
It is up to the designer to ensure that declared functional variables really only
can take on one value to satisfy the defining clauses, once the relevant inputs
are assigned.

6 Experimental Results

To evaluate the conjecture that dual encodings are beneficial to CPU resources,
we tested several prominent QBF solvers on QBF families that had both primal
and dual encodings of the underlying application problem. The hardware was
a 48-core AMD64 processor with 2.0 GHz clock and about 190 GB of memory.
The system managed the load so that the number of processes never exceeded
the number of cores.

The code to generate duals and the QBF files that were tested are publicly
available at the URL given in Section 1. For the families reported in Tables 3
and 4, awk and csh scripts identify the “input” variables and a single “property”
variable by an ad hoc technique. To convert a primal instance into its dual,
the quantifier types of the “input” variables were inverted, and the “property”
variable in inverted in its unit clause.

For calibration, Table 1 summarizes how four solvers performed on the 568
benchmarks used in QBFEVAL-10 [22]. Preprocessors are emerging as being
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Table 1. Solver profiles for 568 instances in QBFEVAL-10

Number solved avg. total
Solver total (valid,invalid) secs. seconds

qube7.2(2) 436 (205,231) 135 296484
depqbf0.1(1) 315 (156,159) 150 503340
cirqit2(1) 251 (106,145) 30 578940
ghostq(1) 172 ( 74, 98) 29 716788
ghostq 150 ( 60, 90) 101 767557
bloqqer(3) 148 ( 62, 86) 5.5 3117

NOTES FOR ALL TABLES :
(1) includes bloqqer preprocessor.
(2) includes built-in preprocessor.
(3) incomplete preprocessor, never timed out.
avg. secs. includes solved only.
total seconds includes 1800 (the timeout) for unsolved.
PAR10 hours includes 18000 secs. (10 × timeout) for unsolved.

critical to the overall performance of QBF solvers [4], so tests were conducted
with a preprocessor included. Qube and depqbf are competition leaders, while
cirqit2 [8] and ghostq [15] are solvers designed to exploit the duality of QBF.
The latter solvers are also designed for non-CNF inputs, and are not always at
their best with the prevalent CNF format. The report on ghostq indicates that
it analyzes the gate structure of the input file, so we also tested it without a
preprocessor. In limited preliminary tests, ghostq performed better without a
general-purpose preprocessor on the circuit-oriented instances in Tables 2 and 3,
so its results are presented that way.

Although cirqit and ghostq attempt to exploit the duality of QBF, they
consider a dual that essentially negates the entire formula, whereas the duals
that we encoded negate only the “property” part of the formula.

The Dual-Tandem solving strategy starts two processes using the same
solver on a multi-core machine. One process attempts the primal, and the other
process attempts the dual, of the same underlying problem. The timeout is cut
in half, compared to single-encoding strategies. As soon as one process gets a
solution, it kills the partner process.

Results for the traffic-controller suite of 42 problems, with the primal encoding
and dual encoding each for each problem, are summarized in Table 2. These
problems were homogeneous enough that all solvers solved all problems, so there
are no time-outs to confuse the data. The primal encoding had 25 valid and 17
invalid instances. The Dual-Tandem strategy is compared to just attempting the
primal, and just attempting the dual. The Dual-Tandem CPU time is the sum
of the times used by both processes. The others are single-process times. This
convention is followed for all tests.

The traffic controller was too easy, as most instances were solved by the pre-
processor, and the solver behavior was not well tested. However, it shows that
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Table 2. Total seconds for traffic controller suite 021 (42 problems, primal valid on 25,
invalid on 17), for four solvers and three encoding strategies. No time limits; otherwise
see notes to Table 1.

Solver Primal Dual Dual-Tandem

qube7.2(2) 50509.20 0.59 1.18
depqbf0.1(1) 0.02 3150.26 0.04
cirqit2(1) 0.02 12.15 0.04
ghostq 3.51 0.69 1.36

the encoding can make a big difference in solving difficulty. Dual-Tandem offers
insurance against guessing wrong about which encoding to use.

Results for the tipfixpoint family in QBFLIB, consisting of 446 problems,
with the primal encoding and dual encoding each for each problem, are sum-
marized in Table 3. Not all problems were solved. A timeout of 1800 was used
(900 each for Dual-Tandem). The family tipdiam in QBFLIB (203 problems,
two encodings each) produced a similar pattern, and is shown in Table 4.

The tipfixpoint and tipdiam families encode genuine bounded model
checking problems. It is important to note that generation of the duals required
domain knowledge and could not be done simply by referring to the (primal)
benchmarks in QBFLIB. Published documentation [12], the SMV specifications
[21], and publicly available software contained enough information about the un-
derlying problems for the authors to develop a translator into the dual encoding
for each family. Most families encoded in QBFLIB do not have sufficient docu-
mentation, or require domain expertise beyond that of the authors, to undertake
independent encodings.

The tipfixpoint and tipdiam families are two of the families that ghostq
was reported as doing very well on [15], but they only tested on the parts of the
families that were selected for the QBFEVAL-08 event. The tables show that
ghostq is the clear leader for these entire families, and that dual encoding is not
of benefit to it.

The other three solvers benefited greatly from the dual encoding and the
Dual-Tandem strategy. More problems were solved and total CPU resources were
reduced. The PAR10 measure (penalized average runtime, with failures charged
10 times the CPU limit) combines both factors.

7 Conclusion

We have argued for an overall approach to using QBF for applications that in-
cludes primal and dual encoding. We showed that, in general, automated post-
processing cannot detect the functional variables and construct the dual, at least
not efficiently. Therefore, both encodings must be designed with knowledge of
the application domain. In instances patterned after the widely used qdimacs

format, we propose “d” as a supplement to “a” and “e” to declare determin-
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istic functional variables. Empirical evaluations tentatively support the conjec-
ture that having dual encodings available should benefit many applications. In
the future, we expect system modelers to incorporate both primal and dual
encodings for a wide variety of applications.
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Abstract. The Distributed Constraint Optimization Problem (DCOP) is a power-
ful framework for modeling and solving applications in multi-agent coordination.
Asynchronous Forward Bounding (AFB BJ) is one of the best algorithms to solve
DCOPs. We propose AFB BJ+, a revisited version of AFB BJ in which we refine
the lower bound computations. We also propose to compute lower bounds for the
whole domain of the last assigned agent instead of only doing this for its current
assignment. This reduces both the number of messages needed and the time fu-
ture agents remain idle. In addition, these lower bounds can be used as a value
ordering heuristic in AFB BJ+. The experimental evaluation on standard bench-
mark problems shows the efficiency of AFB BJ+ compared to other algorithms
for DCOPs.

1 Introduction

Distributed Constraint Optimization Problem (DCOP) is a powerful framework to
model a wide range of applications in multi-agent coordination such as distributed
scheduling [14], distributed planning [4], distributed resource allocation [17], target
tracking in sensor networks [15] distributed vehicle routing [12], etc. A DCOP con-
sists of a group of autonomous agents, where each agent has an independent comput-
ing power. Each agent owns a local constraint network. Variables owned by different
agents are connected by constraints. These constraints specify a non-negative constraint
cost for combinations of values assigned to the variables they connect. In general, con-
straints or value assignments may be strategic information or private choice that should
not be revealed or delegated to other agents. Thus, each agent only has control on its
variables and only knows constraints that involve them. DCOP addresses problems in
which agents must, in a distributed manner, assign values to their variables such that
the sum of the constraint costs of all constraints is minimized.

Several complete algorithms for solving DCOPs have been proposed in the last
decade. The pioneer complete asynchronous algorithm is Adopt [15]. Later on, the
closely related BnB-Adopt [20] was presented. BnB-Adopt changes the nature of the
search from Adopt best-first search to a depth-first branch-and-bound strategy, ob-
taining better performance. Gutierrez and Meseguer show that some of the messages
exchanged by Adopt and BnB-Adopt turned out to be redundant [9]. By removing

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 708–723, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Asynchronous Forward Bounding Revisited 709

these redundant messages they obtain more efficient algorithms: Adopt+ and BnB-
Adopt+. The algorithms mentioned so far perform assignments concurrently and asyn-
chronously. Thereby, the perception of agents on the variable assignments of other
agents is in general inconsistent.

Another category of algorithms for solving DCOPs is that of algorithms perform-
ing assignments sequentially and synchronously. The synchronous branch and bound
(SyncBB) [10] is the basic systematic search algorithm in this category. In SyncBB,
only the agent holding the token is allowed to perform an assignment while the other
agents remain idle. Once it assigns its variables, it passes on the token and then remains
idle. Thus, SyncBB does not make any use of concurrent computation. No-Commitment
Branch and Bound (NCBB) is another synchronous polynomial-space search algorithm
for solving DCOPs [5]. To capture independent sub-problems, NCBB arranges agents
in constraint tree ordering. NCBB incorporates, in a synchronous search, a concurrent
computation of lower bounds in non-intersecting areas of the search space based on the
constraint tree structure.

Another attempt to incorporate a concurrent computation in a synchronous search
was applied in Asynchronous Forward Bounding (AFB) [6]. AFB can be seen as an
improvement of SyncBB where agents extend a partial assignment as long as the lower
bound on its cost does not exceed the global upper bound (i.e., the cost of the best solu-
tion found so far). In AFB, the lower bounds are computed concurrently by unassigned
agents. Thus, each synchronous extension of the current partial assignment is followed
by an asynchronous forward bounding phase. Forward bounding propagates the bounds
on the cost of the partial assignment by sending to all unassigned agents copies of the
extended partial assignment. When the lower bound of all assignments of an agent ex-
ceeds the upper bound, it performs a simple backtrack to the previous assigned agent.
Later, the AFB has been enhanced by the addition of a backjumping mechanism, result-
ing in the AFB BJ algorithm [7]. The authors report that AFB BJ, especially combined
with the minimal local cost value ordering heuristic performs significantly better than
other DCOP algorithms.

In this paper, we propose AFB BJ+, a revisited version of AFB BJ in which we
refine the lower bound computations. We also propose to compute lower bounds for
the whole domain of the last assigned agent instead of only doing this for its current
assignment. Thus, an unassigned agent computes the lower bound for each value in the
domain of the agent requesting it. This reduces both the number of messages needed
and the time future agents remain idle. Hence, we take all possible advantage from
the asynchronicity of the system. In addition, these lower bounds are used as a value
ordering heuristic in AFB BJ+. Thus, an agent assigns first values with minimal lower
bound.

This paper is structured as follows. Section 2 gives the necessary background on
DCOP and a short description of the AFB algorithms. We present the AFB BJ+ algo-
rithm in Section 3. Correctness proofs are given in Section 4. We report experimental
results in Section 5. Finally, we conclude in Section 6.
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2 Background

2.1 Basic Definitions and Notations

The Distributed Constraint Optimization Problem (DCOP) has been formalized in [15]
as a quadruple (A,X ,D, C), where A is a set of p agents {A1, . . . , Ap}, X is a set
of n variables {x1, . . . , xn}, where each variable xj is controlled by one agent in A.
D = {D1, . . . , Dn} is a set of n domains, where Dj is the set of possible values to
which variable xj may be assigned. Only the agent controlling a variable can assign a
value to it and has knowledge of its domain. C = {cij : Di × Dj → R+} is a set of
binary utility constraints (i.e., soft constraints). Each utility constraint cij ∈ C is defined
over the pair of variables {xi, xj} ⊆ X . We say that xi and xj are neighbors.

For simplicity purposes, we consider a restricted version of DCOP where each agent
holds exactly one variable (p = n). Thus, we use the terms agent (Aj) and variable (xj)
interchangeably and we identify the agent ID with its variable index (j). Furthermore,
all agents store a unique total order ≺ on agents. Agents appearing before an agent
Aj ∈ A in the total order are the higher priority agents and those appearing after Aj

are the lower priority agents. The order ≺ divides the set Γ(xj) of neighbors of Aj

into higher priority neighbors Γ
−
(xj), and lower priority neighbors Γ

+

(xj). For sake of
clarity, we assume that the total order is the lexicographic ordering [A1, A2, . . . , An].
In the rest of the paper, we consider a generic agent Aj ∈ A. Thus, j is the level of
agent Aj .

An assignment for agent Aj is a tuple(xj , vj), where vj is a value from Dj . Aj

maintains a counter tj and increments it whenever it changes its value. The value of the
counter tags each generated assignment. When comparing two assignments for the same
agent, the most up to date is the one with the greatest tag. A current partial assignment
(CPA) is an ordered set of assignments, e.g., Y = [(x1, v1), . . . ,(xj , vj)] s.t. x1≺ . . .≺
xj . The set of all variables assigned in Y is denoted by var(Y ) = {x1, . . . , xj}. A time-
stamp associated to a CPA Y is an ordered list of counters [t1, t2, . . . , tj] where ti
is the tag of the variable xi s.t. xi ∈ var(Y ) [16,19]. When comparing two CPAs, the
strongest one is that associated with the lexicographically greater time-stamp. That is,
the CPA with greatest value on the first counter on which they differ, if any, otherwise
the longest one. Let Y = [(x1, v1), . . . ,(xi, vi), . . . ,(xj , vj)] be a CPA, the subset of
Y including all variables down to xi is denoted by Y i = [(x1, v1), . . . ,(xi, vi)].

The guaranteed cost of a CPA Y , denoted by gc(Y ), is the sum of all utility con-
straints cij s.t. xi and xj are assigned in Y (Eq. 1).

gc(Y ) =
∑
cij∈C

cij(vi, vj) | (xi, vi),(xj , vj)∈ Y . (1)

A full assignment Y is a CPA that involves all variables of the problem, i.e.,
var(Y ) = X . The goal of a DCOP solver is to distributively find a full assignment
Y ∗ with minimal cost, that is, Y ∗ = arg min

Y
{gc(Y ) | var(Y ) = X}.

In the following, we will present standard AFB algorithms. We will use a nomencla-
ture of messages and data structures different from those used in the original paper [7]
in order to be closer to those used in our approach.
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Aj−1 Aj Aj+1 Ak
......... ok?

fb?

lb

back

ok? : Y =[(x1, v1), . . . ,(xj, vj)], gc(Y )

fb? : Y =[(x1, v1), . . . ,(xj, vj)]

lb: Y =[(x1, v1), . . . ,(xj, vj)], lbk(Y )

back: Y =[(x1, v1), . . . ,(xj−1, vj−1)]

Fig. 1. The messages exchanged by the AFB algorithm

2.2 Asynchronous Forward Bounding (AFB) Algorithm

In Asynchronous Forward Bounding (AFB) [6], agents assign their variables sequen-
tially and unassigned agents asynchronously try to compute lower bounds on the CPA,
say Y . Agents perform assignments of their variables only when they hold the current
partial assignments Y (i.e., Y is the token). Each extension of the CPA Y , is followed
by a Forward Bounding (FB) phase. The FB phase is performed by sending forward
copies of Y to all unassigned agents. In the FB phase, it is required from unassigned
agents to compute a lower bound on the cost increment caused by an assignment of
their variables on Y . Once computed, the lower bounds are sent back to the agent that
sent the request, i.e., the last assigned agent in Y . Due to the asynchronous nature of
the FB phase, multiple CPAs may be present at a given moment in time. However, the
time-stamp mechanism is used by agents to discard obsolete ones.

The lower bounds collected from unassigned agents are used to compute a lower
bound on the CPA. When the computed lower bound becomes larger than the current
upper bound (i.e., the cost of the best full CPA found so far), the CPA is pruned. Con-
cretely, whenever agent Aj receives a valid lower bound from an unassigned agent, it
adds it to that received from other agents and checks if the cumulative lower bound
exceeds the upper bound. In such a case, Aj tries to assign an alternative value to its
variable. If such value is not available, it needs to backtrack. When agent Aj takes the
decision to backtrack, it sends the CPA (Y j−1) backwards to the last agent assigned on
it (i.e., Aj−1). However, if Aj is the first agent in the ordering, it ends the search pro-
cess after claiming this to other agents. The AFB algorithm then reports that the optimal
solution is the best full CPA found so far.

Fig. 1 shows the messages exchanged by the AFB algorithm.1 AFB agents exchange
the following types of messages:

ok? : a message which contains the CPA Y with its cost gc(Y ). When Aj assigns its
variable, it sends this message to the next agent in the ordering (Aj+1).

back: a message which contains an inconsistent CPA. It is sent back to agent Aj−1

requiring it to change its assignment.
fb? : a message which contains a copy of an ok? message. It is sent by Aj to unas-

signed agents to compute a lower bound on the CPA it carries.
lb: a message which contains a lower bound on the current partial assignment. It is

sent as response to a fb? message.

1 The names of the message types here are closer to that used in our approach and then different
from that used in the original AFB paper [6].
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The computation of lower bounds on AFB is performed as follows. In a preprocess-
ing step, Aj computes the minimal future cost estimation for each possible value in its
domain incurred by every lower priority agent Ak (Eq. 2). fcj(vj) is a lower bound
on the cost of constraints involving the assignment(xj , vj) and all its lower priority
neighbors. Agents compute these estimations only once and store them.

fcj(vj) =
∑

xk∈Γ+(xj)

min
vk∈Dk

{cjk(vj , vk)}. (2)

Given a current partial assignment Y i, and an unassigned agent Aj , the local cost
of assigning a value vj to Aj is the sum of the constraints costs of this value with all
assignments in Y i s.t. i < j (Eq. 3).

lcj(Y
i, vj) =

∑
(xh,vh)∈Y i s.t. h≤i<j

chj(vh, vj) (3)

Summing the local cost of an assignment(xj , vj) and the minimal future cost in-
curred by lower priority neighbors provides a future cost of an eventual extension of Y i

with(xj , vj). The lower bound of Y i on a unassigned agent (Aj) is the minimal future
cost over all its values (Eq. 4). Thus, whenever a higher priority agent Ai requires from
Aj to compute a lower bound on a CPA Y i, it responds by sending back the minimal
lower bound of Y i over all values in its domain, i.e., lbj(Y i).

lbj(Y
i) = min

vj∈Dj

{lcj(Y i, vj) + fcj(vj)}. (4)

By collecting lower bounds from lower priority agents, agent Aj can compute a
lower bound on its CPA Y j . The lower bounds on a CPA Y j reported by lower priority
agents are accumulated and summed up with the guaranteed cost of Y j to provide a
lower bound on the cost of a complete extension of Y j (Eq. 5).

lb(Y j) = gc(Y j) +
∑

Ak�Aj

lbk(Y
j) (5)

If the computed lower bound lb(Y j) exceeds the current known upper bound (UBj), Aj

needs to change its current value vj on Y j by a new value v′j generating a stronger CPA.
Then, search continues with the generated CPA. If Aj has already tested all possible
values for its variable, it backtracks, asking the previous agent in the ordering (Aj−1)
to assign a new value to its variable through a back message.

2.3 Asynchronous Forward Bounding with CBJ (AFB BJ)

The Asynchronous Forward Bounding with backjumping (AFB BJ) was obtained by
adding a backjumping mechanism to standard AFB [7]. When the lower bounds of all
values exceed the upper bound, instead of backtracking to the most recently assigned
variable, AFB BJ tries to jump to the last assigned agent such that its re-assignment
could possibly lead to a solution. To this end, agents in AFB BJ use some maintained
data structures that we introduce in the following. Another feature of AFB BJ is that the
agent that performs an assignment, uses the minimal local cost (Eq. 3) as value ordering
heuristic.
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When an agent Aj assigns its variable, it sends an ok? message to the next agent
in the ordering. In AFB BJ, the ok? message contains the current partial assignment
Y j and an array of guaranteed costs, one for each level. gc(Y j)[j] is the cost of Y j =
[(x1, v1), . . . ,(xj , vj)] where gc(Y j)[0] = 0. For each i ∈ 1..j−1, gc(Y j)[i] equals
that received from Aj−1, i.e., gc(Y j−1)[i].

gc(Y j)[j] = gc(Y j) = gc(Y j−1) + lcj(Y
j−1, vj) (6)

In order to perform backjumping, AFB BJ agents compute a lower bound for each
level on the CPA. Concretely, instead of computing the lower bound for the whole
received CPA Y i, Aj computes it for each Y h where h ≤ i < j. To this end, Aj first
computes the local cost for each level h (Eq. 7).

lcj(Y
i, vj)[h] = lcj(Y

h, vj) (7)

The lower bound at level h (Eq. 8) is then the minimal lower bound of Y h over all
values in Dj . When a higher agent Ai requests from Aj to compute its lower bound on
a CPA Y i, it answers by sending an array of lower bounds, one for each level h where
h ≤ i < j.

lbj(Y
i)[h] = min

vj∈Dj

{lcj(Y i, vj)[h] + fcj(vj)}. (8)

When Aj successfully assigns a value vj to its variable, it sends forward copies of
the extended CPA, Y j , to each unassigned agent Ak and awaits for receiving from them
the array of lower bounds. The lower bounds denoted by lbk(Y

j), is an array in which
the ith element (1 ≤ i ≤ j) contains a lower bound on the cost of assigning a value
to Ak with respect to the assignment on Y i (Eq. 8). Once Aj receives lower bounds
arrays, it computes a lower bound on the cost of any full assignment (Eqs. 9).

lb(Y j)[i] = gc(Y j)[i] +
∑

Ak�Aj

lbk(Y
j)[i]. (9)

These lower bounds are used by the AFB BJ to determinate the backjumping level.
For more details about the way in which the level of backjumping is calculated we refer
the reader to [7].

3 Asynchronous Forward Bounding Revisited

AFB BJ+ is a revisited version of AFB BJ in which we propose a refinement of the
lower bound computations. We also propose to compute lower bounds for the whole
domain of the last assigned agent instead of only doing this for its current assignment.
Thus, an unassigned agent computes the lower bound for each value in the domain of
the agent requesting it. In addition, these lower bounds are used as a value ordering
heuristic.

3.1 Lower Bound Refinement

When an agent Ai successfully assigns a value vi to its variable, it sends forward copies
of the extended CPA, Y i, to each unassigned agent and awaits for receiving from them
the array of lower bounds. When agent Aj receives this CPA Y i (through a fb? mes-
sage), it computes the lower bound for each level h where h ≤ i < j (Eq. 8). When
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computing the lower bound of level h only assignments on Y h are considered. We also
add the cost of assigning vi to xi (i.e.,(xi, vi)) to this lower bound. Moreover, we also
add the minimal cost of constraints with variables (xm) between xh and xi. Thus, in-
stead of being a lower bound on a possible extension of Y h by a possible assignment
of Aj , it will be a lower bound on a possible extension of Y h by both Ai and Aj and
agents between xh and xi. Hence, we revise Eq. 8 to get Eq. 10 where the first and the
last terms remain as in the original equation.

lbj(Y
i)[h] = min

vj∈Dj

{
lcj(Y

i, vj)[h] +

i−1∑
m=h+1

min
vm∈Dm

{cmj(vm, vj)}

+ cij(vi, vj) + fcj(vj)

} (10)

At first glance, it seems that this will require more computational effort from unas-
signed agents, however it is not the case. One can simply compute the array of lower
bounds, as is already done in AFB BJ, and at the end it adds to each level the cost with
variable xi. We obtain the addition of the third term, i.e., cij(vi, vj). To get the quantity
to be added by the second term (i.e.,

∑i−1
m=h+1 min

vm∈Dm

{cmj(vm, vj)}), we use the same

principle used in Eq. 2. Agents compute for each value the estimations of each level
only once and store them.

The refinement of the lower bounds computation allows agents to get more accurate
lower bounds on their assignments. Thus, the accumulated lower bound at each level
is increased. This mechanism allows earlier detection of CPAs with lower bound larger
than the upper bound. In addition, by doing this, the back message will be sent as high
as possible in the agent ordering, thus saving unnecessary search effort.

3.2 Lower Bounds for the Whole Domain

In AFB BJ, the forward bounding phase is very expensive in term of communication
load. FB requires for each value in Dj , 2 × (n− j) messages (a fb? and a lb message
for each lower agent). Thus, FB needs, for each CPA Y j−1, 2×|Dj|×(n−j) messages.

In AFB BJ+, we propose to compute lower bounds for the whole domain of the last
assigned agent instead of only computing this for its current assignment. When an agent
receives a fb? message it answers by sending back a two-dimensional array, an array for
each value in the domain of the receiver agent. Hence, the forward bounding phase will
need, for each CPA Y j−1, only 2(n − j) messages, 2 messages for each lower agent.
When agent Aj receives a fb? from agent Ai, instead of computing lbj(Y i)[h] only for
the current value of xi, Aj computes it for each value vi in Di, lbj(Y i−1)[h][vi] using
Eq. 11.2

∀h ∈ 1..i-1, ∀vi ∈ Di, lbj(Y
i−1)[h][vi] = lbj(Y

i−1 ∪(xi, vi))[h] (11)

2 If xi and xj are not neighbors, a simple array is sufficient since the lower bound is the same
for all values in Di. Moreover, xj does not known Di.
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3.3 Avoiding Redundancy

Another feature of the AFB BJ+ algorithm is that agents retain and maintain the re-
ceived lower bounds to avoid redundant messages. When an agent Aj receives a fb?
message from agent Ai, instead of clearing all information it stores (namely the col-
lected lower bounds and the computed ones with their local costs), it clears only irrel-
evant information w.r.t the received CPA Y i. Concretely, Aj compares the time-stamp
of the received CPA with its CPA. If its CPA is stronger than the received one, the mes-
sage is discarded. Otherwise, Aj gets the index h ≤ i of the first counter on which they
differ. All local costs and lower bounds on the current partial assignment Y h−1 remain
valid. Thus, agent Aj will not re-compute lower bounds for this part.

The same thing is done for ok? messages. Whenever agent Aj receives a CPA Y j−1,
it updates all stored information by only removing parts that are not compatible with
Y j−1. When Aj succeeds in assigning its variable, it sends forward copy of the ex-
tended CPA Y j in fb? messages to its lower agents. However, some of these messages
are redundant. To avoid this, each agent Aj stores, for each lower priority agent Ak,
the agent which is the closest to Aj in the neighbors of Ak higher than Aj . As long
as the assignment of such agent or agents higher than him were not updated, there is
no need to send fb? message to Ak. Thus, redundant messages and computations are
saved. Moreover, the agent assigning its variable has more accurate lower bounds for
all values in its domain. As long as the new complete array of lower bounds has not
yet been received, the remaining valid part can be used as a lower bound estimation
for each value in the current domain using Eq. 12. h is the lowest valid level for lower
bound received from Ak.

lb(Y j) = gc(Y j) +
∑
k�j

lbk(Y
j−1)[h][vj ] s.t. (xj , vj)∈ Y j (12)

3.4 Promising Value Ordering Heuristic

Unlike AFB BJ that uses minimal local cost as value ordering heuristic, an AFB BJ+

agent uses a different strategy for reordering values in its current domain. All compu-
tations performed so far by unassigned agents to calculate lower bounds are used to
reorder values in the current domain. Thus, when receiving an ok? message, Aj com-
putes the lower bounds for all values in its domain using Eq. 12. Aj chooses to assign
first values with minimal lower bound. Then, instead of considering only costs with
past variable, both costs with past variables and estimations of costs on future vari-
ables are considered. We mimic an informed memory-bounded version of A∗, instead
of simulating an uninformed memory-bounded version of A∗.

3.5 AFB BJ+ Description

Fig. 2 presents the pseudo-code of AFB BJ+ executed by every agent Aj . Agent Aj

maintains a variable UBj that stores the current upper-bound (the cost of the best so-
lution found so far) initialized to +∞, v∗j that stores the value of Aj on the solution,
Y that stores the strongest received CPA, GC an array of size j − 1 that stores the
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procedure AFB-BJ+()
01. UBj ← +∞; v∗j ← empty; Y ← {}; GC[1..j−1] ← [0, . . . , 0];
02. mustSendFB ← True;
03. foreach ( Ak & Aj ) do
04. foreach ( vj & Dj ) do lbk(Y )[0][vj ] ← min

vk∈Dk

{cjk(vj , vk)} ;

05. if ( Aj = A1 ) then ExtendCPA() ;
06. while ( ¬end ) do
07. msg ← getMsg();
08. if ( msg.UB < UBj ) then UBj ← msg.UB; v∗j ← vj ;
09. if ( msg.Y is stronger than Y ) then
10. Y ← msg.Y ; GC ← msg.GC ;
11. clear irrelevant lower bounds ;
12. switch ( msg.type ) do
13. ok? : mustSendFB ← true ; ExtendCPA() ;
14. back : Y ← Y j−1; ExtendCPA() ;
15. fb? : sendMsg : lb 〈lbj(Y i)[], msg.Y 〉 to Ai ; /* Ai is msg sender */
16. lb : ProcessLB(msg);
17. stp : end ← true;

procedure ExtendCPA()
18. vj ← arg min

v′
j∈Dj

{lb(Y ∪ (xj , v
′
j))} ; /* Eq. 12 */

19. if ( lb(Y ∪(xi, vi)) ≥ UBj ) then Backtrack() ;
20. else
21. Y ← {Y ∪(xj , vj)}; tj ← tj + 1;
22. if ( var(Y ) = X ) then
23. UBj ← gc(Y ) ; /* Aj = An */
24. v∗j ← vj ;
25. Y ← Y j−1;
26. ExtendCPA() ;
27. else
28. sendMsg : ok? 〈Y, GC, UBj〉 to Aj+1 ;
29. if ( mustSendFB ) then
30. foreach ( Ak & Aj ) do sendMsg : fb? 〈Y, GC, UBj〉 to Ak ;
31. mustSendFB ← false ;

procedure Backtrack()
32. for ( i ← j-1 dowTo 1 ) do
33. if ( lb(Y )[i−1] < UBj ) then
34. sendMsg : back 〈Y i, UBj〉 to Ai ; return;
35. broadcastMsg : stp 〈UBj〉 ;
36. end ← true;

procedure ProcessLB(msg)

37. lbk(Y
j) ← msg.lb ; /* Ak is the sender of msg */

38. if ( lb(Y j) ≥ UBj ) then ExtendCPA() ;

Fig. 2. The AFB BJ+ algorithm running on agent Aj
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guaranteed costs where GC[i] = gc(Y i), and lbk(Y )[] that stores the lower bounds re-
ceived from a lower agent Ak. Since lbk(Y )[0][vj ] depends only on the assignments of
xj and xk, it is initialized to min

vk∈Dk

{cjk(vj , vk)}. Thus, it is a valid lower bound for all

CPAs that contains(xj , vj). Eq. 2 is obtained by summing lbk(Y )[0][vj ] for each lower
agent Ak .

AFB BJ+ starts by initializing the local data structures of Aj (lines 1-4). Aj then en-
ters in the waiting and processing message loop (line 6). Each received message holds a
CPA msg.Y and its corresponding guaranteed costs msg.GC. Due to the asynchronous
nature of the algorithm, some messages may be obsolete. Aj uses the time-stamping
mechanism to discard those messages (line 9). If the received CPA (msg.Y ) is stronger
than Y , Aj updates Y and GC by the received ones (line 10). Then, Aj clears all ir-
relevant lower bounds computed or received so far (line 11). Agent Aj attaches to each
message it sends its UBj . The upper bound UBj and v∗j are updated when a received
message carries a new upper bound smaller than the stored one (line 8).

Upon receiving an ok? message, Aj marks that it must send fb? messages by set-
ting mustSendFB to true. Next, it attempts to extend the received CPA by calling
procedure ExtendCPA() (line 13).

When calling ExtendCPA(),Aj tries to find a value with the minimum lower bound
(Eq. 12) without exceeding UBj (lines 18-19). If such value does not exist, Aj back-
tracks (Backtrack() call, line 19). Otherwise, Aj extends the CPA by adding its new
assignment and increments its counter tj . If the resulting CPA includes assignments of
all agents (line 22), a solution is found and then the upper bound is updated. Instead of
broadcasting the new solution and its associated upper-bound, Aj calls ExtendCPA()
to continue the search (line 26). Since UBj is always attached to the exchanged mes-
sages, other agents will be informed of this new upper bound when continuing the
search. At the end of the search, the best assignment of Aj is stored in v∗j . If Aj is not
the last agent on the ordering, it sends the extended CPA to the next agent (line 28).
Afterwards, Aj sends fb? messages to all lower priority agents (lines 30-31).3

When Aj receives a fb? message, it computes for each value from the domain of
the sender a lower bound on the cost increment caused by adding an assignment to its
variable using Eq. 10. These lower bounds are sent back to the agent who sent the fb?
message through a lb message.

When Aj receives a valid lb message, it saves the attached lower bounds (line 37).
It checks if this new information causes the current partial assignment to exceed the
upper-bound. In such a case, Aj calls ExtendCPA() in order to change its assignment
(line 38).

Agent Aj calls procedure Backtrack()whenever the lower bounds of all its values
exceed the upper-bound. When this occurs, Aj computes to which agent the CPA Y
should be sent to (the backtracking target). Aj goes over all candidates, from j − 1
down to 1, looking for the first agent it finds that its reassignment could lead to a full
assignment with a cost lower than UBj . This agent is the latest assigned agentAi where
lb(Y )[i−1] < UBj (line 33). If such an agent exists, Aj sends him a back message

3 In our implementation the fb? messages are sent under certain conditions to avoid redundancy,
see Section 3.3.
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(line 34). Otherwise, Aj reports this to other agents through stp messages (line 35) and
terminates its execution.

4 Correctness Proofs

Lemma 1. AFB BJ+ is guaranteed to terminate.

Proof. (Sketch) The proof is close to the one given in [19]. It can easily be obtained
by induction on the agent ordering that there will be a finite number of new generated
CPAs (at most dn, where n is the number of variables and d is the maximum domain
size), and that agents can never fall into an infinite loop for a given CPA. 	


To prove that AFB BJ+ is correct, we need to prove that the correctness inherent to
AFB BJ is not violated by the lower bound refinements and the non-broadcasting of
solution messages.

(Sketch) Assuming the correctness of AFB BJ, the lower bounds without refinement
terms are consistent. It is thus enough to prove that the costs included in the refinement
terms are not redundant. All constraints considered in the calculation of the second and
third terms of Eq. 10 have not been included in the first and fourth terms. Moreover,
these constraints are not included in the lower bounds computed by other lower priority
agents. Therefore, costs added by refinement terms are not redundant and then Eq. 12
is a lower bound on Y j .

Lemma 2. By the end of AFB BJ+, each agent stores in its UBj the cost of the optimal
solution Y ∗ and in v∗j its value on Y ∗.

Proof. (Sketch) In agent An, lb(Y n) equals gc(Y n) because it does not have lower
priority agents (Eq. 12). An updates its UBn and v∗n only when it generates a full CPA
(Y n) with gc(Y n) smaller than its current upper bound (lines 23-24). Thus, UBn only
decreases. Let σ be the smallest generatedUBn, i.e., σ is the cost of the latest generated
full CPA Y n. In AFB BJ+, (i) each agent Aj attaches to each message it sends its UBj .
Agent Aj only updates its UBj and its v∗j when the upper bound carried in a received
message is smaller than the stored one (line 8, Fig. 2). (ii) All agents will receive at least
one message after the generation of σ (at least they will receive stp messages before
they stop their execution). (iii) Messages are only sent after receiving and processing
other messages.An attaches σ to each message it sends. Hence, all messages that follow
the generation of σ will contain it. Because σ is the smallest generated upper bound and
following (i), (ii) and (iii), when the search is ended, UBj of each agent Aj equals σ
and its v∗j equals that assigned to xj in Y n. Now, one needs to prove that σ is the cost
of the optimal solution Y ∗ (i.e., σ equals gc(Y ∗) and Y n equals Y ∗). To prove that σ
equals gc(Y ∗), it is enough to demonstrate that during search no CPA that can lead to a
solution of lower cost than σ is discarded. In AFB BJ+, the CPAs are discarded only in
three places (line 19, procedure ExtendCPA(), line 38, procedure ProcessLB(), and
line 33, procedure Backtrack()). In all cases above, we are ensured that the lower
bound of the discarded CPAs exceeds UBj . Thus, they cannot lead to a solution with
a cost smaller than UBj . Now, since σ ≤ UBj when discarding those CPAs, we are
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ensured that they have a cost larger than σ. Thus, σ is the cost of the optimal solution
Y ∗ and then Y n equals Y ∗. Therefore, when AFB BJ+ terminates, v∗j is the assignment
of xj on Y ∗. Then, the lemma is proved. This also completes the correctness proof of
the AFB BJ+ algorithm. 	


Corollary 1. AFB BJ+ is sound, complete, and terminates.

5 Experiments

In this section we experimentally compare AFB BJ+ to AFB BJ [7], BnB-Adopt+

[8], and BnB-Adopt-DP2+ (BnB-Adopt+ combined with DP2 value ordering heuris-
tic [1]). Algorithms are evaluated on four commonly used benchmarks: binary random
Max-DisCSPs, binary random DCOPs, meeting scheduling and sensor networks. All
experiments were performed on the DisChoco 2.0 platform4 [18], in which agents are
simulated by Java threads that communicate only through message passing. We evalu-
ate the performance of the algorithms by communication load and computation effort.
Communication load is measured by the total number of exchanged messages among
agents during algorithm execution (#msg) [13]. Computation effort is measured by
the number of non-concurrent constraint checks (#ncccs) [22]. #ncccs is the metric
used in distributed constraint solving to simulate the computation time.

We simulate two scenarios of communication: fast communication (where message
delay is null), and slow communication with uniform random message delay, where
the delay costs between 0 and 100 #ncccs for each message. On slow communication,
the trends are similar to those observed for fast communication, so the results are not
reported here.

5.1 The Benchmark Settings

Uniform binary random Max-DisCSPs are characterized by 〈n, d, p1, p2〉, where n is
the number of agents/variables, d is the number of values per variable, p1 is the network
connectivity defined as the ratio of existing binary constraints, and p2 is the constraint
tightness defined as the ratio of forbidden value pairs (with a cost of 1). We solved
instances of two classes of constraint graphs: sparse graphs 〈10, 10, .4, p2〉 and dense
graphs 〈10, 10, .7, p2〉. We varied the tightness from 0.6 to 0.9 by steps of 0.1 and from
0.9 to 0.98 by steps of 0.02. For each pair of fixed density and tightness (p1, p2) we
report average over 50 instances.

Binary random DCOPs are characterized by 〈n, d, p1〉, where n, d and p1 are as in
Max-DisCSPs [8]. For each value combination a cost is selected randomly from the set
{0, . . . , 100}. For each p1 = 0.4, . . . , 0.8, we have generated 50 instances in the class
〈n = 10, d = 10, p1〉.

The meeting scheduling consists of a set of agents, each having a personal private
calendar and a set of meetings each taking place in a specified location. The meet-
ing scheduling is encoded as follows. Variables/agents represent meetings. Each meet-
ing/variable has as domain the time slots possible for it. There are constraints between

4 http://dischoco.sourceforge.net/

http://dischoco.sourceforge.net/
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Fig. 3. Total number of messages sent and #ncccs performed on Max-DisCSP problems in
logarithmic scale

Table 1. Total number of messages sent and #ncccs performed on binary random DCOPs where
costs are randomly selected from 0 to 100

#ncccs × 103 #msg × 103

p1 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8
AFB BJ+ 31 77 148 299 554 3 7 14 27 48
AFB BJ 122 308 654 1,601 3,442 54 111 186 379 658
BnB-Adopt+ 617 3,193 15,436 61,938 98,684 102 419 1,552 5,289 6,312
BnB-Adopt-DP2+ 180 958 5,266 25,869 75,414 34 151 636 2,549 5,864

meetings that share participants. We present here 4 cases each with different hierarchical
scenarios [21].

The sensor network problem consists of a set of sensors that track a set of mobiles.
Each mobile must be tracked by 3 sensors. Each sensor can track at most one mobile.
The sensor network problems are encoded as follows. Variables/agents represent mo-
biles. The possible values of a variable/mobile are all combinations of three sensors that
are able to track it. There are constraints between adjacent mobiles. Details are given in
[1,11,2]. We present here 4 cases with different topology scenarios [21].

5.2 Results and Discussion

The results on instances of the first set of experiments (Max-DisCSPs) are illustrated
in Fig. 3. In terms of computational effort (Figs. 3a and 3c), AFB BJ+ improves the
AFB algorithms and performs faster than both BnB-Adopt+ algorithms. The factor of
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Table 2. Total number of messages sent and #ncccs performed on Meeting Scheduling

#ncccs #msg

cases A B C D A B C D
AFB BJ+ 4,987 6,536 2,789 2,206 373 871 536 582
AFB BJ 30,332 101,206 15,841 32,364 7,944 32,262 9,441 17,443
BnB-Adopt+ 272,490 63,352 51,134 30,030 15,507 10,472 8,717 8,278
BnB-Adopt-DP2+ 5,371 4,224 2,165 1,647 636 749 511 485

Table 3. Total number of messages sent and #ncccs performed on Sensor Network

#ncccs #msg

cases A B C D A B C D
AFB BJ+ 5,599 6,182 2,395 4,869 2,043 1,999 325 1,430
AFB BJ 167,862 190,423 12,084 33,988 127,544 145,421 7,853 33,280
BnB-Adopt+ 4,052 6,337 6,561 8,982 876 1,215 1,198 2,072
BnB-Adopt-DP2+ 992 1,046 982 1,278 195 238 176 323

improvements is 5 for sparse graphs and 7 for dense graphs. Concerning communi-
cation load (Figs. 3b and 3d), AFB BJ+ requires few messages compared to others
algorithms. AFB BJ+ improves AFB BJ by a factor of 20 (resp. 15) in sparse (resp.
dense) instances. In dense instances, AFB BJ+ outperforms BnB-Adopt-DP2+ by a
large scale. BnB-Adopt+ and BnB-Adopt-DP2+ are the less efficient algorithms for
solving Max-DisCSPs, and their performance dramatically deteriorates on dense Max-
DisCSP problems. The DP2 heuristic improves the performance of BnB-Adopt+. This
improvement is clearer in the sparse problems than in dense ones.

For binary random DCOPs, the results are presented in Table 1. Both versions of
BnB-Adopt+ dramatically deteriorate compared to algorithms performing assignments
sequentially. Again, the DP2 heuristic improves the performance of BnB-Adopt+.
AFB BJ+ improves the speed-up of AFB BJ by a factor of 6 in dense instances.
Regarding the #msg, the factor of improvement is 13.

Table 2 presents the results on meeting scheduling problems. Comparing AFB BJ+

to AFB BJ, the obtained results show that AFB BJ+ reduces the number of #ncccs by a
factor of 10 and the number of required messages by a factor of 50 in all classes. AFB BJ+

outperforms BnB-Adopt+by a large factor on both considered measures. However, BnB-
Adopt-DP2+ benefits from its preprocessing step and performs faster than AFB BJ+.

For sensor networks, the results are presented in Table 3. Again, AFB BJ+ improves
the performance of AFB BJ by a large scale. Compared to AFB BJ, AFB BJ+ re-
duces the #ncccs by a factor of 15 and the number of messages by a factor of 50.
BnB-Adopt+ performs almost the same #ncccs and the same number of messages as
AFB BJ+. BnB-Adopt-DP2+ outperforms all other algorithms since it needs very few
messages and #ncccs to resolves sensor networks instances.

Looking at all results together, we come to the straightforward conclusion that
AFB BJ+ performs very well compared to its forward bounding counterparts. The
reason for that amounts mainly to refined lower bounds and their use as value order-
ing heuristic. This guides the search first to promising assignments. The large gap in
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communication load can be explained by the fact that when an AFB BJ+ agent has the
token to assign, it sends at-most one request to each lower agent, whereas other AFB
algorithms need one message for each lower agent for each possible assignment. In ad-
dition, AFB BJ+ stores and maintains valid lower bounds to avoid redundant messages.

Both versions of BnB-Adopt+ perform very poorly when solving Max-DisCSPs
and random DCOPs. One possible reason is that in both algorithms, agents have a
strongly asynchronous assignments policy. However, for structured problems, BnB-
Adopt-DP2+ has performance close to AFB BJ+. On some highly structured problems
(sensor networks), it performs well. When we checked these instances, we found them
very sparse with very few constraints. The constraint tree structure used in BnB-Adopt+

combined with the very informed DP2 heuristic allows agents, in such very sparse in-
stances, to initialize their lower bounds of values to a cost close to that of the solution.

Our experiments show that AFB BJ+ needs less messages than other algorithms.
However, AFB BJ+ messages can be longer than those sent by other algorithms. The
largest messages in AFB BJ+ (lb messages) are in O(nd). To see the practical impact
of these larger messages, we computed the total number of bytes exchanged by all
algorithms.5 AFB BJ+ is improved by BnB-Adopt-DP2+ by a factor up to 2 on meeting
scheduling and 47 on sensor networks. Except for these two cases, AFB BJ+ improves
other algorithms in all benchmarks by a factor up to 94 (instead of factor 73 for #msg)
for AFB BJ, 144 (instead of 236 for #msg) for BnB-Adopt+, and 80 (instead of 203
for #msg) for BnB-Adopt-DP2+.

In all our experiments, the longest message sent by AFB BJ+ was of size 366 bytes.
The minimum datagram size that we are guaranteed to send without fragmentation of
a message (in one physical message) is 568 bytes for IPv4 and 1,272 bytes for IPv6
when using either TCP or UDP [3]. Thus, counting the number of exchanged messages
is equivalent to counting the number of physical messages.

6 Conclusion

We have proposed AFB BJ+, a revisited version of the AFB BJ algorithm in which
we refine the computations of lower bounds by future agents. In AFB BJ+, the lower
bounds are computed for the whole domain of the last assigned agent providing him
with a very informed value ordering heuristic. Our experiments show that AFB BJ+

improves the current state of the art in terms of runtime and number of exchanged
messages on different distributed problems. The present work is a step forward in or-
der to address real world applications in multi-agent coordination. Several directions
need to be explored in the AFB family. A promising direction is that of variable order-
ing heuristics. Another direction will be to try to maintain consistencies stronger than
forward bounding.
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2. Béjar, R., Domshlak, C., Fernández, C., Gomes, C., Krishnamachari, B., Selman, B., Valls,
M.: Sensor networks and distributed csp: communication, computation and complexity. Artif.
Intel. 161, 117–147 (2005)

3. Bessiere, C., Bouyakhf, E.H., Mechqrane, Y., Wahbi, M.: Agile Asynchronous Backtracking
for Distributed Constraint Satisfaction Problems. In: Proceedings of the IEEE 23rd Interna-
tional Conference on Tools with Artificial Intelligence, ICTAI 2011, Boca Raton, Florida,
USA, pp. 777–784 (November 2011)

4. Bonnet-Torrés, O., Tessier, C.: Multiply-constrained dcop for distributed planning and
scheduling. In: AAAI Spring Symposium: Distributed Plan and Schedule Management,
pp. 17–24 (2006)

5. Chechetka, A., Sycara, K.: No-Commitment Branch and Bound Search for Distributed Con-
straint Optimization. In: Proceedings of AAMAS 2006, pp. 1427–1429 (2006)

6. Gershman, A., Meisels, A., Zivan, R.: Asynchronous Forward-Bounding for Distributed
Constraints Optimization. In: Proceedings of ECAI 2006, pp. 103–107 (2006)

7. Gershman, A., Meisels, A., Zivan, R.: Asynchronous Forward Bounding for Distributed
COPs. JAIR 34, 61–88 (2009)

8. Gutierrez, P., Meseguer, P.: Saving redundant messages in bnb-adopt. In: AAAI 2010 (2010)
9. Gutierrez, P., Meseguer, P.: Removing redundant messages in n-ary bnb-adopt. J. Artif. Intell.

Res (JAIR) 45, 287–304 (2012)
10. Hirayama, K., Yokoo, M.: Distributed partial constraint satisfaction problem. In: Smolka, G.

(ed.) CP 1997. LNCS, vol. 1330, pp. 222–236. Springer, Heidelberg (1997)
11. Jung, H., Tambe, M., Kulkarni, S.: Argumentation as Distributed Constraint Satisfaction:

Applications and Results. In: Proceedings of AGENTS 2001, pp. 324–331 (2001)
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Abstract. Table constraints define an arbitrary constraint explicitly as a set of
solutions (tuples) or non-solutions. Thus, space is proportional to number of tu-
ples. Simple Tabular Reduction (STR), which dynamically reduces the table size
by maintaining a table of only the valid tuples, has been shown to be efficient for
enforcing Generalized Arc Consistency. The Cartesian product representation is
another way of having a smaller table by compression. We investigate whether
STR and the Cartesian product representation can work hand in hand. Our ex-
periments show the compression-based STR can be faster once the tables com-
press well. Thus, the benefits of the STR2 and STR3 algorithms respectively are
retained while consuming less space.

1 Introduction

Table constraints are the most general form of finite domain constraints where the table
defines the solutions (or non-solutions) of the constraint. Two state-of-the-art GAC ap-
proaches for non-binary table constraints, STR [1,2,3] and mddc [4], incorporate some
form of compression. In particular, STR uses dynamic compression which compresses
the table during search by removing invalid tuples. Tables can also be compressed with
the Cartesian product representation [5,6] which was used before in the context of sym-
metry breaking and nogood learning. It was applied to compress table constraints in [7]
and shown to improve the GAC-Schema+allowed algorithm.

Compression of a table constraint using the Cartesian product representation for the
tuples, which we call c-tuple(s), gives a static compression of the table. Dynamic com-
pression in STR, on the other hand, compresses by reducing the table size by tabular
reduction [1] during search. However, the Cartesian product representation can inhibit
tabular reduction. Thus, unlike GAC-Schema algorithms which use static tables where
compression is likely to be beneficial, with STR there is interplay between both kinds of
compression, changing their benefits respectively. A recent paper [8] proposed a more
complex way to compress tables and applies STR on this compressed representation.
However, their preliminary experiments showed that the revised algorithm to be com-
petitive with STR1 [1], but not faster than STR2 [2]. Ideally we want a compression
schemes for STR where the overall benefits can outweigh the costs.

