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Preface

These are the proceedings of the 14th International Workshop on Computational
Logic in Multi-Agent Systems (CLIMA XIV), held during September 15–18,
2013, in Corunna, Spain, and co-located with the 22nd International Conference
Logic Programming and Non-Monotonic Reasoning (LPNMR) and with the 7th
International Workshop on Modular Ontologies (WoMO 2013).

Multi-agent systems are systems of interacting autonomous agents or com-
ponents that can perceive and act upon their environment to achieve their in-
dividual goals as well as joint goals. Research on such systems integrates many
technologies and concepts in artificial intelligence and other areas of comput-
ing as well as other disciplines. Over recent years, the agent paradigm gained
popularity, due to its applicability to a full spectrum of domains, from search
engines to educational aids to electronic commerce and trade, e-procurement,
recommendation systems, simulation and routing, to mention only some.

Computational logic provides a well-defined, general, and rigorous frame-
work for studying syntax, semantics and procedures for various tasks by indi-
vidual agents, as well as interaction amongst agents in multi-agent systems, for
implementations, environments, tools, and standards, and for linking together
specification and verification of properties of individual agents and multi-agent
systems.

The purpose of the CLIMA workshops is to provide a forum for discussing
techniques, based on computational logic, for representing, programming and
reasoning about agents and multi-agent systems in a formal way.

Former CLIMA editions have mostly been conducted in conjunction with
major computational logic and artificial intelligence events such as CL in 2000,
ICLP in 2001 and 2007, FLoC in 2002, LPNMR and AI-Math in 2004, JELIA
in 2004 and 2008, AAMAS in 2006, MATES in 2009, ECAI in 2010 and 2012,
and IJCAI in 2011. In 2005, CLIMA VI was organized as a stand-alone event.

CLIMA XIV closely followed the format established by its predecessors, with
regular proceedings and two special sessions: Argumentation Technologies, orga-
nized by Paolo Torroni and Stefan Woltran, and Norms and Normative Multi-
Agent Systems, organized by Leon van der Torre.

Argumentation is an important and exciting topic in artificial intelligence,
where uses of argumentation have increased in recent years, throughout a va-
riety of subdisciplines. Research activities range from theory to applications.
The Special Session on Argumentation Technologies was intended to be a forum
to discuss concepts, theories, methodologies, and applications of computational
models of argumentation.

Norms are pervasive in everyday life and influence the conduct of the entities
subject to them. One of the main functions of norms is to regulate the behavior
and relationships of agents. Norms have been proposed in multi-agent systems
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and computer science to deal with coordination issues, to deal with security
issues of multi-agent systems, to model legal issues in electronic institutions and
electronic commerce, to model multi-agent organizations, etc.

This 14th edition of CLIMA received an exceptionally high number of submis-
sions. The 23 papers presented at CLIMA XIV were selected from 44 submissions,
on average of very high quality, after two rounds of reviewing, resulting in a final
acceptance rate of circa 50%, in line with the high standards of previous edi-
tions. Many of those involved in the revision and selection process acknowledged
the high quality of the program. In many instances the authors expressed their
satisfaction with very informative and constructive reviews, for which CLIMA
is renown.

The Program Committee consisted of 63 top-level researchers from 44 institu-
tions located in five continents and 18 countries; 16 additional reviewers helped
in the process. The papers in this book have been authored by 62 researchers
worldwide.

Besides the presentation of the regular papers contained in this book, CLIMA
XIV featured four invited talks delivered by George Vouros (University of Pi-
raeus, Greece), Pietro Baroni (Università degli Studi di Brescia, Italy), Gerhard
Brewka (University of Leipzig, Germany), and Sven Ove Hansson (Royal Insti-
tute of Technology, Sweden), whose abstracts can be found after this preface.

Further information about CLIMA XIV is available from the website http:

//centria.di.fct.unl.pt/events/climaXIV/. General information about the
workshop series, with links to past and future events, can be found on the CLIMA
workshop series home page, http://centria.di.fct.unl.pt/~clima/.

We thank all the authors of papers submitted to CLIMA XIV, the invited
speakers, the members of the Program Committee, and the additional reviewers
for ensuring that CLIMA keeps up to its high standards. Additionally, we ac-
knowledge Sintelnet for financially supporting the invited talk of George Vouros,
LPNMR for supporting the invited talk of Gerhard Brewka, and AI Journal for
financially supporting the invited talk of Pietro Baroni and the discounts in
student registrations. A special thank you goes to Pedro Cabalar, the Co-chair
of LPNMR 2013, and the local organizers in Corunna, for all their help and
support.

September 2013 João Leite
Tran Cao Son
Paolo Torroni

Leon van der Torre
Stefan Woltran
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Mind the Gap: Abstract vs. Applied

Argumentation
–Invited Talk–

Pietro Baroni

Dip. di Ingegneria dell’Informazione, University of Brescia
via Branze 38, 25123 Brescia, Italy

baroni@ing.unibs.it

Using examples taken from the literature, the talk discusses gaps and links be-
tween formal notions and models in abstract argumentation and actual applica-
tions of argumentation technologies, with a twofold perspective. On one hand, it
analyses the risks inherent in direct jumps from concrete examples to completely
abstract formalisms. On the other hand, it examines the practical counterparts
and potential utility of some abstract notions in actual application contexts.



Towards Reactive Multi-Context Systems

–Invited Talk–

Gerhard Brewka

Leipzig University, Informatics Institute
Postfach 100920, 04009 Leipzig, Germany

brewka@informatik.uni-leipzig.de

Among the challenges faced by the area of knowledge representation (KR) are the
following ones: (1) knowledge represented in different knowledge representation
languages needs to be integrated, and (2), certain applications, e.g. assisted
living, have specific needs not typically fulfilled by standard KR systems. What
we have in mind are applications where reasoners, rather than answering specific
user calls, run online and have to deal with a continuous stream of information.

We argue that multi-context systems (MCS) are adequate tools for both
challenges. The basic idea underlying MCS is to leave the diverse formalisms and
knowledge bases untouched, and to equip each reasoning context with a collection
of so-called bridge rules in order to model the necessary information flow among
contexts. Bridge rules are similar to logic programming rules (including default
negation), with an important difference: they allow to access other contexts in
their bodies. The semantics of MCS is defined in terms of equilibria: a belief
state assigns a belief set to each context Ci. A belief state is an equilibrium
whenever the belief set selected for each Ci is acceptable for Ci’s knowledge base
augmented by the heads of Ci’s applicable bridge rules.

Although this covers the flow of information, it does not capture other op-
erations one may want to perform on context KBs. For instance, rather than
simply adding a formula φ, we may want to delete some information, or to revise
the KB with φ to avoid inconsistency in the context’s belief set. To provide this
additional functionality MCS were later generalized to so called managed MCS
(mMCS).

The possibility to have arbitrary operators is what, as we believe, makes
mMCS suitable tools for online applications. The systems we have in mind are
reactive in the sense that they modify themselves to keep system performance
up and to respond adequately to potential emergencies. In the talk we discuss
what is needed to turn the managed MCS approach into a framework for online
reasoning. In particular,

– we need to admit contexts which are connected to the real world through
sensors,

– we need to identify operations on KBs which allow us to forget irrelevant
information and to focus on potential emergencies. Ideally such operations
also take the current system performance into account and are able to restrict
recomputations to relevant parts,
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– we need sophisticated preference handling techniques, as preferences will play
an essential role to handle inconsistencies among different sensors, to deal
with more important emergencies first, and to mediate between what’s in
the current focus and the goal not to overlook important events,

– we need to come up with notions describing the behavior of a system over
time, e.g. that of a system run.

A lot remains to be done in KR to meet the challenges of online reasoning.
Nevertheless, promising ideas are around and addressing these problems will
definitely be worth it.



Intuition Pumps for Deontic Logic

–Invited Talk–

Sven Ove Hansson

Royal Institute of Technology, Sweden

soh@kth.se

In deontic logic as well as several other areas of logic, intuitions are applied
not only to the representation of the actual subject-matter but also to various
constructions such as possible worlds, maximal subsets not applying a certain
sentence, etc. To what extent can intuitions related to such constructions help
us determine the validity of logical principles for the actual subject-matter? In
this talk we investigate the efficiency of different types of intuition pumps used
in deontic logic and related fields.



Combing Ontologies in Settings with Multiple

Agents
–Invited Talk–

George Vouros

Department of Digital Systems,
University of Piraeus, Greece

georgev@unipi.gr

Abstract. Combining knowledge and beliefs of autonomous peers in dis-
tributed settings, is a major challenge. In this talk we consider agents that
combine their ontologies and reason jointly with their coupled knowledge
using the E-SHIQ representation framework. We motivate the need for a
representation framework that allows agents to combine their knowledge
in different ways, maintaining the subjectivity of their own knowledge
and beliefs, and to reason collaboratively, constructing a tableau that
is distributed among them. The talk presents the E − SHIQ represen-
tation framework and the tableau reasoning algorithm. It presents the
implications to the modularization of ontologies for efficient reasoning,
implications to coordinating agents’ subjective beliefs, as well as chal-
lenges for reasoning with ontologies in open and dynamic multi-agent
systems.

1 Combining Ontologies with E − SHIQ

To combine knowledge and beliefs of autonomous agents in open and inherently
distributed settings, we need special formalisms that take into account the com-
plementarity and heterogeneity of knowledge in multiple interconnected contexts.
Agents may have different, subjective beliefs concerning“bridging”heterogeneity
and coupling their knowledge with the knowledge of others. The subjectivity of
beliefs plays an important role in such a setting, as agents may inherently (i.e.
due to restrictions of their task environment) have different views of the knowl-
edge possessed by others, or they may not agree on the way they may jointly
shape knowledge.

On the other hand, large ontologies need to be dismantled so as to be evolved,
engineered and used effectively during reasoning. The process of taking an ontol-
ogy to possibly interdependent ontology units is called ontology modularization,
and specifically, ontology partitioning. Each such unit, or module, provides a
specific context for performing ontology maintenance, evolution and reasoning
tasks, at scales and complexity that are smaller than that of the initial ontol-
ogy. Therefore, in open and inherently distributed settings (for performing either
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ontology maintenance, evolution or reasoning tasks), several such ontology mod-
ules may co-exist in connection with each other. Formally, it is required that
any axiom that is expressed using terms in the signature of a module and it is
entailed by the ontology must be entailed by the module, and vise-versa. The
partitioning task requires that the union of all the modules, together with the
set of correspondences/relations between modules, is semantically equivalent to
the original ontology. This later property imposes hard restrictions to the mod-
ularization task: Indeed, to maintain it, a method must do this with respect to
the expressiveness of the language used for specifying correspondences/relations
between modules’ elements, to the local (per ontology module) interpretation
of constructs, and to the restrictions imposed by the setting where modules are
deployed.

The expressivity of knowledge representation frameworks for combining
knowledge in multiple contexts, and the efficiency of distributed reasoning pro-
cesses, depend on the language(s) used for expressing local knowledge and on
the language used for connecting different contexts.

While our main goal is to provide a rich representation framework for com-
bining and reasoning with distinct ontology units in open, heterogeneous and
inherently distributed settings, we propose the E−SHIQ representation frame-
work and a distributed tableau algorithm [1] [2].

The representation framework E − SHIQ:

– Supports subjective concept-to-concept correspondences between concepts
in different ontology units.

– In conjunction to subjective concept-to-concept correspondences,E−SHIQ
supports relating individuals in different units via link relations, as well as
via subjective individual correspondence relations. While correspondence re-
lations represent equalities between individuals, from the subjective point of
view of a specific unit, link relations may relate individuals in different units
via domain-specific relations.

– Supports distributed reasoning by combining local reasoning chunks in a
peer-to-peer fashion. Each reasoning peer with a specific ontology unit holds
a part of a distributed tableau, which corresponds to a distributed model.

– Finally, E − SHIQ inherently supports subsumption propagation between
ontologies, supporting reasoning with concept-to-concept correspondences in
conjunction to link relations between ontologies.

2 Constructing E − SHIQ Distributed Knowledge Bases
via Modularization

To distribute knowledge among different agents, we need to partition monolithic
ontologies to possibly interconnected modules. In this part of the talk we describe
efforts towards constructing E − SHIQ distributed knowledge bases by mod-
ularizing ontologies: Our aim is to make ontology units as much self-contained
and independent from others as possible, so as to increase the efficiency of the
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reasoning process. We discuss the flexibility offered by E − SHIQ itself, and
different modularization options available (a first attempt towards this problem
has been reported in [3]).

3 Challenges towards Reasoning with Multiple Ontologies

Towards reasoning with ontology units in open and dynamic settings with mul-
tiple agents, this talk presents and discusses the following major challenges:

Reaching Agreements to correspondences: Agents in inherently distributed and
open settings can not be assumed to share an agreed ontology of their common
task environment. To interact effectively, these agents need to establish semantic
correspondences between their ontology elements. As already pointed out, the
correspondences computed by two agents may differ due to (a) different mapping
methods used, to (b) different information one makes available to the other, or
(c) restrictions imposed by their task environment. Although semantic coordi-
nation methods have already been proposed for the computation of subjective
correspondences between agents, we need methods for communities, groups and
arbitrarily formed networks of interconnected agents to reach semantic agree-
ments on subjective ontology elements’ correspondences [4].

Exploitation of ontology units in open and dynamic settings: In open settings
where agents may enter or leave the system at will, we need agents to dynami-
cally combine their knowledge and re-organize themselves, so as to form groups
that can serve specific information needs successfully. There are several issues
that need to be addressed here: Agents (a) must share information about their
potential partners and must learn the capabilities, effectiveness, trustworthiness
etc. of their peers, (b) must locate the potential partners, and (c) must decide
for the “best” groups to be formed in an ad-hoc manner, towards serving the
specific information needs. Reaching complete and optimal solutions in such a
setting is a hard problem: we discuss the computation of approximate solutions
[5].

Acknowledgements. Thanks to Georgios Santipantakis for his contributions
to various parts of this work, especially the one concerning E − SHIQ. The
major part of the research work referenced in this talk is being supported by
the project IRAKLITOS II” of the O.P.E.L.L. 2007 - 2013 of the NSRF (2007 -
2013), co-funded by the European Union and National Resources of Greece.
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Reconfiguration of Large-Scale Surveillance Systems . . . . . . . . . . . . . . . . . . 325
Peter Novák and Cees Witteveen

An Argumentation-Based Approach for Automatic Evaluation
of Design Debates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Pietro Baroni, Marco Romano, Francesca Toni,
Marco Aurisicchio, and Giorgio Bertanza

Risk Assessment as an Argumentation Game . . . . . . . . . . . . . . . . . . . . . . . . 357
Henry Prakken, Dan Ionita, and Roel Wieringa

Assumption-Based Argumentation for Decision-Making with
Preferences: A Medical Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Xiuyi Fan, Robert Craven, Ramsay Singer, Francesca Toni, and
Matthew Williams

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391



From Discourse Analysis to Argumentation Schemes
and Back: Relations and Differences

Elena Cabrio1, Sara Tonelli2, and Serena Villata1

1 INRIA Sophia Antipolis, France
firstname.lastname@inria.fr

2 FBK Trento, Italy
satonelli@fbk.eu

Abstract. In argumentation theory, argumentation schemes are abstract argu-
ment forms expressed in natural language, commonly used in everyday conversa-
tional argumentation. In computational linguistics, discourse analysis have been
conducted to identify the discourse structure of connected text, i.e. the nature of
the discourse relationships between sentences. In this paper, we propose to cou-
ple these two research lines in order to (i) use the discourse relationships to auto-
matically detect the argumentation schemes in natural language text, and (ii) use
argumentation schemes to reason over natural language arguments composed by
premises and a conclusion. In particular, we analyze how argumentation schemes
fit into the discourse relations in the Penn Discourse Treebank and which are the
argumentation schemes which emerge from this natural language corpus.

1 Introduction

Argumentation theory [25] has been proposed to tackle a variety of problems in Arti-
ficial Intelligence (AI). In particular, reasoning systems have to interact not only with
intelligent agents but also with humans. This means that they should be able to reason
not only in a purely deductive monotonic way, but they need to carry out presumptive,
defeasible reasoning. Moreover, the arguments behind this reasoning must be expressed
in a dialogical form such that they can be consumed by humans too. Argumentation
schemes [33] have been introduced to capture reasoning patterns which are both non-
deductive and non-monotonic as used in everyday interactions. In computational lin-
guistics, the issue of representing the structure of the arguments used by humans in
everyday interactions has been analyzed in particular in discourse analysis, that aims
at identifying the discourse structure of connected text, i.e. the nature of the discourse
relationships between sentences [18]. However, despite the common points in the goal
of these two research lines, a clear analysis of their similarities and differences is still
missing, which is a required step towards the definition of computational models of
natural language arguments. The research question we answer in this paper is:

– How to bridge the argument patterns proposed in argumentation schemes, and in
discourse analysis towards a better account of natural language arguments?

This question breaks down into the following subquestions:

J. Leite et al. (Eds.): CLIMA XIV, LNAI 8143, pp. 1–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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1. What is the connection between argumentation schemes and discourse relations
detected in discourse analysis?

2. Do discourse relations bring to light new argumentation schemes not considered so
far?

The reference corpus for discourse relations is the Penn Discourse
Treebank (PDTB) [23]. We choose to ground our experimental analysis on this corpus
because it is a standard reference in the natural language processing (NLP) research
field, and it is currently the largest collection of documents manually annotated with
discourse relations. It contains 34,683 relations annotated over the 1 million words Wall
Street Journal Corpus, divided into explicit (i.e. signaled by an overt connective) and
implicit relations (for more details, see Section 3). Each relation has also been anno-
tated with a sense label, following a hierarchical classification scheme (see Fig.1). The
PDTB adopts a theory-neutral approach to the annotation, making no commitments to
what kinds of high-level structures may be created from the low-level annotations of
relations and their arguments. This approach has the appeal of allowing the corpus to
be useful for researchers working within different frameworks, while at the same time
providing a resource to validate the various existing theories of discourse structure. For
all these reasons, it is the most suitable resource for our study.

The comparison we perform is composed of two steps. First, we select five argumen-
tation schemes, namely Example, Cause to Effect and Effect to Cause, Practical Rea-
soning, Inconsistency, and we map these patterns to the categories used to characterize
the discourse relations in the PDTB. We highlight which relations can be annotated with
the corresponding scheme, and we extract the connectives characterizing each scheme
in this natural language (NL) data. Finally, we explain why certain discourse relations
are not considered in the present analysis.

Second, we start from the discourse relations used in the PDTB and we show which
of them can be adopted to define new argumentation schemes that emerge from this an-
notated corpus. In particular, we introduce two additional argumentation schemes which
emerge from such corpus: Argument from Equivalence, and Argument from Specifica-
tion. These two additional argumentation schemes support reasoning when a certain
situation occurs, and they conclude, by equivalence or by specification, which other sit-
uation may also occur. We point out the differences with the existing schemes and we
instantiate the new schemes with examples extracted from the PDTB.

The advantage of this analysis is threefold. First, the dataset resulting from this in-
vestigation, where the categories of the PDTB are annotated with the schemes they are
associated with, represents a rich training corpus fundamental for the improvement of
the state of research in argumentation in computational linguistics, as highlighted by
Feng and Hirst [9]. Second, this dataset represents a first step towards the definition of
a benchmark for the argumentation research community, where the actual arguments’
structures used in everyday argumentation can be used to test the next generation of sys-
tems grounded on argumentation schemes and able to automatically deal with natural
language arguments. Third, this mapping between argumentation schemes and PDTB
relations can be fruitfully used to support automated classification [9] or argument
processing [3].
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In this paper, we do not use NL semantics for a better understanding of critical ques-
tions in argumentation schemes [35], and we do not present a classification framework
to automatically detect the argumentation schemes in the corpus.

The layout of the paper is as follows. In Section 2 we provide the basic ideas under-
lying the definition of argumentation schemes, as well as the description of the schemes
we consider. In Section 3 we introduce the basic notions of discourse analysis and
the Penn Discourse Treebank. Section 4 presents our analysis on how argumentation
schemes are represented in the PDTB, and which schemes emerge from it. In Section 5,
we summarize the related research comparing it with the proposed approach. We con-
clude discussing some future perspectives.

2 Argumentation Schemes

Argumentation schemes [33] are argument forms that represent inferential structures
of arguments used in everyday discourse. In particular, argumentation schemes are ex-
ploited in contexts like legal argumentation [12], inter-agent communication [28,19],
and pedagogy [30]. They are motivated by the observation that most of the schemes that
are of central interest in argumentation theory are forms of plausible reasoning that do
not fit into the traditional deductive and inductive argument forms [25]. Each scheme is
associated with a set of so called critical questions (CQ), which represent standard ways
of critically probing into an argument to find aspects of it that are open for criticism. In
particular, the combination of an argumentation scheme and critical questions is used
to evaluate the argument in a particular case: the argument is evaluated by judging if
all the premises are supported by some weight of evidence. In this case, the weight of
acceptability is shifted towards the conclusion of the argument which is further subject
to a rebuttal by means of the appropriate critical question. In the literature, some works
have distinguished different types of critical questions that cover rebuttals, assumptions
and exceptions, which are important when argumentation schemes are used in proce-
dural or dialogical contexts, in particular when we deal with the notion of burden of
proof [11]. Let us consider the following argumentation scheme.

Argument from Example

Premise: In this particular case, the individual a has property F and also property G.
Conclusion: Therefore, generally, if x has property F , then it also has property G.

This scheme is one of the most common types of reasoning in debates [16] since it
is used to support some kinds of generalization. The Argument from Example is a weak
form of argumentation that does not confirm a claim in a conclusive way, nor associates
it with a certain probability, but it gives only a small weight of presumption to support
the conclusion. Three examples of critical questions for the Argument from Example
scheme are the following:

CQ1: Is the proposition presented by the example in fact true?
CQ2: Does the example support the general claim it is supposed to be an instance of?
CQ3: Is the example typical of the kinds of cases that the generalization ranges over?
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For the purpose of this paper, we do not consider all the 65 argumentation schemes
presented by Walton and colleagues [33] since some of them, like for instance the Argu-
ment from Position to Know deal with argument patterns which involve the information
sources. Reasoning about the information sources using argumentation schemes [20] is
out of the scope of this paper. Beside the above presented Argument from Example, the
following argumentation schemes will be the focus of the analysis we carry out in this
paper.

Argument from Cause to Effect

Major Premise: Generally, if A occurs, then B will (might) occur.
Minor Premise: In this case, A occurs (might occur).
Conclusion: Therefore, in this case, B will (might) occur.

Argument from Effect to Cause

Major Premise: Generally, if A occurs, then B will (might) occur.
Minor Premise: In this case, B did in fact occur.
Conclusion: Therefore, in this case, A also presumably occured.

Practical Reasoning

Major Premise: I have a goal G.
Minor Premise: Carrying out action A is a means to realize G.
Conclusion: Therefore, I ought (practically speaking) to carry out this action A.

Argument from Inconsistency

Premise: If a is committed to proposition A (generally, or in virtue of what she has
said in the past)

Premise: a is committed to proposition ¬A, which is the conclusion of the argument
α that a presently advocates.

Conclusion: Therefore, a’s argument α should not be accepted.

Argumentation schemes have been used in the Araucaria system [29] to mark in-
stantiations of such schemes explicitly, providing in this way an online repository of
arguments.1 This annotated corpus contains approximately 600 arguments, manually an-
notated, extracted from various sources such as the US Congress Congressional Record,
and the New York Times. Although, up to our knowledge, Araucaria is the best argu-
mentation corpus available to date, it still has some drawbacks. First, Araucaria is rather
small if compared for instance with the PDTB. Moreover, given that the final aim of
this paper is to bridge discourse in NLP and argumentation schemes, we need a corpus
like the PDTB, which is a well-established, standard reference in NLP and where the
discourse relations are already annotated.

1 http://araucaria.computing.dundee.ac.uk/

http://araucaria.computing.dundee.ac.uk/
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3 Discourse Analysis and the Penn Discourse Treebank

In Linguistics, discourse analysis is a broad term used to cover linguistic phenomena oc-
curring beyond the sentence boundary, usually emerging from corpus evidence. Several
paradigms have been proposed to approach discourse analysis from a computational
point of view, from Hobb’s theory on inference types [17] to Grosz and Sidner’s [15]
recursively defined relations between units of structure called discourse segments. A
discourse theory which has gained popularity in the natural language processing com-
munity is the Rhetorical Structure Theory [18], which represents texts as trees whose
leaves are elementary discourse units and whose nodes specify how these and larger
units are linked to each other by rhetorical relations (e.g. contrast, elaboration, etc.).
In the Penn Discourse Treebank project [23], instead, no assumption is made about
the hierarchy of the relations and the overall structure of a text, and the analysis is fo-
cused on the single relations holding between two text spans. Given the simplicity of
the annotation scheme, the availability of a large annotated corpus and the attempt to
be as much theory-independent as possible, we select the PDTB for our comparison to
argumentation schemes. It is a resource built on top of the Wall Street Journal corpus
(WSJ) consisting of a million words annotated with discourse relations by human an-
notators. Discourse connectives are seen as discourse predicates taking two text spans
as arguments, that correspond to propositions, events and states.

In the PDTB, relations can be explicitly signaled by a set of lexically defined con-
nectives (e.g. “because”, “however”, “therefore”, etc.). In these cases, the relation is
overtly marked, which makes it relatively easy to detect using NLP techniques [21]. A
relation between two discourse arguments, however, does not necessarily require an ex-
plicit connective, because it can be inferred also if a connective expression is missing.
These cases are referred to as implicit relations, and in the PDTB they are annotated
only between adjacent sentences within paragraphs. In case the connective is not overt,
PDTB annotators were asked to insert a connective to express the inferred relation.

The abstract objects involved in a discourse relation are called Arg1 and Arg2
according to syntactic criteria and each relation can take two and only two arguments.
Example 1 (a)-(b) represents sentences connected, respectively, by an explicit and an
implicit relation. Arg1 and Arg2 are reported in italics and in bold respectively.

Example 1

(a) Explicit: The federal government suspended sales of U.S. savings bonds because
Congress hasn’t lifted the ceiling on government debt.

(b) Implicit: The projects already under construction will increase Las Vegas’s supply
of hotel rooms by 11,795, or nearly 20%, to 75,500. By a rule of thumb of 1.5 new
jobs for each new hotel room, Clark County will have nearly 18,000 new jobs.

While in Example 1(a) the connective “because” explicitly signals a causal relation
holding between Arg1 and Arg2, in (b) no connective was originally expressed. A
consequence relation is inferred between ‘the increase in the number of rooms’ and ‘the
increase in the number of jobs’, though no explicit connective expresses this relation.

Each discourse relation is assigned a sense label based on a three-layered hierarchy
of senses. The top-level, or class level, includes four major semantic classes, namely
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TEMPORAL, CONTINGENCY, COMPARISON and EXPANSION. For each class, a more
fine-grained classification has been specified at type level, as shown in Figure 1. For
instance, the relation in Example 1(a) belongs to the CONTINGENCY class and the
Cause type. A further level of subtype has been introduced to specify the semantic
contribution of each argument. Cause, for instance, comprises the reason and the result
subtypes. The former applies when the situation described in Arg2 is the cause of the
situation in Arg1, like in Example 1 (a), while the latter indicates that the situation
in Arg2 is the result of the situation in Arg1. The annotation scheme was developed
and refined by the PDTB group in a bottom-up fashion, following a lexically grounded
approach to annotation.
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Fig. 1. Sense tags [The PDTB Research Group, 2008]

While in the PDTB they avoid considering the arguments as “logical arguments”, for
convention in our work we represent them in the standard format of a logical argument,
where Arg1 is a (set of) premise(s), and Arg2 is the conclusion.

4 From Argumentation Schemes to Discourse Relations and Back

In this section, we position and analyze the work carried out in the computational lin-
guistics field on discourse analysis, under the perspective of argumentation schemes.
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We rely on the Penn Discourse Treebank (Section 3) as the reference resource of nat-
ural language text annotated with discourse relations. In particular, in Section 4.1 we
start from the argumentation schemes, and we analyze how they fit into the categories of
the discourse relations in PDTB. Examples in natural language support us in bringing
to light the similarities and the discrepancies between the classifications sketched by
the two research fields. From the opposite perspective, in Section 4.2, we first account
for the PDTB categories of relations that we have not included in our analysis, and we
further highlight the emergence of additional argumentation schemes from such natural
language data.

4.1 From Argumentation Schemes to PDTB

In the following, we investigate how the argumentation schemes described in [33] and
detailed in Section 2 fit into the discourse relations in PDTB.

We start our analysis from a theoretical viewpoint, comparing the definitions of the
argumentation schemes as provided in [33], with the definitions of the discourse re-
lations as provided in [The PDTB Research Group, 2008], to build our mapping hy-
pothesis. We then randomly choose 10 examples for each (or each group of) discourse
relation we associate with an argumentation scheme according to their definitions, to
create a dataset of 50 examples to evaluate our mapping assumptions. Two annotators
with skills in linguistics independently annotated the whole set of examples, according
to the following tags: i) YES, if the structure and the reasoning type of the argument
extracted from the PDTB correspond to the argumentation scheme to which they were
previously associated in our working hypothesis (e.g. if the argument from the category
EXPANSION:Restatement:“generalization” represents an instantiation of the argumen-
tation scheme Argument from Example); ii) NO, if the structure and the reasoning type of
the argument extracted from the PDTB do not correspond to the argumentation scheme
to which they were previously associated; iv) INCORRECT, in case the argument ex-
tracted from the PDTB is incomplete and not understandable when out of context. To
assess the validity of the annotation task (and therefore the reliability of our argumen-
tation scheme/PDTB relations mapping), we compute the inter-annotator agreement,
based on the annotations separately provided by the two annotators on the same sample
of 50 argument pairs. The statistical measure usually used in NLP to calculate the inter-
rater agreement for categorical items is Cohen’s kappa coefficient [6], that is generally
thought to be a more robust measure than simple percent agreement calculation since
κ takes into account the agreement occurring by chance. More specifically, Cohen’s
kappa measures the agreement between two raters who each classifies N items into C
mutually exclusive categories. The equation for κ is:

κ =
Pr(a)− Pr(e)

1− Pr(e)
(1)

where Pr(a) is the relative observed agreement among raters, and Pr(e) is the hypothet-
ical probability of chance agreement, using the observed data to calculate the proba-
bilities of each observer randomly saying each category. If the raters are in complete
agreement then κ = 1. If there is no agreement among the raters other than what would
be expected by chance (as defined by Pr(e)), κ = 0. For NLP tasks, the inter-annotator
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agreement is considered as significant when κ >0.6. Applying the formula (1) to our
data, the inter-annotator agreement results in 0.71 (while the percentage of agreement
between the two annotators is 88%). As a rule of thumb, this is a satisfactory agreement,
confirming the reliability of the obtained resource, and the validity of the task.

The examples extracted from the PDTB for some categories of discourse relations
perfectly represent instantiations of the argumentation schemes (e.g., the discourse rela-
tion EXPANSION:Restatement:“generalization” fits into the argumentation scheme Ar-
gument from Example). On the contrary, for some other schemes the mappings with
discourse relations are much less straightforward, even if the relation definitions in the
PDTB and the provided schemes are similar (see the PDTB Manual [31]).

Argument from Example. As introduced before, such argumentation scheme is used
to support some kinds of generalization. Its definition shows high similarity with the
discourse relation EXPANSION:Restatement:“generalization”. More specifically, “gen-
eralization” applies when the connective indicates that Arg2 (i.e. the conclusion) sum-
marizes Arg1 (the premises), or in some cases expresses a conclusion based on Arg1
(as in Example 2). Differently from the argumentation schemes, where the standard for-
mat allows therefore as the only connective used to introduce the conclusion, in natural
language different connectives can be used with the same goal, and can vary according
to the discourse relations they express. For instance, typical connectives for generaliza-
tion are in sum, overall, finally.

Example 2 (generalization)

PREMISE: (Arg1) While the network currently can operate freely in Budapest, so can
others
CONCLUSION: indeed (Arg2) Hungary is in the midst of a media explosion.

Example 2 can be considered as a good instantiation of the Argument from Example
scheme, since given the property defined in the premise for a town (i.e. the good qual-
ity of the network status), the conclusion is inferred generalizing such property to the
whole country. On the contrary, several PDTB examples for this relation, i.e. EXPAN-
SION:Restatement:“generalization” were annotated as negative examples by the anno-
tators, due to the fact that in many cases the conclusion is a sort of motto, as in Example
3, or a metaphor.

Example 3 (generalization)

PREMISE: (Arg1) It’s time to take some risks if you want the kind of returns that will
buy your toddler a ticket to Prestige U. in 18 years
CONCLUSION: in short (Arg2) throw away the passbook and go for the glory.

In general, both for this argumentation scheme, and for the following (i.e. Argu-
ment from Cause to Effect and Argument from Effect to Cause), the mappings with
the categories of the discourse relations detected in the PDTB are straightforward (on
the Argument from Example scheme, the agreement between annotators is 100%),
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and the positive examples collected can be fruitfully considered as examples of nat-
urally occurring schemes in texts, as opposed to ad-hoc examples that can be found in
most of the literature on argumentation theory.

Argument from Cause to Effect and from Effect to Cause. These two argumentation
schemes are reported here in the same paragraph, since the underlying reasoning steps
address, in a sense, opposite perspectives. More precisely, the Argument from Cause to
Effect is a predictive form of reasoning that reasons from the past to the future, based
on a probabilistic generalization. On the contrary, the Argument from Effect to Cause
is based on a retroduction, from the observed data to a hypothesis about the presumed
cause of the data (abductive reasoning) [33]. Comparing these definitions with the def-
initions provided for the discourse relations in the PDTB, we can note that they are
highly similar with the discourse relation: CONTINGENCY:cause, identified when the
situations described in Arg1 and Arg2 are causally influenced, and the two are not
in a conditional relation. Directionality is specified at the level of subtype: “reason”
((‖Arg2‖<‖Arg1‖2, see Example 4) and “result” (‖Arg1‖<‖Arg2‖, see Example
5) specifying which situation is the cause and which is the effect. Both subtypes can be
respectively mapped to the argumentation schemes Argument from Effect to Cause, and
Argument from Cause to Effect. In the former (i.e.“reason”) the connective indicates that
the situation described in Arg2 is the cause, and the situation described in Arg1 is the
effect. The typical connective for such relation is indeed because. On the contrary, for
the latter (i.e. “result”) , the connective indicates that the situation described in Arg1 is
the reason, and the situation described in Arg2 is the result. Typical connectives are so
that, thefore, as a result.

Example 4 (reason)

CONCLUSION: (Arg1) She pleaded guilty.
PREMISE: because (Arg2) she was afraid of further charges

Example 5 (result)

PREMISE: (Arg1) Producers were granted the right earlier this year to ship sugar and
the export licenses were expected to have begun to be issued yesterday
CONCLUSION: as a result (Arg2) it is believed that little or no sugar from the 1989-90
crop has been shipped yet

Note that, due to the variability of language, the sequence of premises and conclu-
sion in NL arguments does not always follow the order defined in the standard structure
(where premises always come first), as e.g. in Example 4, where the conclusion is ex-
pressed at the beginning of the sentence. In the same example, the reasoning is carried
out from effect to cause (i.e. the fact that she was afraid of further charges, generates
the woman’s reaction of declaring herself guilty). On the contrary, in Example 5, the
reasoning is carried out from cause to effect (i.e. the fact that licenses were expected

2 The symbol < used in the PDTB categories means “causes”.
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to have been issued the day before - but it did not happen - let to conclude that the
sugar has not been shipped yet). In our dataset, 80% of the examples collected from
the PDTB relations Reason and Result are annotated as positive instantiations of the
Argument from Cause to Effect and from Effect to Cause schemes.

So far so good. As introduced before, the mapping of the above described types
of argumentation schemes is pretty straightforward, and the examples collected in the
PDTB generally fall within the definitions of such schemes provided in [33]. In the
following, we enter into a grey area, where the mapping between the argumentation
schemes and the categories of the discourse relations is more blurry, and the examples
collected in the PDTB do not always represent correct instantiations of such schemes.
But since the goal of our work is to investigate all the possible connections between the
two research fields, we force the hand of the mapping, allowing us some simplifications.

Practical Reasoning. This argumentation scheme involves the general human capacity
for resolving, through reflection, the question of what one is to do, given the goal that
one has in mind. To fit such scheme into one discourse category, we need therefore to
consider a relation that relies on some kind of pragmatic reasoning, and on common
background knowledge. For this reason, we think that the most appropriate relation
annotated in the PDTB is the CONTINGENCY:Pragmatic condition, used for instances
of conditional constructions whose interpretation deviates from that of the semantics of
Condition. In all cases, Arg1 holds true independently of Arg2. The conditional clause
in the “relevance” conditional (Arg2, i.e. the premise) provides the context in which
the description of the situation in Arg1, i.e. the conclusion, is relevant (see Example
6). There is no causal relation between premises and conclusion.

Example 6 (relevance)

PREMISE (Arg1): here’s the monthly sum you will need to invest to pay for four years
at Yale, Notre Dame and University of Minnesota
PREMISE : if (Arg2) you start saving for your child’s education on Jan. 1, 1990

In Example 6 the major premise, i.e. the goal, is implicit (i.e., enthymeme [33]), and
concerns the child education (in other words, the goal is to send the child to one of
the best U.S. universities). The other two premises (i.e. Arg2 and Arg1) describe the
action to be carried out to obtain the goal (i.e. given the amount of money you need,
you can have it if you start saving from the beginning of 1990). Following the scheme’s
structure, also the conclusion is left implicit (i.e. therefore, if you want to reach your
goal, you should start saving). Another interesting observation emerging from naturally
occurring data is the fact that in human linguistic interactions a lot is left implicit,
following [14]’s conversational Maxim of Quantity (i.e. do not make your contribution
more informative than is required).

The tag “implicit assertion” applies in special rhetorical uses of if-constructions
when the interpretation of the conditional construction is an implicit assertion.
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Example 7 (implicit assertion)

PREMISE: if (Arg2) you want to keep the crime rates high
CONCLUSION (Arg1): O’Connor is your man

In Example 7 the conclusion, i.e. O’ Connor is your man, is not a consequent state that
will result if the condition expressed in the premise holds true. Instead, the conditional
construction in this case implicitly asserts that O’Connor will keep the crime rates high
(enthymeme), and requires a pragmatic reasoning step. For both subtypes, the typical
connective expressing the discourse relation is if. In our dataset, 70% of the examples
collected from the PDTB relation CONTINGENCY:Pragmatic condition are annotated
as positive instantiations of the Practical reasoning argumentation scheme.

Argument from Inconsistency. The last argumentation scheme we consider in our in-
spection is the Argument from Inconsistency, where the inconsistency can be detected
in an arguer’s commitment set. Even if the mapping of such scheme with one of the
discourse categories is far from being straightforward, after a careful analysis of both
the definitions and the examples in the PDTB, we consider that the relation COMPARI-
SON:concession, that applies when one of the arguments describes a situation A which
causes C, while the other asserts (or implies) ¬C, seems to fall within such scheme.
Alternatively, the same relation can apply when one premise denotes a fact that triggers
a set of potential consequences, while the other denies one or more of them, and still
in this case it fits with the definition of the above mentioned argumentation scheme.
Formally, we have A<C ∧ B→ ¬C, where A and B are drawn from ‖Arg1‖ and
‖Arg2‖ (¬C may be the same as B, where B→B is always true). Two concession sub-
types are defined in terms of the argument creating an expectation and the one denying
it. Specifically, when Arg2 creates an expectation that Arg1 denies (A=‖Arg2‖ and
B=‖Arg1‖), it is tagged as expectation (see Example 8). When Arg1 creates an expec-
tation that Arg2 denies (A=‖Arg1 and B=‖Arg2‖), it is tagged as contra-expectation
(see Example 9).

Example 8 (expectation)

PREMISE (Arg1): Attorneys for the two sides apparently began talking again yesterday
in attempt to settle the matter before Thursday
PREMISE: although (Arg2) settlement talks had been dropped

Example 9 (contra-expectation)

CONCLUSION: (Arg1) The demonstrators have been non-violent
PREMISE: but (Arg2) the result of their trespasses has been to seriously impair the
rights of others unconnected with their dispute

In Example 8 we start from the evidence provided by the premise according to which
the settlement talks between the attorneys have started, and we are pushed to conclude
that they are still going on, while the conclusion provided by the arguer is inconsistent
(i.e. settlement talks had been dropped). With the same reasoning step, in Example 9 we
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expect that no bad consequences are caused by the demonstrators thanks to their pacific
attitude, but our expectation is wrong. In our dataset, 60% of the examples collected
from the PDTB relation expectation and contra-expectation are annotated as positive
instantiations of the Argument from Inconsistency scheme. In general, the 12% of the
examples of the dataset (i.e. 6/50) were annotated as INCORRECT by the annotators
(i.e. incomplete arguments, and/or not understandable when out of context).

We report in Table 1 some statistics on the PDTB relations considered in our study.
We extract them from the PDTB and report the total number of examples both of im-
plicit and explicit relations (the 50 examples of our dataset were extracted from the
explicit relations only, the analysis of implicit relations is left for future work). Since
PDTB annotators were allowed to assign more than one relation label, we report only
the relations whose first label is the one reported in the first column. Also, we con-
sider only the examples in which Arg2 is not embedded in Arg1 (more than 90%
of the overall examples), because we want to avoid that premises and conclusions ac-
cording to argumentation schemes are expressed by discontinuous arguments. Next to
each discourse subtype, we also list the three most-frequent connectives occurring in
the explicit relations (for Relevance, only two connectives are found in the examples).
This confirms that, although therefore is the only connective usually employed in argu-
mentation schemes to introduce the conclusion, corpus-based analysis shows a higher
variability and a much richer repository of admissible connectives.

Table 1. Statistics about the extracted examples

Relation class.Type Num. Num.
Subtype (‘most-frequent connectives’) Expl. Impl.

Expansion.Restatement
Generaliz. (‘in short’, ‘in other words’) 16 190
Contingency.Cause
Reason (‘because’, ‘as’, ‘since’) 1,201 2,434
Result (‘so’, ‘thus’, ‘as a result’) 617 1,678
Contingency.Pragm.Condition
Relevance (‘if’, ‘when’) 21 1
ImplicitAssertion (‘if’, ‘when’, ‘or’) 46 0
Comparison.Concession
Expectation (‘although’, ‘though’, ‘while’) 386 31
ContraExpectation (‘but’, ‘still’, ‘however’) 798 182

Notice that we do not tackle the issue of dealing with enthymemes and implied as-
sertions. Whilst human annotators can deal with this problem to an acceptable extent,
identifying suitable markers to indicate the occurrence of such instances is a problem.
Similar issues are reported in those works in which natural language texts are analyzed
to produce instantiations of an argumentation scheme for an e-Participation tool. For
instance, Pulfrey-Taylor et al. [24] report upon the instantiation of a scheme for prac-
tical reasoning with values, based upon responses to an EU green paper, and discourse
indicators have also been used to annotate text to instantiate argumentation schemes in
an e-Commerce corpus by Wyner et al. [36].
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4.2 From PDTB to Argumentation Schemes

We have not included other PDTB relations in our analysis, either because they do not
fall within the definition of arguments as provided in argumentation theory, or because
no argument scheme accounts for them.

As introduced before, in our work we consider the set of discourse relations that
better fall into the structure defined for the argumentation schemes. Other categories of
discourse relations, e.g. the EXPANSION:Alternative, or List are not considered because
they do not fall within the definition of arguments as provided in argumentation theory
(i.e. they do not allow us to carry out a reasoning step), and can be more considered as
claims or statements.

We propose now two additional argumentation schemes which emerge from the dis-
course relations in the PDTB. In particular, concerning the PDTB relations EXPAN-
SION:Restatement:“equivalence”, and EXPANSION:Restatement:“specification” we do
not find an argumentation scheme actually fitting the argument pattern expressed by
these relations. Even if the Argument from Analogy scheme [33] seems close to the
equivalence relation, their semantics is slightly different: the former expresses that two
cases are similar and that if A is found true in one case, then it is true also in the
other case. The latter expresses that if a situation occurs, and this situation is known
as equivalent to another one, then the second situation occurs too. The Argument from
Equivalence is formalized below.

Argument from Equivalence

Premise: A occurs.
Premise: A is equivalent to B.
Conclusion: Therefore, also B occurs.

This argumentation scheme is instantiated in Example 10 extracted from the PDTB,
where the premise provides an evidence about a fact (i.e. price augmentation), while
in the conclusion the same fact is considered from a different viewpoint, showing the
consequent currency depreciation.

Example 10 (equivalence)

PREMISE (Arg1): On average, something that cost $100 30 years ago now costs $425
CONCLUSION: or (Arg2) a wage that was $100 30 years ago would buy only $23.53
worth of stuff today

The second argumentation scheme we introduce is called Argument from Specifica-
tion and it is formalized below. It specifies a kind of abductive reasoning such that a
situation A occurs, and in the particular case of interest this means that a more specific
situation B is a subclass of A, therefore more precisely B occurs. The basic idea here
is that a particular situation is a specification of another situation, and it is in fact this
more specific situation which occurred.
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Argument from Specification

Premise: Generally, A occurs.
Premise: In this particular case, B is a subclass of A.
Conclusion: Therefore, more precisely, B occurs.

This argumentation scheme is instantiated in Example 11. In the premise, the general
economical situation is not seen as rosy, while an implicit premise provides an evidence
to support the fact that the steelmakers are part of the economic world and are influenced
from its trend. An inferential step about the bad economical forecasts is further specified
for that specific category in the conclusion.

Example 11 (specification)

PREMISE (Arg1): It doesn’t bode well for coming quarters
CONCLUSION: in fact (Arg2) several steelmakers will report actual losses through the
third quarter of 1990

In this section we have proposed two additional argumentation schemes, namely Ar-
gument from Equivalence and Argument from Specification, which emerge from the dis-
course relations highlighted in the PDTB. The rationale behind this kind of additional
schemes is that two discourse relations as the EXPANSION:Restatement:“equivalence”,
and the EXPANSION:Restatement:“specification” cannot be mapped with the existing
argumentation schemes as done for the schemes we presented in the previous section,
but they lead to a reasoning step. We are aware that new argument schemes should be
proposed only as a last resort since there is already a proliferation of such patterns,
which often impairs their practical usefulness. However, it is actually the practical use-
fulness which guides the introduction of such new schemes which are existing schemes
emerging from a real world corpus of natural language arguments. To conclude, we
underline the importance of more “practical” argumentation schemes like those which
could emerge from large corpora of NL arguments, even if we are aware of the remark
about the proliferation of new schemes. To this concern, we may align the new argu-
mentation schemes with existing ones (e.g., Argument from Equivalence aligned with
Argument from Definition) even if the alignment may not be consistent in all real world
examples concerning the above mentioned discourse relations.

5 Related Work

The need for coupling argumentation theory and NLP is becoming more and more im-
portant in the latest years, as shown by the increasing number of online debate systems
like Debategraph3 and Debatepedia4. The need for a machinery leading to arguments
being automatically generated is underlined also by Grasso and colleagues [13,26].

Some approaches have been proposed to address this issue in the two research com-
munities. For instance, Chasnevar and Maguitman [7] propose a defeasible argumen-
tation system to provide recommendations on language patterns to assist the language
usage assessment. The indices they use are computed from Web corpora.

3 http://debategraph.org
4 http://dbp.idebate.org/

http://debategraph.org
http://dbp.idebate.org/
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Gilbert [10] addresses the problem of characterizing human/computer argumenta-
tion, where the ability to identify and classify various locutions as facts, values and
goals is discussed, and the author chooses Toulmin’s argumentation model [32] for his
analysis.

Wyner and van Engers [34] propose to couple NLP and argumentation to support
policy makers. The NLP module guides the user in writing the input text using Attempt
to Controlled English allowing for a restricted grammar and vocabulary, and after a
parsing step, the sentences are translated to First Order Logic. In this paper, we do not
look for a translation in formal logic of NL arguments, but we are interested in the
structure of the arguments such as in argumentation schemes, where the relation among
the premises and the conclusion is represented through the discourse relations of the
PDTB.

Cabrio and Villata [4] propose to use the NLP framework of textual entailment to
extract from Debatepedia the arguments in NL and the relations among them. Then, the
arguments are composed in a Dung-like [8] abstract argumentation framework to select
the acceptable arguments. The authors look only at the relations among the arguments,
while here we are most interested in the relation among premises and conclusion in NL
arguments.

Carenini and Moore [5] present a computational framework for generating evaluative
arguments. We use a different model of arguments, i.e., argumentation schemes, and we
do not provide an automatic system for argument generation.

Amgoud and Prade [1] start from a model of argumentation presented in linguis-
tics [2] and try to formalize it using formal argumentation. They envisage a compari-
son with argumentation schemes as future work. In this paper, we consider only such
schemes to provide the parallel with NLP.

The difference with respect to this line of works is that they do not consider ar-
guments as composed by a set of premises and a conclusion as done in argumentation
schemes where the relation among these two kinds of elements is characterized in terms
of practical reasoning, etc. In this paper, we address the problem of coupling two dis-
tinct research areas, namely discourse analysis in NLP and argumentation schemes in
informal logic to better understand, over a real world set of examples (the PDTB),
how discourse relations can be used towards the automatic detection of argumentation
schemes in natural language texts.

The work which is most related to this paper is the following. Feng and Hirst [9]
present an automatic system for classifying the argumentation schemes of NL argu-
ments with the aim to infer enthymemes. The data set they use is the Araucaria one. Our
analysis can be used to support this kind of automated classification task thanks to the
mapping with the discourse relations we provide, and the resulting annotated arguments
corpus can be used for training. Using automated approaches to classify argumentation
schemes and infer enthymemes is the next step in our work.

6 Concluding Remarks

We presented an analysis of the connections between two distinct research areas, namely
discourse analysis in natural language processing, and argumentation schemes in argu-
mentation. Following the idea of focusing first on models of natural language schemes
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and then building formal systems [27], the rationale behind this kind of analysis is to
provide a first, but compulsory step towards the development of automatic techniques
able to deal with the complexities present in natural language arguments. Even if recent
approaches like [26,4,35,1] provide a first attempt to tackle the open problem of nat-
ural language argumentation, they show that a satisfiable result is still far beyond. As
demonstrated in this paper, the development of automated systems going beyond appli-
cations like the one proposed by Cabrio and Villata [4], where only two relations among
the arguments are considered and arguments are abstract, is much more complex.

Our future work includes the design and implementation of an automated framework
able to detect not only the abstract arguments from natural language text, but also their
internal structure [27,22] with the aim to verify the coherence of such arguments before
considering the (eventual) relations with the other arguments. The bridge with discourse
analysis, enables us to carry out an in-depth study of the argument structures, relying on
the data previously annotated with discourse relations, and now annotated also with the
corresponding argumentation schemes. As an additional outcome of our work, we will
soon release the annotation of the PDTB examples with the considered argumentation
schemes, that can be fruitfully exploited as a training corpus in NLP applications.
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Abstract. Notions of equivalence which are stronger than standard equivalence
in the sense that they also take potential modifications of the available informa-
tion into account have received considerable interest in nonmonotonic reasoning.
In this paper we focus on equivalence notions in argumentation. More specifi-
cally, we establish a number of new results about the relationships among various
equivalence notions for Dung argumentation frameworks which are located be-
tween strong equivalence [1] and standard equivalence. We provide the complete
picture for this variety of equivalence relations (which we call the equivalence
zoo) for the most important semantics.

1 Introduction

Notions of equivalence which are stronger than standard equivalence in the sense that
they also take potential modifications of the available information into account have
received considerable interest in nonmonotonic reasoning, and in particular in logic
programming [2,3]. In this paper we focus on equivalence notions in argumentation.
Formal argumentation has developed into a highly active field within Artificial Intel-
ligence over the last decades. For a very good overview see [4]. Dung’s abstract argu-
mentation frameworks (AFs) [5] play a dominant role in the area. In AFs arguments and
attacks among them are treated as abstract entities. The focus is on conflict resolution
and argument acceptability. Various semantics for AFs have been defined, each of them
specifying acceptable sets of arguments, so-called extensions, in a particular way. In
a nutshell, the typical use of AFs can be characterized as follows: starting from some
knowledge base expressed in a potentially rich KR language, one constructs arguments,
that is structures containing a proposition together with reasons for accepting them, and
conflicts among them (so-called attacks). The arguments, viewed as abstract entities,
are then evaluated using an AF. The accepted propositions then are those which are
supported by an argument which is accepted under the chosen AF semantics.

Argumentation is an inherently dynamic process. It is thus apparent that equivalence
notions which guarantee mutual replaceability of two AFs - without any loss of in-
formation - in specific dynamic argumentation scenarios, that is, even under potential
expansions of the current AF, are highly significant. For this reason, the study of var-
ious such equivalence notions has become an active and fruitful research line over the
last years. Standard equivalence of two AFs F and G, i.e. both possess the same exten-
sions, guarantees that all queries w.r.t. credulously or skeptically accepted arguments
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are answered identically. Strong equivalence [1], in contrast, even guarantees that both
AFs possess the same extensions under arbitrary expansions. In [6] the middle ground
between these two extremes was investigated, i.e. various intermediate equivalence no-
tions taking into account specific anticipated types of expansions reflecting the very
nature of argumentation were defined and characterized. Furthermore, in [7] the notion
of minimal change equivalence between two AFs was introduced which guarantees that
the minimal effort needed to convince the participants of a certain opinion E (a set of
arguments) is identical.

In this paper we present a number of new results about the relationships among the
mentioned equivalence notions. Our results provide a complete picture about the re-
lationships among these notions for two of the most relevant semantics of Dung-style
AFs, namely stable and preferred semantics. It turns out that minimal change equiva-
lence naturally fits into this equivalence zoo, although its definition includes a graph-
theoretical distance function and therefore an arithmetic aspect in contrast to standard
or strong equivalence as well as the considered intermediate variants. Furthermore we
clarify an open question concerning the characterization for preferred semantics and
weak expansions.

The rest of the paper is organized as follows. Sect. 2 reviews the necessary back-
ground. Sect. 3 presents our results regarding various equivalence notions. Sect. 4 con-
cludes the paper.

2 Background

An argumentation framework F is a pair (A,R), where A is a non-empty finite set
whose elements are called arguments and R ⊆ A×A a binary relation, called the attack
relation. The set of all AFs is denoted by A . If (a, b) ∈ R holds we say that a attacks
b, or b is defeated by a in F . An argument a ∈ A is defended by a set A′ ⊆ A in F if
for each b ∈ A with (b, a) ∈ R, b is defeated by some a′ ∈ A′ in F . Furthermore, we
say that a set A′ ⊆ A is conflict-free in F if there are no arguments a, b ∈ A′ such that a
attacks b. The set of all conflict-free sets of an AF F is denoted by cf(F). For an AF
F = (B,S) we use A(F) to refer to B and R(F) to refer to S. Finally, we introduce
the union of two AFs as usual, namely F ∪ G = (A(F) ∪A(G),R(F) ∪R(G)).

Semantics determine acceptable sets of arguments for a given AF F , so-called ex-
tensions. The set of all extensions of F under semantics σ is denoted by Eσ(F). Due to
limited space we consider stable (st) and preferred (pr) semantics only [5].

Definition 1 (Semantics). Given an AF F = (A,R) and E ⊆ A. E is a

1. stable extension (E ∈ Est(F)) iff
E ∈ cf(F) and each a ∈ A/E is defeated by some e ∈ E,

2. admissible set (E ∈ Ead(F)) iff
E ∈ cf(F) and each e ∈ E is defended by E in F ,

3. preferred extension (E ∈ Epr(F)) iff
E ∈ Ead(F) and for each E′ ∈ Ead(F), E /⊂ E′ and

Note that any stable extension is a preferred one. The converse do not hold in general
but if the considered AFs are SCC-symmetric and self-loop-free stable and preferred
semantics coincide (compare [8]).
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Expansions were introduced by [9]. They will be our object of investigation since
they represent reasonable types of dynamic argumentation scenarios.

Definition 2 (Expansions). An AF F∗ is an expansion of AF F = (A,R) (for short,
F ⪯E F

∗) iff F∗ = (A ∪A∗,R ∪R∗) where A∗ ∩A = R∗ ∩R = ∅. An expansion is

1. normal (F ⪯N F∗) iff ∀ab ((a, b) ∈ R∗ → a ∈ A∗ ∨ b ∈ A∗),
2. strong (F ⪯S F∗) iff F ⪯N F∗ and ∀ab ((a, b) ∈ R∗ → ¬(a ∈ A ∧ b ∈ A∗)),
3. weak (F ⪯W F∗) iff F ⪯N F∗ and ∀ab ((a, b) ∈ R∗ → ¬(a ∈ A∗ ∧ b ∈ A)),
4. local (F ⪯L F∗) iff A∗ = ∅.

For short, normal expansions add new arguments and possibly new attacks which
concern at least one of the fresh arguments. Strong (weak) expansions are normal
and only add strong (weak) arguments, i.e. the added arguments never are attacked by
(attack) former arguments. Normal expansions naturally occur in case of instantiation-
based argumentation. If one adds a new piece of information to the underlying knowl-
edge base, then only new arguments which may interact with the previous ones arise.

As usual F ≺X F∗ for X ∈ {E,N,S,W,L} stands for F ⪯X F∗ and F ≠ F∗. To
simplify notation we will later on often use X to refer to ⪯X . Whenever infix notation
is used we stick to ⪯X , though.

The minimal change problem [7] is the problem of determining the minimal effort
needed to transform a given argumentation framework, using a particular type of mod-
ifications, into a framework that possesses an extension containing a specific set of
arguments C. The effort is characterized by the (σ,Φ)-characteristic:

Definition 3 (Characteristic). Given a semantics σ, a binary relation Φ ⊆ A ×A and
an AF F . The (σ,Φ)-characteristic of a set C ⊆ A(F) is a natural number or infinity
defined by the following function

NFσ,Φ ∶ ℘(A(F)) → N∞

C ↦

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

0, ∃C′ ∶ C ⊆ C′ and C′ ∈ Eσ(F)

k, k =min{d(F ,G) ∣ (F ,G) ∈ Φ,NGσ,Φ(C) = 0}

∞, otherwise.

Here d(F ,G) is the number of added or removed attacks needed to transform F to G,
i.e. d(F ,G) = ∣R(F)Δ R(G)∣ where Δ is the well-known symmetric difference.

The following notions of equivalence have been studied in the literature [1,6,7]:

Definition 4 (Equivalence). Given a semantics σ. Two AFs F and G are

1. standard equivalent w.r.t. σ (F ≡σ G) iff they possess the same extensions under σ,
i.e. Eσ(F) = Eσ(G) holds,

2. strongly equivalent w.r.t. σ (F ≡σE G) iff
for each AFH, F ∪H ≡σ G ∪H holds,

3. normal expansion equivalent w.r.t. σ (F ≡σN G) iff
for each AFH, s.t. F ⪯N F ∪H and G ⪯N G ∪H, F ∪H ≡σ G ∪H holds,

4. strong expansion equivalent w.r.t. σ (F ≡σS G) iff
for each AFH, s.t. F ⪯S F ∪H and G ⪯S G ∪H, F ∪H ≡σ G ∪H holds,
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5. weak expansion equivalent w.r.t. σ (F ≡σW G) iff
for each AFH, s.t. F ⪯W F ∪H and G ⪯W G ∪H, F ∪H ≡σ G ∪H holds,

6. local expansion equivalentw.r.t. σ (F ≡σL G) iff
for each AFH, s.t. A(H) ⊆ A(F ∪ G), F ∪H ≡σ G ∪H holds,

7. minimal change equivalent (F ≡σ,MC
Φ G) w.r.t. σ and a binary relation Φ ⊆ A ×A

iff for any E, s.t. E ⊆ A(F) or E ⊆ A(G), NFσ,Φ(E) = N
G

σ,Φ(E).

3 Analyzing the Equivalence Zoo

In the recent literature many new equivalence relations were discussed (see Def. 4).
Each of them captures different conditions for mutual replaceability in certain dynamic
scenarios. In this section we want to shed light on the equivalence zoo by providing a
complete analysis w.r.t. ten different notions of equivalence, namely those introduced
in Def. 4 where the relation Φ in the definition of minimal change equivalence is in-
stantiated by arbitrary, normal, weak and strong expansions. Besides the general case,
i.e. considering arbitrary AFs, we also provide results for two special cases, namely the
case where the AFs do not contain self-loops, i.e. attacks of the form (a, a) for some
argument a, and the case where two AFs have the same arguments.

In the interest of readability we present our results not only in terms of propositions,
but also graphically. Our graphics will contain boxes connected by directed arrows.
The boxes contain the names of equivalence notions, separated by +. Notions within
the same box are equivalent: if, say, a box contains e and e′, then 2 argumentation
frameworks F and G are e-equivalent iff they are e′-equivalent. Links between two
boxes represent implication: if box B1 is connected via a directed link to box B2 and
the former contains e, the latter e′, then whenever F and G are e-equivalent they are
also e′-equivalent. Note that whenever there is a link representing an implication, the
converse implication does not hold.

3.1 Stable Semantics: The Full Picture

The following proposition characterizes stable semantics in general.

Proposition 1. For stable semantics and arbitrary argumentation frameworks the fol-
lowing relationships hold:

– strong equivalence = normal expansion equivalence = strong expansion equiva-
lence,

– MC equivalence with arbitrary expansion = MC equivalence with normal expan-
sion = MC equivalence with strong expansion,

– strong equivalence ⊊ local expansion equivalence ⊊ weak expansion equivalence ⊊
standard equivalence,

– strong equivalence ⊊ MC equivalence with arbitrary expansion ⊊ MC equivalence
with weak expansion ⊊ weak expansion equivalence.

Fig. 1 describes the results for stable semantics graphically. In case of stable se-
mantics only local expansion equivalence and the family of minimal change equiva-
lence relations are unrelated. For any other two equivalence relations we have at least



22 R. Baumann and G. Brewka

one implication chain. In particular, the different forms of minimal change equivalence
are shown to be intermediate forms between strong expansion and weak expansion
equivalence.
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Fig. 1. Stable semantics in general

Proof. In [6] (Theorem 13) it was already shown that F ≡stE G ⇔ F ≡
st
N G ⇔ F ≡

st
S

G ⇒ F ≡
st
L G ⇒ F ≡

st
W G ⇒ F ≡

st
G. Since stable semantics satisfy regularity, i.e.

strong equivalent AFs have to share the same arguments (compare Definition 3, Theo-
rem 1 in [1]) we conclude that F ≡stE G ⇒ F ≡

st,MC
E G (Theorem 14 [7]). Furthermore,

by applying Theorem 9, Definition 10 [7] we deduce F ≡st,MC
E G ⇔ F ≡

st,MC
N G ⇔

F ≡
st,MC
S G.

We will show now that F ≡st,MC
S G ⇒ F ≡

st,MC
W G. Assume F ≡st,MC

S G and

F /≡
st,MC
W G. Note that the first assumption implies that A(F) = A(G). The second

assumption means that there is a set E, s.t. NFst,W (E) ≠ NGst,W (E). W.l.o.g. we as-

sume NFst,W (E) = ∞ and NGst,W (E) = 0 (Theorem 6, Definition 10 in [7]). Since the
characteristic w.r.t. strong expansions does not exceed the characteristic w.r.t. weak ex-
pansions we have NGst,S(E) = 0 (Proposition 10 [7]). Consequently (first assumption),

NFst,S(E) = 0 in contradiction to NFst,W (E) = ∞which proves the claimed implication.

We show now that F ≡st,MC
W G ⇒ F ≡

st
W G. Assume F ≡st,MC

W G and F /≡stW
G. First, minimal change equivalence implies A(F) = A(G). In [10] (Proposition
3) it was shown that two AFs are weak expansion equivalent w.r.t. stable semantics
iff i) A(F) = A(G) and Est(F) = Est(G) or ii) Est(F) = Est(G) = ∅. Conse-
quently, Est(F) ≠ Est(G). Let E ∈ Est(F) and E ∉ Est(G). Hence, NFst,W (E) = 0.

Since minimal change equivalence is assumed, NGst,W (E) = 0. Since we assumed
E ∉ Est(G) there has to be a proper superset E′ of E, s.t. E′ ∈ Est(G). Consequently,



Analyzing the Equivalence Zoo in Abstract Argumentation 23

NGst,W (E
′
) = 0 and therefore NFst,W (E

′
) = 0. This means there is a superset E′′ of E′,

s.t. E′′ ∈ Est(F). This means, there are two stable extensions E,E′′ of F , s.t. E ⊂ E′′.
This is impossible because stable semantics satisfies the I-maximality principle [11].
Altogether, the claimed implications are shown.

Now we present some counter-examples showing that the converse directions do not
hold. It suffices to consider the following four cases. The other non-relations can be
easily obtained by using the already shown relations presented in Figure 1.

1. F ≡st G /⇒ F ≡stW G.

F ∶ a1 a2 G ∶ a1 a2 a3

We have Est(F) = Est(G) = {{a2}} ≠ ∅ and obviously, A(F) ≠ A(G). In [10]
(Proposition 3) it was shown that two AFs are weak expansion equivalent w.r.t. stable
semantics iff i) A(F) = A(G) and Est(F) = Est(G) or ii) Est(F) = Est(G) = ∅. Con-
sequently, F /≡stW G and obviously,F ≡st G.

2. F ≡st,MC
Φ G /⇒ F ≡

st
L G for each Φ ∈ {E,N,S}.

F ∶ a1 a2 a3 G ∶ a1 a2 a3

Both AFs share the same arguments. Furthermore, Est(F) = Est(G) = {{a1, a3}}.
Applying Definition 8 and Theorem 9 in [7] we conlude: First, for any E ⊆ {a1, a3},
we have NFst,S(E) = NGst,S(E) = 0. Second, NFst,S({a1}) = NGst,S({a1}) = 1 and

third, for all not mentioned subsets C of A(F), NFst,S(C) = NGst,S(C) = ∞ because

they contain at least one conflict. This verifies F ≡st,MC
Φ G for each Φ ∈ {E,N,S}

(Theorem 9, Theorem 13 in [7]). Consider the AFsH = ({a2, a3},{(a2, a3)}). We ob-
serve that Est(F ∪H) = {{a1, a3},{a2}} ≠ {{a1, a3}} = Est(G) = Est(G ∪H). Thus,
F /≡

st
L G.

3. F ≡st,MC
W G /⇒ F ≡

st,MC
Φ G for each Φ ∈ {E,N,S}.

F ∶ a1 a2 a3 G ∶ a1 a2 a3

Both AFs share the same arguments and Est(F) = Est(G) = {{a2}}. Thus,
NFst,W (∅) = NGst,W (∅) = NFst,W ({a2}) = NGst,W ({a2}) = 0. Furthermore, for any

other subset C of A(F), NFst,W (C) = N
G

st,W (C) = ∞ because they are not contained

in an extension (Definition 7, Theorem 6 in [7]). Consequently, F ≡st,MC
W G. On the

other hand, NFst,S({a1}) = 1 ≠ 2 = N
G

st,S({a1}) (compare Definition 8, Theorem 9 in

[7]). This means, F /≡st,MC
Φ G for each Φ ∈ {E,N,S}.

4. F ≡stL G /⇒ F ≡
st,MC
W G.
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F ∶ a1 a2 G ∶ a1

Since minimal change equivalence implies sharing the same arguments we state
F /≡

st,MC
W G. Furthermore, it can be easily checked that for any AF H, s.t. A(H) ⊆

{a1, a2}, we have Est(F ∪H) = Est(G ∪H). Hence, F ≡stL G.

How does the situation change if we restrict our considerations to AFs possessing
the same arguments? It turns out that the equivalence zoo collapses to only 3 distinct
classes, and in contrast to the general case local expansion equivalence and the different
forms of minimal change equivalence become comparable.

Proposition 2. For stable semantics and argumentation frameworks with the same ar-
guments the following relationships hold:

– strong equivalence = normal expansion equivalence = strong expansion equiva-
lence = local expansion equivalence,

– MC equivalence with arbitrary expansion = MC equivalence with normal expan-
sion = MC equivalence with strong expansion,

– weak expansion equivalence = standard equivalence = MC equivalence with weak
expansion,

– strong equivalence ⊊ MC equivalence with arbitrary expansion ⊊ weak expansion
equivalence.

Here is the graphical representation of the result:
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Fig. 2. Stable semantics in case of A(F) = A(G)

Proof. For this proof we consider AFs sharing the same arguments, i.e. A(F) =
A(G). Using the results presented in Figure 1 it suffices to show the following three
implications.
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At first we will show that F ≡stL G ⇒ F ≡
st
E G. In [1] (Theorem 9) it is proven

that two AFs are local expansion equivalent iff i) F ≡stE G or ii) Est(F) = Est(G) and
there is an argument a ∈ (A(F)/A(G)) ∪ (A(F)/A(G)) satisfying certain properties.
Since A(F) = A(G) is assumed, F ≡stE G follows because there are no arguments in
(A(F)/A(G)) ∪ (A(F)/A(G)).

We will show now thatF ≡st G ⇒ F ≡stW G. In [10] (Proposition 3) it was shown that
two AFs are weak expansion equivalent w.r.t. stable semantics iff i) A(F) = A(G) and
Est(F) = Est(G) or ii) Est(F) = Est(G) = ∅. Consequently, standard equivalence, i.e.
Est(F) = Est(G) together with the assumption A(F) = A(G) implies weak expansion
equivalence, i.e. F ≡stW G is shown.

Finally, we show that F ≡stW G ⇒ F ≡
st,MC
W G. Assume F ≡stW G and F /≡st,MC

W .
Using the characterization theorem in [10] (Proposition 3) we deduce Est(F) = Est(G).
Since we assumed that F and G are not minimal change equivalent we deduce
NFst,W (E) ≠ NGst,W (E) for some E ⊆ A(F)(= A(G)). W.l.o.g. we assume

NFst,W (E) = 0 and NGst,W (E) = ∞ (Theorem 6, Definition 10 in [7]). This means there
is a superset E′ of E, s.t. E′ ∈ Est(F). Consequently, E′ ∈ Est(G) in contradiction to
NGst,W (E) = ∞.

In consideration of the counter-examples 2 and 3 it follows that the converse direc-
tions do not hold because the considered AFs share the same arguments.

The role of self-loops is somewhat controversial in the literature. It is sometimes ar-
gued such self-attacks are necessary as they model paradoxical statements. On the other
hand, it was shown (see Theorem 4.13 in [12]) that self-attacking arguments do not
occur if Dung-style AFs are considered as instantiations of classical logic-based frame-
works. At least in such contexts investigating AFs without self-loops is of interest. For
this reason we present the equivalence zoo restricted to self-loop-free AFs. In contrast
to the general case, local expansion equivalence coincides with strong, normal expan-
sion and strong expansion equivalence and thus, the equivalence zoo becomes totally
ordered.

Proposition 3. For stable semantics and argumentation frameworks without self-loops
the following relationships hold:

– strong equivalence = normal expansion equivalence = strong expansion equiva-
lence = local expansion equivalence,

– MC equivalence with arbitrary expansion = MC equivalence with normal expan-
sion = MC equivalence with strong expansion,

– strong equivalence ⊊ MC equivalence with arbitrary expansion ⊊ MC equivalence
with weak expansion ⊊ weak expansion equivalence ⊊ standard equivalence.

Here is again the graphical representation of the result:
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Fig. 3. Stable semantics in case of self-loop-free AFs

Proof. In consideration of the counter-examples given in the proof for stable seman-
tics without restrictions we observe that only the fourth example showing that F ≡stL
G /⇒ F ≡

st,MC
W G contains self-loops. This is not a coincidence because local expan-

sion equivalence coincides with strong equivalence in case of self-loop-free AFs. This
follows immediately by Theorem 13 in [1] and Proposition 4 in [6].

Finally, we present a counter-example showing that F ≡stW G /⇒ F ≡
st,MC
W G.

F ∶ a1 a2 a3 G ∶ a1 a2 a3 a5 a4

Two AFs are weak expansion equivalent w.r.t. stable semantics iff i) A(F) = A(G)
and Est(F) = Est(G) or ii) Est(F) = Est(G) = ∅ [10, Proposition 3]. The second
conditions holds for the considered AFs. Furthermore, they are not minimal change
equivalent w.r.t. weak expansions since they do not share the same arguments.

3.2 Preferred Semantics: The Full Picture

How does the equivalence zoo look if we turn to the more relaxed notion of preferred
semantics? To answer this question we first prove a characterization theorem for pre-
ferred semantics in case of weak expansions. It turns out that two AFs are weak expan-
sion equivalent iff they share the same arguments, possess the same preferred extensions
and furthermore, for any extensionE the set of arguments which are not in the extension
without being refuted has to coincide in both AFs.

Theorem 1. For any two AFs F ,G we have F ≡prW G iff A(F ) = A(G), Epr(F) =
Epr(G) and for each E ∈ Epr(F) ∶ U

F

E = U
G

E where UAE = {a ∈ A(A) ∣ a ∉ E ∧(E,a) ∉
R(A)}.
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Proof. (⇐) Given an AF H, s.t. F ⪯W F ∪H and G ⪯W G ∪H. We have to show
that Epr(F ∪H) = Epr(G ∪H). If F = F ∪H, then G = G ∪H since A(F) = A(G)
is assumed. In consideration of Epr(F) = Epr(G) the assertion follows. Assume now
that F ≠ F ∪H. Using splitting results (Theorem 2 in [10]) one may easily show that
E ∈ Epr(F ∪H) implies E ∈ Epr(G ∪H) (and vice versa).

(⇒) We will show the contrapositive, i.e. if A(F ) ≠ A(G) or Epr(F) ≠ Epr(G) or
there exists an E ∈ Epr(F), s.t. UFE ≠ UGE , then F /≡prW G. Consider E ∈ Epr(F)
and E ∉ Epr(G). Consequently, E ∪ {d} ∈ Epr(F ∪H) and E ∪ {d} ∉ Epr(G ∪H)
where H = ({d},∅) and d is a fresh argument, i.e. d ∉ A(F) ∪ A(G). Assume now
A(F ) ≠ A(G) and Epr(F) = Epr(G). W.l.o.g. let a ∈ A(F )/A(G). Consequently,
there is no preferred extension E, s.t. a ∈ E. IfH = ({a},∅), thenF ∪H = F and thus,
there is noE ∈ Epr(F ∪H), s.t. a ∈ E. On the other hand, since a is unattacked in G ∪H
we deduce that a is contained in the grounded extension of G ∪H. Thus, Epr(F ∪H) ≠
Epr(G ∪H) is shown. Finally, we consider A(F ) = A(G) and Epr(F) = Epr(G) but
there exists an E ∈ Epr(F), s.t. UFE ≠ UGE . W.l.o.g. let a ∈ UGE/U

F

E . This means,
a ∉ E, (E,a) ∉ R(G) and (E,a) ∈ R(F), i.e. a is attacked by E in F . Consider now
H = ({a, b},{(a, b)}) where b is a fresh argument. One can easily see that E ∪ {b} ∈
Epr(F ∪H) (b is defended by E) but E ∪ {b} ∉ Epr(G ∪H) (b is not defended by E).
Altogether, F /≡prW G is shown.

Now we are prepared to tackle preferred semantics. The following result presents the
interrelations if we put no restriction on the considered AFs. We observe that as in
the case of stable semantics there is no total ordering of the equivalence relations
in the equivalence zoo. In particular, weak expansion equivalence is not compara-
ble with strong expansion equivalence and minimal change equivalence w.r.t. arbi-
trary, normal and strong expansions. Furthermore, members of the family of minimal
change equivalence relations are shown to be intermediate forms between strong expan-
sion and standard equivalence. Interestingly, weak expansion equivalence and minimal
change equivalence w.r.t. weak expansions change their position in comparison to stable
semantics.

Proposition 4. For preferred semantics and arbitrary argumentation frameworks the
following relationships hold:

– strong equivalence = normal expansion equivalence = local expansion equiva-
lence,

– MC equivalence with arbitrary expansion = MC equivalence with normal expan-
sion = MC equivalence with strong expansion,

– strong equivalence ⊊ strong expansion equivalence ⊊ MC equivalence with arbi-
trary expansion ⊊MC equivalence with weak expansion ⊊ standard equivalence,

– strong equivalence ⊊ weak expansion equivalence ⊊ MC equivalence with weak
expansion.

Here is again the graphical representation of the result:
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Fig. 4. Preferred semantics in general

Proof. In [6, Theorem 13] it was already shown that F ≡prE G ⇔ F ≡
pr
N G ⇔ F ≡

pr
L

G ⇒ F ≡
pr
S G,F ≡

pr
W G ⇒ F ≡

pr
G.

First, we will show that weak expansion equivalence implies minimal change equiv-
alence w.r.t. weak expansions, i.e. F ≡prW G ⇒ F ≡

pr,MC
W G. Applying Theorem 1

we deduce A(F ) = A(G) and Epr(F) = Epr(G). If F /≡pr,MC
W G, then there is a

set E ⊆ A(F ), s.t. NFpr,W (E) ≠ NGpr,W (E). W.l.o.g. we assume NFpr,W (E) = 0 and

NGpr,W (E) = ∞ (compare [7, Definition 7, Theorem 6]). Hence, there is a superset E′

of E, s.t. E′ ∈ Epr(F) and E′ ∉ Epr(G) in contradiction to Epr(F) = Epr(G).
Since preferred semantics satisfies I-maximality [11], i.e. no extension can be a

proper subset of another one, we conclude F ≡pr,MC
W G ⇒ F ≡

pr
G ([7, Theorem

15]).
We show now thatF ≡prS G impliesF ≡pr,MC

Φ G for each Φ ∈ {E,N,S}. We have al-
ready shown that minimal change equivalence w.r.t. arbitrary, normal and strong expan-
sions coincide [7, Definition 10, Theorem 6]. Hence, it suffices to prove that F ≡prS G

and F /≡pr,MC
S G yields a contradiction. Since strong expansion equivalence implies

sharing the same arguments [6, Definition 7, Theorem 6] it follows the existence of
a subset E ⊆ A(F) = A(G), s.t. F /≡pr,ES G. Consequently, NFpr,S(E) ≠ NGpr,S(E).

Let NFpr,S(E) = k1 < k2 = NGpr,S(E) where k1, k2 ∈ N∞. Note that k1 = 0 yields a
contradiction because strong expansion equivalence implies standard equivalence, i.e.
Epr(F) = Epr(G) (Proposition 3 in [6]). Assume k1 ≠ 0. Consequently, there are an AF
H and a set E′ ⊆ A(H), s.t. F ⪯S H, d(F ,H) = k1 and E ⊆ E′ ∈ Epr(H). W.l.o.g.
there exists an AF H′, s.t. R(F) ∩ R(H′) = ∅ and any attack in R(H′) contains at
least one fresh argument and H = F ∪ H′ (compare Definition 2). Since F ≡pr

⪯S
G is

assumed and A(F) = A(G) is already shown we conlude G ⪯S G ∪H′ and therefore
E′ ∈ Epr(G ∪H

′
). It can be easily seen that d(G,G ∪H′) = k1. Thus, k2 =NGpr,S(E) =

k1 in contradiction to k1 < k2. Consequently, F ≡prS G ⇒ F ≡
pr,MC
Φ G for each

Φ ∈ {E,N,S} is shown.
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Finally, we will show that F ≡pr,MC
Φ G ⇒ F ≡

pr,MC
W G for each Φ ∈ {E,N,S}.

Again, it suffices to show that F ≡pr,MC
S G and F /≡pr,MC

W G yields a contradiction [7,
Theorem 9, Definition 10]. The first assumption implies A(F) = A(G). The second as-
sumption means that there is a set E, s.t. NFpr,W (E) ≠ N

G

pr,W (E). Let NFpr,W (E) = ∞

and NGpr,W (E) = 0 [7, Theorem 6, Definition 10]. Recalling that the characteristic w.r.t.
strong expansions does not exceed the characteristic w.r.t. weak expansions [7, Proposi-
tion 10] we conclude NGpr,S(E) = 0. Hence, applying the minimal change equivalence

w.r.t. strong expansions we deduce NFst,S(E) = 0. This means, there is a superset E′ of
E, s.t. E′ ∈ Epr(F). Consequently, NFst,W (E) = ∞ is impossible concluding the proof.

For the sake of completeness we will present some counterexamples showing that
the converse directions do not hold. It suffices to check the following four cases. The
other non-relations can be easily obtained by using the already shown relations depicted
in Figure 4.

1. F ≡pr G /⇒ F ≡pr,MC
W G.

F ∶ a1 a2 G ∶ a1 a2 a3

Obviously, Epr(F) = Epr(G) = {{a1}}. Furthermore, F /≡pr,MC
W G since minimal

change equivalence guarantees sharing the same arguments (compare Definition 10 in
[7]) but A(F) ≠ A(G).

2. F ≡pr,MC
Φ G /⇒ F ≡

pr
S G for each Φ ∈ {E,N,S}.

F ∶ a1 a2 a3 G ∶ a1 a2 a3

It can be checked (Definition 8, Theorem 9 in [7]) that NFpr,S({a1}) = N
G

pr,S({a1}) =

NFpr,S({a3}) = NGpr,S({a3}) = 1 and NFpr,S({a2}) = NGpr,S({a2}) = NFpr,S(∅) =

NGpr,S(∅) = 0 and for any other E ⊆ A(F) = A(G) (thus, E ∉ cf(F) = cf(G)), we

have NFpr,S(E) = N
G

pr,S(E) = ∞. Hence, F ≡pr,MC
S G. Furthermore, F /≡prS G because

F and G are self-loop-free but not syntactically identical (compare Proposition 4 in [6]).

3. F ≡prW G /⇒ F ≡
pr,MC
Φ G for each Φ ∈ {E,N,S}.

F ∶ a1 a2 a3 G ∶ a1 a2 a3

Since A(F) = A(G), Epr(F) = Epr(G) = {{a2}} and UF
{a2}

= ∅ = UG
{a2}

we

conclude F ≡prW G (Theorem 9). Furthermore, NFpr,S({a1}) = 1 ≠ 2 = NGpr,S({a1})

(compare Definition 8, Theorem 9 in [7]). Consequently,F /≡pr,MC
S G.
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4. F ≡prS G /⇒ F ≡
pr
W G.

F ∶ a1 a2 G ∶ a1 a2

SinceF and G possess identical admissible-*-kernels, namelyF = Fk∗(ad)
= G

k∗(ad)

we deduce F ≡prS G (compare Definition 7, Theorem 6 in [6]). Furthermore, Epr(F) =
Epr(G) = {{a1}} but UF

{a1}
= {a2} ≠ ∅ = U

G

{a1}
. Hence, F /≡prW G (Theorem 1).

Restricting our considerations to AFs sharing the same arguments does not have a big
effect in comparison to the general case. We state a slight difference only, namely stan-
dard equivalence of two AFs becomes sufficient for their minimal change equivalence
w.r.t. weak expansions.

Proposition 5. For preferred semantics and argumentation frameworks with the same
arguments the following relationships hold:

– strong equivalence = normal expansion equivalence = local expansion equiva-
lence,

– MC equivalence with arbitrary expansion = MC equivalence with normal expan-
sion = MC equivalence with strong expansion,

– standard equivalence = MC equivalence with weak expansion,
– strong equivalence ⊊ strong expansion equivalence ⊊ MC equivalence with arbi-

trary expansion ⊊ standard equivalence,
– strong equivalence ⊊ weak expansion equivalence ⊊ standard equivalence.

Graphically:

strong
+

normal
expansion

+
local

expansion
equivalence

strong
expansion
equivalence

MC-
equivalence

w.r.t.
arbitrary
expansion

+
normal

expansion
+

strong
expansionweak

expansion
equivalence

standard
equivalence

+
MC-

equivalence
w.r.t.
weak

expansion

Fig. 5. Preferred semantics in case of A(F) = A(G)

Proof. Consider again the counter-examples given in the proof before showing that
some relations do not hold. We observe that only the first counter-example (showing
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that F ≡pr G /⇒ F ≡pr,MC
W G) deals with AFs which do not share the same arguments.

This is not a coincidence as the following proof shows.
We assume A(F) = A(G) and F ≡pr G. Standard equivalence of two AFs, i.e.

Epr(F) = Epr(G) together with the assumption guarentees that for any set E ⊆ A(F),
either NFpr,W (E) = NGpr,W (E) = 0 or NFpr,W (E) = NGpr,W (E) = ∞ (compare [7,

Definition 7]). Consequently,F ≡pr,MC
W G is shown [7, Theorem 6].

Finally, we consider the class of self-loop-free AFs. It turns out that in this case stable
and preferred semantics behave in a very similar manner. The only difference is the role
(or better, position) of weak expansion equivalence and minimal change equivalence
w.r.t. weak expansions.

Proposition 6. For preferred semantics and argumentation frameworks without self-
loops the following relationships hold:

– strong equivalence = normal expansion equivalence = strong expansion equiva-
lence = local expansion equivalence,

– MC equivalence with arbitrary expansion = MC equivalence with normal expan-
sion = MC equivalence with strong expansion,

– strong equivalence ⊊ MC equivalence with arbitrary expansion ⊊ weak expansion
equivalence ⊊MC equivalence with weak expansion ⊊ standard equivalence.

Graphically:
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equivalence

w.r.t.
arbitrary
expansion

+
normal

expansion
+
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expansion
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expansion
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expansion
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Fig. 6. Preferred semantics in case of self-loop-free AFs

Proof. In this proof we assume that the considered AFs do not possess self-loops. Con-
sequently, in consideration of the results presented in Figure 4 it suffices to show the
following two relations. First, F ≡prS G ⇒ F ≡

pr
N G (already shown in [6, Proposition

4]) and second, F ≡pr,MC
S G ⇒ F ≡

pr
W G. Due to space limitations we omit this proof.

Consider again the counter-examples given in the proof of the relations depicted in
Figure 6. We observe that the counter-examples 1-3 do not possess self-loops. Hence,
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these (non)-relations do not hold here either. A counter-example remains to be given for
F ≡

pr,MC
W G /⇒ F ≡

pr
W G.

F ∶ a1 a2 a3

b1 b2 b3

G ∶ a1 a2 a3

b1 b2 b3

One may check that Epr(F) = Epr(G) = {{b3}}. Furthermore, A(F) = A(G). Con-
sequently, for any set E ⊆ A(F), either NFpr,W (E) = N

G

pr,W (E) = 0 or NFpr,W (E) =

NGpr,W (E) = ∞ (compare Definition 7 in [7]). Hence, F ≡pr,MC
W G is shown (Theo-

rem 6 in [7]). On the other hand, UF
{b3}
= {a1, a2, b1, b2} ≠ {a1, a2, a3, b1, b2} = U

G

{b3}
.

Thus, F /≡prW G (Theorem 1).

4 Conclusions

In this paper we continued earlier work of the first author [6]. We fully clarified the
relationship among all equivalence notions for AFs so far discussed in the literature
for stable and preferred semantics. We provided an analysis for the whole class of AFs
as well as for two important subclasses, namely AFs sharing the same arguments and
self-loop-free AFs. The most relevant “take home” message following from our results
is that the different notions of minimal change equivalence fit nicely into the global
picture of other equivalence notions in the sense that they constitute alternative notions
in between strong and standard equivalence.

Our results are not only of theoretical interest, they can also be very useful in prac-
tice. For instance, it is easy to decide (in linear time) whether two AFs are strong expan-
sion equivalent. In cases where strong expansion equivalence is established, minimal
change equivalence - which is much more difficult to decide in general - immediately
follows, as shown in this paper. Furthermore, since argument and attack construction is
monotonic, adding a new piece of information to the underlying knowledge base does
not rule out old arguments and attacks. Thus, notions like normal expansion equivalence
allow us to simplify AFs adequately as they reflect this kind of dynamic scenarios. In
brief, abstract equivalence notions can detect redundant attacks no matter what the un-
derlying KR-language is. An equivalence notion for the special case where classical
logic is used is defined in [13].

Some obvious further work remains to be done, in particular we plan to extend our
analysis to further argumentation semantics (like admissible, grounded or complete se-
mantics [5]). Instead of considering a certain semantics one may alternatively look at
general criteria sufficient and/or necessary for beeing in a particular interrelation. Ex-
amples of such criteria are regularity and I-maximality as it was shown in [7, Theorems
14,15]. A further direction is the generalization of existing equivalence notions con-
cerning AFs to ADFs firstly introduced in [14].

Acknowledgements. The authors acknowledge support by Deutsche Forschungsge-
meinschaft (DFG) under grant BR 1817/7-1.
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Abstract. Abstract Argumentation Frameworks (AFs) provide a fruitful basis for
exploring issues of defeasible reasoning. Their power largely derives from the ab-
stract nature of the arguments within the framework, where arguments are atomic
nodes in an undifferentiated relation of attack. This abstraction conceals differ-
ent conceptions of argument, and concrete instantiations encounter difficulties as
a result of conflating these conceptions. We distinguish three distinct senses of
the term. We provide an approach to instantiating AF in which the nodes are re-
stricted to literals and rules, encoding the underlying theory directly. Arguments,
in each of the three senses, then emerge from this framework as distinctive struc-
tures of nodes and paths. Our framework retains the theoretical and computational
benefits of an abstract AF, while keeping notions distinct which are conflated in
other approaches to instantiation.

1 Introduction

Abstract Argumentation Frameworks (AFs) ([1,2,3], among others) provide a fruitful
basis for exploring issues of defeasible reasoning.1 Their power largely derives from
the abstract nature of the arguments within the framework, where arguments are atomic
nodes in an undifferentiated relation of attack; such AFs provide a very clean accept-
ability semantics, e.g. [5].

While abstract approaches facilitate the study of arguments and the relations between
them, it is necessary to instantiate arguments to apply the theory. In instantiated argu-
mentation, arguments are premises and rules from which conclusions are derived. The
objective of such instantiated argumentation is to be able to reason about inconsistency
of a knowledge base (KB) and derive consistent subsets of the KB. Methods for in-
stantiation have been proposed which combine AFs with Logic Programs [2,6,7,3,8,9].
Such systems generally have three steps as in Figure 1 (from [10]), though for this paper
we focus on the formalisation of ASPIC+ [8]. We start with an inconsistent knowledge
base (KB) comprised of facts and rules, where the rules typically may include both strict
(SI) and defeasible (DI) inference rules. In Step 1, we construct arguments (nodes) and
attacks (arcs) from this KB, resulting in an AF; formalisations differ in just how argu-
ments are constructed from the KB and how attacks between arguments are determined.

1 Corresponding author: Adam Wyner. This paper is a revision of an unpublished paper [4].
Thanks to Federico Cerutti for comments. Errors and misunderstandings rest with the authors.

J. Leite et al. (Eds.): CLIMA XIV, LNAI 8143, pp. 34–50, 2013.
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In Step 2, we evaluate the AF according to a variety of semantics, resulting in extensions
(sets) of arguments. In Step 3, we extract the conclusions from the arguments, resulting
in extensions of conclusions. Thus, from a KB that is initially inconsistent (or derives
inconsistency), we can nonetheless identify consistent sets of propositions.

Fig. 1. Three Steps of Argumentation

While such an approach to instantiated argumentation is attractive, it is not with-
out issues. We discuss these briefly by way of motivation, then develop them over the
course of the paper. Arguments in ASPIC+ are constructed from the KB as premises
and a rule from which a conclusion is inferred; they may be compounds of strict and
defeasible subarguments [8]. Thus, many arguments with some of the same elements of
the KB may be constructed. An argument may attack a subargument of another argu-
ment. Successful attacks (defeat) are defined relative to a preference ordering amongst
the arguments and used to determine AF extensions. In these respects, ASPIC+ differs
from [1], where arguments are atomic, there is a uniform attack relation between ar-
guments, and a preference ordering plays no role in determining successful attack. As
well, the use of subarguments and attacks between arguments and subarguments gives
rise to some descriptive unclarity in the commonly uses “senses” of the term “argu-
ment” [11]. More essentially, ASPIC+ must ensure that over the course of the three
steps, the rationality postulates of direct consistency, closure, and indirect consistency
of [3] are satisfied. For ASPIC+ to satisfy the rationality postulates, auxiliary definitions
are required and only restricted rebut is available [8], though this seems limited [10].
Stepping back from the particulars of ASPIC+, there is a general question of whether
all three steps are required to attain the goal of extensions of conclusions; after all, Step
1 “packs” a portion of the KB into arguments that have to be “unpacked” in Step 3. In
this way, reasoning with respect to the KB is handled indirectly, with arguments stand-
ing as intermediaries. Finally, we cannot reason with partial information in KBs, where
premises of a rule are missing, for no inference can be drawn, so no argument can be
constructed.

In this paper, we provide a novel, two step approach to instantiating the arguments
of an AF (see Figure 2), where arguments AF are atomic, there are no attacks on subar-
guments, and preferences are not used. It intuitively satisfies the rationality postulates
without restricted rebut while addressing a key, problematic example. The AF “wears
the logic on its sleave”: the KB, mainly classical logic with strict and defeasible modus
ponens to use the rules along with the principles of ex falso quodlibet and tertium non
datum, is directly constructed as an AF with literals and rules as the nodes of the AF, i.e.
the arguments of the AF, with arcs, i.e. the attacks of the AF, specified between them.
Once given the AF so constructed, evaluation proceeds as usual, though the extensions
correlate with models of consistent subsets of the KB. We show how we can represent
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and reason with partial, incomplete, and inconsistent KBs. Our approach addresses a
benchmark example of the ASPIC approach. In addition, in our approach, the various
descriptive senses of argument such as found in ASPIC+ and elsewhere emerge from
the framework as distinct structures in an AF; keeping them distinct avoids the confu-
sions that can arise when these different senses are conflated. Our approach retains the
appeal of AFs, evaluates the AF with the well understood semantics, allows reasoning
with respect to knowledge bases, retains the appropriate level of abstraction of the nodes
of the AF, and reasons with partial KBs.

Fig. 2. Two Steps of Argumentation

The structure of the paper is as follows. In Section 2 we outline AFs [1] and charac-
terise the types of knowledge base we are working with. We then show how a knowledge
base is represented in a derived AF in Section 3. We illustrate the approach with basic
examples of the definitions, a simple example of a combination of strict and defeasible
rules, a partial KB, and the relationship of extensions to classical logic models. In Sec-
tion 4, we discuss the approach to KB instantiation of [3,8] along with a key example
and the problems it raises. We show how our approach addresses the problems of the
example. The different senses of argument are then characterised in terms of particu-
lar structures within the AF as presented in Section 5. We end in Section 6 with some
concluding remarks and future work.

2 Argumentation Frameworks

An Argumentation Framework AF is defined as follows [1].

Definition 1. An argumentation framework AF is a pair 〈LA,RA〉, where LA is a finite
set of arguments, {p1, p2, . . . , pn} and RA is an attack relation between elements of
LA. For 〈pi, pj〉 ∈ RA we say the argument pi attacks argument pj . We assume that no
object attacks itself.

The relevant auxiliary definitions are as follows, where S is a subset of LA:

Definition 2. We say that p ∈ LA is acceptable with respect to S if for every q ∈ LA

that attacks p there is some r ∈ S that attacks q. A subset, S, is conflict-free if no
argument in S is attacked by any other argument in S. A conflict-free set S is ad-
missible if every p ∈ S is acceptable to S. A preferred extension is a maximal (w.r.t.
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⊆) admissible set. The argument p ∈ LA is credulously accepted if it is in at least one
preferred extension, and sceptically accepted if it is in every preferred extension.

There are a variety of other semantics, e.g. grounded, stable, and others, but consid-
ering preferred extensions serves our purposes in this paper.

As we clarify the notion of argument itself and do not want to introduce presumptions
about them, we sometimes prefer to refer to arguments as objects or graph-theoretic
nodes (denoted by LA) and their attack relations as arcs (denoted by RA). Context
makes it clear what is being referred to.

3 Representing a Theory as an AF

The approach has two basic parts (the presentation is a revision of [4]). In the first part,
we represent a Theory Base T , which represents the KB. Then, we construct an AF

from the KB, following Step 1 of Figure 2, where the nodes of an AF are labeled with
respect to the literals and inference rules of the Theory Base, while the attack relation
is partitioned with respect to the nodes. In the second part, we impose conditions on the
assertion of literals with respect to the AF. Following the theoretical presentation, we
provide basic examples, carrying out Step 2 of Figure 2 to evaluate an AF according to
Definitions 1 and 2.

3.1 Theory Base T

Definition 3. A Theory Base, T , comprises a pair (L,R) in which

L = {x1, . . . , xn} ∪ {¬x1, . . . ,¬xn}

is a set of literals over a set of propositional variables {x1, . . . , xn}. We use yi to de-
note an arbitrary literal from {xi,¬xi}.

We have a set of proper names of rules {r1, r2, . . . , rn}. Rules are either strict (r ∈
Rstr) or defeasible (r ∈ Rdfs), and Rstr ∩Rdfs = ∅. R = Rstr ∪Rdfs where

R = {r1, r2, . . . , rn}

in which r ∈ R has a body, bd(r) ⊆ L, and a head, hd(r) ∈ L.

We refer to the literals in bd(r) as premises and the literal in hd(r) as the claim.
For easy reference to the “content” of the rule, we assume each rule has an associated

definite description as follows. For r ∈ Rstr, the definite description of r has the form
r : bd(r) → hd(r), where hd(r) ∈ L and bd(r) ⊆ L. Similarly, the definite description
for r ∈ Rdfs, has the form r : bd(r) ⇒ hd(r). Where a rule has an empty body, bd(r)
= ∅, we have r :→ hd(r) or r :⇒ hd(r), which are strict and defeasible assertions,
respectively. To refer distinctly to the set of rules with non-empty bodies and those with
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empty bodies (assertions), we have R = TRules ∪ ARules, where TRules = {r | r ∈
R ∧ bd(r) = ∅} and ARules = {r | r ∈ R ∧ bd(r) = ∅}.

We constrain a Theory Base, which we refer to as a Well-formed Theory.

Definition 4. A Well-formed Theory,W , is a Theory Base, T , abiding Constraints 1-4.

First, the relationship between literals of strict and defeasible rules is constrained:

Constraint 1 For Theory Base (L,R), ∀r ∈ Rstr, there is no rule, r’ ∈ Rdfs with
hd(r) = hd(r’) and bd(r) ⊆ bd(r’).

Furthermore, no literal and its negation can both be strictly asserted.

Constraint 2 For Theory Base (L,R), if r ∈ R, where r :→ hd(r), then r’ ∈ R, where
r’ :→¬hd(r).

In addition, every literal appears in some rule.

Constraint 3 For Theory Base (L,R), if y ∈ L, then ∃ r ∈ R, y ∈ bd(r) ∨ y = hd(r).

Finally, every rule has a claim.

Constraint 4 For Theory Base (L,R), if r ∈ R, then ∃ y ∈ L, y = hd(r).

Semantically, a rule r ∈ Rstr represents the notion that hd(r) holds if all of the
literals in bd(r) simultaneously hold; with respect to the rule, we say the bd(r) strictly
implies the hd(r). We assume standard notions of truth and falsity of literals along with
the truth-tables of Propositional Logic for material implication which are models under
which the rule is true or false. Semantically, a rule r ∈ Rdfs represents the notion that
hd(r) “usually” holds if all of the literals in bd(r) simultaneously hold, but there are
circumstances where ¬hd(r) holds though all of the literals in bd(r) simultaneously
hold. With respect to the rule, we say the bd(r) defeasibly implies the hd(r).

While the clauses are similar to the Horn Clauses of logic programming, the head lit-
eral can be in a positive or negative form. We only have classical negation, not negation
as failure; we do not allow iterated negation. The rationale for this choice of clauses is
that it naturally supports our analysis of the senses of argument.

3.2 Deriving an AF from a Theory Base

A core element of our approach is the concept of the AF derived from a Theory Base.
The AF uses a set of labels for the nodes in the graph: {x1,. . .,xn} ∪ {¬x1,. . .,¬xn} ∪
{r1,. . .,rn} (or for clarity, the definite description of the rule name). Thus, we can see
how elements of a Theory Base, T , correspond to but are distinct from elements of the
derived AF, indexing the AF to the T .
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Definition 5. Let T = (L,R) be a Theory Base with

L = {x1, . . . , xn} ∪ {¬x1, . . . ,¬xn}
R = Rstr ∪Rdfs

The derived framework from T , is the AF, 〈LA
T ,RA

T 〉 in which,

LA
T = { x, ¬x : x,¬x ∈ L}

∪ { r : bd(r) → hd(r) : r ∈ Rstr}
∪ { r : bd(r) ⇒ hd(r) : r ∈ Rdfs}

Furthermore,
∀x ∈ LA

T , x ∈ L, and
∀r ∈ LA

T , r ∈ R

In an AF, the nodes have no internal content.
The attack set RA

T comprises three disjoint sets which describe: attacks by nodes
labeled with names for literals on other nodes labeled with names for literals; attacks
by nodes labeled with names for literals on nodes labeled with names for rules; and
attacks by nodes labeled with names for rules on nodes labeled with names for literals.
We recall that yi ∈ {xi,¬xi} so that ¬yi is the complementary literal to yi.

Definition 6. In the AF 〈LA
T ,RA

T 〉, RA
T = RA

ll ∪RA
lr ∪RA

rl where:

RA
ll = {〈yi,¬yi〉, 〈¬yi, yi〉 : 1 ≤ i ≤ n

and yi,¬yi ∈ LA
T }

RA
lr = {〈¬yi, rj〉 : yi ∈ bd(rj) and ¬yi, rj ∈ LA

T }
∪ {〈¬yi, rj〉 : rj ∈ Rdfs and hd(rj) = yi
and ¬yi ∈ LA

T }
RA

rl = {〈rj ,¬yi〉 : hd(rj) = yi and ¬yi, rj ∈ LA
T }

The following hold for an AF derived from a T :

1. Each literal y in L of Theory Base T corresponds to a node labeled y in LA of the
derived AF; LA of the derived AF contains, in addition, the node labeled ¬y. Nodes
labeled for literals of opposite polarity are mutually attacking.

2. Each rule in r in R of a Theory Base T corresponds one-to-one to a node label r
in LA of the derived AF. Whereas a rule in R is true (or false) in the Theory Base,
in the derived AF we say it has been applied relative to the admissible set where
it appears and otherwise has not been applied. In the AF, a rule node is attacked
by the nodes which correspond to the negation of the body literals and, in addition,
attacks the node which corresponds to the negation of the head literal.

3. For strict rules, if a node which corresponds to the negation of a body literal of a
rule is in an admissible set, we say the rule node has not been applied relative to
that set. In this case, the node which corresponds to the head literal is only credu-
lously admissible. If all the nodes which correspond to the body literals are in an
admissible set, then the rule node has been applied and the node which corresponds
to head literal is admissible in that set.
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4. For defeasible rules, if a node which corresponds to the negation of a body literal
or if the node which corresponds to the negation of the head literal of the rule is in
an admissible set, we say the rule node has not been applied relative to that set. In
both instances, the node corresponding to the literal attacks the rule node. Even if
all nodes which correspond to the body literals of a rule are in an admissible set,
the rule node or the node which corresponds to the head literal may not be in that
set, for they can be defeated.

We evaluate the derived AFs only following the definitions of extensions relative to
the standard AF 〈LA

T , RA
T 〉; that is, while the partitions of nodes or arcs are important for

deriving the AF from T , they are ignored for the purposes of the standard AF evaluation,
so that we have a standard abstract framework. Thus, the fundamental semantics of
abstract AFs are maintained.

For our purposes and relative to our classical logic context, the set of extensions
provided by Dungian AFs must be filtered. In our approach, AFs are derived from a
Theory Base, and the resulting extensions are not homogeneous, for they may contain
both literals and rules. More importantly, we must ensure that the extensions also serve
to satisfy classical logic properties such as closure under strict implication. With these
points in mind, we have the following.

Constraint 5 Consider: a, an admissible set of the derived AF 〈LA
T ,RA

T 〉; A, the set of
admissible sets a; and Rstr ⊆ LA

T . For every r ∈ Rstr and every a ∈ A, if r ∈ a and
every bd(r) ∈ a , then hd(r) ∈ a.

Definition 7. An admissible set of the derived AF 〈LA
T ,RA

T 〉 is a Well-formed Admis-
sible Set (WFAS) iff it satisfies Constraint 5.

The implication is that relative to WFASs, the hd(r) of a rule r is sceptically accept-
able relative to the derived AF. On the other hand, for r′ ∈ Rdfs, hd(r′) is credulously
acceptable relative to the derived AF. We emphasise that we change nothing about Dun-
gian AFs or evaluations, but we do provide a justification to select amongst the resulting
extensions. These points are illustrated with respect to Figure 6.

To this point, we have Theory Bases, corresponding derived AFs, and a constraint on
extensions. Fundamental observations of our approach are:

Observation 1 For the literals and the rules which are true of every model for the
Theory Base T , the corresponding nodes of the WFAS extensions of the derived AF are
sceptically acceptable, otherwise they are credulously acceptable.

Observation 2 For the literals and the rules which are false in any model of a Theory
Base T , the corresponding nodes of the WFAS extensions of the derived AF 〈LA

T ,RA
T 〉

are not an element of any admissible set.

Both of these follow by the evaluation of a derived framework 〈LA
T ,RA

T 〉 relative to
a T . Thus, the derived AF is information-preserving with respect to the Theory Base.
The derived AF is an instantiation of the corresponding Theory Base, and the preferred
extensions of the AF correspond to models of the Theory Base.
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3.3 Examples of the Definitions

We now give some examples of the basic definitions, discuss defeasibility, provide a
simple combination of strict and defeasible rules, illustrate reasoning with an assertion
in a partial KB, and comment on the connection between the extensions and the clas-
sical models. In Section 4, we give a more complex, problematic example from the
literature is used to illustrate the advantages of this approach over an ASPIC-type ap-
proach. First, we provide a Theory Base T1 with just one strict rule, the derived AF, a
graphic representation of the derived AF, and then the preferred extensions. Since it is
always clear in context where we have literals and rules (in a Theory Base) and where
we have labels (in an AF), we use one typographic form without confusion.

Example 1. Let T1 be the pair with (L1, R1), where

L1 = {x1, x2} ∪ {¬x1,¬x2}
R1 = {r1}, where r1 has rule name r1 :x1→x2

The derived framework from T1 is 〈LA
T1
,RA

T1
〉 in which,

LA
T1

= {x1, x2} ∪ {¬x1,¬x2} ∪ {r1}

and in which RA
T1

comprises the union of three disjoint sets:

RA
ll = {〈x1,¬x1〉,〈¬x1,x1〉,〈x2,¬x2〉,〈¬x2,x2〉}

RA
lr = {〈¬x1,r1〉}

RA
rl = {〈r1,¬x2〉}

We graphically represent 〈LA
T1
,RA

T1
〉 as in Figure 3.

x1 ¬x1 r1 ¬x2 x2

Fig. 3. AF of x1 → x2

In 〈LA
T1
,RA

T1
〉, the preferred extensions are:

{x1, r1, x2}, {¬x1, x2}, {¬x1,¬x2}

Each of the nodes is credulously accepted and none is sceptically accepted. The
interpretation of the presence of a rule node in a preferred extension is that the rule has
been applied. Moreover, the rule is not defeated in the sense that where the premises
hold, the conclusion must hold. No admissible set contains both x1 and ¬x2: if x1 is
in the set, then r1 is in the set; r1 attacks ¬x2, leaving x2 in the set; if ¬x2 is in the
set, then r1 must be attacked; r1 can only be attacked by ¬x1, which also attacks x1,
leaving ¬x1 in the set.
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There are three related points about the extensions. First, we can provide extensions
in an AF with respect to a rule per se; that is, it is not necessary to provide asserted
premises along with the rule from which we draw the inferred conclusion. By the same
token, we can provide extensions where only some of the premises are asserted, e.g.
the KB has partial, incomplete information of what holds. Suppose a Theory Base with
only the following two rules: → x1 and r4:x1, x3 → x2. The extensions are:

{x1, x3, r1, x2}, {x1,¬x3, x2}, {x1,¬x3,¬x2}

In this respect, our approach differs markedly from approaches to instantiated AFs that
rely on KBs where inferences are essential to the construction of well-formed argu-
ments. Third, we see that the preferred extensions with respect to an AF correlate with
the models of the Theory Base; in this respect, the AF and Step 2 of Figure 2 can be
viewed as a means to build models for the Theory Base. These three points apply to
strict and defeasible rules alike.

The following is an example of a defeasible rule.

Example 2. Let T2 be the pair with (L2, R2), where

L2 = {x1, x2} ∪ {¬x1,¬x2}
R2 = {r2}, where r2 has rule name r2 :x1⇒x2

x1 ¬x1 r2 ¬x2 x2

Fig. 4. AF of x1 ⇒ x2

We graphically represent the derived AF 〈LA
T2
,RA

T2
〉 as: In 〈LA

T2
,RA

T2
〉, the preferred

extensions are as follows, where we see that each of the nodes is credulously accepted
and none is sceptically accepted.

{x1, r2, x2}, {¬x1, x2}, {¬x1,¬x2}, {x1,¬x2}

The first three preferred extensions are similar to SI. In the last extension, ¬x2 itself
attacks the rule node r2; consequently, either x1 or ¬x1 are in a preferred extension
along with ¬x2. This contrasts with the preferred extension of a derived AF with just
a SI. While defeasible implication might be construed as the trivial logical tautology
[x1 → [x2 ∨ ¬x2]], here we see a key difference, which highlights the utility of some
semantic content to the extensions. To make use of a defeasible rule, one must provide
the means to choose between extensions, for example, by selecting the extension which
maximises the number of applicable defeasible rules, or which uses some notion of
priority or entrenchment on the rules. Different ways of making this choice give rise
to different varieties of non-monotonic logic [12,13]). Circumscription [14] could be
used by including additional designated nodes such as ab(r1) which attack the rule r1
and attack and are attacked by notab(r1). We then choose the extension containing the



Instantiating KBs in AFs 43

most notab(r1) nodes. Using DeLP defeaters [6], we can specify circumstances where
the rule is not applied.

In our third example, we show the interaction of defeasible and strict rules, which
was the root of several of the problems identified in [3].

Example 3. Suppose T3 with rules r2: x1 ⇒ x2 and r3: x2 → x3 which has derived AF

〈LA
T3
,RA

T3
〉 graphically represented as in Figure 5.

x1 ¬x1 r2 ¬x2 x2

x3 ¬x3 r3

Fig. 5. AF derived from T with x1 ⇒ x2 and x2 → x3

AF 〈LA
T3
,RA

T3
〉 has the following six preferred extensions:

1.{x1, r2, x2, r3, x3} 4.{¬x1, x2, r3, x3}
2.{x1,¬x2, x3} 5.{¬x1,¬x2, x3}
3.{x1,¬x2,¬x3} 6.{¬x1,¬x2,¬x3}

Given a strict assertion that x1, we would normally choose the preferred extension (1)
from among (1)-(3), maximising the number of defeasible rules. Thus, normally, we say
that x1 implies x3. However, we are not obliged to make this choice. In particular, if
¬x2 is strictly asserted, r2 and r3 are inapplicable, and x3 is credulously acceptable ((2)
and (3)); thus, in this AF, a strict assertion of x1 does not imply that x3 necessarily holds
as well. Where the claim of a defeasible rule is a premise of a strict rule (x2), we cannot
use the defeasibly inferred claim to draw strict inferences about the claim of the strict
rule (x3). Similarly, the defeasible rule is inapplicable where either the claim of the rule
(¬x2) is false ((2), (3), (5), and (6)) or the claim of the strict rule (¬x3) is false ((3) and
(6)). Whereas in e.g. [12], the defeasible rule is inapplicable only where the claim of
the defeasible rule itself is asserted to be false, here the falsity of any consequences of
that claim, however remote, will also block the application of the rule.

4 Comparison to ASPIC with a Base-Case Example

In this section, we briefly review the key components of the benchmark argument in-
stantiation method of [3,8], compare it to our proposal, provide one of the key examples
which showed a flaw in the instantiation method as well as motivated the Rationality
Postulates. We then show how such problems do not arise in our approach.

In constructing arguments, several functions are introduced: Prem is the set of
premisese of the argument, Conc returns the last conclusion of an argument, Sub re-
turns all the subarguments of an argument, DefRules returns all the defeasible rules
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used in an argument, and TopRule returns the last inference rule used in the argument.
Theory Bases T are comprised of strict and defeasible implications. Arguments have
a deductive form and are constructed recursively from the rules of the Theory Base.
To distinguish strict or defeasible rules from the deductive form of arguments, we use
short arrows, → and ⇒, for the former and long arrows, −→ and =⇒ for the latter.
For brevity, we only provide the clauses for the construction of strict arguments as the
clauses for the construction of defeasible arguments are analogous (including among
the DefRules the TopRule(A) that is defeasible) [8].

Definition 8. (Argument) Suppose a Theory Base, T , with strict and defeasible rules.
An argument A is:
A1, . . ., An −→ ψ if A1, . . . , An, with n ≥ 0, are arguments such that there exists a strict
rule Conc(A1), . . ., Conc(An) → ψ.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An)
TopRule(A) = Conc(A1), . . ., Conc(An) → ψ

Consider a Theory Base with strict and defeasible rules from which we construct
arguments according to this definition (see Example 5 [3]).

Example 4. Let T4 be a Theory Base with the following rules:
r21: → x1; r22: → x2; r23: → x3; r24: x4, x5 → ¬x3; r25: x1 ⇒ x4; r26: x2 ⇒ x5.
We construct the following arguments:
A1: [[→ x1] ⇒ x4]; A2: [[→ x2] ⇒ x5]; A3: [→ x3];
A4: [→ x1]; A5: [→ x2];
A6: [[→ x1] ⇒ x4], [[→ x2] ⇒ x5] → ¬x3.

We see clearly that arguments can have subarguments: A6 has a subargument A1, and
A1 has a subargument A4.

