
An Argumentation-Based Approach

for Automatic Evaluation of Design Debates

Pietro Baroni1, Marco Romano1, Francesca Toni2,
Marco Aurisicchio2, and Giorgio Bertanza1

1 Università degli Studi di Brescia, Italy
{pietro.baroni,giorgio.bertanza}@ing.unibs.it, marcojulioromano@gmail.com

http://www.unibs.it
2 Imperial College London, UK

{m.aurisicchio,f.toni}@imperial.ac.uk
http://www.imperial.ac.uk

Abstract. This paper presents a novel argumentation framework to
support design debates in an IBIS-based style, by providing an auto-
matic evaluation of the positions put forwards in the debates. It also
describes the integration of the proposed approach within the design-
VUE software tool along with two case studies in engineering design and
their initial evaluation by domain experts.

Keywords: argumentation, design rationale, IBIS.

Engineering design is often described as an information-processing activity based
on problem solving within the constraints of bounded rationality [23,22]. It con-
sists of decomposing an initial problem into a range of sub-problems, proposing
and assessing partial solutions, and integrating them in a way that they satisfy
the overall problem. This process is collaborative and often involves communi-
cation between non co-located engineers. The development and communication
of design solutions require engineers to form and share their rationale, i.e. the
argumentation in favour or against proposed designs.

These aspects of the engineering design process have led to the development
of the Issue Based Information System (IBIS) method [16], a graph-based for-
malisation of the decisions made during a design process along with the reasons
why they were made. The IBIS method envisions a decision-making process
where problems (or issues) are given solutions (or answers) after a thorough de-
bate involving technical, economical, and ethical considerations. It also provides
a means to actively develop, communicate and record the argumentation and
reasoning behind the design process.

Initially, IBIS has been conceived purely as conceptual information system
and its first implementations were paper-based and totally operated by hand.
However, over time several software tools have been developed, which provide a
means to edit and visualise IBIS graphs [6,3]. One such tool is designVUE [1], an
open-source software developed by the Design Engineering Group of the Mechan-
ical Engineering Department at Imperial College London. These tools, including

J. Leite et al. (Eds.): CLIMA XIV, LNAI 8143, pp. 340–356, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.unibs.it
http://www.imperial.ac.uk

An Argumentation-based Approach to Support Design Thinking 341

designVUE, still leave to the users the burden of actually deriving any conclu-
sion from the argumentative process and, eventually, making a decision. This is
a task that, depending on the structure of the graph, may not be trivial.

This paper describes the outcome of a collaborative project, involving experts
of engineering design and argumentation theory, undertaken to overcome the
limitation of standard design tools in general, and designVUE in particular. The
ultimate goal of this project is to support engineers by providing them with an
automated evaluation of alternative design solutions, and quickly identifying the
most promising answer to a design issue, given the underlying graph structure
developed during the design process.

We have singled out argumentation theory as a promising companion to engi-
neering design towards achieving this goal since one of the main features thereof
is evaluating arguments’ acceptability (e.g. as in [10,9]) or strength (e.g. as
in [8,18,17,12]) within debates and dialogues. For this application area, con-
ventional notions of “binary” acceptability (e.g. the notions in [10]), sanctioning
arguments as acceptable or not, are better replaced with notions of numerical
strength, as the latter are more fine-grained and allow to distinguish different
degrees of acceptability.

This paper presents theoretical and practical results from this project. On
the theoretical side, we propose a formal method to assign a numerical score to
the nodes of an IBIS graph, starting from a base score provided by users. On the
practical side, we describe the implementation of this method within designVUE
and its preliminary evaluation in the context of two case studies.

The paper is organised as follows. Section 1 gives the basic notions concerning
IBIS and the necessary background on argumentation theory. Section 2 intro-
duces a form of argumentation frameworks abstracting away IBIS graphs and
Section 3 defines our approach for evalutating quantitatively arguments in these
frameworks. Section 4 describes an implementation of our approach as an exten-
sion of designVUE and Section 5 illustrates its application in two engineering
domains. Section 6 discusses related work and Section 7 concludes.

1 Background

1.1 Issue Based Information System (IBIS)

IBIS [16] is about proposing answers to issues, and assessing them through ar-
guments. At the simplest level, the IBIS method consists of a structure that
can be represented as a directed acyclic graph with four types of node: an issue
node represents a problem being discussed, namely a question in need of an an-
swer; an answer node represents a candidate solution to an issue; a pro-argument
node represents an approval to a given answer or to another argument; a con-
argument node represents an objection to a given answer or to another argument.
An answer node is always linked to an issue node, whereas pro-argument and
con-argument nodes are normally linked to answer nodes or to another argument.
Each link is directed, pointing towards the dependent node.

342 P. Baroni et al.

Figure 1 shows an example of IBIS graph, with a concrete illustration of the
content of the nodes (labelled A1, A2, P1, C1 and C2) in the design domain
of Internal Combustion Engines (ICE). This example graph has three layers:
the first layer consists of the issue node, the second layer of the two alternative
answers, and the third layer of the arguments.

Fig. 1. A simple IBIS graph

An IBIS graph is constructed according to the following rules: (1) an issue is
captured; (2) answers are laid out and linked to the issue; (3) arguments are laid
out and linked to either the answers or other arguments; (4) further issues may
emerge during the process and be linked to either the answers or the arguments.

Conceptually, each addition of an answer or an argument corresponds to a
move in the exploration of the design space. In the design domain, IBIS graphs
have specific features. First, each IBIS graph concerns a single issue. Second,
answers correspond to alternative solutions and compete among them as just
one answer can be accepted for an issue.