In this paper, we return to the simple idea of Cartesian product compression and
investigate whether static and dynamic compression approaches for GAC can be effec-
tively combined on table constraints. We extend the STRx (STR2 [2] and STR3 [3])
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C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 724–732, 2013.
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algorithms to handle compression tuples [7]. We experiment with random and struc-
tured CSPs varying the degree of static and dynamic table compression. We find that
compression is not always beneficial but when there is a reasonable amount of static
compression, the compression algorithms, STR2-C and STR3-C are faster than STR2
and STR3 respectively. They also inherit the underlying properties of STR2 and STR3.

2 Background

A constraint satisfaction problem (CSP) P = (X,C) consists of a finite set X of vari-
ables and a finite set C of constraints. Variables xi ∈ X only take values from a finite
domain dom(xi). An assignment (xi, a) denotes xi = a. An r-ary constraint C ∈ C

on r distinct variables x1, . . . , xr is a subset of the Cartesian product
∏r

i=1 dom(xi),
denoted by rel(C), that restricts the values of the variables in C can take simultane-
ously. The scope is the set of variables denoted by var(C) and r is the arity of C. A
set of assignments θ = {(x1, a1), . . . , (xr , ar)} satisfies C iff (a1, . . . , ar) ∈ rel(C),
also called a solution of C or tuple of C and θ[xi] = ai. Solving a CSP is finding an
assignment for each variable from its domain so that all constraints are satisfied.

An assignment (xi, a) is generalized arc consistent (GAC) to P iff for every con-
straint C ∈ C such that xi ∈ var(C), there is a solution θ of C where (xi, a) ∈ θ and
a ∈ dom(xi) for every (xi, a) ∈ θ. This solution is called a support for (xi, a) in C.
A variable xi ∈ X is GAC iff (xi, a) is GAC for every a ∈ dom(xi). A constraint is
GAC iff every variable in its scope is GAC. Finally, CSP P is GAC iff every constraint
in C is GAC.

Definition 1. (C-tuple [5,7]). Let C be an r-ary constraint. A compression tuple τc =
({a1,1, a1,2, ..., a1,k1}, ..., {ar,1, ar,2, ..., ar,kr}) of C is the Cartesian product of a set
of tuples. This compression tuple τc is also called a c-tuple.

A c-tuple admits any set of assignments that assigns one of a1,1, ..., a1,k1 to x1, one
of a2,1, ..., a2,k2 to x2, etc. Given a c-tuple τc, τc[xi] denotes {ai,1, ..., ai,ki}. Fig 1 (a)
shows a table and Fig 1 (c) shows its compressed form. A c-tuple can potentially repre-
sent an exponential number of tuples. We extend the concept of validity to c-tuples.

Definition 2. (Validity of c-tuple). Let C be an r-ary constraint. A c-tuple τc is valid
on C iff ∀xi ∈ var(C), ∃ai ∈ τc[xi] such that ai ∈ dom(xi).

3 STR2-C: STR2 on Compression Tuples

STR2 [2], a refinement of STR, is shown to be one of the most efficient GAC algorithms
for non-binary table constraints. In maintaining GAC during search, STR2 gets its effi-
ciency by maintaining dynamically the table of valid tuples. When enforcing GAC on a
table constraint, the validity of each tuple is checked. Once a tuple is found to be valid,
the domains of the variables are updated with the consistent values belonging to the
tuple. Otherwise, the tuple is removed from the table, thus, is not considered again as
the search goes deeper. Upon backtracking, removed tuples will be added back to the
table.
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We now extend STR2 to work with table constraints on c-tuples which we call STR2-
C. Like STR2, STR2-C maintains a table of valid c-tuples dynamically during search.
The extension to STR2-C is straightforward, so we will describe it informally. When
STR2-C identifies the validity of c-tuples, if a c-tuple is invalid, it will be removed
from the table, otherwise, the values belonging to the c-tuples are used to update the
domains of the variables. But unlike STR2, all the values belonging to a valid tuple
are GAC-consistent, the valid c-tuples may contain inconsistent values. Thus additional
value checks against the domains must be done when collecting the consistent values.

For the same reason, the domain updating phase of STR2 can cause rechecking of in-
consistent values. In order to save some rechecks, a cursor can be used for each variable
to separate the inconsistent values with the unchecked values, then the values which
are already detected to be inconsistent can be skipped and only the unchecked values
will be checked against the variables’ domains. In STR2, one optimization is that once
a variable’s domain is found GAC-consistent, there is no need to seek supports for the
variable. Such variables are skipped when the variables’ domains are updated in the
second phase of STR2. This optimization can be amplified in STR2-C, as the value
checks against the domains in the second phase of STR2-C can also be skipped.

Compared to STR2, the potential runtime improvement of STR2-C is because the
compressed table may be up to exponentially smaller than the original table. We could
expect that gains in efficiency of STR2-C will depend on the size of the compression
table to the original table. To illustrate this, consider the constraint:

Cd,r(x1, x2, ..., xr) ≡ [
∧r

i=1 xi = {0, 1, ..., d− 2}] ∨ [
∧r

i=1 xi = d− 1]

The domain of each variable is 0, 1, ..., d − 1. The table representation of Cd,r has
(d− 1)r + 1 tuples, while the c-tuple table has 2 c-tuples, which are {({0, 1, ..., d −
2}, ..., {0, 1, ..., d− 2}), ({d− 1}, ..., {d− 1)})}. Enforcing GAC on Cd,r using STR2
takes O(rdr) time, while using STR2-C takes O(rd) time.

However, there is also a drawback. Unlike STR2, which keeps valid tuples, STR2-
C keeps the valid c-tuples that may still include invalid tuples. This will bring some
rechecks of values which can slow down STR2-C compared with STR-2.

4 STR3-C: STR3 on Compression Tuples

STR3 [3] is a fine-grained table reduction based GAC algorithm, but uses a different
table representation. Conceptually, in the STR3 representation, each variable-value pair
is mapped to its set of tuples. STR3 is path-optimal, as it avoids unnecessary traversal
of tables. STR3-C extends STR3 to work on c-tuples.

The STR3 and STR3-C representation is illustrated in Fig 1 (see [3] for details).
Fig 1 (a) shows the original table representation and Fig 1 (b) is the equivalent STR3
representation. Compressing Fig 1 (a) with c-tuples gives Fig 1 (c) and the final STR3-C
representation is Fig 1 (d).

We briefly summarize some ideas from the STR3 algorithm, and refer to the details
in [3]. For each constraint C, row(C ,X , a) represents the set of tuples belonging to
(X, a) in the equivalent table (e.g. Fig 1 (b)). row(C ,X , a) is associated with a cur-
sor, represented by row(C ,X , a).curr , to separate the untested and invalid tuples. In
addition, each tuple τ is accompanied with a dependent list dep(τ) of variable-value
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X Y Z
1 a a a
2 a a b
3 b b c
4 b c c
5 c b c
6 c c c

(a) Standard table

X Y Z
a {1, 2} a {1, 2} a {1}
b {3, 4} b {3, 5} b {2}
c {5, 6} c {4, 6} c {3, 4, 5, 6}

(b) Equivalent table

X Y Z
1 {a} {a} {a,b}
2 {b,c} {b,c} {c}
(c) Standard compressed table

X Y Z
a {1} a {1} a {1}
b {2} b {2} b {1}
c {2} c {2} c {2}

(d) Equivalent compressed table

Fig. 1. The table representation of STR3 and STR3-C

pairs which treat τ as a valid support. STR3 works as follows. Once a value (X, a) is
removed, all the unchecked tuples in row(C ,X , a) before the cursor will be checked .
If a tuple is already invalid, there is no need to update its dependent list. Otherwise, the
tuple τ is set to be invalid, then a new support should be found for each (Y, b) ∈ dep(τ).
If a support τ2 is found, (Y, b) will be shifted to dep(τ2), otherwise (Y, b) is inconsistent
and removed.

STR3-C works with c-tuples, i.e. the STR3 representation applied to the compressed
c-tuple form of the original table. In STR3-C, row(C ,X , a) is replaced by a set of c-
tuples containing value (X, a). The dependent list is based on c-tuples, but is still com-
posed of the variable-value pairs. The key for STR3-C is the detection of the validity of
c-tuples. This is the main difference from STR3, as when (X, a) is removed, the c-tuple
in row(C ,X , a) may still be valid. The details of the algorithm is given in Fig 2. The
inv(C ) in Line 1 is the set of invalid c-tuples of constraint C implemented as a sparse
set. In the inv(C ) structure, inv(C ).members is the position of the last current element
in inv(C ) and inv(C ).dense is the invalid c-tuples array. In Line 2, comprTable is the
standard compressed table (e.g. Fig 1c) and comprTable[row(C ,X , a)[k ]][X ] returns
a set values of X appearing in the c-tuple row(C ,X , a)[k ]. Different from STR3, the
standard compressed table is used to access the c-tuples. To check the validity of the
c-tuple row(C ,X , a)[k ], if a consistent value belonging to the c-tuple under variable
X exists, the c-tuple is valid, so no need to update the dependent list of the tuple. Oth-
erwise the c-tuple becomes invalid, and will be added into inv(C ). The save() function
in Line 6 and Line 7 stores the states of inv(C ).members and row(C ,X , a).curr into
the stack stateI and stateR respectively for backtracking. From Line 5 to Line 8, which
is the same as STR3, STR3-C updates the dependent list of the invalid c-tuples, and the
inconsistent values will be removed.

For example, consider a table constraint C(x1, x2, x3) = {(0, 0, 0), (0, 1, 0),
(0, 2, 0), (2, 2, 2)} with domains {0, 1, 2}. In STR3, when (x2, 0) is removed, the first
tuple (0, 0, 0) becomes invalid. If (x1, 0) and (x3, 0) are in dep((0, 0, 0)), then (x1, 0)
and (x3, 0) will be transferred to the second or third tuple by assuming (x2, 1) and



728 W. Xia and R.H.C. Yap

STR3-C(C : Constraint,X : V ariables, a : V alue)
1 prevMembers ← inv(C ).members
2 for k ← 0 to row(C ,X , a).curr do

if row(C ,X , a)[k ] /∈ inv(C ) then
3 checkVal [] ← comprTable[row(C ,X , a)[k ]][X ]

for v ← 0 to checkVal [].size − 1 do
if checkVal [v ] ∈ dom(X ) then break

if v = checkVal [].size then
4 add row(C ,X , a)[k ] to inv(C )

5 if prevMembers = inv(C ).members then return true
6 save(C, prevMembers , stateI )

foreach i ∈ {prevMembers + 1, ..., inv(C ).members} do
k ← inv(C ).dense[i ]

foreach (Y, b) ∈ dep(C )[k ] such that b ∈ DC(Y ) do
p ← row(C ,Y , b).curr
while p ≤ 0 and row(C ,Y , b)[p] ∈ inv(C ) do p ← p− 1
if p < 0 then

removeValue(Y, b)
if DC(Y ) = ∅ then return false

else
if p �= row(C ,Y , b).curr then

7 save((C, Y, b), row(C ,Y , b).curr , stateR)
row(C ,Y , b).curr ← p

move (Y, b) from dep(C )[k ] to dep(C )[row(C ,Y , b)[p]]

8 return true

Fig. 2. STR3-C algorithm

(x2, 2) are consistent. However, for STR3-C, the first three tuples are compressed into
one. When (x2, 0) is removed, the c-tuple ({0}, {0, 1, 2}, {0}) is still valid as (x2, 1)
and (x2, 2) are consistent, thus the dependent list will not be checked or updated. But
this c-tuple may be checked again when (x2, 1) or (x2, 2) is removed. Similar to STR2-
C, the rechecks may potentially slow down STR3-C.

The difference between STR3 and STR3-C mainly lies in the cost of detecting the
invalid tuples. STR3-C takes at most additional d value checks for each c-tuple when
checking its validity. However, as the compressed table can be exponentially smaller
than the original table, STR3-C can still have runtime improvement. As STR3 collects
the invalid tuples incrementally, let’s consider the cost for the constraint Cd,r, used in
previous section, along a single search path of length m. For STR3-C, one c-tuple will
become invalid after at most r ∗ d times validity checks along a single path, and each
validity check is accompanied by at most d value checks. Assuming O(1) cost at each
search node, STR3-C will take O(rd2+m) time, while STR3 will take O(rdr+m) [3]
time for Cd,r.
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5 Experiments

We prototype STR2-C and STR3-C in Abscon1 which has implementations of STR2
and STR3. Experiments were run on an Intel i7/960 @3.20GHz on 64-bit Linux.

We investigate the performance of STRx algorithms under different table compres-
sion ratios with random and structured benchmarks given in Table 1.2 In order to have
sufficient variation in table compression, we also generate another two series of random
CSPs. The first is MDD-p which generalises the mdd-half benchmark (p = 0.5) by
building an MDD in a post-order manner with probability p that a previously created
sub-MDD is reused [4]. Another series is modified from rand-5-12 where the con-
straints have high tightness.3 We decrease the tightness by randomly adding tuples such
that the table is 2X (twice), 4X and 8X the size of rand-5-12. As some tables become
quite large, half the constraints are removed. The average table size and table compres-
sion ratio based on series of benchmarks are given in Table 1 where Cr = #c−tuples

#tuples .
We use dom/ddeg and lexico as the variable and value ordering respectively when

solving the CSPs to ensure the search space is the same [2]. Table 2 shows the average

Table 1. Statistics for the benchmarks

Series #tuples Cr Series #tuples Cr Series #tuples Cr
rand-3-20 2944 0.138 rand-5-12-2X 24884 0.451 mdd-0.5 39850 0.13
rand-8-20 78120 0.602 rand-5-12-4X 49768 0.243 mdd-0.7 39050 0.05
rand-5-12 12442 0.684 rand-5-12-8X 99536 0.124 mdd-0.9 39050 0.015

cril 1228 0.094 ramsey-a3 24 0.25
ruler-25 238000 0.026 ramsey-a4 61 0.133
ruler-34 850000 0.019 chessColor 78 0.115

Table 2. The average runtime (in seconds) for random benchmarks

Series #instances STR2 STR2-C STR3 STR3-C
rand-3-20 20 44.7 27.6 39.7 33.7
rand-8-20 20 17.3 25.5 280.0 245.6
rand-5-12 20 30.7 54.1 9.3 11.4

rand-5-12-2X 16 12.4 15.7 8.2 8.8
rand-5-12-4X 16 89.9 59.1 60.1 43.7
rand-5-12-8X 16 1061.3 379.3 1567.2 877.3

MDD-0.5 14 436.1 212.7 1628.5 596.7
MDD-0.7 9 1040.4 172.3 1580.7 304.6
MDD-0.9 10 262.4 30.0 383.0 39.0

1 Available from http://www.cril.univ-artois.fr/˜lecoutre/research/
tools

2 The benchmarks are available from http://www.cril.univ-artois.fr/
˜lecoutre

3 The tightness of a table is defined as 1 − t
dr

, where t is the number of tuples in the table, d is
the domain size of the variables and r is the arity of the constraint.

http://www.cril.univ-artois.fr/~lecoutre/research/tools
http://www.cril.univ-artois.fr/~lecoutre/research/tools
http://www.cril.univ-artois.fr/~lecoutre
http://www.cril.univ-artois.fr/~lecoutre
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Fig. 3. (a) and (b) shows the runtime of STRx and STRx-C for random CSPs; (c) and (d) shows
the runtime of STRx and STRx-C for structured CSPs with a max number of search nodes. (A
smaller value of Cr indicates higher compression)

CPU time to solve the instances of different groups of random CSPs with the fastest
across algorithms in bold and the fastest per column underlined. The cursor optimiza-
tion is used in the STR2-C column which we found to give a small improvement on
average. However, in some instances, the added overhead makes it slightly slower.

We found STRx-C, on average, is faster than the corresponding STRx algorithm. In
particular, for the series MDD-0.9, STR2-C and STR3-C are up to 9 times faster than
STRx respectively. For the structured CSPs, most of the problem instances take longer
than the time out (1 hour), thus, we give the average runtime up to a maximum number
of search nodes: 100000 nodes for ramsey, chessboardColor and cril, and 10000 nodes
for golombRuler (in Fig 3 (c) and (d)).

Fig 3 details the runtime of STRx and STRx-C for each instance under different
compression ratios. From Fig 3 (a) and Fig 3 (c), we see that STR2-C could be more
than 20 times faster than STR2 for some instances. When the compression ratio is small
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Fig. 4. (a) The runtime ratio of STR2/STR3 and STR2-C/STR3-C versus the average table size
during search; and (b) The runtime ratio of STR2-C/STR2 and STR3-C/STR3 versus the average
table size ratio during search

enough, STR2-C becomes faster than STR2. Thus, the more the table is compressed,
the faster STR2-C gets. Fig 3 (b) and Fig 3 (d) show a similar comparison between
STR3-C and STR3. We also find that STR3-C is faster when Cr is small. However, the
slowdown or speedup of STR3-C on STR3 is less than STR2-C on STR2.

STR3 was shown to be faster than STR2 when table reduction does not drastically
reduce the table during search [3]. We also investigate whether this property is inherited
by STR2-C and STR3-C. As Fig 4 (a) shows, STR3-C is also faster than STR2-C when
the average compressed table size is large. We see that among the instances, STR2 is up
to 4 times slower than STR3, while STR2-C is up to 6 times slower than STR3-C. This
suggests that the difference between STR2 and STR3 is more pronounced after com-
pression. Fig 4 (b) shows that STR2-C is fast as the average table size of the compres-
sion table is small enough, otherwise STR2-C is slower than STR2. We also observed
that the average table size ratio during search of STR2-C over STR2 decreases as the
compression ratio decreases. This is reasonable as when the table cannot be compressed
much, the original table and the c-tuple table are close in size, so the table reduction dur-
ing search becomes similar. Thus, the compression ratio becomes the basic determinant
to the performance of the STRx-C algorithms and can be used to identify cases when
STRx-C is beneficial. We also compared with c-tuples on GAC-schema+allowed. On
average, the speedup or slowdown of c-tuples is greater with STR2 than with GAC-
schema+allowed.

To summarize, our experiments show that our STR algorithms on compressed tables
are competitive when the table can be compressed enough. For random CSPs, as the
table compression ratio drops to 25%, the STRx-C algorithms become more efficient.
This illustrates that static and dynamic table compression can cooperate well in practice
even though the use of c-tuples has drawbacks in that it reduces the amount of table
reduction and has some (small) overheads. We also show that the properties of STR2
and STR3 can be inherited by their compressed version algorithms.
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Abstract. We present an application to extract and solve constraint models from
sample solutions of the Unit Commitment Problem of EDF, which computes the
power output for each power plant in France as a 48 hour time series. Our aim is
to describe and automatically generate the plant-specific model constraints com-
mon to the optimal solutions obtained over multiple days. The proposed system
generates specific domains for each variable (i.e., time slot), binary constraints
between consecutive time slots, and global constraints with functional depen-
dencies over the entire time series. We employ time series clustering techniques
for finding stronger constraints and we identify plant-specific time intervals, for
which we add additional global constraints. A custom search routine and the gen-
erated models allow us to produce solutions corresponding to many overlapping
global constraints. Our tool is based on the ModelSeeker [4], but specializes and
extends that system for this specific application domain. Results indicate that use-
ful models can be generated with this process.

1 Introduction

In this paper we present a first practical application inspired by ideas used in the Mod-
elSeeker [4] tool. The ModelSeeker is a constraint acquisition system which generates
global constraint models from example solutions of a problem. In [4], it was tested on
a large variety of small puzzles and simple problems, exploiting many of the global
constraints in the Global Constraint Catalog [3]. The ModelSeeker works for highly
structured problems, where a given solution can be partitioned into regular subsets, for
which the same constraints apply. In most of the problems, the domains of the variables
are uniform, or can be computed as the result of a problem transformation.

Here, we extend the ModelSeeker to address an important, large scale optimization
problem in electricity supply scheduling, the Unit Commitment Problem (UCP). This is
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a much less regular problem than those considered before, while having several unique
features that can help in efficiently finding models and solutions. Each solution con-
sidered is a time series over a fixed time horizon, and we exploit this information to
generate more accurate domains for our model. Consecutive variables represent solu-
tion values for consecutive time periods, therefore it also makes sense to discover binary
constraints between them, e.g., using techniques described for the constraint acquisition
tool CONACQ [5].

In Section 2 we describe the Unit Commitment Problem in general, and the specific
one solved by the French electricity provider, Electricité de France (EDF) [10]. In Sec-
tion 3 we give a high-level overview of our proposed approach, the UCP-ModelSeeker
(Unit Commitment Problem ModelSeeker). In Sections 4, 5, and 6 we give details about
each building block of our system. Section 7 presents results for the solutions generated
from the model acquired with the UCP-ModelSeeker, showing that the overall approach
is feasible, while Section 8 concludes and discusses future work.

2 The Unit Commitment Problem

The Unit Commitment Problem [13,6,12,16,17,11] is a core optimization problem in
the electricity supply industry. Based on forecasted demand for a given time horizon,
a complex model describes the possible power output values and operating cost of dif-
ferent power plants, and specific operating constraints for each plant. Depending on the
type of plant (e.g., nuclear, hydro-electric, thermal), the possible power output levels,
the min/max ramp-down/up constraints, and the number of shut-downs/start-ups in a
given period may all be constrained. Due to its size and the complexity of constraints,
the UCP can be very hard to solve, and a large variety of solution methods have been
attempted [14]. As the problem is solved in an operational context, and constraints may
change within a short time horizon, it is very useful to be able to rerun the model when-
ever the situation dictates. For many power systems, the computational effort restricts
this more reactive use of the model. For example, solving the UCP using state-of-the-art
techniques, takes 15 mins for 200 plants over a 24 hours time horizon, in a simulation
of the Mexican Power System [14]. The UCP solving time is typically directly affected
by the number of power plants, constraints, and length of the optimization horizon.

2.1 The EDF Unit Commitment Problem

EDF is the largest electric utility company in France, with a total of 98.8GW installed
capacity mixing the following forms of energy: nuclear (85% of total, 58 power plants
providing 63.1GW), thermal (5%, 47 plants, coal, oil, gas), hydraulic and renewable.
The largest percentage of renewable energy is provided by hydro-electric plants (8%,
500 plants linked to 250 reservoirs) [8]. The day-ahead UCP model has 48 hours in
half-hour periods (96 periods). The EDF high-level system overview is as follows [10]:

– Large size (106 variables, 106 constraints): all production plants are modeled with
a large number of technical constraints and on a 48 hour horizon.

– Non-convex and non-continuous nature: some production costs have discontinuities
and the production variables are discrete.
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Fig. 1. The EDF Unit Commitment Problem

– Strict computational limits, due to a tight operational process: data collection ends
at 12:30 and the feasible schedules have to reach the transport system operator by
16:30. Post-optimization involving human expertise is required, altogether leaving
about 15 minutes for solving the optimization problem.

We consider two use cases associated with the EDF Unit Commitment Problem, as
shown in Figure 1. The first use case derives plant-specific constraints from given (au-
tomated) solutions of the UCP. This serves multiple goals:

1. We want to see if the UCP-ModelSeeker can recover the plant-specific constraints
which are part of the original EDF model. To make this study more realistic, we
were not given the EDF real-world model. In this context, we are interested in
discovering the constraints which govern the EDF schedule.

2. By analyzing optimal solutions of the problem, we may find new constraints which
hold in (the majority of) optimal solutions, but are stronger than the constraints
specified in the original model. Adding these constraints to the initial model may
speed up the solving process, without affecting the solution quality.

3. We discover global constraints with functional dependencies, most of which can
be expressed by automata with counters [2]. In the future we hope to extend the
work described in [7] to generate linear constraints from these global constraints,
that can then be directly added to the original MIP formulation of the optimization
problem.

4. Some solving methods (e.g., column generation, genetic algorithms), require
multiple feasible schedules for each plant as a starting point for the optimization
procedure. Therefore, going beyond model discovery, we use the UCP-
ModelSeeker-generated-modelof each plant to produce new solutions for that plant.
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Note that the plant-specific constraints are not the only element of the UCP. The over-
all schedule must match the given demand exactly, which can be difficult if the demand
is changing rapidly. Additionally, the overall objective of the model is to minimize gen-
erating costs. This does not only cover the fuel cost needed to generate the electricity,
but also fixed start-up/shut-down costs, and costs related to reserve capacity. In most
de-regulated energy markets, the problem is further complicated by competing plant
operators, each trying to satisfy their own objectives. Currently, the UCP-ModelSeeker
does not consider explicitly demand and other cost as input data (implicitly, the pro-
visional schedule is based on that data, see Figure 1), but uses only the discovered
plant-specific constraints for generating new solutions.

The second use case takes as input solutions which have been manually modified by
the network operators. These changes may be caused by problems in some plants, or by
changing demand levels, or by operators modifying the schedule to make it more easy
to implement (e.g., smoothing out power output curves). The resulting schedule must
still satisfy most hard operational constraints, but may differ significantly from the au-
tomatically generated schedule. We use the UCP-ModelSeeker to find the plant-specific
constraints for the manually-adjusted schedules, and compare them to the constraints
found for the original schedule. This can point to constraints and parameters of the
problem which are currently not accurately modelled in the MIP model.

3 Overview of the UCP-ModelSeeker System

As input data, we are given the manually modified power output time series for all active
power plants in France (261 plants in total) over a period of one month (April 2010).
The solution for each day and plant consists of a time series of 96 integer values (given
in MW), describing the output for the current and the next day in half-hour slots. The
values can be negative, as the model also contains pumped-storage hydro systems, that
can consume energy in low demand periods to pump water into storage reservoirs for
later power generation. Some power stations also require significant power when shut
down, this results in a constant negative value during the shutdown period.

Figure 2 shows our overall approach for describing and solving the model of each
plant. The output of the plants can be quite different for different days in the study
period. We therefore first cluster the plant-wise solutions into groups of similar profiles,
and then generate constraints for each cluster. This step results in finding stronger (and
more diverse) models than using all samples for a single model.

The output of a power plant is typically strongly correlated to the time of day. We
use this information to generate specific domain constraints for each time period.

For each cluster, we try to learn constraints of different types. We begin with global
constraints over the full time series, which express features of the series as functional
dependencies. Other global constraints, without functional dependencies, may also hold.
As we know that the solutions represent time series, it makes sense to generate possible
binary constraints between consecutive time periods. In addition, the behavior of the
time series may differ significantly over the optimization horizon. We have developed a
technique which allows us to partition each time series into shorter intervals, for which
stronger constraints can be applied (see Section 6 for details).
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Fig. 2. Overview of UCP-ModelSeeker

Based on the UCP-ModelSeeker-generated-model, we then try to find solutions for
the model. For this we specify some problem specific heuristics (custom search routine
in Figure 2).

4 Clustering Time Series

Table 1 shows the combinations of algorithms, metrics and data representations (fea-
tures) we have analysed for EDF plant-wise time series clustering. The Euclidean dis-
tance in the raw feature space does not consider the time dependency among time points.
Similarly, the Manhattan distance treats time series as vectors, but is more robust to
outliers [9]. Hoeffding’s D statistic was recently suggested as another alternative to the
Euclidean distance, to overcome the implicit Gaussian data distribution assumptions of
that metric [15]. Dynamic Time Warping (DTW) is a time series metric that works even
with time-shifted data (similar time series, possibly shifted, are given high similarity).

Table 1. Clustering Algorithms, Metrics and Features Analysed

Algorithm Metric Features
Hclust Euclidean, Manhattan, Hoeffding’s D, DTW Raw, Stats

K-means Euclidean Raw, Stats
PAM Manhattan Raw, Stats
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Table 2. Distribution of Power-Plants According to K-means Number of Clusters

Category (number of clusters) Number of plants in category Percentage
K = 1 10 3.80
K = 2 188 71.48
K > 2 65 24.71

DTW is nevertheless not useful in our application, since we want to differentiate, for
example, between power peaks in the morning and in the afternoon.

We assessed the different clusterings both automatically using cluster-separation
measures (e.g., average silhouette width [9]) and semi-automatically, by zooming into
different plants (guided by statistics such as those in Table 2) and by checking the
clusters against calendar information, to see if the clustering solution identifies work-
days and weekends/holidays as different clusters. Overall, k-means-euclidean and pam-
manhattan gave similar results. The hierarchical clustering hclust solution often agreed
with k-means, but there were also cases where hclust settled for finer grained clusters.
Regarding data representation, working in the original (raw) feature space seemed to
provide reasonable clusterings. We have analysed different scaling of the data, for ex-
ample row scaling or column scaling, but this leads to loss of information. For example,
with row scaling, the time series that capture generating at constant level (e.g., 102
MW) or the turned-off (0 MW) state cannot be differentiated. The stats representation
refers to using summary statistics of each time series as features (min, max, median,

Fig. 3. EDF Power Output Profiles of Example Plant, 1-30 April 2010
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mean, 1st and 3rd quartiles). Focusing on kmeans-euclidean-raw as our main cluster-
ing solution, we observed the following. The large majority of plants have 2 clusters,
e.g., that separate workdays and weekends/holidays production profiles. A small per-
centage of plants have the same profile every day, and a third medium-sized category
has plants with more than 2 clusters. Table 2 shows the number of plants in the three
categories.

Figure 3 shows the 30 samples of April 2010 for one power plant, which serves as a
running example in this paper. The kmeans-euclidean-raw clustering is shown in red.
Weekends and public holidays are also highlighted, green and blue. For this particular
plant, 2 clusters were found (01-09/04 and 10-30/04), that did not correspond to the
workday/weekend split.

5 Variables and Domains

The ModelSeeker in [4] uses the range of values that occur in solutions as the initial
domains of the variables. The default assumption is that in highly structured problems,
like matrix models, all variables are quite similar and therefore share the same domain.
For UCP, we can use more background knowledge. The decision variables denote the
power output at different time periods, and output values at some time point may be
quite different from the output at other time points, while we observe that the output
levels at the same time on different days are quite similar. It then makes sense to treat
each variable independently, and to only allow values in the domain which are already
present in the given solutions. The output values are not ranges of integer values, instead
each observed value corresponds to a specific operating mode of the plant.

Figure 4 shows the domains generated from the example solutions in Figure 3. The
time periods are shown on the x-axis, the values on the y-axis. Each marker indicates

Fig. 4. Variable Domains for Example Plant
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Table 3. Domain Sizes Over All Plants (Top: domain size, bottom: percentage of variables)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19-30
4.83 8.97 13.87 12.77 9.80 8.08 6.46 5.29 5.25 5.26 3.95 2.67 2.50 1.82 1.64 1.29 1.19 1.04 3.33

that a given value is used in some solution in this time period. The set of values oc-
curring for each time period specifies the domain for the corresponding variable. This
method of restricting the variables’ domains generates tight domains. Table 3 shows
aggregate results over all plants for April 2010, ignoring constant zero profiles, and
without clustering of the solutions. The first row denotes the size of the domain, the
second row the percentage of variables which have that domain size. Note that overall
nearly 5% of all variables have constant value in all considered solutions.

6 Learning Constraints

In this section we discuss the steps of learning different types of constraints that can be
used to describe features of time series.

6.1 Global Time Series Constraints

From a constraint perspective, computing features of a sequence of integer values can
be related to functional dependency constraints for the following reasons:

1. By generalizing the sequence of integers to a sequence of variables, functional de-
pendency constraints [1] extend the computation from a sequence of integers to a
full constraint between variables. Since the Global Constraint Catalog [3] contains
over one hundred such constraints, they are natural candidates for expressing plant
specific features.

2. Values computed by many of the functional dependency constraints correspond to
specific features in a time series, (e.g., number of distinct values, largest value,
number of peaks, maximum slope on the strictly increasing sequences), by using a
variety of such features we aim to accurately characterize the time series.

3. As mentioned in the introduction, the EDF production curves are the result of two
distinct technical aspects. On one hand, the main driver is the overall electric-
ity demand, which is similar to time series from econometrics or life sciences,
i.e., price-change or growth of a being, that carry a degree of uncertainty. On
the other hand, the EDF production curves also capture the underlying techno-
logical constraints of the production plants, which correspond to hard, physical
constraints.

4. Since we not only aim to characterize the time series, but also to extract a set of
constraints that can be added to a solver to enhance its performance, a natural choice
is to select features that can be easily turned into constraints.
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6.2 Examples of Constraints Used

The UCP-ModelSeeker uses the Global Constraint Catalog [3] as the set of candidate
constraints. In the context of this new application, we have made the following changes
to the ModelSeeker [4] and to the Global Constraint Catalog:

– Previously, the selection of global constraints in the catalog related to time series
was quite limited. Motivated by capturing potential technological constraints of the
production units, we have added 20 new constraints that represent many typical
features of a production curve.

– We initially only search for constraints over the full time period of two days. This
means that UCP-ModelSeeker doesn’t use the partition generators available in the
ModelSeeker of [4] (e.g., we do not try to interpret a sequence as a two or three
dimensional matrix).

– Since the number of available EDF samples is quite large, we have written ded-
icated checkers for all automata constraints used in the UCP-ModelSeeker to im-
prove performance. Most constraints without automata already had a checker avail-
able in the previous ModelSeeker system.

Below we show a set of simple constraints for a sequence S = s1 s2 . . . sn.

• among diff 0 : number of values different from 0 in S,
• maximum : maximum value in S,
• minimum : minimum value in S,
• minimum except 0 : minimum value in S discarding value 0,
• sum ctr : sum of the elements of S,
• nvalue : number of distinct values in S,
• max nvalue : number of occurrences of the most used value in S,
• min nvalue : number of occurrences of the least used value in S,
• balance : difference between the number of occurrences of the most and least used values,
• change : number of consecutive values in S that are different.

Most functional dependency constraints (features) are related to the peaks/valleys of
the profile, where a peak corresponds to a value increase followed by a value decrease.

A variable sp (1 < p < n) of the sequence s1, s2, . . . , sn is a peak if and only
if there exists an i (1 < i ≤ p) such that si−1 < si, si = si+1 = . . . = sp and
sp > sp+1. Similarly a variable sv (1 < v < n) is a valley if and only if there exists
an i (1 < i ≤ v) such that si−1 > si, si = si+1 = . . . = sv and sv < sv+1. A peak
variable sp (1 < p < n) is a potential big peak wrt. a non-negative integer Δ if and
only if:

1. sp is a peak,
2. ∃i, j ∈ [1, n] | i < p < j, si is a valley (or i = 1 if there is no valley before position

p), sj is a valley (or i = n if there is no valley after position p), sp − si > Δ, and
sp − sj > Δ.

Let ip and jp be the largest i and the smallest j satisfying condition 2. A potential big
peak sp (1 < p < n) is a big peak if and only if the interval [i, j] does not contain any
potential big peak that is strictly higher than sp. Figure 5 illustrates the notion of big
peak for a given sequence.
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We propose the following more complex functional dependency constraints related
to profile inflexion:

• peak : number of peaks of S,
• highest peak : altitude of the highest peak of S,
• min width peak : smallest width of any peak of S,
• nvisible from start : number of peaks visible from the start of S,
• nvisible from end : number of peaks visible from the end of S,
• inflexion : number of peaks and valleys of S,
• min dist between inflexion : minimum distance between consecutive inflexion of S,
• longest increasing sequence : range of the longest increasing subsequence of S,
• max increasing slope : maximum slope on the strictly increasing subsequences of S,
• min increasing slope : minimum slope on the strictly increasing subsequences of S,
• big peak : number of big peaks of S.

A further 8 constraints without functional dependencies were added to describe prop-
erties of all peaks in a time series, e.g. that all peaks have the same height.

6.3 Binary Constraints

The variables in our problem represent the power output in each time period, so that
consecutive variables represent consecutive time periods. It is thus interesting to see
how the power output changes from one time period to the next. For this, we introduce
binary constraints between consecutive variables following the techniques introduced
in CONACQ [5].

Figure 6 shows the lattice of binary constraints that we consider. For any two consec-
utive time periods of one sample, their relation is either equality, greater or smaller. To
produce slightly stronger results, instead of just using X > Y we consider X ≥ Y +C
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Fig. 6. Lattice of Binary Constraints

with the largest possible constant C. When combining multiple inequalities with con-
stants C1 and C2, we use their minimum min(C1, C2) as the new value. If we combine
different types of constraints in the lattice, we move up in the lattice. As soon as we have
encountered all three possible outcomes between two variables in different samples, we
drop the constraint between them. Figure 7 shows the constraints that are generated for
our example plant. For our time series of 96 values, we can potentially produce 95 con-
straints. An entry marked with − denotes that there is no constraint. In part (A) we see
the constraints computed from the first cluster (days 1-9). Part (B) shows the time series
from the second cluster (days 10-30), and part (C) the constraints corresponding to all
30 samples (no clustering). Note that the cluster size has a strong impact on the con-
straints generated: the fewer samples we use, the stronger the constraints will be. But
even when using all 30 samples, we still find a significant number of constraints be-
tween consecutive variables. This indicates that these constraints capture an important
regularity in the solutions, that our model should preserve. Table 4 shows that overall
this technique is very useful, constraints are generated for more than three-quarters of
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Fig. 7. Binary Constraints for Example Plant

Table 4. Binary Constraints Distribution for All Plants (No Clustering)

Constraint none = ≥ ≤ > < �=
Count 5852 9326 4388 5129 45 59 21

Percentage 23.58 37.21 17.68 20.66 0.18 0.24 0.08



744 N. Beldiceanu et al.

all variable pairs, when considering all 261 plants. Note that strict inequalities are quite
rare, but that equality constraints hold for over 37% of all consecutive variable pairs.
By enforcing these constraints, we dramatically reduce the number of choices that need
to be considered.

6.4 Learning Custom Variable Partitions

The ModelSeeker [4] does not only generate global constraints over the full set of vari-
ables, but considers many regular partitions of the variables to see if the same constraint
with the same parameters holds for each of the smaller subsets. This allows finding
identical constraints on rows or columns of matrix models, for example. We tried the
same approach for the UPC, but the results were rather disappointing. While it is easy
to partition the time series into smaller series of 24, 12 or 6 hours each, we only rarely
find a constraint that holds with the same parameter value for each subsequence. The
reason is that time series for the first and second day in the manually modified solutions
are often very different, as most modifications are only applied to the first day of the
schedule. This does not happen for all plants, and the change is not always exactly after
24 hours. But if we can recognize such a change, then we can state constraints with
different parameters for the resulting subsequences. To compute time points when the
largest change happens, we propose the following technique, shown in Figure 8 for a
constraint with a functional dependency fc. We consider how the values for the func-
tional dependency values change if we were to split the sequence at time i or time i+1.
acdi denotes the functional dependency value for the front part of the sample solution
time series with constraint c for day d at time i, while bcdi denotes the value for the back
part. We can then see how the values change if we shift from i to i+ 1. If neither a nor
b is affected, this is not a very interesting time point. But if the parameter values change
for both a and b on many days at the same time i, we should consider splitting the time
series here.

The overall interest in a split at time point i is determined by computing the change
of the parameters for all constraints and all samples to produce a weight wi. Time
points with large weights are our candidates for splitting the time series into two sub
sequences.

∀i∈I : wi =
∑
c∈C

∑
d∈Days

|acdi − acdi+1|+ |bcdi − bcdi+1| (1)

xd
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Fig. 8. Learning Custom Variable Partitions
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Fig. 9. Identified Custom Variable Partition for Example Plant

Figure 9 shows the resulting computation for our example plant. There is a clearly
defined peak in the weight distribution around time period 48 (between the first and
second day), and another peak at the end of the series. When either a or b are very
short, we can expect rapid changes for most functional dependencies. We therefore
ignore peaks that occur close to the start or the end of the time series, and only split the
series into two parts, corresponding in this particular case to each day of the schedule.

Having identified this time series split-point for a plant, we can search for constraints
which hold for each subsequence independently, thus we may find (potentially) different
constraint parameters for each sub-period.

7 Generating Solutions with the UCP-ModelSeeker

Based on the previous steps, we have by now defined a finite constraint model, that has
variables with individual domains, global constraints over the full set of time series (and
smaller subsequences per each time series), and binary constraints between consecutive
time periods. Now, we aim to use the acquired UCP-ModelSeeker model to generate
new plant production profiles (i.e., find new solutions). The resulting model can be
fairly difficult to solve without a custom search routine. In particular, we experienced
that a first-fail variable selection is quite ineffective, compared to a sequential left-to-
right selection. Furthermore, we found that trying values in increasing order is also
ineffective. Instead, we either try values in random order, or try values by frequency
order (by decreasing occurrence in the samples).
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7.1 Results and Discussion

We show some results on the profiles generated using UCP-ModelSeeker, for our ex-
ample plant, with different combinations of clustering, constraints and search routines.
For clustering, we consider either cluster 1 (days 1-9), cluster 2 (days 10-30), or no
clustering (all 30 samples). For search, we consider random and frequency-based value
selection. We try the model with and without the custom split of time periods (for our
example-plant the split is found at time 48). For all models, we include binary con-
straints and perform the variable selection left-to-right.

Figure 10 shows the generated profiles, while Table 5 describes the options used for
each case and gives the mean absolute error (MAE) and mean squared error (MSE)
of the generated solution wrt. the EDF samples considered for that scenario. A visual
comparison with Figure 3 shows that the resulting profiles are quite “similar” to the
original samples, and capture some of the properties of each cluster. Nevertheless, the
visual inspection or the solution-quality measurement (e.g., MAE, MSE) do not fully
determine the quality of the solutions produced. This will only be possible if we can
compare the UCP-ModelSeeker solutions to the full real-world EDF-UCP model, or
asses their utility in speeding up solving the original MIP model.

As a different experiment, Table 6 gives an indication of the impact of different
search and constraint choices on the time required to find solutions for all 261 plants
active in April 2010. We perform no clustering, and no custom splitting of the time
intervals. We run each problem with a timeout of 10s, and report the percentage of
problems solved, and the time required to find one solution for each plant. We see
that the combination of left-to-right variable choice, frequent value selection, and using
binary constraints is the only one which allows to find solutions for all plants in the
given time limit.

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

Fig. 10. Examples of UCP-ModelSeeker Generated Profiles for Example Plant
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Table 5. Result Summary for Generated Profiles of Figure 10

Variant Variable Selection Value Selection Binary Constraints Cluster Split MAE MSE Time (sec)
A left-right Frequent yes All no 452.30 87.53 1.10
B left-right Frequent yes 1 no 449.67 104.62 0.53
C left-right Frequent yes 2 no 298.43 70.90 0.87
D left-right Random yes All no 649.97 114.20 1.43
E left-right Random yes 1 no 492.90 106.68 0.54
F left-right Random yes 2 no 422.33 82.48 0.89
G left-right Frequent yes All yes 445.10 87.82 2.30
H left-right Frequent yes 1 yes 431.33 101.70 1.03
I left-right Frequent yes 2 yes 294.00 70.70 1.74
J left-right Random yes All yes 547.37 97.23 2.32

K left-right Random yes 1 yes 510.22 111.71 1.03
L left-right Random yes 2 yes 397.86 78.38 1.73

Table 6. Solving Times for 261 Plants

Variable Selection Value Selection Binary Constraints Cluster Split Percentage Solved Time (sec)
first-fail indomain no All no 79.31 844.71
first-fail indomain yes All no 85.82 634.77

left-right indomain no All no 98.08 298.87
left-right indomain yes All no 98.85 264.94
left-right Random no All no 72.80 1098.31
left-right Random yes All no 89.27 572.28
left-right Frequent no All no 99.23 261.37
left-right Frequent yes All no 100.00 232.63

8 Conclusions and Future Work

In this paper we have presented the UCP-ModelSeeker system, which extends and spe-
cializes previous work on automated constraint acquisition for an important real-world
optimization application, the Unit Commitment Problem, with a case-study on data
made available by Electricité de France (EDF). Considering properties of the specific
application, we have proposed partitioning of the production curves based on clustering,
have added new functional dependency and binary constraints relevant for describing
production curves, and defined a series of custom search strategies. Based on the ac-
quired UCP-ModelSeeker model, we are able to generate new production profiles for
each power plant. The aim is to compare these to the original EDF profiles, and use the
insights gained in describing and generating the existing/new solutions, for speeding up
solving. We are currently working with EDF on the assessment of the solution quality
and a possible integration of some of these techniques into their existing MIP model.

References

1. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J.: On the reification of global constraints.
Constraints 18(1), 1–6 (2013)

2. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint check-
ers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122. Springer, Heidelberg
(2004)



748 N. Beldiceanu et al.

3. Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog, 2nd edn. (revision
a). Technical Report T2012-03, Swedish Institute of Computer Science (2012)

4. Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models from pos-
itive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer,
Heidelberg (2012)

5. Bessière, C., Coletta, R., Koriche, F., O’Sullivan, B.: Acquiring constraint networks using a
sat-based version space algorithm. In: Proceedings of the Twenty-First National Conference
on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence
Conference, Boston, Massachusetts, USA, July 16-20, pp. 1565–1568. AAAI Press (2006)

6. Carrión, M., Arroyo, J.M.: A computationally efficient mixed-integer linear formulation
for the thermal unit commitment problem. IEEE Transactions on Power Systems 21(3),
1371–1378 (2006)
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Abstract. Agricultural land allocation is a problem that exists in most provinces
in Vietnam. Each household owns many disconnected parcels, which reduces
agricultural development. The solution to the problem is to repartition this agricu-
tural land among the households, while satisfying some criteria. Historically, this
problem has been approached neither using optimization technology nor com-
puter science. The present paper describes the formulation of the problem and
proposes a constraint-based local search algorithm for solving it. Experimental
results on real data in Dong Trung village show that the solution computed by
our algorithm is better than traditional solutions.

1 Introduction

In most provinces of Vietnam, agricultural land is still fragmented. One household has
many parcels of different land categories (each category corresponds to a certain qual-
ity) from different fields. These parcels are very small and scattered. For example, in
Vinh Phuc province, one household might have 47 parcels, each of which has the area
of about ten square meters. The fact that each households has many separated small
parcels leads to a lot of difficulties. First, households can not use machines for cultivat-
ing their small parcels. Second, fragmented parcels require a very high cost for visiting
and controlling them. Third, the excessive number of tracks between the parcels re-
sults in a waste of agricultural land. Finally, projects of agricultural development are
confronted with many difficulties caused by the huge number of small parcels.

The Vietnamese government promulgated a policy to overcomes this limitation. This
consists of merging small parcels into large fields and then repartitioning these fields
into larger parcels. In provinces where the policy was carried out, the results obtained
have been very promising. After merging and repartitioning, the number of parcels held
by a household markedly decreases (e.g., Bac Ninh [1], a reduction by a factor of 10)
and the area of each parcel increases, with the rice output increasing considerably (e.g.,
Quang Nam [5], an increase of 20%–25%). Today, this land reallocation process has
only been applied in few vietnamese provinces.

After merging the existing parcels (specified in the past), we have a set of fields of
different categories (there might be several fields of the same category) and a set of
households; each household has an expected area of agricultural land for each category.
We need to specify, for each household, the parcel (the area and the position of the
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c© Springer-Verlag Berlin Heidelberg 2013
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parcel) in each field to avoid the above limitation. We consider fields of various shapes,
i.e., rectangle, trapezium, quadrangle. But, for ease of presentation of the problem, we
consider rectangular fields. Our solution however handles any quadrangular shape. We
first present the traditional solution that people used in the past for allocating parcels to
households, which does not use either computer science or optimization technology.

Traditional Solution. The Vietnamese government promulgated the following instruc-
tions to guide farmers in repartitioning the agricultural land. Fields are classified into
categories (1–4) according to types of land quality, and determining a system of co-
efficients that presents an equivalence between categories. For example, a system of
coefficients for three land categories 〈1.0, 1.2, 1.4〉 in which 1 m2 of the first land cat-
egory is equivalent to 1.2 m2 of the second land category and 1.4 m2 of the third land
category. Fields of each land category are considered in turn for division into parcels,
with the following rules:

1. The order of the fields is determined based on their land categories and geometrical
positions and this is decided by the authorities.

2. The order of households is also determined by lot and households are assigned
parcels with respect to this order. Suppose that this sorted list is h1, . . . , hn.

3. Each field is divided into zones z1, . . . , zk of width 40–50 meters by lines which
are parallel to one side of the field.

4. Each zone zi is iteratively divided into parcels corresponding to a sequence of
households hj, hj+1, . . . , hp by parallel lines that are perpendicular to the paral-
lel lines already used to separate the field into the zones. The next zone zi+1 will
then be partitioned into parcels for households hp+1, . . .

5. At each step, suppose that household hi under consideration, the current zone is zj ,
and the current land category is c. The remaining area of zj is R m2. If R is greater
than or equal to the expected area of hi, then the next parcel of zj will be allocated
to hi. Otherwise, hi needs a supplementary area of S m2. The following situations
may occur:

– R is smaller than 100, in which case the previous household hi−1 will receive
this remaining area of R m2. An equivalent (to R m2 of category c) area of the
next category c + 1 will be subtracted from the expected area of hi−1 for the
category c+1. The next zone zj+1 will then be considered for allocation to hi.

– Both R and S are greater than or equal to 100. The household hi is allocated
this remaining area of zj (R m2), and will then receive a parcel of S m2 in the
next considered zone or field.

– R is greater than or equal to 100, but S is less than 100. The household hi is
allocated this remaining area of R m2 and an equivalent (to S m2 of category
c) area of the next category c + 1 will be added to the expected area of hi for
the category c+ 1.

Limitations of the Traditional Solution. First, a lot of households have allocated
areas which are different from their expected areas. The cause of this comes mainly
from dividing a field into zones of fixed width, 40–50 m. Then, the threshold 100 m2

may be not suitable for provinces where each household has thousands of square meters
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Fig. 1. A solution guided by the instructions of the government with five households H1, H2,
H3, H4, and H5, and two fields of two different land categories with coefficients 〈1, 1〉. The
expected areas of the first land category of the five households are 300, 400, 250, 300, and 250
m2 (left part of the figure) and 250, 260, 560, 250, and 180m2 of the second land category (right
part of the figure). Applying the instructions of the government, each field is separated into three
zones of width 50 m, and the allocated areas of the households are 300, 400, 300, 300, and 200
m2 in the field on the left; and 250, 250, 500, 250, and 250 m2 in the field on the right. In this
solution, household H2 has three parcels of two land categories and households H3,H4,H5 are
allocated parcels whose areas are different from their corresponding expected areas.

of agricultural land. In that case, there may be small parcels (with areas slightly more
than 100 m2) next to large parcels (with areas of some thousands of square meters).
Finally, the instructions of the government do not take into account other expectations
of the farmers, such as optimizing the number of parcels next to the canals, minimizing
the distance from the house to the parcel, a nice form of the parcels, etc.

