
Elena Giachino
Reiner Hähnle
Frank S. de Boer
Marcello M. Bonsangue (Eds.)

Formal Methods
for Components
and Objects

St
at

e-
of

-th
e-

Ar
t

Su
rv

ey
LN

CS
 7

86
6

 123

11th International Symposium, FMCO 2012
Bertinoro, Italy, September 2012
Revised Lectures

Lecture Notes in Computer Science 7866
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Elena Giachino Reiner Hähnle
Frank S. de Boer Marcello M. Bonsangue (Eds.)

Formal Methods
for Components
and Objects

11th International Symposium, FMCO 2012
Bertinoro, Italy, September 24-28, 2012
Revised Lectures

13

Volume Editors

Elena Giachino
University of Bologna, Dept. of Computer Science
Mura Anteo Zamboni, 7, 40127 Bologna, Italy
E-mail: giachino@cs.unibo.it

Reiner Hähnle
Technical University of Darmstadt, Dept. of Computer Science
Hochschulstr. 10, 64289 Darmstadt, Germany
E-mail: haehnle@cs.tu-darmstadt.de

Frank S. de Boer
Centre for Mathematics and Computer Science, CWI
Science Park 123, 1098 XG Amsterdam, The Netherlands
E-mail: f.s.de.boer@cwi.nl

Marcello M. Bonsangue
Leiden University, Leiden Institute of Advanced Computer Science (LIACS)
P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: marcello@liacs.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40614-0 e-ISBN 978-3-642-40615-7
DOI 10.1007/978-3-642-40615-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946244

CR Subject Classification (1998): D.2.4, D.2, F.3, F.4, D.3, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Modern software systems are complex and often structured as a composition of
a high number of components or objects. In order to construct such complex
systems in a systematic manner, the focus in development methodologies is on
structural issues: Both data and functions are encapsulated into software units
that are integrated into large systems by means of various techniques supporting
reusability and modifiability. This encapsulation principle is essential to both the
object-oriented and the component-based software engineering paradigms.

Formal methods for component- and object-oriented systems are needed to
ensure behavioral and security guarantees, with special emphasis on specifica-
tion, modeling and validation techniques supporting the concepts of reusability,
adaptability and evolvability of the systems, with which the systems can cope
with changes in the environment as well as with modified and new requirements.

The 11th Symposium on Formal Methods for Components and Objects
(FMCO 2012) was held during September 24–28, 2012, as an international school
at Centro Residenziale Universitario (CRU) of the University of Bologna, located
in Bertinoro, a small medieval hilltop town in Italy. FMCO 2012 was organized
by the European project HATS (Highly Adaptable and Trustworthy Software
using Formal Models), a European Integrated Project within the FET Forever
Yours programme, in agreement with the EternalS Coordination Action (CA)
that coordinates research among the four projects of the Forever Yours initiative:
LivingKnowledge, HATS, Connect, and SecureChange.

FMCO 2012 featured lectures by world-renowned experts in the area of formal
models for objects and components. This volume contains the revised papers
submitted by the lecturers. The proceedings of the previous editions of FMCO
have been published as volumes 2852, 3188, 3657, 4111, 4709, 5382, 5751, 6286,
6957, and 7542 of Springer’s Lecture Notes in Computer Science. We believe that
this volume and all previous proceedings provide a unique combination of ideas
on software engineering and formal methods that reflect the expanding body of
knowledge on modern software systems.

Finally, we thank all authors for the high quality of their contributions, and
the reviewers for their help in improving the papers in this volume.

June 2013 Frank de Boer
Marcello Bonsangue

Elena Giachino
Reiner Hähnle

Organization

FMCO 2012 was organized by the University of Bologna, Italy, in close col-
laboration with the Technical University of Darmstadt, Germany, the Centrum
voor Wiskunde en Informatica (CWI), Amsterdam, and Leiden University, The
Netherlands.

Program Organizers

Einar Broch Johnsen University of Oslo, Norway
Reiner Hähnle Technical University of Darmstadt, Germany
Arnd Poetzsch-Heffter Technical University of Kaiserslautern,

Germany
German Puebla Universidad Politecnica de Madrid, Spain
Davide Sangiorgi University of Bologna, Italy

Local Organizers

Mario Bravetti University of Bologna, Italy
Elena Giachino University of Bologna, Italy
Davide Sangiorgi University of Bologna, Italy

Sponsoring Institutions

European project HATS (FP7-231620)
European Coordination Action EternalS

Table of Contents

The Abstract Behavioral Specification Language: A Tutorial
Introduction . 1

Reiner Hähnle

Subobject-Oriented Programming . 38
Marko van Dooren, Dave Clarke, and Bart Jacobs

Verification of Open Concurrent Object Systems . 83
Ilham W. Kurnia and Arnd Poetzsch-Heffter

Automatic Inference of Bounds on Resource Consumption 119
Elvira Albert, Diego Esteban Alonso-Blas, Puri Arenas,
Jesús Correas, Antonio Flores-Montoya, Samir Genaim,
Miguel Gómez-Zamalloa, Abu Naser Masud, German Puebla,
José Miguel Rojas, Guillermo Román-Dı́ez, and Damiano Zanardini

Separating Cost and Capacity for Load Balancing in ABS Deployment
Models . 145

Einar Broch Johnsen

Composing Distributed Systems: Overcoming the Interoperability
Challenge . 168

Valérie Issarny and Amel Bennaceur

Controlling Application Interactions on the Novel Smart Cards
with Security-by-Contract . 197

Olga Gadyatskaya and Fabio Massacci

Formal Aspects of Free and Open Source Software Components 216
Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli

Author Index . 241

The Abstract Behavioral Specification Language:
A Tutorial Introduction�

Reiner Hähnle

Department of Computer Science, Technische Universität Darmstadt
haehnle@cs.tu-darmstadt.de

Abstract. ABS (for abstract behavioral specification) is a novel lan-
guage for modeling feature-rich, distributed, object-oriented systems at
an abstract, yet precise level. ABS has a clear and simple concurrency
model that permits synchronous as well as actor-style asynchronous com-
munication. ABS abstracts away from specific datatype or I/O imple-
mentations, but is a fully executable language and has code generators
for Java, Scala, and Maude. ABS goes beyond conventional program-
ming languages in two important aspects: first, it embeds architectural
concepts such as components or feature hierarchies and allows to con-
nect features with their implementation in terms of product families. In
contrast to standard OO languages, code reuse in ABS is feature-based
instead of inheritance-based. Second, ABS has a formal semantics and
has been designed with formal analyzability in mind. This paper gives a
tutorial introduction to ABS. We discuss all important design features,
explain why they are present and how they are intended to be used.

1 Introduction

Software used to be written for (i) a dedicated purpose to be (ii) deployed in
a specific environment and (iii) to be executed on a stand-alone machine. This
situation changed drastically: all consumer appliances of a certain complexity,
from washing machines via mobile phones to vehicles, contain large amounts of
software. High diversification and rapid pace of change dictated by contemporary
market conditions require that this software is able to cope with an extreme
degree of variability and adaptability. Planned reuse is not just an option, but
a key strategy to staying competitive.

At the same time, modern software is nearly always concurrent and mostly also
distributed. It is hard to imagine state-of-art business software that is not based
on some notion of distributed services. A more recent trend is virtualization:
as more and more software is deployed in the cloud, one consequence is that
clients loose to some extent control over the execution environment: the exact
architecture, the number of processors, the load, as well as other deployment
parameters are typically not available at the time when software is developed.
� Research funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-

worthy Software using Formal Models (http://www.hats-project.eu).

E. Giachino et al. (Eds.): FMCO 2012, LNCS 7866, pp. 1–37, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.hats-project.eu

2 R. Hähnle

Because of this, the trend to virtualization leads to a new potential gap in the
software development chain between developers and operators.

In a software development scenario where one has to deal with extreme vari-
ability, with complex distributed computation, and with the need to abstract
from deployment issues, the availability of suitable software modeling languages,
as well as powerful tools helping in automation, becomes crucial.