In some implementations of the IBIS method, the four nodes can have alterna-
tive statuses to help users visualise aspects of the decision making process. The
precise meaning of these statuses depends on the node type, and is manually
assigned by the users. For example, a designer may change the status of an an-
swer from “open” to “accepted”, “likely” or “unlikely”. In this paper we define a
method for automatically, rather than manually, evaluating nodes in (restricted
kinds of) IBIS graphs, based on a form of argumentation theory, reviewed next.

1.2 Abstract Argumentation and Argument Valuations

In this work we will make use of Abstract Argumentation [10] and some ex-
tensions thereof. We review these briefly here (see the original papers for more
details).

Definition 1. A (finite) abstract argumentation framework (af) is a pair 〈X ,D〉,
where X is a finite set of arguments and D ⊆ X ×X is the attack (or defeat)
relation. A pair 〈x, y〉 ∈ D is referred to as ‘x is an attacker (or defeater) of y’.

An Argumentation-based Approach to Support Design Thinking 343

An af can be described as a directed graph whose nodes represent arguments
and whose edges represent attacks. The nature and underlying structure of the
arguments are completely abstracted away and the focus of the theory is essen-
tially on the management of the conflicts represented by the attack relation. In
this context an (argumentation) semantics is a criterion to identify the exten-
sions of an af, namely those sets of arguments which can “survive the conflict
together”. In turn, the justification status of an argument, according to a given
semantics, can be defined in terms of its membership to the extensions prescribed
by the semantics. A variety of semantics have been considered in the literature,
whose review is beyond the scope of this paper (see [4] for a survey). The only
point we remark is that these semantics evaluate arguments based on a binary
notion of membership and thus give rise to a discrete set of justification sta-
tuses, which may be appropriate when arguments, e.g., are interpreted as logical
sentences in a reasoning process, but may be unsuitable in other contexts.

While afs are focused on conflicts between arguments, other forms of argu-
ments interaction can be considered, in particular a relation of support, which
can be incorporated into afs to give rise to bipolar afs [9]:

Definition 2. A (finite) bipolar af (baf) is a triple 〈X ,D,S〉, where 〈X ,D〉 is
a (finite) af and S⊆X×X is the support relation. A pair 〈x, y〉 ∈ S is referred
to as ‘x is a supporter of y’.

The discrete argument evaluation for afs can be extended to bafs (see [9]).
Another direction of enhancement of afs amounts to assigning a numerical

evaluation to arguments on a continuous scale. We recall here two proposals in
this direction. The first gives a notion of local gradual valuation of a baf, that
can be summarised as follows (see [8] for details):

Definition 3. Let L be a completely ordered set, L∗ be the set of all the finite
sequences of elements of L (including the empty sequence), and Hdef and Hsup

be two ordered sets. Let 〈X ,D,S〉 be a baf. Then, a local gradual valuation on
〈X ,D,S〉 is a function v : X → L such that, for a generic argument a ∈ X ,
given D−(a) = {d1, . . . , dn} the set of attackers of a and S−(a) = {s1, . . . , sp}
the set of supporters of a (for n, p ≥ 0):

v(a) = g(hsup(v(s1), . . . , v(sp)), hdef (v(d1), . . . , v(dn)))
where g : Hsup × Hdef → L is a function with g(x, y) increasing on x and
decreasing on y, and hdef : L∗ → Hdef/hsup : L∗ → Hsup are functions (valuing
the quality of the defeat/support, respectively) satisfying for any x1, . . . , xn, xn+1

(here h = hdef or hsup): (i) if xi ≥ xi′ then h(x1, . . . , xi, . . . , xn) ≥ h(x1, . . . , xi′ ,
. . . , xn); (ii) h(x1, . . . , xn) ≤ h(x1, . . . , xn, xn+1); (iii) h() ≤ h(x1, . . . , xn); (iv)
h(x1, . . . , xn) is bounded by a limit value β.

Note that the local gradual valuation (lgv in the remainder) of an argument
is defined recursively in terms of the valuations of its attackers and supporters.

The second proposal we consider is the Extended Social Abstract Argumenta-
tion approach of [12], taking into account, in addition to attackers and support-
ers, also positive or negative votes on arguments. In a nutshell, the idea is that

344 P. Baroni et al.

in a social context (like an Internet-based social network or debate) opinions
(arguments) are evaluated by a community of users through a voting process.

Definition 4. An Extended Social AbstractArgumentationFramework (esaaf)
is a 4-tuple 〈X ,D,S,V〉 where 〈X ,D,S〉 is a (finite) baf and V :X →N×N is a
function mapping arguments to the number of their positive and negative votes.

Given an (acyclic) esaaf, argument evaluation is based on votes and on the
attack/support relations. It involves a set of operators (called Semantic Frame-
work) extending the operators of [17], where only attackers were considered:

Definition 5. A semantic framework is a 7-tuple 〈L, τ,∧,∨,¬,�,�〉 where L
is a completely ordered set, τ : N × N → L, ∧ : L × L → L, ∨ : L × L → L,
¬ : L → L, � : L× L → L, � : L× L → L. Given an esaaf 〈X ,D,S,V〉 and a
semantic framework 〈L, τ,∧,∨,¬,�,�〉, the valuation of argument a ∈ X is:

M+(a) = (τ(a) ∧ ¬ ∨ {M+ai : (ai, a) ∈ D}) � (τ(a) � ∨{M+ai : (ai, a) ∈ S})
Omitting details, informally, the operator τ evaluates the social support for

each argument a, based on its accumulated positive and negative votes (given
by V), and so assigns an initial score, τ(a), to a. This initial score has no coun-
terpart in lgv seen earlier. Then, as in the case of lgv, the valuation of a is
defined recursively in terms of the valuations of its attackers and supporters.
The individual valuations of the attackers and of the supporters of a are first ag-
gregated using the ∨ operator. Then the aggregated valuations of the attackers
and supporters are combined with τ(a) using the ∧ and ¬ operators and the �
operator respectively. This results in a pair of values which roughly corresponds
to the pair hsup(v(s1), . . . , v(sp)), hdef (v(d1), . . . , v(dn)) in lgv, the main dif-
ference being the fact that τ(a) can be regarded as an additional parameter of
these functions. Finally, the � operator maps the above pair of values in a single
final evaluation (and so clearly corresponds to the function g in lgv).

2 Quantitative Argumentation Debate Frameworks

In section 1.1 we have seen that design scenarios require IBIS graphs with spe-
cific features, and in particular with a single specific (design) issue and answers
(linking to that issue) corresponding to different alternative solutions. Whereas
IBIS graphs (in general and in design contexts) allow new issues to be brought
up during the argumentation, in this paper for simplicity we will disallow this
possibility, and focus on design debates that can be represented by IBIS graphs
where arguments can only be pointed to by other arguments, although argument
nodes may have other argument nodes as children, recursively.

We will define, in Section 3, a method for evaluating arguments and answers in
IBIS graphs, and accompanying or replacing the manual evaluation available in
some IBIS implementations (see Section 1.1). Examining some design scenarios
with the relevant experts (see also Section 5) it emerged that, in their valuations,
they typically ascribe different importance to pro- and con-arguments, which
entails that a base score is required as a starting point for the evaluation. In
order to fulfil these requirements, we propose a formal framework as follows:

An Argumentation-based Approach to Support Design Thinking 345

Definition 6. A QuAD (Quantitative Argumentation Debate) framework is a
5-tuple 〈A, C,P ,R,BS〉 such that (for scale I=[0, 1]):

A is a finite set of answer arguments;
C is a finite set of con-arguments;
P is a finite set of pro-arguments;
the sets A, C, and P are pairwise disjoint;
R ⊆ (C ∪ P)× (A ∪ C ∪ P) is an acyclic binary relation;
BS : (A ∪ C ∪ P) → I is a total function; BS(a) is the base score of a.

The framework is referred to as “quantitative” due to the presence of the
base score. Ignoring this base score, clearly QuAD graphs are abstractions of
(restricted forms of) IBIS graphs, with the issue node omitted since QuAD
frameworks are focused on the evaluation of answer nodes for a specific issue. For
example, the QuAD graph representation of the IBIS graph in Figure 1 has A =
{A1, A2}, C = {C1, C2}, P = {P1} and R = {(P1, A1), (C1, A1), (C2, A2)}.

It is easy to see that a QuAD framework can also be interpreted as a baf
(again ignoring the base score), as notions of attack and support are embedded
in the disjoint sets C and P . This is made explicit by the following definition.

Definition 7. Let F = 〈A, C,P ,R,BS〉 be a QuAD framework and let a ∈ (A∪
C∪P). The set of direct attackers of a is defined as R−(a) = {b ∈ C : (b, a) ∈ R}.
The set of direct supporters of a is defined as R+(a) = {b ∈ P : (b, a) ∈ R}.
Then, the baf corresponding to F is 〈X ,D,S〉 such that:
X = A ∪ C ∪ P, D = {(b, a)|b ∈ R−(a), a ∈ X}, S = {(b, a)|b ∈ R+(a), a ∈ X}.

Note that an esaaf equipped with a semantic framework can give rise to
a QuAD framework, with the base score in the QuAD framework given by the
initial score τ in the semantic framework for the esaaf. The semantic framework
includes however a recipe for calculating the initial score of arguments, based on
votes in the esaaf, whereas our QuAD framework assumes that the base score
is given. Indeed, differently from the application contexts envisaged for esaaf,
design debates do not involve large community of users so the notion of a base
score based on votes is not appropriate, rather the base score can be represented
as a numerical value directly assessed by experts.

3 Automatic Evaluation in QuAD Frameworks

Given a QuAD framework, in order to support the decision making process by
design engineers we need a method to assign a quantitative evaluation, called
final score, to answer nodes. To this purpose we investigate the definition of
a score function SF for arguments of a QuAD framework. The basic idea is
that the final score of an argument depends on its base score and on the final
scores of its attackers and supporters, so SF is defined recursively using a score
operator able to combine these three elements. For a generic argument a, let
(a1, . . . , an) be an arbitrary permutation of the (n ≥ 0) attackers in R−(a). We
denote as SC(R−(a)) = (SF(a1), . . . ,SF(an)) the corresponding sequence of

346 P. Baroni et al.

final scores. Similarly, letting (b1, . . . , bm) be an arbitrary permutation of the
(m ≥ 0) supporters in R+(a), we denote as SC(R+(a)) = (SF(b1), . . . ,SF(bm))
the corresponding sequence of final scores. Then, using the hypothesis (implic-
itly adopted both in [8] and [12]) of separability of the evaluations concerning
attackers and supporters,1 a generic score function for an argument a can be
defined as:

SF(a) = g(BS(a),Fatt(BS(a),SC(R−(a))),Fsupp(BS(a),SC(R+(a)))) (1)

Referring to the example of Figure 1, suppose that BS(A1) = BS(A2) = 0.5,
BS(C1) = 0.7, BS(C2) = 0.4, BS(P1) = 0.9. Then, denoting the empty se-
quence as (), we obtain

SF(A1) = g(0.5,Fatt(0.5,SC((C1))),Fsupp(0.5,SC((P1))));
SF(A2) = g(0.5,Fatt(0.5,SC((C2))),Fsupp(0.5, ());
SF(C1) = g(0.7, (), ()); SF(C2) = g(0.4, (), ()); SF(P1) = g(0.9, (), ()).

