
Composing Distributed Systems:

Overcoming the Interoperability Challenge

Valérie Issarny and Amel Bennaceur

Inria Paris-Rocquencourt, France
firstname.lastname@inria.fr

Abstract. Software systems are increasingly composed of independently-
developed components, which are often systems by their own. This compo-
sition is possible only if the components are interoperable, i.e., are able to
work together in order toachieve someuser task(s).However, interoperabil-
ity is often hampered by the differences in the data types, communication
protocols, and middleware technologies used by the components involved.
In order to enable components to interoperate despite these differences,
mediators that perform the necessary data translations and coordinate the
components’ behaviours appropriately, have been introduced. Still, inter-
operability remains a critical challenge for today’s and even more tomor-
row’s distributed systems that are highly heterogeneous anddynamic.This
chapter introduces the fundamental principles and solutions underlaying
interoperability in software systemswith a special focus on protocols. First,
we take a software architecture perspective and present the fundamentals
for reasoning about interoperability and bring out mediators as a key so-
lution to achieve protocol interoperability. Then, we review the solutions
proposed for the implementation, synthesis, and dynamic deployment of
mediators. We show how these solutions still fall short in automatically
solving the interoperability problem in the context of systems of systems.
This leads us to present the solution elaborated in the context of the Eu-
ropean Connect project, which revolves around the notion of emergent
middleware, whereby mediators are synthesised on the fly. We consider
the GMES (Global Monitoring of Environment and Security) initiative
and use it to illustrate the different solutions presented.

Keywords: Architectural mismatches, Interoperability, Mediator
synthesis, Middleware.

1 Introduction

Modern software systems are increasingly composed of many components, which
are distributed across the network and collaborate to perform a particular task.
These components, often being complex systems themselves, led to the emer-
gence of what is known as “systems of systems” [32]. The realisation of a system
of systems depends on the ability to achieve interoperability between its different
component systems. Traditionally, “Interoperability characterises the extent by

E. Giachino et al. (Eds.): FMCO 2012, LNCS 7866, pp. 168–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Composing Distributed Systems: Overcoming the Interoperability Challenge 169

which two implementations of systems or components from different manufac-
turers can co-exist and work together by merely relying on each other’s services
as specified by a common standard” [48]. However, assuming the reliance on
a common standard is often unrealistic given that components are increasingly
highly heterogeneous (from the very tiny thing to the very large cloud) and devel-
oped (from design to deployment) independently without knowing the systems
with which they will be composed. As a result, even though the services that
component systems (or components for short) require or provide to each other
are compatible at some high-level of abstraction, their implementations may en-
compass many differences that prevent them from working together. Hence, we
re-state the definition of interoperability to components that require and pro-
vide compatible high-level functionalities and can be made to work together. We
qualify such components as being functionally compatible.

In order to make functionally-compatible components work together, we must
reconcile the differences between their implementations. The differences may be
related to the data types or the format in which the data are encapsulated,
that is, data heterogeneity. Differences may also concern the protocols according
to which the components interact, that is, behavioural heterogeneity, which is
the main focus of this chapter. Middleware, which is a software logically placed
between the higher layer consisting of users and applications, and the layer un-
derneath consisting of operating systems and basic communication facilities,
provides an abstraction that facilitates the development of applications despite
the heterogeneity of the underlying infrastructure. However, the abstractions
defined by the middleware constrain the structure of the data that components
exchange and the coordination paradigm according to which they communicate.
This makes it impossible for components implemented using different middleware
technologies to interoperate. As a result, interoperability must be considered
at both application and middleware layers. To achieve interoperability between
components featuring data and behavioural heterogeneity, intermediary software
entities, called mediators, are used to perform the necessary translations of the
data exchanged and to coordinate the components’ protocols appropriately [52].
Using mediators to achieve interoperability has received a great deal of interest
and led to the definition of a multitude of solutions, both theoretical and practi-
cal, for the specification, synthesis, and deployment of mediators, although they
are predominantly oriented toward design time.

With the growing emphasis on spontaneous interaction whereby components
are discovered at runtime and need to be composed dynamically, mediators can
no longer be specified or implemented at design time. Rather, they have to be
synthesised and deployed on the fly. Therefore, the knowledge necessary for the
synthesis of mediators must be represented in a form that allows its automated
processing. Research on knowledge representation in general, and ontologies in
particular, has now made it possible to model and automatically reason about
domain information crisply, if not with the same nuanced interpretation that a
developer might [45]. Semantic Web Services are an example of the use of on-
tologies in enabling mediation on the fly [38]. However, they are restricted to



170 V. Issarny and A. Bennaceur

interoperability at the application layer, assuming that the composed compo-
nents are implemented using the same middleware.

Acknowledging the extensive work on fostering interoperability, while at the
same time recognising the increasing challenge that it poses to developers, this
chapter provides a comprehensive review of the interoperability challenge, from
its formal foundations to its automated support through the synthesis of media-
tors. The work that is reported extensively builds on the result of the European
collaborative project Connect1, which introduced the concept of emergent mid-
dleware and related enablers so as to sustain interoperability in the increasingly
connected digital world. An emergent middleware is a dynamically generated
distributed system infrastructure for the current operating environment and con-
text, which allows functionally-compatible systems to interoperate seamlessly.

This chapter is organised as follows. In Section 2, we introduce the GMES case
study, which we use throughout the chapter to illustrate the different solutions
to interoperability. In Section 3, we take a software architecture perspective to
understand and further formalise the interoperability problem in the case of sys-
tems of systems, which are characterised by the extreme heterogeneity of their
components and the high-degree of dynamism of the operating environment. In
Section 4, we survey the approaches to achieving interoperability from (i) a mid-
dleware perspective where we concentrate on the effort associated with the imple-
mentation of mediators, (ii) a protocol perspective where we are concerned with
the synthesis of mediators based on the behavioural specification of component
systems, thereby greatly facilitating the developer’s task and further promoting
software correctness, and (iii) a Semantic Web perspective where we focus on
the fully automated synthesis of mediators at runtime, so as to enable on-the-fly
composition of component systems in the increasingly open and dynamic net-
working environment. Following this state of the art review, in Section 5, we
introduce a multifaceted approach to interoperability which brings together the
different perspectives in order to provide a solution to interoperability based on
the automated synthesis of mediators and their dynamic deployment, which we
call emergent middleware. Finally, in Section 6, we conclude on where interop-
erability stands in today’s systems and present directions for future work.

2 GMES: A System of Systems Case Study

To highlight the interoperability challenge in systems of systems, we consider
one representative application domain, that of global monitoring of the natural
environment, as illustrated by the GMES2 initiative. GMES is the European
Programme for the establishment of a European capacity for Earth Observa-
tion. A special interest is given to the support of emergency situations across
different European countries [22]. In emergency situations, the context is highly
dynamic and involves highly heterogeneous components that interact in order
to perform the different tasks necessary for decision making. The tasks include,

1 http://www.connect-forever.eu/
2 Global Monitoring for Environment and Security – http://www.gmes.info/

http://www.connect-forever.eu/
http://www.gmes.info/


Composing Distributed Systems: Overcoming the Interoperability Challenge 171

Country 1 Country 2

Weather Service

Positioning-A

Weather Station Client

Positioning-BC2 Positioning-B Subscriber

UAV ClientUAVUGV

SOAP

SOAP

SO
AP

CORBA

AMQP

SOAP

Med
iat

or

Mediator

M
ediator

Weather Station

Fig. 1. The GMES use case

among others, collecting weather information, and capturing video using differ-
ent devices. GMES makes a strong case of the need for on-the-fly solutions to
interoperability in systems of systems. Indeed, each country defines an emer-
gency management system that composes different components, which interact
according to standards proper to the country. However, in special circumstances,
assistance may come from other countries, which bring their own components
defined using different standards.

Figure 1 depicts the case where the emergency system of Country 1 is com-
posed of a Command and Control centre (C2 ) which takes the necessary decisions
for managing the crisis based on the information about the weather provided by
the Weather Service component, the positions of the various agents in field given
by Positioning-A, and the video of the operating environment captured by UGV
(Unmanned Ground Vehicle) robots with sensing capabilities. The different com-
ponents use SOAP3 to communicate. Country 2 assists Country 1 by supplying
components that provide the C2 component with extra information. These com-
ponents consists in Weather Station, the Positioning-B positioning system, and
a UAV (Unmanned Aerial Vehicle) drone. However, C2 cannot use these compo-
nents directly [23]. Indeed, Weather Station that is implemented using CORBA4,
provides specific information such as temperature or humidity whereas Weather
Service, which is used by C2, returns all of this information using a single oper-
ation. Further, Positioning-A is implemented using SOAP and interacts accord-
ing to the request/responseparadigmwhereasPositioning-B is implemented using
AMQP5 and hence interacts according to the publish/subscribe paradigm. Also,

3 http://www.w3.org/TR/soap/
4 http://www.omg.org/technology/documents/corba_spec_catalog.htm
5 http://www.amqp.org

http://www.w3.org/TR/soap/
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.amqp.org


172 V. Issarny and A. Bennaceur

Weather_Connector1

login

getWeather

logout

login

getWeather

logout

C2 Weather Service

Fig. 2. C2 and Weather Service, and associated connector in Country 1

UGV requires the client to login, then it can move in the four cardinal directions
while UAV is required to takeoff prior to any operation and to land before logging
out. To enable C2 to use the components provided by Country 2, with which it is
functionally compatible, mediators have to be synthesised and deployed in order
to make C2 interoperate with Weather Station, Positioning-B, and UAV.