Objective of the Present Paper. The objective of the present paper is to improve on the
traditional solution to the agricultural land allocation (ALA) problem by applying opti-
mization technology. We hope that the developped method could be used in the forthcom-
ing land reallocation in Vietnam. We propose a constraint-based local search algorithm
for solving this problem. A local search algorithm typically starts from a solution and
moves from one solution to a neighboring solution in the hope of improving an objec-
tive function that guides the search. A constraint-based local search algorithm is a local
search algorithm that uses the violation of constraints and the evaluation of objective
functions to guide the search [8]. ALA consists of two successive subproblems:

– PArea is the problem of computing the area of the parcel allocated to each house-
hold in each field. We do not consider any order between households.

– PPos is the problem of specifying the exact positions of the parcels allocated to the
households. From the solution to PArea, we know, for each field, the set of house-
holds and their allocated areas from this field, and we have to determine the exact
positions of the parcels for these households. This problem has been considered and
solved in [3] but only for those cases in which the given field has the shape of a rect-
angle, triangle, or trapezium. We propose in this paper an approach for partitioning
the fields with general quadrangular shape, which appear frequently in reality.
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Contribution. We describe the problem formulation and a constraint-based local
search algorithm for solving the ALA problem. We solve the PArea subproblem. For
the PPos subproblem, we extend the results in [3] to partition a quadrangular field into
parcels. We test the proposed algorithm on real data. The experimental results show the
efficiency of the proposed algorithm compared with the traditional solution.

2 PArea: Computing the Parcel Areas

Input (1) A set of land categories C = {1, . . . ,m} with a system of coefficients
(α1, . . . , αm) that present the equivalences between the land categories. (2) A set of
fields F = {1, . . . , p}, each field f ∈ F is associated with an area A(f) and a land
category C(f) ∈ C. (3) A set of householdsH = {1, . . . , n}, each household h ∈ H is
associated with:

– a vector of expected areasEA(h) = (A(h, 1), . . . , A(h,m)), in whichA(h, c)(h ∈
H, c ∈ C) is the expected area of land category c.

– a vector of distances (d(h, 1), . . . , d(h, p)), in which d(h, f)(h ∈ H, f ∈ F) is the
distance from the house of household h to the center of field f .

Note that the equation ∀c ∈ C,
∑

f∈F :C(f)=cA(f) =
∑

h∈HA(h, c) is always ensured.

Output. The output is the allocated area of each household in each field.

Ideally, we desire to have a solution in which each household receives a unique par-
cel with the corresponding expected area in some field for each land category if the
corresponding expected area is greater than zero. Unfortunately, this often cannot be
arranged. For example, if we have two fields of areas 300 m2 and 700 m2 of category
1, we have four households whose expected areas of land category 1 are respectively
200 m2, 200 m2, 400 m2, and 200 m2. In our approach, we prioritize the solutions in
which each household receives a unique parcel in some field for each land category
if the households expected area of this category is greater than zero. Otherwise, this
household receives no parcel. In addition, we accept solutions in which some house-
holds have allocated areas different from their expected areas, and we try to minimize
this difference.

In our approach, we iteratively allocate parcels to households for each land category,
starting with land category 1 and finishing with land category m. The results computed
for each land category c may change the input of the expected areas of the households
for the next land category:

– For a household who receives an additional area a out of its expected area of land
category c, its expected area for the land category c+1 will be lessened by a× αc+1

αc

– For a household who receives area a less than its expected area of land category c,
its expected area for land category c+ 1 will be increased by a× αc+1

αc

In the following, we give a mathematical formulation of the problem PArea for a
specific land category c.

Input. (1) A set of fields Fc = {f1, f2, . . . , fq} ⊆ F of land category c. (2) A set
of households whose expected areas of land category c are greater than zero Hc =
{h1, . . . , hk} ⊆ H
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Decision variables. Variable a(h, f) (h ∈ Hc, f ∈ Fc) presents the allocated area of
household h in field f .

Invariant. F (h) = {f ∈ Fc | a(h, f) > 0}, ∀h ∈ Hc represents the set of fields of land
category c where the household h is allocated non-zero areas.

Constraints. C1: A(f) =
∑

h∈Hc
a(h, f), ∀f ∈ Fc. C2: |F (h)| = 1, ∀h ∈ Hc. Con-

straint C1 states that the sum of areas allocated to households in each field is equal to
the area of that field, and C2 specifies that each household receives a unique parcel in
some field.

Objectives. In order to respond to the expectations of the farmers, we propose the
two following objectives, which are to be minimized: F0(c) =

∑
h∈Hc,f∈Fc:a(h,f)>0

d(h, f) and F1 =
∑

h∈Hc
|
∑

f∈Fc
a(h, f) − A(h, c)|, in which F0(c) is the sum of

distances from the houses of the households to the centers of the fields in which their
allocated parcels are located, and F1 is the sum of the differences between the allocated
areas and the expected areas of the households.

A constraint-based local search algorithm has been developped for solving problem
PArea for each land category c. The algorithm uses tabu lists in order to avoid revisiting
solutions already explored. We always ensure the constraint C2 holds by modeling a
solution by a k-dimensional vector (x(h1), . . . , x(hk)) in which x(hi) ∈ Fc(hi ∈ Hc)
indicates the field wherein the household hi is allocated a parcel. During the search,
there are invariants Δ(f) = |A(f) −

∑
hi∈Hc

(x(hi) = f) ∗ A(hi, c)| representing
the difference between the area of the field f and the sum of the expected areas of
the households allocated in this field. Our algorithm will find solutions minimizing∑

f∈Fc
Δ(f) and F0. Finally, the actually allocated areas of the households will be

adapted based on the solution computed in order to satisfy the constraint C1.
The algorithm proceeds in two steps. Step 1 determines for each field of land cate-

gory c a group of households who have parcels in this field. The solution is represented
by a vector S = (x(h1), . . . , x(hk)) in which x(hi) ∈ Fc is a field of land category c in
which a parcel allocated to household hi is located, ∀hi ∈ Hc. Our algorithm considers
two neighborhoods:

1. Change-based neighborhood
N1(S) = {(x(h1), . . . , x

′(hi), . . . , x(hk))|hi ∈ Hc, x(hi) �= x′(hi) ∈ Fc}
2. Swap-based neighborhood N2(S) = {(x(h1), . . . , x(hi+j), . . . , x(hi), . . . x(hk))|

x(hi) �= x(hi+j) ∈ Fc, 1 ≤ i < i+ j ≤ k}

In step 1, we suppose each household is allocated a quantity of area which is equal to its
expected area. Due to this assumption, there exist, for each field, a difference δ between
the area of the field and the sum of the allocated areas in this field. The goal of step 2
of our algorithm is to adapt the allocated area such that the sum of the allocated areas
in the field fits the area of that field.

3 PPos: Finding the Positions of the Parcels

When problem PArea has been solved, we have, for each household, their allocated
area in each field. The overall goal of the solution of PPos is to determine the exact
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position of the parcels in each field. In our previous paper [3], we specified the problem
and proposed tabu search algorithms for PPos when the shape of fields was restricted
to be a triangle, a trapezium, or a rectangle.

A field is a large quadrangle where hundreds of households must be assigned a par-
cel. The field will be decomposed using horizontal and vertical lines as illustrated in
Figure 2. The field will be partitioned into zones by horizontal lines. Each zone is then
partitioned into parcels by vertical lines which are allocated to households. Each house-
hold will be assigned only one parcel in the field. When one or more sides of the quad-
rangle are close to a canal, one has to maximize the number of parcels close to the canal
(see Figure 2) as this is an important issue for Vietnamese farmers. The PPos problem
is then divided into two independent subproblems.

– Problem P1: The given field has one or more canals that are located on its sides.
This problem computes the zones and parcels next to the canals that are assigned
to the househoulds.

– Problem P2: The remainder of the field, obtained by removing the zones computed
by P1, has no canal on its sides. This remaining area, considered as a new field, is
then partitioned into zones and parcels assigned to households.

The problem P1 is viewed as a subset selection problem: we need to find a subset of
households, satisfying some constraints while optimizing some objective function. The
constraints are that each parcel must fit the exact area corresponding to a household, and
that the ratio between the height and the width of a parcel must be bounded by some
given constant in order to have parcels with an efficient shape. The objective function is
to maximize the number of parcels next to the canal. A second, less important objective,
is to have parcels with a shape close to a square. A tabu search is described in [3], where
three neighborhoods are considered: removal-based, insertion-based, and swap-based
neighborhoods.

The problem P2 is viewed as a set partitioning problem. Given a set of households,
we need to partition this set into subsets of households, one subset corresponding to one
zone of the field. Each zone is then easily decomposed into parcels. Each parcel will
thus fit the exact area corresponding to a household. The objective is to have parcels
with a shape close to a square. A tabu search is described in [3], where two neighbor-
hoods are considered: move-based and swap-based neighborhoods.

In [3], we restricted the shape of the field to be that of a triangle, trapezium, or a
rectangle. However, most fields in reality are quadrangular. We here extend the problem
to quadrangular fields. The idea is that a quadrangular field can be decomposed into
smaller fields or can be approximated by a field of the shape of a trapezium, so that we
can directly reuse the tabu search algorithms in [3].

When the quadrangular field has a shape close to a trapezium, the field is approxi-
mated by a trapezium with the same area. On the top of Figure 2, a quadrangle ABCD
(field of quadrangle ABCD for short) is approximated by a trapezium AB′C′D, then
the algorithms in [3] are applied to partition the trapezium AB′C′D into the zones
B′E1F1C

′, E1F1F2E2, E2F2F3E3, and E3F3DA is divided into parcels.
When the quadrangle is not close to a trapezium, the field is decomposed into two

parts: a triangular field and a pentagonal field that is approximated by a field with the
shape of a trapezium with the same area. On the bottom of Figure 2, a quadrangle
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Illustration of two ways of separation
Example of partitioning quadrangular

fields into parcels

Fig. 2. Illustration and Example of partitioning quadrangular fileds

ABCD is separated into a triangle CHG and a pentagon ABHGD. Then the pentagon
ABHGD is approximated by a trapezium. The algorithms in [3] can then be applied to
partition these two fields into zones and parcels.

In the above decomposition of a quadrangular field into a pentagon and a triangle,
we need to decide the position of the cut (line HG in Figure 2). A constraint is that the
triangular field (CHG in Figure 2) should have an area corresponding to a subset of so
that the sum of the allocated areas of a group of households. To identify this cut, we
solve a subset selection problem [7] as follows: given a set P = {a1, . . . , ap}, P ⊂ R+

and a threshold T ∈ R+, the overall goal is to determine a subset SP ⊆ P satisfying
the constraint T ≥

∑
a∈SP a and minimizing the objective function (T −

∑
a∈SP a). In

this problem, the threshold T is the maximum area of the triangular shape (in Figure 2),
T is the area of the triangle BCI). To solve this subset problem, we developed a simple
tabu search algorithm using the two neighborhoods of a solution SP ⊆ P : Change-
based neighborhood N1(SP ) = {SP ∪ a|a /∈ SP, a ∈ P} ∪ {SP \ {a}|a ∈ SP} and
Swap-based neighborhood N2(SP ) = {SP ∪ a \ {b}|a ∈ P, a /∈ SP, b ∈ SP}.

4 Experiments

We selected the 10th hamlet of Dong Trung village, Tien Hai district, Thai Binh
province, Vietnam, to try our algorithms. We collected all the data before and after
the land grouping of this hamlet. In this hamlet, there are 103 households, 3 land cat-
egories {c1, c2, c3}, and 24 fields adding to 204,744 m2 (8 fields of c1, 7 fields of c2
and 9 fields of c3). In the 10th hamlet, the agricultural land allocation problem was
already carried out by using the instructions of the government. The system of coeffi-
cients was set to 〈1.0, 1.0, 1.0〉 by the farmers. In the existing solution by the farmers
guided by the instructions of the government, almost all households have three parcels,
some households are allocated four parcels.

Our Tabu search algorithm was implemented in the COMET programming language
[4] and always returns the best solution obtained in the search. The time limit for each
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execution was set to two minutes. The length of the tabu lists was set to 20. The exper-
iments were performed on XEN virtual machines with one core of a CPU Intel Core2
Quad Q6600 @2.40GHz and 1GB of RAM.

Figure 2 illustrates the partitioning of two quadrangular fields into parcels by our
extended algorithm for solving PPos, in which the field on the left of the figure does
not touch a water source and the field on the right of the figure is close to three canals
(blue lines). We compared the solutions computed by the tabu search algorithms with
the existing solution by the farmers. The criteria for evaluating the solutions are the
differences between the expected area and the allocated area for each household, for
each land category, and the total distances from the houses of the households to the
centers of the fields where their parcels are located. In the traditional solution, there
are households whose expected area is equal to their allocated area. However, for the
other households, the differences between the expected areas and the allocated areas
are very high. This shows a greater inequality between households. In our approach, the
solution computed ensures greater equality between the households in the sense that all
households can tolerate the resulting differences. Moreover, the differences produced
by our solution are very small.

Fig. 3. Comparing the traditional solution and our
solution

where
diff(h, c) = A(h, c)−

∑
f∈F:C(f)=c a(h, f)

Max(c) = Max{|diff(h, c)| | h ∈ H}
Avg(c) = 1

|Hc|
∑

h∈H |diff(h, c)|
V ar(c) =

√
1

|Hc|
∑

h∈H(|diff(h, c)| −Avg(c))2

Max = Max{|
∑

c∈C diff(h, c)| | h ∈ H}
Avg = 1

H
∑

h∈H |
∑

c∈C diff(h, c)|
V ar =

√
1
H
∑

h∈H(|
∑

c∈C diff(h, c)| − Avg)2

F0 =
∑

c∈C F0(c)

Criteria Trad. 20 executions of tabu search
sol. MIN AV G MAX

Max(c1) 88 5 7.75 15
Avg(c1) 39.51 2.06 2.39 3.21
V ar(c1) 29.37 1.22 1.87 3.27
Max(c2) 98 6 8.45 17
Avg(c2) 32.93 1.95 2.39 3.16
V ar(c2) 25.31 1.29 1.96 3.23
Max(c3) 89 1 3.35 6
Avg(c3) 13.96 0.28 0.85 1.68
V ar(c3) 17.73 0.45 0.90 1.43
Max 89 1 1.15 2
Avg 13.65 0.04 0.17 0.33
V ar 16.92 0.19 0.36 0.51
Added parcels 10 0 0 0
F0 (km) 270.79 261.55 265.10 271.36

In figure 3, the last three columns present a summary of 20 executions of our tabu
search algorithm. Column MIN (resp. AV G and MAX) presents the minimum (av-
erage and maximum) value of the 20 solutions. Other fairness criteria, such as in [2,6],
could also be used.

Our solutions are clearly better than the existing solution obtained by the application
of the instructions of the government. There does not exist any household that has more
than two parcels. This means that our solutions always satisfy constraint C2. In the
existing solution by the farmers, there are 10 households that have four parcels. The
values of the first 12 criteria of our solutions are always much smaller than those for the
existing solution by the farmers. The value of the objective function F0 in most of our
solutions is slightly smaller than that of the existing solution by the farmers.

This experiment has been presented to the Vice President of the Dong Trung village
(Thai Binh province). This village is composed of 1460 households, and the land has
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already been reallocated using the traditional instructions of the government. The so-
lutions produced by our algorithms were considered as a significant improvement over
the traditional reallocation. The very low difference between the expected area and the
allocated area for each household, the absence of added parcels and the form of parcels
with a shape close to a square were particularly appreciated. His conclusion was that
our tool should be used to the land allocation of the remaining Vietnamese districts and
provinces.

5 Conclusion

In this paper, we solved the agricultural land allocation problem that has recently
emerged in many provinces in Vietnam, using constraint-based local search algorithms.
The problem comprises two subproblems. The first one is to compute the set of house-
holds that are allocated parcels in each agricutural field, and the second one is to spec-
ify the exact position of each parcel allocated in each agricutural field. For the first
subproblem, we described its formulation and proposed a constraint-based local search
algorithm for solving it. For the second subproblem, we extended the results in [3] to
compute the position of each parcel allocated in a field with the shape of a generic quad-
rangle. The experimental results show that our approach yields better solutions than
the traditional solution. The experimental results were also validated by a Vietnamese
authority in land allocation.

We are now reimplementing the algorithms as a C++ tool that could be used by
the different vietnamese districts. This tool will also be extended to handle specific
constraints and objective functions, to meet the expectations of the farmers in various
provinces. Comparison with other optimization approches will also be investigated.
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Abstract. In order to meet the users’ demand, bike sharing systems
must be regularly rebalanced. The problem of balancing bike sharing
systems (BBSS) is concerned with designing optimal tours and operating
instructions for relocating bikes among stations to maximally comply
with the expected future bike demands. In this paper, we tackle the
BBSS by means of Constraint Programming: first, we introduce two novel
constraint models for the BBSS including a smart branching strategy
that focusses on the most promising routes. Second, in order to speed-up
the search process, we incorporate both models in a Large Neighborhood
Search (LNS) approach that is adapted to the respective CP model.
Third, we perform a computational evaluation on instances based on real-
world data, where we see that the LNS approach outperforms the Branch
& Bound approach and is competitive with other existing approaches.

1 Introduction

Bike sharing systems are a very popular means to provide bikes to citizens in a
simple and cheap way. The idea is to install bike stations at various points in
the city, from which a registered user can easily loan a bike by removing it from
a specialized rack. After the ride, the user may return the bike at any arbitrary
station (if there is a free rack). This service is mainly public or semi-public, often
initiated to increase the attractiveness of non-motorized means of transportation
and is typically almost free of charge for the users. This, among other reasons,
is why bike sharing systems have become particularly popular and an essential
service in many European cities.

Depending on their location, bike stations have specific patterns regarding
when they are empty or full. For instance, in cities where most jobs are located
near the city centre, the commuters cause certain peaks in the morning: the
central bike stations are filled, while the stations in the outskirts are emptied.
Furthermore, stations located on top of a hilly region are more likely to be empty,
since users are less keen on cycling up a hill and thus less keen on returning a
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bike to such a station. These differences in flows are one of several reasons why
many stations have extremely high or low bike loads over time, which often
causes difficulties: on the one hand, if a station is empty, users cannot loan bikes
from it, thus the demand cannot be met by the station. On the other hand, if
a station is full, users cannot return bikes and have to find alternative stations
that are not yet full. These issues can result in substantial user dissatisfaction
which may eventually lead users to abandon the service. This is why nowadays
most bike sharing system providers take measures to rebalance them.

Balancing a bike sharing system is typically done by employing a fleet of trucks
that move bikes between unbalanced stations overnight. More specifically, each
truck starts from a depot and travels from station to station in a tour, performing
loading instructions (adding or removing bikes) at each stop. After servicing the
last station, the empty truck returns to the depot.

Finding optimal tours and loading instructions is a challenging task: the prob-
lem consists of a routing problem combined with the problem of distributing
single-commodities (bikes) to meet the demand. Furthermore, since most bike
sharing systems typically have a large number of stations (≥ 100), but a small
fleet of trucks, the trucks can only service a subset of stations in a reasonable
time, thus it is also necessary to decide which stations should be balanced.

In this work, we tackle the problem of balancing bike sharing systems in two
steps. First, we formulate the problem as two different CP models: a routing
model based on the classical Vehicle Routing Problem (VRP) formulation, and a
step model that involves a planning perspective of the problem. We discuss both
models in detail and compare their performance in a computational evaluation.
In a second step, we employ each CP model in a Large Neighborhood Search
(LNS) approach that is customized to the features of the respective CP model.

This paper is structured as follows: Section 2 provides the description of the
BBSS problem, including our notation. Section 3 introduces our two CP for-
mulations for the BBSS: the routing model in Sec. 3.1, and the step model in
Sec. 3.2. Then we discuss our LNS approach in Section 4 and summarize our
computational evaluation in Section 5. Section 6 concludes the paper.

1.1 Related Work

Balancing of bike sharing systems has become an increasingly studied problem in
the last few years. Benchimol et al. [1] consider the rebalancing as hard constraint
and the objective is to minimize the travel time. They study different approxi-
mation algorithms on various instance types and derive different approximation
factors for certain instance properties. Furthermore, they present a branch-and-
cut approach based on an ILP including subtour elimination constraints. Con-
tardo et al. [5] consider the dynamic variant of the problem and present a MIP
model and an alternative Dantzig-Wolfe decomposition and Benders decompo-
sition method to tackle larger instances. Raviv et al. [10] present two different
MILP formulations for the static BBSS and also consider the stochastic and
dynamic factors of the demand. In the approach of Chemla et al. [4], a branch-
and-cut approach based on a relaxed MIP model is used in combination with
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a tabu search that provides upper bounds. Rainer-Harbach et al. [9] propose a
heuristic approach for the BBSS in which effective routes are calculated by a vari-
able neighbourhood search (VNS) metaheuristic and the loading instructions are
computed by a helper algorithm, where they study three different alternatives
(exact and heuristic) as helper algorithms. Schuijbroek et al. [12] propose a new
cluster-first route-second heuristic, in which the clustering problem simultane-
ously considers the service level feasibility constraints and approximate routing
costs. Furthermore, they present a constraint programming model for the BBSS
that is based on a scheduling formulation of the problem and therefore differs
significantly from our formulations.

In [6] we presented a hybrid approach for the BBSS by combining CP with
Ant Colony Optimization (ACO). In that work, we introduced a VRP-based
CP formulation and integrate ACO into its search procedure to improve its
performance. This work extends our previous work by introducing a novel CP
model that is inspired by AI-planning. Moreover we revise the VRP-based model
presented in [6] and we develop a problem-specific branching strategy. Finally,
in this paper we attempt to enhance the two models by combining them into
Large Neighbourhood Search (LNS).

2 Balancing Bike Sharing Systems

The problem of balancing a bike sharing system (BBSS) is concerned with finding
tours for a fleet of vehicles and the respective loading instructions per stop such
that the bike sharing system is maximally balanced after the vehicles finish their
tour. Note, that we consider the static case of the BBSS where we assume that no
bikes are moved independently between stations during the balancing operation
(in other words, we assume that there are no customers using the service during
balancing which can be a valid approximation for balancing systems at night).

Bike sharing systems consist of bike stations S = {1, . . . , S} that are dis-
tributed all over the city. Each station s ∈ S has a maximal capacity of Cs bike
racks and holds bs bikes where 0 ≤ bs ≤ Cs. The target value ts for station s
states how many bikes the station should ideally hold to satisfy the customer
demand. The values for ts are derived in advance from a user demand model
where 0 ≤ ts ≤ Cs.

An additional requirement of our project partner, Citybike Wien, was to en-
sure monotonic loading of bikes, i.e. to ensure that bikes are only added or
removed from stations where necessary (without intermediate storage). There-
fore, we introduce two different station types: bike ‘sinks’ and bike ‘sources’.
Bikes may only be added to sink stations, and bikes may only be removed from
source stations. A station is either a sink or a source, depending on its respective
demand (if the number of bikes in the station is larger than the demand, the
stations is a source, otherwise it is a sink).

A fleet of vehicles V = {1, . . . , V } with capacity cv > 0 and initial load b̂v ≥ 0
for each vehicle v ∈ V , move bikes between stations to reach the stations’ target
values. The vehicles are associated with depot D where they start and end their
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tour. Thus, the set of possible stops in a tour is denoted Sd = S ∪D. We have a
time budget of t̂ > 0 time units to complete the balancing operation (and after
which every vehicle has to have reached the depot). The travel times between
all possible stops are given by the matrix travelTimeu,v where u, v ∈ Sd, which
includes an estimate of the processing times needed to serve the station, if v ∈ S.

The goal is to find a tour for each vehicle including loading instructions for
each visited station. The loading instructions state how many bikes have to
be removed from, or added to the station, respectively. Naturally, the loading
instructions must respect the maximal capacity and current load of both the
vehicle and the station. Furthermore, each vehicle can only operate within the
overall time budget and has to distribute all loaded bikes before returning to the
depot (i.e., the truck has to be empty when returning to the depot).

After every vehicle has returned to the depot, each station s ∈ S has a new
load of bikes, denoted b′s. Obviously, the closer b′s is to the the desired target value
ts, the better the solution. Thus, our objective is to find tours that manipulate
the station states such that they are as close as possible to their target values.
Furthermore, we are interesting in finding a low-cost route rv for each vehicle
v ∈ V , so we also minimize the total travel time (which is equivalent to minimize
the total traveling cost).

Therefore, we introduce an objective function f that contains two components:
first, the sum of the deviation of b′s from ts over all stations s ∈ S, and second
the travel time for each vehicle:

f(σ) := w1

∑
s∈S
|b′s − ts|+ w2

∑
v∈V

∑
(u,w)∈rv

travelT imeu,w (1)

Note that Equation 1 defines a scalarization over a naturally multi-objective
problem. Some points in the Pareto optimal set are hence neglected by construc-
tion. Our main reason for this choice is the need to compare with the current
best approaches [9], which employ an equivalent scalarization. Furthermore, to
the best of our knowledge, multi-objective propagation techniques are still a
relatively unexplored research area.

3 Constraint Models for the BBSS

In this section we present two constraint formulations for the Balancing Bike
Sharing Systems problem (BBSS).

3.1 Routing Model

The routing model is an adaption of the constraint model of the classical vehicle
routing problem (VRP) that is described in [8]. The routing model uses suc-
cessor variables (succi) to model the path of each vehicle and service variables
(servicei) to represent the operations at each station.

The essence of the graph encoding underlying the routing model is depicted
in Figure 1 along with the elements of a possible solution. According to the for-
mulation proposed in [8], the graph structure of the original problem G (lower
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Fig. 1. Graph encoding of the BBSS problem employed in the routing CP model. The
lower layer shows the original graph, whereas the upper layer shows the encoded graph,
in the case of two vehicles, and the edges selected in a possible solution. The sub-path
starting at node 2 and ending at node 10 corresponds to the set of unserved nodes.

layer) is encoded into an extended graph GR (upper layer) by considering one
replicate of the starting depot for each vehicle in order to identify each vehicle
route as a sub-path in the graph starting at that node. The successor of the
ending depot for a given vehicle is set to be the starting depot of the following
vehicle (modulo the number of vehicles) so that we are searching for an Hamil-
tonian circuit in the extended graph. Moreover, for modeling service optionality,
there is an additional vehicle vdummy, whose sub-path comprises all the stations
that are left unserved.

For brevity we do not give here a detailed specification of the variables and
constraints that are involved in the model, which can be found in [6]. The main
difference with respect to the cited paper, however, is the search strategy which
will be outlined in the following section. Another difference is that the current
version of the routing model employs the Hamiltonian circuit constraint in-
stead of the alldifferent on the succ variables. Although the two formulations
are equivalent, the circuit variant has a better sub-tour elimination behavior.

As a final remark, it is important to notice that the basic model does not
allow visiting the same station more than once. Nevertheless, this limitation can
be dropped by replicating each station in the extended graph GR according to
the number of revisits that will be allowed.

The dimensions of the routing model, given the size of the input, are reported
in Table 3.

Search Strategy. The search strategy for the routing model attempts to incre-
mentally construct the route for each vehicle by considering together the succ
and the service variables, and employing a smart branching heuristic.
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In detail, given a partial route for a vehicle, the next variable to be selected is
the succ variable of the last node in the route. The possible values for this variable
(i.e., the next station to be served) are ordered according to the contribution of
the current vehicle load and the possible service at the next station in reducing
its unbalance by preferring those that have a higher impact in this reduction.
This value selection heuristic performs a one step look-ahead toward the next
variable to be selected. Once the succ variable is set, the service variable of the
next station is selected for branching. To be consistent with the look-ahead, the
possible values for this variable are ordered according to their contribution in
reducing the unbalance.

When the current route has to be ended because the time budget of the vehicle
is finished or we have reached the vehicle’s final depot, the next station to be
considered for branching is the succ variable selection is the starting depot of
the following vehicle.

Model Extensions. The model, and the solution methods built upon it, is
quite flexible and make it possible to easily incorporate additional real-world
aspects, which are not considered in the current problem statement.

For example it is quite trivial to allow for waiting times at stations (e.g., for
avoiding the contemporary presence of two vehicles at the same station), by
relaxing an equality constraint in the time accumulation formula. Also loading
times at stations can be straightforwardly taken into account in the model.

Other possible extensions to the model include allowing the use of stations as
intermediate depots by neglecting the ‘sink’ and ‘source’ concept or the relax-
ation of the requirement of having empty vehicles at the end of the route.

Finally, the model can be immediately adapted to consider the related problem
of minimizing the working times in case of full rebalancing (similarly to [1]), just
by imposing that the final unbalance of the stations should be zero.

3.2 Step Model

The step model considers the problem as a planning problem with a planning
horizon of K steps, i.e., we try to find a route (with respective loading instruc-
tions) of maximal length K for each vehicle, where the first and the last stop is
the depot. We introduce the set of steps K = {0, . . . ,K} where 0 is the initial
state and step K is the final state, thus each vehicle visits K − 1 stations. We
set K =

⌈
t̂/t̃

⌉
+ 1, which is an estimated1 upper bound of the number of steps.

In contrast to the routing model, this formulation allows us to directly repre-
sent the route of each vehicle by a sequence of stations of fixed length, as shown
in Figure 2. This way we can formulate certain constraints more naturally, as
we will see in the following description of the model.

Variables. All problem variables are summarized in Table 1: first, we introduce
the routing variables route, where routek,v denotes the k-th stop in the tour of

1 t̃ is the median of all travel times.
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Fig. 2. Solution representation for the step CP model. The lower layer shows the
original graph, whereas the upper layer shows the decision variables of the step model,
i.e., the routes variables for two vehicles, and an example of the service variables.

vehicle v ∈ V . Thus, the route variables range over the possible stops Sd. Second,
we introduce service variables where servicek,s,v represents the number of bikes
that are removed or added to station s ∈ S at step k ∈ K by vehicle v ∈ V
and therefore ranges over {−Cmax, Cmax}, where Cmax = maxs∈S{Cs} denotes
the maximal capacity over all stations. The load of a vehicle is represented
by the load variables where loadk,v is the load of vehicle v ∈ V at step k ∈ K.
Furthermore, the variables nbBikesk,s state how many bikes are stored at station
s ∈ S at step k ∈ K. We introduce K−1 = {0, . . . ,K − 1} for the set of steps
excluding the last step and KS = {1, . . . ,K − 1} is the set of steps that concern
stations, but not the depots (first and last step). We only search on the route
and service variables.

Constraints. All constraints are summarized in Table 2 which we discuss in
the following. First, we set up the initial state where step k = 0: the first stop of
the route of each vehicle v is the depot (Eq. 2) and the initial load of v equals

b̂v (Eq. 3). The initial service is zero (Eq. 4), as well as the initial time (Eq. 5),
and the initial number of bikes at station s equals bs (Eq. 6).

Table 1. Variables of the step model

name [dimension] domain description

route [K][V] SD stop of vehicle v ∈ V at step k ∈ K
service [K][S ][V] {−Cmax, Cmax} removed/added bikes at station s ∈ S

by vehicle v ∈ V at step k ∈ K
activity [K][S ][V] {0, Cmax} movements at stop s ∈ S

by vehicle v ∈ V at step k ∈ K
load [K][V] {0, cmax} load of vehicle v ∈ V after step k ∈ K
time [K][V] T time when vehicle v ∈ V arrives at station

at step k ∈ K
nbBikes [K][S ] {0, Cmax} bikes at stop s ∈ S after step k ∈ K
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Table 2. Constraints of the step model

route0,v = D ∀ v ∈ V (2)

load0,v = b̂v ∀ v ∈ V (3)

service0,s,v = 0 ∀ s ∈ S, v ∈ V (4)

time0,v = 0 ∀ v ∈ V (5)

nbBikes0,s = bs ∀ s ∈ S (6)

activityk,s,v = |servicek,s,v | ∀ k ∈ K, s ∈ S, v ∈ V (7)

atleast(activityk,v, 0, S − 1) ∀ k ∈ K, v ∈ V (8)

timek,v ≤ timek+1,v ∀ k ∈ {0, . . . ,K − 1}, v ∈ V (9)

servicek,s,v ≥ 0 ∀ k ∈ K, v ∈ V, s ∈ S :

bs − ts ≤ 0 (10)

servicek,s,v ≤ 0 ∀ k ∈ K, v ∈ V, s ∈ S :

bs − ts ≥ 0 (11)

loadk+1,v = loadk,v +
∑

s∈S
servicek+1,v,s ∀ k ∈ K−1, v ∈ V (12)

nbBikesk+1,s = nbBikesk,s −
∑

v∈V
servicek+1,v,s ∀ k ∈ K−1, s ∈ S (13)

timek+1,v ≥ timek,v + travelTimeroutek,v,routek+1,v
∀ k ∈ K−1, v ∈ V (14)

(activityk,s,v ≥ 0)⇔ (routek,v = s) ∀ k ∈ K, v ∈ V, s ∈ S (15)

(routek,v = D)⇒ (routek+1,v = D) ∀ v ∈ V, k ∈ {1, . . . ,K − 1} (16)

(routek1,v1 = routek2,v2 ∧ routek1,v1 �= D)⇒ ∀ k1, k2 ∈ {1, . . . ,K − 1},
timek1,v1 �= timek2,v2 v1, v2 ∈ V, v1 �= v2 (17)

count(routev , c), dom(c, 0, vmax) ∀ v ∈ V (18)

loadK,s,v = 0 ∀ s ∈ S, v ∈ V (19)

routeK,v = D ∀ v ∈ V (20)

serviceK,s,v = 0 ∀ s ∈ S, v ∈ V (21)

Second, we continue with constraints that render the formulation consistent:
first, the activity at station s for vehicle v at step k is always equal to the absolute
value of the respective service (Eq. 7). Furthermore, every vehicle v ∈ V may
only perform actions on at most one station at each step k, thus the activity is
zero in at least S − 1 stations (Eq. 8). Moreover, we state that time is always
incremental (Eq. 9) and ensure monotonicity (‘sink’ and ‘source’ stations) by
stating that those stations that need to receive bikes to reach their target value
must have positive services (Eq. 10), while stations from which bikes need to be
removed to reach their target value, must have negative services (Eq. 11).

Third, we state the action constraints that describe how the state changes
after each move: first, we update the load of vehicle v after servicing a station
at step k + 1 (Eq. 12). Then we continue with updating the number of bikes at
station s (Eq. 13) and updating the time at which vehicle v arrives at the station
it services at step k + 1 (Eq. 14) where travelTimeroutek,v,routek+1,v

is expressed
by an element constraint.

We link the route and activity variables (Eq. 15) and state that if vehicle v
has returned to the depot before reaching the maximum number of steps, then
it may not leave it anymore (Eq. 16). This way we add flexibility with respect
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to the tour length: vehicles may visit K stations or less. Moreover, we state that
two different vehicles cannot visit the same station at the same time (Eq. 17).
In Eq. 18 we use a count constraint and a temporary variable c to ensure that a
station is visited at most vmax times in a solution. For the current formulation
vmax = 1, however using a different value enables revisits on the step model.

For the final state, we constrain the load of each vehicle to equal zero (Eq. 19),
the K-th stop is the depot (Eq. 20) which has zero service (Eq. 21).

Table 3 summarizes the dimensions of the step model as a function of the
input size.

Search Strategy. In our search strategy, we try to construct feasible tours
and corresponding loading instructions, for one vehicle after another. Therefore,
we search upon the route and activity variables for each vehicle v ∈ V : we
begin with the route in a static order, i.e., route0,v, . . . , routeK,v, and continue
with the loading instructions activity0,v, . . . , activityK,v using a dynamic variable
selection, where we select the variable with the largest degree.

In order to obtain a good solution, the value selection for the route variables
should return stations that are particularly in need of balancing. Therefore, we
have implement a specialized value selection that returns those stations first that
have a particularly high deviation from their target value. For the activity vari-
ables, we employ a dynamic max-value selection to achieve a maximal activity
at each stop in the route.

Model Extensions. Similar to the routing model, the step model can easily be
extended to incorporate additional real-world aspects, which are not considered
in the current problem statement: waiting times at stations can be included,
as well as variable loading times at stations. Furthermore, bike sharing system
providers are often interested in a minimal amount of service at each station,
i.e. a minimal amount of moved bikes per service. This can easily be expressed
by applying a lower bound (α) on the activity variables.

Other possible extensions are to allow stations as intermediate depots by
neglecting the ‘sink’ and ‘source’ concept by omitting the respecting constraint,
or by allowing loaded vehicles to returned to (or leave) the depot. Finally, we
can adapt the model to consider the minimizing the working times in case of full
rebalancing by imposing that the final unbalance of the stations should be zero.

4 Large Neighborhood Search

Large Neighborhood Search (LNS) [13] is a local search metaheuristic based on
the observation that exploring a large neighborhood, i.e., perturbing a significant
portion of a solution, typically leads to higher quality local optima than the ones
obtained with small perturbations. While this is an undoubted advantage in
terms of search performance, it does not come without a price as exploring a large
neighborhood structure can be computationally impractical. For this reason, LNS
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Table 3. Dimensions of the CP models as a function of the number of vehicles V , the
number of stations S+D, the number of steps K, and the time budget t̂v. Constraints
are given as the total number plus a specific account of different constraint types.

Dimension Routing Model Step Model

Overall number of variables 12V + 7S + 6 K · (3V + 2V S + S)
Number of fixed variables 9V + 2 V (3S + 4) + 2S
Size of the largest domain t̂v + 1 t̂v + 1
Overall number of constraints 14S + 3V + 5 K(3V S + 5V + S) +K2V 2 + 2V
circuit constraints 2 —
element constraints 9S + 2V + 2 KV
iff constraints S KV S
imply constraints — KV +K2V 2

linear constraints 4S + V + 1 K(2V S + 2V + S) + V
count constraints — KV + V

typically involves filtering techniques that allow to keep the neighborhood size
under control by removing unfeasible solutions. In particular, large neighborhood
exploration has been successfully coupled with constraint-based propagation for
tackling complex routing problems such as VRP with time windows [2,11].

The customary way of specifying a large neighborhood is to define two steps:
(i) a destroy step, which takes a solution and relaxes a fraction d ∈ [0, 1] (the
destruction rate) of its variables, and (ii) a repair step, which takes the relaxed
solution and reconstructs a feasible solution by assigning the free variables, usu-
ally through a greedy heuristic or an exhaustive search. Of course, different
values of d originate different neighborhoods and imply different search efforts.
For instance, at the most extreme cases, when d = 1 the original solution is
completely replaced by a new one and local information is lost, while if d ≈ 0
most of the solution is retained, and only a small neighborhood is explored. By
adapting d during the solution process, e.g., based on the search performance, it
is possible to codify more sophisticated behaviors, such as stagnation avoidance.

Similarly to most metaheuristics also LNS is a template method whose actual
implementation depends on problem-specific details. In particular LNS requires
to specify the following aspects:

– the way in which the destroy step is implemented, i.e., which variables are
chosen for relaxation;

– the way in which the repair step is defined, i.e., random sampling, heuristic
search (problem-specific greedy heuristics, ACO, . . . ) or complete search
(depth-first, Branch & Bound, . . . );

– whether the search for the next solution stops at the first feasible solution,
at the first improving solution or continues until a local optimum is found;

– whether d is evolved during the search or not and its range of values;

– whether the acceptance criterion is strict improvement, equal quality or it
is stochastic, e.g., as in Simulated Annealing;

– the stopping criterion employed.
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In this work, most of these aspects are common to both CP models, however
some components (in particular the destroy step) are model-specific because
they depend on the modeling variables or on the branching strategy. We defer
the description of these model-specific components to the last part of this section.

Solution initialization. The initial solution is obtained by a tree search with a
custom branching strategy tailored for each model. The idea behind this strategy
is to choose the station and the amount of service that will reduce most the
unbalancing. Search is stopped after finding the first feasible solution.

Repair step. Similarly to the initialization, the repair step consists of a Branch
& Bound tree search with a time limit, subject to the constraint that the next
solution must be of better quality than the current one. The search starts from
the relaxed solution and the time budget is proportional to the number of free
variables (tBAB ·nfree) in it. The tree search employs the same branching strategy
used for solution initialization.

Acceptance criterion. A repaired solution xt is accepted if it strictly improves
the previous best xbest. If the repair step cannot find an improving solution in
the allotted time limit, then a idle iterations counter ii is increased. When ii
exceeds the maximum number of idle iterations iimax a new initial solution is
designated by using a random branching, and the search is restarted.

d update. The destruction rate d evolves during the search in order to implement
an intensification/diversification strategy and to avoid stagnation of the search.
In our implementation at each step its value is updated as follows:

d =

{
min(d · 1.05, 0.8) if xt > xbest

d = dinit otherwise
(22)

This update scheme will increase the radius of the neighborhood to allow solu-
tion diversification when the repair step cannot find an improving solution in
a given neighborhood. When a new best solution is found, the original initial
neighborhood radius is reset, so that the exploration of the newly discovered
solution region is intensified.

Stopping criterion. We allow the algorithm a given timeout, when the time is
up, the algorithm is interrupted and the best solution found is returned.

Destroy step. As mentioned before, the destroy step is the only model-specific
component of our implementation. In fact, this is the most relevant aspect of
LNS since it requires a careful selection of the variables that have to be relaxed
in order to avoid unmeaningful combinations.

Routing model : the relaxed solution is generated by selecting d · |Ri| stations
from each route Ri and resetting the succ, service, and vehicle variables of
these stations to their original domains. Moreover, also the succ variable of
the stations preceding the relaxed ones are freed to allow for different routes.
Note that since we are considering also these variables the final fraction of
variables relaxed is in fact greater than d.
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Step model : the relaxed solution is produced by selecting d ·
∑

i |Ri| internal
nodes (i.e., excluding the depots) from all the routes and resetting the route
and service variables.

5 Computational Evaluation

In this section we report and discuss the experimental analysis of the algorithms.
All the experiments were executed on an Ubuntu Linux 12.04 machine with 16
Intel Xeon CPU E5-2660 (2.20GHz) cores. For fair comparison, both the CP and
the LNS algorithms were implemented in Gecode (v 3.7.3) [7], the LNS variant
consisting of a specialized search engine and two specialized branchers.

The LNS parameters (iimax, dinit and tBAB) have been tuned by running
an F-Race [3] with a confidence level of 0.95 over a pool of 150 benchmark
instances from Citybike Wien. Each instance, featuring a given number of sta-
tions S ∈ {10, 20, 30, 60, 90}, was considered with different number of vehicles
V ∈ {1, 2, 3, 5} and time budgets t̂ ∈ {120, 240, 480}, totaling 900 problems. The
tuning was performed by letting the algorithms run for 10 minutes. The best
configurations were iimaxs = 40 and tBAB = 400 for both models, dinit = 0.05
for the routing model and dinit = 0.1 for the step model. Note that the way the
destroy step is designed determines the optimal value of dinit, as a consequence
in both models a similar proportion of variables is relaxed (about 10− 20%).

For benchmarking, we let the winning configurations for LNS and the pure
CP models run for one hour, the results are summarized in Table 4.

5.1 Model and Solution Method Comparison

The main goal of this comparison is to understand and analyze the behavior of
the CP Branch & Bound and LNS solution methods for the two problem models.
Figure 3 shows exemplarily the evolution of the best cost within one search run
on an instance from the Citybike Wien benchmark set featuring 30 stations.
The pink and turquoise dashed lines represent the resolution using branch and
bound respectively on the routing and the step model. The solid lines represent
the median of 10 runs of LNS on the two models. The dark areas represent
the interquantile range at each time step, while the light areas represent the
maximum range covered by LNS over the 10 runs.

From the plot it is possible to see that, regarding the pure CP approaches (i.e.,
Branch & Bound), the routing model is clearly outperforming the step model. As
for the LNS-based solvers, the situation is quite the opposite, with the step model
outperforming the routing model on the median run. One must however consider
that performance data collected on a single instance is of limited statistical
significance. As for the comparison between pure CP approaches and LNS-based
ones, the latter exhibit better anytime performance, reaching low areas of the
objective function much faster then their Branch & Bound counterparts. Of
course this comes at the price of completeness, and we expect CP approaches
to rival with or outperform the LNS-based ones given enough time. It is worth
noticing that this result is consistent across the whole benchmark set.
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Fig. 3. Evolution of the best cost for the Pure CP and LNS solution methods for the
routing and the step model (30 stations, 2 vehicles, time budget 480 minutes)

5.2 Comparison with Other Methods

In this second experiment, we compare our CP and LNS solution methods with
the state-of-the-art results of [9], who solved the same set of instances using a
Mixed Integer Linear Programming solver (MILP) and a Variable Neighborhood
Search (VNS) strategy. The result of the comparison against the best of the three
different VNS approaches in [9] are reported in Table 4. The reported results in
each row are averages over 150 instances, grouped by size, number of vehicles
and available time for the trucks to complete the tour.

Cells marked with a dash refer to instance classes for which the algorithm
cannot reach a feasible solution within a hour. In these cases it makes no sense
to compute a mean, thus for the CP models we report the number of instances
in which the cost is inferior, equal or superior to the one obtained by the MILP
solver in [9]. Of course, this may also happen in the case of LNS, since the initial
solution is obtained through a Branch & Bound search.

In this table we did not report the results of our former ACO+CP solution
approach [6], since it was outperformed by the methods proposed in this paper.

From the table it is possible to observe that the VNS heuristics proposed in
[9] consistently outperform our pure CP and LNS-based solution methods on all
the instance classes. On the other hand our LNS approach based on the routing
model, has very close performances to [9] on almost all instances with 30 stations
or less, although requiring more time to reach the same result.
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As for the comparison with MILP, our CP models solved by Branch & Bound
are able to match or outperform the upper bound solution found by MILP on
the mid- and big-size instances (S ≥ 30). Moreover, the routing model and
the step model seems to have complementary strengths and weaknesses on the
whole benchmark, with the step model being able to consistently find solutions
on instances that are hard for the routing model and the other way round.

Overall, our LNS approach appears more robust on the largest instances,
where pure CP often fails to find even a feasible solution. However, similarly to
the Branch & Bound solution method, also in this case there is no clear winner.

6 Conclusions

In this paper, we have presented two novel CP models for the problem of bal-
ancing bike sharing systems (BBSS), and a Large Neighbourhoud Search (LNS)
approach based on the propagation of the constraints defined in each model for
obtaining good solutions in a reasonable time.

We have compared the results of our research against the state-of-the-art VNS
and MILP solvers for BBSS proposed in [9]. Even though our approaches are not
able to outperform the current bests, our results are reasonably close, and the
two models we propose are based on a more general formulation of the BBSS
problem that, for example, involves the possibility of visiting the same station
repeatedly over the tour or to take into consideration the loading times.

Furthermore, we experimentally show that combining the power of constraint
propagation with neighborhood search is a natural and effective way to trade
completeness for performance. In fact, the LNS approaches based on our two CP
models, consistently outperform their Branch & Bound counterparts by exploit-
ing constraint propagation to limit the size of the neighborhood and reaching
low-cost solutions very quickly.

As future work, we plan to consider different variants of LNS, e.g., employ-
ing different stopping conditions and acceptance criterions. Moreover, we are
interested in solving the dynamic variant of the BBSS problem, where bikes are
moved independently from station to station during the rebalancing, resulting
in variable target values and variable station loads over time.
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Abstract. The chaos theory emerged at the end of the 19th century, and it has
given birth to a deep mathematical theory in the 20th century, with a strong practi-
cal impact (e.g., weather forecast, turbulence analysis). Periodic orbits play a key
role in understanding chaotic systems. Their rigorous computation provides some
insights on the chaotic behavior of the system and it enables computer assisted
proofs of chaos related properties (e.g., topological entropy).

In this paper, we show that the (numerical) constraint programming frame-
work provides a very convenient and efficient method for computing periodic
orbits of chaotic dynamical systems: Indeed, the flexibility of CP modeling al-
lows considering various models as well as including additional constraints (e.g.,
symmetry breaking constraints). Furthermore, the richness of the different solv-
ing techniques (tunable local propagators, search strategies, etc.) leads to highly
efficient computations. These strengths of the CP framework are illustrated by
experimental results on classical chaotic systems from the literature.

Keywords: Chaotic dynamical systems, periodic orbits, topological entropy, nu-
merical constraint satisfaction, symmetry breaking.

1 Introduction

A dynamical system is defined by a state space X (here X ⊆ Rd, so a state is a vector
of d reals) and an evolution function, which describes how the state xt ∈ X changes
as time t passes. Continuous time dynamical systems (i.e., t ∈ R) usually involve
differential equations; in this case the evolution function is often called a flow. In this
paper, we focus on discrete time dynamical systems (i.e., t ∈ Z). They arise either
from discrete models or discretizing continuous time dynamical systems (e.g., using
the Poincaré map). In this case, the evolution function is a map f : X → X , and the
evolution of an initial condition x0 ∈ X is computed by xk+1 = f(xk), giving rise
to (forward) orbits (x0, x1, x2, . . .). Understanding the infinitely complex structure of
orbits generated by very simple systems is the goal of the chaos theory.

The first evidence of chaotic behavior was found by Poincaré while partially solving
seemingly simple three-body problem at the end of the 19th century: The two-body
problem, consisting of computing the trajectory of two masses following Newton’s
gravitational laws, is easily solved and fully understood. Poincaré proved that infinitely

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 774–789, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. The graph of the Dyadic map in thick black. Left: The orbit of x0 = 0.1 in gray. Right:
The orbit of x0 = 1

π
in gray.

complex trajectories arise when three bodies are considered, leading to the modern the-
ory of chaos. One main discovery of Poincaré was the critical importance of periodic
orbits in chaotic dynamical systems. Deep theoretical developments have followed dur-
ing the 20th century (Markov partitions and corresponding symbolic dynamics, measure
preserving maps and ergodicity, hyperbolicity, etc.) providing an increasingly accurate
understanding of chaotic systems. Starting from the middle of that century, extensive
simulations with computers (starting with Lorenz butterfly chaotic attractor) offered
many illustrations of those chaotic behaviors, allowing these ideas to be disseminated
toward the general public.