Design-oriented and architectural languages, notably the UML family of nota-
tions, cannot fulfill this role, because they lack executability and mathematical
rigor. Executable formalisms for specifying concurrent behavior, such as state
charts [28], process calculi [38], abstract state machines [7], or Petri nets [24], are
simply too minimalist to describe industrial systems. In addition, they are not
integrated with architectural notations or with feature description languages [45]
that model variability. The latter, however, do not provide a connection between
features and their realization. Refinement-based approaches, such as Event-
B [1] require too much rigor in their application for being feasible outside ex-
tremely safety-critical applications. They also do not address variability. Finally,
implementation-oriented specification languages, such as JML [34] (for Java) or
SPEC# [6] (for C#) inherit all the complications and idiosyncrasies of their host
languages and are not very good at specifying concurrent behavior.

Our brief analysis exhibits a gap in the landscape of software specification
and modeling languages. The European FP7 Integrated Project HATS (Highly
Adaptable & Trustworthy Software Using Formal Models) developed the Abstract
Behavioral Specification (ABS) language in order to address this issue. ABS is
a software modeling language that is situated between architectural, design-
oriented, foundational, and implementation-oriented languages, see Fig. 1.

1.1 Structure of This Chapter

In this chapter we give a tutorial introduction into the design principles, language
elements, and usage of the ABS language. We discuss the design considerations
behind ABS in Sect. 2 and give an architectural overview in Sect. 3. Then we
present different language layers, starting with the functional layer in Sect. 4,
followed by the OO-imperative layer in Sect. 5, the concurrency layers in Sect. 6
and language extensions based on pluggable type systems as well as a foreign
language interface (Sect. 7). On top of these layers are language concepts for
modeling of software product lines. These are discussed in Sect. 8. We close
the tutorial with some general considerations on modeling and a discussion of
current limitations of ABS in Sect. 9.

1.2 Further Reading

This paper is a tutorial on ABS and not a language specification nor a formal
definition. A more technical and more detailed description of ABS and its tool set
is contained in the paper trio [9,25,31]. The most detailed document about ABS
that also contains a formal semantics is [17]. The official ABS Language Specifica-
tion is [2]. The main web resources for ABS are http://www.hats-project.eu

http://www.hats-project.eu
http://www.hats-project.eu

The Abstract Behavioral Specification Language: A Tutorial Introduction 3

Design-oriented, architectural, structural
UML, FDL, etc.

Implementation level
Java/JML, C#/SPEC#, etc.

Minimalist foundational
π-calculus, ambient c., etc.

Abstract Behavioral
Specification

ABS

+ executability

+ verifiability
+ usability

Realistic Abstract

Fig. 1. The gap in the landscape of software modeling languages

and www.abs-models.org. Finally, for several case studies done with ABS, one
can have a look at the public HATS Deliverable D5.3 [19].

It is stressed at several places in this tutorial that ABS has been designed with
the goal of permitting automatic static analyses of various kinds. This tutorial
concentrates on the ABS language and its development environment. In the
paper by Albert et al. in this volume [4] automated resource analysis for ABS
is explained in detail. Information on deadlock analysis and formal verification
of ABS can be found in [18]. The chapter by Kurnia & Poetzsch-Heffter in
this volume [33] contains a general discussion of verification of concurrent open
systems such as ABS models.

1.3 Installation of the ABS Eclipse Plugin

For trying out the examples provided in this tutorial you will need the ABS
Eclipse plugin. To install it, follow the simple instructions at http://tools.
hats-project.eu/eclipseplugin/installation.html. You will need at least
Eclipse version 3.6.2 and it is recommended to work with a clean installation.

The example project used throughout this tutorial is available as an archive from
http://www.hats-project.eu/sites/default/files/TutorialExample.zip.
To install, unzip the archive file into a directory /mypath/Account. Then create a
new ABS Project in Eclipse and import the directory file contents into the
workspace in the usual way. This opens automatically the ABS Modeling Perspec-
tive. After opening a few files in the editor you should see a screen similar to the
one in Fig. 2.

www.abs-models.org
http://tools.hats-project.eu/eclipseplugin/installation.html
http://tools.hats-project.eu/eclipseplugin/installation.html
http://www.hats-project.eu/sites/default/files/TutorialExample.zip

4 R. Hähnle

Fig. 2. Screenshot of ABS Modeling Perspective in Eclipse plugin

2 Design Principles of ABS

ABS targets software systems that are concurrent, distributed, object-oriented,
built from components, and highly reusable. To achieve the latter, we follow the
arguably most successful software reuse methodology in practice: software prod-
uct families or software product lines [41], see also the Product Line Hall of Fame
at http://splc.net/fame.html. Going beyond standard OO concepts to sup-
port the modeling of variability, ABS integrates feature models as a first-class
language concept. As shown in Sect. 8, ABS thus provides language-based sup-
port for product line engineering (PLE).

As an abstract language ABS is well suited to model software that is supposed
to be deployed in a virtualized environment. To close the gap between design
and deployment it is necessary to represent low-level concepts such as system
time, memory, latency, or scheduling at the level of abstract models. In ABS this
is possible via a flexible and pluggable notation called deployment components.
This goes beyond the present, introductory tutorial, but is covered in detail in
the chapter by Johnsen in this volume [30].

ABS is not merely a modeling notation, but it arrives with an integrated
tool set that helps to automate the software engineering process. Tools are use-
less, however, unless they ensure predictability of results, interoperability, and
usability. A fundamental requirement for the first two criteria is a uniform, for-
mal semantics. But interoperability also involves the capability to connect with
other notations than ABS. This is ensured by providing numerous language

http://splc.net/fame.html
http://splc.net/fame.html

The Abstract Behavioral Specification Language: A Tutorial Introduction 5

UML class diagram

UML sequence chartbytecode

feature descr. lang.

runtime components

Maude

Scala Petri net

UML Behavior tree

Prosa specificationABS

Fig. 3. Some interfaces between ABS and other languages

interfaces from and to ABS as shown in Fig. 3. These are realized by various
import, export, and code generation tools, several of which are discussed below.

Arguably the most important criterion for tools, however, is usability. This
tutorial is not the place to embark on a full discussion of what that entails, but
it should be indisputable that automation, scalability, and integration are of the
utmost importance.

To ensure the first two of these qualities, the HATS project adopted as a
central principle to develop ABS in tandem with its tool set. This is not merely
a historical footnote, but central to an understanding of the trade-offs made
in the design of the ABS language. For most specification and programming
languages their (automatic) analyzability is considered in hindsight and turns
out not to be scalable or even feasible. With ABS, the slogan of design for
verifiability that originated in the context of hardware description languages [37],
has been systematically applied to a software modeling language. For example,
the concurrency model of ABS is designed such that it permits a compositional
proof system [3,21], the reuse principle employed in ABS is chosen in such a way
that incremental verification is possible [26, 27], etc.

Many formal methods tools focus on analysis, in particular, on verification.
Functional verification, model checking, test case generation, and resource es-
timation are supported by ABS tools as well. Just as important as analytic
methods, specifically in a model-based context, are generative ones: ABS is fully
executable (albeit in a non-deterministic manner) and supports code generation
to Java, Scala, and Maude. In addition, it is possible to learn ABS models
from observed behavior [20].

6 R. Hähnle

Real-Time ABS/
Deployment
Components

Product Line
Engineering
Languages

Runtime
Components

Local Contracts, Assertions

Behavioral Interface Specs

Syntactic Modules

Asynchronous Communication

Concurrent Object Groups (COGs)

Imperative Language

Object Model

Pure Functional Programs

Algebraic (Parametric) Data Types

Core ABS

Full ABS

Fig. 4. Architecture of the ABS language

Regarding integration, the tool set around the ABS language is realized as
a set of plugins for the popular Eclipse IDE. These plugins realize the ABS
Modeling Perspective (see Fig. 2) and the ABS Debug Perspective (see Fig. 8),
which provide about the same functionality as their Java counterparts, that is,
parsing, syntax highlighting, parse error location, symbol lookup, compilation,
building, runtime configurations, interactive debugging, etc. In addition to these
standard development tools, however, a number of analysis and generative tools
are available. Some of these, for example, Java code generation or type inference
are illustrated below. An overview of the ABS tool suite is given in [48].

3 Architecture of ABS

The architecture of ABS has been organized as a stack of clearly separated layers
as illustrated in Fig. 4. In the design of ABS we strove for

1. an attractive, easy-to-learn language with a syntax that is familiar to many
developers and

2. a maximal separation of concerns (orthogonality) among different concepts.

The four bottom layers provide a modern programming language based on a
combination of algebraic data types (ADTs), pure functions, and a simple
imperative-OO language. The idea is that anyone familiar with the basic con-
cepts of OO-imperative and functional programming as in the programming

The Abstract Behavioral Specification Language: A Tutorial Introduction 7

languages Java and Haskell or Scala, is able to grasp this part of ABS
immediately, even though ABS is considerably simpler than any of these
languages.