3 The Interoperability Problem Space: A Software
Architecture Perspective

Software systems may be abstractly described at the architectural level in terms
of components and connectors: components are meant to encapsulate compu-
tation while connectors are meant to encapsulate interaction. In other words,
control originates in components, and connectors are channels for coordinating
the control flow (as well as data flow) between components [46].

So as to sustain software composition, software components must not only
specify their (provided) interfaces, i.e., the subset of the system’s functionality
and/or data that is made accessible to the environment, but also the assumptions
they make in terms of other components/interfaces that must be present for a
component to fulfill its functionality, making all dependencies explicit [49,24]. A
software connector is an architectural element tasked with effecting and regulat-
ing interactions among components via their interfaces [49]. As an illustration,
Figure 2 depicts the case of the C2 component interacting with Weather Ser-
vice, where C2 exhibits an interface in which it requires the operations login,
getWeather, and logout, and Weather Service defines an interface in which it
provides these same operations. The connector Weather Connector1 coordinates
these operations based on the SOAP middleware technology.

From the standpoint of implementation, middleware provides the adequate
basis for implementing connectors. Indeed, middleware greatly eases the compo-
sition of components by introducing abstractions that hide the heterogeneity of
the underlying infrastructure. However, middleware defines specific data formats
and interaction paradigms, making it difficult for components developed using
different middleware to communicate [42].

In general, the assembly of components via connectors may conveniently be
reasoned about based on the appropriate formalisation of software architecture,
as discussed in the following section.



Composing Distributed Systems: Overcoming the Interoperability Challenge 173

Table 1. FSP syntax overview

Definitions

αP The alphabet of a process P

END Predefined process.
Denotes the state in which a process successfully terminates

set S Defines a set of action labels

[i : S] Binds the variable i to a value from S

Primitive Processes (P)

a → P Action prefix

a → P |b → P Choice

P ;Q Sequential composition

P (X =′ a) Parameterised process: P is described using parameter X
and modelled for a particular parameter value, P (a1)

P/{new 1/old 1, ..., new n/old n} Relabelling

P\{a1, a2, ..., an} Hiding

P + {a1, a2, ..., an} Alphabet extension

Composite Processes (‖P)

P‖Q Parallel composition

forall [i : 1..n] P (i) Replicator construct: equivalent to the parallel composition
(P (1)‖...‖P (n)).

a : P Process labelling

3.1 Formal Foundations for Software Architectures

To enable formal reasoning about software architecture composition, the inter-
action protocols implemented by components and connectors may be specified
using a process algebra, as introduced in the pioneering work of Allen and Gar-
lan [1]. In the context of this chapter, we concentrate more specifically on the
use of FSP (Finite State Processes) based on the work of Spitznagel and Garlan,
which in particular considers the adaptation of connectors to address depend-
ability as well as interoperability concerns [47].

Finite State Processes. FSP [35] is a process algebra that has proven to be a
convenient formalism for specifying concurrent components, analysing, and rea-
soning about their behaviours. Table 1 provides an overview of the FSP operators,
while the interested reader is referred to [35] for further detail. Briefly stated, FSP
processes describe actions (events) that occur in sequence, and choices between ac-
tion sequences. Each process has an alphabet, αP , of the actions that it is aware
of (and either engages in or refuses to engage in). There are two types of processes:
primitive processes and composite processes. Primitive processes are constructed
through action prefix, choice, and sequential composition. Composite processes are
constructed using parallel composition or process relabelling. The replicator forall



174 V. Issarny and A. Bennaceur

is a convenient syntactic construct used to specify parallel composition over a set
of processes. Processes can optionally be parameterised and have re-labelling, hid-
ing or extension over their alphabet. A composite process is distinguished from a
primitive process by prefixing its definition with ‖.

The semantics of FSP is given in terms of Labelled Transition Systems (LTS)
[33]. The LTS interpreting an FSP process P can be regarded as a directed graph
whose nodes represent the process states and each edge is labelled with an action
a ∈ αP representing the behaviour of P after it engages in a. P

a→ P ′ then
denotes that P transits with action a into P ′. Then, P s⇒ P ′ is a shorthand
for P

a1→ P1
a2→ P2...

an→ P ′, s = 〈a1, a2, ..., an〉 , ai ∈ αP . There exists a start
node from which the process begins its execution. The END state indicates a
successful termination. When composed in parallel, processes synchronise on
shared actions: if processes P and Q are composed in parallel, actions that are
in the alphabet of only one of the two processes can occur independently of the
other process, but an action that is in the alphabets of both processes cannot
occur until the two of them are willing to engage in it, as described below:

P
a→ P ′, � ∃a ∈ αQ

P‖Q a→ P ′‖Q
Q

a→ Q′, � ∃a ∈ αP

P‖Q a→ P‖Q′
P

a→ P ′, Q a→ Q′

P‖Q a→ P ′‖Q′

Formalising Components and Connectors Using FSP. The interaction
protocols run by components are described using a set of FSP processes called
ports. For example, consider the port of C2 dedicated to the interaction with
Weather Service (see Figure 2): C2 logs in, invokes the operation getWeather
several times, and finally logs out. The port of C2 is specified, using FSP, as
follows:

C2 port = (req.login → P1),
P1 = (req.getWeather → P1|req.logout → C2 port).

We further use FSP processes to describe a connector as a set of roles and a
glue. Roles are the processes that specify the expected local behaviours of the
various interacting parties coordinated by the connector, while the glue process
describes the specific coordination protocol that is implemented [1]. Still consid-
ering our example of Figure 2, the Weather Connector1 connector managing the
interactions between C2 and Weather Service defines a role associated with each
of them, that is, C2 role and WeatherService role, respectively. The connector
also defines how these operations are realised using a SOAP request/response
paradigm. More specifically, each required operation corresponds to the send-
ing of a SOAP request parameterised with the name of the operation, and the
reception of the corresponding SOAP response, which is specified by the pro-
cess SOAPClient. The dual provided operation corresponds to the receiving of a
SOAP request parameterised with the name of the operation, and the send of the
corresponding SOAP response, which is specified by the process SOAPServer.
Furthermore, a request sent from one side is received from the other and similarly
for a response, which is specified by the process SOAPGlue.Weather Connector1
is then specified as the parallel composition of all these processes:



Composing Distributed Systems: Overcoming the Interoperability Challenge 175

set weather actions1 = {login, getWeather, logout}
C2 role = (req.login → P1),
P1 = (req.getWeather → P1|req.logout → C2 Role).

WeatherService role = (prov.login → P2),
P2 = ( prov.getWeather → P2|prov.logout → WeatherService role).

SOAPClient (X =′ op) = (req.[X] → sendSOAPRequest[X] → receiveSOAPResponse[X]
→ SOAPClient).

SOAPServer (X =′ op) = (prov.[X] → receiveSOAPRequest[X] → sendSOAPResponse[X]
→ SOAPServer).

SOAPGlue (X =′ op) = (sendSOAPRequest[X] → receiveSOAPRequest[X] →
sendSOAPResponse[X] → receiveSOAPResponse[X] → SOAPGlue).

‖Weather Connector1 = ( C2 role
‖ WeatherService role
‖ (forall[op : weather actions1]SOAPClient(op))
‖ (forall[op : weather actions1]SOAPGlue(op))
‖ (forall[op : weather actions1]SOAPServer(op))).

Weather_Connector2
getTemperature

getHumidity
logout

login
getTemperature

getHumidity
logout

login

Weather Station Client Weather Station

Fig. 3. The Weather Station and associated client in Country 2

Consider now the case of the Weather Station component interacting with its
specific client (see Figure 1). As depicted in Figure 3, Weather Station exhibits
an interface through which it provides the operations login, getT emperature,
getHumidity, and logout, while the associated port is specified as follows:

WeatherStation port = (prov.login → P2),
P2 = ( prov.getTemperature → P2

| prov.getHumidity → P2
| prov.logout → WeatherStation port).

The connector Weather Connector2 then coordinates the operations between
Weather Station and the corresponding client according to the CORBA re-
quest/response paradigm and is specified as follows:

set weather actions2 = {login, getTemperature, getHumidity, logout}
WeatherStationClient role = (req.login → P1),
P1 = ( req.getTemperature → P1

| req.getHumidity → P1
| req.logout → WeatherStationClient role).

WeatherStation role = (prov.login → P2),
P2 = ( prov.getTemperature → P2

| prov.getHumidity → P2
| prov.logout → WeatherStation role).



