
Chapter 6
A Geometric Algebra Based Distributional
Model to Encode Sentences Semantics

Agnese Augello, Manuel Gentile, Giovanni Pilato and Giorgio Vassallo

Abstract Word space models are used to encode the semantics of natural language
elements bymeans of highdimensional vectors [23]. Latent SemanticAnalysis (LSA)
methodology [15] is well known and widely used for its generalization properties.
Despite of its good performance in several applications, the model induced by LSA
ignores dynamic changes in sentencesmeaning that depend on the order of thewords,
because it is based on a bag of words analysis. In this chapter we present a technique
that exploits LSA-based semantic spaces and geometric algebra in order to obtain a
sub-symbolic encoding of sentences taking into account the words sequence in the
sentence.

Keywords Semantic spaces · Sentences encoding · Clifford algebra
1 Introduction

Two rather orthogonal theories in Natural Language Processing are the symbolic [11]
and distributional [25] paradigms: the former is compositional but only qualitative,
the latter is non-compositional but quantitative [9].
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Distributional approaches try to quantify and categorize semantic correspon-
dences between linguistic entities. The key idea is the distributional hypothesis,
which states that words having similar meanings will occur in similar contexts [21].
This means that there is a correlation between distributional and meaning similarity,
that makes it possible to estimate the latter starting from the former.

Algorithms that try to acquire distributional meaning can be divided in two
categories: the first one includes all approaches that try to build distributional profiles
for words based on which other words surround them, while the other one embraces
the techniques that build distributional profiles based on in which text regions word
occur [23].

The core of the distributional approach is that linguistic meaning is essentially
differential, i.e. differences of meaning are mediated by differences of distributions,
therefore the distributional methodology deals only with meaning differences or
semantic similarity.

Usually the model that captures the pattern of distribution of single words across
a set of contexts is a vector and the assessment of these models is often done by
exploiting relations of semantic similarity between individual words.

Saussure gave the foundation of what developed later as structuralism; in a lan-
guage signs are identified by their relation of difference; he emphasized that meaning
arises from the differences between signifiers; these differences are of two kinds: syn-
tagmatic and paradigmatic. The former deals with positioning and relate entities that
co-occur in the text, the latter ones deal with substitution and relate entities that do
not occur in the text.

According to Sahlgren [22], “A distributional model accumulated from co-
occurrence information contains syntagmatic relations between words, while a dis-
tributional model accumulated from information about shared neighbors contains
paradigmatic relations between words”.

Syntagmatic models collect text data in a words/documents co-occurrence matrix
whose generic item is a function of the frequency of occurrence of a word in a doc-
ument, while paradigmatic models collect text data in a words/words co-occurrence
matrix whose generic item is a function of how many times words occur together
within a context window.

In paradigmaticmodels the row and column vectors are different since row vectors
model words appearing to the right of the other words, and the column vectors model
words appearing to the left of the other words. The generated matrix is asymmetrical
and is usually referred as “directional co-occurrence matrix”.

There are different techniques that exploit syntagmatic or paradigmatic models.
Each of them exploits the fact that natural language elements, such as words, sen-
tences, documents, are sub-symbolically represented as points in a high dimensional
vector space, allowing the use of linear algebra in order to obtain pair-wise similarity
scores. Such a space is usually named “semantic space”.

The peculiarity of semantic spaces is that this kind of structures are automatically
induced by means of statistical analysis of large text corpora, usually without using
any “a priori” knowledge.
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One of the most used approaches for semantic space building is given by the
Latent Semantic Analysis (LSA) paradigm. In particular LSA is based on a
dimension optimization of the created space which highlights the latent indirect
similarity relations among words and documents [15]. LSA, starting from a word-
by-documents co-occurrence matrix, implements a syntagmatic use of contexts, and
exploits the Truncated Singular ValueDecomposition (TSVD)which approximates a
paradigmatic use of contexts.

Vector-basedmodels typically represent single words and do not take into account
the grammatical structure of a sentence [14]. Therefore these models have a limited
capability to model compositional operations over phrases and sentences.