Several additional elements are needed to define justified conclusions. An argument
is strict if it has no defeasible subargument, otherwise it is defeasible (non-strict). An
argument Ai rebuts an argument Aj where the conclusion of some subargument of Ai is
the negation of the conclusion of some non-strict subargument of Aj ; rebuttal is one way
an argument defeats another argument. Admissible argument orderings specify that a
strict argument (containing premises that are axioms and rules that are strict) can defeat
a defeasible argument, but not vice versa. Moreover, one argument can defeat another
argument with respect to subarguments; in effect, defeat of a part is inherited as defeat
of a whole. With respect to our example, the undefeated arguments are A1, A2, A3,
A4, and A5. A3, which is a strict argument, defeats A6 but not vice versa since A6 is a
non-strict argument in virtue of having a defeasible subargument. Given the arguments
and defeat relation between them, we can provide an AF and the different extensions.
The Output of an AF, understood as the justified conclusions of the AF, is given as the
sceptically accepted conclusions of the arguments of the AF.

With respect to the example, [3] claim that the justified conclusions are x1, x2,
x3, x4, and x5 since these are all conclusions of arguments which are not attacked (it
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appears not to be an example analysed in [8]). However, ¬x3 is not a justified con-
clusion, even though it is the conclusion of a strict rule in which all the premises are
justified conclusions. This is so since the argument A6 of which ¬x3 is the conclusion is
defeated by but does not defeat A3 because A6 has a subargument which is a non-strict
argument (namely A1 or A2), so making A6 a non-strict argument, while A3 is a strict
argument. Yet, given the antecedents of the strict rule are justified conclusions, it would
seem intuitive that the claim of a strict rule should also be a justified conclusion. This,
they claim, shows that justified conclusions are not closed under strict rules or could
even be inconsistent.

In our view, these notions of argument and defeat are problematic departures from
[1], which has no notion of subargument or of defeat in terms of subarguments. In ad-
dition, they give rise to the problems with justified conclusions: what is a strict rule in
the Theory Base can appear in the AF as a non-strict argument in virtue of subargu-
ments; what cannot be false in the Theory Base without contradiction is defeated in the
AF; thus, what “ought” to have been a justified conclusion is not. In addition, the no-
tion of justified conclusion leads to some confusion: on the one hand, it only holds for
sceptically accepted arguments, which presumably implies that the propositions which
constitute them are sceptically accepted; on the other hand, there is no reason to expect
that ¬x3 is sceptically accepted, given that it only follows from defeasible antecedents.
Clearly the anomaly arises because of the way that arguments can have defeasible sub-
arguments, that the defeat of the whole can be determined by the defeat of a part, and
that justified conclusions depend on these notions.

In our approach, the results are straightforward and without anomaly; we do not
make use of arguments with subarguments, inheritance of defeasiblity, or problematic
notions of justified conclusions. We consider a key example from [3] as the two other
problematic examples cited in [3] follow suit. The Theory Base of Example 4 appears
as in Figure 6, for which all the preferred extensions for the AF are given. For clarity
and discussion, we include undefeated strict and defeasible rules.

x1 x4¬x4¬x1 r25

r21

¬x3 x3 r24r23

x2 x5¬x5¬x2 r26

r22

Fig. 6. Graph of Problem Example
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1.{x1, r21, r25, x2, r22, x3, x4, r25,¬x5}
2.{x1, r21, r23, x2, r22, x3,¬x4, x5, r26}
3.{x1, r21, r23, x2, r22, x3,¬x4,¬x5}
4.{x1, r21, r23, r25, x2, r22, r24, r26, x4, x5}

Notice that extensions (1)-(3) are unproblematic with respect to consistency and
closure. They also satisfy Definition 7, so are the relevant extensions to consider. In
contrast, extension (4) is problematic in an argumentation theory without Definition 7
since the conclusions of strict rules are missing, thus violating closure. Yet, (4) does
not satisfy Constraint 5: the premises and rule nodes of strict rules are present, but the
conclusions are not. With respect to those extensions that satisfy Definition 7, x1, x2,
x3 are all sceptically accepted, while x4 and x5 are credulously accepted. ¬x3 is not
credulously accepted given that x3 is strictly asserted. Note that every literal which is
strictly asserted is sceptically acceptable. Therefore, the rule node r24 must be defeated
where one or both of ¬x4 and ¬x5 hold. There is, in our view, no reason to expect ¬x3

to hold in any extension since we have no preferred extension in which both x4 and x5

are justified conclusions. Given admissible sets, we satisfy the consistency rationality
postulate; closure, which is relevant only of strict rules where all the body literals hold,
is not relevant to this problem. Moreover, we can provide machinery to meet Definition
7 in that we can examine the extensions relative to the rules of the AF to determine if
Constraint 5 is satisfied. The analysis also corresponds well with model-building for
classical logic.

We have considered a widely adopted approach to instantiating Theory Bases in AFs
[8] along with the problems that arise. There are other approaches to instantiating a KB
in an AF that may avoid problems with the Rationality Postulates such as Assumption-
based [2] or Logic-based [7] argumentation. We leave further comparison and contrast
to future work. However, these approaches, like the ASPIC approach, follow the three
step structure of Figure 1.

5 Three Senses of Argument

In this section, we discuss the auxiliary point about the various conflated senses of
the term argument as found in the literature. We show how these senses can be formally
articulated in our framework as distinct structures [4] . The term argument is ambiguous
[11]. It can mean the reasons for a claim given in one step (an Argument); or it can mean
a train of reasoning leading towards a claim (a Case), that is, a set of linked Arguments;
or it can be taken as reasons for and against a claim (a Debate), that is a Case for the
claim and a Case against the claim. An additional structure is where the intermediate
claims of the Debate are also points of dispute, but we will not consider this further here.
In the following, we formally define these three senses of argument as structures in the
argumentation framework, starting with Arguments, then providing Cases, and finally
Debates. We provide a graphic, examples, and then definitions for the three different
kinds of attack: Rebuttal, Undercut, and Premise Defeat.

We provide a recursive, pointwise definition of a graph which is constructed relative
to an AF. Since the sets are constructed relative to an AF, we can infer the attack relations
which hold among them. The different senses of argument are defined as subgraphs.
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Definition 9. Suppose there is a derived AF = 〈LA,RA〉, where y and z are arbi-
trary literals from LA and r and r’ are arbitrary rules from LA. F abbreviates {r :
r added in ρ2k−1}.

ρ0(y) = {y,¬y}
ρ1(y) = ρ0(y) ∪

⋃
{r:hd(r)=y}{r}

ρ2k(y) = ρ2k−1(y) ∪
⋃

{r∈F}{z,¬z :z ∈bd(r)}
ρ2k+1(y) = ρ2k(y)∪

⋃
{r∈F}{r′ :z ∈hd(r′)∩bd(r)}

ρ2k+2(y) = ρk(y)

ρ0(y) provides the basis for the construction, which are nodes labeled by literals in an
AF that attack one another with respect to the node labeled y. At ρ1(y), we add to the
previous set of rules which have y as their head; depending on whether we have a strict
or a defeasible rule, the rule node attacks and may be attacked by the literal which is
the negation of the head. At ρ2k(y), we add the positive and negative literals relative to
the body of the rules; each of the negative literals associated with literals of the body
of the rule attacks the rule node. At ρ2k+1(y), we link rules: the literals in the body of
a rule added at ρ1(y) serve as the heads of other rules. At ρ2k+2(y), we have iterated
the steps ρ1(y)-ρ2k+1(y) until there is no further change. Constructions for negations
of literals are similarly defined.

Supposing a derived AF, ArgS1 and ArgS2 are subgraphs of that AF. An Argument
for y, ArgS1(y), is defined at ρ2k(y): it is the nodes and their attacks defined at this
step relative to the derived AF. A graph defined as ArgS1(y) can only have one rule in
the set of nodes, namely a rule of the Theory Base with y as head (other rules with
y as head will give rise to distinct arguments for y in sense 1). In ArgS1(y), y is the
claim of ArgS1(y) and the literals in the body of the rule are the premises. A Case
for y, ArgS2(y), is defined where ρk+1(y) = ρk(y). ArgS2(y) is comprised of ArgS1(y)
along with graphs of form ArgS1 for the literals that are bodies of every rule constructed
relative to ArgS1(y). In other words, a Case links together all those graphs of Arguments
for a particular y where the claim of one rule is the premise of another rule.

Definition 10. Suppose an AF derived from Theory Base T , 〈LA
T ,RA

T 〉. We define
ArgS1-ArgS2 as subgraphs of a derived AF:

An Argument for y is ArgS1(y) = 〈LA
S1y

, RA
S1y

〉,
where LA

S1y
⊆ LA

T and RA
S1y

⊆ RA
T ,

∀r, r′ ∈ LA
S1y

r = r′, is a subgraph at ρ2k(y).

A Case for y is ArgS2(y) = 〈LA
S2y

, RA
S2y

〉,
where LA

S2y
⊆ LA

T and RA
S2y

⊆ RA
T , is a subgraph

at ρk+1(y) = rhok(y).

Where we have ArgS2(y) and ArgS2(¬y), we have a Single-point Debate about y,
ArgS3(y). The two graphs share only the literals {y, ¬y}, and no other rules or literals.
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Definition 11. Suppose two derived AFs, ArgS2(y) = 〈LA
S2¬y,RA

S2¬y〉 and ArgS2(y) =
〈LA

S2y
, RA

S2y
〉:

A Single− point Debate about y is
ArgS3(y) = 〈LA

S2y
∪ LA

S2¬y,RA
S2y

∪RA
S2¬y〉,

where LA
S2¬y ∩ LA

S2y
= {y,¬y}

and RA
S2¬y ∩RA

S2y
= ∅.

Clearly a debate with subsidiary debates can be constructed to argue pro and con about
other literals in the base debate; we start with a ArgS2(y), then add further Single-point
Debates about some literal in the graph other than y.

Example 5 shows the senses in a derived AF only with SI rules since they restrict the
available preferred extensions.

Example 5. Suppose a Theory Base comprised of the rules (and related literals): r7 :
x6 → ¬x8, r10 : x5, x7 → x8, r11 : ¬x3, x4 → x7. Figure 7 graphically represents the
various senses of argument in an AF derived from this Theory Base.

In Figure 7, we have three subgraphs which represent an Argument; each Argument
is derived from the corresponding rule of the Theory Base. For example ArgS1(¬x8),
the argument for ¬x8, is the graph comprised of nodes {¬x8, x8, r7,¬x6, x6} with
the relations among them as given; the graph is derived from the rule of the Theory
Base which corresponds to r7 : x6 → ¬x8. The other two rules of the Theory Base
are also represented in the graph as subgraphs that represent an Argument. Figure 7
presents two Cases. The Case ArgS2(x8) is derived from the following rules: r10 :
x5, x7 → x8, r11 : ¬x3, x4 → x7. We see how the Arguments in the Case are linked;
for instance, the graph of r11 : ¬x3, x4 → x7 has as claim x7, which is the premise
of r10 : x5, x7 → x8. The Case ArgS2(¬x8) is derived from the following rule (recall
that an Argument can also be a Case): r7 : x6 → ¬x8. The Single-point Debate for x8,
ArgS3(x8), is comprised of the Cases ArgS2(x8) and ArgS2(¬x8).

r10 ¬x8

¬x5

x5

¬x7

x3¬x3 x4¬x4

x6

¬x6x8

r11

r7

x7

Fig. 7. Arguments, Cases, and Single-point Debates

In [4], there are some auxiliary definitions for rebuttal, premise defeat, and under-
cutting in this framework. However, space precludes presenting them here.
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6 Concluding Remarks and Future Work

We have discussed in some detail comparison on one developed approach to argument
instantiation [8] and noted other that remain to be compared in depth [7,2] though they
share substantive similarities in terms of the Three Steps of Figure 1. Here we com-
ment briefly on the somewhat different approach of Abstract Dialectical Frameworks
(ADF) [9], which is presented as a generalisation of Dungian AFs but also as a means to
represent instantiated arguments, e.g. logic programs [9]. Broadly, we may distinguish
between approaches based on [1] that make use of nodes (arguments) and arcs (attacks)
alone to determine extensions and those which use auxiliary conditions to specify ex-
tensions with respect to successful attacks such as preferences [8] or values [15]. The
approach of [9] is a generalisation of the latter approach: in addition to nodes (which can
be statements or literals) and links (generalised from arcs as attacks), there are accep-
tance conditions, which are functions for each statement from its parents (those nodes in
a single link) to {in,out}. Given this generic approach to acceptance conditions, many
complex aspects of argumentation can be accommodated. On the other hand, this em-
phasises reasoning with the (presumably correct) acceptance conditions rather than on
the graph per se, which was one of the main advantages of the Dungian abstraction. For
example, ADF remains to demonstrate that it abides by the Rationality Postulates or
can generically reconstruct KBs. It adds the complexity of the acceptance conditions to
the existing complexity of the graph [9]. On the other hand, our approach is compatible
with ADF in the sense that given an AF derived from a KB, we can add auxiliary ADF
acceptance conditions for other aspects of reasoning. In future, we plan to examine
the advantages and disadvantages of the more specific approach to KB representation
proposed here in comparsion with the more generic appoach of [9].

We have presented a method of instantiating a Theory Base which contains strict
and defeasible rules in a Dung-style abstract argumentation framework, building on
and refining [4]. The Theory Base is directly represented in the framework, and the
conclusions of the Theory Base can be computed as extensions of that framework. Our
method avoids the logic dependent step of generating arguments from the Theory Base
and then organising them in a framework for evaluation. It does not introduce prefer-
ences or auxiliary means to determine successful arguments. The sceptically acceptable
arguments of the framework are the consequences of the Theory Base under classical
logic, assuming that the Theory Base is consistent: the consequences under a variety
of non-monotonic logics can be identified as credulously acceptable arguments, with
different non-monotonic logics corresponding to different ways of choosing between
preferred extensions. We believe that this method provides a very clear way of instanti-
ating Theory Bases as abstract argumentation frameworks. By separating the notion of
a node from the ambiguous notion of argument, we have clear criteria for what consti-
tutes a node in the framework. We can explain our reasoning in terms of arguments of
the appropriate granularity. In addition, the variety of senses of “argument” emerge as
structures within the framework, and can be used to explain the consequences.

In future work we will demonstrate the formal properties of our approach. In ad-
dition, we will further compare and contrast approaches to Theory Base instantiation
in AFs. An important avenue of exploration and development is to add values, prefer-
ences, and weights to the KB, which then appear in the graph. In a different vein, we will
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explore the potential for improved explanation offered by our distinction between vari-
ous senses of the term “argument”.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358
(1995)

2. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic
approach to default reasoning. Artificial Intelligence 93, 63–101 (1997)

3. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial Intel-
ligence 171(5-6), 286–310 (2007)

4. Wyner, A., Bench-Capon, T., Dunne, P.: Instantiating knowledge bases in abstract argumen-
tation frameworks. In: Proceedings of the Uses of Computational Argumentation, AAAI Fall
Symposium (2009)

5. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artificial Intelli-
gence 141(1), 187–203 (2002)

6. Garcı́a, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach. The-
ory and Practice of Logic Programming 4(1), 95–137 (2004)

7. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)
8. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument

and Computation 1(2), 93–124 (2010)
9. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Proceedings of the Twelfth

International Conference on the Principles of Knowledge Represetnation and Reasoning (KR
2010), pp. 102–211 (2010)

10. Caminada, M., Wu, Y.: On the limitations of abstract argumentation. In: Causmaecker,
P.D., Maervoet, J., Messelis, T., Verbeeck, K., Vermeulen, T. (eds.) Proceedings of the 23rd
Benelux Conference on Artificial Intelligence, Ghent, Belgium, pp. 59–66 (November 2011)

11. Wyner, A.Z., Bench-Capon, T.J.M., Atkinson, K.: Three senses of “Argument”. In:
Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models of the Law.
LNCS (LNAI), vol. 4884, pp. 146–161. Springer, Heidelberg (2008)

12. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)
13. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible prior-

ities. Journal of Applied Non-Classical Logics 7(1) (1997)
14. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artificial Intelli-

gence 13, 27–39 (1980)
15. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation

frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)



Rewriting Rules for the Computation of Goal-Oriented
Changes in an Argumentation System

Dionysios Kontarinis1, Elise Bonzon1, Nicolas Maudet2, Alan Perotti3,
Leon van der Torre4, and Serena Villata5

1 LIPADE, Université Paris Descartes
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Abstract. When several agents are engaged in an argumentation process, they
are faced with the problem of deciding how to contribute to the current state of
the debate in order to satisfy their own goal, ie. to make an argument under a
given semantics accepted or not. In this paper, we study the minimal changes (or
target sets) on the current state of the debate that are required to achieve such a
goal, where changes are the addition and/or deletion of attacks among arguments.
We study some properties of these target sets, and propose a Maude specification
of rewriting rules which allow to compute all the target sets for some types of
goals.

1 Introduction

Debates are pursued with the aim to obtain at the end a set of accepted arguments. As
in [1–3], we assume that such debates are represented by a central, dynamic argumen-
tation system which is modified by the agents’ locutions. During these debates, each
agent tries to argue in such a way that his own argumentative goals belong to the final
set of accepted arguments in the central system. Given the number of participants and of
proposed arguments, it is a challenging task to identify the part of the debate to focus on
and to compute possible modifications which can affect the current state of the debate,
in order to achieve a given argumentative goal.

We assume in this work, as it is done in [1–3], that the participating agents may dis-
agree on the existence of binary attacks between some pairs of arguments. But what
can cause such a disagreement? First, in the framework of value-based argumentation
[4], a defeat relation between two arguments holds if there is a conflict between those
arguments, and if the value promoted by the attacking argument is higher than the value
promoted by the other argument. Therefore, if two agents order these values differently,
they may disagree on the existence of this defeat relation. A similar type of reasoning
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is applied in preference-based argumentation [5]. Second, a usual phenomenon in ev-
eryday argumentation is the disagreement on the existence of a conflict between some
pairs of arguments. Often, the claim of an argument does not explicitly contradict one
of the premises of another argument (nor its claim), but it may still be considered that it
is attacking the latter. This is due to the use of enthymemes (arguments whose internal
structures are not fully defined), as stated in [6].

In this work, for the sake of simplicity, we consider that the set of arguments and some
attacks between those arguments are fixed in the debate. This can be done, for example,
as follows. In the first phase of the debate, agents (following a given protocol) put for-
ward all the arguments and attacks they consider relevant to the subject of the debate.
Then follows a voting phase on the arguments and attacks which have been proposed by
the agents. Afterwards, we assume, as it is done in [2], that all the arguments approved
by a majority (for example) of agents are fixed and considered in the debate, as well as
all the attacks on which a quasi-unanimity of agents have agreed. From that point on,
the debate focuses on the attacks which have caused disagreement among the agents.

In our context, a move modifies the current state of the debate by either adding or
removing attacks. A successful move brings about the acceptance or rejection of a par-
ticular argumentative goal, that is, ensures that a designated argument belongs (or not)
to some (all) extension(s). Here we shall focus on (subset-)minimal successful moves,
called target sets [7].

We acknowledge that, in some cases, focusing on minimal change may not be the
best strategy for a debating agent. For example, if an agent is uncertain whether he will
be able to assert additional moves during the debate, then it may be preferable for him to
assert all the moves he can, as soon as possible. Also, if we consider a framework where
the agents’ personal beliefs are dynamic, a non-minimal move by an agent may be
preferable for him, if it provokes some wished changes to the beliefs of the other agents.
However, we believe that minimality is a useful notion in the study of argumentation
dynamics. An agent may be motivated to find a minimal change satisfying his goal,
because this would be the easiest, fastest way to do it. Moreover, it can be a good
strategy for agents in a debate, as it minimizes their commitments.

Our first contribution in this paper is to provide some general properties of such
(minimal) successful moves. We then put forward a set of rewriting rules for the Maude
system [8], which exploit the recent attack semantics of [9] to compute target sets, and
provide some properties of the resulting procedure.

Our work is inspired by proof theories for abstract argumentation frameworks, as
in the work of [10], which treat the problem of how to prove the acceptance (or non-
acceptance) of an argument under some semantics. The main new elements introduced
here are the following. First, we consider dynamic systems where (several) attacks can
be added and removed. Second, we focus on minimal change required to achieve ac-
ceptance (or non-acceptance) of an argument and we analyze the properties of minimal
change.

Recently, the question of the dynamics of argumentation systems has been studied by
several authors [11–15]. Baumann [14] studies different types of expansions, that is, dif-
ferent ways to modify the current system. For instance the most general kind, arbitrary
modifications, allows the addition of new arguments, as well as the addition/removal
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of attacks. Formally, the problem studied is as follows: given a current argumentation
system (AS), given a “goal set” E , find a minimal expansion such that E belongs to
at least one extension of the modified AS. The notion of minimality differs from ours,
since it relies on a pseudometric measuring the distance (in terms of number of dif-
ferences between AS). Another key difference is that our modifications are typically
constrained, and also restricted to adding/removing attacks. Most importantly, our work
focuses on the design of a procedure which returns the target sets in a given situation.
The recent work of [16, 17] is also closely related. They share with us the view that the
possible modifications of the system may be constrained, and also investigate practical
computation techniques to enforce argumentative goals. In theory, their model caters
for sequences of basic modifications of the system (and allows addition and removal
of arguments as well). One important difference is that they do not focus on minimal
changes. In practice, they design a tool which relies on characterization results for the
dynamics of argumentation systems studied in [16]. The current implementation is re-
stricted to single modifications [17].

The paper is organized as follows. Section 2 provides some basic background on
abstract argumentation theory [18] and the notion of acceptability. Section 3 formal-
izes the notions of successful moves and of target sets, and highlights some important
properties that they exhibit. In Section 4 we give the specification of rewriting rules to
be used with the Maude system. We study some key properties that can (or cannot) be
guaranteed with our approach. Finally, Section 5 concludes.

2 Background

In this section, we provide the basic concepts of abstract argumentation frameworks, as
proposed by Dung [18], in which the exact content of arguments is left unspecified. In
the definition of argumentation system we provide here, the difference compared to [18]
is that we do not only have the standard attack relation (here denoted R), but we also
have a relation R+ which denotes the attacks which can be added to the system, and a
relation R− which denotes the attacks which can be removed from the system.

Definition 1. We define an argumentation system as a tuple AS = 〈A,R,R+,R−〉,
where A is a finite set of arguments, R ⊆ A×A is a binary attack relation between ar-
guments, R+ ⊆ A×A, with R+∩R = {}, contains the pairs of arguments which can be
added in R, and R− ⊆ R contains the pairs of arguments which can be removed from R.

As stated in the introduction, we assume that the arguments of such a system have
been fixed on a previous phase where the agents have put forward the arguments they
thought were pertinent for the debate, and have then voted on the arguments. Moreover,
attacks in R\R− are supposed to be attacks on which a quasi unanimity of agents have
agreed (these attacks are not questioned anymore), whereas the validity of attacks in R+

and R− is still debated. For convenience, we will denote At = R∪R+ the set of attacks
which are either on the system, or can be added to it. Note that we will only consider
systems having a finite number of arguments, so |A| is finite.

From now on, we will focus on the attack relations more than on the arguments. We
will then need the following definition.
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Definition 2. Let AS = 〈A,R,R+,R−〉, and x = (a,b) ∈ At. We refer to the argument a
as the tail of the attack x, denoted by tail(x) = a, and we refer to the argument b as
the head of the attack x, denoted by head(x) = b.
Let x,y ∈ At. We will say that x hits y, denoted by hits(x,y), if head(x) = tail(y).

Example 1. Let AS = 〈A,R,R+,R−〉 be an argumentation system such that A =
{a,b,c,d,e}, R= {(a,b),(b,a),(c,d),(e,d)}, R+ = {(a,c),(b,c)}, R−= {(c,d),(e,d)}.
This system can be represented as follows:

dca eb

Non-removable attacks are represented by thick arrows, removable attacks by simple
arrows, and addable attacks by dotted arrows. For the sake of convenience, we will
denote an attack (a,b) ∈ At simply as ab. We have that tail(ba) = b, head(ba) = a and
also hits(ab,ba), as well as hits(ba,ab).

In Dung’s framework, the acceptability of an argument depends on its membership
to some sets, called extensions.

Definition 3. Let AS = 〈A,R,R+,R−〉 and C ⊆ A. The set C is conflict-free iff  ∃x ∈ R
such that tail(x) ∈ C and head(x) ∈ C. An argument a ∈ A is acceptable w.r.t. C iff
∀x ∈ R: if head(x) = a, then ∃y ∈ R such that hits(y,x) and tail(y) ∈C.

Several types of extensions have been defined by Dung [18].

Definition 4. Let C ⊆ A be conflict-free. C is an admissible extension iff each argu-
ment of C is acceptable w.r.t. C. C is a preferred extension iff it is a maximal (w.r.t. ⊆)
admissible extension. C is a complete extension iff every argument in C is acceptable
w.r.t. C, and ∀x ∈ A: if x is acceptable w.r.t. C, then x ∈ C. C is a grounded extension
iff it is the minimal (w.r.t. ⊆) complete extension. Admissible, preferred, complete and
grounded semantics are from now on denoted Adm, Pref, Comp and Gr, respectively.

The next question is to decide, given a semantics, which arguments are acceptable.

Definition 5. Let AS = 〈A,R,R+,R−〉 and a ∈ A. Argument a is said credulously ac-
cepted w.r.t. system AS under semantics S ∈ {Adm,Pre f ,Comp,Gr}, denoted S∃(a,AS),
iff a belongs to at least one extension of AS under the S semantics. Argument a is said
sceptically accepted w.r.t. AS under semantics S ∈ {Adm,Pre f ,Comp,Gr}, denoted
S∀(a,AS), iff a belongs to all the extensions of AS under the S semantics.

As {} is always an admissible extension, Adm∀(a,AS) does not hold for any a ∈ A.
So, sceptical acceptability under admissible semantics is not an interesting notion, and
we will not refer to it anymore. As there always exists a unique grounded extension,
there is no difference between credulous and sceptical acceptability for grounded se-
mantics. If a ∈ A is accepted under the grounded semantics, we simply denote this by
Gr(a,AS). Moreover, as stated in [18], an argument a ∈ A belongs to the grounded
extension if and only if it is sceptically accepted under the complete semantics (thus,
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Gr(a,AS) ⇔ Comp∀(a,AS)). We will use this latter notation to refer to the grounded
extension.

In the rest of the paper, we will denote by Sem = {Adm,Pre f ,Comp} the set of
admissible, preferred and complete semantics. Moreover, for the sake of readability, if
there is no danger of confusing which argumentation system we refer to, we will simply
write ∀S ∈ Sem, S∃(a), or S∀(a), without mentioning the AS.

The following property states that the set of arguments credulously accepted under
the admissible semantics are the same as those accepted under the preferred, or the
complete semantics.

Property 1. [18] Let AS = 〈A,R,R+,R−〉 be an argumentation system, and a ∈ A. It
holds that Adm∃(a,AS)⇔ Pre f∃(a,AS)⇔Comp∃(a,AS).

The case of sceptical acceptability is a bit different. Every argument sceptically ac-
cepted under complete semantics is also sceptically accepted under preferred semantics,
but the inverse does not hold in the general case.

Property 2. [18] Let AS = 〈A,R,R+,R−〉 be an argumentation system, and a ∈ A. It
holds that Comp∀(a,AS)⇒ Pre f∀(a,AS). The inverse does not necessarily hold.

As we have just seen, Dung’s semantics [18] are stated in terms of sets of arguments,
but it is also possible to express them using argument labeling [19, 20]. Roughly, an
argument is in if all its attackers are out, it is out if it has at least an attacker in, otherwise
it is undec. Villata et al. [9] introduce attack semantics where arguments are accepted
when there are no successful attacks on them. An attack x is ‘1’ when tail(x) is in, ‘?’
when tail(x) is undec, and ‘0’ when tail(x) is out. An attack is called successful when
it is ‘1’ or ‘?’, and unsuccessful when it is ‘0’.

Example 2. Let AS = 〈A,R,R+,R−〉 be an argumentation system, with A = {a,b,c},
R = {(a,b),(b,c),(c,b)}, R+ = R− = {}.

a b c
1

0

1

In argument semantics, an extension for a semantics S ∈ Sem contains a and c. Thus,
b is rejected (out) whereas a and c are accepted (in). In attack semantics, the attacks
(a,b) ∈ R and (c,b) ∈ R are successful, whereas (b,c) ∈ R is unsuccessful.

Boella et al. [7] propose a new kind of labelling, called conditional labelling. The
idea is to provide the agents with a way to discover the arguments they should attack
to get a particular argument accepted or rejected. Given a conditional labelling, the
agents have complete knowledge about the consequences of the attacks they may raise
on the acceptability of each argument without having to recompute the labelling for
each possible set of attacks they may raise.

3 Argumentative Goals and Target Sets

In this work, we consider that attacks are the core components of an argumentation
system and thus prefer to commit to the attack semantics. As said before, we assume
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that the arguments of a system cannot change (neither new arguments can be added, nor
arguments can be removed). Instead, we consider that the only change that can happen
is the addition of new attacks and the removal of some attacks already in the system. A
central notion, related to this type of change, is the following notion of atom.

Definition 6. Let AS = 〈A,R,R+,R−〉 be an argumentation system, x ∈ At = R∪R+ be
an attack, and d ∈ A be an argument. An atom of AS is defined as follows:

Atom(AS) ::= � | ⊥ | (x,+,#) | (x,−,#) | (x,1,#) | (x,0,#) | (x,?,#) |
(x,1,∗) | (x,0,∗) | (x,?,∗∗) | (x,?,∗) | PRO(d) | CON(d)

Atoms �, ⊥, (x,+,#), (x,−,#), (x,1,#), (x,0,#) and (x,?,#) are called closed atoms,
whereas atoms (x,1,∗), (x,0,∗), (x,?,∗∗), (x,?,∗), PRO(d) and CON(d) are called
open atoms.

The atom (x,+,#) (resp. (x,−,#)) indicates the action of adding (resp. removing)
the attack x from the system. The atom (x,1,∗) (resp. (x,?,∗), resp. (x,0,∗)) indicates
that we must find a way for attack x to become ‘1’ (resp. ‘?’, resp. ‘0’). 1 On the other
hand, the atom (x,1,#) (resp. (x,?,#), resp. (x,0,#)), indicates that we have already
found a way for attack x to become ‘1’ (resp. ‘?’, resp. ‘0’). PRO(d) and CON(d) are
two specific atoms regarding the acceptability status of d. Their exact meaning will be
explained later. Finally, the atom ⊥ indicates failure, whereas � indicates success.

By using the atoms (x,+,#) and (x,−,#), we define the notion of move on a system:

Definition 7. Let AS = 〈A,R,R+,R−〉 and m = {(x,s,#) | x ∈ At, s ∈ {+,−}} be a set
of atoms. m is called move on AS iff ∀(x,+,#) ∈ m, x ∈ R+, and ∀(x,−,#) ∈ m, x ∈ R−.
The resulting system of playing move m on AS is the argumentation system Δ(AS,m)=
〈A,Rm,R+

m ,R
−
m〉, such that: (1) x ∈ Rm iff either x ∈ R and (x,−,#) ∈ m, or (x,+,#)∈ m.

(2) x ∈ R+
m iff either x ∈ R+ and (x,+,#) ∈ m, or (x,−,#) ∈ m. (3) x ∈ R−

m iff either
x ∈ R− and (x,−,#) ∈ m, or (x,+,#) ∈ m.

Example 1, cont. The move m = {(ed,−,#),(ac,+,#)} on AS will lead to the following
system Δ(AS,m):

dca eb

If we are able to play a move on AS = 〈A,R,R+,R−〉, we may be motivated to play
it by the desire to satisfy a specific goal. Let us formally define this notion of goal.

Definition 8. Let Systems be a set of argumentation systems, and Props be a set of
properties, such that each property can refer to any AS∈ Systems. We define the function
f : Props × Systems → {true, f alse}, such that ∀P ∈ Props,∀AS ∈ Systems, it holds
that f (P,AS) = true iff P, when referring to AS, holds; otherwise f (P,AS) = f alse.
A property P may be chosen as a positive goal: we say that goal P is satisfied in AS iff
f (P,AS) = true. A negated property ¬P may be chosen as a negative goal: we say that
goal ¬P is satisfied in AS iff f (P,AS) = f alse (that is iff f (¬P,AS) = true).

1 The atom (x,?,∗∗) is similar to (x,?,∗), their difference is explained later.
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If a specific (positive or negative) goal is not satisfied in AS, then we search for
possible moves m on AS leading to a modified system Δ(AS,m) in which that goal
is satisfied. Any move on AS which achieves this is called a successful move. Such a
succesful move is called a target set if the changes induced by it on AS are minimal.

Definition 9. Let AS = 〈A,R,R+,R−〉, and Props be a set of properties. Let m be a
move on AS, P ∈ Props, and g be a goal, that is P or ¬P. m is called successful move
for goal g iff goal g is satisfied in Δ(AS,m), that is if f (g,Δ(AS,m)) = true. m is called
target set for goal g iff m is minimal w.r.t. ⊆ among all the successful moves for g.

Let us now describe the types of goals that we focus on. Let AS = 〈A,R,R+,R−〉,
m be a move on AS, X ∈ {∃,∀} and S ∈ Sem. We focus on the acceptance of a single
argument d ∈ A called the issue, and we consider these two types of goals: (1) SX(d) is a
positive goal, with MS

X = {m | SX(d) is satisfied in Δ(AS,m)}. (2) ¬SX (d) is a negative
goal, with MS

¬X = {m | ¬SX (d) is satisfied in Δ(AS,m)}.

Example 1, cont. Let d ∈ A be the issue.
d does not belong to any admissible extension of AS. The goal S∃(d) consisting in plac-
ing d in some admissible (or preferred, or complete) extension has three target sets:
TS

∃ = {{(ed,−,#),(cd,−,#)},{(ed,−,#),(ac,+,#)},{(ed,−,#),(bc,+,#)}}.
Moreover, we have {(ed,−,#),(bc,+,#),(ac,+,#)} ∈MS

∃: this move is successful for
S∃(d), but it is not a target set, as it is not minimal. Now, regarding sceptical preferred se-
mantics, it holds that TPre f

∀ ={{(ed,−,#),(cd,−,#)},{(ed,−,#),(bc,+,#),(ac,+,#)}}.

Finally, as far as grounded semantics is concerned, TComp
∀ = {{(ed,−,#),(cd,−,#)}}.

We now provide some properties of succesful moves and of target sets.

Property 3. It holds that

M
Comp
∀ ⊆M

Pre f
∀ ⊆MS

∃ and MS
¬∃ ⊆M

Pre f
¬∀ ⊆M

Comp
¬∀

Proof. Let us begin with the case of the positive goals. If move m ∈M
Comp
∀ , then d is

accepted in AS′ = Δ(AS,m) under complete semantics (using sceptical acceptability),
so d belongs in all the complete extensions of AS′, therefore in all the preferred exten-
sions of AS′. So, it holds that m ∈M

Pre f
∀ . Thus, we have proved that MComp

∀ ⊆M
Pre f
∀ .

Moreover, if m ∈M
Pre f
∀ , then d belongs in all the preferred extensions of AS′, therefore

d belongs in at least one preferred extension of AS′ (so, it also belongs in at least one
admissible, and in at least one complete extension of AS′). Thus, it holds that m ∈MS

∃,

and we have proved that MPre f
∀ ⊆MS

∃. As a result, MComp
∀ ⊆M

Pre f
∀ ⊆MS

∃. The proof
is similar in the case of negative goals. It is omitted due to the lack of space.

Property 4. If m is a move such that m ∈T
Comp
∀ and m ∈ TS

∃, then m ∈ T
Pre f
∀ (1)

Moreover, if m is a move such that m ∈ TS
¬∃ and m ∈ T

Comp
¬∀ , then m ∈T

Pre f
¬∀ (2)

Proof. (1) By contradiction, let m ∈ T
Comp
∀ , m ∈ TS

∃ and assume that m ∈ T
Pre f
∀ . Now,

m ∈ T
Comp
∀ implies that m ∈ M

Comp
∀ (as m is minimal w.r.t. ⊆ among the moves in
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M
Comp
∀ ). Then, from m∈M

Comp
∀ it follows that m∈M

Pre f
∀ (from Property 3). Moreover,

we assumed that m ∈ T
Pre f
∀ , so there must exist another move m′ ⊂ m, such that m′ ∈

T
Pre f
∀ (and, of course, m′ ∈ M

Pre f
∀ ). From m′ ∈ M

Pre f
∀ , we get that m′ ∈ MS

∃ (from
Property 3). Finally, from m′ ∈MS

∃ and m ∈ TS
∃, it follows that m ⊆ m′. Contradiction,

since above we had m′ ⊂ m. Therefore, m ∈ T
Pre f
∀ .

(2) Similar proof for the case of negative goals. It is omitted due to the lack of space.

Figure 1 graphically represents the links between the set of succesful moves and the
target sets for the positive and the negative goals. The meaning of the sets M PRO and
M CON will be explained in Section 4.

MS
∃

M
Pre f
∀

M
Comp
∀

TS
∃

T
Pre f
∀

T
Comp
∀

M PRO

M
Comp
¬∀

M
Pre f
¬∀

MS
¬∃

T
Comp
¬∀

T
Pre f
¬∀

TS
¬∃

M CON

Fig. 1. On the left: The sets of successful moves and target sets for the positive goals, and M PRO.
On the right: The sets of successful moves and target sets for the negative goals, and M CON .

Having highlighted some properties of the successful moves and of the target sets,
we define in the following section our rewriting procedure which computes target sets.

4 Computing Target Sets and Successful Moves

In this section we provide a set of rewriting rules which help us to compute, for any
system AS= 〈A,R,R+,R−〉, all the target sets for some types of goals. In order to do this,
we have used the Maude 2 system [8] which is based on rewriting logic. This section is
arranged as follows: we start by explaining what Maude is and why it is useful for the
type of computations we want to make. Then, we analyze the core component of our
program, its set of rules. Afterwards, we explain the rewriting procedure of Maude, in
the context of our program. Finally, we prove some important properties.

2 http://maude.cs.uiuc.edu
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4.1 The Maude Rewriting System and the Intuition behind Our Program

Maude is both a declarative programming language and a system. It is based on rewrit-
ing logic and it can model systems and the actions within those systems. Maude is
a high-level, expressive language, which can model from biological systems to pro-
gramming languages, including itself. A program in Maude is a logical theory, and a
computation made by that program is logical deduction using the axioms of the theory.

Our Maude program, presented in Appendix A, is given as input a term which de-
scribes an argumentation system AS = 〈A,R,R+,R−〉 and contains either PRO(d) or
CON(d), with d ∈ A. If we want to ensure the (positive) goal of accepting argument d
under some semantics, we start with PRO(d). Otherwise, if we want to ensure the (neg-
ative) goal of rejecting d, we start with CON(d). Maude starts from these atoms and,
based on a set of rewriting rules and equations, rewrites the initial term, thus producing
new terms, which are, in turn, rewritten. The system stops when all the computed terms
are non-rewritable. We will see that every term of the output corresponds to a move on
the initial system AS. Their connection with the status of d is detailed in Property 6.

4.2 The Rewriting Rules

Before explaining the rules of our program, we must provide two more basic definitions.
The notion of atom is central in what follows. The connectors ∧ and ∨ are used in order
to link atoms, forming conjuncts and formulas.

Definition 10
Con junct ::= Atom | (Con junct ∧Con junct);
Formula ::=Con junct | (Formula∨Formula)
Let Con juncts denote the set of all possible conjuncts, and let Formulas denote the set
of all possible formulas. A conjunct which contains at least one open atom is called
open conjunct. Otherwise, it is called closed conjunct. A formula which contains at
least one open conjunct is called open formula. Otherwise, it is called closed formula.

We now proceed to the analysis of the program’s rules. There exist two types of rules:
Atom expansions, or rewriting rules, indicated by ‘=>’, and atom simplifications,
or equations, indicated by ‘=’. In our program, an atom expansion replaces two atoms
appearing in an open conjunct by some other atoms, whereas an atom simplification
replaces two atoms found in the same conjunct by a single atom.

Let us briefly explain the intuition behind the expansion rules. Depending on whether
we want to accept or reject the issue, we start from it and we navigate the attacks back-
wards, while adding and removing attacks, trying to enforce the status of the attacks
relevant to the issue. When there exist more than one choice to achieve our goal, we try
to explore all the possibilities (combinations of additions and removals). Very roughly,
if at some point of the computation, the left side of an expansion rule appears, Maude
replaces it with the right side of that rule. The same principle holds for equations.

So, when the initial goal is PRO(d), we want to see the issue d accepted. To do so,
we have to take each attack against d, one at the time, and either remove it (if it belongs
to R−), or make it ‘0’ by making an attack which attacks it become ‘1’. On the other
hand, when the initial goal is CON(d), and we want to see d rejected, we have to either
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make one attack against d become ’1’, add such an attack if it is in R+ (and ensure its
succesfulness), or to make one attack against d become ’?’. Let us see the rules in more
detail:

Rules 1-3 say that if an attack is ‘1’, then for every attack against it, either that attack
is ‘0’ (rule 1), or it is removed (rule 2), or (if it belongs to R+) we introduce an atom
(x,0,#) which will lead to a simplification if we later add this attack (rule 3), thus it
can never become successful. Rules 4-5 say that if an attack is ‘0’, then there exists an
attack against it which is ‘1’. That attack is either already in the system (rule 4), or it
is added to it (rule 5). Rules 6-12 say that if an attack is ‘?’, then two things hold: first,
there exists at least one attack against it which is also ‘?’ (rules 6 and 7). 3 Also, the
rest of the attacks set against it are either ‘?’, or ‘0’, or removed (rules 8-10), or (if they
belong to R+) we introduce (x,0,#) and (x,?,#), which will lead to simplifications if
we later add these attack and try to make them ‘1’ (rules 11-12). Rules 13-15 say that in
the PRO case every attack against the issue is either ‘0’ (rule 13), is removed (rule 14),
or (if it belongs to R+) we introduce an atom (x,0,#) for the same reason as explained
above (rule 15). Rules 16-19, finally, say that in the CON case there exists one attack
against the issue which is either ‘1’ (rules 16 and 17) or ‘?’ (rules 18 and 19).

Now, as far as the simplification rules (equations) are concerned: Equation 1 says
that if two identical atoms appear in the same conjunct, then one of them is deleted.
Equation 2 performs a simplification related to the ‘?’ status of an attack. Equation 3
says that if an open atom and a closed atom (which are otherwise identical) appear in
the same conjuct, then the open atom is deleted. Equations 4-6 say that if two atoms
referring to the same attack, but indicating different status, appear in the same conjunct,
then ⊥ is introduced. Equations 7-8 say that if an attack which cannot be attacked is set
to be ‘?’ or ‘0’, then ⊥ is introduced. Equations 9-10 are applied in case there exist no
potential attacks against d. Equation 11, finally, says that the atom ⊥ once it appears in
a conjunct, it reduces that conjunct into ⊥.

Also, notice the and operator in the program (corresponding to the ∧ sign) which
is declared as associative and commutative. This makes the firing of expansion and
simplification rules easy, regardless of the position of the atoms in a conjunct.

Finally, we explain how an argumentation system is represented and passed as input
to our program. We define the attacks of the system by using the following conven-
tions. The name of an attack must be preceded by ’. If attack x ∈ R+ (resp. x ∈ R−)
then its name starts with ‘+’ (resp. ‘−’). Also, by using the hits, isNotHit and hit-
sArg operators, we define how the attacks are related to each other (and to the issue).
For example (’-cd hitsArg d) means that head(−cd) = d. Moreover, (’+bc hits ’-cd)
means that hits(+bc,−cd). Finally, (isNotHit ’-ed) means there is no attack against the
attacked.

4.3 The Rewriting Procedure (RP)

Now we explain how the rewriting procedure of Maude works, not in general, but in
the specific case of our program. Informally, its input is an argumentation system AS,

3 Note that if we only had atoms of the type (x,?,∗), but not of the type (x,?,∗∗), there would
exist a possible rewriting making all the the attacks against x become ‘0’ (for example), thus
not achieving to make x become ‘?’.
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Data: A system AS = 〈A,R,R+,R−〉, initF = PRO(d) or initF =CON(d), with d ∈ A,
a set of expansion rules, a set of simplification rules.
Result: A set of moves Md .
Initialise formula currF := initF ;
while currF has an expandable conjunct do

Let Exp denote the set of all the expandable conjuncts of currF ;
foreach conjunct C ∈ Exp do

Initialise the set of conjuncts replC := {} ;
foreach applicable rewriting rule rl on C do

if rule rl applied on C gives C′ then
while a simplification can be applied on C′ do

Choose such a simplification, and apply it on C′ ;

Add C′ into the set replC ;

Replace C with C′
1 ∨C′

2 ∨·· ·∨C′
m in currF , s.t. ∀i ∈ [1 . . .m], C′

i ∈ replC ;

Initialise the set of moves Md := {} ;
foreach conjunct C of currF do

if C =⊥ then
m := {(x,s,#) | (x,s,#) appears in C, and s ∈ {+,−}}; Add m into the set Md ;

return Md ;

Algorithm 1. Maude’s rewriting procedure, in the context of our program

either the atom PRO(d) or the atom CON(d), a set of expansion rules and a set of
simplification rules. The rewriting procedure starts from PRO(d) or CON(d). All the
applicable expansion rules are considered, one-by-one. For every applicable expansion
rule, that rule is applied, and a set of new conjuncts is computed. In every new conjunct,
simplification rules are applied repeatedly, until no more simplification rules are appli-
cable. Once an “expansion-simplification” step is finished, all the conjuncts computed
in the previous step are considered (one by one) and there follows another “expansion-
simplification” step. These steps are repeated until, at some point, there are no conjuncts
which can be further expanded. Finally, from every non-expandable conjunct computed,
just the (x,+,#) and (x,−,#) atoms are filtered. The formal definition of Maude’s rewrit-
ing procedure, in the context of our program, is given in Algorithm 1.

In the rest of the paper, the set of returned moves will be denoted M PRO
d if initF =

PRO(d), and M CON
d if initF =CON(d).

Example 1, cont. In order to represent the system AS of this example, we must run the
Maude program with the following input:
> search PRO(d) and (’-cd hitsArg d) and (’-ed hitsArg d) and (’+bc hits

’-cd) and (’+ac hits ’-cd) and (’ba hits ’+ac) and (’ba hits ’ab) and

(’ab hits ’+bc) and (’ab hits ’ba) and (isNotHit ’-ed) =>! C:Conjunct .

Two important remarks: first, the “search” keyword tells Maude that whenever more
than one rewriting rules are applicable, it must consider them all, one at a time, in a
Breadth-First-Search way. This is essential in order to find all the possible rewritings.
Second, by using =>! C:Conjunct, we tell Maude to continue the rewritings, until the
obtained terms are non-rewritable conjuncts.
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Once this computation finishes, we obtain three conjuncts which correspond to moves
on AS, as well as a fourth conjunct ⊥. The moves corresponding to the three conjuncts
are: M PRO

d = {{(ed,−,#),(cd,−,#)}, {(ed,−,#),(bc,+,#)}, {(ed,−,#),(ac,+,#)}}.

Now, let us highlight some properties of the RP procedure.

Property 5. The procedure RP always terminates.

Proof. RP starts with a conjunct containing PRO(d) or CON(d). It finds all the applica-
ble expansion rules, therefore it computes a number of new conjuncts. We can see the
initial conjunct as the root of a tree and the new conjuncts as the children of the root.
Gradually, RP will compute a tree whose nodes are conjuncts. We will prove that this
tree has obligatorily a finite number of nodes. First, from the expansion rules it follows
that every conjunct computed by RP has a finite number of atoms. Moreover, there is
a finite number of applicable rules on every conjunct, so the branching factor of the
tree is finite. Finally, we must prove that the depth of the tree is finite. From the set of
rewriting rules, it follows that a conjunct will be expandable (that is not a leaf node), if
it contains an open atom and an atom of the form (x hits y), or of the form (x hitsArg
d). 4 Notice that every conjunct contains a finite number of (x hits y) and (x hitsArg
d) atoms, because the number of arguments and attacks of AS is finite. Also, after the
application of any expansion rule, the newly created conjunct contains one less (x hits
y) or (x hitsArg d) atom than its parent-node. As a result, the depth of the tree cannot
be greater than the initial number of (x hits y) and (x hitsArg d) atoms, which is finite.
So, we have proved that RP always terminates.

At this point, we underline that the “search” keyword ensures that, after a simplifi-
cation step, Maude tries every applicable rewriting rule. Therefore, the order in which
the rules are checked (Maude uses an internal strategy to decide on the order) does not
affect the results.

We now analyze the output of the rewriting procedure w.r.t. the different argumen-
tative goals. We shall say that: (1) the procedure is correct for successful moves (resp.
target sets) for goal g if every move it returns is successful (resp. a target set) for g ;
(2) the procedure is complete for successful moves (resp. target sets) for goal g if it
returns all the successful moves (resp. the target sets) for g.

As shown by Figure 1, correctness for target sets is not satisfied: the procedure re-
turns, for PRO or CON, some moves that are not target sets for any of the semantics.
But in some cases we can ensure that the procedure is correct for successful moves—in
that case moves only fail on the minimality criterion. In the same way, the completeness
for successful moves is not satisfied: RP does not give all the successful moves for any
semantics (in the general case). However, completeness for target sets can be obtained
in some cases. Of course, the most interesting lines are those for which we have “Yes”
in both columns: only successful moves are returned, and all the target sets are.

Property 6. The following table illustrates for which goals the rewriting procedure is
correct for successful moves and/or complete for target sets.

4 This means that it is quite possible for an open atom to be non-expandable. This is the case
when no relevant (x hits y) or (x hitsArg d) atom is found in the same conjunct as the open
atom.
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Goal Correctness for successful moves Completeness for target sets
S∃(d) Yes Yes
Pre f∀(d) No No
Comp∀(d) No Yes
¬S∃(d) No No
¬Pre f∀(d) No ?
¬Comp∀(d) Yes Yes

Note that the completeness regarding the goal ¬Pre f∀(d) is left open so far. However,
for the sake of readability, we draw Figure 1 assuming that the answer is “Yes”.

Proof. There are counter-examples for the “No” entries of the table, omitted due to the
lack of space. As far as the “Yes” cases are concerned, we only provide the proofs of
completeness and correctness for S∃(d).

Correctness of RP for S∃(d): That is M PRO
d ⊆MS

∃. Let m ∈ M PRO
d . The move m cor-

reponds to some conjunct, denoted cm, computed by RP. From cm we can construct
the set of arguments D = {x | (xy,1,s) is an atom of cm}. We will now prove that in
Δ(AS,m) = 〈A,Rm,R+

m ,R
−
m〉, it holds that D is an admissible set of arguments which

defends argument d. First, let us assume that in Δ(AS,m) the set D is not conflict-free.
In that case there exist two arguments x1,x2 ∈ D, such that x1x2 ∈ Rm. Now, x1,x2 ∈ D
implies that ∃x3,x4 ∈ A such that (x1x3,1,s) and (x2x4,1,s) are atoms of cm. Given
that (x2x4,1,s) appears in cm, and that x1x2 ∈ Rm, it follows that atom (x1x2,0,s) must
also appear in cm (from expansion rule 1). In turn, this means that ∃x5 ∈ A such that
(x5x1,1,s) also appears in cm (from expansion rules 4,5). Similarly, given that (x1x3,1,s)
appears in cm, it holds that (x5x1,0,s) also appears in cm. But, it is impossible for both
(x5x1,1,s) and (x5x1,0,s) to appear in the same conjunct (as they would have been sim-
plified into ⊥). Therefore, we have proved that D is conflict-free. Second, let us assume
that in the system Δ(AS,m), the set D does not defend all its elements. In that case
∃x1 ∈ D and ∃x2 ∈ D such that x2x1 ∈ Rm, and no argument of D attacks x2. x1 ∈ D
implies that ∃x0 ∈ A such that atom (x1x0,1,s) appears in cm. So, it follows that atom
(x2x1,0,s) also appears in cm (from expansion rule 1), and as a result, ∃x3 ∈ A such that
atom (x3x2,1,s) also appears in cm. By definition of the set D, notice that x3 ∈ D. Im-
possible, since we assumed that no argument of D attacks x2 in Δ(AS,m). Therefore, we
have proved that D defends all its elements. Given that D is conflict-free and it defends
all its elements, it follows that D is an admissible set of arguments. Finally, since for
every attack xd ∈ Rm against the issue d, it holds that atom (xd,0,s) appears in cm (be-
cause of expansion rule 13), it holds that argument d is defended by the set D. From this,
and from the fact that D is admissible in Δ(AS,m), it follows that D∪{d} is admissible
in Δ(AS,m). Thus, m ∈MS

∃, and we have proved that M PRO
d ⊆MS

∃.

Completeness of RP for S∃(d) (sketch of proof): We want to prove that TS
∃ ⊆ M PRO

d .
Let t ∈ TS

∃. We will prove that RP constructs a tree which has a leaf node containing
all the atoms of t, and no additional (x,+,#), or (x,−,#) atoms. Let the set {x1, . . . ,xn}
contains the arguments attacking d in AS. Let P = {(x1d,−,#), . . . ,(xnd,−,#)}. t con-
tains a subset of atoms P′ ⊆ P, and cannot contain any atoms of the form (xd,+,#).
Moreover, it is not difficult to prove that the tree has a node n (not a leaf, in the gen-
eral case) which contains all the atoms of P′, and no other (x,+,#) or (x,−,#) atoms.



64 D. Kontarinis et al.

Let {xk, . . . ,xl} ⊆ {x1, . . . ,xn} denote the arguments whose attacks against d remain in
Δ(AS, t). According to the expansion rules for PRO(d), the node n also contains the
atoms (xkd,0,∗), . . . , (xld,0,∗). Thus t contains the atoms of P′ and some additional
atoms, resulting from the expansions of (xkd,0,∗), . . . , (xld,0,∗), so it can be denoted
t = P′ ∪Q. Note that every atom of Q refers to an attack necessarily “connected” to an
argument of {xk, . . . ,xl}. Let us focus on the attacks against d which are not removed.
Those attacking arguments must get attacked back, in order for d to be reinstated. At this
point, it is not difficult to prove that, for every argument xi ∈ {xk, . . . ,xl}: (1) It is impos-
sible for any (yxi,−,#) atom to appear in t. (2) It is impossible for two atoms (y1xi,+,#)
and (y2xi,+,#) to appear in t. As a result, for every argument xi ∈ {xk, . . . ,xl}, t can only
contain 0 or 1 atoms of the type (yxi,+,#). Now we must make sure that RP computes
all these possible combinations of attack additions reinstating d. When RP expands the
node n, it creates a node for every possible combination of attack additions reinstating
d. Thus, there will be below the node n a number of nodes which contain either 0 or 1
atoms of the type (yxi,+,#) for every xi ∈ {xk, . . . ,xl}. One of these nodes will obligato-
rily contain exactly the atoms of t which indicate attack additions against the arguments
{xk, . . . ,xl}. Moreover, if such a node contains atom (yxi,+,#), then it also contains
atom (yxi,1,∗), as the added attacks must be ‘1’. RP continues to search the graph back-
wards, considering the indirect attackers (and defenders) of d, using the expansion rules
for the (yxi,1,∗) atoms. Therefore, after a finite number of expansions, the procedure
will compute a node which contains exactly the (x,+,#) and (x,−,#) atoms found in
t. This last statement is true only if the simplification rules which produce ⊥ cannot
lead to the “loss of a target set”. Two simplification rules can introduce ⊥ here: the first
one says that if there is a node n containing (xy,0,∗), and no potential attacker of x in
the system, ⊥ is introduced. Having (xy,0,∗) in n means that all the target sets found
in the subtree below n must lead to a modified system where there is an attack against
x. Since x has no potential attackers this can never happen. The second rule says that
if node n contains both (xy,0,s) and (xy,1,s), ⊥ is introduced. Let n a node contain-
ing both (xy,0,s) and (xy,1,s). Every eventual target set found in the subtree below n
leads to a modified system in which some admissibe extension: (a) attacks the argu-
ment x (because of (xy,0,s)), and (b) contains argument x (because of (xy,1,s)). This is
impossible.

5 Conclusion

The dynamics of argumentation systems is a central and compelling notion to address
when debates are to be considered among users or agents. However, the task of comput-
ing which move to make in order to reach a given argumentative goal is difficult. In this
paper we focus on complex simultaneous moves involving addition and retraction of
attacks. We first proved a number of results related to the relation which holds among
sets of successful moves and target sets. Then we described an approach based on a ded-
icated rewriting procedure within the Maude system, and proposed rules inspired from
the attack semantics [9]. This approach provides the advantage of being relatively easy
to design and interpret. This is an important feature if we consider a context where such
moves are suggested to a user, since for instance traces can provide human-readable
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explanations of the result of the procedure. We then presented a number of results re-
garding the procedure (together with our rules): regarding positive goals, it is correct
for successful moves and complete for target sets for any credulous semantics; while
it is complete for target sets for the complete semantics, regardless of the type of goal
considered (we recall that grounded semantics are included as a special case).

As far as potential extensions of this work are concerned, there are a number of
possibilities. First, the efficiency of our rewriting procedure requires further investiga-
tion. We also plan to make some modifications of the procedure, in order to be correct
and/or complete for more semantics. At this point, we note that adding the possibility
to explicitly add/remove arguments from a system would require the definition of some
additional rules, but it would not significantly change the procedure. Finally, we will
study the use of target sets in protocols for multi-agent debates. We wish to analyze
the properties of such protocols, as well as the possible strategic considerations of the
agents.
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A Maude’s Listing

mod RP_PROCEDURE is
protecting QID .

******************** SORTS AND SUBSORTS
sorts Attack Argument Sign Atom Conjunct .
subsort Atom < Conjunct . subsort Qid < Attack .

******************** CONSTANTS
ops top btm : -> Atom [ctor] .
ops + - 1 ? 0 * ** # : -> Sign [ctor] .
ops d : -> Argument [ctor] .

******************** VARIABLES
vars X Y : Attack .
vars S T : Sign .
var At : Atom .

******************** OPERATORS
op ___ : Attack Sign Sign -> Atom [ctor] .
op PRO_ : Argument -> Atom [ctor] .
op CON_ : Argument -> Atom [ctor] .
op _hits_ : Attack Attack -> Atom [ctor] .
op _hitsArg_ : Attack Argument -> Atom [ctor] .
op isNotHit_ : Attack -> Atom [ctor] .
op isNotHitArg_ : Argument -> Atom [ctor] .
op _and_ : Conjunct Conjunct -> Conjunct [ctor assoc comm] .

******************** EQUATIONS - SIMPLIFICATION RULES
eq (X S T) and (X S T) = (X S T) . *** Eq. 1
eq (X S **) and (X S *) = (X S *) . *** Eq. 2
eq (X S *) and (X S #) = (X S #) . *** Eq. 3
eq (X 0 S) and (X 1 T) = btm . *** Eq. 4
eq (X 0 S) and (X ? T) = btm . *** Eq. 5
eq (X ? S) and (X 1 T) = btm . *** Eq. 6
eq (X 0 *) and isNotHit(X) = btm . *** Eq. 7
eq (X ? S) and isNotHit(X) = btm . *** Eq. 8
eq PRO(d) and isNotHitArg(d) = top . *** Eq. 9
eq CON(d) and isNotHitArg(d) = btm . *** Eq. 10
eq At and btm = btm . *** Eq. 11

******************** REWRITING RULES - EXPANSION RULES
--------- Expansion rules for (X 1 *) atoms (rules 1, 2 and 3) ---------

*** RULE 1: The attack Y is on the system.
crl [expand_X1*_with_Y0*] : (X 1 *) and (Y hits X) =>
(X 1 *) and (Y 0 *) if not (substr(string(Y),0,1) == "+") .

*** RULE 2: The attack Y is removable.
crl [expand_X1*_with_Y-#_Y0#] : (X 1 *) and (Y hits X) =>
(X 1 *) and (Y - #) and (Y 0 #) if (substr(string(Y),0,1) == "-") .

*** RULE 3: The attack Y is addable.
crl [expand_X1*_with_Y0#] : (X 1 *) and (Y hits X) =>
(X 1 *) and (Y 0 #) if (substr(string(Y),0,1) == "+") .
--------- Expansion rules for (X 0 *) atoms (rules 4 and 5) ---------

*** RULE 4: The attack Y is on the system.
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crl [expand_X0*_with_Y1*] : (X 0 *) and (Y hits X) =>
(X 0 #) and (Y 1 *) if not (substr(string(Y),0,1) == "+") .

*** RULE 5: The attack Y is addable.
crl [expand_X0*_with_Y+#_Y1*] : (X 0 *) and (Y hits X) =>
(X 0 #) and (Y + #) and (Y 1 *) if (substr(string(Y),0,1) == "+") .
--------- Expansion rules for (X ? **),(X ? *) atoms (rules 6-12) ---------

*** RULE 6: Sign **, the attack Y is on the system.
crl [expand_X?**_with_Y?**] : (X ? **) and (Y hits X) =>
(X ? *) and (Y ? **) if not (substr(string(Y),0,1) == "+") .

*** RULE 7: Sign **, the attack Y is addable.
crl [expand_X?**_with_Y+#_Y?**] : (X ? **) and (Y hits X) =>
(X ? *) and (Y + #) and (Y ? **) if (substr(string(Y),0,1) == "+") .

*** RULE 8: Sign *, the attack Y is on the system.
crl [expand_X?*_with_Y?**] : (X ? *) and (Y hits X) =>
(X ? *) and (Y ? **) if not (substr(string(Y),0,1) == "+") .

*** RULE 9: Sign *, the attack Y is on the system.
crl [expand_X?*_with_Y0*] : (X ? *) and (Y hits X) =>
(X ? *) and (Y 0 *) if not (substr(string(Y),0,1) == "+") .

*** RULE 10: Sign *, the attack Y is removable.
crl [expand_X?*_with_Y-#_Y0#] : (X ? *) and (Y hits X) =>
(X ? *) and (Y - #) and (Y 0 #) if (substr(string(Y),0,1) == "-") .

*** RULE 11: Sign *, the attack Y is addable.
crl [expand_X?*_with_Y0#] : (X ? *) and (Y hits X) =>
(X ? *) and (Y 0 #) if (substr(string(Y),0,1) == "+") .

*** RULE 12: Sign *, the attack Y is addable.
crl [expand_X?*_with_Y?#] : (X ? *) and (Y hits X) =>
(X ? *) and (Y ? #) if (substr(string(Y),0,1) == "+") .
--------- Expansion rules for PRO, CON atoms (rules 13-19) ---------

*** RULE 13: PRO, and the attack Y is on the system.
crl [expand_PRO_with_Y0*] : PRO(d) and (Y hitsArg d) =>
PRO(d) and (Y 0 *) if not (substr(string(Y),0,1) == "+") .

*** RULE 14: PRO, and the attack Y is removable.
crl [expand_PRO_with_Y-#_Y0#] : PRO(d) and (Y hitsArg d) =>
PRO(d) and (Y - #) and (Y 0 #) if (substr(string(Y),0,1) == "-") .

*** RULE 15: PRO, and the attack Y is addable.
crl [expand_PRO_with_Y0#] : PRO(d) and (Y hitsArg d) =>
PRO(d) and (Y 0 #) if (substr(string(Y),0,1) == "+") .

*** RULE 16: CON, and the attack Y is on the system.
crl [expand_CON_with_Y1*] : CON(d) and (Y hitsArg d) =>
(Y 1 *) if not (substr(string(Y),0,1) == "+") .

*** RULE 17: CON, and the attack Y is addable.
crl [expand_CON_with_Y+#_Y1*] : CON(d) and (Y hitsArg d) =>
(Y + #) and (Y 1 *) if (substr(string(Y),0,1) == "+") .

*** RULE 18: CON, and the attack Y is on the system.
crl [expand_CON_with_Y?**] : CON(d) and (Y hitsArg d) =>
(Y ? **) if not (substr(string(Y),0,1) == "+") .

*** RULE 19: CON, and the attack Y is addable.
crl [expand_CON_with_Y+#_Y?**] : CON(d) and (Y hitsArg d) =>
(Y + #) and (Y ? **) if (substr(string(Y),0,1) == "+") .
endm
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Abstract. In this paper we propose a new presentation of logic-based
argumentation theory through Gentzen-style sequent calculi. We show
that arguments may be represented by Gentzen-type sequents and that
attacks between arguments may be represented by sequent elimination
rules. This framework is logic-independent, i.e., it may be based on ar-
bitrary languages and consequence relations. Moreover, the usual condi-
tions of minimality and consistency of support sets are relaxed, allowing
for a more flexible way of expressing arguments, which also simplifies
their identification. This generic representation implies that argumenta-
tion theory may benefit from incorporating techniques of proof theory
and that different non-classical formalisms may be used for backing up
intended argumentation semantics.

1 Introduction

Argumentation is the study of how mutually acceptable conclusions can be
reached from a collection of arguments. A common dialectical approach for ana-
lyzing and evaluating arguments is based on Dung-style abstract argumentation
frameworks [22], which can be seen as a diagramming of arguments and their
interactions [6, 7, 32]. Logic-based formalization of argumentation frameworks
(sometimes called logical (or deductive) argumentation; see reviews in [20, 30])
have also been extensively studied in recent years. One of the better-known
approaches in this respect is Besnard and Hunter’s logic-based counterpart of
Dung’s theory [12, 13], in which arguments are represented by classically valid
entailments whose premised are consistent and minimal with respect to set in-
clusion (see also [3, 24, 27]).

Our purpose in this paper is to show that deductive argumentation theory
can be described and represented in terms of sequents . The latter are logical
expressions that have been introduced by Gerhard Gentzen in order to specify
his famous sequent calculi [26]. We show that sequents are useful for representing
logical arguments since they can be regarded as specific kinds of judgments, and
that their interactions (the attack relations) can by represented by Gentzen-style
rules of inference. The outcome is a general and uniform approach to deductive
argumentation based on manipulations of sequents.

The introduction of sequent-based formalism in the context of logical argu-
mentation has some important benefits. Firstly, well-studied sequent calculi may
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be incorporated for producing arguments in an automated way. Secondly, some
restrictions in previous definitions of logical arguments, like minimality and con-
sistency of support sets, may now be lifted. Finally, the sequent-based approach
is general enough to accommodate different logics, including non-classical ones.
This enables the use of different substructural logics, including paraconsistent
logics [21] that support robust methods of handling conflicts among arguments.

The rest of this paper is organized as follows: in the next section we briefly
review the basics of abstract and logical argumentation theory. In Section 3 we
introduce a sequent-based representation of logical argumentation frameworks,
and in Section 4 we show how argumentation semantics may be computed in
this context in terms of entailment relations. In Section 5 we discuss some fur-
ther advantages of using sequent calculi for argumentation frameworks, and in
Section 6 we conclude.

2 Preliminaries: Abstract and Logical Argumentation

We start by recalling the terminology and some basic concepts behind Dung-style
argumentation [22].

Definition 1. An argumentation framework [22] is a pair AF = 〈Args ,Attack〉,
where Args is an enumerable set of elements, called arguments , and Attack
is a binary relation on Args×Args whose instances are called attacks . When
(A,B) ∈ Attack we say that A attacks B (or that B is attacked by A).

The study of how to evaluate arguments based on the structures above is
usually called abstract argumentation. Given an argumentation frameworkAF =
〈Args,Attack〉, a key question is what sets of arguments (called extensions) can
collectively be accepted. Different types of extensions have been considered in
the literature (see, e.g., [17, 18, 22, 23]), some of them are listed below.

Definition 2. Let AF = 〈Args,Attack〉 be an argumentation framework, and
let E ⊆ Args. We say that E attacks an argument A if there is an argument B ∈ E
that attacks A (i.e., (B,A) ∈ Attack). The set of arguments that are attacked
by E is denoted E+. We say that E defends A if E attacks every argument B that
attacks A. The set E is called conflict-free if it does not attack any of its elements,
E is called admissible if it is conflict-free and defends all of its elements, and E
is complete if it is admissible and contains all the arguments that it defends.

Let E be a complete subset of Args. We say that E is a grounded extension (of
AF) iff it is the minimal complete extension of AF ,1 a preferred extension iff it
is a maximal complete extension of AF , an ideal extension iff it is a maximal
complete extension that is a subset of each preferred extension of AF , a stable
extension iff it is a complete extension of AF that attacks every argument in
Args\E , a semi-stable extension iff it is a complete extension of AF where E∪E+

is maximal among all complete extensions of AF , and an eager extension iff it
is a maximal complete extension that is a subset of each semi-stable extension
of AF .
1 In this definition the minimum and maximum are taken with respect to set inclusion.
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In the context of abstract argumentation, then, the arguments themselves are
usually considered as atomic objects, and argument acceptability is based on the
interactions among these objects, depicted in terms of the attack relation. Ac-
ceptability of arguments (with respect to semantics like those considered above)
is now defined as follows:

Definition 3. We denote by ESem(AF) the set of all the Sem-extensions of
an argumentation framework AF = 〈Args,Attack〉, where Sem is one of the
extension-based semantics considered previously. Now,

– An argument A is skeptically accepted by AF according to Sem, if A ∈ E for
every E ∈ ESem(AF),

– An argument A is credulously accepted by AF according to Sem, if A ∈ E
for some E ∈ ESem(AF).

Example 1. Consider the argumentation framework AF , represented by the di-
rected graph of Figure 1, where arguments are represented by nodes and the
attack relation is represented by arrows.

E

A B
C

D

The admissible sets ofAF are ∅, {A}, {B} and {B,D}, its complete extensions
are ∅, {A}, and {B,D}, the grounded extension is ∅, the preferred extensions
are {A} and {B,D}, the ideal extension is ∅, the stable extension is {B,D}, and
this is also the only semi-stable extension and eager extension of AF . Thus, e.g.,
B is credulously accepted by AF according to the preferred semantics and it is
skeptically accepted by AF according to the stable semantics.

A wealth of research has been conducted on formalizing deductive argumen-
tation, in which arguments can be expressed in terms of formal languages and
acceptance of arguments can be determined by logical entailments. This is usu-
ally called logical argumentation. One of the better-known works in this context
is that of Besnard and Hunter [12], sketched below.

Definition 4. Let L be a standard propositional language, Σ a finite set of
formulas in L, and �cl the consequence relation of classical logic (for L). An
argument in the sense of Besnard and Hunter [12] (BH-argument, for short),
formed by Σ, is a pair A = 〈Γ, ψ〉, where ψ is a formula in L and Γ is a
minimally consistent subset of Σ (where minimization is with respect to set
inclusion), such that Γ �cl ψ. Here, Γ is called the support set of the argument
A and ψ is its consequent .2

2 A similar definition of arguments for defeasible reasoning goes back to [33]; We refer,
e.g., to [13] for a comparison between the two approaches.
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Different attack relations have been considered in the literature for logical
argumentation frameworks. Below we recall those that are considered in [27]
(see also [1, 2, 12, 28, 29]).

Definition 5. Let A1 = 〈Γ1, ψ1〉 and A2 = 〈Γ2, ψ2〉 be two BH-arguments.

– A1 is a defeater of A2 if ψ1 �cl ¬
∧

γ∈Γ2
γ.

– A1 is a direct defeater of A2 if there is γ ∈ Γ2 such that ψ1 �cl ¬γ.
– A1 is an undercut of A2 if there is Γ

′
2 ⊆ Γ2 such that ψ1 is logically equivalent

to ¬
∧

γ∈Γ ′
2
γ.

– A1 is a direct undercut of A2 if there is γ ∈ Γ2 such that ψ1 is logically
equivalent to ¬γ.

– A1 is a canonical undercut of A2 if ψ1 is logically equivalent to ¬
∧

γ∈Γ2
γ.

– A1 is a rebuttal of A2 if ψ1 is logically equivalent to ¬ψ2.
– A1 is a defeating rebuttal of A2 if ψ1 �cl ¬ψ2.

Let ArgsBH(Σ) be the (countably infinite) set of BH-arguments formed by Σ.
Each condition in Definition 5 induces a corresponding attack relation Attack
on ArgsBH(Σ). For instance, one may define that (A1, A2) ∈ Attack iff A1 is
a defeater of A2. In turn, Σ and Attack induce the (abstract) argumentation
framework AF(Σ) = 〈ArgsBH(Σ),Attack〉. By this, one may draw conclusions
from Σ with respect to each of the abstract argumentation semantics considered
in Definition 2, by incorporating Definition 3:

Definition 6. Let AF(Σ) = 〈ArgsBH(Σ),Attack〉 be a logical argumentation
framework and Sem one of the extension semantics considered in Definition 2.

– A formula ψ is skeptically entailed by Σ according to Sem, if there is an argu-
ment 〈Γ, ψ〉 ∈ ArgsBH(Σ) that is skeptically accepted by AF(Σ) according
to Sem.

– A formula ψ is credulously entailed by Σ according to Sem, if there is an
argument 〈Γ, ψ〉 ∈ ArgsBH(Σ) that is credulously accepted by AF(Σ) ac-
cording to Sem.

3 Sequent-Based Logical Argumentation

The setting described in the previous section is a basis of several works on logical
argumentation (e.g., [1, 2, 3, 12, 13, 14, 24, 27]). In this section we re-examine
some of its basic concepts.

3.1 Arguments as Sequents

First, we consider the notion of a logical argument. We argue that the minimality
and consistency requirements in Definition 4 not only cause complications in
the evaluation and the construction of arguments, but also may not be really
necessary for capturing the intended meaning of this notion.
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– Minimality.Minimization of supports is not an essential principle for defin-
ing arguments. For instance, mathematical proofs are usually not required
to be minimal in order to validate their claim. For a more specific exam-
ple, consider a framework in which supports are expressed only by literals
(atomic formulas or their negation). Then 〈{p, q}, p ∨ q〉 is excluded due to
minimality considerations, although one may consider {p, q} as a stronger
support for p∨q than, say, {p}. Indeed, the former contains several pieces of
evidence for p ∨ q (this may be relevant when, e.g., majority votes or other
quantitative considerations are taken into account).3

– Consistency. The requirement that the support set Γ of an argument 〈Γ, ψ〉
should be consistent may be irrelevant for some logics, at least when con-
sistency is defined by satisfiability. Indeed, in logics such as Priest’s LP [31]
or Belnap’s four-valued logic [10], every set of formulas in the language of
{¬,∨,∧} is satisfiable. What really matters in these cases is the consequence
relation of the underlying logic. Thus, e.g., in opposed to classical logic, when
intuitionistic logic is concerned, 〈{¬¬ψ}, ψ〉 shouldn’t be considered as a le-
gitimate argument, although ¬¬ψ ∈ Γ is (minimally) consistent in Γ when
ψ is consistent.

– Complexity. From a more pragmatic point of view, the involvement of
minimally consistent subsets of the underlying knowledge-base poses serious
questions on the computational viability of identifying arguments and gen-
erating them. Indeed, deciding the existence of a minimal subset of formulas
that implies the consequent is already at the second level of the polynomial
hierarchy (see [25]).

Our conclusion, then, is that what really matters for an argument, is that
(i) its consequent would logically follow, according to the underlying logic, from
the support set, and that (ii) there would be an effective way of constructing
and identifying it. In what follows we therefore adhere the following principles:

1. Supports and consequents of arguments are solely determined by the logic.

2. Arguments are syntactical objects that are effectively computable by a formal
system that is related to the logic, and are refutable by the attack relation
of the argumentation system.

For the first item we indicate what a logic is (Definition 7). The first part of the
second item corresponds to the primary goal of proof theory, so notations and
machinery are borrowed from that area (Definitions 8 and 9).

3 Another argument that is sometimes pleaded for set-inclusion minimization is that
it reduces the number of attacks. Again, it is disputable whether set-inclusion min-
imization is the right principle for assuring this property, since, for instance, the
singletons S1 = {p1} and S2 = {p2∧ . . .∧pn}, supporting (e.g., in classical logic) the
claim p1 ∨ . . . ∨ pn, are incomparable w.r.t. set-inclusion (and moreover they even
do not share any atomic formula), but it is obvious that as n becomes larger S2

becomes more exposed to attacks than S1.
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Definition 7. Let L be a propositional language. A (propositional) logic for L
is a pair L = 〈L,�〉, where � is a (Tarskian) consequence relation for L, i.e.,
a binary relation between sets of formulas and formulas in L, satisfying the
following conditions:

Cautious Reflexivity: ψ � ψ.
Monotonicity: if Γ � ψ and Γ ⊆ Γ ′, then Γ ′ � ψ.
Transitivity: if Γ � ψ and Γ ′, ψ � ϕ then Γ, Γ ′ � ϕ.

Definition 8. Let L be a propositional language, and let ⇒ be a symbol that
does not appear in L. An L-sequent (or just a sequent) is an expression of the
form Γ ⇒ Δ, where Γ and Δ are finite sets of formulas in L.

Proof systems that operate on sequents are called sequent calculi [26]. We
shall say that a logic L is effective, if it has a sound and complete sequent
calculus. For an effective logic L = 〈L,�〉, then, there is an effective way of
drawing entailments: Γ � ψ iff there is a proof of the sequent Γ ⇒ ψ in the
corresponding sequent calculus. In what follows we shall always assume that the
underlying logics are effective.

Definition 9. Let L = 〈L,�〉 be an effective logic with a corresponding sequent
calculus C, and let Σ be a set of formulas in L. An L-argument based on Σ is
an L-sequent of the form Γ ⇒ ψ, where Γ ⊆ Σ, that is provable in C. The set
of all the L-arguments that are based on Σ is denoted ArgL(Σ).

In the notation of Definition 9, we have that:

Proposition 1. Let L = 〈L,�〉 be an effective propositional logic. Then Γ ⇒ ψ
is in ArgL(Σ) iff Γ � ψ for Γ ⊆ Σ.

Example 2. When the underlying logic is classical logic CL, one may use
Gentzen’s well-known sequent calculus LK, which is sound and complete for
CL [26]. In this case we have, for instance, that the sequent ψ ⊃ φ⇒ ¬ψ ∨ φ is
derivable in LK and so it belongs to ArgCL(Σ) whenever Σ contains the formula
ψ ⊃ φ. Note, however, that this sequent is not derivable by any sequent calculus
that is sound and complete for intuitionistic logic IL (e.g., Gentzen’s LJ), thus
it is not in ArgIL(Σ) for any Σ.

Proposition 2. For every effective logic L = 〈L,�〉 and a finite set Σ of for-
mulas in L, the set ArgL(Σ) is closed under the following rules:4

Σ-Reflexivity: For every Γ ⊆ Σ and ψ ∈ Γ it holds that Γ ⇒ ψ ∈ ArgL(Σ).
Σ-Monotonicity: If Γ⇒ ψ ∈ ArgL(Σ) and Γ ⊆ Γ ′ ⊆ Σ then Γ ′ ⇒ ψ ∈ ArgL(Σ)
Σ-Transitivity: If Γ ⇒ ψ ∈ ArgL(Σ) and Γ ′, ψ ⇒ φ ∈ ArgL(Σ) then also

Γ, Γ ′ ⇒ φ ∈ ArgL(Σ).

4 Following the usual convention we use commas in a sequent for denoting the union
operation.
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Proof. By Proposition 1, Σ-Reflexivity follows from the cautious reflexivity and
the monotonicity of �, Σ-Transitivity follows from the transitivity of �, and Σ-
monotonicity follows from the monotonicity of �. ��

Note 1. The set ArgsBH(Σ) of the BH-arguments is not closed under any rule in
Proposition 2. To see this consider for instance the set Σ = {p, q,¬p∨ q,¬q∨p}.
Then 〈{p,¬p ∨ q}, q〉 ∈ ArgsBH(Σ) and 〈{q,¬q ∨ p}, p〉 ∈ ArgsBH(Σ), however
〈{p,¬p ∨ q,¬q ∨ p}, p〉 ∈ ArgsBH(Σ), since its support set is not minimal. Thus
ArgsBH(Σ) is not Σ-transitive. The fact that 〈{p,¬p∨q,¬q∨p}, p〉 ∈ ArgsBH(Σ)
(while 〈{p}, p〉 ∈ ArgsBH(Σ)) also shows that ArgsBH(Σ) is not Σ-monotonic
and that it is not Σ-reflexive.5

Note 2. Let L = 〈L,�〉 be an effective logic and Σ a finite set of formulas in L.
Then Σ-Transitivity can be strengthened as follows:

If Γ ⇒ ψ ∈ ArgL(Σ) and Γ ′, ψ � φ for Γ ′ ⊆ Σ, then Γ, Γ ′ ⇒ φ ∈ ArgL(Σ).

This rule implies that for generating L-arguments based on Σ it is enough to
consider only formulas in Σ.

3.2 Attacks as Sequent Elimination Rules

In order to represent attack relations we introduce rules for excluding arguments
(i.e., sequents) in the presence of counter arguments. We call such rules sequent
elimination rules , or attack rules . The obvious advantage of representing attacks
by sequent elimination rules is that the form of such rules is similar to that of the
construction rules, and both types of rules are expressed by the same syntactical
objects. This allows us to uniformly identify and generate arguments and attacks
by the same sequent-manipulation systems.

Since the underlying logic may not be classical and its language may not be
the standard propositional one, we shall have to make the following assumptions
on the availability of particular connectives in the language:

– To generalize attack relations that are defined by the classical conjunction,
we assume that the underlying language contains a �-conjunctive connective
∧, for which Γ � ψ ∧ φ iff Γ � ψ and Γ � φ. In these cases we shall denote
by ∧Γ the conjunction of all the elements in Γ .

– To generalize attack relations that are defined by logical equivalence, we
assume that in addition to the �-conjunctive connective, the underlying
language also contains a �-deductive implication ⊃, for which Γ, ψ � φ iff
Γ � ψ ⊃ φ. In these cases we shall abbreviate the formula (ψ ⊃ φ)∧ (φ ⊃ ψ)
by ψ ↔ φ.

Let us now show how the attack relations in Definition 5 can be described
in terms of corresponding sequent elimination rules. Typical conditions of such

5 Note that ArgsBH(Σ) is cautiously Σ-reflexive: 〈{ψ}, ψ〉 ∈ ArgsBH(Σ) for a consistent
formula ψ ∈ Σ.
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rules consist of three sequents: the attacking argument, the attacked argument,
and the condition for the attack. Conclusions of sequent elimination rules will
be the elimination of the attacked argument. In the sequel, we denote by Γ ⇒ ψ
the elimination of the argument Γ ⇒ ψ.

In what follows we say that a sequent elimination rule R is applicable with
respect to a logic L, if all of its conditions are valid for L, that is, every condition
of R is provable in a corresponding sound and complete sequent calculus for L.6

Attacks by defeaters: In terms of an arbitrary logic L = 〈L,�〉 and L-arguments
in ArgL(Σ), an argument Γ1 ⇒ ψ1 is an L-defeater of an argument Γ2 ⇒ ψ2 if
ψ1 � ¬

∧
Γ2. In the presence of a �-deductive implication ⊃ in L, this means

that � ψ1 ⊃ ¬
∧
Γ2, and so ⇒ ψ1 ⊃ ¬

∧
Γ2 is an L-argument in ArgL(Σ). It

follows that attacks by defeaters may be represented by the following sequent
elimination rule (relative to L):

Defeat:
Γ1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 ⇒ ψ2

In the particular case where the underlying logic is classical logic CL, this rule
is a sequent-based encoding of a defeater attack in the sense of Definition 5:

Proposition 3. Let A1 = 〈Γ1, ψ1〉 and A2 = 〈Γ2, ψ2〉 be two BH-arguments.
Then A1 is a defeater of A2 in the sense of Definition 5 iff the Defeat rule R,
in which Γ2 ⇒ ψ2 is attacked by Γ1 ⇒ ψ1, is CL-applicable.

Proof. Since Ai is a BH-argument it holds that Γi ⇒ ψi is CL-valid (i = 1, 2).
Moreover, since A1 is a defeater of A2, the attack condition of R is also CL-valid.
It follows that R is CL-applicable. Conversely, suppose that A1 = 〈Γ1, ψ1〉 and
A2 = 〈Γ2, ψ2〉 are BH-arguments so that the Defeat rule in which Γ2 ⇒ ψ2 is
attacked by Γ1 ⇒ ψ1 is CL-applicable. Then the attacking condition of this rule
is CL-valid, and so A1 is a defeater of A2 in the sense of Definition 5. ��
Note 3. The following sequent elimination rule may be viewed as a generalized
form of Defeat, which moreover does not assume the availability of a deductive
implication in the language.

Strong Defeat:
Γ1 ⇒ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 ⇒ ψ2

Proposition 4. Strong Defeat implies Defeat.

Proof. Assume that the three conditions of Defeat hold. Since ⇒ ψ1 ⊃ ¬
∧
Γ2

is derivable and L is effective, it holds that � ψ1 ⊃ ¬
∧
Γ2. Thus, since ⊃ is a

�-deductive implication, ψ1 � ¬
∧
Γ2. This, together with the assumption that

Γ1 ⇒ ψ1 is derivable (and so it is an argument in ArgL(Σ)), imply by Note 2 that
Γ1 ⇒ ¬

∧
Γ2 is an argument in ArgL(Σ), and so it is derivable in the underlying

sequent calculus. By Strong Defeat, then, Γ2 ⇒ ψ2, which is also the conclusion
of Defeat. ��
6 Semantically, this usually means that for every condition Γ ⇒ ψ of R, any L-model
of (all the formulas in) Γ is an L-model of ψ.



A Sequent-Based Representation of Logical Argumentation 77

Attacks by direct defeaters: Direct defeat with respect to an arbitrary logic L =
〈L,�〉 and a set ArgL(Σ) of L-arguments based on Σ, means that Γ1 ⇒ ψ1 is an
L-direct defeater of Γ2 ⇒ ψ2 if ψ1 � ¬γ for some γ ∈ Γ2. Thus, a direct defeat
attack may be expressed by the following sequent elimination rule:

Direct Defeat:
Γ1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬φ Γ2, φ⇒ ψ2

Γ2, φ ⇒ ψ2

Thus, an argument should be withdrawn in case that the negation of an element
in its support set is implied by a consequent of another argument.

As in the case of attacks by defeaters, we have the following relation between
attacks by direct defeaters in classical logic (Definition 5) and the above sequent-
based formalization:

Proposition 5. Let A1 = 〈Γ1, ψ1〉 and A2 = 〈Γ2, ψ2〉 be BH-arguments. Then
A1 is a direct defeater of A2 in the sense of Definition 5 iff the Direct Defeat
sequent elimination rule, in which Γ2 ⇒ ψ2 is attacked by Γ1 ⇒ ψ1, is CL-
applicable.

Proof. Similar to that of Proposition 3. ��

Note 4. Again, it is possible to express a stronger form of the rule above, which
does not mention an implication connective:

Strong Direct Defeat:
Γ1 ⇒ ¬φ Γ2, φ⇒ ψ2

Γ2, φ ⇒ ψ2

Proposition 6. Strong Direct Defeat implies Direct Defeat.

Proof. As in the proof of Proposition 4, by Note 2 and the fact that ⊃ is a �-
deductive implication, the availability of Γ1 ⇒ ψ1 and ⇒ ψ1 ⊃ ¬φ implies that
Γ1 ⇒ ¬φ is an element in ArgL(Σ). Thus, Strong Direct Defeat may be applied
to conclude that Γ2, φ ⇒ ψ2, which is also the conclusion of Direct Defeat. ��

Attacks by undercuts: For expressing undercuts with respect to a logic L = 〈L,�〉
we first have to define logical equivalence in L. A natural way to do so is to
require that ψ and φ are logically equivalent in L iff ψ � φ and φ � ψ. Using
a �-deductive implication ⊃ and a �-conjunctive connective ∧, this means that
� (ψ ⊃ φ) ∧ (φ ⊃ ψ), i.e., that ψ ↔ φ is a theorem of L. It follows that attacks
by undercuts are represented by the following sequent elimination rule:

Undercut:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬

∧
Γ2 Γ2, Γ

′
2 ⇒ ψ2

Γ2, Γ ′
2 ⇒ ψ2

Again, one may show that an attack by undercuts in the sense of Definition 5
is a particular case, for classical logic, of the rule above (cf. Propositions 3 and 5).

Proposition 7. Let A1 = 〈Γ1, ψ1〉 and A2 = 〈Γ2, ψ2〉 be BH-arguments. Then
A1 is an undercut of A2 iff the Undercut rule in which Γ2 ⇒ ψ2 is attacked by
Γ1 ⇒ ψ1 is CL-applicable.



78 O. Arieli

Attacks by direct and canonical undercuts: Using the same notations as those for
attacks by undercuts, and under the same assumptions on the language, attacks
by direct undercuts may be represented by the following elimination rule:

Direct Undercut:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬γ2 Γ2, γ2 ⇒ ψ2

Γ2, γ2 ⇒ ψ2

Similarly, attacks by canonical undercuts may be represented as follows:

Canonical Undercut:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 ⇒ ψ2

The rules above may be justified by propositions that are similar to 3, 5, and 7.

Attacks by rebuttal and defeating rebuttal: By the discussion above it is easy
to see that attacks by rebuttal and defeating rebuttal are also represented by
sequent elimination rules. Indeed, these two attacks are represented as follows:

Rebuttal:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬ψ2 Γ2 ⇒ ψ2

Γ2 ⇒ ψ2

Defeating Rebuttal:
Γ1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬ψ2 Γ2 ⇒ ψ2

Γ2 ⇒ ψ2

Again, these rules are justifiable by propositions that are similar to 3, 5, and 7.

As the next proposition shows, the relations between the attacks in Defini-
tion 5, indicated in [27], carry on to our sequent elimination rules.

Proposition 8. Let L = 〈L,�〉 be an effective propositional logic and suppose
that L has a �-conjunction ∧ and a �-deductive implication ⊃. Then: (a) De-
feating Rebuttal implies Rebuttal, (b) Undercut implies Canonical Undercut and
Direct Undercut, (c) Direct Defeat implies Direct Undercut.

Proof. Part (a) follows from the fact that the conditions of Rebuttal are stronger
than those of Defeating Rebuttal. More specifically, suppose that the conditions
of Rebuttal hold, i.e., Γ1 ⇒ ψ1 and ⇒ ψ1 ↔ ¬ψ2 and Γ2 ⇒ ψ2 are derivable in
the underlying sequent calculus. Since L is effective, it holds that � ψ1 ↔ ¬ψ2,
i.e., � (ψ1 ⊃ ¬ψ2)∧(¬ψ2 ⊃ ψ1). Since ∧ is a �-conjunction, � ψ1 ⊃ ¬ψ2, thus by
the effectiveness of L again, the sequent ⇒ ψ1 ⊃ ¬ψ2 is derivable in the calculus.
By Defeating Rebuttal, Γ2 ⇒ ψ2, which is also the conclusion of Rebuttal.

Part (b) follows from the fact that Undercut holds in particular when Γ2 is a
singleton (in which case Direct Undercut is obtained) and when Γ2 is the whole
support set of the sequent (in which case Canonical Undercut is obtained).

To see Part (c), note that the conditions of Direct Undercut are stronger than
those of Direct Defeat (taking γ2 = φ). ��
Note 5. Further relations between the elimination rules introduced above may
be obtained under further assumptions on the underlying logics. For instance,
when L is classical logic, Defeat implies Direct Defeat, since in LK the sequent
⇒ ψ ⊃ ¬

∧
Γ is derivable from ⇒ ψ ⊃ ¬γ for any γ ∈ Γ . Similar considerations

show that in this case Defeat also implies Undercut and Defeating Rebuttal.
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4 Argumentation by Sequent Processing

In light of the previous section, a logical argumentation framework for a set of
formulas Σ, based on a logic L, consists of a set of arguments ArgL(Σ) and
a set of sequent elimination rules Attack . The arguments in ArgL(Σ) may be
constructed by a sequent calculus which is sound and complete for L, while the
rules in Attack allow to discard arguments that are attacked according to some
attacking policy. Semantics of such a logical framework AFL(Σ) are therefore
determined by a process involving constructions and eliminations of sequents
(logical arguments). Below, we describe and exemplify this process.

Definition 10. We say that an argument Γ ⇒ ψ is discarded by an argument
Γ ′ ⇒ ψ′, if there is a rule R ∈ Attack in which Γ ′ ⇒ ψ′ attacks Γ ⇒ ψ, that is,
Γ ⇒ ψ and Γ ′ ⇒ ψ′ appear in the conditions of R and Γ ⇒ ψ is the conclusion
of R.

Note 6. If L is a logic in which any formula follows from a contradiction (in
particular, if L = CL), any sequent is discarded when Σ is contradictory. It
follows that either the consistency requirement from support sets of arguments
should be restored, or the underlying logic should be paraconsistent [21]. Since
our goal here is to avoid the first option, in what follows we consider argumenta-
tion frameworks that are based on paraconsistent logics.7 Here we chose Priest’s
three-valued logic LP [31], which is one of the most famous and simplest para-
consistent logics in the literature. A sound and complete sequent calculus for
LP is given in Figure 1 (see also [4]).

Example 3. Consider the argumentation framework for the set Σ = {¬p, p, q},
based on LP , in which attacks are by Undercut. Then, while q ⇒ q ∨ p is not
discarded by any argument in ArgLP(Σ), the argument q, p⇒ q ∨ p is discarded
by, e.g., ¬p ⇒ ¬p. The intuition behind this is that the support set of the
argument q, p⇒ q∨p, unlike that of the argument q ⇒ q∨p, contains a formula
(p) which is controversial in Σ (because it is contradictory).

The arguments that are not discarded by any argument are those that are
not attacked according to the attack rules in Attack . This conflict-free set of
arguments may define a semantics for AFL(Σ) as follows:

Definition 11. Let AFL(Σ) = 〈ArgL(Σ),Attack〉 be a logical argumentation
framework for a set of formulas Σ based on a logic L. We denote ArgL(Σ) �ND ψ
if there is a set of formulas Γ ⊆ Σ such that Γ ⇒ ψ is an argument in ArgL(Σ)
that is not discarded by any argument in ArgL(Σ) according to the rules in
Attack .

7 Paraconsistent logics may also be helpful in preventing contamination in defeasible
argumentation (see, for instance, [16, 18]). This is beyond the scope of the current
paper.
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Axioms: ψ ⇒ ψ ⇒ ψ,¬ψ

Structural Rules:

Weakening:
Γ ⇒ Δ

Γ,Γ ′ ⇒ Δ,Δ′

Cut:
Γ1, ψ ⇒ Δ1 Γ2 ⇒ Δ2, ψ

Γ1, Γ2 ⇒ Δ1,Δ2

Logical Rules:

[¬¬⇒]
Γ, φ⇒ Δ

Γ,¬¬φ⇒ Δ
[⇒¬¬] Γ ⇒ Δ,φ

Γ ⇒ Δ,¬¬φ

[∧⇒]
Γ, φ, ψ ⇒ Δ

Γ, φ ∧ ψ ⇒ Δ
[⇒∧] Γ ⇒ Δ, φ Γ ⇒ Δ,ψ

Γ ⇒ Δ,φ ∧ ψ

[¬∧⇒]
Γ,¬φ⇒ Δ Γ,¬ψ ⇒ Δ

Γ,¬(φ ∧ ψ)⇒ Δ
[⇒¬∧] Γ ⇒ Δ,¬φ,¬ψ

Γ ⇒ Δ,¬(φ ∧ ψ)

[∨⇒]
Γ, φ⇒ Δ Γ, ψ ⇒ Δ

Γ, φ ∨ ψ ⇒ Δ
[⇒∨] Γ ⇒ Δ,φ, ψ

Γ ⇒ Δ, φ ∨ ψ

[¬∨⇒]
Γ,¬φ,¬ψ ⇒ Δ

Γ,¬(φ ∨ ψ)⇒ Δ
[⇒¬∨] Γ ⇒ Δ,¬φ Γ ⇒ Δ,¬ψ

Γ ⇒ Δ,¬(φ ∨ ψ)

Fig. 1. A sequent calculus for LP

By Definition 11, ψ is a �ND-consequence of AFL(Σ) if it is a consequent of
an unattacked (and so, non-discarded) argument in AFL(Σ). Thus, the set of
these arguments is clearly admissible (and in particular conflict-free).

In what follows, when the underlying logical framework is fixed and known,
we shall abbreviate ArgL(Σ) �ND ψ by Σ �ND ψ.

Example 4. By Example 3, in an argumentation framework based on LP and
Undercut, {¬p, p, q} �ND q ∨ p. It is easy to see that in the same framework
{¬p, p, q} �ND q but {¬p, p, q} �ND p and {¬p, p, q} �ND ¬p.

Example 5. As indicated, e.g., in [19], abstract argumentation frameworks face
difficulties in handling n-ary conflicts for n ≥ 3. As far as consequences are
defined by entailment relations, such conflicts are easily maintained in logical
argumentation frameworks. Using the canonical example from [19], it holds that
in an argumentation framework for Σ = {p, q,¬p∨¬q} that is based, for instance,
on LP and Undercut, the argument p ⇒ p is discarded, e.g., by the argument
q,¬p ∨ ¬q ⇒ ¬p. Similarly, the arguments q ⇒ q, and ¬p ∨ ¬q ⇒ ¬p ∨ ¬q are
discarded by other arguments based on Σ, and so neither of the consequents of
these arguments is derivable from Σ according to �ND.

8

8 Assertions that are not related to the inconsistency in Σ are still inferrable, though.
For instance, Σ′ �ND r when Σ′ = Σ ∪ {r}.
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Some interesting properties of �ND are considered next.

Proposition 9. Let ψ be a theorem of a logic L = 〈L,�〉. Then for every set Σ
of formulas and every set Attack of elimination rules considered in Section 3.2,
ArgL(Σ) �ND ψ.

Proof. Since ψ is an L-theorem, we have that �ψ, and so ⇒ψ is an element in
ArgL(Σ). Since the support set of this argument is empty, it is not discarded by
an argument in ArgL(Σ) according to a rule in Attack , thus ArgL(Σ) �ND ψ. ��

Proposition 10. �ND is nonmonotonic in the size of the underlying knowledge-
bases: Let AFL(Σ) = 〈ArgL(Σ),Attack〉 and AFL(Σ

′) = 〈ArgL(Σ′),Attack〉
be two argumentation frameworks such that Σ ⊆ Σ′ and Attack contains (at
least) one of the elimination rules considered in Section 3.2. Then the fact that
ArgL(Σ) �ND ψ does not necessarily imply that ArgL(Σ

′) �ND ψ as well.

Proof. Consider, for instance, Σ = {p}. Since L is a logic, p ⇒ p ∈ ArgL(Σ),
and so ArgL({p}) �ND p. From the same reason, ¬p ⇒ ¬p ∈ ArgL(Σ

′) where
Σ′ = Σ ∪{¬p}. It follows that every argument in ArgL(Σ

′) whose consequent is
p, is discarded by ¬p⇒ ¬p, and so ArgL({p,¬p}) �ND p. ��

Note 7. An interesting property of �ND is that arguments that hold in a stronger
logic cannot be discharged by weaker logics. This may be useful in agent nego-
tiation as described below: Consider two agents G1 and G2, relying on the same
knowledge-base Σ and referring to the same attack rules, but using different
logics L1 = 〈L,�1〉 and L2 = 〈L,�2〉, respectively. In this case each agent has its
own logical argumentation framework, which can be represented, respectively, by
AFL1

(Σ) = 〈ArgL1
(Σ),Attack〉 and AFL2

(Σ) = 〈ArgL2
(Σ),Attack〉. Now, sup-

pose that the logic used by G2 is at least as strong as the logic used by G1, i.e.,
�1 ⊆ �2. Then Γ �1 ψ implies that Γ �2 ψ and so ArgL1

(Σ) ⊆ ArgL2
(Σ). Sup-

pose now that ArgL2
(Σ) �ND ψ. Then there is an argument Γ ⇒ ψ in ArgL2

(Σ)
that is not discarded by any argument in ArgL2

(Σ). In particular, this sequent
is not discarded by any argument in ArgL1

(Σ). It follows that in this case G2

has an argument in favor of ψ, which may not be producible by G1 (since ψ may
not follow from any subset of Σ according to �1), yet it cannot be discharged
by G1. In this setting, then, claims of agents with stronger logical sources may
not be verified but cannot be dismissed by agents with weaker sources.

Other entailment relations, similar to �ND, may be defined by other semantics
just like in Definition 3, provided that the underlying semantics is computable
in terms of the rules in Attack . For instance, the grounded extension of AFL(Σ),
denoted by GE(AFL(Σ)), contains all the arguments which are not attacked as
well as the arguments which are directly or indirectly defended by non-attacked
arguments. Thus, GE(AFL(Σ)) is computable as follows: First, the non-attacked
arguments in ArgL(Σ) are added to GE(AFL(Σ)). Then, the rules in Attack
are applied on ArgL(Σ) and the discarded arguments are removed. Denote the
modified set of arguments by Arg1L(Σ). Again, the non-attacked arguments in
Arg1L(Σ) are added to the set GE(AFL(Σ)) and those that are discarded by
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rules in Attack are removed. This defines a new set, Arg2L(Σ), and so forth.
Now, entailment by grounded semantics is defined by: AFL(Σ) �GE ψ if there is
an argument of the form Γ ⇒ ψ in GE(AFL(Σ)) for some Γ ⊆ Δ.

We conclude this section with some simple observations regarding the general
entailment relations that are obtained in our framework.

Definition 12. Let AFL(Σ) = 〈ArgL(Σ),Attack〉 be a logical argumentation
framework for a set of formulas Σ based on an effective logic L = 〈L,�〉. Let
Sem be one of the extension-based semantics considered in Definition 2 and
ESem(AFL(Σ)) the corresponding Sem-extensions (Definition 3).

– We denote Σ �Sem ψ if there is an argument Γ ⇒ ψ in ArgL(Σ) that is an
element of every E ∈ ESem(AFL(Σ)).

– We denote Σ �Sem ψ if every Sem-extension E ∈ ESem(AFL(Σ)) contains an
argument in ArgL(Σ) whose consequent is ψ.

Proposition 11. In the notations of Definition 12 we have that:

1. If Σ �Sem ψ then Σ �Sem ψ.

2. If Σ �Sem ψ or Σ �Sem ψ then Σ � ψ.
3. If � is paraconsistent, so are �Sem and �Sem.

4. If � has the variable sharing property,9 so do �Sem and �Sem.

Proof. Item 1 holds because the condition defining �Sem is stronger than the
one defining �Sem. The condition of Item 2 assures that there is an argument of
the form Γ ⇒ ψ in ArgL(Σ) and so by Proposition 1, Γ � ψ for some Γ ⊆ Σ.
Since � is monotonic (because L is a logic), also Σ � ψ. For Item 3, note that if
p,¬p � q then by Item 2 p,¬p �Sem q and p,¬p �Sem q. Similar argument holds
for Item 4: if Σ � ψ whenever Σ and ψ do not share any atomic formula, so by
Item 2 we have that in this case Σ �Sem ψ and Σ �Sem ψ either. ��

5 Further Utilizations of Arguments as Sequents

Apart of the obvious benefits of viewing arguments as sequents, such as the
ability to incorporate well-established and general methods for representing ar-
guments and automatically generating new arguments from existing ones, the
use of sequents also allows to make some further enhancements in the way ar-
guments are traditionally captured. Below, we mention two such enhancements.

– We used Gentzen-type systems which employ finite sets of formulas. How-
ever, one could follow Gentzen’s original formulation and use sequences
instead. This would allow, for instance, to encode prefenrences in the ar-
guments, where the order in a sequence represents priorities. In this way
one would be able to argue, for example, that Γ ⇒ p for any sequence Γ

9 That is, Σ 
� ψ unless Σ and ψ share some atomic formula.
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of literals that contains p and in which the first appearance of p precedes
any appearance of ¬p. Another possibility is to employ multisets in the se-
quents, e.g. for representing majority considerations. Thus, one may state
that Γ ⇒ p holds whenever the number of appearances of p in a multiset
Γ of literals is strictly bigger than the number of appearances of ¬p in the
same multiset. Of-course, the opposite may also be stated when incorpo-
rating mathematical objects other than (finite) sets. That is, it is possible
to explicitly indicate that the order and/or the number of appearances of
formulas do not matter, by introducing (either of) the following standard
structural rules:

Permutation:
Γ1, ψ, ϕ, Γ2 ⇒ Δ

Γ1, ϕ, ψ, Γ2 ⇒ Δ

Γ ⇒ Δ1, ψ, ϕ,Δ2

Γ ⇒ Δ1, ϕ, ψ,Δ2

Contraction:
Γ1, ψ, ψ, Γ2 ⇒ Δ

Γ1, ψ, Γ2 ⇒ Δ

Γ ⇒ Δ1, ψ, ψ,Δ2

Γ ⇒ Δ1, ψ,Δ2

– The incorporation of more complex forms of sequents, such as nested se-
quents [15] or hypersequents [5], allows to express more sophisticated forms
of argumentation, such as argumentation by counterfactuals or case-based
argumentation. For instance, the nested sequent Γ1 ⇒ (Γ2 ⇒ ψ) may be in-
tuitively understood by “if Γ1 were true, one would argue that Γ2 ⇒ ψ” and
the hypersequent Γ1 ⇒ ψ1 | Γ2 ⇒ ψ2 may be understood (again, intuitively)
as a disjunction, at the meta-level, of the arguments Γ1 ⇒ ψ1 and Γ2 ⇒ ψ2.

6 Conclusion and Further Work

The contribution of this paper is mainly conceptual. It raises some basic ques-
tions on the definition of arguments in the context of logic-based argumentation,
and claims that sequent-based representation and reasoning is an appropriate
setting for logic-based modeling of argumentation systems. Among others, this
approach enables a general and natural way of expressing arguments and im-
plies that well-studied techniques and methodologies may be borrowed from
proof theory and applied in the context of argumentation theory.

The starting point of this paper is Besnard and Hunter’s approach to logical
argumentation, which we believe is a successful way of representing deductive
reasoning in argumentation-based environments (Comparisons to other logic-
based approaches, such as those that are based on defeasible logics [30, 33], can
be found e.g. in [13]). Our work extends this approach in several ways: first,
the usual conditions of minimality and consistency of supports are abandoned.
This offers a simpler way of producing arguments and identifying them (also for
systems that are not formulated in a Gentzen-type style). Second, arguments are
produced and are withdrawn by rules of the same style, allowing for a more uni-
form way of representing the frameworks and computing their extensions. What
is more, as noted previously, the representation of arguments as inferences sug-
gests that techniques of proof theory may be incorporated.10 Third, our approach

10 Other techniques for generating arguments are considered, e.g., in [11] and [24].
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is logic-independent. This allows in particular to rely on a classical as well as on
a non-classical logic, and so, for instance, paraconsistent formalisms may be used
for improving consistency-maintenance. Logic independence also implies that our
approach is appropriate for multi-agent environments, involving different logics
for different agents.

Much is still need to be done in order to tighten the links between abstract
and logical argumentation theories. For instance, it would be interesting to in-
vestigate what specific logics and attack relations yield useful frameworks, and
whether the argumentation semantics that they induce give intuitively accept-
able solutions to practical problems. Another important issue for further explo-
ration is the computational aspect of our approach, which so far remains mainly
on the representation level. This requires an automated machinery that not only
produces sequents, but is also capable of eliminating them, as well as their conse-
quences. Here, techniques like those used in the context of dynamic proof theory
for adaptive logics may be useful (see, e.g., [8, 9]).
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Instantiating Knowledge Bases in Abstract

Dialectical Frameworks�

Hannes Strass
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Abstract. We present a translation from defeasible theory bases to ab-
stract dialectical frameworks, a recent generalisation of abstract argu-
mentation frameworks. Using several problematic examples from the lit-
erature, we first show how our translation addresses important issues
of existing approaches. We then prove that the translated frameworks
satisfy the rationality postulates closure and direct/indirect consistency.
Furthermore, the frameworks can detect inconsistencies in the set of
strict inference rules and cyclic (strict and defeasible) supports amongst
literals. We also show that the translation involves at most a quadratic
blowup and is therefore effectively and efficiently computable.

1 Introduction

Abstract argumentation frameworks (AFs) [1] are a formalism that is widely
used in argumentation research. Such an AF consists of a set of arguments and
an attack relation between these arguments. Their semantics determines which
sets of arguments of a given AF can be accepted according to specific criteria.
A common way to employ Dung’s AFs is as abstraction formalism. In this view,
expressive languages are used to model concrete argumentation scenarios, and
translations into Dung AFs provide these original languages with semantics. The
advantage of translating into an argumentation formalism is that the resulting
semantics can be given a dialectical interpretation, which can be used to inform
humans how a particular conclusion was inferred.

However, the approach is not without its problems. Caminada and Amgoud [2]
reported some difficulties they encountered when defining an abstract argument-
ation-based semantics for defeasible theory bases. Defeasible theory bases are
simple logic-inspired formalisms working with inference rules on a set of literals.
Inference rules can be strict, in which case the conclusion of the inference (a
literal) must necessarily hold whenever all antecedents (also literals) hold. Infer-
ence rules can also be defeasible, which means that the conclusion usually holds
whenever the antecedents hold. Here, the word “usually” suggests that there
could be exceptional cases where a defeasible rule has not been applied.

In response to the problems they encountered, Caminada and Amgoud [2]
stated general rationality postulates for AFs based on defeasible theories. The
intention of these postulates is to mathematically capture what humans perceive
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as rational behaviour from the semantics of defeasible theory bases. First of all
the closure postulate says that whatever model or extension the target formalism
(the AF) produces, it must be closed under application of strict rules, meaning
that all applicable strict rules have been applied. Direct and indirect consistency
postulates express that any model or extension of the target formalism must
be internally consistent with respect to the literals of the defeasible theory base
(directly) and even with respect to application of strict rules (indirectly).

Later, Wyner et al. [3] criticised Caminada and Amgoud’s definition of ar-
guments on ontological grounds and gave an alternative translation. We are
agnostic with respect to Wyner et al.’s criticism, but use their translation as
a starting point for our own work. Such a further refinement is necessary since
the translation of Wyner et al. [3] still yields unintuitive results on benchmark
examples and does not satisfy the closure and indirect consistency postulates.

The basis of our solution to the aforementioned problems is a shift in the
target language. While until now abstract argumentation frameworks were the
formalism of choice, we will use the more general abstract dialectical frameworks
(ADFs) [4]. Where AFs allow only attacks between arguments, ADFs can also
represent support relations and many more. More specifically, in an AF an argu-
ment is accepted if none of its attackers is accepted. The same can be expressed
in an ADF. But ADFs can also express that an argument is only accepted if
all of its supporters are accepted, or the argument is accepted if some of its
supporters are accepted, or it is accepted if some attacker is not accepted or . . .

The expressiveness of ADFs in comparison to AFs – which we studied in [5,6] –
enables us to give a direct and straightforward translation from defeasible theory
bases to abstract dialectical frameworks. We will show that this translation –
the main contribution of this paper – treats the benchmark examples right and
satisfies the rationality postulates of Caminada and Amgoud [2]. We consider
this further important evidence that abstract dialectical frameworks are useful
tools for representing and reasoning about argumentation scenarios. We also
perform a complexity analysis of our translation; this is significant in that we
are not aware of complexity analyses of the mentioned previous approaches.

The availability of support in ADFs (in contrast to AFs) as a target formalism
will be of fundamental importance to our translation. Among other things, it
will allow us to resolve cyclic dependencies among literals in a defeasible theory
base in a straightforward way. The treatment of such support cycles is built
into ADF standard semantics, which can be considered a product of decades of
research into nonmonotonic knowledge representation languages.

In the rest of the paper, we first recall the necessary background on defeasible
theory bases, abstract argumentation frameworks and abstract dialectical frame-
works. In Section 3 we look at the translations of Caminada and Amgoud [2]
and Wyner et al. [3], discuss some problems of these, and introduce generalised
versions of the rationality postulates. In Section 4 we then define our own trans-
lation. We show how it treats the problematic examples, prove that it satisfies the
(generalised versions of the) rationality postulates and analyse its computational
complexity. We conclude with a discussion of related and future work.
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2 Background

Defeasible Theories. Following Caminada and Amgoud [2], we use a set Lit of
literals that are built using syntactical negation ¬· and define a semantic negation
function · such that for an atom p we have p = ¬p and ¬p = p. Throughout the
paper, we assume that Lit is closed under negation in the sense that ψ ∈ Lit
implies ψ ∈ Lit . A set S ⊆ Lit of literals is consistent iff there is no literal ψ ∈ Lit
such that both ψ ∈ S and ¬ψ ∈ S. For literals φ1, . . . , φn, ψ ∈ Lit , a strict rule
over Lit is of the form r : φ1, . . . , φn → ψ; a defeasible rule over Lit is of the
form r : φ1, . . . , φn ⇒ ψ. (The only difference is the arrows.) Here r is the unique
rule name, the literals φ1, . . . , φn constitute the rule body and ψ is the rule head
or conclusion. Intuitively, a strict rule says that the rule head is necessarily true
whenever all body literals are true; a defeasible rule says that the head ψ is usually
true whenever all body literals are true. In definitions, we use the symbol � as
meta-level variable for → and ⇒.

For a set M ⊆ Lit of literals and a set StrInf of strict rules over Lit , we say
thatM is closed under StrInf iff r : φ1, . . . , φn → ψ ∈ StrInf and φ1, . . . , φn ∈M
imply ψ ∈ M . Accordingly, the closure of M under StrInf is the smallest set
ClStrInf (M) that contains M and is closed under StrInf . A defeasible theory or
theory base is a triple (Lit , StrInf ,DefInf ) where Lit is a set of literals, StrInf
is a set of strict rules over Lit and DefInf is a set of defeasible rules over Lit .
The semantics of theory bases is usually defined via a translation to abstract
argumentation frameworks, which will be introduced next.

Abstract Argumentation Frameworks. Dung [1] introduced argumentation frame-
works as pairs Θ = (A,R) where A is a set and R ⊆ A×A a relation. The inten-
ded reading of an AF Θ is that the elements of A are arguments whose internal
structure is abstracted away. The only information about the arguments is given
by the relation R encoding a notion of attack: a pair (a, b) ∈ R expresses that
argument a attacks argument b in some sense.