176 V. Issarny and A. Bennaceur

Weather_Connector1
(SOAP)

Weather_Connector2
(CORBA)

getTemperature
getHumidity

logout

login

???

login

getWeather

logout

C2 Weather Station

Fig. 4. Architectural mismatch between C2 and Weather Station

CORBAClient (X =′ op) = (req.[X] → sendCORBARequest[X]
→ receiveCORBAResponse[X] → CORBAClient).

CORBAServer (X =′ op) = (prov.[X] → receiveCORBARequest[X]
→ sendCORBAResponse[X] → CORBAServer).

CORBAGlue (X =′ op) = (sendCORBARequest[X] → receiveCORBARequest[X]
→ sendCORBAResponse[X] → receiveCORBAResponse[X]
→ CORBAGlue).

‖Weather Connector2 = ( WeatherStationClient role
‖ WeatherStation role
‖ (forall[op : weather actions2]CORBAClient(op))
‖ (forall[op : weather actions2]CORBAGlue(op))
‖ (forall[op : weather actions2]CORBAServer(op))).

Thanks to the formal specification of architectural components and connectors,
architectural mismatches may be reasoned about. Specifically, architectural mis-
matches occur when composing two, or more, software components to form a
system and those components make different assumptions about their environ-
ment [27], thereby preventing interoperability. These assumptions relate to: (i)
the data and control models of the involved components, (ii) the protocols and
the data model specified by the connector, and (iii) the infrastructure and the
development environment on top of which the components are built. Consider
for example the composition of C2 and Weather Station. There exists an ar-
chitectural mismatch between the two, which hampers their interoperation (see
Figure 4). Indeed, the components manipulate different data: C2 deals with
weather whereas Weather Station manages temperature and humidity. They are
also implemented using different middleware technologies: SOAP for C2 and
CORBA for Weather Station. In the following section, we show how to reason
about the different assumptions that components make about their connection.

3.2 Reasoning about Architectural Mismatches

Architectural mismatches can be reasoned about formally by comparing compo-
nent port and connector roles [1]. More specifically, a component can be attached
to a connector only if its port is behaviourally compatible with the connector role
it is bound to. Behavioural compatibility between a component port and a con-
nector role is based upon the notion of refinement, i.e., a component port is
behaviourally compatible with a connector role if the process specifying the be-
haviour of the former refines the process characterising the latter [1]. In other
words, it should be possible to substitute the role process by the port process.

For example, the C2 component can be attached to Weather Connector1
connector since C2 port refines C2 role — they are actually the same.
Likewise, WeatherStation port refines WeatherStation role defined by



Composing Distributed Systems: Overcoming the Interoperability Challenge 177

C2

Mediator
getTemperature

getHumidity
logout

loginlogin

getWeather

logout

Weather Station

Fig. 5. Mediator to solve architectural mismatch between C2 and Weather Station

Weather Connector2. However, WeatherStation port cannot be attached
to Weather Connector1 since it does not refine any of its ports, nor C2 role
can be attached to Weather Connector2. Hence, in the case of C2 willing to
interact with Weather Station, none of the available connectors can readily be
used resulting in an architectural mismatch, which needs to be overcome by a
mediator, as depicted in Figure 5.

3.3 Mediators Adapting Connectors for Interoperability

In order to solve architectural mismatches without modifying the compo-
nents themselves, it is necessary to construct a connector that reconciles
the assumptions that each of the components makes about its environ-
ment. The connector need not necessarily be constructed from scratch. It
can also be developed by transforming existing connectors. Hence, a con-
nector with n roles coordinated using a Glue process and specified as:
Connector = R1‖...‖Rn‖Glue can be adapted into a mediator: Mediator =
f1(R1)‖...‖fn(Rn)‖Rn+1‖...‖Rn+k‖fG(Glue) with which the ports of the compo-
nents at hand are behaviourally compatible. For example, the mediator between
C2 and Weather Station includes roles behaviourally compatible with C2 port
and WeatherStation port and encompasses the glue that coordinates them.

Spitznagel and Garlan [47] introduce a set of transformation patterns (e.g.,
data translation and event aggregation), which a developer can specify
and compose in order to construct complex connectors based on existing ones.
The complex connectors that are specifically considered in [47] enhance the coor-
dination of components with respect to enforcing stronger dependability guaran-
tees. However, complex connectors may as well be built to overcome architectural
mismatches. Still, the question that raises itself is which transformations (i.e.,
composition of the given connector with transformation patterns) are valid and
which do not make sense for a specific mismatch at hand. For example, the
mediator between C2 and Weather Station has to translate the getWeather
operation required by C2 into the getT emperature and getHumidity opera-
tions provided by Weather Station. Hence, it needs to compose the connectors
Weather Connector1 and Weather Connector2 , respectively associated with C2
and the Weather Station, with the process:

Map = (req.getWeather → prov.getT emperature → prov.getHumidity).



178 V. Issarny and A. Bennaceur

However, this only solves mismatches occurring at the application layer and
mediation is also necessary at the middleware layer so as to bridge SOAP and
CORBA. Another concern for the composition of connectors is the increasing
dynamics of the networking environment, which calls for on-the-fly mediation.

3.4 Dynamic Software Architecture and Mediation

In dynamic environments where components are discovered at runtime and com-
posed dynamically, mediators can no longer be specified or implemented at de-
sign time. Instead, they have to be synthesised and deployed on the fly. However,
the synthesis of mediators not only requires knowledge of the data and behaviour
of the components but also knowledge of the domain, which specifies the rela-
tion between the data and operations of the different components. In particular,
ontologies build upon sound logical theory to provide a machine-interpretable
means to reason, automatically, about the semantics of data based on the shared
understanding of the domain [4]. As a matter of fact, ontologies prove valuable
when dealing with data interoperability. In this context, ontologies are used
to specify a shared vocabulary precisely and offer a common basis to reconcile
data syntactic differences based on their semantic definitions. They further play
a valuable role in software engineering by supporting the automated integra-
tion of knowledge among teams and project stakeholders [17]. For example, a
weather ontology would allow us to infer the relation between getWeather and
getT emperature and getHumidity without a need for human intervention.

Ontologies have also been widely used for the modelling of Semantic Web
Services and to achieve efficient service discovery and composition [41,40]. Se-
mantic Web Services use ontologies as a central point to achieve interoperability
between heterogeneous clients and services at runtime. For example, WSMO
(Web Service Modelling Ontology) relies on ontologies to support runtime medi-
ation based on pre-defined patterns. However, the proposed approach does not
ensure that such mediation does not lead to an erroneous execution (e.g., dead-
lock) [20]. It further assumes that components are implemented using the same
middleware, SOAP.

Overall, the issue of overcoming architectural mismatches to make interop-
erable components that are functionally compatible, is a cross-cutting concern
where protocol mismatches need to be addressed at both application and mid-
dleware layers. Interoperability solutions must consider conjointly application
and middleware layers: (i) the application layer provides the appropriate level
of abstraction to reason about interoperability and automate the generation of
mediators; and (ii) the middleware layer offers the necessary services for realis-
ing the mediation by selecting and instantiating the specific data structures and
protocols. In addition, mediators need to be synthesised on the fly, as the net-
working environment is now open and dynamic, thereby leading to the assembly
of component systems that are known to one another other at runtime, as op-
posed to design time. As discussed next, supporting such a dynamic cross-layer
mediation requires a multifaceted solution.



Composing Distributed Systems: Overcoming the Interoperability Challenge 179

4 The Interoperability Solution Space: A Multifaceted
Review

Sustaining interoperability has received a great deal of attention since the emer-
gence of distributed systems and further promotion of component-based and
service-oriented software engineering. We may classify solutions to protocol in-
teroperability according to three broad perspectives: (i) the middleware perspec-
tive is specifically concerned with the implementation of middleware-layer medi-
ators, based on the introduction of frameworks that allow bridging components
that are implemented on top of heterogeneous infrastructures, (ii) the protocol
perspective is focused on the systematic synthesis of mediators based on the
specification of the protocols implemented by components to be made interoper-
able, and (iii) the semantic perspective is oriented toward automated reasoning
about the matchmaking of components, both functionally and behaviourally.

4.1 The Middleware Perspective: Implementing Protocol Mediators

By definition, middleware defines an infrastructure mediator that overcomes the
heterogeneity occurring in the lower layer. While original middleware solutions
primarily targeted data heterogeneity, later middleware solutions had to deal
with behavioural heterogeneity due to the composition of component systems
relying on heterogeneous middleware protocols, as exemplified by the GMES
case study. We then identify two basic approaches for the implementation of
protocol mediators: (i) pairwise mediation where a specific bridge is implemented
for each pair of heterogeneous protocols that need to be composed, and (ii)
mediation through a reference protocol where protocol interoperability is achieved
by bridging any protocol that needs to be composed with a reference protocol.
The former leads to highly customised mediators while the latter significantly
decreases the development effort associated with mediation. In the following, we
describe both approaches in more detail.