In order to overcome these shortcomings, distributional methods have been
lately extended in order to take into account also compositionality: these enhanced
approaches have been named in literature of “distributional compositional semantics
(DCS)” approaches.

Existing models are still arguable and provide general algebraic operators over
lexical vectors. An overview of these methodologies which explains the benefits and
limitations of different approaches about compositionality in distributional semantic
models present in literature, including additive,multiplicative,mixture, tensor-based,
and Structured Vector Space (SVS) models is given in [12].

Among the different approaches we recall here the work presented in [9], where a
mathematical framework, based on the algebra of Pregroups, for a unification of the
distributional theory of meaning using vector space models, and a compositional the-
ory for grammatical types, has been introduced. The framework makes it possible to
evaluate the meaning of a well-typed sentence from the meanings of its constituents.

Moreover in [6] a methodology based on Random Indexing and vector permu-
tations has been proposed to encode several syntactic contexts in a single semantic
space where a set of operations is defined. The technique exploits syntactic depen-
dencies to perform some particular queries, such as the one for retrieving all similar
objects of a verb, and it has been tested for semantic composition of short sentences
and evaluated by using the GEMS 2011 dataset [13]. Finally, a distributional compo-
sitional semantic model based on space projection guided by syntagmatically related
lexical pairs has been illustrated in [2]. Syntactic bi-grams are projected in a Sup-
port Subspace, in order to let arise the semantic features shared by the compound
words and catch phrase-specific characteristics of the associated lexical meanings.
The methodology relies on first selecting the most important components for a spe-
cific word pair in a relation and then modeling their similarity. This captures their
meanings locally relevant to the specific context evoked by the pair. The approach is
very effective for the syntactic structures of VO, NN and AdjN.

Recently we have proposed a sub-symbolic methodology for natural language
sentences coding, exploiting Geometric Algebra (GA) rotation operators, named
rotors [4, 20]. At a lexical-unit level the semantic coding is given by the vectors of
an LSA space. At a words-pair level we associate to each bigram in a sentence an
ad-hoc GA rotor. Finally at a sentence-level the whole coding is obtained by means
of successive rotations of a standard basis in the semantic space, where each rotation
is performed applying the rotor associated to the analyzed sentence bigram to the
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basis. Since this operation is non-commutative, word order is taken into account for
the whole sentence encoding.

The approach has been here evaluated under the light of Compositional Distri-
butional Semantic Models, and its performances have been evaluated by using the
GEMS 2011 shared evaluation.

2 Semantic Rotors to Encode Sentences Semantics

The proposed methodology consists in an unsupervised procedure that injects infor-
mation about the sentence structure and the semantics of its component words into
a sub symbolic sentence coding.

The methodology is based on the following steps (see Fig. 1): the construction
of a semantic space in order to extract a vector encoding of words belonging to a
text corpus; the association of ad-hoc rotors to the sentence bigrams, and finally
the coding of the sentence through the application of rotation operators (rotors) to
a standard basis in the semantic space. Each rotation operator is dependent on the
vector coding of the words composing the bigrams of the sentence. The rotation
operator corresponds to a non-commutative operation represented by the clifford
geometric product [17].

Fig. 1 Sentences encoding process
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2.1 Words Coding in a Semantic Space

The first step aims at obtaining a semantic coding of the words composing a sentence.
In particular a semantic space is obtained by means of Latent Semantic Analysis
[16], a well established technique used to obtain a semantic representation of words.
The strength of LSA is an induction-dimension optimization obtained through the
truncated singular value decomposition (TSVD) that converts the initial
representation of information into a condensed representation that captures indi-
rect, higher-order associations between words [15]. In particular we consider the
building of a word-by-word co-occurrences matrix, where its (i, j)-th entry of the
matrix represents the number of times a bigram composed of the i-th word followed
by the j-th word appears in a documents corpus inside a window of a fixed number
of words.

An important characteristic is that the dimension of the matrix is determined only
by the number of words included in the vocabulary and it is independent of the
number of documents.

The resulting matrix, which is not symmetrical, is preprocessed substituting each
entry of the matrix with the correspondent pointwise mutual information value .