The next two layers realize tightly coupled and distributed concurrency, re-
spectively. The concurrency and synchronization constructs are designed in a
way to permit a compositional proof theory for functional verification in a pro-
gram logic [3, 21]. Standard contracts are used for functional specification of
sequential programs and behavioral interfaces over sets of histories are used for
specifying concurrent programs, see also the paper by Kurnia & Poetzsch-Heffter
in this volume [33].

The language layers up to here are often called Core ABS. Above these are
orthogonal extensions for product line engineering, deployment components, and
runtime components that allow to model mobile code. The latter are not dis-
cussed in this volume, but are described in [35].

As mentioned above, ABS is a fully executable language. Nevertheless,
abstraction is achieved in a number of ways: first of all, ABS contains only
five built-in datatypes—everything else is user-defined. The rationale is that no
premature decision on the properties of datatypes is enforced, which helps to
create implementation-independent models. Second, functions on datatypes can
be underspecified. The modeler has the alternative to return abstract values or
to leave case distinctions incomplete. The latter may result in runtime errors,
but is useful for simulation, test generation or verification scenarios. Third, the
scheduling of concurrent tasks as well as the order of queuing messages is non-
deterministic.

Of course, one might want to expose full implementation details of an ab-
stract description at some time. This is possible by refining an ADT into an
implemented class or by realizing it in Java via the foreign language interface
available in ABS (Sect. 7.2). Concrete schedulers can be specified via deployment
components [30, 39].

Crucially, the abstraction capabilities of ABS allow to specify partial behav-
ior during early design stages, such as feature analysis, without committing to
implementation details. This lends support, for example, to rapid prototyping
or to the early analysis of the consequences of design decisions.

ABS has been designed as a compact language. Each layer has no more first-
class concepts than are needed to ensure usability (including some syntactic
sugar). This does not mean, however, that ABS is a small language: the ABS
grammar has considerably more non-terminals than that of Java! The reason
is that ABS features several language concepts that are simply not present in
Java. This reflects the 7ambition of ABS to cover the whole modeling spec-
trum from feature analysis, deployment mapping, high-level design and down to
implementation issues. To show that in spite of this ABS is not unwieldy, but
rather easy to use and quite flexible, is the aim of the present tutorial.

8 R. Hähnle

4 The Functional Layer

4.1 Algebraic Data Types

The base layer of ABS is a simple language for parametric algebraic data types
(ADTs) with a self-explaining syntax. The only predefined datatypes1 are Bool,
Int, String, Unit and parametric lists as defined below. The type Unit is used as
a type for methods without return value and works like Java’s void. All other
types are user-defined. There is no subtyping and type matching is defined in
the usual manner, see [15, Sect. 4.2] for details.

To be able to follow and try out the examples in this tutorial, it is strongly
recommended that the Eclipse ABS plugin is installed (see Sect. 1.3). To create
a new ABS file in an existing ABS project, right click on the project in the
explorer and choose New|ABS Module. In the input mask that pops up, specify
a file name, for example, CustomerData, and click Finish. This creates a new
file named CustomerData.abs in the workspace, which can be edited with the
Eclipse editor in the usual manner. The running example of this tutorial has a
banking theme. Let us create some datatypes related to customers. Please note
that all type and constructor names must be upper-case.

data Level = Standard | Silver | Gold;
data Customer = Test | Person(Int, Level) | Company(Int);

There are three kinds of customers defined by three different type construc-
tors: a test customer, individual customers, and corporate customers. Individual
customers are identified by a personal id and possess a status level while corpo-
rate customers are identified by their tax number. We can make the intention
more explicit and, at the same, automatically create selector functions for the
arguments of each type constructor by the following alternative definition:

data Customer = Test | Person(Int pid, level Level) |
Company(Int taxId);

Customer p = Person(17, Silver);
Int n = pid(p);

Assume now that we want to define lists of customers. For this we can use
the following built-in parametric list type, which provides a convenient concrete
syntax for lists:

data List<T> = Nil | Cons(T, List<T>);
List<Int> l = [1,2,3];

The definition of parametric lists demonstrates that type definitions may be
recursive. Let us instantiate parametric lists with Customer and, at the same
time, create a type synonym:
1 There is one more predefined type that is used for synchronization which is explained

in Sect. 6.3.

The Abstract Behavioral Specification Language: A Tutorial Introduction 9

type CustomerList = List<Customer>;

Type synonyms do not add new types or functionality, but can greatly enhance
readability.

4.2 Functions

The functional layer of ABS consists of a pure first-order functional language
with definitions by case distinction and pattern matching. All function names
must be lower-case. Let us begin by defining a function that computes the length
of a list of customers:

def Int length(CustomerList list) =
case list {

Nil => 0 ;
Cons(n, ls) => 1 + length(ls) ;
_ => 0 ;

} ;

Several kinds of patterns are permitted on the left-hand side of case distinc-
tions. In the example above, the first and second cases use a data constructor
pattern. In the second case, this contains an unbound variable whose value is
extracted and used on the right-hand side. The last case uses an underscore
pattern containing an anonymous variable that matches anything. As long as
CustomerList is defined as above, the last case is never executed, however, one
could justify its presence as a defensive measure in case someone adds additional
list constructors.

Naturally, it would have been possible to define a parametric version of the
function Int length(List<T> list). This is left as an exercise to the reader.

Here is another example illustrating the remaining patterns, that is, the literal
pattern and the bound variable pattern:

def Int sign(Int n) =
case n {

0 => 0 ;
n => if (n > 0) then 1 else -1 ;

} ;

The ABS parser does not attempt to establish whether case distinctions are
exhaustive. If no pattern in a case expression matches, a runtime error results.
It is up to the modeler to prevent this situation (in the near future, ABS will
be equipped with the possibility of failure handling). Similarly, it is perfectly
possible to define the following function:

def Int getPid(Customer c) = pid(c);

However, if c has any other type constructor than Person(Int,Level) at runtime,
an error will result.

10 R. Hähnle

Fig. 5. Parse error in the ABS Eclipse editor; errors are highlighted on the editor line
where they occur as well as in the Problems tab of the messages subwindow

We close this section by illustrating a piece of syntactic sugar for associative
collection types such as sets, bags, sequences, etc. To construct concrete elements
of such datatypes one typically needs to iterate several binary constructors, such
as Insert(1,Insert(2,Insert(3,EmptySet))). This is cumbersome. The following
idiom defines an n-ary constructor that uses concrete list syntax as its argument.
By convention, the constructor should have the same name as the type it is
derived from, but in lower-case.

data Set<A> = EmptySet | Insert(A, Set<A>);
def Set<A> set<A>(List<A> l) =

case l {
Nil => EmptySet;
Cons(hd, tl) => Insert(hd, set(tl));

} ;

Set<Int> s = set[1,2,3];

4.3 Modules

If you tried to type in the previous examples into the ABS Eclipse editor you
got parse errors despite the definitions being syntactically correct (similarly as
in Fig. 5). This is, because any ABS definition must be contained in exactly one

The Abstract Behavioral Specification Language: A Tutorial Introduction 11

module. ABS is equipped with a simple syntactic module system that is inspired
by that of Haskell [40]. To make the examples of the previous section work,
simply add a module declaration like the following as the first line of the file:

module CustomerData;

Module names must be upper-case and define a syntactic scope until the end
of the file or until the next module declaration, whichever comes first. Module
names can also be part of qualified type names.

Module declarations are followed by export and import directives. The former
lists the types, type constructors, and functions that are visible to other modules,
the latter lists the entities from other modules that can be used in the current
module. With the type definitions of the previous section we might write:

module CustomerData;
export Standard, Customer, Company, getPid;
...

module Test;
import * from CustomerData;
def Customer c1() = Company(2);
def Customer c2() = Person(1,Standard); // erroneous

The module CustomerData exposes three of its constructors and a function while
module Test imports anything made available by the former. The definition of
c1 is correct, but the definition of c2 gives a parse error about a constructor that
cannot be resolved, because Person is not exported.

The from clause constitutes an unqualified import. Instead, it is also possible
to make qualified imports. For example, we could have written:

module Test;
import CustomerData.Company, CustomerData.Customer;
def CustomerData.Customer c1() = CustomerData.Company(2);

In this case, however, one must also use qualified type names in the definitions
as illustrated above, which can easily become cumbersome and hard to read.