The purpose of semantics for argumentation frameworks is to determine sets of
arguments (called extensions) which are acceptable according to various stand-
ards. We will only be interested in so-called stable extensions, sets S of argu-
ments that do not attack each other and attack all arguments not in the set.
More formally, a set S ⊆ A of arguments is conflict-free iff there are no a, b ∈ S
with (a, b) ∈ R. A set S is a stable extension for (A,R) iff it is conflict-free and
for all a ∈ A \ S there is a b ∈ S with (b, a) ∈ R.

Abstract Dialectical Frameworks. Brewka and Woltran [4] introduced abstract
dialectical frameworks as a powerful generalisation of Dung AFs that are able
to capture not only attack and support, but also more general notions such as
joint attack and joint support.

Definition 1. An abstract dialectical framework is a triple Ξ = (S,L,C) where

– S is a set of statements,
– L ⊆ S × S is a set of links, where par (s) def= {r ∈ S | (r, s) ∈ L}
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– C = {Cs}s∈S is a set of total functions Cs : 2
par(s) → {in , out}.

Intuitively, the function Cs for a statement s determines the acceptance status
of s, which naturally depends on the status of its parent nodes. Any such func-
tion Cs can alternatively be represented by a propositional formula ϕs over the
vocabulary par(s). The understanding here is that for M ⊆ par(s), Cs(M) = in
iff M is a model of ϕs (written M |= ϕs), where an interpretation is identified
with the set of atoms that are evaluated to true.

Brewka andWoltran [4] introduced several semantical notions for ADFs. First,
for an ADF Ξ = (S,L,C) where C is given by a set of propositional formulas
ϕs for each s ∈ S, a set M ⊆ S is a model for Ξ iff for all statements s we have:
s ∈M iff M |= ϕs.

Example 1 (Abstract dialectical framework). Consider the ADF D = (S,L,C)
with statements S = {a, b, c, d}, links L = {(a, c), (b, b), (b, c), (b, d)} and accept-
ance functions given by the formulas ϕa = �, ϕb = b, ϕc = a ∧ b and ϕd = ¬b.
Intuitively, these acceptance conditions express that (1) a is always accepted, (2)
b supports itself, (3) c needs the joint support of a and b, and (4) d is attacked
by b. The two models of D are M1 = {a, b, c} and M2 = {a, d}.

In recent work [6], we redefined several standard ADF semantics and defined
additional ones. In this paper, we are only interested in two-valued semantics,
that is, models and stable models. The definition of the latter is based on the no-
tion of a reduct and an operator originally introduced by Brewka andWoltran [4].

The operator ΓΞ takes two sets A,R of statements, where the intuition is
that all statements in A are accepted and those in R are rejected. (So those in
S \ (A∪R) are undecided.) According to these acceptance statuses, the operator
evaluates all acceptance formulas and decides which statements can be definitely
accepted or rejected.

The reduct implements the intuition that whatever is false in a stable model
can be assumed false, but whatever is true in a stable model must be construct-
ively provable. The next definition combines all of this.

Definition 2. Let Ξ = (S,L,C) be an abstract dialectical framework. Define an
operator by ΓΞ(A,R) = (acc(A,R), rej (A,R)) for A,R ⊆ S, where

acc(A,R) = {s ∈ S | for all A ⊆ Z ⊆ (S \R),we have Z |= ϕs}
rej (A,R) = {s ∈ S | for all A ⊆ Z ⊆ (S \R),we have Z |= ϕs}

For a set M ⊆ S, define the reduced ADF ΞM = (M,LM , CM ) by the set of
links LM = L ∩M ×M and for each s ∈M we set ϕM,s = ϕs[r/⊥ : r /∈M ].
A model M for Ξ is a stable model of Ξ iff the least fixpoint of the operator
ΓΞM is given by (M,R) for some R ⊆ S.

Example 1 (Continued). Of the two models M1, M2 we have seen earlier, only
M2 is a stable model. Intuitively, the statement b ∈M1 cyclically supports itself.

It is clear that ADFs are a generalisation of AFs: for an argumentation frame-
workΘ = (A,R), its associated abstract dialectical framework isΞ(Θ) = (A,R,C)
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with Ca(B) = in iff B = ∅ for each a ∈ A. But this is not just syntactical; Brewka
and Woltran [4] showed that their semantical notions for ADFs are generalisa-
tions of Dung’s respective AF notions; likewise, in [5,6] we proved correspondence
results for all of the newly defined semantics. Brewka and Woltran [4] defined
a particular subclass of ADFs called bipolar. Intuitively, in bipolar ADFs each
link is supporting or attacking (or both). It will turn out that ADFs resulting
from our automatic translation from defeasible theory bases are all bipolar.

3 Instantiations to Abstract Argumentation Frameworks

The general approach to provide a semantics for defeasible theories is to translate
the defeasible theory into an argumentation formalism and then let the already
existing semantics for that argumentation formalism determine the semantics of
the defeasible theory. In the literature, the target formalism of choice are Dung’s
abstract argumentation frameworks. They abstract away from everything except
arguments and attacks between them, so to define a translation to AFs one has
to define arguments and attacks. We now review two particular such approaches.

3.1 The Approach of Caminada and Amgoud [2]

Caminada and Amgoud [2] define a translation from defeasible theories to argu-
mentation frameworks. They create arguments in an inductive way by applying
one or more inference rules. The internal structure of the arguments reflects
how a particular conclusion was derived by applying an inference rule to the
conclusions of subarguments, and allows arguments to be nested. So the base
case of the induction takes into account rules with empty body, that is, rules
of the form → ψ (or ⇒ ψ) for some literal ψ. Each such rule leads to an ar-
gument A = [→ ψ] (or [⇒ ψ]), and the conclusion of the rule becomes the
conclusion of the argument. For the induction step, we assume there are argu-
ments A1, . . . , An with conclusions φ1, . . . , φn, respectively. If there is a strict
rule φ1, . . . , φn → ψ, we can build a new argument A = [A1, . . . , An → ψ] with
conclusion ψ. (Likewise, from a defeasible rule φ1, . . . , φn ⇒ ψ we can build a
new argument A = [A1, . . . , An ⇒ ψ].) Similar to rules, arguments can be strict
or defeasible, where application of at least one defeasible rule makes the whole
argument defeasible. (So strict arguments exclusively use strict rules.)

Caminada and Amgoud [2] then define two different kinds of attacks between
arguments, rebuts and undercuts. An argument a rebuts another argument b if
a subargument of a concludes some literal ψ, while there is a defeasible subar-
gument of b that concludes ψ. An argument a undercuts another argument b if
the latter has a subargument that results from applying a defeasible rule and
the applicability of that rule is disputed by a subargument of a.1 In any case,
we see that only defeasible arguments can be attacked.

1 We will focus on rebuts in this paper since they are sufficient for our main points.
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Example 2 (Married John, [2, Example 4]). Consider the following vocabulary
with intended natural-language meaning: w . . . John wears something that looks
like a wedding ring, g . . . John often goes out late with his friends, m. . . John
is married, b . . . John is a bachelor, h . . . John has a wife. There are several
relationships between these propositions, which are captured in the following
theory base: the literals are Lit = {w, g, h,m, b,¬w,¬g,¬h,¬m,¬b}, the strict
rules are given by StrInf = {r1 :→ w, r2 :→ g, r3 : b→ ¬h, r4 : m→ h} and
the defeasible rules DefInf = {r5 : w ⇒ m, r6 : g ⇒ b}.

In the ASPIC system of Caminada and Amgoud [2], all the literals in the set
S = {w, g,m, b} are sceptical consequences of the constructed AF. Caminada
and Amgoud observe that this is clearly unintended since the natural-language
interpretation would be that John is a married bachelor. Moreover, the closure
of S under StrInf is ClStrInf (S) = {w, g,m, b, h,¬h}, which is inconsistent. So
not only are there applicable strict rules that have not been applied in S, but
their application would lead to inconsistency.

To avoid anomalies such as the one just seen, Caminada and Amgoud [2] went
on to define three natural rationality postulates for rule-based argumentation-
based systems which are concerned with the interplay of consistency and strict
rule application. Our formulation of them is slightly different for various reasons:

– We are concerned with argumentation frameworks as well as with abstract
dialectical frameworks in this paper, so we made the postulates parametric
in the target argumentation formalism.

– We removed the respective second condition on the sceptical conclusions
with respect to all extensions/models. Propositions 4 and 5 in [2] show that
they are redundant in their case.

– We are not constrained to formalisms and semantics where there are only
finitely many extensions/models.

– For the sake of readability, we assume that the literals Lit of the defeasible
theory are contained in the vocabulary of the target formalism.2

The first postulate requires that the set of conclusions for any extension should
be closed under application of strict rules.

Postulate 1 (Closure) Let (Lit , StrInf ,DefInf ) be a defeasible theory. Its
translation satisfies closure for semantics σ iff for any σ-model M , we find that
ClStrInf (Lit ∩M) ⊆ Lit ∩M .

Naturally, the notion of consistency is reduced to consistency of a set of literals
of the underlying logical language. Note that consistency only concerns the local
consistency of a given single model/extension of the target formalism. It may
well be that the formalism is globally inconsistent in the sense of not allowing
for any model with respect to a particular semantics. The latter behaviour can
be desired, for example if the original theory base is inconsistent already.

2 This is not a proper restriction since reconstruction of conclusions about the original
defeasible theory is one of the goals of the whole enterprise and so there should be
at least a translation function from argumentation models to theory models.
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Postulate 2 (Direct Consistency) Let (Lit , StrInf ,DefInf ) be a defeasible
theory with translation X and σ a semantics. X satisfies direct consistency iff
for all σ-models M we have that Lit ∩M is consistent.

Caminada and Amgoud [2] remark that it is usually easy to satisfy direct con-
sistency, but much harder to satisfy the stronger notion of indirect consistency.
For this to hold, for each model its closure under strict rules must be consistent.

Postulate 3 (Indirect Consistency) Let (Lit , StrInf ,DefInf ) be a defeasible
theory with translation X and σ a semantics. X satisfies indirect consistency iff
for all σ-models M we have that Lit ∩ ClStrInf (Lit ∩M) is consistent.

As a counterpart to Proposition 7 of Caminada and Amgoud [2], we can show
that closure and direct consistency together imply indirect consistency.

Proposition 1. Let (Lit , StrInf ,DefInf ) be a defeasible theory with translation
X and σ a semantics. If X satisfies closure and direct consistency, then it sat-
isfies indirect consistency.

Proof. Let X satisfy closure and direct consistency, and let M be a σ-model for
X. We have to show that Lit ∩ ClStrInf (Lit ∩M) is consistent. Since X satisfies
closure, ClStrInf (Lit ∩M) ⊆ Lit ∩M . Thus Lit ∩ ClStrInf (Lit ∩M) ⊆ Lit ∩M .
Now since X satisfies direct consistency, Lit ∩M is consistent. Hence its subset
Lit ∩ ClStrInf (Lit ∩M) is consistent and X satisfies indirect consistency. ��

3.2 The Approach of Wyner et al. [3]

Wyner et al. [3] identified some problems of the approach of Caminada and
Amgoud [2] and proposed an alternative translation from theory bases to argu-
mentation frameworks. We do not necessarily support or reject their philosoph-
ical criticisms, but rather find the translation technically appealing. They create
an argument for each literal in the theory base’s language and additionally an
argument for each rule. Intuitively, the literal arguments indicate that the literal
holds, and the rule arguments indicate that the rule is applicable. Furthermore,
the defined conflicts between these arguments are straightforward:

(1) opposite literals attack each other; (2) rules are attacked by the negations
of their body literals; (3) defeasible rules are attacked by the negation of their
head; (4) all rules attack the negation of their head.

Definition 3 ([3, Definitions 4,5]). Let TB = (Lit , StrInf ,DefInf ) be a de-
feasible theory. Define an argumentation framework Θ(TB ) = (A,R) as follows.

A = Lit ∪ {r | r : φ1, . . . , φn � ψ ∈ StrInf ∪DefInf }
R =

{
(ψ, ψ)

∣∣ ψ ∈ Lit
}

∪
{
(φi, r)

∣∣ r : φ1, . . . , φn � ψ ∈ StrInf ∪DefInf , 1 ≤ i ≤ n
}

∪
{
(ψ, r)

∣∣ r : φ1, . . . , φn ⇒ ψ ∈ DefInf
}

∪
{
(r, ψ)

∣∣ r : φ1, . . . , φn � ψ ∈ StrInf ∪DefInf
}
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Let us look at one of their own examples which they adapted from [2].

Example 3 ([3, Example 5]). Consider the following theory base.

Lit = {x1, x2, x3, x4, x5,¬x1,¬x2,¬x3,¬x4,¬x5}
StrInf = {r1 :→ x1, r2 :→ x2, r3 :→ x3, r4 : x4, x5 → ¬x3}
DefInf = {r5 : x1 ⇒ x4, r6 : x2 ⇒ x5}

We can see that x1, x2, x3 are strictly asserted and thus should be contained in
any extension. The AF translation is depicted below.

r2 x2 ¬x2 r6 ¬x5 x5

r3 ¬x3 x3 r4

r1 x1 ¬x1 r5 ¬x4 x4

The stable extensions of this AF are as follows:

S1 = {x1, x2, x3,¬x4,¬x5, r1, r2, r3} S2 = {x1, x2, x3,¬x4, x5, r1, r2, r3, r6}
S3 = {x1, x2, x3, x4,¬x5, r1, r2, r3, r5} S4 = {x1, x2, x4, x5, r1, r2, r3, r4, r5, r6}

While the first three extensions can be considered intended, S4 is not closed
under strict rules and indirectly inconsistent: r3 is applicable but x3 does not
hold, r4 is applicable but ¬x3 does not hold.

A similar observation can be made in Example 2: the AF translation according
to Wyner et al. [3] has a stable extension {w, g,m, b, r1, r2, r3, r4, r5, r6} where
John is a married bachelor.

4 Instantiations to Abstract Dialectical Frameworks

In this section, we extend the theory base to AF translation of Wyner et al. [3] to
ADFs. Due to the availability of support, this is straightforward. Indeed, support
and attack are sufficient for our purposes.

4.1 From Theory Bases to ADFs

As in the approach of Wyner et al. [3], we directly use the literals from the
theory base as statements that express whether the literal holds. We also use
rule names as statements indicating that the rule is applicable. Additionally,
for each rule r we create a statement -r indicating that the rule has not been
applied. Not applying a rule is acceptable for defeasible rules, but unacceptable
for strict rules since it would violate the closure postulate. This is enforced via
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integrity constraints saying that it may not be the case in any model that the
rule body holds but the head does not hold. Defeasible rules offer some degree of
choice, whence we leave it to the semantics whether or not to apply them. This
choice is modelled by a mutual attack cycle between r and -r. The remaining
acceptance conditions are equally straightforward:

– Opposite literals attack each other.

– A literal is accepted whenever some rule deriving it is applicable, that is, all
rules with head ψ support statement ψ.

– A strict rule is applicable whenever all of its body literals hold, that is, the
body literals of r are exactly the supporters of r.

– Likewise, a defeasible rule is applicable whenever all of its body literals hold,
and additionally the negation of its head literal must not hold.

In particular, literals cannot be accepted unless there is some rule deriving them.

Definition 4. Let TB = (Lit , StrInf ,DefInf ) be a theory base. Define an ADF
Ξ(TB) = (S,L,C) by S = Lit ∪ {r, -r | r : φ1, . . . , φn � ψ ∈ StrInf ∪DefInf };
the acceptance functions of statements s can be parsimoniously represented by
propositional formulas ϕs.

3 For a literal ψ ∈ Lit, we define

ϕψ = ¬[ψ] ∧
∨

r:φ1,...,φn�ψ∈StrInf ∪DefInf

[r]

For a strict rule r : φ1, . . . , φn → ψ ∈ StrInf , we define

ϕr = [φ1] ∧ . . . ∧ [φn] and ϕ-r = [φ1] ∧ . . . ∧ [φn] ∧ ¬[ψ] ∧ ¬[-r]

For a defeasible rule r : φ1, . . . , φn ⇒ ψ ∈ DefInf , we define

ϕr = [φ1] ∧ . . . ∧ [φn] ∧ ¬[ψ] ∧ ¬[-r] and ϕ-r = ¬[r]

Finally, there is a link (s′, s) ∈ L iff [s′] occurs in the acceptance formula ϕs.

For strict rules with name r, the self-attack of -r does not materialise whenever
either the rule body is not satisfied or the rule head holds; otherwise the strict
rule is applicable but has not been applied and the constraint -r prevents this
undesirable state of affairs from getting included in a model. (For the formulas
defined above, the empty disjunction leads to ⊥ – logical falsity – and the empty
conjunction to � – logical truth.)

Let us see how our translation treats the examples seen earlier.

3 In these formulas, we write ADF statements in brackets, to avoid confusion between
negation being applied inside a statement name – as in [¬x] – and negation being
applied in the formula outside of the statement’s name – as in ¬[-r]. Thus [¬x] and
¬[x] are syntactically different literals in the language of acceptance formulas; their
meaning is intertwined via the semantics of ADFs.
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Example 3 (Continued). Definition 4 yields the following acceptance formulas.

ϕx1 = ¬[¬x1] ∧ [r1] ϕx2 = ¬[¬x2] ∧ [r2] ϕx3 = ¬[¬x3] ∧ [r3]
ϕx4 = ¬[¬x4] ∧ [r5] ϕx5 = ¬[¬x5] ∧ [r6]
ϕ¬x1 = ⊥ ϕ¬x2 = ⊥ ϕ¬x3 = ¬[x3] ∧ [r4] ϕ¬x4 = ⊥ ϕ¬x5 = ⊥
ϕr1 = � ϕr2 = � ϕr3 = � ϕr4 = [x4] ∧ [x5]
ϕr5 = [x1] ∧ ¬[¬x4] ∧ ¬[-r5] ϕr6 = [x2] ∧ ¬[¬x5] ∧ ¬[-r6]
ϕ-r1 = ¬[x1] ∧ ¬[-r1] ϕ-r2 = ¬[x2] ∧ ¬[-r2] ϕ-r3 = ¬[x3] ∧ ¬[-r3]
ϕ-r4 = [x4] ∧ [x5] ∧ ¬[¬x3] ∧ ¬[-r4] ϕ-r5 = ¬[r5] ϕ-r6 = ¬[r6]

Statements with an acceptance condition of the form ¬p1∧ . . .∧¬pn behave like
AF arguments. So in particular r1, r2, r3 are always in since these rules have an
empty body. Similarly, -r1, -r2, -r3 are self-attacking arguments. The statements
¬x1,¬x2,¬x4,¬x5 are always out since there are no rules deriving these literals.
The remaining acceptance conditions are clear from the definitions: literals are
supported by the rules deriving them and rules in turn are supported by their
body literals.

For illustration, we also provide the ADF in form of a labelled graph, where the
labels + and − indicate supporting and attacking links. Several statements have
constant truth values as acceptance conditions, in the picture this is indicated
via a link from the surroundings.4

-r2 r2 -r6

¬x2 x2 r6 x5 ¬x5

r3

-r3 x3 ¬x3 r4

-r4

¬x1 x1 r5 x4 ¬x4

-r1 r1 -r5

−

−

−

−

−

−

−

−

−

−

+

+

+
+

+

+

+

+

+
+

+

+

+

− −

− −

−

−

−

−

+

+

−

−

−

−

−

−

−
−

4 This is inspired by conventions from automata theory, where initial states are indic-
ated likewise.
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For this ADF, models and stable models coincide, and there are three of them:

M1 = {x1, x2, x3, r1, r2, r3, -r5, -r6} M2 = {x1, x2, x3, x4, r1, r2, r3, r5, -r6}
M3 = {x1, x2, x3, x5, r1, r2, r3, -r5, r6}

Roughly, in M1 none of the defeasible rules r5, r6 has been applied – indicated
by -r5 and -r6 –, while in M2 and M3 either one of them has been applied. As
intended, there is no model where both defeasible rules have been applied, as
this would lead to a set that contains both x4 and x5; this in turn would make
rule r4 applicable, allowing to conclude ¬x3 in contradiction to x3 being strictly
true according to rule r3.

We can furthermore see that all of the models are closed under strict rule
application (they contain x1, x2, x3 and no other strict rule is applicable) and
directly consistent, thus also indirectly consistent.

A similar observation can be made for John (not) being married (Example 2);
our ADF translation has three (stable) models: M1 = {w, g, r1, r2, -r5, -r6},
M2 = {w, g, h,m, r1, r2, r4, r5, -r6} and M3 = {w, g, b,¬h, r1, r2, r3, -r5, r6}.
Again, the argumentation translation of the theory base satisfies closure and
direct and indirect consistency. We will later prove that the satisfaction of the
postulates is not a coincidence in our approach. But first of all let us consider
another problem which often arises in knowledge representation and reasoning.

4.2 Support Cycles in Theory Bases

When logical, rule-based approaches are used for knowledge representation, a re-
curring issue is that of cyclic dependencies between propositions of the knowledge
base. If such support cycles are carelessly overlooked or otherwise not treated
in an adequate way, they can lead to counterintuitive conclusions. Consider this
famous example from Denecker et al. [7].

Example 4 (Gear Wheels [7]). There are two interlocked gear wheels x and y
that can be separately turned and stopped. Let x0 and y0 denote whether x
(resp. y) turns at time point 0, and likewise for a successive time point 1. At
any one time point, whenever the first wheel turns (resp. stops), it causes the
second one to turn (resp. stop), and vice versa. This is expressed by strict rules
r1 to r8. Without a cause for change, things usually stay the way they are from
one time point to the next, which is expressed by the defeasible rules ra to rd.

Lit = {x0, y0, x1, y1,¬x0,¬y0,¬x1,¬y1}
StrInf = {r1 : x0 → y0, r2 : y0 → x0, r3 : ¬x0 → ¬y0, r4 : ¬y0 → ¬x0,

r5 : x1 → y1, r6 : y1 → x1, r7 : ¬x1 → ¬y1, r8 : ¬y1 → ¬x1}
DefInf = {ra : x0 ⇒ x1, rb : ¬x0 ⇒ ¬x1, rc : y0 ⇒ y1, rd : ¬y0 ⇒ ¬y1}

For later reference, we denote this theory base by TBGW = (Lit , StrInf ,DefInf ).
To model a concrete scenario, we add the rules StrInf ′ = {ri :→ ¬x0, rj :→ ¬y0}
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expressing that both wheels initially stand still. We denote the augmented theory
base for this concrete scenario by TB ′

GW = (Lit , StrInf ∪ StrInf ′,DefInf ). It is
clearly unintended that there is some model for TB ′

GW where the gear wheels
magically start turning with one being the cause for the other and vice versa.

Example 5. Consider the following defeasible rules saying that rain and wet
grass usually go hand in hand: Lit = {rain,wet ,¬rain ,¬wet}, StrInf = ∅ and
DefInf = {r1 : rain ⇒ wet , r2 : wet ⇒ rain}. The intended meaning is that one
is usually accompanied by the other, not that both may appear out of thin air.

To see how argumentation translations of theory bases treat such cycles, let
us look at a simplified version of the gear wheels example.

Example 6. Consider a theory base with two literals mutually supporting each
other through strict rules: Lit = {x1, x2,¬x1,¬x2}, the strict rules are given by
StrInf = {r1 : x1 → x2, r2 : x2 → x1} and DefInf = ∅. Our ADF translation
of this example yields the acceptance formulas

ϕx1 = [r2] ϕ¬x1 = ⊥ ϕr1 = [x1] ϕ-r1 = [x1] ∧ ¬[x2] ∧ ¬[-r1]
ϕx2 = [r1] ϕ¬x2 = ⊥ ϕr2 = [x2] ϕ-r2 = [x2] ∧ ¬[x1] ∧ ¬[-r2]

The ADF has two models, M1 = {x1, x2, r1, r2} and M2 = ∅. Only M2 is a
stable model due to the cyclic self-support of the statements in M1. Note that
not only do x1 and x2 not hold in M2, neither do ¬x1 and ¬x2 (there are no
rules possibly deriving them). In contrast, the translation of Wyner et al. [3]
yields the AF

r1

r2
x1 x2¬x1 ¬x2

with two stable extensions S1 = {x1, r1, x2, r2} and S2 = {¬x1,¬x2}. In S1, x1
and x2 hold due to self-support while in S2 they are “guessed” to be false.

In our view, this is problematic since it is not made clear to the user that
these different extensions arise due to self-support. Even if we grant that for
some application domains, cyclic self-support of literals might be intended or at
least not unintended, the user should be able to distinguish whether different
models/extensions arise due to present or absent self-support on the one hand, or
due to conflicts between defeasible conclusions on the other hand. ADFs provide
this important distinction, since cycles are allowed in models and disallowed in
stable models, while both semantics are identical in their treatment of conflicts
between defeasible conclusions.

In the approach of Caminada and Amgoud [2], treatment of cycles is built into
the definition of the set of arguments in the resulting argumentation framework.
The arguments are created using structural induction, where rules with empty
bodies form the induction base and all other rules form the induction step. For
the general gear wheel domain TBGW of Example 4, and for Examples 5 and
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6, their translation would not create any arguments (there are no assertions in
the theory bases), and the approach could not draw any conclusions about these
examples. The concrete scenario of the interlocked gear wheel domain TB ′

GW in
Example 4, where both wheels initially stand still, would be treated correctly by
the approach of Caminada and Amgoud [2]. But note that the well-foundedness
of the treatment of cyclic dependencies is built into the syntax of the resulting
argumentation framework – there are no arguments that could conclude that
any of the wheels is turning, although there are (strict and defeasible) rules
with such conclusions. Consequently, a part of the semantics of the theory base
is already fixed by the translation, irrespective of the argumentation semantics
that is used later on.

4.3 Inconsistent Theory Bases

Example 7 (Inconsistent Theory Base). Consider the following (obviously incon-
sistent) theory base in which both a literal and its negation are strictly asserted:
Lit = {x,¬x}, StrInf = {r1 :→ x, r2 :→ ¬x} and DefInf = ∅. Our ADF trans-
lation yields the acceptance formulas

ϕx = ¬[¬x] ∧ [r1] ϕr1 = � ϕ-r1 = ¬[x] ∧ ¬[-r1]
ϕ¬x = ¬[x] ∧ [r2] ϕr2 = � ϕ-r2 = ¬[¬x] ∧ ¬[-r2]

This ADF has no models, and so the theory base’s inconsistency is detected.
On the other hand, the associated argumentation framework due to Wyner

et al. [3] is given by the set of arguments A = {x,¬x, r1, r2} and the attacks
R = {(x,¬x), (¬x, x), (r1 ,¬x), (r2, x)}. In the only stable extension {r1, r2} both
rules are applicable but none of the head literals hold due to immanent conflict.

In the approach of Caminada and Amgoud [2], we can construct two strict
arguments that conclude x and ¬x, respectively. There are no attacks between
these arguments since they are both strict. The resulting AF has a stable exten-
sion from which both x and ¬x can be concluded, which detects the inconsistency.

4.4 Properties of the Translation

In this section, we analyse some theoretical properties of our translation. First
we show that it satisfies (our reformulations of) the rationality postulates of
Caminada and Amgoud [2]. Then we analyse the computational complexity of
translating a given theory base and show that the blowup is at most quadratic.

Postulates. It is elementary to show that the ADFs resulting from our translation
satisfy direct consistency. This is because the statements ψ and ψ mutually
attack each other.

Proposition 2. For any theory base TB = (Lit , StrInf ,DefInf ), its associated
ADF Ξ(TB) satisfies direct consistency with respect to the model semantics.
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Proof. Let M be a model for Ξ(TB) and assume to the contrary that M ∩ Lit
is inconsistent. Then there is a ψ ∈ Lit such that ψ ∈ M and ¬ψ ∈ M . Since
¬ψ ∈M , the acceptance condition of ¬ψ yields ψ /∈M . Contradiction. ��

We can also prove that they satisfy closure: by construction, the (acceptance
conditions of) statements -r for strict rules r guarantee that the rule head is
contained in any model that contains the rule body.

Proposition 3. For any theory base TB = (Lit , StrInf ,DefInf ), its associated
ADF Ξ(TB) satisfies closure with respect to the model semantics.

Proof. LetM be a model of Ξ(TB) and r : φ1, . . . , φn → ψ ∈ StrInf such that we
find φ1, . . . , φn ∈M . We have to show ψ ∈M . By definition, Ξ(TB) has a state-
ment -r with parents par (-r) = {φ1, . . . , φn, ψ, -r}. We next show that -r /∈M :
assume to the contrary that -r ∈M . Then by the acceptance condition of -r we
get -r /∈ M , contradiction. Thus -r /∈M . Now the acceptance condition of -r
yields φ1 /∈M or . . . or φn /∈M or ψ ∈M or -r ∈M . By assumption, we have
φ1, . . . , φn ∈M and -r /∈M , thus we get ψ ∈M . ��

By Proposition 1 the translation satisfies indirect consistency.

Corollary 1. For any theory base TB = (Lit , StrInf ,DefInf ), its associated
ADF Ξ(TB) satisfies indirect consistency with respect to the model semantics.

Since any stable model is a model, our translation also satisfies the postulates
for the stable model semantics.

Corollary 2. For any theory base TB = (Lit , StrInf ,DefInf ), its associated
ADF Ξ(TB) satisfies closure and direct and indirect consistency with respect to
the stable model semantics.

It should be noted that defeasible rules may or may not be applied – the
approach is not eager to apply defeasible rules.

Complexity. For a theory base TB = (Lit , StrInf ,DefInf ), we define the size of
its constituents as follows. Quite straightforwardly, the size of a set of literals is
just its cardinality, the size of a rule is the number of literals in it, the size of a
set of rules is the sum of the sizes of its elements and the size of a theory base
is the sum of the sizes of its components.

We want to analyse the size of its ADF translation Ξ(TB) = (S,L,C) accord-
ing to Definition 4. Clearly, the number of statements is linear in the size of the
theory base, since we have one statement for each literal and two statements for
each rule: |S| = |Lit |+ 2 · (|StrInf |+ |DefInf |). Since L ⊆ S × S, the number of

links in L is at most quadratic in the cardinality of S: |L| ≤ |S|2. Finally, we
have seen in Definition 4 that the acceptance conditions of statements can be
parsimoniously represented by propositional formulas. It can be checked that the
size of each one of these formulas is at most linear in the size of the theory base.
Since there are linearly many statements with one acceptance formula each, the
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acceptance conditions can be represented in quadratic space. So overall, the res-
ulting ADF Ξ(TB) = (S,L,C) can be represented in space which is at most
quadratic in the size of the original theory base. In particular, in our approach
a finite theory base always yields a finite argumentation translation. This is in
contrast to the definition of Caminada and Amgoud [2], where the strict rule
set StrInf = {r0 :→ a, r1 : a→ b, r2 : b→ a} allows to construct infinitely many
arguments A1 = [→ a], A2 = [A1 → b], A3 = [A2 → a], A4 = [A3 → b], . . .5

5 Conclusion

We presented a translation from theory bases to abstract dialectical frameworks.
The translated frameworks satisfy the rationality postulates closure and dir-
ect/indirect consistency, which we generalised to make them independent of a
specific target formalism. Furthermore, the translated frameworks can detect
inconsistencies in the rule base and cyclic supports amongst literals. We also
showed that the translation involves at most a quadratic blowup and is there-
fore effectively computable. Furthermore, our translation produces a number of
statements which is linear in the size of the theory base and can be considered
efficient in this regard. (In the approach of [2] the number of produced argu-
ments is unbounded in general.) In terms of desired behaviour, we compared our
translation to previous approaches from the literature [2,3] and demonstrated
how we avoid common problems.

In earlier work, Brewka and Gordon [8] translated Carneades [9] argument
evaluation structures (directly) to ADFs. They extended the original Carneades
formalism by allowing cyclic dependencies among arguments. Meanwhile, Van
Gijzel and Prakken [10] also translated Carneades into AFs (via ASPIC+ [11],
that extends and generalises the definitions of Caminada and Amgoud [2]). They
can deal with cycles, but there is only one unique grounded, preferred, complete,
stable extension. Thus the semantic richness of abstract argumentation is not
used, and the user cannot choose whether they want to accept or reject circular
justifications of arguments. In contrast, in the approach of Brewka and Gor-
don [8] the user can decide whether cyclic justifications should be allowed or
disallowed, by choosing models or stable models as ADF semantics.

We regard this work as another piece of evidence that abstract dialectical
frameworks are well-suited as target formalisms for translations from less directly
accessible languages such as theory bases. A natural next step would be to
consider as input the specification language of ASPIC+ [11]. A recent approach
to preferences between statements [6] might be a good starting point for this.
Further work could also encompass the study of additional ADF semantics, like
complete or preferred models [6], and whether the approach can be modified
such that it is eager to apply defeasible rules. Finally, we can compare existing
approaches to cycles in AFs [12,13] with the treatment of cycles in ADFs.

5 Even if we exclude cycles in rules, there are rule sets which allow for exponentially
many arguments: Set D0 = {⇒ p0,⇒ ¬p0}, D1 = D0 ∪{p0 ⇒ p1,¬p0 ⇒ p1} and for
i ≥ 1, Di+1 = Di ∪ {p0, pi ⇒ pi+1,¬p0, pi ⇒ pi+1}. For any n ∈ N, the size of Dn is
linear in n and Dn leads to 2n+1 arguments, among them 2n arguments for pn.
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Abstract. The aim of this paper is to study the concept of admissi-
bility in abstract dialectical frameworks (ADFs). While admissibility is
well-understood in Dung-style frameworks, a generalization to ADFs is
not trivial. Indeed, the original proposal turned out to behave unintu-
itively at certain instances. A recent approach circumvented this problem
by using a three-valued concept. In this paper, we propose a novel two-
valued approach which more directly follows the original understanding
of admissibility. We compare the two approaches and show that they
behave differently on certain ADFs. Our results imply that for general-
izations of Dung-style frameworks, establishing a precise correspondence
between two-valued (i.e. extension-based) and three-value (i.e. labeling-
based) characterizations of argumentation semantics is not easy and re-
quires further investigations.

Keywords: abstract argumentation, abstract dialectical framework, ad-
missible semantics.

1 Introduction

Dung’s abstract argumentation frameworks [1] have proven successful in many
applications related to multi-agent systems (see, e.g. [2]). These frameworks are
conceptually simple and appealing: arguments are viewed only on an abstract
level and a binary attack relation models conflicts between arguments. In several
domains this simplicity however leads to certain limitations. Therefore, several
enrichments of Dung’s approach were proposed [3–9], with abstract dialecti-
cal frameworks (ADFs) [10] being one of the most general of these concepts.1

Simply speaking, in ADFs it is not only the arguments that are abstract but
also the relations between them. This is achieved by associating a propositional
formula with each argument describing its relation to the other arguments. A
common problem in applications of abstract argumentation concerns instantia-
tion. Preliminary results on this matter in the case of ADFs can be found in this

1 A different approach to model relations between arguments which are beyond attack
is meta-argumentation [11]. Here additional (artificial) arguments are added together
with certain gadgets to capture the functioning of relations which cannot be modeled
with binary attacks.

J. Leite et al. (Eds.): CLIMA XIV, LNAI 8143, pp. 102–118, 2013.
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volume [12]. Moreover, the application of ADFs in the context of the Carneades
system [13] and proof standards [10] have been studied in the literature, advis-
ing that ADFs might also be applicable to certain problems from the domain of
multi-agent systems.

One of the most central concepts in Dung’s frameworks is the notion of ad-
missibility which is based on defense. In a nutshell, an argument a is defended
(in a given framework) by a set S of arguments if all arguments attacking a are
counter-attacked by S. A (conflict-free) set S of arguments is called admissible if
each a ∈ S is defended by S. In fact, many semantics for abstract argumentation
are based on admissibility, and in the context of instantiation-based argumen-
tation, admissibility plays an important role w.r.t. rationality postulates, see
e.g. [14].

While the concept of admissibility is very intuitive in the Dung setting it is
not easy to be generalized to extensions of the Dung–style framework where rela-
tions between arguments are not restricted to attacks. As a minimal requirement
for such generalized notions of admissibility one would first state “downward-
compatibility”. Basically speaking, if a given object F in an extended formalism
corresponds to a standard Dung framework F ′, then the admissible (in its gen-
eralized form) sets of F should match the admissible sets of F ′. In the world
of ADFs, the original proposal for admissibility, albeit satisfying this minimal
requirement, turned out to behave unintuitively at certain instances. A recent
approach first presented in [15] and slightly simplified in [16] is based on (post)
fixed points in three–valued interpretations. However, the original intuition that
arguments in the set have to “stand together” against the arguments outside the
set is somehow lost in that approach (nonetheless, there is a certain correspon-
dence to the characteristic function of Dung-style frameworks).

In this work, we propose a novel two–valued approach which more directly
follows the original understanding of admissibility. We call our approach the
decisive outing formulation, reflecting its definition which iteratively decides of
the status of the arguments. We compare our approach with the three–valued
approach from [16] and show that the two semantics can consider different sets
of arguments admissible. Since both approaches are downward–compatible, they
clearly coincide on Dung-style ADFs; in the paper, we define another class of
ADFs where this relation is also preserved. Finally, we further elaborate on these
two approaches by showing that each decisive outing admissible extension has a
counterpart in the three–valued setting, but not vice versa.

Our results not only show that admissibility can be naturally generalized
in different ways, they also imply that for descendants of Dung–style frameworks,
establishing one–to–one correspondences between two–valued (i.e. extension–
based) and three–valued (i.e. labeling–based) characterizations of argumentation
semantics is not necessarily granted. This could stipulate further investigations
towards a better understanding of admissibility for more expressive formalisms
taking into account also the work of Kakas et al. [17] in logic programming.
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The structure of this paper is as follows. In Section 2 we present the theoretical
background and notations. Section 3 is dedicated to describing and comparing
the three formulations of admissibility and Section 4 is focused on discussion
and some pointers for future work.

2 Background

2.1 Dung’s Abstract Argumentation Frameworks

The argumentation framework developed by Phan Minh Dung is the simplest,
yet quite powerful, formalism for abstract argumentation [1].

Definition 1. A Dung abstract argumentation framework, or a Dung
Framework is a pair (A,R), where A is a set of arguments and R ⊆ A × A
represents the attack relation.

Due to the great interest it has received, many semantics have been developed.
Semantics define the properties or methods of obtaining framework extensions,
i.e. sets of arguments we can accept. Nevertheless, it is generally agreed that any
rational opinion should be consistent. This minimal property is expressed with
the conflict–free semantics, a common root for all other developed approaches.2

Definition 2. Let AF = (A,R) be a Dung framework. A set S ⊆ A is a
conflict–free extension of AF , if for each a, b ∈ S, (a, b) /∈ R.

Admissibility is another fundamental requirement in argumentation. It comes
from the fact that regardless of the presented point of view, we should be able
to defend it. In the Dung setting, due to only one type of relation, it boils down
to the following definitions.

Definition 3. Let AF = (A,R) be a Dung framework. An argument a ∈ A is
defended by a set S in AF , if for each b ∈ A s.t. (b, a) ∈ R, there exists c ∈ S
s.t. (c, b) ∈ R. A conflict–free extension S is an admissible extension of AF
if each a ∈ S is defended by S in AF .

With this at hand, we can start describing the stronger semantics. They can
be roughly grouped by varying concepts of maximality or skepticism. Prominent
examples are the stable and preferred semantics.

Definition 4. Let AF = (A,R) be a Dung framework. A conflict–free extension
S is a stable extension of AF iff for each a ∈ A \ S there exists an argument
b ∈ S s.t. (b, a) ∈ R.
2 Conflict–freeness and admissibility can also be treated as some basic properties,
rather than very weak semantics. Due to the fact that in some approaches of ar-
gumentation frameworks additional types of conflict–freeness have been introduced,
we have chosen the latter.
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a b c d e

Fig. 1. Sample Dung framework

Definition 5. Let AF = (A,R) be a Dung framework. A preferred extension
of AF is a maximal admissible extension of AF w.r.t. subset inclusion.

We close the list with a semantics belonging to the unique–state approach
class, i.e. a semantics producing only a single extension. To this end, we first
need to introduce the characteristic function of a framework.

Definition 6. Let AF = (A,R) be a Dung framework. Its characteristic func-
tion FAF : 2A → 2A is defined as follows:

FAF (S) = {a | a is defended by S in AF}

Definition 7. Let AF = (A,R) be a Dung framework. The grounded exten-
sion of AF is the least fixed point of FAF .

Please note that further semantics can be described via the characteristic func-
tion [1,15]. For our purposes, the most important is the alternative formulation
of admissibility as already presented in [1].

Lemma 1. Let AF = (A,R) be a Dung framework and FAF its characteristic
function. A set S ⊆ A is an admissible extension of AF iff it is conflict–free
and S ⊆ FAF (S).

Example 1. Consider the Dung framework AF = (A,R) with A = {a, b, c, d, e}
and the attack relation R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}, as depicted
in Figure 1. It has eight conflict–free extensions in total, namely {a, c},{a, d},
{b, d}, {a}, {b}, {c}, {d} and ∅. As b is attacked by an unattacked argument, it
cannot be defended against it and will not be in any admissible extension. We
end up with two preferred extensions, {a, c} and {a, d}. However, only {a, d} is
stable, and {a} is the grounded extension.

2.2 Abstract Dialectical Frameworks

The main goal of abstract dialectical frameworks (ADFs) [10] is to overcome
the limitations of the pure attack relation in the Dung frameworks and its de-
scendants. They assume some predefined set of connection types – attacking,
attacking or supporting, and so on – which affects what can be expressed in
a framework naturally, and what requires some semantics–dependent modifi-
cations. In ADFs relation abstractness is achieved by the introduction of the
acceptance conditions instead of adding new elements to the set of relations.
They define what (sets of) arguments related to a given argument should be
present for it to be included/excluded from an extension.
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Definition 8. An abstract dialectical framework (ADF) is a tuple (S,L,C),
where S is a set of abstract arguments (nodes, statements), L ⊆ S × S is a
set of links (edges) and C = {Cs}s∈S is a set of acceptance conditions, one
condition per each argument.

Originally, the acceptance conditions were defined in terms of functions:

Definition 9. Let (S,L,C) be an ADF. The set of parents of an argument s,
denoted par(s), consists of those p ∈ S for which (p,s) ∈ L. An acceptance
condition is given by a total function Cs : 2

par(s) → {in, out}.

Alternatively, one can also use the propositional formula representation, de-
scribed in detail in [18]. These two forms are equivalent, and we will be referring
to both of them in the rest of this paper.

Definition 10. Let (S,L,C) be an ADF. Propositional acceptance condi-
tions are formulas of the form:

ϕ ::= a ∈ S | ⊥ | � | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ)

All and only parents of an argument appear as atoms in the acceptance condition
of this argument. In what follows, we use a : ϕ as shorthand for Ca = ϕ.

Note that the set L of links can be extracted from the acceptance conditions
(more on this matter can be found in [18]). Hence, making it explicit is not
necessary. We have decided to keep L in its current form in order to have a
consistent representation when weights or more advanced relation properties are
added to ADFs.

In the original setting, the truth value of a formula is based on the standard
propositional valuation function (i.e. truth tables). However, in [16] Kleene’s
strong three–valued logic has been used. We will come back to this approach
in Section 3.

Due to the abstractness of ADFs, redefining the semantics in an intuitive
manner is still an ongoing work and one of the main topics of this paper. In order
to take the research step by step, a subclass of ADFs called bipolar was identified
in the original paper [10]:

Definition 11. Let D = (S,L,C) be an ADF. A link (r, s) ∈ L is

1. supporting: for no R ⊆ par(s) we have Cs(R) = in and Cs(R∪{r}) = out,
2. attacking: for no R ⊆ par(s) we have Cs(R) = out and Cs(R ∪ {r}) = in.

D is bipolar iff all links in L are supporting or attacking and we can write it as
D = (S, (L+∪L−), C). The links L+ denote the supporting links and L− denote
the attacking links. The set of parents supporting an argument x is defined as
suppD(x) = {y | (y, x) ∈ L+}. The set of parents attacking an argument x is
defined as attD(x) = {y | (y, x) ∈ L−}.

Along with the support relations came the problem of the support cycles. We
will discuss it further in Section 4.
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a b c

b a ∧ ¬c c

Fig. 2. Example of support cycles

Definition 12. Let D = (S, (L+ ∪ L−), C) be a bipolar ADF. D is a bipolar
ADF without support cycles if L+ is acyclic.

Example 2. Let us look at the ADF depicted in Figure 2: D = ({a, b, c, }, {(a, b),
(b, a), (c, b), (c, c)}, {a : b, b : a ∧ ¬c, c : c}). In this case c self–supports itself,
and a and b exchange supports.

We continue with several semantics that have already been developed for the
general class of ADFs.

Definition 13. Let D = (S,L,C) be an ADF. M ⊆ S is a conflict–free ex-
tension of D if for all s ∈M we have Cs(M ∩ par(s)) = in.

The model semantics follows the ’what can be accepted, should be accepted’
intuition. It coincides with the stable semantics in the Dung setting.

Definition 14. Let D = (S,L,C) be an ADF. M ⊆ S is a model of D if M is
conflict–free and ∀ s ∈ S, Cs(M ∩ par(s)) = in implies s ∈M .

Finally, we also have the grounded semantics (here referred to as well–founded).
Just like in the Dung framework, it is obtained by the means of a special function:

Definition 15. Let D = (S,L,C) be an ADF. Consider the operator

ΓW
D (A,R) = (acc(A,R), reb(A,R))

where:

acc(A,R) = {r ∈ S | A ⊆ S′ ⊆ (S\R) ⇒ Cr(S
′ ∩ par(s)) = in}

reb(A,R) = {r ∈ S | A ⊆ S′ ⊆ (S\R) ⇒ Cr(S
′ ∩ par(s)) = out}

ΓW
D is monotonic in both arguments and thus has a least fix–point. E is the

well–founded model of D iff for some E′ ⊆ S, (E,E′) is the least fix–point of
ΓW
D .

Example 3. Let us transform the Dung framework F = (A,R) from Example 1
into an ADF D = (S,L,C). The set of arguments does not change: A = S. The
same goes for the set of links, please note however, that L loses its meaning – it
now represents the connections only, without any information as to their nature.
Argument a is unattacked and can always be accepted, hence its acceptance
condition is �. b can only be accepted when both a and c are not present (¬a∧
¬c). Next, c and d mutually exclude one another (respectively ¬d and ¬c).
Finally, e is attacked not only by d, but also by itself, and its acceptance condition
is ¬d ∧ ¬e. Therefore in total we obtain an abstract dialectical framework D =
(A,R, {a : �, b : ¬a ∧ ¬c, c : ¬d, d : ¬c, e : ¬d ∧ ¬e}).
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a b c d e

T ¬a ∧ ¬c ¬d ¬c ¬d ∧ ¬e

Fig. 3. Sample Dung–style ADF

2.3 Kleene’s Three–Valued Logic and Interpretations

In order to be able to explain one of the approaches to the admissibility in ADFs,
we need to provide a short recap on the three–valued interpretations and lattices.
A more detailed background can be found in [16].

Given a set of arguments S, a three–valued interpretation is a mapping
v : S → {t, f,u}. The truth tables for the basic connectives are given in Fig-
ure 4.

¬
t f
f t
u u

∨ t u f

t t t t
u t u u
f t u f

∧ t u f

t t u f
u u u f
f f f f

→ t u f

t t u f
u t u u
f t t t

Fig. 4. Truth tables for the three–valued logic of Kleene

Let us assume the following partial order ≤i according to information content:
u <i t and u <i f. The pair ({t, f,u},≤i) forms a complete meet–semilattice
with the meet operation � assigning values in the following way: t � t = t,
f � f = f and u in all other cases. Given two valuations v and v′, we say that v′

contains more information than v, denoted v ≤i v
′ iff ∀s∈S v(s) ≤i v

′(s); in
case v is three–valued and v′ two–valued, then we say that v′ extends v. This
means that elements mapped originally to u are now assigned either t or f. The
set of all two–valued interpretations extending v is denoted [v]2.

Given a set A, we say that an interpretation v is partial if it is defined for
a nonempty B ⊆ A. Let v′ be some interpretation on A. We define a shorthand
v ⊆ v′ meaning that ∀b ∈ B, v(b) = v′(b). We say that v′ is completion of v
to A. v′ is respectively a t/f/u–completion, if it maps all elements from A \B
to respectively t/f/u.

It is often very handy to be able to talk about the set of arguments mapped
to a certain value by a given interpretation:

Definition 16. Let v be an interpretation. Then vx = {s | v(s) = x} for
x ∈ {t, f} in case v is two–valued and x ∈ {t, f ,u} if v is three–valued.

When it comes to the two–valued setting, we can use interpretations and sets of
accepted arguments as extensions interchangeably as they uniquely define one
another. Unfortunately, this is not the case with the three–valued interpreta-
tions. In order to compare both of these settings we need to focus on arguments
accepted in both of them. Therefore, sometimes we may refer to a family of the



Admissibility in the Abstract Dialectical Framework 109

three–valued interpretations using a set of arguments they map to t. Finally,
we define a shorthand v(ϕ) for evaluation of a propositional formula ϕ under
an interpretation v.

3 Admissible Semantics for ADFs

In this section we will recall some work on argumentation semantics and discuss
several approaches to defining the admissibility for ADFs. We will start with the
original definition from [10] and recall some objections raised on it. Then, we
introduce two recent formulations (one from [16] and our own novel approach)
that are different both in spirit and resulting extensions. At the end of this
section we will compare the two in a formal way.

3.1 Related Work on Semantics Rationalities

Throughout the time, many different argumentation semantics have been devel-
oped [19]. Very often a new semantics is an improvement of an already existing
one by introducing further restrictions on the set of accepted arguments or pos-
sible attackers. One of the most important semantical problems is concerned
with the cycles in a framework. A thorough study of attack cycles and self–
attackers in the Dung setting can be found in [20]. In the bipolar setting, the
situation is not yet analyzed this well and approaches differ between available
frameworks [5, 9, 21]. The moment we introduce a new type of relation, the
situation gets more complicated and every Dung semantics gives rise to several
further specializations. Currently, our focus is on whether arguments taking part
in support cycles can be in an extension and if they should be considered valid
attackers. We will discuss the validity of support cycles further in Section 4.
The two recent definitions of admissibility we are going to present differ in the
treatment of cycles. The explanation will be provided in Section 3.5.

3.2 Original Formulation

The main motivation behind the original formulation of admissibility in [10] was
to create a definition that would not explicitly use the notion of defense. Unfor-
tunately, it was only applicable for the bipolar ADFs. The admissible extensions
were obtained via the stable models as proposed in [10].

Definition 17. Let D = (S,L,C) be a bipolar ADF. A model M of D is a
stable model of D if M is the least model of the reduced ADF DM obtained
from D by:

1. eliminating all nodes not contained in M together with all links in which any
of these nodes appear,

2. eliminating all attacking links,
3. replacing in each acceptance condition Cs of a node s in DM each occurrence

of a statement t ∈M with ⊥.
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With this at hand, admissible semantics are defined as follows.

Definition 18. Let D = (S,L,C) be a bipolar ADF. M ⊆ S is admissible in
D iff there is R ⊆ S such that no element in R attacks an element in M and M
is a stable model of D \R.

d c a b

¬b ∨ ¬c TdT

Fig. 5. Counterexample for the original formulation of admissibility

However, this definition has been proved to give undesired extensions [16].
Take for example the framework depicted in Figure 5. In this setting we have
the following admissible extensions: ∅, {b}, {d}, {b, d}, {a, b}, {c, d}, {c, b, d}.
{a, b} is not a desired answer as we have no way of preventing our opponent
from uttering c since the acceptance condition of d is always in. Therefore, the
need for a more appropriate definition arises.

3.3 Lattice Formulation

In abstract argumentation, semantics can usually be described in more than one
way. The main idea behind it is to provide a relatively constructive formulation
that would give us a hint on how to create extensions in a more systematic
manner. For example, in case of Dung’s frameworks grounded and admissible
extensions can be obtained via the characteristic function (see Section 2.1). For
ADFs, the original definition has been revised and a new, constructive variant,
based on (post) fixed-points, is presented in [15]. A simplified approach published
in [16] is based on three–valued interpretations, which we will use in this paper.

The semantics are defined via the following operator, which is similar to the
characteristic function of Dung’s frameworks. Based on a three-valued interpre-
tation a new one is returned by the function, which accepts or rejects arguments
based on the given interpretation. For convenience we will slightly abuse our
notation and identify in with t and out with f .

Definition 19. Let D = (S,L,C) be an ADF, v a three–valued interpretation
defined over S, s ∈ S and ΓD : (S → {t, f ,u}) → (S → {t, f ,u}) a function from
three-valued interpretations to three-valued interpretations. Then ΓD(v) = v′

with
v′(s) =

�
w∈[v]2

Cs(par(s) ∩ wt)

That is, given a three-valued v interpretation a new one is returned by ΓD for
an ADF D. The new truth value for each argument s is given by considering all
two-valued interpretations that extend v, i.e. all interpretations that assign either
t or f to an argument, which is assigned u by v. Now we evaluate the acceptance
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condition of each argument under all these two–valued interpretations. If all of
them agree on the truth value, i.e. all of them evaluate to in (t) or respectively
out (f) , then this is the result or the overall consensus. Otherwise, if there is a
disagreement, i.e. we have t for one evaluation and f for another, then the result
is undecided, i.e. u.

The new definition of admissibility resembles the one for AFs. We apply ΓD

similarly as the characteristic function and just use the information ordering
instead of the subset relation. Please note that conflict–freeness is already incor-
porated in this definition.

Definition 20. A three-valued interpretation v for an ADF D = (S,L,C) is
admissible in D iff v ≤i ΓD(v).

The following example illustrates this definition.

Example 4. Let us go back to the framework in Figure 5. The following three-
valued interpretations are then admissible v1 = {d  → u, b  → u, c  → u, a  → u},
v2 = {d  → t, b  → u, c  → u, a  → u}, v3 = {d  → t, b  → u, c  → t, a  → u},
v4 = {d  → u, b  → t, c  → u, a  → u}, v5 = {d  → t, b  → t, c  → u, a  → u},
v6 = {d  → t, b  → t, c  → t, a  → u}, v7 = {d  → t, b  → t, c  → t, a  → f}.

Let us inspect closer why v7 is admissible in this ADF. The three-valued
interpretation v7 is already two–valued, i.e. no argument is assigned the value
u. This means that [v7]2 = {v7}. Now if we evaluate for each argument its
acceptance condition under v7, then the result is the same as the assigned value
by v7. Consider for instance argument a with the acceptance condition ¬b ∨ ¬c
as a propositional formula. This formula evaluates to f under v7, which is the
same value assigned by v7, i.e. v7(a) = Ca(par(a) ∩ vt7) = f .

Considering a slightly more complex example, let us look at v6. Here [v6]2 =
{v, v′} with v = {d  → t, b  → t, c  → t, a  → t} and v′ = {d  → t, b  → t, c  → t,
a  → f}. This means we have to consider both evaluations, one assigning the
argument a true and one false. Now the acceptance condition of a evaluates under
both v and v′ to f . This means that ΓD(v6) = v′6 and v6(a) = u ≤i v

′
6(a) = f ,

since f � f = f . Similarly for the other arguments and hence v6 is admissible.
Let us check if there exists an admissible three–valued interpretation v, which

assigns f to d, i.e. v(d) = f . Since the acceptance condition of d always evaluates
to true, we know that for any two-valued interpretation w we have Ca(par(a) ∩
wt) = t. This in particular holds for for all v′ ∈ [v]2. Hence ΓD(v) = v′, with
v(d) = f ≤i t = v′(d) and v is not admissible.

3.4 Decisive Outing Formulation

We now introduce an alternative definition of admissibility that comes back to
the intuition behind the semantics. An admissible extension is supposed to be
able to ’stand on its own’ [22], i.e. discard any argument that would render any of
the set’s elements unacceptable. In the Dung setting, a set defends an argument
if it attacks all of its attackers. In the ADF setting, which is more abstract, this is
not enough. We can discard an argument in more ways than just a direct attack
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– overall we want to make sure that the acceptance of a different argument will
not make the ’bad’ one acceptable via a chain reaction. Moreover, due to the
various types of relations available in ADF, it might be the case that to discard
one argument, more counterarguments may be required (in the Dung case, one
’attacker’ per ’attacker’ was sufficient).

This intuition is enough to create a definition of admissibility that does not
make use of the notion of attack or defense, which is quite appropriate for this
abstract setting. Our approach is based on iteratively building a set of arguments
that our candidate for admissibility has the power to permanently set to out.
Important in this construction is the notion of decisiveness:

Definition 21. Let D = (S,L,C) be an ADF and s ∈ S. Let vZ be a two
or three–valued interpretation defined on a set Z ⊆ par(s), We say that vZ
is decisive for s iff for any two (respectively two or three–valued) completions
vpar(s) and v′par(s) of v to par(s), it holds that vpar(s)(Cs) = v′par(s)(Cs).

We say that s is decisively out/in/undecided wrt vZ if vZ is decisive and all
of its completions map s to respectively out, in, undec.

Example 5. The idea behind this formulation is to identify the partial interpre-
tations that are ”enough” to know the final value of an acceptance condition.
Assume an ADF D = ({a, b}, {(a, a), (a, b), (b, a), (b, b)}, {a : a → b, b : a ∧ b}).
Let v be a partial two–valued interpretation s.t. v(b) = t. Then a→ b will always
evaluate to t no matter the assignment of a and we can say that a is decisively
in wrt to v. It is of course not decisive for b.

With this at hand, we can define the set of arguments permanently excluded
by a given set. The idea behind it corresponds to identifying all the arguments
attacked by an extension E in the Dung setting and is known as the E+ set. Due
to its abstractness, ADFs also give us indirect ways of discarding an argument
and such a straightforward check would be inadequate.

Definition 22. Let D = (S,L,C) be an ADF and A ⊆ S a conflict–free exten-
sion of D. Let v be a partial two–valued interpretation built as follows:

1. Let M = A. For every a ∈M set v(a) = t.
2. For every argument b ∈ S \M that is decisively out in v, set v(b) = f and

add b to M .
3. Repeat the previous step until there are no new elements added to M .

By A+ we understand the set of arguments vf . The range of A, denoted AR is
defined as A ∪ A+. We refer to v as range interpretation of A.3

We can now naturally proceed to admissibility:

Definition 23. Let D = (S,L,C) be an ADF, A ⊆ S a conflict–free extension
of D and A+ its discarded set. A is admissible in D iff for any F ⊆ S \ A
(F = ∅), if there exists an a ∈ A s.t. Ca(par(a)∩(F ∪A)) = out then F ∩A+ = ∅.
3 Please note that although these notions were originally defined for arbitrary sets, in
practice they were always used for at least conflict–free ones and this assumption
allowed us to create a cleaner formulation.
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a b

¬b b

Fig. 6. Example of nonequivalence between the formulations of admissibility

Example 6. Let us come back to the counterexample from Figure 5. Clearly
∅, {b}, {d}, {b, d}, {c, d} and {b, c, d} are admissible; they are not attacked in any
way and hence implication is always true. Let us now check {a}: its discarded set
is empty, while the set {c, d} has the power to out the acceptance condition of
a. The same situation can be observed for {a, c, d} and {a, b}: the discarded sets
are both empty, while we need to be able to counter {b} and {c} respectively.
Thus, none of these sets is admissible.

3.5 Comparison

Moving from the two–valued to the three–valued approach is more than just
a structural change. This was the case also in the Dung setting, even though
both approaches were strongly related [19]. When computing classical exten-
sions, we focus on what arguments we can accept. In the three–valued setting,
a discarded argument is also important and f means something more than just
a lack of acceptance. In this setting u represents the lack of either a proper
reason to accept or discard an argument or will to commit to a value (i.e. we
decide not to assign t or f even though we have sufficient basis for that). As a
result, a semantics truly exploiting a three–valued setting has naturally different
assumptions than a two–valued one. For example it would rather maximize on
the arguments that are not left undecided, rather than just on the ones we are
ready to accept. Therefore if one decides to treat the three–valued setting as
the means of computing extensions in the two–valued one, he or she should take
special care when choosing semantics.

Let us compare the decisive outing and lattice formulations of admissibility.
The main difference lies in the treatment of the self–support and support cycles.
The first one admits both and treats attacks generated by them as valid. The
latter also admits both, however, attacks coming from them do not need to be
defended from. Take the framework depicted in Figure 6. According to the outing
formulation, ∅ and {b} are the only admissible extensions. This comes from the
fact that if we were to utter {a}, an opponent could always respond with {b},
which we cannot counter. In the lattice setting, if we collect just the arguments
set to t, i.e. the arguments accepted in an admissible three-valued interpretation,
then we obtain the following sets: ∅, {a} and {b}.

The fact that the outing definition admits arguments forming support cycles
as valid attackers has some side effects. Most importantly, it breaks the relation
between the stable and the admissible semantics – in this example {a} is a
stable extension, but not (outing) admissible. This does not occur in the lattice
approach.
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As we have mentioned before, there is a difference in motivation behind
the two and three–valued semantics. Take for example the preferred exten-
sions, which in general do not have to agree even if their admissible bases
do. Let us assume a framework consisting of a single self–supporting argument
D = ({a}, {(a, a)}, {a : a}). If we were to follow the standard set inclusion max-
imality definition then {a} would be the preferred extension according to the
outing formulation. However, the lattice version follows information maximality
and both ∅ and {a} would be considered preferred.

Let us close this section with some formal results on how and when can ex-
tensions under both approaches coincide. We will start with the outing to lattice
direction. Please note that it recreates the relation between extensions from the
two to three–valued setting that held in the Dung framework [19].

Theorem 1. Let D = (S,L,C) be an ADF. For any (decisive outing) admissible
extension E of D there exists a lattice admissible three–valued interpretation v3
s.t. vt3 = E.

Proof. We will prove this theorem by constructing an appropriate interpretation
(please note there may be more than one per extension). Let v3 be a u–completion
to S of the range interpretation v of E. Assume that v3 is not lattice admissible,
i.e. it is not the case that v3 ≤i ΓD(v3). This means that the new interpretation
”loses” information, i.e. at least one element formerly mapped to t or f is now u,
or becomes incomparable (some element formerly mapped to t/f goes to f/t).

Let us first take a look at the case when v3(a) = f and ΓD(v3)(a) = f .
This means that for at least one w ∈ [v3]2, w(Ca) = t. Consequently, a is not
decisively out in v3 and could not have been decisively out in v. Contradiction.

Now let us consider the case when v3(a) = t and ΓD(v3)(a) = t. From this
follows that there is at least one w ∈ [v3]2 s.t. w(Ca) = f . Let F be the set of
all arguments originally mapped to u that are now assigned t, i.e. F = {f ∈ S
s.t. v3(f) = u and w(f) = t}. If the set F is empty, then w is a f–completion
of v and therefore failure for a means E cannot be two–valued conflict–free.
Contradiction. If set F is not empty, it means that Ca(par(a) ∩ E) = in (by
conflict–freeness) and Ca(par(a) ∩ (E ∪ F )) = out (coming from w). Moreover,
F ∩ E+ = ∅ by construction – no element from E+ is assigned u, which is the
requirement for adding to F . Conclusion is that E cannot be outing admissible.
Contradiction.

In what follows we show that the two notions of admissibility, the lattice and
decisive outing formulation, coincide on a special class of ADFs, namely the
bipolar ADFs without support cycles. Although we do not claim that this class
is the maximal one where the semantics agree, it appears natural to consider,
since the semantics can differ when support cycles are present. Note that we
assume finite ADFs, i.e. the set of arguments S is finite.

We prove a technical lemma, which intuitively states that every argument
that is set to f in a three-valued admissible interpretation is rejected either
because the set of accepted arguments together are enough reason to reject it,
or it requires supporters, which are rejected.
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Lemma 2. Let D = (S,L,C) be a bipolar ADF without support cycles and v a
lattice admissible three-valued interpretation in D and a ∈ vf . Then at least one
of the following statements is true.

1. For any M ⊇ vt we have Ca(par(a) ∩M) = out, or
2. suppD(a) = ∅ and for any M ⊇ vt with M ∩ suppD(a) ∩ vf = ∅ we have
Ca(par(a) ∩M) = out.

Proof. Assume that v is admissible in D and a ∈ vf . Assume that statement 1
does not hold. This means there exists a M ′ ⊇ vt s.t. Ca(par(a) ∩M ′) = in.
Since v is admissible we have that Ca(par(a) ∩ vt) = out. This follows from the
fact that there exists a w ∈ [v]2 with wt = vt and wf = vf ∪ vu. Since v is
admissible, it follows that Ca(par(a) ∩ wt) = out, since otherwise v(a) ≤i w(a).
Hence, there exists a x ∈ (M ′ \ vt) which is supporting a.

Now let M ⊇ vt and M ∩ suppD(a) ∩ vf = ∅. Let further Mp = M ∩ par(a),
i.e. Mp is restricted to the parents of a. Suppose Ca(M

p) = in, let X = (Mp \
(attD(a)\vt)), i.e. X is a subset ofMp, without the attackers of a, which are not
in vt. Then we have that also Ca(X) = in. Suppose the contrary, i.e. Ca(X) =
out, but since Ca(M

p) = in this means that there exists a b ∈ (Mp \X) with
b ∈ suppD(a), which is a contradiction. This in turn implies X ∩vf ∩par(a) = ∅.
This is a contradiction to admissibility of v, since also (vt ∩ par(a)) ⊆ X holds
and admissibility requires that in this case Ca(X) = out, by a similar reasoning
as above.

Now we can show the coincidence of the admissible semantics on the bipolar
ADFs without support cycles.

Theorem 2. Let D = (S,L,C) be a bipolar ADF without support cycles and
v a lattice admissible three-valued interpretation in D, then A = vt is (decisive
outing) admissible in D.

Proof. Assume there exists a non-empty set F ⊆ (S \ A) and M = F ∪ A, s.t.
there exists an argument a ∈ A with Ca(par(a) ∩ M) = out. We first show
that M ∩ vf = ∅. Suppose the contrary, i.e. M ∩ vf = ∅. It is straightforward
to see that M � vt, since Ca(par(a) ∩ vt) = in, otherwise v would not be
admissible in D. Suppose all elements in M which are not in vt are undecided
in v, i.e. (M \ vt) ⊆ vu. But this implies that the corresponding two-valued
interpretation of M , namely v′(s) = t if s ∈ M and v′(s) = f otherwise, must
be in [v]2 and hence v would not be admissible, since then ΓD(v)(a) = t.

Now we show that for every r ∈ vf it holds that r ∈ A+, hence vt is decisive
outing admissible in D. Let L+ and L− be the supporting and attacking links of
D and L = L+ ∪ L−. Since the graph G = (S,L+) is an acyclic directed graph
(DAG), we can construct a topological ordering, represented by the function
f : S → N, on the vertices S such that if (a, b) ∈ L+ we have f(a) < f(b). This
means if a supports b, then the former is ordered lower than the latter. We now
show the claim by induction on f(s) for arguments in S.

(IH): Let r ∈ vf , f(r) = i, if ∀r′ ∈ vf , s.t. f(r′) < f(r) we have r′ ∈ A+, then
r ∈ A+.
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(IB): The claim holds for all s ∈ vf , hence we look at the smallest element in r ∈
vf w.r.t. the ordering induced by f . We know that one of the two statements of
Lemma 2 must hold for r. If the first one holds, then clearly r ∈ A+. Otherwise we
have suppD(r)∩vf = ∅, since r must be the minimal element of the order induced
by f . But then we know that for anyM ⊇ A we have thatM ∩suppD(r)∩vf = ∅
and thus Cr(par(r) ∩M) = out. Hence r ∈ A+.

(IS): Let r ∈ vf with f(r) = i. We assume that ∀r′ ∈ vf with f(r′) < f(r) it holds
that r′ ∈ A+. Again, since r ∈ vf we know that one of the statements of Lemma 2
is true. Furthermore, if the first one is true, then clearly r ∈ A+. Suppose only
the second statement is true. By assumption, we know that ∀x ∈ suppD(r) ∩ vf
we have that x ∈ A+, since all of the elements in this set are in vf and have
a lower order w.r.t. f . This means (suppD(r) ∩ vf ) ⊆ A+. But then r must
be in A+, since r is decisively out for the partial two-valued interpretation v′,
which sets all elements in A+, in particular suppD(r) ∩ vf to f and all elements
in A to true. Indeed for all M ⊇ A, s.t. M ∩ suppD(r) ∩ vf = ∅ we have that
Cr(par(r) ∩M) = out.

4 Discussion

Notes on defense. Strongly tied to the notion of admissibility is the concept of
defense. Although we have managed to formulate admissibility without making
the defense explicit, giving a proper account of it is required for redefining some
of the stronger semantics. The current definition of the discarded set (A+) can
be a base for detecting defense known from the conflict–based setting (i.e. coun-
terattacking) and one arising in the bipolar setting (e.g. cutting off the support
of an attacker). However, in ADFs, one can defend in one more way. Due to
the fact that the framework (mostly via disjunction in acceptance conditions)
has the possibility to express some weak notion of preference between incoming
relations, we have a case of overpowering defense. Instead of responding to a dis-
card with another discard, we overpower it. A simple example of it would be an
acceptance condition of the form ¬a∨b. As long as b is present in the framework,
accepting a has no effect. It does not require the ”defender” and the ”attacker”
to be connected by a link, and hence cannot be detected by the discarded set.
This type of defense in ADFs is also problematic as often a conflict–free ex-
tension possessing it simply does not ”react” to incoming conflicts. Therefore,
verifying whether a set has the power to defend an argument not belonging to
it in this particular way is challenging.

Revisiting support cycles. From the point of view of ADFs, the ongoing re-
search on bipolarity in argumentation is very important. A thorough overview
can be found in [5]. Although the acceptance conditions allow us to express sup-
port in several ways, we do not yet take into account all of its side effects. In this
section we would like to discuss the problem of support cycles in argumentation.
Although discarded in logic programming and some frameworks [9], they do not
always represent an error in our thinking. A very simple example, yet common
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in every day life and, for instance, game theory is the case of mutual agreement.
An agent can decide to cooperate as long as his opponent agrees to do the same.
This rule ’I play nice as long as you play nice’ is not something irrational or rare.
The ’good will’ mutual agreement is in our opinion a very important example
of reasoning that is not only defeasible (we just ’assume’ everyone else is follow-
ing their commitment, and this assumption can very well be withdrawn when it
turns out it is not the case) but also has a support cycle in it. And yet, it is very
reasonable and, be it good or not, unavoidable.

Nevertheless, there are support cycles that are clearly erroneous and need to
be avoided. Unfortunately, there is not much intuition on how to distinguish
between the ’good’ and the ’bad’ ones. For these reasons, in future we would
like to admit the semantics both with and without the support cycles and use
them according to a given situation. We hope that further research will shed
more light on this case.

Future work. Throughout this paper we have mentioned several open questions
and problems concerning not only the ADFs, but also argumentation overall.
First, we see a need for a discussion on the rationality of arguments, i.e. how
should self–attackers, self–supporters and support cycles be treated. Addressing
the rationality issue would give rise to stricter notions of semantics. Another
task for the future is moving the logic programming style acceptability [17] to
ADFs. In order to give an intuitive definition, a proper account of support cycles
in ADFs is required, which were so far informally described in Section 2.2.

Finally, we would like to formalize the concept of defense in ADFs and provide
a tool for an efficient detection of overpowering. With this concept at hand,
moving over to other well known semantics in this abstract framework is a next
natural step. In particular, complete and preferred semantics can be based on
our notion of admissibility. In case of the latter, this could circumvent certain
problems of the formulation introduced in [16], where three–valued preferred
extensions are not necessarily incomparable on the sets of accepted arguments.

5 Conclusion

In this paper we have reviewed the existing definitions of admissibility in abstract
dialectical frameworks — one of the most general enhancements of Dung’s ab-
stract frameworks — and introduced a novel two–valued approach reflecting the
original formulation of admissibility in a more direct way. Besides a thorough
discussion on the conceptual level, we have also compared the approaches on a
formal one. The results show that each new two–valued admissible extension is
also admissible in the three–valued setting of [16], but that the other direction
does not hold in general.
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Abstract. Given an argumentation framework ( ,  – with  a finite 
set of arguments and    the attack relation identifying the graph  – 
we study how the grounded labelling of a generic argument a  varies in all 
the subgraphs of . Since this is an intractable problem of above-polynomial 
complexity, we present two non-naïve algorithms to find the set of all the sub-
graphs where the grounded semantic assigns to argument  a specific label , , . We report the results of a series of empirical tests over 
graphs of increasing complexity. The value of researching the above problem is 
two-fold. First, knowing how an argument behaves in all the subgraphs repre-
sents strategic information for arguing agents. Second, the algorithms can be 
applied to the computation of the recently introduced probabilistic argumenta-
tion frameworks.  

Keywords: Argumentation Theory, Semantics, Algorithms. 

1 Introduction 

An abstract argumentation framework  is a directed graph where nodes represent 
arguments and arrows represent the attack relation.   were introduced by Dung [2] 
to analyze properties of defeasible arguments.  

The problem investigated in this paper is the following: given an argumentation 
framework ( ,  – with  a finite set of arguments and    the 
attack relation identifying the graph  – we study how the grounded labelling of a 
generic argument a  varies in all the subgraphs of . Since this is an intractable 
problem of above-polynomial complexity, we present two algorithms, one recursive 
and one modelled as a decision-tree, to find the set of all the subgraphs where the 
grounded semantic assigns to an argument  a specific label , , .   

The value of researching the above problem is two-fold. First, knowing how an ar-
gument behaves in all the subgraphs of an argumentation graph helps us to understand 
the sensitivity of the argument label to the removal of other arguments via further 
attacks. This represents strategic information for agents in pursuing a discussion, 
since they can identify which arguments should be attacked. 



120 P. Dondio 

 

However, the main motivation is represented by the recently introduced probabilis-
tic argumentation frameworks. In such frameworks, the computation of the probabil-
ity of acceptance of arguments requires the identification of all the subgraphs where a 
certain label for an argument holds (this is known as the constellation approach [6]).  

This first work only presents algorithms and results for grounded semantics. This is 
mainly due to space limitations and the fact that the versions of our algorithms for other 
semantics have not been yet implemented and therefore an empirical evaluation cannot 
be made. However, the idea behind the algorithms proposed is general enough to be 
applied to other semantics. Our recursive algorithm is based on constraints valid for any 
complete semantics and we have already presented a version for preferred semantics in 
[11]. The core mechanism of our decision-tree algorithm, based on splitting subgraphs 
and removing irrelevant arguments, is valid for any complete semantics and it can be 
extended to specific semantics by modifying the treatments of cyclic subgraphs. 

The paper is organized as follows: section 2 presents the required background of 
abstract argumentation; section 3 sets the problem with the required definitions and 
presents a brute-force algorithm; section 4 describes the recursive algorithm; section 5 
describes our decision-tree algorithm; section 6 reports the results of our experimental 
evaluation before the description of related works in section 7 and conclusions. 

2 Background Definitions 

Definition 1 (Abstract Argumentation Framework). Let  be the universe of all 
possible arguments. An argumentation framework is a pair ( ,  where  is a 
finite subset of   and    is called attack relation. We define an argument 

 initial if  | ( , , i.e. the argument is not attacked. 
Let’s consider ( ,   and . 

Definition 2 (defense).  defends an argument    iff b   such that ( , ,     such that ( , . The set of arguments de-
fended by  is denoted ( . 

Definition 3 (indirect attack/defense). Let  ,   r and the graph  defined by ( , . Then (1)  indirectly attacks  if there is an odd-length path from  to  in 
the attack graph  and (2)  indirectly defends  if there is an even-length path (with 
non-zero length) from  to  in . 

Labelling. A semantics identifies a set of arguments that can survive the conflicts 
encoded by the attack relation . In the labelling approach a semantics assigns a label 
to each argument. Following [4], the choice for the set of labels is: ,  or . 

Definition 4 (Labelling/conflict free). Let ( ,  be an argumentation 
framework. A labelling is a total function L    , , . We write (  for   | ( , (  for   | ( ,  and (  for   | ( . We say that a labelling is conflict-free if no -labelled 
argument attacks an (other or the same) -labelled argument. 

Definition 5 (complete labelling). Let ( ,  be an argumentation frame-
work. A complete labelling is a labelling that for every   r holds that: 
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1. if  is labelled  then all attackers of  are labelled  
2. if all attackers of  are labelled  then  is labelled  
3. if  is labelled  then  has an attacker labelled   
4. if  has an attacker labelled  then  is labelled  
5. if  is labelled  then it has at least one attacker labelled  and it does 

not have an attacker labelled . 

Theorem 1, Grounded Labelling. (proved in [4]) Let ( ,  be an argumen-
tation framework.  is the grounded labelling iff  is a complete labelling where  (   is maximal (w.r.t. set inclusion) among all complete labellings of . 

In figure 1 two argumentation graphs are depicted. The grounded semantics assigns 
the status of  to all the arguments of (  (always when there are no initial ar-
guments), while in (  it assigns  to  and , and  to . Note how  reinstates .  

 

Fig. 1. Two Argumentation Graphs (A) and (B) 

3 Describing and Labelling Subgraphs 

Given an argumentation framework ( ,  with | | , and the graph  
identified by  and , we consider the set  of all the subgraphs of . We focus on 
particular sets of subgraphs, i.e. elements of 2 . Given   r, we define:  |      ;      |  

that are respectively the set of subgraphs where argument  is present and the set of 
subgraphs where  is not present  (note how we use  for the complementary set ).  
If , . . , , a single subgraph  can be expressed by an intersection of  sets 

 or  (0 ) depending on whether the  argument  is or is not contained 
in .  

In general, we can express a set of subgraphs combining some of the sets , . . ,  , , . . , . with the connectives , . We write  to denote  and 
 for . For instance, in figure 1 the single subgraph with only  and  

present is denoted with , while the expression  denotes a set of two subgraphs 
where arguments  and  are present and  can be either present or not. 

We call a clause  a finite intersection (or conjunction) of sets  , . We consider 
expressions of sets of subgraphs in their disjunctive normal form, i.e. as a finite dis-
junction of clauses . . .  An expression is said to be in standard form if 

, for each , , . The standard form is made of disjoint sets 
of subgraphs and it is of particular interest for its applications to probabilistic argu-
mentation. As an example, let’s consider the argumentation graph in fig.1 left. The 
clause  is not in standard form. It identifies six out of eight possible subgraphs 
(the two left out are the one where ,  and  are not present and the one with  and  
not present and  present). A standard form is for instance . 
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subgraphs that are compatible with the starting label of . The sets and  
are found when terminal nodes are reached. When a terminal node  is reached the 
following conditions are applied: 

1. if  is required to be  then  

2. if node  is required to be  then  

The way the algorithm treats cycles guarantees that only grounded complete label-
lings are identified. If a cycle is detected, the recursion path terminates, returning an 
empty set that also has the effect to discard all the sets of subgraphs linked with a 
logical  (by condition 1) to the cyclic path. As described in [11], this treatment of 
cycles guarantees to discard  arguments not contributing to  or  and to 
identify grounded complete labellings. We present the pseudo-code of the algorithm, 
while Table 1 describes the steps for computing  in the graph of figure 2 right. 

 

Algorithm 2 - The Recursive FindSet(A,L,P) Algorithm 

A is a node, L a label (IN or OUT), P is the list of parent nodes, Cset 

holds the partial result of the computation of conditions (1) and (2). 
FindSet(A,L,P): 

if A in P:  

   return empty_set // Cycle found 
if L = IN:             

   if A terminal: 

      return a // Terminal condition for IN Label 

   else: 

      add A to P 

      for each child C of A 

         Cset = Cset AND FindSet(C,OUT,P) 

return (a AND Cset)      // condition 1 

if L = OUT:            

   if A terminal:  

      return NOT(a) // Terminal condition for OUT Label 

   else 

      add A to P 

      for each child C of A 

  Cset = Cset OR FindSet(C,IN,P) 

      return (NOT(a) OR (a AND Cset))   //condition 2    

4.1 Optimizations 

Generating non-overlapping solutions. The  algorithm generates solu-
tions not in standard form, composed by potentially overlapping clauses. If – as in the 
probabilistic frameworks – sets of disjoint subgraphs are required, a costly Boolean 
simplification is needed. This is an inclusion-exclusion problem of combinatorial 
complexity. It is also inefficient in that the recursive steps need to carry expressions 
longer than necessary. 



 C
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straightforward, since the expressions of  (or   might be different according 
to which path the recursion took before visiting .  

Let’s presume we can reach node  with two computations 1 and 2, and we have 
already computed . We wonder when we can reuse the result sets  to com-
pute . It is clearly  if ( ( , and the current version of the 
algorithm implements this simplification, by keeping a buffer of the previously solved 
recursion. Note how the condition ( (  is quite restrictive and it does not 
cover all the cases where previous computations, or part of them, can be reused. We 
leave further simplification for future research. 
 
Example 2. We apply the recursive optimized algorithm to the graph of figure 2 left. 
Table 2 shows the computation performed. We comment on some of the differences 
with the baseline recursive algorithms of section 3. First, condition 1 splits the com-
putation into two recursive steps. In step 1.1, the new condition 2  is applied to gen-
erate disjoints sets. The condition is further simplified by applying the rebuttals sim-
plification that removes the term   from the expression of . Since  
rebuts ,  is irrelevant in the computation of  (note that would be relevant to 
the computation of  or , but these sets are not required by any recursive step). 

Table 2. Computing  using the optimized recursive algorithm for the graph of fig 2 left  

1  Condtion 1 

  1.1 Condition 2b (with reordering) 

 2b after rebuttals detection. Since  

c rebuts b, c cannot label b . 

1.1.1 Terminal node 

1.1.2 Terminal node 

 1.1 Solution of the recursive step 1.1 

 1.2 Condition 2b 

 Rebuttals optimization applied,  

cannot defeat  

1 ( Final Solution 

5 : Arguments Decision Tree Algorithm 

In many cases, the recursive algorithm reduces the computational effort required to 
compute  in comparison with the brute force approach, but it is still prone to  
combinatorial explosion. For instance, for the graph of figure 2 centre the algorithm 
produces ( ( (  ( , an expression with an  
exponential number of terms equal to 2n-2, where  is the number of nodes.  

In this section we describe a new algorithm modelled as a decision-tree, where at 
each step a node  is selected and the computation of  is split in two disjoint 
graphs, one containing the node and the other not containing it ( ).  
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Our idea is to select a node that reduces the complexity of the remaining sub-
graphs. We select the node  that makes the most number of nodes indifferent for the 
computation of , because these nodes are either (1) defeated by  in the subgraph 
containing  or (2) disconnected from  in the subgraph where  is not present. As an 
example, referring again to figure 2 centre, let’s select node  for our tree split. In the 
subgraphs where node  is present, all the other nodes are defeated and  results la-
belled . When  does not exist, the only possible subgraph is the one not containing 
all the attackers of . Therefore , which is a shorter and more 
manageable standard form expression.  

The algorithm we present, called , finds the sets , ,  in parallel; it is 
guaranteed to find disjoint sets and it works better than algorithm 2. First of all, we 
need to define the metric used to select the argument used for the split. We call this 
metric dialectical strength. 

Definition 7. Given ( ,  and an argument , the dialectical strength of 
an argument  w.r.t. , called ( , is defined as follows: 

If  is initial, (  is the number of arguments that are defeated by  plus the 
arguments that result disconnected from  once the arguments defeated by  are re-
moved from . Therefore: ( ( ((  

Where (  is the set of all arguments attacked by , i.e. , (| ( , . Note that, if  directly attacks , then ( | |. If x is not initial, (  is the number of arguments that are disconnected from  after  is removed. 
Therefore: ( | ( | 
The argument with the highest  is selected for the split. In the case of several 
arguments with the same , the node for the split is randomly selected. 

In figure 2 centre, all the nodes have 1, except argument  that has ( 4 (of course it is always ( | |).  
Once argument  is selected, the original graph  is split into  and 
. For each subgraph the algorithm keeps a list of the nodes already used for 

the split and the constraint over each split node (i.e. if in the subgraph the argument is 
present or not present). At each step the algorithm removes the nodes defeated by 
argument  in  and the nodes disconnected from  in . Note how a chain effect 
can happen: by removing arguments, new initial nodes might be created that might 
defeat other arguments. Note how the number of nodes removed is equal to the dialec-
tical strength  Therefore, at each split  actually computes a set of 2  sub-
graphs that, as proven at the end of this section, are all equivalent for the labelling of 

. Moreover, the computational complexity of  will strongly depend on the aver-
age value of the dialectical strength. 

Regarding terminal conditions,  stops when one of the following terminal 
conditions is met: 
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1. If argument  is defeated, the branch of the tree will contribute to  

2. If argument  is isolated, the branch of the tree will contribute to , since 
 has no attackers. 

3. If there are no more arguments for the split and neither of the above two are 
verified, the branch contributes to  since a cycle is detected. 

Figure 3 proposes an illustrative example of the  algorithm applied to the graph 
of figure 2 right, followed by the pseudo-code of the algorithm. 
 

 

Fig. 3. Visual Representation of the  Algorithm 

At the beginning (not shown), the set  is trivially assigned to , and we start 
from the situation where  is present (set of subgraphs ), depicted in subgraph 1 of 
figure 3. First, the  of each argument is computed. Arguments  and  have both 3 while  has ( 1. Therefore  is chosen.  

In the subgraph (3), obtained by set  to present,  is defeated,  becomes initial 
and defeats . Therefore  is isolated, the terminal condition for  is reached and 
the path  is added to . In the subgraph with  non-existent (2), no other node is 
disconnected. Since no terminal condition is reached, a new split is needed. Now  is 
selected. In the subgraph with  not present (4), argument  becomes isolated, and 
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therefore the path  is added to , while in the graph with  present (5) no ar-
guments are disconnected. Only  is left for the split.  

When  is present (subgraph 7), the terminal condition 3 is reached so  con-
tributes to . Subgraph 6, with  not present in the subgraph, contributes to  
(set of subgraphs ) since  becomes initial and defeats .  

 

Algorithm 3 – ADT (Arguments Decision Tree Algorithm).  

Inputs: Graph , argument  Output: ( , , ) 

Initialize C to . //C is the list of constraints on the split 
arguments  
ADT( , , ) 

If C is  then C =  

remove from G all the nodes disconnected from node  

compute , the list of initial nodes of G 
while (   in  with  is in  ) 

for each  in  with  in  

remove form G all the arguments attacked by  

update the initial list  

remove form G all the arguments not connected to  
If   so that R(b,a) then add  to  and return 

If  then add  to  and return 

If no more nodes to split then add  to  and return 

for each  in  and not in  Compute the (  

select node  with highest (  

split the subgraph:  and  
call ADT( , , ) 

call ADT( , , ) 

Optimization. We optimized the  algorithm by keeping a buffer of the subgraphs 
that have already been computed. When, after a split, one of the remaining subgraph 
has been already encountered in the computation, its solution can be reused and joint 
with the constraints of the current branch. This operation is theoretically simpler than 
in the case of the  algorithm. For instance, considering the graph of figure 
2 left, after we split using node , the subgraph where  is present is reduced to the 
nodes , , but the same subgraph is obtained in the branch where  is not present 
by further splitting, using node  and selecting the branch where node  is present. 
The first branch has constraints  (  is present in all the subgraphs) while the second 
has constraints  (  is not present and  is present). A solution  for the subgraph ,  is computed only the first time the subgraph is encountered (branch  in our 
example), generating the clause  that is added to the  output. When the  
same subgraph is encountered in the branch , the solution    is reused and joint 
with the constraints of the branch, obtaining the new solution  that is also added 
to the  output. For instance, referring to the computation of , the solution  
for the subgraph ,  is , and this set is used to add the two clauses  
to the output of  for the set .  
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 . We implemented a version of the above  algorithm, called , 
where at each step the node used for the split is chosen randomly. The algorithm will 
be used to compare the impact of using the dialectical strength in the computation. 

Soundness and Completeness. We end this section by proving the soundness and 
completeness of the  algorithm. Each of the clauses  composing the output of 
the  algorithm identifies a set of subgraphs. We prove that all the subgraphs iden-
tified by a clause assign the same label to argument  and this label is correctly  
assigned under grounded semantics. The set of subgraphs associated with a clause  
have in common a subset of the arguments in , the arguments present in the expres-
sion of . For instance, if , , , , , the clause  identifies all the sub-
graphs having in common the presence of nodes ,  and the absence of node . 
Nodes  and  are not specified, therefore their presence or absence is irrelevant and 
they identify a set of 4 different subgraphs associated with . We prove that these 
irrelevant arguments are actually irrelevant to the computation of the label of  and 
therefore all the subgraphs in  assign the same label to .  uses two conditions 
to identify irrelevant arguments. First, when the argument used for the split is re-
moved, all the arguments resulting disconnected from  are irrelevant to the labelling 
of . Second, in the subgraphs where an initial argument  is constrained to be 
present, all the arguments attacked by  are labelled , and therefore they become 
irrelevant (as proven by [8], removing an  argument does not change the grounded 
extension). Therefore all the arguments marked as irrelevant do not alter the label of  
and therefore we prove that all the subgraphs in  assign the same label to .  

 also assigns the correct label under grounded semantics, since its second con-
dition and the three terminal conditions described above actually implement the basic 
step of the algorithm for grounded labelling described by Modgil and Caminada in 
[14, page 8] and therefore  generates correct grounded labellings. 

In order to prove  completeness, we observe that the  algorithm considers 
the entire problem space, since all the arguments that are not found irrelevant to the 
labelling of  are split. Therefore in all the 2  subgraphs of  argument  is labelled 
by the  algorithm. 

6 Evaluation 

We implemented our algorithms in Python 2.7, and we performed a set of initial ex-
periments on a Windows 7 machine with 3Gb RAM and Core I3 Intel processor. We 
implemented the following algorithms: 

1.  – the brute force approach. 

2.  – the decision-tree based algorithm using the dialectical strength as 
splitting criterion. 

3.  – the  algorithm where splitting nodes are selected randomly. 4. Rec (   – the optimized recursive algorithm. All the optimization 
of section 4 were implemented. 
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Our first evaluation tests two aspects of the computation of : computational time 
and length of the output expression. The evaluation described in this paper does not 
claim to be exhaustive. It focuses on the generic case of random graphs; it does not 
study particular class of graphs nor does it test hybrid approaches. 

Random Graphs Generation. We generate different acyclic and cyclic graphs of in-
creasing complexity both in terms of number of nodes and density. Graph instances 
have been generated as follows. Given  arguments, we assign an incremental index  
to each argument and we generate a tree with node  as root, to guarantee that for 
each argument there is at least a path to . Then, in the case of acyclic graphs, random 
links are added until the required density is reached. In order to generate only acyclic 
graphs, the links are added only if they go from a node with a higher index to a node 
with a lower index. In the case of cyclic graph, links are added randomly with no 
restrictions. However, we require each random graph to at least contain a cycle. Note 

that the density for an acyclic graph is computed over ( 1  (instead of  
(

  

used for the acyclic case) to take into consideration the presence of symmetric attacks. 

6.1 Experimenting with the Length of   

This set of experiments tests the ability of each algorithm to express a standard-form 
solution for  in the most compact way. We use as a metric the length  of the  
expression of , defined as the number of clauses contained in its standard-form 
expression. Results reported are the average of a set of 1000 executions of each algo-
rithm using graphs differentiated by number of nodes, density and type (cyclic or 
acyclic).  

In the brute force approach, the length of the solution equates to the number of 
subgraphs in . Table 3 shows results for the brute force approach. No data for 
graphs with more than 15 nodes are available due to the long computational time 
needed by this algorithm (a single 15-node with a 0.3 density takes about 12 minutes). 

Table 3. Length of AIN, brute force approach 

Nodes 6 7 8 9 10 11 12 13 14 15 

Length of  12 23 44 85 158 335 618 1421 2219 4853 

 
Graphs 1-4 show the behaviour of the other algorithms. We divide the analysis into 

cyclic and acyclic graphs. Overall, the  algorithm shows the best performance, 
even if its performance is not consistent with the type of graph (cyclic or acyclic). 
Graph 3 shows how the  algorithm is extremely efficient for acyclic graphs, and 
the gap with the other algorithm increases rapidly. For a 20-node graph,   output 
is on average 42.1 clauses against the 659.4 of the  algorithm. 

Again, Graphs 1 and 2 (left) show the ratio (by density and by number of nodes) 
between the length of the solution expressed by the  algorithm and the second 
best algorithm, the  algorithm, for acyclic graphs. 
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Graph 1 left shows how the ratio by density increases almost linearly, showing 
how the  algorithm becomes more efficient with high density acyclic graphs. 
This could be explained by the fact that, when the number of links increases, each 
node is likely to attack a larger set of nodes, and therefore nodes’ dialectical strength 

 increases and the split subgraphs that result are smaller and easier to compute. 
The introduction of the dialectical strength is also proved to be efficient, since the 

 algorithm (i.e. that in which nodes for the split are randomly selected) pro-
duces much longer expressions, already 22 times longer for a 20-node graph. 

However, the situation is different for cyclic graphs. The  algorithm 
shows similar or better performance than , as shown in Graph 4 and Graphs 1 and 
2 right. Graphs 1 and 2 right now show an inverse ratio (  algorithm over 

). The presence of cycles and rebuttals increase the likelihood that some recur-
sive branches quickly generate an empty return set, and consequently the length of the 
solution decreases. Moreover, when the number of cycles increases, the dialectical 
strength is no longer effective, since the number of initial arguments diminishes and 
the number of arguments disconnected from the root node  after the generic node  
is removed – i.e. | ( | – diminishes as well or it could likely be empty. 
 

 
Graph 1. Length of the solution by density 

 

 
Graph 2. Length of the solutions by nodes 
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Graph 3. Length of the solutions – Acyclic Graphs 

 
Graph 4. Length of the solutions – Cyclic Graphs 

6.2 Computational Time 

This second set of experiments tests the efficiency of the above algorithms in terms of 
computational time. Again, the brute force approach is by far the slowest. In a 14-
node graph with 0.3 density, the average computing time is about 45 times longer 
than the  algorithm, while it increases to 650 times for a 15-node graph. 

The  algorithm is also considerably slower than the others. For a 25-node 
acyclic graph it is on average 15 times slower than the , while it is more than 200 
times slower for a cyclic graph compared to the  algorithm.  

It is interesting to compare the performance of  versus  in order to un-
derstand the impact of the dialectical strength as splitting criterion. Following a simi-
lar pattern encountered in the length-based experiment, the gap between  and 

 is highly significant for both the acyclic graph and the cyclic graph with low 
density.  is already 10 times faster with a 23-node acyclic graph, while for a cy-
clic graph the computational time is comparable and it does not show a clear trend.  
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The reason for this is mainly because in an acyclic (or quasi-acyclic) graph, the dia-
lectical strength  of the arguments is high and this effectively reduces the complex-
ity of the split subgraphs. In a cyclic graph, the set  is small or empty and few 
nodes are removed during a split. Therefore the choice of a splitting node is less im-
portant and the overhead of computing the dialectical strength is not justified. 

 

 

Graph 5. ADT versus ADT fast computational Time    . For acyclic graphs, thanks to the high dialectical strength of 
the arguments, the  algorithm is faster.  is already 100 times faster for a  
20-node graph. On our machine setting, the average computational time needed to 
compute an acyclic graph goes above 60 seconds between 50-55 nodes. Graph 6 
shows the computational time in terms of number of nodes. The computational time 
grows with a quite constant slope after about 25 nodes. 

For cyclic graphs, the  algorithm takes advantage of the presence of re-
buttals and cycles, which reduce some of the recursive steps. The  algo-
rithm is already 25 times faster for a 15-node and 60 times faster for a 25-node graph. 
The  algorithm remains better up to a density of 0.1. 
 

 

Graph 6. ADT Computational Time by number of nodes 
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Graph 7. Recursive Algorithm computational time 
 

The  algorithm goes above the 60-second threshold at 38 arguments. 
Graph 7 shows the computational time of the  algorithm by number of 
nodes. We notice how the algorithm has a rapid increase after 25 nodes, much faster 
than the  increase for acyclic graphs. An explanation could be that, since the 

 algorithm is based on paths visited on the graph, it is sensitive to the 
number of links rather than to the number of nodes, and the number of links grows 
like  rather than . However, the experimental analysis calls for a theoretical com-
plexity analysis that is at the top of our research agenda. 

Overall, our results suggest defining a hybrid approach exploiting both the  
(good for acyclic or quasi-acyclic graphs) and the  algorithms (good for 
cyclic graphs), depending on the characteristics of the graph. Another observation is 
about the computation of the dialectical strength, which could be optimized and made 
more effective in the presence of cyclic graphs (for instance by considering the effect 
of removing a couple of nodes instead of a single node). 

7 Related Works 

The research presented in this paper is inspired by the recently introduced Probabilis-
tic Argumentation Framework. The original paper by Li [3] introduces the formalism 
but it does not present any computational algorithm beyond the brute force approach. 
The author proposes an approximate method using a Montecarlo simulation for 
grounded semantic. Other papers in the field (Hunter [6], Trimm [7], Dung [2]) do not 
investigate computational aspects. This paper continues our research in [11], where 
we presented the baseline non-optimized recursive algorithm. 

To the author’s best knowledge, there is no other study that directly approaches the 
problem of subgraph-based computation in the context of probabilistic argumentation. 
Even for abstract argumentation in general, experimental evaluations of algorithms 
represents a small corpora. The work by Nofal at al. [13] represents one such work. 
As the author notes, “although experimental analysis of algorithms is a well-
established in other domains, such methodology is given a little attention in the  
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context of AFs” [13]. We mention also the experimental thesis by Charwat [10] based 
on tree-decomposition of . Therefore, our paper contributes to the experimental 
analysis of abstract argumentation algorithms. 

However, the algorithms proposed in this paper decompose the computation of the 
grounded semantic, and they can be described as a study on how an argument label 
behaves when arguments are added (or removed) from an argumentation graph. In 
particular we refer to the work by Boella [8], that studied how the grounded extension 
changes with the addition of a new argument. Indeed our algorithm – especially the 

 algorithm – relies on similar mechanisms and theoretical foundations. The work 
in [8] is extended by Cayrol [12] to the case of preferred semantics and the removing 
of arguments or attacking links. 

In abstract argumentation there are works that employ similar techniques to ours. 
The work by Baumann [9] et al. provides an experimental evaluation of computing 
extensions semantics by splitting the argumentation graph into subparts that are then 
combined to obtain a final solution. Their systematic empirical evaluation shows that 
the performance of algorithms may drastically improve when splitting is applied. 

8 Conclusions and Future Works 

In this paper we initiated an investigation of how the label assignment of an argu-
ment varies in all the subgraphs of an argumentation framework. We presented a 
recursive algorithm and a tree-based computation. We started to evaluate the algo-
rithms experimentally, showing how they drastically improve performance compared 
to a brute-force approach. We claim to have provided enough evidence to justify 
further investigations.  In particular, the  algorithm is proven to be efficient in 
expressing solutions using the minimal number of clauses, and effective in compu-
ting acyclic and quasi-acyclic graphs. The  algorithm shows the best 
computational efficiency for cyclic graphs, and on average it can compute cyclic 
graphs of up to 35/40 nodes. However, this last result might not fit all the applica-
tions, and the number of nodes could be small in some contexts. Interesting future 
research trajectories include the theoretical complexity analysis of the algorithms, 
which has not been addressed in this work. Regarding extensions to other semantics, 
we have already described an extension to preferred semantics for the recursive algo-
rithms, while defining the preferred version of the  should not present difficul-
ties. Moreover, we intend to focus on the definition of a hybrid approach that uses 
the  and the  algorithms together. Specific classes of graphs have also 
to be studied. It appears reasonable to the author that natural argumentation graphs 
could show specific patterns in terms of density and type of cycles – mostly rebuttal 
cycles – that could differ from randomly-generated graphs. Finally, attention might 
also be devoted to the application of the above algorithms to probabilistic argumen-
tation frameworks. 
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for Abstract Argumentation
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Favoritenstraße 9-11, A-1040 Vienna, Austria

Abstract. In the area of propositional satisfiability (SAT), tremendous
progress has been made in the last decade. Today’s SAT technology cov-
ers not only the standard SAT problem, but also extensions thereof,
such as computing a backbone (the literals which are true in all satisfy-
ing assignments) or minimal corrections sets (minimal subsets of clauses
which if dropped leave an originally unsatisfiable formula satisfiable). In
this work, we show how these methods can be applied to solve impor-
tant problems from the area of abstract argumentation. In particular,
we present new systems for semi-stable, ideal, and eager semantics. Our
experimental results demonstrate the feasibility of this approach.

Keywords: Abstract Argumentation, Propositional Satisfiability, Ar-
gumentation Systems.

1 Introduction

Argumentation is an interdisciplinary subfield of Artificial Intelligence [4] with
links to psychology, linguistics, philosophy and legal theory. Formal methods
of argumentation are nowadays embedded in decision support systems [1], E-
Democracy tools [9], multi-agent systems [34], and many more. Dung’s abstract
model of argumentation [13] (and variants thereof) plays a central role in many of
these applications providing a common core for diverse aspects of argumentation
formalisms. This clearly calls for efficient systems and significant progress and
variety in implementing Dung’s argumentation semantics has been achieved over
the last years (for an overview, see [11]).

One central method is to reduce the argumentation problem at hand to a for-
mula in propositional logic. Reductions of this kind make highly sophisticated
SAT solvers amenable for the field of argumentation. Using classical proposi-
tional logic to evaluate Dung-style argumentation frameworks was first advo-
cated by Besnard and Doutre in [5] and later extended to quantified propositional
logic [22,2] in order to efficiently reduce abstract argumentation problems with
complexity beyond NP. However, these methods have not been implemented yet.

The goal of this paper is to demonstrate how modern SAT technology can be
used for solving such hard problems in the area of argumentation. In particular,
we consider two extensions of the SAT problem, namely minimal correction sets
(MCSes) [28,31] and backbones [32]. A minimal correction set is a minimal subset

J. Leite et al. (Eds.): CLIMA XIV, LNAI 8143, pp. 138–154, 2013.
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of the clauses of an unsatisfiable SAT instance which, if dropped, results in a
satisfiable formula. The backbone of a propositional formula φ is the set of all
literals that evaluate to true in all interpretations that satisfy φ.

We demonstrate that these methods suit particular argumentation problems
surprisingly well, simplifying the design of the actual procedures. The work which
is closest to the methods we propose here is the CEGARTIX system [19], which
relies on iterative calls of standard SAT-solvers. Our modular approach results
in reduced engineering effort, allowing for rapid prototyping of abstract argu-
mentation systems that immediately benefit from future improvements of SAT
technology. Moreover, our results indicate that MCSes and backbones can be
more broadly applied to reasoning problems in the AI domain since they directly
treat typical features of such problems making the design of the reductions easier
compared to reductions to standard (quantified) propositional logic.

Moreover, our experimental results are very promising and show that the
proposed methods are competitive to the CEGARTIX system. We recall that
experimental results in [19] show that CEGARTIX outperforms other reduction
approaches like ASPARTIX [21], although the number of calls to the SAT engine
is exponential (with respect to the instance size) in the worst case due to the high
complexity of the problems. One reason for the good performance of CEGARTIX
is that it performs certain semantic-specific optimizations between the SAT-calls
while in monolithic reductions like the ASPARTIX approach, where the entire
problem is reduced at once and given to a “black-box” solver, the domain specific
short-cuts have to be identified by the underlying systems.

The structure of the paper and its main contribution are as follows: After re-
viewing abstract argumentation, we present SAT-based techniques to compute
backbones and MCSes (Section 2.2). Section 3 contains our main results: we
provide new proof procedures for semi-stable [8] and eager semantics [7] based
on MCSes and backbones; and show how the ideal semantics [14] can be realized
via a backbone. In Section 4 we present our experimental evaluation showing
that for the ideal semantics we achieve a significant performance gain over exist-
ing systems, and that for semi-stable reasoning we outperform the CEGARTIX
system.

Our new systems and test instances are freely available under the link
www.dbai.tuwien.ac.at/research/project/argumentation/sat-based.

2 Background

2.1 Abstract Argumentation

In this section we introduce (abstract) argumentation frameworks [13] and recall
the semantics we study in this paper.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where
A is a set of arguments and R ⊆ A×A is the attack relation. The pair (a, b) ∈ R
means that a attacks b.

www.dbai.tuwien.ac.at/research/project/argumentation/sat-based


140 J.P. Wallner, G. Weissenbacher, and S. Woltran

a

b

c d

e

Fig. 1. Example argumentation framework

An argumentation framework can be represented as a directed graph, as shown
in the following example.

Example 1. Let F = (A,R) be an AF with A = {a, b, c, d, e} and R = {(a, b),
(b, a), (a, c), (b, c), (c, d), (e, e)}. The corresponding graph representation is de-
picted in Fig. 1.

A semantics for argumentation frameworks is given via a function σ which
assigns to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. In this paper we
focus on the semi-stable [8], eager [7] and ideal [14] semantics. These are based on
the stable and preferred semantics [13] and a fundamental notion underlying all
of these is the concept of an admissible set. Hence we consider for σ the functions
adm , prf , stb, sem, ideal , and eager which stand for admissible, preferred, stable,
semi-stable, ideal, and eager extensions, respectively. We will introduce these
concepts in the following.

The basic concept for all the semantics considered in this paper is the ad-
missible set. Admissibility has two requirements, namely conflict-freeness and
defense of all arguments in the set.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free in F , if
there are no a, b ∈ S, such that (a, b) ∈ R. We say that an argument a ∈ A is
defended by a set S ⊆ A in F if, for each b ∈ A such that (b, a) ∈ R, there exists
a c ∈ S such that (c, b) ∈ R.

Admissible sets are then conflict-free sets of arguments, where each argument
in the set is defended by the set.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is admissible in F , if S
is conflict-free in F ; and each a ∈ S is defended by S in F .

Maximal admissible sets, w.r.t. subset-inclusion are called preferred extensions
and accept as many arguments as possible, without violating admissibility.

Definition 4. Let F = (A,R) be an AF. An admissible set S ⊆ A is a preferred
extension in F , if there is no admissible set S′ ⊆ A such that S � S′.

A basic property of the preferred semantics is that admissible sets and hence
preferred extensions always exist for any given framework. A popular semantics
for which this is not the case is the stable semantics. For the definition of the
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stable semantics and the closely related semi-stable semantics we make use of
the concept of the range of a given set S of arguments, which is simply the set
itself and everything it attacks, i.e. given an AF F = (A,R) and S ⊆ A, then

the range of S, denoted by S+
R is given by S+

R
def
= S ∪ {a | (b, a) ∈ R, b ∈ S}.

Definition 5. Let F = (A,R) be an AF. A conflict-free set S ⊆ A in F is a
stable extension in F , if S+

R = A. An admissible set E in F is a semi-stable
extension in F if there does not exist a set T admissible in F , with E+

R ⊂ T+
R .

A basic property of these two semantics is that if an AF has stable extensions,
then the semi-stable and stable semantics coincide [8]. The intuition is that
semi-stable extensions should be “close” to stable extensions, in case no stable
extensions exist.

Example 2. Consider the AF from Example 1. Then we have the following ad-
missible sets, respectively extensions: adm(F ) = {∅, {a}, {b}, {a, d},{b, d}};
stb(F ) = {{a, d}}; prf (F ) = {{a, d}, {b, d}}; and sem(F ) = {{a, d}}. Note that
if we would add a single isolated self-attacking argument to F , i.e. F ′ = (A′, R′)
with A′ = A ∪ {f} and R′ = R ∪ {(f, f)}, then stb(F ′) = ∅, but the set of
semi-stable extensions would remain the same, i.e. sem(F ′) = sem(F ).

Notice that all the semantics introduced until now in this paper may have
multiple extensions. Reasoning tasks on AFs w.r.t. a semantics σ, apart from
simple enumeration of all extensions, include the credulous and skeptical ac-
ceptance of arguments. An argument is credulously (skeptically) accepted for a
semantics and an AF, if it is present in at least one extension (in all extensions)
of the semantics.

Definition 6. Given an AF F = (A,R), a semantics σ and an argument a ∈ A
then we define the following reasoning tasks. The decision problem Credσ(a, F )
answers yes if a ∈

⋃
σ(F ) and no otherwise. The decision problem Skeptσ(a, F )

answers yes if a ∈
⋂
σ(F ) and no otherwise. Let AllCredσ(F )

def
=

⋃
σ(F ) and

AllSkeptσ(F )
def
=

⋂
σ(F ).

Example 3. Applying the reasoning tasks to the AF in Example 1, we have
for the preferred semantics the following credulously and skeptically accepted
arguments: AllCredprf (F ) = {a, b, d} and AllSkeptprf (F ) = {d}.

The remaining two semantics we study in this paper are the ideal and eager
semantics, which take a particular skeptical stance and are among the so-called
unique-status semantics, i.e. always have a unique extension for any AF.

Definition 7. Let F = (A,R) be an AF. For an admissible set S ∈ adm(F ), it
holds that

– S ∈ ideal (F ), if S ⊆ AllSkeptprf (F ) and there is no T ∈ adm(F ) with
S ⊂ T ⊆ AllSkeptprf (F );

– S ∈ eager (F ), if S ⊆ AllSkeptsem(F ) and there is no T ∈ adm(F ) with
S ⊂ T ⊆ AllSkeptsem(F ).
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Table 1. Computational complexity of reasoning in AFs

σ stb adm prf sem ideal eager

Credσ NP-c NP-c NP-c ΣP
2 -c in ΘP

2 ΠP
2 -c

Skeptσ coNP-c trivial ΠP
2 -c ΠP

2 -c in ΘP
2 ΠP

2 -c

That is, the ideal and eager extensions are the maximal-admissible sets w.r.t.
subset-inclusion, composed only of arguments skeptically accepted under pre-
ferred, respectively semi-stable semantics.

Example 4. Continuing the Example 2, based on the AF in Example 1, then
ideal (F ) = {∅}; and eager(F ) = {{a, d}}. Note that although AllSkeptprf (F ) =
{d}, the set {d} is not admissible in F .

Given the set of skeptically accepted arguments w.r.t. preferred or semi-stable
semantics to compute the unique subset-maximal admissible set composed only
of the arguments skeptically accepted, we can make use of the following function,
which we call restricted characteristic function [15].

Definition 8. Let F = (A,R) be an AF. Then F̂F : 2A → 2A is the re-

stricted characteristic function of F and is defined by F̂F (S)
def
= {a ∈ S |

a is defended by S}.

This function iteratively removes arguments from S, which are not defended
by S in F . Applying the function at most |A| times for an AF F = (A,R)
yields the maximal admissible set U ⊆ S, w.r.t. subset-inclusion. Note that this
function is not to be confused with the characteristic function, which one can
use for defining semantics of AFs.

The computational complexity of all the semantics considered in this paper
is high and in many cases “beyond” NP. The complexity of semi-stable has
been investigated in [20], eager in [16] and ideal in [15]. See Table 1 for details.
We briefly recall the complexity classes here. The class ΣP

2 contains decision
problems that can be decided in polynomial time using a nondeterministic Turing
machine with access to an NP-oracle, i.e. it can solve a problem in NP in one
step. The class ΠP

2 is defined as the complementary class of ΣP
2 . The class ΘP

2

contains decision problems that can be solved by a deterministic polynomial time
algorithm which is allowed to make O(n) non-adaptive calls to the NP-oracle.

2.2 Boolean Satisfiability

This section provides an overview of the propositional SAT problem, satisfiability
solvers, and extensions of the SAT problem – in particular minimal correction
sets [28,31] and backbones [32] – and iterative SAT-based algorithms for these
problems. For an introduction we refer the reader to the tutorial paper [29].
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Algorithm 1. Iterative Probing (computes the backbone of φ)

Require: φ is satisfiable
Ensure: returns {� | � ∈ {a,¬a | a ∈ A} ∧ ∀I . I |= φ ∧ � ∨ I |= ¬φ}
1: S = ∅
2: let I : A→ B be such that I |= φ 	 I may be partial
3: for all � ∈ {a,¬a | a ∈ A} with I |= � do
4: if φ ∧ ¬� is unsatisfiable then
5: S = S ∪ {�}; φ = φ ∪ {�}
6: else let J be such that J |= φ ∧ ¬� in
7: I = {a �→ v | a ∈ A, v ∈ B, I(a) = v ∧ J(a) = v}
8: end if
9: end for
10: return S

Propositional Logic. We work in the standard setting of propositional logic over a

set A
def
= {a, b, c, . . .} of propositional atoms, and the standard logical connectives

∧, ∨, and ¬ (denoting conjunction, disjunction, and negation, respectively). A
literal � is an atom a ∈ A or its negation ¬a. A clause C is a set of literals repre-
senting the disjunction

∨
	∈C �. A propositional formula in Conjunctive Normal

Form (CNF) is a conjunction of clauses, also represented as a set of clauses. An
interpretation I : A → B maps atoms to boolean values T,F ∈ B. An interpre-
tation I satisfies a formula φ (denoted by I |= φ) if φ evaluates to T under the
(potentially partial) assignment determined by I. A formula φ is satisfiable if
there exists an interpretation I such that I |= φ, and unsatisfiable otherwise.

SAT Solvers. A satisfiability solver is a decision procedure which determines
whether a given formula φ (in CNF) is satisfiable or not. Contemporary SAT
solvers are capable of solving instances with hundreds of thousands of literals
and clauses. SAT solvers largely owe their success to efficient search heuristics
(e.g., [30]) and conflict-driven back-tracking [33]. The latter technique avoids the
repeated exploration of similar portions of the search space by augmenting the
original instance φ with conflict clauses C derived from φ (i.e., |= ¬φ ∨ C).

Modern SAT solvers operate in an iterative manner: conflict clauses derived
from a previous instance φ can be retained in a subsequent run of the solver on
a formula ψ if φ ⊆ ψ. In addition, the back-tracking capabilities of SAT solvers
make it possible to fix a tentative assignment (or assumption, respectively) for
a subset S of A in form of a conjunction of literals over S. Assumptions can be
discarded in subsequent calls. This capability to perform iterative calls is crucial
to the performance of the SAT-based algorithms presented below.