The Pointwise Mutual Information (PMI) [8] between two words wi and w j is a
co-occurrencemetric,which allows to consider how likely it is to ndw j in a document
if that document contains wi . The PMI normalizes the probability of co-occurrence
of the two words with their individual probabilities of co-occurrence [7].

The PMI between wi and w j has been calculated as:

pmi = log2
f (wi , w j )

f (wi ) f (w j )
(1)

where f (wi , w j ) is the number of times that the ordered bigram wi − w j occurs in
the documents corpus considering a fixed size words window; f (wi ) is the number
of times that word wi occurs in corpus; and similarly, f (w j ) is the number of times
that word w j occurs in corpus. The weighted matrix is decomposed by means of
truncated SVD, and the result is the following:

A ≈ Ak = UkΣkVT
k . (2)

where Uk , Σk and Vk are matrices that provide compressed information about the
left and the right context of the word. In particular the i-th row of Uk , multiplied
by the square root of the Σi i element of Σk represents the right context of the i-th
word, while the i-th row of Vk , multiplied by the square root of the Σi i element of
Σk represents the left context of the i-th word .

Therefore it is possible to associate to each word two different vectors in the
generated semantic space: li and ri , the former representing the left context and the
latter representing the right context of the word.
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2.2 Bigrams Coding

A geometric algebra operator is associated to each bigram of a sentence. Given a
bigram composed by the words wi and w j , let li and ri be the left and right contexts
of the word wi and l j and r j the left and right contexts of the word w j , a rotor
represented as the following geometric product:

Ri j = ri l j = ri · l j + ri ∧ l j (3)

is associated to the bigram.
The geometric product is the combination of the classical dot product with the

outer product (∧) and for this reason it is, in general, not commutative.

2.3 Sentence Encoding

The sentence encoding is obtained starting from a neutral, starting coding and apply-
ing, time to time, a non commutative operator dependent on the considered bigram.
The starting coding is given by an orthonormal base of the semantic space: the canon-
ical basis of k dimensions represented by the identity matrix. We call this starting
coding s0, to consider it as the coding of an empty sentence.

The temporal sequence of words belonging to the sentence generates a rotation
trajectory of an orthogonal basis in a semantic space. For a phrase of M words, and
therefore of M-1 bigrams, we can associate M-1 rotors to the sentence, as Fig. 2
shows.

The sequence of these rotors will be applied to the original basis, transforming it
M-1 times.

In particular we can analyze what happens in a specific step of the coding process.
Let sz−1 be the coding of the sentence after an analysis of (z − 1) bigrams. Let

z − th be the bigram composed of the words wi and w j .
We can associate to this bigram a rotor given by the geometric product between

the right context ri of the word wi and the left context l j of the word w j .
Therefore we can perform a rotation of sz−1 in the ri ∧ l j plane, obtaining the

coding of the sentence at the z − th step.

Fig. 2 Sequence of rotors associated to a sentence
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Fig. 3 Coding of sz−1: double
reflection in the plane speci-
fied by the rotor associated to
the zth bigram

The rotation [17] is performed making two subsequent reflections of sz−1 with
respect to ri and l j vectors (see Fig. 3).

This operation is expressed in terms og geometric algebra by:

sz �→ R sz−1 R̃ = e(−B̂θ) sz−1 e(B̂θ) . (4)

where R̃ is the inverse of the R rotor [3], the unit bivector B̂ represents the plane of
rotation and the angle of rotation is 2θ . It is easy to demonstrate how the rotation
operation is not commutative unless the rotation planes are completely orthogonal
[24].

Each time a new bigram composing the sentence is analyzed, a new, intermediate
encoding of the sentence that takes into account the sequence of the consideredwords
is obtained. At the end of the procedure, the rotated basis can be represented by a
vector of k2 components, where k is the value chosen to truncate the SVD. The final
coding is given by the orthogonal part of this vector with respect to the original
basis. This allows to obtain a coding which is independent of the sentence length. It
is important to point out that cyclical coding should not appear if the dimension of
the semantic space is higher than the number of rotations associated to the sentence.

According to the non-commutative property of the rotation operation, given a list
of rotors {R1,R2, ..., Rn} corresponding to the bigrams in the sentence, the appli-
cation of these rotation operations to the orthonormal base creates a coding that is
function of the order in which these rotations are applied.