Formally defining a chaotic dynamical system is difficult: There exist several such
definitions (Li-York chaos, Devanay chaos, positive topological entropy, see [20,6,21]),
which are not equivalent and whose relationship is a current research topic. The com-
mon idea that chaos is the exponential sensitivity to initial conditions is wrong: Con-
sider, e.g., the dynamical system defined by X = Rd and f(x) = 2x. Therefore
xk = 2kx0, so two different initial conditions diverge exponentially fast1 while this
simple linear system is definitely not chaotic. However, enforcing some kind of expo-
nential divergence between the orbits of neighbor initial conditions within a bounded
state space X leads to very complex systems. Such systems need to be simultaneously
expanding (so as to show divergence) and contracting (since the state space is bounded).
This leads to hyperbolic dynamical systems, which are consistently contracting in some
directions and expanding in the other directions, the most well-understood chaotic
behavior.

The Dyadic map is among the most simple systems showing hyperbolic chaos. It is
defined by X = [0, 1) and f(x) = 2x mod 1. Multiplying by two is expanding, while
taking modulo 1 enforces a contraction back to [0, 1). Its graph is shown in Fig. 1,
together with the orbit of x0 = 0.1 (respectively x0 = 1

π ) on the left (respectively

1 Indeed d(xk, yk) = d(2kx0, 2
ky0) = 2kd(x0, y0).
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right) hand side graphic. Orbits of this map are easily visualized: An initial point x
is moved vertically toward the graph of f (the thick line in Fig. 1) in order to reach
f(x), and then horizontally toward the line x = y (the dashed line in Fig. 1) in order
to reach x = f(x); Repeating the process from the new point yields the orbit. On the
left hand side graphic, f(0.1) = 0.2, and the orbit of 0.2 is periodic with period 4 (i.e.,
f4(0.2) = f(f(f(f(0.2)))) = 0.2). This map has a striking interpretation when con-
sidering the binary representation of a real number x = 0.b1b2b3 · · · ∈ [0, 1), each bi
being a bit in {0, 1}: Indeed, multiplying x by two shifts left its binary representation
(yielding b1.b2b3 · · · ), and the modulo 1 then removes the first bit on the left (yielding
0.b2b3 · · · ). Hence the Dyadic map is in direct correspondence with the shift map on
one-sided infinite bit sequences. This is a simple example of the powerful tool sym-
bolic dynamics represents for investigating chaotic dynamical systems. It has several
important consequences here: First, it is well known that a real number is rational if
and only if the binary representation of its fractional part is periodic after a given bit
(the same actually holds in any base). For example, the binary representation of 0.1
is 0.00011001100110011 · · · . Hence any rational number will converge to a periodic
orbit after a finite number of applications of the Dyadic map; the period of this orbit
is equal to the period of the binary representation. It follows there are exactly 2n − 1
initial states2 yielding orbits of period n, called period-n orbits thereafter, and they are
equally distributed within [0, 1). On the contrary, irrational numbers are not periodic
(the right hand side graphic of Fig. 1 shows the first 200 iterates of the orbit of 1

π ,
which is seemingly random). Second, when computing an orbit using a computer, a fi-
nite binary representation has to be used. Therefore, any finite precision simulation has
to converge toward zero. The 200 iterates of the orbit of 1

π shown in Fig. 1 have been
computed using a 200-bit precision arithmetic.

The topological entropy is a real number associated to a dynamical system, which is
meant to characterize the exponential divergence of orbits within a bounded state space.
Suppose one can distinguish two points only if their distance is greater than ε > 0, and
consider a set E ⊆ X ⊆ Rd such that one can distinguish all points, so the mutual
pairwise distance of the points in E is at least ε (such a set is called ε-separated). In
this case, non intersecting balls of radius ε

2 can be put around each point of E, en-
tailing the cardinality of E to be at most VX/V ε

2
, where VX and V ε

2
are respectively

the volume of X and the volume3 of the ball of radius ε
2 . A map f can improve the

situation by separating initial points that were too close to be distinguished, leading to
the definition of (n, ε)-separated sets: A set E ⊆ X is (n, ε)-separated if two differ-
ent points in E yield orbits that are separated by at least ε within n iterations of the
map. Formally, for all x, y ∈ E with x �= y, max0≤k≤n d(f

k(x), fk(y)) ≥ ε. The
maximal cardinality of (n, ε)-separated sets is denoted by s(n, ε). As mentioned above,
s(0, ε) ≤ VX/V ε

2
, while iterating the map can only help distinguishing more points,

so s(n, ε) is increasing with respect to n. The growth rate of s(n, ε) shows how quick
the map separates points. In particular, whenever the growth rate is exponential for some

2 There are 2n binary representation of period n, but 0.1111 · · · is a periodic binary representa-
tion equal to 1 hence outside [0, 1).

3 Volumes are generalized by the Lebesgue measure in space of dimension greater than 3.
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ε > 0, i.e., s(n, ε) ≈ aebn for some non-negative real constants a and b, the topological
entropy of the map f is defined as hX(f) = b. More precisely,

hX(f) = lim sup
ε→0

lim sup
n→∞

log s(n, ε)

n
, (1)

where the first limit is used because s(n, ε) is non decreasing in ε, and supremum limits
are used in order to take into account irregular exponential growths. When the topolog-
ical entropy is strictly positive, the cardinality of maximal (n, ε)-separated sets grows
exponentially with n. Therefore, the minimal distance between points in a maximal
(n, ε)-separated set decreases exponentially with n, while the map f still allows sepa-
rating them by at least ε in at most n iterations. Hence the map induces an exponential
expansion in spite of the bounded state space. Having a strictly positive topological
entropy is the characterization of chaos that is most often used.

For the Dyadic map, one can easily see that the set of points that yield period-n orbits
is (n, 0.5)-separated: Indeed, two such points differ in (at least) one bit among their n
first bits, say the kth bit. Hence, iterating the map k−1 times brings those two different
bits at the first (fractional) place, so the distance between their (k − 1)th iterates is at
least 0.5. Now, since there are 2n − 1 ≈ en log 2 such points yielding period-n orbits,
the topological entropy of the Dyadic map is at least log 2. As seen on this example,
the topological entropy is closely related to the exponential growth of the number Pn of
period-n orbits with respect to n. More generally, under the hypothesis that the system
satisfies the axiom A hypothesis [20] (roughly speaking, it is hyperbolic), its topological
entropy is equal to

hX(f) = lim sup
n→+∞

log(Pn)

n
. (2)

Numerous techniques have been developed to provide computer assisted proofs of
chaos related properties: E.g., the famous answer to Smale’s 14th problem [29], and
[1,19,3,30,27,13]. Proving that a dynamical system is chaotic is generally done by find-
ing out a subsystem with known topological entropy (often by identifying some specific
periodic orbits), leading to a certified lower bound on its topological entropy. Roughly
speaking, the system is proved to be as complex as a known chaotic dynamical system.
An upper bound on the topological entropy provides an estimate of the accuracy of
the certified lower bound, but such upper bounds are difficult to obtain: [27] provides
such an upper bound for one dimensional maps. On the other hand, [9,10,11] proposed
to compute all periodic orbits up to a given period with certified interval techniques,
hence inferring an approximation of the topological entropy using Eq. (2).

We show here that using CP for rigorously computing periodic orbits is a convenient
and efficient approach: By benefiting of constraint propagation and symmetry breaking,
a simple model can be used, while avoiding heavy preprocessing (Section 2). Further-
more, the CP framework allows tuning the propagation strength and the search strat-
egy (Section 3) so as to achieve more efficient resolution (experiments on well-known
chaotic systems are reported in Section 5). We show in particular that the solving pro-
cess can be tuned for small periods, impacting the resolution for higher periods.
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2 Modeling the Problem

After briefly recalling the basics of numerical constraint modeling, we introduce NCSPs
whose solutions provide the periodic orbits of discrete time dynamical systems. Two
standard models described in [9] are discussed with respect to numerical constraint
solving. The flexibility of CP modeling allows considering alternative models.

2.1 NCSPs and Interval Arithmetic

Numerical constraint satisfaction problems (NCSPs) have variables representing real
quantities, whose domains are thus subsets of R. Their constraints are typically equa-
tions and inequalities on these quantities. For practical reasons, the domains are handled
as intervals and the assignments are not enumerated. Instead, domains are split and fil-
tered until a prescribed precision is reached. Interval arithmetic [24] allows enclosing
the results of set-wise operations, and accounts for floating-point computational errors.

In this paper we denote x = (x1, . . . , xn) the variables, considered to be a n-
dimensional vector for convenience. We also denote x a real assignment of the vari-
ables, i.e., a point (x1, . . . , xn) ∈ Rn. Intervals are denoted using bold-faced letters.
Hence, the domains of x are denoted x = (x1, . . . ,xn), considered as a n-dimensional
vector of intervals, also called a box. We denote f an interval extension of a function
f , i.e., a function which computes an interval f(x) enclosing all the possible values of
f(x) for any real x ∈ x. This definition naturally extends to function vectors f .

Interval arithmetic suffers from two problems: The dependency problem by which
multiple occurrences of the same sub-expression are considered independent (e.g., x−x
evaluates to 0 for any real in x ∈ [0, 1], but its interval evaluation at x = [0, 1] is
[−1, 1]); And the wrapping effect by which the exact evaluation of an expression on
an interval is in general poorly approximated using a single interval (e.g., 1

x evaluated
at any x ∈ [−1, 1] yields a real in (−∞,−1] ∪ [1,+∞) but its interval evaluation
at x = [−1, 1] results in (−∞,+∞)). In addition, the practical use of floating-point
computations induces the necessity of rigorous encapsulation of rounding-errors. These
issues lead to potentially large over-approximations and must be carefully handled.

2.2 Folded Models of Periodic Orbits

Given a map f on a state space X ⊆ Rd, we can characterize a period-n orbit with the
fixed-point relation

x = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

(x) = fn(x). (3)

Imposing it as a constraint on variables x with domains4 X results in the NCSP folded
model whose solutions are the initial states x ∈ X of period-n orbits.

4 In theory X may not be representable as a box, and the domains should be set to the smallest
enclosing box. In practice however, the state spaces of classical chaotic maps are boxes.
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Example 1. The famous Logistic map [23] is defined as f(x) = rx(1 − x) on X =
[0, 1]. It models the evolution of a population (x is the ratio to a maximum population)
depending on a parameter r ∈ R+ representing a combined rate of reproduction and
starvation. Despite its very simple formulation, this map has a chaotic behavior for
some values of its parameter, e.g., r := 4. The folded model for period-2 orbits with
this setting has a single variable x and a single constraint x = f(f(x)) = −256x4 +
512x3−320x2+64x. Its four solutions are 0, 3

4 and (5±
√
5)/8, the two first ones being

in fact fixed-points (period-1 orbits), the others constituting the only period-2 orbit.

Folded models present two major drawbacks when addressed with interval-based
constraint solving methods. First, as soon as the map function contains more than one
occurrence of a variable, the numbers of operations and occurrences of this variable
in the constraint grow exponentially with the period. Though the factorized expression
can still be compactly represented with a DAG, this cripples its interval evaluation by
exacerbating both the dependency problem and the wrapping effect. This is even worse
for the evaluation of the derivatives of the constraint, required to use interval Newton
operators for proving the existence of real periodic orbits within boxes. Second, their
solutions are the initial states of periodic orbits, but any point in a periodic orbit is an
initial state for this orbit. Hence, as exemplified above, they have n solutions for each
period-n orbit.

It is worth noting that the constraint can sometimes be simplified. For instance, that
of the Dyadic map (see Section 1) can be rewritten x = 2nx mod 1, and the Logistic
map function can be reformulated as f(x) = r

4 − r(x − 1
2 )

2. Such simplifications may
reduce the over-approximations of interval arithmetic. Still, the intrinsic complexity
of the model remains as an initial box forcibly grows exponentially in size with the
iterations of the map due to its chaotic nature.

2.3 Unfolded Models of Periodic Orbits

The NCSP unfolded model aims at finding complete periodic orbits at once. Its vari-
ables (x0, . . . , xn−1) represent the consecutive n states in an period-n orbit, each xk
being itself a vector of d variables with domains X . The constraints establish the links
between consecutive points

x(k+1)modn = f(xk) k ∈ {0, . . . , n− 1}. (4)

Example 2. The unfolded model for the period-2 orbits of the Logistic map with r := 4
is composed of the variables (x0, x1) and the constraints x1 = 4x0(1 − x0) and x0 =

4x1(1 − x1). Its four solutions are (0, 0), (34 ,
3
4 ), (

5−
√
5

8 , 5+
√
5

8 ) and (5+
√
5

8 , 5−
√
5

8 ). It
is now obvious the first ones are fixed points, and the others represent the same orbit.

This model has the strong advantage that constraint expressions remain identically
complex (as many operators and variable occurrences) when n grows, making it much
more appropriate for constraint methods. However, it has n × d variables instead of
d variables in the folded model, and its search space thus grows exponentially with
the period n. This drawback must be balanced with the fact having the n states as
variables allows connecting the states in the same orbit, defining more freely strong
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pruning operators involving several states, and splitting at any state during the search,
definite advantages when taking into account the explosive nature of chaotic maps.

2.4 Other Models of Periodic Orbits

The flexibility of the CP framework makes it possible to consider alternative models to
the two classical ones presented above. For instance, both folded and unfolded models
naturally have a functional form, but it is sometimes interesting, e.g., in order to reduce
variable occurrences, to manipulate symbolically each constraint as a relation. This can
yield relational unfolded models of the form

F (x(k+1)modn, xk) = 0 k ∈ {0, . . . , n− 1} (5)

whose interest will be illustrated in Section 5. It is also possible to reduce the search
space by considering as variables only a fraction of the states in a periodic orbit, yielding
semi-unfolded models. This could allow experimentally seeking an efficient trade-off
between the folded and unfolded models, though in this paper we will focus only on
those extremes in order to clearly illustrate their strengths and weaknesses.

2.5 Taking into Account Additional Properties

A nice feature of CP is its ability to include additional knowledge on the considered
problem as constraints or within initial domains, yielding a variety of complemented
models whose efficacy can then be tested.

Periodic orbits have an inherent cyclic state symmetry. It is difficult to handle it in
folded models, but it naturally boils down to a cyclic variable symmetry in unfolded
models, and can then be (partially) broken using the lex-leader constraints relaxation
proposed in [14]:

x0,0 ≤ xk,0 k ∈ {1, . . . , n− 1}, (6)

where xk,0 represents the first coordinate of state k. Note that the symmetry could be
broken using any other coordinate. Though inducing only a partial symmetry breaking,
these additional constraints reduce optimally the search space.

Example 3. The additional partial symmetry breaking constraint for the unfolded model
whose solutions are the period-2 orbits of the Logistic map is x0 ≤ x1. It allows dis-
carding the fourth solution, (5+

√
5

8 , 5−
√
5

8 ), as it is symmetric to the third one. It also
halves the search space which is computationally very interesting.

Another property of the considered problem is that period-m orbits for any factor m
of n are solutions of any NCSP model for period-n orbits. E.g., the two fixed-points
of the Logistic map are solutions of models for any period n. In theory, additional
constraints of the form xi �= xj for all 0 ≤ i < j < n would discard these factor
orbits, but such constraints cannot be filtered with interval solving methods and are
thus useless.

Many chaotic maps have been extensively studied and a lot of knowledge has been
accumulated about them. For instance, the trapping region of a map f on X , i.e., the
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state subspace X ′ ⊆ X whose image through the map f(X ′) is strictly enclosed in X ′,
may be known to be enclosed within an ellipsoid or a polytope. Since periodic orbits
starting within a trapping region must belong entirely to this trapping region, we can
restrict the search to the enclosing shape using some additional inequality constraints.

Another example is the non-wandering part (NWP) of a map f on X , i.e., the set of
points x ∈ X such that any neighborhood U of x verifies fn(U) ∩ U �= ∅ for some
n > 0. This set comprises all periodic orbits and can be approximated using a simple
subdivision algorithm: Consider the directed graph whose vertices are the boxes in a
regular ε-precise subdivision of X and whose arcs x → x′ verify f(x) ∩ x′ �= ∅;
Removing iteratively sinks and sources in this graph yields an ε-precise approximation
of the NWP of f . This paving can be used to setup the domain of the initial state of
an orbit, as proposed in [9]. Its size however grows quickly with ε and it is difficult to
predict the appropriate precision without a dedicated study of the considered map.

3 Solving the Problem

The standard complete constraint solving method is the branch&prune algorithm. It
iteratively selects a box, prunes it using local consistency enforcing operators and in-
terval methods (jointly designated as contractors in the following), checks if it contains
a single solution and, otherwise, splits it into sub-boxes to be further processed. In this
section we discuss the appropriate components of a branch&prune algorithm for solving
NCSP models of periodic orbits of chaotic maps.

3.1 Pruning Periodic Orbits Domains

The basic pruning algorithm for NCSPs is an AC3-like fixed-point loop over simple, and
inexpensive, contractors like, e.g., BC3-revise [5], HC4-revise [4] or MOHC-revise [2].
It is however sometimes needed to resort to stronger contractors in order to avoid too
much splitting, on trade-off with more demanding computations at each node of the
search-tree. This can be achieved using for instance a fixed-point of 3B (or more gener-
ally kB) [22] or CID [28] operators. Finally, it is essential in this work that the returned
solutions are proven to enclose a unique periodic orbit of the considered map, otherwise
no valid reasoning on the map (e.g., its topological entropy) could be derived. For this
purpose, it is typical to use an interval Newton operator [25], providing in addition a
more global consistency.

In this paper we consider essentially two pruning procedures: BC5, a fixed-point of
HC4-revise and BC3-revise5 contractors followed by an interval Newton application;
and BC5+CID(k), i.e., BC5 involving in addition CID(k) contractors6 during the fixed-
point phase.

5 Typically generated for variables with multiple occurrences only.
6 One CID(k) contractor for a variable x slices the domain of x into k parts, computes a fixed-

point of HC4-revise contractors for all constraints and variables on each slice, and eventually
takes the hull of all the pruned slices.



782 A. Goldsztejn, L. Granvilliers, and C. Jermann

3.2 Splitting Periodic Orbits Domains

The standard splitting strategy for NCSPs is round-robin with bisection, which selects
each time the next variable and splits its domain interval at its midpoint. Another typical
strategy is maxdom which selects the variable with the largest domain.

The unfolded model for periodic orbits has a specific structure since variables are
grouped into state coordinates and correspond to consecutive points in the orbit. We
can thus consider dedicated splitting techniques, e.g., initial-state which splits only the
coordinates of the initial state x0 in the orbit, counting on pruning operators to reduce
the domains of the other states. This idea was advanced in [9] as a mean of reducing the
dimension of the search space.

Due to the explosive nature of chaotic maps, we think however that splitting all the
states domains should pay-off. This will be confirmed in section 5 where we compare
classical splitting strategies (round-robin and maxdom) on all variables to the dedicated
initial-state splitting strategy.

3.3 Post-processing Solution Boxes

The branch&prune algorithm we have described outputs two types of boxes: Safe boxes
which have been successfully certified to enclose a unique periodic orbit, and unsafe
boxes which are not certified but have reached the prescribed maximum precision for
the computation. When the partial symmetry breaking constraints (6) are used, boxes for
which the corresponding strict inequalities are not certainly satisfied are also considered
unsafe. Indeed such boxes may each contain a representative of the same periodic orbit.
Note however that this never happened in the experiments reported in Section 5.

Unsafe boxes must be properly handled so as to allow rigorously counting the num-
ber of real periodic orbits. For this purpose, we apply a post-process that tries to certify
them using a specific version of the interval-based Newton operator with inflation [18].
This operator acts like an interval local search algorithm, iteratively shifting and in-
flating slightly an initial box x so as to find a close box x′ that can be certified. If it
succeeds, x′ replaces x in the solution set, after checking it does not enclose a peri-
odic orbit already found in another safe solution box. Possibly symmetric boxes must
be merged before applying this post-process. In case unsafe boxes remain after this
process, only a lower bound on the number of real periodic orbits is obtained.

4 Related Work

In [9,10,11], an interval-based method dedicated to computing periodic orbits of chaotic
maps is proposed. It amounts to a bisection algorithm which splits the domains of the
orbit, using interval forward evaluation of the map along the orbit to discard boxes that
provably do not contain any periodic solution, and applying an interval Newton operator
to certify that a box contains a single solution. When the map is symbolically invertible,
it uses both forward and backward interval evaluation along the orbit in a fixed-point
manner. Several key ingredients are identified in [9] as essential to the efficiency of this
method: The usage of the unfolded model and of the map symbolic inverse, the initial-
state splitting strategy, and some preprocessing using the non-wandering part and some
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trapping region enclosure. Most of them are made unnecessary or even counterproduc-
tive by the CP framework, as illustrated by the experiments reported in the next section.

Non rigorous local methods for computing periodic orbits have also been investi-
gated (see e.g., [8,26,7,12] and references therein). They usually work on the unfolded
model, in a similar way as multiple shooting method for boundary value problems. Be-
ing incomplete, they are not used for estimating the topological entropy, although being
useful for other purposes like computing longer periodic orbits.

5 Experiments

Constraint programming is implemented to handle several classical maps having differ-
ent characteristics. Several issues are analyzed. What is the best way to model orbits?
What are the good pruning and splitting techniques? Is it possible to take advantage of
dedicated methods in the CP framework?

More precisely, we aim at comparing unfolded models with folded models, and the
Cartesian form with the polar form of complex maps. Several splitting techniques (max-
dom, round-robin, initial-state) are investigated. Different local consistency techniques
are studied, in particular BC5 and BC5+CID(k). To this end, four standard maps are
considered, namely Dyadic, Logistic, Hénon, and Ikeda. All techniques have been im-
plemented in Realpaver [15] using default parameter settings. All experiments have
been conducted on an Intel Core i7-620M 2.66GHz measured at 1666 MIPS by the
Whetstone test.

We have implemented the previously introduced dedicated methods in our branch&
prune algorithm, namely the non wandering part pre-paving, and trapping region con-
straints. In fact, we have observed that these methods do not change significantly the
overall performances of the solving process. For instance, the solving time varies in
proportion to±10% (tested for Hénon and Ikeda) when the non wandering part is taken
as input. It appears that propagation and split are together able to eliminate inconsistent
regions of the search space without resorting to such methods.

For each problem, we found the theoretical number Pn of periodic orbits of the uni-
dimensional maps, or the same number of periodic orbits as [9] for the Hénon and Ikeda
maps. This number grows exponentially with n, i.e., Pn ≈ aebn where b approximates
the topological entropy. As a consequence, the solving time t of the branch&prune al-
gorithm must also grow exponentially with n. In fact, we aim at observing for a given
map and a given strategy that t ≈ cedn, where d ≥ b must hold since the solving pro-
cess is complete. Therefore the difference (d − b) quantifies the overall quality of this
strategy. In the following, we will use a logarithmic scale on t and Pn to plot the results,
the growth constants b and d corresponding to the slopes of the curves.

Remark: The experiments are carried out only for orbits of prime periods. Hence, pos-
sible issues of factor orbits and symmetry breaking are discarded, thus simplifying the
post-processing phase and the interpretation of results. Following this approach still
permits to compare the different techniques and to calculate accurate approximations
of the topological entropy.
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Fig. 2. Finding orbits of Dyadic and Logistic using BC5 with maxdom. Left: ◦ is the number
of solutions Pn; the other curves represent the solving times of Dyadic’s unfolded model and
Logistic’s unfolded model using the factorized expression (�), Dyadic’s folded model (�), Lo-
gistic’s folded model using the factorized expression (	), and Logistic’s unfolded model using
the original expression (•). Right: Empirical asymptotic laws of these different techniques.

5.1 Unidimensional Maps

The two aforementionned unidimensional maps (Dyadic and Logistic) are interesting
to illustrate the impact of modeling on the solving performance. Their folded models
are simple enough, their number of operations growing linearly with n. The expression
of Logistic can be factorized (the factorized form is used to generate the folded model).
Dyadic is discontinuous due the modulo operation.

The topological entropy of these maps is equal to log 2 since they have respectively
2n (Logistic) and 2n − 1 (Dyadic) solutions. Their orbits are easily calculated by BC5
with maxdom, the number of splitting steps matching the number of solutions.

The results are depicted in Fig. 2. The topological entropy is the slope of the dashed
line Pn. One can remark that the other curves corresponding to different models tend to
become parallel to Pn, showing that the cost of calculating one solution is constant for
all of them. Strikingly, the branch&prune algorithm behaves similarly when processing
the folded models (curves � and 	) and the unfolded models (curve �). In fact, the
unfolded models exploit symmetry breaking constraints that reduce Pn by a factor n.
However, pruning the folded models is easier since only one BC3-revise operator is
applied at each node of the search tree, while pruning the unfolded models calculates a
fixed-point of n HC4-revise operators (one per constraint) followed by an application
of the interval Newton operator. Logistic’s original unfolded model is worse (curve •),
since it requires applying BC3-revise operators due to the multiple variable occurrences.

Discontinuous or non differentiable functions, involving e.g., the modulo operation,
are seemingly taken into account with no additional cost. However, they possibly inter-
fere with the certification procedure. For instance, solving Dyadic’s unfolded model
produces two non certified boxes. The first box encloses the fixed-point (0, . . . , 0),
which is located on the domain boundary. The second box ([1 − ε, 1], . . . , [1 − ε, 1])
contains no solution but it cannot be discarded by interval methods.
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Fig. 3. Hénon map. Left: ◦ is the number of solutions Pn; • is the solving time t of BC5 with
maxdom; � differs from • in the use of the round-robin strategy; 	 differs from • in the splitting
of the initial state alone; � differs from • in the use of CID(3) operators; + differs from • in the
use of the folded model. Right: Period-23 orbits, which clearly shows the well known strange
attractor of the Hénon map.

5.2 Hénon Map

The Hénon map [16] is defined as f(x, y) = (y+ 1− ax2, bx), the standard parameter
values a := 1.4 and b := 0.3 leading to a chaotic behavior. Given xk, yk ∈ [−2, 3],
0 ≤ k ≤ n− 1, the unfolded model is as follows:{

x(k+1)modn = yk + 1− ax2k
y(k+1)modn = bxk

(7)

The results are depicted in Fig. 3. The number of solutions Pn (dashed curve) gives
an approximation of the topological entropy as log(Pn)/n ≈ 0.46. As expected, the
folded model (curve +) is not tractable since its size grows exponentially with n. The
other techniques are all able to isolate and certify all the solutions in reasonable time
for the considered periods, corroborating the results in [9]. The best splitting technique
is maxdom (curve •), compared to round-robin and initial-state (curves � and 	). En-
forcing BC5+CID(3) (curve �) seems to slow-down the solving phase but the growth
constant is decreased from 0.55 to 0.51, demonstrating a better asymptotic behavior. In
other words, we have t•(n) ≈ O(e0.55n) and t�(n) ≈ O(e0.51n).

We have also extracted from [9] the growth constant of the solving time tG ob-
tained from the best implemented method, which is approximatively equal to 0.58, i.e.,
tG(n) ≈ O(e0.58n). Hence, on this problem the CP approach compares favorably in
terms of complexity to the dedicated approach of [9].

5.3 Ikeda Map

The Ikeda map [17] is defined as

f(z) = a+ b exp

(
iκ− iα

1 + |z|2

)
z (8)

where z is a complex number. The classical setting a := 1, b := 0.9, α := 6 and
κ := 0.4 yields a chaotic behavior. This map can be transformed into a two-dimensional
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Fig. 4. Ikeda map. Left: ◦ is the number of solutions Pn; 	 is the solving time t of BC5 with max-
dom applied to the Cartesian model; • differs from 	 in the use of the polar model; � improves
• with CID(3) operators; � improves • with CID(9) operators; + differs from � by initial-state.
Right: Period-17 orbits, which clearly shows the well known strange attractor of the Ikeda map,
although in polar coordinates here.

unfolded model7 over the real numbers in two ways: The Cartesian form z = x + iy
yields ⎧⎨

⎩
x(k+1)modn = a+ b(xk cosuk − yk sinuk)
y(k+1)modn = b(xk sinuk + yk cosuk)
uk = κ− α/(1 + x2 + y2)

(9)

for k = 0, . . . , n− 1 and the polar form z = ρeiθ leads to the relational model⎧⎨
⎩
ρ(k+1)modn cos(θ(k+1)modn) = a+ b(ρk cos(uk))
ρ(k+1)modn sin(θ(k+1)modn) = b(ρk sin(uk))
uk = θk + κ− α/(1 + ρ2k).

(10)

The domains can be defined as xk, yk ∈ [−10, 10], ρk ∈ [0, 10
√
2] and θk ∈ [−π, π] for

every k. In both models, new variables uk ∈ (−∞,+∞) are added to share projections
on common sub-expressions appearing in the constraints, hence augmenting the con-
traction power of interval constraint propagation. These variable domains are however
never split, thus not increasing the size of the search space.

The results are depicted in Fig. 4. The number of solutions Pn (dashed curve) gives
an approximation of the topological entropy as log(Pn)/n ≈ 0.60. We first compare
the Cartesian model (curve 	) with the polar model (curve •) both handled by BC5
with maxdom. The growth constants for these models are respectively equal to 1.83 and
1.46, i.e. t�(n) ≈ O(e1.83n) and t•(n) ≈ O(e1.46n), promoting the use of the polar
model. However, even using the polar model, the solving strategy BC5 with maxdom
remains very inefficient with respect to the approximate topological entropy. This led us
to enforce stronger consistency techniques in order to decrease the number of splitting
steps by an exponential factor.

7 The folded model of this map is far too complex to be tractable by interval solving methods.
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The solving time is much improved by means of BC5+CID(3) (curve � with growth
constant 0.85) and especially BC5+CID(9) (curve � with growth constant 0.66, i.e.
t�(n) ≈ O(e0.66n)), considering the polar model. Finally, as observed for the Hénon
map, the other tested splitting strategies are counterproductive. In particular, this phe-
nomenon is illustrated by replacing maxdom with initial-state and solving the polar
model with BC5+CID(9) (curve + with growth constant 0.81, i.e. t+(n) ≈ O(e0.81n),
to be compared to �).

6 Discussion

Compared to the dedicated method proposed in [9,10,11], the CP framework offers a
much more flexible, easy to deploy and to use environment. However, this high flexi-
bility entails choosing the best combination of model and solving strategy. The results
reported in Section 5 suggest that this choice can be performed as follows: The differ-
ent combinations can be implemented to calculate period-n orbits for small values of n
(e.g., with a timeout of a few minutes). On the basis of these results, the law t ≈ cedn

can be approximated for each combination, by estimating the constants c and d, and the
best combination can be used to solve the problem with greater periods.

A quantitative comparison of the respective efficiencies of the CP framework and the
method of [9] is difficult to assess, since [9] does not focus on this aspect. Nevertheless,
the asymptotic complexity, which does not depend on the computer, can be extracted
from the results reported in [9] for the Hénon map: The time needed to compute all
n-periodic orbits follows tG(n) ≈ O(e0.58n). Our experiments on the Hénon map have
shown an asymptotic time t�(n) ≈ O(e0.51n). This is a significant improvement with
respect to the lower bound complexity Pn ≈ O(e0.46n).

On a qualitative perspective, the experiments reported in Section 5 allow arguing
about several claims of [9]: First, the usage of local consistencies removes the necessity
of symbolically inverting the map, which is critical for the efficiency of [9] but not al-
ways possible. Second, initial-state splitting strategy is not anymore a key ingredient for
the efficiency, not even the best strategy in the CP framework. Finally, additional prop-
erties like the pre-computation of the non wandering part or some trapping region are
not essential anymore: Local consistencies are able to efficiently remove boxes incon-
sistent with these additional properties using only the constraints x(k+1)modn = f(xk).
In addition, the cost of their treatment may turn out to penalize the overall algorithm
efficiency.

Future work shall tackle additional maps, including higher dimensional discrete time
dynamical systems and ODE driven continuous time dynamical systems. One weakness
of the approach, which is also pointed out in [9], is that the topological entropy approx-
imation by counting the number of periodic orbits holds only for dynamical systems
that satisfy the axiom A (although some exponential growth of the number of periodic
orbits is a very strong hint of the presence of hyperbolic chaos in general). We shall
investigate the possibility of providing some computer assisted proof of this property.
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Abstract. Sheet metal cutting using lasers is ubiquitous in the industry,
and is used to produce everything from home decorations to excavator
scoops. Metal waste is costly for the industry, both in terms of money,
but also in terms of an increased environmental footprint. Tomologic
develops a unique optimisation system that can reduce this waste dras-
tically. This paper presents a CP approach to the Laser Cutting Path
Planning Problem (LCPPP), a very hard important sub problem within
the Tomologic optimisation system. A solution to the LCPPP is, given a
packing of some details on a metal sheet, an ordering of the cuts neces-
sary to separate the details from the sheet. The problem is complicated
by physical factors such as heat from the laser beam, or details moving
or flexing. In the paper, we explain the problem in detail and present our
CP approach that we developed for solving the problem. The possibility
(in CP) of custom search heuristics turned out to be crucial to be able to
solve the problem efficiently, as these could be made to guide the search
to good first solutions.

1 Introduction

Most people have come across the problem of planning different shapes (hearts,
Christmas trees, stars, etc) on gingerbread dough, and trying to minimise the
dough waste that needs to be rolled out again. See Fig. 1 on the facing page for
an example with hearts where, in 1(a), only three hearts fit but, when aligning
the hearts together as in 1(b), one more heart can be made to fit. Now, replace
the dough by metal sheets, and the technology to separate the shapes (or details)
from those metal sheets by laser cutting machines. Then, aligning the details as
in Fig. 1(b) is not trivial anymore, and the waste cannot simply be “rolled out”
again, but the recycling process is very costly.

The sheet metal cutting market is huge: the number of active laser cutting
machines is estimated to be around 50,000 globally, each such machine consumes
around 1,500 tonnes of raw material each year, and the amount of metal waste
is typically between 20 and 50 percent [1]. So any (general) decrease in waste
means great savings!

Tomologic develops a unique optimisation system that can reduce this global
metal waste considerably, by deploying a technology that makes alignments such
as those in Fig. 1(b) possible. This is of great importance not only for the
manufacturing industry, for which there are obvious cost savings, but also for the
whole world, since the industry’s environmental footprint can be made smaller.

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 790–804, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(a) (b)

Fig. 1. How many hearts can be obtained from the gingerbread dough?

Tomologic’s solution is based on technical knowledge of, given a packing of
some details on a metal sheet, how to plan the cutting paths of the laser beam to
separate aligned details, and still ensuring a high quality of the end products. In
this paper, we formalise this very important and hard combinatorial sub problem
that must be solved within the Tomologic optimisation system, and describe a
constraint programming approach that we developed for solving it. The main
contributions of this paper are:

– the introduction of a new problem domain in the context of a real life indus-
trial problem of great importance;

– a constraint programming approach for the problem, including a formal
model of variables and constraints, as well as customised search heuristics
for solving the model.

In the following, we first discuss background and context in Sect. 2, after which
we introduce the Laser Cutting Path Planning Problem in Sect. 3. We then
present our constraint programming model in Sect. 4, where we start by describ-
ing the decision variables of the problem, followed by problem constraints as
well as implied ones. Section 5 describes the search heuristics and optimisation
goal, and Sect. 6 gives an overview of the implementation. Finally, in Sect. 7 we
discuss current status and constraint programming impacts on the application
development.

2 Optimisation for Sheet Metal Cutting

One of the large problems faced by the manufacturing industry today is metal
waste. This is inevitable when, out of large metal sheets, using lasers or related
techniques to produce anything from home decorations to excavator scoops. Such
metal waste needs to be (i) transported from the manufacturing shops to metal
recycling facilities (often overseas); (ii) melt down and restored to new raw mate-
rial (for example new metal sheets); (iii) transported back to the manufacturing
shops for further processing. This means increased costs, both in terms of money,
but also in terms of increased environmental footprints for the end products. So
the objective when optimising sheet metal cutting is very easy to understand:
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Given a set of production details and a number of metal sheets, find
a packing of the details on the sheets that minimises the overall metal
waste.

2.1 Current Technology

The traditional technology that is used for planning production details on metal
sheets is nesting [2], where the details are planned on the sheets using two-
dimensional irregular shape packing algorithms. Current state-of-the-art nest-
ing software can produce sophisticated plans, but suffers from one important
limitation:

To ensure quality of the production details, any two adjacent details must
be separated by a safety distance.

This safety distance depends on the type and thickness of the metal sheets and,
of course, means that large amounts of waste in the form of metal skeletons are
unavoidable. For example, using the traditional nesting technology for solving
the hearts problem shown in Fig. 1 on the previous page, the solution in 1(b) is
not possible, as the laser cutting machine would not be capable of cutting those
aligned shapes safely.

However, by using a safety distance, the only condition (disregarding any op-
timisation criteria) that needs to be taken into account when developing nesting
algorithms, is the geometric non-overlapping constraint on all details. Given any
packing that fulfils this condition, the details are cut in isolation in some order,
without affecting each other.

2.2 The Tomologic Optimisation System

Tomologic introduces a completely new technology for planning production de-
tails on metal sheets. This technology is based on the observation that, under
some conditions, the safety distance between details can often be omitted. This
means that details can be aligned and separated by the width of the laser beam
only, and that cutting paths can be shared between several details. Tomologic’s
knowledge of when this is safe to do is based on many years of hands on experi-
ence of manual production planning for, and operation of, laser cutting machines.

However, the alignment of production details complicates the problem consid-
erably since (i) there are many more conditions to take into account in addition
to the geometric non-overlapping constraint, such as when and how two details
can be aligned; and (ii) the cutting path planning is much more complicated,
since the order of the cuts now depends on the packing.

Although complicating the problem, the alignment of production details
also means that the waste can be reduced considerably. For example, it is
often the case that waste in the form of metal skeletons (coming from the
use of a safety distance) is replaced by much less waste in the form of metal
frames (see Fig. 2 on the facing page, for example). Furthermore, the alignment
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Fig. 2. Tomologic’s technology (left) compared to the traditional nesting technology
(right)

of production details also means that sophisticated cutting patterns can be de-
ployed, which can decrease the time and energy necessary to drive the laser beam.

So the Tomologic optimisation system must solve two interacting problems,
the first one being how to find a packing of the production details on the metal
sheets, while the second one being how to plan the cutting paths given such a
packing of details. In this paper we focus on the second problem, that we call
the Laser Cutting Path Planning Problem, presented in the next section.

3 The Laser Cutting Path Planning Problem

Given a packing of a set of production details on a metal sheet, the Laser Cutting
Path Planning Problem (LCPPP) is the problem of finding an order of the cuts
necessary to separate the details from the sheet. In order to discuss this in greater
detail, we need to introduce some terminology.

A packing consists of a number of clusters, each such cluster contains a num-
ber of details that are connected (directly or indirectly) to each other through
alignment cuts (two sides of different details separated by the width of the laser
beam only). Such clusters are separated by a safety distance. This is in contrast
with the traditional nesting technology, where each cluster can contain at most
one detail. A pocket is an area within a cluster that is not a detail, but completely
surrounded by at least two connected details.

A cutting path describes the movement of the laser beam while it is turned
on. This is analogous to paper pencil drawing, from the time that the pencil
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first touches the paper until it is lifted again. Given a cluster, we call a complete
sequence (that separates each detail in the cluster from any other detail or the
rest of the metal sheet) of such cutting paths a cutting plan for the cluster. A
piercing is the process of creating a small hole in the metal sheet at the start
of each cutting path. Due to additional heat produced by the laser beam in this
process, there must be some space between piercings and details, or the details
may suffer from defects. This means that after each piercing, and before starting
the actual cut (that is, the cut separating the relevant detail from the rest of the
sheet), there must be a short lead-in cut.

To reason about solutions to the LCPPP, we represent each cluster as a graph:
the cut graph of the cluster. The edges of a cut graph represent cuts; either
cuts separating details from the rest of the metal sheet, or cuts separating two
details from each other (alignment cuts). The nodes of a cut graph represent the
connections where two or more cuts meet (the incoming cuts of the connections).
A cut graph is generated by identifying the cuts and connections of the cluster.
In addition to natural connections that occur at the endpoints of alignment
cuts, additional connections are introduced at positions that are well suited for
piercings.

Example 1. Consider the instance of the LCPPP shown in Fig.3(a) on the facing
page, consisting of one cluster containing four details (labeled d1, . . . , d4), and
one pocket (labeled p1), to be separated from a metal sheet (its edges shown
dashed). To separate the details from the metal sheet, thirteen cuts must be
made, in some order. These cuts are labeled c1, . . . , c13 in the cut graph of
Fig. 3(b), and should be interpreted as follows. Cut c1 separates d1 from the
metal sheet; alignment cut c2 separates details d1 and d2 from each other; align-
ment cut c3 separates details d2 and d3 from each other; alignment cuts c4
and c5 separate details d1 and d3 from each other; cut c6 and c7 separate de-
tail d1 from pocket p1; alignment cuts c8 and c10 separate details d1 and d4
from each other; cut c9 separates detail d3 from pocket p1; cut c11 separates
detail d4 from pocket p1. Finally, cuts c12 and c13 separate d4 from the metal
sheet.

Each cut starts and ends in two out of nine connections labeled k1, . . . , k9
(these connections are also shown on the details in (a) for clarity). Possible
cutting path starting connections are identified in the cut graph by additional
circles. The connection k9 was introduced as an additional such possible starting
connection.

A possible cutting plan for this instance is: c4 starting in k3; c5 → c2 → c3
starting in k4; c8 → c6 → c9 → c7 starting in k5; c10 → c11 starting in k8;
c13 → c1 → c12 starting in k9.

A solution to the LCPPP is a cutting plan for each cluster that separates the
production details from the rest of the metal sheet, and still ensuring production
reliability of those details. This is achieved by imposing additional constraints
on cutting plans. We may also impose optimisation criteria on cutting plans, for
example with respect to improved detail quality or lower cutting time. These con-
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Fig. 3. An instance of the Laser Cutting Path Planning Problem

straints and optimisation criteria are discussed in the context of our constraint
programming approach in the following three sections.

4 A Constraint Programming Model

4.1 Assumptions and Notation

We consider an instance of the LCPPP where cuts C = {c1, . . . , cn} with connec-
tions K must be made to separate a number of production details from a metal
sheet. For simplicity, we assume a single cluster; problems involving several such
clusters are beyond the scope of this paper. Given this, we use

– cut part as a collective name for a detail or a pocket;
– incoming(k) to denote the incoming cuts to connection k ∈ K; and
– arrays indexed by cuts as placeholders for our decision variables.

By abuse of notation we will sometimes use variable array names to denote sets
or functions, and write formulas on elements, subsets, or function applications
of such array names. For example, we use

– cutorder(P ) to denote the cut order variables (defined below) of any of the
cut parts in P ; and

– cutparts(x) to denote the cut parts (at most two) that x is a cut order
variable of.

This is exemplified further in Ex. 2 below.

4.2 Decision Variables and Their Domains

Cut Order Variables. We use an array cutorder[c1, . . . , cn] of cut order vari-
ables to represent the order in which the cuts are made, where the domain of
each such variable is 1..n. Furthermore, we let cutorder[⊥] = −∞.
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Cut Start variables. We use an array cutstart[c1, . . . , cn] of cut start variables
to represent cutting path starting points, where the domain of each such variable
is the starting connections of the corresponding cut, and ⊥ (meaning that the
corresponding cut does not start a cutting path).

Predecessor Variables. We use an array pred[c1, . . . , cn] of predecessor vari-
ables to represent the predecessors of the cuts, where the domain of each such
variable is its adjacent cuts, and ⊥ (meaning that the corresponding cut does
not have a predecessor, since it starts a cutting path).

Example 2. Recalling the instance of Ex. 1 on page 794, the initial variable do-
mains are as follows (only showing the domains for c1, c2, and c13):

cutorder[c1, . . . , c13] =
[
1..13, 1..13, . . . , 1..13

]
cutstart[c1, . . . , c13] =

[
{k5, k8,⊥}, {⊥}, . . . , {k8, k9,⊥}

]
pred[c1, . . . , c13] =

[
{c8, c10, c12, c13,⊥}, {c3..c5,⊥}, . . . , {c1, c10, c12,⊥}

]
Now, the cutting plan given in Ex. 1 is equivalent to the assignments:

cutorder[c1, . . . , c13] = [12, 3, 4, 1, 2, 6, 8, 5, 7, 9, 10, 13, 11]

cutstart[c1, . . . , c13] = [⊥,⊥,⊥, k3, k4,⊥,⊥, k5,⊥, k8,⊥,⊥, k9]
pred[c1, . . . , c13] = [c13, c5, c2,⊥,⊥, c8, c9,⊥, c6,⊥, c10, c1,⊥]

Let cutorder[ci] = xi for 1 ≤ i ≤ n. The cut order variables of d2 and {d4, p1}
respectively are :

cutorder({d2}) = {x2, x3}
cutorder({d4, p1}) = {x6, . . . , x13}

The cut parts of x1 and x3 respectively are:

cutparts(x1) = {d1}
cutparts(x3) = {d2, d3}

4.3 Problem Constraints

We present the constraints first in English and then formally, possibly followed
by an explanation.

Basic Graph Constraints. These constraints ensure that cutorder, cutstart
and pred are correctly related.

(a) Any given cut order can only be assigned once.

alldifferent(cutorder)
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(b) The cut order of a predecessor must be one less than the cut it precedes.

∀
c∈C

cutorder[c] = cutorder[pred[c]] + 1 ⇐⇒ pred[c] �= ⊥

(c) A starting cut must not have a predecessor.

∀
c∈C

cutstart[c] �= ⊥ ⇐⇒ pred[c] = ⊥

(d) A starting cut must have a correctly directed successor.

∀
c∈C

(
cutstart[c] = k ∧ k �= ⊥ ⇒ ∀

d∈incoming(k)
pred[d] �= c

)
Each cut starting a cutting path in a connection k must not precede any
of k ’s adjacent cuts. Otherwise, the cutting path would contain cuts with
opposite directions (which is not possible, since a cutting path can have at
most one start where it pierces the metal sheet).

Constraints Ensuring Production Reliability. These constraints ensure
that important properties from the physical reality of laser cutting are main-
tained.

(e) For some sets K ⊂ K of conflicting connections, at most one of those con-
nections can start a cutting path.(

∀
k∈K

∀
c∈incoming(k)

bck ⇐⇒ cutstart[c] = k

)
∧

count(b) ≤ 1

The counting is done using additional boolean variables.
(f) A cut separating two cut parts must not be the final cut for both parts.

∀
x∈cutorder

(
|cutparts(x)| = 2⇒ max(cutorder(cutparts(x))) > x

)
For each cut order variable x that corresponds to a cut c separating two cut
parts p and q, the maximum cut order for any cut order variable of p or q
must be greater than x. Otherwise, c is the final cut for both p and q.

(g) For some pairs of sets of cuts A,B ⊂ C, all cuts of A must be cut before the
final cut of B.

max(cutorder(A)) < max(cutorder(B))

(h) For some sets of adjacent cuts A ⊂ C all sharing the same connection, no
more than M pairs of those cuts may pass that connection consecutively.(

∀
c<d∈A

bdc ⇐⇒ (pred[c] = d ∨ pred[d] = c)

)
∧

count(b) ≤M

The counting is done using additional boolean variables.
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(i) For some cut triplets (a, b, c) sharing a connection k, when a and b are cut
consecutively, they must be cut after c.

(pred[a] = b ∨ pred[b] = a)
⇒

cutorder[c] < min(cutorder[a], cutorder[b])

4.4 Implied Constraints

(j) The cut order of a predecessor must be strictly less than the cut it precedes.

∀
c∈C

cutorder[pred[c]] < cutorder[c]

This constraint is implied by (b), and uses the property of cutorder[⊥] =
−∞.

(k) For all connections with exactly three incoming cuts, at most one pair of
those cuts can pass through it consecutively.

∀
k∈K:|incoming(k)|=3

⎛
⎜⎜⎝

(
∀

c<d∈incoming(k)
bcd ⇐⇒ (pred[c] = d ∨ pred[c] = d)

)
∧

count(b) ≤ 1

⎞
⎟⎟⎠

For each connection k with exactly three incoming cuts, the number of dis-
tinct pairs of its cuts for which either is the predecessor of the other, can
be at most one, since there are only three cuts in total. The counting is
done using additional boolean variables for each distinct pair of cuts. This
constraint is implied by the local properties around connections with three
connected cuts.

(l) The directed graph described by the predecessor variables consists of a set of
simple paths.

mirrored = [mo, . . . ,mn−1] (1)

∀
0≤i<n

mi =

{
x if pi = cx
−(i+ 1) if pi = ⊥

(2)

alldifferent(mirrored) (3)

The implied constraint is a path constraint [3], and the above decomposi-
tion models the constraint. The variables used in (1) above are similar to
the pred variables, the difference being that the cutting path starting point
marker is indicated by unique negative values. The constraints in (2) can
be implemented with element constraints since it is a total functional rela-
tion [4]. Replacing the cutting path starting point marker means that for
any solution, all variables will be assigned different values, enforced by (3).
This is in contrast with the pred variables, where all cuts starting paths are
assigned ⊥.
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5 Optimisation and Search

Real world instances of the LCPPP can be quite large. It is not unreasonable to
expect instances with thousands of variables and more than ten thousand con-
straints. This has several consequences for solving such instances to optimality,
including high memory usage and long solving times. However, our goal is to find
a good enough solution quickly, and not to find and prove the optimal solution.
If no solution is found in a reasonable time frame, we consider that particular
sub problem (or cluster) to be infeasible, and discard it as a potential solution.
In our context, a reasonable time frame is a few seconds of running time.