Pairwise Mediation. Under pairwise mediation, the developer has to define
the transformations necessary to reconcile the data and behaviour of the proto-
cols involved and to ensure the correctness of these transformations. Mediation
must be addressed at all the layers of protocol heterogeneity. This especially
stands for the application and middleware layers, while lower network layer het-
erogeneity remains largely addressed through IP-based networking. For exam-
ple, at the middleware layer, OrbixCOMet6 performs the necessary translation
between DCOM and CORBA and SOAP2CORBA7 ensures interoperability be-
tween SOAP and CORBA in both directions.

Figure 6 depicts the example of the composition of C2 with Weather Station
using SOAP2CORBA, which allows the SOAP requests issued by C2 to be
translated into CORBA requests, and the corresponding CORBA responses to

6 http://www.iona.com/support/whitepapers/ocomet-wp.pdf
7 http://soap2corba.sourceforge.net/

http://www.iona.com/support/whitepapers/ocomet-wp.pdf
http://soap2corba.sourceforge.net/


180 V. Issarny and A. Bennaceur

C2

SOAP

Weather Station

CORBASOAP2CORBA

Fig. 6. Pairwise mediation between layered protocols

be translated into SOAP responses. This translation is relative to a specific
operation. Hence, this translation can be specified as follows:

SOAP2CORBA(X =′ op) = (receiveSOAPRequest[X] → sendCORBARequest[X]
→ receiveCORBAResponse[X] → sendSOAPResponse[X]
→ SOAP2CORBA).

However, the connector Weather Connector12 Pairwise defined as:

‖Weather Connector12 Pairwise = ( C2 role
‖ WeatherStation role
‖ (forall[op : weather actions1]SOAPClient(op))
‖ (forall[op : weather actions1]SOAPGlue(op))
‖ (forall[op : weather actions1]SOAPServer(op))).
‖ (forall[op : weather actions2]CORBAClient(op))
‖ (forall[op : weather actions2]CORBAGlue(op))
‖ (forall[op : weather actions2]CORBAServer(op))).
‖ SOAP2CORBA

is not a valid connector since the translation is carried out assuming that the
components refer to the same application-layer operations to coordinate. For
example, when C2 sends a SOAP request for getWeather, it is translated
into a CORBA request for getWeather, but there is no counter part on the
server side since Weather Station does not provide this operation. Indeed, higher
application-layer mediation also needs to be implemented.

In general, the implementation of pairwise mediators is a complex task: de-
velopers have to deal with a lot of details and therefore must have a thorough
understanding of the protocols at hand. As a result, solutions that help develop-
ers defining middleware-layer mediators have emerged. These solutions consist
in a framework whereby the developer provides a declarative specification of the
message translation across protocols, based on which the actual transformations
are computed. For example, z2z [16] introduces a domain-specific language to
describe the protocols to be made interoperable as well as the translation logic
to compose them and then generates the corresponding bridge. Starlink [14] uses
the same domain-specific models to specify bridges, which it deploys dynamically
and interprets at runtime (see Figure 7). However, these solutions still require
the developer to specify the translations to be made and hence to know both
middleware in advance.

Mediation through a Reference Protocol. To reduce the development effort
induced by pairwise mediation, a reference protocol can be used as an interme-
diary to translate from one protocol to another. Such mediation is especially
appropriate for the middleware layer where heterogeneous middleware protocols



Composing Distributed Systems: Overcoming the Interoperability Challenge 181

C2

SOAP

Weather Station

CORBAStarlink

Fig. 7. Pairwise middleware-layer mediation based on high-level specification

may rather easily be mapped onto a common protocol when the middleware
implement the same interaction paradigm. Application-layer reference protocols
may also be considered for commonly encountered applications like messaging
systems [7].

Enterprise Service Buses (ESBs), e.g., Oracle Service Bus8 and IBM Web-
Sphere Enterprise Service Bus9, represent the most mature and common use
of mediation through a reference protocol. An ESB [39] is an open standard,
message-based, distributed integration infrastructure that provides routing, in-
vocation and mediation services to facilitate the interactions of disparate dis-
tributed applications and services.

C2

SOAP

Weather Station

CORBACORBA2RPC

SOAP2RPC

RPC

Fig. 8. Mediation through a reference protocol

When the intermediary reference protocol is defined independently of the set
of middleware for which it guarantees interoperability, it does not necessarily
capture all their details and specificities. Bromberg [12] puts forward the infer-
ence of the best-suited intermediary protocol based on the behaviours of the
middleware involved. The author applies this approach to ensure interoperabil-
ity in pervasive systems between different service discovery protocols using IN-
DISS [15] and across RPC protocols (assuming the same application atop) using
NEMESYS [12].

8 http://www.oracle.com/technetwork/middleware/service-bus/
9 http://www-01.ibm.com/software/integration/wsesb/

http://www.oracle.com/technetwork/middleware/service-bus/
http://www-01.ibm.com/software/integration/wsesb/


182 V. Issarny and A. Bennaceur

Going back to our example of the C2 component willing to interact with
Weather Station, both of them interact according to the RPC paradigm, which
we can use as a reference protocol for ensuring interoperability between SOAP
and CORBA (see Figure 8). Hence, we define the RPC (reference) connector as
follows:

set interface = {any}
Client (X =′ op) = (sendRequest[X] → receiveResponse[X] → Client).
Server (X =′ op) = (receiveRequest[X] → sendResponse[X] → Server).
Glue (X =′ op) = (sendRequest[X] → receiveRequest[X]

→ sendResponse[X] → receiveResponse[X] → Glue).
‖RPCConnector = ( (forall[op : interface]Client(op))

‖ (forall[op : interface]Glue(op))
‖ (forall[op : interface]Server(op))).

We also need to define the transformations between each protocol and the ref-
erence protocol as follows:

SOAP2RPC(X =′ op) = (sendSOAPRequest[X] → translateSOAP2Request
→ sendRequest[X] → SOAP2RPC

| receiveRequest[X] → translate2SOAPRequest
→ receiveSOAPRequest[X] → SOAP2RPC

| sendSOAPResponse[X] → translateSOAP2Response
→ sendResponse[X] → SOAP2RPC

| receiveSOAPResponse[X] → translate2SOAPResponse
→ receiveResponse[X] → SOAP2RPC).

CORBA2RPC(X =′ op) = (sendCORBARequest[X] → translateCORBA2Request
→ sendRequest[X] → CORBA2RPC

| receiveRequest[X] → translate2CORBARequest
→ receiveCORBARequest[X] → CORBA2RPC

| sendCORBAResponse[X] → translateCORBA2Response
→ sendResponse[X] → CORBA2RPC

| receiveCORBAResponse[X] → translate2CORBAResponse
→ receiveResponse[X] → CORBA2RPC).

We obtain the Weather Connector12 Reference connector:

‖Weather Connector12 Reference = ( C2 role
‖ WeatherStation role
‖ (forall[op : weather actions1]SOAPClient(op))
‖ (forall[op : weather actions1]SOAP2RPC(op))
‖ (forall[op : weather actions2]CORBAServer(op))
‖ (forall[op : weather actions2]CORBA2RPC(op))
‖ (forall[op : weather actions1]Client(op))
‖ (forall[op : weather actions1]Glue(op))
‖ (forall[op : weather actions1]Server(op))
‖ (forall[op : weather actions2]Client(op))
‖ (forall[op : weather actions2]Glue(op))
‖ (forall[op : weather actions2]Server(op))).

However, as in the case of Weather Connector12 Pairwise, the
Weather Connector12 Reference connector only solves interoperability at
the middleware layer and must be further enhanced to deal with interoperabil-
ity at the application layer.

To sum up, a great amount of work exists on the development of concrete
interoperability solutions to overcome middleware heterogeneity [9]. All these
approaches tackle middleware interoperability assuming the use of the same ap-
plication on top, while for components to be able to work together, differences



Composing Distributed Systems: Overcoming the Interoperability Challenge 183

at both application and middleware layers need to be addressed. Similar ap-
proaches may be applied for application-layer protocols and actually are, but
this is restricted to specific applications that are commonly encountered nowa-
days, like messaging applications [7]. In general, interoperability solutions based
on the implementation of mediators do not scale to the unbounded universe of
applications. Another issue is that middleware heterogeneity is often tackled for
middleware defining the same interaction paradigm, while systems envisioned for
the Future Internet are increasingly heterogeneous and require to compose sys-
tems based on distinct paradigms. The notion of extensible service buses enabling
highly heterogeneous systems to interoperate across interaction paradigms has
recently emerged but it is in its infancy [28]. The provision of interoperability
solutions remains, however, a complex task for which automated support is of a
great help.

4.2 The Protocol Perspective: Synthesising Protocol Mediators

In order to ease the task of the developers in achieving interoperability between
functionally-compatible components, one approach is to provide methods and
tools for the automated synthesis of mediators based on the specification of
the protocols involved. The approaches can be applied at the application and
middleware layers as long as they are isolated.