The final coding represents a synthesis of the word sequence history within the
sentence and corresponds to its sub-symbolic coding.
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3 Effects of the Rotation in Distributional
Models Based on LSA

In a previous work we have highlighted how the semantic space obtained by means
of LSA can be interpreted as a “conceptual” space. The axes of this space induced
by the truncated SVD can be considered as the latent primitive concepts belonging
to the training corpus and can be tagged with a set of words characterizing it [1].

The process of sentence encoding based on rotor operators allows to highlight
“conceptual” relations that can arise between the primitive concepts as the bigrams
composing the phrase are analysed.

Wecanmake an analogybetween the proposedmodel and a state transition system.
The rotated basis represents the “conceptual state” of the sentence. In particular

the matrix associated to the rotated basis can be considered as the incidence matrix
of a graph of connections among the “primitive concepts” of the space, where each
node of the graph corresponds to a specific conceptual axis.

Let us suppose we have sentence s of M words. Let mq0 the starting state of our
coding process represented by the orthonormal unitary matrix, of dimension equal
to the value chosen to the truncation parameter of the SVD.

Each timewe consider a bigram of the sentence, we have a state transition function
f given by the rotation operation, which brings to a new state that is the rotated basis
represented by a orthonormal non unitary matrix mq. The result of each rotation
leads to the induction of relations between the axes, represented as the connections
between the nodes of the graph associated to state, as shown in Fig. 4. In fact, as
shown in previous experimental results [4], the generic cell mqi, j of the matrix can
be considered as representative of the relation between the i-th and the j-th conceptual
axes. After the analysis of all the M − 1 bigrams of the phrase the system reaches a
final state F , representing the sentence encoding.

4 Experimental Results

This section reports some experimental results aimed at evaluating both the perfor-
mance and the scalability of the proposed algorithm.The experimental phase has been
performed according to the instructions of the GEMS 2011 shared evaluation [13].

Fig. 4 Sentence encoding as
a state transition process
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In particular we used ukWaC [5] and TASA (see Acknowledgments) as source
corpora for semantic spaces building. The test set, taken by GEMS 2011, consists
in a list of two pairs of the following types: adjective-noun (AN), verb-object (VO)
and compound nouns (NN), defined by Mitchell and Lapata [18, 19].

To each pair is associated a set of rates, ranging from 1 to 7, given by participants
of a psycholinguistic experiment conducted by Mitchell and Lapata. For example
the pair “result achieve”—“level reach” has a rate of 7, while “bus company”—
“intelligence service” has a rate of 1. The total number of rates is 5833.

The system has been evaluated computing the scores obtained by the proposed
algorithm for all of the adjective-noun combinations, verb-object combinations and
compound nouns and therefore by calculating the Spearman correlation ρ between
the obtained scores and all of Mitchell and Lapata’s participant rates.

We have used documents of ukWack as source corpora to build the words co-
occurrences matrix, where the elements of the matrix are weighted by means of the
pmi score. The truncated SVD is performed with a factor k = 100.

We have considered a smaller subset of the ukWaC documents corpus, in order to
quickly analyze the algorithm performance changes according to different values of
the parameters. In particular the number of documents we have considered is 110165.

We have carried out different experiments changing parameters such as the win-
dow size, by taking into account or not the POS tags of the words, and removing
words occurring in the corpus less than a given threshold. The results, shown in Fig. 5,
show that the best results (evaluated over the all groups) are obtained by setting the
words window equal to ±4 and removing those words having a frequency lower
than 60.

We have analysed the performance of the algorithm, by fixing one of the two
parameters with the best value and changing the other. The following figures show

Fig. 5 Performance changes on parameters varying: the numbers below each histogram represent
the different the number of occurrences above which the words are selected; the numbers in the row
of the table represent the different sizes of the words window: ±3, ±4 and ±7
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Fig. 6 Results obtained on the NN group fixing the size of the words window to its best value and
changing the size of the cutting (a) fixing the size of the cutting to its best value and changing the
size of the words window (b)

Fig. 7 Results obtained on the AN group fixing the size of the words window to its best value and
changing the size of the cutting (a) fixing the size of the cutting to its best value and changing the
size of the words window (b)

Fig. 8 Results obtained on the VO group fixing the size of the words window to its best value and
changing the size of the cutting (a) fixing the size of the cutting to its best value and changing the
size of the words window (b)

the results obtained on the different groups using the rotors-based or the additive
operator.