The ABS compiler knows one predefined module that does not need to be
explicitly imported—the ABS standard library ABS.StdLib. It contains a num-
ber of standard collection types, such as lists, sets, maps, together with the
usual functions defined on them. It also contains some other types and functions
that are used often. The standard library module is contained in a file named
abslang.abs. Specifically, it contains definitions of the parametric datatypes
Set<T> and List<T> discussed above, together with constructors and standard
functions such as add, length, etc. Therefore, it is not necessary to define these
types in CustomerData.abs.

To look up the definition of any standard type or function (or any other
type or function, for that matter), simply move the cursor over the identifier
in question and press F3. For example, pressing F3 over the identifier Cons in

12 R. Hähnle

the definition of length in the previous section opens a new tab in the Eclipse

editor that contains abslang.abs and jumps to the line with the definition of
the constructor Cons. This lookup functionality is, of course, well-known to users
of the Eclipse IDE.

4.4 Abstract Data Types

The module system allows to define abstract data types by hiding the type con-
structors. This implies that only functions can be used to access data elements.
Their explicit representation is hidden. Of course, one then needs to supply
suitable constructor functions, otherwise, no new elements can be created at all.

In the example of the previous section we might decide to expose only the
types and constructor functions as follows:

module CustomerData;
export Customer, Level, createCustomer, createLevel;
def Customer createCustomer(Int id, String kind) = ... ;
def Level createLevel(String kind) = ... ;

We leave it as an exercise for the reader to write a suitable definition of
createCustomer(Int,String) and createLevel(String). As usual, the advantage
of using abstract data types is that one can replace the definition of types with-
out the need to change any client code.

5 The OO-Imperative Layer

5.1 The Object Model

ABS follows a strict programming to interfaces discipline [22]. This means that
the only declaration types of objects are interface types. Consequently, ABS
classes do not give rise to type names.

Apart from that, interface declarations are pretty standard and follow a Java-
like syntax. They simply consist of a number of method signatures. Static fields are
not permitted,2 but subinterfaces, even multiple subinterfaces, are allowed. Let us
give an example that models the Customer type from previous sections in an object-
oriented fashion. The file Customer.abs contains the following definitions:

module CustomerIF;

export Customer;

import Level, createLevel from CustomerData;

interface Customer { Int getId(); }
interface IndvCustomer extends Customer {}
interface CorpCustomer extends Customer { Level getLevel(); }

2 And neither are static classes and objects. Instead of static elements the ABS modeler
should consider to use ADTs and functions.

The Abstract Behavioral Specification Language: A Tutorial Introduction 13

As can be seen, interfaces and classes can be exported. In fact, this is necessary,
if anyone outside their defining module should be able to use them.

It is possible to mix object and data types: data types may occur anywhere
within classes and interfaces as long as they are well-typed. Less obviously, ref-
erence types may also occur inside algebraic data types. As seen earlier, it is
perfectly possible to declare the following type:

type CustomerList = List<Customer>;

Keep in mind, though, that it is not allowed to call methods in function defini-
tions. The reason is that method calls might have side effects.

It was mentioned already that classes do not provide type names. They are
only used for object construction. As a consequence, in ABS it is always possible
to decide when a class and when an interface name is expected. Therefore, inter-
faces and classes may have the same name. We do not recommend this, however,
because it dilutes the programming to interfaces discipline. It is suggested to use
a base name for the interface and derive class names by appending “Impl” or
similar.

A class may implement multiple interfaces. Class constructors are not declared
explicitly, instead, class declarations are equipped with parameter declarations
that implicitly define corresponding fields and a constructor. Class definitions
then consist of field declarations, followed by an initialization block and method
implementations. Any of these elements may be missing. Hence, we can continue
the example as follows:

class CorpIndvCustomerImpl(Int id)
implements IndvCustomer, CorpCustomer {
Level lv = createLevel("Standard");
// no initialization block present
Level getLevel() { return lv; }
Int getId() { return id; }

}

Here, the id field is modeled as a class parameter, because it is not possible
to give a reasonable default value, which would be required for an explicit field
declaration: fields that have no reference type must be initialized. Reference type
fields are initialized with null.

In contrast to functions, method names need not (and cannot) be exported
by modules. It is sufficient to get hold of an object in order to obtain access to
the methods that are defined in its class.

The most striking difference between ABS and mainstream OO languages is
that in ABS there is no class inheritance and, therefore, also no code inheritance.
So, how do we achieve code reuse? In ABS we decided to disentangle data design
and functionality from the modeling of code variability. For the former, we use
functions and objects (without code inheritance), whereas for the latter we use
a layer on top of the core ABS language that permits to connect directly with
feature models. This layer is discussed in Sect. 8.

14 R. Hähnle

In a concurrent setting (see Sect. 6) one typically wants some objects to start
their activity immediately after initialization. To achieve this in ABS, one can
define a Unit run() method, which implicitly declares a class as active and lets
objects execute the code in the body of the run method after initialization.
Classes without a run() method are called passive and their objects react only
to incoming calls.

5.2 The Imperative Layer

Statements. ABS has standard statements for sequential composition, assign-
ment, while-loops, conditionals, synchronous method calls, and method return.
As an example for all of these, look at the following implementation of the
method findCustomer(CustomerList) in class CorpIndvCustomerImpl (don’t for-
get to add it to the implemented interfaces as well to render it visible!).

Customer findCustomer(CustomerList cl) {
Customer result;
Int i = 0;
while (i<length(cl)) {

Customer curCust = nth(cl,i);
Int curId = curCust.getId();
if (id==curId) {result = curCust;}
i = i + 1;

}
return result;

}

In addition to the various constructs, we can illustrate several ABS-specific re-
strictions with this example: first, it is necessary that the final statement in the
method body is a return statement with the correct type. A typical ABS id-
iom is, therefore, to declare a local result variable. Neither for-loops nor breaks
from loops are supported at the moment. To avoid going through the remaining
list after the element has been found (as done here), one would need to add a
Bool found variable and test that in the loop guard. Complex expressions are
not allowed at the moment in tests of conditionals or loops. The workaround,
as shown above, is to declare a local variable curId that holds an intermediate
result. While these restrictions can be slightly annoying they hardly matter very
much. It is likely that some of them will be lifted in the future, once it is better
known what modelers wish.

Object Access. A more fundamental restriction concerns the usage of fields in
assignment statements: assignments to fields and field lookups are only possible
for the current object. Given a field f, an assignment of the form “x = f;” is
always implicitly qualified with the current object as in “x = this.f;”; likewise
an assignment to a field of the form “f = exp;” is always implicitly qualified as in
“this.f = exp;”. This implies that fields in ABS are object private. They cannot
be directly seen or be modified by other objects, not even by objects from the

The Abstract Behavioral Specification Language: A Tutorial Introduction 15

same class (as is possible even for private fields in Java). In other words, ABS
enforces strong encapsulation of objects: it is only possible to view or change the
state of another object via getter- and setter-methods. For example, it is not
possible to change the second line in the body of the while-loop of findCustomer
(CustomerList) as follows:

Int curId = curCust.id;

The designers of ABS consider enforcement of object encapsulation not as a
restriction, but as a virtue: it makes all cross references between objects syntac-
tically explicit. This avoids errors that can be hard to find. In addition it makes
static analysis much more efficient, because any cross reference and possible side
effect to a different object can be associated with a unique method contract.

For the practicing ABS modeler object encapsulation is greatly alleviated by
the method completion feature of the Eclipse editor: if one types the beginning
of the example above “Int curId = curCust.”, then a pop-up menu will offer a
selection of all methods that are known for objects of type Customer, the getter-
method getId() among them. If a suitable method is not found, then the modeler
can take this as a hint that it needs to be implemented or added to an interface.

Blocks. ABS is a block-structured language. Blocks are delimited by curly braces
(no semicolon afterward) and may appear at four different places in a program:

1. as a way to group several statements and provide a scope for local variables—
blocks are necessary for bodies of loops and conditionals that have more than
one statement;

2. as method bodies;
3. as the (optional) class initialization block, between field and method decla-

rations;
4. as an (optional) implicit “main” method at end of a module.