Lam [34] defines an approach for the synthesis of mediators using a reference
protocol, which represents the glue of the mediator. Developers define the ref-
erence protocol based on an intuitive understanding of the features common to
the protocols at hand. The author defines an approach for computing the rela-
belling function that maps the individual protocol onto the reference protocol.
The mediator is then composed of the relabelling functions together with the
reference protocol. As discussed in Section 4.1, at the middleware layer, we can
specify the following reference protocol, which represents the glue of an RPC
protocol:

‖Reference Middleware protocol (X =′ op) = (sendRequest[X] → receiveRequest[X]
→ sendResponse[X] → receiveResponse[X]
→ Reference Mdw protocol).

However at the application layer, the synthesis cannot be applied as relabelling
involves the translation of one operation only and not a sequence of operations.
That is getWeather, getT emperature, and getHumidity cannot be mapped
to the same operation. Hence, the Weather Connector12 Synthesised connector
does not allow C2 and WeatherStation to interoperate:

‖Weather Connector12 Synthesised = ( C2 role
‖ WeatherStation role
‖ (forall[op : weather actions1]SOAPClient(op))

/{sendSOAPRequest/sendRequest,
‖ receiveSOAPResponse/receiveResponse}
‖ (forall[op : weather actions2]CORBAServer(op))

/{receiveCORBARequest/receiveRequest,
sendCORBAResponse/sendResponse}

‖ (forall[op : weather actions1]Glue(op))



184 V. Issarny and A. Bennaceur

The aforementioned solution consists in defining an abstraction common to the
protocols to be mediated. An alternative approach is to synthesise a pairwise
mediator based on a partial specification of the translations to be made, either
as a goal, which represents a global specification of the composed system, or as an
interface mapping, which represents the correspondence between the operations
of the components. In the case of interoperability between C2 and Weather
Station, consider for example the following goal:

Req1 = (Country1.req.login → Country2.prov.login → Req1).
Req2 = (Country1.req.getWeather → P1),
P1 = (Country2.prov.getTemperature → Country2.prov.getHumidity → Req2

| Country2.prov.getHumidity → Country2.prov.getTemperature → Req2).
Req3 = Country1.req.logout → Country2.prov.logout → Req3).
property ‖Goal = (Req1 ‖ Req2 ‖ Req3).

Note that the actions are prefixed with either Country1 or Country2 so as to
prevent synchronisations outside the mapping processes. The goal ensures that
each time C2 performs a login or a logout, then Weather Station eventually
performs it as well. When C2 issues a request for getWeather, then Weather
Station eventually provides getT emperature and getHumidity in any order.
Calculating the mediator amounts to computing the process M , which refines
the composition (C2 ‖ WeatherStation) so as to satisfy the Goal property.

Calvert and Lam [18] propose to calculate the composition first, then to elim-
inate the traces that violate the goal. Applied to our running example, first
the composition (C2 ‖ WeatherStation ‖ Goal) is calculated, then all the traces
where the goal cannot be satisfied are removed, which results in the most general
mediator called quotient. However, this calculation is computationally expensive
as it requires covering all the trace set. In order to eliminate execution errors
(e.g., deadlocks) efficiently, model checking can be used in the generation of
mediators [8,19,37].

To avoid the reliance on model checking techniques, Yellin and Strom
[53] propose an algorithm for the automated synthesis of mediators based on
a declarative interface mapping. The authors assume a non-ambiguous one-to-
one interface mapping, i.e., an operation corresponds to one operation only. They
construct the mediator by exploring the protocols of the mediator and perform-
ing the necessary translations so as to guarantee that no deadlock can happen.

All the aforementioned approaches expect the transformations to be partially
specified. In other words, the mediation problem has been shifted to the goal
or interface mapping definition. Most of the difficulty remains on the definition
of the partial specification, which require developers to know the protocols of
both components and to have an intuitive understanding of the translations
that need to be performed to enable them to interoperate. Given the size and
the number of parameters of the interface of each component, this task may be
error-prone and perhaps as difficult as providing the mediator itself. For example,
the Amazon Web Service10 includes 23 operations and no less than 72 data type
definitions and eBay11 contains more than 156 operations. Given all possible

10 http://soap.amazon.com/schemas2/AmazonWebServices.wsdl
11 http://developer.ebay.com/webservices/latest/ebaysvc.wsdl

http://soap.amazon.com/schemas2/AmazonWebServices.wsdl
http://developer.ebay.com/webservices/latest/ebaysvc.wsdl


Composing Distributed Systems: Overcoming the Interoperability Challenge 185

combinations, methods that automatically compute this partial specification are
necessary, which we survey next.

4.3 The Semantic Perspective: Emergent Protocol Mediators

Ontologies provide experts with a means to formalise the knowledge about do-
mains as a set of axioms that make explicit the intended meaning of a vocab-
ulary [30]. Hence, besides general purpose ontologies, such as dictionaries (e.g.,
WordNet12) and translators (e.g., BOW13), there is an increasing number of on-
tologies available for various domains such as biology [3], geoscience [44], and
social networks [29], which in turn foster the development of a multitude of
search engines for finding ontologies on the Web [25].

Ontologies are supported by a logic theory to reason about the properties and
relations holding between the various domain entities. In particular, OWL14

(Web Ontology Language), which is the W3C standard language to model on-
tologies, is based on Description Logics (DL). While traditional formal specifica-
tion techniques (e.g., first-order logic) might be more powerful, DL offers crucial
advantages: it excels at modelling domain-specific knowledge while providing
decidable and efficient reasoning algorithms. DL is used to formally specify the
vocabulary of a domain in terms of concepts, features of each concept, and rela-
tionships between these concepts [26]. DL also allows the definition of complex
types out of primitive ones, is able to detect specialisation relations between
complex types, and to test the consistency of types. Traditionally, the basic rea-
soning mechanism in DL is subsumption, which can be used to implement other
inferences (e.g., satisfiability and equivalence) using pre-defined reductions [4]. In
this sense, DL in many ways resembles type systems with some inference mech-
anisms such as subsumption between concepts and classification of instances
within the appropriate concept, corresponding to type subsumption and type
inference respectively. Nevertheless, DL is by design and tradition well-suited
for application- and domain-specific services [11].

Besides defining the semantics of data, OWL-S [36] adds the definition of the
capability of a service, which defines the service’s functionality, and the service’s
process model, which defines how this functionality is performed. Services can
then be matched based on their capabilities [43] or based on their process model.
In this latter case, Vacuĺın et al. [51] devise a mediation approach for OWL-S
processes. They first generate all requesters’ paths, then find the appropriate
mapping for each path by simulating the provider process. This approach deals
only with client/server interactions and is not able to generate a mediator if many
mappings exist for the same operation. However, OWL-S only has a qualified
consent because it specifies yet another model to define services. In addition,
solutions based on process algebra and automata have proven to be more suitable
for reasoning about protocol interoperability.

12 http://www.w3.org/TR/wordnet-rdf/
13 http://BOW.sinica.edu.tw/
14 http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/wordnet-rdf/
http://BOW.sinica.edu.tw/
http://www.w3.org/TR/owl2-overview/


186 V. Issarny and A. Bennaceur

C2

SOAP

Weather Station

CORBA

Ontology-based Mediation

Ontology
Country 2

Ontology
Country 1

Lowering 
& Lifting
XSLT2

Lowering
& Lifting
XSLT2

???

Fig. 9. Ontology-based mediation

In this direction, WSMO [20] defines a description language that integrates
ontologies with state machines for representing Semantic Web Services. However,
these states machines are not used to synthesise mediators. Instead, a runtime
mediation framework, the Web Service Execution Environment (WSMX) me-
diates interaction between heterogeneous services by inspecting their individual
protocols and perform the necessary translation on the basis of pre-defined me-
diation patterns while the composition of these patterns is not considered, and
there is no guarantee that it will not lead to a deadlock.

Considering again our GMES example, with the knowledge of the weather do-
main encoded within a weather ontology, it can be inferred that the getWeather
operation required by C2 corresponds to the getT emperature and getHumidity
operations provided by Weather Station. As a result, the following mapping pro-
cess can be generated:

Map = (req.getWeather → prov.getTemperature → prov.getHumidity).

We obtain the following connector:
‖Weather Connector12 Semantic = ( C2 role

‖ WeatherStation role
‖ (forall[op : weather actions1]SOAPClient(op))
‖ (forall[op : weather actions1]SOAPGlue(op))
‖ (forall[op : weather actions1]SOAPServer(op)))
‖ (forall[op : weather actions2]CORBAClient(op))
‖ (forall[op : weather actions2]CORBAGlue(op))
‖ (forall[op : weather actions2]CORBAServer(op))).
‖ Map

However, C2 and Weather Station cannot interact successfully through
Weather Connector12 Semantic since the coordination at the middleware layer
is not performed. For example, it is not specified how to coordinate the
getWeather SOAP request with the getT emperature and getHumidity CORBA
requests (see Figure 9).