Backbones. The backbone of a satisfiable propositional formula φ comprises the
literals over A that are true in every interpretation I satisfying φ. To com-
pute the backbone of a formula φ (with I |= φ), the currently most efficient
algorithms (according to [37,32]) iteratively “probe” each atom a ∈ A by sub-

sequently checking the satisfiability of φ ∧ � (with �
def
= ¬a if I(a) = T, and
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Algorithm 2. Minimal Correction Sets

Require: φ
def
=

⋃
i{Ci} is unsatisfiable

Ensure: returns set M of all minimal correction sets for φ

1: ψ =
⋃

i{(ai ∨ Ci)}, with L
def
=

⋃
i{ai} a set of fresh atoms

2: k = 1
3: M = ∅
4: while ψ is satisfiable do
5: ψk = ψ ∧AtMost(k, L)
6: while ψk is satisfiable do
7: let I be such that I |= ψk

8: M =M∪ {{Ci | ai ∈ L ∧ I(ai) = T}}
9: let D be {¬ai | ai ∈ L ∧ I(ai) = T}
10: ψk = ψk ∧D
11: ψ = ψ ∧D
12: end while
13: k = k + 1
14: end while
15: return M

�
def
= a otherwise). Algorithm 1 illustrates the basic structure of such an imple-

mentation. Practical implementations incorporate techniques such as excluding
variables with opposing values in subsequent satisfying assignments (line 7 of
Algorithm 1), clause reuse, and variable filtering [37,32].

Minimal Correction Sets. Given an unsatisfiable formula φ, a minimal correction
set is a minimal subset ψ ⊆ φ such that φ\ψ is satisfiable. The constraints χ ⊆ φ
are hard if we require that ψ ∩ χ = ∅ (conversely, the clauses φ \ χ are soft).

Numerous techniques to compute MCSes exist (e.g., [28,36,24,35]), and the
field is still advancing: the algorithm presented in the upcoming publication [31],
for instance, partitions φ into one satisfied and r unsatisfied subsets (S and
U1, . . . ,Ur) and computes MCSes by heuristically moving clauses from Ui to S.

Our implementation for semi-stable and eager semantics (see Sections 3 and
4) does not inherently depend on the implementation details of the MCS al-
gorithm. Algorithm 2 shows a simplified version of the algorithm in [28] that
underlies our implementation. Each (soft) clause C is augmented up front with
relaxation literal a that does not occur anywhere else in φ (line 1). (A common
optimization is to instrument only clauses contained in an unsatisfiable subset
of φ.) The effect of dropping C can now be simulated by choosing an interpre-
tation which maps a to T. Given a set L ⊂ A of relaxation literals, a cardinality

constraint AtMost(k, L)
def
= |{a ∈ L | I(a) = T}| ≤ k (encoded as a propositional

formula [12,3]) limits the number of clauses that can be dropped. Algorithm 2
derives all MCSes by systematically enumerating assignments of relaxation lit-
erals for increasingly larger values of k (cf. the outer loop starting in line 4).
The inner loop (line 6) enumerates all MCSes of size k by incrementally blocking
MCSes represented by a conjunction of relaxation literals ¬D.
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Fig. 2. Basic workflow for the algorithms based on iterative SAT procedures

3 Algorithms

In this section we will present algorithms to solve reasoning problems associated
with three kinds of complex semantics on AFs, namely the semi-stable, eager
and ideal semantics. The basic idea is to utilize state-of-the-art SAT solvers. Due
to the high complexity it is unlikely that we can in general compactly answer
the reasoning tasks within one propositional encoding and one invocation of a
SAT solver. To tackle this problem we look at multiple calls to the SAT solver,
in particular iterative calls.

The basic workflow of our algorithms is depicted in Fig. 2. We first translate
the given AF to boolean constraints, i.e. into sets of boolean clauses. The main
procedure now formulates queries to the SAT solver and iteratively adapts the
calls depending on already computed calls. After the main procedure is finished
we apply post-processing if needed.

On a more abstract level, we apply the MCS algorithm to solve reasoning tasks
under the semi-stable semantics, in particular AllSkeptsem , and the backbone
algorithm to solve AllCredadm . Both approaches are based on iterative calls to a
SAT solver.

The eager semantics is based on the semi-stable semantics and, given the
skeptically accepted arguments under the semi-stable semantics from the MCS
algorithm, one can compute the unique eager extension in polynomial time by
means of a post-processing step. The algorithm behind the ideal semantics is
more complicated and is taken from [16]. The difficult part of this algorithm
from a computational point of view is to compute AllCredadm ; the remainder
can be done by a similar post-processing technique as for eager.

In the following we will show how this works in detail. In Section 3.1 we
show how to use MCSes (Algorithm 2) to compute the semi-stable and eager
extensions, and in Section 3.2 we show how to utilize backbones (Algorithm 1)
to compute the ideal extensions of a given framework. In both cases we build on
existing reductions to SAT [5] for the admissible and stable semantics.

We will first recall the propositional formula representing admissible sets
of a given AF from [5], in form of sets of disjunctions of atoms, i.e. in CNF.
The basic idea is that every atom represents an argument. By slightly abusing
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our notation we use the set of arguments for a given AF and the set of proposi-
tional atoms of the constructed formula interchangeably.

admA,R
def
=

⋃
(a,b)∈R

{(¬a ∨ ¬b)} ∪
⋃

(b,c)∈R

{(¬c ∨
∨

(a,b)∈R

a)} (1)

The first part of the formula (1) encodes the conflict-free property and the
second part the defense of arguments. Now using the result from [5] we have for
any AF F = (A,R) that adm(F ) = {S | I |= admA,R, S = {a | I(a) = T}}, i.e.
the interpretations satisfying admA,R, projected to the atoms mapped to true,
directly correspond to the admissible sets of F .

3.1 MCS Algorithm for Semi-stable and Eager Semantics

Computing semi-stable extensions inherently requires to compute admissible
sets, which are subset-maximal w.r.t. the range. The MCS algorithm computes
subset-minimal sets of clauses of a formula in CNF, which if removed result in
a satisfiable formula. The idea to exploit the MCS algorithm for the semi-stable
semantics is to encode the range as satisfied clauses of a propositional formula
for a given interpretation and additionally requiring that the result is admissible.

For this to work we slightly adapt the formulas from [5] for the stable seman-
tics. Given an AF F = (A,R) we define the following formulas.

in rangea,R
def
= (a ∨

∨
(b,a)∈R

b) (2)

all in rangeA,R
def
=

⋃
a∈A

{
in rangea,R

}
(3)

The formula in rangea,R indicates whether the argument a is in the range
w.r.t. the atoms set to true in an interpretation. In other words, for an AF
F = (A,R) and a ∈ A we have, I |= in rangea,R iff a ∈ S+

R for S = {b |
I(b) = T}. The formula all in rangeA,R is satisfied if all arguments are in the
range. Taking the formulas admA,R and all in rangeA,R together conjunctively,
denoted by stbA,R, results in a formula equivalent to the stable formula in [5].

stbA,R
def
= admA,R ∪ all in rangeA,R (4)

An interpretation I which satisfies admA,R for a given AF F = (A,R) and
a subset-maximal set of clauses of all in rangeA,R corresponds to a semi-stable
extension of F . Consequently, we can derive semi-stable extensions from the
correction sets computed with the MCS algorithm, as long as no clause from
admA,R is dropped. That is, we consider the clauses of the formula admA,R as
hard constraints and the clauses in all in rangeA,R as soft constraints. Note also,
since any AF F = (A,R) has at least one admissible set, we know that admA,R is
always satisfiable. If stbA,R is satisfiable, meaning that F has stable extensions,
then immediately this computation yields the stable extensions, which are equal
to the semi-stable extensions.
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The following proposition shows this result more formally. For a given propo-
sitional formula φ in CNF and an interpretation I, we define φI to be the set of

clauses in φ, which are satisfied by I, i.e. φI
def
= {C ∈ φ | I |= C}.

Proposition 1. Let F = (A,R) be an AF and Isem = {S | I |= admA,R, S =

{a | I(a) = T}, �I ′ : I ′ |= admA,R s.t. all in rangeIA,R ⊂ all in rangeI
′

A,R}.
Then sem(F ) = Isem .

Proof. Let F = (A,R) be an AF. Assume E ∈ sem(F ), then define the following
interpretation I with I(a) = T iff a ∈ E. Then I |= admA,R, since E is admissible
by definition and due to [5] we know that I satisfies admA,R. Suppose now

there exists an interpretation I ′ such that I ′ |= admA,R and all in rangeIA,R ⊂
all in rangeI

′
A,R. But then E would not be maximal w.r.t. the range and hence

no semi-stable extension of F .
Assume E ∈ Isem , which implies E ∈ adm(F ) and as above let I be an

interpretation with I(a) = T iff a ∈ E. Suppose there exists a set S ∈ adm(F )

with E+
R ⊂ S+

R . Then all in rangeIA,R ⊂ all in rangeI
′

A,R for an interpretation I ′

defined as I ′(a) = T iff a ∈ S, which is a contradiction.

The MCS algorithm can now be straightforwardly applied for the reasoning
tasks for the semi-stable semantics we study in this paper, that is the algorithm
can be easily adapted to yield an enumeration of all semi-stable extensions,
answer credulous or skeptical queries or enumerate all arguments skeptically ac-
cepted. Since we need the set of skeptically accepted arguments for computation
of the eager extension, we will present this variant in Algorithm 3.

Algorithm 3. MCS-AllSkeptsem

Require: AF F
def
= (A,R)

Ensure: returns AllSkeptsem(F )

1: φ = {ai ∨ Ci | Ci ∈ all in rangeA,R} with L
def
=

⋃
i{ai} a set of fresh atoms

2: ψ = admA,R ∪ φ
3: k = 0
4: X = A
5: while ψ is satisfiable and k ≤ |A| do
6: ψk = ψ ∪AtMost(k, L)
7: X = X ∩ Probing(ψk)
8: while ψk is satisfiable do
9: let I be such that I |= ψk

10: let D be {¬ai | ai ∈ L ∧ I(ai) = T}
11: ψk = ψk ∧D
12: ψ = ψ ∧D
13: end while
14: k = k + 1
15: end while
16: return X
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Algorithm 3 computes the set AllSkeptsem(F ) for a given AF F = (A,R). The
formula ψ consists of the clauses for admissibility and the instrumented clauses
of all in rangeA,R, i.e. these clauses may be dropped during the running time.
The idea is that if I |= ψk, then E = {a | I(a) = T} is an admissible set in
F and |E+

R | = |A| − k, since we allow to drop k clauses of all in rangeA,R and
block previously computed MCSes. This means that E is a semi-stable extension
of F , since there is no assignment I ′ which satisfies admA,R and a superset of

all in rangeIA,R. We need to slightly modify Algorithm 2 to incorporate our
reasoning task. We utilize the backbone algorithm in line 7 to compute in X
the set of skeptically accepted arguments. Since all satisfying interpretations
of ψk are semi-stable extensions we compute the set of atoms set to true in
all such interpretations by applying Algorithm 1. There exists alternatives and
optimizations to compute MCSes and Algorithm 3 can be adapted to work with
these as long as all satisfying assignments can be computed w.r.t. the formula
reduced by each of its MCSes separately.

Using the Algorithm 3 for solving the AllSkeptsem problem, we can use its
output to calculate the unique eager extension, since we just have to compute
the subset-maximal admissible set within AllSkeptsem(F ) for an AF F . For this
we apply the restricted characteristic function a number of times bounded by

the number of arguments in the framework, i.e. F̂ |A|
F (AllSkeptsem(F )) results in

the eager extension of F .

3.2 Backbone Algorithm for Ideal Semantics

For the ideal semantics we make use of a method proposed in [16], which we recall
in Algorithm 4. The important point for our instantiation of this algorithm is
that we essentially need to compute AllCredadm and afterwards again, as before
for the eager semantics, a post-processing with the function F̂F . We define for
an AF F = (A,R) the auxiliary notion of adjacent arguments of an argument:

adj(a)
def
= {x | (x, a) ∈ R or (a, x) ∈ R}. Additionally we define the restriction of

an attack relation for a set S by R|S
def
= {(a, b) ∈ R | a ∈ S and b ∈ S}.

Briefly put, Algorithm 4 computes first the credulously accepted arguments
w.r.t. admissible sets and then a set X , which consists of all of the credulously
accepted arguments, except those, which have an adjacent argument also cred-
ulously accepted. This set acts as a kind of approximation of the skeptically

Algorithm 4. Ideal-Extension [16]

Require: AF F
def
= (A,R)

Ensure: returns ideal(F )
1: Cred = AllCredadm(F )
2: Out = A \ Cred
3: X = {x ∈ Cred | adj(x) ⊆ Out}
4: F ′ = (X ∪Out, R|(X∪Out))

5: return F̂ |A|
F ′ (X)
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accepted arguments w.r.t. the preferred semantics. Constructing then the new
framework F ′ and computing the restricted characteristic function at most |A|
times in this new framework for X , suffices for computing the ideal extension.

Now it is straightforward to instantiate this with the help of a backbone
algorithm. Given an AF F = (A,R), we first simply compute the backbone of
admA,R. Let S be the output of Algorithm 1 on this formula, then O = {a |
¬a ∈ S} be the set of variables set to false in every satisfying interpretation of
admA,R. Since we know that this formula is satisfiable, this means that (A\O) =
AllCredadm(F ). The rest of Algorithm 4 can be achieved with post-processing.

4 Experimental Evaluation

In this section we will present our concrete implementation of the presented
algorithms and an experimental evaluation.

In our implementations the overall workflow from Fig. 2 is handled by Unix
shell scripts and for the main procedures we utilize already implemented MCS
and backbone solvers. For all our implementations we adopt the input language
from the ASPARTIX system [21], a system capable of solving many problems on
AFs, based on the answer-set programming (ASP) paradigm. The first step of
the workflow, the translation of this language to a boolean formula, is handled
by a parser implemented in C++.

Our instantiation of the presented algorithm for semi-stable semantics covers
the reasoning tasks of enumerating all extensions, credulous and skeptical rea-
soning, as well as computing the set of all skeptically accepted arguments for a
given AF. For the main procedure we utilize the Camus solver [28] in version
1.0.5, which we slightly modified to handle our reasoning tasks. The distinction
between hard and soft constraints is implemented in Camus by the possibility
to supply additional clauses for the relaxation literals. Based on this we imple-
mented the necessary post-processing for computing the eager extension with
an ASP call using the clingo ASP solver [26], version 3.0.4. Note that the post-
processing step is inherently computable in polynomial time, the ASP solver for
this step was used for its declarative and easy-to-use nature. The implemen-
tation for the ideal semantics to compute its unique extensions is based on the
backbone solver JediSAT [37], version 0.2 beta. The post-processing step is again
handled by an ASP call.

To show the feasibility of our approach, we conducted preliminary experiments
for checking the performance of the presented algorithms. All tests were executed
under OpenSUSE with Intel Xeon processors (2.33 GHz) and 49 GB memory.
We note that this high amount of memory is not actually used by our algorithms,
we set a hard limit of 4 GB memory usage on all runs, which was never reached.

Regarding test instances for our experiments, we note that, as identified
in [17], there is still need for benchmark libraries for AFs. Without such standard
libraries artificially generated AFs are the main source of test instances. There-
fore, we follow the line of [19] for benchmarking and used randomly generated
AFs for testing. For our random creation of AFs we fix a number of arguments
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Fig. 3. Mean running time for CEGARTIX and the MCS-based algorithm

and insert for any pair of arguments (a, b) with a = b the attack from a to b
with a given probability p ∈ {0.1, 0.2, 0.3, 0.4}. For each parameter we created
ten random AFs. We considered AFs (A,R) of size |A| ∈ {100, 150, 200, 225,
250, 275, 300, 325, 350}, which totaled in 360 AFs. We have chosen to use larger
random AFs than in [19], since the SAT-based procedures appear to be able to
handle small-sized AFs very well.

For all runs we enforced a timeout of five minutes and measure the whole time
for the workflow from Fig. 2, i.e. combining parsing, solving and post-processing
time. We tested the following reasoning tasks.

– Credulous and skeptical reasoning for semi-stable semantics
– Enumeration of all semi-stable extensions
– Computing the ideal extension
– Computing the eager extension

We compare credulous and skeptical reasoning for semi-stable semantics with
CEGARTIX [19], a SAT-based system for reasoning tasks in abstract argumen-
tation, which was shown to be a competitive solver. We chose version 0.1a of

Table 2. Number of solved instances for CEGARTIX and the MCS-based algorithm

reasoning task \ |A| 200 225 250 275 300 325 350 % solved overall

CEGARTIX Credsem 120 120 112 91 71 64 50 74.8%
CEGARTIX Skeptsem 120 120 104 84 69 60 48 72%
MCS Credsem 117 120 117 111 85 77 76 83.7%
MCS Skeptsem 117 120 116 102 79 73 73 81%
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CEGARTIX for our tests, since in this version CEGARTIX is able to utilize
incremental SAT-solving techniques and further versions of CEGARTIX mainly
feature capabilities to use different SAT solvers. We let both CEGARTIX and
the MCS-based approach compute the queries for three pre-specified arguments
for AFs with at least 200 arguments, i.e. credulous and skeptical acceptance with
three different arguments. This gives us 120 queries per AF size and in total 840
queries. The results are summarized in Fig. 3, where we show the mean running
time in seconds for both approaches, excluding timed out runs. We grouped to-
gether queries on AFs with the same number of arguments. We see that the
MCS-based approach is competitive and in cases even somewhat outperforming
CEGARTIX. Note that by excluding the timeouts, which are shown in Table 2,
the figures slightly favor CEGARTIX for large AFs.

It is interesting to note that the expected edge density, which we set be-
tween 0.1 and 0.4 appears to play an important role for the performance of the
SAT-based approaches. Out of the total 212 timeouts encountered for credulous
reasoning under semi-stable semantics for the solver CEGARTIX for all consid-
ered queries, 113 were on AFs with 0.1, 75 on AFs with 0.2 and 24 on AFs with
0.3 expected edge density. Showing a similar picture, the MCS-approach had 137
total timeouts and 105 of them with 0.1 and 32 with 0.2 expected edge density.
For skeptical reasoning the results are similar.

For comparing our MCS-approach w.r.t. the enumeration of all semi-stable
extensions we use an ASP approach [18] utilizing metasp for our performance
test. For this ASP approach we used gringo 3.0.5 and claspD 1.1.4 [26]. We
tested both approaches on the same AFs as for the credulous and skeptical
reasoning under semi-stable semantics and out of the 280 AFs we tested, the
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MCS-approach solved (i.e. enumerated all semi-stable extensions) 172 instances
while ASP with metasp solved only seven instances within the time limit of five
minutes.

For ideal and eager semantics, we report the mean computation time for AFs
of size |A| ∈ {100, 150, 200, 250} in Fig. 4 to compute the unique extension.
Hence we compute the ideal respectively eager extension for each AF separately,
which gives us 40 computations per number of arguments and 160 such calls in
total per semantics. We encountered one timeout for eager reasoning on AFs
with size 200 and ten with AFs of size 250. For ideal reasoning we encountered
17 timeouts with AFs of size 250. Other systems capable of solving these tasks
are e.g. ASPARTIX, but which could only solve instances with a low number of
arguments, i.e. AFs with less than 30 arguments, which is the reason we excluded
this system in a comparison with our implementations. For ideal reasoning AS-
PARTIX uses a complex ASP encoding technique [23] for the DLV solver [27] (we
used build BEN/Dec 16 2012 of DLV). The system ConArg [6], which is based
on constraint satisfaction solvers, appears to be more competitive. ConArg is
a visual tool, so more detailed performance comparisons are subject of future
work. We tested some randomly generated AFs with 100 and 150 arguments
and let ConArg compute the ideal extension, which it solved within ten seconds
for the AFs with 100 arguments and took more than a minute for AFs with
150 arguments, but one has to factor in that a graphical representation of large
graphs may consume a part of the resources needed for solving the problem.

5 Conclusion

In this paper, we presented new algorithms utilizing extensions of the SAT prob-
lem for hard tasks in abstract argumentation. In particular we showed how to
solve reasoning tasks under the semi-stable and eager semantics using an MCS
solver and based an algorithm for the ideal semantics on the computation of
a backbone of a boolean formula. Reduction-based approaches for semantics
in abstract argumentation include transformations to equational systems [25],
propositional logic [5] and quantified boolean formulas [2,22]. Our approach dif-
fers from these in that we do not use a single encoding for the whole problem,
but rather solving partial problems iteratively using solvers for extensions to the
SAT problem. Preliminary experiments using our approaches are very promis-
ing, showing a good performance without much engineering effort. The benefit
of applying SAT-solvers for abstract argumentation is also witnessed by a very
recent related approach [10] for enumeration of preferred extensions. Our ap-
proach for semi-stable semantics can be adapted for preferred semantics and a
performance comparison with the systems [10,19] is an interesting subject for
future work. Further interesting directions are on one side incorporating opti-
mizations developed in the SAT community for our approaches and on the other
side applying the proposed methods to further hard problems in abstract argu-
mentation and extensions thereof. Not in the least, this indicates that modern
SAT technology might be well applicable to other hard problems in the areas of
knowledge representation and AI.
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Abstract. In a previous work we defined a recursive semantics for reasoning
about which arguments should be warranted when extending Defeasible Argu-
mentation with defeasibility levels for arguments. Our approach is based on a
general notion of collective conflict among arguments and on the fact that if an
argument is warranted it must be that all its sub-arguments also are warranted. An
output of a program is a pair consisting of a set of warranted and a set of blocked
arguments with maximum strength. Arguments that are neither warranted nor
blocked correspond to rejected arguments. On this recursive semantics a program
may have multiple outputs in case of circular definitions of conflicts among argu-
ments and for these circular definitions of conflicts we define what output, called
maximal ideal output, should be considered based on the claim that if an argument
is excluded from an output, then all the arguments built on top of it should also
be excluded from that output. In this paper we show a web based system we have
designed and implemented to compute the output for programs with single and
multiple outputs. For programs with multiple outputs the system also computes
the maximal ideal output. An interesting feature of the system is that it provides
not only both sets of warranted an blocked arguments with maximum strength
but also useful information that allows to better understand why an argument is
either warranted, blocked or rejected.

Keywords: weighted defeasible argumentation, recursive semantics, web based
technologies.

1 Introduction and Motivation

The study of argumentation may, informally, be considered as concerned with how
assertions are proposed, discussed, and resolved in the context of issues upon which
several diverging opinions may be held [7].

Defeasible argumentation is a natural way of identifying relevant assumptions and
conclusions for a given problem which often involves identifying conflicting informa-
tion, resulting in the need to look for pros and cons for a particular conclusion [19].
This process may involve chains of reasoning, where conclusions are used in the as-
sumptions for deriving further conclusions and the task of finding pros and cons may
be decomposed recursively [8,20].
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Defeasible Logic Programming (DeLP) [14] is a formalism that combines techniques
of both logic programming and defeasible argumentation. As in logic programming,
knowledge is represented in DeLP using facts and rules; however, DeLP also provides
the possibility of representing defeasible knowledge under the form of weak (defeasi-
ble) rules, expressing reasons to believe in a given conclusion. In DeLP, a conclusion
succeeds in a program if it is warranted, i.e., if there exists an argument (a consistent set
of defeasible rules) that, together with non-defeasible rules and facts, entails the con-
clusion, and moreover, this argument is found to be undefeated by a warrant procedure.
This builds a dialectical tree containing all arguments that challenge this argument, and
all counterarguments that challenge those arguments, and so on, recursively. Actually,
dialectical trees systematically explore the universe of arguments in order to present an
exhaustive synthesis of the relevant chains of pros and cons for a given conclusion.

In [1] we defined a new recursive semantics for DeLP extended with weights for
arguments and based on a general notion of collective (non-binary) conflict among ar-
guments. In this framework, called Recursive Possibilistic DeLP (RP-DeLP for short),
an output (or extension) of a program is a pair consisting of a set of warranted and a
set of blocked formulas with maximum strength. Arguments for both warranted and
blocked formulas are recursively based on warranted formulas but, while warranted
formulas do not generate any collective conflict, blocked conclusions do. Formulas that
are neither warranted nor blocked correspond to rejected formulas. The key feature that
our warrant recursive semantics addresses is the closure under subarguments postulate
recently proposed by Amgoud [6], claiming that if an argument is excluded from an out-
put, then all the arguments built on top of it should also be excluded from that output.
Then, in case of circular definitions of conflict among arguments, the recursive seman-
tics for warranted conclusions may result in multiple outputs for RP-DeLP programs.
Following the approach of Pollock [18], in [1] we characterized circular definitions of
conflict among arguments by means of what we called Warrant Dependency Graphs,
representing support and conflict relations between argument conclusions.

In [2] we considered the problem of deciding the set of conclusions that can be ul-
timately warranted in RP-DeLP programs with multiple outputs. The usual skeptical
approach would be to adopt the intersection of all possible outputs. However, in addi-
tion to the computational limitation, as stated in [18], adopting the intersection of all
outputs may lead to an inconsistent output. Intuitively, for a conclusion, to be in the
intersection does not guarantee the existence of an argument for it, that is recursively
based on ultimately warranted conclusions. With the aim of computing single outputs
and based on the idea defined by Dung, Mancarella and Toni [11,12] as an alternative
skeptical basis for defining collections of justified arguments in abstract argumentation
frameworks, we characterized what we called Maximal Ideal Output for an RP-DeLP
program based on a recursive definition considering the maximum set of conclusions
based on warranted information and not involved in neither a conflict nor a circular
definition of conflict.

In this paper we present a web based system we have designed and implemented
to compute the set of conclusions that can be ultimately warranted in RP-DeLP pro-
grams. The system considers both types of programs: programs with single output and
programs with multiple outputs. For programs with multiple outputs the system also
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computes the maximal ideal output. The reasoning algorithm of the system has been
implemented based on two different formalisms: SAT based encodings and ASP based
encodings. The web based system allows the user to select the implementation of the
reasoning algorithm and allowing to compare the efficiency in terms of execution time.

An interesting feature of the system is that it provides not only both sets of war-
ranted an blocked conclusions with maximum strength but also useful information that
allows to better understand why a conclusion is either warranted, blocked or rejected.
In particular the system shows the consistent part of the program that supports the set
of warranted conclusions. This sub-program is an explanation of the reason why con-
clusions are warranted. For the set of blocked conclusions, the system also shows the
part of the program that supports them. However, in this case the sub-program is incon-
sistent, this being the reason why conclusions are not warranted. Regarding the latter,
the system provides the user with information on which parts of the program should be
refined to reduce the set of blocked conclusions, which might imply either refining it
with new information or assigning new defeasibility levels.

After this introduction, the rest of the paper is structured as follows. In Section 2
we recall the main definitions from RP-DeLP, we summarize the semantic differences
between the set of multiple outputs for a program and its maximal ideal output, and
we show how the strength of warranted and blocked conclusions spreads between de-
feasibility levels. In Section 3 we design an algorithm for computing the set of outputs
for programs with multiple outputs when considering weights for defeasible facts and
rules. The algorithm we present here is an extension of the one recently presented in [4],
that worked only with programs with one defeasible level. In Section 4 we present the
web based system architecture, and in Section 5 we explore its application to decision
support environments. We end up with some concluding remarks.

2 Weighted Recursive Semantics of RP-DeLP

The language of RP-DeLP, denoted L, is inherited from the language of logic program-
ming, including the notions of atom, literal, rule and fact. Formulas are built over a finite
set of propositional variables {p, q, . . .} which is extended with a new (negated) atom
“∼p” for each original atom p. Atoms of the form p or ∼p will be referred as literals.1

Formulas of L consist of rules of the form Q ← P1 ∧ . . . ∧ Pk , where Q,P1, . . . , Pk

are literals. A fact will be a rule with no premises. We will also use the name clause
to denote a rule or a fact. The R-DeLP framework is based on the propositional logic
(L,�) where the inference operator � is defined by instances of the modus ponens rule
of the form: {Q ← P1 ∧ . . . ∧ Pk , P1, . . . , Pk} � Q. A set of clauses Γ will be deemed
as contradictory, denoted Γ � ⊥, if , for some atom q, Γ � q and Γ � ∼q.

An RP-DeLP program P is a tuple P = (Π,Δ,$) over the logic (L,�), where
Π,Δ ⊆ L, and Π � ⊥. Π is a finite set of clauses representing strict knowledge
(information we take for granted they hold true), Δ is another finite set of clauses rep-
resenting the defeasible knowledge (formulas for which we have reasons to believe they

1 For a given literal Q, we write ∼Q as an abbreviation to denote “∼q” if Q = q and “q” if
Q = ∼q.
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are true). Finally, $ is a total pre-order on Π ∪ Δ representing levels of defeasibility:
ϕ ≺ ψ means that ϕ is more defeasible than ψ. Actually, since formulas in Π are not
defeasible, $ is such that all formulas in Π are at the top of the ordering. For the sake
of a simpler notation we will often refer in the paper to numerical levels for defeasible
clauses and arguments rather than to the pre-ordering $, so we will assume a mapping
N : Π ∪Δ→ [0, 1] such that N(ϕ) = 1 for all ϕ ∈ Π and N(ϕ) < N(ψ) iff ϕ ≺ ψ.2

The notion of argument is the usual one. Given an RP-DeLP program P = (Π,Δ,$),
an argument for a literal (conclusion) Q of L is a pair A = 〈A,Q〉, with A ⊆ Δ such
that Π ∪ A � ⊥, and A is minimal (w.r.t. set inclusion) such that Π ∪ A � Q. If
A = ∅, then we will call A a s-argument (s for strict), otherwise it will be a d-argument
(d for defeasible). We define the strength of an argument 〈A,Q〉, written s(〈A,Q〉),
as follows: (i) s(〈A,Q〉) = 1 if A = ∅; and (ii) s(〈A,Q〉) = min{N(ψ) | ψ ∈ A},
otherwise.

The notion of subargument is referred to d-arguments and expresses an incremen-
tal proof relationship between arguments which is defined as follows. Let 〈B,Q〉 and
〈A,P 〉 be two d-arguments such that the minimal sets (w.r.t. set inclusion) ΠQ ⊆ Π
and ΠP ⊆ Π such that ΠQ ∪ B � Q and ΠP ∪ A � P verify that ΠQ ⊆ ΠP . Then,
〈B,Q〉 is a subargument of 〈A,P 〉, written 〈B,Q〉 � 〈A,P 〉, when either B ⊂ A
(strict inclusion for defeasible knowledge), or B = A and ΠQ ⊂ ΠP (strict inclusion
for strict knowledge). A literal Q of L is called justifiable conclusion w.r.t. P if there
exists an argument for Q, i.e., there exists A ⊆ Δ such that 〈A,Q〉 is an argument.

The warrant recursive semantics for RP-DeLP is based on the following notion of
collective conflict in a set of arguments which captures the idea of an inconsistency
arising from a consistent set of justifiable conclusions W together with the strict part
of a program and the set of conclusions of those arguments. Let P = (Π,Δ,$) be
an RP-DeLP program and let W ⊆ L be a set of conclusions. We say that a set of
arguments {〈A1, Q1〉, . . . , 〈Ak, Qk〉} minimally conflicts with respect to W iff the two
following conditions hold: (i) the set of argument conclusions {Q1, . . . , Qk} is contra-
dictory with respect to W , i.e. it holds that Π ∪W ∪ {Q1, . . . , Qk} � ⊥; and (ii) the
set {〈A1, Q1〉, . . . , 〈Ak, Qk〉} is minimal with respect to set inclusion satisfying (i), i.e.
if S � {Q1, . . . , Qk}, then Π ∪W ∪ S � ⊥.

This general notion of conflict is used to define an output for an RP-DeLP pro-
gram P = (Π,Δ,$) as a pair (Warr,Block) of subsets of L of warranted and blocked
conclusions respectively all of them based on warranted information but while war-
ranted conclusions do not generate any conflict, blocked conclusions do. Since we are
considering several levels of strength among arguments, the intended construction of
the sets of conclusions Warr and Block is done level-wise, starting from the highest
level and iteratively going down from one level to next level below. If 1 > α1 >
. . . > αp ≥ 0 are the strengths of d-arguments that can be built within P , we de-
fine: Warr = Warr(1) ∪ {∪i=1,pWarr(αi)} and Block = ∪i=1,pBlock(αi), where
Warr(1) = {Q | Π � Q}, and Warr(αi) and Block(αi) are respectively the sets of

2 Actually, a same pre-order � can be represented by many mappings, but we can take any of
them to since only the relative ordering is what actually matters.
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the warranted and blocked justifiable conclusions of strength αi and are required to
satisfy the following recursive constraints:3

1. Q ∈ Warr(αi)∪ Block(αi) iff there exists an argument 〈A,Q〉 of strength αi satis-
fying the following three conditions:

(V1) for each subargument 〈E,P 〉 � 〈A,Q〉 of strength β, P ∈ Warr(β);
(V2) Q ∈ Warr(> αi) ∪ Block(> αi);
(V3) ∼Q ∈ Block(> αi) andΠ∪Warr(> αi)∪{P | 〈E,P 〉 � 〈A,Q〉}∪{Q} � ⊥.

In this case we say that 〈A,Q〉 is valid with respect to the sets Warr(≥ αi) and
Block(> αi).

2. For every valid argument 〈A,Q〉 of strength αi we have that
- Q ∈ Block(αi) whenever there exists a set G of valid arguments of strength αi

such that
(i) 〈A,Q〉 � G, and

(ii) G ∪ {〈A,Q〉} minimally conflicts with respect to the set W = Warr(>
αi) ∪ {P | 〈E,P 〉 � G ∪ {〈A,Q〉}}.

- otherwise,Q ∈ Warr(αi).

Intuitively, an argument 〈A,Q〉 is valid whenever (V1) it is based on warranted con-
clusions; (V2) there does not exist a valid argument for Q with greater strength; and
(V3) Q is consistent with already warranted and blocked conclusions. Then, a valid
argument 〈A,Q〉 becomes blocked as soon as it leads to some conflict among valid ar-
guments of same strength and the set of already warranted conclusions, otherwise it is
warranted.

Next we outline some relevant properties regarding warranted and blocked conclu-
sions when considering stratified strengths of arguments:

1. If Q ∈ Warr(α) ∪ Block(α), then there exists an argument 〈A,Q〉 of strength α
such that for all subargument 〈E,P 〉 � 〈A,ϕ〉 of strength β, ψ ∈ Warr(β).

2. If Q ∈ Warr(α) ∪ Block(α), then for any argument 〈A,Q〉 of strength β, with β >
α, there exists a subargument 〈E,P 〉 � 〈A,Q〉 of strength γ and P ∈ Warr(γ).

3. If Q ∈ Warr, then Q,∼Q ∈ Block.
4. If Q ∈ Warr ∪ Block, then either ∼Q ∈ Block, or for all argument 〈A,Q〉 there

exists a subargument 〈E,P 〉 � 〈A,Q〉 such that P ∈ Warr or Π ∪ Warr(> αi) ∪
{P | 〈E,P 〉 � 〈A,Q〉} ∪ {Q} � ⊥.

In [1] we showed that, in case of some circular definitions of conflict among ar-
guments, the output of an RP-DeLP program may be not unique, that is, there may
exist several pairs (Warr,Block) satisfying the above conditions for a given RP-DeLP
program. Following the approach of Pollock [18], circular definitions of conflict were
formalized by means of what we called warrant dependency graphs. A warrant depen-
dency graph represents (i) support relations of almost valid arguments with respect to
valid arguments and (ii) conflict relations of valid arguments with respect to almost
valid arguments. An almost valid argument is an argument based on a set of valid argu-
ments and whose status is warranted or blocked (but not rejected), whenever every valid

3 In what follows we will also write Warr(≥ αi) and Warr(> αi) to denote ∪β≥αiWarr(β) and
∪β>αiWarr(β), respectively, and analogously for Block(> αi), assuming Block(> α1) = ∅.
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argument in the set is warranted, and rejected, otherwise. Then, a cycle in a warrant de-
pendency graph represents a circular definition of conflict among a set of arguments.

Based on warrant dependency graphs, in [2] we defined the characteristics to be met
by an RP-DeLP program to have a single output. Moreover we considered the prob-
lem of deciding the set of conclusions that can be ultimately warranted in RP-DeLP
programs with multiple outputs. The usual skeptical approach would be to adopt the
intersection of all possible outputs. However, in addition to the computational limita-
tion adopting the intersection of all outputs may lead to an inconsistent output (in the
sense of violating the base of the underlying recursive warrant semantics) in case some
particular recursive situation among conclusions of a program occurs. Intuitively, for a
conclusion, to be in the intersection does not guarantee the existence of an argument for
it that is recursively based on ultimately warranted conclusions.

For instance, consider the following situation involving three conclusions P , Q, and
T , where P can be warranted whenever Q is blocked, and vice-versa. Moreover, sup-
pose that T can be warranted when either P orQ are warranted. Then, according to the
warrant recursive semantics, we would get two different outputs: one where P and T
are warranted and Q is blocked, and the other one whereQ and T are warranted and P
is blocked. Then, adopting the intersection of both outputs we would get that T would
be ultimately warranted, however T should be in fact rejected since neither P norQ are
ultimately warranted conclusions.4

According to this example, one could take then as the set of ultimately warranted
conclusions of RP-DeLP programs those conclusions in the intersection of all outputs
which are recursively based on ultimately warranted conclusions. However, as in RP-
DeLP there might be different levels of defeasibility, this approach could lead to an
incomplete solution, in the sense of not being the biggest set of ultimately warranted
conclusions with maximum strength.

For instance consider the above example extended with two defeasibility levels as
follows. Suppose P can be warranted with strength α wheneverQ is blocked, and vice-
versa. Moreover, suppose T can be warranted with strength α whenever P is warranted
at least with strength α, and that T can be warranted with strength β, with β < α,
independently of the status of conclusions P and Q. Then, again we get two different
outputs: one output warrants conclusions P and T with strength α and blocks con-
clusion Q, and the other one warrants conclusions Q and T with strengths α and β,
respectively, and blocks P . Now, if we restrict ourselves to only those conclusions in
the intersection which are recursively based on ultimately warranted conclusions, we
get that conclusion T is finally rejected, since T is warranted with a different argument
and strength in each output. However, as we are interested in determining the biggest
set of warranted conclusions with maximum strength, it seems quite reasonable to reject
T at level α but to warrant it at level β.

Therefore, we are led to define the maximal ideal output for an RP-DeLP program
as a pair (Warr,Block) of respectively warranted and blocked conclusions, with a max-
imum strength, such that:

4 Remember that our warrant recursive semantics is based on the fact that if an argument is
excluded from an output, then all the arguments built on top of it should also be excluded from
that output.
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(i) the arguments of all conclusions in Warr ∪ Block are recursively based on war-
ranted conclusions;

(ii) a conclusion is warranted (at level α) if does not generate any conflict with the set
of already warranted conclusions (at a level β > α) and it is not involved in any
cycle of a warrant dependency graph; otherwise, it is blocked; and

(iii) a conclusion is rejected if it can be neither warranted nor blocked to any level.

Recently in [5] we have proved that the maximal ideal output for an RP-DeLP pro-
gram is unique and we have characterized the relationship between the sets of warranted
and blocked conclusions for the maximal ideal output for an RP-DeLP program with
multiple outputs and the sets of warranted and blocked conclusions to each of these
outputs. In this context we have proved that if an RP-DeLP program has a single output
then it coincides with the maximal ideal output. Moreover, when we restrict ourselves
to the case of RP-DeLP programs with a single defeasibility level, we get the following
property of the maximal ideal output. Let P = (Π,Δ,$) be an RP-DeLP program
with a single defeasibility level for Δ and let (Warr,Block) be the maximal ideal out-
put for P . Then, for each output (Warr′,Block′) for P , we have Warr ⊆ Warr′ and
Block ⊆ Warr′ ∪ Block′. Moreover, under this hypothesis of a single defeasibility level
forΔ, we have that the set of warranted conclusions satisfies closure with respect to the
strict part of the program Π and the inference operator �; i.e., if (Warr,Block) is the
maximal ideal output for P and Π ∪ Warr � Q, then Q ∈ Warr.

In case we consider multiple defeasibility levels, the set of conclusions that are war-
ranted and blocked at each level is decisive for determining which arguments are valid
at lower levels. Then, since the maximal ideal output for an RP-DeLP program corre-
sponds to a skeptical criterion regarding warranted conclusions, we get that a conclu-
sion can be warranted for the maximal ideal output at some level α and, due to the set
of warranted conclusions at higher levels, rejected for each output (extension). Then,
under this general hypothesis of multiple defeasibility levels for Δ, we have the fol-
lowing result. Let P = (Π,Δ,$) be an RP-DeLP program with defeasibility levels
1 > α1 > . . . > αp > 0, and let (Warr,Block) be the maximal ideal output for P .
If Π ∪ Warr(≥ αi) � Q and Π ∪ Warr(> αi) � Q, then either Q ∈ Warr(αi), or
Q ∈ Block(> αi), or ∼Q ∈ Block(> αi).

Our maximal ideal output semantics is based on the idea that if a conclusion P is
warranted at level β so it could also be guaranteed in any higher level α. A different
approach could have been to consider that blocked conclusions at one level are not
propagated to lower levels. In such a case it could happen to have a conclusion Q
blocked at a given levelα and to haveP , withΠ∪W (≥ α)∪{P,Q} � ⊥, warranted at a
lower level β. We plan to consider such alternative semantics for our system, following
a similar line to the one in [17].

3 Computing the Set of Outputs for an RP-DeLP Program

From a computational point of view, the set of outputs for a recursive based semantics
can be computed by means of a recursive algorithm, starting with the computation of
warranted conclusions from strict clauses and recursively going from warranted con-
clusions to defeasible arguments based on them.



162 A. Teresa et al.

Recently, in [4] we have defined an algorithm for computing the set of outputs for
programs with multiple outputs but with a single level for defeasible facts and rules.
In this section we extend the algorithm in order to consider multiple defeasible levels
which is achieved using a stack to store the set of partially computed outputs. For every
level the algorithm must compute the sets of valid and almost valid arguments and has
to check the existence of conflicts between valid arguments and cycles at some warrant
dependency graph. When a cycle is found the algorithm explores all possible outputs
and stores them at the top of the stack in order to be considered at the next level.

Algorithm RP-DeLP outputs

Input P = (Π,Δ,�): An RP-DeLP program
Output O: Set of outputs for P
Variables

(W,B): Current output for P
S(W,B,α): Stack of partially computed outputs for P

Method
O := ∅;
W := {Q | Π � Q};
B := ∅;
α := 1;
Push(S, (W,B,α));
while (¬Empty_Stack(S)) do

(W,B,α) = Top(S);
Pop(S);
while (α >lower_level(�)) do

α := next_level(�);
level_computing(W , B, α, S, O)

end while
end while

end algorithm

The algorithm RP-DeLP outputs first computes the set of warranted conclusions
form the set of strict clausesΠ and uses the stack S to store the set of partially computed
outputs. For every partially computed output and every defeasible level 1 > α > 0, the
procedure level_computing determines the sets of warranted and blocked con-
clusions of the output with strength α: the procedure level_computing receives a
partially computed output with a set of warranted conclusions W (> α) and a set of
blocked conclusions B(> α), and computes W (≥ α) and B(≥ α) for every exten-
sion. Extensions are recursively computed and stored in the stack S by means of the
procedure weighted_extension.

Procedure level_computing (in_out W , B, α, S, O)
Variable VA: Set of valid arguments
Method

VA : = {〈A,Q〉 with strength α | 〈A,Q〉 is valid w.r.t. W and B};
weighted_extension (W , B, α, VA, S, O);
(W,B,α) = Top(S);
Pop(S)

end procedure level_computing
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The procedure level_computing first computes the set VA of valid arguments
with respect to W (> α) and B(> α). Then, the procedure weighted_extension
dynamically updates the set VA of valid arguments depending on new warranted and
blocked arguments with strength α. When an RP-DeLP program has multiple outputs,
every output is recursively computed by the procedure weighted_extension and
new outputs are stored in the stack S. Procedure level_computing returns to the
main program RP-DeLP outputs the last generated output which is used as starting
point for the next defeasibility level at the main program RP-DeLP outputs.

Procedure weighted_extension (in W , B, α, VA; in_out S, O)

Variables
Wext: Extended set of warranted conclusions
VAext: Extended set of valid arguments
is_leaf : Boolean

Method
is_leaf := true;
while (VA �= ∅ and is_leaf = true) do

while (∃〈A,Q〉 ∈ VA |
¬ conflict(〈A, Q〉, VA, W , not_dependent(〈A, Q〉, almost_valid(VA, (W , B))))
and ¬ cycle(〈A, Q〉, VA, W , almost_valid(VA, (W , B))) do

W := W ∪ {Q};
VA := VA\{〈A,Q〉} ∪ {〈E, P 〉 with strength α | 〈E,P 〉 is valid w.r.t. W and B}

end while
I := {〈A,Q〉 ∈ VA | conflict(α, 〈A,Q〉, VA, W , ∅) };
B := B ∪ {Q | 〈A,Q〉 ∈ I};
VA := VA\I;
J := {〈A,Q〉 ∈ VA | cycle(α, 〈A,Q〉, VA, W , almost_valid(α, VA, W , B)) };
for each argument (〈A,Q〉 ∈ J) do

Wext := W ∪ {Q};
VAext := VA\{〈A,Q〉} ∪ {〈E, P 〉 with strength α | 〈E, P 〉 is valid w.r.t. Wext and B};
weighted_extension (Wext, B, α, VAext, S, O)

end for
if (J �= ∅) then is_leaf := false

end while
if ((W,B,α) �∈ S and is_leaf = true ) then

Push(S, (W,B, α));
if (α = lower_level(
)) then O := O ∪ {(W,B)}

end if
end procedure weighted_extension

The recursive procedureweighted_extension receives as input a partially com-
puted output (W,B) at a level α and the set of valid arguments VA with respect to W
and B and dynamically updates the set VA depending on new warranted and blocked
conclusions and the appearance of cycles in some warrant dependence graph. When a
cycle is found in a warrant dependence graph, each valid argument of the cycle can lead
to a different output. Then, the procedure weighted_extension selects one valid
argument of the cycle and recursively computes the resulting output by warranting the
selected argument. The procedure finishes when the status for every valid argument is
computed. If the recursive analysis leads to a new extension, it is stored in the stack S.
Moreover, if the level computing α corresponds with the lower strength of the program
arguments, each new output is added to the set of outputs O.
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The function almost_valid computes the set of almost valid arguments based
on some valid arguments in VA. The function not_dependent computes the set
of almost valid arguments which do not depend on 〈A,Q〉. The function conflict
has two different functionalities. On the one hand, the function conflict checks
conflicts among the argument 〈A,Q〉 and the set VA of valid arguments, and thus,
every valid argument involved in a conflict is blocked. On the other hand, the func-
tion conflict checks possible conflicts among the argument 〈A,Q〉 and the set VA
of valid arguments extended with the set of almost valid arguments whose supports
depend on some argument in VA\{〈A,Q〉}, and thus, every valid argument with op-
tions to be involved in a conflict remains as valid. Finally, the function cycle checks
the existence of a cycle in the warrant dependency graph for the set of valid argu-
ments VA and the set of almost valid arguments based on some valid arguments in VA.
In [2] we showed that whenever cycle returns true for 〈A,Q〉, then a conflict will be
detected with the set of almost valid arguments which do not depend on 〈A,Q〉. More-
over, the set of valid arguments J computed by function cycle can also be com-
puted by checking the stability of the set of valid arguments after two consecutive
iterations, so it is not necessary to explicitly compute dependency graphs. Hence the
weighted_extension procedure needs to compute two main queries during its ex-
ecution: i) whether an argument is almost valid and ii) whether there is a conflict for a
valid argument.

In [2] and [3] we proposed SAT and ASP encodings, respectively, for resolving both
queries with a SAT and an ASP solver. In both cases, only programs with a single out-
put and a single strength for defeasible arguments were considered. Recently, in [4] we
have provided experimental results regarding the performance of the SAT based imple-
mentation for programs with multiple outputs but with a single strength for defeasible
arguments. This is the first time that we consider programs with multiple outputs and
multiple strengths for defeasible arguments. The web based system also allows us to
compute the maximal ideal output for this programs.

4 Web System Architecture

In this section we describe the architecture of the web based system we have designed
and implemented to process RP-DeLP programs 5 and which is available at
http://arinf.udl.cat/rp-delp.

A web application is a software tool which is available through a network of com-
puters, in most of the cases this software is being executed in a server and accessible
by all the clients connected to the same network. That software provides a common
interface which is supported by a web browser. One of the main features of a web ap-
plication is ubiquity, that means that the application is ready as long as there is access to
the network. Another advantage is that the only software required at the client part is a
web browser. A key reason for its popularity is the fact that the software can be updated
and maintained without the necessity of installing or disturbing the clients. There are

5 We plan to deliver an open-source version as soon as we consider the system is sufficiently
mature.

http://arinf.udl.cat/rp-delp
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more advantages, such as the inherent cross-platform compatibility and the lack of high
system requirements, because most of the processing tasks are executed in the server
side.

However, there are also some inconveniences, as a web interface is not easily adapt-
able to other systems. To solve this drawback we designed a web system capable of solv-
ing both instances posted through a web interface and also instances received through
HTTP requests. By using HTTP protocol, any client will be able to send a query without
the necessity of filling a web interface.

Our system is allocated in a stand-alone server where all the required software is
installed, including a web server to handle HTTP requests, the RP-DeLP algorithm to
handle the user programs and the rest of the software required by the system, such as
the ASP and SAT solvers. As said previously, the user can access to the server using a
web browser through the web interface or by posting an HTTP request. The RP-DeLP
algorithm is implemented with Python. In Figure 1 we show the web interface structure
of the system.

Fig. 1. Web interface form for submitting RP-DeLP programs

The web interface is divided into two main parts. The first part is devoted to choose
the computation options. The Maximal Ideal radio button computes the maximal ideal
output and the Multiple radio button computes the set of outputs. Remark that for
RP-DeLP programs with a single output both options will compute the same output.
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The SAT radio button encodes queries with SAT formulas and solves them with
minisat solver [13]. The ASP radio button encodes queries with ASP formulas and
solves them with clingo solver [16].

The second part of the web interface is devoted to define RP-DeLP programs. Each
defeasible level is depicted by a text box. The strict part of the program is defined in the
Strict Level text box. The defeasible part of the program can be defined using multiple
levels of strength, starting from the highest level and going down from one level to
the level below. The form is dynamically updated, so the user can add new levels by
pressing the Add level button. The Delete level erases the last added level and the Reset
button deletes all levels except the strict part and the first defeasible level. The Submit
button starts the computation process.

Clauses are defined as follows:

– All clauses must end with a dot.
– A literal is an alphanumeric word starting with a letter.
– Negation is denoted with symbol ∼.
– Implication symbol is written with :- and conjunction symbol is a comma. For

instance, q ← p1 ∧ ∼p2 is written in our formalism as: q :- p1, ∼p2.

Regarding the system architecture, represented in Figure 2, the computation process
starts with the translation of the RP-DeLP program and the set of computation options
into an XML file. Then, appropriate Python structures are built from the XML file in
order to be processed by the RP-DeLP algorithm. The RP-DeLP algorithm uses the
ASP or the SAT implementation depending on the computation options. When the RP-
DeLP algorithm finishes, outputs are stored in an XML file which allow us to provide
an HTTP response or an HTML page.

One of the main features of our system is that provides not only sets of warranted
and blocked conclusions, but also information to further understand the reasons why
conclusions are warranted or blocked.

In Table 1 we show the information that the system provides to the user for every
output. This information is divided in two parts. The first part shows the total number of
outputs, a label of the computing order of the output, the set of warranted conclusions of
the output and the time expended computing the output. For each warranted conclusion
there is a list of conclusions which support it and the strength of the conclusion. The
second part shows the set of blocked conclusions of the output and the set of conclusions
which support them. For each blocked conclusion the system informs about the strength
of the conclusion and the reason that leads to block it: a conflict or a cycle. For conflicts
it shows the set of valid conclusions that minimally conflicts. For cycles it shows the
set of valid conclusions of the cycle at some warrant dependency graph. Remark that a
conclusion is blocked due to a cycle whenever we compute the maximal ideal output,
otherwise conclusions are blocked due to conflicts.

5 A Running Example: Arguing about the Best Menu

In this section we consider the application of the RP-DeLP argumentation framework to
the construction of suitable menus in a restaurant. Suppose we have two persons in the
restaurant arguing about how to select the different menu items: Chicote (the chef) and
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Fig. 2. RP-DeLP web system architecture

Luis (the restaurant manager). Chicote is more concerned about the quality of the menu,
whereas Luis is more concerned about the price of the menu. However, both agree that
for preparing the menu they should reach a consensus that considers the preferences of
both.

The menu must contain appetizer, drink, first course, second course and dessert. For
appetizer and drink they have already reach the conclusion that they will serve mussels
(M) and red wine (R), respectively. But there is no a consensus about the other items.

For the first course, the options are Soup (FS) and Fish (FF ). For the second course
are Beef (SB) and pork (SP ). And for the dessert are fruit (DF ) and Sacher cake
(DC).

First case. As we have said, they both agree on the selection for the appetizer and
the drink. Also, they both agree that when pork is served, Sacher cake cannot be served.
So, at the strict level we have the following hard constraints:

Π = {M,R,∼DC ← SP}

The other conditions for the menu are not so clear, as both sides have some opposite
preferences, or not any preferences between some options. First, regarding what option
to select for each course and dessert, they do not have, a priori, any preference between
the two options for each menu item. But it is clear that once one option is selected,
the other should be avoided. So, at the defeasible level we have propositions for all
the possible options for first and second course and dessert and rules that express the
preference that once one option is selected for a course or for the dessert, the other
should not be selected.
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Table 1. Information provided by the system for an RP-DeLP program

Number of outputs # output Warranted conclusions Time

n i
P1 : {P1,1, . . . , P1,h} [αP1 ]

tn...
Pr : {Pr,1, . . . , Pr,u} [αPr ]

# output Blocked conclusions Support of blocked conclusions

i
Q1 : conflict(Q1,1, . . . , Q1,j) [αQ1 ] Q1 : {P1,1, . . . , P1,k}

...
...

Qs : cycle(Qs,1, . . . , Qs,v) [αQs] Qx : {Px,1, . . . , Px,w}

Secondly, regarding the preferred combinations of courses and dessert, Luis prefers
not to serve the more expensive first course (fish) and the more expensive dessert
(Sacher cake) when beef is the second course. By contrast, Chicote believes that when
beef is served, the preferred options for first course and dessert are fish and Sacher cake.

Then, all these conditions are encoded with a single defeasible level as follows: 6

Δα1 = { FF, FS, SB, SP,DC,DF,
F1 : ∼FF ← FS, F2 : ∼FS ← FF,
S1 : ∼SP ← SB, S2 : ∼SB ← SP,
D1 : ∼DC ← DF, D2 : ∼DF ← DC,
C1 : FF ← SB, C2 : DC ← SB,
L1 : ∼FF ← SB, L2 : ∼DC ← SB }

Given all these conditions, it turns out that there is an unique menu that we extract
with our argumentation system, that corresponds with the unique output of our program
shown in Table 2.

Table 2. Output of the system for our first running example

# of outputs Warranted conclusions Blocked conclusions Support of blocked

1

M : {M}[Π ] SP : conflict(SP, DC)[α1] ∼FF : {SB}
R : {R}[Π ] DC : conflict(SP, DC)[α1] FF : {FF}

SB : {SB}[α1] FF : conflict(FF,∼FF )[α1] SP : {SP}
DF : {DF}[α1] ∼FF : conflict(FF,∼FF )[α1] DC : {DC}
FS : {FS}[α1]

The reasons for this unique output are as follows. First, observe that there is a con-
flict between valid arguments for SP and DC, so they are blocked and SB and DF
can be warranted. Then given the warrant status of SB and the defeasible rule L1,
∼FF becomes valid, but then there is a conflict between FF and ∼FF , so they are
blocked. This allows to warrant FS. As we have an unique output, in this case this
output coincides with the maximal ideal output of the program.

6 The RP-DeLP program of Figure 1 corresponds with the set of facts and rules of this example.
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Second case. Suppose now that after some deliberation between Luis and Chicote,
they agree that the preference of Chicote of having fish and cake when we have beef
should receive more consideration than the preference of Luis of not having fish and
cake. But we still do not have a preference between fish and soup, so they are still in
the same defeasible level. So, we have the same strict knowledge as before, but two
defeasible levels α1 and α2 with α1 > α2. Then, the set of defeasible facts and rules is
stratified as follows:

Δα1 = { FF, FS, SB, SP,DC,DF
F1 : ∼FF ← FS, F2 : ∼FS ← FF,
S1 : ∼SP ← SB, S2 : ∼SB ← SP,
D1 : ∼DC ← DF, D2 : ∼DF ← DC,
C1 : FF ← SB, C2 : DC ← SB }

Δα2 = { L1 : ∼FF ← SB, L2 : ∼DC ← SB }

Given the modified defeasible knowledge, we have that now two menus are possible,
that correspond with the two outputs we have this time. We have two outputs because
now the warrant status of SB does not create a conflict between FF and ∼FF . So,
as both FF and FS are valid arguments at the defeasible level α1, together with the
defeasible rules F1 and F2 we have two conflicts with almost valid arguments that
cannot be resolved because there is a cyclic dependence. To break this cycle, we have
to consider two options: either to warrant FF or to warrant FS:

1. If we warrant FF , then ∼FS becomes valid so we have to block FS and ∼FS.
This gives our first output in Figure 3.

2. If we warrant FS, then ∼FF becomes valid so we have to block FF and ∼FF .
This gives our second output in Figure 3.

Fig. 3. Output of the system for our second running example
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For this case, the maximal ideal output has content shown in Table 3. Remark that
for our example the set of warranted conclusions for the maximal ideal output coincides
with the intersection of the set of warranted conclusions for each output which indicates
that Chicote and Luis coincide always at least on the second course and the dessert. 7

Table 3. Maximal ideal output for the second running example

# of outputs Warranted conclusions Blocked conclusions Support of blocked

1

M : {M}[Π ] SP : conflict(SP, DC)[α1] FF : {FF}
R : {R}[Π ] DC : conflict(SP, DC)[α1] FS : {FS}

SB : {SB}[α1] FF : cycle(FF,FS)[α1] SP : {SP}
DF : {DF}[α1] FS : cycle(FF, FS)[α1] DC : {DC}

6 Concluding Remarks

In this paper we have presented a web system implementing an argumentation-based
reasoner for general RP-DeLP programs (with multiple defeasibility levels), using two
different encodings, one based on SAT techniques and another one based on ASP tech-
niques. As it has been argued, having an available reasoner as a web application has
many advantages, specially to be an easy-to-use tool for non-expert potential users, for
instance as in [22,9]. On the other hand argumentation web services can also be used
as part of bigger systems, like in the BDI system described in [21] where they use an
available argumentation web system [15] for the DeLP argumentation framework [14].
It remains as future work to further develop the user interface to make it both more
informative and easier to manage. As more concrete application domains, we have al-
ready started to consider the use of our system to encourage users to discuss political
actions, through the use of argumentation structures, following the line of an existing
tool for that purpose that is based also on argumentation structures: the Parmenides
System [10].
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Abstract. This paper focuses on the concept of group responsibility and presents
a formal analysis of it from a strategic point of view. A group of agents is con-
sidered to be responsible for an outcome if the group can avoid the outcome.
Based on this interpretation of group responsibility, different notions of group
responsibility are provided and their properties are studied. The formal analysis
starts with the semantics of different notions of group responsibility followed by
their logical characterizations. The presented work is compared and related to the
existing work on responsibility.

1 Introduction

Responsibility is a central concept in philosophy and social sciences. Various types
of responsibility such as moral, legal, social, and organizational responsibility have
been identified [10]. Moreover, responsibility is classified along different dimensions
such as individual or collective, normative or descriptive, forward-looking or backward-
looking, and action-based or state-based [16]. An example of an individual forward-
looking responsibility is the obligation of an academic researcher to see to it that the
outcome of his research is truthful, not plagiarized, original, etc. This responsibility can
be moral, legal, social or organizational. In general, responsibility that is based on the
obligation to see to it that a state of affairs is the case is often seen as a forward-looking
responsibility. An example of a collective backward-looking responsibility is the re-
sponsibility for the low-ranked teaching quality of a university department. In such a
case, the teaching members of the department can collectively be held responsible for
the low teaching quality.

The attribution of responsibility to agents or groups of agents is often character-
ized by means of specific (fairness) conditions [11,15]. For example, the conditions
that characterize accountability and blameworthiness, which are considered as two in-
stances of backward-looking responsibility, are formulated as follows. Agents can be
held accountable for a state of affairs (or an action) if they have intentionally, deliber-
ately and actively been involved in realizing the state of affairs (or the action). On the
other hand, agents can be blamed for a state of affairs (or an action) if they can be held
accountable for it, and moreover, the involvement is based on free choice (agents were
not enforced or compelled), and they know that the state of affairs (or the action) has
negative consequences.

J. Leite et al. (Eds.): CLIMA XIV, LNAI 8143, pp. 172–189, 2013.
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Although the concept of responsibility has been studied for quite a long time, there
is yet no consensus of what this concept exactly and formally means. Most formal work
on responsibility is concerned with specific instantiation of this concept such as having
moral (legal, social, or organizational) obligations and being accountable or blame-
worthy for something. To our knowledge there is not much work on formalizing and
analyzing the very abstract concept of responsibility without considering its instantia-
tions. The abstract concept of responsibility that we have in mind captures the power
dimension of responsibility as illustrated by the quote “With great power, comes great
responsibility”. More specifically, this notion of responsibility can be used to hold a
group of agents responsible for a state of affairs if they can ensure avoiding the state of
affairs. In other words, agents can be held responsible for a state of affairs if they have
the power to preclude the state of affairs.

This notion of responsibility is neither forward-looking nor backward-looking since
it neither requires the agents to see to it that a state of affairs is the case nor implies that
the agents are accountable because the state of affairs may not be realized. Moreover,
most work on responsibility is concerned with individual agents, ignoring responsi-
bility of coalitions of agents with a strategic flavor. A coalition of agents can be held
responsible for some state of affairs due to strategic reasons. For example, two political
parties that jointly have a majority in the parliament are responsible for the enactment
of a law because they can form a coalition to block the enactment of the law. Note that
the involved agents can also strategically reason and decide to be absent at the voting
session in order to abdicate their responsibilities. Our proposed framework can be ap-
plied to analyze the responsibility of agent coalitions in multi-agent scenario’s where
different agents have different sets of actions/options available to them, e.g., elections
and collective decision making, distributed problem solving and collaborative systems.

This paper aims at formalizing this abstract concept of state-based responsibility for
coalitions of agents. We consider a coalition of agents as being responsible for some
states of affairs if the coalition can preclude it. This abstract notion of responsibility is
formalized in concurrent game structures where the strategic behavior of a set of agents
can be represented and analyzed. The proposed framework allows defining various no-
tions of this abstract concept of responsibility. It also allows reasoning about responsi-
bilities of agents’ coalitions and deciding which coalition of agents is responsible for
specific states of the system.

The structure of this paper is as follows. Section 2 presents the formal framework in
which the notion of responsibility is characterized. Section 3 provides a semantic anal-
ysis of various notions of group responsibility and study their properties. In Section 4
we show how a coalition logic with quantification can be used to characterize and to
reason about group responsibility. The provided notion of group responsibility is put in
the context of related work in Section 5. Finally, Section 6 concludes the paper and we
point out some future work directions.

2 Preliminaries: Models and Power

In this paper, the behavior of a multi-agent system is modeled by concurrent game struc-
tures (CGS). A concurrent game structure [3] (CGS) is a tuple M = (N,Q , Act, d, o)
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which includes a nonempty finite set of all agents N = {1, . . . , k}, a nonempty set
of system states Q , and a nonempty finite set of (atomic) actions Act. The function
d : N × Q → P(Act) defines sets of actions available to agents at each state, and
o is a deterministic and partial transition function that assigns the outcome state q′ =
o(q, α1, . . . , αk) to state q and a tuple of actions αi ∈ d(i, q) that can be executed byN
in q. An action profile is a sequence (α1, . . . , αk) consisting of an action for each player.
We require that if o(q, α1, . . . , αk) is undefined then o(q, α′

1, . . . , α
′
k) is undefined for

each action profile (α′
1, . . . , α

′
k). We write di(q) for d(i, q) and dC(q) :=

∏
i∈C di(q).

A state of affairs is defined as a set S ⊆ Q of states. In the rest of this paper, we use
S̄ to denote the set Q\S of states. Let M be a CGS, q a state in it and S be a state of
affairs. We say that:
– C can q-enforce S in M iff there is a joint action αC ∈ dC(q) such that for all joint
actions αN\C ∈ dN\C(q) we have that o(q, (αC , αN\C)) ∈ S. That is, coalition C
must have an action profile that guarantees to end up in a state from S, independent of
what the agents outside C do.
– C q-controls S in M iff C can q-enforce S as well as S̄ in M.
– C can q-avoid S in M iff for all αN\C ∈ dN\C(q) there is αC ∈ dC(q) such that
o(q, (αN\C , αC)) ∈ S̄.
In the following we shall omit “in M” whenever M is clear from context. We note that
the notions of enforcement and avoidance correspond to the game-theoretic notions of
α-effectivity and β-effectivity, respectively (e.g. [13]). More, precisely, we have that C
can q-enforce S in M iff C is α-effective for S in q; and C can q-avoid S in M iff C
is β-effective for S̄ in q1.

In general, a coalition that q-controls S is not unique; that is, there is a CGS M, state
q, state of affairs S, and different coalitions C and C′ that q-control S. In this case we
have that C ∩ C′ = ∅. Moreover, if C can q-enforce S̄ then C can q-avoid S.

It is often the case that agents have incomplete information about the world. In CGSs
this is modeled by equivalence relations ∼a, one for each a ∈ N . A uniform strategy
for a player a is a function sa : Q → Act such that sa(q) = sa(q

′) for all q ∼a q
′. A

collective uniform strategy forC is a tuple of strategies consisting of a uniform strategy
for each member of C. Moreover, we defined the mutual knowledge relation ∼C as⋃

a∈C ∼a. Consequently, we say that a coalition knows that it can q-enforce S in M
if there is a collective joint uniform strategy sC of C such that for all states q′ with
q ∼C q′ and all actions αN\C ∈ dN\C(q

′) we have that o(q′, (αC , αN\C)) ∈ S.
Analogously, we say that C knows that it q-controls and can q-avoid S.

3 Coalitional Strategic Responsibility

This section provides a semantical analysis of various notions of group responsibility.
The intuitive idea of responsibility that we have in mind is that a group of agents can
be said to be responsible for some state of affairs if they have the preclusive power
to prevent the state of affairs, regardless of what the other agents can do. Under this
interpretation, a group of agents is responsible for a state of affairs in the sense that the
state of affairs can only be realized if they allow the state of affairs to become the case.

1 In this context, we consider the normal form game naturally associated to the state q inM.
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3.1 Basic Definitions of Responsibility

In the following let M be a CGS, q a state of M and S a state of affairs in M. We con-
sider two definitions of responsibility. Both notions are preclusive in the sense of [12].
The first notion assigns a coalition responsible for a state of affairs if it is the smallest
coalition (provided it exists) that can prevent that state of affairs. Our concept of respon-
sibility is local in the sense that it is defined regarding some origin state. A coalition can
be responsible for a state of affairs from some state and not responsible from others.

Definition 1 (Responsibility). We say that a group C ⊆ N is q-responsible for S in
M iff C can q-enforce S̄ and for all other coalitions C′ that can q-enforce S̄ we have
that C ⊆ C′.

Again, we omit “in M” if clear from context and proceed in the same way in the rest
of the paper. This definition ensures that a coalition is q-responsible for S if there is no
other coalition that does not contain the coalition and which can prevent S. This notion
of responsibility has the property that a responsible coalition is unique.

Proposition 1. If C1 and C2 are q-responsible for S in M then C1 = C2.

The proposition shows that responsibility is a very strong concept. Often there is no
smallest group of agents which can preclude a state of affairs. This is for example
the case when there are agents with identical preclusive powers. The next definition
captures this intuition. A coalition is weakly responsible for a state of affairs if it has the
power to preclude it and if the coalition is minimal. We do not require, however, that
it is the smallest coalition having such preclusive power. It is important to note that if
there are some weakly responsible coalition but no responsible one that does not mean
that there is not responsible coalition in the colloquial sense. It simply means that there
are several coalitions that are responsible–again, in the colloquial sense–but no unique
one.

Definition 2 (Weak Responsibility). We say that a group C ⊆ N is weakly
q-responsible for S in M iff C is a minimal coalition that can q-enforce S̄.

We note that both notions of responsibility are based on preclusive power in terms of
enforcement and not in terms of avoidance. Clearly, we have the following result.

Proposition 2. IfC is q-responsible for S then it is also weakly q-responsible for S and
there is no other weakly q-responsible coalition for S. Also if ∅ is weakly q-responsible
for S; then, ∅ is q-responsible for S.

Proof. The first part of the proof is obvious. Suppose C ′ is a weakly q-responsible
coalition for S with C′ = C. We cannot have C′ � C as this would contradict the
minimality of C. Analogously, we cannot have C � C′. Thus, we must have C ⊆ C′

which contradicts that C is q-responsible for S. Clearly, if ∅ is weakly q-responsible for
S; then, it is the smallest such coalition. ��

Example 1. We consider the CGS shown in Figure 12. We refer to player 1 as “Driver
1”, to 2 as “Driver 2”, and to 3 as “family member of Driver 2”. The story is as follows.

2 We thank an anonymous CLIMA reviewer for this example.
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Two drivers can decide to drive or to wait. If both chose to drive their cars will crash,
with one exception: a family member of Driver 2 can poison Driver 2, making him/her
unable to drive and thus avoids a crash. In this example the weakly q0-responsible coali-
tions for {q2} are exactly {1}, {2}, and {3}. However, no coalition is q0-responsible
for {q2}! Again, it is important to note that this does not mean that no coalition is re-
sponsible in the colloquial sense but simply that there are three (weakly) responsible
coalitions.

Also note that our notion of responsibility is free of any moral connotation. The
family member who has not poisoned the driver is as responsible for a crash (i.e. state
{q2}) as Driver 1 and Driver 2; although, intuitively poisoning should not be a serious
alternative.

M q0 q1q2

(drive, drive,wait)
(drive, drive, poison)

(wait , drive, �)

(drive,wait , �)(wait ,wait ,wait)crash

(wait ,wait , poison)

Fig. 1. The CGS M1 = ({1, 2, 3}, {q0, q1, q2}, {drive,wait , poison}, d, o) where d1(q0) =
d2(q0) = {drive ,wait}, d3(q0) = {poison ,wait} and di(q) = {wait} for all i ∈ {1, 2, 3} and
q ∈ {q1, q2}. The outcome function o is shown in the figure, e.g. o(q0, (drive, drive,wait)) =
q2. The star  represents any available action, i.e.  ∈ {wait , poison}.

3.2 Degrees of Responsibility: Crucial and Necessary Coalitions

Responsible as well as weakly responsible coalitions have the preclusive power to pre-
vent a specific state of affairs. A natural question is whether all members of a coalition
are equally responsible or if it is possible to assign different degrees of responsibility to
subcoalitions of agents.

Crucial Coalitions. Firstly, we consider subcoalitions of a responsible coalition which
cannot be replaced by other coalitions without losing their status of being responsible.
We call such responsible subcoalition the crucially responsible coalition, or simply, a
crucial coalition.

Definition 3 (Crucial coalition). Let C be (weakly) q-responsible for S in M. We say
that a (sub)coalition Ĉ ⊆ C is q-crucial for S inC andM iff for all coalitionsC′ ⊆ N ,
if (C\Ĉ) ∪ C ′ is weakly q-responsible for S then Ĉ ⊆ C′.

Example 2. Let N = {1, 2, 3, 4} and M = (N, {q0, q1, q2}, {1, 2}, d, o) with d(q0) =
{1, 2}, di(q2) = di(q1) = {1}, and di(q1) = di(q2) = ∅ where i ∈ N . The tran-
sition function is defined as follows o(q0, (1, 1, 1, �)) = o(q0, (�, 2, �, 2)) = q2, and
o(q0, α) = q1 for α ∈ dN (q0)\{(1, 1, 1, �), (�, 2, �, 2)}where � ∈ {1, 2}. We have that
C1 = {1, 2, 3} and C2 = {2, 4} are the weakly q0-responsible coalitions for S = {q1}.
We also have that all subsets of C1 except {1, 3} and {1, 2, 3} are q0-crucial for S in
C1. For example, to see that Ĉ = {2, 3} is q0-crucial for S in C1, we have to check if
for all C′ ⊆ N it holds that if ({1, 2, 3} \ {2, 3}) ∪ C′ is weakly q0-responsible for S
in C1 (i.e., if {1} ∪ C′ ∈ {C1, C2}), then Ĉ = {2, 3} ⊆ C′. Clearly, the antecedent
is only true if C′ equals {2, 3} or {1, 2, 3}. In both cases we have that Ĉ ⊆ C′. As the
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previous case shows, we can replace Ĉ by C′ = {2, 4} in C1 and the resulting coalition
can q-enforce S̄; though, it is not minimal. Moreover, note that Ĉ is not q0-crucial for
S in C2 because it can be replaced by {2}. Similarly, we have that {1}, {2}, and {1, 2}
are q0-crucial for S in C1. {1} and {2} are q0-crucial for S in C2. To some extend one
may argue that {2} is more responsible than {2, 3} as it is crucial in C1 as well as in
C2. We will further discuss the latter statement.

Note that a weakly responsible coalition can have several crucial subcoalitions, i.e.,
in general a crucial coalition is not unique. In the following proposition we analyze
some properties of crucial coalitions.

(i) The first property states that subcoalitions that are crucial for a weakly respon-
sible coalition are characteristic for the weakly responsible coalition, i.e., they cannot
be replaced to form a different weakly responsible coalition. (ii) The second property
states that cruciality is closed under subset relation in the sense that crucial coalitions of
one (weak) responsible coalition cannot have non-crucial subcoalitions. (iii) The third
property states that the intersection of all weakly responsible coalitions is always cru-
cial for all these weakly responsible coalitions. Note that the empty coalition is always
crucial. (iv) The fourth property states that cruciality is not closed under union, i.e., the
union of two crucial coalition is not necessarily crucial. (v) The fifth property states that
the proper subsets of non-overlapping weakly responsible coalitions are crucial while
the weakly responsible coalitions themselves are not crucial when there is more than
one. (vi) Finally, the sixth property states that the subtraction of weakly responsible
coalitions is not a crucial coalition.

Proposition 3 (Properties). Let C be weakly q-responsible for S in M and Ĉ be q-
crucial for S in C.

1. For any C ′ ⊆ N such that (C\Ĉ) ∪ C′ is weakly q-responsible for S we have that
Ĉ ⊆ C′ ⊆ C; hence, (C\Ĉ) ∪ C′ = C.

2. Any subcoalition Ĉ′ ⊆ Ĉ is q-crucial for S in C. In particular, this shows that
cruciality is closed under intersection and subtraction: if Ĉ1 and Ĉ2 are q-crucial
for S in C; then, so is Ĉ1 ∩ Ĉ2, Ĉ1\Ĉ2, and Ĉ2\Ĉ1.

3. Let W be the set of all weakly q-responsible coalitions for S. Then,
⋂
W is q-

crucial for S for all coalitions in W .
4. Given another q-crucial coalition Ĉ′ for S in C the union Ĉ ∪ Ĉ′ is not necessarily
q-crucial for S in C.

5. Let W be the set of all weakly q-responsible coalitions for S such that for all
Ci, Cj ∈ W with i = j it holds Ci ∩ Cj = ∅. Then, every strict subcoalition
Ĉ ⊂ C ∈ W is q-crucial for S in C. Moreover, if |W | > 1, then coalition C ∈ W
is not q-crucial for S in C.

6. If C1 and C2 are weakly q-responsible coalitions for S in M and C1 \C2 = ∅ and
C1 = ∅ = C2, then C1 \ C2 is not q-crucial for S in C1.

Proof. 1. By definition Ĉ ⊆ C′. Now suppose that C′ ⊆ C. Then, Y := C′\C = ∅.
We have C = (C\Ĉ) ∪ (C′\Y ) � (C\Ĉ) ∪ C′. This shows that (C\Ĉ) ∪ C′ is not
a minimal coalition that can q-enforce S; hence, it is not weakly q-responsible for S.
Contradiction! 2. Clearly, this is the case for Ĉ′ = Ĉ. Now, suppose there is a coalition
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Ĉ′ � Ĉ which is not q-crucial for S in C. Then, there is C′ ⊆ N such that Ĉ′ ⊆ C′

and (C\Ĉ′) ∪ C′ is weakly q-responsible for S in C. Let Y := C′\Ĉ′. We have that
Y ⊆ C; for, if Y ⊆ C then (C\Ĉ′) ∪ C′ � C. This would contradict the minimality
of C. We define D := (Ĉ\Ĉ′) ∪ C′. Because Y ⊆ C we have Ĉ ⊆ D. Moreover,
(C\Ĉ) ∪ D = (C\Ĉ ′) ∪ C′ is weakly q-responsible for S. But this implies that Ĉ
cannot be q-crucial for S in C. Contradiction! 3. Suppose

⋂
W is not q-crucial for S in

C ∈ W . Then, there is C′ ⊆ N , such that (C\
⋂
W ) ∪ C ′ is weakly q-responsible for

S and
⋂
W ⊆ C′. But this contradicts

⋂
W ⊆ (C\

⋂
W ) ∪ C′ ∈ W . 4. To see that

consider the q0-crucial coalitions {1, 2} and {2, 3} for S in C1 from Example 2. The
union equals C1 = {1, 2, 3} which is not q0-crucial coalitions for S in C. 5. Suppose
Ĉ ⊂ C ∈ W is not q-crucial for S inC, i.e., for someC′ ⊆ N it holds that (C\Ĉ)∪C′

is weakly q-responsible for S inC and Ĉ ⊆ C′. We make the following case distinction:
1) (C \ Ĉ) ∪ C′ = C and 2) (C \ Ĉ) ∪ C′ = C∗ = C for some C∗ ∈ W . In the first
case we have Ĉ ⊆ C′. Contradiction. In the second case, we must have Ĉ = C and
C′ = C∗ becauseC∗ and C are disjoint by assumption. This also yields a contradiction
because we have assumed that Ĉ ⊂ C. Now, let C,C′ ∈ W with C = C′ (note, by
Proposition 2 no set can be empty). If C is q-crucial for S in C; then C ⊆ C′ because
C′ = (C\C) ∪ C′ is weakly q-responsible for S. But this is a contraction as C and
C′ are disjoint. 6. Suppose C1 \ C2 were q-crucial for S in C1. This implies that for
all C′ ⊆ N it holds that if (C1 \ (C1 \ C2)) ∪ C′ is weakly q-responsible for S, then
(C1 \ C2) ⊆ C′. Now take C′ = C2. By assumption (C1 \ (C1 \ C2)) ∪ C2 = C2 is
weakly q-responsible for S in C1. But we have (C1 \ C2) ⊆ C2. Contradiction! ��
The next lemma gives a characterization of responsible coalitions. As expected from
Proposition 1 a responsible coalition consists only of crucial subcoalitions.

Lemma 1. Coalition C is q-responsible for S in M iff every (sub)coalition Ĉ ⊆ C is
q-crucial for S in C and M.

Proof. “⇒”: SupposeC is q-responsible for S and there is a subcoalition Ĉ ⊆ C which
is not q-crucial for S in C. Then, there is an C′ with Ĉ ⊆ C′ such that (C\Ĉ) ∪ C ′ is
weakly q-responsible for S. This means that (C\Ĉ) ∪ C ′ can q-enforce S̄ and that (�)
C ⊆ (C\Ĉ)∪C′ which contradicts the assumption thatC is q-responsible for S. To see
that (�) holds, we consider the following cases. (i) If C′ � Ĉ then (C\Ĉ) ∪ C ′ � C;
hence, (�). (ii) Let Y := C′\Ĉ = ∅. If Y ⊆ C then (C\Ĉ) ∪ C′ � C; hence, (�); else,
if Y ⊆ C then (C\Ĉ) ∪ C′ ⊆ C. Hence, if it would be the case that C ⊆ (C\Ĉ) ∪ C ′

then also C � (C\Ĉ)∪C′. But this contradicts the minimality of (C\Ĉ)∪C′ that has
to hold because (C\Ĉ) ∪ C′ is weakly q-responsible for S.

“⇐”: Suppose every (sub)coalition Ĉ ⊆ C is q-crucial for S in C and that C is not
q-responsible for S. Then, there is another coalitionC′ which can q-enforce S̄ and C ⊆
C′. Let C′′ ⊆ C′ be the coalition that is q-weakly responsible for S (it has to exist!).
However, this means that C is not q-crucial for S in C, because (C\C) ∪ C′′ = C′′.
This contradicts the assumption that every subset of C is crucial! ��
Thanks to the previous lemma and Proposition 3.2 we obtain the following result relat-
ing responsible coalitions with crucial ones.

Proposition 4 (Characterization of responsibility). A coalitionC is q-responsible for
S iff C is q-crucial for S in C.
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Proof. If C is q-responsible for S then C is q-crucial for S in C by Lemma 1. On the
other hand, if C is q-crucial for S in C then any subcoalition is q-crucial for S in C by
Proposition 3.2. Then, by Lemma 1 we can deduce that C is q-responsible for S. ��

Necessary Coalitions. We consider subcoalitions of responsible coalitions with
stronger properties. The notion of necessary coalition is stronger than the one of cru-
cial coalitions in the sense that they are an indispensable part of any replacing coalition
which maintains the preclusive power. This is realized by relaxing the condition of weak
responsibility underlying the concept of cruciality.

Definition 4 (Necessary coalition). Let C be (weakly) q-responsible for S. We say that
a (sub)coalition Ĉ ⊆ C is q-necessary for S in C iff for all coalitions C′ ⊆ N it holds
that if (C\Ĉ) ∪ C′ can q-enforce S̄ we have that Ĉ ⊆ C′.

Example 3. We continue Example 2. The coalition {2} is q0-necessary for S in C1 as
well as inC2. Now, letC be any weakly q0-responsible coalition for {q2} of Example 1.
Then, the only q0-crucial and q0-necessary coalition of C is ∅. Intuitively, this shows
that all coalitions are “equally responsible” in a colloquial sense.

Proposition 5 (Properties). LetC be weakly q-responsible forS and Ĉ be q-necessary
for S in C.

1. For any other coalition C′ which is weakly q-responsible for S we have that Ĉ ⊆
C ∩ C′.

2. Let C′ be another weakly q-responsible coalition for S. Then, Ĉ is q-necessary for
S in C′.

3. Ĉ is q-crucial for S in C.
4. Given another q-necessary coalition Ĉ′ for S in C the union Ĉ ∪ Ĉ ′ is also q-

necessary for S in C.

Proof. 1. Let C andC′ be two different weakly q-responsible coalitions for S as stated
in the proposition. Any supercoalition ofC′ can q-enforce S̄, in particular also (C\Ĉ)∪
C′. Because Ĉ is q-necessary for S in C we have Ĉ ⊆ C ′ which proves that Ĉ ⊆
C ∩ C′. 2. By Proposition 5.1, Ĉ ⊆ C′. Now suppose that Ĉ were not q-necessary
for S in C′. Then, there is a coalition C′′ ⊆ N , such that Ĉ ⊆ C′′ and (C′\Ĉ) ∪ C′′

can q-enforce S̄. We have that Ĉ ⊆ (C ′\Ĉ)∪C′′. Moreover, (C\Ĉ)∪ ((C′\Ĉ)∪C′′)
can q-enforce S̄. But this contradicts that Ĉ is q-necessary for S in C. 3. Suppose Ĉ
is not q-crucial for S in C. Then, there is an C′ ⊆ N such that (C\Ĉ) ∪ C ′ is weakly
q-responsible for S and Ĉ ⊆ C′. However, in particular (C\Ĉ) ∪ C ′ can q-enforce S̄.
This contradicts the assumption that Ĉ is q-necessary for S inC. 4. Suppose that Ĉ∪Ĉ′

were not q-necessary for S in C. Then, there is anC′ ⊆ N such that (C\(Ĉ∪Ĉ ′))∪C′

can q-enforce S̄ and Ĉ∪Ĉ′ ⊆ C′. Then, Ĉ ⊆ C′ or Ĉ′ ⊆ C′. Without loss of generality,
assume that Ĉ ⊆ C′. Because (C\(Ĉ ∪ Ĉ′)) ∪ C′ can q-enforce S̄ we also have that
(C\Ĉ) ∪ C′ can q-enforce S̄. But this means that Ĉ cannot be q-necessary for S in C.
Contradiction! ��

In particular, note that every necessary coalition is crucial and that necessary coalitions
are closed under union which is not the case for crucial coalitions.
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3.3 The Most Responsible Coalition

In this section we study a special type of necessary coalition, the most responsible coali-
tion. In principle there can be many coalitions that are crucial or necessary for a weakly
responsible coalition. In Proposition 5.2 we have shown that a coalition necessary for
some weakly responsible coalition is necessary for all weakly responsible coalitions. In
the next theorem we show that each weakly responsible coalition has a largest necessary
coalition and that this is actually the largest necessary coalition in all weakly responsi-
ble coalitions. Hence, members of this coalition may be seen as more responsible than
other members as they are part of all possible coalitions that can prevent a specific state
of affairs.

Theorem 1 (Uniqueness). Let coalition C be weakly q-responsible for S. Then, there
is a unique maximal q-necessary coalition Cu for S in C and this coalition is also
the unique maximal q-necessary coalition for S in any other coalition which is weakly
q-responsible for S. In particular, if C is q-responsible for S then Cu = C.

Proof. LetW be the set of all weakly q-responsible coalitions for S. By Proposition 5.4,
each C ∈ W has a largest q-necessary coalition for S in C. By Proposition 5.2 a q-
necessary coalition for S for some coalition in W is q-necessary coalition for S for all
coalitions in W . The claim follows. ��

Definition 5 (Most responsible coalition). We call the coalition Cu from Theorem 1
the most q-responsible coalition for S.

In Proposition 5.3 we have shown that every necessary coalition is also crucial. Note,
that the reverse is not necessarily true. The following lemma is important for our Char-
acterization Theorem and shows that a coalition that is crucial in all weakly responsible
coalitions is also necessary.

Lemma 2. Suppose Ĉ is q-crucial for S in all weakly q-responsible coalitions for S.
Then, Ĉ is q-necessary for S in all weakly q-responsible coalitions for S.

Proof. Suppose the claim is false; then there is a weakly q-responsible coalitions C for
S such that Ĉ is not q-necessary for S inC. Hence, there is a coalitionC′ ⊆ N such that
(C\Ĉ) ∪ C′ can q-enforce S and Ĉ ⊆ C′. Then, there also is a weakly q-responsible
coalition C′′ ⊆ (C\Ĉ) ∪ C ′ with Ĉ ⊆ C′′. Contradiction, as Ĉ is q-crucial for S for
all weakly q-responsible coalitions for S by assumption. ��

Finally, we show that exactly the agents that are part of all weakly responsible coalitions
form the most responsible coalition which nicely matches with the intuition that these
agents can be seen more responsible than others.

Theorem 2 (Characterization: most responsible coalition). Let W be the set of all
(weakly) q-responsible coalitions for S. The most q-responsible coalition Cu for S
equals

⋂
W .

Proof. Let Cu denote the most q-responsible coalition for S. “Cu ⊆
⋂
W ”: By def-

inition Cu is a member of any weakly q-responsible coalition C for S which shows
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that Cu ⊆
⋂
W . “

⋂
W ⊆ Cu”:

⋂
W is q-crucial for S in any C ∈ W by Propo-

sition 3.3. Thanks to Lemma 2 we have that
⋂
W is also q-necessary for S. Then,

because Cu is the largest q-necessary coalition in each weakly q-responsible coalition
we have

⋂
W ⊆ Cu by Theorem 2. ��

Example 4. We continue Example 3. The coalition {2} is the most q-responsible coali-
tion for S. In Example 1, the most q0-responsible coalition for {s2} is ∅ (cf. Example 3).

3.4 Evidence Sets and Responsibility

If a coalitionC is q-responsible for S and we collect some evidenceA by either observ-
ing or being informed about some of the agents’ actions in q, then we can ask whether
C can be held responsible for S in q under the collected evidence A. Moreover, we can
ask which particular agents in C can be held responsible for S in q under the collected
evidenceA. On the other hand, we can ask which (minimal set of) evidence needs to be
collected to hold a coalition or particular agents responsible for S in q.

The intuition for holding a group of agents responsible under an evidence set is as
follows. Suppose a group C of agents is (weakly) q-responsible for some states S in a
modelM because they have actions that prevent the state of affairsS, i.e.,C can prevent
S in state q of M. In Example 2 the group C2 = {2, 4} is weakly q0-responsible for
S = {q1} as they can prevent S by performing action 2. Suppose we have evidence
that some agents have performed some actions. For example, we have evidence that
agent 4 has performed action 1. This evidence can be used to modify the model M by
removing the transitions that are inconsistent with the evidence, i.e., those transitions
that contradict the evidence are removed from M. In our example, we can remove
actions (∗, ∗, ∗, 2) from the model presented in Example 2.

Now, the idea is that if the group C of agents is not (weakly) q-responsible for the
states S in the modified model any more, then some of the agents from which the ev-
idence is collected have decided not to prevent S such that these agents can be held
responsible for S. In our example, agent 4 has performed action 1 which does not en-
sure the prevention of q2. It has to be emphasized that the statement “C can be held
responsible for S in q under the collected evidence” should be interpreted as “the evi-
dence suggests that C has acted irresponsibly or incautious” since C has not performed
actions to prevent S. This interpretation is aligned with the following quote on respon-
sibility: “It is not only for what we do that we are held responsible, but also for what
we do not do”. It should also be stressed that under this interpretation it is not neces-
sarily the case that S is actually being realized such that C cannot be held accountable
or blameworthy for S in q. In our example, the evidence that agent 4 has performed
action 1 does not imply that state q1 is realized. The collected evidence indicates that
C2 is not q-responsible for S any more which means that in q the agent group C2 has
no preclusive power for S any more.

Formally, we assume that we are given an evidence set A ⊆ Q × N × Act of
(occurred) events. A tuple (q, i, αi) states that agent i has executed action αi in state
q. We assume that our information is correct; that is, for all states q and players i there
is at most one tuple (q, i, α) ∈ A and if such a tuple exists that α ∈ di(q). Given
an evidence set A, we use M|A to denote the update of model M that is obtained by
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removing all transitions not consistent with A from M. Note that the update operation
here is considered as a meta-model operation.

Definition 6. Let coalition C be (weakly) q-responsible for S in M and A be an evi-
dence set. The coalition C can be held responsible for S in q under evidence A if C is
not (weakly) q-responsible for S in M|A. Moreover, a subset A′ ⊆ A is said to be a
relevant evidence set of A for coalition C with respect to S and M (i.e., C can be held
responsible for S in M based on A′) iff A′ is a minimal subset of A such that C is not
(weakly) q-responsible for S in M|A′ but it is (weakly) q-responsible for S in M|A\A′ .

Let A be the set of all possible evidence sets andAg : A → 2N be a function that deter-
mines the agents from which evidence is collected. The following proposition states that
the evidence under which an agent can be held responsible should be about the agent’s
actions. The result follows directly from the fact that the loss of preclusive power of an
agent group can only be due to their own actions, and not the actions of other agents.

Proposition 6. Let coalition C be (weakly) q-responsible for S in M and A be an
evidence set. (1) If C is not (weakly) q-responsible for S in M|A, thenAg(A)∩C = ∅.
(2) If A′ ⊆ A is a relevant evidence set for coalition C in M, then Ag(A′) ⊆ C.

An implication of the above is that in order to hold a coalition responsible, one needs
to collect evidence against at least one of the agents involved in the coalition. It should
be noted that our aim was not to characterize the concept of “responsibility under ev-
idence” in the proposed framework as it involves a meta-model update operation. Of
course, our framework can be extended to make this possible, but we leave an elabora-
tion on this concept for future work.

3.5 Reasoning about Responsibility
In the previous section we have introduced definitions of responsibility and the notions
of crucial and necessary coalitions. How can we make use of these notations? Suppose
that we have observedS–nothing more, nothing less–and would like to determine which
coalition(s) is (are) responsible for S. As we have no more knowledge, we consider all
states leading to S. These are all states in XS = {q | ∃αN ∈ dN (q) : o(q, αN ) ∈ S}.
We follow a conservative strategy and only consider a coalition (weakly) responsible
for S if it is (weakly) responsible for any state in XS . That is, a coalition is (weakly)
responsible for S iff it is (weakly) XS-responsible for S iff it is (weakly) q-responsible
for S for all q ∈ XS . Now, if there is a coalition C which is X-responsible for S we
can say that C is responsible for S because at all states in X coalition C is the unique
coalition that can preventS. Similarly, we can interpret the notions of crucial, necessary
and most responsible to sets of states X .

However, it might not be fair to assign responsibility to a coalition if the agents
are not aware that they can prevent S. To model this, we have introduced incomplete
information models and the concept of knowledge. Thus, we say that the coalition C
knows that it is X-responsible for S if the coalition is responsible from all states it
considers possible. For this purpose we replace “C is q-responsible” by “C knows it is
q-responsible” etc. This means that responsibility is not only verified fromXS but from
all states {q′ | q ∈ XS and q ∼C q′} with the limitation that only uniform strategies
are considered. Knowledge and responsibility are strongly interweaved and we would
like to study the connection in more depth in our future research.
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4 Logical Characterization

In this section we propose a logical characterization of responsibility. Therefore, we use
a slight variant of the logic coalition logic with quantification (CLQ) proposed in [2,
in the Proof of Theorem 8]3. The logic is an extension of coalition logic [13,14] that
allows to quantify over coalitions with specific properties. It is worth mentioning that
the quantified versions are, in the finite case, not more expressive than coalition logic
but often allow for an exponentially more succinct specification [2].

4.1 Preliminaries: Coalition Logic with Quantification

Formulae of coalition logic [13] (over P(N)) are given by the following grammar:
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | [A]ϕ where A ∈ P(N), p ∈ Π . We define 〈A〉ϕ as ¬[A]¬ϕ
and Boolean connectives as usual. The semantics is defined over a CGS and a state q:

M, q |= [C]ϕ iff there is a joint action αC ∈ dC(q) such that for all joint actions
αN\C ∈ dN\C(q) we have that M, o(q, (αC , αN\C)) |= ϕ

Let M be a CGS and q a state in it. It is easy to verify that we have that: (i) C can
q-enforce ϕ iff M, q |= [C]ϕ; (ii) C q-controls ϕ iff M, q |= [C]ϕ ∧ [C]¬ϕ; and (iii)
C can q-avoid ϕ iff M, q |= 〈N\C〉¬ϕ.

We use an extension of coalition logic, introduced in [2], that allows to quantify
over coalitions. Firstly, we introduce coalitional predicates over P(N): P ::= sub(C) |
super(C) | ¬P | P ∨ P where C ∈ P(N) is a set of agents. The semantics of these
predicates is defined over A ⊆ N in a straight forward way: A |= sub(C) iff A ⊆ C
and A |= super(C) iff A ⊇ C. Negation and disjunction are treated as usual. We define
equality between coalitions as macro: eq(C) ≡ sub(C) ∧ super(C). Note, we assume
that the coalitional symbolsC have their canonical semantic meaning–we do not discern
between semantic and syntactic constructs in this paper.

Now let V be a set of coalitional variables. We define the logic coalition logic with
quantification4 (CLQ) [2, in the Proof of Theorem 8] as follows:

ϕ ::= ψ | ¬ϕ | ϕ ∨ ϕ | ∃X |P ϕ | ∀X |P ϕ
where X ∈ V , P is a coalitional predicate over P(N) ∪ V , and ψ a coalition logic

formula over V . Moreover, we assume that all coalitional variables are bound. As for
coalition logic the semantics is given over a CGS, a state in it, and a coalition valuation
ξ : V → P(N). We define ξ[X := C] as the valuation that equals ξ for all Y = X , i.e.
ξ[X := C](Y ) = ξ(Y ), and ξ[X := C](X) = C. We also define a special valuation ξ0
with ξ0(X) = ∅ for allX ∈ V . We just give the semantics for the cooperation modality
and the quantifiers, all other cases are standard:

M, q, ξ |= [X ]ψ iff there is a joint action αξ(X) ∈ Actξ(X) such that for all joint ac-
tions αN\ξ(X) ∈ ActN\ξ(X) we have that M, o(q, (αξ(X), αN\ξ(X))), ξ |= ϕ

3 Note, that CLQ is different from the better known logic Quantified Coalition Logic (QCL) also
presented in [2].

4 We would like to note that in comparison to [2] our definition of CLQ is somewhat more
general as we allow coalitional variables within coalitional predicates.
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M, q, ξ |= ∃X |P ψ iff there isC ⊆ N such thatC, ξ[X := C] |= P and M, q, ξ[X :=
C] |= ψ

M, q, ξ |= ∀X |P ψ iff for all C ⊆ N with C, ξ[X := C] |= P we have that
M, q, ξ[X := C] |= ψ]

where C, ξ |= P is defined as C |= P [ξ] and P [ξ] is obtained from P where each coali-
tional variable Y occurring in P is replaced by ξ(Y ). We simply write M, q |= ϕ if ϕ
is a closed formula. For a set of states Q′ ⊆ Q we write M, Q′, ξ |= ϕ iff for all q ∈
Q′ we have M, q, ξ |= ϕ. For a closed formula ϕ we define [[ϕ]]M = {q ∈ Q |
M, q |= ϕ}. In [2] it was shown that model checking Quantified Coalition logic (QCL)
is PSPACE-complete over compact models and can be done in polynomial time over
an explicit representation based on effectivity functions. These results do not straight-
forwardly transfer to our setting as we use (i) a different representation of models, and
(ii) a slightly generalized version of CLQ–which is somewhat different from QCL. A
detailed study in our setting is out of the scope of this paper and we leave it for future
work.

4.2 Logical Characterization of Responsibility

Given a closed formula ϕ, [[ϕ]]M associates to it the set of states in which ϕ holds.
Moreover, instead of writing “C is q-responsible for [[ϕ]]M in M”, we simply say “C is
q-responsible for ϕ (in M)” etc. In the following we show that our notions of responsi-
bility can be formalized within coalition logic with quantification. We assume that M is
a CGS, q a state in it, C a coalition and ϕ a closed formula. Again, we omit mentioning
M whenever clear from context. Firstly, we define the following two formulae:

Rs
Cϕ ≡ ∃X |eq(C)([X ]¬ϕ ∧ ∀Y |¬super(X)¬[Y ]¬ϕ)

Rw
Cϕ ≡ ∃X |eq(C)([X ]¬ϕ ∧ ∀Y |¬eq(X)∧sub(X)¬[Y ]¬ϕ)

Proposition 7. C is q-responsible (resp. weakly q-responsible) for ϕ in M iff M, q |=
Rs
Cϕ (resp. ϕ iff M, q |= Rw

Cϕ).

Proof (Sketch). We only show the case for weak responsibility. We have that M, q, ξ |=
Rw
Cϕ iff M, q, ξ |= ∃X |eq(C)([X ]¬ϕ ∧ ∀Y |¬eq(X)∧sub(X)¬[Y ]¬ϕ) iff M, q, ξ[X :=
C] |= [X ]¬ϕ and for all C′ with C′ = C and C′ ⊆ C we have M, q, ξ[X := C, Y :=
C′] |= [Y ]¬ϕ iff C can q-enforce ¬ϕ and all C′ ⊂ C cannot q-enforce ¬ϕ iff C can
q-enforce ¬ϕ and there is no subcoalition ofC that can q-enforce ¬ϕ iff C is a minimal
coalition that can q-enforce ¬ϕ iff C is weakly q-responsible for ϕ. ��
Now, we can simply express properties as given in Proposition 2 by |= Rs

Cϕ → Rw
Cϕ.

We can also easily define crucial coalitions, necessary coalitions, and the most respon-
sible coalition:

CrucialĈ,Cϕ ≡ (Rs
Cϕ ∨ Rw

C) ∧ ∃XC |eq(C)∃XĈ |eq(Ĉ)∀X|¬super(X
Ĉ
)¬Rw

(XC\XĈ
)∪Xϕ

NecĈ,Cϕ ≡ (Rs
Cϕ ∨ Rw

C) ∧ ∃XC |eq(C)∃XĈ |eq(Ĉ)∀X|¬super(X
Ĉ
)∃Y |eq((XC\XĈ

)∪X)¬[Y ]¬ϕ
MostCuϕ ≡ ∃X|sub(N)(NecCu,Xϕ ∧ ∀Y |¬sub(Cu)¬NecY,Xϕ)
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Proposition 8. We have that Ĉ is q-crucial (resp. q-necessary and most q-responsible)
for ϕ in the (weakly) q-responsible coalition C for ϕ iff M, q |= CrucialĈ,Cϕ (resp.
M, q |= NecĈ,Cϕ and M, q |= MostCϕ).

Proof (Sketch). Cruciality: We have that M, q, ξ |= CrucialĈ,Cϕ iff C is q-responsible

for ϕ or weakly q-responsible for ϕ (by Proposition 7) and for all C′ ⊇ Ĉ we have that
(C\Ĉ) ∪ C ′ is not weakly q-responsible for ϕ iff C is q-responsible for ϕ or weakly
q-responsible for ϕ and for all C′ ⊆ N such that if (C\Ĉ)∪C′ is weakly q-responsible
for ϕ then Ĉ ⊆ C′ iff Ĉ is q-crucial for ϕ in C.

Necessary: We have that M, q, ξ |= NecĈ,Cϕ iff C is q-responsible for ϕ or weakly

q-responsible for ϕ (by Proposition 7) and for all C′ ⊇ Ĉ we have that (C\Ĉ) ∪ C ′

cannot q enforce ¬ϕ iff C is q-responsible for ϕ or weakly q-responsible for ϕ and for
all C′ ⊆ N such that if (C\Ĉ)∪C ′ can q-enforce ¬ϕ then Ĉ ⊆ C′ iff Ĉ is q-necessary
for ϕ in C.

Most responsible:Now, let us consider the most responsible coalition. M, q, ξ |=
MostCuϕ iff there is C ⊆ N such that Cu is q-necessary for ϕ in C and for all C′ ⊆ Cu

we have that C′ is not q-necessary for ϕ in C iff there is C ⊆ N such that Cu is the
maximal coalition that is q-necessary for ϕ in C iff Cu is the most q-responsible coali-
tion for ϕ by Theorem 1 and Definition 5. ��

The logical formulation shows that our notions of responsibility are fully based on
strategic ability; there are no other hidden concepts. Also, it provides a first step to rea-
soning about group responsibility. We leave a detailed study for future work, including
a deeper analysis of epistemic concepts and meta logical properties.

5 Related Work

Existing work on formalizing responsibility can be categorized in two approaches. The
first type of work considers backward-looking responsibility formalized in dynamic
logic while the second type of work considers forward-looking responsibility formal-
ized in deontic and STIT logics. In the following, we provide an example of each ap-
proach.

Grossi et al. [8] investigate the concept of responsibility in an organizational setting
where role playing agents operate within organizational structures defined by power,
coordination and control relations. They distinguish causal and task-based responsibil-
ity, and investigate when agents in an organization can be held accountable for or be
blamed for some (undesirable) state of affairs. For example, an agent A who delegates a
task to an agent B using its organizational power can be held responsible for the failure
of performing the task even though agent B has actually failed in performing the task. In
order to formalize these notions of responsibility, they propose a dynamic deontic logic
framework in which agents’ activities as well as the organizational setting are specified.
In this framework, an agent is defined to be causally responsible for φ by performing
action α if and only if φ is the necessary effect of α and moreover φ would not have
been the case if α was not performed. An agent is then said to be causally blameworthy
(backward-looking responsible) if the agent is casually responsible for a violation and
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the agent knows that his/her action would cause the violation which he could prevent by
not performing the action. The task-based responsibility (forward-looking responsibil-
ity) is defined in terms of organizational tasks/plans that the agent is obliged to perform.
Finally, an agent is said to be accountable for a violation caused by performing an ac-
tion α if the agent is blameworthy for performing α causing the violation and moreover
if the agent is task-responsible to perform α.

The characterizing feature of this approach is the formalization of different notions
of responsibility in the context of organizational structures. The formalization of causal
and task-based responsibility are defined with respect to individual agents and based on
violation of an agent’s obligations.

Another formal framework for analyzing the concept of (forward-looking) responsi-
bility is proposed by Mastop [11]. The main focus of this work is the normative dimen-
sion of the “many hands problem”, which is formulated as the problem of attributing the
responsibility for the violation of a global norm to individual agents. This is a challeng-
ing problem because agents may not be responsible for the violation of a global norm
even when they clearly violate their individual norms and thereby cause the violation of
the global norm. The problem with attributing responsibility in such cases is argued to
be the fairness issue. The fairness considered in this work is explained in terms of con-
ditions such as “agents should be able to obey their individual norms”, “agents should
be aware of their individual norms”, or “the violation of individual norms should be
intentional and caused by some accidents”. The framework is based on an extension of
the XSTIT logic with intentions [5]. This logic is extended with, among other things,
a set of designated constants denoting the responsibility of agents. The semantics of
the extended XSTIT framework explicitly attributes to each agent a set of possibilities
(history-state pairs) in which the agent fulfills all of its responsibilities (i.e., possibilities
in which the agent’s designated responsibility constant is true). An agent is defined to
be responsible for φ if and only if the set of possibilities attributed to the agent satisfy
φ. Based on this definition of forward-looking responsibility, the fairness conditions are
formulated as axiom schemes. The author claims that the introduction of these axioms
ensures that the responsibility of any violation of global norms can be attributed to some
individuals that violate their individual norms.

In another work [7], Ciuni and Mastop, the XSTIT is used and extended to analyze
the concept of distributed responsibility, i.e., the responsibility that is attributed to a
group of agents. The basic problem considered in this work is to distinguish the respon-
sibilities of individuals within a group to which a group responsibility is attributed. For
example, if a group of two agents is responsible for φ∧ψ, the presented framework can
distinguish whether one of the agents or both are responsible for this composite fact.
The characterizing feature of this approach is the explicit introduction of responsibility
constants as well as their corresponding semantics counterparts, i.e., the sets of possi-
bilities in which agents’ responsibilities are fulfilled. In fact, the proposed framework is
assumed to be informed about agents’ responsibilities such that the main contribution
of this paper is not to define the concept of responsibility itself, but the formalization of
the fairness conditions in order to solve the “many hands problem”.

We would like to mention three other papers in which responsibility is related to other
notions such as emotions, causality, and morality. In the first paper [9], the authors use
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a STIT logic for counterfactual reasoning about emotions. Their characterizations are
based on the group’s potential power to could have prevented some state-of-affairs. In
contrast to their setting, however, we do not assume that the state-of-affairs has actually
been materialized as we do not model backward-looking responsibility. Moreover, our
focus is on the inherent structure of the coalitions at hand rather than on their pure power
to prevent some states of affairs. In [6] the authors argue that causality has mostly been
studied as an all-or-nothing concept and propose an extension to capture the degree of
responsibility and blame in causal relations. The proposed extension allows one to ex-
press that a phenomenon A is responsible (or blameworthy) for causing a phenomenon
B to a certain degree depending on A’s contribution in causing B. The contribution of A
in causing B (the degree of A’s responsibility) is determined based on some counterfac-
tual reasoning and other factors relevant to B being caused. An obvious difference with
our work is the central role of causality and the fact that responsibility and blame are
directly defined in terms of causality, i.e., A is responsible for B iff A has caused B. In
our work, however, a group of agents is responsible for some states, not because they
have caused the states (as the states are not assumed to be materialized), but because
they have the power to preclude the states. In our framework, it can even be the case that
a group of agents has the power to ensure a certain outcome while a different group of
agents is responsible for the outcome. In the last paper [4], the authors focus on moral
responsibility and provide a set of conditions that are claimed to be necessary and suf-
ficient for assigning moral responsibility for a certain outcome to individuals. These
conditions require that an individual can be held responsible for an outcome if the indi-
vidual is autonomous, has causal contribution to the outcome, and has the opportunity
to avoid the outcome. Again, in contrast to our framework, this paper assumes that an
outcome is materialized and that the responsible individual has causally contributed to
the materialization of the outcome. Moreover, although the last condition seems to be
related to our notion of precluding power for avoiding the outcome, it requires that the
individual who has causally contributed to the outcome should have the power to avoid
the outcome. This is different from our approach where responsible coalitions for an
outcome may be unrelated to the coalition who can ensure the outcome. Finally, this
paper considers only the responsibility of individuals as it aims to tackle ’the problem
of many hands’ while we investigate the responsibility of coalitions.

6 Conclusion and Future Work

In this paper, we provided an abstract notion of group responsibility that does not im-
ply accountability or blameworthiness. The proposed notion of responsibility is based
on the preclusive power of groups of agents and is defined as the responsibility to pre-
vent some state of affairs. We have formalized this notion of responsibility in concur-
rent game structures, which model multi-agent system behaviors. Different notions of
responsibility such as (weak) responsibility, crucial and necessary responsibility are
formally defined and their properties are analyzed. We then presented the notion of
“responsibility under evidence” according to which a group of agents can be held re-
sponsible for a state of affairs if there is evidence that they did not act to prevent the
state of affairs. In this sense, it can be said that the agents have acted irresponsibly or
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incautiously (as they did not act to prevent the state of affairs) even if their performed
actions do not cause the realization of the state of affairs that have to be prevented. The
main results of this paper are formulated in the characterization theorems. Finally, we
show how our notions of responsibility can be characterized as formulas of coalition
logic with quantification [2].

We plan to extend this framework with different levels of agents’ knowledge and in-
tention in order to distinguish different levels of responsibilities. Such extension would
also allow us to instantiate the presented abstract notion of responsibility to capture
different types of responsibilities, for example accountability and blameworthiness. In
such extensions, one would be able to determine if a group of agents is accountable
or blameworthy for some state of affairs. We also aim at generalizing the notion of re-
sponsibility to a strategic setting as the current notion of responsibility is relativized to a
specific state q such that it can only be expressed that a group of agents is q-responsible.
Based on such an extension and given a realized state of affair, one would be able to
reason about which agents at which states were responsible for the realization of the
state of affairs. We aim at extending the framework such that group responsibility can
be distributed to individual agents and elaborating on the logical characterization. Fi-
nally, it would be interesting to relate the concepts of crucial and necessary coalitions
to the concept of power as discussed in [1].
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Abstract. The paper studies epistemic properties of symmetric communication
protocols. It proposes a logical system describing properties common to all pro-
tocols with the same group of symmetries. This system is an extension of the
standard epistemic logic S5 by a new axiom, capturing properties of symmetry in
the modal language. The main results are soundness and completeness theorems
for this logical system.

1 Introduction

In this paper we study epistemic properties of symmetric communication protocols.
Consider, for example, a variation of the well-known telephone1 game in which a des-
ignated player picks a word and whispers it to the player on her left. The remaining six
players, in turn, whisper the word to their left neighbors, possibly modifying it, until
the word comes back to the original player. Let us assume that players only use four-
letter words and at most one letter is changed at each step. For this example, let us also
assume that the original player announces that the word that came back is identical to
the word that she sent through the circular communication chain. We are interested in
describing what each player knows about the words whispered by the other players.

In this example, the first and the last words are the same, so one can simplify the
setting by talking about only six players (excluding the designated player) and the six
words whispered by these players. We will refer to such a six-word cyclic sequence
r = (a, b, c, d, e, f) as a “run” of the telephone game. Note that each two adjacent
words in the run (including words f and a) differ by no more than one letter.

Let run r1 be the sequence (math, hath, hate, fate, date,mate), as shown in Fig-
ure 1. Note that each agent who knows the value of the word a on this run is able to
conclude that word d is not true because words a and d are only three steps apart in the
circle and thus can not differ by more than three letters. We will denote this epistemic
fact by

r1 � �a(d = word). (1)

In this example and throughout the rest of the paper, we label the modality not by an
agent, as common in epistemic logic, but by the information known to the agent. We
have used this approach in an earlier work [1].

1 This game is also known as Chinese Whispers, Grapevine, Broken Telephone, Whisper Down
the Lane, and Gossip.
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Fig. 1. Run r1

Another example of a true epistemic property of run r1 is

r1 � �b�a(b = word), (2)

which states that any agent who knows the value of b on this run is able to conclude
that any agent who knows the value of a knows that b is not word. This property is true
because the words hath and word differ by four letters.

In all prior examples, the atomic propositions were inequality statements. An exam-
ple of a true epistemic property of run r1, with a different type of atomic proposition, is

r1 � �b( “Word a contains at least one letter h.” ). (3)

This property is true because the word hath contains two letters h and any two adjacent
words differ by no more than one letter.

Properties (1), (2), and (3) are specific to r1. For instance, if r2 = (cars, caps, taps,
tape, cape, care), then r2 � �a(d = word) is false since any agent who knows only
the value of a is not able to distinguish the run (cars, caps, taps, tape, cape, care) from
the run (cars, card, cord, word, ward, wars). An example of an epistemic property
which is true for each run of the telephone game is

� �a(c = math) → �a(e = math). (4)

This property is true on any run because of the symmetry in our setting. Namely,
(w1, w2, w3, w4, w5, w6) is a run of the telephone game iff (w1, w6, w5, w4, w3, w2) is
also such a run, see Figure 2. For a similar reason, the following property is true on any
run of the telephone game:

� �a�b(f = math) → �a�f (b = math).