In the following sub sections, we describe the general optimisation goal for
the LCPPP, and the custom search heuristics that we developed.

5.1 Optimisation Goal

The overall goal of solving an instance of the LCPPP is to find a satisfying
solution that has some combination of good properties in the context of sheet
metal cutting using lasers. While the details of this goal is beyond the scope of
this paper, we outline some general guide lines, in their order of importance.

– Avoiding certain cut starts. All cutting path starting connections are not
equally good, but some starting connections may lead to undesirable marks.

– Minimising the number of cutting paths. Starting a new cutting path takes
time, since it means that the metal sheet needs to be pierced.

– Minimising the laser movement distance. Moving the laser head between
cutting paths takes time.

The first two goals are modelled as a minimisation problem over a sum using a
valuation for each cutting path starting connection. While the third goal could be
expressed in a similar way, our solution handles this more softly in combination
with domain specific search patterns. These search patterns come from crucial
domain knowledge of sheet metal cutting using lasers. Handling the third goal
in this way works fine in our current approach, but it would likely have to be
handled differently if a more general search heuristic was used, such as large
neighbourhood search [5].

5.2 Custom Search Heuristics

The decision variables of the model in Sect. 4 are rather low level, while they
are used to describe high level concepts such as graphs and their properties. So
any single assignment to a variable has a low propagation impact, since it does
not meaningfully constrain the solution space. In addition, most assignments
have no or next to no impact on the optimisation goal. As a consequence, using
standard constraint programming search techniques, either simple ones such as
fail first, or more complicated ones such as weighted degree [6] or activity based
search [7], is not effective enough. As a consequence of this, in order to find good
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enough solutions to the LCPPP quickly, we have implemented a set of custom
search heuristics comprised by what we call actions and strategies. These custom
search heuristics then drive the search towards good first solutions.

In the following, a search node is a partially instantiated solution, and a choice
is a set of alternatives that restrict such a search node further.

Actions, Strategies, and Heuristics. An action is a function that accepts a
search node, and returns a choice, or nothing if the action does not apply to the
search node.

A strategy is a list of actions, and a specification of how to conduct the search
among these actions. The specification indicates the maximum number of dis-
patches of each action, if the action should create choices or assignments (single
alternative choices), or any limits that should be imposed on the search. For ex-
ample, by limiting the number of times an action can be dispatched to one, we
can create a sub list of strategies that must succeed on its first dispatch, or fail
the whole strategy upon backtracking. A strategy will run the first applicable
action that is available. If no action is applicable, the strategy is finished.

A heuristic is a list of strategies. Given a suitable set of strategies, an overar-
ching heuristic that guides the search to good solutions can be defined.

Example Actions. We have defined over 40 different actions that perform
meaningful choices for an LCPPP instance. Some examples are:

– Extend alignment cut. Given an open ended cutting path of alignment cuts,
extend it with a successor alignment cut.

– Start left bottom alignment cut. Start a new cutting path of alignment cuts,
choosing the left-most bottom-most possibility.

– Start corner aligned contour. Start a new cutting path in a graph contour
corner.

– Assign top left order. Assign the top left unassigned cut order variable its
minimum value.

The actions can roughly be classified into actions that start new cutting paths,
actions that extend current cutting paths, and actions that assign cut orders.
Most defined actions have some geometric meaning, and are derived from prac-
tical experience of how to plan cutting paths.

Example Strategies. New strategies that implement some desired behaviour
are fairly easy to define by combining lists of actions. A typical such strategy
is defined by an action starting a new cutting path, followed by a sequence of
actions that extend the cutting path according to different properties. We have
defined 15 different strategies so far for the LCPPP.

Example Heuristics. An example of a typical heuristic is as follows:

1. Build open cutting paths of alignment cuts that can be extended in both
directions.
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2. Assign good starting points.
3. Extend internal cutting paths from the chosen starting points.
4. Extend external cutting paths on the graph contour.
5. Assign remaining starting points, extend remaining cutting paths, and assign

remaining cut orders.

When the final step is reached, the (partial) solution typically already has the
interesting features defined already. This means that we are only interested in the
existence of a single solution, which is similar to the radiotherapy planning [8]
problem, as well as the use cases for the once-combinator [9]. At the moment,
we have defined two main heuristics.

Example 3. Consider the instance of the LCPPP described in Ex. 1 on page 794,
and recall that k1 and k2 are not possible cutting path starting connections.
Following the general outline of a heuristic above, the search could perform the
following steps to reach the described solution.

1. Set pred[c2] = c5 (speculative choice). Since k1 is not a possible cutting path
starting connection, set pred[c3] = c2 (all other alternatives at this point
would force k1 as a starting connection).

2. Connections k3, k4, k5 and k8 are identified as good starting points around
pocket p1.

3. Set cutstart[c5] = k4 and cutstart[c4] = k3 for paths from the pocket. Assign
values for the paths c8 → c6 → c9 → c7 starting in k5 and c10 → c11 starting
in k8, finishing up the assigned starting points.

4. Assign the graph contour cuts, choosing k9 (as best alternative among the
available connections) as the starting point.

5. At this point, only the order remains to be set. Starting from top left among
non graph contour cuts, cuts are ordered with k4 starting the first cut, fol-
lowed by cuts starting from (in order) k3, k5, k8, and k9

6 Implementation

The model and the search has been implemented using the Gecode [10,11] con-
straint programming system, version 3.7.3, as a stand-alone C++ application.
The Tomologic optimisation system is implemented mostly in Java and Scala.
Instead of integrating the C++ code using native calls, the model is run as a sep-
arate process. This ensures full separation between the Tomologic optimisation
system and the CP application.

To facilitate the communication between Java and C++, a custom XML for-
mat is used for describing instances of the problem. In addition to the instance
description, the XML definition also contains a list of the strategies that should
be used. Each strategy is defined with the actions it contains and the search
method to be used. This allows the application code to programmatically select
the overall heuristic that is to be used for a particular instance, and to run the
constraint model using different search strategies on the same instance.
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The full implementation, including all supporting code such as visualisa-
tion and XML parsing consists of around 5000 lines of code and 1500 lines of
documentation.

Variables. All variables are simple boolean or integer variables, and the largest
domains for the integer variables are bounded by the number of cuts in the
instance.

Constraints and Propagators. The constraints used in the model are mostly
standard simple constraints. These include arithmetic, logical, counting, element,
and min/max constraints. Such constraints are directly available as propagators
in most constraint programming systems. The only global constraint in the model
is alldifferent. After experimentation, we have concluded that the appropriate
consistency level to use for the alldifferent propagation on the cutorder variables
when solving LCPPP instances is bounds consistency [12].

Search. The search strategies are implemented as Gecode branchers [13]. Each
brancher contains a list of implementations of actions that produce descriptions
of the choices to be made. To run the strategies, a custom search function is used,
where a normal Gecode depth first search engine is created for each strategy
that is started. Since Gecode returns a partially instantiated solution when all
currently installed branchers are exhausted, that returned solution can be used
as the root node for the search engine for the next strategy.

Graphical Inspection Support. Invaluable for understanding the search pro-
cess in large instances is to have good visualisation support. The Gecode Gist
search tree visualiser [14,11] was used for understanding the search process. To
understand partial solutions, a graphical visualisation was implemented that
shows the currently assigned cutting paths and cut order domains. This gives
a much more high level view of the current state, compared to just looking at
the variables and their current domains. See Fig. 4 on the next page for an ex-
ample Gist tree and visualised search state. The visualised search state shows
the cutting paths under construction. For cuts that are known to be part of a
specific cutting path, the cut is highlighted and their current cut order domain
is displayed.

Parallel Search. In most cases the search trees are quite deep, and exploration
only visits a very small part of the state space; the final number of leaf nodes
visited is much lower than the number of nodes in the explored search tree. This
means that using parallel search would not be very effective, since it does not
significantly speed up getting to the first solution. However, in the surrounding
context of the LCPPP, the machine is fully loaded by other tasks and, hence,
not using parallelism for the LCPPP is not an issue.
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(a) (b)

Fig. 4. Gist search tree (a) and visualisation of the current cutting paths (b). The
cutting paths with assigned cut starts are shown as arrows indicating their directions.
Green such cutting paths indicate pocket cuts, while red such cutting paths indicate
alignment cuts. Grey cuts indicate cuts that do not yet belong to a cutting path. The
ranges indicate the current domain for the respective cut order variables.

7 Constraint Programming Impact

Before the CP approach described in this paper was developed, we used a cus-
tomised greedy algorithm for solving the LCPPP. At this time, the problem was
not formalised, but based on the interaction between (non-CP) developers and our
sheetmetal cutting domain experts. The greedy algorithmquickly became difficult
to maintain and, as more features in the form of additional constraints were intro-
duced, the more often the algorithm had a hard time finding feasible solutions. It
became clear that a more flexible and powerful approach was needed.

The formal modelling of the LCPPP that was necessary for the CP approach
has been crucial for understanding the problem, and for gaining confidence in
the generated solutions. Using CP as the vehicle for such a formalisation was
very natural, since it allows the expression of the domain constraints and search
heuristics in a reasonably high level.

Formalising, implementing, and testing a large and complicated constraint
programming model such as the LCPPP requires a significant amount of time
and experience with constraint technology. In total this took about four months,
which included one constraint programming expert responsible full time, discus-
sions with two sheet metal cutting domain experts, and one additional constraint
programming expert, helping with constraint formulations and implementation.

In the process of formalising and understanding the LCPPP, it was possible to
restructure and reimplement the previously used greedy algorithm by using an ar-
chitecture inspired by the CP approach. (This was also a necessity since, during the
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development of the CP approach, having some reasonably working solution was
crucial.) This has had the effect that the greedy algorithm can now handle many
more cases and ismuchmore robust, so its performance has increaseddrastically as
a direct consequence of developing the CP approach.Due to this and to other prac-
tical reasons, themaintenance of theCPapproachhas stopped, and is currently not
used in production. However, even though it is not used in production anymore for
solving the LCPPP, we strongly believeCP to be a key factor in the process leading
to our current solution. Keeping this in mind, constraint programming may very
well be our first approach in future applications.

Acknowledgements. We thank Magnus Gedda and Jim Wilenius for many
fruitful discussions about details of the LCPPP, as well as the anonymous ref-
erees for constructive reviews.
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Abstract. Chemical reactions consist of a rearrangement of bonds so
that each atom in an educt molecule appears again in a specific position
of a reaction product. In general this bijection between educt and product
atoms is not reported by chemical reaction databases, leaving the Atom
Mapping Problem as an important computational task for many practical
applications in computational chemistry and systems biology. Elemen-
tary chemical reactions feature a cyclic imaginary transition state (ITS)
that imposes additional restrictions on the bijection between educt and
product atoms that are not taken into account by previous approaches.
We demonstrate that Constraint Programming is well-suited to solving
the Atom Mapping Problem in this setting. The performance of our ap-
proach is evaluated for a subset of chemical reactions from the KEGG
database featuring various ITS cycle layouts and reaction mechanisms.

1 Introduction

A chemical reaction describes the transformation of a set of educt molecules
into a set of products. In this process, chemical bonds are re-arranged, while
the atom types remain unchanged. Thus, there is a one-to-one correspondence,
the so-called atom map (or atom-atom mapping), between atoms in educts and
products. Atom maps convey the complete information necessary to disentan-
gle the mechanism, i.e. the bond re-arrangement, of a chemical reaction via the
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Fig. 1. Example of a Diels-Alder reaction. The imaginary transition state (ITS) is an
alternating cycle defined by the bonds that are broken (dotted) and the bonds that are
newly formed.

identification of bonds that differ in educt and product molecules. The chang-
ing parts of the molecules are described by a so called intermediate transition
state (ITS) [17,24] that allows, for instance, a classification of chemical reactions
[31,33,45]. Atom maps are a necessary requisite for computational studies of
an organisms metabolism. For instance, the allow for consistency checks within
metabolic pathway analyses [3] and play a role in the global analysis of metabolic
networks [7,26]. Practical applications include, for example, the tracing or design
of the metabolic break down of a candidate drug, which constitutes an important
issue in in drug design studies [39].

For chemical reactions only the product and educt molecules are directly ob-
servable. The atom map therefore often remains unknown and has to be inferred
from partial knowledge. Experimental evidence may be available from isotope la-
beling experiments. Here, special isotopes, i.e. atoms with special variations, are
introduced into educt molecules that can then be identified in product molecules
by means of spectroscopy techniques [44]. Such data, however, is not available
for most reactions. The complete experimental determination of an atom map is
in general a complex and tedious endeavor. Reaction databases, such as KEGG,
therefore do not generally supply atom maps. The computational construction
of atom maps is therefore an important practical problem in chemoinformatics.

Several computational approaches for this problem have been developed over
the last three decades (for a recent review see [8]). The Educts and products are
described as two not necessarily connected labeled graphs I and O, respectively.
Vertex labels define atom types, while edge labels indicate bond types. The atom
map is then determined as the solution of a combinatorial optimization problem
resulting in a bijective mapping of all vertices of the educt molecule graph to corre-
sponding vertices in the productmolecule graphs. An illustration is given in Fig. 1.

The most common formulations are variants of the maximum common sub-
graph (isomorphism) problem [15]. Already the earliest approaches analyzed
the adjacency information within educts and products [14,34]. The Principle
of Minimal Chemical Distance, which is equivalent to minimizing an edge edit
distance, was invoked in [28], using a branch and bound approach to solve the
corresponding combinatorial optimization problem. Maximum Common Edge
Subgraph (MCES) algorithms search for isomorphic subgraphs of the educt/



Atom Mapping with Constraint Programming 807

product graphs with maximum number of edges [13,22,23,33,40], an NP-hard
problem. Furthermore, the use of specialized energetic [2,30] or weighting [32]
criteria allows for the identification of the static parts of the reaction and, sub-
sequently, of the atom mapping. A detailed investigation of the MCES from an
Integer Linear Programming (ILP) perspective can be found in [6].

Akutsu [1] showed that the MCES approach fails for certain reactions. As
an alternative, the Maximum Common Induced Subgraph (MCIS) problem was
proposed as a remedy. This problem is also NP complete. Approximation re-
sults can be found in [27]. Algorithms for the MCIS iteratively decompose the
molecules until only isomorphic sub-graphs remain [1,7,11,12]. Recently, an ILP
approach incorporating stereochemistry was presented [16].

Neither the solutions of the MCES nor the MCIS necessarily describe the true
atom map. Indeed, both optimality criteria are artificial and can not be derived
from basic principles of chemical reactions. In fact, it is not hard to construct
counter-examples, i.e., chemical reactions whose true atom maps are neither
identified by MCES nor by MCIS. The re-organization of chemical bonds in a
chemical reaction is far from arbitrary but follows strict rules that are codified
e.g. in the theory of imaginary transition states (ITS) [17,24]. The ITS encodes
the redistribution of bond electrons that occurs along a chemical reaction. Bond
electrons define the atom-connecting chemical bonds and their according bond
orders. Their redistribution is expressed in terms of the deletion or formation
of bonds as well as changes of in the oxidation state of atoms, the latter result-
ing from non-bound electrons that are freed from or integrated into bonds. The
ITS can be used to cluster, classify, and annotate chemical reactions [17,24,25].
These studies revealed, that only a limited number of ITS “layouts” are found
among single step reactions and that these layouts represent a cyclic electron
redistribution pattern usually involving less than 10 atoms [25]. In a most basic
case, an elementary reaction, the broken and newly formed bonds form an alter-
nating cycle (see Fig. 1) covering a limited even number of atoms [18], usually
less than 8 [24]. In the case of homovalent reactions, i.e., those in which the
number of non-bound electron pairs of all atoms (defining their oxidation state)
remains unchanged, this cycle is elementary. That is, the transition state is a
single, connected even cycle, along which bond orders change by ±1 [25]. This
property imposes an additional, strong condition of the atom maps that is not
captured by the optimization approaches outlined in the previous paragraphs.
Here, we explicitly include it into the specification of the combinatorial problem.

A chemically correct atom map is a bijective map between the vertices of the
educt and product graphs such that:

1. The map preserves atom types

2. The total bond orders (including lone electron pairs) are preserved. Each
broken bond thus must be compensated by a newly formed bond or a change
in the oxidation number of an atom.

3. The broken and newly formed bonds constitute a chemically reasonable
imtermediate transition state (ITS) following [25]. In the case of elemen-
tary chemical reactions, the transition state is an alternating cycle.
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A formal definition of the combinatorial problem will be given in the following
section. While cyclic transition states are very common, more “complex transi-
tion states” appear in non-elementary reactions, i.e., compositions of elementary
reactions. Furthermore, even in elementary reaction, it is not true that the short-
est ITS cycle is necessarily chemically correct. Empirically, transition states are
most frequently six-membered cycles, while cycles of length 4 or 8 are less abun-
dant [17,18,19,24]. As a consequence, we will consider several variants of the
chemical reaction mapping problem:

1. Decision Problem: Is there an atom map with cyclic ITS? Of course one
may restrict the question to ITS cycles of length k.

2. Optimization Problem: Find the minimal length k of an ITS cycle that
enables an atom map.

3. Enumeration Problem: Find all atom maps with cyclic ITS (of length k).

Given a straightforward encoding of molecular graphs in terms of vertex indices,
atom labels, and adjacency information, the atom mapping problem is naturally
open to be treated as a constraint satisfaction problem with finite integer do-
mains. This approach is particularly appealing when additional information on
the ITS, e.g. its size or atoms involved in the ITS, are known.

2 Constraint Programming Formulation of the Atom
Mapping Problem

We focus on the identification of the cyclic ITS. Once the ITS has been identi-
fied the overall atom mapping is easily derived. We formulate separate constraint
satisfaction problems for different ITS layouts and cycle lengths. A fast graph
matching approach is used subsequently to extend each ITS to a global atom
mapping. In this section we follow closely [36]. We first formally define the prob-
lem, which is followed by a description of our constraint programming approach
for identifying the cyclic ITS. Finally we discuss how to extend an ITS candidate
to a complete atom mapping for the chemical reaction.

2.1 Problem Definition

Both educts and products of a chemical reaction are each represented by a single,
not necessarily connected, undirected graph defined by a set of vertices V and a
set of edges E = { {v, v′} | v, v′ ∈ V }. The educt (input) graph is denoted by I =
(VI , EI) and the product (output) graph by O = (VO , EO). Here, each molecule
corresponds to a connected component. Vertices represent atoms and are labeled
with the respective atom type accessible via the function l(v ∈ VI ∪ VO). The
principle of mass conservation implies |VI | = |VO|, i.e. no atom can dissolve or
appear during a reaction. Edges encode covalent chemical bonds between atoms.
For the CSP formulation we label each edge {x, y} ∈ EI ∪EO with the number
of shared electron pairs, i.e. its bond order: single, double or triple bonds are
represented by a single edge with labels 1, 2, or 3, respectively. Non-bonding
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electron pairs of an atom, which define its oxidation state, are represented by
loops labeled with the according number of unbound pairs.

We use an adjacency matrix I to encode the edge labels of the educt graph
(and a corresponding matrix O for the products). The matrix elements Iv,v′

denote the number of shared bond electron pairs for the edge between the atoms
v and v′ in the educt graph I. In practice Iv,v′ ∈ {0, 1, 2, 3}. Non-bonding
electron pairs (loops) are represented by the diagonal entries Iv,v and Ov,v.

Consider a bijective function m : VI → VO mapping the vertices of I onto
the vertices of O and a matrix Q with rows and columns indexed by VI . Then
Q◦m is the matrix with entries Qm(x),m(y), i.e. with rows and columns indexed
by VO. Thus the reaction matrix Rm = O− (I ◦m) is well defined and encodes
the bond electron differences between educt and product.

Definition. An atom mapping is a bijective mapping m : VI → VO such that

1. ∀x∈VI : l(x) = l(m(x)) (preservation of atom types)

2. Rm−→1 = 0 (preservation of bond electrons)

The reaction matrix Rm encodes the imaginary transition state (ITS) [17,24].
This definition of m is a slightly more formal version of the Dugundji-Ugi theory
[14]. Our notation emphasizes the central role of the (not necessarily unique)
bijectionm. Since we consider I and O as given fixed input, the atom mapping m
uniquely determines Rm. The triple (m, I,O), furthermore, completely defines
the chemical reaction. It therefore makes sense to associate properties of the
chemical reaction directly with the atom map m.

Equivalently, the ITS can be represented as a graph R = (VR, ER) so that
ER consists of the “changing” edges that lose or gain bond electrons during the
reaction, i.e. Iv,v′ �= Om(v),v(v′) → Rm

v,v′ �= 0. The set of atom vertices VR ⊆ VO

covers all vertices with at least one adjacent edge in ER. Each edge {v, v′} ∈ ER

is labeled by the electron change Rm
v,v′ �= 0, i.e. its change in bond order. See

Fig. 2 for an example.

I v1 v2 v3 v4 v5 v6 v7 v8
v1 0 1 0 0 0 0 0 0
v2 1 0 1 2 0 0 0 0
v3 0 1 0 0 2 0 0 0
v4 0 2 0 0 0 0 0 0
v5 0 0 2 0 0 0 0 0
v6 0 0 0 0 0 0 2 1
v7 0 0 0 0 0 2 0 0
v8 0 0 0 0 0 1 0 0

O v′1 v′2 v′3 v′4 v′5 v′6 v′7 v′8
v′1 0 1 0 0 0 0 0 0

v′2 1 0 2 1 0 0 0 0

v′3 0 2 0 0 1 0 0 0

v′4 0 1 0 0 0 1 0 0

v′5 0 0 1 0 0 0 1 0

v′6 0 0 0 1 0 0 1 1

v′7 0 0 0 0 1 1 0 0

v′8 0 0 0 0 0 1 0 0

Rm v′1 v′2 v′3 v′4 v′5 v′6 v′7 v′8
v′1 0 0 0 0 0 0 0 0

v′2 0 0 +1 -1 0 0 0 0

v′3 0 +1 0 0 -1 0 0 0

v′4 0 -1 0 0 0 +1 0 0

v′5 0 0 -1 0 0 0 +1 0

v′6 0 0 0 +1 0 0 -1 0

v′7 0 0 0 0 +1 -1 0 0

v′8 0 0 0 0 0 0 0 0

Fig. 2. Adjacency matrices I for the reaction given in Fig. 1. The vertices vi ∈ VI and
v′j ∈ VO are numbered in top-down-left-right order of their appearance in Fig. 1. The
atom mapping m(vi) = v′i defines Rm and thus the ITS graph R covers only vertices
v′2 to v′7 since v′1 and v′8 do not show any bond electron changes.

It is important to note that the existence of an atom mapping m as defined
above does not necessarily imply that Rm is a chemically plausible ITS.
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We say that two edges {v, v′}, {v′, v′′} ∈ ER in R are alternating if Rm
v,v′ �= 0

and Rm
v,v′ +Rm

v′,v′′ = 0. A simple cycle in R of size k > 2 is given by the vertex
sequence (v1, v2, . . . , vk, v1) with vi ∈ VR, {vi, vi+1} ∈ ER, {vk, v1} ∈ ER, and
∀i < j ≤ k : vi �= vj . Such a simple cycle is called alternating if all successive
edges as well as the cycle closure {v2, v1}, {v1, vk} are alternating.

Definition. An atom map m is homovalent if Rm
v,v = 0 for all v ∈ VR. A

homovalent reaction is elementary if its ITS R is a simple alternating cycle.
Thus Rm

v,v′ ∈ {−1, 0,+1} holds for all elementary homovalent reactions.
In the following we outline a novel algorithm for finding atom maps for a

given ITS graph R that is guaranteed to retrieve all possible mappings given the
educt and product graphs I and O, respectively. To simplify the presentation,
first only elementary homovalent reactions are considered. Generalizations are
discussed in Sec. 3.

2.2 Constraint Programming Approach

The central problem to find an elementary homovalent atom mapping is to iden-
tify the alternating cycle defining the ITS R given the adjacency information
of the educts I and products O. This can be done via solving the Constraint
Satisfaction Problem (CSP) as presented below. Note, due to the alternating
edge condition within the ITS, we have to consider cycles with an even number
of atoms only. In practice, the ITS of elementary homovalent reactions involves
|VR| = 4, 6, or 8 atoms [18].

Basic CSP Formulation: In the following, we will present a first basic CSP
for an ITS of size k = |VR| that we already introduced in [36]. It is given by the
triple (X,D,C) defining the set of variables X , according domains Di, and the
set of constraints C to be fulfilled by any solution.

We construct an explicit encoding of the ITS atom mapping using k variables
representing the cycle in I and another set for the mapped vertices in O, i.e.,
X = {XI

1 , . . . , X
I
k} ∪ {XO

1 , . . . , X
O
k } with domains DI

i = VI and DO
i = VO.

Note, we do not directly encode the overall atom mapping problem but the
identification of the two ITS subgraphs in the educts and products. Given this
information, the overall atom mapping is easily identified as explained later.

To find a bijective mapping we have to ensure ∀i �= j : XI
i �= XI

j and ∀i �= j :

XO
i �= XO

j , i.e., a distinct assignment of all variables. To enforce atom label

preservation we need arc consistency for l(XI
i ) = l(XO

i ), i.e. we have to enforce
∀e ∈ DI

i : ∃p ∈ DO
i : l(e) = l(p) as well as ∀p ∈ DO

i : ∃e ∈ DI
i : l(p) = l(e).

Analogously, homovalence is represented by (IXI
i ,X

I
i
−OXO

i ,XO
i
) = 0. Due to the

alternating bond condition, each atom can lose or gain at most one edge during
a reaction. Thus, we can further constrain the variables with | degree(XI

i ) −
degree(XO

i )| ≤ 1; where degree(v) gives the out-degree of vertex v.
Finally, we have to encode the alternating cycle structure of the ITS in the

mapping, i.e., for the sequence of bonds with indices 1-2-..-k-1. For all index pairs
within the cycle (i, j) we therefore require pairs with even index i to correspond
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Fig. 3. Symmetries resulting from interchangeable hydrogens. The figure presents three
successive atom assignments within an ITS mapping. Bonds present in I are given in
black, bonds to be formed to derive O are dotted and gray. The ITS describes the
loss of an hydrogen for the carbon (bond order decrease) and the bond formation
between the decoupled hydrogen with the oxygen next in the ITS. It becomes clear
that all 4 hydrogens are not distinguishable, which results in 4 possible symmetric ITS
mappings.

the formation of a bond, i.e., we enforce (OXO
i ,XO

j
− IXI

i ,X
I
j
) = 1, while all odd

indices i are bond breaking (OXO
i ,XO

j
− IXI

i ,X
I
j
) = −1 accordingly.

The homovalent ITS layout is rotation symmetric in itself (see Fig. 6). To
partially counter this, we introduce order constraints on the input variables:
(∀i > 1 : XI

1 < XI
i ); where Xi < Xj denotes ∃(x, y) ∈ Di ×Dj : x < y us-

ing e.g. an index order on the vertices. This ties the smallest cycle vertex to
the first variable XI

1 and prevents the rotation-symmetric assignments of the
input variables. Note, since we constrain the bond (1, 2) to be a bond breaking
(OXO

1 ,XO
2
− IXI

1 ,X
I
2
= −1), the direction of the cycle is fixed and all direction

symmetries are excluded as well.
As we will show in the evaluation (Sec. 3), the basic CSP will produce many

ITS candidates that do not enable an atom mapping over the whole educt and
product graphs. Therefore, we introduce an extended version of this CSP that
incorporates further constraints derived from the input.

Extended CSP Formulation: Investigating the given educt and product
graph, we can exclude a large set of symmetric solutions that arise due to an
exchange of hydrogens. The latter can form at most one single bond to other
atoms. Thus, if a hydrogen participates in the ITS, its adjacent atom will do
as well (since the bond is to be broken in the ITS). Most adjacent atoms are
non-hydrogens, like carbon atoms, that can have multiple adjacent hydrogens.
Since there is exactly one bond breaking and formation for each ITS atom, only
one such adjacent hydrogen will be part of the ITS. This results in a combina-
torial explosion due to the symmetries of adjacent hydrogen atoms. An example
is given in Fig. 3.

To break this type of symmetry, we select for each non-hydrogen one adjacent
“master” hydrogen and remove all other sibling hydrogens from the domains,
both for educt and product variables XI and XO, respectively.

Furthermore, we can extend and tune the CSP formulation by comparing the
graph structure of educts and products. To this end, we generate the sets NI

and NO of local neighborhoods of all atoms (vertices) for the educt and product
graph, resp., given by
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Fig. 4. Overview of the extended CSP for a homovalent ITS of size k = 6 where the
extensions of the basic CSP are given in the gray box in the lower right

NI = { N(v) | v ∈ VI} with (1)

N(v) = ( l(v), { Iv,v′⊕l(v′) | where v �= v′ ∈ VI ∧ Iv,v′ > 0} ) (2)

where N(v) is a tuple of the label of atom vertex v and an encoding of the set
of all adjacent edges for this vertex. Note, ⊕ denotes string concatenation. NO

is derived accordingly. For example, the neighborhood sets for the reaction from
Fig. 1 are

NI = { 2×(C, {1C}), 3×(C, {2C}), 2×(C, {1C, 2C}), (C, {1C, 1C, 2C}) }
NO = { 2×(C, {1C}), 3×(C, {1C, 1C}), (C, {1C, 2C}), (C, {1C, 1C, 1C}),

(C, {1C, 1C, 2C}) }

The subtraction NI \NO gives the local neighborhoods that are unique within
the educts and thus are part of the ITS, i.e. have to be changed during the
reaction. Therefore, we can derive a lower bound on the number of atoms of
a certain type that are participating in the ITS. In the example this results in
NI \NO = {3×(C, {2C}), (C, {1C, 2C})} revealing that at least 4 C-atoms of two
types are ITS members.

Given this information, we formulate an extended version of the basic CSP. An
arc-consistent global constraint on XI is added, which enforces the occurrence
of the identified ITS atom labels. This is automatically propagated on XO via
the atom label preservation constraints. In addition, we enforce that a valid
assignment of the variablesXI andXO preserves the ITS neighborhoodsNI\NO

and NO\NI , respectively. To minimize propagation cost, this is ensured by a
simple n-ary constraint propagating, which is propagated only after all variables
have been confined to a single value. The full CSP is depicted in Fig. 4.

Although the CSPs from above are defined for domains of vertices v ∈ VI∪VO,
they can be easily reformulated using integer encodings of the atom indices
allowing for the application of standard constraint solvers such as Gecode [42].
This enables the use of efficient propagators for most of the required constraints,
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such as the algorithm of Regin [41] for globally unique assignments. Only a few
binary constraints, e.g. to ensure atom label preservation or the cyclic bond
pattern, require a dedicated implementation as discussed in Sec 4.

All solutions for these CSPs are chemically valid ITS candidates. In order to
check whether or not a true ITS is found we have to ensure that the remaining
atoms, i.e., those that do not participate in the ITS, can be mapped without
further bond formation or breaking. This is achieved using a standard graph
matching approach as discussed in the following.

2.3 Overall Atom Mapping Computation

Given the CSP formulation from above, we can enumerate all valid ITS can-
didates. For a CSP solution we denote with aIi and aOi the assigned values of
the variables XI

i and XO
i , respectively. Once the ITS candidate is fixed, we can

reduce the problem to a general graph isomorphism problem with a simple re-
labeling of the ITS edges. Thus, we derive two new adjacency matrices I ′ and
O′ from the original matrices I and O, resp., as follows: For all atom pairs (i, j)
within the cyclic index sequence 1-2-..-k-1, we change the corresponding adja-
cency information to a unique label using I ′

aI
i ,a

I
j
= O′

aO
i ,aO

j
∈ {f, b} encoding if

a bond between the mapped ITS vertices is formed (f) or broken (b). All other
adjacency entries are kept the same as in I and O, respectively.

Given these updated, “ITS encoding” adjacency matrices I ′ and O′, the iden-
tification of the overall atom mapping m reduces to the graph isomorphism
problem based on I ′ and O′. Thus, all exact mappings of I ′ onto O′ are valid
atom mappings m of an elementary homovalent reaction, since the encoded ITS
respects all constraints due to the CSP formulation.

2.4 Implementation Details

Our C++ implementation of the approach currently takes a chemical reaction in
SMILES format [43], identifies chemically correct atom mappings, and returns
these in annotated SMILES format. The latter provides a numbering of mapped
atoms in the educts and products.

Molecule parsing, writing, and graph representation uses the chemistry mod-
ule of the Graph Grammar Library (GGL) [35]. Note, we do an explicit hydro-
gen representation within the CSP formulation as in [16], since most homovalent
elementary reactions involve the replacement of at least one hydrogen. Unfor-
tunately, the compact string encoding of molecules in SMILES format does not
explicitly represent hydrogens. Thus, we use the hydrogen correction procedures
of the GGL to complete educt and product molecule input. The CSP formulation
and solving is done within the Gecode framework on finite integer domains [42].
The final graph matching is done using the state-of-the-art VF2-algorithm [10],
which is among the fastest available [9].

The CSP uses standard binary order constraints and the n-ary distinct and
counting constraints provided by the Gecode library. Dedicated binary con-
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straints propagating on unassigned domains have been implemented for preser-
vation of atom label, degree, and homovalence. The alternating cycle is imple-
mented by a sequence of k constraints propagating the edge valence change of
±1. The ITS local neighborhood preservation to be enforced in the extended CSP
is implemented by a dedicated n-ary constraint over all variables propagating on
assignments only.

We are using a Depth-First-Search where the branching strategy chooses first
variables with minimal domain size and first assigns non-hydrogen indices before
hydrogen vertices are considered. The latter increases the performance to find
the first solution since most reaction mechanism are constructed of at least 50%
non-hydrogen atoms. Once a non-hydrogen is selected, propagation will ensure
that adjacent hydrogens are considered for the neighbored variables within the
ITS cycle encoding if appropriate.

For each ITS mapping identified, a full reaction atom mapping is derived via
VF2-based graph matching. Therein, the discussed problem of hydrogen inter-
changeability (see extended CSP formulation) is faced again and would result in
symmetric overall atom mappings. This is countered by first producing interme-
diate “collapsed” educt/product graphs, where all adjacent non-ITS hydrogens
are merged into the atom labels of their adjacent non-hydrogens. This preserves
the adjacency information and enables a unique mapping via VF2 excluding
the hydrogen-symmetries. Furthermore, this compression speeds up the graph
isomorphism identification since the graph size is approximately halved.

While not described here, the CSPs can be easily extended to find candidates
for the entire atom mapping by introducing additional matching variables for all
atoms participating in the reaction, all constrained to preserve atom label, vertex
degree, and bond valence information. But first tests (not shown) revealed that
the increase in CSP size and accordingly search and propagation effort needed
does not repay due to the efficiency of the VF2 graph isomorphism approach
used. Therefore, we omitted this approach from this work.

3 Application and Evaluation

In order to investigate the impact of our extended CSP formulation over the
basic version, we selected a subset of homovalent elementary reactions from the
KEGG LIGAND database [29]. The The reactions have been chosen to provide
various ITS and reaction sizes for evaluation. The average size of the selected re-
actions, i.e. the average number of atoms, is about 30 (Tab. 2 column 2) while the
whole KEGG database shows an average of 50 atoms per reaction. The example
reactions cover homovalent ITS sizes of k = 4, 6, and 8 as introduced. Since there
is no atom mapping information provided within the KEGG database, the exam-
ple reactions had to be identified manually based on chemical knowledge. This
again highlights the need for an automated identification of chemically feasible
atom mappings as provided by our approach. The selected homovalent reactions
are given in Tab. 1 with their respective KEGG ID, educts and products.

For each reaction, we applied our approach using both the basic and extended
CSP formulation to evaluate the impact of the latter for various reaction and
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Table 1. Elementary homovalent reactions from the KEGG LIGAND database [29]
used for the evaluation of the approach. The educt and product molecules are given in
SMILES notation [43].

Reaction Educts Products

R00013 C(=O)=O, C(C(=O)O)(C=O)O 2× C(=O)(C=O)O

R00018 N, N(CCCCN)CCCCN 2× C(CCN)CN

R00048 CC(O)CC(=O)OC(C)CC(O)=O, O 2× CC(O)CC(O)=O

R00059 N(C(=O)CCCCCN)CCCCCC(=O)O, O 2× C(CC(=O)O)CCCN

R00207 P(=O)(O)(O)O, O=O, CC(=O)C(=O)O P(=O)(OC(=O)C)(O)O, OO, C(=O)=O

Table 2. Evaluation of the reactions from Tab. 1. Timings are given in seconds. For
extended CSPs, the minimal set of ITS participating atoms is listed in column 3.
Column “Sol. CSP” gives the number of CSP solutions (ITS candidates) tested via
VF2 for final atom mappings.

Time Sol. Time all Sol.
Reaction Atoms CSP Type k 1st Sol. Sol. CSP CSP VF2

R00013 14
Basic

6
0.03

1
346 0.8 0.03

Ext. {2C} 0.02 76 0.05 0.02

R00018 36
Basic

4
10.4

1
73,924 2.62 19.9

Ext. {2N} 0.28 36 0.44 0.01

R00048 30
Basic

4
0.1

2
26,178 1.44 6.1

Ext. {2O} 0.02 24 0.42 0.03

R00059 44
Basic

4
0.34

1
194,210 9.45 63.15

Ext. {H,C,N,O} 0.03 4 2.08 0.01

R00207 20
Basic

8
0.02

1
20,640 1.11 4.05

Ext. {C,4O} 0.01 24 0.56 0.02

ITS cycle sizes. In Table 2 we report runtime, search, and solution details for the
smallest ITS size k that yields a solution. For smaller values of k, the infeasibility
tests were done within fractions of seconds and are therefore omitted.

Our atom mapping approach finds a first atom mapping for homovalent ele-
mentary reactions within milliseconds. It is clear that the additional constraints
within the extended CSP formulation significantly increase the performance of
the approach. This becomes even more striking when considering the timings for
full solution enumeration. The extended CSP produces several orders of mag-
nitude less ITS candidates (column “Sol. CSP”). Since the time consumption
of the VF2 algorithm is about linear in the number of ITS candidates to test,
this results in according speedups of the overall approach. Still there is room for
optimization since the symmetry breaking within the CSP solution enumeration
is not complete (see next section).

The strength of the extended CSP comes from the precomputed list of local
neighborhoods to be part of the ITS candidate and the “hydrogen symmetry”
breaking. For the reactions from Tab. 2, this list comprises on average about
half the ITS resulting in the impressive impact of the constraint. For reaction
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R00059, the list covers the whole ITS with an according immense reduction in
ITS candidates.

As already expected based on the results from other approaches [16], only a
single or very few reaction mechanisms, i.e. non-symmetric atom mappings, are
identifiable, see Tab. 1 column “Sol”.

4 Development and Future Work

The basic approach was implemented by a user not familiar with constraint
programming within 1 month work time given the well documented and eas-
ily extendable Gecode library [42] and the chemoinformatics implementations
provided by the GGL [35]. Extending the approach and adding the basic func-
tionalities for symmetry exclusion required another week of implementation, such
that we got a first prototype within 1.5 months. Given the current framework
and available constraint implementations, we expect another month of imple-
mentation time to get the final atom mapping program that will cover most of
the following features.

Branching strategies: The current CSP allows for further performance optimiza-
tions when solving the satisfaction problem. We are currently evaluating the
impact of different branching strategies on the runtime of the approach. As a
first result, a hierarchical value selection that first tries to assign vertices to the
variables that are compatible to the neighborhoods participating in the ITS (see
extended CSP formulation) and which selects hydrogen representing vertices last
seems to allow for a good performance.

Symmetry breaking: As it can be seen from Tab. 2, the current CSP formula-
tion still produces symmetric ITS solutions when enumerating all possible atom
mappings. We are currently working on strategies to apply further symmetry
breaking techniques during the solution enumeration of CSPs, i.e. symmetry
breaking during search (SBDS) [4,21,5] (or the similar lightweighted dynamics
symmetry breaking (LDSB) approach [37]), as well as symmetry exclusion in
the final mapping phase. Both requires more sophisticated input analyses as e.g.
done in [16].

CSPs for other ITS layouts: Of course, not all chemical transformations are
based on a homovalent elementary ITS. This will in general be the case for
multi-step reactions and for the so-called ambivalent reactions, in which the
number of non-bonding electron pairs (and thus the oxidation number of some
atoms) changes in the course of a reaction [25]. Figure 5, for example, shows
a reaction for which it is not possible to find a simple homovalent circular ITS
using the presented ITS encoding. Still the reaction shows a cyclic ITS with
alternating bond electron changes for all but one bond [17].

We have extended the CSP-based framework outlined above to reactions with
arbitrary cyclic ITS layouts, which allows for any defined bond and atom valence
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Fig. 5. The Meisenheimer rearrangement [38] transforms nitroxides to hydroxylamines.
It does not admit a simple alternating cycle as ITS when molecules are represented as
graphs whose vertices are atoms. An extended representation, in which the additional
electron at the oxygen is treated a “pseudo-atom” can fix this issue. See Figure 6 for
further details of such an ITS layout.

Table 3. Evaluation of CSPs for ambivalent reactions with an odd cycle ITS layout
given in Fig. 6

Reaction Sol. Time
Educts Products Atoms k Fig. Sol. CSP all Sol.

O=[S--]=O.C=CC=C O=S1(=O)CC=CC1 13 5 6 bottom 1 20 0.01

Cl[C--]Cl.C=C ClC1(Cl)CC1 9 3 6 bottom 1 12 0

[O-][NH2+]CC=C NOCC=C 12 5 5, 6 top 1 22 0

changes (i.e. charge changes) within the ITS. Figure 6 exemplifies odd ITS cycle
layouts for ambivalent reactions [19]. The main difference to homovalent reaction
CSP is the relaxation of the homovalence constraint, which is not enforced for
all participating atoms [19]. Furthermore, the preservation of bond electrons for
some ITS bonds instead of a change is enforced. The latter holds for instance
for the bond connecting N+ and O− in Fig. 5.

Table 3 presents the timing results for our prototypical implementation of the
ambivalent ITS layouts given in Fig. 6. The model is based on the extended
CSP formulation for elementary reactions. Also for such ambivalent reactions,
our CP-based atom mapping approach enumerates all possible atom mappings
within milliseconds, as reported for homovalent reactions in Tab. 2. Note, the
ambivalent CSPs require a different, ITS-specific symmetry breaking and thus
have to enforce different static order constraints compared to the homovalent
CSP. The ambivalent layouts given in Fig. 6 show no symmetry in itself such
that actually no order constraint is needed here. The driving force of the CSP
performance is the propagation of the oxidation state change for the atoms
that get charged. This poses a very strong constraint for the ambivalent ITS
identification.

We are currently identifying and verifying further ITS layouts, some of the
already available layouts are given in Fig. 6. Considering the reaction classifi-
cation work in [25,24,17,18], we expect a very limited number of possible ITS
layouts within a few hundreds at most given the physics underlying chemical
reactions. The overall approach will select, based on the provided input and the
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Fig. 6. Currently supported ITS layouts: The number within the vertices corresponds
to atomic oxidation state changes, broken bonds are dotted given a negative bond label
while formed bonds show positive numbers. (top) Homovalent elementary reactions
result in even sized cycles with no oxidation state changes at the atoms (see Fig. 1).
Note that odd cycles with two oppositely charged atoms separated by a non-changing
pseudo bond (dashed edge labeled 0 see Fig. 5) are equivalent to the next larger even
sized cycle with a virtual vertex for the moving charge (vertex label e−). (bottom)
Ambivalent elementary reactions involving non bonding electrons result in odd sized
cycles and oxidation state changes of one atom. Note that this situation is equivalent
to a non-elementary cycle with alternating bond labeling (bottom middle).

local neighborhood analyses presented for the extended CSP, the suitable ITS
layouts and their respective CSPs and search for valid atom mappings.

Multi-step reactions: The current framework is designed to identify chemically
feasible atom mappings for single-step reactions. Nevertheless, there cases where
short-lived intermediate molecule structures are formed that are directly react
further into the final products. Unfortunately, these intermediate structures are
usually unknown, such that we cannot apply the presented approach.

As discussed by Hendriksen [24], often only two joint reactions with a single
unknown intermediate are observed. We therefore plan to create “fused” ITS
layouts based on our single-step ITS encodings that will allow for the correct
identification of atom mappings for multi-step reactions and reveal the individ-
ual steps and intermediate structures. For the combination of ITS layouts, we
are currently investigating the multi-step reaction analyses by Fujita [20] and
Herges [25].
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Webserver: The final atom mapping framework will be available both as stand
alone tool as well as via a web front end including a visual depiction of the
atom mappings. An according webserver framework ready for the integration is
already available.

Graph Grammars and Atom Flow Network Generation: Atom mappings are the
base to generate and analyze the atom flow in reaction networks [7,26]. Here,
the chemical validity of the atom maps is of particular importance to ensure
correct atom flow analyses. We will use our atom mapping approach to generate
chemical graph rewrite rules that will be used within our GGL framework [35]
to expand according reaction networks where molecular graph rewrite directly
provides the atom flow information within the network.

5 Discussion

We have presented here the first constraint programming approach to identify
chemically feasible atom mappings based on the identification of a cyclic inter-
mediate transition state (ITS). The incorporation of the cyclic ITS structure
within the search ensures the chemical correctness of the mapping that is not
guaranteed by standard approaches that attempt to solve Maximum Common
Edge Subgraph Problems [1]. To our knowledge, this is the first approach ex-
plicitly incorporating the cyclic ITS structure into an atom mapping procedure.

The formulation of the CSP using only the atoms involved in the ITS results
in a very small CSP that can be solved efficiently. Thus, it is well placed as a filter
for ITS candidates for the subsequent, computationally more expensive graph
matching approaches. The solutions of such an extended CSP are the desired
chemically feasible atom mappings m. We apply advanced symmetry breaking
strategies and thus can enumerate the different chemical mechanisms underlying
a reaction for a given ITS cycle size.

The feasibility of the approach was demonstrated here for the special case of
elementary, homovalent reactions, i.e., for reactions in which the transition state
is an elementary cycle with an even number of atoms. The CSP formulation can
be easily extended to arbitrary cyclic ITS layouts. Usually, such reactions are not
homovalent, i.e., at least one atom participating in the ITS is gaining or losing
non-bonding electrons, which requires some moderate changes in the formulation
of the constraints. We are currently identifying all feasible ITS layouts and are
developing a generic CSP formulations. This will result in a powerful approach
to identify atom mappings with chemically valid ITSs.

Constraint programming was shown to be a very promising approach to solve
atom mapping problems since it provides a very flexible framework to incorpo-
rate combinatorial constraints determined by the underlying rules of chemical
transformations.



820 M. Mann et al.

References

1. Akutsu, T.: Efficient extraction of mapping rules of atoms from enzymatic reaction
data. J. Comp. Biol. 11, 449–462 (2004)

2. Apostolakis, J., Sacher, O., Körner, R., Gasteiger, J.: Automatic determination of
reaction mappings and reaction center information. 2. Validation on a biochemical
reaction database. J. Chem. Inf. Mod. 48, 1190–1198 (2008)

3. Arita, M.: Scale-freeness and biological networks. J. Biochem 138, 1–4 (2005)
4. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. In: Jaffar,

J. (ed.) CP 1999. LNCS, vol. 1713, pp. 73–87. Springer, Heidelberg (1999)
5. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. Con-

straints 7(3), 333–349 (2002)
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Abstract. Constraint programming (CP) figures prominently in the
process of functional hardware verification. The verification process is
based on generating random tests according to given set of constraints.
In this paper. we introduce IntelliGen, a propagation based solver,
and the random generator of Cadence’s Specman verification tool. In-
telliGen is designed to handle several problems beyond the mere need
to find a feasible solution, including: generating random tests with a
’good’ distribution over the solution space; maintaining test reproducibil-
ity through different run modes and minor code changes; and debug of
the solving process by verification engineers. We discuss the advantages
of CP solvers over other solving technologies (such as BDD, SAT or
SMT), and how IntelliGen overcomes the disadvantages of CP.

1 Introduction

Constraint programming (CP) is a major component in functional verification.
Functional verification, tests a hardware device using a simulation of the design-
under-test (DUT) behavior. Verification is performed by generating diverse ran-
dom stimuli to produce interesting test scenarios, and collecting coverage to
ensure that all aspects of the DUT have been tested. Constraint solvers are used
to produce valid test cases that will satisfy the DUT’s restrictions [6,5].

Typically, CP seeks a feasible solution as fast as possible. Functional verifi-
cation changes this focus. Constraint problems in functional verification are not
necessarily hard to solve, and often many solutions exist. Instead of seeking a sin-
gle suitable solution, it is crucial to solve the problem many times with differ-
ent solutions. Moreover, the random solutions should be well distributed over the
(often enormous) solution space, and fulfill user-defined coverage requirements [7].

Several solving technologies are available to handle the random-constrained
problems of verification environments. These include CP solvers, SAT solvers,
and BDD solvers, as well as hybrid methods. BDD solvers are especially efficient
in finding a solution with uniform distribution over the solution space [12]. CP
solvers utilize the generation of a random value from a variable’s domain and
the randomization of variable selection ordering, to control the random selection
[3]. SAT solvers are usually used to find one solution, but there are techniques
that are used to generate random solutions such as XORSample [2].
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An inherent part of the verification process is debugging. When generation
leads to a conflict, or results do not satisfy the DUT expectations, the functional
verification engineer must debug the constraint solving. This requires the solving
process to be random stable: the generation must be reproducible. Typically, the
functional verification engineer is not an expert in constraints and does not have
actual knowledge in the underlying algorithms used by the solver. Hence, the
debug tools should be designed and the solver chosen, with this in mind.

This paper focuses on two of the special needs in the domain of functional
verification: distribution of the solutions, and random stability, and shows the
advantages of using a CP solver instead of other solving techniques to address
these (and other) needs. It also describes the disadvantages of a CP solver, and
focuses on how IntelliGen, a Cadence-supplied constraint solver and random
generator used by the Specman tool, overcomes those disadvantages.