We identify some basic requirements for the score function. First, if there are
neither attackers nor supporters for an argument then its final evaluation must
coincide with the base score (in our running example this applies to arguments
C1, C2, and P1). For any v0 ∈ I, this requirement can be expressed as

g(v0, (), ()) = v0. (2)

Moreover, each attacker (supporter) should have a negative or null (positive
or null, respectively) effect on the final scores. Given a generic sequence S =
(s1, . . . , sk) ∈ I

k and v ∈ I, let us denote as S ∪ (v) the sequence (s1, . . . , sk, v) ∈
I
k+1. The above requirements can then be expressed, for sequences S1, S2, as

g(v0,Fatt(S1),Fsupp(S2)) ≥ g(v0,Fatt(S1 ∪ (v)),Fsupp(S2)) (3)

g(v0,Fatt(S1),Fsupp(S2)) ≤ g(v0,Fatt(S1),Fsupp(S2 ∪ (v))) (4)

We define Fatt (and dually Fsupp) so that the contribution of an attacker
(supporter) to the score of an argument decreases (increases) the argument score
by an amount proportional both to (i) the score of the attacker (supporter),
i.e. a strong attacker (supporter) has more effect than a weaker one, and (ii)
to the previous score of the argument itself, i.e. an already strong argument
benefits quantitatively less from a support than a weak one and an already
weak argument suffers quantitatively less from an attack than a stronger one.
Focusing on the case of a single attacker (supporter) with score v this leads to
the following base expressions:2

fatt(v0, v) = v0 − v0 · v = v0 · (1− v) (5)

fsupp(v0, v) = v0 + (1− v0) · v = v0 + v − v0 · v (6)

1 Here, separability amounts to absence of interaction between attackers and sup-
porters.

2 The expression of fsupp corresponds to the T-conorm operator also referred to as
probabilistic sum in the literature [15].

An Argumentation-based Approach to Support Design Thinking 347

The definitions of Fatt and Fsupp have then the same recursive form. Let ∗
stand for either att or supp. Then:

F∗(v0, ()) = v0 (7)

F∗(v0, (v)) = f∗(v0, v) (8)

F∗(v0, (v1, . . . , vn)) = f∗(F∗(v0, (v1, . . . , vn−1)), vn) (9)

Note that this definition directly entails that Fatt(v0, S) ≥ Fatt(v0, S ∪ (v))
and Fsupp(v0, S) ≤ Fsupp(v0, S ∪ (v)). In our running example, we get

Fatt(0.5,SC((C1))) = Fatt(0.5, (0.7)) = fatt(0.5, 0.7) = 0.15,
Fsupp(0.5,SC((P1))) = Fsupp(0.5, (0.9)) = fsupp(0.5, 0.9) = 0.95,
Fatt(0.5,SC((C2))) = Fatt(0.5, (0.4)) = fatt(0.5, 0.4) = 0.3, and
Fsupp(0.5, ()) = 0.5.

We now establish some basic properties of Fatt and Fsupp. First, they return
values in I = [0, 1], as required:

Proposition 1. For any v0 ∈ I and for any sequence (v1, . . . , vk) ∈ I
k, k ≥ 0,

Fatt(v0, (v1, . . . , vk)) ∈ I and Fsupp(v0, (v1, . . . , vk)) ∈ I.

Proof. By induction on k. For the base case, trivially the statement holds for
k = 0 (empty sequence) and k = 1 given the definitions of fatt and fsupp.
Assume that the statement holds for a generic sequence of length k − 1, i.e.
Fatt(v0, (v1, . . . , vk−1)) = vx ∈ I then, from (9), Fatt(v0, (v1, . . . , vk)) =
fatt(vx, vk). Similarly, letting Fsupp(v0, (v1, . . . , vk−1)) = vy ∈ I we get
Fsupp(v0, (v1, . . . , vk)) = fsupp(vy, vk). Then, again the statement holds by defi-
nition of fatt and fsupp.

Then, it is of course required that Fatt and Fsupp produce the same result for
any permutation of the same sequence.

Proposition 2. For any v0 ∈ I and (v1, . . . , vk) ∈ I
k, k ≥ 0, let (v1i , . . . , vki)

be an arbitrary permutation of (v1, . . . , vk). It holds that Fatt(v0, (v1, . . . , vk)) =
Fatt(v0, (v1i , . . . , vki)) and Fsupp(v0, (v1, . . . , vk)) = Fsupp(v0, (v1i , . . . , vki)).

Proof. Fatt(v0, (v1, . . . , vk)) = fatt(fatt(. . . fatt(v0, v1) . . .), vk−1), vk) = (((v0 ·
(1−v1)) ·(1−v2)) . . . ·(1−vk)) = v0 ·

∏k
i=1(1−vi). Thus the statement follows di-

rectly from commutativity and associativity of the product of the (1−vi) factors.
As to Fsupp, Fsupp(v0, (v1, . . . , vk)) = fsupp(fsupp(. . . fsupp(v0, v1) . . .), vk−1), vk),
the statement follows from the well-known properties of commutativity and as-
sociativity of any T-conorm.