Formally, by a symmetry of the telephone game we mean any bijection from the set
{a, b, c, d, e, f} into the same set that maps a run of the game into another run. In this
paper, we will use graphical notations to describe symmetries. The symmetry τ that
maps the run (w1, w2, w3, w4, w5, w6) to the run (w1, w6, w5, w4, w3, w2) is depicted
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Fig. 2. Sequence (w1, w2, w3, w4, w5, w6) is a run of the telephone game if and only if
(w1, w6, w5, w4, w3, w2) is also such a run

in Figure 3 (left). All symmetries of the telephone game protocol can be described
as combinations of the rotation σ and the flip τ from Figure 3 (left). For example,
symmetry μ depicted on the Figure 3 (right) is flip τ followed by rotation σ applied four
times: σ4 ◦ τ . In abstract algebra, the set of all symmetries of an object is commonly
referred to as a group of symmetries of the object.

b

e

a

f

c

d

b

e

a

f

c

d

Fig. 3. Symmetries σ, τ , and μ of the telephone game, where μ = σ4 ◦ τ

The telephone game is just an example of what we refer to as a “protocol”. Another
example of a protocol is a variation of the telephone game in which any two adjacent
words differ by no more than two letters. This protocol has the same group of symme-
tries as the telephone game. In this paper we investigate common epistemic properties
of all protocols that have the same group of symmetries. A more general way to state
property (4) for an arbitrary protocol is

� �ap→ �aq, (5)

where p is a property of the value of c and q is a “symmetric” property of the value of
e. The exact meaning of the word “symmetric” in the previous sentence will be given
in Definition 3.
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The main result of this work is a sound and complete axiomatization of such proper-
ties for any fixed group of symmetries. This axiomatization is an extension of a variation
of the multi-modal version of epistemic logic S5 [2] by an additional axiom specific to
a given group of symmetries.

Properties of symmetry in information [3] and especially in applications to model
checking [4] have been studied before. The closest to our current contribution is prob-
ably our own article on symmetries and functional dependencies [5]. The setting of
that work is similar to our current setting in the sense that we also studied properties
of a communication protocol with a given group of symmetries and gave a sound and
complete axiomatization of these properties. However, in [5] we studied properties ex-
pressible in terms of functional dependence relation and the resulting logical system
has been an extension of Armstrong [6] axiomatization of functional dependence. Our
current work focuses on properties expressible in an epistemic modal language and the
resulting logical system is an extension of multi-modal version of S5.

2 Group Theory Terminology

In this section we review group theory vocabulary used throughout the rest of the paper.
In abstract algebra, a group is a pair G = (A, ·), where A is an arbitrary set and · is

an associative binary operation on A such that A contains an identity element and an
inverse element for each element of Σ.

In this paper, for any fixed set X by a group acting onX we mean an arbitrary set of
permutationsG of X (bijections from X ontoX) such that

1. G is closed with respect to composition ◦,
2. G contains identity function,
3. if σ ∈ G, then σ−1 ∈ G.

We assume (σ ◦ τ)(x) = σ(τ(x)). By a stabilizer set Gx of an element x we mean the
set {σ ∈ G | σ(x) = x}. In the telephone game example,Ga contains both the identity
function and τ . Similarly,Gc contains the identity function and μ = σ4 ◦ τ . It is easy to
see thatGx is itself a group. By the orbitOrbitG(x) of element x ∈ X with respect to a
groupG we mean the set {σ(x) | σ ∈ G}. In the telephone game example, OrbitG(b)
is the whole set {a, b, c, d, e, f} and OrbitGa(b) is the set {b, f}.

Given a set of bijections {σ1, . . . , σn}, by 〈σ1, . . . , σn〉 we mean the set of all pos-
sible finite combinations of bijections σ1, . . . , σn. For example, in the telephone game,
〈σ, τ〉 is the entire group of symmetries of the telephone game.

If set X could be partitioned into sets Y and Z in such a way that each function in
G maps Y onto Y and Z onto Z , then we say that groupG acts on both Y and Z .

3 Syntax and Semantics

Definition 1. A signature Σ is a triple (S, {Pa}a∈S , G) such that

1. S is an arbitrary set of variables,
2. {Ps}s∈S are disjoint sets of atomic propositions,
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3. G is a group acting on set S and on set
⋃

s∈S Ps,
4. σ(p) ∈ Pσ(s) for each σ ∈ G and each p ∈ Ps,
5. σ(p) = p for each s ∈ S, each p ∈ Ps, and each σ ∈ Gs.

For example, in the telephone game, the set S is {a, b, c, d, e, f}. Atomic propositions
in the set Pa are meant to represent various statements about variable a. Examples
of such statements for the telephone game are “word a contains at least one letter h”
and a = math. Similarly, atomic propositions in set Pb meant to represent various
statements about variable b such as “b contains two vowels” or even “b is a palindrome”.
GroupG in the telephone game is 〈σ, τ〉 and is known in abstract algebra as the dihedral
group of order 12.

Next, for any signature Σ we define the set of formulas Φ(Σ). These formulas rep-
resent the properties of the protocols with signatureΣ that we consider.

Definition 2. For any signature Σ, let set Φ(Σ) be the smallest set such that

1. ⊥ ∈ Φ(Σ),
2. Pa ⊆ Φ(Σ), for each a ∈ S,
3. ϕ→ ψ ∈ Φ(Σ), for each ϕ, ψ ∈ Φ(Σ),
4. �aϕ ∈ Φ(Σ), for each a ∈ S and each ϕ ∈ Φ(Σ).

Definition 3. A (symmetric) protocol over a signature (S, {Pa}a∈S , G) is any triple
(V,R, T r) such that

1. V (a) is an arbitrary set of “possible values” of a ∈ S such that if a ∈ OrbitG(b),
then V (a) = V (b),

2. R is an arbitrary set of functions (called “runs”) such that any function r ∈ R
maps each a ∈ S into an element of V (a) and r ◦ σ ∈ R for each σ ∈ G,

3. Tr is an “atomic truth” predicate such that
(a) Tr ⊆

⋃
a∈S(V (a)× Pa) and

(b) Tr is symmetric in the sense that (v, p) ∈ Tr if and only if (v, σ(p)) ∈ Tr, for
each a ∈ S, p ∈ Pa, σ ∈ G, and v ∈ Va = Vσ(a).

We will abbreviate (v, p) ∈ Tr as Tr(v, p). In the telephone game example, V (a),
V (b), . . . , V (f) are all equal to the set of all four-letter words. Atomic truth predicate
Tr(v, p) specifies whether an atomic proposition p ∈ Pa is true for a specific value v of
variable a. For example, proposition p = “ word a is a palindrome” is true if v = noon
but is false if v = noun.

Definition 4. For any run r ∈ R of a protocol (V,R, T r) over a signature Σ =
(S, {Pa}a∈S, G) and any formula ϕ ∈ Φ(Σ), we define relation r � ϕ recursively:

1. r � ⊥,
2. r � p for p ∈ Pa if Tr(r(a), p),
3. r � ϕ1 → ϕ2 if r � ϕ1 or r � ϕ2,
4. r � �aψ if r′ � ψ for all r′ ∈ R such that r′(a) = r(a).

Definition 5. For any signature Σ = (S, {Ps}s∈S , G) and any σ ∈ G, we extend σ
from acting on set S and set

⋃
s∈S Ps to acting on set S and set Φ(Σ) as follows:
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1. σ(⊥) = ⊥,
2. σ(ψ1 → ψ2) = σ(ψ1) → σ(ψ2),
3. σ(�aψ) = �σ(a)σ(ψ).

Furthermore, we assume that σ ∈ G also acts on sets of formulas in Φ(Σ) in such a
way that σ(X) = {σ(ψ) | ψ ∈ X}.

4 Axioms

1. Distributivity: �a(ϕ→ ψ) → (�aϕ→ �aψ),
2. Reflexivity: �aϕ→ ϕ,
3. Transitivity: �aϕ→ �a�aϕ,
4. Euclideanity: ¬�aϕ→ �a¬�aϕ,
5. Self-Awareness: p→ �ap if p ∈ Pa,
6. Stability: �aσ(ϕ) → �aϕ, where σ ∈ Ga.

We write �Σ ϕ if ϕ ∈ Φ(Σ) is provable from the axioms above and propositional
tautologies in the language Φ(Σ) using the Modus Ponens inference rule and the Ne-
cessitation inference rule:

ϕ

�aϕ
.

We write X �Σ ϕ if ϕ is provable from the theorems of our logical system using only
Modus Ponens rule and the additional set of axioms X . We will omit the subscript Σ
when its value is clear from the context.

Lemma 1. For each ϕ ∈ Φ(Σ), each X ⊆ Φ(Σ) and each σ ∈ G, if X � ϕ, then
σ(X) � σ(ϕ).

Proof. Induction on the length of the proof of ϕ. If ϕ is an axiom, then σ(ϕ) is also
an axiom. If ϕ is derived from ψ and ψ → ϕ by Modus Ponens rule, then σ(ϕ) could
be derived from σ(ψ) and σ(ψ → ϕ) by Modus Ponens rule because σ(ψ → ϕ) =
σ(ψ) → σ(ϕ) due to Definition 5. ��

5 Examples

Soundness and completeness of our logical system will be established later in this paper.
In this section we give several examples of proofs in our logical system. We will start
with property (5) from the introduction.

Proposition 1. Let p ∈ Pc and q ∈ Pe. If group G = 〈σ, τ〉 is acting, as shown on
Figure 3, on set S = {a, b, c, d, e, f}, and additionally τ(q) = p, then

� �ap→ �aq.

Proof. Note that τ(a) = a. Hence, τ ∈ Ga. Thus, by the Stability axiom, �aτ(q) →�aq. Therefore, �ap→ �aq. ��
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a b

cd

Fig. 4. Group 〈σ, τ 〉 acting on set {a, b, c, d}

Proposition 2. Let p ∈ Pb and q ∈ Pd. If group G = 〈σ, τ〉 is acting, as shown on
Figure 4, on set S = {a, b, c, d}, and additionally σ2(q) = p, then

� �ap→ �aq.

Proof. Note that τ ◦ σ2 ∈ Ga. Thus, by the Stability axiom,

� �a(τ ◦ σ2)q → �aq.

Due to our assumptions, σ2(q) = p. In addition, by part 5 of Definition 1, τ(p) = p.
Hence, (τ ◦ σ2)q = p. Therefore, � �ap→ �aq. ��

a b

d

e f

c

Fig. 5. Group 〈σ, τ 〉 acting on set {a, b, c, d, e, f}

Proposition 3. Let p ∈ Pc and q ∈ Pd. If group G = 〈σ, τ〉 is acting, as shown on
Figure 5, on set S = {a, b, c, d, e, f}, and additionally σ(q) = p and τ(p) = q, then

� �a�ep→ �a�fp.

Proof. Since σ ∈ Ga, by the Stability axiom,

� �a(σ(�f q)) → �a�fq.

In other words,
� �a�ep→ �a�fq. (6)
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At the same time, τ ∈ Gf . Thus, by the Stability axiom,

� �f (τ(p)) → �fp.

Hence,
� �fq → �fp.

Thus, by the Necessitation rule,

� �a(�f q → �fp).

By the Distributivity axiom,

� �a�fq → �a�fp.

Finally, taking into account Statement (6),

� �a�ep→ �a�fp.

��

a b

c

e f

d

Fig. 6. Group 〈σ〉 acting on set {a, b, c, d, e, f}

Proposition 4. Let p ∈ Pa and q ∈ Pc. If group G = 〈σ〉 is acting, as shown on
Figure 6, on set S = {a, b, c, d, e, f}, and, additionally, σ2(p) = q and σ2(q) = p, then

� �e�b(p ∨ q) → �d(p ∨ q).

Proof. Since σ2 ∈ Ge, by the Stability axiom,

�eσ
2(�d(q ∨ p)) → �e�d(q ∨ p).

In other words, �e(�b(p ∨ q)) → �e�d(q ∨ p).
By the Reflexivity axiom,

�e(�b(p ∨ q)) → �d(q ∨ p). (7)
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Note now that q ∨ p → p ∨ q is a propositional tautology. Thus, by the Necessitation
rule,

�d(q ∨ p→ p ∨ q).

By the Distributivity axiom,

�d(q ∨ p) → �d(p ∨ q).

Therefore, taking into account statement (7),

�e(�b(p ∨ q)) → �d(p ∨ q).

��

6 Soundness

Soundness of propositional tautologies and the Modus Ponens inference rule is straight-
forward. We will prove soundness of the Necessitation rule and of the remaining six
axioms as separate lemmas.

Lemma 2 (necessitation). If r � ϕ for any run r of any protocol over a signature Σ,
then r � �aϕ for any run r of any protocol over Σ.

Proof. Consider any run r of a protocol over signature Σ. It will be sufficient to show
that r′ � ϕ for each r′ of the same protocol such that r′(a) = r(a), which is true due
to the assumption of the lemma. ��

Lemma 3 (distributivity). For any run r of a protocol P , if r � �a(ϕ → ψ) and
r � �aϕ, then r � �aψ.

Proof. Let r′ be any run of P such that r′(a) = r(a). We will show that r′ � ψ. Indeed,
by the first assumption, r′ � ϕ→ ψ. By the second assumption, r′ � ϕ. Therefore, by
Definition 4, r′ � ψ. ��

Lemma 4 (reflexivity). For any run r of a protocol P , if r � �aϕ, then r � ϕ.

Proof. The lemma follows from Definition 4 and the fact that r(a) = r(a). ��

Lemma 5 (transitivity). For any run r of a protocol P , if r � �aϕ, then r � �a�aϕ.

Proof. Consider any run r′ of the protocolP such that r′(a) = r(a). It will be sufficient
to show that r′ � �aϕ. Consider now any run r′′ of the same protocol such that r′′(a) =
r′(a). We need to prove that r′′ � ϕ, which is true due to the fact r′′(a) = r′(a) = r(a)
and the assumption r � �aϕ. ��

Lemma 6 (Euclideanity). For any run r of a protocol P , if r � �aϕ, then r ��a¬�aϕ.
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Proof. By the assumption r � �aϕ, there exists a run r′ of the protocol P such that
r′(a) = r(a) and r′ � ϕ. Consider any run r′′ of the protocolP such that r′′(a) = r(a).
It will be sufficient to show that r′′ � �aϕ, which follows from r′′(a) = r(a) = r′(a)
and r′ � ϕ. ��

Lemma 7 (self-awareness). For any run r of a protocol P and any p ∈ Pa, if r � p,
then r � �ap.

Proof. If r � p, then Tr(r(a), p) by Definition 4. Thus, Tr(r′(a), p) for each run r′ of
the protocol P such that r′(a) = r(a). Hence, by Definition 4, r′ � p for each run r′ of
the protocol P such that r′(a) = r(a). Therefore, again by Definition 4, r � �ap. ��

Our proof of soundness for the Stability axiom relies on the following lemma. As we
mentioned before, by f ◦ g we denote the composition of functions f and g such that
(f ◦ g)(x) = f(g(x)).

Lemma 8. For any run r of a protocol P over a signature (S, {Pa}a∈S, G) and any
σ ∈ G, if r � ϕ, then (r ◦ σ) � σ−1(ϕ).

Proof. Induction on structural complexity of formula ϕ.

1. If ϕ ≡ ⊥, then r � ⊥ by Definition 4.
2. Let ϕ ≡ p for some a ∈ S and some p ∈ Pa. If r � p, then by Definition 4,
Tr(r(a), p). Thus, Tr(r(σ(σ−1(a))), p). Hence, Tr(r(σ(σ−1(a))), σ−1(p)) by
item 3b of Definition 3. Notice now that σ−1(p) ∈ Pσ−1(a) due to Definition 1.
Therefore, (r ◦ σ) � σ−1(p) by Definition 4.

3. Let ϕ ≡ ψ1 → ψ2. Assume r � ψ1 → ψ2. Then by Definition 4, r � ψ1 or
r � ψ2.
First suppose r � ψ1. In other words, r � σ(σ−1(ψ1)). Thus, (r ◦ σ ◦ σ−1) �
σ(σ−1(ψ1)). Then, (r ◦ σ) � σ−1(ψ1) by the contrapositive of the Induction Hy-
pothesis for bijection σ−1. Hence, by Definition 4, (r◦σ) � σ−1(ψ1) → σ−1(ψ2).
Therefore, by Definition 5, (r ◦ σ) � σ−1(ψ1 → ψ2).
Next suppose r � ψ2. Then, by the Induction Hypothesis, (r ◦ σ) � σ−1(ψ2).
Thus, by Definition 4, (r ◦ σ) � σ−1(ψ1) → σ−1(ψ2). Therefore, by Definition 5,
(r ◦ σ) � σ−1(ψ1 → ψ2).

4. Letϕ ≡ �aψ for some a ∈ S. Let r � �aψ. We need to show (r◦σ) � σ−1(�aψ).
By Definition 5, this is equivalent to (r ◦ σ) � �σ−1(a)σ

−1(ψ). Consider any r′

of the protocol P such that r′(σ−1(a)) = (r ◦ σ)(σ−1(a)). It will be sufficient to
show that r′ � σ−1(ψ). Note that r′(σ−1(a)) = r(a). Thus, by the assumption
r � �aψ and Definition 4, (r′ ◦ σ−1) � ψ. Then, by the Induction Hypothesis,
(r′ ◦ σ−1 ◦ σ) � σ−1(ψ). Therefore, r′ � σ−1(ψ). ��

Lemma 9 (stability). For any run r of a protocol P over a signature (S, {Pa}a∈S, G)
and any σ ∈ Ga, if r � �aσ(ϕ), then r � �aϕ.

Proof. Consider an arbitrary run r′ of the protocol P such that r′(a) = r(a). It will
be sufficient to show r′ � ϕ. By Lemma 8, r � �aσ(ϕ) implies (r ◦ σ) � �σ−1(a)ϕ.
Hence, (r ◦ σ) � �aϕ because σ ∈ Ga and thus σ−1 ∈ Ga as well. Notice that
(r ◦ σ)(a) = r(a) = r′(a), because σ ∈ Ga and due to the assumption r′(a) = r(a).
Therefore, by Definition 4, r′ � ϕ. ��
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7 Completeness

In this section, we will prove the completeness of our logical system. The completeness
argument follows the standard outline of a modal logic completeness, with additional
considerations for the symmetry of our setting.

Theorem 1. Let Σ = (S, {Pa}a∈S, G) be an arbitrary signature and let ϕ ∈ Φ(Σ). If
r � ϕ for each run r ∈ R of each protocol (V,R, T r) over Σ, then �Σ ϕ.

Proof. Suppose that �Σ ϕ. We will construct a protocol P = (V,R, T r) over Σ and
a run r ∈ R such that r � ϕ. Let X0 be any maximal and consistent (in the sense
X0 �Σ ⊥) subset of Φ(Σ) such that ¬ϕ ∈ X0. By X we mean the set of all maximal
and consistent subsets of Φ(Σ). Thus, for instance X0 ∈ X.

Definition 6. For any X,Y ∈ X let X ∼a Y mean that �aψ ∈ X if and only if�aψ ∈ Y for each ψ ∈ Φ(S).

Lemma 10. Relation ∼a is an equivalence relation on X, for each a ∈ S. ��

By Xa we mean the set of equivalence classes with respect to the relation ∼a, and by
[X ]a we mean the equivalence class of X . We will later use these classes to define the
values in V (a) of protocol P . The next lemma is a standard lemma in the proofs of
completeness for modal logics.

Lemma 11. For any X ∈ X and any ψ such that �aψ /∈ X , there is Y ∈ X such that
Y ∼a X and ¬ψ ∈ Y .

Proof. We will first show that the following set is consistent:

{�aω | �aω ∈ X} ∪ {¬�aη | ¬�aη ∈ X} ∪ {¬ψ}.

Towards a contradiction, let there be �aω1, . . . ,�aωn,¬�aη1, . . . ,¬�aηk ∈ X such
that

� �aω1 → (· · · → (�aωn → (¬�aη1 → (· · · → (¬�aηk → ψ) . . . ))) . . . ).

By the Necessitation rule,

� �a(�aω1 → (· · · → (�aωn → (¬�aη1 → (· · · → (¬�aηk → ψ) . . . ))) . . . )).

By multiple applications of the Distributivity axiom,

� �a�aω1 → (· · · → (�a�aωn → (�a¬�aη1

→ (· · · → (�a¬�aηk → �aψ) . . . ))) . . . ).

By multiple applications of the Transitivity axiom,

� �aω1 → (· · · → (�aωn → (�a¬�aη1

→ (· · · → (�a¬�aηk → �aψ) . . . ))) . . . ).
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By multiple applications of the Euclideanity axiom,

� �aω1 → (· · · → (�aωn → (¬�aη1 →
(· · · → (¬�aηk → �aψ) . . . ))) . . . ).

Hence, by multiple applications of the Modus Ponens rule,

�aω1, . . . ,�aωn,¬�aη1, . . . ,¬�aηk � �aψ.

Thus, X � �aψ, which is a contradiction with maximality of X and the assumption�aψ /∈ X . Let Y be a maximal consistent set containing

{�aω | �aω ∈ X} ∪ {¬�aη | ¬�aη ∈ X} ∪ {¬ψ}.

We are only left to show that if �aη ∈ Y , then �aη ∈ X for each �aη ∈ Φ(Σ). Indeed,
assume that �aη /∈ X . Then, ¬�aη ∈ X by the maximality of X . Hence, ¬�aη ∈ Y
due to the choice of Y . Therefore, �aη /∈ Y due to consistency of Y . ��

The following lemma shows that the symmetries which act on S and Φ(Σ) also could
be viewed as acting on X.

Lemma 12. σ(X) ∈ X, for eachX ∈ X and each σ ∈ G.

Proof. To prove maximality of the set σ(X), consider any formula ϕ ∈ Φ(S). It will
be sufficient to show that either ϕ ∈ σ(X) or (ϕ → ⊥) ∈ σ(X). Indeed, consider the
formula σ−1(ϕ). Due to the assumption of maximality of the set X , either σ−1(ϕ) ∈
X or σ−1(ϕ → ⊥) ∈ X . Therefore, either ϕ ∈ σ(X) or (ϕ → ⊥) ∈ σ(X) by
Definition 5.

To prove consistency of the set σ(X), suppose that σ(X) � ⊥. Thus, σ−1(σ(X)) �
σ−1(⊥) by Lemma 1. Therefore, by Definition 5,X � ⊥, which is a contradiction with
the assumption of consistency of the set X . ��

Lemma 13. IfX ∼a Y , then σ(X) ∼σ(a) σ(Y ), for each σ ∈ G, eachX,Y ∈ X, and
each a ∈ S.

Proof. Let �σ(a)ψ ∈ σ(X). Thus, σ−1(�σ(a)ψ) ∈ X . Hence, �aσ
−1(ψ) ∈ X . Then,�aσ

−1(ψ) ∈ Y by the assumption X ∼a Y . Hence, σ(�aσ
−1(ψ)) ∈ σ(Y ). In other

words, �σ(a)ψ ∈ σ(Y ). ��

It follows from the previous lemma that symmetry σ now also can be viewed as acting
on

⋃
a∈S Xa in such a way that σ([X ]a) = [σ(X)]σ(a).

Lemma 14. For anyX ∈ X, any a ∈ S, and any σ ∈ Ga, σ(X) ∼a X .

Proof. Suppose that �aψ ∈ X . Thus, σ(�aψ) ∈ σ(X). Hence, �aσ(ψ) ∈ σ(X), by
the assumption σ ∈ Ga. Therefore, �aψ ∈ σ(X), by the Stability axiom and maximal-
ity of σ(X).

Assume now that �aψ ∈ σ(X). Thus, σ−1(�aψ) ∈ X . Hence, �aσ
−1(ψ) ∈ X ,

because σ ∈ Ga and thus σ−1 ∈ Ga. Therefore, �aψ ∈ X by the Stability axiom and
due to maximality of X . ��
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Recall that by the orbit OrbitG(a) of element a ∈ S with respect to group G we
mean the set {σ(a) | σ ∈ G}. Orbits partition set S into disjoint subsets. We pick
a unique representative from each orbit. If a ∈ S, then the unique representative of
OrbitG(a) is denoted by â. For each a ∈ S we also pick any μa ∈ G such that μa(â) =
a. We are now ready to define the protocol P = (V,R, T r).

Definition 7. For any a ∈ S, let V (a) = Xâ.

The following lemma verifies that P satisfies condition 1 from Definition 3.

Lemma 15. V (a) = V (σ(a)) for each a ∈ S and each σ ∈ G.

Proof. Note that â = σ̂(a) because the elements a and σ(a) belong to the same orbit.
Thus, V (a) = Xâ = X

σ̂(a)
= V (σ(a)). ��

Definition 8. Let set R contain all functions r(s) on the set S such that

1. r(a) ∈ V (a) for each a ∈ S,
2.

⋂
a∈S μa(r(a)) = ∅.

The first condition of the above definition mirrors Definition 3. Informally, the second
condition requires the values of the same run to be “consistent” with each other. The
technical lemma below shows that the intersection of a family of sets is not dependent
on the indexing of the family.

Lemma 16. If {Ya}a∈S is an arbitrary family of sets and f is any bijection of S onto
S, then ⋂

a∈S

Ya =
⋂
a∈S

Yf(a).

Proof. Since f is a bijection, the left side and the right side of the equality intersect the
same family of sets (indexed differently). ��

The next lemma demonstrates that P satisfies condition 2 of Definition 3.

Lemma 17. r ◦ σ ∈ R for each r ∈ R and each σ ∈ G.

Proof. We need to show that r ◦ σ satisfies both conditions from Definition 8. We will
do it separately.

1. Assume that a ∈ S. We will show that (r ◦ σ)(a) ∈ V (a). Indeed, (r ◦ σ)(a) =
r(σ(a)) ∈ V (σ(a)), hence, by Lemma 15, (r ◦ σ)(a) ∈ V (a).

2. We will now show that
⋂

a∈S μa(r ◦ σ(a)) = ∅. Indeed, by Definition 8, there is a
set X such that X ∈

⋂
a∈S μa(r(a)). Hence, X ∈ μa(r(a)) for each a ∈ S. Thus,

(σ ◦ μσ−1(a) ◦ μ−1
a )X ∈ (σ ◦ μσ−1(a) ◦ μ−1

a )μa(r(a)),

for each a ∈ S. Hence,

(σ ◦ μσ−1(a) ◦ μ−1
a )X ∈ σ(μσ−1(a)(r(a))), (8)
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for each a ∈ S. Note now that (σ ◦ μσ−1(a) ◦ μ−1
a )(a) = (σ ◦ μσ−1(a))(â) =

σ(σ−1(a)) = a by the choice of â and μa. Thus, σ ◦ μσ−1(a) ◦ μ−1
a ∈ Ga. Hence,

by Lemma 14, (σ ◦ μσ−1(a) ◦ μ−1
a )X ∼a X . Then, due to (8),

X ∈ σ(μσ−1(a)(r(a))),

for each a ∈ S. Thus,

σ−1(X) ∈ σ−1(σ(μσ−1(a)(r(a)))),

for each a ∈ S. Then,
σ−1(X) ∈ μσ−1(a)(r(a)),

for each a ∈ S. Hence,

σ−1(X) ∈
⋂
a∈S

μσ−1(a)(r(a)).

Then, by Lemma 16,
σ−1(X) ∈

⋂
a∈S

μa(r(σ(a))).

Therefore,
⋂

a∈S μa(r ◦ σ(a)) = ∅.
��

Definition 9. For any a ∈ S, any X ∈ X, and any p ∈ Pa, let Tr([X ]â, p) be true if
p ∈

⋂
μa([X ]â).

The next lemma confirms that P satisfies condition 3 of Definition 3.

Lemma 18. For any a ∈ S, any p ∈ Pa, any σ ∈ G, and any X ∈ X, if p ∈⋂
μa([X ]â), then σ(p) ∈

⋂
μσ(a)([X ]â).

Proof. It will be sufficient to show that
⋂
μa([X ]â) ⊆ σ−1(

⋂
μσ(a)([X ]â)). To demon-

strate the latter, we will prove that μa(Y ) ∼â σ
−1(μσ(a)(Y )) for each Y ∈ X. In-

deed, by the definition of μa and μσa , we have μ−1
σ(a)(σ(μa(â))) = â. Hence, μ−1

σ(a) ◦
σ ◦ μa ∈ Gâ. Thus, μ−1

σ(a)(σ(μa(Y )) ∼â Y , by Lemma 14. Therefore, μa(Y ) ∼â

σ−1(μσ(a)(Y )). ��

We have now shown that P is a protocol over signatureΣ. The next lemma is a variation
of the standard induction lemma in proofs of completeness.

Lemma 19. For any r ∈ R, any formula ψ ∈ Φ(Σ), and anyX ∈
⋂

a∈S μa(r(a)),

r � ψ if and only if ψ ∈ X.

Proof. Induction on structural complexity of formula ψ. If ψ ≡ ⊥, then the required
follows from Definition 4 and consistency of the set X .
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Assume that ψ ≡ p ∈ Pa0 . (⇒) : If r � p, then, by Definition 4, Tr(r(a0), p).
Hence, by Definition 9, p ∈

⋂
μa0(r(a0)). Recall that X ∈

⋂
a∈S μa(r(a)). Thus,

X ∈ μa0(r(a0)). Therefore, p ∈ X . (⇐) : If p ∈ X , then �a0p ∈ X due to maximality
of X and the Self-Awareness axiom. Thus, by Definition 6, �a0p ∈ Y for each Y such
that X ∼a0 Y . Hence, due to maximality of Y and the Reflexivity axiom, p ∈ Y for
each Y such that X ∼a0 Y . Then, p ∈

⋂
μa0(r(a0)) becauseX ∈ μa0(r(a0)). Hence,

by Definition 9, Tr(r(a0), p). Therefore, by Definition 4, r � p.
Let ψ ≡ �a0ω.
(⇒) : Suppose that �a0ω /∈ X . Thus, by Lemma 11, there is Y ∼a0 X such that

ω /∈ Y . Let r′(a) = [μ−1
a (Y )]â for each a ∈ S. We will show r′ ∈ R using Definition 8.

Indeed, ⋂
a∈S

μa(r
′(a)) =

⋂
a∈S

μa([μ
−1
a (Y )]â) =

⋂
a∈S

[Y ]a ) Y.

We will now show that r′(a0) = r(a0). Indeed, X ∈
⋂

a∈S μa(r(a)) by the assump-
tion of the lemma. Hence, X ∈ μa0(r(a0)). Thus, μ−1

a0
(X) ∈ μ−1

a0
(μa0(r(a0))). In

other words, μ−1
a0

(X) ∈ r(a0). Recall now that X ∼a0 Y . Hence, by Lemma 13,
μ−1
a0

(X) ∼â0
μ−1
a0

(Y ). Thus, μ−1
a0

(Y ) ∈ r(a0). Therefore, r′(a0) = [μ−1
a0

(Y )]â0
=

r(a0).
Finally, recall that ω /∈ Y . Thus, by the Induction Hypothesis, r′ � ω. Therefore, by

Definition 4, r � �a0ω.
(⇐) : Suppose that �a0ω ∈ X . Consider any r′ ∈ R such that r′(a0) = r(a0).

It will be sufficient to show that r′ � ω. Indeed, by Definition 8, there is X ′ ∈⋂
a∈S μa(r

′(a)). In particular, X ′ ∈ μa0(r
′(a0)). Thus, X ′ ∈ μa0(r(a0)). Recall that

X ∈
⋂

a∈S μa(r(a)). Hence, X ∈ μa0(r(a0)). Thus, both X ′ and X belong to the
same equivalence class μa0(r(a0)). Then, X ∼a0 X

′. Thus, �a0ω ∈ X ′ by the as-
sumption �a0ω ∈ X and Definition 6. Hence, ω ∈ X ′, by the Reflexivity axiom and
the maximality of the set X ′. Therefore, by the Induction Hypothesis, r′ � ω.

The case ψ ≡ ψ1 → ψ2 follows from Definition 4 and maximality and consistency
of the set X in the standard way. ��

To finish the proof of the completeness theorem, consider r0(a) = [μ−1
a (X0)]â as a

function of argument a. We will show that r0 ∈ R. Indeed, r0(a) ∈ V (a) because
[X0]a ∈ Xa and [μ−1

a (X0)]â ∈ Xâ = V (a). In addition,
⋂

a∈S μa(r0(a)) = ∅ because⋂
a∈S

μa(r0(a)) =
⋂
a∈S

μa([μ
−1
a (X0)]â) =

⋂
a∈S

[X0]a ) X0. (9)

We now finish the proof of the completeness theorem by showing that r0 � ϕ. Indeed,
recall that ¬ϕ ∈ X0. By Lemma 19 and due to Statement (9), r0 � ¬ϕ. Therefore, by
Definition 4, r0 � ϕ. ��

8 Conclusion

In this paper we introduced a modal logical system for reasoning about knowledge in
symmetric protocols and proved soundness and completeness of this system.
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The modal language described in this paper can be generalized to distributed knowl-
edge [7] modality �A, whereA is a subset of S. Informally, statement r � �Aϕ means
that any agent who knows all values in set A on run r will be able to conclude ϕ.
Formally, the last part of Definition 4 can be changed to

4. r � �Aψ if r′ � ψ for all r′ ∈ R such that r′(a) = r(a) for each a ∈ A.

Axioms of our logical system can be trivially re-written to handle distributed knowl-
edge. For example, the Stability axiom generalizes to �Aσ(ϕ) → �Aϕ, where σ ∈
∩a∈AGa. However, to be natural, such generalization will have to allow atomic propo-
sitions to express properties of values of any subset of S. For example, proposition
p{a,b} could state that a = b. The proof of completeness presented in this paper does

not work in this new setting because it is not clear how Â should be defined so that it
can be used in the generalized Definition 9. Complete axiomatization of epistemic logic
of distributed knowledge for symmetric protocols remains an open problem.
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Abstract. A possible purpose of performing an action is to collect in-
formation. Such informative actions are usually resource-consuming. The
resources needed for performing them can be for example time or mem-
ory, but also money, specialized equipment etc. In this work, we propose
a formal framework to study how the ability of an agent to improve its
knowledge changes as a result of changing the available resources. We
introduce a model for resource-consuming informative actions, and show
how the process of accumulating knowledge can be modelled. Based on
this model, we propose a modal logic for reasoning about the epistemic
abilities of agents. We present some validities of the logic, and show that
the model checking problem sits in the first level of polynomial hierar-
chy. We also discuss the connection between our framework and classical
information theory. More specifically, we show that the notion of un-
certainty given by Hartley measure can be seen as a special case of an
agent’s ability to improve its knowledge using informative actions.

1 Introduction

Performing actions is an intrinsic feature of agents. In the real world, execution
of an action requires resources. The resources may be time, money, memory,
space, etc. Therefore, the abilities ascribed to an agent depend on the amount
of available resources. Reasoning about realistic agents should take into account
the limitations imposed by resource bounds.

In this work, we are mostly interested in reasoning about the abilities of agents
to change their view of the situation. More specifically, we want to capture the
way agents with bounded resources, modify their knowledge about the environ-
ment by performing informative actions, such as sensing and observing. Building
knowledge by performing informative actions is in many cases essential for an
intelligent agent. One example of an agent that performs (resource consuming)
observations in order to refine its knowledge is a robot in a rescue mission that
tries to obtain knowledge about the type of danger and the location of peo-
ple in the danger zone. Another example is a real-time classifier with the task
of classifying a given picture within a short time, and with several classification
algorithms at hand. We believe that a logic to reason about accumulating knowl-
edge by use of resource consuming informative actions can help in modelling and
analysing the behaviour of agents in many similar scenarios.
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1.1 Related Work

The inspiration for this work can be traced back to Herbert A. Simon who intro-
duced the term of bounded rationality [27]. More recently, several approaches,
such as the works of Halpern [19,15], Rantala [25] and Konolige [22], have been
introduced to dealing with the so called omniscience problem, and enable reason-
ing about agents who are not necessarily perfect reasoners themselves. Reasoning
about agents’ abilities under bounded resources has also become a major topic
in the community of temporal and strategic logic, cf. the works by Alechina and
Logan [3,4,5,6,7,8] and Bulling and Farwer [11,10]. We review the most relevant
approaches below, but it is fair to say that none of them includes both a no-
tion of quantitatively restricted reasoning and a semantic representation of the
knowledge owned or gained by agents.

In the syntactic approach to knowledge [14,24,22], the known sentences are
explicitly listed for each possible world. This approach enables to capture an
agent’s limited ability to gain knowledge in a given condition. However, such
model cannot capture changes in epistemic abilities of an agent when the avail-
able resources change. For each new amount of available resource, a new model
must be built to reason about the new situation. The same applies to the aware-
ness approach [15], impossible worlds [25], and algorithmic knowledge [19]. On
the other hand, the accumulation of knowledge is at the focus of Dynamic Epis-
temic Logic [28] and its extensions [1]. However, DEL takes into account neither
limited observational resources nor imperfections of reasoning by real agents.

In [3,4], a notion of delayed belief was introduced. That approach assumes
that the agent is a perfect reasoner in an arbitrary decidable logic, but only
derives the consequences of its beliefs after some delay. An advantage of delayed
belief is that we can represent situations where an agent does not yet know a
property, but it can learn the property by using some action(s). Still, there is
no notion of quantitative resource in this approach. So, e.g., we cannot reason
about the effect of changing the available resources on the epistemic state of an
agent. Likewise, Timed Reasoning Logic [5] allows to capture the dynamics of
agents’ knowledge, but it lacks the explicit notion of resources (although it is
possible to reason about the time consumed when performing actions).

Another group of approaches was proposed in the agent logics community.
RTL [10,11] is a resource bounded extension to the Computation Tree Logic
(CTL) which models the temporal evolution of a system as a tree-like structure
in which the future is not determined. In RTL, each transition between states can
consume some resources and produce other resources. The logic RTL includes
the notion of resource, and enables reasoning about changes of abilities of agents
due to changes of available resources. However, it has no semantic representation
of knowledge. In order to reason about the evolution of knowledge, one would
have to define new propositions to capture the knowledge of agents, and find
out (by using other methods) what an agent knows in each state in order to
determine the valuation of these propositions. The same applies to several other
logics for resource bounded agents, such as Coalition Logic for Resource Games
[6], Resource Bounded Alternating-time Temporal Logic [7], Priced Resource
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Bounded ATL [12], and Resource Bounded Coalition Logic [8]. The main focus
is reasoning about how agents use actions to achieve their goals under resource
bounds, with no specific machinery to capture information flow.

Reasoning about the outcome of accumulated observations has been also stud-
ied in belief revision and AI planning. Classical belief revision is syntactic in
nature [2], though there are also formalizations based on possible worlds [17].
Still, both strands focus on inference by perfect reasoners using cost-free infor-
mative actions. AI planning approaches that take into account epistemic actions
are also mostly based on the syntactic approach to knowledge. For instance, the
C-BURIDAN planner [13] represents each state by the set of propositions that
hold in it. An informative action does not change the propositions, but adds
some labels to the state. These labels represent the observations that the agent
has has collected, and can later be used to block application of other actions.
Although C-BURIDAN and similar planners capture informative actions, they
do not include a notion of resource. One can set preconditions for actions, and
by this restrict the availability of an action in a state, but there is no way of
representing the amount of resources needed to perform the action. Also, the
main concern in AI planning is to find a sequence of actions that transforms
the initial state of the world to an “objective” goal state, and not to a given
epistemic state. Outcomes of observations can be used to find out the needed
sequence of actions, but cannot define the goal itself.

Variants of AI planning which come much closer to our approach are belief
planning [26] and dynamic epistemic planning [9]. They are both based on Kripke
semantics, and focus on goals formulated in terms of epistemic states. Still,
they lack the notion of quantitative resource, and do not address the impact of
available resources on the outcome of plans (nor the on the outcome of planning).

In summary, some existing frameworks allow for reasoning about information
flow and epistemic change, albeit in a purely qualitative way. Other approaches
capture epistemic limitations of agents under bounded resources, but do not
include the concept of resource, and do not facilitate reasoning about the rela-
tionship between agents’ ability to gain knowledge, and changes in the resources.
Yet another group includes the notion of resource and supports reasoning about
resource-dependent abilities of agents, but lacks a semantic representation of
knowledge and its dynamics. In this paper, we propose a logic-based approach
that on the one hand relates epistemic abilities to resources, and on the other
hand represents the process of refining knowledge in a semantically sensible way.

2 Resource Bounded Model for Accumulative Knowledge

In this section we develop a model that formalizes scenarios in which agents
build their knowledge by using resource-consuming actions. We explain the ideas
behind our approach with the following motivating example.

Example 1 (Medical agent). Consider a medical assistant agent. The agent is to
help diagnosing patients in areas where there are not enough general practition-
ers. The process of helping a patient starts when the patient informs the agent
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about his symptoms. The agent then generates a list of all possible diseases con-
sistent with the symptoms. Among the diseases, some are considered as being
serious. The agent’s duty is finding out whether the patient’s disease is serious
or not. If it is found out that the disease is not serious, the agent prescribes
appropriate medications. Otherwise the agent sends the patient to a medical
centre. A set of medical tests is available to determine the seriousness of the
disease. Each medical test takes some specific time. Depending on the result of
the test, the agent can rule out some of the diseases, and so on.

In principle, the process should continue until the agent finds out if the disease
is serious. However, there are some important questions that an intelligent agent
might consider before even starting. What are the relevant medical tests for a
patient with the given symptoms? If the supply of test kits is limited, is the
agent able to find out the seriousness of the disease with the available kits? If,
among the possible diseases, there is one that should be diagnosed quickly, is
there a sequence of tests that will make the agent certain about this very disease
before the condition of the patient gets critical?

2.1 Observation-Based Certainty Model

We will use possible worlds models [23] to formalize this and similar scenarios.
Each world corresponds to a possible state of affairs. If an agent cannot dis-
tinguish between two worlds, this is represented by the corresponding modal
accessibility relation. For instance, for the medical agent, the set of possible
worlds can consist of all possible diagnoses (i.e., diseases). The agent knows that
a given property holds if and only if it holds in all the accessible worlds. For
example, if all the possible diseases consistent with the symptoms are caused by
infection, then we say that the agent knows that the patient has an infection.

An agent may refine its knowledge by performing informative actions. In this
work, we refer to all informative actions as observations. The medical agent can,
e.g., check the temperature of the patient. Performing an observation may refine
the knowledge of an agent by ruling out some of the possible worlds. For example,
after learning that the patient does not have high temperature, the medical
agent rules out all the diseases that include high temperature. The agent needs
resources (time, memory, space, money, etc.) to perform observations. Thus, in
order to analyse the agent’s ability to gain the required knowledge, we need to
take into account the cost of the observations and the available resources.

We formalize the intuitions as follows, drawing inspiration from modal epis-
temic logic and dynamic epistemic logic.

Definition 1 (Observation-based certainty model). Having a set of atomic
propositions P and a set of agents A, an observation based certainty model is a
tuple M = 〈S,R, V,Obs, obs, cost, cover〉 where:

– S is a set of states (possible worlds).
– R ⊆ A × S × S is the accessibility relation which represents the worlds that

are accessible for each agent. We will write s1∼as2 instead of (a, s1, s2) ∈ R.
Each binary relation R(a, ·, ·) is an equivalence relation.
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Fig. 1. A model of simple medical diagnosis. The epistemic accessibility relation for
agent a is represented by the dotted lines (modulo transitivity). q1, q2 are the available
observations; their covering sets are depicted by the rectangles. Moreover, we assume
that cost(q1) = 1 and cost(q2) = 2.

– V : P → 2S is a valuation propositions that shows which propositions are
true in which worlds.

– Obs is a set of labels for binary observations.
– obs : A→ 2Obs defines availability of observations to agents.
– cover : Obs→ 2S is the coverage function. It specifies the set of worlds that

correspond to the “positive” outcome of an observation. We call cover(q) the
covering set of the observation q.

– cost : Obs → C is the cost function that specifies the amount of resources
needed to make the observation. The set of cost values C depends on the
context. For example, when the resource in question is time, C can be the
set of positive real numbers. For memory usage, costs can be conveniently
represented by natural numbers. In case of multiple resources consumption,
the cost can be a vector of numbers, such that each number represents the
consumption of a different type of resource. To simplify the presentation, we
will assume that C = N ∪ {0} throughout the paper.

An example model is shown in Figure 1, and discussed in detail in Example 2.

2.2 Queries and Updates

Definition 2 (Update by an observation). Let m ⊆ S be a subset of worlds
(e.g., the ones considered possible by the agent at some moment), q ∈ Obs an
observation, and s ∈ m a state. The update of m by observation q in state s is
defined as follows:

m|sq =

{
m ∩ cover(q) if s ∈ cover(q)
m \ cover(q) if s /∈ cover(q).
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Definition 3 (Query). A query is a finite sequence of observations, i.e., a
tuple l = 〈q1, . . . , qk〉 where each qi is an observation.

Definition 4 (Update by a query). An update of a subset of worlds m ⊆ S
by a query l = 〈q1, q2, . . . qk〉 in state s is defined recursively as follows:

m|sl = m|sq1,q2,...,qk =
(
m|sq1,...,qk−1

)
|sqk

After updating the initial set m by the first observation in the sequence, the
updated set of worlds is the new set of worlds that is used to be updated by
next observation in the sequence. This process continues until updating by the
last observation in the sequence is done.

Example 2. Consider the medical agent scenario. In Figure 1, the set of possible
worlds m = {s1, s2, s3, s4} represents the diseases consistent with the symptoms
of the patient (say, pneumonia, meningitis, leukaemia, and chronic kidney dis-
ease). The available medical tests for the medical agent a in this example are
the observations q1 and q2, which respectively correspond to checking the tem-
perature of the patient and checking her blood pressure. The covering set of the
observation q1 is {s1, s2}, i.e., the diseases with high temperature, and the cover-
ing set of q2 is {s2, s4}, that is, the diseases characterized by high blood pressure.
Suppose that that the actual disease is s1 and the medical agent first checks the
temperature and then the blood pressure. It means that we would like to find
the update of the set m in state s1 by the observations q1 and q2. Checking the
temperature tells the agent whether the actual state is in the covering set of q1 or
not. Here the answer is “yes”, and thus we havem|s1q1 = m∩cover(q1) = {s1, s2}.
Checking the blood pressure after this corresponds to updating the result of the
previous update {s1, s2} by observation q2. In state s1, the final result is {s1},
so the agent knows precisely that the disease is pneumonia.

Definition 5 (Cost of a query). Let ⊕ : C × C → C be a fixed additive
aggregation function [18]. The cost of a query is the aggregation of the costs of
its observations: cost(〈q1, . . . , qk〉) = cost(q1)⊕ · · · ⊕ cost(qk).

The aggregation function⊕ is context-dependent, and can be defined in various
ways. For example, if the resource is time and observations are made sequentially
then the aggregate cost is simply the sum of individual costs. If the observations
are applied in parallel, the time needed for the whole query is the maximum of
the costs, and so on. In this paper, we assume that cost(〈q1, . . . , qk〉) = cost(q1)+
· · ·+ cost(qk), and leave the general case for future work.

Definition 6 (Relevant observation). The observation q is called relevant to
a set m ⊆ S iff m ∩ cover(q) = ∅ and m ∩ cover(q) = m.

If m is the set of worlds that the agent considers possible, a relevant observa-
tion is one that brings new information to the agent. In other words, when an
observation is not relevant, the agent knows the result of updating even before
applying the observation.
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Fig. 2. A model of diagnosis for a more knowledgeable medical agent

Example 3. Consider the model in Figure 2. The set m = {s1, s3} collects the
diseases that the medical agent takes into account. It is easy to see that q2 in not
relevant because the agent already knows that the patient does not have high
blood pressure. In other words an update of m by q2 is equal to m itself. But
the agent does not know the result of checking the temperature, therefore q1 is
a relevant observation.

Definition 7 (Relevant query). Let a ∈ A and s ∈ S. A query l = 〈q1, . . . , qk〉
is relevant for agent a in state s iff: (1) qi ∈ obs(a) for all i, (2) q1 is relevant
to {s′|s∼as

′}, and (3) qi is relevant to {s′|s∼as
′}|sq1,...,qi−1

for all i ≥ 2.

Note that, while we defined the relevance of an observation with respect to a
set of worlds, we use a set and a state to define the relevance of a query. This is
because in the process of updating a set by a query, in each step, the outcome
of the update depends on the actual state. This implies that an agent who does
not know what the actual world is, might not know beforehand whether a query
is relevant or not. However, the agent knows at each step of updating if the next
observation to be applied is relevant or not. Note also that in a state, the same
query might be relevant for one agent, and irrelevant for another agent.

Finally, we remark that for practical purposes such an explicit modeling of
the outcome of observations (in terms of global states in a Kripke model) can
be impractical. This can be overcome by using a higher-level model specification
language, for instance one based on interpreted systems [16]. We do not dig
deeper into this issue, and discuss only the abstract formulation throughout the
paper.

3 A Logic of Accumulative Knowledge

In this section, we introduce a modal language for reasoning about the abilities
of agents to refine their knowledge under bounded resources.
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3.1 Syntax

The set of formulas of Logic of Accumulative Knowledge (LAcK) is defined by
the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | Kaϕ | Kl
aϕ | ♦Kb

aϕ | �Kb
aϕ,

where p ∈ P is an atomic proposition, a ∈ A is an agent, and b ∈ B is a
resource bound. Unless explicitly stated, we will assume that the set of bounds
is B = N∪{0,∞}. The other Boolean operators are defined as usual. Additionally,
we define Kaϕ ≡ Kaϕ ∨Ka¬ϕ.

Formula Kaϕ says that agent a knows that ϕ. Consequently, Kaϕ expresses
that a has no uncertainty about ϕ, that is, he knows the truth value of ϕ. The
formula Kl

aϕ says that a has observation-based certainty about ϕ through obser-
vation l. Formula ♦Kb

aϕ reads as “a can possibly (or potentially) obtain certainty
about ϕ under resource bound b”. Finally, �Kb

aϕ expresses that a is guaranteed
to obtain certainty about ϕ under bound b.

3.2 Semantics

The semantics of LAcK in observation-based certainty models is defined by the
following clauses:

– M, s |= p iff s ∈ V (p), for any p ∈ P .
– M, s |= ¬ϕ iff M, s |= ϕ.

– M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ.

– M, s |= Kaϕ iff ∀s′ ∈ ma(s) : M, s
′ |= ϕ, where ma(s) = {s′|s∼as

′} denotes
the set of states indistinguishable from s for agent a.

– M, s |= Kl
aϕ where l = 〈q1, . . . , qk〉, iff firstly for all 1 ≤ i ≤ k, we have

qi ∈ obs(a), and secondly either ∀s′ ∈ ma(s)|sl : M, s′ |= ϕ or ∀s′ ∈ ma(s)|sl :
M, s′ |= ¬ϕ. We call such l an answer query for (a, ϕ) in s.

– M, s |= ♦Kb
aϕ iff for some query l, M, s |= Kl

a and cost(l) ≤ b.
Potential certainty expresses that under a given resource bound, the agent
has a way to obtain certainty by applying some relevant observations. Note
that this does not guarantee that the agent will obtain the certainty, since
he may not know exactly what observation is the right one in each step of
querying.

– M, s |= �Kb
aϕ iff, for all queries l which are relevant for a in s and cost(l) ≤ b,

we have either M, s |= Kl
aϕ, or there exists a query l′ so that M, s |= Kl·l′

a ϕ
and cost(l · l′) ≤ b.
Equivalently, we can define guaranteed certainty by saying that M, s |=
�Kb

aϕ iff, for all relevant queries l for agent a in s, which are maximal under
bound b (meaning that adding any observation to the query makes its cost
more than b), l is an answer query for ϕ in s. Guaranteed certainty expresses
that the agent, by applying relevant and possible observations in any order,
obtains certainty without running out of resource.



214 W. Jamroga and M. Tabatabaei

Fig. 3. Observation-based certainty about ϕ using 〈q1, q2, q3〉

3.3 Examples

Example 4. Consider the model in Figure 3. The initial set of possible diseases
for the medical agent a is {s1, s2, . . . , s6}. Moreover, proposition ϕ is true in
a state if the corresponding disease is dangerous, otherwise it is false. In this
example, in some of the possible worlds for the agent the formula ϕ is true, while
in some it is not. Therefore initially the agent is not certain about seriousness
of the disease. There are three types of medical tests available, corresponding to
observations q1, q2 and q3. After updating its initial set of possible worlds with
l1 = 〈q1, q2, q3〉, the agent gets {s1, s2}. Since ϕ is true in both s1 and s2, we
have that the agent can use l1 to become certain about the truth value of ϕ. We
denote this by M, s1 |= Kl1

a ϕ. If the agent prescribes only the medical tests q2
and q3, then the updated set is {s1, s2, s4}. As ϕ is neither true in all elements
of this set, nor false in all of them, we have M, s1 |= Kl2

a ϕ.

Example 5. Now consider the model in Figure 4. As before, the available medical
tests are represented with observations q1, q2, and q3. Next to each observation
there is a number that shows the cost of applying that medical test. In our
example the cost of a test is the time needed to execute it. So, the time needed
for test q1 is 5 hours, and for tests q2, q3 it is 2 hours each. The medical agent
is not certain about the seriousness of the disease, but it is guaranteed to be
certain about it if it has at least 5 hours for doing the tests. To see why, first
note that initially all the three observations tests are relevant and their costs
are all lower than the bound. Thus, the agent has three choices. If it chooses q1
as the first test, the updated set is {s1, s2, s3}. In all the worlds in this set ϕ is
true, So the agent has obtained certainty (in this case, it knows that the disease
is dangerous). If the agent chooses q2 first, the updated set is {s1, s2, s3, s5, s6}.



Accumulative Knowledge under Bounded Resources 215

Fig. 4. Guaranteed certainty about ϕ under bound 5

The agent is not certain yet and has to continue applying observations. The time
needed of applying q2 is 2, so after applying q2 the agent has 5 − 2 = 3 hours
left, during which it only can apply q3. After updating by q3, the updated set is
{s1, s2, s3}. The agent does not need to continue prescribing new tests because
the certainty is already gained. The result of applying q3 first is similar to the
previous case, except that this time the second observation is inevitably q2. So
if the agent at each step, chooses any arbitrary observation from the relevant
and possible ones, it attains certainty about ϕ under bound 5. Therefore in this
example M, s1 |= �K5

aϕ.
If the agent had only 3 hours for tests, the only possible choices would be q2

and q3. But after updating the set of its possible worlds with each of these ob-
servations the agent would still be uncertain about the seriousness of the disease
and the remaining time would not suffice for applying any more observations.
Therefore M, s1 |= ♦K3

aϕ.
Note, finally, that if the actual disease is s4, the agent is able to obtain cer-

tainty within 3 hours. This is possible by choosing observation q2. On the other
hand, a chooses q3 first, it will not obtain certainty within the same time. Thus,
in state s4, the agent has potential but not guaranteed certainty about ϕ, i.e.,
M, s4 |= ♦K3

aϕ ∧ ¬�K3
aϕ.

Example 6. Nested formulas refer to an agent’s certainty about its own, or an-
other agent’s certainty. Consider medical agent a is not sufficiently equipped to
become certain about the seriousness of the disease (Figure 5). Instead, a has
to decide to which specialized medical center the patient should be sent. The
medical centre b specializes in brain diseases, and the medical center c specializes
in heart diseases. Test q1 is a general test and is available for all the agents a,
b and c. Test q2 is only available at the brain centre, and test q3 is only avail-
able at the heart center. So in this model obs(a) = {q1}, obs(b) = {q1, q2} and
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Fig. 5. If obs(a) = {q1}, obs(b) = {q1, q2}, and obs(c) = {q1, q3}, then agent a has
observation-based certainty about certainty of agents b and c

obs(c) = {q1, q3}. By applying the medical test q1 the medical agent a is able to
determine which specialized center are competent to do the diagnosis in a given

time (say, up to 5 hours), and which are not: M, s1 |= K
〈q1〉
a ♦K5

bϕ ∧ K
〈q1〉
a ♦K5

bϕ.
In consequence, we also have that M, s1 |= ♦K1

a♦K5
bϕ ∧ ♦K1

a♦K5
bϕ and M, s1 |=

�K1
a♦K5

bϕ ∧�K1
a♦K5

bϕ: the agent has bot potential and guaranteed certainty to
learn about b and c’s epistemic abilities within 1 hour.

4 Some Properties

In this section, we present some interesting properties that can be expressed
in LAcK. We begin by listing some validities that capture interesting general
properties of accumulative knowledge. Then, in Section 4.2, we show how the
basic information-theoretic notion of Hartley measure can be characterized in or
framework.

4.1 Interesting Validities

Below we list some interesting validities of LAcK. We give only some of the
proofs; the others are either straightforward or analogous.

Theorem 1. The following formulas are valid in LAcK:

1. Kaϕ→ Kl
aϕ.

Certainty cannot be destroyed by observations.
2. Kl

aϕ→ Kl·l′
a ϕ.

A more general variant of 1.
3. Kl

aϕ ∧ Kl
aψ → Kl

a(ϕ ∧ ψ).
Outcomes of a query combine.

4. Kl
aϕ ∧ Kl′

aψ → Kl·l′
a (ϕ ∧ ψ).

Combining queries yields combined outcomes.
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5. Kaϕ→ ♦Kb
aϕ and Kaϕ→ �Kb

aϕ.
A variant of 1 for potential and guaranteed observation-based certainty.

6. ♦Kb
aϕ→ �Kb+b′

a ϕ and �Kb
aϕ→ �Kb+b′

a ϕ.
Monotonicity of observation-based certainty wrt resource bounds.

7. ♦Kb
aϕ ∧ ♦Kb′

a ψ → ♦Kb+b′
a (ϕ ∧ ψ).

8. ♦Kb
aϕ ∨ ♦Kb′

a ψ → ♦Kmax(b,b′)
a (ϕ ∨ ψ).

Combination rules for potential observation-based certainty.

9. �Kb
aϕ ∧�Kb′

a ψ → �Kmax(b,b′)
a (ϕ ∧ ψ).

10. �Kb
aϕ ∨�Kb′

a ψ → �Kmax(b,b′)
a (ϕ ∨ ψ).

Combination rules for guaranteed observation-based certainty.

11. �Kb
aϕ→ ♦Kb

aϕ.
Guaranteed certainty implies potential certainty.

12. �K∞
a ϕ↔ ♦K∞

a ϕ.
For unlimited resources, the two notions of observation-based uncertainty
coincide.

Proof
Ad. 7: From the antecedent, we know that there is an answer query l for (a, ϕ)
such that cost(l) ≤ b, and there is an answer query l′ for (a, ψ) such that
cost(l′) ≤ b′. Therefore l · l′ is answer query for (a, ϕ ∧ ψ), and cost(l · l′) =
cost(l) + cost(l′) < b+ b′.

Ad. 9: Assume that max(b, b′) = b. Then by definition, any relevant maximal
query l under bound b is an answer query for (a, ϕ). Then there exist queries l1
and l2 such that l = l1 + l2 and l1 is a maximal query under bound b′. From

�Kb′
a ϕ we know that l1 is an answer query for (a, ψ), therefor l = l1 + l2 is

also an answer query for (a, ψ). As l is an answer query both for (a, ϕ) and for
(a, ψ), it is an answer query for (a, ϕ ∧ ψ). The proof is similar in the case that
max(b, b′) = b′.

Ad. 12: Inferring ♦K∞
a ϕ from �K∞

a ϕ is a direct result of the previous prop-
erty. For proving the other direction, first note that changing the order of the
observations in a query does not change the updated set of worlds, and adding
some observations to a query cannot make an answer query a non-answer query.
Now if we have ♦K∞

a ϕ, then there is an answer query l for (a, ϕ). Therefore any
query l′ which consists of all the available observations is also an answer query
for (a, ϕ). As the upper limit for the resource is infinity, the agent can choose
the observations in any order and it is guaranteed to be certain about ϕ without
running out of recourse, hence �K∞

a ϕ. ��

4.2 Relation to Information Theory

In the previous sections we have defined a framework for reasoning about agents
that collect information in order to become certain about a given property. In
other words, the agents reduce their uncertainty about the property by accumu-
lating observations. There seems to be an intuitive connection to the classical
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definition of uncertainty, and in particular Hartley measure of uncertainty. In
this section, we look at the relationship.

Two most established measures of uncertainty are Hartley measure and Shan-
non entropy. Hartley measure is based on possibility theory, whereas Shannon
entropy is based on probability theory. Hartley measure quantifies uncertainty
in terms of a finite set of possible outcomes. Let X be the set of all alternatives
under consideration, out of which only one is considered the correct one. Note
that this can be seen as corresponding to the set of possible worlds and the ac-
tual world, respectively. It was shown by Hartley [20] that the only sensible way
to measure the uncertainty about the correct alternative in a set of alternatives
X is to use the function:

H(X) = ,log2 |X |-.
The unit of uncertainty measured by H(X) is bit. The intuition behind Hartley
measure is that log2 |X | is the minimal number of binary questions that guaran-
tees identifying the correct alternative, provided that the set of questions is rich
enough. We will now use the intuition to characterize Hartley measure in LAcK.

Definition 8 (Bisective Observations). Let n[i] denote the ith bit in the
binary unfolding of n. A set of observations O is bisective for states S iff there
is a bijective ordering of states ord : S → {1, . . . , |S|} and a bijective mapping
bitno : O → {1, . . . , ,log |S|-} such that cover(q) = {s ∈ S |

(
ord(s)

)
[bitno(q)]}

for every q ∈ Q. In other words, we see S as a k-dimensional binary cube, with
each q ∈ Q “cutting across” a different dimension.

Definition 9 (Distinguishing model). A possible worlds model M is distin-
guishing by formulas ψ1, . . . , ψk iff for every state si in M there exists ψi which
holds exactly in si.

Definition 10 (Hartley model, Hartley formula). We say that an
observation-based certainty model M = 〈S,R, V,Obs, obs, cost, cover〉 is a Hart-
ley model iff:

1. M consists of a single agent a (the “observer”),
2. M is distinguishing by some formulas ψ1, . . . , ψk,
3. Obs includes a set of bisective observations for S, and
4. The cost of every observation is 1.

The Hartley formula ofM under bound b is defined as: χ(M, b) ≡
∧

si∈S ♦Kb
aψi.

Intuitively, Hartley formula in a Hartley model expresses that the observer
can identify the actual world in at most b steps.

Theorem 2. Let M be a Hartley model with state space S. Then, for all s ∈ S,
we have M, s |=LAcK χ(M,H(S)).

Proof. Take a query consisting of all the bisective observations in M . Clearly,
the query updates any set of indistinguishable states yielding the singleton set
containing only the actual state. Moreover, it consists of at most H(S) steps,
which concludes the proof. ��
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5 Model Checking

In this section, we look at the complexity of verification for accumulative knowl-
edge. Similarly to many problems where agents’ uncertainty is involved, it turns
out to be NP-hard. We also show that the hardness of the problem is due to
bounded resources. Finally, we prove that verification becomes tractable in many
realistic scenarios where resource bounds are relatively tight.

5.1 General Result

The (local) model checking problem for LAcK is formally defined as follows.

Definition 11 (Model checking for LAcK)
Input: Observation-based certainty model M , state s in M , LAcK formula ϕ;
Output: yes iff M, s |=LAcK ϕ.

We will show that the problem sits in the first level of polynomial hierarchy,
more precisely between NP ∪ coNP and ΔP

2 (where ΔP
2 = NPNP is the class

of problems that can be solved in polynomial by a deterministic Turing machine
asking adaptive queries to an NP oracle). We start by showing the upper bound.

Proposition 1. Model checking LAcK is in ΔP
2 .

Proof. We demonstrate the upper bound by the following algorithm.

mcheck(M, s, ϕ):

Case ϕ ≡ p : return(s ∈ V (p));
Cases ϕ ≡ ¬ψ, ψ1 ∧ ψ2,Kaψ : standard;
Case ϕ ≡ Kl

aψ : X := {s′ ∈ S | mcheck(M, s′, ψ)};
return(ma(s)|sl ⊆ X or ma(s)|sl ⊆ S \X);

Case ϕ ≡ ♦Kb
aψ : return(oracle1(M, s, ψ));

Case ϕ ≡ �Kb
aψ : return(not oracle2(M, s, ψ));

oracle1(M, s, ψ):

X := {s′ ∈ S | mcheck(M, s′, ψ)};
guess a query l with no repeated observations;
return

(
cost(l) ≤ b and (ma(s)|sl ⊆ X or ma(s)|sl ⊆ S \X)

)
;

oracle2(M, s, ψ):

X := {s′ ∈ S | mcheck(M, s′, ψ)};
guess a query l with no repeated observations;
maximal := (cost(l) ≤ b and for all observations q /∈ l: cost(lq) > b;
return

(
maximal and ma(s)|sl ⊆ X and ma(s)|sl ⊆ S \X)

)
; ��

To prove the lower bound, we will use an old result by Karp [21].
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Definition 12 ([21]). SetCovering is the following decision problem.
Input: Domain of elements D, a finite family of finite sets S = {S1, . . . , Sn} ⊆
22

D

, and a number k ∈ N;
Output: yes iff there exists a family of k sets T = {T1, T2, . . . , Tk} ⊆ S such
that

⋃
j Tj =

⋃
i Si.

Proposition 2 ([21]). SetCovering is NP-complete.

Lemma 1. Model checking of the LAcK formula ♦Kb
ap is NP-complete.

Proof. Inclusion in NP follows from the algorithm in the proof of Proposition 1.
The lower bound is obtained by a reduction of SetCovering. Let M include:

– S = D ∪ {s0} for some s0 /∈ D;
– A = {a}, and ∼a= S × S;
– Obs = {q1, . . . , qn}, and cover(qi) = {s0} ∪ Si;
– cost(qi) = 1 for every i;
– single atomic proposition p0 with V (p0) = {s0}.

Now, SetCovering(D, {S1, . . . , Sn}, k) iff M, s0 |=LAcK ♦Kk
a. ��

The following is a straightforward consequence (note that we can use negation
to obtain the complement of a problem expressible in LAcK).

Proposition 3. Model checking LAcK is NP-hard and coNP-hard.

Thus, finally, we obtain the following result.

Theorem 3. Model checking LAcK is between (NP ∪ coNP) and ΔP
2 .

5.2 Closer Look

What is the hard part of the verification problem for LAcK? The next result
shows that the hardness is due to bounded resources, since with unlimited re-
sources the problem becomes easy.

Proposition 4. If B = {∞} then model checking LAcK is in P.

Proof. First, observe that M, s |= ♦K∞
a ϕ iff M, s |= Kl

aϕ for l being the “grand
query” collecting all the observations available for a in M . Moreover, M, s |=
�K∞

a ϕ iffM, s |= ♦K∞
a ϕ by Theorem 1, point 12. For the other cases, we proceed

according to the algorithm in the proof of Proposition 1. It is easy to see that
the new algorithm terminates in time O(|S| · |Obs| · |ϕ|). ��

Finally, we want to suggest that the pessimistic view of Theorem 3 is not
always justified. True, verification is NP-hard in general. However, we argue
that it only makes sense to engage in checking M, s |= ♦Kb

aϕ or M, s |= ♦Kb
aϕ if

a’s observations are relatively expensive compared to the available resources b.
After all, if observations were cheap, a might as well skip deliberation and start
observing right away. The following result shows that when the relation between
costs and bounds is tight, the model checking problem becomes easy again.
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Proposition 5. Let α > 1 be given and fixed. Model checking ♦Kb
ap and �Kb

ap
in a model such that min{cost(q) | q ∈ Obs} ≥ b

α(log |S|+log |Obs|+log b) is in P.

Proof. If min{cost(q) | q ∈ Obs} ≥ b
α(log |S|+log |Obs|+log b) then every query that

consists of more than α(log |S| + log |Obs| + log b) observations will cost more
than b. Thus, it suffices to check the outcome of at most 2α · b · |S| · |Obs| queries,
which is polynomial in the size of the model.

Note that, for this result, it is essential that α is not a parameter of the
problem, and it makes sense only for relatively small values of α. ��

6 Conclusions

Intelligent agents usually choose their actions based on their knowledge about
the environment. In order to gain or refine this knowledge, agents may perform
informative actions. Informative actions like all other actions require resources.
Therefore, the abilities of agents to improve their knowledge are limited by the
resources available to them. In this work, we propose a modal approach to mod-
eling, analyzing, and reasoning about agents that build their knowledge by using
resource-consuming informative actions.

Our approach is based on several simplifying assumptions, which might not
hold in real situations. Nevertheless, we believe the approach to be useful, espe-
cially with respect to simple scenarios. In more complex contexts, refinements
of the framework could be needed.
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Abstract. Action Languages are simple logical formalisms to describe the prop-
erties of a domain and the behavior of an agent and to reason about it. They offer
an elegant solution to the frame problem, but are inapt to reason with norms in
which an obligation deadline may require the agent to adapt its behavior even
though no action occurred. In this paper we extend the Action Language A with
features that allow reasoning about norms and time in dynamic domains. Unlike
previous extensions of Action Languages with norms, our resulting language is
expressive enough to represent and reason with different kinds of obligations with
deadlines that explicitly refer to time, as well as norm violations and even sim-
ple contrary-to-duty obligations resulting from the satisfaction or violation of an
agent’s obligations.

1 Introduction

Open dynamic systems, e.g., systems interacting on the Web, social systems and open
agent communities, have attracted increased attention in recent years. In these systems,
constraints on the behavior of the participants cannot be hard-wired in their specifica-
tion. Instead, desirable properties by normative systems [22,8,7,3,10,35]. Norms, when
used to govern autonomous agents, do not simply act as hard constraints that prevent
the agent from adopting some behavior, but rather provide an indication as to how the
agent should behave which, if not adhered to, can result in the application of sanctions
or other normative effects.

In general, norms can be seen as a specification of what is expected to follow from
a specific state of affairs, e.g., in the form of obligations. There are obligations to-do,
i.e., obligations to execute an action before a deadline—e.g., to reply within one day
after receiving a request, or to register before logging in; obligations to-achieve, i.e.,
obligations to bring about, before the deadline, a state of the world in which some
proposition holds—e.g., to achieve a certain amount of credits within the academic
year; and obligations to-maintain, i.e., obligations to maintain a state of the world in
which some proposition holds until the deadline—e.g., to keep the contract with your
mobile phone company for one year.

One important characteristic of realistic systems of norms is the prominent role of
time and deadlines. Another feature of complex systems of norms are reparative obliga-
tions, or contrary-to-duty obligations [11], i.e., obligations imposed as a consequence
of the violation of some other obligation—e.g., to pay a fine within 10 days if the obli-
gation to return an item by a deadline is violated.
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Action Languages [25] are simple logical formalisms for modeling dynamic sys-
tems, with application in Artificial Intelligence, Robotics and Multi-Agent Systems. A
theory of an Action Language describes the properties of a domain and the abilities
of an agent, compactly specifying a transition diagram containing all possible trajec-
tories of the system. Action Languages provide a simple and elegant solution to the
frame problem and enable an agent to encode the applicability of actions, their effects,
describe complex interrelations between fluents and use automated planning to achieve
some goal. Additionally, Action Languages can easily be encoded in the declarative and
well studied paradigm of Answer Set Programming [24]—see, e.g., Coala [23]—thus
benefiting from existing highly efficient answer set solvers, such as clasp.1

The combination of Action Languages and norms has received some attention in the
literature. The line of work in [16,5] extends action language C+ [27] for representing
norms and institutional aspects of normative societies, focusing on power and count-as
rules. In [26], an action language is extended with propositions for specifying defea-
sible authorization and obligation policies, but only obligations to-do are considered.
In [14], the authors introduce the action language InstAL aimed at representing insti-
tutions of agents. This approach uses events as deadlines and can represent obligations
and violations of obligations and even contrary-to-duty obligations, but, just like the
previous ones, it cannot deal with obligations to-achieve or to-maintain. In fact, none
of the previous approaches deals with explicit time, deadlines and the different kinds of
obligations simultaneously.

As it turns out, existing Action Languages, and their extensions, cannot capture the
dynamics of explicit time deadlines because of the fundamental role they assign to
physical actions, whose execution is in general the only way to cause a state change.
With the introduction of norms with explicit time deadlines, and obligations introduced
by the violation or satisfaction of previous obligations, state change needs to also be
triggered literally just by the passage of time, namely by the violation of other obli-
gations, resulting from the expiration of the deadlines, which cannot be encoded in
existing Action Languages.2 The proposal in [15] focuses on policy analysis with the
explicit presence of time, but does not admit obligations to-achieve or to-maintain nor
obligations introduced by the violation or satisfaction of such obligations.

To address this limitation, in this paper, we extend the Action LanguageA3 [25] with
features that allow reasoning about norms and time in dynamic domains, resulting in
the Normative Action Language AN and a simple query language that can deal with

– obligations to-do, to-achieve and to-maintain;
– deadlines that explicitly refer to time;
– norm violations and satisfactions;
– simple contrary-to-duty obligations on satisfaction/violation of obligations.

1 http://www.cs.uni-potsdam.de/clasp/
2 Note that in the action language of [38] and in C+, state change can also be caused by state

conditions. E.g., for [38] internal actions, so-called triggered actions, can be executed based
only on state conditions. However, this is obviously insufficient for our purposes because ex-
plicit time is not present.

3 We restrict ourselves to A and focus on explaining the technical details related to norms with
explicit time deadlines, leaving more expressive Action Languages for future work.

http://www.cs.uni-potsdam.de/clasp/
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At the same time, our approach solves the frame problem also for obligations and it is
more amenable to implementation than other related work based on more complex for-
malisms (see related work in Sect. 4). Please note that, commonly, in these formalisms,
one deontic modality can be expressed via the other. Due to our simpler semantics,
that is not possible, i.e., we focus on obligations, and leave a more extensive treatment
including other deontic modalities (e.g., permission and prohibition) for future work.

After introducing, in Sect. 2, the syntax and semantics of our normative Action Lan-
guage AN , illustrating its use, and presenting some basic properties, in Sect. 3 we
present a query language for AN , discuss its complexity and equivalence between the-
ories in AN , before we conclude in Sect. 4.

2 Normative Action Language AN

We introduce the syntax and semantics of AN , a simple language for specifying norms,
yet expressive enough to handle different kinds of obligations with deadlines, their sat-
isfaction and violation, and simple contrary-to-duty obligations introduced by the satis-
faction/violation of other obligations. We start from the deterministic Action Language
A [25] whose semantics builds on transition systems in which nodes correspond to
states of the environment and edges correspond to transitions between states and are la-
beled by the action that causes the transition. To capture the meaning of a set of norms,
we extend this transition system by expanding the states with a deontic component, and
by adding a temporal dimension to transitions.

2.1 Syntax

Action Languages provide two disjoint, non-empty sets of function-free first-order
atoms4 defined over a given signature Σ = 〈P , C,V〉 of pairwise disjoint sets of pred-
icates (P), constants (C) and variables (V): a set A of elementary actions and a set F
of physical fluents. An action is a finite, possibly empty subset of A and can be under-
stood as a set of elementary actions that are executed simultaneously. If convenient, we
denote a singleton action {α } with the elementary action α. Physical fluents f ∈ F
and their negations ¬f form the set of physical literals, used to represent states of the
“world.”

To allow for deontic expressions with explicit time deadlines, we extend the signature
Σ with a set of time points T and a set of time variables Vt, resulting in the deontic
signature Σd = 〈P , C ∪ T ,V ∪ Vt〉. From now on, we assume an arbitrary but fixed
deontic signatureΣd.

Both additions to the signature are related to time, and we explain them in the fol-
lowing. The set of time points T represents the time domain, and we assume that T is
a countable subset of non-negative real numbers, including 0, such as the set of natural
numbers N. The set of time variables Vt relates specifically to T in the same standard
way as V relates to C, and we reserve a special time variable now ∈ Vt which we
always associate with the time point representing the current time.

4 In [25], only the propositional case is considered. We use function-free first-order atoms here
to ease the presentation of our formalization of time.
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Both T and Vt are used to define time expressions, which allow us to shift time points
into the future by a specific time interval. The set of time expressions T ∗ is defined as
T ∗ = T ∪{V + c | V ∈ Vt ∧ c ∈ T }.5 Where convenient, we simply abbreviateV +0
by V .

We now introduce deontic literals to represent three types of obligations: 1. obliga-
tions to-do, requiring that an action be executed; 2. obligations to-achieve, requiring
that a physical literal become true; 3. obligations to-maintain, requiring that a physical
literal remain true; all three strictly before a specified deadline.6

Definition 1 (Deontic literal). Let A ⊆ A be a non-empty action, l a physical literal,
and t ∈ T ∗, called the deadline. An obligation is of the following three forms:

– obligation to-do Od
t A;

– obligation to-achieve Oa
t l;

– obligation to-maintain Om
t l.

Obligations and their negations form the set of deontic literals. The expression Ot l
represents both Oa

t l and Om
t l.

Note that obligations to-achieve and to-maintain can be understood as dual: the inten-
tion for the former is to require that literal l holds for (at least) one time point strictly in
between the introduction of the obligation and its deadline, and for the latter that l holds
for all time points from the time point of the introduction until (immediately before) the
deadline. This will be accordingly reflected in the semantics later, but does not mean
that we can reduce one to the other as argued later in this section.

A literal is either a physical literal or a deontic literal. A literal is ground if it contains
no variables. Literals f and ¬f are called complementary. The literal complementary
to l is denoted by l.

In Action Language A, only actions can cause state changes, but the introduction of
obligations with deadlines should allow a state change to be triggered also by the viola-
tion (V) or the satisfaction (S) of obligations, resulting from the expiration of deadlines
for obligations an agent currently has. Deontic events accommodate for that.

Definition 2 (Event). Let d be an obligation. Deontic events are expressions of the
form Vd and Sd. An event is an action or a deontic event.

We recall propositions in A and at the same time extend them to include norms.

Definition 3 (Norm and normative specification). Let e be an event, l a deontic or
physical literal and C a set of literals. A proposition n takes the following form:

e causes l if C . (1)

5 Here we abuse the set of time points and time variables to also represent time intervals. The
expression V + c always represents the addition of a time interval to a time point, or of two
time intervals.

6 The restriction to non-inclusive deadlines is an arbitrary decision and it would be reasonable
to consider inclusive deadlines instead, or even to introduce both types of deadlines. For sim-
plicity, we consider only non-inclusive deadlines.
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We say that e is the event of n, l its effect and C its condition. If C is empty, we write n
as (e causes l). If l is a deontic literal, then n is called norm. If l is a physical literal,
then e is an action, and all literals in the condition are physical literals. A proposition
is safe if every variable (different from now) appearing in its effect also appears in its
event or in an obligation within its condition. A normative specification N is a finite set
of safe propositions of the form (1).

Intuitively, a norm of the form (1) adds or removes the obligation specified by l (depend-
ing on whether the obligation is negated or not) if the event occurs and the condition
is satisfied. Also note that a proposition with physical literal l matches a proposition
in A [25] and the rationale for the applied restrictions is that normative information
should not affect the physical world. This is indeed the case and in line with the idea
that obligations are meant to represent only guidelines of desired behavior for an agent
(including penalties for non-compliance), unlike the line of work in which obligations
can be used to prohibit the execution of an action (see, e.g., [13]). Finally, safeness of
variables occurring in l prevents from the specification of propositions with non-ground
effects.7

Example 4. Consider a set of norms in a university library scenario:

borrow (X) causes Od
now+4 ret(X) if ugrad (2)

borrow (X) causes Od
now+12 ret(X) if grad (3)

renew(X) causes Od
T+4 ret(X) if Od

T ret(X) (4)

renew(X) causes ¬Od
T ret(X) if Od

T ret(X) (5)

VOd
T ret(X) causes Od

now+1 pay (6)

VOd
T ret(X) causes Od

now+1 ret(X) if ugrad (7)

VOd
T ret(X) causes Od

now+3 ret(X) if grad (8)

Norms (2) and (3) specify that borrowing a book creates the obligation to return that
book within the period specified depending on the student’s status (4 and 12 weeks for
undergraduate and graduate students respectively). A book may be renewed for 4 more
weeks, which means updating the obligation with the new deadline (4–5). Finally, a
contrary-to-duty norm specifies that, if a user fails to return the book on time, a fine has
to be paid within one week (6) and the book has to be returned (7–8).

On different domains, an example of a norm with an achievement obligation is that
one has the obligation to achieve 30 credits within the academic year, and an example
of a norm with a maintenance obligation is that one has the obligation to maintain a
contract with a mobile carrier for (at least) 24 months.

enterAcademicYear causes Oa
now+12 sumCredits(30 )

startMobileContract causes Om
now+24 mobileContract

7 A less restrictive condition could be applied to propositions whose effect is a physical literal,
but this would only affect the action language which is not our major concern.
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These two norms can also be used to show why it is not possible to only consider
obligations to-achieve or to-maintain and express one using the other. For example, we
could try to represent the obligation to achieve 30 credits within 12 months as failing the
obligation to maintain the sum of achieved credits below 30 during the next 12 months.
However, our language has no means to express to “fail to maintain”. We could try to
express this in our language by ¬Om

now+12 ¬sumCredits(30 ), but, as we will see next,
this corresponds to canceling obligation Om

now+12 ¬sumCredits(30 ). Another option
would be to try to represent the obligation to maintain the mobile contract for 24 months
as the conjunction of obligations to-achieve the mobile contract in each single month:
not only would this be cumbersome, it also would be conceptually counterintuitive since
achievement is intended to change the state such that a certain literal becomes true,
while maintenance requires that the literal is true throughout the considered period of
time.

2.2 Semantics

The semantics of Action Language A is defined as a transition system T modeling
the physical environment. A node σ of T represents a possible physical state and a
transition 〈σ,A, σ′〉 represents that state σ′ can be reached from σ by executing action
A. We extend such T with deontic features and time to define the semantics of normative
specifications as follows. We augment states σ with deontic states δ and we define
when literals are satisfied in such a combined state σ/δ. Next, we present a relation
that captures how a deontic event is caused by either reaching a deadline or due to
an executed action. We proceed by specifying which positive and negative normative
effects are triggered in a state σ/δ, i.e., which obligations are introduced and which
are canceled, when executing an action A at time t w.r.t. N , using a Boolean function
ρA,t() in the former case to avoid introducing meaningless obligations. This enables us
to define a resulting new deontic state and, subsequently, transitions and paths in the
resulting transition system TN .

Let N be a normative specification. The states of the transition system TN consist
of two parts: a set of physical literals representing the physical “world,” and a set of
obligations representing the deontic state of the agent. Additionally, we require that
obligations be part of the state only if they are not immediately satisfied or violated.

Definition 5 (State of TN ). Let σ be a complete and consistent set of ground physical
literals, i.e., for each ground physical fluent f , exactly one of f and ¬f belongs to σ,
and δ a finite set of ground obligations. Then, σ/δ is a state of the transition system
TN if the following conditions are satisfied for every physical literal l and deadline t:
(Oa

t l /∈ δ or l ∈ σ) and (Om
t l /∈ δ or l ∈ σ). We call σ the physical state and δ the

deontic state.

Note that, unlike σ, δ is not a complete representation of obligations that hold and do
not hold, since it would be impractical to require that obligations d or ¬d occur in δ for
each d due to the usually infinite set of time points T . This is also why we consider a
separate set δ and do not merge δ and σ into one.

To deal with the satisfaction of non-ground literals in a state σ/δ, we introduce a
variable assignment z as a function mapping variables to constants (V → C) and time
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variables to time points (Vt → T ). For every time point t, we denote the set of variable
assignments z such that z(now) = t by Zt. Hence, the index t in Zt is not merely
notation, but defines the value that is assigned to now.

For any literal or event λ, we denote by λ|z the literal or event obtained from λ
by substituting every variable according to z, and, subsequently, replacing every time
expression t + c with the time point t′ such that t′ = t + c. E.g., Od

9 ret(book ) is the
result of

(
Od

now+4 ret(X )
)∣∣

{X→book,now→5 } .

Satisfaction for ground literals in a state σ/δ is defined as follows for a physical
literal l and a ground obligation d:

σ/δ |= l iff l ∈ σ ,

σ/δ |= d iff d ∈ δ ,
σ/δ |= ¬d iff d ∈ δ .

Furthermore, given a variable assignment z and a set of literals L, we define σ/δ |=
L|z iff for l ∈ L, σ/δ |= l|z. Note that the evaluation of deontic literals here is not
an evaluation of a complex modal formula, but rather only used to check if an agent
currently has a certain obligation.

Each transition of TN is a tuple 〈σ/δ, (A, t), σ′/δ′〉, where A is a ground action and
t ∈ T a time point, meaning that A occurred at time t, causing the transition from state
σ/δ to σ′/δ′. Since the physical effects are independent of the deontic ones, we first
define a relation RN that, for a given N , associates each physical state σ and ground
action A with a new physical state σ′:

〈σ,A, σ′〉 ∈ RN iff σ′ = (σ ∪ EA(σ)) \
{
l | l ∈ EA(σ)

}
,

where EA(σ) stands for the set of all physical literals l|z such that (e causes l if C) ∈ N
and there is z ∈ Zt with σ/δ |= C|z and e|z ⊆ A. If A = ∅, then σ′ = σ, which allows
us to handle deontic updates resulting from deadline expirations at time points in which
no action occurs. Note that the requirement that σ′ be a physical state ensures that
〈σ,A, σ′〉 ∈ RN if A has contradictory effects in state σ.

We proceed by specifying how to obtain a new deontic state. First, we define the
conditions for the occurrence of deontic events, which are satisfactions/violations of
obligations occurring in the current deontic state δ w.r.t. the new physical state σ′.

Definition 6 (Occurrence of deontic event). Let σ/δ be a state of TN , A, B ground
actions, 〈σ,A, σ′〉 ∈ RN and t, t′ time points. The occurrence relation for ground
deontic events under action A at time t, �A,t, is defined for tuples 〈δ, σ′〉 as follows:

〈δ, σ′〉 �A,t VO
d
t′ B iff Od

t′ B ∈ δ ∧ t ≥ t′

〈δ, σ′〉 �A,t VO
a
t′ l iff Oa

t′ l ∈ δ ∧ t ≥ t′

〈δ, σ′〉 �A,t SO
m
t′ l iff Om

t′ l ∈ δ ∧ t ≥ t′

〈δ, σ′〉 �A,t SO
d
t′ B iff Od

t′ B ∈ δ ∧ t < t′ ∧B ⊆ A

〈δ, σ′〉 �A,t SO
a
t′ l iff Oa

t′ l ∈ δ ∧ t < t′ ∧ l ∈ σ′

〈δ, σ′〉 �A,t VO
m
t′ l iff Om

t′ l ∈ δ ∧ t < t′ ∧ l ∈ σ′

Additionally, εA,t(δ, σ
′) = { e | 〈δ, σ′〉 �A,t e }.
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The above conditions encode the dynamics of violations and satisfactions, and depend
on the type of obligation involved. The first three represent events generated by a dead-
line expiration. The last three represent events that occur before the expiration of the
respective deadline. Namely, either action B is executed (as part of the set of elemen-
tary actions A) at time t, or a state change affects the literal l to be achieved (or cease
to be maintained). We explain the latter case in more detail for an obligation to-achieve
l. Such an obligation can only be part of a state σ/δ if l ∈ σ. If executing action A
at time t introduces l, i.e., adds it to the new state σ′ (and removes l), then an event
occurs, which (as we will see below) is used to trigger the removal of the corresponding
obligation, but also possibly the introduction of new obligations.

Before defining the normative effects of executing actionA at time t in state σ/δ, we
need to introduce an auxiliary function ρA,t(d, σ

′) that determines whether, given σ′

with 〈σ,A, σ′〉 ∈ RN , an obligation d, which would be introduced to the new deontic
state, is relevant: ρA,t(d, σ

′) = ⊥ if either (1) d is an obligation with deadline t′ ≤ t,
(2) d = Od

t′ B ∧ B ⊆ A, (3) d = Oa
t′ l ∧ l ∈ σ′, or (4) d = Om

t′ l ∧ l ∈ σ′; otherwise
ρA,t(d, σ

′) = �. Condition (1) matches the first part of Def. 6, while (2-4) matches the
second. We thus avoid the introduction of obligations that would be satisfied/violated
immediately, following the rationale to only consider obligations whose satisfaction can
be influenced by the agent’s behavior.

We now define the normative effects of executing an action A at time t in a given
state σ/δ. We say that an effect of a norm is positive (negative) if it is an obligation
(its negation). For each instance of a norm in N we need to evaluate its condition in
σ/δ, check whether the respective event is a subset of action A or a deontic event, and,
in case of the positive effects, check if the effect of the norm is an obligation that is
relevant (or can be safely ignored). The latter and the check for deontic events occur
w.r.t. the new physical state σ′ (obtained by executingA on σ) as already indicated.

Definition 7 (Normative effect). Let σ/δ be a state of TN , 〈σ,A, σ′〉 ∈ RN , t a time
point and d an obligation. The set of positive normative effects E+

A,t(σ/δ, σ
′) and the

set of negative normative effects E−
A,t(σ/δ, σ

′) are defined as follows:

E+
A,t(σ/δ, σ

′) = { (d|z) | (e causes d if C) ∈ N ∧ ∃z ∈ Zt :

σ/δ |= C|z ∧ (e|z ⊆ A ∨ 〈δ, σ′〉 �A,t e|z)
∧ ρA,t(d|z, σ′) };

E−
A,t(σ/δ, σ

′) = { (d|z) | (e causes ¬d if C) ∈ N ∧ ∃z ∈ Zt :

σ/δ |= C|z ∧ (e|z ⊆ A ∨ 〈δ, σ′〉 �A,t e|z) }.

The new deontic state δ′ can now be computed from σ/δ by first detecting which
deontic events occur (and removing the corresponding obligations), then adding the
positive effects of these events and finally removing their negative effects.

Definition 8 (New deontic state). Let σ/δ be a state of TN , 〈σ,A, σ′〉 ∈ RN , t a time
point and d an obligation. We define G(Vd) = G(Sd) = d, for any set of deontic events
E, G(E) = {G(e) | e ∈ E } and the new deontic state

δ′ =
[
(δ \ G(εA,t(δ, σ

′))) ∪ E+
A,t(σ/δ, σ

′)
]
\ E−

A,t(σ/δ, σ
′).
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Four consequences follow immediately: first, the definition requires that the update of
the physical state has to be computed first, only then can the deontic state be updated;
second, if an obligation is introduced and removed simultaneously by different norms,
then the removal prevails, following a generalization of the in dubio pro reo principle;
third, it may happen that the occurrence of a deontic event removes some obligation,
which is immediately re-introduced in E+

A,t() if a corresponding norm exists, such as
for example if you pay a fine and, at the same time, commit an offense that incurs in the
same penalty; and fourth, the frame problem for obligations is trivially solved in this
equation—whatever appears in δ and is not removed on purpose, persists in δ′.

We show that σ′ and δ′ indeed form a state of TN .

Proposition 9. Let σ/δ be a state of TN , 〈σ,A, σ′〉 ∈ RN , and δ′ as defined in Def. 8.
Then σ′/δ′ is a state of TN .

Furthermore, considering the definition of deontic events, whenever a deadline of an
existing obligation is reached, a deontic event always takes place. A consequence of
this observation is that a transition from σ/δ must not occur at a time point that exceeds
the deadline of some obligation in δ. We define this time point as the earliest deadline
among the current obligations, or infinity if there are no obligations in δ. Formally,
let d(δ) = { t ∈ T | Ot l ∈ δ or Od

t B ∈ δ }. Then, ltp(δ) = min(d(δ)) if d(δ) = ∅
and ltp(δ) = ∞ if d(δ) = ∅. Note that, since δ is assumed finite, this notion of least
time point is well-defined, i.e., if d(δ) = ∅, then ltp(δ) ∈ d(δ), which, along with
Proposition 9, allows us to define transitions of TN :

Definition 10 (Transition). A transition of TN is a tuple 〈σ/δ, (A, t), σ′/δ′〉 whereA is
a ground action, t is a time point, σ/δ and σ′/δ′ are states of TN such that 〈σ,A, σ′〉 ∈
RN and δ′ is defined as in Def. 8. Moreover, t must satisfy the condition: t = ltp(δ) if
A = ∅, and t ≤ ltp(δ) otherwise.

Example 11. The following are transitions of TN for Example 4 in Sect. 2.1.

〈{ugrad}/∅, (borrow(b), 1), {ugrad}/{Od
5 ret(b)}〉

〈{ugrad}/{Od
5 ret(b)}, (ret(b), 4), {ugrad}/∅〉

〈{ugrad}/{Od
5 ret(b)}, (∅, 5), {ugrad}/{Od

6 pay ,O
d
6 ret(b)}〉.

The tuple 〈{ugrad}/{Od
5 ret(b)}, (ret(b), 8), {ugrad}/∅〉 is not a transition because

ltp({Od
5 ret(b)}) = 5 � 8.

We can show that the transition system TN is deterministic.

Proposition 12. TN is deterministic, i.e., if 〈σ/δ, (A, t), σ′/δ′〉 and
〈σ/δ, (A, t), σ′′/δ′′〉 are transitions of TN , then σ′/δ′ = σ′′/δ′′.

Now, a path is an alternating sequence of states in TN and pairs (A, t) corresponding
to the transitions of TN .

Definition 13 (Path). A path is a sequence of the form

σ0/δ0, (A1, t1), σ1/δ1, . . . , (An, tn), σn/δn , (9)
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where σj/δj is a state of TN for every 0 ≤ j ≤ n, 〈σj/δj , (Aj+1, tj+1), σj+1/δj+1〉 is
a transition of TN for every 0 ≤ j < n, and tj < tj+1 for every 1 ≤ j < n.

The last condition states the assumption that the time points in a path are ordered.
The satisfaction of an obligation to-do or to-achieve and the violation of an obligation

to-maintain always indicate some relevant change w.r.t. the previous state.

Proposition 14. Let P be a path of the form (9).

If 〈δj−1, σj〉 �Aj ,tjSO
d
t B, then B ⊆ Aj−1 and B ⊆ Aj ;

if 〈δj−1, σj〉 �Aj ,tjSO
a
t l, then l /∈ σj−1 and l ∈ σj ;

if 〈δj−1, σj〉 �Aj ,tjVO
m
t l, then l ∈ σj−1 and l /∈ σj .

A symmetric result for the other three deontic events does not hold, simply because
these occur due to a deadline that is reached with the progress of time.

3 Query Language and Equivalence

We now define a query language for AN that can be used to check whether a certain
literal/event occurs in a specific time interval given a normative specification and a
description of the initial state. We consider decidability and complexity of answering
queries. Then, we also discuss equivalence between different normative specifications.

3.1 Syntax of the Query Language

A query language in the case of action languages usually consists of statements describ-
ing initial conditions and statements to query the domain description w.r.t. these initial
conditions. We adapt the notion of axioms for our purpose.

Definition 15 (Axiom). Let N be a normative specification and l a ground physical
literal or a ground obligation. An axiom is of the form initially l. Given a set of axioms
Γ , a physical state σ in TN satisfies Γ if, for every physical literal l, (initially l) ∈ Γ
implies l ∈ σ.

Let δ be the set of obligations d such that (initially d) ∈ Γ . A set of axioms Γ is
an initial specification for N if, for every physical state σ that satisfies Γ , σ/δ forms a
state of TN . Such states σ/δ are called initial w.r.t. Γ .

We thus specify that an initial specification for N aligns with Def. 5, i.e., if Γ contains
an axiom for an obligation to achieve (maintain) l, then it must also contain an axiom
for ¬l (l). Note that a set of axioms may not fully specify the physical state σ, i.e., there
may be several states σ that satisfy Γ , hence several initial states.

An action sequence is a finite sequence ((A1, t1), . . . , (Ak, tk)) such that, for all i
with 1 ≤ i ≤ k, Ai is a non-empty action, and t1, . . . , tk ∈ T with 0 < t1 < · · · < tk.
Given an action sequence, queries are defined as follows:

Definition 16 (Query). Let l be a deontic literal, a deontic event—both without any
occurrence of now—or a physical literal, tα, tβ ∈ T with 0 ≤ tα ≤ tβ , and S an
action sequence. A query is of the form l : [tα, tβ ] : S.
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Note that even though our query language is quite simple, it is rather versatile and
allows for expressive queries due to the usage of variables in queries. Not only may
we query for non-ground fluents occurring in a certain time interval, such as whether a
user had some book in her possession, but also whether there occurred any obligation
or violation in a given time interval without having to specify the deadline.

3.2 Semantics of the Query Language

The semantics of the query language is defined w.r.t. paths of the transition system TN .
First, we establish that a path P of the form (9) satisfies an initial specification Γ for
N if σ0/δ0 is an initial state relative to Γ . The idea is to restrict the paths considered to
answer a query to those which match the initial specification.

Next, we link the action sequence in a query to a path by matching each pair (Ai, ti)
in the sequence to exactly one in the path. All other actions in the path have to be empty,
i.e., they occur due to deontic events.

Definition 17 (Satisfiability of an Action Sequence). Let S be an action sequence
(A′

1, t
′
1), . . . , (A

′
k, t

′
k) and P a path of the form (9). P satisfies S if there is an injective

mapping μ : {1, . . . , k}  → {1, . . . , n} (from S to P ) such that

1. for each i with 1 ≤ i ≤ k, A′
i = Aμ(i) and t′i = tμ(i),

2. for each j with 1 ≤ j ≤ n, if μ(i) = j for all i with 1 ≤ i ≤ k, then Aj = ∅.

Given the definition of action sequences and paths, if such an injective mappingμ exists,
then it is clearly unique, and so is the path corresponding to an action sequence for a
fixed initial state.

To evaluate whether a certain literal or event holds while executing a sequence of
actions, we need to collect all states that fall into the time interval [tα, tβ ] given in
the query. That is, we collect the state at tα and all the states inside the interval, or
alternatively the final state in the path if the last transition occurs before tα. In the
former case, if there is no action occurring precisely at tα, then we have to consider the
state prior to tα, because that is then the current state at tα. Formally, given a path P of
the form (9) and time points tα ≤ tβ , we define the set

s(P, [tα, tβ]) = {σi/δi | ti < tα < ti+1} ∪ {σi/δi | tα ≤ ti ≤ tβ} ∪ {σn/δn | tn < tα}.

Additionally, we want to ensure that only those paths are considered that cover the entire
interval so that we do not miss any states. Therefore, we define that path P reaches time
point t if either tn ≥ t or ltp(δn) = ∞.

Finally, we can define how queries are evaluated.

Definition 18 (Query satisfaction). Let Q be a query of the form l : [tα, tβ ] : S, N
a normative specification and Γ an initial specification for N . Q is a consequence of
Γ w.r.t. N , denoted by Γ |=N Q, if, for every path P that satisfies Γ and S and that
reaches tβ , there exists a variable assignment z such that one of these conditions holds:

(a) for some σ/δ ∈ s(P, [tα, tβ]), σ/δ |= l|z if l is a literal;
(b) for some j with tα ≤ tj ≤ tβ , 〈δj−1, σj〉 �Aj ,tj l|z if l is a deontic event.
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Note that our definition of query satisfaction implies that if the action sequence is not
executable, then the query holds automatically for all paths in the transition system
satisfying the conditions, simply because there are none. That is related to the question
of consistent action descriptions [39] and also implicit domain constraints [30,37], and
we refer to the literature for ways to avoid such problems.

Example 19. Recall Example 4 and Γ = {initially ugrad}:

Q1 = VOd
X ret(b) : [1, 8] : 〈(borrow(b) : 1), (ret(b) : 4)〉;

Q2 = Od
5 ret(Y ) : [0, 4] : 〈(borrow(b) : 1)〉;

Q3 = ugrad : [0, 9] : 〈(borrow(b) : 1), (ret(b) : 4)〉.

We obtain that Γ |=N Q1, but Γ |=N Q2 and Γ |=N Q3.

We analyze decidability and computational complexity of answering queries where
we measure the input in the size of the set of axioms Γ .

Theorem 20. LetQ be a query, N a normative specification and Γ an initial specifica-
tion for N . If the physical states in TN are finite, then answering Γ |=N Q is decidable
in coNP. If Γ additionally fully specifies σ, then answering Γ |=N Q is in P.

Note that time expressions in the state model do not affect this result nor any potential
implementation, since there are only finitely many obligations in each state, and each
of them simply contains one element from the time domain only.

3.3 Equivalence

Equivalence is an important problem in the area of normative systems. It can be used,
for example, for simplifying normative systems, which usually tend to have redundant
norms. In our approach, we define equivalence of normative specifications w.r.t. the
answers they provide to queries.

Definition 21 (Equivalence). We say that normative specifications N1, N2 are equiva-
lent if for every set of axioms Γ and every queryQ, Γ |=N1 Q if and only if Γ |=N2 Q.

We can show that two normative specifications being equivalent is the same as them
having the same transition system.

Theorem 22. The following conditions are equivalent for any normative specifications
N1, N2:

1) N1, N2 are equivalent.
2) TN1 = TN2 .
3) The sets of paths of TN1 and of TN2 coincide.

A stronger notion of equivalence requires equivalence in the presence of additional
norms, important when modularly analyzing subsets of norms of a larger system. Two
strongly equivalent subsets of a normative specification can be safely replaced by one
another.
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Definition 23 (Strong equivalence). We say that normative specifications N1, N2 are
strongly equivalent if for every normative specification N , N1 ∪ N is equivalent to
N2 ∪N .

Strong equivalence implies equivalence but not vice-versa.

Theorem 24. Let N1, N2 be normative specifications. If N1 is strongly equivalent to
N2, then N1 is also equivalent to N2, but the converse implication does not hold.

4 Conclusions

We have extended Action Language A with features that allow reasoning about norms,
time and deadlines in dynamic domains. We have shown how our language can be
used to express norms involving obligations with deadlines that explicitly refer to time
and actions, including obligations to-do, to-achieve and to-maintain but also simple
contrary-to-duty situations on violations and satisfactions of obligations, which pre-
vious action languages and their extensions to norms did not cover. We have defined
a semantics for this language and a simple query language along with its semantics.
Moreover, we studied the complexity and equivalence of normative specifications.

Notably, our framework may be useful for introducing norms to other AI action for-
malisms where norms with explicit time deadlines and such simple contrary-to-duty
obligations have received little consideration so far. Interesting examples include the
Event Calculus [32], the Situation Calculus [34], the Fluent Calculus [36] and exten-
sions of Dynamic Logic [29] that have a solution to the frame problem [40,41,12,18].

Our query language can be used to define interesting planning problems, such as
finding plans which prevent violations, or whose violations are within certain limits.
Additionally, our language has important applicability in the development of electronic
institutions. Electronic institutions are virtual entities that maintain, promote and en-
force a set of norms. They observe agent’s actions to determine norm violations (resp.
satisfactions), e.g., to enforce sanctions (resp. give rewards). Given its formal seman-
tics, and its strong links to dynamic systems, AN can be used as the language to specify
and disseminate the norms and the query language used to determine violations and sat-
isfactions.

Related work on normative systems resulted in frameworks that combine obligations
and time. The proposals in [19,20,9,6], which combine dynamic, deontic and temporal
logic, have a rich language, but they have difficulties in dealing with the frame problem,
relevant in the propagation of obligations that have not been fulfilled yet [9], and with
dealing with contrary-to-duty obligations. Also, no axiomatization exists for the pro-
posals in [19,20], and hence automatic reasoning is not possible, while the approaches
in [9,6] do not deal with actions. In [1], robustness of normative systems is studied
building on temporal logic, but neither deadlines nor contrary-to-duty obligations are
considered. The work in [28] aims at studying the dynamics of normative violations.
However, without an explicit representation of actions, they cannot properly deal with
obligations to-do, nor integrate the normative part of the system with the dynamics re-
sulting from the execution of actions provided by Action Languages. In [21] the OperA
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framework is introduced for representing agent organizations. The normative compo-
nent of this framework is based on an expressive deontic temporal logic. Although it
can deal with contrary-to-duty obligations, it only considers obligations to-achieve and
the deadlines can only be state conditions, therefore not allowing the representation
of explicit time deadlines. Moreover, since the focus of the framework is the model-
ing of the organizational structure, non-communicative agent actions are not explicitly
represented, since these are seen as internal to the agents. In [31], the authors study
the interpretation of security policies from the perspective of obligations based on the
concept of accountability, i.e., the property whether all obligations can be fulfilled if
the involved agents are diligent. Again, only obligations to-do are considered. Finally,
in [17] the focus is set on an operational semantics to be able to modify a normative
system during runtime. Yet, there are no time deadlines. Instead, deadlines are state
conditions, which may be an interesting extension of our work, but does not cover the
expressiveness provided by our formalism.

Our work opens several interesting paths for future research. First of all, we would
like to design an implementation. Of course, an encoding in ASP is always possible,
but perhaps more efficient solutions exist. The ideas of our paper may then be consid-
ered to be applied in MAS architectures, such as [33]. We would also like to extend the
language with other deontic constructs such as prohibition and permission. We already
have some notion of prohibition, since an obligation to-maintain ¬l can be seen as a
prohibition to bring about l, and some notion of permission, since the removal of an
obligation to-maintain ¬l can be seen as a weak permission to bring about l. On the
other hand, the counterpart of obligations to-do, forbidden actions, has not been consid-
ered here. Accommodating forbidden actions would require a new normative fluent Ft a
meaning that action a is forbidden until time t. Also interesting is to extend the language
in order to allow complex formulas to appear in the scope of deontic operators, as it is
allowed in [4] or to allow the combination of ontological and non-monotonic languages
[2]. Moreover, we may consider extending our framework to more expressive Action
Languages, more complex deadlines, and actions with different durations.
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Abstract. External Transaction Logic (ET R) is an extension of logic program-
ming useful to reason about the behavior of agents that have to operate in a two-
fold environment in a transactional way: an internal knowledge base defining the
agent’s internal knowledge and rules of behavior, and an external world where it
executes actions and interact with other entities. Actions performed by the agent
in the external world may fail, e.g. because their preconditions are not met or be-
cause they violate some norm of the external environment. The failure to execute
some action must lead, in the internal knowledge base, to its complete rollback,
following the standard ACID transaction model. Since it is impossible to roll-
back external actions performed in the outside world, external consistency must
be achieved by executing compensating operations (or repairs) that revert the ef-
fects of the initial executed actions.

In ET R, repairs are stated explicitly in the program. With it, every performed
external action is explicitly associated with its corresponding compensation or
repair. Such user defined repairs provide no guarantee to revert the effects of the
original action. In this paper we define how ET R can be extended to automati-
cally calculate compensations in case of failure. For this, we start by explaining
how the semantics of Action Languages can be used to model the external domain
of ET R, and how we can use it to reason about the reversals of actions.

1 Introduction and Motivation

Intelligent agents in a multi-agent setting must work and reason over a two-fold en-
vironment: an external environment, representing the outside world where the agent
acts, and which may include other agents; and an internal environment comprising the
information about the agent’s rules of behavior, preferences about the outside world,
its knowledge and beliefs, intentions, goals, etc. An agent may act on the external en-
vironment (external actions), but also on the internal environment (internal actions).
Examples of the latter are insertions and deletions in the agent’s own knowledge base,
updates on its rules of behavior or preferences.

When performing actions, agents must take into account what to do upon an action
failure. This is especially relevant inasmuch as the agent has no control over the behav-
ior of the external world. External actions may fail because their preconditions are not
met at the time of intended execution or, in norm regimentation, because the execution

� The first author was supported by FCT grant SFRH/BD/64038/2009. The work was partially
supported by project ERRO (PTDC/EIA-CCO/121823/2010).

J. Leite et al. (Eds.): CLIMA XIV, LNAI 8143, pp. 239–255, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



240 A.S. Gomes and J.J. Alferes

of the action would cause the violation of some norm (e.g. as allowed by 2OPL [7]), or
even by some totally unknown reason to the agent.

The failure of an action should trigger some repair plan. This is especially important
when the action is part of a plan, in which case it may be necessary to undo the effects
of previous actions that have succeeded. When the action to undo is an internal action,
the undo should be trivial. In fact, since the agent has full control over its own internal
environment, actions and updates can be made to follow the standard ACID1 proper-
ties of transactions in databases and, as such, the effects made by internal actions are
completely discarded. However, since an agent has no control over the external envi-
ronment, such transactional properties cannot, in general, be guaranteed when undoing
external actions.

Example 1 (Medical Diagnosis). Consider an agent in a medical scenario dealing with
a two-fold Knowledge Base (KB). An internal KB defining e.g. treatment specifications
and history of successful treatments of patients, and an external world where the agent
interacts with patients and executes actions. When a patient arrives with a series of
symptoms, the agent needs to reason about what should be the treatment applicable to
the given patient, but also execute this treatment by possibly giving some medication.
In case a patient shows a negative reaction to the medication, thus failing the action
of treating the patient, something must be done to counter the possible side-effects of
the previous treatment. Moreover, actions and updates in the internal KB need to be
executed transactionally, so as to guarantee that the history of successful treatments is
not updated with the medication that showed negative effects, which thereby could lead
the agent to apply the same treatment again.

In this example, “what to do to counter the side-effects of a previous unsuccessful
treatment” is a typical case of a repair plan, something that can be found in agent lan-
guages such as 2APL [6] (plan-repair rules) and 3APL [14] (plan-revision rules). In
these languages, it is possible to state for each plan, which alternative plan should be
performed in case something fails. E.g., in the example, one could say that if some
treatment fails, then one should give the patient some alternative medication to counter
the effects of the first medication given in the failed treatment.

In this example it is reasonable to assume that the plan (treatment) can only be re-
paired if the agent’s specification explicitly states what are the actions to execute for
each failed treatment. In other words, it is reasonable to assume that whoever pro-
grammed the agent explicitly included in the program the repair plans for each pos-
sible failure. This is e.g. the case in 2APL, where plan-repair rules explicitly include
the actions to execute when a given action or plan fails.

However, if one has some knowledge of the external environment, it should be pos-
sible for the agent to automatically infer the repair plan in a given failure situation,
thus saving the programmer from that task, and from having to anticipate all possible
relevant failures.

Example 2 (Supermarket Robot). Imagine a scenario of a robot in a supermarket that
has the task to fill up the supermarket’s shelves with products. In its internal KB, the

1 where ACID, as usual, stands for Atomicity, Consistency, Isolation and Durability.
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agent keeps information about the products’ stocks and prices, but also rules on how
products should be placed (e.g. “premium” products should be placed in the shelves
with higher visibility). Externally, the agent needs to perform the task of putting prod-
ucts in a given shelf, something that can be encoded in a blocks-world manner. In this
case, when some action fails in the context of a plan for e.g. arranging the products in
some manner, the agent, knowing the effects of the actions in the outside world, should
be able to infer what actions to perform in order to restore the external environment to
some consistent configuration, upon which some other alternative plan can be started.

Several solutions exist in the literature addressing the problem of reversing actions.
E.g. [8] introduces a solution based on Action Languages [9] that reasons about what
actions may revert the effects of other actions. For that they define the notions of reverse
action, reverse plan and conditional reversals that undo the effects of a given (set of)
action(s). These notions may allow the automatic inference of plan repairs.

In this paper we propose a logic programming like language that tackles all the pre-
viously mentioned issues. In particular, the language operates over two-fold KBs, with
both an internal and an internal environment; it allows for performing actions both in
the internal and the external environment; it deals with failure of actions, having a trans-
actional behavior in the actions performed in the internal environment, and executing
repair plans in the external environment; it allows to automatically infer repair plans
when there is knowledge about the effects of actions.

Our solution is based on External Transaction Logic (ET R) [12,13], an extension of
Transaction Logic (T R) [3] for dealing with the execution of external actions. Here, if
a transaction fails after external actions are executed in the environment, then external
consistency is achieved by issuing compensating actions that revert the effects of the
initial executed actions. ET R, as its ancestor T R, is a very general language, that
relies on the existence of oracles for querying and updating an internal KB and, in the
case of ET R, also for dealing with the external environment. Besides recalling the
preliminaries of ET R (Section 2) and [8] (Section 4), in this paper we:

1. formalize how the external oracle in ET R can be instantiated using action lan-
guages in general, and specifically, with action language C (Section 3);

2. extend ET R to deal with repair plans, rather than simply with compensating ac-
tions (Section 5);

3. formalize how to automatically infer repair plans when the external environment is
expressed as an action language (Section 5);

4. elaborate on the properties of these repair plans (Section 5.3).

2 External Transaction Logic

ET R [13] is an extension of Transaction Logic [3] to deal with actions performed in an
external environment of which an agent has no control. The original Transaction Logic
(T R) is a logic to reason about changes in KBs, when these changes are performed
as ACID transactions. In a nutshell2, T R syntax extends that of first order logic with

2 For lack of space, and since ET R is a proper extension of T R (cf. [13]), we do not include
here a detailed overview of T R alone. For the complete details see e.g. [3].
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a serial conjunction operator ⊗, where φ ⊗ ψ represents the action composed by an
execution of φ followed by an execution of ψ. Formulas are read as transactions, and
they are evaluated over sequences of KB states (paths). A formula (or transaction) φ
is true over a path π iff the transaction successfully executes over that sequence of
states. In other words, in T R truth means successful execution of a transaction. The
logic itself makes no particular assumption about the representation of states, or on
how states change. For that, T R requires the existence of two oracles, one abstracting
the representation of KB states and used to query them (data oracle Od), and another
abstracting the way the states change (transition oracle Ot).

Besides the concept of a model of a T R theory, which allows one to prove prop-
erties of the theory independently of the paths chosen, T R also defines the notion of
executional entailment. A transaction is entailed by a theory given an initial state, if
there is a path starting in that state on which the transaction succeeds. As such, given a
transaction and an initial state, the executional entailment determines the path that the
KB should follow in order to succeed the transaction in an atomic way. Nondetermin-
istic transactions are possible, in which case several successful paths exist. Transaction
Logic Programs [2] are a special class of T R theories that extend logic programs with
serial conjunction. For them, a proof procedure and corresponding implementation ex-
ists, which takes into account the ACID execution of transactions.