The last usage serves as an entry point for execution of ABS programs. At
least one main block in one module is necessary for executing an ABS project,
otherwise it is not clear which objects are to be created and executed. Any
module that has a main block is selectable as an execution target via the Eclipse

Run Configurations ... dialog or simply by right clicking on the desired module in
the explorer and selection of Run As. We might complete our example now by
specifying the following main block for module CustomerIF:

{
Customer c = new CorpIndvCustomerImpl(17); // create some customers
Customer d = new CorpIndvCustomerImpl(16);
CustomerList l = Cons(c,Cons(d,Nil)); // create list of customers
Customer e = c.findCustomer(l); // we should find c in l

}

This code illustrates at the same time the usage of the new statement, which
works as in Java. As usual in Eclipse, pressing the F4 key displays the type
hierarchy pertaining to a class or interface name at the cursor position.

16 R. Hähnle

6 The Concurrency Layers

6.1 Background

One of the most distinctive features of ABS is its concurrency model. If we
look at commercial programming languages such as C, C++, or Java, one can
observe that, despite intense efforts in the last decade, none of them has a fully
formalized concurrency model. Even though there are promising efforts towards
a formal concurrency model of Java [5], the details are so complex that they
are likely to compromise usability of any resulting system. The reason is that
current industrial programming languages have a very low-level concurrency
model and do not natively support distributed computation. This has practical
consequences, such as burdening the programmer with, for example, taking care
of prevention of data races.

A more fundamental problem is the difficulty to design a compositional proof
system for such languages. By compositionality we mean that one can specify
and verify the behavior of a single method in isolation from the rest of the
system. This is a prerequisite for being able to deduce global behavior from
the composition of local behavior. In a setting, where concurrent objects can
arbitrarily cross-reference each other, this is hardly possible. Arbitrarily com-
plex, global invariants, might be needed to describe behavior. One approach to
tackle the problem is to impose structure on concurrent objects and to make
their dependencies syntactically explicit. In the realm of Java, JCoBox [44] is a
suitable framework. It has been simplified and renamed into Concurrent Object
Group (COG) in the context of ABS. COGs constitute the lower tier of the ABS
concurrency model and are intended for closely cooperating concurrent tasks.

A second shortcoming of mainstream programming languages is the lack
of support for distributed computation, that is, asynchronous communication
among nodes that do not share memory. This form of concurrency has been
abstracted into the Actor model [29] and is realized with first-class support
in recent languages such as Scala. ABS implements a version of Actor-based
distributed computation where COGs form the primitive units of distribution.
This constitutes the upper tier of the ABS concurrency model. Its main ideas
are derived from the modeling language Creol [32].

6.2 Component Object Groups

An ABS Concurrent Object Group (COG) is a collection of tasks with shared
memory and processor. This means that exactly one task is active at any given
time and tasks can cross-reference each others’ data. The situation can be visu-
alized as in Fig. 6.

Within a COG, synchronous as well as asynchronous method calls are permit-
ted. For the former, we use the standard syntax target.method(arg1,arg2,...).
Synchronous method calls within COGs represent sequential execution of code,
that is, they block the caller and execute the code of the target until control is
returned.

The Abstract Behavioral Specification Language: A Tutorial Introduction 17

···

···

···

Heap

Lock �

Fig. 6. Illustration of an ABS Component Group

Asynchronous method calls use the syntax target!method(arg1,arg2,...) and
they cause the creation of a new task that is to execute the code of the target.
Unlike in synchronous calls, execution of the code of the caller continues.

The main point to understand about COGs is that multitasking is not pre-
emptive (decided by a scheduler). Rather it is an explicit decision of the ABS
modeler when control is transferred to another task. To this end, ABS provides
scheduling statements that allow cooperative multitasking. In between the ex-
plicit scheduling points, only one task is active, signified by the (single) lock of
a COG being set to �. As a consequence, data races between synchronization
points simply cannot happen, which was an important design goal of ABS.

6.3 Scheduling and Synchronization

So, how are scheduling points specified in ABS? It is here that we encounter a
second, central concurrency principle of ABS: communication and synchroniza-
tion are decoupled. This is done via future types [13]. For any ABS type T a legal
type name is Fut<T> and one can assign to it the result of any asynchronous
method call with return type T. A variable declared with type Fut<T> serves as
a reference to the future result of an asynchronous call and allows to retrieve it
once it will have been computed. For example, the final line of the example on
p. 15 can be rewritten into:

Fut<Customer> e = c!findCustomer(l);
<do something else>

Now the call creates a new task in the current COG and declares e as a future
reference to its final result. The following code is executed immediately.

The future mechanism allows to dispatch asynchronous calls, continue
with the execution, and then synchronize on the result, whenever it is needed.
Synchronization is achieved by the command await g, where g is a polling guard.
A guard is a conjunction of either side-effect free boolean expressions or future
guards of the form f?. In the latter, f is a variable that has a future type. If
the result to which f? is a reference is ready and available, then the expression
evaluates to true. When the guard of an await statement evaluates to true, the
computation simply continues. If, however, a guard is not true, then the current
task releases the lock of its COG and gives another task in that COG the chance

18 R. Hähnle

to continue. When later the task is scheduled again, the guard is re-evaluated,
and so on, until it finally becomes true. We call this a conditional scheduling
point or conditional release point. To continue the previous example we could
write:

await e?;

If the asynchronous call to findCustomer(l) has finished at this point, then ex-
ecution simply continues. Otherwise, the lock of the current COG is set to ⊥
and the processor is free to proceed with another task. For efficiency reasons
ABS allows only monotonic guards and only conjunctive composition.3 Once
the result from an asynchronous call is available, it can be retrieved with a get-
expression that has a future variable as its argument. In the example this may
look as follows:

Customer f = e.get;

In summary, the following programming idiom for asynchronous calls and re-
trieving their results is common in ABS:

Fut<T> v = o!m(e); ... ; await v?; T r = v.get;

ABS does not attempt to check that each get expression is guarded by an await
statement. So what happens when the result of an asynchronous call is not

ready when get is executed? The answer is that the execution of the whole COG
containing the task blocks. The difference between suspension and blocking is
that in the latter case no task in same COG can continue until the blocking
future is resolved.

Sometimes it is convenient to create an unconditional scheduling point, for
example, to insert release points into long running sequential tasks. The syntax
for unconditional scheduling statements in ABS is “suspend;”.

6.4 Object and COG Creation

In the previous section we discussed the fundamental concurrency model of ABS,
which is based on COGs. Whenever we create an object with the new statement,
it is by default created in the same COG as the current task (see upper part
of Fig. 7). This is not adequate for modeling distributed computing, where each
node has its own computing resources (processor) and nodes are loosely coupled.

In an ABS model of a distributed scenario we associate one COG with each
node. New COGs are implicitly created when specifying the cog keyword at
object creation (see lower part of Fig. 7): this creates a new COG and places the
new object inside it. At the moment, COGs are not first-class objects in ABS
and are accessible only implicitly through their objects.4 As a consequence, it is
3 It is possible to support arbitrary boolean combinations over future guards, however,

at the price of a much less efficient realization, see [15, pp. 33f] for technical details.
4 There is an extension for ABS runtime objects that allows explicit and dynamic

grouping of COGs [35].

The Abstract Behavioral Specification Language: A Tutorial Introduction 19

this:A B b = new B(); this:A b:B

this:A B b = new cog B(); this:A b:B

Fig. 7. Illustration of object and COG creation (gray boundaries represent COGs)

not possible to re-enter via recursive calls into the same execution thread. This is
the reason why a simple binary lock for each COG is sufficient. Let us extend our
running example with an Account class and COG creation in file Account.abs:

module Account;

interface Account {
Int getAid();
Int deposit(Int x);
Int withdraw(Int x);

}

class AccountImpl(Int aid, Int balance, Customer owner)
implements Account { ... }

{
[Near] Customer c = new CorpIndvCustomerImpl(3);
[Far] Account a = new cog AccountImpl(1,0,c);

Fut<Int> dep = a!deposit(17);
Fut<Int> wit = a!withdraw(17);

await dep? & wit?;

Int x = dep.get;
Int y = wit.get;
Int net = x + y;

}

In the main method of the Account module an account object a is created in
a different COG from the current one. Note that there is no sharing of objects
between COGs, so that the variable c provides no alias to the object parameter c
in the constructor call AccountImpl(1,0,c). The tasks resulting from the following
two asynchronous calls will be executed on the node where a resides, which is
different from the current one. A conjunctive guard ensures that the retrieval of
the results is safe.