2 IntelliGen

In the domain of functional verification, test scenarios are generated from user
environments using constraint solvers. Cadence is an Electronic Design Automa-
tion (EDA) company which, among other things, supplies tools for functional
verification. One of these tools, Specman, provides a framework and environment
for the verification language e [10]. IntelliGen, a Cadence-supplied constraint
solver and random generator used by the Specman tool, is a powerful solver that
can handle a variety of constraints, including arithmetical, bit operations, and
several global constraints (sum, count, all-different, etc.).

The user environments generated by IntelliGen may be quite large and
include millions of lines of code, and tens of thousands of constraints and
variables. The constraints may be on scalar fields, but can also be used to bind
pointers or to decide which subtypes will be generated.

Because of the inter-dependencies inherent in the structure of the environ-
ment, it cannot be solved as a single-constraint problem. Therefore, IntelliGen
analyzes the entire environment, and separates it into isolated solving problems,
denoted as CFSs (Connected Field Sets). Dependencies between CFSs are com-
puted to determine the correct order of solving, and for each CFS, a proper
solving device is chosen, depending on the nature of the problem.

Test scenarios may contain thousands of CFSs, and may require that some
of the CFSs be solved many times while others may be solved only once. The
solving device therefore should ideally be reusable and have a relatively low build
cost. In meeting this need, CP solvers have an important advantage over other
solving techniques such as BDD or SAT.

IntelliGen also includes GenDebugger, a GUI debugging tool used to debug
constraints [1,8]. GenDebugger is intended for use by the verification engineer,
typically a software or hardware engineer with knowledge of procedural code
debugging. GenDebugger allows debugging of constraint conflicts, unexpected
generated results, or performance and distribution problems. It groups the debug
information for each CFS, and represents the process of constraint solving as a set
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of relatively small steps. The steps present information about variables domains
(before and after the step), and the relevant constraints that participated in the
step. GenDebugger also includes breakpoints that let the user stop at specific
points during the generation process.

Using a CP solver is particularly helpful for debug because it facilitates trans-
lation of the solver’s main operations (such as "value-selection," "propagation,"
and "backtrack") into a sequence of elementary solving steps that can be de-
scribed in terms known to the user ("randomization," "reduction," and "value
cancellation" respectively). Because each solving step is directly related to spe-
cific constraints, the user can be informed which constraints led to which change.

Till now, we briefly discussed IntelliGen and some of the reasons (reuse,
relative low-cost build, and easy operation translation for the users) for choosing
a CP solver. In the next two sections, we describe two additional aspects (Distri-
bution and Random Stability) of finding a good random solution, the advantage
of a CP solver for handling these aspects, and how IntelliGen addresses them.

3 Distribution

The fundamental practice in functional verification is validating the DUT
through many randomly generated tests, with a goal of achieving full coverage
[7]. To achieve this goal, the tests should be varied, and the randomly generated
values should be well distributed over the solution space.

A natural question is "What constitutes ’good distribution’?", and an intu-
itive answer might be uniform distribution over the solution space, an approach
embedded in the SystemVerilog IEEE standard [9]. The concept of uniform dis-
tribution is clarified in [6]. There, the authors call for the tests to be distributed
as uniformly as possible among all possible tests that conform to the constraint
model, the intent being to reach a significantly different solution each time the
same constraint model is solved. Thus, uniform distribution of all possible tests is
not required, because two different solutions might still create very similar tests.
Much more important than uniformly sampling the solution space is sampling
all ’interesting’ values of the different variables.

An important consideration is that generation problems in verification are
usually asymmetric: a typical problem includes ’flags’, which control the topology
and conditions of the problem, and also as including generated scalar variables,
whose domains may vary from very small to very large (e.g., all values of 32-bit
unsigned integer). In these cases, the uniform distribution approach is hazardous
because some values of the topology variables or small domain variables may not
be generated because of their low probability. However, when the solution space
is symmetric and comprised of variables with similar initial domains, a uniform
or close to uniform distribution is the correct solution.

Consider Example 1, which demonstrates a case where an ’interesting’ value
for one of the variables will never be generated in a realistic test scenario.

Example 1. Assume two variables x and y with the domains
{
1..4

}
and

{
1..232

}
respectively, and a single constraint (x = 1→ y = 2).
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The solution space of this problem is { (1, 2)} ∪ { (a, b) | a ∈ {
2..4

}
, b ∈

{
1..232

} }.
When uniformly picking a random pair from this space, the probability for
generating the value one for x is 1/(3 ∗ 232 + 1). In other words, an ’interesting’
value for one of the variables will likely never be generated in a realistic test
scenario. This will lead to unfilled areas in the user’s coverage.

While unfeasible to generate all values of all variables, at the very least all four
values for variable x should be generated. This will lead to non-uniform distri-
bution of the values of y (which are 2 whenever x is 1). The user’s expectations
can thus be summarized as follows: For variables with a relatively small domain,
all possible values are generated, while the distribution should be as uniform as
possible for the rest of the model, as long as permitted by the constraint model.

Verification languages, such as e or SystemVerilog, include directives to control
the distribution of specific fields, but even when no such directives are given, it
is preferred that the generated values will vary and be distributed well. In this
paper we do not discuss user directives, but only how generation results are
naturally distributed depending on the solver technology.

In IntelliGen, a propagation-based solver, the distribution is the result of
variable and value ordering. IntelliGen’s variable ordering primarily picks a
variable with the smallest domain (according to the first-fail principle of Haralick
& Elliott [4]). If several variables have the same (or close enough) domain size,
the solver chooses the variable randomly. Once a variable is chosen, the generated
value is randomized uniformly from its domain. Though intended for finding a
solution more quickly, variable ordering based on the first-fail approach also often
leads to the desired distribution.

Finding a satisfying assignment for Example 1 when using IntelliGen’s
variable and value ordering is done in the following solving steps: (1) Choose the
variable x (due to its smaller domain), and randomize a value from its domain
(which is

{
1..4

}
). (2) Propagate (reducing y to

{
2
}

if x was randomized to 1).
(3) If y was not reduced to

{
2
}
, choose the variable y, and randomize a value

from its domain.
This flow (which we term ’randomization-propagation’ flow) does not lead to

a uniform distribution on the solution space, but it does ensure full coverage
on the values of x (which are generated with equal proportions). As for the
values of y, they will be varied enough once x was determined. This leads to the
conclusion that CP heuristics, intended mainly for finding a solution efficiently,
also contribute to achieving good, albeit not uniform, distribution.

As an enhancement to this behavior consider Example 2 which was extracted
from a real life verification environment.

Example 2. Assume four variables delay, kind, size, and lock with the domains{
0..232

}
,

{
SINGLE, INCR,WRAP

}
,

{
BY TE,HALFWORD,WORD

}
,

and
{
true, false

}
respectively, and a set of constraints:

(kind = WRAP → lock = true) (size = WORD → kind = WRAP )
(kind ∈

{
SINGLE, INCR

}
→ lock = false) (lock = true → delay = 0)

Experimental results of using IntelliGen to generate 10000 items with these
constraints show 1437 generations of (size = WORD), and 5141 generations of
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(lock = true). On the other hand, in 10000 generation using uniform-distribution
BDD solver, no item at all has (size = WORD) or (lock = true). Therefore,
IntelliGen’s behavior meets the user’s expectations, which would be that all
possibilities of kind, size, and lock will be generated.

A different principle regarding generation distribution can be defined as the
unwillingness to generate values without a real cause for choosing them. If we
look at the constraint (x = 1 → y = 2) from Example 1, the value 1 for x
should not be biased just because it is mentioned in a constraint. An unneeded
repetition of values may lead to tests that are not varied enough, and to an
uneven and biased distribution.

Example 3. Assume two variables x and y with the domains
{
1..232

}
for both

variables, and a single constraint (x = 1→ y �= 1) .

Applying ’randomization-propagation’ flow to Example 3 will create the
following steps: (1) Choose a variable (either x or y) and randomize its value. (2)
If the chosen variable was randomized to one, omit one from the other variable’s
domain. (3) Choose the remaining variable and randomize its assigned value
from its current domain. Observe that the impact of the constraint is minimal.
The probabilities of x and y to be 1 are close to 1/232, and therefore these values
will be generated similarly to any other values in the variables’ domains, and
with very low probability.

A generation of biased values may occur when using an SMT solver over a
CP theory. Most SMT solvers are designed to determine a single satisfying so-
lution, but attempts have been made to adapt them generate random results [11].
The constraint (x = 1 → y �= 1) is equivalent to the SMT formula
(¬(x = 1)∨ (y �= 1))) which is translated to (¬b1 ∨ b2) where the atoms (x = 1)
and (y �= 1) are replaced by Boolean variables b1 and b2 respectively. The values
for the Boolean variables are assigned by the SAT solver. Any of the three valid
possibilities for (b1, b2), which are (false , false), (false , true) and (true, true), are
acceptable. However, the value true for b1 or the value false for b2 enforces that
x will be 1 or y will be 1, correspondingly. This differs from the CP behavior,
which gave no additional weight to these values, and they were generated with
very low probability, like the rest of the values in the variables’ domains. This
drawback of SMT solvers can also be seen in Example 4, which is a variation of
Example 2.

Example 4. Suppose we add the constraint (kind = SINGLE) to Example 2.

Now there is no constraint enforcing delay to become zero. Indeed, in 10000
generations using IntelliGen, no zeros were generated for this variable.
However, the SMT solver, when the SAT layer has a literal for (delay = 0),
might occasionally assign true to this literal, leading to biased distribution. Thus,
we see that the CP solver, and in particular the ’randomization-propagation’
flow, maintains the principle of not generating biased values. The SMT behavior
violates this principle and is much more sensitive to addition and removal of
constraints, even when their influence on the environment is minor.
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The examples thus far have demonstrated the positive aspects of CP solvers
in achieving a good distribution when using first-fail variable ordering and uni-
form distribution value ordering. But as mentioned before, the ’randomization-
propagation’ flow does not always achieve uniform distribution. In cases of
variables with symmetrical domains, such distribution might be the desired one,
as can be seen in Example 5.

Example 5. Assume two variables, x and y, with the domains
{
0..9

}
for both

variables, and a single constraint (x+ y < 10).

Let us compare the probabilities of the solutions (9, 0) and (0, 0) for (x, y).
The solution (9, 0) has 5.5% probability: 10% if x is chosen first, and 1% if y
is chosen first. The solution (0, 0) has 1% probability. Since the solution space
contains 45 solutions, a uniform randomization should choose each solution with
2.22% probability. In Example 5, there is no reason to prefer one solution over
the other, and each combination of values can represent an interesting test-case.
Assuming the solution space should be fully covered, this means that many data
items will need to be generated until the coverage criterion is satisfied. The
problem becomes much more serious when it involves many variables and not
just two, as Example 6 illustrates.

Example 6. Assume a list m of variables with the domain
{
0..232

}
, and a single

constraint (
∑

mi = 10000).

Initial propagation over this constraint cannot narrow the initial domain of
the variables beyond

{
0..10000

}
. Therefore, the first chosen variables will be

generated relatively freely, enforcing the remaining variables to sum to a rapidly
diminishing value. In a typical solution very few variables are randomized to
values between zero and ten thousand, several more are small positive numbers,
and the rest are zeros. This is definitely not the user’s expectation of a solution.

Starting from Specman version 11.1, IntelliGen incorporated a more
sophisticated randomization scheme regarding the sum global constraint, while
still remaining loyal to the ’randomization-propagation’ flow. While the main
details cannot be shared, the main principle is that the variable’s value is not
randomized uniformly from the variable’s domain, but rather it is chosen ac-
cording to the expected solution for the whole list. The generated lists do satisfy
the criterion of being uniformly distributed.

Using the latest Specman and IntelliGen, the experimental results for Ex-
ample 6, with 10000 generations of a list of 100 variables, show: 6302 generations
have a list which contains a zero, 2677 generations have a list which contains two
zeros, and only six generations have a list which contains more than five zeros.

Contrast this with the naive ’randomization-propagation’ flow prior to
Specman 11.1: In 10000 generations, all results contain more than 70 zeros,
and 4845 generations contain more than 90 zeros.

To summarize, the two main principles of distribution are to generate all the
interesting test scenarios and to avoid biased generations of values. CP solvers
using the ’randomization-propagation’ flow satisfy these principles, unlike other
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solving techniques. However, constraint models which are not handled well by
the CP solver should receive special attention by the solver.

4 Random Stability

Once a test involves picking a random solution, the requirement to maintain
reproducibility of the generation results becomes crucial. This is especially true
in the verification flow, which may look as follows: (1) A nightly regression
catches a failure in a specific test case. (2) A verification engineer reproduces
the test case and chooses its owner. (3) The owner runs the test case again, using
debug or interactive tool. (4) A fix is implemented and validated by rerunning
the test in the regression.

Each of these steps involves a different run mode: regression tests run in
batch mode, while the user will often prefer to use GUI tools. In addition, when
debugging the test, devices such as breakpoints or logging may be used. These
different run modes might involve different settings (for example, the memory
setting of the run might be influenced). Yet, it is highly important that the same
generated results will be produced in each run. Any difference, even the smallest,
may drastically change the flow of the test, leading to irreproducibility.

Maintaining reproducibility is a difficult task when using non-deterministic
algorithms; naive parallel search or propagation algorithms do not ensure it.
However, even in a totally deterministic generation, it is not a trivial matter
to maintain reproducibility, because the machine environment and settings may
influence random stability. The following scenario demonstrates a case in which
a different behavior of garbage collection changes random stability:

A test generates a data item ten times. During the nightly run this test failed
on DUT error in the tenth generation. The solving was done using a learning
solver (e.g. SAT solver) and no garbage collections were performed. When de-
bugging the test, the different settings increased its memory signature, so that
garbage collection was issued before the tenth generation. The garbage collection
may have removed some of the learned data, or even the entire solver.

In this scenario, where learning was used, part of the learned data was
removed in the debug run, but in the nightly run all solvers and the corre-
sponding learned data was kept. Therefore this scenario will produce different
results for the tenth generation in each run mode of the test. The lesson is that
even a deterministic solver is vulnerable to random stability problems, and that
learning solvers are especially prone to such problems.

While absolute reproducibility is essential, verification tests have an even more
pressing requirement: Code modifications that are irrelevant to the
generation of a certain variable must not affect its generated values when using
the same seed. However, using one seed will obviously make the generation very
sensitive to code changes. To support the random stability requirement, many
more seeds are required.

IntelliGen expands the concept of ’seed’ and uses a multi-seed scheme. After
breaking the constraint model into isolated solving problem CFSs, a unique seed
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is attached to each CFS and to each CFS variable. The CFS seed is used, for
example, to randomize variable ordering when solving the CFS. This ensures that
independent CFSs will keep random stability regarding each other. Each CFS
variable has its own seed which is used to randomize values from its domain.
This is done to improve random stability for the specific variable. Sometimes
random stability may be kept even when code changes are done within the same
variable’s CFS, although it cannot be guaranteed, as Example 7 illustrates.

Example 7. Assume three variables x, y and z with the domains
{
1..232

}
for

all variables, and a constraint (x ≤ y).

Adding the constraint (y ≤ z) will affect the generation of x, although its
domain is unchanged. Because the randomization results are dependent on
variable ordering, if z is chosen first, the generated value of x is different.
However, using propagation based solving (’randomization-propagation’ flow
used in IntelliGen as described in Section 2) is sometimes helpful in main-
taining random stability even when code changes are made to closely related
variables. The reason is that generation of values is done using the variable
domains with their dedicated seeds. This is illustrated by Example 8.

Example 8. Assume three variables b, x and y, with the domains
{
0..1

}
,{

1..232
}
, and

{
1..232

}
respectively, and the constraints: (b = 1→ x < 100), and

(b = get_flag_value()) where get_flag_value() is a runtime method which
may reflect the current status of the DUT.

Adding the constraint (b = 1 → y < 50) will not affect the generation of
the variable x, although it is related to the same CFS with the variables y
and b. This is because the domain of x remains the same after propagation,
with or without the additional constraint. Note that a different randomization
approach, for example one which generates a vector of solutions, will generate
different values for x with or without the additional constraint. Translating the
problem to a BDD is an example. The reason is that the additional constraint
reduces the solution space, as it reduces the domain of y.

Maintaining random stability, in all its aspects, is one of the most important
requirements IntelliGen is expected to support. Choosing a CP solver and
using the multi-seed scheme enables IntelliGen to support this requirement.

5 Summary

This paper discusses the benefits of a CP framework to address the special re-
quirements of functional verification. The requirements of the domain are beyond
the need for finding a single feasible solution, and rely heavily on the randomness
of the solutions. These benefits were one of the main motivations for the tech-
nology picked for Cadence’s IntelliGen constraint solver. The considerations
include: the ability of the solver to efficiently solve the constraint problems, the
random quality and stability of the solutions, and the convenient way the re-
sults can be presented and reproduced for debug. CP solvers prove to be highly
effective for these problems, and show advantages over other solving techniques.
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Abstract. In this paper, we consider the problem of channel assign-
ment in multi-radio, multi-channel wireless mesh networks. We assume
a binary interference model and represent the set of interfering links in
a network topology as a conflict graph. We then develop a new cen-
tralised stochastic local search algorithm to find a channel assignment
that minimises the network interference. Our algorithm assigns channels
to communication links rather than radio interfaces. By doing so, our
algorithm not only does preserve the network topology, but is also inde-
pendent of the network routing layer. We compare the performance of
our algorithm with that of a well-known Tabu-based approach (by Subra-
manian et al.) on randomly generated sparse and dense network topolo-
gies. Using graph-theoretic evaluation and ns2 simulations (a widely used
discrete event network simulator), we show that our algorithm consis-
tently outperforms the Tabu-based approach in terms of both the net-
work interference and the throughput obtained under various offered
loads. In particular, for a practical setting of 3 radio interfaces per mesh
node in a dense network topology with 12 channels available, our ap-
proach achieves 70% lower network interference and thus 15 times higher
average throughput than those achieved by the Tabu-based approach.

1 Introduction

Wireless interference is one of the major factors that limits the performance of
IEEE 802.11-based wireless mesh networks. There have been various approaches
proposed to improve network performance by mitigating or taking into account
the effects of interference in wireless networks. These approaches include optimis-
ing the transmission power used by the nodes in a wireless network [7], utilising
network routing protocols that are interference-aware [9], and scheduling conflict-
free transmissions that consider the physical interference in the wireless network
[3]. In wireless mesh networks, a popular approach to minimise the effects of
interference is to equip wireless mesh nodes with multiple radio interfaces, and
assign non-overlapping channels to these interfaces. The key challenge in this

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 832–847, 2013.
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case is to design a channel assignment algorithm that assigns the available chan-
nels to the radio interfaces in such a way that minimises the network interference
and thus maximises the network throughput, while at the same time preserving
the network topology.

In this paper, we present a new centralised stochastic local search (SLS)
algorithm for channel assignment in multi-radio, multi-channel wireless mesh
networks. The objective is to minimise the network interference while satisfy-
ing the interface constraint. We assume that the interference model is binary.
Consequently, two communication links are said to interfere with each other if
they are assigned the same channel and are within interference range of each
other. The network interference is the number of interfering pairs of links in the
channel assignment. There is also an interface constraint for each mesh node to
ensure that the number of channels being used at that node does not exceed
the number of radios available at the node. Our algorithm assigns channels to
communication links rather than radio interfaces. By doing so, our algorithm not
only does preserve the network topology, but is also independent of the network
routing layer.

Due to the constraints and optimisation issues in this application which more-
over requires a reasonable quick deployment and allows incremental fine-tuning,
we developed our algorithm on top of Kangaroo, a constraint-based local search
system [13]. We designed a new constraint to model the interface constraint at
each mesh node. We then represent the problem as a constrained optimisation
problem and use stochastic local search to find a solution (i.e. channel assign-
ment). Our search algorithm starts from a randomly generated initial solution;
which may be infeasible. It then iteratively improves the feasibility and optimal-
ity metrics of the solution. The search attempts to improve the feasibility metric
(i.e. the number of violated interface constraints) when the current solution is far
from being satisfied; other times, it tries to improve the optimality metric (i.e.
the network interference). When there is no improvement within a number of
iterations, it restarts by randomly assigning values to a number of variables. For
the selection of links that require changing its channel assignment, we use Nov-
elty [12], a very well-known stochastic local search algorithm. For the selection
of a channel to be assigned to a link, we pick the best possible channel.

We compare the performance of our algorithmwith that of a well-known Tabu-
based approach by Subramanian et al. [19] on randomly generated sparse and
dense network topologies. It is worth noting that our industry partners in wireless
mesh networks confirm our assumed network scenario (network topology, traffic
pattern, etc.) and parameter choices to be realistic. Using graph-theoretic eval-
uation and ns2 simulations, we empirically show that our algorithm consistently
outperforms the Tabu-based approach in terms of both the network interference
and the throughput obtained under various offered loads. In particular, for a prac-
tical setting of 3 radio interfaces per mesh node in a dense network topology with
12 channels available, our approach achieves 70% lower network interference and
thus 15 times higher average throughput than those achieved by the Tabu-based
approach. Note that ns2 (a discrete event network simulator) uses a more complex
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and realistic interference model based on the Signal to Interference plus Noise Ra-
tio (SINR) measured at the receiver nodes. It is the most widely used simulator
in the networks community for the quantitative evaluation of network algorithms.
Our ns2 evaluation strongly demonstrates that our simple interference model is
an effective abstraction of the complex physical problem of wireless interference,
and leads to very good network performance.

The rest of the paper is organised as follows: Section 2 reviews related work;
Section 3 describes the model and problem formulation; Section 4 provides a
brief review of the Tabu-based algorithm by Subramanian et al. [19]; Section 5
describes in detail our stochastic local search based approach; Section 6 presents
our experimental evaluations. Finally, Section 7 summarises our conclusions and
outlines the future work.

2 Related Work

The frequency assignment problems, also called channel assignment problems,
have been a major research topic over the past years. Fast developments of wire-
less telephone networks and satellite communication projects have been the key
factors behind this. Moreover, other applications like TV broadcasting and mili-
tary communication have much inspired the interests in this research area. There
have been various channel assignment algorithms proposed in the literature for
various channel assignment problems and even for wireless mesh networks specif-
ically. Interested readers can refer to a few good survey papers on various channel
assignment problems [2] and on wireless mesh networks [5,18]. In this section,
we briefly review a few relevant approaches.

Existing works on channel assignment algorithms can be divided into the
distributed and centralised approaches. In distributed channel assignment ap-
proaches [8,17,16], individual network nodes compute its channel assignment
based on locally gathered information about its network neighbourhood. Dis-
tributed channel assignment approaches are more suitable to be used once a
network has been set up and is operationally running. This is because it is more
adaptive to dynamic changes in local network topology (due to node failures or
external interference) and any changes in the channel assignment can be confined
to the local neighbourhood. In this paper, we are interested in the optimal chan-
nel assignment for mesh nodes in an initial network-wide deployment (before the
entire network is operational running), which is better handled by a centralised
channel assignment approach. Here, the centralised controller node is simply one
of the mesh nodes configured to act in this role at deployment time. Even in a
completely new and rapid deployment scenario, it is acceptable to wait for a few
seconds for the channel allocation to complete.

In centralised channel assignment approaches [19,11,15], a central entity com-
putes the optimal channel assignment based on global information about the
network topology, such as the interference relationship between the nodes or
communication links in the network. Typically, the interference relationship is
represented as a conflict graph. The central entity then disseminates the channel
assignment information throughout the network to every node.
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Subramanian et al. proposed a Tabu-based approach in [19] in which the Tabu
search based technique [6] is used to find a channel assignment that minimises
the network interference. We will describe the Tabu-based approach in more
detail in Section 4, and compare the performance of our proposed algorithm
with this approach in Section 6. In [11], a greedy heuristic channel assignment
algorithm called CLICA is proposed to find a connected and low interference
network topology. Subramanian et al. compared the performance of their Tabu-
based approach with CLICA in [19] and showed that their approach performs
better. In the BFS channel assignment algorithm in [15], each mesh node has
one radio interface configured to a default common channel in order to main-
tain network-wide connectivity. With typical mesh nodes having at most two or
three radio interfaces each, this can lead to inefficient utilisation of the avail-
able channels in the network and poor network performance. In contrast, our
algorithm in this paper preserves network connectivity by assigning channels to
communication links, instead of using a dedicated radio interface configured to
a common channel.

3 Model and Problem Formulation

A typical architecture of a wireless mesh network has two tiers: backbone tier
and access tier. The backbone tier consists of stationary mesh nodes (or nodes)
forming a wireless multihop backbone infrastructure, with one or more nodes
also functioning as gateways to the Internet. The access tier sees the end-user
client devices connecting to the mesh nodes in order to communicate with other
client devices or to access the Internet. The 5GHz and 2.4GHz frequency bands
are typically used for the communications in the backbone and access tiers re-
spectively.

The mesh nodes usually have multiple radio interfaces, each of which might be
configured with a channel k ∈ K, where K is the set of available channels in the
backbone tier. We assume all nodes to have the same number of r radio interfaces,
each having omni-directional antennas with the same transmission range Rtx.
Let Duv denote the physical distance between two nodes u and v. There exists
a communication link (or link) l ≡ luv between nodes u and v, if Duv < Rtx and
both nodes have a radio interface configured to a common channel. A given set
of nodes V and the links E can be modelled as an undirected graph G = (V,E).
Let Ev denote the links incident on a node v.

In this paper, we are interested in the optimal assignment of channels to
links in a multihop backbone infrastructure in order to minimise the interfer-
ence between the links. Due to the inverse relationship between interference
and network throughput, by minimising the interference in the network, we es-
sentially maximise the network throughput. We model the interference between
co-channel communication links with the range-based interference model. In this
interference model, every node has an associated interference range, Rint, that
is typically larger than the transmission range. A unicast transmission on a
link l from node u to node v can be interfered with by another simultaneous
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transmission (on the same channel) from any node within the interference range
of both nodes u and v.

We assume that the interference model is binary in the sense that the uni-
cast transmission is successful if there is no interference present, and unsuc-
cessful otherwise. We also assume that transmissions on different channels do
not interfere. Note that our channel assignment algorithm does not depend on
the choice of the interference model used in this paper, i.e. the range-based
interference model. Our channel assignment algorithm will work with other in-
terference models such as the hop-based and the protocol interference models.
These interference models are called pairwise interference models after the fact
that interference is defined on pairs of communication links. Interested readers
can refer to [10] for a description of these and other interference models.

Given a pairwise interference model, we use a conflict graph Gc to model the
set of interfering communication links in the wireless mesh network represented
by a graph G. Each link l in G essentially becomes a vertex in the conflict graph
Gc. An edge in Gc exists between a pair of vertices l and l′, if the links luv and
l′u′v′ in the network are on the same channel and interfere with each other. With
the range-based interference model that we adopt in this paper, an edge exists
if any of the following is true: Duu′ ≤ Rint, or Duv′ ≤ Rint, or Dvu′ ≤ Rint, or
Dvv′ ≤ Rint.

The objective of our channel assignment problem is to find a mapping φ
that assigns unique channels to the links in such a way that minimises the
network interference. Given a channel assignment φ, let φ(l) denote the channel
assigned to a link l and σφ(v) the number of unique channels assigned to the links
incident on a node v. The network interference η(φ) of a channel assignment φ
is the number of edges in the conflict graph. A feasible channel assignment must
satisfy all the interface constraints to ensure that for each node v, the number
of unique channels assigned to all communication links incident on v is at most
the number of radio interfaces available at v, i.e. σφ(v) ≤ r.

Note that by assigning channels to communication links rather than to radio
interfaces, our channel assignment algorithm maintains the same network topol-
ogy as in the case when a single channel is used for all communication links in
the network. By doing so, our channel assignment algorithm is independent of
the network routing layer.

4 Tabu-Based Algorithm

The Tabu-based algorithm by Subramanian et al. [19] comprises two phases,
which can be viewed as optimisation and satisfaction phases. First, in the
optimisation phase, the network interference is iteratively minimised without
considering the interface constraints. Therefore, the best solution found in the
first phase normally violates the interface constraints. Next, in the satisfaction
phase, these violated interface constraints are heuristically fixed to obtain a fea-
sible solution. Note that while fixing those violated constraints, the network
interference may increase. However, the Tabu-based algorithm returns its one
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and only solution at the end of the second phase without attempting to improve
the network interference further.

4.1 Optimisation Phase

In this phase, the Tabu-based algorithm starts with a random initial solution φ0

wherein each link l is assigned to a random channel k ∈ K i.e. φ0(l) = k. Given a
solution φi, it then obtains the next solution φi+1 by selecting the best candidate
(having the lowest network interference) from a number of randomly generated
neighbouring solutions. A neighbouring solution φ′i of a solution φi is generated
by randomly selecting a link l and then assigning a random channel k ∈ K to
the link. The neighbour generation process ensures that k �= φi(l) and the pair
(l, k) does not appear in a maintained tabu list τ , which is a first-in-first-out
queue of a given length. When φi+1 is obtained from φi, the modified link l
and the new channel k assigned to the link are pushed into the queue; before
that, one queue element is popped out, if the queue is full. The first phase of
the algorithm terminates if there is no improvement in the network interference
after |E| iterations, where E is the set of links in the network [19].

4.2 Satisfaction Phase

In this phase, the Tabu-based algorithm mainly attempts to satisfy the violated
interface constraints in the solution φ returned by the first phase. For this, it
picks a node v that has the most violations in its interface constraint. The number
of violations of the interface constraint at a given node v is max(σφ(v) − r, 0).
The algorithm then performs a merge operation that chooses two channels k and
k′, and makes a replacement φ(l) = k′ for each incident link l to v such that
φ(l) = k. The replacement process has a recursive cascading effect on each node
v′ that l is also incident on. While satisfying the interface constraints, the merge
operation may increase the network interference η(φ). Therefore, the choice of k
and k′ is greedily made so that the increase in η(φ) is minimised.

5 Stochastic Local Search Based Algorithm

We developed our stochastic local search based algorithm on top of Kangaroo, a
constraint-based local search system [13]. We define the variables and functions
such as constraints and objectives in the Kangaroo system. Kangaroo then effi-
ciently propagates changes from variables to the dependant functions. In each
iteration when the variables are assigned with new values, Kangaroo performs
execution by updating the functions’ values. It also helps to efficiently explore
potential neighbouring solutions by performing simulation: computing the fea-
sibility and optimality metrics temporarily due to the potential changes in the
variables.
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5.1 Constraint and Objective Functions

We designed a new constraint function AtMostCount in Kangaroo to model the
interface constraints. The AtMostCount constraint maintains the degree of con-
straint violation and penalises the links for causing the violation. We also use
NotEqual constraints to represent ‘no conflict’ between two given links, and Sum
function to accumulate the constraints to form the top-level objective functions.

Each function f(p1, · · · , pn) has the parameters pjs that are either variables
or other functions. A function f depends on a variable x, denoted by f → x, if
x is itself a parameter of f or f has a parameter p → x. Each function f has
a non-negative metric fm denoting its evaluation. For each x ← f , it also has
a non-negative hint fh(x) denoting the preference level of changing x’s value to
improve fm. A constraint f is satisfied when fm = 0 and in that case fh(x) = 0
for any x. This means a constraint’s metric improves when it is minimised.

AtMostCount. The number of unique values occurred in the given n variables
x1, · · · , xn must not exceed a specified limit m. This constraint, denoted by
C(x1, · · · , xn), has its metric Cm = max(c − m, 0) and for each variable xj ,
a hint Ch(xj) = n − cj ; where c is the number of unique values used in the
variables while cj is the number of times xj ’s value has occurred. Notice that
Cm is the number of additional values used beyond the limit. Also, notice that
Ch(xj) captures the heuristic stated as ‘the fewer the value of a variable occurs,
the more the preference of the variable’s value to be modified’.

NotEqual. The values of two given variables must not be equal. This constraint,
denoted by Q̄(x, x′), has its metric Q̄m = 1 if x equals x′, else 0. Its hints are
defined as Q̄h(x) = Q̄h(x′) = Q̄m. When two variables have the same value
changing either one’s value could make them unequal and thus improve the
metric.

Sum. This function, denoted by S(f1, · · · , fn), accumulates a given number of
functions. We defined its metric Sm =

∑
fm
j and for each variable x← S, a hint

Sh(x) =
∑

x←fj
fh
j (x), where 1 ≤ j ≤ n.

5.2 Constrained Optimisation Model

The constrained optimisation model used by our algorithm is defined in Proce-
dure 1 ConstructModel. We first create a variable xl for each link l in the network
(Lines 1–2). The domain of each variable is K, the set of available channels. For
each node v, we then create an AtMostCount constraint Cv with the links inci-
dent on v (Lines 3–5). The limit given to each Cv is r which is the number of
radio interfaces available at a node. The Sum function Ssat accumulates all the
AtMostCount constraints (Line 6). The accumulated metric of Ssat must be 0 in
order to get a feasible channel assignment for the network.

For each potential edge in the conflict graph Gc, we create a NotEqual con-
straint Q̄ll′ (Lines 7–9) with the variables xl and xl′ respectively associated
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Procedure 1: ConstructModel

1 foreach link l ∈ E do
2 Create a variable xl with domain K;
3 foreach node v ∈ V do
4 Let X be the set of variables for the links Ev;
5 Create a constraint Cv with X and the limit r;

6 Create a function Ssat with all Cvs created above;
7 foreach potential edge e in Gc do
8 Let l and l′ be the vertices which e incidents on;
9 Create a constraint Q̄ll′ with variables xl and xl′ ;

10 Create a function Sopt with all Q̄s created above;
11 Create a function Scomb with Ssat and Sopt;

with the two links l and l′; note that these two links cause interference if they
are assigned with the same channel. The Sum function Sopt accumulates all the
NotEqual constraints (Line 10) and thus represents the network interference. The
metric of this Sum function needs to be as small as possible. Finally, we have
another Sum function Scomb that combines Ssat and Sopt (Line 11) to give an
overall evaluation of the candidate channel assignment.

5.3 Local Search Method

Our search algorithm, shown in Procedure 2 PerformSearch, starts from a
randomly generated initial solution; which may be infeasible (Line 6). It then it-
eratively improves the feasibility and optimality metrics of the solution (i.e. Ssat

and Sopt respectively). In each iteration, our algorithm chooses one of the three
options: i) satisfy: minimise the violation of interface constraints (Lines 20–23)
when the current assignment is far from being feasible (i.e. Sm

sat ≥ Proximity);
ii) optimise: minimise the network interference (Lines 16–19) if the current as-
signment is already feasible (Sm

sat is 0) or very close to being feasible (Sm
sat <

Proximity); or iii) restart: randomly change a large portion of the current as-
signment to escape stagnation (Lines 12–15).

Function 3 selectVarValue selects a variable x greedily based on its hint
obtained from VarObj. It then selects a new value k for x that minimises the
metric of ValObj. The variable choice is limited to the subset of variables that
the Constraint parameter depends on. Parameters VarObj and ValObj can be any
Sum function (Ssat, Sopt or Scomb) defined above.

With a small probability, Function 3 selects a random variable in the subset
(Line 4). Otherwise for most of the time, it selects a variable in the subset that
has the maximum hint in VarObj, breaking ties on being assigned earlier (Lines
5–11). However, when that variable is the most recently assigned one in this
subset, with a given small noise probability it will select the variable that has
the second maximum hint (Novelty heuristic in Line 10).

Therefore, the first option (satisfy) in Procedure PerformSearch randomly
selects a violated AtMostCount C with a view to improving the feasibility
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metric Sm
sat by changing the value of a variable x ← C. Variable x and its

value are selected by calling Function 3 with the following options Constraint=C,
VarObj=Ssat and ValObj=Ssat.

Procedure 2: PerformSearch

1 BestSoln = ∅;
2 MinConflict = ∞;
3 Proximity = 1;
4 IterSinceRestart = 0;
5 RestartPeriod = |E| × 10;
6 initialiseRandomly (CurrSoln);
7 while Sm

comb > 0 ∧ ¬TimeOut do
8 if Sm

sat = 0 ∧ Sm
opt < MinConflict then

9 MinConflict = Sm
opt;

10 BestSoln = CurrSoln;
11 IterSinceRestart = 0;

12 if ++IterSinceRestart > RestartPeriod then
13 IterSinceRestart = 0;

14 X = Select |E|
8
, 2|E|

8
or 3|E|

8
variables randomly;

15 Assign random values to the variables X;

16 else if Sm
sat < Proximity then

17 Select C randomly from all Cvs;
18 (x, k) = selectVarValue(C,Sopt, Scomb);
19 Assign the value k to the variable x;

20 else // Sm
sat ≥ Proximity

21 Select C randomly from Cvs such that Cm
v > 0;

22 (x, k) = selectVarValue(C,Ssat, Ssat);
23 Assign the value k to the variable x;

24 return BestSoln;

Function 3: selectVarValue(Constraint, VarObj, ValObj)

1 Noise = 0.01;
2 X = {x : x ← Constraint};
3 Select a variable x ∈ X in the following way:
4 if bernoulii (Noise) then randomly;
5 else // use Novelty

6 Assume x1 ∈ X and x2 ∈ X have the first
7 and second maximum hint in VarObj
8 breaking tie on being assigned earlier;
9 if x1 is the last assigned variable then

10 x= if bernoulii (Noise) then x2 else x1

11 else x = x1

12 By simulation, select a value k for x
13 such that the metric of ValObj is minimised;
14 return (x, k);
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For the second option (optimise), we could use a violated NotEqual constraint
Q̄ to limit the variable choices in Function 3. However, a Q̄ depends only on two
variables, and thus restricts the choice particularly in a stagnant situation. Notice
that most of the time the variable selection is greedy and the value selection is
also greedy with no tabu; which makes it harder to escape from a stagnant
situation for any further improvement. The use of a random AtMostCount C
gives more choices to select a variable from. Here, we set VarObj=Sopt to select
a variable as we want to improve the network interference. However, we set
ValObj=Scomb to select a value to find an assignment that might converge in the
optimality metric but could even diverge in the feasibility metric.

The third option (restart) randomly assigns values to a number of variables,
if there is no improvement after a given number of iterations.

6 Performance Evaluations

We compared the performance of the Tabu-based algorithm (using our imple-
mentation with the optimal settings as specified in [19]) and our SLS-based
algorithm using both graph-theoretic evaluations and ns2 simulations [1]. In our
evaluations, we used two different types of random network topologies: dense and
sparse. We generated these networks by randomly placing 50 nodes respectively
in 500× 500 and 800× 800 square meter areas. Using the default ns2 simulation
settings for IEEE 802.11a, the transmission range Rtx is set to 163 meters, while
the interference range Rint is set to 410 meters. With these settings, the average
node degree is around 11 in the dense network while in the sparse network, the
average node degree is around 5. The parameter choices are confirmed to be
realistic by our industry partners.

6.1 Graph-Theoretic Evaluations

For both of the channel assignment algorithms, we used a computer equipped
with Intel(R) Xeon(R) 64bit quad-core CPU X3470 @2.93GHz with 8MB L2
Cache and 8GB RAM running Ubuntu Linux version 12.04. We ran both the
algorithms 25 times on each benchmark topology with a realistic 30 seconds
cutoff time. Note that quick response time is important for an initial deployment
of a wireless mesh network in a disaster situation. The choice of 30 seconds is
based on user acceptance surveys undertaken by industry partners. For each run,
we collected the best solution found within the cutoff time. We then used the
median quality solution out of those 25 best solutions to run the ns2 simulations
and to present our results and provide analysis based on them.

Note that the Tabu-based algorithm is a one-off algorithm meaning it pro-
duces only one solution as its output and then terminates. This is obvious from
the two phases of the algorithm. The first phase iteratively minimises only the
network interference while ignoring the interface constraints. Therefore, a feasi-
ble solution can only be found at the end of the second phase which fixes those
constraint violations. Nevertheless, in most cases, the Tabu-based algorithm was
able to return a solution within the stipulated cutoff time.
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Fig. 1. Convergence of fractional network interference w.r.t. time for SLS-based and
Tabu-based algorithms in the dense network with 12 channels and 3 radio interfaces
per node

In contrast, our SLS-based algorithm is an any-time algorithm [21], meaning
that one can terminate the algorithm at any time (after the initial time to find
the first solution) and still has a valid solution. In other words, our algorithm
is capable to quickly find a feasible solution. Once such a solution is found, our
algorithm still keeps running in the quest of further improving solutions (in terms
of the network interference) as long as the cutoff time permits (Procedure 2 Lines
7–10). Trading off with the time available, one can at any time take the best
solution found so far.

We plot the typical convergence pattern of our algorithm in Figure 1 on a dense
network with 3 radio interfaces at each node and 12 available channels. Notice
that by the time the Tabu-based algorithm found its solution, our algorithm
has already found a number of solutions that are much better. This was found
true for all test cases. We observed the results found by the Tabu-based method
over 25 runs on a test case to be very consistent, with only a small variance.
This suggests that executing this method multiple times until the time cutoff
would not make big differences. Conversely, our method found significantly better
solutions than the Tabu method within the same time window, and further
improved the solution quality substantially over time. If one were to terminate
our algorithm early, still a sufficiently good solution would be returned. We
used the optimal settings in [19] for our Tabu implementation used the optimal
settings but we didn’t tuned our method much.

For further comparison, we graphically show in Figure 2 the fractional net-
work interferences of the solutions produced by the SLS-based and Tabu-based
algorithms for the sparse network. These results were obtained by using 3 and
12 channels with the number of radio interfaces varied from 2 to 8. We show the
same for the dense network in Figure 3. The fractional network interference is
defined as the ratio of the number of edges in the conflict graph produced by a
given channel assignment and the total number of conflicts in the single-channel
network. From these results, it is clear that our algorithm obtained significantly
better fractional network interference than the Tabu-based algorithm.
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Fig. 2. Fractional network interference of the solutions produced by SLS-based and
Tabu-based algorithms in the sparse network with (a) 3 or (b) 12 channels
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Fig. 3. Fractional network interference of the solutions produced by SLS-based and
Tabu-based algorithms in the dense network with (a) 3 or (b) 12 channels

We sought a reasonable explanation for these performances. Note that our
algorithm switches between the satisfaction and optimisation phases in an in-
terleaving fashion. Moreover, both phases respect the interface constraints and
the network interference in a separate or combined way. On the other hand,
the Tabu-based algorithm has two separate phases where the satisfaction phase
follows the optimisation phase. While the latter phase only minimises the net-
work interference, the former phase just satisfies the interface constraints; no
interaction between these two criteria is considered.

Our further observations suggest the solution quality of the Tabu-based algo-
rithm greatly reduces by the fact that fewer than the total number of available
channels are used by both of its phases. In particular, the satisfaction phase while
addressing the violations of the interface constraints replaces one channel with
another; which greatly reduces the number of channels being used in the end. As
a result, the conflict graphs contain larger clusters and a higher number of edges
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(a) Tabu-based (b) SLS-based

Fig. 4. Conflict graphs for the solutions produced by SLS-based and Tabu-based algo-
rithms in a sparse network with 12 channels and 3 radio interfaces per node

for the solutions produced by the Tabu-based algorithm, compared to those pro-
duced by the SLS-based algorithm. This can be observed in Figure 4 that shows
the conflict graphs produced by the SLS-based and Tabu-based algorithms in
the sparse network with 12 channels and 3 radio interfaces per node.

In Figures 2 and 3, notice that the fractional network interference produced by
our SLS-based algorithm reaches the minimum after 2 radios for the 3-channels
case and 4 radios for the 12-channels case. Further increase in the number of radio
interfaces does not make any significant difference in the network interference.
This means the number of radio interfaces at each node could effectively be
reduced to these levels without increasing the network interference; which would
result in lower hardware cost for the mesh nodes.

6.2 ns2 Simulations

In this evaluation, we investigate the network throughput performance of both
our SLS-based algorithm and the Tabu-based algorithm. We use the IEEE
802.11a implementation in ns2 with its default settings, and added support for
multiple interfaces and multiple channels [4]. Using the same two network topolo-
gies as in Section 6.1, we employ CBR traffic on every single-hop communication
link in the network. We use this single-hop traffic model in order to evaluate the
performance when all communication links in the network carry the same traffic
load. We measure the throughput on every link as we slowly increase the of-
fered traffic load on each link until the achievable throughput does not increase
anymore. All transmissions are unicast transmissions with a packet size of 1000
bytes, and are using the IEEE 802.11a MAC protocol with the RTS/CTS feature
turned off. The transmission bit rate is set to a fixed rate of 6Mbps, and each
simulation run is 60 seconds long.
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Fig. 5. Average link throughput in a sparse/dense network with 12 channels, and
low/medium/high offered traffic load

Figure 5 shows the average link throughput achieved in the sparse and dense
networks with 12 available channels, for different offered traffic loads as we vary
the number of radio interfaces per node from 1 to 8. We observe that the average
link throughput achieved by our SLS-based algorithm reaches a maximum after
3 or 4 radios. This is consistent with the graph-theoretic results shown earlier
in Figures 2b and 3b. We also see that our SLS-based algorithm consistently
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outperforms the Tabu-based algorithm in terms of the achievable throughput
obtained under various offered traffic loads. In particular, we see that for a
practical network setting of 2 or 3 radio interfaces per node, our SLS-based
algorithm achieves an average throughput that is markedly higher by as much
as 2 times in the sparse network and 15 times in the dense network, compared
to the Tabu-based algorithm.

7 Conclusion

In this paper, we have presented a new centralised stochastic local search algo-
rithm to find a channel assignment that minimises the network interference in a
multi-radio and multi-channel wireless mesh network. Using a binary interference
model, we represent the interfering links in the network with a conflict graph.
Our SLS-based algorithm preserves the network topology and is independent of
the routing layer. We compared the performance of our SLS-based algorithm
with the Tabu-based approach [19] on randomly generated sparse and dense
network topologies by using graph-theoretic evaluation and ns2 simulations.

Our graph-theoretic results show that our approach significantly outperforms
the Tabu-based approach in the network interference of the channel assignments
produced. Our approach produces solutions with smaller clusters in the con-
flict graphs compared to those produced by the Tabu-based approach. Further-
more, our approach usually finds a number of better solutions even before the
Tabu-based approach produces its only solution. Our approach still continues to
improve the solution quality. Thus ours is an any-time algorithm meaning one
could stop it at any time and still get a reasonably good solution.

The ns2 simulation results show that our SLS-based algorithm consistently
outperforms the Tabu-based approach in terms of the average network through-
put obtained under various offered traffic loads. Indeed, for a practical setting of
3 radio interfaces per mesh node in a dense network topology with 12 channels
available, our approach achieves 70% lower network interference and 15 times
higher average throughput than those achieved by the Tabu-based approach.

In terms of future work, we plan to explore the use of more advanced stochastic
local search algorithms (e.g. gNovelty+ [14]) in our channel assignment approach.
We also plan to use other interference models, e.g. measurement-based interfer-
ence models [20], in our channel assignment algorithm in order to capture more
realistic network interference scenarios.
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1 DCC & CMUP, Faculdade de Ciências, Universidade do Porto, Portugal
2 DCC & CRACS-INESC TEC, Faculdade de Ciências, Universidade do Porto

{apt,zp}@dcc.fc.up.pt

Abstract. We present an application of constraint logic programming to
create multiple-choice questions for math quizzes. Constraints are used
for the configuration of the generator, giving the user some flexibility
to customize the forms of the expressions arising in the exercises. Con-
straints are also used to control the application of the buggy rules in
the derivation of plausible wrong solutions to the quiz questions. We
developed a prototype based on the core system of AGILMAT [18]. For
delivering math quizzes to students, we used an automatic evaluation fea-
ture of Mooshak [8] that was improved to handle math expressions. The
communication between the two systems - AgilmatQuiz and Mooshak
- relies on a specially designed LATEX based quiz format. This tool is
being used at our institution to create quizzes to support assessment in
a PreCalculus course for first year undergraduate students.

1 Introduction

Mathematics assessment should help both student and teacher to understand
what the student knows, and to identify areas in which the student needs im-
provement [14]. As a diagnostic means for assessing conceptual understanding
and procedural fluency, multiple-choice tests are quite popular. They can be
given and graded at low cost, in contrast to tests with open-answer questions.
Nevertheless, their construction remains a time-consuming task. It can get easier
when some authoring tool and a bank of questions can be used to produce the
tests. There exist hundreds of exercise assistants. The use of a bank of ques-
tions, or of templates with parameters that can be randomly instantiated to
create variants of the exercises is the most common approach in the design of
systems that provide either interactive drills or multiple-choice tests for math-
ematics (e.g., [11,12,15,20,23,25]). The use of collections of semantically anno-
tated mathematical learning objects is a trend [23,24]. Very often, the exercise
systems provide worked out solutions for the drills or automatic feedback that is
somehow hardwired to the problem model, even if encoded as a solution graph.
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When the intended answer is a mathematical expression, some systems give au-
tomatic feedback by making use of computer algebra systems or specific domain
reasoners to diagnose the student answer [5,12,23] or to give hints [1,5,21]. This
is useful for formative assessment (i.e., for self-assessment or assessment that is
not directly contributing to the student grade). A similar feedback may be given
for interactive multiple-choice questions, based on the analysis of individual re-
sponses and on the particular exercise model [5,12].

In [17], we proposed a novel approach for creating the drills, and adopted
it for developing the AGILMAT prototype1. Instead of fixing the template of
the parametric expression that is included in the question generator model [11],
we focused on the algebraic procedures students know or learn in order to ab-
stract and restrict the expressions in the questions. For that purpose, we tried
to understand how the curricula contents condition the drills. This approach is
feasible when we consider routine exercises about some topics, and their one-line
solutions [17] or step-by-step solutions [1]. In AGILMAT, the expressions aris-
ing in drills are specified by constrained grammars and refined by some default
profiles and possible user options (see Fig. 1). This is a distinguishing feature

Fig. 1. The AGILMAT prototype available on the web. The notation ]a, b[ and [a, b[ is
employed instead of (a, b) and [a, b) to represent intervals of real numbers

and an advantage of our work, making possible the generation of a large number
of (non-trivial) examples. For a concise explanation on how this is done, please
refer to section 2. A more detailed description can be found in [17,18]. Such

1 http://www.dcc.fc.up.pt:8080/Agilmat

http://www.dcc.fc.up.pt:8080/Agilmat
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feature gives the user great flexibility to control the forms of the expressions.
The system can produce automatically very different expressions or several ex-
pressions with the same pattern. The drills are always created and solved on the
fly, if the cache option (see Fig. 1) is turned off.