The need for ontologies to achieve interoperability is not specific to the Web
Service domain but should be considered for highly heterogeneous environments
where components may be built using diverse middleware technologies. It is in
particular worth highlighting the consensus that ontologies are key to the IoT
vision [50]. As a result, it is indispensable to combine appropriate techniques
to handle the multifaceted nature of interoperability. These techniques include
formal approaches for the synthesis of mediators with support of ontology-based



Composing Distributed Systems: Overcoming the Interoperability Challenge 187

�������	
�
�����	�

���	���
�����	�

�
�������
�����	�

��������	

�����
�


��������	

�����
�


��������	

�����
�


��������	

�����
�


���	����
��������	��

��	�������
�������

���
�������

������
����������

�����	���
�����

Fig. 10. The Connect architecture for the realisation of emergent middleware [10]

reasoning so as to automate the synthesis, together with middleware solutions
to realise and execute these mediators and enable components to interoperate
effectively. We have investigated such a multifaceted solution to interoperability
within the Connect project [10].

5 Emergent Middleware: A Multifaceted Approach to
Interoperability

In this section, we present the solution elaborated in the context of the European
Connect project that revolves around the notion of emergent middleware and
related enablers so as to sustain interoperability in the increasingly connected
digital world. An emergent middleware is a dynamically generated distributed
system infrastructure for the current operating environment and context, which
allows functionally-compatible systems to interoperate seamlessly.

5.1 Emergent Middleware Enablers

In order to produce an emergent middleware, an architecture of Enablers is
required that support the realisation of mediators into emergent middleware. An
Enabler is a software component responsible for a specific step in the realisation
of emergent middleware and which coordinates with other Enablers during this
process.

As depicted in Figure 10, the emergent middleware Enablers are informed by
domain ontologies that formalise the concepts associated with the application
domains (i.e., the vocabulary of the application domains and their relationships)
of interest as well as with middleware solutions (i.e., the vocabulary defining



188 V. Issarny and A. Bennaceur

middleware peculiarities, from interaction paradigms to related messages). Three
Enablers, which are presented below, must then be comprehensively elaborated
to fully realise emergent middleware.

Discovery Enabler: The Discovery Enabler is in charge of finding the compo-
nents operating in a given environment. The Discovery Enabler receives both
the advertisement messages and lookup request messages that are sent within
the network environment by the components using legacy discovery protocols
(e.g., SLP15, WS-Discovery16, UPnP-SSDP17, Jini18). The Enabler obtains this
input by listening on known multicast addresses (used by legacy discovery proto-
cols), as common in interoperable service discovery [15]. These messages are then
processed, using plug-ins associated with legacy discovery protocols, thereby al-
lowing to extract basic component models from the information exposed by the
components, i.e., identification of the components’ interfaces together with mid-
dleware used for interactions. We build upon the ontology-based modelling as
defined by Semantic Web Services (presented in Section 4.3) to model compo-
nents. The model of a component includes: (i) a semantic description of the
functionality it requires or provides, that is, its capability, (ii) a description of
the interface of the component, which is augmented with ontology-based anno-
tations attached to the operations required or provided by the component, (iii) a
description of the interaction protocol run by the component, that is behaviour,
and (iv) a specific middleware used to implement this behaviour and further re-
fine the execution of operations. For example, as illustrated in Section 3.1, in the
case of a SOAP middleware, a required operation corresponds to the sending of a
SOAP request parameterised with the name of the operation, and the reception
of the corresponding SOAP response. In a dual manner, a provided operation
corresponds to the reception of a SOAP request parameterised with the name of
the operation, and the sending of the corresponding SOAP response. However,
using existing discovery protocols, components only expose their syntactic inter-
faces. Hence, the Discovery Enabler relies on the Learning Enabler to complete
the model of a component.

Learning Enabler: The Learning Enabler uses advanced learning algorithms to
dynamically infer the ontology-based semantics of the component’s capability
and operations, as well as determine the behaviour of a component, given the
interface description it exposes through some legacy discovery protocol. The
Learning Enabler implements both statistical and automata learning to feed
component models with adequate semantic knowledge, i.e., functional and be-
havioural semantics, respectively [6]. The Learning Enabler must interact di-
rectly with a component in order to learn its behaviour.

15 http://www.openslp.org/
16 http://docs.oasis-open.org/ws-dd/discovery/1.1/os/

wsdd-discovery-1.1-spec-os.pdf
17 http://www.upnp.org/
18 http://www.jini.org/

http://www.openslp.org/
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://www.upnp.org/
http://www.jini.org/


Composing Distributed Systems: Overcoming the Interoperability Challenge 189

Synthesis Enabler: Once component models are complete, initial semantic match-
ing of their capabilities is performed to determine whether or not the components
are functionally compatible [43]. The automated synthesis of mediators between
functionally compatible components, which is the main role of the Synthesis En-
abler, lies at the heart of the realisation of the emergent middleware. It puts
together the various perspectives on interoperability presented in Section 4 so
as to provide a unified solution to the automated generation of mediators and
their implementation as emergent middleware.

The semantic perspective provides us with tools to compute the interface
mapping automatically by using domain ontologies in order to reason about the
semantics of the required and provided operations of the components and to in-
fer the semantic correspondence between them. More specifically, we first define
the conditions under which a sequence of required operations can be mapped
to a sequence of provided operations. These conditions state that (i) the func-
tionality offered by the provided operations covers that of the required ones,
(ii) each provided operation has its input data available (in the right format)
at the time of execution, and (iii) each required operation has its output data
available (also in the appropriate format) at the time of execution. Then, we
use constraint programming, which we leverage to support ontology reasoning,
in order to compute the interface mapping efficiently [21].

The protocol perspective provides us with the foundations for synthesising
mediators based on the generated interface mapping. More specifically, we de-
fine an approach that uses interface mapping to build the mediator incrementally
by forcing the protocols at hand to progress consistently so that if one requires a
sequence of operations, the interacting process is ready to engage in a sequence of
provided operations to which it maps according to the interface mapping. Given
that an interface mapping guarantees the semantic compatibility between the
operations of the components, then the mediator synchronises with both pro-
tocols and compensates for the differences between their actions by performing
the necessary transformations. The mediator further consumes the extra output
actions so as to allow protocols to progress. The synthesis of mediators deals
only with required and provided operations, while their actual implementation
is managed by specific middleware [31].

Finally, the middleware perspective provides the background necessary to
implement mediators and turn them into emergent middleware. In particular,
we build upon the approach of a pairwise-mediation framework which, given a
specification of the translations that need to be made, deploys the mediator and
executes the necessary translations to make functionally compatible components
interoperate. Hence, it suffices to provide the mediator previously synthesised as
input to the mediation framework.

AdaptiveEmergentMiddleware: TheLearning phase is a continuous processwhere
theknowledge about components is enrichedover time, thereby implying that emer-
gentmiddleware possibly needs to adapt as the knowledge evolves. The synthesised
emergentmiddleware is equipped with monitoring probes that gather information
on actual interaction between connected systems. This observedMonitoring Data



190 V. Issarny and A. Bennaceur

Weather
Station

 prov.login(username, password): token
 prov.getHumidity(token): humidity
 prov.getTemperature(token): 
temperature
 prov.logout(token): acknowledgment
Middleware: CORBA

<functionality name="WeatherStation" 
kind="provided">
  <operation>Weather<operation>
</functionality>

Interface

Weather station Model

Behaviour

Functionality

WeatherStation =  (prov.login -> P2),
P2 = ( prov.getTemperature -> P2
          | prov.getHumidity -> P2
          | prov.logout ->WeatherStation).

req.login(password, username): token
req.getWeather(token): weatherInfo
req.logout(token):

Middleware: SOAP

<functionality name="C2Weather" 
kind="required">
  <operation>Weather<operation>
</functionality>

Interface

C2 Model 
(weather projection)

Behaviour

Functionality

C2 = (req.login -> P1),
P1 = (req.getWeather -> P1 
         ->req.logout -> C2).

wind

Atmosphere
Thing

Nothing

Ontology

weatherInfo

HumidityTemperature

Ontology-based 
Interface Mapping

   Concretization

C2
Message
Parsers/

Composers

Message
Parsers/

Composers

Emergent Middleware 

?β1!ρ1

?ρ2 !β2
?δ2

!α2

!δ1?α1

?λ1

t1

t2 t3

t4

Mediation Framework

M1… M4  

Abstract_Mediator

MapLearning Learning

Deployment

1

2 Mediator Synthesis

3

4

Fig. 11. Emergent middleware between C2 and Weather Station

(see Figure 10) is delivered to the Learning Enabler, where the learned hypothe-
ses about the components’ behaviour are compared to the observed interactions.
Whenever an observation ismade by themonitoring probes that is not contained in
the learned behavioural models, another iteration of learning is triggered, yielding
refined behavioural models. These models are then used to synthesise and deploy
an updated emergent middleware.

5.2 Emergent Middleware in GMES

Figure 11 depicts the steps to produce the emergent middleware that makes C2
and Weather Station interoperate. The models of C2 and Weather Station can
be automatically inferred from their discovered interface as detailed in [6]. In
this section, we focus on the steps for synthesising the mediator that ensures
interoperability between C2 and Weather Station.