20 R. Hähnle

Fig. 8. Screenshot of ABS Debug Perspective in Eclipse plugin

It is possible to animate the execution of ABS code in two ways. To start
the graphical ABS Debugger, simply right click on the file with the Account
module in the explorer and select Run As|ABS Java Backend (Debug). This will
automatically switch to the ABS Debug Perspective (see Fig. 8) and start the
Eclipse debugger. All the usual features of a graphical debugger are available:
navigation, breakpoints, state inspection, etc.

If instead, the backend Run As|ABS Java Backend (Debug with Sequence Di-
agram) is chosen, then in addition a UML sequence diagram that has a lifeline
for each created COG is created and dynamically updated after each execution
step in the debugger, see Fig. 9.

Location Types. Synchronous method calls to targets not in the current COG
make no sense and are forbidden. For example, if we replace one of the asyn-
chronous calls above with a.deposit(17), a runtime error results. One possibil-
ity to avoid this is to annotate declarations with one of the types Near or Far,
as shown above. This tells the compiler that, for example, a is in a different
COG and cannot be the target of a synchronous call. Obviously, it is tedious to
annotate all declarations; moreover, the annotations tend to clutter the models.
To address this problem, the ABS Eclipse plugin implements a far/near type
analysis, which automatically infers a safely approximated (in case of doubt, use
“far”) location type [47]. The inferred types are displayed in the Eclipse editor
as superscripts (“N” for near, “F” for far) above the declared types. All annota-
tions in the example can be inferred automatically: simply delete the annotations
and save the file to see them. It is also possible to annotate a declaration with

The Abstract Behavioral Specification Language: A Tutorial Introduction 21

Fig. 9. Sequence diagram generated from an ABS simulation

Somewhere, which overrides the type inference mechanism and tells the compiler
not to make any assumptions. Default is the annotation Infer, but this can be
changed in the ABS project properties.

Deadlocks. It is entirely possible that execution of an ABS model results in
a deadlock during runtime. A non-trivial example is provided by the model in
Fig. 10, contained in file Deadlock.abs. Objects c, e and d reside in two different
COGs, say the first two are in cogc and the latter in cogd. The task that executes
m1 is in cogc while the task executing the call to m2 inside m1 is put into the second
COG cogd. During this execution m3 is called on e, which is located in the first
COG cogc again. For m3 to proceed the task needs to obtain the lock of cogc,
but this is not possible, because m1 still waits for the result of m2. Hence, neither
COG can progress.

Deadlocks are very difficult to exclude in general. Deadlock-free concurrent
languages tend to be too restrictive to be usable and, unlike data race-freeness,
are not a practical option. In ABS many deadlocks can be avoided by supplying
enough release points. In the example above it is sufficient to insert an await in
front of one of the get expressions. In addition, there is an automatic deadlock
analysis for ABS [23] that is currently being implemented.

22 R. Hähnle

class C {
C m1(C b, C c) { Fut<C> r = b!m2(c); return r.get; }
C m2(C c) { Fut<C> r = c!m3(); return r.get; }
C m3() { return new C(); }

}
{

C c = new C(); C d = new cog C(); C e = new C();
c!m1(d,e);

}

Fig. 10. Example for deadlock in ABS

6.5 Formal Semantics of Concurrent ABS

The ABS language has a mathematically rigorous, SOS-style semantics [17, 31].
This tutorial introduction is not the place go into the details, but we sketch the
main ideas. The central issue is to give an appropriate structure to the terms that
represent ABS runtime configurations. These are collections over the following
items:

o[b, C, σ] || n〈b, o, σ, s〉 || b[l] || · · ·

object

class state

task

PC

lock

COG �/⊥

COGs are identified simply by a name b for their lock whose value can be either
� or ⊥.

Objects have a name o, need to have a reference to their COG b, to their class
C, and they also have a local state σ that holds the current field values.

Tasks have a name n, a reference to their COG b and to the object o whose code
they are executing. They also have a state σ with values of local variables
and a program counter s that gives the next executable instruction. Task
names n also double as futures, because they contain exactly the required
information.

A runtime configuration may consist of any number of the above items. The
operational semantics of ABS is given by rewrite rules that match the next
executable statement of a task (and thereby also the current COG and object).
A typical example is the rewrite rule that realizes creation of a new COG:

n〈b, o, σ, T z = new cog C(v); s〉 →
b′(�) || n′〈b′, o′, σ′

init, stask〉 || o′[b′, C, σinit] || n〈b, o, σ, s{z/o′}〉

The Abstract Behavioral Specification Language: A Tutorial Introduction 23

where:

– b′, o′, n′ new;
– T f ; s′ init block of class C and σ′

init binds constructor parameters v;
– σinit = T f ;
– stask = s′{this/o′; suspend}

The rule matches a new cog statement in task n, COG b, current object o, class
C, and subsequent statements s. First we need to create a new COG with a fresh
name b′ and a new object o′ in class C. The new COG starts immediately to
execute the initialization code of its class C in a new task n′, therefore, b′’s lock
is set to �. Note that the current object this must be instantiated now to the
actual object o′. After initialization, execution is suspended. The original task n
immediately continues to execute the remaining code as there is no release point
here. The value of the object reference z is replaced with the new object o′.

7 Extensions

7.1 Pluggable Type System

All declarations (fields, methods, classes, interfaces) in ABS can carry annota-
tions. These are simply expressions that are enclosed in square brackets. The
location type system in Sect. 6.4 provided examples. Other annotations can be
logical expressions that are used as assertions, contracts, or invariants during
verification or runtime assertion checking [14]. That goes beyond this tutorial.

The location types are a so-called pluggable type system. Such type systems
can be realized easily in ABS via meta annotations. The special annotation
[TypeAnnotation] declares the data type definition immediately following it to be
a definition for type annotations and makes the parser aware of it. For example,
the location type system is declared as follows:

[TypeAnnotation]
data LocationType = Far | Near | Somewhere | Infer;
// usage
[LocationType: Near] T n;

7.2 Foreign Language Interface

As a modeling language ABS does not contain mechanisms for I/O, because
these are typically implementation-dependent. Of course, one often would like
to have some output from the execution of an ABS model or connect an ABS
model to existing legacy code. This is possible with a foreign language inter-
face (FLI) mechanism that not only can be used to implement I/O for ABS, but
to connect ABS models with legacy code in implementation languages in general.

24 R. Hähnle

At the moment, the ABS FLI is realized for the Java language. An ABS class
that is to be implemented in Java needs three ingredients:

1. import of helper functions and classes from the module ABS.FLI;
2. a declaration as being foreign by the annotation [Foreign];
3. default ABS implementations of all interface methods.

A simple example can look as follows:

import * from ABS.FLI;

interface Hello { String hello(String msg); }

[Foreign]
class HelloImpl implements Hello {

String hello(String msg) { return "default implementation"; }
}

{
Hello h = new HelloImpl();
h.hello("Hi there");

}

The default implementation is used for simulation of ABS code without Java.
It is now possible to implement a Java version of the HelloImpl class in a Java

project and to connect that project with ABS. The details of how this is done
are explained at the HATS tools site, see http://tools.hats-project.eu/
eclipseplugin/fli.html. Basically, one extends the Java class HelloImpl_c
that was generated by the ABS Java backend with a new implementation of the
Java method hello(String). By convention, the Java methods carry the prefix
fli.

import abs.backend.java.lib.types.ABSString;
import abs.backend.java.lib.runtime.FLIHelper;
import Test.HelloImpl_c;

public class HelloImpl_fli extends HelloImpl_c {
@Override
public ABSString fli_hello(ABSString msg) {

FLIHelper.println("I got "+msg.getString()+" from ABS");
return ABSString.fromString("Hello ABS, this is Java");

}
}

On the Java side any Java construct can be used. ABS provides a Java package
abs.backend.java.lib.types containing declarations of the built-in ABS types
usable in Java such as ABSString.

Execution of the ABS main block above will now cause the Java output “I
got Hi there from ABS” to be printed on the system console.

http://tools.hats-project.eu/eclipseplugin/fli.html
http://tools.hats-project.eu/eclipseplugin/fli.html
http://tools.hats-project.eu/eclipseplugin/fli.html

The Abstract Behavioral Specification Language: A Tutorial Introduction 25

Feature
Model Family Engineering

Product Line
Artifacts Base

Feature
Selection Application Engineering Product

Fig. 11. Product line engineering

8 Product Line Modeling with ABS

8.1 Product Line Engineering

One of the aims of ABS is to provide a uniform and formal framework for
product line engineering (PLE) [41], a practically highly successful software reuse
methodology. In PLE one distinguishes two separate development phases (see
Fig. 11).