1.1 AgilmatQuiz

In this paper, we describe AgilmatQuiz, the prototype we developed for produc-
ing multiple-choice questions for a Pre-Calculus course2. This course is being
offered at our institution to the first year undergraduate students lacking the re-
quired mathematical background. AgilmatQuiz is based on an extension of the
AGILMAT core system. Fig. 2 presents a screenshot of an exercise sheet, where
questions 9 to 12, among some others, were produced using AgilmatQuiz.

Fig. 2. Multiple-choice exercises about the notions of reciprocal image (9), range (10)
and domain (11) of real valued algebraic functions, created by our system to a quiz

New types of expressions and of exercises were introduced. In particular, we
were asked to create exercises about disjunctions and conjunctions of simple
linear constraints, an extension that was quite easy. We were asked to create
exercises involving piecewise-defined functions. This raises some difficulties that

2 Please access http://www.dcc.fc.up.pt/~apt/Research/AgilmatQuiz.html to see
more examples of questions created by our system.

http://www.dcc.fc.up.pt/~apt/Research/AgilmatQuiz.html
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we discuss in the paper. The questions created automatically cover essentially al-
gebraic functions taught at high-school, the notions of domain, range, reciprocal
image, piecewise-defined functions and the solution of equations and inequal-
ities. Some questions about other topics were written by colleagues from the
Mathematics Department.

For delivering math quizzes to students, we used Mooshak3, a web based com-
petitive learning system. Mooshak was originally developed for managing pro-
gramming contests over the Internet under the ACM International Collegiate
Programming Contest rules [8]. Quiz delivery is one of the educational features
it supports currently. For AgilmatQuiz, it was improved to handle math expres-
sions. The quiz questions are structured into groups and written in a specially
designed LATEX based quiz format. LATEX is widely used in academia and there-
fore it made easier also the collaboration of our colleagues who were creating
some questions by hand.

The rest of the paper is structured as follows. In section 2, we describe the
main lines of the approach followed in AGILMAT and for the quiz generation. In
section 3, we address the main changes introduced in the AGILMAT core system
to be able to produce quiz questions. In section 4, we explain how the Mooshak
system supports quiz delivery and grading. Section 5 concludes the paper.

2 Creating Drills Using AGILMAT

In the AGILMAT core system there are two main modular components – the
expression generator and exercise generator and solver – which were implemented
using Prolog based constraint programming languages. The expression generator
processes the user constraints and produces a file with expressions and their
types (i.e., templates). The exercise generator and solver processes this file and
produces exercises (according to a specification) and their solutions. This module
makes use of several submodules that handle arithmetic, set operations and
symbolic constraints (to solve inequations, disequations and equations), along
the lines we described in [17]. It uses also some modules for computing limits and
derivatives of functions, performing simplications, and obtaining the image of a
function when applied to a set (or an upper bound on this image). In addition,
it uses a module for converting the internal representations of the exercises to
LATEX, as well as their solutions.

Each exercise produced by the AGILMAT prototype has a question where a
function expression is required. The expressions are built from polynomial func-
tions, the absolute value function x → |x|, and the power and radix functions
x → xn and x → n

√
x, possibly using composition, addition, product and quo-

tient operations. In the implementation of the expression generator, we follow
the grammar proposed in [17] for the expressions. This grammar characterizes
a wide range of algebraic expressions found in high school textbooks and whose
zeros can be exactly computed by an algorithm students learn. To illustrate
the main ideas, we present a fragment in Fig. 3. The category sumexpr denotes

3 http://mooshak.dcc.fc.up.pt

http://mooshak.dcc.fc.up.pt
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prodexpr −→ factor | factor ∗ prodexpr
factor −→ sumexpr | basic
basic −→ ipol2(x) | bisqr

−→ fbasic | fpol1(fbasic) | fpol1(x)
fbasic −→ abs(basic) | pow(basic,N) | rad(basic,N)

ipol2(T ) −→ pol(T,[a, b, c]), abc �= 0
fpol1(T ) −→ pol(T,[a, b]), a �= 0
bisqr −→ ipol2(pow(x, N)), N ≥ 2

Fig. 3. An fragment of the grammar proposed in [17]

some particular forms of sum expressions. We can see that 3
√
(5x− 1)2 and√

(2x+ 3)5 are expressions of the category basic and instances of N
√
(ax+ b)M .

This is rewritten as rad(pow(pol(x, [a, b]),M), N) and the expressions of this
form are characterized by the pattern rad(N) o pow(M) o p1 o x. Composi-
tion, denoted by ◦, is the main operation. The generation of expressions for the
exercises is driven by the generation of their patterns.

Each pattern, called type, is represented by a Prolog term with finite domain
variables. These variables bind the exponents and, hence, can be constrained
to tailor the expressions to specific needs. For example, if we need exercises
about the quadratic function, we can constrain the degree of the expression to
be two. The exponents are instantiated when the system creates an instance of
the expression. Below, we show two other examples of couples of patterns and
expressions produced by our generator, their internal representations and usual
typesetting.

rad(3)o(abs o p1 o pow(2)o p1 o x + pow(2)o p1 o x)

rad(abs(pol(pow(pol(x,[3,-4]),2),[-4,-2])),3) + pow(pol(x,[1,-3]),2)

3
√

| − 4(3x− 4)2 − 2|+ (x− 3)2

pow(7)o ip(1)o(p1 o x/p1 o x)

pow(pol(pol(y,[-2,-1])/pol(y,[-3,4]),[-2,3]),7)

(
−2

−2y − 1

−3y + 4
+ 3

)7

Here, ip(1) is the internal pattern of expressions of the form pol(T ,[a, b]),
with a and b non-null, whereas, p1 corresponds to pol(T ,[a, b]), with b unre-
stricted. The variable in the expression is not relevant for the template and is
passed as a parameter to the generator.

Each type can be used by the system to generate a single or several exercises
of the same type. In this way, the difficulty level of the distinct versions would be
similar as they are instances of the same template (only coefficients change). This
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can be important for grading. Nevertheless, for self-assessment or practice, drills
with very different expressions favour the learning of concepts and properties
instead of focusing on very specific methods for particular instances.

By setting parameters of the generator, the user can refine the types created.
Some parameters are used to define constraints on the number of occurrences of
each primitive function and of some categories, and also to enforce constraints
on the difficulty level of the expressions. The latter is modeled as a weighted sum
of the difficulty rates assigned to the primitive functions and some distinguished
forms of constructs.

The prototype available on the web (see Fig. 1) allows some customization
by default profiles but also by parameters that can be refined by the user. For
further details, please refer to [17,18]. However, this is fairly less than what a user
that knows CLP can do by interacting directly at the low level. The interface
was kept simple because a preliminary version where users could tune several
finer parameters was found too complex by a focus group of teachers.

The generator is implemented in a Prolog based constraint programming lan-
guage and runs on top of the SICStus Prolog system [26]. The constraints act
on finite domain variables associated to the types. In general, the grammar rules
were implemented by predicates of the form

category(Type,Degree,Rate,CountTypes,CountOps)

where Degree, Rate, CountTypes, CountOps are parameters used to constrain
the generated Type. For example, for the prodexpr type, we can have:

prodstype(T,G,Rate,CTs,Ops) :-

constrs(CTs,urestrs_factor),factorstype(T,G,Rate,CTs,Ops).

prodstype(Tb*T,G,Rate,CTs,Ops) :-

rate_restr(prodstype,Rate,[RateB,RateT]),

types_restr(prodstype,CTs,[CTsB,CTsT]),

ops_restr(Ops,[1,OpsB,OpsT]), OpsT #=< OpsB,

Gb #>= 1, Gt #>= 1, G #= Gt+Gb,

constrs(CTsB,urestrs_factor),factorstype(Tb,Gb,RateB,CTsB,OpsB),

prodstype(T,Gt,RateT,CTsT,OpsT).

where constrs/2, rate_restr/3 and ops_restr/2 impose new constraints on
subtypes, rates and number of operators. Here, OpsT #=< OpsB is added to
discard some symmetries. The user can define the rate value of the primitive
functions (e.g., p1, p2, abs, rad(_), pow(_), . . . ) and of particular subex-
pressions (e.g., sums of radicals, quotients and products), through a predicate
user_rate/2, used by rate_restr/3.

rate_restr(T,Rate,L) :- nonnegative(L), user_rate(T,Rt),

sum([Rt|L],#=,Rate).

The parameter CountTypes is a list of finite domain variables, each one giving
the number of occurrences of a given type and the user can define constraints
on the values of these counters. Such constraints are imposed by constrs/2 and
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can involve a single variable (e.g., to specify its domain), or any subset of them,
and are specified by predicates.

constrs(CTs,Functor) :- Goal =.. [Functor,CTsConstr], call(Goal),

single_vars_low_up_constrs(CTsConstr,CTs),

user_other_restrs(Functor,CTs).

The Goal is a user-defined predicate that instantiates CTsConstr to a list of terms
of the form I-[Low,Up]. This list is passed to single_vars_low_up_constrs/2

to add new constraints on the lower and upper bound values of the variable asso-
ciated to key I. The definition of user_other_restrs/2 can be less trivial, and
may be used to state more complex constraints on subsets of the variables. Still,
the configuration constraints are usually simple value or arithmetic constraints,
lower and upper bound cardinality constraints or conditional constraints, such
as l ≤ xi ≤ u, l ≤

∑
i∈I1 xi ≤ u, and

∑
i∈I1 xi ≥ l ⇒

∑
i∈I2 xi ≤ u, where xi

denotes an integer variable, usually a counter.
From the definition of prodstype/5, we can see that the underlying CSP

model is not a classic model, with a fixed static collection of variables and con-
straints. This happens very often in configuration problems [4,7]. In our applica-
tion, new variables and constraints are added during the execution (e.g., the ones
corresponding to RateB, RateT, OpsB, OpsT, Gt, Gb, and some variables in the
lists CTsB and CTsT). We are not using global constraints in our application, al-
though domain filtering algorithms for open global cardinality constraints have
been investigated [9,19], for some dynamic CSPs. Considering the underlying
execution model and the fact that the CSP model is rather dynamic, that will
result in a burden without any payoff.

The expression generator produces a file of instances of expressions and
their types. A call to examples(File,DegreeI,RateMin-RateMax,X,NumbInst)
yields a File of expressions in the variable X, with NumbInst instances of each
type. The degree of the expressions is DegreeI (and can be undefined) and the
difficulty level is within RateMin-RateMax, which are positive integers.

In AGILMAT, such a file can be passed to the exercise generator and solver
to create a sheet of exercises and their one-line solutions. We developed specific
solvers to be able to handle some nonlinear constraints (in a real-valued vari-
able) and compute exact solutions. A numerical approximation would not be
a correct answer usually. Our solvers perform symbolic manipulations and the
rules applied emulate steps students may take.

3 Extensions for AgilmatQuiz

The major extensions carried out in this work involved the two main modules,
and consisted of:

– the definition of new forms of expressions;
– the modification of the symbolic solver to produce plausible wrong answers;
– the definition of new exercises and strategies for choosing the wrong answers.
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In the design of AGILMAT and of this extension, we kept in mind the basic prin-
ciple that we do not need to support full generality in order to obtain an useful
tool. This allows us to partially circumvent some inherent theoretical difficulties
of this work, including the ones due to the undecidability of some computer al-
gebra problems [2,10]. We observe that, very often, the topics focused on in the
literature are comparatively very well-behaved, with well-known canonical forms
and solving algorithms (e.g., elementary school arithmetics [22], operations with
fractions, linear constraints in a single variable, systems of linear equations, and
so forth).

Since the type of the expression acts as a template, the AGILMAT prototype
can be used to compute one or more expressions of each type. This feature makes
easier the creation of several instances of the same question. This is useful for
obtaining multiple-choice tests of the same difficulty level, although this is not
too important or even desirable when the tests are used for self-assessment.
The separation of the generation of types (templates) from the generation of
the instances of the expressions provides the flexibility we need to deal with
these two cases. By enforcing constraints on the difficulty level of the types
of expressions, we can control the expressions that occur in the questions. This
feature is important for multiple-choice questions since, usually, the student must
find the answer to the question in a short time.

Besides some simple adjustments, such as the ones needed to create questions
about conjunctive and disjunctive constraints, we focused on the generation of
expressions for piecewise-defined functions. This is more challenging than the
generation of simple expressions, as we need to split the function domain and
control the way the different branches fit or do not fit.

3.1 Creating Expressions for Piecewise-Defined Functions

Although we could look at this problem as a constraint problem, devising its
solution could be tricky, because we also have to create expressions that are
interesting from the pedagogical point of view. This means that the numbers
arising in the expression and the breaking points cannot be too scary.

We extended the generator to include a new type piecewise(L), where L is
the list of types of the branches. For the corresponding expression, we use a simi-
lar notation except that each branch is identified by a term br(Expr,DomExpr).
Below, we show an example of a type and an expression of that type. Actually,
the expression is still a partial expression as the domain of each branch is a free
variable, represented by the underline character (adopting the Prolog notation).

piecewise([abs o p1 o x,p1 o x]).

piecewise([br(abs(pol(x,[-2,-1])),_),br(pol(x,[-5,-4]),_)]).

{
| − 2x− 1| if x ∈ ?
−5x− 4 if x ∈ ?
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We decided to fix the coefficients of the functions first and then fix the do-
main of each branch, taking into account the points where the functions meet
(although it is possible that the branches do not meet for some other functions).
This made the extension of the generator easier. Besides and more importantly,
in this way we avoid cumbersome coefficients in the resulting expressions, and
therefore obtain expressions that resemble the ones defined by teachers. The
quality and variability of questions created by AgilmatQuiz was one of the is-
sues that our colleagues appreciated.

For affine and quadratic functions, the candidate breakpoints can be com-
puted easily by solving an equation. For some other functions, to be able to
guarantee that the resulting function is continuous at a breakpoint, we often
need to compute lateral limits and, quite likely, to replace some coefficients (e.g.,
of the constant branches). For instance, fk(x), defined below, is continuous iff
the constant k is zero, since limx→1+ fk(x) = 0.

fk(x) =

{ x−1√
x−1

if x > 1

k if x ≤ 1

For the example given above, the complete expression yielded by the system
was the following one, which means that the two branches actually meet.

piecewise([abs o p1 o x,p1 o x]).

piecewise([br(abs(pol(x,[-2,-1])),[a(-(infty)),a(rat(-1,1))]),

br(pol(x,[-5,-4]),[f(rat(-1,1)),a(infty)])]).

{
| − 2x− 1| if x ∈ ]− ∞,−1[
−5x− 4 if x ∈ [−1,∞[

It is possible that the system selects another breakpoint. With some probabil-
ity, fixed in the implementation, the points where the functions meet would
not be selected as breakpoints. In our current implementation, the search for
breakpoints that may guarantee continuity is supported for affine and quadratic
functions, for example, but we are not reasoning about limits. For the remaining
functions, the implementation ensures that the domain of every branch is non-
empty by defining breakpoints in the intersection of the domains of the primitive
functions, preferentially.

In the implementation, the difficulty rate of a piecewise-defined function is
determined by the difficulty rate of the branch that has the highest rate and the
total number of branches. A constraint is imposed on the weight of each new
branch, so that it does not exceed the half of the previous one.

3.2 Solutions and Distractors

For generating a set of plausible wrong answers (i.e., distractors) for a quiz
question, we modified the symbolic solver and some of its submodules to include
buggy algebraic rules that translate known common errors or misconceptions.
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For that purpose, we augmented the signature of some of the predicates with a
new argument that acts as a constrained variable. By imposing constraints on
this variable we can restrict and track the number of wrong rules applied in the
derivation of an answer. In this way, the same predicate can be used to compute
the correct solution if we restrict the value of the variable to be zero. To explain
better what we mean, we give a fragment of the initial implementation of the
predicate domain_expr(Expr,X,Dom,DomExpr), which determines the domain
DomExpr of an expression Expr in the variable X when X could only take values
in the subset Dom of the real numbers.

domain_expr(X,X,Dom,Dom) :- !.

domain_expr(pol(U,_L),X,Dom,Domf) :- !, domain_expr(U,X,Dom,Domf).

domain_expr(rad(U,N),X,Dom,Domf) :- !,

(even(N) ->

(domain_expr(U,X,Dom,DomU),solve(DomU,U,geq,rat(0,1),X,Domf));

domain_expr(U,X,Dom,Domf)).

The first rule is equivalent to saying that the identity function defined in the
set Dom has domain Dom. The second rule basically says that the domain of the
composition of a polynomial function and a function U of X is the domain of U in
Dom. Finally, the third rule defines the domain of N

√
U either as DomU if N is odd

or as the solution set of U ≥ 0 in DomU if N is even.
For the new version, wrg_domain_expr(Expr,X,Dom,DomExpr,W), we added

an extra argument W, that is a constraint variable, and add extra rules, which
mimic frequent errors, known by experienced teachers.

wrg_domain_expr(X,X,Dom,Dom,W) :- {W = 0}.

wrg_domain_expr(X,X,Dom,[a(-infty),a(infty)],Wf) :- !,

{Wf = 1}, Dom \= [a(-infty),a(infty)].

wrg_domain_expr(pol(U,_L),X,Dom,Domf,Wf) :-

{Wf >= 0}, wrg_domain_expr(U,X,Dom,Domf,Wf).

wrg_domain_expr(pol(U,_L),X,Dom,Domf,Wf) :- !,

{Wf = 1, Ok = 0},

wrg_domain_expr(U,X,Dom,DomS,Ok),

DomS \= [a(-infty),a(infty)], Domf = [a(-infty),a(infty)].

wrg_domain_expr(rad(U,N),X,Dom,Domf,Wf) :- even(N), !,

{Wi >= 0, Wii >= 0, Wf = Wi+Wii},

wrg_domain_expr(U,X,Dom,DomU,Wi),

( wrg_solve(DomU,U,geq,rat(0,1),X,Domf,Wii);

({Wii = 1}, Domf = DomU) ).

wrg_domain_expr(rad(U,_N),X,Dom,Domf,Wf) :- !, % N is odd

{W >= 0, Wi >=0, Wf = W+Wi},

wrg_domain_expr(U,X,Dom,Domi,W),

((({Wi=0}, Domf = Domi);

({Wi=1}, Domf = Dom, Domi \= Dom);

({Wi=1+Wii,Wii>=0}, wrg_solve(Domi,U,geq,rat(0,1),X,Domf,Wii))).
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The constraint variable4 is used to control the number of buggy derivation
rules applied. If W is bounded to be zero, the predicate produces the correct
answer, as before.

Now, the second rule is buggy since it ignores the given domain and yields R
as the answer (the representation of R is [a(-infty),a(infty)]). For instance,
if the stem asks for “the domain of f : R+

0 → R given by f(x) = 3x + 1”, the
correct answer is R+

0 and a derivation applying the third clause and then the
second one produces R.

The fourth rule is buggy for a similar reason, as it ignores the restrictions
imposed both by Dom and the domain of U, and returns R as the answer. For
instance, for g : R → R given by g(x) = 5

√
x− 4 + 3”, the answer is [4,∞[ but

a derivation using the fourth clause yields R.
In the fifth clause, the last branch is buggy and can produce a wrong answer

(e.g., R for
√
x− 4 instead of [4,∞[). Finally, the last rule is buggy and produces

a distractor if the solution set of U ≥ 0 in Domi differs from the correct answer
(e.g., for 3

√
x− 4, if Dom is R, the correct answer is R and not [4,∞[). If the

problem asks for the solutions of, e.g.,
√
1 + 3
√
x− 4 = 0, the application of this

buggy rule can lead to a wrong solution.
In our experiments, for finding distractors, we often bound W to 1 when the

predicate is called. In this way, we try to focus on more plausible distractors,
resulting from a single error, and discard options that can give clues for looking
somehow more absurd. Depending on the results of the computations, when W

is not 0, the predicate can produce the correct answer as if it were a wrong
answer. The set of all wrong solutions, computed by backtracking, is filtered
out afterwards to discard repetitions and the “solutions” that are equal to the
correct one. In a multiple-choice question about domains, the distractors for the
question are selected from this final list, and possibly the item “None of the

other ones”. With some probability, this item can replace the correct solution
also.

In general, the exact comparison of solutions is not straightforward, and can
be undecidable [2,10]. In the implementation, we defined a canonical form for
some expressions and constants and for the restricted sets manipulated by the
system (which are unions of a finite number of intervals and isolated points),
as in our previous work [17]. Our solver is not complete, as a domain reasoner.
For comparing more complex constants (clearly, not rational numbers), the sys-
tem sometimes performs a numeric comparison, after evaluating the constants
as floating point numbers. In practice, by limiting the number of flaws to 1, we
obtain more plausible distractors that are helpful for identifying a student error
or misconception. In addition, we reduce the risk of finding equivalent solutions

that are not syntactically equal (e.g., 2
√
7 + 4

√
3 and 4+2

√
3), by avoiding many

alternative derivations and unnecessary computations that may yield complex

4 The AGILMAT solver used the CLP(Q) module for supporting computations with
rational numbers. This is the reason for W being not treated as a finite domain
variable, as that avoid some (re-)implementation effort. We plan to fix that in a
future version of the prototype.
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constants. On the other hand, some more powerful procedures available in cur-
rent computer algebra systems (e.g., Mathematica, Maple, Maxima, etc, to name
a few) are too advanced for high-school or undergraduate students. Hence, given
that our system can produce a huge number of exercise instances, the system
can discard the ones it cannot solve exactly. Nevertheless, this is an issue that
requires further research to understand the limits and possible improvements
of our approach although, it is know that, in general, canonical forms cannot
exist [10].

It is worth mentioning that there are other e-learning tools that make use
of buggy rules for creating exercises or for diagnosis [21,22]. SLOPERT, for
instance, is a reasoner and diagnoser for symbolic differentiation, developed in
Prolog, used as a domain reasoner by LeActiveMath and MathBridge [5,21]. It
is enriched with buggy derivation rules, implemented as clause predicates as in
AgilmatQuiz, each one being annotated as buggy (wrong) or expert (correct)
rule. A parameter keeps track of the history of the derivation, but there is not
the same support for imposing constraints on the number of buggy rules that
can be applied in a derivation.

3.3 New Exercises and Strategies for Selecting Distractors

The set of exercises was also enriched and the corresponding solving procedures
were implemented. As we observe above, we try to create exercises that make
some sense. This means that we sometimes can exploit the relationship between
some notions, e.g. range and reciprocal image, to obtain exercises that are ped-
agogically acceptable. For instance, for creating the exercises about the notion
of reciprocal image f−1(D), the system selects D as a subset of the range of f ,
and so it first tries to compute that range.

Poorly written distractors for a multiple-choice question can invalidate the
question. Finding good distractors can be difficult even for teachers. For dis-
tractor development, we tried to attend to the following rules: “use plausible
distractors; avoid illogical distractors; incorporate common errors of students in
distractors; use true statements that do not correctly answer the item” [6]. Since
the choices we consider are either wrong solutions or the correct one, we inter-
pret the last goal as the inclusion of solutions that overlap, when the answer is
a set.

Another guideline is to avoid or use sparingly “None of the above” [6]. How-
ever, the inclusion of this choice in some problems, either as distractor or correct
answer, was a requirement from our colleagues (because the choices are shuffled
by Mooshak, actually we use “None of the other ones” instead). This choice was
intentionally used to make the guess of the correct answer by a simple analy-
sis of the offered answers more difficult. We agree that this can be relevant for
Mathematics. For instance, when the correct answer is a set, students may have
to work out the solution if the other choices cannot be trivially discarded.

To prevent correct answers from being trivially guessed, the system tries to
classify the distractors, for instance in terms of their intersection with the correct
solution or the number of derivations that led to each one. This classification
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is sometimes used to introduce some bias on the selection procedure. In the
implementation, the distractors are selected randomly for each problem, and the
preference for distractors obtained by some rules can increase their weight. For
instance, in problems about the reciprocal image f−1(D), a common error is
the interpretation of f−1 as 1/f . Distractors produced by the buggy rule that
translates this misconception were given some higher weight. The number of
times a distractor occurs is used in this case also.

The criteria for the selection of distractors from the computed list is an issue
that deserves further investigation. In particular, a more accurate model for
defining the preferences for some rules could be designed.

4 Quiz Delivery

In this section, we give further details on how the system is used to produce a
quiz in the mooshakquiz style and how the quiz is delivered to students.

Mooshak Quizzes. Mooshak is a web based competitive learning system originally
developed for managing programming contests [8]. It is used as an e-learning tool
in several universities. Quiz delivery started as a complement for evaluation in
programming courses, giving support for multiple-choice questions. It generates
quizzes by randomly selecting questions and shuffling them and their items.
Quizzes are graded automatically. Each correctly answered question adds its
mark to the final grade. Incorrect answers are penalized so that a series of random
answers to the quiz questions has an expected grade of zero. The system provides
overall statistics per question. Quizzes are structured in groups. The number
of questions in a group may be larger than the number of questions actually
presented to students. A group may be regarded as a question bank. If this bank
is created by AgilmatQuiz from a single template expression, the tests produced
by selecting a single question from each group have similar difficulty level.

Quiz Format. Mooshak and AGILMAT use different formats. Mooshak uses its
own XML based format to import and export data. AGILMAT uses LATEX as
output format. To make the two systems interoperable with each other the main
issue was the definition of a common quiz format. A natural candidate for this
role is the Question & Test Interoperability (QTI) standard. This approach
would require some implementation effort on the AGILMAT side. Moreover,
QTI with MathML would be inappropriate for humans. Teachers must be able
to produce quizzes in the selected format, as certain exercise types needed for
the PreCalculus course are not yet covered by AgilmatQuiz.

The final decision was to create a new LATEX based format for quizzes – the
mooshakquiz style. The quiz is defined as a document structured by LATEX envi-
ronments defining groups, questions and choices. These environments are config-
ured by parameters, such as the number of questions extracted from each group
(typically 1) or the logical values of a choice (true or false). Text in these envi-
ronments may contain math expressions. A quiz in this format may be processed
as a LATEX document to produce an handout in PDF format, for instance.
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On the AgilmatQuiz side, a predicate groups(p(Pred,Args,Nq)−File) de-
fines the groups of exercises to create. Here, Pred is the name of the predicate
that will generate the corresponding group using the expressions already saved
in the file File. The definition looks like the following one.

groups(p(quizReciprocal,3)-p1)

groups(p(quizConjDisj,2,1)-p1).

groups(p(quizDomains,1)-rad1simple).

The sequence Args is optional and defines parameters to this predicate Pred.
Finally, Nq defines the number of questions that will be selected from each group
to a test. The system produces a LATEX file in the mooshakquiz style, that is
used for quiz delivery.

\documentclass{article}

\usepackage[utf8]{inputenc}

\usepackage{mooshakquiz}

\begin{document}

\begin{quizgroup}{3}

\begin{quizquestion} Find $\displaystyle t^{-1}(]1,\infty[)$

for $\displaystyle t :\mathbb{R}\rightarrow\mathbb{R}$

given by $ \displaystyle t(x) = -6\,x-1$ \newline

\begin{quizchoice}{false}$ \displaystyle ]-\infty,-3[ $ \end{quizchoice}

\begin{quizchoice}{true}$ \displaystyle ]-\infty,-\frac{1}{3}[ $

\end{quizchoice}

\begin{quizchoice}{false}$ \displaystyle ]-\infty,-8[ $ \end{quizchoice}

\begin{quizchoice}{false}$ \displaystyle ]-\infty,0[ $ \end{quizchoice}

\end{quizquestion}

\begin{quizquestion} Find $\displaystyle t^{-1}(]4,\infty[)$

for $\displaystyle t :\mathbb{R}\rightarrow\mathbb{R}$

given by $ \displaystyle t(x) = 2\,(x-4)$ \newline

\begin{quizchoice}{false}$ \displaystyle ]-\infty,6[ $ \end{quizchoice}

\begin{quizchoice}{false}$ \displaystyle ]-1,\infty[ $ \end{quizchoice}

\begin{quizchoice}{false}$ \displaystyle ]-4,\infty[ $ \end{quizchoice}

\begin{quizchoice}{true}$ \displaystyle ]6,\infty[ $ \end{quizchoice}

\end{quizquestion}

...

\end{quizgroup}

\begin{quizgroup}{1} ... \end{quizgroup}

\begin{quizgroup}{1} ... \end{quizgroup}

\end{document}

Quiz Processing. Mooshak required minor changes to process quizzes. The func-
tion that imports quizzes in the mooshakquiz style converts the environment
based structure of the document to XML, leaving text and math expressions
unchanged. The document is then imported to the internal representation of
Mooshak and processed as regular quiz, with text and math expressions inserted
in HTML pages and presented on a web browser. Math expressions in LATEX are
converted on-the-fly in the browser using the MathJax [3] JavaScript display
engine, which was crucial for a quick implementation.
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5 Conclusions and Future Work

This work describes an approach for generating and delivering math quizzes
using constraint logic programming. The main contribution is a novel approach
for creating multiple-choice questions with a set of plausible wrong answers. We
focused on a particular type of multiple-choice questions, but our approach could
be exploited to support the generation of other types of questions or populate
question repositories (if the output is written in some more standard exercise
language). The work is an example of an application where the use of declarative
languages was crucial for a rapid development of an useful tool. At the current
stage, the generator and solver consist of about 7000 lines of code. But, it is
not very easy to quantify the overall development effort of AgilmatQuiz, as
it is an extension of AGILMAT. Our crude estimate is of about one month-
person for the reported extension. We plan to improve the implementation and
cover other topics. Constraint programming makes easier the re-usability and
customization of the system. However, it would be interesting to study execution
models where the propagation of constraints plays a more significant role in the
program transformation. The prototype is currently used to support a remedial
PreCalculus course for students entering the Faculty of Sciences at the University
of Porto. A formal evaluation is planned. It would be already possible to draw
some conclusions if we check whether experienced teachers can separate the
exercises produced automatically from identical ones produced manually.
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sible for the PreCalculus course and anonymous reviewers for helpful comments.

References

1. Beeson, M.: Design Principles of Mathpert: Software to Support Education in
Algebra and Calculus. In: Kajler, N. (ed.) Computer-Human Interaction in Sym-
bolic Computation, Texts and Monographs in Symbolic Computation, pp. 89–115.
Springer, Heidelberg (1998)

2. Bradford, R., Davenport, J.H., Sangwin, C.J.: A Comparison of Equality in Com-
puter Algebra and Correctness in Mathematical Pedagogy. In: Carette, J., Dixon,
L., Coen, C.S., Watt, S.M. (eds.) Calculemus/MKM 2009. LNCS (LNAI), vol. 5625,
pp. 75–89. Springer, Heidelberg (2009)

3. Cervone, D.: MathJax – A Platform for Mathematics on the Web. Notices of the
AMS 59, 312–316 (2012)

4. Faltings, B., Macho-Gonzalez, S.: Open Constraint Programming. Artificial Intel-
ligence 161, 181–208 (2005)

5. Goguadze, G.: ActiveMath – Generation and Reuse of Interactive Exercises us-
ing Domain Reasoners and Automated Tutorial Strategies. PhD thesis, Saarland
University (2011)

6. Haladyna, T.M., Downing, S.M.: A Taxonomy of Multiple-Choice Item-Writing
Rules. Applied Measurement in Education 2, 37–50 (1989)

7. Junker, U.: Configuration. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook
of Constraint Programming, pp. 835–871. Elsevier (2006)



Automatic Generation and Delivery of Multiple-Choice Math Quizzes 863

8. Leal, J.P., Silva, F.: Mooshak: a Web-based Multi-site Programming Contest Sys-
tem. Software – Practice and Experience 33, 567–581 (2003)

9. Maher, J.M.: Open Contractible Global Constraints. In: 21st International Joint
Conf. on Artificial Intelligence, IJCAI 2009, pp. 578–583. Morgan Kaufmann Pub-
lishers, USA (2009)

10. Moses, J.: Algebraic Simplification: a Guide for the Perplexed. Communications of
the ACM 14, 527–537 (1971)

11. Pinto, J.S., Oliveira, M.P., Anjo, A.B., Vieira Pais, S.I., Isidro, R.O., Silva, M.H.:
TDmat-Mathematics Diagnosis Evaluation Test for Engineering Sciences Students.
Int. J. Mathematical Education in Science and Technology 38, 283–299 (2007)

12. Sangwin, C.J., Grove, M.J.: STACK – Addressing the Needs of the “Neglected
Learners”. In: 1st WebAlt Conference and Exhibition, pp. 81–95 (2006)

13. Sangwin, C.: Computer Aided Assessment of Mathematics. Oxford University Press
(2013)

14. Schoenfeld, A.H. (ed.): Assessing Mathematical Proficiency. Cambridge University
Press (2007)

15. Snajder, J., Cupic, M., Basic, B.D., Petrovic, S.: Enthusiast: An Authoring Tool for
Automatic Generation of Paper-and-Pencil Multiple-Choice Tests. In: ICL 2008,
Villach, Austria (2008)

16. Sterling, L., Bundy, A., Byrd, L., O’Keefe, R., Silver, B.: Solving symbolic equations
with Press. Journal of Symbolic Computation 7, 71–84 (1989)

17. Tomás, A.P., Leal, J.P.: A CLP-Based Tool for Computer Aided Generation and
Solving of Maths Exercises. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS,
vol. 2562, pp. 223–240. Springer, Heidelberg (2002)

18. Tomás, A.P., Leal, J.P., Domingues, M.: A Web Application for Mathematics Ed-
ucation. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823,
pp. 380–391. Springer, Heidelberg (2008)
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Abstract. Assemblage consists in blending base wines in order to create
a target wine. Recent developments in aroma analysis allow us to measure
chemical compounds impacting the taste of wines. This chemical analysis
makes it possible to design a decision tool for the following problem:
given a set of target wines, determine which volumes must be extracted
from each base wine to produce wines that satisfy constraints on aroma
concentration, volumes, alcohol contents and price. This paper describes
the modeling of wine assemblage as a non linear constrained Min-Max
problem (minimizing the gap to the desired concentrations for every
aromatic criterion) efficiently handled by the Ibex interval branch and
bound.

1 Introduction

Assemblage is the subtle blending of wines from different vineyard plots and/or
different grape varieties, each contributing its own special flavor.

Wine blending is generally carried out by oenologists working for wineries.
Oenologists can obtain wine blendings of the highest quality, but taste saturation
entails a strong limit in the number of daily wine tasting sessions. Therefore
the Nyseos company (www.nyseos.fr), which submitted the blending problem
to us, provides chemical analysis tools to avoid a number of tasting sessions.
These tools can analyze wine aromas by measuring a set of chemical compounds
that impact wine taste [6]. These tools make it possible to develop a decision-
support software for the following problem: given a set of target wines to be
produced, which volumes must be taken from each base wine in order to make
wines satisfying constraints on aroma concentrations, volumes, alcohol content,
price, etc.

Moore and Griffin have shown that aroma concentrations of a wine blending
satisfy linear constraints [11]. However, several other requirements lead to non-
linear constraints. For instance, the Nyseos company works on a model able to
predict the color of a wine. The model will not be linear and the complexity of
color modeling is confirmed by other researches [8]. Another critical point is that
no less than a given amount of wine can be transferred from a tank to a target
because of the loss of liquid in the pipes and the manipulation cost.

As we will see in this article, this requirement leads to a disjunctive constraint
that can be modeled by boolean variables and nonlinear constraints.

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 864–879, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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An interesting algorithmic research on wine blending has been presented in [8].
An artificial neural network approach has been used to select the wine quanti-
ties extracted from each base in order to elaborate a wine matching predefined
aromatic criteria. In this work, aromatic criteria were not chemically analyzed.
Instead, a panel of students carried out tasting to quantify predefined crite-
ria. The neural network performed multicriteria optimization for adjusting each
aroma. The comparison with our approach is difficult in terms of quality since
we preferred to resort to monocriterion optimization. In addition, no perfor-
mance (CPU time) results are shown in [8]. Another research dealt with the
blending problem [7]. The main objective was to find the best matching between
chromatograms of base and target wines. This problem was modeled by a non
constrained nonlinear optimization solved by a local (Nelder-Mead) optimization
method.

In this article, we present a mathematical modeling of the wine assemblage
problem. The problem is modeled by a mixed (discrete and continuous) nonlin-
ear program. We transform it into a non-linear (pure) continuous CSP handled
by a rigorous interval Branch and Bound (B&B). We have built a constrained
optimization model for minimizing in each target wine the gap between desired
aromatic concentrations and obtained concentrations, while taking into account
the minimal transfer disjunctive constraint. Absolute value and max operators
have been removed from the obtained system.

2 The Wine Assemblage Problem

Figure 1 illustrates the definition of wine assemblage.
We consider a set of base wines numbered from 1 to B. We denote by volb the

volume of the base b ∈ 1..B.
For different reasons, it is sometimes impossible to completely empty a tank.

Let s−b be the minimum volume that must remain in tank b. (We have: 0 ≤
s−b ≤ volb.) All base wines are analyzed in order to measure the concentration
of selected key aroma compounds. These compounds are numbered from 1 to A.
We denote by cb,a the concentration of aroma a in base b.

A wine assemblage support tool should help to simultaneously build several
target wines from a given set of bases. Hence, we consider a set of target wines,
numbered from 1 to W . For each wine w, we aim to produce an optimal volume
v̂olw. The final volume Vw of wine w should be as close as possible to v̂olw and
must remain greater (resp. smaller) than a given lower bound vol−w (resp. an
upper bound vol+w), i.e.:

∀w ∈ 1..W , vol−w ≤ Vw ≤ vol+w (1)

These bounds are used to fulfill an order of a specific volume or to avoid pro-
ducing an excessive volume.

Each target wine w is a blend of wines extracted from several tanks. We
denote by Vw,b the volume of wine w that has been pumped from base tank b.
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volb

cb,a
a

b

w

vol+w

vol−w

s−b

c+w,aa
ĉw,a

c−w,a

Vw,bVw,1

Vw

v̂olw

Fig. 1. Wine assemblage

We have a direct relation with Vw:

∀w ∈ 1..W , Vw =

B∑
b=1

Vw,b (2)

Furthermore, all the volumes extracted from the same base tank b must leave a
minimum volume s−b in the tank.

∀b ∈ 1..B, s−b ≤ volb −
W∑

w=1

Vw,b (3)

When transferring wine between two tanks, a subpart is generally wasted in the
pipes. Hence it is impossible to transfer very small volumes. If δV is the mini-
mum volume that can be transferred between two tanks, we define the following
disjunctive constraint :

∀w ∈ 1..W , ∀b ∈ 1..B, (Vw,b = 0) ∨ (δV ≤ Vw,b) (4)
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In addition to volume, each target wine is described in terms of aroma compound
concentration. For a given wine w, we denote by ĉw,a the desired concentration
of aroma a.

The Cw,a concentrations are to be as close as possible to ĉw,a within an inter-
val [c−w,a, c

+
w,a], where c−w,a (resp. c+w,a) denotes the minimum (resp. maximum)

admissible concentration of aroma a in wine w. The relation between volumes
and concentrations can be formulated as follows:

∀w ∈ 1..W , ∀a ∈ 1..A, c−w,a ≤
1

Vw

B∑
b=1

(Vw,b . cb,a) ≤ c+w,a (5)

In a similar way, we can model constraints on alcohol content or price per liter
for the target wines. These can be treated like additional aromas.

3 A MINLP Formulation for Wine Blending

We can model the wine blending problem as a mixed nonlinear program (MINLP).
We show in Section 4 how to straightforwardly transform the MINLP into a nu-
merical CSP (NCSP) handled by interval methods. This explains why the bound
constraints are directly modeled below by bounded domains, i.e., intervals.

3.1 Variables

For handling realistic volumes (due to (4)), for each wine w ∈ 1..W and each
base b ∈ 1..B, we create:

– a 0/1 variable Pw,b and

– a variable V ′w,b with a domain D(V ′w,b) = [δV ,min(vol+w , volb)] representing
the volume coming from the base b in the wine w.

(We have: Vw,b ≡ Pw,b . V
′
w,b. The introduction of these 0/1 variables of

course avoids an explicit definition of the disjunctive constraint (4).)

For each volume of a wine w ∈ 1..W , we also define a variable Vw of domain
[vol−w , vol

+
w ] (see (1)).

3.2 Constraints

The system of constraints of our MINLP is described below.

– The channeling constraint (2) becomes:

∀w, Vw −
B∑

b=1

(Pw,b . V
′
w,b) = 0 (2.i)
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– The surplus constraint (3) also remains similar:

∀b ∈ 1..B, s−b ≤ volb −
W∑

w=1

(Pw,b . V
′
w,b) (3.i)

– To enhance the performance results, we have added a constraint redundant
to (3.i). This constraint simply ensures that the sum of the volumes of target
wines is inferior to the sum of the base volumes:

W∑
w=1

Vw ≤
B∑

b=1

volb (6)

Aroma concentration requirements (see (5)) are decomposed into two constraints,
and both parts of inequalities are multiplied by the positive volume Vw . ∀w ∈
1..W and ∀a ∈ 1..A, we have:
for the lower bound,

0 ≤
B∑

b=1

Vw,b . (cb,a − c−w,a)

hence:

0 ≤
B∑

b=1

Pw,b . V
′
w,b . (cb,a − c−w,a) (5.i -)

and for the upper bound:

0 ≤
B∑

b=1

Vw,b . (c
+
w,a − cb,a)

hence:

0 ≤
B∑

b=1

Pw,b . V
′
w,b . (c

+
w,a − cb,a) (5.i +)

3.3 A Min-Max for Reaching the Highest Quality of Wines

In this application, the significant criterion is wine quality. Nevertheless, we could
extend the definition of E below to errors on alcohol content or price. Bear in
mind that a target wine is defined by a set of desired concentrations ĉw,a for
each of its aroma. Therefore, a way to optimize the quality of the target wines
is to minimize a weighted sum of differences between the concentrations desired
ĉw,a and the concentrations obtained Cw,a (see (5)). Furthermore, we want to
minimize the maximal error on the set of target wines:

max
w∈1..W

Ωw(λvolw . evolw +
∑

a∈1..A
(λw,a . ew,a)) (7)

where:
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– Ωw is a parameter reflecting how important is a given wine w (Ωw is assumed
to be in [0, 1]). This weight ensures a more accurate blending to the best
wines among the targets.

– ew,a denotes the discrepancy between ĉw,a and Cw,a.

– evolw denotes the discrepancy between the volume v̂olw of wine w desired
and the volume Vw obtained.

– λw,a ∈ [0, 1] defines the weight of aroma a in the wine w. λvolw ∈ [0, 1]
weights the respect of the volume requirement of wine w compared to the
satisfaction of aroma concentrations. For a given target wine w, we assume
that λvolw +

∑
a∈1..A λw,a = 1.

All the parameters, including the aroma concentrations, are measured with a
given uncertainty. εa denotes the measure error related to the concentration of
aroma a. We thus want to minimize the gap between ĉw,a and Cw,a within the
limit given by this uncertainty εa. In other words, if the gap between the desired
and obtained concentrations remains below the uncertainty, it will be considered
as being null in the objective function. Thus, the variable ew,a describes the
normalized concentration error in each aroma a for each wine w, as follows:

ew,a = max(
|Cw,a − ĉw,a|

ĉw,a
− εa, 0) (8)

We can also describe the gap evolw between the volume of a target wine Vw

obtained and the volume v̂olw desired with a similar expression:

evolw = max(
v̂olw − Vw

v̂olw
− εvol, 0) (9)

Compared to the previous formula, the removal of the absolute value simply
means that no error is taken into account if the volume Vw computed falls be-
tween the maximum volume vol+w and the target v̂olw. This is illustrated by
Figure 2.

w

vol+w

vol−w

Vw

v̂olw

evolw

εvol

Fig. 2. Visualization of the gap evolw
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Following a usual way to define a Min-Max problem, we add a variable E ∈
[0,+∞] to be minimized and the following constraints:

∀w ∈ 1..W , Ωw(evolw .λvolw +
∑

a∈1..A
(ew,a . λw,a)) ≤ E (10)

Removing Max and Absolute Value Operators

In order to increase the performance, we attempt to remove max and absolute
value operators. Observe that the maximum operator can be defined by

e = max(x, y) ≡ e ≥ x ∧ e ≥ y ∧ (e = x ∨ e = y).

In addition, if the quantity e must be minimal for any reason, the last conjunct
can be removed, thus simplifying the max operator. We can apply this simplifi-
cation to (8). Indeed, λw,a is positive so that minimizing E entails minimizing
every variable ew,a. Hence:

∀w ∈ 1..W , ∀a ∈ 1..A, ((ew,a + εa) ĉw,a ≥ |Cw,a − ĉw,a|) ∧ (ew,a ≥ 0) (11)

The same simplification can be applied to (9), as follows:

∀w ∈ 1..W , ((evolw + εvol) v̂olw ≥ (v̂olw − Vw)) ∧ (evolw ≥ 0) (12)

We can also remove the absolute value operator above that can be transformed
into a max operator as follows:

e = |x| ≡ e = max(x,−x)
≡ e ≥ x ∧ e ≥ −x ∧ (e = x ∨ e = −x)

Once more, if the quantity e must be minimal for any reason, the last conjunct
can be removed, thus replacing the absolute value operator with two inequalities.
We can apply this simplification to (11). Indeed, remember that every variable
ew,a must be minimized and observe that ĉw,a is positive. Thus,
∀w ∈ 1..W , ∀a ∈ 1..A,

(ew,a + εa) ĉw,a ≥
1

Vw
.

B∑
b=1

(Pw,b.V
′
w,b.cb,a)− ĉw,a

(ew,a + εa) ĉw,a ≥ −
1

Vw
.
B∑

b=1

(Pw,b.V
′
w,b.cb,a) + ĉw,a

Multiplying both parts of these inequalities by the positive volume Vw, we finally
obtain the following three categories of constraints: ∀w ∈ 1..W , ∀a ∈ 1..A,

ew,a ≥ 0 (13)
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Vw.(ew,a + εa + 1) . ĉw,a −
B∑

b=1

(Pw,b.V
′
w,b.cb,a) ≥ 0 (14)

Vw.(ew,a + εa − 1) . ĉw,a +

B∑
b=1

(Pw,b.V
′
w,b.cb,a) ≥ 0 (15)

As a result, we have succeeded in suppressing from our initial model all the
absolute value and max operators. Although our interval nonlinear constraint
solver can handle these operators, the performance is thus increased and the
simplified model can also be implemented in other solvers.

3.4 Summary

In addition to the variables Pw,b, V
′
w,b and Vw defined in Section 3.1, we define

new variables for the Min-Max: one variable E ∈ [0,+∞], W .A variables ew,a ∈
[0, 1] (that absorb the unary constraints (13)) andW variables evolw ∈ [0, 1] that
absorb the unary constraints of (12).

In addition to the constraints (2.i), (3.i), (6), (5.i-), (5.i+) defined in Sec-
tion 3.2, we define new constraints for the Min-Max: (10), (12), (14), (15). The
objective function simply consists in minimizing the value of the variable E.

4 Solving the MINLP with an Interval B&B

We wanted a free solver in order to embed it in the final dedicated tool for Nyseos.
In addition, the MINLP detailed above could be handled by any MINLP solver
such as Baron [13] or Couenne [2], but all of them are not rigorous (safe). This
means that they sometimes miss the best solution due to round-off errors related
to floating-point arithmetic. It is known that cases where the best solution is
missed by unsafe solvers are rare but do occur in practice. Using a safe optimizer
was reassuring for Nyseos. Furthermore, since:

– our modeling of the wine blending problem contains only one type of 0/1
variables,

– the interval solver Ibex features the very efficient IbexOpt interval B&B [14],
– the authors have a good command of Ibex [5,4],

we decided to simply encode the MINLP problem as an NCSP, i.e., a standard
continuous system of nonlinear constraints (i.e., over the real numbers). To do
so, the 0/1 variables are encoded by real-valued variables P ′w,b of domain [0, 1].
To ensure these variables take 0/1 values, we simply add the following quadratic
constraints:

∀w ∈ 1..W and ∀b ∈ 1..B, 4(Pw,b −
1

2
)2 = 1 (16)

This means that the initial disjunctive constraints that produce mixed con-
straints in the MINLP model are handled by continuous quadratic constraints.
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Our good command of the interval solver Ibex enabled to produce an ef-
ficient strategy, but it would be interesting to compare in a future work our
interval B&B with a MINLP solver like Couenne [2]. Quadratic solvers are not
our first alternative choice because our model will probably be extended with
other nonlinear (and non quadratic) constraints about color or wine varieties.
To our knowledge, only one rigorous interval B&B, called IBBA [12], is endowed
with a simple mechanism handling integral variables. IBBA could be compared
with Ibex, although the two solvers are merging.

4.1 Constrained Global Optimization with an Interval B&B

A continuous constrained global optimization problem is defined as follows.

Definition 1 (Constrained global optimization)
Consider a vector of variables x = (x1, ..., xn) varying in a domain [x] = [x1]×
· · · × [xn], a real-valued function f : Rn → R, vector-valued functions g : Rn →
Rm and h : Rn → Rp. We have g = (g1, ..., gm) and h = (h1, ..., hp).

Given the system S = (f, g, h, [x]), the constrained global optimization problem
consists in finding:

min
x∈[x]

f(x) subject to g(x) ≤ 0 ∧ h(x) = 0.

f denotes the objective function; g and h are inequality and equality constraints
respectively.