Another desirable property of Fatt and Fsupp is a sort of monotonic behavior
with respect to the increasing score of attackers and supporters respectively.

Proposition 3. For any v0 ∈ I and for any S = (v1, . . . , vh, . . . , vk) ∈ I
k, k ≥ 1,

1 ≤ h ≤ k, let S+ be a sequence obtained from S by replacing vh with some
vl > vh. Then Fatt(v0, S) ≥ Fatt(v0, S

+) and Fsupp(v0, S) ≤ Fsupp(v0, S
+).

348 P. Baroni et al.

Proof. As to Fatt given that for a generic sequence Fatt(v0, (v1, . . . , vk)) =

v0 · ∏k
i=1(1 − vi), we observe that Fatt(v0, S

+) = Fatt(v0, S) · 1−vl
1−vh

and the
statement follows from 0 ≤ 1 − vl < 1 − vh. As to Fsupp, from commutativity
and associativity of fsupp, letting S

∗ = (v1, . . . , vh−1, vh+1, . . . , vk) ∈ I
k−1, we get

Fsupp(v0, S)=fsupp(Fsupp(v0, S
∗), vh) and Fsupp(v0, S

+)=fsupp(Fsupp(v0, S
∗), vl)

and the statement follows from the well-known monotonicity of T-conorms.

In order to finalise the definition of score function we need to define g. For
this we adopted the idea that when the effect of attackers is null (i.e. the base
score is left unchanged as far as attackers are concerned) the final score must
coincide with the one established on the basis of supporters, and dually when
the effect of supporters is null. Clearly, when both are null the final score must
coincide with the base score. When both attackers and supporters have an effect,
the final score is obtained averaging the two contributions. Formally:

Definition 8. The operator g : I× I× I → I is defined as follows:

g(v0, va, vs) = vaif vs = v0 (10)

g(v0, va, vs) = vsif va = v0 (11)

g(v0, va, vs) =
(va + vs)

2
otherwise (12)

Then, the following result directly follows from Propositions 1–3:

Proposition 4. The score function SF(a) defined by equations (1), (7), (8)
and (9) and by Definition 8 satifies properties (2), (3), and (4).

For our running example, we get SF(A1) = g(0.5, 0.15, 0.95) = 0.55 and
SF(A2) = g(0.5, 0.3, 0.5) = 0.3.

Note that, by definition of our operator g, the addition of an attack (support)
for an argument previously not attacked (supported, respectively) gives rise to
a discontinuity. This in a sense reflects a discontinuity in the underlying debate.
Whether this behaviour is suitable in all contexts is an open question, and the
definition of different forms of SF without this discontinuity is an importnat
direction for future work.

On the computational side, given that in a QuAD framework the relation R
is acyclic, evaluating SF for answers nodes (in fact, for any node) is quite easy:
given an argument a to be evaluated the score function is invoked recursively
on its attackers and supporters to obtain SC(R−(a)) and SC(R+(a)) which are
finally fed to the SF operator along with the base score BS(a). The recursion
is well-founded given the acyclicity of R, the base being provided by nodes with
neither attackers nor supporters whose final score coincides with their base score.

4 Implementation in designVUE

The proposed approach has been implemented within a pre-existing IBIS ap-
plication known as design Visual Understanding Environment (designVUE) [1].

An Argumentation-based Approach to Support Design Thinking 349

designVUE has been chosen as a platform for the implementation of the pro-
posed approach for various reasons: it is open-source; it has been developed by
the Design Engineering Group at Imperial College London; it is receiving in-
creasing interest from academia and industry and as a result has a growing user
community. In the following paragraphs we describe in more detail designVUE
and its extension with the QuAD framework.

designVUE is an application developed using Java to attain cross-platform
portability. Its GUI consists primarily of a main window, which contains the
menu bar, the toolbar and the graph canvas.

The main purpose of designVUE is to draw graphs (also referred to as dia-
grams and maps) mostly consisting of nodes (depicted as boxes) and links (de-
picted as arrows) among them. The programme does not impose any restriction
on the way a graph can be drawn. It is up to the user to confer any meaning
to a graph. Among the large variety of graphs that can be drawn, designVUE
supports IBIS graphs. These have no special treatment in designVUE and, in
particular, there is no support to the evaluation of the argumentative process.
In addition to the main window, there are floating windows that can be opened
from the Windows menu. One of these, called Info Window, presents information
about the currently selected node.

The QuAD framework has been implemented in Java and integrated into a
customised version of designVUE, forking its existing codebase. The additions
and modifications brought to designVUE fit broadly in two categories: those
related to the GUI; and those concerning the implementation of the score as-
signment method. As for the GUI:

– a new pane called BaseScore Pane has been added to the Info Window : it
displays the base score of the currently selected IBIS node and allows the
user to edit it (base scores are created with a default value of 0.5);

– a new pane called Score Pane has been added to Info Window : it displays
the final score of the currently selected IBIS node;

– a new menu item labeled Compute Argumentation on IBIS node has been
added to the Content menu: it can be invoked only after selecting an IBIS
answer node and triggers the score computation for the selected node (and
for all the nodes on which it depends).

As to the algorithm to compute final scores, it has been implemented in a Java
class, which basically carries out a depth-first post-order traversal, which acts
directly onto the IBIS nodes displayed in the canvas. To enhance performances
in complex graphs where some pro and/or con arguments affect many other
arguments, the algorithm implements a so-called closed list in order to reuse the
scores already computed in previous phases of the graph traversal.