Using a weather ontology, we calculate the interface mapping (see Figure 11-
❶), which results in the definition of the following processes:



Composing Distributed Systems: Overcoming the Interoperability Challenge 191

M1 = (Country1.req.login → Country2.prov.login → END).
M2 = (Country1.req.getWeather → Country2.prov.getTemperature

→ Country2.prov.getHumidity → END).
M3 = (Country1.req.getWeather → Country2.prov.getHumidity

→ Country2.prov.getTemperature → END).
M4 = (Country1.req.logout → Country2.prov.logout → END).

The abstract mediator Abstract Map coordinates these processes in order for the
composition (C2 ‖ Abstract Map ‖ WeatherStation) to be free from deadlocks.
When translating the getWeather operation required by C2, both M2 and M3
are applicable but we have to choose only one of them as the mediator cannot
perform internal choice (see Figure 11-❷). The abstract mediator is as follows:

Abstract Mediator = (Country1.req.login → Country2.prov.login → AMap),
AMap = (Country1.req.getWeather → Country2.prov.getTemperature

→ Country2.sendCORBARequest.getHumidity → AMap
| Country1.req.logout → Country2.prov.logout → Abstract Mediator).

We concretise the abstract mediator by taking into account the middleware
used by each component. For example, the SOAP request for the login opera-
tion received from C2 is translated to a CORBA request for the login operation
and forwarded to Weather Station. Then, the associated CORBA response re-
ceived from Weather Station is transformed to a SOAP response and sent to
C2. A SOAP request for a getWeather is translated to a CORBA request for
getTemperature together with another CORBA request for getHumidity. Then
the CORBA responses for getTemperature and getHumidity are translated into
a SOAP response for getWeather [5]. The resulting Map process is as follows
(see Figure 11-❸):

Map = (Country1.receiveSOAPRequest.login → Country2.sendCORBARequest.login
→ Country2.receiveCORBAResponse.login → Country1.sendSOAPResponse.login
→ Map1),

Map1 = (Country1.receiveSOAPRequest.getWeather
→ Country2.sendCORBARequest.getTemperature
→ Country2.receiveCORBAResponse.getTemperature
→ Country2.sendCORBARequest.getHumidity
→ Country2.receiveCORBAResponse.getHumidity
→ Country1.sendSOAPResponse.getWeather
→ Map1

| Country1.receiveSOAPRequest.logout → Country2.sendCORBARequest.logout
→ Country2.receiveCORBAResponse.logout → Country1.sendSOAPResponse.logout
→ Map).

Finally, the mediator is deployed on top of a mediation framework, Starlink [13],
which executes the Map process and generates parsers and composers to deal
with middleware-specific messages (see Figure 11-❹). The resulting connector
Weather Mediator make C2 and Weather Station interoperate:

‖Weather Mediator = ( Country1 : C2 role
‖ Country2 : WeatherStation role
‖ (forall[op : weather actions1]Country1 : SOAPClient(op))
‖ (forall[op : weather actions1]Country1 : SOAPGlue(op))
‖ (forall[op : weather actions1]Country1 : SOAPServer(op))
‖ (forall[op : weather actions2]Country2 : CORBAClient(op))
‖ (forall[op : weather actions2]Country2 : CORBAGlue(op))
‖ (forall[op : weather actions2]Country2 : CORBAServer(op))).
‖ Map).



192 V. Issarny and A. Bennaceur

To sum up, this simple example allows us to illustrates the Connect approach
to the synthesis of emergent middleware in order to achieve interoperability
between components that feature differences at both the application and mid-
dleware layers. Ontologies play a crucial role in this process by allowing us to
reason about the meaning of information exchanged between components and in-
fer the mappings necessary to make them operate together. Likewise, behavioural
analysis enables us to synthesise the mediator that coordinates the components’
behaviours and guarantees their successful interaction. Finally, middleware tech-
nologies allow us to enact the mediator through the concept of emergent middle-
ware. Nevertheless, to enable automated reasoning about interoperability and
the generation of appropriate mediators, we focus on the ontological concepts,
which represent the types of the input/output data exchanged between com-
ponents. However, there are situations where reasoning about the value of the
data is also necessary. For example, to be able to ensure interoperability be-
tween components using different streaming protocols, the mediator is required
to deal with lower-level details such as the appropriate encoding and the seg-
mentation of data. In this particular case, the mediator can be partially specified
at design-time and deployed at runtime, as is the case for AmbiStream [2].

The accuracy of the components’ models may also impact the emergent mid-
dleware. While machine learning significantly improves automation by inferring
the model of the component from its implementation, it also induces some in-
accuracy that may lead the emergent middleware to reach an erroneous state.
Hence, the system needs to be continuously monitored so as to evaluate the
correspondence between the actual system and its model. In the case where the
model of one of the components changes, then the mediator should be updated
accordingly in order to reflect this change. Another imprecision might also be
due to ontology alignment. Hence, incremental re-synthesis would be very im-
portant to cope with both the dynamic aspect and partial knowledge about the
environment.

6 Conclusion

In spite of the extensive research effort, interoperability remains an open and
critical challenge for today’s and even more tomorrow’s highly heterogeneous
and dynamic networking environments. This chapter has surveyed state-of-the-
art approaches to interoperability, highlighting the multiple perspectives that
need to be considered and which span: (i) middleware-layer implementation so
as to provide abstractions hiding the heterogeneity of the environment, (ii) pro-
tocol synthesis so as to relieve as much as possible the developers in dealing with
the implementation of custom mediators that must overcome heterogeneity from
the application down to the middleware layers, and (iii) ontology-based specifica-
tion of system models so as to allow fully automated mediator synthesis that is a
key requirement of the dynamic networking environment. The chapter has then
outlined the Connect approach to interoperability, which unifies these different
perspectives so as to enable interoperability in a future-proof manner. Connect



Composing Distributed Systems: Overcoming the Interoperability Challenge 193

specifically advocates a solution based on maintaining a sophisticated model of
the system at runtime [5]. This includes capturing aspects related to the com-
ponents’ capabilities, interfaces, associated data and behaviour. The solution is
then supported by a range of enablers that capture or act on this information
to enable the runtime realisation of emergent middleware between given compo-
nents, i.e., protocol mediators that reconcile the discrepancies occurring in both
application- and middleware-layer protocols. The end result can be seen as a two
dimensional space related to (i) the meta-information that is captured about the
system, and (ii) the associated middleware functions that operate on this meta-
information space. This is then supported by ontologies that provide meaning
and reasoning capabilities across all enablers and aspects of meta-information
known about the system.

It is important to stress that interoperability is, as with many features of
distributed systems, an end-to-end problem. For example, it is not sufficient
to achieve interoperability between application-level interfaces. Rather, interop-
erability can only be achieved through a coordinated approach involving ap-
plication, middleware and underlying network levels so that components can
interoperate in spite of potential heterogeneity in descriptions, in middleware
deployments and network environments they operate in. And, this needs to be
achieved dynamically according to the current context, assuming contexts may
change, thereby requiring self-adaptive emergent middleware. More generally,
future work includes examining the application of the Connect approach to
deal with uncontrolled changes in the environment, and expanding the scope
of the work to include non-functional concerns associated with communication
instances (including performance, dependability and security properties). There
is also considerable potential for core research on emergent middleware in areas
such as the role of probabilistic reasoning in order to support uncertainties in the
ontology, the possibility of learning new ontological information as it becomes
available, and also dealing with heterogeneity in the ontologies.

Acknowledgments. This work is carried out as part of the European FP7 ICT
FET Connect (http://connect-forever.eu/) project.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. (1997)

2. Andriescu, E., Speicys Cardoso, R., Issarny, V.: AmbiStream: A middleware for
multimedia streaming on heterogeneous mobile devices. In: Kon, F., Kermarrec,
A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 249–268. Springer, Heidelberg
(2011)

3. Aranguren, M., Bechhofer, S., Lord, P., Sattler, U., Stevens, R.: Understanding
and using the meaning of statements in a bio-ontology: recasting the gene ontology
in OWL. BMC Bioinformatics 8(1), 57 (2007)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook. Cambridge University Press (2003)

http://connect-forever.eu/


194 V. Issarny and A. Bennaceur

5. Bencomo, N., Bennaceur, A., Grace, P., Blair, G., Issarny, V.: The role of mod-
els@run.time in supporting on-the-fly interoperability. Springer Journal on Com-
puting (2012)

6. Bennaceur, A., Issarny, V., Sykes, D., Howar, F., Isberner, M., Steffen, B., Johans-
son, R., Moschitti, A.: Machine learning for emergent middleware. In: Proc. of the
Joint Workshop on Intelligent Methods for Soft. System Eng., JIMSE (2012)

7. Bennaceur, A., Issarny, V., Spalazzese, R., Tyagi, S.: Achieving interoperability
through semantics-based technologies: The instant messaging case. In: Cudré-
Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 17–33. Springer,
Heidelberg (2012)

8. Bersani, M., Cavallaro, L., Frigeri, A., Pradella, M., Rossi, M.: SMT-based veri-
fication of ltl specification with integer constraints and its application to runtime
checking of service substitutability. In: 2010 8th IEEE International Conference on
Software Engineering and Formal Methods (SEFM), pp. 244–254. IEEE (2010)