During family engineering one attempts to distill the commonality among dif-
ferent products into a set of reusable artifacts. At the same time, the variability
of the product line is carefully planned. This is typically done in a feature-driven
manner, and the relation of features, as well as constraints in their combination
is documented in a feature model with the help of a feature description lan-
guage [45].

In the application engineering phase, individual products are being built by
selecting features and by combining the artifacts that implement them in a
suitable way.

One drawback of current practice in PLE is that feature description languages
make no formal connection between features and their implementation. This
renders products assembly ad hoc and error-prone. That issue is addressed in
ABS with language extensions for modeling of features, for connecting features
to their realization, as well as for feature selection and product specification [9].
In this section we introduce the PLE extensions of ABS. A fuller discussion of
various approaches to achieve greater flexibility in object-oriented programming
is contained in the chapter by van Dooren et al. in this volume [46] and in [16].

If one wants to maintain a connection between features and code, then the
central issue are the mechanisms being used to compose the code corresponding
to new features with the existing code. In current practice, this is often done by
“glue code” written in scripting languages. ABS has the ambition that models
can be statically analyzed. This means that the feature composition mechanism
must be well-structured and represent a suitable match for the analysis methods
used in ABS [18]. Such a mechanism is delta-oriented programming (DOP) [42,

26 R. Hähnle

Account

Type

Check Save

Overdraft Fee
Int amount in [0..5]Int interest

interest=0 interest>0

excludes

Fig. 12. Graphical representation of the Account feature model

43], because it allows to modify object-oriented code in a structured manner at
the granularity of fields and methods, which is adequate for the contract-based
specification and verification approach in ABS [26,27].

In brief, the ABS-extensions used to model product lines consist of four ele-
ments [8, 9], which we describe now in turn:

1. A feature description language
2. A language for deltas that modify ABS models
3. A configuration language connecting features with the deltas that realize

them
4. A language for product configuration

8.2 Feature Description

Modern software development processes, notably agile processes and PLE, tend
to be feature-driven. A number of mature and useful formalisms for feature
description have been developed in the last decade. For ABS we use a slight
modification of the textual variability language (TVL) [10], which has the ad-
vantage of having a formal semantics and a textual representation. The flavour
of this language used in ABS is called μTVL and differs from TVL in that (i) at-
tribute types that are not needed are omitted and (ii) the possibility to have
multiple root features. The latter is useful to model orthogonal variability in
product lines.

Let us build a product line based on the Account interface from Sect. 6.4. As-
sume we want to distinguish between checking and saving accounts. The latter
may pay interest, whereas the former usually don’t. Optionally, a checking ac-
count (but not a saving account) may permit an overdraft or incur fees for trans-
actions. A graphical representation of the Account feature model is in Fig. 12.
The textual rendering in μTVL in file FeatureModel.abs looks as follows:

The Abstract Behavioral Specification Language: A Tutorial Introduction 27

root Account {
group allof {

Type {
group oneof {

Check {ifin: Type.i == 0;},
Save {ifin: Type.i > 0;

exclude: Overdraft;}
}
Int i; // interest rate

},
opt Fee {Int amount in [0..5];},
opt Overdraft

}
}

In μTVL one represents each subhierarchy in the feature tree by a group of fea-
tures, which can be further qualified as inclusive (allof) or alternative (oneof).
Within a group there is a comma-separated list of feature declarations. Each
feature declaration may be optional (opt) and have restrictions (ifin:), exclu-
sions (exclude:), or requirements (include:). Feature parameters are declared
after the declaration of a subhierarchy. A feature model appears in a separate
file with extension .abs. The Eclipse editor supports syntax and parse error
highlighting. There can be several feature files with feature declarations. These
are interpreted as orthogonal feature hierarchies that are all part of the same
feature model.

The semantics of feature models is straightforward by translation into a
boolean/integer constraint formula, see [9, 10]. For example, the feature model
above is characterized by the following formula:

0 ≤ Account ≤ 1 ∧ Type → Account ∧
Overdraft† → Account ∧ Fee† → Account ∧
Type + Fee† + Overdraft† = 3 ∧ 0 ≤ Type ≤ 1 ∧
Check → Type ∧ Save → Type ∧ Save → ¬Overdraft ∧
Check + Save = 1 ∧
0 ≤ Check ≤ 1 ∧ 0 ≤ Save ≤ 1 ∧ 0 ≤ Fee† ≤ 1 ∧ 0 ≤ Overdraft† ≤ 1 ∧
Fee → Fee† ∧ Overdraft → Overdraft† ∧
0 ≤ Save ≤ 1 ∧ 0 ≤ Check ≤ 1 ∧
Fee → (Fee.amount >= 0 ∧ Fee.amount <= 5) ∧
Check → (Type.i = 0) ∧ Save → (Type.i > 0).

Features are represented by integer variables of the same name. We use the con-
vention that these can also be used as boolean variables where a non-0 value
denotes true. Optional features are represented by two variables, one of which
is labeled with †. The latter denotes the case when the feature is actually selected.

28 R. Hähnle

Core Software Product

Delta1 · · · Deltan

apply deltas

Fig. 13. Application of delta modules to a core product

This is formalized in expressions such as “Type + Fee† + Overdraft† = 3”.
Some constraints are redundant, for example, it would be sufficient to write
“Account ≤ 1”, but checking for such situations complicates the translation
function unnecessarily.

It is easy to check validity of a given feature selection for a feature model F :
for any selected feature f and parameter value p := v one simply conjoins the
formula f = 1 ∧ p = v to the semantics of F and checks for satisfiability with
a constraint solver. The constraint solver of ABS can:

– find all possible solutions for a given feature model and
– check whether a feature selection is a solution of a feature model.

The latter check is performed implicitly in the ABS Eclipse plugin, whenever
the user requests to build a product based on a specific feature selection (see
Sect. 8.5).

8.3 Delta Modeling

As mentioned above, the realization of features in ABS is done with delta mod-
ules (or deltas, for short), a variant of delta-oriented programming (DOP). This
constitutes the main reuse principle of ABS and replaces other mechanisms such
as code inheritance, traits, or mixins. Specifically, in standard OO languages the
dynamic selection of software components is often realized by late binding mech-
anisms such as dynamic dispatch. But preserving type-safety in such a context
means to encode both, variability and data modeling into the subtyping relation.
This can lead to convoluted and brittle type hierarchies. In ABS we decided to
achieve a strict separation of concerns between data modeling and variability
modeling by employing the dedicated syntactic mechanism of delta modules for
the latter. For a detailed discussion of the advantages of DOP for variability
modeling see [16]. Recently it has been shown [26,27] that delta-oriented model-
ing is also a viable basis for modular specification and verification of feature-rich
software.

In delta modeling we assume that one outcome of the family engineering
phase (see Fig. 11) is a core or base product with minimal functionality. Product
variants with additional features are obtained from it by applying one or more

The Abstract Behavioral Specification Language: A Tutorial Introduction 29

deltas that realize the desired features, as illustrated in Fig. 13. In ABS, deltas
have the following capabilities:

– Delta modules may add, remove or modify classes and interfaces
– Permitted class modifications are:

• adding and removal of fields
• adding, removal and modification of methods
• extending the list of implemented interfaces

The actual reuse mechanism is located in the modification of methods: the de-
scription of a method modification in a delta can access the most recent incarna-
tion of that method in a previous delta by the statement original(...);. This
will cause the compiler to insert the body of the referred method at the time
when the deltas are applied. The signature of original() must be identical to
the one of the modified method. The compiler checks the applicability of deltas
and ensures well-typedness of the resulting code. It is because of this reuse mech-
anism that once can say that the granularity of delta application is at the level
of methods.

There is a certain analogy between original() in DOP and super()-calls in
OO languages with code inheritance. The crucial difference is that original()
references are resolved at compile time (product build time), while super()-calls
occur at runtime. As a consequence, there is a runtime penalty for the latter.
In addition, the semantics of super() is more complex than that of original(),
because it interacts with dynamic method dispatch.