5 Case Studies

The enhanced version of designVUE was evaluated through two case studies.
The first, in the domain of civil engineering, concerns the choice of foundations

350 P. Baroni et al.

for a multi-storey building to be developed on a brownfield. The second, in the
domain of water engineering, focuses on the choice of a reuse technology for
sludge produced by wastewater treatment plants.

The first case study was developed in collaboration with a civil engineer with
more than ten years of experience in the industry, who was already familiar
with the IBIS concept having used it through the Compendium software [6].
Differently, the second case study was developed together with an expert at the
University of Brescia, who had neither previous knowledge of the IBIS concept,
nor of any tool implementing it.

5.1 Foundations

This case study is based on a design task, which was selected to satisfy the
following criteria: the design problem had to be well known to the industry;
and the problem solving process had to rely on the application of known and
established solution principles. On this basis the task presented in this case
study can be considered to be at the boundary between adaptive and variant
design [19]. The reason for choosing this type of design task is to adopt a walk
before you run approach to evaluation.

The case is based on real project experience of the collaborating engineer.
However, it was not developed during the actual design process but rather re-
constructed retrospectively. Prior to the development of the case, the engineer
was introduced to the enhanced version of designVUE and instructed to use it
including inputting values for the base scores.

As mentioned earlier, the design problem focuses on the selection of the most
appropriate type of foundation for a multi-storey building in a brownfield area.
This is the part of urban planning concerning the re-use of abandoned or under-
used industrial and commercial facilities. When considering the choice of building
foundations in brownfield sites, multiple alternatives are common and multiple
considerations have to be made starting from the different kinds of ground and
their load bearing capabilities, which are usually different than in greenfield sites.

The starting point of the IBIS graph developed by the engineer is the issue
to choose a suitable foundation given the requirements discussed earlier (see
Figure 2). Three types of foundation solutions are considered, namely Pad, Raft
and Piles, and these are subsequently evaluated using several pro- and con-
arguments. After the development of the IBIS graph the engineer executed the
score computation on the three solutions under two situations: 1) using default
values for the base scores; and 2) using modified values for the base scores.
The modified values for the base scores emerged through a three step process
involving extraction of the criteria behind each argument (see text in bracket at
the bottom of each argument in Figure 2), analysis of the relative importance
of the criteria in the context of the selected design task, and assignment of a
numerical value between 0 and 1 to each criteria.

The results for the situation with unchanged values indicate that Pad (0.51)
is the preferred solution over Raft (0.49) and Piles (0.44). Differently, the results
for the situation in which the values were changed suggest that Piles (0.56) is

An Argumentation-based Approach to Support Design Thinking 351

sligthly preferable to Raft (0.55) and considerably preferable to Pad (0.41). As it
can be seen, the three alternatives are ranked exactly in the reverse order. Only
the results based on the modified values for the base scores were judged by the
expert consistent with his conclusions.

On one hand this confirms the importance of weighting pro- and con-arguments
with expert-provided base scores in order to get meaningful results. On the other
hand, it shows that a purely graphical representation of the pros and cons is typ-
ically insufficient to give an account of the reasons underlying the final choice
by the experts. In this sense, representing and managing explicitly quantitative
valuations enhances transparency and accountability of the decision process.

Fig. 2. designVUE graph of the foundation project debate. Note that in designVUE
the answer node has multiple statuses. In agreement with the automatic evaluation,
the status for the Pad and Raft foundation answers has been manually changed to
’rejected’ (red crossed out light bulb icon), while that for the Piles foundation answer
to ’accepted’ (green light bulb icon).

5.2 Sludge Reuse

Sewage sludge is produced from the treatment of wastewater. Its traditional
reuse option (alternative to landfill disposal) had been land application (due
to its content of organic carbon and nutrients). Actually, reuse in agriculture
is subject to restrictions (since the sludge also contains pollutants), so that
other disposal routes, such as wet oxidation, reuse in the cement industry or
energy recovery by combustion are considered as viable alternatives. The choice

352 P. Baroni et al.

of the best alternative depends on technical (feasibility, applicability, reliability),
economic, environmental and social factors whose importance varies from site to
site. In this context, the use of the enhanced version of designVUE was proposed
to an environmental engineering expert, who had no previous experience with
any IBIS support tool.

As a first step, the expert provided a qualitative valuation scheme in tabular
form that has been translated into a designVUE graph. Then the expert was
asked to assign weights to the pro and con arguments associated with the differ-
ent options and to compare the system’s evaluation of the alternatives with his
own one. As for the first request, the expert was able to assign weights to the pro
and con arguments associated with each technology without particular problems.
As to the second request, he observed that in this context technical experts are
not in charge of the final decision since environment related projects are sub-
jected to the approval of public officers or committees, who, taking into account
context-specific aspects (e.g. social issues), may ascribe different importance to
the technical considerations formulated by the expert. To properly represent this
two-phase decision process within designVUE the expert suggested the use of a
graph with a characteristic 2-tier structure (see figure 3), where:

Fig. 3. designVUE graph for the second phase of the sludge reuse project debate. Note
that the four answers are in the ’open’ status (blue light bulb icon) as a decision has
not been made yet.

– the first tier takes into account the technical strengths and weaknesses of
every single alternative. These are the pro and con arguments directly linked
with the answers, whose base scores are provided by domain experts.

– The second tier involves the final decision-makers and consists of pro argu-
ments attached to the pros and cons expressed by the expert. By assigning
the base scores to the arguments of the second tier, the decision-makers

An Argumentation-based Approach to Support Design Thinking 353

modulate the actual influence of first tier arguments according to context
specific considerations. The structure of the 2-tier graph is defined so as to
ensure that the same factor gets the same weight in the assessment of all
alternatives.