To deal also with external actions, ET R operates over a KB including both an inter-
nal and an external component. For that, formally ET R works over two disjoint prop-
ositional languages: LP (program language), and LO (oracles primitives language).
Propositions in LP denote actions and fluents that can be defined in the program. As
usual, fluents are propositions that can be evaluated without changing the state and
actions are propositions that cause evolution of states. Propositions in LO define the
primitive actions and queries to deal with the internal and external KB. LO can still
be partitioned into Li and La, where Li denotes primitives that query and change the
internal KB, while La defines the external actions primitives that can be executed ex-
ternally. For convenience, it is assumed that La contains two distinct actions failop
and nop, respectively defining trivial failure and trivial success in the external domain.

Further, it is also defined L∗
a as the result of augmenting La with expressions

ext(a, b), called external actions, where a, b ∈ La. Such an expression is used to de-
note the execution of action a, having action b as compensating action. If b is nop, then
we simply write ext(a) or a. Note that there is no explicit relation between a and b
and that it is possible to define different compensating actions for the same action a in
the same program. It is thus the programmer’s responsibility to determine which is the
correct compensation for action a in a given moment.

To construct complex formulas, the language uses the standard connectives ∧,¬ and
⊗ denoting serial conjunction, where φ⊗ ψ represents the action composed by an exe-
cution of φ followed by an execution of ψ.

Definition 1 (ET R atoms, formulas and programs). An ET R atom is either a prop-
osition in LP , Li or L∗

a and an ET R literal is either φ or ¬φ where φ is an ET R atom.
An ET R formula is either a literal, or an expression, defined inductively, of the form
φ ∧ ψ, φ ∨ ψ or φ⊗ ψ, where φ and ψ are ET R formulas.
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An ET R program is a set of rules of the form φ ← ψ where φ is a proposition in LP

and ψ is an ET R formula.

Example 3. Recall Example 1 regarding a medical diagnosis. A possible (partial) en-
coding of it in ET R can be expressed by the following rules:

sick(X)← hasF lu(X)
hasF lu(X)← ext(hasFever(X))⊗ ext(hasHeadache(X))⊗ nonSerious(X)

nonSerious(X) ← ext(¬vomiting(X)) ∧ . . . ∧ ext(¬diarrhea(X))
treatment(X,Y )← hasF lu(X)⊗ treatF lu(X,Y )⊗ treatmentHistory(X,Y, Z).ins⊗

ext(goodReaction(X,Y ))
treatF lu(X,Y )← ext(giveMeds(X,p1), giveMeds(X, c1))
treatF lu(X,Y )← ext(giveMeds(X,p2), giveMeds(X, c2))

In this example, predicate treatment(X,Y ) denotes a transaction for treating patient
X with treatment Y . Then, one can say, e.g. in the 4th rule, that such a transaction
succeeds if a patient X has flue and a medicine Y to treat the flue is given to X
(i.e. transaction treatF lu(X,Y ) succeeds). Additionally, after a treatment is issued,
the medical history of the patient should be updated and the agent needs to check if
the patient shows a positive reaction to the treatment in question. In this sense, the
formula treatmentHistory(X,Y, Z).ins ⊗ ext(goodReaction(X,Y )) denotes the
action composed by updating the treatment history of patient X followed by exter-
nally asking if the patient X had a good reaction to treatment Y . Moreover, treating
a patient with a flue is encoded by the nondeterministic transaction treatF lu(X,Y )
(5th and 6th rules) as the external action of giving patient X the medicine p1 or the
medicine p2. While the action of asking about the reaction of a patient does not need
to be repaired, the same is not true for the action of giving a medication. If a failure
occurs, the agent has to compensate for it. This is, e.g. expressed by the external action
ext(giveMeds(X, p1), giveMeds(X, c1)) where c1 cancels the effects of p1.

A state in ET R is a pair (D,E), where D (resp. E) is the internal (resp. external)
state identifier taken from a set D (resp. E). The semantics of states is provided by 3
oracles, which come as a parameter to ET R: a data oracle Od that maps elements of
D into transaction formulas; a transition oracle Ot that maps a pair of elements from
D into transaction formulas; and an external oracle Oe that maps a pair of elements
from E into transaction formulas. Intuitively Od(D) |= ϕ means that, according to the
oracle, ϕ is true in state D, and Ot(D1, D2) |= ϕ (resp. Oe(E1, E2) |= ϕ) that ϕ is
true in the transition of internal (resp. external) states fromD1 to D2 (resp. E1 to E2).

As in T R, ET R formulas are evaluated in paths (sequence of states). For conve-
nience, as it is necessary in the sequel, paths also include the explicit annotation of the
action executed in each transition of states. So 〈S1,

ϕ S2〉 means that action ϕ occurred
in the transition of state S1 into S2. Then, interpretations map paths to a Herbrand
structures. If φ ∈ M(π) then, in the interpretation M , path π is a valid execution for
the formula φ. Moreover, we only consider as interpretations the mappings that comply
with the specified oracles:

Definition 2 (Interpretations). An interpretation is a mapping M assigning a classi-
cal Herbrand structure to every path. This mapping is subject to the following restric-
tions, for all states Di,Ej and every formula ϕ:
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1. ϕ ∈M(〈(D,E)〉) iff Od(D) |= ϕ for any external state E
2. ϕ ∈M(〈(D1, E),

ϕ (D2, E)〉) iff Ot(D1, D2) |= ϕ for any external state E
3. ϕ ∈M(〈(D,E1),

ϕ (D,E2)〉) iff Oe(E1, E2) |= ϕ for any internal state D

Satisfaction of ET R formulas over paths, requires the prior definition of operations
on paths. For example, the formula φ ⊗ ψ is true (i.e. successfully executes) in a path
that executes φ up to some point in the middle, and executes ψ from then onwards. To
deal with this:

Definition 3 (Path Splits). A split of a path π = 〈S1,
A1 . . . ,Ai−1 Si,

Ai . . . ,Ak−1 Sk〉 of
size k (k-path) is any pair of subpaths, π1 and π2, such that π1 = 〈S1,

A1 . . . ,Ai−1 Si〉
and π2 = 〈Si,

Ai . . . ,Ak−1 Sk〉 for some i (1 ≤ i ≤ k). In this case, we write π =
π1 ◦ π2.

Before we are able to define general satisfaction of formulas, we need two auxiliary
relations for constructing compensations. Classical satisfaction is similar to satisfaction
in the original T R, and a transaction formula is said to be classically satisfied by an
interpretation given a path iff the transaction succeeds in the path without failing any
action. A transaction is partially (or partly) satisfied by an interpretation given a path,
iff the transaction succeeds in the path up to some point where an action may fail.

Definition 4 (Classical Satisfaction). Let M be an interpretation, π a path and φ a
formula.

1. Base Case: M,π |=c φ iff φ ∈M(π) for any atom φ
2. Negation:M,π |=c ¬φ iff it is not the case that M,π |=c φ
3. “Classical” Conjunction: M,π |=c φ ∧ ψ iff M,π |=c φ andM,π |=c ψ.
4. Serial Conjunction: M,π |=c φ ⊗ ψ iff M,π1 |=c φ and M,π2 |=c ψ for some

split π1 ◦ π2 of path π.

Definition 5 (Partial Satisfaction). Let M be an interpretation, π a path and φ a for-
mula.

1. Base Case: M,π |=p φ iff φ is an atom and one of the following holds:
(a) M,π |=c φ
(b) M,π |=c φ, φ ∈ Li, π = 〈(D,E)〉, ¬∃Di s.t. M, 〈(D,E),φ (Di, E)〉 |=c φ
(c) M,π |=c φ, φ ∈ L∗

a, π = 〈(D,E)〉, ¬∃Ei s.t. M, 〈(D,E),φ (D,Ei)〉 |=c φ
2. Negation:M,π |=p ¬φ iff it is not the case that M,π |=p φ
3. “Classical” Conjunction: M,π |=p φ ∧ ψ iff M,π |=p φ andM,π |=p ψ
4. Serial Conjunction: M,π |=p φ⊗ ψ iff one of the following holds:

(a) M,π |=p φ andM,π |=c φ
(b) ∃ split π1 ◦ π2 of path π s.t. M,π1 |=c φ andM,π2 |=p ψ

With this, we say that a transaction φ fails and can be compensated only if M,π |=p φ
but M,π |=c φ where the last state of π stands for the exact point where φ fails.

Example 4. Consider and internal KB where a state D is a set of ground atoms and
Od(D) = D. Moreover, for every atom p in D, the transition oracle defines the ac-
tions p.ins and p.del respectively denoting insertion and deletion of atom p, and where
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p.ins ∈ Ot(D1, D2) iff D2 = D1 ∪ {p} and p.del ∈ Ot(D1, D2) iff D2 = D1 − {p}.
Furthermore, consider that the external oracle includes Oe(E1, E2) |= a, (i.e. the exter-
nal execution of a in state E1 succeeds, and makes the external world evolve into E2),
Oe(E1, E4) |= c, and that for every state E, Oe(E2, E) |= b (i.e. the execution of b in
state E2 fails).

Besides these oracles, consider the following rules defining a transaction t:
t← p.ins ⊗ ext(a, d)⊗ ext(b, e)
t← q.ins ⊗ ext(c)

In this example, the formula p.ins⊗ ext(a, d) is classically satisfied by all interpreta-
tions in the path 〈({}, E1),

p.ins ({p}, E1),
ext(a,d) ({p}, E2)〉 while q.ins ⊗ ext(c) is

classically satisfied in the path 〈({}, E1),
q.ins ({q}, E1),

ext(c) ({q}, E4)〉. Moreover, it
is easy to check that ext(b, e) cannot succeed in any path starting in state E2 (given
the external oracle definition). The idea of partial satisfaction is to identify the path
〈({}, E1),

p.ins ({p}, E1),
ext(a,d) ({p}, E2)〉 as one that partly satisfies the complex for-

mula p.ins ⊗ ext(a, d) ⊗ ext(b, e) up to some point, though it eventually fails since
the external action ext(b, e) fails.

When a formula fails in a path after the execution of some external action, we have
to say how these actions can be compensated. To define this, we first need to define
some auxiliary operations on paths. To start, one has to collect all actions that have
been executed in a path and need to be compensated; and to rollback the internal state:

Definition 6 (Rollback Path, and Sequence of External Actions). Let π be a k-path
of the form 〈(D1, E1),

A1 (D2, E2),
A2 . . . ,Ak−1 (Dk, Ek)〉. The rollback path of π is the

path obtained from π by: (1) Replacing all Dis by the initial state D1; (2) Keeping just
the transitions where Ai ∈ L∗

a.
The sequence of external actions of π, denoted Seq(π), is the sequence of actions of the
form ext(a, b) that appear in the transitions of the rollback path of π.

Seq(π) only collects the external actions that have the form ext(a, b). Since this op-
eration aims to compensate the executed actions, then actions without compensations
are skipped. With this, a recovery path is obtained from executing each compensation
operation defined in Seq(π) in the inverse order.

Definition 7 (Inversion, and Recovery Path). Let S be a sequence of actions from L∗
a

of the form 〈ext(A1, A
−1
1 ), . . . ext(An, A

−1
n )〉. Then, the inversion of S is the trans-

action formula Inv(S) = A−1
n ⊗ . . .⊗A−1

1 .
πr is a recovery path of Seq(π) w.r.t. M iff M,πr |=c Inv(Seq(π)).

We can now say which paths compensate a formula and define satisfaction.

Definition 8 (Compensating Path for a Transaction). Let M be an interpretation, π
a path and φ a formula. M,π � φ iff all the following hold:

1. ∃π1 such that M,π1 |=p φ andM,π1 |=c φ
2. ∃π0 such that π0 is the rollback path of π1
3. Seq(π1) = ∅ and ∃πr such that πr is a recovery path of Seq(π1) w.r.t. M
4. π0 and πr are a split of π, i.e. π = π0 ◦ πr
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Definition 9 (General Satisfaction). Let M be an interpretation, π a path and φ a
formula.

1. Base Case: M,π |= φ if φ ∈M(π) for any atom φ
2. Negation:M,π |= ¬φ if it is not the case that M,π |= φ
3. “Classical” Conjunction: M,π |= φ ∧ ψ if M,π |= φ and M,π |= ψ.
4. Serial Conjunction: M,π |= φ ⊗ ψ if M,π1 |= φ and M,π2 |= ψ for some split
π1 ◦ π2 of π.

5. Compensating Case: M,π |= φ if M,π1 � φ and M,π2 |= φ for some split
π1 ◦ π2 of π

6. For no other M,π and φ, M,π |= φ.

With this notion of satisfaction, a formula φ succeeds if it succeeds classically or,
if although an external action failed to be executed, the system can recover from the
failure and φ can still succeed in an alternative path (point 5). Obviously, recovery only
makes sense when external actions are performed before the failure. Otherwise we can
just rollback to the initial state and try to satisfy the formula in an alternative branching.

Example 5. Recall example 4 and assume that Oe(E3, E4) |= c and Oe(E2, E3) |= d.
Then, the rollback path of π = 〈({}, E1),

p.ins ({p}, E1),
ext(a,d) ({p}, E2)〉 is the

path 〈({}, E1),
ext(a,d) ({}, E2)〉 and Seq(π) = 〈ext(a, d)〉. Furthermore, the path

〈({}, E2),
a−1

({}, E3)〉 is a recovery path of Seq(π) w.r.t. any interpretationM .
Based on these, the complex formula (p.ins ⊗ ext(a, d) ⊗ ext(b, e)) ∨ (q.ins ⊗

ext(c)) is satisfied both in the path 〈({}, E1),
q.ins ({q}, E1),

ext(c) ({q}, E4)〉 – with-
out compensations – but also in the path: 〈({}, E1),

ext(a,d) ({}, E2),
d ({}, E3),

q.ins

({q}, E3),
ext(c) ({q}, E4)〉 – using point 5 above, in this case.

Definition 10 (Models, Logical and Executional Entailment). Let φ and ψ be two
ET R formulas and M be an interpretation. M is a model of φ (denoted M |= φ) iff
M,π |= φ for every path π. M is a model of a program P iff for every rule φ ← ψ in
P , if M is a model of ψ then it is also a model of ψ.
Then, φ logically entails ψ (φ |= ψ) if every model of φ is also a model of ψ.
P, 〈S1,

A1 . . . ,An−1 Sn〉 |= φ (�) iff M, 〈S1,
A1 . . . ,An−1 Sn〉 |= φ for every model

M of P . We also define P, S1– |= φ to be true (and say that φ succeeds in P from the
state S1), if there exists a path S1,

A1 . . . ,An−1 Sn that makes (�) true.

3 Action Languages in ET R

The general ET R is parametrized by a set of oracles defining the elementary primitives
to query and update the internal and external KB. However, to deal with specific prob-
lems, these oracles must be defined. For example, to deal with simple internal KBs, one
can define a so-called relational oracle, in which: states are defined by sets of atoms;
the data oracle simply returns all these formulas, i.e., Od(D) = D; the transition or-
acle defines, for each predicate p, two internal actions, p.ins and p.del, respectively
stating the insertion and deletion of p as p.ins ∈ Ot(D1, D2) iff D2 = D1 ∪ {p}, and
p.del ∈ Ot(D1, D2) iff D2 = D1 − {p}.
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If the agent knows nothing about the external environment, the external oracle Oe

can be left open, and whenever the evaluation of an action is required of that oracle,
the oracle is called returning either failure or a subsequent successful state (which can
be the same state, if the external action is simply a query). However, the agent may
have some knowledge about the behavior of the external world. Here we consider the
case where the agent’s knowledge about the external world can be formalized by Action
Languages [9], and show how to define an external oracle for that. Moreover, below we
use the external oracle defined in this section to automatically infer repair plans.

Every action language defines a series of laws describing actions in the world and
their effects. Which laws are possible as well as the syntax and semantics of each law
depends on the action language in question. Several solutions like STRIPS, languages
A,B, C or PDDL, have been proposed in the literature, each with different applications
in mind. A set of laws of each language is called an action program description. The
semantic of each language is determined by a transition system which depends on the
action program description.

Let 〈{true, false},F ,A〉 be the signature of an action language, where F is the
set of fluent names and A is the set of action names in the language. Let 〈S, V,R〉 be a
transition system where S is the set of all possible states, V is the evaluation function
from F × S into {true, false}, and finally R is the set of possible relations in the
system defined as a subset of S ×A× S. We assume a function T (E) that from action
programE defines the transition system 〈S, V,R〉 associated withE, and the previously
defined signature. We also define La = F ∪ A.

Equipped with such a function, an ET R external state is a pair, with the program
E describing the external domain and a state of the transition system, and the general
external oracle Oe is (where T (E) = 〈S, V,R〉):
1. Oe((E, s), (E, s′)) |= action iff action ∈ A ∧ 〈s, action, s′〉 ∈ R
2. Oe((E, s), (E, s)) |= fluent iff fluent ∈ F ∧ V (fluent, s) = true

To be more concrete, let us show one instantiation of this, with action language C
[11]. This language and its extensions like C+ [10], are known for being traditionally
used to represent norms and protocols (e.g. auction, contract formation, negotiation,
rules of procedure, communication, etc.) [16,1]

A state formula is a propositional combination of fluent names while a formula is a
propositional combination of fluent names and elementary action names. An external
description E is a set of static and dynamic laws. A static law is a law of the form
“caused F if G”, where F and G are state formulas. A dynamic law is of the form
“caused F if G after U”, where F and G are state formulas and U is a formula

An important notion is that actions can be done concurrently. So, in a transition
〈s1, A, s2〉, A is a subset of A. Intuitively, to executeA from s1 to s2 means to execute
concurrently the “elementary actions” represented by the action symbols inA changing
the state s1 into s2. A state is an interpretation of the set of fluents F that is closed under
the static laws. I.e. for every static law “caused F if G” and every state s, s satisfies
F if s satisfies G. Then, the interpretation function V for a state is simply defined as
V (P, s) = s(P ). To define the set of valid relationsR we first need the notion of reduct.
For any description E and any transition 〈s0, A, s1〉 we can define the E〈s0,A,s1〉, the
reduct of E relative to 〈s0, A, s1〉, which stands for the set consisting of:
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– F for all static laws from E s.t. s1 satisfies G
– F for all dynamic laws from E s.t. s1 satisfies G and s0 ∪ A satisfies H

We say that 〈s0, A, s1〉 is causally explained if s1 is the only state that satisfies the
reductE〈s0,A,s1〉. Since the external oracle is defined for elementary actions rather than
for sets of actions, we can define the relation R of T (E) as follows: 〈s0, a, s1〉 ∈ R iff
〈s0, A, s1〉 is causally explained by E and a ∈ A.

4 Reverse Actions in Action Languages

Before defining how to automatically infer repair plans in ET R plus an external oracle
of an action language, we briefly overview [8]’s action reverses, adapting it for the
action languages framework defined above.

To start, we need the notion of trajectory of a sequence of actions. Intuitively, we say
that a state sf is the trajectory of a sequence of actions applied to state si if there exists
a trace from si to sf by executing the given sequence of actions.

Definition 11 (Trajectory of a Sequence of Actions). We say that sf is the trajec-
tory of a0 ⊗ . . . ⊗ am−1 when applied to s0 iff: ∃s′1, . . . , s′m s.t. 〈s0, a0, s′1〉 ∈ R and
〈s′i, ai, s′i+1〉 ∈ R then s′m = sf where (1 ≤ i ≤ m − 1). In this case we write
traj(s0; [a0 ⊗ . . .⊗ am−1]) = sf .

With this we can define the notion of reverse action. An action a−1 is a reverse action
of a if whenever we execute a−1 after we execute a, we always obtain the (initial) state
before the execution of a. This is encoded as follows.

Definition 12 (Reverse Action). Let a, a−1 be actions in A. We say that an action a−1

reverses a iff ∀s1, s2 if 〈s1, a, s2〉 ∈ R then ∃s.〈s2, a−1, s〉 ∈ R and ∀s.〈s2, a−1, s〉 ∈
R, s = s1. In this case we write revAct(a; a−1).

Besides the notion of reverse action, the authors of [8] also introduce the notion of
reverse plan. Since a single action may not be enough to reverse the effects of another
action, the notion of reverse is generalized into a sequence of actions, or plan. A reverse
plan defines what sequences of actions are able to reverse the effects of one action.

Definition 13 (Reverse Plan). Let a, a0, . . . , am−1 be actions in A. We say that a0 ⊗
. . . ⊗ am−1 is a plan that reverses action a iff ∀s1, s2 s.t. 〈s1, a, s2〉 ∈ R then ∃s′ s.t.
traj(s2; [a0 ⊗ . . .⊗ am−1]) = s′ and ∀s′ s.t. traj(s2; [a0 ⊗ . . .⊗ am−1]) = s′ then
s′ = s1. In this case we write revPlan(a; [a0 ⊗ . . .⊗ am−1]).

Intuitively, a reverse plan is a generalization of a reverse action, as every reverse action
revAct(a, a′) is a reverse plan of size one: revPlan(a, [a′]).

The previous definitions denote a strong relation between an action and a sequence
of actions which holds for any state in the set of states defined in the framework. I.e.,
a sequence of actions is a reverse plan of a given action, if the sequence can always
be applied after the execution of a and, in all the transitions defined in the set R, the
application of this sequence always leads to the state before the execution of a.
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However, some states may prevent the existence of a reverse plan. I.e., an action
may have a reverse plan under some conditions, that do not necessarily hold at every
reachable state. Thus, we need a weaker notion of reverse that takes into account the
information of the states, e.g. values of some fluents obtained by sensing. By restraining
the states where the reverse plan is applied, we might get reverse plans that were not
applicable before. This is the idea of conditional reversal plan formalized as follows.

Definition 14 (Conditional Reversal Plan). Let a, a0, . . . , am−1 be actions in A. We
say that a0 ⊗ . . .⊗ am−1 is a φ;ψ-reverse plan that reverses action a back iff: ∀s1, s2
where V (s2, φ) = V (s1, ψ) = true, if 〈s1, a, s2〉 ∈ R then ∃s′ s.t. traj(s2; [a0 ⊗
. . .⊗ am−1]) = s′ and ∀s′ s.t. traj(s2; [a0 ⊗ . . .⊗ am−1]) = s′ then s′ = s1.

5 ET R with Automatic Compensations

After defining the reversals of actions for action languages, we can show how ET R’s
external oracle can be instantiated to use these definitions and automatic infer what is
the correct repair plan for each action.

However, we do not need such a strong and generic notion of reverse action as the one
defined in [8]. In fact, both reverse actions and reverse plans are defined disregarding
the initial state where they are being applied. When defining compensations or repairs
of actions in ET R, we already have information about the specific states where the
repairs will be applied. This demands for a weaker notion of reverse action and reverse
plan, defined for a pair of states rather than for a given action.

Definition 15 (Situated Reverse Action). We say that an action a−1 reverses s2 into
s1 iff ∃s.〈s2, a−1, s〉 ∈ R and ∀s.〈s2, a−1, s〉 ∈ R, s = s1. In this case we write
revAct(s1, s2; a

−1).

Intuitively, we say that action a is a reverse action for states s1 and s2 iff a can be
executed in state s2 and all the transitions that exist in the set of relationsR w.r.t. action
a applied to state s2 end in state s1.

As in [8], instead of only considering singleton actions, we also define the notion of
situated reverse plan to specify sequences of actions that are able to reverse the effects
of one action. Then, revPlan(s1, s2; [a0 ⊗ . . . ⊗ am−1]) states that the sequence of
actions a0 ⊗ . . .⊗ am−1 always restores s1 when executed in state s2. For that, the KB
may pass throughm arbitrary states necessarily ending in s2.

Definition 16 (Situated Reverse Plan). We say that a0 ⊗ . . . ⊗ am−1 is a plan that
reverses s2 back to s1 iff: ∃sf s.t. traj(s2; [a0 ⊗ . . . ⊗ am−1]) = sf and ∀sf s.t.
traj(s2; [a0 ⊗ . . .⊗ am−1]) = sf then sf = s1. In this case we write revPlan(s1, s2
; [a0 ⊗ . . .⊗ am−1])

Clearly, several reverse plans may exist restoring s1 from state s2. Moreover, there
are better reverse plans than others. E.g., imagine that in a state si there exists an action
ai that always leads us to the same state si, i.e. 〈si, ai, si〉 ∈ R. If a plan exists to
restore the system back from s2 to s1 passing into state si, then there are several plans
where the only difference is the amount of times we execute the “dummy” action ai.



250 A.S. Gomes and J.J. Alferes

Since recovery is a sensitive operation, in order to minimize the amount of operations
to be executed, we define the notion of shorter reverse plans. A shorter reverse plan
revPlans(s1, s2; [a1 ⊗ . . .⊗ am]) is a reverse plan where the number of actions to be
executed is minimal (i.e. there is no other revPlan(s1, s2; [a1⊗. . .⊗an]) with n < m).

5.1 Goal Reverse Plans

The previous notions define a reverse action or a reverse plan for a pair of states s1
and s2, reverting the system from state s2 back to state s1, and imposing that the final
state obtained is exactly s1. However, it may happen that, for some pair of states, a
reverse plan does not exist. Furthermore, if some information is provided (e.g. by the
programmer) about the state that we intend to reach, then we might still achieve a state
where this condition holds. This is useful for cases where the agent has to find repairs
to deal with norm violations. For instance, it may not be possible to return to the exact
state before the violation, but it may be possible to reach a consistent state where the
agent complies with all the norms.

This corresponds to the notion of goal reverse plans that we introduce here. Based
on a state formula φ characterizing the state that we want to reach, then goalRev(φ, s2
; [a0 ⊗ . . .⊗ am−1]) says that the sequence a0 ⊗ . . .⊗ am−1 reverses the system from
s2 into a consistent state s where the state formula φ holds.

Definition 17 (Goal Reverse Plan). We say that a0 ⊗ . . . ⊗ am−1 is a goal plan that
reverses s2 to a state where φ holds iff ∃s′ s.t. traj(s2; [a0 ⊗ . . . ⊗ am−1]) = s′ and
∀s′ s.t. traj(s2; [a0 ⊗ . . .⊗ am−1]) = s′ then V (φ, s′) = true. In this case we write
goalRev(φ, s2; [a0 ⊗ . . .⊗ am−1]).

As before, to preserve efficiency of plans, we define the notion of shorter goal reverse
plan. goalPlans(φ, s2; [a1 ⊗ . . . ⊗ am]) holds, if the sequence a1 ⊗ . . . ⊗ am is a
sequence with minimal length that takes s2 into a state where φ is true.

5.2 External Oracle for Action Languages with Automatic Compensations

We can now make precise how and when repairs are calculated in ET R’s semantics,
and what changes of ET R’s language are needed to deal with these automatic repairs.

Besides defining automatically inferred repairs, we want to keep the option of ex-
plicitly defining compensations for external actions. The latter are useful in external
environments where the agent is not able to automatically infer the repair (see e.g. the
repairs in Example 1). However, since more than one action may be required to repair
the effects of one external action (e.g., in Example 1 it may be necessary to give the
patient a series of medications in order to repair the side-effects of the previously given
one), we also extend these explicitly defined compensations to plans.

Consequently, the language of ET R is extended so that external actions can appear
in a program in three different ways: 1) without any kind of compensation associated,
i.e. ext(a, nop), and in this case we write ext(a) or simply a, where a ∈ La; 2) with
a user defined repair plan, written ext(a, b1 ⊗ . . . ⊗ bj) where a, bi ∈ La; 3) with
an automatic repair plan, denoted extA(a[φ]), where a ∈ La, φ is an external state
formula, and an external state formula is a conjunction of external fluents. Formally:
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Definition 18. An ET R atom is either a proposition in LP , Li or an external atom. An
external atom is either a proposition in La (where La = F ∪A), ext(a, b1 ⊗ . . .⊗ bj)
or extA(a[φ]) where a, bi ∈ La and φ is an external state formula. An ET R literal is
either φ or ¬φ where φ is an ET R atom. An external state formula is a either a literal
from F or an expression φ ∧ ψ where φ and ψ are external state formulas. An ET R
formula is either a literal, or an expression, defined inductively, of the form φ∧ψ, φ∨ψ
or φ ⊗ ψ, where φ and ψ are ET R formulas. An ET R program is a set of rules of the
form φ← ψ where φ is a proposition in LP and ψ is an ET R formula.

Intuitively, extA(a[φ]) stands for “execute the external action a, and if something fails
automatically repair the action’s effects either leading to the state just before a was
executed, or to a state where φ holds”. When one wants the repair to restore the system
to the very state just before a was executed, one may simply write extA(a) (equivalent
to extA(a[⊥])).

Example 6. With this extended language one can write, e.g. for the situation described
in Example 2, rules like the ones below, plus a specification in C of the external environ-
ment which must include the definition of blocks-world-like actions (omitted here for
brevity). Intuitively the rules say that: to place a product one should decrease the stock
and then place the product; one can place a product in a better shelf, or in a normal shelf
in case the product is not premium. Moreover, moving a product to a given shelf is an ex-
ternal action that can be automatically repaired based on the existing information about
the external world. Consequently extA(move(X,warehouse, betterShelf)) means
that, if something fails after the agent has moved X from the warehouse into a better
shelf, then a repair plan will be automatically defined for this action by the semantics.

placeProduct(X)← decreaseStock(X)⊗X > 0⊗ placeOne(X)
decreaseStock(X)← stock(X,S)⊗ stock(X,S).del ⊗ stock(X,S − 1).ins

placeOne(X)← extA(move(X,warehouse, betterShelf))
placeOne(X)← ¬premium(X)⊗ extA(move(X,warehouse, normalShelf))

Note that, the semantics must ensure that the external world is always left consistent
by the agent in this example. Particularly, whenever it is not possible to place a non-
premium product in the better shelf, a repair plan is executed to put the product back
in the warehouse, where after one can try to put the product in the normal shelf; if it is
not possible to put the product in either shelf (or to put a premium product in the better
shelf), then a repair plan is executed to put the product back in the warehouse, and the
stock is rolled back to its previous value (and the transaction fails).

Contrary to the semantics of the original ET R which is independent of the defined
oracles, the semantics of this new language can only be defined given specific ora-
cles that allow the inference of repair plans. For example, for external environments
described by action languages, an external state is a pair, with the action programE de-
scribing the external domain and a state of the transition system, and the external oracle
Oe is (where T (E) = 〈S, V,R〉):

Definition 19 (Action Language Oracle). Let f, a be atoms in La s.t. f is a fluent in
F and a is an action in A.

1. Oe((E, s1), (E, s1)) |= f iff V (f, s1) = true
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2. Oe((E, s1), (E, s2)) |= a iff 〈s1, a, s2〉 ∈ R
3. Oe((E, s1), (E, s2)) |= ext(a, b1 ⊗ . . .⊗ bn) iff 〈s1, a, s2〉 ∈ R
4. Oe((E, s1), (E, s2)) |= ext(a[φ], a−1

0 ⊗ . . .⊗ a−1
m−1) iff one holds:

(a) 〈s1, a, s2〉 ∈ R ∧ revPlans(s1, s2; [a
−1
0 ⊗ . . .⊗ a−1

m−1]); or
(b) 〈s1, a, s2〉 ∈ R ∧ (¬∃a−1

0 ⊗ . . . ⊗ a−1
m−1 s.t. revPlans(s1, s2; [a

−1
0 ⊗ . . . ⊗

a−1
m−1])) ∧ goalRevs(φ, s2; [a0 ⊗ . . .⊗ am−1])

Points 3 and 4 above define how the oracle satisfies external actions with compensa-
tions. If the agent wants to explicitly define b1 ⊗ . . .⊗ bn as the reverse plan for action
a, then ext(a, b1 ⊗ . . . ⊗ bn) is evaluated solely by what the oracle knows about a,
holding in a transition iff a holds in that transition of states.

When the agent wants to infer a repair plan for a, then these repairs are calculated
based on the notions of reverse plan and goal reverse defined previously. Namely, the
formula ext(a[φ], a−1

0 ⊗ . . .⊗ a−1
m−1) holds, iff a holds in the transition s1 into s2, and

a−1
0 ⊗ . . .⊗a−1

m−1 is a shorter reverse plan to repair s2 back to s1 or, if a−1
0 ⊗ . . .⊗a−1

m−1

is a shorter goal plan to repair s2 into a state where the state formula φ holds.
Note that the order of points 4a and 4b is not arbitrary. Goal reverse plans provide

an elegant solution to relax the necessary conditions to obtain repairs plans and are spe-
cially useful in scenarios where it is not possible to return to the initial state before exe-
cuting the external action, as e.g. in norms or contracts violations. However, care must
be taken when defining the external state formula φ of an external action extA(a[φ]).
In fact, if φ provides a very incomplete description of the state that we want to achieve,
then we might achieve a state substantially different from the intended one. Particularly,
although we constrain the applicability of goal reverse plans to the ones that are shorter,
there is no guarantee that the changes of these plans are minimal (w.r.t. the amount of
fluents that are different from the previous state). To guarantee such property represents
a belief revision problem and is, at this moment, out of scope of this paper.

Finally, compensations can be instantiated by changing the definition of interpreta-
tion (Def. 2) which now determines how to deal with automatic repairs.

Definition 20 (Interpretations). An interpretation is a mapping M assigning a clas-
sical Herbrand structure (or �) to every path. This mapping is subject to the following
restrictions, for all states Di,Ej and every formula ϕ, every external atom a and every
state formula ψ:
1. ϕ ∈M(〈(D,E)〉) iff Od(D) |= ϕ for any external state E
2. ϕ ∈M(〈(D1, E),

ϕ (D2, E)〉) iff Ot(D1, D2) |= ϕ for any external state E
3. ϕ ∈M(〈(D,E1),

ϕ (D,E2)〉) iff Oe(E1, E2) |= ϕ for any internal state D

4. extA(a[ψ]) ∈ M(〈(D,E1),
ext(a[ψ],a−1

0 ⊗...⊗a−1
m−1) (D,E2)〉) iff Oe(E1, E2) |=

ext(a[ψ], a−1
0 ⊗ . . .⊗ a−1

m−1) for any internal state D

Note that, an external action with automatic repair plans only appears in the program in
the form extA(a[φ]). With this previous definition, it is the interpretation’s responsi-
bility to ask the oracle to instantiate it with the correct repair plan a−1

0 ⊗ . . .⊗ a−1
m−1.

5.3 Properties of Repair Plans

We start by making precise the relation between the concepts presented here, and the
definitions from [8]. Specifically, if a goal reverse plan is not considered, then a−1

0 ⊗
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. . . ⊗ a−1
m−1 is a valid repair plan iff it is a φ;ψ-conditional plan in [8] where the ψ

(respectively φ) represents the state formula of the initial (resp. final) state s1 (resp. s2).

Theorem 1 (Relation with [8]). Let F1 and F2 be formulas that respectively represent
completely the states s1 and s2. Then, Oe((E, s1), (E, s2)) |= ext(a[⊥], a−1

0 ⊗ . . .⊗
a−1
m−1) iff a−1

0 ⊗ . . .⊗ a−1
m−1 is a F2;F1-reversal for a

Then, we can apply the result on the sufficient condition for the existence of repairs
plans from [8] which is based on the notion of involutory actions. An action is said to be
involutory if executing the action twice from any state where the action is executable,
always results in the starting state, i.e. iff for every s1, s2 s.t. traj(s1; [a ⊗ a]) = s2
then s2 = s1. An example of an involutory action is a toggle action, as toggling a simple
switch twice will always lead the system into the initial state.

Lemma 1. Let a be an involutory action. For every pair of states s1, s2 s.t. 〈s1, a, s2〉 ∈
R it holds that Oe((E, s1), (E, s2)) |= ext(a[φ], a) for every state formula φ.

Further, we can talk about safety of repairs w.r.t. programs. We say that a program is
repair safe iff all its external actions have a repair that is guaranteed to succeed.

Theorem 2 (Repair Safety). Let P be a ET R program without user defined repair
plans of the form ext(a, b1 ⊗ . . . ⊗ bj). If for every extA(a[φ]) defined in P there
exists a reverse plan a1 ⊗ . . .⊗ ak s.t. revPlan(a, [a1 ⊗ . . .⊗ ak]) then P is a repair
safe program.

Note that, although the conditions for a repair safe program are considerably strong,
they allow us to reason about the safeness of a program before execution. Obviously,
we do not want to restrict only to repair safe programs. However, if an agent is defined
by a repair safe program, we know that, whatever happens, the agent will always leave
the external world in a consistent state.

We can also define a safe property regarding a particular execution of a transaction.

Theorem 3 (Repair Safe Execution). Let P be a program without user defined re-
pairs, φ be a formula, π be a path andM an interpretation where M |= P . IfM,π |=p

φ, M,π |=c φ and Seq(π) = ∅ then ∃π0, πr where π0 is a rollback path of π, and πr is
a recovery path of π0 s.t. π′ = π0 ◦ πr andM,π′ � φ

This result talks about the existence of compensating paths for a given transaction φ
being executed in a path π. Intuitively, if P does not contain user defined transactions,
and π is an execution of φ that fails (i.e. M,π |=p φ but M,π |=c φ) after executing
some external actions (i.e. if Seq(π) = ∅), then there always exists a path where the
execution of φ is repaired, i.e. there exists a path π′ whereM,π′ � φ holds.

Note that these theorems only provide guarantees for programs where explicit user
defined repairs are not presented. The problem with the user defined repairs is that it is
impossible to predict, before execution, what will be the resulting state of the external
world after their execution, or to guarantee any properties about this resulting state. As
such, it may be the case that the existence of user defined repairs jeopardizes the ap-
plicability of automatic repair plans. This is as expected: since the user may arbitrarily
change the repair of some actions, it may certainly be the case that the specification of
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the external domain cannot infer any repair plan for other actions in the same sequence.
To prevent this, we could preclude the possibility to define user defined repairs. How-
ever, this would make ET R less expressible, making it impossible to use whenever the
agent does not possess enough information about the external world.

6 Conclusions and Related Work

We have extended the ET R language to deal with external environments described by
an action language, and to deal with automatically inferred repair plans when some
external action fails. The obtained language is able to reason and act in a two-fold envi-
ronment in a transactional way. By defining a semantics that automatically infers what
should be the repairs when something fails in the external world, we ease the program-
mer’s task to anticipate for all the possible failures and write the corresponding correct
repair for it. Thus, when enough information is available regarding the external world,
ET R can be used to automatically infer plans to deal with failures. Contrarily, when
the agent has no information about the external environment on which she performs
actions, then repair plans can be defined explicitly in the agent’s program. Though not
presented here for lack of space, we have devised a proof procedure for ET R [13], that
readily provides a means for an implementation that is underway.

For dealing with the inference of repair plans, we assumed that the environment is
described using the action language C and based the representation of reversals on the
work of [8]. An alternative would be to chose another language for representing changes
in the external environment like [17]. [17] defines an action language to represent and
reason about commitments in multi-agent domains. In it, it is possible to encode di-
rectly in the language which actions are reversible and how. Using this language to rep-
resent the external world in ET R could also be done by changing the external oracle
definition, similarly to what we have done here. However, we chose the reversals rep-
resentation from [8] since its generality makes it applicable to a wider family of action
aanguages, like, e.g. the action language C. Since this latter language has several exten-
sions that are already used for norms and protocol representation in multi-agent systems
[16,1], by defining an external oracle using this action language C we provide means to
employ such representations together with ET R, extending them with the possibility
to describe an agent’s behavior in a transactional way. Furthermore, our version of goal
reverse plans can be seen as a contribution to the work of [8]’s as it provides means to
relax the conditions for the existence of plans, increasing the possibility of achieving a
state with some desirable consistent properties.

Several languages to describe an agent’s behavior partitioned over an internal and
external KB have been proposed in the literature. Jason[4], 2APL[6] and 3APL[14] are
successful examples of agent programming languages that deal with environments with
both internal updates and external actions. All these language have some way to deal
with action failures, and to execute repair plans of some form. However, none of them
consider the automatic inference of the repair plans based on the external information
available. Moreover, none of them guarantees transactional properties, in particular for
actions performed in the internal environment.
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Other agent’s logic programming based languages exist (e.g. [5,15]) but, to our
knowledge, none of them deals with transactions nor with repair plans. The closest
might be [15], where the authors mention as future work the definition of transactions.
However, the model theory of [15] does not consider the possibility of failure and thus
neither the possibility of repairing plans. Contrarily, its operational semantics may re-
act to external events defining failure of actions performed externally, but since no tools
are provided to model the external environment, the decision about what to do with the
failure is based only on internal knowledge (but which has information about external
events). Moreover, since there is no strict distinction between action performed exter-
nally and internally, it not clear to see how the semantics would deal with the different
levels of atomicity that the combination between internal and external actions demands.
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Abstract. The overall goal of this research program is a construction of a para-
consistent model of agents’ communication, comprising two building blocks:
speaking about facts and speaking about reasoning rules. To construct complex
dialogues, such as persuasion, deliberation, information seeking, negotiation or
inquiry, the speech acts theory provides the necessary building material. This
paper extends the implementation of the speech act assert in the paraconsistent
framework, presented in our previous paper, by providing means for agents to
perceive and learn not only facts, but also rules. To this end the admissibility cri-
terion for a rule to be accepted has been defined and the Algorithm for Perceiving
Assertions About Rules has been proposed. A natural four-valued model of inter-
action yields multiple new cognitive situations. Epistemic profiles encode the way
agents reason, and therefore also deal with inconsistent or lacking information.
Communicative relations in turn comprise various aspects of communication and
allow for the fine-tuning of applications.

The particular choice of a rule-based, DATALOG¬¬-like query language 4QL
as a four-valued implementation framework ensures that, in contrast to the stan-
dard two-valued approaches, tractability of the model is maintained.

1 Communication under Uncertain and Inconsistent Information

The traditional approaches to modeling Agent Communication Languages settled for
the two-valued logics despite their natural modeling limitations: inability to properly
deal with lacking and inconsistent information. This work continues the subject-matter
of the paraconsistent approach to formalizing dialogues in multiagent systems in a
more realistic way [5]. The underpinning principle of this research is the adequate log-
ical modeling of the dynamic environments in which artifacts like agents are situated.
Agents, viewed as heterogenous and autonomous information sources, may perceive the
surrounding reality differently while building their informational stance. Even though
consistency of their belief structures is a very desirable property, in practice it is hard
to achieve: inevitably, all these differences result in the lack of consistency of their be-
liefs. However, instead of making a reasoning process trivial, we view inconsistency as
a first-class citizen trying to efficiently deal with it.

There is a vast literature on logical systems designed to cope with inconsistency (see
for example [28,33]). However none of them turned out to be suitable in all cases. As in-
consistency is an immanent property of realistic domains, we lean towards a more prag-
matic and flexible solution. Assuming that we have various disambiguation methods
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at hand, the flexible approach allows for an application-, situation- or context-specific
choice that does not have to be made a priori. Furthermore, there might be a benefit
from postponing the related decision as long as possible, as the new information may
come up or the agent being the cause of the conflict may change its mind.

We base our solution on a four-valued logic [12] and the ideas underlying the 4QL
query language [11,12] which major win is that queries can be computed in polynomial
time. Tractability of 4QL stands in stark contrast to the usual two-valued approaches to
group interactions, where EXPTIME completeness of satisfiability problems is a com-
mon hindrance [7,8]. This way an important shift in perspective takes place: rather than
drawing conclusions from logical theories we reason from paraconsistent knowledge
bases. As a great benefit, the belief revision methods turned out to be dramatically sim-
plified. 4QL was designed in such a way that the inconsistency is tamed and treated
naturally in the language. The application developer has a selection of uniform tools to
adequately deal with inconsistencies in their problem domain.

Building upon the 4-valued logic of 4QL, we deal with four types of situations:

– fact a holds,
– fact a does not hold,
– it is not known whether a holds,
– information about a is inconsistent.

They are confined in the four logical values: t, f, u and i, respectively (Sec. 3). In such
settings, maintaining truth or falsity of a proposition, in the presence of multiple infor-
mation sources, is challenging. Furthermore, the two additional logical values allow to
model complex interactions between agents in a more intuitive and subtle manner.

The way the individual agents deal with conflicting or lacking information is encoded
in their epistemic profile (Sec. 4) which embodies their reasoning capabilities, embrac-
ing the diversity of agents and providing a complete agent’s characteristics. Moreover,
epistemic profiles specify agents’ communicative strategies realized with regard to the
three communicative relations between the agents involved: communication with au-
thority, peer to peer communication and communication with subordinate as proposed
in [5]. These in turn influence the agent’s reasoning processes and finally affect the
agents’ belief structures, i.e., their informational stance [6] (Sec. 4). In principle, vari-
ous agents may reason in completely different ways, as well as apply diverse methods
of information disambiguation.

The ultimate aim of our research program is a paraconsistent model of agents’ com-
munication. To construct complex dialogues, such as persuasion, deliberation, infor-
mation seeking, negotiation or inquiry (see [18]), the speech acts theory provides the
necessary building material. We initiated our research program [5], by proposing a para-
consistent framework for perceiving new facts via four different speech acts: assert,
concede, request and challenge. They enable the agents to discuss their informational
stance, i.e.,:

– inform one another about their valuations of different propositions via assertions,
– ask for other agents’ valuations via requests,
– acknowledge the common valuations via concessions and
– question the contradictory valuations via challenges.
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In the current paper the next step is taken. We allow the agents to perceive not only
new facts but also reasoning rules, which make up the epistemic profiles. To our best
knowledge, approaches to modeling communication in MAS, as a legacy of Austin and
Searle, settled for frameworks where propositions were the only valid content of speech
acts. On the other hand, argumentation about reasoning rules has been well studied
in the legal reasoning domain (see for example [26, 27, 34]). Here we intend to bring
together these two worlds by leveraging the legal argumentation theory in our paracon-
sistent communication framework and therefore by allowing the agents to discuss their
reasoning rules. We attack this complex problem from analyzing how agents react to
perceiving assertions about reasoning rules: should they adopt, reject, ignore or maybe
challenge the new rule? Consequently, the paramount issue here is the formulation of
the admissibility criterion of the incoming rule (Sec. 5) as a basis to formulate the Al-
gorithm for Perceiving Assertions about Rules.

As we view complex dialogues as communicative games between two or more agents,
the dialogue participants, being independent information sources, try to expand, con-
tract, update, and revise their beliefs through communication [25]. The great advantage
of our approach is the possibility to revise the belief structures in a very straightforward
way, what will be presented in the sequel.

The paper is structured as follows. First, in Section 2, we introduce the building
blocks of our approach. Section 3 is devoted to a four-valued logic which is used
throughout the paper and to basic information on 4QL. Section 4 introduces epistemic
profiles and belief structures, whereas Section 5 outlines the communicative relations
and rule admissibility conditions. Section 6 discusses the main technical contribution of
the paper, followed by an example in Section 7. Finally, Section 8 concludes the paper.

2 Perceiving Rules

Our goal is to allow agents to communicate flexibly in the paraconsistent world. We will
equip agents with various dialogical tools for conversing about rules: from informing
or requesting information about a rule head or body, through challenging legitimacy of
a rule, to rejecting or conceding acceptance of a new rule. These all can be performed
with the use of dedicated speech acts: assert, request, challenge, reject and concede
respectively and later will be used to construct complex dialogues.

In this paper, we take the first basic step, namely, how should agents react upon
perceiving assertions (assertS,R) regarding rules (l :– b) of inference. As these are
”actions that make you change your mind” [25], we explain the process of adopting the
new rules and specifically put a spotlight on the easiness of the belief revision phase in
our approach. Therefore we ask:

– In what cases can the rules be added to the agent’s epistemic profile without
harming the existing structures?

– How does the agent’s belief structure change in response?

The merit of the rule base update in traditional approaches lies in solving inconsis-
tency that the new rule might introduce to the logical program. When creating 4QL, the
biggest effort was to ease the way we deal with inconsistency. We will exploit this when
defining the admissibility criterion for a rule to be accepted. Informally, it is meant to
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express compatibility of the rule conclusions with the current belief structure. This com-
patibility is founded on the special ordering of truth values, by which we try to achieve
two goals:

– protect true and false propositions from being flooded by inconsistency and
– protect already possessed knowledge from unknown.

The execution of the admissibility criterion is the heart of the Algorithm for Perceiving
Assertions About Rules, a generalized 4-step procedure, realized via: filtering, parsing,
evaluation and belief revision. In a perfect case, agents communicate successfully, ex-
tending and enriching their knowledge. In more realistic scenarios, some communica-
tive actions fail, calling for a system consistency ensuring mechanism. Also, at each
stage of the algorithm, agents must know how to proceed in the lack of response.

3 A Paraconsistent Implementation Environment

In order to deal with perceiving rules, we need to introduce several definitions (in Sec-
tions 3, 4 and 5):

– the 4-valued logic we build upon,
– the implementation tool: a rule-based query language 4QL,
– the notions of epistemic profiles and belief structures, which embody the agents’

informational stands and reasoning capabilities,
– the preserving knowledge truth ordering,
– the rule admissibility criterion.

In what follows all sets are finite except for sets of formulas. We deal with the classi-
cal first-order language over a given vocabulary without function symbols. We assume
that Const is a fixed set of constants, Var is a fixed set of variables and Rel is a fixed
set of relation symbols. A literal is an expression of the form R(τ̄) or ¬R(τ̄ ), with
τ̄ ∈ (Const ∪ V ar)k, where k is the arity of R. Ground literals over Const, denoted by
G(Const), are literals without variables, with all constants in Const. If � = ¬R(τ̄ ) then

¬� def
= R(τ̄ ). Let v : V ar −→ Const be a valuation of variables.

For a literal �, by �(v) we mean the ground literal obtained from � by substituting
each variable x occurring in � by constant v(x). The semantics of propositional connec-
tives is summarized in Table 1.

Table 1. Truth tables for ∧, ∨,→ and ¬ (see [11, 12, 17]).

∧ f u i t ∨ f u i t → f u i t ¬
f f f f f f f u i t f t t t t f t
u f u u u u u u i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f
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Definition 3.1. The truth value of a literal � w.r.t. a set of ground literals L and valua-
tion v, denoted by �(L, v), is defined as follows:

�(L, v)
def
=

⎧⎪⎪⎨⎪⎪⎩
t if �(v)∈L and (¬�(v)) ∈L;
i if �(v)∈L and (¬�(v))∈L;
u if �(v) ∈L and (¬�(v)) ∈L;
f if �(v) ∈L and (¬�(v))∈L. �

For a formulaα(x) with a free variable x and c ∈ Const, by α(x)xc we understand the
formula obtained from α by substituting all free occurrences of x by c. Definition 3.1
is extended to all formulas in Table 2, where α denotes a first-order formula, v is a val-
uation of variables, L is a set of ground literals, and the semantics of propositional
connectives appearing at righthand sides of equivalences is given in Table 1. Observe
that the definitions of ∧ and ∨ reflect minimum and maximum w.r.t. the ordering

f < u < i < t. (1)

Table 2. Semantics of first-order formulas

– if α is a literal then α(L, v) is defined in Definition 3.1;

– (¬α)(L, v) def
= ¬(α(L, v));

– (α ◦ β)(L, v) def
= α(L, v) ◦ β(L, v), where ◦∈{∨,∧,→};

– (∀xα(x))(L, v) = min
a∈Const

(αx
a)(L, v),

where min is the minimum w.r.t. ordering (1);
– (∃xα(x))(L, v) = max

a∈Const
(αx

a)(L, v),

where max is the maximum w.r.t. ordering (1).

From several languages designed for programming BDI agents (for a survey see,
e.g., [13]), none directly addresses belief formation, in particular nonmonotonic or de-
feasible reasoning techniques. 4QL enjoys tractable query computation and captures
all tractable queries. It supports a modular and layered architecture, providing simple,
yet powerful constructs for expressing nonmonotonic rules reflecting default reason-
ing, autoepistemic reasoning, defeasible reasoning, the local closed world assumption,
etc. [11]. The openness of the world is assumed, which may lead to lack of knowledge.
Negation in rule heads may lead to inconsistencies.

Definition 3.2. By a rule we mean any expression of the form:

� :– b11, . . . , b1i1 | . . . | bm1, . . . , bmim . (2)

where �, b11, . . . , b1i1 , . . . , bm1, . . . , bmim are (negative or positive) literals and ‘,’ and
‘|’ abbreviate conjunction and disjunction, respectively. Literal � is called the head of
the rule and the expression at the righthand side of :– in (2) is called the body of the
rule. By a fact we mean a rule with an empty body. Facts ‘� :– .’ are abbreviated to ‘�.’.
A finite set of rules is called a program. �
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Definition 3.3. Let a set of constants, Const , be given. A set of ground literals L with
constants in Const is a model of a set of rules S iff for each rule (2) and any valuation
v mapping variables into constants in Const , we have that:(

((b11 ∧ . . . ∧ b1i1) ∨ . . . ∨ (bm1 ∧ . . . ∧ bmim)) → �
)
(L, v) = t,

where it is assumed that the empty body takes the value t in any interpretation. �

To express nonmonotonic/defeasible rules we need the concept of modules and ex-
ternal literals. In the sequel, Mod denotes the set of module names.

Definition 3.4. An external literal is an expression of one of the forms:

M.R,−M.R,M.R IN T,−M.R IN T, (3)

where M ∈Mod is a module name, R is a positive literal, ‘−’ stands for negation and
T ⊆ {f, u, i, t}. For literals of the form (3), moduleM is called the reference module.�

The intended meaning of “M.R IN T ” is that the truth value of M.R is in the set
T . External literals allow one to access values of literals in other modules. If R is not
defined in the moduleM then the value of M.R is assumed to be u.

Assume a strict tree-like order ≺ on Mod dividing modules into layers. An external
literal with reference moduleM1 may appear in rule bodies of a module M2, provided
that M1 ≺M2.

The semantics of 4QL is defined by well-supported models generalizing the idea
of [9]. Intuitively, a model is well-supported if all derived literals are supported by
a reasoning that is grounded in facts. It appears that for any set of rules there is a unique
well-supported model and this can be computed in polynomial time.

4 Epistemic Profiles and Belief Structures

An essential question is how to realize heterogeneity of agents in multiagent systems.
Clearly, being different, when seeing the same thing, agents may perceive it differently
and then may draw different conclusions. In order to define the way an agent reasons
(e.g., by the use of rules) and to express the granularity of their reasoning (e.g., by varying
the level of certain attributes or accuracy of rules expressing the modeled phenomena) we
introduce a notion of epistemic profile. Epistemic profiles also characterize the manner of
dealing with conflicting or lacking information by combining various forms of reasoning
(also ”light” forms of nonomonotonic reasoning), including belief fusion, disambigua-
tion of conflicting beliefs or completion of lacking information. Especially dealing with
inconsistency is important for us. Particular agents may adopt different general methods
of the disambiguation (like minimal change strategy) or just implement their own local,
application-specific methods via rules encoding knowledge on an expert in the field. This
way the flexibility of dealing with inconsistency is formally implemented.

As inconsistency is one of the four logical values, it naturally appears on different
reasoning levels. It may be finally disambiguated when the necessary information is in
place. This is an intrinsic property of 4QL supported by its modular architecture. As an
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example, consider a rescue agent trying to save people from the disaster region. However
it cannot work in high temperatures. Suppose it has inconsistent information about the
temperature there. In the classical approach it would stop him from acting immediately,
while in our approach, it may proceed till the moment the situation is clarified.

Tough decisions about conflicting or missing information may be solved by the sys-
tem designer (application developer) based on their expert knowledge. For instance a
rule might say that if some external literal is inconsistent or unknown (M.l ∈ {u, i}) a
specific authority source should be consulted (alternatively, the rule cannot be applied).

The following definitions are adapted from [6], where more intuition, explanation
and examples can be found. If S is a set then by FIN(S) we understand the set of all
finite subsets of S.

Definition 4.1. Let C def
= FIN(G(Const)) be the set of all finite sets of ground literals

over the set of constants Const. Then:
– by a constituent we understand any set C ∈ C;
– by an epistemic profile we understand any function E : FIN(C) −→ C;
– by a belief structure over an epistemic profile E we mean BE = 〈C, F 〉, where:

• C ⊆ C is a nonempty set of constituents;

• F
def
= E(C) is the consequent of BE . �

We alternate between the notions of the set of consequents and well-supported models.
Epistemic profile is realized via 4QL program, which may consist of several modules.

Definition 4.2. Let E be an epistemic profile. The truth value of formula α w.r.t. belief
structure BE = 〈C, F 〉 and valuation v, denoted by α(BE , v), is defined by:1

α(BE , v)
def
= α(

⋃
C∈C

C, v). �

5 Communicative Relations and Rule Admissibility Conditions

In multiagent domains many different aspects of inter-agent relations have been stud-
ied, e.g., trust, reputation, norms, commitments. They all have a greater scope of influ-
ence than just communication. The communicative relations we propose below, can be
viewed as selective lens, through which we can see only these parts of the relations in-
volved, which affect communication. They were introduced in [5] for guarding agents’
informational stance. Now we extend our perspective to cover also reasoning rules:

1. communication with authority: an agent (receiver) is willing to evaluate the inter-
locutor’s (sender, authority) rules even if they contain unknown premises or un-
known conclusions,

2. peer to peer communication: both parties are viewed as equally credible and impor-
tant information sources, therefore nobody’s opinion prevails a priori. Unknown
premises should be resolved before checking the admissibility of the rule. Whereas
to recognize unknown conclusions, different application-specific solutions might
be applied (see Algorithm 1).

1 Since
⋃
C∈C

C is a set of ground literals, α(S , v) is well-defined by Table 2.
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3. communication with subordinate: when dealing with a less reliable source of infor-
mation, the receiver with an authority would not be willing to risk his beliefs’ and
epistemic profile consistency. He would evaluate the new rule only when the con-
clusions are known (i.e. he would not learn new concepts from the subordinates).

In all cases, whenever the rule makes through to Evaluation and the admissibility
criterion holds, the agents accept the new rule regardless the communicative relation.
Otherwise, when the rule is not admissible, the interested agents engage in conflict
resolution via challenge. Recall, that during the complex communication processes, we
intend to protect the already possessed knowledge from unknown and ensure that true
or false propositions are abandoned for good reasons solely. This is reflected in the
knowledge preserving ordering ≤k on the truth values (Fig. 1).

u

i

ft

Fig. 1. Knowledge ordering ≤k

Dealing with unknown information is a delicate matter. Indeed, accepting rules with
unknown literals is risky for the receiver. If the valuation of the unknown literal is fi-
nally established as the sender intended, the receiver’s resulting belief structure might
no longer be compatible. We solve this problem on a meta-level utilizing the communi-
cation relations: rules containing unknown premises are evaluated only when the sender
is an authority. Otherwise, the unknown premises need to be resolved first.

As epistemic profiles are 4QL programs, adding a rule to an epistemic profile amounts
to adding that rule to the specific module in the program.

Definition 5.1. We define an operation of adding a rule Mi.� :– b to an epistemic pro-
file E = {M1, ...,Mn} as follows:

E ′ = E ∪ {Mi.� :– b} = {M1, ...,Mi−1,Mi ∪ � :– b,Mi+1, ...,Mn}

Definition 5.2. Let v be a valuation, l a literal, Ci the set of constituents, Fi the set of
consequents, Ei the epistemic profile and Bi the belief structure for i ∈ {a, b}. Belief
structure BEb

b = 〈Cb, Fb〉 is compatible with belief structure BEa
a = 〈Ca, Fa〉 iff.

∀� ∈ Fa ∩ Fb �(BEa
a , v) ≤k �(BEb

b , v).

Definition 5.3. Let C be a set of constituents, F, F ′ sets of consequents, E , E ′ the epis-
temic profiles. Rule � :– b is compatible with belief structure BE = 〈C, F 〉, where
F = E(C) iff. belief structure BE is compatible with belief structure BE′

= 〈C, F ′〉,
such that: E ′ = E ∪ {� :– b}, F ′ = E ′(C).

We will allow for a rule to be added into agent’s epistemic profile only if it is com-
patible with the agent’s current belief structure.
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6 Perceiving Assertions about Rules: The Algorithm

In our framework we deal with five different speech acts: assert, concede, request, re-
ject and challenge (see Table 3), which allow us to characterize the way the 4QL agents
communicate. Below, we present the Algorithm of Perceiving Assertions About Rules.
The algorithm, viewed as a complex action, determines what move should an agent
make after perceiving an assertion about a reasoning rule. It comprises four phases: fil-
tering (Subsection 6.1), parsing (Subsection 6.2), evaluation (Subsection 6.3) and belief
revision (Subsection 6.4). Filtering restricts the amount of incoming information, Pars-
ing, in addition, provides means for investigating the message’s content. In Evaluation
the new rule is examined against the admissibility criterion and in Belief Revision, the
resulting belief structure is computed on the basis of the new set of rules.

Filtering and Parsing are more tied to a specific application. In the case of Filtering,
the implementations may vary from no filtering at all, to advanced solutions where
both properties of the message and the current beliefs of the agent are considered. In
the Parsing phase we intended to accent the general concepts, like the importance of the
proper treatment of the unknown literals, and leave some space to application dependent
decisions. In this spirit we have investigated rules in four conceptual groups depending
on the location of the unknown literals in the rule head or body, and proposed a specific
solution for dealing with unknown with the use of communicative relations.

In the case of Evaluation and Belief Revision, the solution has a general flavor. As ex-
plained in Section 5, the special truth ordering serves as a means to adequately identify
possible conflicts or threats to the system, which the new rule might introduce. Thanks
to the properties of 4QL, the evaluation of the admissibility criterion is straightforward
and the conflicting region can be easily determined by comparing the original and the
resulting belief structures. Then, the agent knows if it can harmlessly add the new rule
or whether it should engage in a conflict resolution dialogue. Finally, the Belief Re-
vision, as advocated before, is also a general procedure that, based on the Evaluation
result, should generate a new belief structure, compatible with the previous one.

Table 3. Speech acts and their intended meaning

assertS,R(l :– b) Sender S tells the Receiver R the rule l :– b
concedeS,R(l :– b) Sender S tells the Receiver R that it agrees with the rule l :– b
rejectS,R(l :– b) Sender S tells the Receiver R that it could not accept the rule l :– b

challengeS,R(l :– b) Sender S tells the Receiver R that it disagrees with the rule l :– b and
asks for its justification

requestS,R(l) Sender S asks the Receiver R information about l

6.1 Filtering

The aim of the filtering phase is to restrict the amount of incoming information and to
guard its significance. During this step, the agent filters out noise, unimportant, resource-
consuming, or harmful messages. To this end, different properties of the perceived mes-
sage play a role: the sender, the type of the speech act, the context of the message, etc.
Accordingly, different filtering mechanisms can be implemented in 4QL as separate
modules, e.g., a module for communicative-relations-based filtering.
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If a message makes through Filtering barrier to the Parsing phase, that means it is
relevant and significant enough for the agent to consume its resources for handling it.

6.2 Parsing

The goal of parsing is to dissolve a rule into literals and to identify the unknown liter-
als. Then, the receiver’s reaction depends both on the communicative relation with the
sender and on the rule itself, distinguishing the cases presented below.

Rule Head Is Unknown, Rule Body Is Known. This means, that the agent recognizes
all the premises separately: all the literals in the rule body are either true, false or incon-
sistent. The novel assembly of literals leads to a new, unknown beforehand conclusion
and may be viewed as learning the new concept.

Example 6.1. Let module Tom contain only the following facts: use(hammer, nail),
nail, hammer, painting, and a rule: hanger :– nail, hammer, use(hammer, nail).
In other words, Tom has a nail, a hammer and a painting, and he can use the hammer
and the nail. The rule signifies that Tom can make a hanger if he has a nail and a hammer
and he can use them. Suppose Bob has uttered a new rule:

hangingPainting :– hanger, painting.

The rule states that that one can achieve a hanging painting if he has a painting and a
hanger. For Tom, the rule body is known (literals painting and hanger are true in
Tom’s belief structure), but the rule head is unknown. If Tom accepts the new rule he
would learn how to hang a painting.

Rule Head Is Known, Rule Body Is Unknown. This situation relates to the case when
some of the premises are unknown, but the conclusion is known. That may be described
as widening the knowledge, or making it more detail. Depending on the communication
relation, the unknown literals in the rule body can be treated as a possible threat to the
consistency of the agent’s beliefs (if the sender is a peer or a subordinate) and therefore
need further investigation. Alternatively, in case of communication with an authority,
the unknowns need not to be resolved a priori (the sender might for example want
to communicate some regulations regarding upcoming events, for which some literals’
valuations cannot be known beforehand). Here we follow the philosophy of exploiting
communicative relations as explained in Section 5.

Example 6.2. Continuing the example from above, the module now contains the follow-
ing two rules (one known before, one just learnt):

hanger :– nail, hammer, use(hammer, nail).

hangingPainting :– hanger, painting.

Suppose Bob has uttered another rule:
hanger :– nail, hammer | borrow(hammer), use(hammer, nail).

The rule states, that in order to build a hanger one must have a nail, must know how
to use the hammer and the nail, as well as must have a hammer or borrow one. In
this case, the rule head is known (hanger is true), but the rule body is not known
(borrow(hammer)). If Tom accepts this rule, he would learn another way to build a
hanger.
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Rule Head Is Known, Rule Body Is Known. Philosophically, such situation per-
tains to two different cases: the incoming rule is known already, or the incoming rule
combines previously known literals as premises (Eureka!). That may be described as
knowledge discovery.

Example 6.3. If Bob says: hammer :– hanger, nail, use(hammer, nail), both the
head and the body of the rule are known to Tom, which of course does not mean Tom
should adopt this rule immediately.

Rule Head Is Unknown, Rule Body Is Unknown. In that case, the agent is over-
burdened with new information and, when communicating with a peer or subordinate,
should start from resolving the unknown premises first. However, if the sender was an
authority, such a rule may get through Parsing to Evaluation.

Example 6.4. If Bob says: pancake :– flour, egg, milk, pan, stove, Tom does not
know any of the literals.

Searching for the meaning of the unknown premises requires a sort of information
seeking phase (dialogue). This in turn may fail, leading to the rejection of the rule
in question. In the course of dialogue the belief structures could evolve, calling for
a repetition of the whole procedure, for example, when the sender turned out to be
unreliable it is important to perform filtering anew.

If a message makes through Parsing to Evaluation, that means, the agent has all the
means to properly evaluate the rule in its belief structure.

6.3 Evaluation

The evaluation stage is the one when the decision about adopting the new rule is made.
The agent needs to verify if it can harmlessly add the rule in question to its epistemic
profile. The outcome of this process can be twofold:

– if the rule provides conclusions compatible with current beliefs: admit it,
– if the rule provides conclusions incompatible with current beliefs: if possible, try

to resolve the contradictions and otherwise reject the rule.

The rule is compatible with the current beliefs, if when added to agent’s current epis-
temic profile, makes the resulting belief structure compatible with the current structure
(see Definition5.3). Thus, all literals that were true or false, remain true or false, respec-
tively. Literals that were inconsistent may become true, false, or remain inconsistent.
Literals that were unknown may become true, false, inconsistent or remain unknown.

Similarly to the Filtering phase, the possibility of challenging the sender about the
rule in question opens the doors for failures. In case of communication problems, or
system-specific parameters such as timeouts, the challenge might fail forcing the agent
to reject the rule in question. However, a successful completion of a challenge is always
a one-side victory:

– either the challenging agent won (the receiver of the rule), and therefore the rule
was not legitimate to accept,
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– or the opponent won (the sender of the rule) and the receiver has been convinced to
accept the rule.

The messages exchanged in this process might have changed the belief structures of
communicating agents. In case the challenging agent won, it may terminate the process,
even without explicitly rejecting the rule, as the opponent is perfectly clear of the defeat.
In case the challenging agent lost, it means that for its new belief structure the rule
in question is no longer incompatible. It may proceed to the Belief Revision phase.
Challenges about the rules are subject of the upcoming article, but see [5].

If a message makes through Evaluation to Belief Revision, it means the admissibility
criterion is met.

6.4 Belief Revision

The aim of belief revision stage is to update the belief structure according to the rule
and type of speech act. In case of assertions, agent’s individual beliefs as well as shared
beliefs must be refreshed. For concessions, only the shared belief base gets updated.

We do not present a new semantics for belief revision2. It is rather a technical means
to verify to what extent do the new rules interfere with the previously obtained belief
structures. When computing the new belief structures, still the information might be
lacking and the inconsistencies may occur. In fact this is the merit of our approach. Later
on the modular architecture of 4QL allows for dealing with inconsistencies differently
on various layers. Afterwards the update of the rule base is almost trivial: if suffices to
compute the new well-supported model, which is in P-Time. Of course, there is space
for improvement, for instance by examining only the fragments of the previous well-
supported model, which would provide better results. However in the worst case still no
better than P-Time can be achieved.

In the case of a successful belief revision, an acknowledgement in form of the con-
cession speech act must be sent, in order to notify the sender about the agreement about
the rule. A failure at this stage is a very rare incident, however, might happen (if for ex-
ample the program running the agent is manually killed) and would cause a fatal error,
for which to recover from, special means are needed.

If a message makes through Belief Revision, that means, that the rule has been suc-
cessfully integrated with the current knowledge and the appropriate acknowledgement
has been sent to whom it may concern.

6.5 The Algorithm

The Perceiving Assertions About Rules Algorithm takes the following input parameters:

– � :– b. A rule with a body b = b11, . . . , b1i1 | . . . | bm1, . . . , bmim and a head �,
wrapped up in a speech act assert.

– S. The sender of the message.
– R. The receiver of the message.
– E . Agent’s R epistemic profile.
– BE

R = 〈CR, FR〉. Agent’s R belief structure.
– applicationType. Application type.

2 For literature see [29–32].
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Algorithm 1. Perceiving Assertions About Rules Algorithm
1: procedure PERCEIVE(S,R, �, b, E , BE

R, applicationType)
2: [Filtering]
3: if FilteringModule.allow(speechAct=SA, sender=S, . . .) IN{f} then
4: go to [End]
5: end if
6: [Parsing]
7: [Case 1] � rule head and body recognized
8: if l ∈ FR ∧ ∀

j ∈ 1..m, k ∈ 1..im

bjk ∈ FR then � l, bjk ∈ {t, f, i}
9: go to [Evaluation]

10: [Case 2] � only rule body recognized
11: else if ∀

j ∈ 1..m, k ∈ 1..im

bjk ∈ FR then � l = u, bjk ∈ {t, f, i}
12: switch applicationType do
13: case ”exploratory”:
14: 〈BE

R1
, result〉 ← InformationSeekingAbout( l )

15: if result ==success then restart(BE
R1

) � possibly new belief structure
16: else plug-in custom solutions here
17: end if
18: case ”real time”: go to [Evaluation]
19: case ”other”: send(rejectR,S(� :– b)

20: [Case 3] � only rule head recognized
21: else if l ∈ FR then � l ∈ {t, f, i}, bjk = u
22: if communicativeRelation(S) == ”authority” then
23: go to [Evaluation]
24: else
25: for all j, k : bjk = u do � execute in parallel
26: 〈BE

R2
, result〉 ← send(requestR,S(bjk ))

27: if result ==success then restart(BE
R2

) � new belief structure
28: else send(rejectR,S(� :– b))
29: end if
30: end for
31: end if
32: [Case 4] � rule head and rule body unknown
33: else � l, b = u
34: go to [Case 3] � resolve the body first
35: end if
36: [Evaluation]
37: if l ∈ FR then � rule head known: check if the rule is admissible
38: ETEST ← E ∪ {� :– b} � add the rule to a candidate epistemic profile
39: FRTEST

← ETEST (C)
40: BE

RTEST
← 〈CR, FRTEST

〉
� compute the candidate belief structure

41: if incompatible(BE
RTEST

, BE
R) then � try to resolve the problem

42: 〈BE
R3

, result, winner〉 ← send(challengeR,S(� :– b))

43: if result ==success then
44: if winner == R then � the rule was not admissible
45: go to [End]
46: else restart(BE

R3
) � the opponent won, restart with the new belief structure

47: end if
48: else send(rejectR,S(� :– b)
49: end if
50: else go to [BeliefRevision] � belief structures compatible
51: end if
52: else � rule head unknown
53: switch communicativeRelation(S) do
54: case ”authority”: go to [BeliefRevision]
55: case ”peer”: plug-in custom solutions here
56: case ”subordinate”: go to [End]
57: end if
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Algorithm 2. Perceiving Rules Algorithm (continued)
58: [BeliefRevision]
59: E ← E ∪ {� :– b} � add the rule to the epistemic profile
60: FR ← E(C)
61: BE

R ← 〈CR, FR〉 � compute the new belief structure
62: send(concedeR,S(� :– b))
63: [End]
64: end procedure

7 Example

Let us present a more thorough example demonstrating some of the cases described
above. Recall, that Tom is an agent realized3 via 4QL program outlined in Figure 2.

module tom:
relations: a(literal), use(literal, literal), borrow(literal).
rules:

a(hanger) :- a(nail), a(hammer), use(hammer, nail).
a(X) :- borrow(X).

facts:
a(nail).
a(hammer).
a(painting).
use(hammer, nail).

end.

Fig. 2. Example of a 4QL program realizing agent Tom

Tom’s epistemic profile consist of four facts (hammer, painting,
use(hammer, nail), nail), and two rules: one, describing his ability to borrow
things and the other, depicting how to make a hanger. Tom’s belief structure (the
well-supported model) is:

BT = {nail, hammer, painting, use(hammer, nail), hanger}

Suppose Bob has uttered the following rule (see Section 2):

assertB,T (hangingPainting :– hanger, painting.)

The rule head is unknown to Tom (it is absent from his belief structure: BT ) but the
rule body is recognized: both literals are in the belief structure (but notice that hanger
is not a fact from the epistemic profile). According to the algorithm, Tom needs to
exercise the admissibility criterion for the new rule. He adds the rule to his candidate
epistemic profile and computes the new belief structure:

B′
T = {nail, hammer, painting, use(hammer, nail), hanger, hangingPainting}

Now, B′
T is compatible with BT , because all literals that were true remained true

and one literal which was unknown is now true. Tom concludes that he can add the rule

3 For modeling and for computing well-supported models we use the 4QL interpreter, developed
by P. Spanily. It can be downloaded from http://www.4ql.org/ .

http://www.4ql.org/
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to his epistemic profile permanently. In this way, Tom learnt how to achieve something
from already available means.

Another interesting case concerns agents’ ability to learn alternative ways of achiev-
ing goals. In Figure 3 the new module Tom, equipped with the newly learnt rule is
presented. Consider now the case that Tom does not have the hammer at hand (fact
hammer is false). Tom’s new belief structure is the following:

B′′
T = {nail,¬hammer, painting, use(hammer, nail)}

module tom:
relations: a(literal), use(literal, literal), borrow(literal).
rules:

a(hangingPainting) :- a(hanger), a(painting).
a(hanger) :- a(nail), a(hammer), use(hammer, nail).
a(X) :- borrow(X).

facts:
a(nail).
-a(hammer).
a(painting).
use(hammer, nail).

end.

Fig. 3. Tom with a new rule added, but without the hammer

Suppose Bob has uttered the following rule, providing another way to achieve a hanger:

hanger :– nail, hammer | borrow(hammer), use(hammer, nail).

All literals are known to Bob, so the candidate belief structure B′′′
T can be computed:

B′′′
T = {nail,¬hammer, painting, use(hammer, nail)}

The new rule can be safely added to Tom’s epistemic profile. Notice that if Tom bor-
rowed the hammer (a fact borrow(hammer) was added to Tom’s epistemic profile), he
would achieve hangingPaintingnow (seeBT ′′′

borrowed
). It would have been impossible

without the new rule from Bob (compare with BT ′′
borrowed

):

BT ′′′
borrowed

= {nail, hammer,¬hammer, borrow(hammer), painting, use(hammer, nail),
hanger, hangingPainting}

BT ′′
borrowed

= {nail, hammer,¬hammer, borrow(hammer), painting, use(hammer, nail)}

8 Discussion and Conclusions

This paper aligns with our ultimate research goal, namely, a paraconsistent model of
agents’ communication. In order to construct complex dialogues, the speech acts theory
provides the necessary building material. We initiated our research program by propos-
ing a paraconsistent framework for perceiving new facts via four different speech acts:
assert, concede, request and challenge [5]. In this work we make a second step by al-
lowing the agents to perceive assertions about reasoning rules as well.
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The application of Speech Acts theory to communication in MAS dates back to late
20th century [19]. Since then it proved to be a practical tool for creating various agent
communication languages such as KQML and FIPA ACL [10] as well as formal models
of dialogues [1, 14, 15, 24].

Perceiving new information, whether it is some previously unknown fact, a new val-
uation of a proposition, or a reasoning rule, typically requires belief revision [21]. Our
implementation tool of choice, the rule-base query language 4QL was designed in such
a way that the inconsistency is tamed and treated naturally in the language. As a great
benefit, belief revision turned out to be dramatically simplified and obtained in P-Time.

In this paper we focus on the case, when the information in question reflects the
procedural component on the agents’ epistemic profile, namely: the rules. This subject
has hitherto received little attention. Even though in [22], a cooperative rule learning
approach for exchanging sets of rules among agents has been presented and in [23], a
formalism has been proposed that allows for discussing inference rules acceptability by
agents, none of the approaches deals explicitly with unknown and possibly inconsistent
information. Trying to fill this gap in [5] and our recent paper, the next step will con-
cern challenging rules. In this context the aspect of validity and sensibility of the rules
themselves, which wasn’t treated here, will be vital.
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Abstract. We describe an extension to theAJPF agent program model-
checker so that it may be used to generate models for input into other,
non-agent, model-checkers. We motivate this adaptation, arguing that it
improves the efficiency of the model-checking process and provides access
to richer property specification languages.

We illustrate the approach by describing the export of AJPF pro-
gram models to Spin and Prism. In the case of Spin we also investigate,
experimentally, the effect the process has on the overall efficiency of
model-checking.

1 Introduction

Agent Java Pathfinder (AJPF) [1] is a programmodel-checker for programs writ-
ten in a range of Belief–Desire–Intention (BDI) agent programming languages. It
is built on top of Java Pathfinder (JPF), an explicit state programmodel-checker
for Java programs [2], and checks the execution of Java based interpreters for
BDI languages. AJPF has a property specification language based upon Linear
Temporal Logic (LTL) extended with descriptions of beliefs, intentions, etc.

AJPF (and JPF) are “program” model-checkers, meaning that they work
directly on the program code, rather than on a mathematical model of the pro-
gram’s execution (as is typical for model-checking). In fact, these programmodel-
checkers utilise symbolic execution to internally build a model to be analysed.
Thus, using a program model-checker gives the advantage that results derived
apply directly to the program under consideration. However,AJPF is slow when
compared to traditional model-checkers and, in general, it is the internal gener-
ation of the program model (created by executing all possible paths through the
Java program) that causes a significant bottleneck.

Hunter et al. [3] suggested the use of JPF to generate models of agent pro-
grams that could then be checked in other model-checkers. We expand upon this
idea showing how AJPF can be adapted to output models in the input languages
of both Spin and Prism tools. While such model generation remains slow, there
are still efficiency gains, especially when the property becomes more complex.
More importantly, such translations give access to a wider range of property
specification languages. This means that AJPF can be used as an automated
link between programs written in BDI languages and a range of model-checkers
appropriate for verifying properties of those programs.

J. Leite et al. (Eds.): CLIMA XIV, LNAI 8143, pp. 273–289, 2013.
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The key advantages of this approach are potential improvements in the ef-
ficiency and scope of model checking; and access to a richer set of logics for
specifying program properties.

2 Background

2.1 AJPF

Java PathFinder (JPF) is an explicit state program model-checker for Java
programs [2]. This means that it takes as input an executable Java program
rather than a model of a Java program. It then explores all possible execution
paths through this program to ensure that some property holds. For example,
using JPF, it is possible to explore all possible thread scheduling options for a
multi-threaded program to ensure that deadlock between threads never occurs.

AJPF [1] is a program model-checker for linear temporal logic (LTL) built
on top of JPF. AJPF is specially designed for model-checking programs for
rational agents, that is agents that use the BDI paradigm (see [4]) and whose
execution can be described in terms of rational, goal-directed behaviour.

AJPF extends JPF with an LTL model-checking algorithm based on [7,6]1.
The property specification language contains shallow modalities for agent con-
cepts such as belief (B), goal (G), intention (I), etc., as well as the standard
LTL modalities (♦ (eventually), � (always), etc., but not © (next)2). The agent
concepts are mapped to specific data structures in the Java program, and allow
properties such as the following to be verified:

�♦Ba reached(destination)

This property states that it is always the case that, eventually, agent a believes
it has reached its destination.

AJPF is intended for use with BDI agent programming languages which
have an explicit operational semantics. The language’s operational semantics is
implemented in the Agent Infrastructure Layer (AIL): a set of Java classes that
support AJPF allowing the rapid construction of interpreters for BDI agent pro-
gramming languages [1]. The AIL also provides support for the Belief, Goal and
Intention modalities used by the property specification language. The property
specification language is discussed more fully in [1] and summarised in Fig. 1.

There are two key (and related) advantages to using a program model-checker
such as AJPF instead of one with a specialised modelling language for input.
Firstly, it avoids the need for the programmer (or designer) to create a separate

1 JPF does not currently support LTL model-checking, focusing instead on searching
for deadlocks and exception freedom. However it has had LTL support in the past
and work is currently in progress to re-instate this support.

2 © was omitted partly because it isn’t straightforward to determine the correct se-
mantics for “next step” in a BDI program execution and partly because it compli-
cates the model checking algorithm.
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AJPF Property Specification Language Syntax The syntax for property for-
mulæ φ is as follows, where ag is an “agent constant” referring to a specific agent in
the system, and f is a ground first-order atomic formula:

φ ::= Bag f | Gagf | Aagf | Iagf | P(f) | φ ∨ φ | ¬φ | φ Uφ | φRφ

Here, Bag f is true if ag believes f to be true, Gagf is true if ag has a goal to make
f true, and so on (with A representing actions, I representing intentions, and P
representing percepts, i.e., properties that are true in the environment).

AJPF Property Specification Language Semantics We summarise those as-
pects of the semantics of property formulæ relevant to this paper. Consider a program,
P , describing a multi-agent system and let MAS be the state of the multi-agent sys-

tem at one point in the run of P . MAS is a tuple consisting of the local states of the
individual agents and of the environment. Let ag ∈ MAS be the state of an agent in
the MAS tuple at this point in the program execution. Then

MAS |=MC Bag f iff ag |= Bag f

where |= is logical consequence as implemented by the agent programming language.
The semantics of Gagf and Iagf similarly refer to internal implementations of the
language interpreter. The interpretation of Aagf is:

MAS |=MC Aagf

if, and only if, the last action changing the environment was action f taken by agent
ag. Finally, the interpretation of P(f) is given as:

MAS |=MC P(f)

if, and only if, f is a percept that holds true in the environment.

The other operators in the AJPF property specification language have standard
PLTL semantics [5] and are implemented as Büchi Automata as described in [6,7].
Thus, the classical logic operators are defined by:

MAS |=MC ϕ ∨ ψ iff MAS |=MC ϕ or MAS |=MC ψ
MAS |=MC ¬φ iff MAS �|=MC φ.

The temporal formulæ apply to runs of the programs in the JPF model checker. A
run consists of a (possibly infinite) sequence of program states MAS i, i ≥ 0 where
MAS0 is the initial state of the program (note, however, that for model checking the
number of different states in any run is assumed to be finite). Let P be a multi-agent
program, then

MAS |=MC ϕ Uψ iff in all runs of P there exists a state MAS j

such that MAS i |=MC ϕ for all 0 ≤ i < j
and MAS j |=MC ψ

MAS |=MC ϕRψ iff either MAS i |=MC ϕ for all i or there
exists MASj such that MAS i |=MC ϕ
for all 0 ≤ i ≤ j and MASj |=MC ϕ ∧ ψ

The common temporal operators ♦ (eventually) and � (always) are, in turn, derivable
from U and R in the usual way [5].

Fig. 1. Overview of the the AJPF Property Specification Language (Syntax and Se-
mantics)
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model of the implementation for verification. Secondly, in cases where certifica-
tion of the program is required (e.g., [8,9]), it increases the value of the evidence
submitted to the certification authority since it provides direct information about
the system that will be deployed, rather than some idealised model.

These advantages come at a cost, however. The main disadvantage of program
model-checking, particularly in AJPF, is that it is very slow in comparison
with existing specialised model-checkers such as Spin [10]. This has been (and
continues to be) mitigated through updates to AJPF which have decreased
the amount of time taken for model-checking. However, the fact remains that
programs tend to be more complex than models of programs and this causes
program model-checking to be much slower. Typically, to verify a program using
AJPF requires minutes, hours or even days in extreme cases.

AIL-based implementations of well-known agent programming languages (e.g.,
GOAL [11]) are separate from the interpreters generally associated with those
languages. Since, in theory, both interpreters use the same operational semantics,
choosing an AIL based interpreter instead of the standard interpreter should be
similar to choosing between different C compilers and an AIL interpreter can be
preferred where certification is an issue. In practice, the standard interpreters are
often more efficient, user-friendly and up-to-date.

One issue to consider is whether it is preferable to use just JPF to verify
agent programs given that most standard interpreters are written in Java. This
approach is certainly feasible, although the interpreters would probably need
significant modification to work with JPF. For example, adaptations would be
needed to access the AJPF Property Specification Language (or create some-
thing similar). Also, in order to minimize the state space explored by JPF careful
use of Java data structures is necessary (e.g., all sets must be stored in a canon-
ical form for state matching).

2.2 Spin

Spin [10] is a popular model-checking tool originally developed by Bell Labora-
tories in the 1980s. It has been in continuous development for over thirty years
and is widely used in both industry and academia (e.g., [12,13,14]). Spin uses
an input language called Promela. Typically a model of a program and the
property (as a “never claim” – a sequence of transitions that should never oc-
cur) are provided in Promela, but Spin also provides tools to convert formulae
written in LTL into never claims for use with the model-checker. Spin works by
automatically generating programs written in C which carry out the exploration
of the model relative to an LTL property. Spin’s use of compiled C code makes
it very quick in terms of execution time, and this is further enhanced through
other techniques like partial order reduction.

2.3 Prism

Prism [15] is a probabilistic symbolic model-checker developed primarily at the
Universities of Birmingham and Oxford since 1999. Prism provides broadly
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similar functionality to Spin but also allows for the model-checking of proba-
bilistic models, i.e., models whose behaviour can vary depending on probabilities
built into the model. Developers can use Prism to create a probabilistic model
(written in the Prism language) which can then be model-checked using Prism’s
own probabilistic property specification language, which subsumes several well-
known probabilistic logics including PCTL, probabilistic LTL, CTL, and PCTL*.
Prism has been used to formally verify a variety of systems in which reliability
and randomness play a role, including communication protocols, cryptographic
protocols and biological systems [16].

2.4 Related Work

Hunter et al. [3] first suggested using JPF to generate models of programs
that could then be used with alternative model-checkers. Their work targets
the Brahms [17] agent programming language. They implemented a simulator
for Brahms in Java and used JPF to produce a Promela model of a Brahms
program. They used this system to investigate examples in air traffic control and
health-care and demonstrated that it is feasible to use JPF as a model build-
ing tool. Their work did not, however, directly address the key BDI concepts of
beliefs, intentions, etc., and it was a customised tool specifically aimed at the
verification of Brahms programs.

The work reported here takes the ideas from Hunter et al. [3] as a starting
point and aims to use them within AJPF’s more generic framework in order to
provide a general tool in which BDI programs, and BDI concepts can be verified
in a wide range of model-checkers.

3 Exporting Models from AJPF

JPF is implemented as a specialised Java virtual machine which stores, among
other things, backtracking points which allow the program model-checking al-
gorithm to explore the entire execution space of a Java program. It is highly
customisable providing numerous hooks for listeners that monitor and control
the progress of model-checking. In what follows we will refer to the specialised
Java virtual machine used by JPF as the JPFJVM. JPF is implemented in Java
itself, therefore the JPFJVM is a program that executes in some underlying na-
tive Java virtual machine. We refer to this native virtual machine as NatJVM.
Listeners execute in the NatJVM.

AJPF’s checking process is constructed using a JPF listener. As JPF exe-
cutes, it labels each state explored by the JPFJVM with a number. The AJPF
listener tracks these numbers as well as the transitions between them and uses
this information to construct a Kripke structure in the NatJVM. The LTL model-
checking algorithm is then executed on this Kripke structure. This is partly
for reasons of efficiency (the NatJVM naturally executes much faster than the
JPFJVM) and also to account for the need for LTL to explore states in the
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Fig. 2. The operation of AJPF wrt. the two Java Virtual Machines

model several times if the model contains a looping path and an until expression
(e.g., true U p) exists in the LTL3 property (see [7] and [6] for details).

In order to determine whether the agents in the original program have par-
ticular beliefs, goals, etc., it is necessary for the LTL model-checking algorithm
to have access to these. However, they are not stored in the state graph of the
Kripke structure accessible to the NatJVM. At the start of a model-checking
run AJPF analyses the property being verified in order to produce a list of
propositions that are needed for checking that property (e.g., agent 1 believes
it has reached its destination, agent 2 intends to win the auction etc.). AJPF
creates objects representing each of these propositions in both the JPFJVM and
NatJVM. In the JPFJVM these propositional objects can access the state of the
multi-agent system and explicitly check that the relevant propositions hold (e.g.,
that the Java object representing agent 1 contains, in its belief set, an object
representing the formula reached(destination)).

Every time the interpreter for the agent programming language executes one
step4, all of the proposition objects are updated with their current truth value. In
the NatJVM, propositional objects are created that track those in the JPFJVM.
It is moderately straightforward to access an object in the JPFJVM from the

3 “aUp” means that “a is true continuously up until b becomes true”.
4 The meaning of a “step” in the semantics — as in the next point of interest to
verification — is determined by the person implementing the semantics. Typically
this is either the application of a single rule from the semantics, or of a whole
reasoning cycle. This issue is discussed further in [1].
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NatJVM5. Once an object has been accessed, inspecting the values of its fields is
similarly straightforward providing they contain values of a primitive data type
(such as bool or int). All this is done using JPF’s Model Java Interface (MJI)
interface [18] (the precise details of this implementation are specific to JPF and
MJI). The implementation itself is available via the SourceForge distribution
for AJPF (http://mcapl.sourceforge.net). The process allows, however, the
modal agent properties (i.e., those related to beliefs, desires, intentions, etc.)
that can be determined in the JPFJVM to be converted into state labels in the
Kripke structure stored in the NatJVM. When the listener detects that a new
state has been generated in the JPFJVM, the state in the Kripke structure in
the NatJVM is annotated with the truth value of all the required propositions.

The process of adapting this system to produce a model for use with an
alternative model checker now involves: (i) bypassing the LTL model-checking
algorithm6 but continuing to generate and maintain a set of propositional objects
in order to label states in the Kripke structure, and (ii) exporting the Kripke
structure in a format that can be used by another model checker.

3.1 Advantages

Ideally, a program is only model-checked once against a full set of requirements
consisting of a conjunction of many properties. However, it is our experience that
it is more common to check programs several times against smaller properties.
For AJPF, this results in the program model being generated from the Java
bytecode for each property. Our experiences with AJPF suggested that the
most computationally complex part of the model-checking was in the generation
of this program model, and that this was the chief cause of the slow performance
of AJPF compared with other model-checkers. (This is unsurprising since in
AJPF the generation of a transition in the program model can involve the
symbolic execution of significant amounts of Java bytecode.)

The first advantage of the approach described above, therefore, is that export-
ing the program model prior to model-checking allows us to generate the pro-
gram model only once, and thereafter we can use the far more compact Kripke
structure representation, meaning that the time to model-check each property
is reduced (on average).

The second advantage is that other model-checkers (such as Spin) have many
years of development invested in an accurate and efficient implementation of
LTL model-checking. Compared to model-checkers like Spin, there is a much
weaker level of assurance that the LTL model-checking implemented in AJPF
is correct (although it has been tested against well-known “gotchas”). Also, the

5 The documentation for this mechanism is somewhat opaque and the process itself is
complicated, but conceptually is it a simple matter of identifying the current object
in the JPFJVM stack in order to obtain a reference for it. This can then be stored
for future use in the NatJVM.

6 This is not strictly necessary but it increases the speed of model generation, and
avoids the pruning of some model states based on the property under consideration.
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AJPF LTL model-checking algorithm is not highly optimised, being a direct
adaptation of the algorithms in [7,6]. Consequently, it seems desirable, both for
reasons of confidence and efficiency, to use a more well-developed implementation
of model-checking (such as Spin) where possible.

The third advantage is that this technique will allow us to use richer specifi-
cation languages than LTL. For instance when verifying hybrid systems, proba-
bilistic values frequently appear both in terms of the reliability of sensors, and
the chances that an action will achieve the expected outcome. Exporting an
AJPF program model into a probabilistic model-checker such as Prism will al-
low us to verify properties stated in more expressive logics, such as probabilistic
computation tree logic (PCTL).

3.2 Disadvantages

While there are advantages to using AJPF just for model generation, there are
some disadvantages as well.

Firstly, it is arguable that the direct link between the implemented program
and the system being verified described in Section 2.1 has been lost. However,
the LTL model-checking algorithm used in AJPF was already operating upon
an automatically-generated abstraction of the system stored in the NatJVM.
Therefore taking this abstracted model and exporting it to a different system
does not, in our view, have a significant effect on the correctness of any verifica-
tion result. However it has introduced a further step into the process which could
cause an issue with software certification concerning tool qualification. Specifi-
cally, we have introduced another tool (Spin) to the existing verification system
(AJPF) which would mean that both tools would now need to be qualified sep-
arately, and possibly again as a combined tool, with additional associated costs
(tool qualification can be very costly in terms of time and finance). We do, nev-
ertheless, provide a fully automatic route from implemented code, through an
abstraction of that code, to a formal verification result, which itself is preferable
to systems in which the abstraction from the implementation must be done “by
hand.”

Secondly, the opportunity to exploit features of the property under test in or-
der to prune model-checking has been lost. In particular, when checking liveness
properties (of the form “eventually p will happen”, or ♦p) it is possible to prune
the LTL model-checking search tree as soon as p occurs. It would obviously still
be possible to do this, if the user were confident that only this property will be
checked on the resulting model. Where the model may be used to check a num-
ber of properties such pruning is no longer a possibility and the entire program
state space must be explored. Similarly, although we have not explored tech-
niques such as property-based slicing [19] in AJPF these would also be difficult
to exploit if a full model were to be exported. However, it is likely that in many
cases where there are more than a few properties to be checked the additional
time taken to produce a complete model will be offset by the time saved in not
having to reproduce this model each time a new property needs to be verified.
Similarly, the fact that we export the model as a Kripke Structure, means that
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we may not be able to exploit potential optimisations available within the target
model checker. It should be noted, however, that some optimisations such as
partial order reduction will already have been applied by JPF.

4 Exporting AJPF Models to Promela/Spin

In this section we describe the process used to translate AJPF models to
Promela for verification in the Spin model-checker, and some results of Spin
verification of the Promela models generated.

4.1 Translation Details

Both Spin and AJPF’s LTL algorithm operate on Kripke structures so trans-
lating between the two is straightforward.

As mentioned above, withinAJPF’s NatJVM each state is assigned a number,
e.g, 12. This is converted to state12 in the Spin input file. Then the list of
propositional objects is examined recursively. Each proposition is converted into
a simple string (without spaces or brackets), and assigned either the value true or
false, depending upon its value in the state. The transitions in the AJPF model
graph are kept separately from the states while Promela represents them as
goto statements attached to states.

Example. Fig. 3 shows the NatJVM model of a very simple agent program
with one property (agent 1 believes “bad”) compared to the result of exporting
this model in Promela.

Model States:

=============

0:

B(ag1,bad()) = false;

1:

B(ag1,bad()) = false;

2:

B(ag1,bad()) = false;

Model Edges:

=============

0-->1

1-->2

bool bag1bad

active proctype JPFModel()

{

state0:

bag1bad = false;

goto state1;

state1:

bag1bad = false;

goto state2;

state2:

bag1bad = false;

printf("end state\n");

}

Fig. 3. Equivalent program models in AJPF (left) and Promela (right)
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4.2 Results

We tested our Spin implementation on the verification of a simple “leader”
agent intended to coordinate a formation of satellites as described in [20]. This
program was implemented in a version of the Gwendolen language [21]. We
implemented a non-deterministic environment for the agent in which messages
from the satellite agents randomly arrived (or not) each time the agent took
an action. This caused model-checking to explore all possible combinations of
messages that the leader agent could receive. The agent was designed to assign
positions to four satellites and then wait for responses. Since our hypothesis
was that we would see gains in performance as the LTL property to be checked
became more complex we tested the system against a sequence of properties:

1. �¬Blead bad
(The agent never believes something bad has happened).

2. (�(Blead informed(ag1) → ♦Bleadmaintaining pos(ag1))) → �¬Blead bad
(If it is always the case that when the leader has informed agent 1 of its
position then eventually the leader will believe agent 1 is maintaining that
position, then it is always the case that the leader does not believe something
bad has happened).

3. (�(Blead informed(ag2) → ♦Bleadmaintaining pos(ag2))) ∧
�(Blead informed(ag1) → ♦Bleadmaintaining pos(ag1))) → �¬Blead bad

4. (�(Blead informed(ag3) → ♦Bleadmaintaining pos(ag3)) ∧
�(Blead informed(ag2) → ♦Bleadmaintaining pos(ag2)) ∧
�(Blead informed(ag1) → ♦Bleadmaintaining pos(ag1))) → �¬Blead bad

5. (�(Blead informed(ag4) → ♦Bleadmaintaining pos(ag4)) ∧
�(Blead informed(ag3) → ♦Bleadmaintaining pos(ag3)) ∧
�(Blead informed(ag2) → ♦Bleadmaintaining pos(ag2)) ∧
�(Blead informed(ag1) → ♦Bleadmaintaining pos(ag1))) → �¬Blead bad

6. (�(Blead informed(ag4) → ♦Bleadmaintaining pos(ag4)) ∧
�(Blead informed(ag3) → ♦Bleadmaintaining pos(ag3)) ∧
�(Blead informed(ag2) → ♦Bleadmaintaining pos(ag2)) ∧
�(Blead informed(ag1) → ♦Bleadmaintaining pos(ag1))) ∧
�(Blead formation(square) → ♦Blead informed(ag1))) → �¬Blead bad

This sequence of increasingly complex properties was constructed so that each
property had the form P1 ∧ . . . ∧ Pn → Q for some n ≥ 0 and each Pi was
of the form (�(P ′

i → ♦Qi)). With the addition of each such logical antecedent
the property automata became considerably more complex. Furthermore, the
antecedents were chosen so that we were confident that on at least some paths
through the program P ′

i would be true at some point, necessitating that the LTL
checker explore the product automata for ♦Qi. We judged that this sequence of
properties provided a good test for the way each model-checker’s performance
scaled as the property under test became more complicated.

Spin model-checking requires a sequence of steps to be undertaken: the LTL
property must be translated to a “never claim” (effectively representing the
automaton corresponding to the negation of the required property), then it is
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compiled together with the Promela description into C, which is then compiled
again before being run as a C program. We used the Ltl3ba tool [22] to compile
the LTL property into a never claim since this is more efficient than the built-
in Spin compiler. In our results we present the total time taken for all Spin
operations (Spin Time) and the total time taken overall including generation of
the model in AJPF.

Table 1. Results Comparing AJPF with and without Spin Model Checking

Property AJPF Spin

AJPF model generation Spin Time Total Overall Time

1 5m25s 5m17s 1.972s 5m19s
2 5m54s 5m50s 3.180s 5m53s
3 7m9s 6m28s 4.369s 6m32s
4 8m50s 7m34s 6.443s 7m40s
5 9m22s 8m27s 10.015s 8m37s
6 — 8m51s 22.361s 9m13s

Table 1 shows the running times for model-checking the six properties on a
2.8 GHz Intel Core i7 Macbook running MacOS 10.7.4 with 8 GB of memory.
Fig. 4 shows the same information as a graph. There is no result for AJPF
model-checking of the final property since the system suffered a stack overflow
error when attempting to build the property automata.

The results show that as the LTL property becomes more complex, model-
checking using the AJPF to Promela/Spin translation tool is marginally more
efficient than using AJPF alone. It should be noted that in the Spin case,
where AJPF is not performing LTL model-checking, and is using a simple list
of propositions (rather than an LTL property) the time to generate the model
still increases as the property becomes more complex. This is explained by the
overhead involved in tracking the proposition objects in the JPFJVM and the
NatJVM: as more propositions are involved this time increases.

If only one AJPF model were to be generated then Spin would give consider-
able time savings overall. (NB. In this case it would need to be the AJPF model
with all relevant propositions, i.e., the one taking nearly 9 minutes to generate.)

We note that the simple fact thatAJPF cannot generate a property automata
for property 6 is a compelling argument that combining AJPF with Spin or
some other model-checker is sometimes necessary. It also illustrates the point
that Spin is well optimised for working with LTL where AJPF is not.

5 Exporting AJPF Models to Prism

5.1 Translation Details

Both AJPF’s NatJVM and Spin operate on Kripke structures so it was a
straightforward process to translate between them. The Prism input language
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is based on probabilistic timed automata. In the examples we are particularly
interested in exploring, we can consider the model to be a Kripke structure
enhanced by labels on the transitions representing probabilities.

We therefore needed to make some alterations to AJPF. JPF, and hence
AJPF, is able to branch the search space when a random element is selected
from a finite set. However the system does not record the probabilities of each
branch created in a manner accessible to the NatJVM. We developed a new
class Choice in Java which represented a probabilistic choice from a finite set
of options. This class provided a method pickChoice which would perform a
choice on a probabilistic basis. If this class was used in programming at the
JPFJVM level, then a NatJVM native peer could detect invocations of methods
in this class, intercept such invocations and use a customised choice generator,
to branch the search space in the JPFJVM while annotating the edges of the
model graph in the NatJVM with the appropriate probabilities. The use of na-
tive peers and choice generators are standard JPF customisation processes for
controlling and recording search in model-checking (see [18] for a discussion of
their use). In short, programming with the Choice class, in the normal execution
of the program, simply picks an element from a set based on some probability
distribution. When executed within AJPF, the Choice class causes the system
to explore all possible choices and label each branch with its probability.

After this the process of translating these models into Prism’s input language
is straightforward.
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1. First we initialise the model: We input it as a discrete time Markov chain
(dtmc); We list the numbers of all states and state the initial state (0); We
list all the properties initialise them to false.

2. We then iterate through the states in the AJPF model. For each state we:
(a) Print out state = num where num is the state number.
(b) Iterate over all its outgoing edges, for each edge:

i. Print out the probability of that edge being traversed
ii. Print out the state number, and values of the properties for the state

at the far end of the edge.

As an example we consider a simple program based on [8] in which an un-
manned aerial vehicle (UAV) must detect potential collisions. The UAV’s radar
is only 90% reliable, so it does not always perform an ‘evade’ maneouvre when
a collision is possible. The agent controlling the UAV is implemented in Gwen-
dolen which does not contain any probabilistic aspects. However the agent was
placed in an environment programmed in Java and we used the Choice class
to represent the unreliability of the sensor when the agent requested incoming
perceptions7.

The model is tracking two properties P(collision) which means a potential
collision is perceptible in the environment and Auavevade which means the last
action performed was the uav agent taking an evade maneouvre. The agent was
programmed to make evade maneouvres when it believed there would be a col-
lision. It only believed there would be a collision if a potential collision was
perceptible and the sensor conveyed that information to the agent.

A fragment of the AJPF model for this program, adapted to show the prob-
ability of transitions is shown in Fig. 5 alongside the full model exported to
the Prism input language8. Fig. 6 gives a brief outline of some key features of
Prism’s property specification language, its full semantics can be found in [23].

5.2 Results

We do not provide performance results since AJPF and Prism are incomparable
using, as they do, different input languages (AJPF does not support probabilistic
reasoning and Prism does not support non-probabilistic LTL model checking).
We model-checked the above program in Prism against the property

P=?�(P(collision) → ♦Auavevade)

to establish that the probability that the UAV would evade a collision, if one
were possible, was 90%.

We also investigated a more complex model, again based on [8], in which the
probability of a potential collision arising was also 90% (where it was certain

7 We would also be able to investigate properties of BDI programming languages with
probabilistic features, providing their AIL implementation used the Choice class —
see Further Work.

8 Note that the nature of rounding in Java means that 0.1 is, in several places, repre-
sented as 0.09999999999999998.
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AJPF Model

Model States:
=============

....

3:
A(uav,evade()) = false;
P(collision()) = false;

4:
A(uav,evade()) = false;
P(collision()) = true;

5:
A(uav,evade()) = true;
P(collision()) = false;

6:
A(uav,evade()) = true;
P(collision()) = false;

7:
A(uav,evade()) = true;
P(collision()) = true;

...

Model Edges:
=============

...

0.9 ::: 3-->4
0.09999999999999998 ::: 3-->12
1.0 ::: 4-->5
1.0 ::: 5-->6
0.9 ::: 6-->7
0.09999999999999998 ::: 6-->10

Prism Model

dtmc

module jpfModel
state : [0 ..13] init 0;
auavevade: bool init false;
pcollision: bool init false;
[] state = 1 -> 1.0:(state’=2) & (auavevade’= false) & (pcollision’= false);
[] state = 2 -> 1.0:(state’=3) & (auavevade’= false) & (pcollision’= false);
[] state = 3 -> 0.9:(state’=4) & (auavevade’= false) & (pcollision’= true)

+ 0.09999999999999998:(state’=12) & (auavevade’= false) & (pcollision’= true);
[] state = 4 -> 1.0:(state’=5) & (auavevade’= true) & (pcollision’= false);
[] state = 5 -> 1.0:(state’=6) & (auavevade’= true) & (pcollision’= false);
[] state = 6 -> 0.9:(state’=7) & (auavevade’= true) & (pcollision’= true)

+ 0.09999999999999998:(state’=10) & (auavevade’= true) & (pcollision’= true);
[] state = 7 -> 1.0:(state’=8) & (auavevade’= false) & (pcollision’= false);
[] state = 8 -> 1.0:(state’=9) & (auavevade’= false) & (pcollision’= false);
[] state = 10 -> 1.0:(state’=11) & (auavevade’= false) & (pcollision’= false);
[] state = 11 -> 1.0:(state’=9) & (auavevade’= false) & (pcollision’= false);
[] state = 12 -> 1.0:(state’=13) & (auavevade’= false) & (pcollision’= false);
[] state = 13 -> 1.0:(state’=9) & (auavevade’= false) & (pcollision’= false);
endmodule

Fig. 5. Comparison of Models for AJPF and Prism
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The syntax of the fragment of the Prism property specification language rel-
evant here is given by the following grammar:

φ ::= true | a | φ ∧ φ | ¬φ | P��p[ψ]
ψ ::= φUφ

where a is an atomic proposition, 	�∈ {≤, <,≥, >}, p ∈ Q≥0, and k ∈ N.

The semantics of the propositional logic statements and the CTL until operator
are standard and allow � (always) and ♦ (eventually) to be defined. P is a
probabilistic operator and indicates the probability that some property is true
along all paths from some state s where the operator is evaluated. For instance
P≥0.98ψ means “the probability that ψ is satisfied by the paths from state s is
greater than 0.98”.

It is also possible to take a quantitative approach so P=?ψ will return a value
for the probability that ψ is satisfied for all paths from state s.

Fig. 6. The Prism Property Specification language

in the simple model above) and the UAV had to interact with an air traffic
control agent, and go through take off procedures. The environment contained
a navigation manager which, on a probabilistic basis, would either tell the UAV
to change its current heading or land. In this situation the probability of the
UAV making an evade maneouvre when a collision was perceptible (rather than
landing, or spontaneously changing its heading following an instruction from the
navigation manager) dropped to 30%.

6 Further Work

One of our primary motivations in performing this work was to enable the prob-
abilistic model-checking of BDI agents, particularly in practical health-care and
hybrid systems scenarios. We intend therefore to explore more sophisticated and
realistic examples in which an implemented BDI based agent program is exe-
cuted in AJPF and then model-checked in Prism. Our interest is in producing
results about the overall reliability of systems based on probabilistic analyses of
the reliability of sensors and actuators derived through testing.

We are also interested in exploring the verification of multi-agent properties
involving strategies. This would involve both adapting our output format for an
ATL model-checker, such as MCMAS [24], and adapting the internal models so
that transitions are labelled with actions. We may also wish to extend the AIL
so that agents can explicitly reason about their own strategies. We would also
like to investigate the verification of properties of BDI programming languages
that incorporate probabilistic features, something which will likely require that
their AIL implementation uses the Choice class.

It would also be possible to adapt AJPF to save and then re-import its
own models, avoiding the model generation bottleneck while retaining the entire
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verification process within a single system. While this would lose some of the
benefits (e.g., assurance and efficiency), it would provide a simpler tool and
might be more attractive in certification situations.

7 Conclusion

We have shown how the ideas of Hunter et. al [3] for the use of JPF to gen-
erate models of Brahms programs for export into Spin, can be generalised and
integrated within the AJPF tool for model-checking BDI programs.

This provides a generic tool for generating models of agent programs imple-
mented in a wide range of BDI languages. These models can then be exported
into the input languages of the model-checker of choice. Where such a model-
checker operates on Kripke structures there is a direct translation from AJPF’s
own internal model to that of the target model-checker. For model-checkers using
richer input structures it is still relatively easy, using the customisation options
available with JPF, to enrich AJPF’s models so that they can be exported
appropriately. We provided an example of one such adaptation allowing BDI
programs to be probabilistically model-checked via the Prism model-checker.
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Abstract. Reasoning about actions forms the basis of many tasks such
as prediction, planning, and diagnosis in a dynamic domain. Within the
reasoning about actions community, a broad class of languages called
action languages has been developed together with a methodology for
their use in representing dynamic domains. With a few notable excep-
tions, the focus of these efforts has largely centered around single-agent
systems. Agents rarely operate in a vacuum however, and almost in par-
allel, substantial work has been done within the dynamic epistemic logic
community towards understanding how the actions of an agent may affect
the knowledge and/or beliefs of his fellows. What is less understood by
both communities is how to represent and reason about both the direct
and indirect effects of both ontic and epistemic actions within a multi-
agent setting. This paper presents a new action language, mAL, which
brings together techniques developed in both communities for reasoning
about dynamic multi-agent domains involving both ontic and epistemic
actions, as well as the indirect effects that such actions may have on the
domain.

1 Introduction

Reasoning about actions and change has been one of the cornerstones of artifi-
cial intelligence research ever since McCarthy’s description of the “advice taker
system” [16]. Since that time, a considerable body of work on a broad class
of languages called action languages together with a corresponding methodol-
ogy for their use has been developed [1,10,11]. A distinguishing characteristic
of such languages is their simple syntax and semantics which allow for concise
and natural representations of huge transition systems, and elegant solutions to
the frame problem [3,5,10,15]. With a few notable exceptions, [5,14], the focus
of such languages has been on representing an agent’s knowledge concerning
sensing and ontic actions (i.e., those which primarily affect the physical envi-
ronment). Agents rarely operate in isolation, often exchanging information, and
consequently almost in parallel, substantial work has been done within the Dy-
namic Epistemic Logic (DEL) community towards understanding epistemic ac-
tions (i.e., those which primarily affect the knowledge or beliefs of other agents)
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[2,8,7] and, to a lesser extent ontic actions [6]. What is less understood by both
communities is how to represent and reason about both the direct and indirect ef-
fects of both classes of actions in a multi-agent setting. In this paper we present a
new action language, mAL, which brings together techniques developed in both
communities for reasoning about dynamic multi-agent domains involving both
ontic and epistemic actions. Unlike prior works of both the action language [4],
and dynamic epistemic logic communities [6], mAL allows for the representation
of complex dependencies between fluents and provides a robust solution to the
ramification problem [17,12,13]. In addition, it is capable of representing domains
involving collaboration between agents for both ontic and epistemic actions.

Example 1 (A Multi-Agent “Lin’s Briefcase Domain”). Let us consider a multi-
agent variant of the “Lin’s Briefcase Domain” [13]: Three agents,A, B, and C, are
together in a room with a locked briefcase which contains a coin. The briefcase is
locked by two independent latches, each of which may be flipped open (or closed)
by an agent. Once both latches are open, the briefcase is unlocked and an agent
may peek inside to determine which face of the coin is showing. Suppose that
the briefcase is locked, and that this fact, together with the fact that none of the
agents knows which face of the coin is showing is common knowledge amongst
them. Furthermore, let us suppose that all of the agents are paying attention
to their surroundings, and that this is common knowledge as well. Lastly, let us
suppose that the coin is actually showing heads. How could agent A determine
the face of the coin while keeping B aware of his activities but leaving C in the
dark? One way could be as follows: A distracts C, causing him to look away;
once this is done, he flips open both latches, thereby unlocking the briefcase;
and finally A peeks inside.

Note that the domain in Ex. 1 contains both ontic (e.g., flipping the latches)
and epistemic (e.g., peeking into the briefcase) actions. In addition, the actions of
signaling/distracting an agent and flipping the latches have two classes of indirect
effects : those affecting the frames of reference (or degrees of awareness) that
agents have with respect to subsequent action occurrences, and those affecting
the physical properties of the domain. As an example of the former, once C is
distracted, he will be unaware of A’s subsequent activities. As an example of the
latter, flipping a latch open when its counterpart is as well, causes the briefcase
to become unlocked.

While the languages of action and update models developed within the DEL
community [2,6] provide an elegant means for deriving the direct effects of both
ontic and epistemic actions, they fall short when it comes to solving the ramifica-
tion problem, and consequently are unable to represent domains such as the one
presented in Ex. 1. Furthermore, their graphical nature and unification of the dis-
tinct notions of an action and action occurrence, renders them inadequate from
a knowledge representation standpoint due to their lack of elaboration tolerance.
As we hope to show in this paper, both difficulties are overcome by mAL.
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2 The Action Language mAL

The action language mAL incorporates elements from the action languages AL
[11,9] and mA+ [4], adding to mA+ the ability to describe various dependencies
between fluents by the inclusion of state constraints.