Our IbexOpt constrained global optimizer [14] computes a floating-point vector
x ε-minimizing1:

f(x) s.t. g(x) ≤ 0 ∧ (−εeq ≤ h(x) ≤ +εeq).

Note that equalities hj(x) = 0 are relaxed by “thick” equations hj(x) ∈ [−εeq,
+εeq], i.e., two inequalities: −εeq ≤ hj(x) ≤ +εeq. IbexOpt guarantees the global
optimum of the relaxed system, although εeq can often be chosen almost arbi-
trarily small. (Most of the global optimizers like Baron [13] or Couenne [2] cannot
offer any guarantee.)

In our wine blending problem, we set a constant ε1eq equal to 1e-4 in the
equality constraints (16). Another ε2eq is set to 1e-1 in the equality constraints
(2.i). This corresponds to 1 dl (deciliter), i.e., less than 0.1% of the target vol-
umes (at least 500 liters). This means that the volumes are computed with an
approximation significantly better than the ineluctable errors made during the
actual blending, i.e., the errors induced by measures and loss of residual matter
during the wine transfer from a base to a target tank.

1 ε-minimize f(x) means minimize f(x) with a precision εobj on the objective, i.e.,
find x such that for all y, we have f(y) ≥ f(x)− εobj .
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4.2 Algorithmic Features of Ibex

IbexOpt is implemented in Ibex (Interval Based EXplorer) and enriches this
C++ library devoted to interval solving [5].

IbexOpt [14] follows an interval Branch & Contract & Bound schema. The
process starts with an initial box [x] that is recursively subdivided by a branching
operator. The tree is traversed in best first search, in which a box with a smallest
minimum cost is selected first. IbexOpt applies the following operators at each
node (box) of the B&B:

Branch: A variable xi is chosen and its interval [xi] is split into two sub-boxes.

Contract: A filtering process contracts the studied box, i.e., improves the
bounds of its intervals, without loss of solutions.

Bound: The improvement of the lower bound is similar to a contraction (con-
sidering an additional variable corresponding to the objective cost). The lower
bound guarantees that no feasible solution exists lower. Improving the upper
bound amounts in finding a good (although generally not the best) feasible
point, so as to cut branches in the search tree with a higher cost.

The process starts with an initial box [x] and ends when the difference be-
tween the upper and lower bounds reaches a given precision εobj or when all the
explored nodes reach a size inferior to a given precision.

At each node of the B&B, IbexOpt is called with efficient operators for reduc-
ing the search space and improving the lower bound of the objective function:

– The state-of-the-art HC4 [3,10] (continuous) constraint propagation algo-
rithm is first used to contract the handled box.

– The operator X-Newton uses a specific interval Taylor to convexify the search
space, contract the box and improve the lower bound [1].

– Two original algorithms are used to improve the upper bound by heuristi-
cally extracting an inner (entirely feasible) region that contains only solution
points. This explains why equations are slightly relaxed. Roughly, the InHC4
algorithm is a dual algorithm of HC4 and InnerPolytope is a dual algorithm
of X-Newton.

The default optimizer uses, as bisection heuristic, the SmearSumRel variant of
Kearfott’s branching heuristic using the Smear function [9]. The SmearSumRel

and SmearMaxRel branching heuristics are described in [14].

5 Experiments on First Instances

We have modeled and solved several instances of wine assemblage. We also report
in Section 5.5 a validation of our approach during a real tasting session.

For the ε-optimization, we have always required an accuracy εobj (goal pre-
cision) below 1e-4. The same precision is required for the solution (box) size:
under this size, a box is not studied (and split) by the interval Branch&Bound.
The goal accuracy is better than the errors εa made by the chemical tools when
they measure the aroma concentrations (e.g, for the cb,a’s).
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5.1 Wine Blending Instances

We have modeled three instances of wine assemblage. The first one (WineBlen-
ding0) is a small and artificial instance. It was used to rapidly adapt the
MINLP/NCSP model presented above until a rapid solving could be obtained.
It contains 21 variables. WineBlending0 is solved in 0.18 seconds and only 6
branching nodes, independently from the εobj goal precision (1e-4 or 1e-8).

Real Instance 1

The second instance (WineBlending1) is a real instance provided by the Nyseos
company. The instance consists in producing W = 2 target wines from B = 7
bases wines, taking into account A = 11 aroma.

The Min-Max problem, modeled as described in Section 3.4, contains 55 vari-
ables and 116 constraints:

– 2 volume (relaxed) channeling constraints,
– 7 base surplus constraints,
– 44 aroma concentration constraints,
– 49 constraints coming from the Min-Max encoding,
– 14 quadratic constraints modelling the disjunctive realistic volume con-

straints.

Real Instance 2

The second instance (WineBlending2) consists in assemblingW = 3 target wines
from B = 6 bases, taking into account A = 7 aroma.

The Min-Max problem contains 64 variables and 118 constraints:

– 3 volume (relaxed) channeling constraints,
– 6 base surplus constraints,
– 42 aroma concentration constraints,
– 49 constraints coming from the Min-Max encoding,
– 18 quadratic constraints modeling the disjunctive realistic volume constraints.

5.2 Results Obtained by the Default Optimizer

All the results reported in this paper have been obtained on a 2010 MacBook
laptop with a 2.4 GHz Intel Core 2 Duo process.

We have first run the default optimizer of Ibex with a solution and goal
precisions set to 1e-4 and with a timeout set to 5 minutes.

The optimizer reaches the timeout for WineBlending1 and WineBlending2

although rather good solutions are computed:

– In 5 min and 7894 branching nodes, an accuracy 0.002 is obtained on the
goal (i.e., the maximum error on E) for WineBlending1.

– In 5 min and 8520 branching nodes, an accuracy 0.0054 is obtained on the
goal for WineBlending2.
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5.3 Algorithmic Analysis and Improvements

The results above have been obtained with the by-default constrained optimiza-
tion strategy available in Ibex and briefly described in Section 4.2.

We have first analyzed which of the default features have an impact on per-
formance and which ones do not. This analysis was fruitful.

Concerning the contraction/filtering part, the interval linearization operator
X-Newton is surprisingly counterproductive. On the contrary, all the contrac-
tion is performed by the HC4 constraint programming operator. Since the wine
blending model built is mainly linear, this result is counterintuitive.

The opposite and more intuitive observation has been made on the inner re-
gions extracted for improving the upperbound. The InHC4 operator, issued from
constraint programming principles (working constraint per constraint), appeared
to be useless. On the contrary, the InnerPolytope algorithm (dual of X-Newton)
that can extract an inner polytope from the feasible region is crucial. Without
this feature, we could not obtain any answer from the optimizer.

Table 1. Comparison between the Smear-based branching heuristics. An entry is a
multiline containing 3 information about the results obtained by a given branching
strategy on a given instance. The first line of a multiline contains the CPU time, with
a timeout set to 5 min; the second line gives the error obtained at the end (1e-10
means that the last simplex call achieved by InnerPolytope finds a solution with no
error (rounded to 1e-10)); the third line reports the number of branching nodes.

WineBlending1 WineBlending2

cputime (sec.) > 300 57
SmearSum precision 0.00014 1e-10

#nodes 21880 4146

cputime (sec.) > 300 > 300
SmearSumRel precision 0.0018 0.00017

#nodes 25864 24270

cputime (sec.) > 300 111
SmearMax precision 0.0013 1e-10

#nodes 25864 8851

cputime (sec.) 0.35 27.4
SmearMaxRel precision 1e-10 1e-10

#nodes 23 2048

A second feature has a major impact on performance: the branching (bisec-
tion) strategy. We have observed that the basic bisection heuristics available in
Ibex are inefficient or show a poor performance. The largestFirst heuristic,
selecting a variable with the largest width, prevents the B&B from finding any
feasible point during the tree search. The roundRobin also generally shows a
poor performance, except if we rearrange statically the variables as preconised
by a first analysis reported below. Only the Smear-based strategies behave well:
the historical SmearMax and SmearSum heuristics [9]; the SmearSumRel variant
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called in the default optimization [14], and the SmearMaxRel variant that plays
a fondamental role in our wine blending problem.

Based on this analysis, we have designed a dedicated strategy. The X-Newton
operator has been first disconnected, thus bringing a speedup of a factor 4 on
the two real instances. Second, we have compared the performance of the four
Smear heuristic variants mentioned above. Table 1 gathers the results obtained.

We remark that SmearSum and, in particular, SmearMaxRel, show a good
performance. Therefore SmearMaxRel has been chosen for our wine blending
dedicated strategy.

We have also experimentally analyzed which variables are selected by the opti-
mization process in slow and fast runs. We have empirically learnt that the CSP
variables Pw,b and V ′w,b should often be selected, whereas the variables added
for the Min-Max optimization should be rarely chosen. This study has led us to
a dedicated heuristic that offers (only) the same performance as SmearMaxRel
(23 seconds versus 27 seconds on WineBlending2). Of course, we need more
instances to better learn from the data.

5.4 The Wines Produced

The layout of the solution computed for WineBlending1 is shown in Figure 3.
The details of the aroma concentrations (Cw,a) in the target wines are illustrated
by W = 2 radar graphs in Figure 4. The fact that the blue lines (ĉw,a) fall
between the green lines (ĉw,a−εa and ĉw,a+εa) highlights visually that the best
solution has been obtained within εa tolerances.

Fig. 3. Layout of the results for WineBlending1: volumes of the target wines (below)
obtained by blending the bases (above)

The details of the aroma concentrations (Cw,a) in the target wines for
WineBlending2 are illustrated by W = 3 radar graphs in Figure 5.
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Fig. 4. Solution obtained by our Min-Max model on the two wines elaborated in in-
stance WineBlending1. Every axis in a radar graph shows a computed aroma concen-
tration Cw,a (shown in thick line with balls), comprised within the imposed limits (c−w,a

and c+w,a) represented by solid lines, and as close as possible to the desired concentra-
tion ĉw,a. The 2 dashed curves represent the tolerances ĉw,a − εa and ĉw,a + εa on the
desired concentration of aroma a in wine w.

5.5 Tasting Session

An interesting (qualitative) validation of our tool was carried out in collaboration
with an oenologist. He was asked by the Nyseos company to elaborate a (target)
wine by blending several given base wines. Nyseos wrote down the volumes the
oenologist selected for the assemblage and carried out a chemical analysis of
the final blend to measure its aromatic criteria. Then, using our tool, Nyseos
created a similar blend with the same base wines, but using eventually different
volumes extracted from each base wine. Nyseos finally compared the blendings
used to obtain the human-made wine with the computer-made wine and asked
the oenologist to carry out a blind-test on the two wines.
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Fig. 5. Radar graphs obtained for the instance WineBlending2
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The results were as follows: despite the blendings being significantly different,
the oenologist could not distinguish between the two wines.

This one experiment is of course far from being representative, but is nonethe-
less a promising indication of the relevance of our tool.

5.6 A Future Configuration Tool for Wine Assemblage

The first experimental results are preliminary and were obtained on only two
real instances. However, they suggest that the current strategy, maybe endowed
with a dedicated branching heuristic, can handle efficiently most of the instances
useful in practice. Therefore, to better fit the wishes of the client, we can imagine
using our optimization algorithm interactively, inside a configuration tool. The
user would be able to interact with the system via radar graphs corresponding
to the different target wines, such as shown in Fig. 4 and Fig. 5.

A way to modify the blending is to increase (or decrease) the importance
(weight) Ωw of a wine. A slider under each radar graph could for instance be
used for this purpose. An optimization process could then recompute a new
solution with this specification.

Following the same idea, the user could modify the weight λw,a of a given
aroma in a wine (e.g., with a popup menu appearing when the mouse cursor
position is on the corresponding axis of a radar graph), and the tool would run
a new optimization.

A last and more intrusive possibility is to allow the client to strengthen the
maximum admissible concentration c+w,a (or minimum admissible concentration
c−w,a) of aroma a in wine w. The client would simply select a bound and our
tool would run two optimizations providing two information (assuming c+w,a is
selected). First, the smallest value of concentration Cw,a for which there is a so-
lution that respects all the constraints (such a solution is not necessarily optimal
for the maximum error E). Second, we can also compute the smallest feasible
value of Cw,a that does not increase the maximum error E. These two bounds
can be displayed as outstanding values for c+w,a.

6 Conclusion

We have reported in this paper a first attempt to handle the wine assemblage
problem with constraint programming techniques. The problem can be modeled
as a MINLP or a numerical CSP able to define disjunctive constraints that are
critical in practice. These constraints ensure that a minimal amount of wines
is transferred from a base to target wine. We have resorted to mono-criterion
optimization and have worked to obtain a model with no max and no absolute
value operators. We have designed an optimization strategy dedicated to wine
blending that allows us to find in second the best solution to two real instances
given by the Nyseos company (with no error in the volumes or the concentration
requirements). A tasting session carried out by an oenologist has qualitatively
validated our approach. These encouraging results offer the possibility to use our
approach within an interactive configuration tool dedicated to wine assemblage.
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Stéphane Zampelli1, Yannis Vergados2, Rowan Van Schaeren3,
Wout Dullaert4,5, and Birger Raa3,6

1 Dynamic Decision Technologies, Providence
2 Ph.D. Graduate from Brown University

3 Antwerp Maritime Academy
4 VU Amsterdam, Department of Informatics, Logistics and Innovation

5 University of Antwerp, Institute of Transport and Maritime Management Antwerp
6 Ghent University

Abstract. This paper considers the combination of berth and crane al-
location problems in container terminals. We propose a novel approach
based on constraint programming which is able to model many realistic
operational constraints. The costs for berth allocation, crane allocation,
time windows, breaks and transition times during gang movements are
optimized simultaneously. The model is based on a resource view where
gangs are consumed by vessel activities. Side constraints are added inde-
pendently around this core model. The model is richer than the state of
the art in the operations research community. Experiments show that the
model produces solutions with a cost gap of 1/10 (7,8%) to 1/5 (18,8%)
compared to an ideal operational setting where operational constraints
are ignored.

Keywords: berth allocation, crane assignment, containers, terminal,
constraint programming.

1 Introduction

A container terminal is a facility where cargo containers are transshipped be-
tween vessels and external trucks or trains. Cranes along the quay called ’quay
cranes’ are responsible for charging and discharging containers. Special trucks
in the field move containers from quay cranes to container blocks in the yard.
External trucks bring containers to the terminal and take away containers from
the yard blocks. Many logistic problems arise in this context. We focus on two
of them. On one hand, the berth allocation problem (BAP) positions vessels op-
timally, ensures security distances, and minimizes stay durations along the quay
using a simplified model of the crane assignments. On the other hand, the quay
crane assignment problem (CAP) considers the problem of detailed assignment
of quay cranes to vessels in order to handle the incoming and outgoing con-
tainers where a feasible berth plan is already available. The challenge, proposed
by our industrial partner, is to incorporate both problems together with those
real-world constraints.
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Berth Allocation Problem. The BAP problem schedules the vessels by de-
ciding the position of the vessel along the quay, estimating the duration needed
to handle all the loading and discharging containers of the vessel, and avoiding
vessel overlap along the quay. The difference with the CAP is that the stay du-
ration along the quay is simplified by avoiding to compute the detailed crane
assignment scheduling on each vessel. We review the detailed BAP problem
constraints.

– The total length of all the vessels should be shorter than the quay length.
– Positions along the quay are represented by discrete bollards. The mooring

ropes and wires used for securing the vessel along the quay length are at-
tached to bollards. Every vessel is assigned a mooring place or berth that
is a multiple of bollard distances. The distance between two bollards on the
same quay length is equal. In Figure 1, the vessel uses bollard 2 to 5.

– Vessels along the quay should not overlap.
– The ideal berth of the vessel along the quay is computed by another yard

optimization tool and is outside the scope of this paper. Ideal berth posi-
tions are an input in the context of this paper. Vessels discharge and load
containers to and from containers blocks in the yard according to the yard
planning. An ideal berth position can be precomputed for each vessel. The
customer pays a fixed price for the container loading/unloading regardless of
the yard position the container will occupy. The terminal wants to minimize
the distance between the ideal berthing position and the precomputed one.
Figure 2 represents a bad berth allocation.

– The computation of the handling time of the vessel depends on the cranes.
In the BAP, this computation is simplified, not considering the detailed
scheduling of the CAP. The handling time links the BAP and the CAP.
Such a detailed scheduling is considered in the CAP below.

– Vessels have setup times. When a vessel arrives at a terminal and is safely
moored alongside, the cranes can not immediately start to discharge the
containers. The securing of the containers, called lashings, first need to be
undone. The time needed for unlashing the containers differs per vessel and
per stowage configuration. This time needs to be taken into account con-
cerning the starting time for the cranes.

1 2 3 4 5 6

Fig. 1. Using bollards for
defining the quay length oc-
cupied by a vessel

Loading

Block 1

Block 4

Block 2

Block 5

Block 3

Block 6

Discharging

Fig. 2. A bad example of
berth allocation regarding
the yard distance cost

QC1
QC2

QC3
QC4

Quay

Fig. 3. An example of quay
crane (QC) ranges on a con-
tainer terminal with four
quay cranes
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Crane Assignment Problem. The CAP problem considers the detailed as-
signment of gangs to quay cranes and cranes to vessels. A gang is a team of
workers consisting of a crane driver, a foreman, a person checking the container
ids, two dockers to handle the containers and the driver moving the internal
truck. Hiring a gang has a fixed cost per shift. Gangs have to be assigned to a
crane but can be moved freely from one crane to another. A quay crane handles
the containers to charge or discharge from or to a vessel. There are different
types of cranes (Panamax, Post Panamax, Super-Post Panamax STS, ...). Ves-
sels may accept only specific types of cranes. They also have a fixed arrival time
at the terminal and leave as soon as all containers have been handled. A quay
crane can be moved at any point in time from one vessel to another, creating a
preemptive schedule. The overall goal is to minimize the operational cost of the
terminal seen as a service from the point of view of the vessel operators. Let us
review the detailed problem constraints.

– There is a maximum number of cranes available along the quay.
– Each vessel has a time window during which it needs to be handled along-

side the quay length. The terminal operator will have to pay a fine, if the
vessel arrives on schedule but cannot be handled within the agreed time
frame.

– Repositioning cranes from one vessel to another takes 30 minutes.
– Gangs have breaks. Each gang works for eight hours. Each gang has a break

of half an hour each four hours. During this break, crane repositioning is
free, handled by a specialized team.

– The maximum number of cranes for each vessel is limited by the length and
the number of bays of the vessel. Each quay crane has a fixed width, and
hence a maximal number of cranes can work on one vessel simultaneously.

– Cranes operate on a common rail and have operating ranges. Cranes are
electrically driven. The length of the source cables are chosen in such a way
that an optimal coverage is given for the quay length (see Figure 3).

– Cranes are operated on a single rail, so they cannot cross each other.
– The gang cost per shift depends on the shift on which the gang operates.

An example of relative gang costs is shown in Table 1. Note that gang costs
must be paid in full, even if it only works during a part of a shift. There is
always an integer number of gangs per shift.

– Crane productivity is measured in containers per hour and depends on a
number of external factors (weather, crane driver, traffic, stowage plan, se-
curity vessel specific rule); however we consider the crane productivity as
constant for all cranes along the horizon.

Table 1. Relative cost of a gang

Weekday Saturday Sunday

Morning 1.05 1.50 2

Afternoon 1.15 1.50 2

Night 1.50 2 2

Table 2. Gang shifts and breaks

Break 1 Break 2

Morning (06:00-14:00) 09:30-10:00 13:30-14:00

Afternoon (14:00-22:00) 17:30-18:00 21:30-22:00

Night (22:00-06:00) 01:30-02:00 05:30-06:00
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Previous Work. We focus on literature about integrated BAP and CAP prob-
lems (BAPCAP). Readers interested in the abundant literature about BAP or
CAP can refer to [4]. BAPCAP was first studied in [20]. They propose a two
step approach. The first phase determines the berthing time and position of each
vessel and the number of cranes to be allocated to the vessel. The second phase
schedules the assignment of individual cranes, solved by a Lagrangian relaxation
and dynamic programming respectively. Time is discretized in blocks of one hour.
There is no detailed crane reallocation. Moreover, there is no consideration for
gangs and gang cost. [19] gives a formulation of the BAPCAP, and solves the
model in a two step procedures: a GA procedure (crossover and mutation) to
assign ships in order to berth, and a heuristic to assign cranes to ships. [18] solves
the BAPCAP by using a 4 steps GA-based approach, successively locating ship
to berths, assigning quay cranes to berths, and designing berth and quay cranes
scheduling. Note that there is no consideration for gang cost and cranes cannot
be re-allocated. [17] decides on the berthing position, the berthing time, and the
number of cranes that serve a vessel within the handling period, by taking into
account drop of crane productivity due to interference. The BAPCAP model
is then solved using heuristics and metaheuristics. Time is discretized in blocks
of one hour. Detailed crane assignment and reallocation is not considered and
authors suggest it should be post-processed. [16] proposes to optimize the cranes
efficiency. The block periods consist of 12h and the horizon is limited to 6 blocks
(3 days) because of the model complexity. It is extended by using a rolling hori-
zon technique [7]. Among recent works, [15] considers many detailed constraints
and studies the BAPCAP under uncertainty. Limited crane reallocation when
a new vessel arrives can occur. The wharf is also segmented into fixed length
segments. A non linear mixed integer model is solved using GA. Gang, shift costs
and breaks are ignored. [6] proposes a pure MIP BAPCAP approach with time
bucketized in periods of 2 hours and a rolling horizon. Recently, [14] splits the
problem in two, with BAP on one side solved by GA and CAP is solved by a
mixed-integer linear program. A Bi-Level Programming (BLP) approach is used
to combine both subproblems. Running time is pretty high with 480 minutes
reported for 3 vessels and 8 QCs, although the detailed scheduling of the crane
is taken into account. [13] solves the two problems independently, although the
BAP is continuous, meaning the quay length is not discretized in blocks. They
use a nested loop-based evolutionary algorithm (NLEA), and two inner loops
and one outer loop are suggested. Let us stress that in the OR literature, no pa-
pers can handle the set of constraints proposed in this paper in a single model.
Our model schedules to the minute with dynamic crane reallocation and a com-
putation of the actual gang and shift costs.

Paper Main Contributions. Paper contributions are threefold:

– The solved problem tackles a combination of many complicated technical
constraints, such as setup times, transition times, time windows, shifts,
breaks, smooth workforce allocation (work for large consecutive spans of
time), spatial positioning, etc., in a large scale and realistic setting (5 days,
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30 vessels). The crane allocation itself is done by a tractable subset inside
the main model. It shows how useful CP is in tackling those OR problems.

– The proposed model shows how to solve a complex problems not only by
identifying the main underlying structure in a form of a constraint but
also by isolating several aspects into submodels and making them commu-
nicate through the variables. This is an interesting approach to tackle other
challenging OR problems.

– This paper shows a case where CP can bring benefits to challenging problems
inside the OR community that tends to be MIP or heuristics dominated. It
has been agreed for a long time that combining detailed quay crane schedul-
ing and berth planning is not an easy problem. MIP models become complex
and heuristics are used to overcome this issue.

Benefits of CP. The scheduling features of CP are one of the keys against
MIP or heuristics centric approaches as scheduling the cranes is the core of the
problem. The declarativeness of CP was important, since more than 20 different
models were tested, in a reasonable development cycle time (<2 men/month).
It would have been difficult to test all those ideas using a heuristics approach,
given the amount of coding and testing required. Our industrial partner did not
believe all those constraints could be handled in a declarative way. CP declar-
ativeness allowed not only to identify and state constraints but also to identify
and integrate submodels of the problem at hand. The ability to easily add small
side constraints also played a key role. For instance it is easy for a user to state
in the model that a specific crane will go down in a given period of time or forbid
certain crane/vessel assignments because of compatibility issues.

2 Model Description

Our CP model combines several submodels. The core model, described in Section
2.1, allocates gangs to vessel subtasks, minimizing the total gang cost and the
lateness. The crane allocation and the berthing are added to the core model,
in Section 2.2 and 2.3. Section 2.4 describes the objective function. A labeling
procedure is proposed in Section 2.5. Section 3 discusses computational results.

2.1 Gang Allocation

Gangs need to be allocated to cranes, and cranes to vessels. Gangs can move
freely from crane to crane and cranes can be reassigned at any time. The key idea
is to view the gangs as a resource and use cumulative constraints. Viewing the
cranes as a cumulative resource is a deadend since cranes are ordered and have
exotic constraints like range and non crossing constraints. Each vessel is a set
of activities that consumes a number of gangs in a preemptive way. The actual
crane assignment is left to a separate submodel that makes sure the assignment
is possible. Each gang delivers a certain amount of workforce that depends on
the duration linearly. This workforce idea makes it easier to compute the shift
gang cost and deal with side constraints such as breaks and setup times.
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Notations. A range R is a consecutive finite sequence of integers; its minimum
(maximum) is noted R (resp. R). The range of input vessels is denoted vessels,
and for each b ∈ vessels, the range of vessel activities is denoted Actb. The
time horizon Horizon is a range of time units of 1 minute. The range Shifts
indexes the shifts. The shift duration (including breaks) is noted sd. The range
Gangs indexes the gangs. The ranges Gangsb = [0,mcb] with b ∈ vessels are the
possible values for the number of cranes that can be allocated to a vessel. The
ranges Breaks is the ranges of breaks. We assume those ranges start at zero.
The lower bound (resp. upper bound) of a finite domain variable x is denoted x
(resp. x).

Before declaring activities and constraints, we convert containers to the con-
cept of workforce. A unit of workforce is the work of one gang during one unit
of time (1 minute). This conversion is needed because the scheduling of gangs
activities over vessels depend on gang units and time units, and know nothing
about containers. Workforce is the link between the scheduling of gangs and the
containers of vessel. Each vessel needs a minimum amount of workforce to leave.
The following two definitions grasp those ideas:

Definition 1 (Crane Productivity). The productivity of a crane is the num-
ber of containers it can handle per hour.

Definition 2 (Workforce). Given a crane productivity p, the workforce needed
to handle c containers is defined by (c∗60)/p. The required workforce of a vessel,
noted mwb, is the workforce corresponding to its number of containers to handle.

The only drawback is that a crane may be reassigned while a container is being
moved, since only the required time is considered. However, this limitation has
no impact on real operations: transition times can be shortened or extended
to handle those cases in practice. We now define the set of activities ab,i with
b ∈ vessels and i ∈ Actb.

Definition 3 (Activity). An activity ab,i is defined by five variables:

– sb,i is the starting time,
– eb,i is the completion time,
– db,i = eb,i − sb,i is the duration,
– capb,i is the number of resources consumed by the activity between its starting

time and its completion time.
– and wkfb,i is the workforce delivered by the task, with 0 ≤ wkfb,i ≤

capb,i ∗ db,i.

Our model creates one activity ab,i per vessel b and per index i ∈ Actb.
The capacity capb,i is the constant number of gangs used by the activity. The
equality of wkfb,i with capb,i∗db,i is not enforced because of breaks and transition
times. For instance, if an activity overlaps with a break, the delivered workforce
is inferior to its surface. An activity is an allocation of workforce to a vessel.
Breaks and transition times are handled at the end of this section. Activities
can be interrupted and are also optional (they can have a zero duration). Each
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vessel has its own time window. In the following, we abuse notations and use
i instead of (b, i) when it is clear from context that we are speaking about a
given boat.

Definition 4 (Time Window). The time window of a vessel b ∈ vessels is
the couple (tab, tdb), where the integer tab denotes the arrival time of the vessel
b and tdb the deadline of vessel b.

Arrival time for each vessel b ∈ vessels and each index i ∈ Actb is enforced:

Constraint 1 (Arrival). ∀ b ∈ vessels, i ∈ Actb : sb,i ≥ tab

Constraint 2 (Required Workforce). ∀ b ∈ vessels :
∑

i∈Actb
wkfb,i ≥ mwb

Let us ignore shifts for now. At any point in time, there is maximum Gangs
gangs that can be hired. Given two variables s and d representing the starting
time and the duration variables of an activity ai, the mandatory part noted
mand(ai) ormand(s, d) is a range [e−d, s+d] that can be empty if the mandatory
range does not exist. This can be modeled by a cumulative constraint:

Definition 5 (Cumulative). Consider a resource limited by a constant capac-
ity c, and a set of activities aj ∈ A. A constraint cumulative({aj | j ∈ A}, c)
ensures the following constraint: ∀ t ∈ Horizon

∑
j∈I capj ≤ c where I = {j ∈

A | t ∈ mand(aj)}.

Activities may not exceed the maximum number of available gangs:

Constraint 3 (Global Cumulative). The following constraint is added to the
model: cumulative(A,Gangs) where A is the set {ab,i | b ∈ vessels, i ∈ Actb}.

Each vessel is also constrained on its maximum number of gangs at any point
in time. An additional |vessels| number of cumulative constraints are posted:

Constraint 4 (Local Cumulative). For each b ∈ vessels, the following
constraint is posted: cumulative(A,Gangsb) where A is the set {ab,i | b ∈
vessels, i ∈ Actb} and Gangsb is the possible gang range for vessel b.

Let us introduce shifts in the model. For each shift, a variable denoting the
number of gangs used can be created:

Definition 6 (Gang Shift). For all sh ∈ Shifts, nbGangssh is the number of
gangs used in shift sh.

For each shift, a fake activity is created that spans over the whole shift and
consumes the number of gangs that are not used during that shift.

Definition 7 (Fake Activities). For all sh ∈ Shifts, a fake activity fash is
created with the following domains:

– starting time ssh = sh ∗ sd
– duration dsh = sd
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– capacity capsh = Gangs− nbGangssh
– workforce wsh = 0.

Let us introduce breaks and transition time. Two break intervals are present
in each shift sh, a first break

[
sesh
2
− bd,

sesh
2

]

and a second break:

[sesh − bd, sesh]

where sesh is the ending time of the shift sh and and bd is the constant break
duration. Each break r ∈ Breaks can be associated with such an interval noted
br. A variable bir is equal to time intersection between br and [sb,i, eb,i]. The
total intersection between an activity and the breaks can be measured:

bib,i =
∑

r∈Breaks

bir .

Regarding transition times, we considered a fixed and constant transition time
denoted transitionT ime that is assigned to all activities. The transition time
can be defined as

ttb,i = max(0, transitionT ime− fbb,i)

where fbb,i is defined as:

fbb,i = bir where r = min{r ∈ Breaks | bir �= 0 ∧ sb,i ∈ br}
= 0 if r does not exist.

The variable fbb,i denotes the intersection of a break with the beginning of a
vessel operation. Indeed, cranes can be moved during breaks. Breaks occurring
at the beginning of vessel operations hence shorten transition time. The actual
workforce of the activity (b, i) can be defined.

Constraint 5 (Workforce). For each activity (b, i), the workforce is

wkfb,i = (db,i − bib,i − ttb,i) ∗ capb,i .

Regarding the setup time, the transition time assigned to the first activity of
the vessel stands for both the transition time of the cranes and the setup time. In
this core model, gangs are assigned to vessels, using preemptive activities. Breaks
and transition times are taken into account using the workforce variables. This
first model is a relaxation of the problem as actual cranes along the quay are
not assigned to vessels and vessel conflicting positions are ignored.
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2.2 Space Allocation

Along the quay, the vessels should not overlap. The length of a vessel b is noted
lengthb. Let us define a vessel position along the quay:

Definition 8 (Position). The position of vessel b along the quay is a finite
domain variable and is denoted posb.

Let us define the starting and ending time of vessel:

Definition 9 (Vessel Time Window). The starting time of a vessel b is sb =
mini∈Actb sb,i, and its ending time is eb = maxi∈Actb eb,i.

Non overlap between vessels is stated by enforcing that vessels overlapping in
time should not overlap in space:

Constraint 6 (Non-overlap). ∀ (b, c) ∈ vessels × vessels, b > c : (sb ≤ ec ∧
eb ≥ sc)∨(sc ≤ eb∧ec ≥ sb)⇒ (posc ≥ posb+ lengthb)∨(posb ≥ posc+ lengthc)

2.3 Crane Allocation

In this section a tractable submodel is presented for the crane allocation. This
model can filter any inconsistent crane assignment value once the information is
available from other submodels.

The first concept is the crane range. The assignment of cranes to a vessel can
be represented as a range, because all cranes are consecutive along the quay and
cannot cross each other, since they are each operated on a single rail.

Definition 10 (Crane Range). The crane range of an activity (b, i) (i ∈ Actb)
is a range [scb,i, ecb,i], where scb,i is the starting crane and ecb,i the ending
crane. The variable nbCranesb,i denotes the number of cranes assigned to vessel
activity (b, i).

The following constraint holds: scb,i ≤ ecb,i, and the number of cranes and the
crane range are linked: nbCranesb,i = ecb,i − scb,i + 1.

Each crane has a certain span along the quay, because of physical constraints.
This means that a crane can be assigned to a vessel if and only if the crane
can reach the vessel along the quay. Given a vessel b, only a subset of crane
ranges are available for vessel b. Let us define the craneMin array indexed by
bollard positions. Since we focus on a given boat, we omit subscripts. The value
craneMinp (resp. craneMaxp) is the leftmost crane (resp. rightmost crane) that
can reach bollard range [p, p+ lengthb]. The consistency between crane positions
and vessel positions can be added to the model:

Constraint 7 (Crane Position). ∀ b ∈ vessels, i ∈ Actb : scb,i ≥
craneMin[posb] and ecb,i ≤ craneMax[posb].
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The following set of constraints distribute the cranes between activities.

Constraint 8 (Crane Allocation). For each pair of distinct tasks ((b, i),
((c, j)) overlapping in time, their crane range follows their relative position:

[(sb,i ≤ ec,j∧eb,i ≥ sc,j)∨(sc,j ≤ eb,i∧ec,j ≥ sb,i)∧ (posb < posc)]⇒ ecb,i < scc,j

and:

[(sb,i ≤ ec,j∧eb,i ≥ sc,j)∨(sc,j ≤ eb,i∧ec,j ≥ sb,i)∧ (posb > posc)]⇒ scb,i > ecc,j.

Once the position, the time span and the number of cranes of pairwise activi-
ties are bound, the right side constraints from Constraint 8 form a linear chain of
inequality constraints. Given a time t ∈ Horizon, a total order is enforced upon
crane range variables of activities intersecting in time t. Ignoring distinction
between vessel and activity indexes, we have at a given time t ∈ Horizon:

sc1 ≤k1 ec1 < sc2 ≤k2 ec2 < . . . ≤kn−1 ecn−1 < scn ≤kn ecn (A)

where n is the number of vessel activities intersecting in time with t. ≤ki is a
notation for the binary constraint si ≤ ei − ki + 1, ki is the bound value of
variable nbCranesi, and < is the binary inequality constraint.

It is well-known [Jeavons, 1995] that max-closed (or min-closed) constraints
and arc-consistency detect at fixpoint if a constraint system is satisfiable. Both
constraints x < y and x ≤k y are max-closed and min-closed1. This implies the
following property:

Property 1. Suppose the arc-consistent fixpoint has been computed for the chain
of constraints (A) and the fixpoint does not fail. Then any value from any variable
in the set of variables of (A) can be extended to a solution.

This last property implies that the labeling of the crane range variables can
be skipped as propagation will ensure crane ranges can be instantiated.

2.4 Objective

The three components of the objective includes the lateness cost, cost induced
by the distance with the ideal position, and the total gang cost. The lateness of
a vessel b ∈ vessels is easily defined:

Definition 11 (Lateness). The lateness lb of a vessel b ∈ vessels is equal to
max(0, eb − tab).

Lateness is the exceeded handling time with respect to the deadline of the vessel
time window. Let posb be the position variable of vessel b. A position difference
can be defined similarly:

Definition 12 (Distance Gap). The distance gap dpb of a vessel b ∈ vessels
with respect to its ideal position ipb is equal to |ipb − posb|.
1 We omit the proof due to lack of space. See [23] for the full proof.
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The number of gangs used in each shift is defined by nbGangssh, see
Section 2.1.

Constraint 9. The objective variable obj is defined as

obj =
∑

b∈vessels
(lb ∗ lcb) +

∑
b∈vessels

(dpb ∗ dcb) +
∑

sh∈Shifts

(nbGangssh ∗ gcsh)

where lcb is the lateness cost per minute for vessel b, dcb is the distance cost per
meter for vessel b, and gcsh is the cost of a single gang in the shift sh.

2.5 Labeling

The primary goal of the labeling is to minimize the total gang cost per shift
while avoiding lateness. When the minimization of a resource is required in the
cumulative constraint, a fill hole heuristic is used. The idea is to fill holes present
inside the profile of the resource usage. A similar labeling has been used in the
context of a soft cumulative [22]. The profile of a cumulative constraint can be
defined as:

Definition 13 (Profile). The profile of a cumulative constraint is a set of
tuples (ti, di, vi), i ∈ P , such that:

– (non-overlap) ∀ i, j ∈ P , i �= j : [ti, ti + di − 1] ∩ [tj , tj + dj − 1] = ∅
– (usage reflection) ∀ t ∈ Horizon ∃ i ∈ P :

∑
k∈A capk = vi where t ∈

[ti, ti + di − 1] and A = {j ∈ Act | t ∈ mand(aj)}
– (cover) ∀ t ∈ Horizon ∃ i ∈ P : t ∈ [ti, ti + di − 1]

The setAct denotes the set of all activities. Tuples of a profile are called segments.

Definition 14 (Minimal Profile). A cumulative profile is minimal iff ∀ i, j ∈
P, i �= j, vi �= vj , that is |P | is minimal.

In the following, we shall suppose that P is ordered with respect to ti. We
note invariably i ∈ P and (ti, di, vi) ∈ P . Holes are defined with respect to left
and right segments. The left (right) segment i of a profile P is the segment i− 1
(resp. i + 1). Its left (right) segment value is vi−1 (resp. vi+1). The left and
right segment of i may be undefined if i = min(P ) or i = max(P ). If they are
undefined, their left or right segment value is equal to Gangs.

A hole is an augmented segment. The profile segment is augmented with a
depth information h:

h =

⎧⎪⎪⎨
⎪⎪⎩

min(l− vi, r − vi) if l − vi > 0 and r − vi > 0
l − vi if l − vi > 0 and r − vi < 0
r − vi if l − vi < 0 and r − vi > 0
0 if l − vi ≤ 0 and r − vi ≤ 0

where l and r are the left segment value and the right segment value resp. We
say a segment is augmented by its hole value h.
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The heuristic function uses a function called lmdh() for leftmost deepest hole.
It returns an ordered sequence of holes based on the profile of the cumulative
constraint that the next activity should try to fill. More specifically, considering
the minimal profile P of the cumulative constraint, it returns a sequence O of
augmented segments (tj , dj , vj , hj) such that:

1. O defines for C the same profile as P :
∀ t ∈ Horizon ∃ j ∈ O :

∑
k∈A capk = vj where A = {k ∈ Act | t ∈

mand(ak)}.
2. Segments of O cannot cross shift boundaries
∀ j ∈ O, ∃ sh ∈ Shifts : tj ≥ sh ∗ sd ∧ tj + dj − 1 ≤ ((sh+ 1) ∗ sd)− 1.

3. hj is the augmented hole value from the segment i ∈ P for which vi = vj
4. the sequence O is sorted lexicographically on highest hi and smallest ti.

In other words, lmdh() returns the same segments as P, except they are split
at any shift beginning and they are ordered.

The labeling procedure is described in Algorithm 1. The vessels are scanned
in increasing arrival time tab (line 1) and the activities of vessel b are scanned
(line 3). The amount of workforce still to deliver is computed (line 4), and if no
workforce is left, the remaining activities Actb are assigned to a duration of zero
so that they do not appear in the solution (line 4 to 7). If there is some work
to do on the current vessel, the profile holes are then computed based on the
information of the cumulative constraint, by calling lmdh() (line 8). The holes
are ordered according to the gang cost corresponding to the shift they are in.
The selected activity is forced to be included into the width of hole (line 9 to
11). The depth of the hole is adjusted if it is a border case. This can happen
for instance if the left segment is undefined. Another possibility is that h = 0
because the segment is a hill. In both cases, h is set to the maximum possible
number of gangs for the activity (line 13 to 15). The number of gangs, based on
the augmented segment, tend to be the number of gangs that would fill the hole
vertically, if any. Then the number of gangs is assigned, the activity is pushed
leftmost, and the workforce delivered is maximized, maximizing the width of the
activity (line 17 and 19). The current index of the activity is added to already
used activities (line 23). When all activities of current vessel have been scheduled,
line 25 and 26 assign a position to the vessel along the quay. It should be stressed
that the crane allocation range variables are not labeled, as the crane allocation
submodel is tractable, see Section 2.3.

The above labeling obtains good solutions. Using a naive labeling, where ac-
tivities are pushed leftmost lead to worse results as demonstrated in the experi-
ments. Moreover, we use large neighborhood search [9], where entire vessels are
fixed with a 0.6 probability.

3 Computational Results

This section measures the performance of the proposed model on generated
datasets and on a industrial dataset. To the best of our knowledge, most termi-
nals schedule crane and berth by hand. Academic papers cover too few real-world
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PROCEDURE label()
1: for all b ∈ vessels by arrival order do
2: I ← ∅ //I is the set of activities already used
3: for all i ∈ Actb : i /∈ I do
4: int lw ← mwb −

∑
i∈Ab

wkf
b,i

//workload left

5: if lw ≤ 0 then //if nothing to do for this vessel
6: try constraint db,i = 0 //impose zero duration, as this activity is not used
7: else
8: for all [ti, di, vi, hi] ∈ lmdh() in increasing shift cost order do
9: h1 ← ti; h2 ← ti + di − 1;
10: try constraint sb,i ≥ h1 //restrict activity to the segment [h1, h2]
11: try constraint eb,i < h2

12: h ← hi

13: if hi = 0 or hi > nbCranesb,i then //if it is not a proper hole
14: h ← nbCranesb,i //set to max nbr of gangs for vessel b
15: end if
16: for all gangs g from h down to nbCranesb,i do
17: try constraint nbCranesb,i = g //impose nbr of cranes, starting from

depth h
18: try constraint sb,i = sb,i

19: try constraint wkfb,i = wkf b,i //fix duration, as start and nbr of
gangs are fixed

20: end for
21: end for
22: end if
23: I ← I ∪ {i}
24: end for
25: try constraint diffPosb = diffPos

b
//label position close to the ideal position

26: try constraint posb = pos
b
//diffPos is an absolute value

27: end for

Algorithm 1. Dedicated labeling for the global model.

constraints. Each previous work has its own set of constraints and a comparison
would not be fair. Commercial tools do not optimize globally and are a help to
build the schedule by hand. Additional details can be found in [23].

Datasets Description. In order to validate the model, we generated datasets
based on the authors’ experiences and information found in various published
academic papers. Industrial datasets were also used.2 The onset for generating
our instances meet client’s operational requirements. Vessels are planned in ad-
vance with a time horizon of 5 days (7200 minutes). The total quay length is
2000 meters, matching the largest container terminal in the world, and there are
up to 30 vessels. The average crane productivity is 35 containers per hour or
0.5833 per minute. The total amount of quay cranes available is set to 19. Crane

2 Industrial datasets are available upon request.
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width is 80 meters. This means that a vessel of 230 meters e.g. would have at
most 3 cranes working on it simultaneously: �230/80�. Bollards are 20 meters
apart. This distance is also used to add to the vessel’s length around the vessel
for safe mooring alongside the quay length. If a vessel stays longer than allowed
by its commercial time window, the lateness cost is 5000e per hour. Deviation
with the ideal berth position costs one euro per meter of deviation. The gang
costs use Table 1 and a base cost of 2600e. Shift details (working hours and
breaks) are shown in Table 2. Setup leaving and arriving times and transition
times for cranes are set to 20 minutes. The set Actb is an input. The model uses
1 activity for barges with less than 35 containers. For other vessels, the number
of containers (or workforce) is divided by a split threshold, typically a workforce
of 100 containers for 4 cranes. More activities are useless (0 workforce) below
this threshold.

MIP Relaxation. We need a measure of the gap with respect to optimality.
The client uses MIP and the optimality gap is an expected output. We relaxed
the gang allocation core submodel (see Section 2.1) into an integer program.
This relaxation gives a lower bound to measure a gap with respect to an ideal
operational setting. Crane allocation and space allocation submodels are ignored.
Cranes can reach any vessel, can cross each other and can move instantly. Vessels
can overlap along the quay. The MIP model considers cranes are helicopters and
vessels can be positioned anywhere. Considering all vessels, the required mwb

has to be distributed into legal shifts (shifts intersecting with their vessel time
windows) so that the total gang cost is minimized. The proposed MIP model
is a lower bound relaxation of the gang allocation model from Section 2.1. A
detailed description of this MIP model can be found in [23].

Results. The goal of our experiments is to measure the optimality gap between
the CP model and the relaxed MIP model. All runs were performed on a 2,53Ghz
Intel CPU with 1GB of RAM with a timeout of 10 minutes. The MIP solver is
SCIP [8] and the constraint programming solver is Comet.

Three models were used. All models use an LNS procedure that randomly
fixes vessels with a 0.6 probability. The first one is the fill-hole model that uses
the fill hole labeling, denoted FH. The second model is the naive model where
a naive labeling is used to assign activities in a leftmost manner ignoring the
profile. The last one is the fill-hole-relax model (denoted FHR) where there is
no crane range constraints, no non-overlap constraints, no transition time and
time windows are relaxed to the boundary of the shift. The line FHR solves a
simplified core model to compare the MIP relaxation and the CP approach.

Table 3 shows the results. Both MIP and CP approaches have a timeout of
600 seconds. If the MIP time column displays a time less than 600 seconds,
optimality has been proven by the MIP. The CP time column displays the time
of the last solution found. The distance in percentage with the MIP objective
value is given in column GAP. The four columns under ’Objective Value’ denotes
the total objective value, the gang cost, the position cost, and the lateness cost.
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Table 3. Results for all instances

Time (sec)
GAP

Objective Value Extra
Gangs

H CP MIP Total Gang Pos. L.

Random1, 10 vessels

FH 504 600 7.8 20648 20589 59 0 5(67/62)

naive 600 600 - - - - - -

FHR 175 243 0.4 18522 18522 0 0 0(62/62)

Random2, 10 vessels

FH 483 8 11.0 20553 20446 107 0 6(65/59)

naive 385 7 27.8 25356 25321 35 0 7(66/59)

FHR 93 6 0.4 18314 18314 0 0 0(59/59)

Random3, 10 vessels

FH 542 343 18.8 36433 36265 168 0 12(104/92)

naive 600 356 - - - - - -

FHR 364 600 0.7 28587 28587 0 0 0(92/92)

Time (sec)
GAP

Objective Value Extra
Gangs

H CP MIP Total Gang Pos. L.

Random4, 10 vessels

FH 582 600 13.6 29998 29473 525 0 6(86/80)

naive 600 600 - - - - - -

FHR 211 600 0.4 26509 26509 0 0 0(80/80)

Industrial, 15 vessels

FH 458 2 11.9 15857 15666 191 0 4(48/44)

naive 428 3 23.3 18209 18078 131 0 8(52/44)

FHR 501 2 0.9 14030 14030 0 0 0(44/44)

Industrial, 30 vessels

FH 60 12 16.5 29884 29050 834 0 11(90/79)

naive 338 12 41.1 42335 41530 805 0 26(105/79)

FHR 12 11 1.8 25878 25878 0 0 1(80/79)

Finally, the number of additional gangs hired with respect to the lower bound
MIP approach is printed in column ’Extra Gangs’. A line marked ’-’ means the
constraint programming model did not find any solution before the timeout.

Naive labeling performs poorly compared to the fill hole labeling used by the
fill-hole model. The naive model did not find any solution before the timeout
in 3 out of 4 random instances and uses two times the number of gangs in the
industrial instances. The naive model tends to have a lower position cost. The
fill-hole-relax CP approach is trapped in local optima, but finds good solutions
up to 2%. This is expected as MIP is known to be stronger for flow-like problems.
The overall performance of our proposed approach is 1/10 (7,8%) to 1/5 (18,8%)
of additional cost compared to an ideal operational world (the MIP lower bound).

4 Conclusion

Container terminals are more and more automated and as a result optimiza-
tion technologies are needed to efficiently solve the numerous logistics problems
arising. This is also reflected in the operations research literature where recent
works try to solve these integrated problems. The question is whether CP can
help in this quest. We answer this question by considering the integration of two
problems using a real world constraints with an industrial partner.

We have shown that operational and realistic constraints for BAPCAP can
be successfully addressed in the context of a CP approach. This approach is
modular in the sense that each set of operational constraints can be separated.
The key idea is to use the gang allocation process as the main component,
and view it as a resource. Other side constraints can be integrated around this
basic model. Experiments show that the CP model can produce solutions close
to 1/5th to 1/10th from an ideal operational world. Overall, this work shows
that CP can be a technology of choice for tackling challenging problems in the
maritime industry considered ”out of scope” for the current approaches, even
under complex operational and scale constraints.

Future research includes using alternative profile-centered labeling or addi-
tional LNS procedures. The resource view of the model opens the possibility to
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use many scheduling tools from the OR/CP community to improve performance
or to integrate new types of side constraints. Integrating the yard management
aspect by computing the ideal positions together with the scheduling would
extend the integrated approach, for which CP may be the right optimization
technology.
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Nahar, Feras 805
Narodytska, Nina 545
Navas, Jorge 315
Naveh, Reuven 823
Newton, M.A. Hakim 832
Nieuwenhuis, Robert 80, 97
Nightingale, Peter 107
Niven, Todd 184
Nordh, Gustav 398
Nordkvist, Martin 790

Oliveras, Albert 80, 97
O’Sullivan, Barry 47, 263
Ouellet, Pierre 562

Pearson, Justin 381, 529
Pelsser, François 578
Pesant, Gilles 175
Pham, Duc Nghia 832
Pham, Quang Dung 749
Portmann, Marius 832
Prestwich, Steven D. 263, 587

Quimper, Claude-Guy 30, 562

Raa, Birger 880
Rattfeldt, Magnus 790
Razak, Abdul 497
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