Following this line, designVUE can be used to support a multistep method-
ology taking explicitly into account different classes of stakeholders. While the
study of this methodology is left to future work, the expert expressed a positive
judgment about the tool, with particular appreciation for the intuitive visual
representation and the traceability of the reasons underlying the final decisions.

6 Related Work

In engineering design, various methods are used to support the evaluation of
design alternatives, e.g. decision-matrix [20] and analytic hierarchy process [21].
Among these, the decision-matrix, also known as Pugh method, is the simplest
and most commonly adopted. It consists of ranking alternatives by identifying
a set of evaluation criteria, weighting their importance, scoring the alternatives
against each criteria, multiplying the scores by the weight, and computing the
total score for each alternative. Our work differs from the Pugh method in that it
aims to extract a quantitative evaluation of alternatives from rich and explicitly
captured argumentation rather than systematically assigned and justified scores.
Hence, it seems to have the potential to lead to more logically reasoned decisions.

Turning to argumentation literature, the idea of providing a quantitative eval-
uation of a given position on the basis of arguments in favor and against has
been considered in several works.

In [5], in the context of a logic-based approach to argumentation, an argument
structure for a logical formula α is (omitting some details) a collection of reasons
supporting (¬)α. Each reason is represented as an argument tree, whose root is
an argument for (¬)α and where the children of an argument node are attackers
of the node itself. Each argument tree is quantitatively evaluated using a cate-
goriser. The results of the evaluation of argument trees for (¬)α are aggregated
separately using an accumulator function and then combined. Though this work
shows several similarities with our approach at a generic level, we point out some
important differences. In [5] the evaluation concerns logical formulas rather than
arguments, arguments can only attack (not support) each other, while the notion
of support for a formula coincides with the (defeasible) derivation of the formula.
Then, differently from our approach, the recursive procedure corresponding to
the categoriser concerns attacks only and the notion of support plays a role only
in the accumulator. Also, in [5] there is no notion of base score.

The gradual valuation of bafs [8] (see Section 1.2) is closer to our pro-
posal. In fact, the generic valuation function v of bafs (see Definition 3) has
a similar structure to our SF , with hsup, hdef corresponding to our SC(R+(a)),
SC(R−(a)) respectively and satisfying analogous properties. A basic difference
concerns the base score, absent in [8] and crucial in our application domain.

354 P. Baroni et al.

The esaaf approach of [12] (see Section 1.2) has more similarities, as it en-
compasses an initial score for arguments (obtained from votes) and a recursive
evaluation mechanism similar to ours. In fact, the treatment we propose for at-
tackers coincides with the one proposed in [12], while our proposal differs in the
treatment of supporters: in [12] supporters are treated as a sort of “negative
attacks”, while in our approach supporters contribute to increase the base score
specularly to the way attackers contribute to decrease it. As a consequence, in
esaaf the operator � for the combination of the initial score with the aggre-
gation of supporters’ valuations includes the min operator to prevent that the
combination exceeds the limit value of 1. This means that the contribution of
supporters is subject to a saturation which may be undesirable in some cases.

The approach of [13] also features significant similarities with our proposal. In
fact the notion of real equational network introduced in [13] uses an evaluation
function f(a) from the set of arguments to [0, 1] which is defined recursively, for
an argument a, as f(a) = ha(f(a1), . . . , f(ak)) where a1, . . . , ak are the attackers
of a. [13] explores several alternatives for the function f with unrestricted graph
topology (in the presence of cycles the solution is a fixed point of f) but no
notion of base argument score is considered. Note that, assuming a fixed initial
score of 1 for any argument, our Fatt coincides with the function called Eqinverse
in [13]. [13] considers also the presence of a support relation, but treated as a
potential “vehicle” for attacks, in the sense that if an argument a supports
another argument b, an attacker of a is also considered as an (indirect) attacker
of b and contributes to decreasing its score. On the other hand a supporting
argument cannot increase the score of the supported argument. This view is
coherent with the absence of a base score and is clearly alternative to ours.

Other approaches to quantitative valuation have been proposed in the context of
Dung’s abstract argumentationwhere only the attack relation is encompassed. For
example, [18] proposes a game-theoretic approach to evaluate argument strength
in abstract argumentation frameworks. In a nutshell, the strength of an argument x
is the value of a game of argumentation strategy played by the proponent of x. The
approach does not encompass a support relations nor base scores: extending this
game-theoretic perspective with these notions appears to be a significant direction
of future investigation. Also, in weighted argumentation frameworks [11], real val-
ued weights are assigned to attacks (rather than to arguments). These weights are
not meant to be a basis for scoring arguments, rather they represent the “amount
of inconsistency” carried by an attack. This use of weights is clearly different from
ours and, in a sense, complementary. Investigating a combination of these two
kinds of valuations (possibly considering also weights for support links) is a
further interesting direction of future work.

Our system extends an existing IBIS-based tool, designVUE, already used
in the engineering domain and in particular familiar to some of the experts
responsible for our case studies. Other IBIS-based system exist in the literature.
For example, Cohere and Compendium [7,6] adopt an IBIS methodology to
support design rationale in collaborative settings. However, these systems do
not incorporate means to automatically evaluate debates. Other examples are

An Argumentation-based Approach to Support Design Thinking 355

the Carneades [14] and the PARMENIDES [2] systems. These adopt a more
articulate model of debate as they use argument schemes and critical questions
as basic building blocks of the argumentation process. However, they do not
incorporate a numerical evaluation of positions in debates. The extension of
these other systems to take advantage of our scoring methodology is a possible
direction of future work.