2.1 Syntax

Theories of mAL are defined over a multi-agent domain D with a signature
Σ = (AG,F ,A) where AG, F , and A, are finite, disjoint, non-empty sets of
symbols respectively defining the names of the agents within the domain, the
properties of the domain (or fluents), and the elementary actions which the
agents may perform. mAL supports two broad classes of actions: ontic and
epistemic actions, the former describing actions which affect the properties of the
domain represented by fluents, and the latter describing actions which primarily
affect the agents’ beliefs. Epistemic actions are further broken into two categories:
sensing and communication. Sensing actions represent actions which an agent
may perform in order to learn the value of a fluent, while communication actions
are used to represent actions which communicate information between agents.
Ontic properties of the domain are represented by fluents, while the various
epistemic properties are represented by modal formulae:

Definition 1 (Modal Formula [8]). Let D be a multi-agent domain with the
signature Σ = (AG,F ,A). The set of modal formulae over Σ is defined as
follows:

– f ∈ F is a formula
– if ϕ is a formula, then ¬ϕ is a formula
– if ϕ1 and ϕ2 are formulae, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, and ϕ1 ≡ ϕ2

are formulae
– if α ∈ AG and ϕ is a formula, then Bαϕ is a formula
– if γ ⊆ AG and ϕ is a formula, then Eγϕ and Cγϕ are formulae

As the modality of discourse is that of belief, we adopt the following readings of
modal formulae: Bαϕ, is understood to mean that “agent α believes ϕ”; formulae
of the form Eγϕ denote that “every member of γ believes ϕ”, while those of the
form Cγϕ are read as “every member of γ believes ϕ, and every member of γ
believes that every member of γ believes ϕ, ad infinitum, (i.e. ϕ is a commonly
held belief amongst the agents of γ).”

The direct effects of ontic actions are described by dynamic causal laws which
are statements of the form:

a causes λ if φ (1)

where a is an action, λ is a fluent literal, and φ is a conjunction of fluent literals.
Laws of this form are read as: “performing the action a in a state which satisfies
φ causes λ to be true.” If φ is a tautology, then we simply write the following:

a causes λ (2)
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Sensing actions are described by sensing axioms which have the form:

a determines f (3)

where a is the name of an action, and f is a fluent. Statements of this form are
understood to mean: “if an agent performs the action a, he will learn the value of
the fluent f .” Communication actions are described by communication axioms
which have the form:

a communicates ϕ (4)

where a is the name of an action, and ϕ is a modal formula. InmAL only truthful
announcements are allowed.

The constructs (1)–(4) only describe the direct effects of their respective ac-
tions. In general, an agent’s actions may indirectly affect the knowledge/beliefs
of his fellows, as well as the values of various fluents. As in mA+, indirect effects
of the first form are determined by the frames of reference (or levels of aware-
ness) that the agents have with respect to the action. In general, for any given
action occurrence we divide the agents of the domain into three groups: those
who are fully aware of both the action occurrence and its effects; those who are
aware of the occurrence but not the full consequences of the action; and those
agents who are oblivious as to what has transpired. Frames of reference are dy-
namic in nature and are described by perspective axioms which are statements
of the form:

X observes a if φ (5)
X aware of a if φ (6)

where X is a set of agent names, a is an action, and φ is a modal formula.
Perspective axioms of the first form (called observation axioms) define the set of
agents who are fully aware of both the action occurrence and its effects. Those
of the second form (called awareness axioms) define the set of agents who are
aware of the occurrence, but only partially of its effects. By default, we assume
that all other agents within the domain are oblivious. As with dynamic causal
laws, if φ is a tautology, we adopt the following shorthand:

X observes a (7)
X aware of a (8)

The inclusion of observation axioms allows us to make explicit the assumption
that agents are aware of the actions they perform. InmAL, the only assumptions
made regarding the frames of reference of the agents are that those who are fully
aware of an action occurrence and its effects, as well as those who are aware only
of the occurrence, know the frames of reference of all of the agents within the
domain.

Unlike mA+, mAL includes state constraints which are statements of the
form:

λ if φ (9)
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where λ is a fluent literal and φ is a conjunction of fluent literals. Statements of
this form are read as: “if φ is true in a state, then λ must also be true in that
state.” State constraints are used to represent dependencies between fluents and
provide a powerful means for representing indirect effects of the second form.

Lastly, executability conditions, which are statements of the form:

impossible a if φ (10)

where a is an action and φ is a modal formula, are used to describe when actions
may not be performed.

Definition 2 (Action Description of mAL). An action description, Δ, in
mAL is a collection of statements of the form (1)–(10).

Now that the syntax has been introduced, we present a detailed axiomatiza-
tion of the multi-agent variant of the Lin’s Briefcase Domain from Ex. 1.

Example 2 (Axiomatization of the Multi-Agent “Lin’s Briefcase Domain”). Let λ
be a variable ranging over the set {l1, l2} representing the latches governing the
briefcase. Similarly, let α, α1, and α2, be variables ranging over the set of agents
in our domain. We begin our representation by adopting the following domain
signature Σ = (AG,F ,A) where:

AG = {A,B,C}
F = {open(λ), locked, heads, attentive(α)}
A = {flip(α, λ), peek(α), signal(α1, α2), distract(α1, α2)}

The direct effects of the action flip(α, λ) are represented via the following pair
of dynamic causal laws:

flip(α, λ) causes open(λ) if ¬open(λ) (11)
flip(α, λ) causes ¬open(λ) if open(λ) (12)

The following state constraint models the indirect effects of the action, flip(α, λ),
namely that the briefcase is unlocked once both latches are open.

¬locked if open(l1) ∧ open(l2) (13)

The agent directly performing the action flip(α, λ), as well as any attentive
agents are considered to be fully aware of the action occurrence and of its full
effects. This information may be encoded by the following pair of perspective
axioms:

{α} observes flip(α, λ) (14)
{α2} observes flip(α1, λ) if attentive(α2) (15)

The action, peek(α), is an epistemic action — in particular, it is a sensing action.
Consequently its direct effects are represented by the following sensing axiom:

peek(α) determines heads (16)
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The fact that an agent may not peek into a locked briefcase is represented by
the following executability condition:

impossible peek(α) if locked (17)

Unlike the action flip(α, λ), only the agent who is peeking is fully aware of the
occurrence and its full effects. Agents who are attentive, are only partially aware
of the action’s effects. This is represented by the following perspective axioms:

{α} observes peek(α) (18)
{α2} aware of peek(α1) if attentive(α2) (19)

Lastly, the actions signal(α1, α2) and distract(α1, α2) are represented in a sim-
ilar fashion:

signal(α1, α2) causes attentive(α2) (20)
{α1, α2} observes signal(α1, α2) (21)
{α} observes signal(α1, α2) if attentive(α) (22)
distract(α1, α2) causes ¬attentive(α2) (23)
{α1, α2} observes distract(α1, α2) (24)
{α} observes distract(α1, α2) if attentive(α) (25)

2.2 Semantics

Before we discuss the semantics of our language, we must first introduce the
notions of a Kripke structure and Kripke world.

Definition 3 (Kripke Structure [8]). Let D be a multi-agent domain with
signature, Σ = (AG,F ,A), where AG = {α1, . . . , αn}. A Kripke structure, M ,
is a tuple of the form (Ω, π,Rα1 , . . . , Rαn) where:

– Ω is a nonempty set of possible worlds
– π is an interpretation function which for each ω ∈ Ω gives an interpretation,
π(ω) : F  → {true, false}

– each Rαi is a binary relation on Ω called an accessibility relation for agent
αi

Possible worlds and their respective interpretations describe potential physi-
cal configurations of the domain, while the accessibility relations represent its
various epistemic properties. Intuitively, the pair (ωσ, ωτ ) ∈ Rαi represents the
property that from within possible world ωσ, agent αi cannot distinguish be-
tween ωσ and ωτ .

Definition 4 (Kripke World [8]). A Kripke world is a pair, (M,ω), where
M is a Kripke structure, and ω is a possible world of M .
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For a given Kripke world, (M,ω), ω denotes which possible world of M corre-
sponds to the real physical state of the world as known to an impartial external
observer.

Having defined the notions of a Kripke structure and a Kripke world, we can
now define the semantics of modal logic.

Definition 5 (Entailment Relation for Modal Formulae). Let (M,ωσ) be
a Kripke world in a multi-agent domain, D, with the signature Σ = (AG,F ,A).

– (M,ωσ) |= f where f ∈ F iff M.π(ωσ)(f) = �
– (M,ωσ) |= ¬ϕ iff (M,ωσ) |= ϕ
– (M,ωσ) |= ϕ1 ∧ ϕ2 iff (M,ωσ) |= ϕ1 and (M,ωσ) |= ϕ2

– (M,ωσ) |= ϕ1 ∨ ϕ2 iff (M,ωσ) |= ϕ1 or (M,ωσ) |= ϕ2

– (M,ωσ) |= Bαϕ iff (M,ωτ ) |= ϕ for all ωτ such that (ωσ, ωτ ) ∈M.Rα

Let E0
γϕ be equivalent to ϕ and let Ek+1

γ ϕ be EγE
k
γϕ.

– (M,ωσ) |= Eγϕ iff (M,ωσ) |= Bαϕ for each α ∈ γ
– (M,ωσ) |= Cγϕ iff (M,ωσ) |= Ek

γϕ for k = 1, 2, 3, . . .

As is the case with other action languages, an action description of mAL
defines a transition diagram whose nodes correspond to states of the domain
— which we model as Kripke worlds — and whose arcs are labeled by actions.
Within a particular state, the possible worlds comprising the underlying Kripke
world correspond to complete consistent sets of fluent literals closed under the
state constraints of the action description.

Example 3 (Initial State of the Multi-Agent “Lin’s Briefcase Domain”). The ini-
tial state, σ0, of the domain from Ex. 1 corresponds to the Kripke world, (M0, ω1),
shown in Fig. 1. σ0 consists of two possible worlds, ω1 and ω2, where:

– M0.π(ω1) = {heads, attentive(A), attentive(B), attentive(C),¬open(l1),
¬open(l2), locked}

– M0.π(ω2) = {¬heads, attentive(A), attentive(B), attentive(C),¬open(l1),
¬open(l2), locked}

A graphical convention that we adopt in this work is to present Kripke struc-
tures/worlds as directed graphs whose nodes are drawn as circles with unbroken
lines. The possible world(s) designated as pertaining to the real state of the
world are marked by a double circle.

The semantics of mAL is defined via a transition function, ΦΔ(σ, a), which
when applied to a state, σ, and an action occurrence, a, yields the corresponding
successor state(s). The approach taken in this paper combines methods used in
defining the semantics of AL [9], with an approach based on that of [6]. The key
intuition behind our semantics is that reasoning about the effects of an action is
a two-step process: an agent first reasons about how his fellows may perceive his
action, thereby establishing an epistemic configuration for the successor state;
and then reasons about how his action may actually play out.
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ω1

A, B, C

ω2

A, B, C

A, B, C

(a)

ω1

A, B, C

ω2

A, B, C

A, B, C

(b)

Fig. 1. The initial state, σ0, of the Multi-Agent Lin’s Briefcase Domain. 1(a) shows
the underlying Kripke structure of σ0, while 1(b) corresponds to σ0 itself.

Frames of Reference In order to reason about how his fellows will perceive his
actions, an agent must reason about their respective frames of reference; hence
the inclusion of perspective axioms, which allow one to dynamically specify the
levels of awareness that the agents have with respect to an action occurrence.
It must be emphasized, that frames of reference are thought of as attributes of
an action that differ from one action occurrence to another. This is in marked
contrast with the approach of [2,6], in which different frames of references yield
very different actions.

Definition 6 (Frames of Reference). Let Δ be an action description of mAL,
σ = (M,ω) be a state of the transition diagram defined by Δ, and a be an action.
The various frames of reference of the agents are defined as follows:

– the set of agents who are fully aware of a, denoted by f(σ, a), is {α ∈ AG |
[α observes a if φ] ∈ Δ ∧ (M,ω) |= φ}

– the set of agents who are partially aware of a, denoted by p(σ, a), is {α ∈
AG | [α aware of a if φ] ∈ Δ ∧ (M,ω) |= φ}

– the set of agents who are oblivious of a, denoted by o(σ, a), is AG \ f(σ, a)∪
p(σ, a)

Update Schema/Instantiations On a semantic level, an action occurrence is
represented by an update schema1, which may be thought of as a Kripke struc-
ture capturing how the agents in a domain perceive various action occurrences.
Rather than possible worlds, an action occurrence is described by a number of
scenarios, each of which is associated with a necessary precondition. What the
agents believe about the scenarios is described by their respective accessibility
relations. This leads to the following definition:

Definition 7 (Update Schema). Let L denote the set of all modal formulae
that may be defined over the multi-agent domain, D, with signature Σ = (AG =
{α1, . . . , αn},F ,A). An update schema, U , is a tuple of the form (Sc, Rα1 , . . . ,
Rαn , pre) where:
1 Update schema/instantiations are analogous to the certain structures described in

[2,6], but have been renamed to reflect different intuitions behind their use.
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– Sc is a finite, non-empty set of scenarios
– each Rαi is a binary relation on ε called an accessibility relation for agent
αi

– pre : Sc  → L assigns a precondition function to each scenario

An update schema only describes the beliefs of the agents with regards to a
particular action occurrence. As with Kripke structures, they do not describe
which scenario actually took place. To accomodate this additional information,
update schema are instantiated by specifying which scenario actually occurred.

Definition 8 (Update Instantiation). An update instantiation is a pair,
(U, ε), where U is an update schema, and ε is a scenario of U .

In the context of mAL, we define three particular update instantiations, for
ontic, sensing, and communication actions respectively: υo(σ, a), υs(σ, a), and
υc(σ, a).

The intuition behind υo(σ, a) is relatively straightforward: the agents are ei-
ther aware of the action occurrence or are oblivious. In addition, we make the
assumption that those agents who are aware of the action occurrences know
which agents are oblivious.

Definition 9 (Ontic Instantiation). The function υo(σ, a) yields the set of
update instantiations represented by the pair (U, Γ ) where U is defined as follows:

– U.Sc = {εp, εi}
– U.Rα = {(εp, εp), (εi, εi)} for each agent in f(σ, a)
– U.Rα = {(εp, εi), (εi, εi)} for each agent in o(σ, a)

Let Ψ = {φ | [impossible a if φ] ∈ Δ}.

– U.pre(εp) = ¬(
∨
Ψ)

– U.pre(εi) = �

and Γ = {εp}.

υs(σ, a) is based on the following intuition: the real value of f is revealed to
those agents who are performing the action, causing it to become a commonly
held belief amongst them; agents who observe the action learn that the value of
f has been revealed to those agents who were directly involved in it; and the
beliefs of oblivious agents remain unchanged.

Definition 10 (Sensing Instantiation). The function υs(σ, a) yields the set
of update instantiations represented by the pair (U, Γ ) where U is defined as
follows:

– U.Sc = {εp, εn, εi}
– U.Rα = {(εp, εp), (εn, εn), (εi, εi)} for each agent in f(σ, a)
– U.Rα = {(εp, εp), (εn, εn), (εi, εi), (εp, εn), (εn, εp)} for each agent in p(σ, a)
– U.Rα = {(εp, εi), (εn, εi), (εi, εi)} for each agent in o(σ, a)
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Let f be the fluent determined by the sensing axiom for the action a, and let
Ψ = {φ | [impossible a if φ] ∈ Δ}.

– U.pre(εp) = f ∧ ¬(
∨
Ψ)

– U.pre(εn) = ¬f ∧ ¬(
∨
Ψ)

– U.pre(εi) = �

and Γ = {εp, εn}.

The intuition behind υc(σ, a) similar to that of sensing actions: ϕ becomes
a commonly held belief amongst those agents who receive/hear the message;
agents who observe the action learn that the value of ϕ has been revealed to
those agents who heard it (they are however unaware of the truth of ϕ); and
lastly, the beliefs of oblivious agents are unchanged.

Definition 11 (Communication Instantiation). The function υc(σ, a) yields
the set of update instantiations represented by the pair (U, Γ ) where U is defined
as follows:

– U.Sc = {εp, εn, εi}
– U.Rα = {(εp, εp), (εn, εn), (εi, εi)} for each agent in f(σ, a)
– U.Rα = {(εp, εp), (εn, εn), (εi, εi), (εp, εn), (εn, εp)} for each agent in p(σ, a)
– U.Rα = {(εp, εi), (εn, εi), (εi, εi)} for each agent in o(σ, a)

Let ϕ be the formula specified by the communication axiom for the action a, and
let Ψ = {φ | [impossible a if φ] ∈ Δ}.

– U.pre(εp) = ϕ ∧ ¬(
∨
Ψ)

– U.pre(εn) = ¬ϕ ∧ ¬(
∨
Ψ)

– U.pre(εi) = �

and Γ = {εp}.

Example 4 (Update Instantiations for the Action distract(A,C)). Consider an
action occurrence distract(A,C). Suppose that agent B is oblivious of the ac-
tion occurrence. In this case, the corresponding ontic instantiation, is shown in
Fig. 2(a). Now consider an occurrence of the action distract(A,C), where all of
the agents are fully aware of the action occurrence. This yields a different ontic
instantiation, shown in Fig. 2(b). Here we adopt the graphical convention of pre-
senting update schema/instantiations as directed graphs whose nodes are drawn
as rounded rectangles with solid lines. Once again, it bears emphasizing that
the action, distract(A,C), is the same in both instances. Only the attributes
corresponding to the agents’ frames of reference (which are represented by the
respective arcs) differ.

Epistemic Configurations. When reasoning about the effects of an action, an
agent first establishes what is called an epistemic configuration of the successor
state. This is done by the application of what we term an epistemic update to a
state, and the update instantiation of action occurrence in question.
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εp

A, C

εi

A, B, C

B

(a)

εp

A, B, C

(b)

Fig. 2. 2(a) shows the ontic instantiation for an occurrence of the action distract(A,C)
with A and C fully aware of the occurrence, and agent B oblivious. 2(b) show the ontic
instantiation of the same action with all agents fully aware of the occurrence.

An epistemic configuration defines the general graphical structure of the suc-
cessor state. Consequently it is similar to a Kripke structure, but does not in-
clude the interpretation function. This intuition leads to the following pair of
definitions:

Definition 12 (Epistemic Schema). Let D be a multi-agent domain with sig-
nature Σ = (AG = {α1, . . . , αn},F ,A). An epistemic schema, E, is a tuple of
the form (S,Rα1 , . . . , Rαn) where:

– S is a nonempty set of situations
– each Rαi is a binary relation on S called an accessibility relation for agent
αi

Definition 13 (Epistemic Configuration). An epistemic configuration is a
pair, (E , s), where E is an epistemic schema, and s is a situation of E.

In order to obtain the epistemic configuration of the successor state, we apply
an operation that we call the epistemic update operation, which when applied to
a state and an update instantiation, defines an epistemic configuration for the
successor state.

Definition 14 (Epistemic Update Operation). Given a state, σ = (M,ω),
and an update instantiation υ = (U, ε), such that σ |= U.pre(ε), Eu(σ, υ) defines
the epistemic configuration EC = (E , (ω, ε)) where:

– E .S = {(ωj, εj) | ωj ∈M.Ω, εj ∈ U.Sc, (M,ωj) |= U.pre(εj)}
– E .Rα = {((ωj , εj), (ωk, εk)) | (ωj , ωk) ∈M.Rα, (εj , εk) ∈ U.Rα}

Example 5 (Applying the Epistemic Update). Recall from Ex. 1 that A first dis-
tracts C. The action distract(A,C) is an ontic action which directly affects the
fluent attentive(C) as specified by the dynamic causal law (23). Perspective
axioms (24) and (25), together with the fact that the agents are initially atten-
tive, give f(σ0, distract(A,C)) = {A,B,C} and o(σ0, distract(A,C)) = ∅ as the
agents’ frames of reference. υo(σ0, distract(A,C))) is shown in Fig. 3(a) and the
epistemic configuration of the successor state resulting from the occurrence of the
action distract(A,C) is given by Eu(σ0, υo(σ0, distract(A,C))), and is shown in
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Fig. 3(b). For epistemic configurations, we adopt the convention of presenting
them as directed graphs whose nodes are drawn as dashed circles (the dashed
lines help express the notion that the scenarios are later expanded into possible
worlds). Those scenarios which correspond to potential real possible worlds are
marked by a double dashed line.

εp

A, B, C

(a)

(ω1,εp)

A, B, C

(ω2,εp)

A, B, C

A, B, C

(b)

Fig. 3. 3(a) shows the update instantiation for an occurrence of the action
distract(A,C) in σ0, while Fig. 3(b) shows the epistemic configuration of the successor
state resulting from that action occurrence

From Epistemic Configurations to States. The epistemic update only de-
scribes how an agent reasons about how his actions are perceived by his fellows.
In order to obtain the full successor state, he must then reason about how his
actions may actually play out. This is accomplished by abstracting away the
presence of other agents, turning the problem into one concerning the effects of
an action in a single-agent domain. This is done by applying what we term an
ontic update operation to the epistemic configuration. Prior to defining the ontic
update, we must first describe how to relate an epistemic configuration to the
framework for reasoning about the effects of an action from the perspective of
AL.

Definition 15 (AL(σ, ω)). Let Δ be an action description of mAL and σ be
a state of the transition diagram defined by Δ. Each possible world, ω of σ
corresponds to a complete consistent set of fluent literals, AL(σ, ω), defined as
follows:

{f | σ.ω.π(f) = �} ∪ {¬f | σ.ω.π(f) = ⊥}

Intuitively, an epistemic configuration describes the basic structure of the
successor state. Each situation s = (ω, ε) in an epistemic configuration may
be read as “scenario ε transpires in the possible world ω”, and corresponds to
possibly multiple possible worlds in the successor state. The possible worlds of
the sucessor state within the multi-agent transition diagram are obtained by
applying the McCain-Turner equation [15] to the possible worlds defined by
AL(σ, ω).

Definition 16 (Scenario Expansion). Let σ be a state of the transition dia-
gram defined by Δ, υ be an update instantiation corresponding to the occurrence
of an action, a in σ, EC be an epistemic configuration defined by Eu(σ, υ), and
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s = (ω, ε) be a situation of EC. The expansion of the situation s consistent with
the state, σ, (denoted by C(σ, s)), is defined as follows:

– if ε = εi, then C(σ, s) = {AL(σ, ω)}, otherwise
– C(σ, s) = {τ(s) | τ(s) = CnΔ(E(AL(σ, ω), a) ∪ (AL(σ, ω) ∩ τ(s)))}

The expansion of the entire epistemic configuration, C(σ, EC), is defined in a
straightforward fashion as well:

C(σ, EC) =
⋃
C(σ, s) for each s ∈ EC .S

Having defined this basic framework, we may now define the ontic update
operation.

Definition 17 (Ontic Update). Let Δ be an action description of mAL, σ be
a state of the transition diagram defined by Δ, and EC = (E , ω) be an epistemic
configuration. OuΔ(σ, EC) defines a set of Kripke worlds (M ′, RW ) where:

– M ′.Ω is the set of new symbols of the form ωτi(s) for each τi(s) ∈ C(σ, EC)
– M ′.π(ωτi(s))(f) = � if f ∈ τi(s)
– M ′.π(ωτi(s))(f) = ⊥ if ¬f ∈ τi(s)
– M ′.Rα = {(ωτi(s1), ωτj(s2)) | ωτi(s1), ωτj(s2) ∈M ′.Ω, and (s1, s2) ∈ EC .Rα}
– RW = {ωτi(s) | τi(s) ∈ C(σ, ω)}

ω3

A, B, C

ω4

A, B, C

A, B, C

Fig. 4. Successor state, σ1, resulting from the application of OuΔ(σ0, EC0)

Example 6 (Applying the Ontic Update). Let EC0 denote the epistemic config-
uration from Ex. 5. Application of the ontic update operation, OuΔ(σ0, EC0),
gives us the successor state, σ1 = (M1, ω3), depicted in Fig. 4. The Kripke struc-
ture, M1, shown in Fig. 4 consists of two possible worlds, ω3 = ωτ((ω1,εp)), and
ω4 = ωτ((ω2,εp)) where:

– M1.π(ω3) = {heads, locked,¬open(l1),¬open(l2), attentive(A),
attentive(B),¬attentive(C)}

– M1.π(ω4) = {¬heads, locked,¬open(l1),¬open(l2), attentive(A),
attentive(B),¬attentive(C)}

The Transition Function. As was mentioned previously, the transition func-
tion is based on the following intuition: an agent first reasons about how his
action is perceived, and then reasons about how it may actually play out. This
intuition is realized in the definition of our transition function, ΦΔ(σ, a).
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Definition 18. Let Δ be an action description of mAL, σ be a state of the
transition diagram defined by Δ, and a be an action. The successor state(s)
obtained by performing the action a in the state σ are defined as follows:

ΦΔ(σ, a) =

⎧⎪⎨⎪⎩
OuΔ(σ,Eu(σ, υo(σ, a)) ontic action
OuΔ(σ,Eu(σ, υs(σ, a)) sensing action
OuΔ(σ,Eu(σ, υc(σ, a)) otherwise

2.3 Properties of the Language

The syntax and semantics of mAL may be of interest in and of themselves, but
of particular interest is the fact that mAL satisfies certain useful properties
- namely that it correctly captures certain intuitions concerning the effects of
various types of actions. Space constraints preclude us from including the proofs
of the subsequent theorems, which we leave to a future journal paper (the paper
is currently in development and will cover mAL in greater detail, including
application of the languages towards modeling collaboration amongst agents for
both ontic and epistemic actions).

Theorem 1. Let Δ be an action description of mAL; σ = (Mσ, ωσ) be a state
of the transition diagram defined by Δ; a be an ontic action; and σ′ = (Mτ , ωτ ) ∈
ΦΔ(σ, a). It holds that:

1. for every agent α ∈ f(σ, a) and dynamic causal law [a causes λ if φ] in Δ,
if (Mσ, ωσ) |= Bαφ then (Mτ , ωτ ) |= Bαλ

2. for every agent α ∈ f(σ, a) and state constraint [λ if φ] in Δ, (Mσ, ωσ) |=
Bα(φ→ λ)

3. for each agent α ∈ o(σ, a) and literal, λ, (Mτ , ωτ ) |= Bαλ if and only if
(Mσ, ωσ) |= Bαλ

Theorem 2. Let Δ be an action description of mAL; σ = (Mσ, ωσ) be a state
of the transition diagram defined by Δ; a be a sensing action described by the
axiom [a determines f ] in Δ; and σ′ = (Mτ , ωτ ) ∈ ΦΔ(σ, a). It holds that:

1. (Mτ , ωτ ) |= Cf(σ,a)λ if and only if (Mσ, ωσ) |= λ where λ ∈ {f,¬f}
2. (Mτ , ωτ ) |= Cp(σ,a)(Cf(σ,a)f ∨Cf(σ,a)¬f)
3. for each agent α ∈ o(σ, a) and literal, λ, (Mτ , ωτ ) |= Bαλ if and only if

(Mσ, ωσ) |= Bαλ

Theorem 3. Let Δ be an action description of mAL; σ = (Mσ, ωσ) be a state
of the transition diagram defined by Δ; a be a communication action described
by the axiom [a communicatesϕ] in Δ; and σ′ = (Mτ , ωτ ) ∈ ΦΔ(σ, a). It holds
that:

1. (Mτ , ωτ ) |= Cf(σ,a)ϕ
2. (Mτ , ωτ ) |= Cp(σ,a)(Cf(σ,a)ϕ ∨Cf(σ,a)¬ϕ)
3. for each agent α ∈ o(σ, a) and literal, λ, (Mτ , ωτ ) |= Bαλ if and only if

(Mσ, ωσ) |= Bαλ
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3 Temporal Projection in mAL

ω5

A, B

ω6

A, B

A, B

ω7

A, B, C

ω8

A, B, C

A, B, C

C

C C

C

Fig. 5: Successor state, σ2, re-
sulting from the action sequence
distract(A,C), flip(A, l1)

Recall that in Ex. 1 we presented the following
sequence of actions by which A might achieve his
goal: A distracts C, causing him to look away;
once this is done, he then flips open both latches
on the briefcase, thereby unlocking it; and finally
A peeks inside. Space considerations preclude us
from examining the entire trajectory, and conse-
quently we will only show in detail how to ob-
tain the successor state resulting from A flipping
open the second latch (represented by the action
flip(A, l2)).

Let σ2, shown in Fig. 5, be the state of the
transition diagram resulting from the sequence of
actions: distract(A,C), flip(A, l1).

σ2 consists of four possible worlds2, ω5, ω6, ω7, and ω8 where:

– M2.π(ω5) = {heads, locked, open(l1),¬open(l2), attentive(A),
attentive(B),¬attentive(C)}

– M2.π(ω6) = {¬heads, locked, open(l1),¬open(l2), attentive(A),
attentive(B),¬attentive(C)}

– M2.π(ω7) = {heads, locked,¬open(l1),¬open(l2), attentive(A),
attentive(B),¬attentive(C)}

– M2.π(ω8) = {¬heads, locked,¬open(l1),¬open(l2), attentive(A),
attentive(B),¬attentive(C)}

Like its predecessor, flip(A, l2), is an ontic action, affecting only the val-
ues of the fluents of our possible worlds. Consequently, our intuition informs
us that the structure of the successor state should essentially be unchanged.
σ2 and observation axioms (14) and (14) give f(σ2, f lip(A, l2)) = {A,B} and
o(σ2, f lip(A, l2)) = {C} as the agents’ frames of reference. Being an ontic action,
the epistemic configuration, EC2, of the successor state resulting from flip(A, l2)
is given by Eu(σ2, υo(σ2, f lip(A, l2))) and is shown in Fig. 6(a). As we can see,
EC2 is structurally similar to σ2, confirming our aforementioned intuition.

According to the dynamic causal law (11), flip(A, l2) causes open(l2). Fur-
thermore, the state constraint (13), informs us that as a consequence of both
l1 and l2 being open, the briefcase itself should become unlocked (i.e., ¬locked
must now be true). The expansions of the scenarios in EC2, that are consistent
with σ2:

– C(σ2, (ω5, εp)) = {{heads,¬locked, open(l1), open(l2), attentive(A),
attentive(B),¬attentive(C)}}

– C(σ2, (ω6, εp)) = {{¬heads,¬locked, open(l1), open(l2), attentive(A),
attentive(B),¬attentive(C)}}

2 The labels of the possible worlds have been abbreviated for legibility purposes.
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– C(σ2, (ω7, εi)) = {{heads, locked,¬open(l1),¬open(l2), attentive(A),
attentive(B),¬attentive(C)}}

– C(σ2, (ω8, εi)) = {{¬heads, locked,¬open(l1),¬open(l2), attentive(A),
attentive(B),¬attentive(C)}}

confirm our intuition.
Let ω9 = ωτ((ω5,εp)), ω10 = ωτ((ω6,εp)), ω11 = ωτ((ω7,εi)), and ω12 = ωτ((ω8,εi)).

Application of the ontic update operation to σ2 and EC2, OuΔ(σ2, EC2), yields
the successor state, σ3, shown in Fig. 6(b). Careful examination of σ3 shows
that it entails a number of modal formulae, among which is C{A,B}¬locked –
indicating that it is a commonly held belief amongst A and B that the briefcase
is unlocked. In addition, σ3 entails C{A,B}¬BCBA¬locked, as well as other for-
mulae illustrating that C is oblivious of all of the events that transpired since
he was distracted, and that this is a commonly held belief amongst A and B.

(ω5,εp)

A, B

(ω6,εp)

A, B

A, B

(ω7,εi)

A, B, C

(ω8,εi)

A, B, C

A, B, C

C

C C

C

(a)

ω9

A, B

ω10

A, B

A, B

ω11

A, B, C

ω12

A, B, C

A, B, C

C

C C

C

(b)

Fig. 6. 6(a) shows the epistemic configuration, EC2, resulting from an occurrence of
flip(A, l2) in σ2, while 6(b) shows the resulting successor state, σ3

4 Conclusions and Future Work

In this paper we presented a new multi-agent action language mAL, which ex-
tends the language of mA+ [4] with state constraints from the language AL [9].
The language’s application was presented in the context of representing and per-
forming temporal projection in the context of a multi-agent variant of the Lin’s
Briefcase Domain [13], which heretofore could not be represented in either mA+
or the update model approaches of [2] and [6]. Future work includes a thorough
analysis of the language’s theoretical properties and formulation of the planning
and diagnosis problems within a multi-agent context. Additional extensions to
the language such as non-deterministic sensing actions, and false communication
are under consideration as well.
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Abstract. In this paper, we study a dialogue-based approach to multi-
agent collaborative plan search in the framework of t-DeLP, an extension
of DeLP for defeasible temporal reasoning. In t-DeLP programs, tempo-
ral facts and defeasible temporal rules combine into arguments, which
compare against each other to decide which of their conclusions are to
prevail. A backward centralized planning system built on this logical ar-
gumentative framework has been already studied in a previous work. In
this paper, we consider a distributed collaborative scenario where agents
exchange information using suitable dialogues. Agents cooperate to gen-
erate arguments and actions (plan steps), and to detect argument threats
to plans. We show that the soundness and completeness properties of
centralized t-DeLP plan search are preserved.

1 Introduction

The relatively recent area of argumentation [6] has become a focus of atten-
tion in AI and multi-agent systems. Argumentation systems provide (human-
inspired) frameworks upon which agents can resolve conflicts (attacks) between
their claims and arguments, among other applications.

An equally important application of argumentation systems is the area of
non-monotonic reasoning, aimed to model common-sense, causal or evidential
reasoning (e.g. birds fly, solids fall, etc.). The practical need for a general-purpose
criterion of preference (between inferences) led in this area to the notion of
specificity [20], and later to argumentation systems applying this idea to define
the attack relation, e.g. in the defeasible logic programming DeLP system [8].
According to this criterion, a preference can be defined between arguments, by
formally comparing their logical structure or informational content (e.g. whether
their information pieces are strict –i.e. classical–, or defeasible). Both the DeLP
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system and the criteria of specificity have been recently adapted to temporal
reasoning, where arguments contain temporal information explicitly [14], [2], [5]
etc. A common motivation for these extensions seems to be common-sense causal
reasoning. Finally, several planning systems built upon these logics have been
studied, e.g. partial-order planning DeLP-POP [7]; and forward/backward linear
planners for t-DeLP [15].

A related motivation to build planners on some non-monotonic logical sys-
tem are the classical representation problems, some of which affect traditional
planners, whose inference simply consist in the update function, or in any case
in simple, monotonic inferences. This is due to the use of encapsulated actions,
where the effects are contained in the definition of this action –and its fixed
set of conditional effects. Despite the simplicity attained in the semantics (e.g.
state-transition systems) and the rewrite-based update function, these planning
systems prove insufficient for the frame problem (in the broad sense). Indeed,
while these systems need not to (costly) compute all the facts that do not change
after an action (the narrow frame problem), they cannot address the problems
of modeling the indirect effects of actions (the ramification problem), or qualifi-
cations on their preconditions as well (the qualification problem).

In this paper we deal with distributed argumentation-based multi-agent plan-
ning systems based on t-DeLP, which combine a traditional update function (for
temporal actions) with non-monotonic inference (based on t-DeLP temporal ar-
gumentation). In particular, we study distributed planning algorithms. These
can be seen as distributed versions of some of the planning algorithms studied in
[15]. The latter are centralized, so a joint plan for a set of agents is just assigned
to them by a single planner. This prevents one from considering more interesting
scenarios with autonomous planner agents, i.e. where each agent is also its own
(multi-agent) planner and is initially endowed with a planning domain of its
own: its beliefs, abilities and goals; in our case, these are resp.: a t-DeLP logic
program, a set of (planning-style) actions, and a set of temporal goals (tempo-
ral literals). The present focus is on cooperative scenarios, in the sense that all
agents have the same set of goals.

Centralized solutions might incur in massive communication costs, in terms
of time, energy or privacy. Instead, we propose a dialogue-based algorithm for
distributed t-DeLP planning, where all agents take part in the generation of a
joint plan by communicating (only) information which is relevant to the present
task. The dialogues consist in agents taking turns and addressing the next agent.
Each agent contributes to the generation or evaluation of new plan steps for
plans under consideration. The main results are soundness and completeness of
the dialogue-based plan search algorithm. In other words, setting complexity
issues aside, a set of cooperative agents are as good as a central planner can be
(with all their information) for the task of generating a joint plan.

The paper is structured as follows. In Section 2 we briefly review first the
t-DeLP temporal defeasible logic programming framework. Then in Section 3,
we adapt the basic concepts of planning systems to the present case, including an
appropriate update function for t-DeLP, and the notion of planning domain and
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plan. In Section 4 we propose a distributed algorithm (in the spirit of breadth
first search) for the multi-agent t-DeLP planning system based on dialogues; and
finally we show that this algorithm is sound and complete.
Notation. We make use of the following conventions. Set-theoretic difference between

two sets X,Y is denoted X 	 Y . Sequences are denoted 〈x0, . . . , xn〉 (general case) or

[x0, . . . , xn] (for argumentation lines) or (x0, . . . , xn) (for plans). Given a sequence

x = 〈x0, . . . , xn〉 and an element x, we denote by x ∩〈x〉 the concatenation of x with

x, i.e. the sequence 〈x0, . . . , xn, x〉 or [x0, . . . , xn, x]. If f is a function f : X → Y and

X ′ ⊆ X, we define f [X ′] = {f(a) ∈ Y | a ∈ X ′}.

2 Preliminaries: Temporal Defeasible Logic Programming

The t-DeLP temporal logic programming framework used by the planning system
is briefly presented (see [14] for more details).

The language of t-DeLP builds upon a set of temporal literals and temporal
defeasible rules. Temporal literals are the form 〈�, t〉, where � is a literal (expres-
sions of the form p or ∼p from a given set of variables p ∈ Var) and t is a time
point (we consider discrete time, so t will take values in the natural numbers),
and will denote that � holds at time t. Since the strong negation ∼ cannot be
nested, we will use the following notation over literals: if � = p then ∼� will
denote ∼p, and if � = ∼p then ∼� will denote p. Time determines if a pair of
temporal literals 〈�, t〉 and 〈∼�, t′〉 contradict each other: only when t = t′.

A temporal defeasible rule (or simply a rule) is an expression δ of the form

〈�, t〉 −� 〈�0, t0〉, . . . , 〈�n, tn〉 where t ≥ max{t0, . . . tn}

body(δ) will denote the set of its conditions {〈�0, t0〉, . . . , 〈�n, tn〉} and head(δ)
its conclusion 〈�, t〉 . A defeasible rule δ states that if the premises in body(δ)
are true, then there is a reason for believing that the conclusion (i.e. head(δ))
is also true. This conclusion, though, may be later withdrawn when further
information is considered, as we will see later. t-DeLP only makes use of future-
oriented rules: head(δ) cannot occur earlier than any 〈�, t〉 ∈ body(δ). A special
subset of defeasible rules is that of persistence rules, of the form 〈�, t+1〉−�〈�, t〉,
stating that, unless there exist reasons to the contrary, � is preserved from t to
t+ 1 (if true at t). Such a rule will denoted as δ	(t).

Given a set of temporal rules and literals Γ , we say a literal 〈�, t〉 derives from
Γ , denoted Γ � 〈�, t〉 or also 〈�, t〉 ∈ Cn(Γ ) iff 〈�, t〉 ∈ Γ or there exists δ ∈ Γ
with head(δ) = 〈�, t〉, and such that body(δ) is a set of literals that derive from
Γ . We say Γ is consistent iff no pair 〈�, t〉, 〈∼�, t〉 exists in Cn(Γ ). In particular,
a set of literals is consistent iff it does not contain any such pair. Note that
derivability is monotonic: Cn(Γ ) ⊆ Cn(Γ ′) whenever Γ ⊆ Γ ′.

Definition 1 (Program). A t-DeLP program, or t-de.l.p., is a pair (Π,Δ)
where Π is a consistent set of temporal literals (also called strict facts), and Δ
is a set of temporal defeasible rules.
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Definition 2 (Argument). Given a t-de.l.p. (Π,Δ), an argument for 〈�, t〉 is
a set A = AΠ ∪ AΔ, with AΠ ⊆ Π and AΔ ⊆ Δ, such that:

(1) AΔ ∪Π � 〈�, t〉, (3) AΔ is ⊆-minimal satisfying (1) and (2).
(2) Π ∪ AΔ is consistent, (4) AΠ is ⊆-minimal satisfying AΔ ∪ AΠ � 〈�, t〉

Given an argument A for 〈�, t〉, we also define concl(A) = 〈�, t〉, base(A) =
body[A]	 head[A] and literals(A) = (

⋃
body[A]) ∪ head[A].

It can be shown that each 〈�0, t0〉 ∈ literals(A) induces a unique sub-argument
of A, denoted A(〈�0, t0〉), i.e. a subset of A which is an argument for 〈�0, t0〉.

Given a t-de.l.p. (Π,Δ), let A0 andA1 be arguments. We sayA1 attacks A0 iff
∼concl(A1) ∈ literals[A0], where we use the notation ∼〈�, t〉 to denote 〈∼�, t〉. In
this case, we also say that A1 attacks A0 at the sub-argument A0(∼concl(A1)).

Defeat between arguments is depends upon their use of strict information
(more is better), or their use of persistence rules (less is better).

Definition 3 (Defeat). Let A1 attack A0 at a sub-argument B, where
concl(A1) = 〈∼�, t〉. We say A1 is a proper defeater for A0, denoted A1 / A0, iff

base(A1) 
 base(B) or B = A1(〈�, t′〉) ∪ {δ	(t′′)}t′≤t′′<t, for some t′ < t.

We say A1 is a blocking defeater for A0 when A1 attacks A0 but A1 / A0 and
A0 / A1. Blocking defeat relations are denoted A1 ≺/ A0. Finally, a defeater
is a proper or a blocking defeater.

Fig. 1. (Left) ArgumentsA,B are denoted with triangle-like figures. Strict facts from Π
in base(A), base(B) are depicted as rectangles. Here, argument B attacks A at the sub-
argumentA(〈∼, �, t〉), depicted in grey. (Right) An argumentation line Λ = [A1, . . . ,A4]
in the dialectical tree for A1; defeated sub-arguments are depicted in grey. Notice that
the time of these attacks is (non-strictly) decreasing: t1 > t2 > t3 = t4.

An argument B defeating A can in its turn have its own defeaters C, . . . and
so on. This gives rise to argumentation lines, sequences of arguments where each
argument defeats its predecessor (among other conditions). More precisely, if A1

is an argument in a program (Π,Δ), an argumentation line for A1 is a sequence
of arguments Λ = [A1, . . . ,An] such that:
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(i) supporting arguments, i.e. those in odd positions A2i+1 ∈ Λ are jointly
consistent with Π , and similarly for interfering arguments A2i ∈ Λ.

(ii) a supporting (interfering) argument is different from the attacked sub-
arguments of previous supporting (interfering) arguments: Ai+2k =
Ai(∼concl(Ai+1)).

(iii) Ai+1 is a proper defeater for Ai if Ai is a blocking defeater for Ai−1.

The set of maximal argumentation lines for A1 can be arranged in the form of
a tree, where all paths [A1, . . .] exactly correspond to all the possible maximal
argumentation lines for A1. This dialectical tree for A1 is denoted T(Π,Δ)(A1).

The marking procedure in a dialectical tree T = T(Π,Δ)(A1) is:
(1) mark all terminal nodes of T with a U (for undefeated);
(2) mark a node B with a D (for defeated) if it has a children node marked U ;
(3) mark B with U if all its children nodes are marked D .

Definition 4 (Warrant). Given a t-de.l.p. (Π,Δ), we say 〈�, t〉 is warranted
in (Π,Δ) if there exists an argument A for 〈�, t〉 in (Π,Δ) such that A is marked
undefeated (U) in the dialectical tree T(Π,Δ)(A1). The set of warranted literals is
denoted warr(Π,Δ).

One can show t-DeLP enjoys the next logical properties, called Rationality
Postulates [4,17], that prevent certain counter-intuitive results occur:

(P1) Sub-arguments: if A is undefeated in T(Π,Δ)(A), then any
sub-argument A′ of A is also undefeated in T(Π,Δ)(A′).

(P2) Direct Consistency: warr(Π,Δ) is consistent.
(P3) Indirect Consistency: warr(Π,Δ) ∪Π is consistent.
(P4) Closure: Cn(warr(Π,Δ) ∪Π) ⊆ warr(Π,Δ),

3 A Centralized Planning System for t-DeLP

After this brief review of t-DeLP, we proceed to introduce a planning system
based on t-DeLP logic programming. In this section, we focus on multi-agent
planning, where the plan is built by a central planner, with access to any knowl-
edge the agents may possess about the initial state, their abilities, etc.

For the purpose of this paper, in order to simplify the description of the
planning system, several assumptions are made on the representation of actions.
We assume a finite set of actions A to be given, and for each action e ∈ A we
assume the language contains a variable μe ∈ Var. Each action e, executed at a
time te − 1, has a unique effect, denoted by the temporal literal 〈μe, te〉 which
reads as action e was just executed at te, that is exclusive to this action e (not
found in nature, or other actions) and cannot be contradicted once it is made
true. We also simplify the temporal aspects of actions: the preconditions of e
are all about some unique time-point t, and they need only be warranted at t,
not during the execution of e; this execution will take 1 time unit, so te = t+1.
Finally, agents are simplified as follows: (i) the execution of an action e by an
agent a, denoted ea, makes agent a busy during the interval [t, te]; and (ii) we
will also assume that there exist enough agents.
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In what follows we will assume a t-DeLP language be given. Let us proceed
with the basic definitions of action, planning domain and update.

Definition 5 (Action, Executability). An action is a pair e = (pre(e),
post(e)), where pre(e) = {〈�, t〉, . . . , 〈�′, t〉} is a consistent set of temporal liter-
als and post(e) = {〈μe, te〉}, with te = t+1. These are called the the preconditions
and the (direct) effect of e.

An action e is executable in a t-de.l.p. program (Π,Δ) iff pre(e) ⊆ warr(Π,Δ).
Given a set of agents (or actuators) Ag = {a, b, . . .}, we denote an action e
available to agent a by ea. A set of actions A is non-overlapping wrt Ag iff for
any two actions of a same agent a in A, say ea, fa, the effect of ea is to occur
strictly before the preconditions of fa, or viceversa.

Definition 6 (Planning Domain). Given a set of agents Ag, we define a
planning domain as a triple

M = ((Π,Δ), A,G)
where (Π,Δ) is a t-de.l.p. representing the domain knowledge1, with Π represent-
ing (the facts holding true in) the initial state, G is a set of literals representing
the goals, and A is a set of actions available to the agents in Ag.

Definition 7 (Action Update). The update of a t-de.l.p. (Π,Δ) by an action
e, denoted (Π,Δ) 0 e, is a another t-de.l.p. defined as follows:

(Π,Δ) 0 e =
{
(Π ∪ post(e), Δ), if pre(e) ⊆ warr(Π,Δ)

(Π,Δ), otherwise.

A plan π is essentially determined by a sequence of actions 〈e1, . . . , en〉. Actu-
ally, since actions are assigned an execution time by their preconditions, it can
just be specified by a set of actions {e1, . . . , en}, rather than by a sequence.
Indeed, it is not difficult to check that, given a t-de.l.p. (Π,Δ) and a pair
of simultaneous actions ei, ej , the execution order does not matter. That is,
given pre(ei) = {〈�, ti〉, . . .} and pre(ej) = {〈�′, tj〉, . . .}, then ti = tj implies
((Π,Δ) 0 ei) 0 ej = ((Π,Δ) 0 ej) 0 ei. This enables the following definition.

Definition 8 (Plan update). The update of a t-de.l.p. (Π,Δ) by a set of
actions A (given by a plan) is defined as follows,

(Π,Δ) 0A =

⎧⎨⎩
(Π,Δ), if A = ∅
((Π,Δ) 0 ei) 0 {e1, . . . , ei−1, ei+1, . . . , en}, if A = {e1, . . . , en}
where ti ≤ tj for any 1 ≤ j ≤ n

A solution is then a plan whose set of actions makes the goals warranted after
execution.

Definition 9 (Solution). Given a set of agents Ag and planning domain M =
((Π,Δ), A,G), a set of actions A′ ⊆ A is a solution for M and Ag iff

G ⊆ warr((Π,Δ) 0A′) and A′ is non-overlapping w.r.t. Ag.

From here on, we will also denote a t-de.l.p. as P = (Π,Δ).

1 The language of (Π,Δ) is assumed to contain a literal μe for each action e ∈ A.
Moreover, temporal literals 〈μe, te〉 can only occur in the body of the rules of Δ,
while those of the form 〈∼μe, te〉 cannot occur anywhere in Π , Δ, A or G.
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Fig. 2. (Left) An argument step A introduces an action e which triggers an argument
threat B to A. This threat is addressed by a further plan step C. (Right) The dark-grey
area represents the provisional tree for A1 in plan π, which is a sub-tree of the full
dialectical tree (outlined area). After a refinement of π with A5, this plan step and new
threats (the light grey area) occur in the new provisional tree for A1 in π(A5).

3.1 Algorithms for Backward Planning in t-DeLP

The idea of t-DeLP backward planning is to start enforcing (i.e. solving) the
goals with arguments and actions and iteratively enforce their undefeated status
or their preconditions, with the help of more arguments (and actions). The plan
construction, starting again from the empty plan and consisting of a sequence of
(action+argument) refinement steps, terminates when all these arguments and
actions are, respectively, undefeated and executable. In our setting, we consider
the following two types of refinement steps: argument steps, and threat resolution
moves. An argument step is introduced to solve an open goal and consists of
an argument for that goal, together with a set of actions whose effects (and
facts from the initial state) support the base of this argument. A threat for an
argument step A is an interfering argument in a maximal argumentation line for
some dialectical (sub-)tree for A.

Finally a threat resolution move is like an argument step but defeating a threat
rather solving a goal. Figure 2 (left) depicts examples of plan refinements: (1)
a goal exists; (2) an argument step A (with an action e) is added; (3) the new
action e plus the initial state Π enable a threat B; this is an interfering argument
in the (new) tree for A; (4) this threat motivates another plan step C, a threat
resolution move.

A plan π for some planning domain M = (P, A,G) will consist of a triple

(A(π),Trees(π), goals(π))

where A(π) is the set of actions the plan involves, Trees(π) is a set of dialectical
(sub-)trees (one for each argument step) and goals(π) is the set of open goals of
π.2 Trees(π) is used to keep track of threats and threat resolution moves. Note

2 By construction, open goals cannot be strict facts from the set Π in P = (Π,Δ).
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that if a plan π is directly applied to the initial t-de.l.p. P (i.e. if actions in A(π)
are assumed executable), it induces a new t-de.l.p. P⊕ π = (Π ∪ post[A(π)], Δ)
which at its turn induces a provisional dialectical tree TP⊕π(A) for each existing
argument and, in particular, for each argument step A. In order to avoid unnec-
essary threat resolution moves, the policy of the planner will be to address each
threat Ak with a single defeater Ak+1 for it. This results in a sub-tree of the
former, denoted T ∗

P⊕π(A) or T ∗
(Π,Δ)⊕π(A), to be stored in Trees(π).

The formal definition of a plan (given next) for a planning domain M =
((Π,Δ), A,G) is by induction: the empty plan is a plan, and so is any refinement
of a plan with either type of plan step which is applicable to it. The initial empty
plan for M, called π∅ is simply defined by the triple π∅ = (∅,∅, G). The plan
resulting after refining π∅ with n refinement steps A1, · · · ,An is denoted π =
π∅(A1, . . . ,An). Moreover, for 1 ≤ k ≤ n, we will write πk = π∅(A1, . . . ,Ak). A
refinement of a plan π with plan step A is denoted π(A) = π∅(A1, . . . ,An,A).

An argument step for a plan πk is simply an argument A such that: its
conclusion concl(A) is an element of goals(πk); its base base(A) is a subset of
Π ∪ post[A]; moreover, the minimal (and unique) set A� ⊆ A of actions e for
literals 〈μe, te〉 ∈ base(A) is non-overlapping for each agent. The plan πk(A)
resulting from this refinement step is as follows: its actions are expanded with
A∗, its goals replace 〈�, t〉 by pre[A∗], and each plan step updates the set of
threats for it in the new t-de.l.p. Π ∪ post[A(π) ∪A∗]; finally, A and its current
set of threats [A,B] define the new sub-tree for A.

For a given threat Λ = [Ai, . . . ,B] in the tree T ∗
P⊕π(Ai) ∈ Trees(π), a threat

resolution move Λ∩[A] (also denoted A) must satisfy: Λ∩[A] is an argumenta-
tion line in the tree T ∗

(Π∪post[A(π)∪A∗],Δ)(A); and the set of actions A∗ for base(A)
is again non-overlapping for each agent. The resulting plan is computed similarly
to that of argument steps.

Figure 2 (Right) illustrates a refinement by a threat resolution move A5, the
only newly added (grey) argument in an odd position in the dialectical sub-tree.
Finally, we provide the formal definition of a plan.

Definition 10 (Plan). π is a plan for M and Ag iff it is obtained from π∅
after a finite number of applicable argument steps and threat resolution moves.

Example 1. Let us suppose that the planner, endowed with two agents Ag =
{a1, a2}, wants some table to be lifted, without breaking a vase which lies on the
table. The table has two sides (north and south), which can be lifted by either
action, say lift.N ∈ Aa1 , lift.S ∈ Aa2 . Consider the next abbreviations:

b = broken(vase) h = horizontal(table) μN = μlift.N lN = liftedN
f = falls.off(vase) o = on(vase, table) μS = μlift.S lS = liftedS

Then, consider the following goals G = {〈lN, 10〉, 〈lS, 10〉, 〈∼b, 10〉}, the initial
facts Πa1 = Πa2 = {〈∼b, 0〉, 〈h, 0〉 〈∼lN , 0〉 〈∼lS , 0〉 〈o, 0〉}, and the set of defea-
sible rules Δ:
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δ1 : 〈∼h, t〉 −� 〈lN , t〉 δ2 : 〈∼h, t〉 −� 〈lS , t〉 δ3 : 〈h, t〉 −� 〈lS , t〉, 〈lS , t〉
δ4 : 〈lN , t〉 −� 〈μN , t〉 δ5 : 〈lS , t〉 −� 〈μS , t〉 δ6 : 〈b, t〉 −� 〈f, t〉
δ7 : 〈f, t+ 1〉 −� 〈∼h, t〉, 〈o, t〉 δ8 : 〈∼o, t〉 −� 〈f, t〉
δ	(t) : persistence rules for each literal � ∈ {∼b, o, lN, lS,∼lN,∼lS} and t < 10

The arguments depicted in Fig. 3(left), for a given 0 < t < 10 are:

A1 = {δ∼b(t
′)}0≤t′<10 ∪ {〈∼b, 0〉} B1 = {δo(t′)}0≤t′<t ∪ {δ1, δ4, δ6, δ7, 〈μS, t〉}

A3 = {δ3, δ4, δ5, 〈μN, t〉, 〈μS, t〉} B2 = {δo(t′)}0≤t′<t ∪ {δ2, δ5, δ6, δ7, 〈μN, t〉}
A4 = {δlS(t′)}t≤t′<10 ∪ {δ4, 〈μS, t〉} A5 = {δlN(t′)}t≤t′<10 ∪ {δ5, 〈μN, t〉}
Now, the planner can consider the following plan steps:

π∅ open goals G; no threats
π∅(A1) solves goal 〈∼b, 10〉; no goals are added
π∅(A1,A4) solves goal 〈lS, 10〉; new threat [A1,B1]
π∅(A1,A4,A5) solves goal 〈lN, 10〉; new threat [A1,B2]
π∅(A1,A4,A5, [A1,B1,A3]) solves [A1,B1]
π∅(A1,A4,A5, [A1,B1,A3], [A1,B2,A3]) solves [A1,B2]; this plan is a solution

Figure 3(right) also contains the arguments:

A+
3 = {δ3(t+ 1), δ4(t+ 1), δ5(t), δlN(t), 〈μN, t〉},

A+
4 = {δlS(t′)}t<t′<10 ∪ {δ4, 〈μS, t+ 1〉}, and

B+
1 = {δo(t′)}0≤t′<t ∪ {δ1(t+ 1), δ4(t+ 1), δ6(t+ 1), δ7(t+ 1), 〈μS, t〉}.

In this case, we have a sequential execution of actions lift.N (at t− 1) and lift.S
(at t). As before, the argument step A1 in π∅(A1,A5) is threatened by B2, since
if nothing else happens, lifting one side of the table will result in the vase being
broken. In this case, though, B2 cannot be resolved after the (wrong) refinement:
π∅(A1,A5,A+

4 ); this plan cannot be further refined into a solution. Also note
that the threat A+

1 of later lifting the other side of the table will not result itself
in the vase being broken: in this case, the defeater A+

3 for A+
1 would be available

for free (given the current actions). In summary, the (action-based) arguments
make 〈∼b, t〉, 〈lN , t〉 and 〈lS , t〉 warranted iff agents lift both sides simultaneously
–Fig. 3(left)–, or they do nothing.

3.2 Properties of Algorithms for t-DeLP Backward Plan Search

The space of plans for a planning domain M is the graph given by the set of
plans (as defined above) and the “is a refinement of ” relation. Breadth First
Search is instantiated by the following algorithm for backward planning:

Data: M = ((Π,Δ), A,G)
Result: π (i.e. the set of actions A(π) ); or fail, if Plans = ∅
initialization: Plans = 〈π∅〉 and π = π∅;
while goals(π) 
= ∅ or threats(π) 
= ∅ do

delete π from Plans;
set Plans = Plans ∩〈 π(A) | π(A) is a refinement of π〉;
set π = the first element of Plans;

end
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Fig. 3. A representation of arguments related to A1 in the interval [t, t+ 1] from both
plans in Example 1. Defeated arguments are depicted in dark grey. (Left) A solution
plan: both sides are lifted simultaneously at t. The argument A1 –the vase remains
unbroken– is defended by A3 –the table remains horizontal– from existing threats
B1,B2 (only B1 is shown in detail). (Right) Agent a1 lifts the table before a2 does; now
A+

3 cannot defeat the threat B2. (Note that plan steps A+
4 ,A5 are not depicted.)

This and many other usual search methods (Depth-First Search, etc.) are
sound and complete for backward t-DeLP planning, see [15] for more details.

Theorem 1 (Soundness of BFS plan search.). Let π be an output of the
BFS algorithm in the space of plans for M. Then π is a solution for M.

Theorem 2 (Completeness of BFS plan search). Let M = ((Π,Δ), A,G)
be a planning domain and assume some solution A′ ⊆ A exists. Then, the BFS
search in the space of plans terminates with an output π.

4 Dialogues for Distributed Planning with Cooperative
Agents

After reviewing the necessary elements in the previous sections, we can introduce
the dialogue-based planning algorithm for distributed plan search. Recall we
assume the agents are cooperative: they share the goals, but their beliefs and
actions can widely differ. Also we assume that each agent makes use of single-
planner methods from the last section. Agents will generate and discuss different
plans during the dialogue. The proposed algorithm is studied in comparison with
that of a centralized planner, also defined by the single-planner methods.

In this centralized scenario, agents delegate the planning task to a central plan-
ner, who is initially supplied with all the information that agents possess. Depend-
ing on the size of agents’ logic programs in their initial planning domains, cen-
tralized planning might involve massive communication costs, only to find that
most of the centralized information not relevant at all for the planning problem
at hand. By keeping the planning domains distributed, information is only shared
by an agent if she believes it might contribute to the present discussion.
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Briefly, the dialogue-based algorithm for plan search is as follows. Each agent
is initially endowed with a planning domain Ma = ((Πa, Δa), Aa, G), containing
the believed facts and rules (Πa, Δa); a list Aa of available actions (e.g. to agent
a) and a set of common goalsG. The dialogue consists of an exchange of elements
that might be used in some plan refinement, or occur in a threat to a discussed
plan. These communicated elements, aimed at generating a new plan step (resp.,
a threat), are the usual: rules to build an argument for some goal (resp., against
a plan step), and initial facts or actions supporting the argument.

During this exchange of suggestions about plans and their threats, agents
also keep continuously expanding their planning domains with new beliefs, rules
and actions communicated by others, in a kind of shared planning domain
((facts, rules), actions, G). These are routinely added to the current planning do-
main of the agent receiving this information at the present turn. The dialogues
considered in the present algorithm consist in agents taking turns to contribute
to the plan construction, each agent communicates its present contribution to
the next agent in line.

The collaborative tasks of plan generation (the construction of plan steps) and
plan evaluation (the discovery of threats) takes place backwards: at the level of
the plan (in backward planning, later actions are usually considered first); and
also at the level of each plan step or threat in this plan: within each plan step or
threat: the argument construction starts from the conclusion and ends up with
the base; (the reason is that the conclusion determines whether an argument can
be a plan step or a threat). Many potential pre-arguments, of course, will not
lead to any interesting plan step or threat. But this is the price to pay in order
to preserve the completeness of search algorithms under the present distributed
approach.

4.1 Distributed and Centralized Planning Domains

We first introduce multiple-planner versions of the definitions found in the Sec-
tion 3. As we said, each agent a ∈ Ag is endowed with an initial planning domain
Ma. A sequence of such planning domains 〈Ma〉a∈Ag, with shared goals Ga = G,
generates a dialogue for the proposal and discussion of plans.

Definition 11 (Multi-planner domain; Union of planning domains;
Centralized planning). Given a set of planner agents Ag = {a1, . . . , ar}, let
Ma = ((Πa, Δa), Aa, G) be a planning domain for each agent a ∈ Ag. Then, we
say 〈Ma〉a∈Ag is a multi-planner domain, if

⋃
aΠa is a consistent set of literals.

We also define the component-wise union of two planning domains, say M1,M2,
as follows

M1 �M2 = ((Π1 ∪Π2, Δ1 ∪Δ2), A1 ∪ A2, G)

More generally, we define the centralized planning domain induced by
〈Ma〉a∈Ag, denoted MAg, as the n-ary union of this multi-planner domain:

MAg =
⊔

a∈Ag

Ma
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Note that a more general class of scenarios (altruistic cooperation) could also
be considered, where other agents’ goals are added to one’s list (if jointly con-
sistent). In this case, we would have M1 �M2 = ((·, ·), ·, G1 ∪G2), thus making
Definition 11 a particular case of it with G1 = G2.

In any case, the methods of the previous section still apply to each individual
planning domain MAg or Ma, and indeed those methods are now used

– to check that dialogue-generated plans are sound (by checking them in MAg)
– to contribute to the dialogue: by generating new plans or detecting new

threats (agent a checking those plans in her current planning domain Ma)

During the dialogue starting with a given multi-planner domain 〈Ma〉a∈Ag,
each agent a passes information to the next agent. This information consists
of new possible plans and the elements (facts, rules, actions) needed to fully
understand them, according to a. The communication of these latter elements
is represented by a (piece-wise) expansion of the addressee’s current planning
domain.

The most important difference with a single-planner case is caused by the
initial differences among agents’ planning domains. The problem is that agents
need not agree on the following:

– whether a given plan step A exists,
– whether a sequence of plan steps π = π∅(A1, . . . ,An) actually defines a plan,
– or which plan does this π define (which threats exist, or open goals remain)

The source of disagreements about a suggested plan π = π∅(A1, . . . ,An)
lies in the fact that this sequence π gives rise to different triples (actions, trees,
goals) when interpreted from different agents’ planning domains. For this reason,
from here on we introduce a superscript notation for interpreted plans πM and
distinguish between

– a sequence of plan steps π = π∅(A1, . . . ,An), informally called plan, even if
a planning domain is not specified, and

– an interpreted plan πM, denoting the particular result of computing the se-
quence π in the planning domain M (only defined if π is actually a plan for
M)

πM = (A(πM),Trees(πM), goals(πM))

Definition 12 (Expansion). LetM = ((Π,Δ), A,G)andM′=((Π ′, Δ′), A′, G′)
be planning domains.We sayM′ is an expansion ofM, denotedM 1 M′, iff for each
component Y ∈ {Π,Δ,A,G} of M, its counterpart Y ′ extends Y , i.e. Y ⊆ Y ′.

Notice in particular that for any pairM1,M2 we have that M1,M2 1 M1�M2.

4.2 Turn-Based Dialogues for Cooperative Planning in t-DeLP

The dialogues will consist in a series of rounds, each agent speaking once each
round, and always to the same agent. Starting with turn 1 and agent a1 ∈ Ag,
the agent speaking at a turn m > 1 is af(m), where f(m) is simply computed as
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f(m) =

{
f(m− 1) + 1 if f(m− 1) < r (= |Ag|)
1 if f(m− 1) = r

The speaking agent af(m) then communicates a tuple turn(m) to the agent next
in line af(m+1). The tuple turn(m) has the following elements:

(Preplansm, Plansm, Trueplansm, Prethreatsm, factsm, rulesm, actionsm )

The set Preplansm is a set of plans together with a pre-refinement step, the
latter being an incomplete plan step refining the plan, to be completed by other
agents. If a pre-plan is actually a plan for the agent af(m+1), she will add it to
the corresponding set Plansm+1. Other agents can later delete it from this set,
if the plan step is found inconsistent with their planning domain (their strict
knowledge). Similarly, Prethreatsm is a set of candidate threats for the current
plan under evaluation. Also, when agreement exists among all agents after a
whole round that this plan’s threats are all known, say at turn m+k, the plan is
added to the corresponding set Trueplansm+k. Finally, these true plans (if they
are not yet solutions) are the targets for further refinements in the next round,
where agents can expand them into pre-plans, and the cycle starts again. A
formal account of the basic concepts is given next.

Definition 13. Given a planning domainM, a plan π forM, and a setA ⊆ Δ, we
say π[A] is a pre-plan for M iff π(A) is a plan for M′ = ((Π ∪ base(A), Δ), A,G).
We also denote by A∗ the corresponding ⊆-minimal set of actions e with post(e) ∈
base(A). Similarly, we say that B ⊆ Δ ∪ Π ∪ post[A(πM)] is a pre-threat for
some plan step Λ = [. . . ,A] in πM, denoted (Λ∩[B], π) ∈ Prethreatsm, iff B is an
argument in the t-de.l.p. (Π∪base(B)⊕A(π), Δ), base(B)∩post[A] ⊆ post[A(πM)]
and ∼concl(B′) ∈ literals(A).

The remaining sets factsm, rulesm, actionsm simply store the elements (facts
〈�, t〉, rules δ and actions e) used in plans and pre-plans considered up to the
present turnm. In Table 1, we describe how the elements of the tuple turn(m+1)
are computed from the previous turn turn(m) and the current speaker’s planning
domain Mm

af(m+1)
. Note that, for each turn m and each a ∈ Ag, we have Mm

a 1
Mm+1

a and Mm
a 1 MAg. See also Figure 4 for an illustration of such a dialogue.

Example 2. (Cont’d) We rewrite Example 1 in the form of a multi-planner prob-
lem for two planner agents Ag = {a1, a2}. In Ma1 ,Ma2 , the goals and initial
facts are as in Ex. 1 for both agents. For actions, we have Aa1 = {lift.N} and
Aa2 = {lift.S}. The defeasible rules are as in Ex. 1 for Δa1 , Δa2 except that
δ7 /∈ Δa2 ; i.e., agent a2 ignores that objects lying in non-horizontal surfaces tend
to fall off. In the dialogue for this example shown in Table 2, we use the notation
πmnk+... to denote the plan π∅(Am,An,A+

k , . . .).
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Table 1. A definition of the turn-based dialogue. To simplify the notation, we have

abbreviated agent subindices in expressions like Mm
f(m+1) to actually denote Mm

af(m+1)
;

the same for Π , Δ and A.

Base Case

turn(0) = (∅, ∅, {π∅}, ∅, ∅, ∅, ∅)

M0
a = Ma

Inductive Case

turn(m+ 1) = (Preplansm+1, Plansm+1, Trueplansm+1, Prethreatsm+1,

factsm+1, rulesm+1, actionsm+1 )

where these elements are defined as follows

Preplansm+1 = Preplansm ∪ {π[A] | π[A] is a pre-plan in Mm
f(m+1)}

i.e. old pre-plans plus new ones constructible by agent f(m+ 1)

Plansm+1 = {π(A) is a plan for Mm
f(m+1) | π[A] ∈ Preplansm+1 or π(A) ∈ Plansm}

Trueplansm+1 = Trueplansm plus the set of plans π ∈ Plansm such that

{(·, π) : (·, π) ∈ Prethreatsm−|Ag|+1} ⊇ · · · ⊇ {(·, π) : (·, π) ∈ Prethreatsm+1}
Prethreatsm+1 = {(Λ∩[B], π) : π ∈ Plansm+1 and Λ∩[B] is a pre-threat for π

M
m
f(m+1)}

Auxiliary Defintions

Newplansm+1 =
⋃

m−|Ag|+1≤m′≤m+1 Preplansm′ ∪ (Plansm′ ∩
⋂

m′<m′′≤m+1 Plansm′′ )

i.e. recent (pre)plans (i.e. added during the last round) still in use

Oldthreatsm+1 = Prethreatsm 	 Prethreatsm+1 Oldplansm+1 = Plansm 	 Plansm+1

Inductive Case (cont’d)

factsm+1 = factsm plus those known literals (in Πm
f+1) occurring in plan steps A

with π[A] or π(A) ∈ Newplansm+1, or in threats Prethreatsm,m+1

plus known literals (in Πm
f(m+1)) whose negations occur in discarded

plan steps π(A) ∈ Oldplansm+1 or threats (B, ·) ∈ Oldthreatsm+1

rulesm+1 = rulesm plus those rules in Δm
f(m+1) occurring in the suggested plan

steps π[A], π(A) ∈ Newplansm+1, or threats (Λ
∩[B], ·) ∈ Newthreatsm+1

actionsm+1 = actionsm plus any e∈Am
f(m+1) supporting plan steps in Newplansm+1

Mm+1
a =

⎧⎪⎪⎨
⎪⎪⎩

Mm
a if a 
= f(m+ 1)

( (Πm
f(m+1) ∪ factsm+1, Δ

m
f(m+1) ∪ rulesm+1),

Am
f(m+1) ∪ actionsm+1, G ) if a = f(m+ 1)
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Fig. 4. A representation of the cyclic dialogues for cooperative plan search among a set
Ag = {a1, . . . , a10} of planner agents and an initial multi-planner domain 〈M0

a〉a∈Ag.
Here, agent 1 communicates to agent 2, 2 to 3, etc. and agent 10 to agent 1. This cycle
is repeated as needed. Note, for example, that agent 2 speaks at turns 2, 12, 22, . . . The
initial planning domain of the next agent, namely M0

3, is expanded at turn 2 with agent
2’s message into M2

3, and then again at turn(12) into M12
3 , and so on.

Table 2. Dialogue corresponding to Exampe 2

speaker informal dialogue (for Example 2) formal dialogue

0, – The empty plan π∅ is available. π∅ ∈ Plans0

1, a1 We might assume the vase will not break. π1 ∈ Plans1

I might execute lift.N at some tlift.N < 10 π5, . . . ∈ Plans1

2, a2 I might execute lift.S at some tlift.S < 10 π4, π4+ , . . . ∈ Plans2

In π1, if the vase fell off it would break! ([A1, {δ6}], π1) ∈ Prethreats2
...

...
...

4, a2 We agree upon our reading of some plans. π1, π4, π4+ , . . . ∈ Trueplans4

5, a1 I might execute lift.N at some tlift.N < 10 π15, π45, π4+5 . . . ∈ Plans5
...

...
...

7, a1 In π15 the vase will fall off!! (a2 learns δ7) ([A1,B2], π15) ∈ Newthreats7
...

...
...

9, a1 We agree upon our reading of π15. π15 ∈ Trueplans9

10, a2 I might execute lift.S upon it π154, π154+ ∈ Plans10

11, a1 Resp., [A1,B1], [A1,B+
1 ] exist in π154, π154+ · · · ∈ Newthreats11

...
...

...
13, a1 We agree upon our reading of π154, π154+ . π154, π154+ ∈ Trueplans13

14, a2 We can use [A1,B2,A3] to solve [A1,A2] π1543 ∈ Plans14
...

...
...

16, a1 We can use [A1,B1,A3] to solve [A1,B1] π15433 ∈ Plans16
...

...
...

18, a2 We agree that π15433 is a solution in M18. π15433 ∈ Trueplans18
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Theorem 3 (Soundness). Let π be the output of the dialogue-based plan search
algorithm in Table 1, for some given multi-planner domain 〈Ma〉a∈Ag. Then π
is a solution for MAg

Proof sketch: The proof is by induction on the length of the plan π =
π∅(A1, . . . ,An) (the output of the algorithm for 〈Ma〉a∈Ag). In this case, one
can show that the shared information at turn m, i.e. the planning domain Mm,
suffices to build all the plans π discussed up to that point by other agents. More-
over, it also suffices to show that π is also a plan for any planning domain M′

such that Mm 1 M′ 1 MAg, and finally, that the interpretation for any such M′

is always the same: πM
m

= πM
′
= πMAg . The identity among their corresponding

sets Trees(·) is shown by giving upper bounds for the occurrence (turns) of each
element of a given threat. �

Theorem 4 (Completeness). Let 〈Ma〉a∈Ag be a multi-planner domain with
elements of the form Ma = (Πa, Δa), Aa, G). If a solution A� exists for the cen-
tralized domain MAg, then the dialogue from Table 1 terminates with an output.

Proof sketch: If a solution A� exists, i.e. if G ⊆ warr(PAg 0 A�), we can as-
sume w.l.o.g. that the solution A� is ⊆-minimal. As in Theorem 2, we can ex-
tract from A∗ the necessary sets Lines, Steps,Threats, and from this a sequence
π∅(A1, . . . ,An) such that Steps = {A1, . . . ,An} addresses all the goals and
threats. For each plan step Ak and each element 〈�, t〉 or δ or e of Ak, we com-
pute a lower bound m for the occurrence of a turn m such that π(Ak) ∈ Plansm,
〈�, t〉 ∈ factsm, δ ∈ rulesm or e ∈ actionsm. �

5 Conclusions and Related Work

In this paper we study dialogues for distributed plan search in cooperative plan-
ning problems expressible in the t-DeLP planning system. This system, combin-
ing a classical update function for temporal planning with an (argumentative)
temporal defeasible logical system called t-DeLP. The latter adds non-monotonic
temporal reasoning to actions, thus allowing for complex indirect effects. Our
contribution is mainly theoretical and consists of showing that the dialogue-based
plan search methods are sound and complete for t-DeLP planning. Computa-
tional and more practical aspects like the efficiency, applicability and scalability
of the approach remain as future work.

Several extensions of classical planning exist in either of the directions taken in
the present paper. For example, the literature on temporal planning is quite rich
(see e.g. [9], Ch. 14), though mainly based on simple, monotonic reasoning. Also,
multi-agent extensions of planning systems for collaborative scenarios have also
been studied in a dialogue-based form [22], again built on classical or temporal
planners.

The results of the present paper match those from [16], [13], but replacing
DeLP [8] by t-DeLP [14], and also the partial order planner of [7] with the tem-
poral linear planner from [15]. While POP planning systems are more flexible,
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the underlying logic DeLP is less expressive given the implicit time approach.
The present paper can also be related to other several proposals found in the lit-
erature like multi-agent argumentation, cooperative planning (without defeasible
argumentation) and centralized planning. For example, abstract argumentation
[6] has been used to reason about conflicting plans and generate consistent sets
of goals [1,10,18]. None of these works apply to a multi-agent environment. A
proposal for dialogue-based centralized planning is that of [21], but no argumen-
tation is made use of. The work in [3] presents a dialogue based on an argu-
mentation process to reach agreements on plan proposals. Unlike our focus on
an argumentative and stepwise construction of a plan, this latter work is aimed
at handling the interdependencies between agents’ plans. Also, [11] presents an
argumentation scheme to propose and justify plans using critical questions.
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Abstract. The METIS research project aims at supporting maritime safety and
security by facilitating continuous monitoring of vessels in national coastal wa-
ters and prevention of phenomena, such as vessel collisions, environmental haz-
ard, or detection of malicious intents, such as smuggling. Surveillance systems,
such as METIS, typically comprise a number of heterogeneous information
sources and information aggregators. Among the main problems of their deploy-
ment lies scalability of such systems with respect to a potentially large number of
monitored entities. One of the solutions to the problem is continuous and timely
adaptation and reconfiguration of the system according to the changing environ-
ment it operates in. At any given timepoint, the system should use only a minimal
set of information sources and aggregators needed to facilitate cost-effective early
detection of indicators of interest.

Here we describe the METIS system prototype and introduce a theoretical
framework for modelling scalable information-aggregation systems. We model in-
formation-aggregation systems as networks of inter-dependent reasoning agents,
each representing a mechanism for justification/refutation of a conclusion derived
by the agent. The proposed continuous reconfiguration algorithm relies on stan-
dard results from abstract argumentation and corresponds to computation of a
grounded extension of the argumentation framework associated with the system.

1 Introduction

The METIS project [4,6] studies techniques supporting development of large-scale de-
pendable systems of systems which aggregate multiple sources of information, analyse
them, compute risk factors and deliver assessments to system operators. In this paper
we introduce the METIS project’s prototype application, which applies the developed
concepts to the domain of maritime security and aims to provide advanced situation
awareness capabilities for monitoring maritime traffic in national coastal waters. By
’Systems-of-systems’ we mean large-scale integrated systems that are heterogeneous
and independently operable on their own, but are networked together for a common
goal [7]. One of the prominent problems in development of such systems is their scala-
bility. Our focus here is on supporting scalability of the system by means of continuous
reconfiguration, i.e., adaptation to changes in its environment.

The METIS system is a large-scale surveillance system operating in a mixed physi-
cal and software environment. It comprises a number of cooperative agents serving as
information sources and aggregators. Typically, these would be either situated physical
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agents, such as cameras, satellites or human patrols, or software components interfacing
various public, or proprietary databases, web resources, etc.

In the implemented prototype scenario, METIS aims at detection of ships suspected
of smuggling illegal contraband during their approach to the port under surveillance.
For every vessel in the zone of its interest, the system accesses the various information
sources and subsequently processes the extracted information so as to finally identify
vessels which require operator’s attention. The available sources provide information
about the ships, including their identifications, crew, ports-of-call, various physical char-
acteristics, possibly even digest of news articles reporting on events involving the vessel,
or the crew. Quite often, such information would yield inconsistent, or even contradic-
tory information, which needs to be cross-validated and processed in order to infer the
most likely values. The resulting information is aggregated by a hierarchy of informa-
tion aggregators so that the system is ultimately able to determine whether a particular
vessel should be considered a smuggling suspect, or it is able to justify that it is innocu-
ous given the available information. In the prototype scenario, the individual aggregators
are represented by various information-fusion components operating over a shared data
warehouse, but could include also external agents, such as human experts.

METIS should be deployable both on land, as well as on board of independently
operating ships. As a consequence, querying individual information sources and subse-
quent information aggregation could incur non-negligible financial and computational
costs. While accessing a publicly available Internet resource via a fixed broadband con-
nection can be relatively cheap, the bandwidth of satellite communication links used on
board of maritime vessels is limited and data transfers incur external costs too. Simi-
larly, accessing proprietary industrial databases, or utilisation of physical agents, such
as aerial drones, imaging satellites, etc. can incur rather significant costs to the system’s
operation. Hence, using all available information sources and information fusion com-
ponents is not always feasible and in turn one of the problems central to development
of such a large-scale surveillance multi-agent system is their scalability.

The problem of configuration and dynamic reconfiguration according to the current
system’s needs can be thus formulated as follows: Which information sources and ag-
gregators should be active over time so as to maximize the likelihood of early detection
of malicious intents in the most cost-efficient manner?

Here, we propose an approach to (re-)configuration of large-scale information ag-
gregation systems by modelling the interactions between the individual components in
terms of an argumentation framework [2]. After introducing the basic concepts (Sec-
tion 2), in Section 3, we present the problems of configuration and reconfiguration of
information-aggregation systems to account for changes in their environments. Subse-
quently, in Section 4, we show that suitable system configurations correspond to the
concept of grounded extensions of an associated argumentation framework. The so-
lution concept is closely related to the well-founded semantics of logic programs, so
the relationship opens the door for further study of reconfiguration in relation to stan-
dard results in logic programming. A discussion of on-going and future work along the
presented line of research concludes the paper. Throughout the paper, in a series of ex-
positions, we describe the relevant parts of the METIS system and identify a class of
relevant solution concepts.
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METIS 1 In the prototype scenario, METIS should continuously monitor vessels in the
coastal waters in the Dutch Exclusive Economic Zone, source information about them
and process it, so as to finally identify vessels which are suspect of smuggling. Upon
detection of a suspicion, the system should notify the user, a Netherlands Coastguard
officer, who then decides on the subsequent course of action. To put the scenario in
perspective, note that the monitored area covers more than 63.000 km2 and typically
contains around 3-4.000 vessels at any given moment in time.

In the system exposure we consider the following simplified fragment of the prototype
scenario: Information-sources available to the system comprise a local copy of IHS
Fairplay [5] database and web-portals of MyShip.com [11], MarineTraffic.com [10]
and its Ports of Call. There are also three physical sensors: a human coast-guard patrol
in the field, a receiver for Automatic Identification System (AIS) [1] messages, and a
radar providing kinematic signatures of vessel tracks as interpreted from the readings
of the detected spot positions of the vessel over time. Every vessel from a certain size
is required to be equipped with an AIS transmitter and regularly broadcast its identity,
type, ports of call, etc. Besides cross-validation and and probabilistic inference over
the received data, the individual information-processing components also derive meta-
information about quality, certainty and trust of the aggregated information.

2 Preliminaries

An instance of a multi-agent surveillance system such as METIS, comprises a set of in-
formation processing agents and a shared database. Information source agents operate
in a dynamic environment and feed a shared data store which is further processed by a
set of information aggregators agents. The system’s objective is to determine the truth
value of a set of distinguished indicators, information elements corresponding to some
non-trivially observable properties of the monitored entities, such as whether a ves-
sel is a smuggling suspect. Below, we introduce the formal framework for modelling
information-aggregation systems, together with the related terminology and notation.

2.1 Information-Aggregation System

We model an abstract information-aggregation system as a tuple S = (A,D, cost)
comprising a finite set of information-processing agents, a database schema and a cost
function respectively. A shared data store of the system is represented by a 3-valued
database schema D comprising a finite set of propositional variables over the domain
Dom = {�,⊥,∅} representing the truth values true, false, and unknown respectively.
In practice, Dom could include an arbitrary number of distinct crisp values and the
METIS system exposure indeed assumes an extended domain of the database schema.
Without loss of generality, we also do not distinguish between different interpretations
of the unknown value∅: no information and value existent, but unknown [8]. A database
snapshotD : D → Dom of the schemaD at a given timepoint is a ground interpretation
of variables of D. That is, each variable of D takes a truth value from the domain Dom.
D|x denotes the value of the variable x in D. D∅ denotes a database snapshot with all
variables valued as unknown, i.e., for all x ∈ D, we haveD∅|x = ∅. For convenience,
we use the term database snapshot interchangeably with the term database.
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The information processing agents A = {A1, . . . , An} of the system are modelled
as function objects over interpretations of the schema D, formally Ai : D × Dom →
D × Dom for each A ∈ A. That is, given a database snapshot D, an information-
processing agent A takes as an input a set of D-valuations of database variables inA ⊆
D and produces a set of new valuations for database variables outA ⊆ D. D|inA

and D|outA respectively denote value assignments to variables of inA and outA cor-
responding to those in the snapshot D. The sets D|inA and D|outA can be seen as
partial interpretations of the schema D. Given two snapshots D and D′, we denote
A(D|inA) = D′|outA relying on agents as partial functions over database snapshots.
We model information-source agents as standard information-processing agents with an
empty set of input variables in = ∅ and a non-empty set of output variables out = ∅.

The cost function cost : A → R+ models the costs involved in a single computation
run of an agent. Without loss of generality we assume that the computation of valuations
of the output variables cannot be disentangled and must be carried out as an atomic
operation. Informally, the cost of executing an information source agent corresponds to
the aggregate cost of sensing its input variable in the environment. Whenever the cost
function is irrelevant in the given context, we simply write S = (A,D).

A configuration C ⊆ A of a system S = (A,D, cost) is a set of information pro-
cessing agents active in S in a given timepoint. Notation for input and output vari-
ables of an agent naturally extends to configurations, that is inC =

⋃
A∈C inA and

outC =
⋃

A∈C outA. Assuming a single execution of each agent in C, the cost func-
tion straightforwardly extends to configurations too: cost(C) =

∑
A∈C cost(A).

Given a configuration C ⊆ A of a system S = (A,D) and a database snapshot
D of the schema D, we say that a database D′ is an update of D by C iff for each
variable x ∈ D, such that D|x = D′|x, there exists an agent A ∈ C, such that D′|x =
A(D|inA)|x. That is, each variable modified in the updateD′ w.r.t. its original value in
D, is a result of a computation of some agent from the configuration C. We say that a
configurationC is supported by a database snapshotD iff for all agentsA ∈ C we have
both A(D|inA) ⊆ D, as well as A(D|outA) ⊆ D. That is, the information processing
performed by each agent A of the configurationC is reflected in the snapshotD.
C(D) = D′ denotes an update D′ of D by a configuration C. Note, not all of

the outcomes produced by all agents of C need to be reflected in the database update.
Alternatively, we say that D′ is an update of D by a partial database Du iff whenever
D|x = Du|x = ∅, we have that D′|x = Du|x and D′|x = D|x otherwise, and we
also denote D′ = D ⊕ Du. We model evolution of a system S under a configuration
C ⊆ A as a (possibly infinite) sequence of database snapshots λD = D0, . . . , Dk, . . .,
such that each Di+1 = C(Di) is an update of Di for all i ∈ N0. Such a λD is called
a C-evolution of S from D0 on. Finally, note that given a configuration C which is
supported by a database snapshotD, every update C(D) equalsD. In that case, we say
that D is stable w.r.t. C.

Evolution of a system strongly depends on both the nature of the active configuration,
as well as the particular order in which the agents of the configuration work over the
database. We say that a configuration C ⊆ A of a system S = (A,D) is normal iff all
C-evolutions of S from every database snapshot D0 on, eventually stabilise, i.e., reach
the same stable state regardless of the order of execution of the individual agents in C.
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agent in out cost
AIS ∅ aisID∗, aisType′ 10
FairPlay ∅ fpID∗ 10
MyShip ∅ myShipID† 200
MarineTraffic ∅ mtID† 300
MarineTraffPorts ∅ portCalls‡ 1000
Radar ∅ track′ 2000
Patrol ∅ isSpoofingID‡ 9500
TrackAnalyser marked ′ vesselType‡ 1000
CheckDefault marked ∗ isSuspectID† 200
CheckSpoofing marked † isSpoofingID‡ 800
checkSmuggling marked ‡ isSmuggling 2000

Fig. 1. METIS system agents (left) and their interdependencies (right)

More formally, there is a unique database snapshotC∗(D0) of the schema D, so that for
all C-evolutions λD = D0, . . . , Dk, . . . of S from D0 on, there is an index kλD ≥ 0,
such that for all i ≥ kλD , Di = DkλD = C∗(D0) and C is supported by Dk.

METIS 2 (system structure) In the prototype scenario (Figure 1), METIS features 7
information-source agents (white), including 3 physical sensors (dotted), and three non-
trivial information-aggregation agents (grey). The costs of accessing the information
sources are only illustrative and estimate the communication bandwidth to access the
databases, or the cost of querying the physical sensors. The costlier databases tend
to provide richer information about vessels. The cost associated with an information-
aggregation agent roughly estimate the computational costs of its execution. In the
figure, the dotted lines indicate input-output dependency of information-aggregation
agents, while the solid line arrows indicate merely that the agent derives a given vari-
able, otherwise indicated by putting the variable bullet on top of the corresponding
agent triangle.

The CheckDefault aggregator consults the local physical sensor and cross-validates
the self-transmitted vessel identity with those listed in the IHS FairPlay database. Upon
a failure to match the identities of the vessel, the system performs a deeper check of the
vessel’s identity (CheckSpoofing) in order to determine whether it does not actively
spoofing it, that is whether it actively lies about its identity. The physical sensor Pa-
trol involves a coast-guard patrol either physically checking the identity of the vessel,
or possibly sending an unmanned aircraft to perform the task. Similarly to Check-
Spoofing information-aggregator, the Patrol information source is capable to deter-
mine whether the vessel is actively spoofing it’s identity. It is of course possible that
the two inferred valuations of the isSpoofingID variable do not match and the conflict
needs to be resolved.

Should the system indeed conclude that the vessel is spoofing its identity, it es-
calates to the highest-level information-aggregator CheckSmuggling consulting the
most expensive information sources and performing the deepest analysis of the vessel’s
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background so as to assess its potential involvement in smuggling. The TrackAnalyser
processor matches the vessel’s kinematic track signature from the Radar sensor to the
vessel type retrieved from AIS. Should the vessel turn out to be a suspect smuggler ac-
cording to the METIS’s analysis, the valuation of isSmuggling information element is
communicated to the system operator via a GUI warning. Note, all the involved agents
assume a domain of the underlying database extended with enumerations of possible
identities, etc. and can also produce the unknown valuation ∅ for each of their output
variables.

2.2 Environment

An information-aggregation system, such as METIS, is situated in a dynamic environ-
ment which changes over time. It reads values from it, monitors it, and derives non-
trivial information on the basis of the collected evidence. We model an environment as
a database schema E over crisp truth values {�,⊥}.

A system S = (A,D) can be embedded in an environment E when the two database
schemas coincide in exactly the variables produced by the information-source agents of
S. That is, each variable x ∈ outA of an agent A ∈ A with inA = ∅ is included in the
environment too, i.e., x ∈ E ∩D and we denote DE

in = E ∩D. A variable x ∈ DE
in in a

database snapshot D of S reflects the state of the environment E iff D|x = ∅ implies
D|x = E|x. We say that the system S is embedded in E iff computations of all the
information-source agents reflect the state of the environment. That is, for all A ∈ A
with inA = ∅ all variables from outA in the snapshot A(D) reflect E.

The dynamics of the environment is captured by its evolution over time modelled as
a (possibly infinite) sequence of database snapshots λE = E0, . . . , Ek, . . . To ensure
correspondence between an evolution λE of the environment E and an evolution λD =
D0, . . . , Dl, . . . of a system S = (A,D) embedded in E , we require that there exists
a sequence of indices i0, . . . , im, . . . ∈ N0, such that the variables from DE

in in Di

with i ∈ ij . . . (ij+1 − 1) reflect the environment state Ej for j ≥ 0. That is, at every
timepoint, the system is embedded in the current state of the environment.

METIS 3 (evolution example) A configuration capable to produce the system evo-
lution depicted in Figure 2 could include the agents AIS, FairPlay, CheckDefault,
Radar and TrackAnalyser executed subsequently in that order up to the database
snapshot D4. In the 5th evolution step, the AIS agent would produce an unknown val-
uation ∅ for the aisID variable due to a failure to retrieve a crisp information from
the environment (e.g., due to a failure of the vessel’s AIS transmitter). Subsequently the
CheckDefault agent would have to produce ∅ also for the isSuspectID variable too as
one of its inputs is ∅. The total cost of execution of this configuration would be 3420.
The environment of the system evolves in a sequence E0, E1, E2 and its changes are
reflected in the evolution of the system’s database snapshots.

3 Configuration and Reconfiguration Problems

Assessments of a surveillance information-aggregation systems like METIS could have
real-world repercussions. For instance, after deriving that a vessel could be a smuggling
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D0,E0 D1 D2 D3,E1 D4 D5,E2 D6

aisIDE aisID aisID aisIDE aisID
aisTypeE aisType aisType aisTypeE aisType aisTypeE aisType

fpID fpID fpID fpID fpID fpID
isSuspectID isSuspectID isSuspectID isSuspectID

trackE track trackE track
isSuspectType isSuspectType isSuspectType

Fig. 2. An example evolution of the METIS system database. Only variables valued � are listed.
The variables marked E are read from the corresponding environment update.

suspect, a warning would be indicated to the operator, who might then consider con-
tacting the vessel himself, possibly even sending a patrol to the location. Such actions,
however, need to be justified in the operational scenario. In consequence, any crisp con-
clusion computed by the system must be explainable and defensible by inspecting the
structure of inferences from basic evidence in the environment. In turn, we are inter-
ested in system configurations, which can either crisply answer distinguished queries,
such as suspicion of smuggling, or, if that is not possible, the operator needs to be sure
that there is no such configuration given the current state of the environment and the
system’s implementation. In the following, we implicitly assumes that the system is
embedded in an environment state reflected in its current (initial) database snapshot.

Problem 1 (configuration problem). Given a tuple C = (S, φ,D), with S =
(A,D, cost) being an information-aggregation system, φ ∈ D a query variable, and
D being an initial snapshot of D, the information-aggregation system configuration
problem is to find a normal configuration C, a solution to C, such that all evolutions of
S rooted in D stabilise in the snapshot C∗(D) and C satisfies the following:

1. φ ∈ outC , i.e., C contains at least one agent A ∈ C capable to derive φ. The
resulting query solution is a valuation C∗(D)|φ computed by the configuration C;

2. for each variable x ∈ inC , we have x ∈ outC and C∗(D)|x = ∅; and finally
3. there is no configurationC′ with C ⊂ C′ satisfying 1 and 2, such thatC′∗(D)|φ =
C∗(D)|φ. In that sense, C is maximal.

We say that a configuration C is an optimal solution to the reconfiguration problem C
iff cost(C) is minimal among the solutions of C.

Condition 1 of the definition above stipulates that the solution configuration indeed pro-
vides a valuation of the query, although this can still be valued as unknown ∅. Condi-
tion 2 formalizes the intuition that the query solution can be traced back to the evidence
from the environment and computations of a series of crisp variable valuations by the
individual agents of the system, that is a justification for the query solution. While the-
oretically it would acceptable to base computations of a crisp conclusions on unknown
valuations of input variables for the interpretation of ∅ value existent, but unknown, it
wouldn’t be so for inferences based on no information valuations. In the former case, the
interpretation would behave rather as a kind of a crisp valuation. Consequently, with-
out loss of generality we assume interpretation of ∅ to equal no information. Finally,
condition 3 ensures that there is no doubt about the computed query solution.
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A solution to configuration problem does not always exist. Consider for instance a
system including two agents deriving conflicting values for the same variable, or cycli-
cally dependent agents. In such situations, the system evolution could oscillate and
never stabilise. In Section 4 we identify a class of information-aggregation systems for
which existence of a solution is always ensured.

Through information-source agents, a dynamic environment serves as the main driver
of change within the system. Situating the configuration problem into a changing en-
vironment, repeated configuration becomes a means for continuous adaptation of the
system to the updates coming from its environment.

Problem 2 (reconfiguration problem). Given a tuple R = (λE ,S, φ), where λE =
E0, . . . , Ek, . . . is an evolution of an environment E , S = (A,D, cost) is a information
aggregation system embedded in E , and φ ∈ D is a query variable, the information-
aggregation reconfiguration problem is a search for a sequence of configurationsC0, . . . ,
Cl, . . ., a solution toR, such that eachCi is a solution to the configuration problemCi =
(S, φ,Di) for i > 0, where Di = C∗

i−1(Di−1) ⊕ Ei|DE
in and D0 = D∅ ⊕ E0|DE

in .
We say that a sequence of configurationsC0, . . . , Cl, . . . is a weak solution to R, iff Ci

is a solution to Ci = (S, φ,Di) if it exists and can be arbitrary otherwise.

Informally, a reconfiguration problem solution is a sequence of configurations produc-
ing a database evolution reflecting the changes of the system’s environment. The se-
quence of configurations in a weak solution to the reconfiguration problem captures the
intuition that the system tries its best to compute a query solution upon each environ-
ment update, which, however, not always exists.

METIS 4 (configuration) Consider the METIS prototype scenario introduced in the
previous expositions. An example configuration problem could be C = (SMETIS , isSmug-
gling , D3). As stated, there is no solution to C as it is not possible to determine whether
the vessel is possibly spoofing it’s identity (isSpoofingID) and in turn also whether
it is a smuggling suspect (isSmuggling). A solution would exist for a configuration
problem over a database including crisp valuations for all the variables produced by
information-source agents. Furthermore, the output of the Patrol agent would have to
match that of CheckSpoofing aggregator. In that case, the solution to C would com-
prise all the agents of the system. There would also exist solutions for configuration
problems over databases in which the Patrol information-source produces an unknown
for the isSpoofingID variable, but CheckSpoofing aggregator derives a crisp valua-
tion for it, or vice versa.

4 Solving Configuration and Reconfiguration Problems

The individual agents of an information-aggregation system perform inference over
valuations of their input variables, premises, and thus provide support to the output
variables, conclusions. In turn, Dung’s theory of abstract argumentation [2] provides a
natural model of computation of information-aggregation systems. Here, we propose
an approach to solving (re-)configuration problems rooted in sceptical semantics of
argumentation. The terminology introduced below is adapted from [2].
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Let S = (A,D) be a system and D be a database snapshot of D. We construct a
configuration argumentation framework CAF = 〈A,≺〉 associated with S over D.

Arguments correspond to information-processing agents A and embody a set of in-
terrelations among variables of the schema D. The input variables inA provide the basis
for inferring the conclusions outA of the argument A ∈ A. We say that an argument is
valid w.r.t. a database snapshotD iff A(D|inA) ⊆ D and for all variables x ∈ inA, we
haveD|x = ∅. Informally, a valid argument is supported by a given database snapshot
in that the input/output characteristics of the internal computation of the agent is truth-
fully reflected in the database. From now on, we will use the notions of an argument
and an agent interchangeably according to the context.

We say that valid argument A ∈ A attacks another argument A′ ∈ A denoted A′ ≺
A, on a variable x ∈ outA∩outA′ w.r.t. a given database snapshotD iffA(D|inA)|x =
∅ and A(D|inA)|x = A′(D|inA′)|x. That is, the agent A derives a crisp valuation for
xwhich disagrees with the one derived by the agentA′. We also say thatA is a counter-
argument to A′, or that A is controversial. Finally, an argumentA ∈ A attacks a set of
arguments C ⊆ A iff there exists A′ ∈ C attacked by A.

Note, the attack relation is defined only for valid arguments supporting their conclu-
sions by crisp valuation of their input. The conclusion, however, does not necessarily
need to be crisp itself. Also, the attack relation is not symmetric in that a valid argument
supporting a crisp conclusion can attack an argument providing unknown valuation to
the same conclusion, but not vice versa.

Consider a fixed argumentation framework CAF associated with a system S =
(A,D) over a database D. A configuration C is said to be conflict-free if there are
no agents A,B ∈ C, such that A attacks B w.r.t. CAF . A valid argument A ∈ A
(agent) is acceptable to C iff for each A′ ∈ A in the case A′ attacks A, then there
exists another argument A′′ in C, such that A′ is attacked by A′′ all w.r.t. the database
snapshotD.

In security-related information-aggregation systems, such as METIS, computed as-
sessments need to be justified in order to preserve presumption of innocence of the
monitored entities. That is, the resulting crisp valuation must be traceable to and justi-
fiable by the evidence coming from the environment. Reasoning of such a systems is
sceptical in that only conclusions which the system is sure about can be inferred, given
the environment evidence and the system’s design. The notion of a grounded extension
of an argumentation framework based on a fix-point semantics captures this intuition.

A grounded extension of an argumentation framework CAF = 〈A,≺〉, denoted
GECAF , is the least fix-point of its characteristic function FCAF : 2A → 2A defined
as FCAF (C) = {A | A ∈ A is acceptable to C}. GECAF is admissible, i.e., all agents
in GECAF are also acceptable to GECAF overD, and complete, i.e., all agents which
are acceptable to GECAF , also belong to it.

A grounded extension of CAFC always exists and FCAF is monotonous with re-
spect to set inclusion. In general, an argumentation framework can have multiple groun-
ded extensions, a property undesirable to security-related systems, where assessments
should be unambiguous. Dung in [2] shows that argumentation frameworks without in-
finite chains of argumentsA1, . . . , An, . . ., such that for each i,Ai+1 attacksAi, have a
unique grounded extension. A way to ensure that property is to consider only stratified
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systems. That is those, for which there exists a stratification, a decomposition into a
sequence of strata (layers) A = A0, . . . ,Ak, where A0 = {A ∈ A | inA = ∅} and
Ai = {A ∈ A | inA ⊆ out⋃

j=1..i−1 Aj
} for all i = 1..k. We say that A is the most

compact stratification of S iff all agents belong the lowest possible layer of A. Formally,
for all stratifications A′ of S, A ∈ Ai implies A ∈ A′

j with j ≥ i.
The following proposition establishes the correspondence between solutions to con-

figuration problems for stratified systems and grounded extensions of their configura-
tion argumentation frameworks.

Proposition 1. Let C = (S, φ,D) be a configuration problem with a stratified system
S. Let C = GEC be the grounded extension of CAFC, an argumentation framework
associated with S over the database C∗(D). If φ ∈ outC , then C is a solution to C.

Proof. Let A be the most compact stratification of S and let F i
CAF denote the i-th

iteration of FCAF , with F 0
CAF = FCAF (∅). Firstly, we show that iteration of FCAF

preserves the condition 2 of Problem 1, namely that for each x ∈ inF i
CAF

, also x ∈
outF i

CAF
and C∗(D)|x = ∅. The proof proceeds by induction on layers of S.

Initial step: By necessity,A0 includes only information-source agents. In turn,F 0
CAF ⊆

A0 excludes only those agents, for which there exists a counter-argument (agent) in A0.
Since inF 0

CAF
= ∅, the property is trivially satisfied.

Induction step: Let the property be satisfied for all F i
CAF with i = 0..k. F k+1

CAF =
FCAF (F

k
CAF ). Firstly, observe that F i

CAF \ F i−1
CAF ⊆ Ai for every i. If that were not

the case, there would be an agent A from a higher layer, input of which is computed by
agents in the lower layers, or it would belong to a lower stratum. The former cannot be
the case since A is the most compact stratification of S, since each agent is at its lowest
stratum possible. Similarly, the latter can’t happen either, since it would be considered
for acceptance already in earlier iterations of FCAF . Now either F k

CAF = F k−1
CAF , the

fix-point, and the property is trivially satisfied, or F k
CAF = F k−1

CAF ∪ Ck. In that case,
we need to show that for each A ∈ Ck, inA ⊆ outFk−1

CAF
and all valuations C∗(D)|inA

are crisp. But since Ck ⊆ Ak, due to the definition of stratification we have inA ⊆
outFk−1

CAF
. Finally, each A ∈ Ck is acceptable to F k−1

CAF , hence it also must be valid and
in turn all its input variables are crisp.

To conclude, C is a fix-point of FCAF , hence the maximality condition 3 in Prob-
lem 1 is straightforwardly satisfied too. Finally, due to the antecedent of Proposition we
have that the query φ is included in C, hence C is a solution of C.

Proposition 1 can be applied to static databases only. Note, execution of agents con-
sidered for acceptance to a candidate solution does not modify the database fragment
computed in previous iterations, which also remains stable in further computation. In
turn, a naive configuration algorithm utilising Proposition 1 would iteratively proceed
in three steps. In the i-th iteration it would i) execute all the agents from stratum Ai of
the most compact stratification of S, ii) select the non-controversial ones, and finally
iii) add them to the candidate solution. To ensure non-validity of arguments from higher
strata that utilise controversial inputs derived in this iteration, these should be set to ∅.

The naive algorithm, while correctly computing a solution to a given configuration
problem, is rather inefficient in terms of the overall run-time cost. It targets computation
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of a grounded extension of the whole framework, instead of only answering the query of
the given configuration problem. Firstly, in the initial iteration the algorithm considers
and executes all information-source agents. Besides that, it potentially executes also
information-processing agents, which do not contribute to answering the query. In both
cases it incurs unnecessary run-time cost. In fact, only arguments relevant to derivation
of the configuration problem query need to be considered.

Let S = (A,D) be a stratified system and φ ∈ D be a query. The agents relevant to
φ include Aφ(∅) = {A ∈ A | φ ∈ outA}. Given a set of agents C relevant to φ, all the
agents computing the input for those in C are relevant to φ too, i.e., Aφ(C) = {A ∈
A | outA ⊆ inC}. The set of all agents relevant to φ is the (unique) fix-point of Aφ(∅)
denoted A∗

φ. The following proposition formalizes the intuition.

Proposition 2. Let C = (S, φ,D), CAFC and GEC be as in Proposition 1. If φ ∈
outC , then C ∩ A∗

φ is the minimal optimal solution to C.

Furthermore, the naive algorithm does not terminate early enough, but rather computes
the grounded extension to its full extent, despite the fact that in the course of its compu-
tation it might turn out that the query is either derived in a justified manner, or that its
computation is hopeless. The former is relatively easy to detect. After all the agents rel-
evant to φ were considered for inclusion to the candidate solution, further computation
will consider only irrelevant arguments. To detect the latter case, we need to closely
inspect the current candidate solution with respect to the interdependencies among the
agents of the system. Given a configuration C, let Aφ

∗
(C) be the fix-point of the op-

erator Aφ(C) = C ∪ {A ∈ Aφ | inA ⊆ outC and inA = ∅}. Aφ
∗

is complementary
to Aφ in that given a configurationC, it collects all agents dependent solely on the out-
put of C. Consequently, Aφ

∗
(FCAF (C)) contains C, together with all the arguments

which can be still eventually considered for accepting to the candidate solution in fu-
ture iterations of FCAF . In the case φ ∈ outAφ

∗
(C) ceases to hold during computation,

the algorithm can terminate, since none of the arguments capable to compute the query
solution can be added to C in the future. The following proposition formalizes the rela-
tionship between the operator and the structure of the grounded extension.

Proposition 3. Let C = (S, φ,D), CAFC and GEC be as in Proposition 1. We have,
φ ∈ outGEC

if and only if φ ∈ outAφ
∗
(FCAF (C)) for every C ⊆ GEC.

Finally, the naive algorithm considers arguments for accepting to the candidate solu-
tion in sets, subsets of system layers. Considering arguments for acceptance one by one
would facilitate even earlier detection of hopeless computations and thus further reduc-
tion of run-time costs. It could even consider arguments across strata, however, in that
case, in line with the sceptical inference strategy, the accepted arguments can only use
input variables which are a part of the already stabilised fragment of the database. An
alternative definition of (safe) acceptability of an argumentA a conflict-free configura-
tion C is when all its input variables are i) crisply valued, ii) already derived by C, and
iii) there are no argument outside of C which can potentially threat the valuations of
its input variables. More formally, an argumentA is safely acceptable to a conflict-free
configurationC iff i) there is no x ∈ inA withD|x = ∅, ii) inA ⊆ outC , and iii) there
is no A′ ∈ A \ C, such that inA ∩ outA′ = ∅. Evaluation of this alternative definition
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Algorithm 1. Algorithm computing weak-solutions to a reconfiguration problem
Require: R = (λE ,S , φ) with environment evolution λE = E0, . . . , Ek, . . ., a stratified

system S = (A,D, cost) and a query φ ∈ D

1: C ← ∅; D = D∅

2: loop (start with j = 0)
3: D⊕ ← the next environment update Ej |DE

in

4: (C,D)← CONFIGURE(C,D ⊕D⊕)
5: if φ ∈ outC then inform operator about φ and D|φ
6: end loop (increment j)

7: function CONFIGURE(C,D) 	 returns (Configuration ,Database)
8: C ← C ∩ F ∗

CAF (∅)
9: loop

10: Cacc ← {A ∈ A∗
φ \ C | A is safely acceptable to C}

11: if Cacc = ∅ or φ 
∈ outAφ
∗
(C∪Cacc)

then return (C,D)

12: Amin ← argminA∈Cacc cost(A)
13: D ← Amin(D) if D|inAmin changed since the last execution of Amin

14: if Amin attacks {A′
1, . . . , A

′
k} ⊆ C then

15: C ← C \ {A′
1, . . . , A

′
k} and set all D|x on which Amin attacks some A′

i to ∅
16: else C ← C ∪ {Amin}
17: end loop
18: end function

of acceptability does not require execution of the agent A and thus can be used in the
context of an evolving database, as is the case in METIS.

Algorithm 1 provides a pseudocode for continuous reconfiguration of information-
aggregation systems based on the principles embodied in the above analysis. Upon
every environment update, in a step j, the algorithm tries to compute the minimal so-
lution to the current configuration problem. Either it succeeds and informs the operator
about the query solution, or detects that a solution can’t be computed and proceeds.
Function CONFIGURE computes the grounded extension of the current configuration
problem Ci = (S, φ,D⊕Ei|DE

in) restricted to the arguments relevant to φ and consid-
ers potentially acceptable arguments individually in a greedy manner according to the
cost of their execution.

Given a configuration, without executing the agents, the algorithm strips C of all ar-
guments which might need reconsideration (line 8) due to the last environment update
(line 4), or because they depend on such arguments. Starting from an empty candidate
solution C, in every iteration, the algorithm firstly identifies among the arguments rele-
vant to φ (Proposition 2) those potentially acceptable to C (line 10). Before considering
their execution, it checks whether a solution can still be computed and should this not
be the case, it terminates the procedure. To detect the condition, it exploits the princi-
ples presented in Proposition 3. Further, the algorithm selects the cheapest potentially
acceptable information-processing agentAmin (line 12) and executes it (line 13). In the
case Amin does not attack the current candidate solution C (line 14), it is accepted to
C (line 16). Otherwise, the arguments attacked byAmin were previously accepted to C
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Fig. 3. Ordering of information-aggregation agents as considered by Algorithm 1

prematurely and thus need to be removed. We also need to set the variables on which
they disagree to ∅ so as to ensure that all agents dependent on controversial valuations
will be deemed non-valid in the future iterations (line 8). To further reduce the costs in-
curred by the algorithm, we assume that each agent keeps track of changes to its input,
so the algorithm executes it only in the case its re-execution is really needed (line 13).

Algorithm 1 is greedy, in that it always selects the cheapest agent to accept. Hence,
although the solutions it computes are optimal it does not always incur the minimal
possible run-time cost in terms of the cost of execution of the individual agents. The
optimal strategy of selecting the next agent to execute is most likely application-domain
dependent.

METIS 5 (configuration) Consider the example configuration problem C = (SMETIS ,
isSmuggling , D∅). In order to compute a solution to the problem, assuming that all
the agents produce crisp valuations for their output variables upon their execution, in
subsequent iterations Algorithm 1 would execute the agents as depicted in Figure 3.
Noteworthy, in step 8, the cheapest agent to consider is the TrackAnalyser, but the al-
gorithm is forced to choose the Radar agent as that is the cheapest and, unlike Track-
Analyser, safely acceptable at the same time. For illustration of detection of hopeless-
ness of configuration computation, consider the agent MarineTraffPorts producing an
unknown valuation for portCalls variable in step 7. The algorithm would immediately
detect (line 11) that isSmuggling variable is not computable any more and would stop
the computation.

5 Final Remarks and Outlook

As of spring 2013, the METIS prototype, fragment of which is described here, was
implemented and delivered. Figure 4 provides a screenshot of the operator’s view in
the prototype. It shows several vessels (circular glyphs) in a selected monitored coastal
area with indication of the most likely values of their selected attributes. The pop-up
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Fig. 4. METIS system screenshot. The background map imagery, courtesy of c© 2013 Google,
c© 2013 Aerodata International Surveys, Data SIO, NOAA, U.S. Navy, NGA and GEBCO.

inspection window shows the likelihoods of the vessel satisfying the target indicators,
such as suspicion of a smuggling intent. In the system, the relative size of the vessel
glyph corresponds to the cost of the system configuration instantiated for the vessel.

Above, we introduced a formal framework for modelling information-aggregation
systems, such as METIS, providing a basis for a rigorous formulation of
(re-)configuration problems. We argue that sceptical semantics of argumentation is a
natural fit for modelling such systems and paves the way for further study of their
properties, as well as development of algorithms for their continuous adaptation on a
solid basis of the existing body of research in argumentation theory and logic program-
ming. In our future work we intend to explore these relationships, specifically to study
cost- and information-age-constrained reconfiguration of METIS, as well as the rela-
tionship of the introduced approach to computation of well-founded models for logic
programs [3]. The dynamic nature of the system also invites to study links between
their evolution and standard results from theories of evolving knowledge bases (e.g.,
[9]), logic program updates, belief revision, etc.

Acknowledgements. This work was supported by the Dutch national program COM-
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sibility of the TNO-Embedded Systems Innovation, with Thales Nederland B.V. as the
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Abstract. This paper presents a novel argumentation framework to
support design debates in an IBIS-based style, by providing an auto-
matic evaluation of the positions put forwards in the debates. It also
describes the integration of the proposed approach within the design-
VUE software tool along with two case studies in engineering design and
their initial evaluation by domain experts.
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Engineering design is often described as an information-processing activity based
on problem solving within the constraints of bounded rationality [23,22]. It con-
sists of decomposing an initial problem into a range of sub-problems, proposing
and assessing partial solutions, and integrating them in a way that they satisfy
the overall problem. This process is collaborative and often involves communi-
cation between non co-located engineers. The development and communication
of design solutions require engineers to form and share their rationale, i.e. the
argumentation in favour or against proposed designs.

These aspects of the engineering design process have led to the development
of the Issue Based Information System (IBIS) method [16], a graph-based for-
malisation of the decisions made during a design process along with the reasons
why they were made. The IBIS method envisions a decision-making process
where problems (or issues) are given solutions (or answers) after a thorough de-
bate involving technical, economical, and ethical considerations. It also provides
a means to actively develop, communicate and record the argumentation and
reasoning behind the design process.