The results reported a small but meaningful change on varying the bigrams win-
dow size, as shown in the left side of Figs. 6, 7 and 8: increasing the size of thewindow
the results initially grow, they reach a peak and then they decrease. Moreover the
trend obtained from the two operators are similar, however the rotors operator gets
better results than the additive operator.
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Table 1 Results obtained using the ukWaC corpus to build the semantic space

Space-operator NN AN VO

LSA-Multiplicative 0.215 0.115 0.234
LSA-Additive 0.481 0.394 0.356
LSA-Rotors 0.488 0.471 0.365
Human Agreement 0.49 0.52 0.55

Table 2 Results obtained
using the TASA corpus to
build the semantic space

Space-Operator NN AN VO

LSA-Multiplicative 0.044 0.090 0.052
LSA-Additive 0.184 0.285 0.189
LSA-Rotors 0.427 0.476 0.301
Human Agreement 0.49 0.52 0.55

Different conclusions can be made changing the value of words occurrences used
to filter the set of terms to analyze.

The results are too much sensitive to the cuts and the trends of the two methods
are very different. It should be noted for example as in the VO curve our algorithm
increases the performance while the additive reaches a minimum by increasing the
cut.

Table1 summarizes the values obtained using the corpus ukWaC fixing the size
of the words window to ±4 and the value of words occurrences used to filter the
terms to 60.

Table2 show the results obtained using the documents of TASA as source corpora,
weighting the co-occurrences matrix by means of the pmi score, and performing a
truncated SVD with a factor k = 100.

The last row in the two tables shows the inter agreement among the participants,
computed using the leave-one-out resampling according to [19]. According to [6]
these values can be considered as upper bounds for our evaluation.

Moreover we have verified that both the models are significantly correlated with
the human judgments (p < 0.01), and that the rotor model is significantly better
(p < 0.01) than the standard additive model by using Fisher’s z-transformation with
the correction reported in [10] (p. 1071).

We carried out a comparison of the performance obtained with the different op-
erators on the entire set of groups, using or not the information relating to the POS
tags. The results shown in the Fig. 9 confirm what reported in literature: adding this
information the unique words in the data increase, thus aggravating the sparse-data
problem [22].
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Fig. 9 Results obtained over
the all groups using or not the
POS tag information

5 Conclusion

In this work we have described a sub-symbolic methodology for sentences encoding.
The methodology exploits the properties of Geometric Algebra operators, called
rotors, to codify sentences by means of subsequent rotations of an orthogonal basis
of a semantic space.

The methodology operates at three different levels: at a word level it is based on
the building of an LSA semantic space, at a word-word level it associates ad-hoc
semantic rotors to each bigram of a sentence, and finally at a sentence level, it applies
the obtained rotors to perform the rotation of the basis. It is easy to show that this
kind of coding:

• takes into account the semantics of the words composing it because the rotors are
defined in a semantic space generated by LSA;

• it is a function of the words sequence into the sentence, thanks to the non-
commutativity property of rotation;

• has a high enough dimensionality;
• is independent of the number of words belonging to the sentence.

The proposed approach has been evaluated according to the GEMS 2011 shared
evaluation procedure. Experimental results show that the proposed approach is effi-
cient and outperforms additive and multiplicative operators.

However the potential of the methodology become more evident on a test set of
sentences longer than only two words as shown in our previous works [4, 20].

The method can be used to all traditional applications of classical LSA-based
approaches, and has the advantage to be fully scalable, since the matrix which gen-
erates the coding of the sentences is a word-by-word matrix, and therefore its di-
mensions depend only on the vocabulary size, and not on the contexts used (i.e.
sentences, or documents). On the other hand, Clifford rotors do not depend on the
sentence length, being their application just a rotation of a basis in the semantic
space.
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