7 Conclusions

We presented a novel argumentation-based formal framework for quantitative
assessment of design alternatives, its implementation in the designVUE software
tool, and its preliminary experimentation in two case studies. Several directions
of future work can be considered. On the theoretical side, a more extensive
analysis of the properties of the proposed score function is under way, along
with the study of alternative score functions exhibiting a different behavior (e.g.
concerning the effect of attacks and supports and their balance) while satisfying
the same basic requirements. On the implementation side, we plan to integrate
the QuAD framework in the web-based debate system www.quaestio-it.com

so to gain experience on its acceptability by users in other domains. On the
experimentation side, the development of further engineering design case studies
(more complex and in other domains) is under way and we intend to carry out a
detailed on field comparison with more traditional approaches to the evaluation
of design alternatives.

Acknowledgments. The authors thank V. Evripidou and E. Marfisi for their
support and cooperation. Aurisicchio and Toni thank the support of a Faculty of
Engineering EPSRC Internal Project on ‘Engineering design knowledge capture
and feedback’. The authors also thank the anonymous reviewers for their detailed
and helpful comments.

References

1. designVUE (February 2013),
http://www3.imperial.ac.uk/designengineering/tools/designvue

2. Atkinson, K., Bench-Capon, T.J.M., McBurney, P.: PARMENIDES: Facilitating
deliberation in democracies. Artificial Intelligence and Law 14(4), 261–275 (2006)

3. Aurisicchio, M., Bracewell, R.H.: Capturing an integrated design information space
with a diagram based approach. Journal of Engineering Design 24, 397–428 (2013)

4. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation se-
mantics. Knowledge Eng. Review 26(4), 365–410 (2011)

5. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial
Intelligence 128(1-2), 203–235 (2001)

6. Buckingham Shum, S.J., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B., Nu-
seibeh, B.: Hypermedia support for argumentation-based rationale: 15 years on
from gIBIS and QOC. In: Dutoit, A.H., McCall, R., Mistrik, I., Paech, B. (eds.)
Rationale Management in Software Engineering, pp. 111–132. Springer (2006)

www.quaestio-it.com
http://www3.imperial.ac.uk/designengineering/tools/designvue

356 P. Baroni et al.

7. Buckingham Shum, S.J.: Cohere: Towards web 2.0 argumentation. In: Besnard, P.,
Doutre, S., Hunter, A. (eds.) Computational Models of Argument: Proceedings of
COMMA 2008, Toulouse, France, May 28-30. Frontiers in Artificial Intelligence
and Applications, vol. 172, pp. 97–108. IOS Press (2008)

8. Cayrol, C., Lagasquie-Schiex, M.C.: Gradual valuation for bipolar argumentation
frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp.
366–377. Springer, Heidelberg (2005)

9. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar
argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI),
vol. 3571, pp. 378–389. Springer, Heidelberg (2005)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–357 (1995)

11. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted
argument systems: Basic definitions, algorithms, and complexity results. Artificial
Intelligence 175(2), 457–486 (2011)

12. Evripidou, V., Toni, F.: Argumentation and voting for an intelligent user empower-
ing business directory on the web. In: Proc. of the 6th Int. Conf. on Web Reasoning
and Rule Systems (RR 2012), pp. 209–212 (2012)

13. Gabbay, D.M.: Equational approach to argumentation networks. Argument &
Computation 3(2-3), 87–142 (2012)

14. Gordon, T.F., Walton, D.: The Carneades argumentation framework - us-
ing presumptions and exceptions to model critical questions. In: Dunne, P.E.,
Bench-Capon, T.J.M. (eds.) Computational Models of Argument: Proceedings of
COMMA 2006, Liverpool, UK, September 11-12 (2006)

15. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer (2000)
16. Kunz, W., Rittel, H.: Issues as elements of information systems. Working Paper 131,

Institute of Urban and Regional Development. University of California, Berkeley,
California (1970)

17. Leite, J., Martins, J.: Social abstract argumentation. In: Proc. of the 22nd Int.
Joint Conf. on Artificial Intelligence (IJCAI 2011), pp. 2287–2292 (2011)

18. Matt, P.-A., Toni, F.: A game-theoretic measure of argument strength for abstract
argumentation. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 285–297. Springer, Heidelberg (2008)

19. Pahl, G., Beitz, W.: Engineering design: a systematic approach. Tech. rep., Design
Council, London, UK (1984)

20. Pugh, S.: Total Design: Integrated Methods for Successful Product Engineering.
Addison-Wesley (1991)

21. Saaty, T.L.: The Analytic Hierarchy Process: Planning, Priority Setting, Resource
Allocation. McGraw-Hill (1980)

22. Simon, H.A.: The Sciences of the Artificial, 3rd edn. The MIT Press (1996)
23. Simon, H.A., Newell, A.: Human problem solving: The state of the theory in 1970.

American Psychologist 26(2), 145–159 (1971)

	An Argumentation-Based Approachfor Automatic Evaluation of Design Debates
	1 Background
	1.1 Issue Based Information System (IBIS)
	1.2 Abstract Argumentation and Argument Valuations

	2 Quantitative Argumentation Debate Frameworks
	3 Automatic Evaluation in QuAD Frameworks
	4 Implementation in designVUE
	5 Case Studies
	5.1 Foundations
	5.2 Sludge Reuse

	6 Related Work
	7 Conclusions
	References