Initially, IBIS has been conceived purely as conceptual information system
and its first implementations were paper-based and totally operated by hand.
However, over time several software tools have been developed, which provide a
means to edit and visualise IBIS graphs [6,3]. One such tool is designVUE [1], an
open-source software developed by the Design Engineering Group of the Mechan-
ical Engineering Department at Imperial College London. These tools, including

J. Leite et al. (Eds.): CLIMA XIV, LNAI 8143, pp. 340–356, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.unibs.it
http://www.imperial.ac.uk


An Argumentation-based Approach to Support Design Thinking 341

designVUE, still leave to the users the burden of actually deriving any conclu-
sion from the argumentative process and, eventually, making a decision. This is
a task that, depending on the structure of the graph, may not be trivial.

This paper describes the outcome of a collaborative project, involving experts
of engineering design and argumentation theory, undertaken to overcome the
limitation of standard design tools in general, and designVUE in particular. The
ultimate goal of this project is to support engineers by providing them with an
automated evaluation of alternative design solutions, and quickly identifying the
most promising answer to a design issue, given the underlying graph structure
developed during the design process.

We have singled out argumentation theory as a promising companion to engi-
neering design towards achieving this goal since one of the main features thereof
is evaluating arguments’ acceptability (e.g. as in [10,9]) or strength (e.g. as
in [8,18,17,12]) within debates and dialogues. For this application area, con-
ventional notions of “binary” acceptability (e.g. the notions in [10]), sanctioning
arguments as acceptable or not, are better replaced with notions of numerical
strength, as the latter are more fine-grained and allow to distinguish different
degrees of acceptability.

This paper presents theoretical and practical results from this project. On
the theoretical side, we propose a formal method to assign a numerical score to
the nodes of an IBIS graph, starting from a base score provided by users. On the
practical side, we describe the implementation of this method within designVUE
and its preliminary evaluation in the context of two case studies.

The paper is organised as follows. Section 1 gives the basic notions concerning
IBIS and the necessary background on argumentation theory. Section 2 intro-
duces a form of argumentation frameworks abstracting away IBIS graphs and
Section 3 defines our approach for evalutating quantitatively arguments in these
frameworks. Section 4 describes an implementation of our approach as an exten-
sion of designVUE and Section 5 illustrates its application in two engineering
domains. Section 6 discusses related work and Section 7 concludes.

1 Background

1.1 Issue Based Information System (IBIS)

IBIS [16] is about proposing answers to issues, and assessing them through ar-
guments. At the simplest level, the IBIS method consists of a structure that
can be represented as a directed acyclic graph with four types of node: an issue
node represents a problem being discussed, namely a question in need of an an-
swer; an answer node represents a candidate solution to an issue; a pro-argument
node represents an approval to a given answer or to another argument; a con-
argument node represents an objection to a given answer or to another argument.
An answer node is always linked to an issue node, whereas pro-argument and
con-argument nodes are normally linked to answer nodes or to another argument.
Each link is directed, pointing towards the dependent node.
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Figure 1 shows an example of IBIS graph, with a concrete illustration of the
content of the nodes (labelled A1, A2, P1, C1 and C2) in the design domain
of Internal Combustion Engines (ICE). This example graph has three layers:
the first layer consists of the issue node, the second layer of the two alternative
answers, and the third layer of the arguments.

Fig. 1. A simple IBIS graph

An IBIS graph is constructed according to the following rules: (1) an issue is
captured; (2) answers are laid out and linked to the issue; (3) arguments are laid
out and linked to either the answers or other arguments; (4) further issues may
emerge during the process and be linked to either the answers or the arguments.

Conceptually, each addition of an answer or an argument corresponds to a
move in the exploration of the design space. In the design domain, IBIS graphs
have specific features. First, each IBIS graph concerns a single issue. Second,
answers correspond to alternative solutions and compete among them as just
one answer can be accepted for an issue.

In some implementations of the IBIS method, the four nodes can have alterna-
tive statuses to help users visualise aspects of the decision making process. The
precise meaning of these statuses depends on the node type, and is manually
assigned by the users. For example, a designer may change the status of an an-
swer from “open” to “accepted”, “likely” or “unlikely”. In this paper we define a
method for automatically, rather than manually, evaluating nodes in (restricted
kinds of) IBIS graphs, based on a form of argumentation theory, reviewed next.

1.2 Abstract Argumentation and Argument Valuations

In this work we will make use of Abstract Argumentation [10] and some ex-
tensions thereof. We review these briefly here (see the original papers for more
details).

Definition 1. A (finite) abstract argumentation framework (af) is a pair 〈X ,D〉,
where X is a finite set of arguments and D ⊆ X ×X is the attack (or defeat)
relation. A pair 〈x, y〉 ∈ D is referred to as ‘x is an attacker (or defeater) of y’.
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An af can be described as a directed graph whose nodes represent arguments
and whose edges represent attacks. The nature and underlying structure of the
arguments are completely abstracted away and the focus of the theory is essen-
tially on the management of the conflicts represented by the attack relation. In
this context an (argumentation) semantics is a criterion to identify the exten-
sions of an af, namely those sets of arguments which can “survive the conflict
together”. In turn, the justification status of an argument, according to a given
semantics, can be defined in terms of its membership to the extensions prescribed
by the semantics. A variety of semantics have been considered in the literature,
whose review is beyond the scope of this paper (see [4] for a survey). The only
point we remark is that these semantics evaluate arguments based on a binary
notion of membership and thus give rise to a discrete set of justification sta-
tuses, which may be appropriate when arguments, e.g., are interpreted as logical
sentences in a reasoning process, but may be unsuitable in other contexts.

While afs are focused on conflicts between arguments, other forms of argu-
ments interaction can be considered, in particular a relation of support, which
can be incorporated into afs to give rise to bipolar afs [9]:

Definition 2. A (finite) bipolar af (baf) is a triple 〈X ,D,S〉, where 〈X ,D〉 is
a (finite) af and S⊆X×X is the support relation. A pair 〈x, y〉 ∈ S is referred
to as ‘x is a supporter of y’.

The discrete argument evaluation for afs can be extended to bafs (see [9]).
Another direction of enhancement of afs amounts to assigning a numerical

evaluation to arguments on a continuous scale. We recall here two proposals in
this direction. The first gives a notion of local gradual valuation of a baf, that
can be summarised as follows (see [8] for details):

Definition 3. Let L be a completely ordered set, L∗ be the set of all the finite
sequences of elements of L (including the empty sequence), and Hdef and Hsup

be two ordered sets. Let 〈X ,D,S〉 be a baf. Then, a local gradual valuation on
〈X ,D,S〉 is a function v : X → L such that, for a generic argument a ∈ X ,
given D−(a) = {d1, . . . , dn} the set of attackers of a and S−(a) = {s1, . . . , sp}
the set of supporters of a (for n, p ≥ 0):

v(a) = g(hsup(v(s1), . . . , v(sp)), hdef (v(d1), . . . , v(dn)))
where g : Hsup × Hdef → L is a function with g(x, y) increasing on x and
decreasing on y, and hdef : L∗ → Hdef/hsup : L∗ → Hsup are functions (valuing
the quality of the defeat/support, respectively) satisfying for any x1, . . . , xn, xn+1

(here h = hdef or hsup): (i) if xi ≥ xi′ then h(x1, . . . , xi, . . . , xn) ≥ h(x1, . . . , xi′ ,
. . . , xn); (ii) h(x1, . . . , xn) ≤ h(x1, . . . , xn, xn+1); (iii) h() ≤ h(x1, . . . , xn); (iv)
h(x1, . . . , xn) is bounded by a limit value β.

Note that the local gradual valuation (lgv in the remainder) of an argument
is defined recursively in terms of the valuations of its attackers and supporters.

The second proposal we consider is the Extended Social Abstract Argumenta-
tion approach of [12], taking into account, in addition to attackers and support-
ers, also positive or negative votes on arguments. In a nutshell, the idea is that
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in a social context (like an Internet-based social network or debate) opinions
(arguments) are evaluated by a community of users through a voting process.

Definition 4. An Extended Social AbstractArgumentationFramework (esaaf)
is a 4-tuple 〈X ,D,S,V〉 where 〈X ,D,S〉 is a (finite) baf and V :X →N×N is a
function mapping arguments to the number of their positive and negative votes.

Given an (acyclic) esaaf, argument evaluation is based on votes and on the
attack/support relations. It involves a set of operators (called Semantic Frame-
work) extending the operators of [17], where only attackers were considered:

Definition 5. A semantic framework is a 7-tuple 〈L, τ,∧,∨,¬,2,3〉 where L
is a completely ordered set, τ : N × N → L, ∧ : L × L → L, ∨ : L × L → L,
¬ : L→ L, 2 : L× L→ L, 3 : L× L→ L. Given an esaaf 〈X ,D,S,V〉 and a
semantic framework 〈L, τ,∧,∨,¬,2,3〉, the valuation of argument a ∈ X is:
M+(a) = (τ(a) ∧ ¬ ∨ {M+ai : (ai, a) ∈ D}) 3 (τ(a) 2 ∨{M+ai : (ai, a) ∈ S})
Omitting details, informally, the operator τ evaluates the social support for

each argument a, based on its accumulated positive and negative votes (given
by V), and so assigns an initial score, τ(a), to a. This initial score has no coun-
terpart in lgv seen earlier. Then, as in the case of lgv, the valuation of a is
defined recursively in terms of the valuations of its attackers and supporters.
The individual valuations of the attackers and of the supporters of a are first ag-
gregated using the ∨ operator. Then the aggregated valuations of the attackers
and supporters are combined with τ(a) using the ∧ and ¬ operators and the 2
operator respectively. This results in a pair of values which roughly corresponds
to the pair hsup(v(s1), . . . , v(sp)), hdef (v(d1), . . . , v(dn)) in lgv, the main dif-
ference being the fact that τ(a) can be regarded as an additional parameter of
these functions. Finally, the 3 operator maps the above pair of values in a single
final evaluation (and so clearly corresponds to the function g in lgv).

2 Quantitative Argumentation Debate Frameworks

In section 1.1 we have seen that design scenarios require IBIS graphs with spe-
cific features, and in particular with a single specific (design) issue and answers
(linking to that issue) corresponding to different alternative solutions. Whereas
IBIS graphs (in general and in design contexts) allow new issues to be brought
up during the argumentation, in this paper for simplicity we will disallow this
possibility, and focus on design debates that can be represented by IBIS graphs
where arguments can only be pointed to by other arguments, although argument
nodes may have other argument nodes as children, recursively.

We will define, in Section 3, a method for evaluating arguments and answers in
IBIS graphs, and accompanying or replacing the manual evaluation available in
some IBIS implementations (see Section 1.1). Examining some design scenarios
with the relevant experts (see also Section 5) it emerged that, in their valuations,
they typically ascribe different importance to pro- and con-arguments, which
entails that a base score is required as a starting point for the evaluation. In
order to fulfil these requirements, we propose a formal framework as follows:
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Definition 6. A QuAD (Quantitative Argumentation Debate) framework is a
5-tuple 〈A, C,P ,R,BS〉 such that (for scale I=[0, 1]):

A is a finite set of answer arguments;
C is a finite set of con-arguments;
P is a finite set of pro-arguments;
the sets A, C, and P are pairwise disjoint;
R ⊆ (C ∪ P)× (A ∪ C ∪ P) is an acyclic binary relation;
BS : (A ∪ C ∪ P) → I is a total function; BS(a) is the base score of a.

The framework is referred to as “quantitative” due to the presence of the
base score. Ignoring this base score, clearly QuAD graphs are abstractions of
(restricted forms of) IBIS graphs, with the issue node omitted since QuAD
frameworks are focused on the evaluation of answer nodes for a specific issue. For
example, the QuAD graph representation of the IBIS graph in Figure 1 has A =
{A1, A2}, C = {C1, C2}, P = {P1} and R = {(P1, A1), (C1, A1), (C2, A2)}.

It is easy to see that a QuAD framework can also be interpreted as a baf
(again ignoring the base score), as notions of attack and support are embedded
in the disjoint sets C and P . This is made explicit by the following definition.

Definition 7. Let F = 〈A, C,P ,R,BS〉 be a QuAD framework and let a ∈ (A∪
C∪P). The set of direct attackers of a is defined as R−(a) = {b ∈ C : (b, a) ∈ R}.
The set of direct supporters of a is defined as R+(a) = {b ∈ P : (b, a) ∈ R}.
Then, the baf corresponding to F is 〈X ,D,S〉 such that:
X = A ∪ C ∪ P, D = {(b, a)|b ∈ R−(a), a ∈ X}, S = {(b, a)|b ∈ R+(a), a ∈ X}.

Note that an esaaf equipped with a semantic framework can give rise to
a QuAD framework, with the base score in the QuAD framework given by the
initial score τ in the semantic framework for the esaaf. The semantic framework
includes however a recipe for calculating the initial score of arguments, based on
votes in the esaaf, whereas our QuAD framework assumes that the base score
is given. Indeed, differently from the application contexts envisaged for esaaf,
design debates do not involve large community of users so the notion of a base
score based on votes is not appropriate, rather the base score can be represented
as a numerical value directly assessed by experts.

3 Automatic Evaluation in QuAD Frameworks

Given a QuAD framework, in order to support the decision making process by
design engineers we need a method to assign a quantitative evaluation, called
final score, to answer nodes. To this purpose we investigate the definition of
a score function SF for arguments of a QuAD framework. The basic idea is
that the final score of an argument depends on its base score and on the final
scores of its attackers and supporters, so SF is defined recursively using a score
operator able to combine these three elements. For a generic argument a, let
(a1, . . . , an) be an arbitrary permutation of the (n ≥ 0) attackers in R−(a). We
denote as SC(R−(a)) = (SF(a1), . . . ,SF(an)) the corresponding sequence of
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final scores. Similarly, letting (b1, . . . , bm) be an arbitrary permutation of the
(m ≥ 0) supporters in R+(a), we denote as SC(R+(a)) = (SF(b1), . . . ,SF(bm))
the corresponding sequence of final scores. Then, using the hypothesis (implic-
itly adopted both in [8] and [12]) of separability of the evaluations concerning
attackers and supporters,1 a generic score function for an argument a can be
defined as:

SF(a) = g(BS(a),Fatt(BS(a),SC(R−(a))),Fsupp(BS(a),SC(R+(a)))) (1)

Referring to the example of Figure 1, suppose that BS(A1) = BS(A2) = 0.5,
BS(C1) = 0.7, BS(C2) = 0.4, BS(P1) = 0.9. Then, denoting the empty se-
quence as (), we obtain

SF(A1) = g(0.5,Fatt(0.5,SC((C1))),Fsupp(0.5,SC((P1))));
SF(A2) = g(0.5,Fatt(0.5,SC((C2))),Fsupp(0.5, ());
SF(C1) = g(0.7, (), ()); SF(C2) = g(0.4, (), ()); SF(P1) = g(0.9, (), ()).

We identify some basic requirements for the score function. First, if there are
neither attackers nor supporters for an argument then its final evaluation must
coincide with the base score (in our running example this applies to arguments
C1, C2, and P1). For any v0 ∈ I, this requirement can be expressed as

g(v0, (), ()) = v0. (2)

Moreover, each attacker (supporter) should have a negative or null (positive
or null, respectively) effect on the final scores. Given a generic sequence S =
(s1, . . . , sk) ∈ Ik and v ∈ I, let us denote as S ∪ (v) the sequence (s1, . . . , sk, v) ∈
Ik+1. The above requirements can then be expressed, for sequences S1, S2, as

g(v0,Fatt(S1),Fsupp(S2)) ≥ g(v0,Fatt(S1 ∪ (v)),Fsupp(S2)) (3)

g(v0,Fatt(S1),Fsupp(S2)) ≤ g(v0,Fatt(S1),Fsupp(S2 ∪ (v))) (4)

We define Fatt (and dually Fsupp) so that the contribution of an attacker
(supporter) to the score of an argument decreases (increases) the argument score
by an amount proportional both to (i) the score of the attacker (supporter),
i.e. a strong attacker (supporter) has more effect than a weaker one, and (ii)
to the previous score of the argument itself, i.e. an already strong argument
benefits quantitatively less from a support than a weak one and an already
weak argument suffers quantitatively less from an attack than a stronger one.
Focusing on the case of a single attacker (supporter) with score v this leads to
the following base expressions:2

fatt(v0, v) = v0 − v0 · v = v0 · (1− v) (5)

fsupp(v0, v) = v0 + (1− v0) · v = v0 + v − v0 · v (6)

1 Here, separability amounts to absence of interaction between attackers and sup-
porters.

2 The expression of fsupp corresponds to the T-conorm operator also referred to as
probabilistic sum in the literature [15].
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The definitions of Fatt and Fsupp have then the same recursive form. Let ∗
stand for either att or supp. Then:

F∗(v0, ()) = v0 (7)

F∗(v0, (v)) = f∗(v0, v) (8)

F∗(v0, (v1, . . . , vn)) = f∗(F∗(v0, (v1, . . . , vn−1)), vn) (9)

Note that this definition directly entails that Fatt(v0, S) ≥ Fatt(v0, S ∪ (v))
and Fsupp(v0, S) ≤ Fsupp(v0, S ∪ (v)). In our running example, we get

Fatt(0.5,SC((C1))) = Fatt(0.5, (0.7)) = fatt(0.5, 0.7) = 0.15,
Fsupp(0.5,SC((P1))) = Fsupp(0.5, (0.9)) = fsupp(0.5, 0.9) = 0.95,
Fatt(0.5,SC((C2))) = Fatt(0.5, (0.4)) = fatt(0.5, 0.4) = 0.3, and
Fsupp(0.5, ()) = 0.5.

We now establish some basic properties of Fatt and Fsupp. First, they return
values in I = [0, 1], as required:

Proposition 1. For any v0 ∈ I and for any sequence (v1, . . . , vk) ∈ Ik, k ≥ 0,
Fatt(v0, (v1, . . . , vk)) ∈ I and Fsupp(v0, (v1, . . . , vk)) ∈ I.

Proof. By induction on k. For the base case, trivially the statement holds for
k = 0 (empty sequence) and k = 1 given the definitions of fatt and fsupp.
Assume that the statement holds for a generic sequence of length k − 1, i.e.
Fatt(v0, (v1, . . . , vk−1)) = vx ∈ I then, from (9), Fatt(v0, (v1, . . . , vk)) =
fatt(vx, vk). Similarly, letting Fsupp(v0, (v1, . . . , vk−1)) = vy ∈ I we get
Fsupp(v0, (v1, . . . , vk)) = fsupp(vy, vk). Then, again the statement holds by defi-
nition of fatt and fsupp.

Then, it is of course required that Fatt and Fsupp produce the same result for
any permutation of the same sequence.

Proposition 2. For any v0 ∈ I and (v1, . . . , vk) ∈ Ik, k ≥ 0, let (v1i , . . . , vki)
be an arbitrary permutation of (v1, . . . , vk). It holds that Fatt(v0, (v1, . . . , vk)) =
Fatt(v0, (v1i , . . . , vki)) and Fsupp(v0, (v1, . . . , vk)) = Fsupp(v0, (v1i , . . . , vki)).

Proof. Fatt(v0, (v1, . . . , vk)) = fatt(fatt(. . . fatt(v0, v1) . . .), vk−1), vk) = (((v0 ·
(1−v1)) ·(1−v2)) . . . ·(1−vk)) = v0 ·

∏k
i=1(1−vi). Thus the statement follows di-

rectly from commutativity and associativity of the product of the (1−vi) factors.
As to Fsupp, Fsupp(v0, (v1, . . . , vk)) = fsupp(fsupp(. . . fsupp(v0, v1) . . .), vk−1), vk),
the statement follows from the well-known properties of commutativity and as-
sociativity of any T-conorm.

Another desirable property of Fatt and Fsupp is a sort of monotonic behavior
with respect to the increasing score of attackers and supporters respectively.

Proposition 3. For any v0 ∈ I and for any S = (v1, . . . , vh, . . . , vk) ∈ Ik, k ≥ 1,
1 ≤ h ≤ k, let S+ be a sequence obtained from S by replacing vh with some
vl > vh. Then Fatt(v0, S) ≥ Fatt(v0, S

+) and Fsupp(v0, S) ≤ Fsupp(v0, S
+).
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Proof. As to Fatt given that for a generic sequence Fatt(v0, (v1, . . . , vk)) =

v0 ·
∏k

i=1(1 − vi), we observe that Fatt(v0, S
+) = Fatt(v0, S) · 1−vl

1−vh
and the

statement follows from 0 ≤ 1 − vl < 1 − vh. As to Fsupp, from commutativity
and associativity of fsupp, letting S

∗ = (v1, . . . , vh−1, vh+1, . . . , vk) ∈ Ik−1, we get
Fsupp(v0, S)=fsupp(Fsupp(v0, S

∗), vh) and Fsupp(v0, S
+)=fsupp(Fsupp(v0, S

∗), vl)
and the statement follows from the well-known monotonicity of T-conorms.

In order to finalise the definition of score function we need to define g. For
this we adopted the idea that when the effect of attackers is null (i.e. the base
score is left unchanged as far as attackers are concerned) the final score must
coincide with the one established on the basis of supporters, and dually when
the effect of supporters is null. Clearly, when both are null the final score must
coincide with the base score. When both attackers and supporters have an effect,
the final score is obtained averaging the two contributions. Formally:

Definition 8. The operator g : I× I× I → I is defined as follows:

g(v0, va, vs) = vaif vs = v0 (10)

g(v0, va, vs) = vsif va = v0 (11)

g(v0, va, vs) =
(va + vs)

2
otherwise (12)

Then, the following result directly follows from Propositions 1–3:

Proposition 4. The score function SF(a) defined by equations (1), (7), (8)
and (9) and by Definition 8 satifies properties (2), (3), and (4).

For our running example, we get SF(A1) = g(0.5, 0.15, 0.95) = 0.55 and
SF(A2) = g(0.5, 0.3, 0.5) = 0.3.

Note that, by definition of our operator g, the addition of an attack (support)
for an argument previously not attacked (supported, respectively) gives rise to
a discontinuity. This in a sense reflects a discontinuity in the underlying debate.
Whether this behaviour is suitable in all contexts is an open question, and the
definition of different forms of SF without this discontinuity is an importnat
direction for future work.

On the computational side, given that in a QuAD framework the relation R
is acyclic, evaluating SF for answers nodes (in fact, for any node) is quite easy:
given an argument a to be evaluated the score function is invoked recursively
on its attackers and supporters to obtain SC(R−(a)) and SC(R+(a)) which are
finally fed to the SF operator along with the base score BS(a). The recursion
is well-founded given the acyclicity of R, the base being provided by nodes with
neither attackers nor supporters whose final score coincides with their base score.

4 Implementation in designVUE

The proposed approach has been implemented within a pre-existing IBIS ap-
plication known as design Visual Understanding Environment (designVUE) [1].



An Argumentation-based Approach to Support Design Thinking 349

designVUE has been chosen as a platform for the implementation of the pro-
posed approach for various reasons: it is open-source; it has been developed by
the Design Engineering Group at Imperial College London; it is receiving in-
creasing interest from academia and industry and as a result has a growing user
community. In the following paragraphs we describe in more detail designVUE
and its extension with the QuAD framework.

designVUE is an application developed using Java to attain cross-platform
portability. Its GUI consists primarily of a main window, which contains the
menu bar, the toolbar and the graph canvas.

The main purpose of designVUE is to draw graphs (also referred to as dia-
grams and maps) mostly consisting of nodes (depicted as boxes) and links (de-
picted as arrows) among them. The programme does not impose any restriction
on the way a graph can be drawn. It is up to the user to confer any meaning
to a graph. Among the large variety of graphs that can be drawn, designVUE
supports IBIS graphs. These have no special treatment in designVUE and, in
particular, there is no support to the evaluation of the argumentative process.
In addition to the main window, there are floating windows that can be opened
from the Windows menu. One of these, called Info Window, presents information
about the currently selected node.

The QuAD framework has been implemented in Java and integrated into a
customised version of designVUE, forking its existing codebase. The additions
and modifications brought to designVUE fit broadly in two categories: those
related to the GUI; and those concerning the implementation of the score as-
signment method. As for the GUI:

– a new pane called BaseScore Pane has been added to the Info Window : it
displays the base score of the currently selected IBIS node and allows the
user to edit it (base scores are created with a default value of 0.5);

– a new pane called Score Pane has been added to Info Window : it displays
the final score of the currently selected IBIS node;

– a new menu item labeled Compute Argumentation on IBIS node has been
added to the Content menu: it can be invoked only after selecting an IBIS
answer node and triggers the score computation for the selected node (and
for all the nodes on which it depends).

As to the algorithm to compute final scores, it has been implemented in a Java
class, which basically carries out a depth-first post-order traversal, which acts
directly onto the IBIS nodes displayed in the canvas. To enhance performances
in complex graphs where some pro and/or con arguments affect many other
arguments, the algorithm implements a so-called closed list in order to reuse the
scores already computed in previous phases of the graph traversal.

5 Case Studies

The enhanced version of designVUE was evaluated through two case studies.
The first, in the domain of civil engineering, concerns the choice of foundations
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for a multi-storey building to be developed on a brownfield. The second, in the
domain of water engineering, focuses on the choice of a reuse technology for
sludge produced by wastewater treatment plants.

The first case study was developed in collaboration with a civil engineer with
more than ten years of experience in the industry, who was already familiar
with the IBIS concept having used it through the Compendium software [6].
Differently, the second case study was developed together with an expert at the
University of Brescia, who had neither previous knowledge of the IBIS concept,
nor of any tool implementing it.

5.1 Foundations

This case study is based on a design task, which was selected to satisfy the
following criteria: the design problem had to be well known to the industry;
and the problem solving process had to rely on the application of known and
established solution principles. On this basis the task presented in this case
study can be considered to be at the boundary between adaptive and variant
design [19]. The reason for choosing this type of design task is to adopt a walk
before you run approach to evaluation.

The case is based on real project experience of the collaborating engineer.
However, it was not developed during the actual design process but rather re-
constructed retrospectively. Prior to the development of the case, the engineer
was introduced to the enhanced version of designVUE and instructed to use it
including inputting values for the base scores.

As mentioned earlier, the design problem focuses on the selection of the most
appropriate type of foundation for a multi-storey building in a brownfield area.
This is the part of urban planning concerning the re-use of abandoned or under-
used industrial and commercial facilities. When considering the choice of building
foundations in brownfield sites, multiple alternatives are common and multiple
considerations have to be made starting from the different kinds of ground and
their load bearing capabilities, which are usually different than in greenfield sites.

The starting point of the IBIS graph developed by the engineer is the issue
to choose a suitable foundation given the requirements discussed earlier (see
Figure 2). Three types of foundation solutions are considered, namely Pad, Raft
and Piles, and these are subsequently evaluated using several pro- and con-
arguments. After the development of the IBIS graph the engineer executed the
score computation on the three solutions under two situations: 1) using default
values for the base scores; and 2) using modified values for the base scores.
The modified values for the base scores emerged through a three step process
involving extraction of the criteria behind each argument (see text in bracket at
the bottom of each argument in Figure 2), analysis of the relative importance
of the criteria in the context of the selected design task, and assignment of a
numerical value between 0 and 1 to each criteria.

The results for the situation with unchanged values indicate that Pad (0.51)
is the preferred solution over Raft (0.49) and Piles (0.44). Differently, the results
for the situation in which the values were changed suggest that Piles (0.56) is
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sligthly preferable to Raft (0.55) and considerably preferable to Pad (0.41). As it
can be seen, the three alternatives are ranked exactly in the reverse order. Only
the results based on the modified values for the base scores were judged by the
expert consistent with his conclusions.

On one hand this confirms the importance of weighting pro- and con-arguments
with expert-provided base scores in order to get meaningful results. On the other
hand, it shows that a purely graphical representation of the pros and cons is typ-
ically insufficient to give an account of the reasons underlying the final choice
by the experts. In this sense, representing and managing explicitly quantitative
valuations enhances transparency and accountability of the decision process.

Fig. 2. designVUE graph of the foundation project debate. Note that in designVUE
the answer node has multiple statuses. In agreement with the automatic evaluation,
the status for the Pad and Raft foundation answers has been manually changed to
’rejected’ (red crossed out light bulb icon), while that for the Piles foundation answer
to ’accepted’ (green light bulb icon).

5.2 Sludge Reuse

Sewage sludge is produced from the treatment of wastewater. Its traditional
reuse option (alternative to landfill disposal) had been land application (due
to its content of organic carbon and nutrients). Actually, reuse in agriculture
is subject to restrictions (since the sludge also contains pollutants), so that
other disposal routes, such as wet oxidation, reuse in the cement industry or
energy recovery by combustion are considered as viable alternatives. The choice
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of the best alternative depends on technical (feasibility, applicability, reliability),
economic, environmental and social factors whose importance varies from site to
site. In this context, the use of the enhanced version of designVUE was proposed
to an environmental engineering expert, who had no previous experience with
any IBIS support tool.

As a first step, the expert provided a qualitative valuation scheme in tabular
form that has been translated into a designVUE graph. Then the expert was
asked to assign weights to the pro and con arguments associated with the differ-
ent options and to compare the system’s evaluation of the alternatives with his
own one. As for the first request, the expert was able to assign weights to the pro
and con arguments associated with each technology without particular problems.
As to the second request, he observed that in this context technical experts are
not in charge of the final decision since environment related projects are sub-
jected to the approval of public officers or committees, who, taking into account
context-specific aspects (e.g. social issues), may ascribe different importance to
the technical considerations formulated by the expert. To properly represent this
two-phase decision process within designVUE the expert suggested the use of a
graph with a characteristic 2-tier structure (see figure 3), where:

Fig. 3. designVUE graph for the second phase of the sludge reuse project debate. Note
that the four answers are in the ’open’ status (blue light bulb icon) as a decision has
not been made yet.

– the first tier takes into account the technical strengths and weaknesses of
every single alternative. These are the pro and con arguments directly linked
with the answers, whose base scores are provided by domain experts.

– The second tier involves the final decision-makers and consists of pro argu-
ments attached to the pros and cons expressed by the expert. By assigning
the base scores to the arguments of the second tier, the decision-makers
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modulate the actual influence of first tier arguments according to context
specific considerations. The structure of the 2-tier graph is defined so as to
ensure that the same factor gets the same weight in the assessment of all
alternatives.

Following this line, designVUE can be used to support a multistep method-
ology taking explicitly into account different classes of stakeholders. While the
study of this methodology is left to future work, the expert expressed a positive
judgment about the tool, with particular appreciation for the intuitive visual
representation and the traceability of the reasons underlying the final decisions.

6 Related Work

In engineering design, various methods are used to support the evaluation of
design alternatives, e.g. decision-matrix [20] and analytic hierarchy process [21].
Among these, the decision-matrix, also known as Pugh method, is the simplest
and most commonly adopted. It consists of ranking alternatives by identifying
a set of evaluation criteria, weighting their importance, scoring the alternatives
against each criteria, multiplying the scores by the weight, and computing the
total score for each alternative. Our work differs from the Pugh method in that it
aims to extract a quantitative evaluation of alternatives from rich and explicitly
captured argumentation rather than systematically assigned and justified scores.
Hence, it seems to have the potential to lead to more logically reasoned decisions.

Turning to argumentation literature, the idea of providing a quantitative eval-
uation of a given position on the basis of arguments in favor and against has
been considered in several works.

In [5], in the context of a logic-based approach to argumentation, an argument
structure for a logical formula α is (omitting some details) a collection of reasons
supporting (¬)α. Each reason is represented as an argument tree, whose root is
an argument for (¬)α and where the children of an argument node are attackers
of the node itself. Each argument tree is quantitatively evaluated using a cate-
goriser. The results of the evaluation of argument trees for (¬)α are aggregated
separately using an accumulator function and then combined. Though this work
shows several similarities with our approach at a generic level, we point out some
important differences. In [5] the evaluation concerns logical formulas rather than
arguments, arguments can only attack (not support) each other, while the notion
of support for a formula coincides with the (defeasible) derivation of the formula.
Then, differently from our approach, the recursive procedure corresponding to
the categoriser concerns attacks only and the notion of support plays a role only
in the accumulator. Also, in [5] there is no notion of base score.

The gradual valuation of bafs [8] (see Section 1.2) is closer to our pro-
posal. In fact, the generic valuation function v of bafs (see Definition 3) has
a similar structure to our SF , with hsup, hdef corresponding to our SC(R+(a)),
SC(R−(a)) respectively and satisfying analogous properties. A basic difference
concerns the base score, absent in [8] and crucial in our application domain.
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The esaaf approach of [12] (see Section 1.2) has more similarities, as it en-
compasses an initial score for arguments (obtained from votes) and a recursive
evaluation mechanism similar to ours. In fact, the treatment we propose for at-
tackers coincides with the one proposed in [12], while our proposal differs in the
treatment of supporters: in [12] supporters are treated as a sort of “negative
attacks”, while in our approach supporters contribute to increase the base score
specularly to the way attackers contribute to decrease it. As a consequence, in
esaaf the operator 2 for the combination of the initial score with the aggre-
gation of supporters’ valuations includes the min operator to prevent that the
combination exceeds the limit value of 1. This means that the contribution of
supporters is subject to a saturation which may be undesirable in some cases.

The approach of [13] also features significant similarities with our proposal. In
fact the notion of real equational network introduced in [13] uses an evaluation
function f(a) from the set of arguments to [0, 1] which is defined recursively, for
an argument a, as f(a) = ha(f(a1), . . . , f(ak)) where a1, . . . , ak are the attackers
of a. [13] explores several alternatives for the function f with unrestricted graph
topology (in the presence of cycles the solution is a fixed point of f) but no
notion of base argument score is considered. Note that, assuming a fixed initial
score of 1 for any argument, our Fatt coincides with the function called Eqinverse
in [13]. [13] considers also the presence of a support relation, but treated as a
potential “vehicle” for attacks, in the sense that if an argument a supports
another argument b, an attacker of a is also considered as an (indirect) attacker
of b and contributes to decreasing its score. On the other hand a supporting
argument cannot increase the score of the supported argument. This view is
coherent with the absence of a base score and is clearly alternative to ours.

Other approaches to quantitative valuation have been proposed in the context of
Dung’s abstract argumentationwhere only the attack relation is encompassed. For
example, [18] proposes a game-theoretic approach to evaluate argument strength
in abstract argumentation frameworks. In a nutshell, the strength of an argument x
is the value of a game of argumentation strategy played by the proponent of x. The
approach does not encompass a support relations nor base scores: extending this
game-theoretic perspective with these notions appears to be a significant direction
of future investigation. Also, in weighted argumentation frameworks [11], real val-
ued weights are assigned to attacks (rather than to arguments). These weights are
not meant to be a basis for scoring arguments, rather they represent the “amount
of inconsistency” carried by an attack. This use of weights is clearly different from
ours and, in a sense, complementary. Investigating a combination of these two
kinds of valuations (possibly considering also weights for support links) is a
further interesting direction of future work.

Our system extends an existing IBIS-based tool, designVUE, already used
in the engineering domain and in particular familiar to some of the experts
responsible for our case studies. Other IBIS-based system exist in the literature.
For example, Cohere and Compendium [7,6] adopt an IBIS methodology to
support design rationale in collaborative settings. However, these systems do
not incorporate means to automatically evaluate debates. Other examples are
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the Carneades [14] and the PARMENIDES [2] systems. These adopt a more
articulate model of debate as they use argument schemes and critical questions
as basic building blocks of the argumentation process. However, they do not
incorporate a numerical evaluation of positions in debates. The extension of
these other systems to take advantage of our scoring methodology is a possible
direction of future work.

7 Conclusions

We presented a novel argumentation-based formal framework for quantitative
assessment of design alternatives, its implementation in the designVUE software
tool, and its preliminary experimentation in two case studies. Several directions
of future work can be considered. On the theoretical side, a more extensive
analysis of the properties of the proposed score function is under way, along
with the study of alternative score functions exhibiting a different behavior (e.g.
concerning the effect of attacks and supports and their balance) while satisfying
the same basic requirements. On the implementation side, we plan to integrate
the QuAD framework in the web-based debate system www.quaestio-it.com

so to gain experience on its acceptability by users in other domains. On the
experimentation side, the development of further engineering design case studies
(more complex and in other domains) is under way and we intend to carry out a
detailed on field comparison with more traditional approaches to the evaluation
of design alternatives.
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Abstract. This paper explores the idea that IT security risk assessment can be
formalized as an argumentation game in which assessors argue about how the
system can be attacked by a threat agent and defended by the assessors. A system
architecture plus assumptions about the environment is specified as an ASPIC+

argumentation theory, and an argument game is defined for exchanging arguments
between assessors and hypothetical threat agents about whether the specification
satisfies a given security requirement. Satisfaction is always partial and involves a
risk assessment of the assessors. The game is dynamic in that the players can both
add elements to and delete elements from the architecture specification. The game
is shown to respect the underlying argumentation logic in that for any logically
completed game ‘won’ by the defender, the security requirement is a justified
conclusion from the architecture specification at that stage of the game.

1 Introduction and Motivation

This paper explores the idea that IT security risk assessment can be formalized as an
argumentation game in which assessors alternate between playing the role of defenders
and attackers of the system, arguing how the system can be defended and attacked,
respectively. Our long-term goal is that such a formalization is used to develop tool
support for human assessors during a risk assessment, to keep track of the arguments for
and against a security architecture. Two characteristics of IT security risk assessment
(RA) as it happens in practice are that the time available for doing the assessment is
limited, and that the resources of the defender to protect a system, and of the attacker to
attack the system, are limited too. Assessors have limited, qualitative information about
the system, its vulnerabilities, and threats. In addition, malice and accident have to be
taken into account [5]. As a consequence, the information involved in risk assessments
is highly defeasible and cannot be easily quantified, which motivates an argumentation
approach to RA instead of, for example, Bayesian or model-checking approaches.

Some current risk assessment frameworks also provide tool support for security dis-
cussions, but they are mostly geared toward communication between the stakeholders
and the risk analysts or towards dissemination of the results of the risk assessments.
One example is the CORAS tool [8], which uses UML-based diagrams on top of which
several kinds of elements and relationships are defined as to allow a visual representa-
tion of the risk assessment. Their “risk diagrams” and “treatment diagrams” describe
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the possible attacks and mitigations that were discussed during the assessment. We ulti-
mately also want to provide support for the process of RA, to keep track not only of the
final output of an RA but also of the assumptions and design decisions that were made
during the assessment. Another reason for supporting the process of RA is the limited
time and resources available for the risk assessors. This puts constraints on the assess-
ment process that call for efficient and effective assessment. For this reason we take a
dialogue game approach, since dialogue systems for argumentation are recognised in
the literature as a way to promote effective and efficient debate [7].

We also want to contribute to the literature by taking a formal but non-quantative
approach. Current RA practice is fully informal and uses checklists to assess threats
to a system. Current formalizations assume quantitative information, an assumption
that is often not warranted. The only approach that uses argumentation, uses Toulmin
argument diagrams and is still informal [4, 5]. By formalising the RA argumentation
process in state-of the-art AI formalisms, we aim to give a precise semantics to the use
of argumentation in RA and to make well-founded computational tools available for the
support of the RA process.

In more detail, our idea is that an RA game starts with a defeasible argument by
the defenders that the current system architecture is sufficient to guard against attacks;
the argument is defeasible because it will make assumptions about the vulnerability of
some system components and about capabilities, resources or risk appetite of attackers.
In an attacker round, the (assessors playing the role of) attackers defeat some arguments
of the (assessors playing the role of) defenders by attacking the defenders’ assumptions,
rebutting defeasible conclusions or by undercutting a defeasible inference made by the
defender. After an attacker round, the architecture of the system may be changed by the
defender to falsify some assumptions made by the attacker, and they may change their
assumptions about the attackers. Then they will play the defender round again with the
new system architecture, by renewing their argument for the security of the system.
The renewed argument is still defeasible, for the same reasons as indicated above. The
new argument may even contain parts of their old argument that have been undermined,
undercut or rebutted by the attacker. This depends on the defenders’ risk assessment and
risk appetite. If there is time left, more attacker rounds, redesigns and defender’s rounds
are played. The game ends when time is up, and the goal is to end it in a state where
the defenders estimate the arguments of the defense stronger than the arguments of the
attackers, given the defender’s assumptions about the environment and risk appetite.

Our primary goal in this paper is to test the feasibility of the idea of modelling risk
assessment as an argumentation game by giving a first formalization. A special feature
of our argumentation game is that the arguments are not simply constructed from a
given theory, but that the theory is itself dynamically constructed during the RA: the
players can add new elements to the theory (such as descriptions of system elements,
preferences or assumptions about the environment) and they can also delete or change
elements from the theory (for example, if the system specification has to be changed
because of an attack that exposes a risk). This is what risk assessors do in practice and
our game can therefore not just be a logical argument game for testing the acceptability
status of an argument in a given information state, but must allow for changes in the
information state. This is another reason why we take a dialogue game approach to
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RA, since dialogue games allow for such dynamics. The logical part of the game will
be an instantiation of the ASPIC+ framework of [11, 15]. This choice is in order to
profit from the logical consistency and closure properties of ASPIC+ and since the
application requires explicit preferences and defeasible rules. The dialogical part of our
game combines the framework of [13, 14] with some new elements.

In Section 2 we present the logical background, in the form of an instantiation of
the ASPIC+ framework. In Section 3 we sketch how this instantiation can be used to
specify an architecture and to express security risk assessment arguments. In Section 4
we present our formal dialogue game and prove a correspondence property with the
underlying logic. In Section 5 we illustrate the game with an example, and we conclude
with a discussion of related work and future research.

2 The Formal Setting

An abstract argumentation framework (AF ) is a pair 〈A, defeat 〉, where A is a set
arguments and defeat ⊆ A × A is a binary relation. The theory of AFs then addresses
how sets of arguments (called extensions) can be identified which are internally coherent
and defend themselves against defeat. A key notion here is that of an argument being
acceptable with respect to, or defended by a set of arguments: A ∈ A is defended by
S ⊆ A if for all A ∈ S: if B ∈ A attacks A, then some C ∈ S attacksB. Then relative
to a givenAF various types of extensions can be defined. In this paper we focus on the
grounded extension, which is defined as follows :

– E ⊆ A is the grounded extension if E is the least fixpoint of operator F , where
F (S) returns all arguments defended by S.

A proof procedure in the form of a logical argument game between a proponent and an
opponent can be used to test whether a given argument is in the grounded extension.
Informally, the proponent starts a game with the argument to be tested and then the
players take turns, trying to defeat the previous move of the other player. In doing so,
the proponent must strictly defeat the opponent’s arguments. A game is terminated if
the player to move has no arguments to play and a game is won by the player who
moves last. Then an argument is proven to be justified if the proponent has a winning
strategy for it, that is, if he can make the opponent run out of moves whatever choice
the opponent makes. A winning strategy is in fact a tree with as root the argument to
be tested and then at even depth all defeaters of the parent node while at odd depth one
strict defeater of the parent node.

Our reason for using grounded semantics is that we want to build a logical argument
game into our dialogue game for argumentation, since this is a natural way to make the
outcome of an argumentation dialogue agree with the underlying logic. Since we ulti-
mately intend to provide support tools for human risk assessors, the tool must be simple
and intuitive, and grounded semantics has, as just explained, a particularly simple and
intuitive logical argument game. However, in our future research we want to investigate
generalisation to other semantics.

ASPIC+ [11, 15] is a general framework for structured argumentation. It defines
the notion of an argumentation system, which consists of a logical language L with
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a binary contrariness relation − and two sets of inference rules Rs and Rd of strict
and defeasible inference rules defined over L, written as ϕ1, . . . , ϕn → ϕ and ϕ1, . . . ,
ϕn ⇒ ϕ. Informally, that an inference rule is strict means that if its antecedents are
accepted, then its consequent must be accepted no matter what, while that an inference
rule is defeasible means that if its antecedents are accepted, then its consequent must
be accepted if there are no good reasons not to accept it. An argumentation system
also contains a function n which for each defeasible rule in Rd returns a formula in L.
Informally, n(r) ∈ L expresses that r ∈ R is applicable.

In the present paper we assume argumentation systems in which L consists of first-
order predicate-logic literals (i.e., atomic formulas or their negation) and its contrari-
ness relation corresponds to classical negation, and in which the n function should be
obvious from the examples.

ASPIC+ arguments chain applications of the inference rules from AS into inference
trees, starting with elements from a knowledge base K. In this paper we assume that all
premises are so-called axiom premises, that is, they are not attackable. In what follows,
for any argumentA, Prem returns all the formulas ofK (premises) used to buildA, Conc
returns A’s conclusion, Sub returns all of A’s sub-arguments, Rules and DefRules

respectively return all rules and all defeasible rules in A, and TopRule(A) returns the
last rule applied in A.

Definition 1. An ASPIC+argument A on the basis of a knowledge base K in an argu-
mentation system (L,−,R, n) is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; Rules(A) = ∅;
TopRule(A) = undefined.

2. A1, . . . An →/⇒ ψ if A1, . . . , An are finite arguments such that there exists a
strict/defeasible rule Conc(A1), . . . , Conc(An) →/⇒ ψ in Rs/Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An), Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An) ∪ {Conc(A1), . . . , Conc(An) →/⇒
ψ},
DefRules(A) = {r|r ∈ Rules(A), r ∈ Rd},
TopRule(A) = Conc(A1), . . . Conc(An) →/⇒ ψ

An argument A is strict if DefRules(A) = ∅ and defeasible if DefRules(A) = ∅.

Example 1. Consider a knowledge base in an argumentation system with

Rs = {p, q → s; u, v → w}, Rd = {p⇒ t; s, r, t⇒ v}
K = {q, p, r, u}

An argument for w and its subarguments are written as follows:

A1: p A2: q A5: A1 ⇒ t A6: A1, A2 → s
A3: r A4: u A7: A5, A3, A6 ⇒ v A8: A7, A4 → w

We have that

Prem(A8) = {p, q, r, u}; Conc(A8) = w
Sub(A8) = {A1, A2, A3, A4, A5, A6, A7, A8}
DefRules(A8) = {p⇒ t; s, r, t⇒ v}; TopRule(A8) = v, u→ w
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An argumentation system and a knowledge base are combined with an argument
ordering into an argumentation theory. The argument ordering could be defined in any
way. In this paper we assume a so-called last-link ordering defined in terms of a total
preorder on Rd. Informally, the last-link ordering compares arguments on their last-
used defeasible rules. For the formal definition see [11].

Definition 2. [Argumentation theories] An argumentation theory is a triple AT =
(AS ,K,$) where AS is an argumentation system, K is a knowledge base in AS and
$ is the last-link ordering in the sense of [11] on the set of all arguments that can
be constructed on the basis of K in AS , assuming a total preordering ≤ on Rd. That
A $ B means thatB is at least as preferred as A. The symbols ≺,< and ≈ are defined
as usual. All this is likewise for ≤.

In the present instantiation of ASPIC+ arguments can be attacked in two ways: by
attacking a conclusion of a defeasible inference (rebutting attack) or by attacking the
defeasible inference itself (undercutting attack). To define how a defeasible inference
can be attacked, the function n of an AS can be used, which assigns to each element
of Rd a well-formed formula in L. Recall that informally, n(r) (where r ∈ Rd) means
that r is applicable.1

Definition 3. [attacks] A attacks B iff A undercuts or rebuts B, where:

– A undercuts argument B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B)
such that B′’s top rule r is defeasible.

– A rebuts argumentB (onB′) iff Conc(A) = −ϕ for someB′ ∈ Sub(B) of the form
B′′

1 , . . . , B
′′
n ⇒ ϕ.

Example 2. In Example 1 argumentA8 can be (indirectly) rebutted on its subargument
A5 with an argument for ¬t and on its subargument A7 with an argument for ¬v, be-
cause bothA5 andA7 have a defeasible top rule. Whether these rebuttals are symmetric
depends on whether the rebutting arguments use a strict or defeasible top rule. If the ar-
gument for ¬t uses a defeasible top rule, then it is in turn rebutted byA5; likewise, if the
argument for ¬v uses a defeasible top rule, then it is in turn rebutted by A7. However,
A8 itself does not rebut these arguments for ¬t and ¬v. Note that a direct rebuttal ofA5

indirectly rebuts not just A8 but also A7. Note also that A8 cannot be rebutted (on A8)
with an argument for ¬w or (on A2) with an argument for ¬s, since both A2 and A8

have a strict top rule. For the same reasonA8 cannot be undercut onA2 orA8. It can be
undercut, however, on its subarguments A5 and A7, with arguments for, respectively,
the conclusions ¬n(p⇒ t) and ¬n(s, r, t⇒ v). Again, an undercutter ofA5 indirectly
undercuts not just A8 but also A7.

Attacks combined with the preferences defined by an argument ordering yield two kinds
of defeat.

Definition 4. [Successful rebuttal and defeat]

– A successfully rebuts B if A rebuts B on B′ and A ≺ B′.

1 Henceforth −¬ϕ denotes ϕ, while if ϕ does not start with a negation, −ϕ denotes ¬ϕ.
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– A defeats B iff A undercuts or successfully rebuts B.

The success of rebutting attacks thus involves comparing the conflicting arguments at
the points where they conflict. For undercutting attack no preferences are needed to
make it succeed, since undercutters state exceptions to the rule they attack.

ASPIC+ thus defines a set of arguments with a binary relation of defeat, that is, it
defines abstract argumentation frameworks in the sense of [3]. Formally:

Definition 5. [Argumentation framework] An abstract argumentation framework (AF )
corresponding to an argumentation theory AT is a pair < A, Def> such that:

– A is the set of arguments on the basis of AT as defined by Definition 1,
– Def is the relation on A given by Definition 4.

Thus any semantics for abstract argumentation can be applied to ASPIC+. As noted
above, in this paper we will use grounded semantics. A formula ϕ from L is then jus-
tified on the basis of AT if the grounded extension of the AF corresponding to AT
contains an argument with conclusion ϕ.

3 Architecture Specification in ASPIC+

In this section we present a motivating example and describe how it can be formalized
in terms of ASPIC+.

3.1 An Example with a PIN Entry Device

Our running example is a design for a Pin Entry Device (PED) that can be used by
merchants in shops and restaurants. Figure 1 shows the architecture of a fixed PED,

Fig. 1. Architecture of a Pin Entry Device (PED) and its context. The properties in bold are absent
from the original architecture and have been added in the second round of the argument game.
The labels are for ease of reference.
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which is connected to a terminal and receives the amount to be paid from the terminal.
The core functional requirement for the PED is

– FR1 Consumers can pay with a PED using a PIN.

Figure 1 shows the architecture of the PED and part of the context. Consider first the
architecture without the bold annotations. The top-level informal argument for func-
tional correctness of the architecture is given by tracing the interctions between compo-
nents through the architecture roughly in the order in which we numbered them. This
argument assumes that all components are implemented correctly according to their
specification, that all interactions between components are reliable and that no other
interactions, invisible in the diagram, occur.

Attackers keep the assumption that all components are implemented correctly, but
violate the other two: They will try to change the interactions in the architecture or
context (for example by changing the communication with the bank to their advantage)
or will try to add additional interactions (for example by reading the PIN remotely).
To make this less likely to happen, we require that the PED and its context satisfy the
following properties:

SR1 PIN shall remain confidential during payment transactions
SR2 PIN communicated between nodes of the network shall remain accurate during

transactions

There is no way to justify that the original architecture of figure 1 satisfies these proper-
ties. The defenders now change the architecture a bit (the bold annotations in figure 1)
and make additional assumptions about the context (for example that the Consumer
keeps PINs secret). The job of satisfying properties SR1 and SR2, and hence the re-
sponsibility for mitigating the risk of violating SR1 and SR2, is thus divided over the
PED and its context. With the improved architecture and the additional context assump-
tions, the defenders can refute the argument of the attacker and reason that SR1 and SR2
are now satisfied.

3.2 Formalizing the Example in ASPIC+

We formalize this example as follows. Our general idea is that input-output relations
between the components of a system are formalised as defeasible rules, while assump-
tions about the environment are stated as facts, which for convenience we represent a
defeasible rules with empty antecedent. An argument that the system satisfies the secu-
rity requirement then applies the defeasible rules to the assumptions, and is thus of a
hypothetical character.

First, we represent the architecture in ASPIC+ by a set of defeasible rules of the form
C1!m ⇒ C2?m, meaning that if C1 outputs message m, C2 receives message m. These rules
claim that communication in the system is reliable. For example, in figure 1,

(t5): C!PIN ⇒ K?PIN.

There is one such rule in Rd for each labeled interaction in figure 1.
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Second, we assume that the assessors share defeasible beliefs about security proper-
ties of the communications between the components in the architecture. For example,
in figure 1,

(conf-t5): C!confidentialPIN⇒ K?confidentialPIN.

This rule says that if a PIN was confidential when sent, it is still confidential when
received by the keypad. These rules cannot be derived from the diagram; it is expert
knowledge based on the diagram and the assessors can use it in their argumentation.

Third, we assume that the experts know the capabilities of each component. For
example,

(K): K?PIN → K!encryptedPIN.

There are many of these rules for each component, and they jointly represent the knowl-
edge that the assessors have of the capabilities of the component. This is a strict rule, as
we (and the attackers) assume that each component is functioning correctly.2

Fourth, the experts also know how security properties are handled by each compo-
nent. For example,

(conf-K): K?confidentialPIN→ K!encryptedConfidentialPIN.

This rule says that if the PIN was confidential when entered in the keypad, it is still
confidential after being sent in encrypted form.

Fifth, we assume that the confidentiality requirement SR1 “PIN shall remain confi-
dential during payment transactions” is formalized as SR1

(SR1): confidentialPIN.

In general, any requirement to be verified is represented as the consequent of a defea-
sible rule in the architecture description and does not occur in the antecedent of any
rule.

The assessors share knowledge about the meaning of the requirement in the form of
a set of strict rules that for each component X,

(CRX): confidentialPIN→ X!confidentialPIN.

So any non-confidential PIN transfer will violate the requirement.
Sixth, to prove a requirement, we need assumed facts, which are included in Rd as a

set of defeasible rules with empty antecedents. Such rules are given the lowest priority
in the ordering on Rd; they are called assumptions.

In the first round of the game, defenders argue that the system is functionally correct,
assuming that confidentialPIN is true. Attackers then try to imagine violations of
SR1. For example, from the assumption that the consumer keeps her PIN confidential,

(C-keep-PIN-conf): ⇒ C!confidentialPIN

defenders derive that the PIN received by the keypad is confidential,
K?confidentialPIN using rule (conf-t5).

2 In our formalisation in Section 4 we will also include the so-called transpositions of strict
rules, in order to inherit the logical closure and consistency results proven in [11, 15] about the
ASPIC+ framework.
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There are many ways in which the assumed fact (C-keep-PIN-conf) can be violated,
one of which is a successful social engineering attack on a consumer [4], for instance,
forcing the user to reveal the PIN. Defenders and attackers know that

(Attack-C-SE): SuccessfulSocialAttack⇒ ¬C!confidentialPIN.

Switching to the role of attackers, the assessors now add the assumption

(Successful-attack-C-SE): ⇒ SuccessfulSocialAttack.

This gives a rebutting attack on the initial proof of PIN confidentiality, and it proves
violation of the confidentiality requirement (SR1).

To be able to allocate risk to various actors, we now assume that all users of the
PED payment infrastructure support the argument. The assessors can now transfer the
responsibility for beating a social engineering attack to the consumer, by simply stating
that it does not occur:

(No-successful-attack-C-SE): ¬SuccessfulSocialAttack.

This is not a change in the architecture but a change in assumptions (this time unattack-
able) about the environment that reinstates the original security argument.

To illustrate how responsibility for guarding against a security requirement viola-
tion can be shifted to the PED, consider the following. In the original architecture, the
PED had no PIN masking device (a cover that hides the keypad from view). If this is
expressed as an assumption, then in that architecture, the attacker can rebut (conf-t5):

(not-conf-t5-masking): ⇒ ¬KwithMasking?confidentialPIN
(not-K-keep-PIN-conf): ¬KwithMasking?confidentialPIN ⇒ ¬K?confidentialPIN

Defenders will then change the architecture by adding PIN masking, expressed by
adding the following fact to K:

(masking): KwithMasking?confidentialPIN

and by changing (conf-t5) into

(conf-t5-masking): C!confidentialPIN, KwithMasking?confidentialPIN
⇒ K?confidentialPIN.

So far, we have shown that simple security arguments can be represented in an ar-
gumentation theory that is partly represented in an architecture model and partly in the
knowledge and beliefs of the assessors. To play the risk argumentation game, we need
to extend the argumentation theory with a dialogue game. We introduce such a game in
the next section.

4 An Argument Game

4.1 Ideas

We now informally sketch a dialogue game for argumentation between a defender and
an attacker of a design, who want to test whether a given safety or security requirement
SR is satisfied by the design. The players exchange arguments and counterarguments
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and during the dialogue dynamically build a joint ASPIC+ argumentation theory de-
scribing a design and its environment. The defender’s task is to ensure that the theory
expresses a design that satisfies SR, while the attacker’s task is to produce successful
attacks on the defender’s security arguments. Despite this dialectical setting, the players
are cooperative in that they both want a good design that meets the requirements: their
real goal is not to win but to collaborate on creating a design by critically discussing its
pros and cons. For this reason we will not build rules into our dialogue game that would
prevent ‘selfish’ players from playing moves just to obstruct the other player (such as
nonrepetition moves).

The game starts with an initial argumentation theory as described in Section 3. In the
first move the defender presents an argument for SR based on the initial theory and as-
sumptions about the world. Then the players take turns after each move. The attacker’s
task is to defeat defender’s ‘current’ argument for SR, after which the defender must
either show that the attacker’s attack is flawed (by in turn strictly defeating it) or by
modifying the design in such a way that again an undefeated argument can be built that
SR is satisfied. The defender can modify a design by deleting existing rules and (if
needed) adding new rules as part of a new argument. The attacker cannot delete rules
from the theory, because it cannot modify the design, but it can add new rules just as the
defender can. Moreover, both players can add new rule priorities to make their rebutting
arguments (strictly) defeat their target (but they must in doing so respect that properties
of a preorder). Likewise, they can add new rule names to L to express undercutting de-
featers. Another requirement is that each move must succeed in the mover’s dialectical
goal: after each defender move an argument for SR must be dialogically acceptable or
in (in a sense to be defined below) while after each attacker move all arguments for SR
must be dialogically out (also a sense to be defined below).

4.2 The Game Defined

We now define a dialogue game for a single security requirement SR. Throughout this
section the logical language L is assumed fixed but all other elements of an AT can
vary. Unless specified otherwise, the following definitions leave implicit that arguments,
priorities, rules and rule names belong to some given argumentation theory with logical
language L. In our examples L consists of propositional literals but we stress that our
game does not in any way depend on a particular logical language.

Definition 6. A move is a tuplem = (i, A, pr, ns, del, t) where:

– i ∈ N is the move identifier;
– A is an argument;
– pr is a set of priority statements about defeasible rules;
– ns is a set of ordered pairs (r, l), where r ∈ Rd and l ∈ L; (an assignment of

names to defeasible rules, as part of the n function on Rd)3

– del is a set of rules (to be deleted from the ‘current’ architecture specification)
– t ∈ N is the move target, that is, the move to which the move replies.

3 In the remainder we will for ease of notation represent the n function as a set of ordered pairs.
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Below we will leave set elements of a move that are empty implicit. To indicate an
element of a movem we will often write i(m), A(m) and so on.

Definition 7. A dialogue is a finite sequence of movesm1, . . . ,mn such that t(m1) = 0
and for all j such that 1 < j ≤ n it holds that i(mj) = j and t(Mj) is some x such
that 1 ≤ x < j.

Below dn is shorthand for dialogue m1, . . . ,mn, where d0 is the empty dialogue. We
call mi ∈ dn a defender move if i is odd and an attacker move otherwise.

Definition 8. The argumentation theory ATi relative to a dialogue di is defined as
follows:

1. AT0 is any argumentation theory describing a system architecture where R0
s is

closed under transposition and ≤= {r ≈ r | r ∈ Rd}.
2. ATi for i > 0 is such that:

(a) Ri
s = (Ri−1

s \ del ) ∪Cltr((StrictRules(A(mi)))
4

(b) Ri
d = (Ri−1

d \ del) ∪ DefRules(A(mi))
(c) ≤i=≤i−1 ∪pr ∪ {r < r′ | r, r′ ∈ Ri

d and r has but r′ does not have an empty
antecedent} ∪ {r ≈ r | r ∈ Ri

d}
(d) ni = ni−1 ∪ nsi.

3. Ki
n = Ki−1

n ∪ Prem(A(mi))

The ‘current winner’ of a dialogue can be defined by adapting [13, 14]’s notion of
dialogical status of a move:

Definition 9

– Move m is in iff all replies to m are out;
– Move m is out if either it has a retracted rule or it has a reply that is in.

Note that since the reply structure on the game moves induces a tree, the dialogical
status of a move is always uniquely defined.

We now adapt [13, 14]’s notion of relevance as follows.

Definition 10. A defender movemi is relevant iff exactly one defender movemj (j ≤ i)
such that Conc(A(mj) = SR is in. An attacker move mi is relevant iff all defender
moves mj (j ≤ i) such that Conc(A(mj) = SR are out.

We next define when a move is legal in a dialogue.

Definition 11. A dialogue d = m1, . . . ,mn is legal iff for all mi ∈ d it holds that mi

is legal in m1, . . . ,mi−1 (or in the empty dialogue if d = m1).
A move mi is legal in dialogue di−1 iff the following conditions are satisfied.

1. If mi is a defender (attacker) move, then t(mi) is an attacker (defender) move.
2. mi is relevant.
3. pr(mi) leaves ≤i a total preorder.
4. ns(m) leaves ni a (partial or total) function from L to Ri

d.

4 Cltr(S) yields for any set S of strict rules its closure under transposition as defined in [11].
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5. m1 is such that
(a) Conc(A(m1)) = SR; and
(b) Prem(A(m1)) ⊆ K0; and
(c) StrictRules(A(m1)) ⊆ R0

s; and
(d) DefRules(A(m1)) ⊆ R0

d∪{⇒ ϕ | ϕ is an antecedent of a rule in R0
s or R0

d}.
6. If i > 1 andmi is an attacker move, then

(a) A(mi) defeats A(t(mi)) on the basis of ATi;
(b) del (mi) = ∅.

7. If i > 1 andmi is a defender move, then
(a) A(mi) has a subargument that strictly defeats A(t(mi)) on the basis of ATi;

and
(b) If A(mi) does not itself strictly defeat A(t(mi)) on the basis of ATi, then

Conc(A(mi)) = SR;
(c) del does not contain rules from arguments in attacker moves in di−1;
(d) If t(mi) = i− 1 then ATi = ATi−1.

Condition 1 states that the players may not respond to their own moves. Condition 2
makes that a dialogue is focussed on what it is meant for, namely, the critical testing
whether the design meets requirement SR. Conditions 3-4 are to ensure that the ar-
gumentation theory constructed during a dialougue is well-defined, while Condition 5
regulates how the defender can start the game with an argument for SR. Condition 6
says that an attacker move must defeat a defender move without deleting rules.

Condition 7a requires the defender to move an argument with a subargument that
strictly defeats the target argument of the attacker. Defeat must here be strict, since the
‘burden of proof’ is on the defender to show that SR is satisfied. Note that since an argu-
ment is a subargument of its own, the defeating subargument of A(mi) may be A(mi)
itself. Recall that Condition 2 in effect requires that after the defender’s move exactly
one argument for SR is justified on the basis of ATi. If mi does not delete any rules
fromATi−1 then this argument will be the one that is ‘reinstated’ by A(mi)’s strict de-
feat of A(t(mi)), otherwise this argument will be A(mi) itself. These last observations
were illustrated in the final part of Section 3. Condition 7b says that defeating defender
arguments can be extended to an argument for SR. The definition of relevance implies
that such an extension is only legal if the move does not make an old argument for SR
in. Condition 7c forbids the defender from deleting rules from the attackers arguments.
This requirement is reasonable since it is defender’s responsibility to build and modify
the design through his own moves; the attacker does not contribute to the design but
only criticises it. Finally, condition 7d says that the defender must always reply to the
last move of the attacker, except if the defender makes a move that leaves the argumen-
tation theory unchanged. Such ‘logical’ backtracking moves must be allowed to ensure
that a dialogue can be logically completed.

4.3 Correspondence Result

Definition 12. A dialogue di is logically completed if no legal moves mi+1 exist such
that ATi = ATi+1.
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In a logically completed dialogue, all logically possible legal moves on the basis
of the current argumentation theory have been made. This means that every allowed
continuation of the dialogue would change the argumentation theory. We now want for
any logically completed dialogue that, if an argument for SR is dialogically in, then
it is also justified on the basis of the ‘current’ argumentation theory. We are not so
much interested in formal termination criteria for dialogues, since we assume that the
players, being in essence cooperative, will agree to terminate a dialogue at a sensible
moment. We now prove that our game has this property. The practical value of this
result is that, to agree with the underlying logic, we do not need to restart an entire
logical argument game after each move (as we would have to do if, for example, the
protocol checked after each move whether the currentAT justifies SR). Note also that,
since all dialogue moves must be relevant, a dialogue will only in exceptional cases
not be logically completed. For this reason, the restriction of Theorem1 to logically
completed dialogues is not a severe practical limitation.

Theorem 1. Let di be any logically completed dialogue with a defender move mi that
is in and such that Conc(A(mi)) = SR. Then A(mi) is justified on the basis of ATi.

Proof. The reply relations on the moves in di induce a dialogue tree with as root m1.
Let Ti be its subtree with rootmi. Sincemi is in, by Proposition 23 of [14] there exists
a ‘winning part’ Wi of Ti in the sense of Definition 22 of [14], i.e., a subtree of Ti that
for each set of defender sibblings in Ti contains one element and contains all its attacker
replies from Ti, and such that all defender moves in Wi are in while all attacker moves
in Wi are out. Now let Gi be the tree obtained from Wi by replacing each move m in
Wi with A(m) (below written as Ai). We need to show that Gi is a winning strategy
for Ai in the argument game for grounded semantics on the basis of ATi.

First, all arguments in Gi are constructible on the basis of ATi: if not, then Gi con-
tains a defender argument Aj with a deleted rule, but then the node mj in Wi from
which it is derived is out: contradiction.

Second, it must be shown thatGi contains the correct defeat relations. Note first that
by Definition 11(3) for any dj it holds that ≤j is a total preorder, so defeat relations are
preserved under addition of rule preferences. Then by Definition 11(6a) each argument
at even depth defeats its parent. Note next that by definition of relevance of moves and
the fact that all defender moves in Wi are in, Gi contains exactly one argument for
SR, namely,Ai. Then by Definition 11(7a) each argument at odd depth exceptAi itself
strictly defeats its parent.

Next, since di is logically completed and Definition 11 imposes no conditions on
logically completing attacker moves other than that their arguments must defeat the
argument of their target, all defeaters on the basis of ATi of any defender argument in
Gi are in Gi.

This suffices to show that Gi is a winning strategy for Ai on the basis of ATi. It
follows that Ai is in the grounded extension of ATi and so is justified. �

5 Example

We illustrate the definition of the game with the example from Section 3.1. In listing
a move we will leave its identifier i obvious from the index of m and we will specify
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del only for defender moves. Moreover, we will leave ns obvious from the subscripts
of the rules in the moved argument. In specifying ATi we will, overloading notation,
indicate defeasible rules with their names in L, and in specifying ≤i we will only list
the explicitly stated < priorities and leave priorities between assumptions and other
rules and priorities that are required to leave ≤i a total preorder implicit. We will also
leave the transpositions of strict rules implicit. Figure 2 shows the state of the following
dialogue after move M5.

Fig. 2. State of the dialogue after move M5. White boxes are inwhile grey boxes are out.

– AT0 is such that K = Rs = ∅ and Rd = {conf -t5}.

– The defender starts with a movem1 such that A(m1) =

A1: ⇒C−Keep−PIN−conf C!confidentialPIN
A2: A1 ⇒conf−t5 K?confidentialPIN

Here pr(m1) = del(m1) = ∅ and t(m1) = 0. As a result, AT1 is such that
K = Rs = ∅, Rd = {conf -t5, C −Keep− PIN − conf}. Clearly, M1 is cur-
rently in since it has no replies or retracted rules or premises.

– At m2 the attacker attacks A2 by directly attacking A1 with A(m2) =

B1: ⇒Successful−attack−C−SE SuccesfulSocialAttack

B2: B1 ⇒Attack−C−SE ¬C!confidentialPIN
Here t(m2) = 1. As a result, AT2 is such that K = Rs = ∅, Rd = {conf -
t5, C−Keep−PIN−conf, Successful-attack-C-SE,Attack-C-SE}. On the
basis ofAT2 we have thatB2 defeatsA2 onA1, since the last defeasible rule of B2

isAttack-C-SE, the last defeasible rule ofA1 isC−Keep−PIN−conf and we
have thatC−Keep−PIN−conf < Attack-C-SE sinceC−Keep−PIN−conf
is an assumption. Moreover, in the game we have that m2 is in since it has no
replies, so m1 is now out since it has a reply that is in.
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– At m3 the defender moves the following basic argument stating just a fact:

C1: ¬SuccesfulSocialAttack

where t(m3) = 2 and pr(m3) = del(m3) = ∅. Defender’s move M3 adds fact
No-successful-attack-C-SE to K and leaves the rest of AT3 as in AT2. On the
basis of AT3 we have that C1 strictly defeats B2 on B1, since, unlike B1, C1 has
no defeasible rules. We now have thatm3 is in since it has no replies, so m2 is now
out since it has a reply that is in: but then m1 is in again since all its replies are out
and it has no retracted premises or rules. Therefore, m3 did not need to contain a
new argument for SR, since a(m1) has conclusion SR.

– The attacker movem4 now backtracks to m1 (that is, t(m4) = 1), this time attack-
ing argumentA2 by directly attacking it on A1 with

D1: ⇒not−conf−t5−masking ¬KwithMasking?confidentialPIN
D2: B1 ⇒not−K−keep−PIN−conf ¬K?confidentialPIN

Moreover, the attacker states the priority pr(m4) = {conf -t5 < not-K-keep-
PIN -conf}. As a result, AT4 is such that K = {No-successful-attack-C-
SE},Rs = ∅, Rd = {conf -t5, C−Keep−PIN−conf, not-conf -t5-masking,
Successful-attack-C-SE, not-K-keep-PIN -conf,Attack-C-SE} and conf -
t5 < not-K-keep-PIN -conf . On the basis ofAT4 we have thatD2 defeatsA2 on
A2, since the last defeasible rule of B2 is not-K-keep-PIN -conf , the last defea-
sible rule of A2 is conf -t5 and we have that conf -t5 < not-K-keep-PIN -conf .
In the game we now have thatm4 is in som1 is now out since it has a reply that is in.

– At m5 the defender moves the following argument in reply to m4:

E1: ⇒a1 C!confidentialPIN
E2: KwithMasking?confidentialPIN
E3: E1, E2 ⇒conf−t5−masking K?confidentialPIN

Argument E2 strictly defeats argument D2 on D − 1 since E2 consists of a fact
whileD1 consists of an assumption. Defender’s movem5 adds fact masking to K
and replaces rule conf -t5 in Rd with conf -t5-masking. This is effected by mak-
ing del(m5) = {conf -t5}. So AT5 is such that K = {No-successful-attack-
C-SE,masking},Rs = ∅, Rd = {conf -t5-masking, C − Keep − PIN −
conf, not-conf -t5-masking, Successful-attack-C-SE, not-K-keep-
PIN -conf ,Attack-C-SE}, and conf -t5 < not-K-keep-PIN -conf . On the ba-
sis of AT5 we have that argumentE2 strictly defeats argumentD2 on D − 1 since
E2 consists of a fact while D1 consists of an assumption.
Note that m5 contains a new argument for SR, since the old argument A2 is not
constructible on the basis of AT5. At this stage M5 is clearly in so M4 is now out
since it has a reply that is in. However, M1 remains out for the remainder of the
game, since it has a retracted rule.

To illustrate Theorem 1, suppose the attacker makes no new move so that the game
terminates. On the basis of AT5 the attacker would have had no further legal move, so
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the game is logically completed. Now some move with an argument for the SR is in,
namely, move M5 with argument E3; moreover,E3 is trivially justified on the basis of
AT5, since it has no defeaters. So the defender’s ‘winning part’ consists of just m5.

6 Conclusion

This paper shows that it is feasible to reconstruct the security risk assessment dialog of
experts as a formal argumentation game in ASPIC+ . The game is dynamic in that the
players can both add elements to and delete elements from the architecture specification.
The game was shown to respect the underlying argumentation logic in that for any
logically completed game ‘won’ by the defender, the security requirement is a justified
conclusion from the architecture specification at that stage of the game.

The idea to formalize risk assessment in argumentation logic is not new. Two early
papers have suggested the use of argumentation in medical risk assessment [6, 12].
These proposals are preliminary and specific to the medical domain. There is more
recent work on the use of argumentation in firewall policy specification and analysis
[1, 2]. These papers focus on the logical representation of arguments about whether
firewall policies satisfy certain properties and do not focus on dynamic or dialogical
aspects. The current paper was based on earlier attempts to use informal Toulmin-style
arguments to support IT security risk assessment [4, 5]. Those attempts did not use
ideas from defeasible logic dialog games.

This paper raises a number of questions that we will investigate in the near future. An
important long-term goal of our research is to provide tool support for argumentation-
based risk assessment, and for this it is needed to find informal but precise represen-
tations of a risk argumentation game that can be understood by security experts but
have a formal grounding in defeasible logic and dialogue games. We therefore want to
investigate samples of actual RA dialogues to identify common dialogue patterns that
can be exploited by the support tool to give suggestions to the risk assessors. We will
here in particular explore the similarity between argumentation trees and attack trees
[9], which are a familiar representation and reasoning structure for risk assessors and
therefore warrant some confidence that an argumentation-based RA support tool will
be natural for them. A further topic for future research is to analyze the role of qual-
itative risk assessments made in practice, where uncertainty and impact of events are
estimated on ordinal scales such as (low, medium, high). Finally, we want to investigate
the lifting of our current assumption that rule priorities are uncontroversial. Although in
our experience this assumption holds for a fair number of risk assessments, this may not
be so in general. One way to deal with this is to replace the current version of ASPIC+

with [10]’s version that allows for argumentation about the argument ordering.
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Abstract. We present a formal decision-making framework, where deci-
sions have multiple attributes and meet goals, and preferences are defined
over individual goals and sets of goals. We define decision functions to se-
lect ‘good’ decisions according to an underlying decision criteria. We also
define an argumentation-based computational mechanism to compute
and explain ‘good’ decisions. We draw connections between decision-
making and argumentation semantics: ‘good’ decisions are admissible
arguments in a corresponding argumentation framework. To show the
applicability of our approach, we use medical literature selection as a
case study. For a given patient description, we select the most relevant
medical papers from the medical literature and explain the selection.

1 Introduction

Argumentation-based decision making has attracted considerable research in-
terest in recent years [1,8,7,10]. In this paper, we give a formal treatment of
decision-making with argumentation.

We define extended decision frameworks, used to model the agents’ knowledge
bases, including the agents’ preferences. We allow a decision framework to have
multiple decisions and a set of goals, such that each decision can have a number
of different attributes and each goal can be satisfied by some attributes. We define
preferences over (sets of) goals. We define extended decision functions to select
‘good’ decisions. To compute and explain the selected decisions, we map decision
frameworks and decision functions into assumption-based argumentation (ABA)
frameworks [3]. We prove that selected decisions with respect to a given decision
function are claims of arguments in an admissible extension in the corresponding
ABA framework.

We use medical literature selection as a case study for this work. We are
given a set of medical research papers and patient descriptions. Each papers
contains the results of a clinical trial, and a patient description gives a set of
patient properties. The aim of the decision-making process is to select the most
relevant papers for a patient. In this way, a specific candidate decision is the
use of a given paper. Trial criteria are extracted from each piece of medical
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literature and are used as attributes. Patient properties are collected from patient
descriptions and are used as goals. This defines the use of medical literature as
a decision-making problem. We show the decision-making framework selects the
most relevant papers for the patient and explains the selection.

This paper is organised as follows. Background on ABA is in Section 2. We
present extended decision frameworks and decision functions for preference over
single goals in Section 3. We show the treatment of preference over combined
goals in Section 4. We present the case study on relevant medical literature
selection in Section 5. Related work is in Section 6. We conclude in Section 7.

2 Background

An ABA framework [3,5] is a tuple 〈L,R,A, C〉 where
– 〈L,R〉 is a deductive system, with L the language and R a set of rules of

the form s0 ← s1, . . . , sm (m ≥ 0);
– A ⊆ L is a (non-empty) set, referred to as the assumptions;
– C is a total mapping from A into 2L, where C(α) is the contrary of α ∈ A.

When presenting an ABA framework, we omit giving L explicitly as we assume
L contains all sentences appearing in R, A and C. Given a rule s0 ← s1, . . . , sm,
we use the following notation: Head(s0 ← s1, . . . , sm) = s0 and Body(s0 ←
s1, . . . , sm) = {s1, . . . , sm}. As in [3], we enforce that ABA frameworks are flat :
assumptions do not occur as the heads of rules.

In ABA, arguments are deductions of claims using rules and supported by
assumptions, and attacks are directed at assumptions. Informally, following [3]:

– an argument for (the claim) c ∈ L supported by S ⊆ A (S � c in short) is a
(finite) tree with nodes labelled by sentences in L or by the symbol τ1, such
that the root is labelled by c, leaves are either τ or assumptions in S, and
non-leaves s have as many children as elements in the body of a rule with
head s, in a one-to-one correspondence with the elements of this body.

– an argument S1 � c1 attacks an argument S2 � c2 if and only if c1 = C(α)
for α ∈ S2.

Attacks between arguments correspond in ABA to attacks between sets of
assumptions, where a set of assumptions A attacks a set of assumptions B if
and only if an argument supported by A′ ⊆ A attacks an argument supported
by B′ ⊆ B.

When there is no ambiguity, we also say a sentence b attacks a sentence a
when a is an assumption and b is a claim of an argument B such that a is in the
support of some argument A and B attacks A.

With argument and attack defined, standard argumentation semantics can be
applied in ABA [3]. We focus on the admissibility semantics: a set of assumptions
is admissible (in 〈L,R,A, C〉) if and only if it does not attack itself and it attacks
all A ⊆ A that attack it; an argument S � c belongs to an admissible extension
supported by Δ ⊆ A (in 〈L,R,A, C〉) if and only if S ⊆ Δ and Δ is admissible.

1 As in [3], τ /∈ L stands for “true” and is used to represent the empty body of rules.
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3 Extended Decision Frameworks and Decision Functions

In this paper, we consider the following structure of decision problems: there
are a set of possible decisions D, a set of attributes A, and a set of goals G, such
that a decision d ∈ D may have some attributes A ⊆ A, and each goal g ∈ G

is satisfied by some attributes A′ ⊆ A. Preferences P are defined as a partial
order over goals. Decisions are selected based on extended decision functions.
The relations between decisions, attributes, goals and preferences jointly form
an extended decision framework, represented as follows:

Definition 1. [6] An extended decision framework 〈D, A, G, DA, GA, P〉, has:

– a set of decisions D = {d1, . . . , dn}, n > 0;
– a set of attributes A = {a1, . . . , am},m > 0;
– a set of goals G = {g1, . . . , gl}, l > 0;
– a partial order over goals, P, representing the preference ranking of goals;
– two tables: DA, of size (n×m), and GA, of size (l ×m), such that

• for every DAi,j
2, 1 ≤ i ≤ n, 1 ≤ j ≤ m, DAi,j is either 1, representing that

decision di has attributes aj, or 0, otherwise;
• for every GAi,j , 1 ≤ i ≤ l, 1 ≤ j ≤ m, GAi,j is either 1, representing that
goal gi is satisfied by attribute aj, or 0, otherwise.

We assume that the column order in both DA and GA is the same, and the
indices of decisions, goals, and attributes in DA and GA are the row numbers
of the decision and goals and the column number of attributes in DA and GA,
respectively. We use DEC and EDF to denote the set of all possible decisions
and the set of possible extended decision frameworks.

We represent P as a set of constraints gi > gj for gi, gj ∈ G. We illustrate
Definition 1 in the following example, adopted from [9].

Example 1. An agent is to choose accommodation in London. DA and GA, are
given in Table 1. The preference P is: near > cheap > quiet.

Table 1. DA(left) and GA(right)

£50 £70 inSK backSt

jh 0 1 1 1
ic 1 0 1 0

£50 £70 inSK backSt

cheap 1 0 0 0
near 0 0 1 0
quiet 0 0 0 1

Decisions (D) are: hotel (jh) and Imperial College Halls (ic). Attributes (A)
are: £50, £70, in South Kensington (inSK), and in a backstreet (backSt). Goals

2 We use Xi,j to represent the cell in row i and column j in X ∈ {DA, GA}.
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(G) are: cheap, near, and quiet. The indices are: 1-jh; 2-ic; 1-cheap; 2-near; 3-
quiet; 1-£50; 2-£70; 3-inSK; 4-backSt. The preference order is such that near is
higher than cheap than quiet.

In this example, jh is £70, is in South Kensington and is in a backstreet;
ic is £50 and is in South Kensington; £50 is cheap, accommodations in South
Kensington are near and accommodations in a backstreet are quiet.

We define a decision’s meeting a goal as the follows:

Definition 2. [6] Given 〈D, A, G, DA, GA, P〉, a decision d ∈ D with row index i
in DA meets a goal g ∈ G with row index j in GA if and only if there exists an
attribute a ∈ A with column index k in both DA and GA, such that DAi,k = 1 and
GAj,k = 1.

We use γ(d) = S, where d ∈ D, S ⊆ G, to denote the set of goals met by d.

Example 2. In Example 1, jh meets near and quiet as jh has the attributes
inSK and backSt; and inSK fulfils near whereas backSt fulfils quiet. Similarly,
ic meets cheap and near.

Extended decision frameworks capture the relations among decisions, goals,
attributes, and preferences. We can now define extended decision function to
select ‘good’ decisions.

Definition 3. [6] An extended decision function is a mapping ψE : EDF  →
2DEC, such that, given edf = 〈D, A, G, DA, GA, P〉, ψE(edf) ⊆ D. For any d, d′ ∈ D,
if γ(d) = γ(d′) and d ∈ ψE(df), then d′ ∈ ψE(df). We say that ψE(edf) are
selected with respect to ψE. We use ΨE to denote the set of all extended decision
functions.

Definition 3 gives the basis of an extended decision function. An extended
decision function selects a set of decisions from an extended decision framework.
When two decisions meet the same set of goals, and one of those decisions belongs
to the value of an extended decision function, then the other decision also belongs
to the value of the same extended decision function.

We instantiate the basis definition to give themost-preferred extended decision
function. It selects decisions meeting the more preferred goals that no other
decisions meet.

Definition 4. A most-preferred extended decision function ψE ∈ ΨE is such
that given an extended decision framework edf = 〈D, A, G, DA, GA, P〉, for every
d ∈ D, d ∈ ψE(edf) if and only if the following holds for all d′ ∈ D \ {d}:

– for all g ∈ G, if g /∈ γ(d) and g ∈ γ(d′), then there exists g′ ∈ G, such that:
• g′ > g in P,
• g′ ∈ γ(d), and
• g′ /∈ γ(d′).

We say d is a most-preferred (in edf). We refer to a generic most-preferred
decision function as ψE

x .
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Table 2. Illustration of the most-preferred extended decision function

g1 g2 g3 g4 g5
d1 0 1 0 1 1
d2 0 1 1 0 0

Thus, to select a decision d, we check against all other d′ to ensure that: for any
g, if d′ meets g but d does not, then there exists some g′ more preferred than g
such that g′ is met by d but not d′.

Example 3. Suppose we have two decisions d1, d2 and five goals g1, g2, . . . , g5,
such that g1 > g2 > . . . > g5. The relations between decisions and goals are
illustrated in Table 2. Here, neither d1 nor d2 meets the most preferred goal g1;
both of d1 and d2 meet g2, the next preferred goal. Hence, by this point, d1 and
d2 are considered equally good. However, g3, the third preferred goal, is only
met by d2, hence d2 is considered a better decision than d1. Note that though
d1 meets both g4 and g5 where neither is met by d2, but since they are both
less preferred than g3, d2 is still considered a better decision here. Definition 4
corresponds to the above intuition as follows. Directly from Definition 4, d2 is
selected as for d = d2, d

′ = d1, both g4 and g5 meet the conditions g4, g5 /∈ γ(d2)
and g4, g5 ∈ γ(d1) and no other goals meet these two conditions. However, for
both g4 and g5, there exists g3 such that g3 > g4, g3 > g5, g3 ∈ γ(d2) and
g3 /∈ γ(d1). d1 is not selected as for d = d1, d

′ = d2, g3 is the only goal that
meets the conditions: g1 /∈ γ(d1) and g1 ∈ γ(d2). However, there is no g′ meets
the 3 conditions: g′ > g in P, g′ ∈ γ(d), and g′ /∈ γ(d′).

Definition 4 gives a criterion for selecting decisions. We construct ABA frame-
works to implement this selection, as follows.

Definition 5. Given an extended decision framework edf = 〈D, A, G, DA, GA, P〉,
the most-preferred ABA framework corresponds to edf is AF = 〈L,R,A, C〉:

– R is such that:
for all k, j, i such that 1 � k � n, 1 � j � m and 1 � i � l:

• if DAk,i = 1 then dkai ←∈ R;
• if GAj,i = 1 then gjai ←∈ R;
• dkgj ← dkai, gjai ∈ R;

for all g1, g2 in G, if g1 > g2 ∈ P, then Pg1g2 ←∈ R;
if 1 � k � n, 1 � r � n, k = r, 1 � j � m: Ndk ← drgj , Ndkgj , NX

rk
j ∈ R;

if 1 � k � n, 1 � r � n, k = r, 1 � j � m, 1 � t � m, j = t, then:
Xrk

j ← dkgt, Ndrgt, P gtgj ∈ R;
there are no more members of R.

– A is such that:
if 1 � k � n, then dk ∈ A;
if 1 � k � n, 1 � r � n, k = r, 1 � j � m, then NXrk

j ∈ A;
if 1 � k � n, 1 � j � m, then Ndkgj ∈ A;
nothing else is in A.



Assumption-Based Argumentation for Decision-Making with Preferences 379

– C is such that:
if 1 � k � n, then C(dk) = {Ndk};
if 1 � k � n, 1 � r � n, k = r, 1 � j � m, then C(NXrk

j ) = {Xrk
j };

if 1 � k � n, 1 � j � m, then C(Ndkgj) = {dkgj}.
Here, dk is read as “select dk”; dkgj is read as “dk meets gj”; X

rk
j is read as

“there is some gt, gt > gj , such that dk meets gt and dr does not”. All variables
starting with N are read as “it is not the case”. We illustrate the notion of
most-preferred ABA framework in the following example.

Example 4. (Example 1, continued.) The most-preferred ABA framework corre-
sponds to the extended decision framework shown in Example 1 is as follows.3

R:

PNrCp← PNrQt← PCpQt←
jh70 ← jhSK ← jhBST ←
ic50 ← icSK ←
cp50 ← nrSK ← qtBST ←
jhCp← jh50, cp50 jhNr ← jh50, nr50 jhQt← jh50, qt50
jhCp← jh70, cp70 jhNr ← jh70, nr70 jhQt← jh70, qt70
jhCp← jhSK, cpSK jhNr ← jhSK, nrSK jhQt← jhSK, qtSK
jhCp← jhBST, cpBST jhNr ← jhBST, nrBST jhQt← jhBST, qtBST
icCp← ic50, cp50 icNr ← ic50, nr50 icQt← ic50, qt50
icCp← ic70, cp70 icNr ← ic70, nr70 icQt← ic70, qt70
icCp← icSK, cpSK icNr ← icSK, nrSK icQt← icSK, qtSK
icCp← icBST, cpBST icNr ← icBST, nrBST icQt← icBST, qtBST

Ndjh ← icCp,NjhCp,NX icjh
cheap Ndic ← jhCp,NicCp,NXjhic

cheap

Ndjh ← icQt,NjhQt,NX icjh
quiet Ndic ← jhQt,NicQt,NXjhic

quiet

Ndjh ← icNr,NjhNr,NX icjh
near Ndic ← jhNr,NicNr,NXjhic

near

X icjh
cheap ← jhNr,NicNr, PnearCp X icjh

cheap ← jhQt,NicQt, PquietCp

X icjh
near ← jhCp,NicCp, PcheapNr X icjh

near ← jhQt,NicQt, PquietNr

X icjh
quiet ← jhCp,NicCp, PcheapQt X icjh

quiet ← jhNr,NicNr, PnearQt

Xjhic
cheap ← icNr,NjhNr, PnearCp Xjhic

cheap ← icQt,NjhQt, PquietCp

Xjhic
near ← icCp,NjhCp, PcheapNr Xjhic

near ← icQt,NjhQt, PquietNr

Xjhic
quiet ← icCp,NjhCp, PcheapQt Xjhic

quiet ← icNr,NjhNr, PnearQt

A:

jh NX icjh
cheap NX icjh

quiet NX icjh
near NXjhic

cheap NXjhic
quiet NXjhic

near

ic NicCp NicQt NicNr NjhCp NjhQt NjhNr

C:
C(jh) = {Ndjh} C(ic) = {Ndic}
C(NX icjh

cheap) = {X icjh
cheap} C(NX icjh

quiet) = {X icjh
quiet} C(NX icjh

near) = {X icjh
near}

C(NXjhic
cheap) = {Xjhic

cheap} C(NXjhic
quiet) = {Xjhic

quiet} C(NXjhic
near) = {Xjhic

near}
C(NicCp) = {icCp} C(NicQt) = {icQt} C(NicNr) = {icNr}
C(NjhCp) = {jhCp} C(NjhQt) = {jhQt} C(NjhNr) = {jhNr}
3 Nr and nr stand for near; Cp and cp stand for Cheap; Qt and qt stand for Quiet.
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Here, {ic} � ic is admissible. Though both ic and jh are near, ic is cheap but
jh is not. A graphical illustration is shown in Figure 1.

{ic} � ic {ic} � ic

{NicCp,NXjhic
cheap} � Ndic

��

{NicQt, NXjhic
quiet} � Ndic

��

{} � icCp

��

{NjhCp} � Xjhic
quiet

��

Fig. 1. Graphical illustration of Example 4. Here, {ic} � ic is admissible. The two
figures (left & right) show two ways of attacking {ic} � ic. This figure is read as follows.
Left: ic should be selected (root argument). ic should not be selected as it is not cheap
but jh is. Moreover, there is no more preferred goal than cheap (middle argument). ic
is cheap (bottom argument). Right: ic should be selected (root argument). ic should
not be selected as it is not quiet and there is no more preferred goal than quiet, which
is met by jh (middle argument). jh is no better than ic as though it is quiet, it is not
cheap and cheap is more preferred than quiet.

Selected decisions can be found by computing admissible arguments in a cor-
responding ABA framework, as follows.

Theorem 1. Given an extended decision framework edf = 〈D, A, G, DA, GA, P〉, let
AF = 〈L,R,A, C〉 be the most-preferred ABA framework corresponding to edf .
Then, for all d ∈ D, d ∈ ψE

x (edf) if and only if the argument {d} � d belongs to
an admissible set in AF .

Proof. Let d be dk (k is the index of d in DA).
(Part I.) We first prove that if dk is most-preferred, then {dk} � dk is in an

admissible extension. To show {dk} � dk is admissible, we need to show:

1. {dk} � dk is an argument.
2. Using the arguments Δ, {dk} � dk withstands all attacks.
3. {{dk} � dk} ∪Δ is conflict-free.

Since dk is an assumption, {dk} � dk is an argument. Since C(dk) = {Ndk},
attackers of {dk} � dk are arguments with claim Ndk. Since rules with head
Ndk are of the form Ndk ← drgj , Ndkgj , NX

rk
j , attackers of {dk} � dk are

arguments of the form {Ndkgj , NXrk
j } � Ndk (drgj is not an assumption and

there is no assumption involved in “proving” drgj). Hence we need to show for
all j, r, {dk} � dk withstands (with help) attacks from {Ndkgj, NXrk

j } � Ndk.
For fixed j, r, {dk} � dk withstands attacks from {Ndkgj , NXrk

j } � Ndk if

{Ndkgj , NXrk
j } � Ndk does not withstand attacks towards it. Because NXrk

j

is an assumption, if there is an argument Arg for a contrary of NXrk
j , and Arg

is not attacked, then {Ndkgj, NXrk
j } � Ndk is counterattacked and {dk} � dk

is admissible. We show such Arg exists when dk is most-preferred.
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For all dr ∈ D, r = k, for gj ∈ G there are two possibilities:

1. it is the case that gj /∈ γ(dk) and gj ∈ γ(dr); and
2. it is not the case that gj /∈ γ(dk) and gj ∈ γ(dr), i.e., one of the following

three sub-cases holds:

(a) gj /∈ γ(dk) and gj /∈ γ(dr),
(b) gj ∈ γ(dk) and gj ∈ γ(dr),
(c) gj ∈ γ(dk) and gj /∈ γ(dr).

In case 1, since dk is most-preferred, by Definition 4, there exists gt ∈ G\{gj},
such that

(1) gt > gj in P, (2) gt ∈ γ(dk), and (3) gt /∈ γ(dr).

(i) Since gt > gj in P, there is Pgtgj ← in R. (ii) Since gt ∈ γ(dk), there is
a “proof” for dkgt, i.e., {} � dkgt is an argument. (iii) Since gt /∈ γ(dr), there
is no argument for drgt, hence Ndrgt is not attacked (the contrary of Ndrgt
is drgt). Jointly, (i)(ii)(iii), show that there is an argument for Xrk

j (by rule

Xrk
j ← dkgt, Ndrgt, P gtgj): {Ndrgt} � Xrk

j and this is not attacked. Since the

contrary of NXrk
j is Xrk

j , {Ndkgj, NXrk
j } � Ndk cannot withstand the attack

from {Ndrgt} � Xrk
j .

In case 2(a), gj /∈ γ(dr), hence there is no attribute ai ∈ A such that dr has
ai and gj is fulfilled by ai. Hence drai ←/∈ R or gjai ←/∈ R, or both. Therefore
there is no way to “prove” drgj and hence such gj cannot be used to construct the
argument for Ndk (the only rule with head Ndk is Ndk ← drgj , Ndkgj , NX

rk
j ).

So no attacks against dk can be formed in this case.
In case 2(b) and 2(c), gj ∈ γ(dk), hence there is ai ∈ A such that dk has

ai and gj is fulfilled by ai. Therefore {} � dkgj is an argument. Since there
is no assumption in the support of {} � dkgj , {Ndkgj , NXrk

j } � Ndk cannot
withstand the attack from {} � dkgj (the contrary of Ndkgj is dkgj).

In case 1 or 2, either {Ndkgj, NXrk
j } � Ndk is not an attacking argument or

cannot withstand attacks towards it. Hence {dk} � dk withstands attacks from
{Ndkgj , NXrk

j } � Ndk.
It is easy to see {{dk} � dk} ∪ Δ is conflict-free, as follows. Δ includes all

arguments defending {dk} � dk, since attackers of {dk} � dk are of the form
{Ndkgj , NXrk

j } � Ndk for r = k, Arg ∈ Δ are either of the form {} � dkgj or

{Ndrgt} � Xrk
j , for r = k, j = t. Therefore, assumptions and claims in Δ are of

the forms Ndrgt and dkgj , X
rk
j , respectively. Since dkgj, X

rk
j are not contraries

of Ndrgt for r = k, j = t, Δ is conflict-free. Similarly, {{dk} � dk} ∪ Δ is
conflict-free.

Since {dk} � dk is an argument and, with help from a conflict-free set of
arguments, withstands all attacks towards it, {dk} � dk belongs to an admissible
set of arguments.

(Part II.) We show: if {dk} � dk belongs to an admissible set of arguments,
then dk is most-preferred. To show dk is most-preferred, we need to show for all
dr ∈ D \ {dk}, the following holds:
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� for all gj ∈ G, if gj /∈ γ(dk) and gj ∈ γ(dr), then there exists gt ∈ G such
that: (1) gt > gj in P, (2) gt ∈ γ(dk), and (3) gt /∈ γ(dr).

Since {dk} � dk belongs to an admissible set, {dk} � dk ∪Δ, we know:

1. {dk} � dk is an argument;
2. with help of Δ, {dk} � dk withstands all attacks towards it.

Since arguments attacking {dk} � dk are of the form {Ndkgj, NXrk
j } �

Ndk (the contrary of dk is Ndk and the only rule with head Ndk is Ndk ←
drgj, Ndkgj , NX

rk
j ), {dk} � dk withstanding the attack from {Ndkgj , NXrk

j } �
Ndk means that one of the following three conditions holds:

1. there is no argument for Ndk for some j, r, i.e., there is no way to “prove”
drgj , i.e., there is no argument with claim drgj due to the absence of ai ∈ A,
hence either drai ←/∈ R or gjai ←/∈ R. This means gj /∈ γ(dr). Therefore
part of the antecedent of �, gj ∈ γ(dr), is false and � holds for gj , dr;

2. there is an argument Arg for the contrary of Ndkgj and Arg withstands all
attacks towards it with help from Δ. Since C(Ndkgj) = {dkgj}, having an
argument with claim dkgj means dk meets gj , i.e., gj ∈ γ(dk). Therefore the
other part of the antecedent of �, gj /∈ γ(dk), is false and � holds;

3. there is an argument Arg for the contrary of NXrk
j and Arg withstands all

attacks towards it. Since C(NXrk
j ) = {Xrk

j } and Xrk
j ← dkgt, Ndrgt, P gtgj ,

having Arg with claim Xrk
j and Arg withstanding all of attacks towards it

means:
(a) there is an argument for dkgt;
(b) {Ndrgt} � Ndrgt withstands all attacks towards it;
(c) there is an argument for Pgtgj.

3(a) implies dk meets gt, hence gt ∈ γ(dk); 3(b) implies dr does not meet gt,
hence gt /∈ γ(dr); 3(c) implies gt > gj in P. Jointly, 3(a) 3(b) and 3(c) imply �.

As � holds for all cases 1, 2, and 3, and there are no other cases, dk is most-
preferred.

4 Preferences over Combined Goals

Preferences can be expressed over combined goals. For instance it may be that
g1 is preferred to both g2 and g3, but g2 and g3 together are more preferred than
g1. To model preferences over combined goals, we redefine the preferences P as
a partial order over sets of goals, and denote it by Ps.

To save space, we do not repeat Definition 1 but use 〈D, A, G, DA, GA, Ps〉 to
denote an extended decision framework with preferences defined over sets of
goals (2G). Note that the new definition is a generalisation of the earlier one as
P are Ps over singletons. We leave Definition 3 unchanged.

To ease the presentation, we define the notion of comparable goal set (compa-
rable set in short) as follows:
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Definition 6. Given edf = 〈D, A, G, DA, GA, Ps〉, we let the comparable goal set,
S, (in edf) be such that: S ⊆ 2G, and

– for every s ∈ S, there is an s′ ∈ S, s = s′, such that either s < s′ ∈ Ps or
s′ < s ∈ Ps;

– for every s ∈ 2G \ S, there is no s′ ∈ 2G, such that s < s′ ∈ Ps or s′ < s ∈ Ps.

Example 5. Let G be {g1, g2, g3, g4, g5}, let Ps be:

{g1} > {g2} > {g4, g5} > {g3} > {g4} > {g5}.

Then the comparable goal set is: {{g1}, {g2}, {g3}, {g4}, {g5}, {g4, g5}}.

We redefine Definition 4 to incorporate the change from P to Ps, as follows.

Definition 7. A most-preferred-set extended decision function ψE ∈ ΨE is such
that given an extended decision framework edf = 〈D, A, G, DA, GA, Ps〉, let S be the
comparable set in edf , for every d ∈ D, d ∈ ψE(edf) if and only if the following
holds for all d′ ∈ D \ {d}:

– for all s ∈ S, if s ⊆ γ(d) and s ⊆ γ(d′), then there exists s′ ∈ S, such that:
• s′ > s ∈ Ps,
• s′ ⊆ γ(d), and
• s′ ⊆ γ(d′).

We say d is amost-preferred-set (in edf). We refer to a generic most-preferred-
set decision function as ψE

s .

Intuitively, Definition 7 is Definition 4 with goals replaced by comparable sets.
An informal reading of Definition 7 is: to select a decision d, we check against
all other d′ to ensure that: for any comparable set of goals s, if d′ meets s but d
does not, then there exists some s′ more preferred than s such that s′ is met by
d but not d′.

We modify Example 3 to illustrate Definition 7 as follows.

Example 6. As in Example 3, γ(d1) = {g2, g4, g5}, and γ(g2) = {g2, g3}. Unlike
Example 3, we let Ps be the one shown in Example 5. Though g3 is more preferred
than g4 and g5 individually, g4 and g5 together are more preferred than g3. It is
trivial to see d1 is more preferred than d2 as d1 meets both g4 and g5 whereas
d2 does not. Hence, d1 is a most-preferred-set decision.

Similar to Definition 5, ABA can be used to compute most-preferred-set de-
cisions. We give the corresponding ABA framework as follows.

Definition 8. Given an extended decision framework edf = 〈D, A, G, DA, GA, Ps〉,
let S = {s1, . . . , sw} be the comparable set in edf , the most-preferred-set ABA
framework corresponds to edf is AF = 〈L,R,A, C〉, where:

– R is such that:
for all k, j and i with 1 � k � n, 1 � j � m, 1 � i � l:
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• if DAk,i = 1 then dkai ←∈ R;
• if GAj,i = 1 then gjai ←∈ R;
• dkgj ← dkai, gjai ∈ R;

for all k with 1 � k � n, all sp ∈ S, let sp = {g′1, g′2, . . . , g′r}
• dksp ← dkg

′
1, dkg

′
2, . . . , dkg

′
r ∈ R;

for all s1, s2 ∈ S, if s1 > s2 ∈ Ps, then Ps1s2 ←∈ R;
for all k, r with 1 � k � n, 1 � r � n, k = r, 1 � j � w:
Ndk ← drsj , Ndksj, NX

rk
j ∈ R.

for all k, r, j, t with 1 � k � n, 1 � r � n, k = r, 1 � j � w, 1 � t � w,
j = t: Xrk

j ← dkst, Ndrst, P stsj ∈ R;
that is all the rules in R.

– A is such that:
if 1 � k � n, dk ∈ A;
for all k, r, j with 1 � k � n, 1 � r � n, k = r, 1 � j � w: NXrk

j ∈ A;
for all k, j with 1 � k � n, 1 � j � w: Ndksj ∈ A;
that is all the assumptions.

– C is such that:
for all k with 1 � k � n, C(dk) = {Ndk};
for all k, r, j with 1 � k � n, 1 � r � n, k = r, 1 � j � w: C(NXrk

j ) =

{Xrk
j };

for all k, j with 1 � k � n, 1 � j � w: C(Ndksj) = {dksj}.

Definition 8 is given in the same spirit as Definition 5. Instead of checking
every individual goal being fulfilled by a decision (dkgj), using the rule dkgj ←
dkai, gjai, Definition 8 checks sets of goals dksj fulfilled by a decision using
two rules: dksp ← dkg

′
1, dkg

′
2, . . . , dkg

′
r and dkgj ← dkai, gjai. Hence, a decision

meeting a comparable set is the decision meeting all goals in the comparable
set. We illustrate this new notion of ABA framework corresponding to extended
decision framework with preferences over sets of goals in the next section.

As in Theorem 1, selected decisions are arguments in admissible extensions:

Theorem 2. Given an extended decision framework edf = 〈D, A, G, DA, GA, Ps〉,
let AF = 〈L,R,A, C〉 be the most-preferred-set ABA framework corresponding
to edf . Then, for all d ∈ D, d ∈ ψE

s (edf) if and only if the argument {d} � d
belongs to an admissible set in AF .

The proof of Theorem 2 is very similar to that of Theorem 1. The difference is
that a decision meeting a goal is replaced by a decision meeting a comparable sets
(dkgj ← dkai, gjai is replaced by dksp ← dkg

′
1, dkg

′
2, . . . , dkg

′
r). The structure of

the proof remains unchanged and the conclusion holds.

5 Selecting Medical Literature as Decision Making

In medical research, one sometimes faces the problem of choosing which medical
studies to base a diagnosis on, for a given patient. We view this as a decision
making problem and show how our techniques can be used to solve it.
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For this case study, we have identified 11 randomised clinical trials on the
treatment of brain metastases. The decisions of our model are choices to use a
given paper in a diagnosis—they can therefore be represented by names or IDs
for the papers themselves. The Arm IDs and PMID Numbers of these literature
are given in Table 3. Each literature contains a two-arm trial. We extract a list of
representing trial design criteria and patient characteristics from these papers.
These criteria and characteristics are considered attributes (A) of decisions.

The relations between papers and trial criteria / characteristics are given
in Table 4 (DA). Here, a “1” in row k column i should be interpreted as the
trial reported in paper pk has criterion / characteristics i. A blank means the
corresponding criterion / characteristics is either not reported or not met by the
particular paper. For instance, the first row should be read as: the trial reported
in paper p1 included patients over 18 years old, those with 1 or many brain
metastases, with performance status either 0 or 1, and more than 60 percent of
the patient sample population included in this trial had primary lung cancer.

Table 3. 11 medical studies on brain metastases

id ArmID PMID Number

1 Ayoma Jama 2006 16757720
2 Graham IJROBP 2010 19836153
3 Chang Lancet 2009 1980120
4 Langley ClinOnc 2013 23211715
5 Kocher JCO 2011 21041710
6 Patchell NEJM 1990 2405271
7 Patchell Jama 9809728
8 Mintz Cancer 1996 8839553
9 VechtAnn Neurol 1993 8498838
10 Andrews Lancet 2004 15158627
11 Kondziolka IJROBP 1999 10487566

Since the aim is to find medical papers for a particular patient, we view
properties of the given patient as goals (G). In this setting, “good” decisions are
medical papers that better match with the particular patient’s properties. We
present relations between patient’s properties and trial characteristics in Table 5
(GA). “1”s in the table represent trial characteristics meeting patient properties.
Blanks means otherwise. For instance, the sample patient shown in Table 5 has
four properties: being 64 years old, has three metastases, has a performance
status 2, and has lung cancer.

We first let the preference (P) be:

3mets > Lung > PS2 > Age.

Here, the preference order states that: the number of metastases is more im-
portant than where the main cancer comes from than the performance status
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Table 4. Paper / Trial Characteristics (DA)

> 18 1m 2m > 2m ECD PS 0, 1 PS 2 PS 3, 4 Lung > .6 Breast > .6

p1 1 1 1 1 1 1
p2 1 1 1
p3 1 1 1 1 1 1
p4 1 1 1 1 1
p5 1 1 1 1 1
p6 1 1 1
p7 1 1 1 1
p8 1 1 1 1
p9 1 1 1 1
p10 1 1 1 1 1 1 1
p11 1 1 1

Table 5. Patient Properties / Trial Characteristics (GA)

> 18 1m 2m > 2m ECD PS 0, 1 PS 2 PS 3, 4 Lung > .6 Breast > .6

Age64 1
3met 1
PS 2 1
Lung 1

than the age of the patient. Thus, we form an extended decision framework
edf = 〈D, A, G, DA, GA, P〉 with decisions D = {p1, . . . , p11}, attributes A = {>
18, 1m, 2m,> 2m,ECD,PS 0, 1, PS 2, PS 3, 4, Lung > .6, Breast > .6}, and
goals G = {Age64, 3 met, PS 2, Lung}, GA, DA, and P are given above.

We omit the ABA framework, AF , corresponding to this extended decision
framework. We use proxdd4 to compute the admissible arguments. There, we see
that {p10} � p10 is in an admissible extension in AF , as illustration in Figure 2.

To illustrate preferences over sets of goals, we let Ps be:

{PS2, Age} > {3mets} > {Lung} > {PS2} > {Age}.

The comparable goal set is: {{PS2, Age}, {3mets}, {Lung}, {PS2}, {Age}}. We
insert new rules such as:

– p1SPS2age← p1PS2, p1Age

– p1S3mets← p13mets

and so on in the corresponding ABA framework (read as: p1 meets the com-
parable goal set {PS2, age} if p1 meets PS2 and p1 meets Age; p1 meets the
comparable goal set {3mets} if p1 meets 3mets, etc.). A graphical illustration
of p3 being a most-preferred-set decision is given in Table 3.

4 http://www.doc.ic.ac.uk/˜rac101/proarg/
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P:1

O : 1P : 2

O : 2P : 3

O : 3P : 4

O : 4

P : 5

O : 5

P : 6

O : 6

P : 7

O : 7

P : 8

p 1 0p 1 0

N p 1 0

N p 1 0 / 3 M

N X / 3 M p 1 p 1 0

p 1 0 / 3 M

N p 1 0

N p 1 0 L u n g

N X L u n g p 1 p 1 0

p 1 0 L u n g

N p 1 0

N p 1 0 A g e

N X A g e p 1 p 1 0

p 1 0 A g e

N p 1 0

N p 1 0 P S 2

N X P S 2 p 2 p 1 0X P S 2 p 2 p 1 0N p 2 / 3 M

N p 1 0N p 1 0 P S 2

N X P S 2 p 3 p 1 0X P S 2 p 3 p 1 0N p 3 L u n g

N p 1 0N p 1 0 P S 2

N X P S 2 p 8 p 1 0X P S 2 p 8 p 1 0N p 8 / 3 M

N p 1 0N p 1 0 P S 2

N X P S 2 p 9 p 1 0X P S 2 p 9 p 1 0N p 9 / 3 M

Fig. 2. Graphical illustration of p10 being a most-preferred decision. Note that this
figure omits opponent arguments which have been counter-attacked by proponent ar-
guments shown in this graph. Right / Root: p10 is a good paper. Middle / Oppo-
nents: (attacking the root) p10 is not good as it does not meet the 3 metastases goal
and it is not the case that p10 meeting some more important goal than 3 metastases.
(O:1) p10 is not good as it does not meet the main cancer from lung goal and it is
not the case that p10 meeting some more important goal than main cancer from lung.
(O:2) Etc. Left / Support: (attacking the middle ones) p10 meets the 3 metastases
goal (P:2). p10 meets the main cancer from lung goal (P:3), etc.
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{p3} � p3

{Np3SPS2Age,NXp9p3
SPS2Age} � Np3

���������������
. . . {Np3SLung,NXp10p3

SLung} � Np3

��������������

{} � p3SPS2Age

��

. . . {Np10SPS2Age} � Xp10p3
SLung

��

Fig. 3. Graphical illustration of p3 being a most-preferred-set decision. Note that this
figure only shows a small part a debate graph. A reading is follows. Root: p3 is a
good paper. Middle Left: (attacking the root) p3 is not good as it does not meet the
comparable set {PS2, age} and it is not the case that p3 meeting some more important
comparable set than {PS2, age}. Bottom Left: (attacking the middle left) p3 meets
{PS2, age}. Middle Right: (attacking the root) p3 is not good as it does not meets
{Lung} and it is not the case that p3 meeting some more preferred comparable set than
p10 meeting Lung. Bottom Right: (attacking the middle right) p3 meets {PS2, age}
whereas p10 does not, and {PS2, age} is more preferred than {Lung}.

6 Related Work

Matt et.al. [9] present an ABA based decision making model. Our work differs
from theirs in that we study decision making with preference over goals and sets
of goals whereas they focus on decision making without preferences.

Dung et al. [4] present an argumentation-based approach to contract negoti-
ation. Part of that work can be viewed as argumentation-based decision-making
with preferences. The main differences are: (1) we give formal definition of deci-
sion making frameworks whereas they do not; (2) we study preference over a set
of goals whereas they do not; (3) we make explicit connections between ‘good’
decisions and ‘acceptable’ arguments whereas they do not.

Fan and Toni [6] present a model of argumentation-based decision-making.
Compare to that work, this paper gives a more thorough look at decision making
with preferences over goals by examining preferences over individual goals and
sets of goals whereas that work has not. Moreover, this work uses a real world
example, medical paper selection, as the case study, whereas [6] has not.

Amgoud and Prade [1] present a formal model for making decisions using ab-
stract argumentation. Our work differs from theirs as: (1) they use abstract ar-
gumentation whereas we use ABA; (2) they use a pair-wise comparison between
decisions to select the “winning” decision whereas we use an unified process
to map extended decision frameworks into ABA and then compute admissible
arguments.

7 Conclusion

We present an argumentation based decision making model that supports pref-
erences. In our model, we represent knowledge related to decision making in
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extended decision frameworks in the forms of decisions, attributes, goals and
preferences over (sets of) goals. We define extended decision functions to select
“good” decisions. We then map both decision frameworks and decision func-
tions into ABA frameworks. In this way, computing selected decisions becomes
computing admissible arguments. We obtain sound and complete results such as
selected decisions are claims of admissible arguments and vice versa. A benefit
of our approach is that it gives an argumentative justification to the selected
decisions while computing it. A natural extension of our approach is incorporat-
ing defeasibility into our approach to model a form of uncertainty. Comparing
with many work in multi-criteria decision making [11], our approach gives a finer
granularity in reasoning as not only decisions and goals are considered but also
attributes and preferences.

We apply our decision making model to clinical trial selection: given properties
of a patient, we select papers that are most relevant to this patient, from a
set of papers. We view papers as decisions, trial criteria and characteristics as
attributes, patient properties as goals. Hence, “good” decisions are papers best
match with patient properties. We show our model gives satisfactory results.
Also since our decision model is generic, we can apply it in many other domains.
For example, we plan to apply the developed decision making model to select
the most suitable treatment for a patient in future.

Although the argumentation frameworks generated are large in comparison
with the decision frameworks, the generation is typically quick, and all queries
we investigated were answered by proxdd in less than 0.05 seconds. Future work
will investigate the complexity and performance evaluation more thoroughly;
should the generation of ABA frameworks be found to be expensive, we will
look at the possibility of ‘lazy’ generation, producing relevant inference rules in
R on the fly, as query answering needs them.

Other future directions include studying decision-making with other form
of knowledge representation, studying decision-making with conditional prefer-
ence [2], and studying decision-making in the context of multiple agents sharing
potentially conflicting knowledge and preferences.
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