9. Blair, G.S., Paolucci, M., Grace, P., Georgantas, N.: Interoperability in com-
plex distributed systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 1–26. Springer, Heidelberg (2011)

10. Blair, G.S., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V., Nundloll, V.,
Paolucci, M.: The role of ontologies in emergent middleware: Supporting inter-
operability in complex distributed systems. In: Kon, F., Kermarrec, A.-M. (eds.)
Middleware 2011. LNCS, vol. 7049, pp. 410–430. Springer, Heidelberg (2011)

11. Borgida, A.: From type systems to knowledge representation: Natural semantics
specifications for description logics. Int. J. Cooperative Inf. Syst. 1(1), 93–126
(1992)

12. Bromberg, Y.-D.: Solutions to middleware heterogeneity in open networked envi-
ronment. Ph.D. thesis, Université de Versailles Saint-Quentin-en-Yvelynes (2006)

13. Bromberg, Y.-D., Grace, P., Réveillère, L.: Starlink: Runtime interoperability be-
tween heterogeneous middleware protocols. In: International Conference on Dis-
tributed Computing Systems, ICDCS (2011)

14. Bromberg, Y.-D., Grace, P., Réveillère, L., Blair, G.S.: Bridging the interoperability
gap: Overcoming combined application and middleware heterogeneity. In: Kon, F.,
Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 390–409. Springer,
Heidelberg (2011)

15. Bromberg, Y.-D., Issarny, V.: INDISS: Interoperable discovery system for networked
services. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 164–183.
Springer, Heidelberg (2005)

16. Bromberg, Y.-D., Réveillère, L., Lawall, J.L., Muller, G.: Automatic generation of
network protocol gateways. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009.
LNCS, vol. 5896, pp. 21–41. Springer, Heidelberg (2009)

17. Calero, C., Ruiz, F., Piattini, M.: Ontologies for Software Engineering and Software
Technology. Springer (2006)

18. Calvert, K.L., Lam, S.S.: Deriving a protocol converter: A top-down method.
In: Proc. of the Symposium on Communications Architectures & Protocols, SIG-
COMM, pp. 247–258 (1989)

19. Cavallaro, L., Di Nitto, E., Pradella, M.: An automatic approach to enable replace-
ment of conversational services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 159–174. Springer, Heidelberg (2009)

20. Cimpian, E., Mocan, A.: WSMX process mediation based on choreographies. In:
Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 130–143. Springer,
Heidelberg (2006)



Composing Distributed Systems: Overcoming the Interoperability Challenge 195

21. Connect Consortium: Connect Deliverable D3.3: Dynamic connector synthesis:
Revised prototype implementation. FET IP Connect EU project,
http://hal.inria.fr/hal-00695592/

22. Connect Consortium: Connect Deliverable D6.3: Experiment scenarios, proto-
types and report - Iteration 2. FET IP Connect EU project,
http://hal.inria.fr/hal-00695639

23. Connect Consortium: Connect Deliverable D6.4: Assessment report: Experi-
menting with CONNECT in Systems of Systems, and Mobile Environments. FET
IP Connect EU project,
http://hal.inria.fr/hal-00793920

24. Coulouris, G.F., Dollimore, J., Kindberg, T., Blair, G.: Distributed systems: con-
cepts and design, 5th edn. Addison-Wesley, Longman (2012)

25. d’Aquin, M., Noy, N.F.: Where to publish and find ontologies? a survey of ontology
libraries. J. Web Sem. 11, 96–111 (2012)

26. Dong, J.S.: From semantic web to expressive software specifications: a modeling
languages spectrum. In: Proc. of the International Conference on Software Engi-
neering, ICSE (2006)

27. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard
to build systems out of existing parts. In: International Conference on Software
Engineering, ICSE (1995)

28. Georgantas, N., Rahaman, M.A., Ameziani, H., Pathak, A., Issarny, V.: A coordina-
tion middleware for orchestrating heterogeneous distributed systems. In: Riekki, J.,
Ylianttila, M., Guo, M. (eds.) GPC 2011. LNCS, vol. 6646, pp. 221–232. Springer,
Heidelberg (2011)

29. Golbeck, J., Rothstein, M.: Linking social networks on the web with foaf: A se-
mantic web case study. In: AAAI, pp. 1138–1143 (2008)

30. Guarino, N.: Helping people (and machines) understanding each other: The role of
formal ontology. In: Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE 2004,
Part 1. LNCS, vol. 3290, p. 599. Springer, Heidelberg (2004)

31. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-layer connector synthesis:
Beyond state of the art in middleware interoperability. In: Bernardo, M., Issarny,
V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 217–255. Springer, Heidelberg (2011)

32. Jamshidi, M.: Systems of systems engineering: principles and applications. CRC
Press (2008)

33. Keller, R.M.: Formal verification of parallel programs. Communications of the
ACM 19(7), 371–384 (1976)

34. Lam, S.S.: Protocol conversion. IEEE Transaction Software Engineering (1988)
35. Magee, J., Kramer, J.: Concurrency: State models and Java programs. Wiley, Hobo-

ken (2006)
36. Martin, D.L., Burstein, M.H., McDermott, D.V., McIlraith, S.A., Paolucci, M.,

Sycara, K.P., McGuinness, D.L., Sirin, E., Srinivasan, N.: Bringing semantics to
web services with owl-s. In: Proc. of the World Wide Web Conference, WWW 2007,
pp. 243–277 (2007)

37. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process
algebra and on-the-fly reduction techniques. IEEE Trans. Software Eng. 38(4),
755–777 (2012)

38. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent Sys-
tems 16(2), 46–53 (2001)

39. Menge, F.: Enterprise Service Bus. In: Proc. of the Free and Open Source Soft.
Conf. (2007)

http://hal.inria.fr/hal-00695592/
http://hal.inria.fr/hal-00695639
http://hal.inria.fr/hal-00793920


196 V. Issarny and A. Bennaceur

40. Mokhtar, S.B., Georgantas, N., Issarny, V.: Cocoa: Conversation-based service com-
position in pervasive computing environments with qos support. Journal of Systems
and Software 80(12), 1941–1955 (2007)

41. Ben Mokhtar, S., Kaul, A., Georgantas, N., Issarny, V.: Efficient semantic service
discovery in pervasive computing environments. In: van Steen, M., Henning, M.
(eds.) Middleware 2006. LNCS, vol. 4290, pp. 240–259. Springer, Heidelberg (2006)

42. Nitto, E.D., Rosenblum, D.S.: Exploiting adls to specify architectural styles in-
duced by middleware infrastructures. In: Proc. of International Conference on Soft-
ware Engineering, ICSE (1999)

43. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of
web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

44. Raskin, R.G., Pan, M.J.: Knowledge representation in the semantic web for
earth and environmental terminology (SWEET). Computers & Geosciences 31(9),
1119–1125 (2005)

45. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intel-
ligent Systems 21(3), 96–101 (2006)

46. Shaw, M.: Procedure calls are the assembly language of software interconnection:
Connectors deserve first-class status. In: Lamb, D.A. (ed.) ICSE-WS 1993. LNCS,
vol. 1078, pp. 17–32. Springer, Heidelberg (1996)

47. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: International Conference on Software Engineering, ICSE (2003)

48. Tanenbaum, A., Van Steen, M.: Distributed systems: principles and paradigms,
2nd edn. Prentice Hall (2006)

49. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software architecture: foundations,
theory, and practice. Wiley, Hoboken (2009)

50. Uckelmann, D., Harrison, M., Michahelles, F.: Architecting the internet of things.
Springer (2011)

51. Vacuĺın, R., Neruda, R., Sycara, K.P.: The process mediation framework for seman-
tic web services. International Journal of Agent-Oriented Software Engineering,
IJAOSE 3(1), 27–58 (2009)

52. Wiederhold, G.: Interoperation, mediation, and ontologies. In: Proc. of the Fifth
International Symposium on Generation Computer Systems Workshop on Hetero-
geneous Cooperative Knowledge-Bases, pp. 33–48. Citeseer (1994)

53. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. (1997)


	Composing Distributed Systems: Overcoming the Interoperability Challenge
	1 Introduction
	2 GMES: A System of Systems Case Study
	3 The Interoperability Problem Space: A Software Architecture Perspective
	3.1 Formal Foundations for Software Architectures
	3.2 Reasoning about Architectural Mismatches
	3.3 Mediators Adapting Connectors for Interoperability
	3.4 Dynamic Software Architecture and Mediation

	4 The Interoperability Solution Space: A Multifaceted Review
	4.1 The Middleware Perspective: Implementing Protocol Mediators
	4.2 The Protocol Perspective: Synthesising Protocol Mediators
	4.3 The Semantic Perspective: Emergent Protocol Mediators

	5 Emergent Middleware: A Multifaceted Approach to Interoperability
	5.1 Emergent Middleware Enablers
	5.2 Emergent Middleware in GMES

	6 Conclusion
	References