Assume we have the following implementation of the withdraw(Int) method
of the Account interface, which ensures that we cannot withdraw more than the
current balance:

class AccountImpl(Int aid, Int balance, Customer owner)
implements Account {

Int withdraw(Int x) {
if (balance - x >= 0) { balance = balance - x; }
return balance;

}
}

Now we would like to create a delta module that realizes the feature Fee. We
need to modify withdraw(Int), which can be achieved by the following delta,
contained in file Fee.abs:

delta DFee(Int fee); // Implements feature Fee
uses Account;
modifies class AccountImpl {

modifies Int withdraw(Int x) {
Int result = x;
if (x>=fee) result = original(x+fee);
return result;

}
}

30 R. Hähnle

The modified withdraw(Int) method is implemented by a suitable call to the
original version after a check that the withdrawn amount is not trivially small.
The new implementation is a “wrapper” around the original one, which is a typ-
ical idiom in DOP. Of course, it is also possible to replace a method completely.
In ABS method deltas one must usually declare a result variable to ensure that
the return statement is last, as can be seen here.

One or more deltas can be placed into a file with extension .abs. The con-
nection between different deltas and a base implementation is given via the uses
clause that refers to the module where the base is found. Like classes, deltas can
have parameters, however, these are not fields, but are instantiated at product
build time. Normally, there is a correspondence between the parameters of deltas
and those of the features they are supposed to implement.

Assume further we want to realize the Save feature. One must ensure that
the interest rate is set to 0. ABS deltas at this time do not support to add or
modify class initialization blocks. To change the initial value of a field, we simply
remove the field declaration and add it again with a suitable initial value:

delta DSave(Int i); // Implements feature Save
uses Account;
modifies class AccountImpl {

removes Int interest;
adds Int interest = i;

}

Of course, we assume here that the interest field has been added in the first
place in the earlier delta DType. This requires to specify and check temporal
constraints on the application of deltas as shall be seen in the following section.
Application of a concrete delta is illustrated with DSave in Fig. 14.

Syntax and parse error highlighting for delta modules works as usual. Auto-
matic completion works as well, but it is only done relative to the base product.
The reason is that before product build time, the compiler cannot know which
deltas have been applied before. For the same reason, only a limited amount of
type checking is done. Research to lift type checking to the family level is under
way [12, 36].

8.4 Product Line Configuration

So far, we have two models relating to product lines: the feature model and the
delta model, that is, the feature implementation. Unlike any other formalism we
are aware of, in ABS we can make a formal connection between these.5 This is
the key to being able to analyze implementations of whole product lines and not
merely individual products.

In ABS, the connection between features and their realization (illustrated
in Fig. 15) is done in a dedicated product line configuration file. This makes
5 Model checking approaches to PLE such as [11] attach behavior to features, but

make a finite state abstraction in the form of labeled transition systems.

The Abstract Behavioral Specification Language: A Tutorial Introduction 31

class AccountImpl(...) implements Account {
Int interest = 0;
...

}

delta DSave(3);
modifies class AccountImpl {

removes Int interest;
adds Int interest = 3; }

class AccountImpl(...) implements Account {
Int interest = 3;
...

}

Fig. 14. Application of delta DSave

Feature
Model

Core
Deltas

Modules

Configuration

Fig. 15. Schema of product line configuration in ABS

debugging easy, because all information about the realization of a given feature
model is collected in a single location. To establish a connection between features
and deltas, the configuration files need to specify three aspects:

1. they must associate features with their implementing delta modules by ap-
plication conditions;

2. they need to resolve conflicts in the application order by giving partial tem-
poral constraints on delta application;

3. they need to pass the attribute values of features to the parameters of the
delta modules.

We can illustrate all three aspects with our running example. The following file
AccountPL.abs defines a product line named Accounts based on the five features
of the feature model in Fig. 12.

32 R. Hähnle

productline Accounts;
features Type, Fee, Overdraft, Check, Save;

delta DType (Type.i) when Type;
delta DFee (Fee.amount) when Fee;
delta DOverdraft after DCheck when Overdraft;
delta DSave (Type.i) after DType when Save;
delta DCheck after DType when Check;

For each delta that is to be used for implementing any of the features one
specifies:

– the application conditions (when clauses), that is, the feature(s) that are be-
ing realized by each delta and whose presence triggers delta application;

– the delta parameters which are derived from feature attribute values;
– a strict partial order of delta application (after clauses) to ensure well-de-

finedness of delta applications and resolve conflicts.

In the example, there is a one-to-one correspondence between deltas and features,
which is reflected in the application conditions. Likewise, the feature attributes
Type.i and Fee.amount directly can be used as parameters of the correspond-
ing deltas. The temporal constraints of DSave and DCheck ensure that the field
interest is present. The constraint of DOverdraft makes sure that this delta is
only applied to checking accounts. It would also have been possible to express
this constraint at the level of the feature model with an includes: clause. It is up
to the modeler to decide whether a given constraint is a property of the feature
model or of the product line.

8.5 Product Selection

The final step in PLE with ABS is product selection. Whereas the activities that
took place until now can be viewed as mostly being part of family engineering,
the selection process is always part of application engineering.

To create a product it is sufficient to list the features that should be realized
in it and to instantiate the feature attributes with concrete values. The syntax
is very simple and self-explaining. As any other ABS file, product selection files
have the .abs extension and there is Eclipse support for syntax and parse error
highlighting. Some examples for the Accounts product line are given in the file
Products.abs as follows:

product CheckingAccount (Type{i=0},Check);
product AccountWithFee (Type{i=0},Check,Fee{amount=1});
product AccountWithOverdraft (Type{i=0},Check,Overdraft);
product SavingWithOverdraft (Type{i=1},Save,Overdraft);

The simplest product that can be built is CheckingAccount. The second product
above extends it by charging a fee of one unit per transaction. The ABS compiler

The Abstract Behavioral Specification Language: A Tutorial Introduction 33

Feature
Model

Product
Selection

Configuration

ensures
satisfaction

Core
Deltas

Modules

Software
Product

associates

guides

C
ode

G
eneration

Fig. 16. The role of product line configuration in product selection and compilation

uses the product selection file and the other related files to create a “flattened”
ABS model where all deltas have been applied such that it contains only core
ABS code. In a first step, the compiler checks that the product selection is valid
for the given feature model as described in Sect. 8.2. It then uses the product
line configuration file to decide which deltas need to be applied and how they are
instantiated. The partial order on the deltas is linearized. It is up to the modeler
to ensure (possibly, by adding temporal constraints) that different linearizations
do not lead to conflicting results. Finally, the resulting core ABS model is type-
checked and compiled to one of the ABS backends in the standard way. As all
parts of the ABS language the product line modeling languages have a formal
semantics—the details are found in [9].

The generation of a declared product can be triggered in Eclipse from the
Run|Run Configurations ... dialog by creating a new ABS Java Backend config-
uration (or using an existing one). In the ABS Java Backend tab the available
products appear under the ABS Product menu. Invalid product selections or type
errors in the configuration files will be displayed at this stage. For example, se-
lection of the SavingWithOverdraft product above results in an error, because the
constraints in the feature model are not satisfied. After selection of a valid prod-
uct one can run and debug the resulting core ABS model as described earlier.
The ABS compiler additionally creates always a base product that corresponds
to the given ABS model without any features or deltas. This product appears
under the name <base> in the product selection menu.

If we execute the main class of the Account module in Sect. 6.4 in the base
product, we obtain the result 37 in the variable net, whereas if we run the
product AccountWithFee, we obtain 34.

A current limitation of the Eclipse ABS plugin is that the debugger correctly
displays the runtime configuration and the values of variables of products, but
in the editor window only the core product is displayed, not the actual product
with applied deltas.

34 R. Hähnle

Application

Product variability

Architecture

Concurrency, distribution

Functionality

Data structures

ABS

Delta Modeling

Components, Modules

Actors

COGs

Classes

Algebraic Data Types

Java

Fig. 17. Choice of different layers when modeling with ABS

9 Concluding Remarks

In this tutorial we gave an introduction to the abstract modeling language ABS.
Uniquely among current modeling languages, ABS has a formal semantics and
covers the whole spectrum from feature modeling to the generation of executable
code in Java. Development and analysis of ABS models are supported by an
Eclipse plugin.

A very important point is that ABS offers a wide variety of modeling options
in a uniform, homogeneous framework, see Fig. 17. This allows the modeler to
select an appropriate style and level of abstraction for each modeled artifact.
For example, data structures and functionality of sequential methods can be
modeled either in functional or in OO style (red arrows). The possibility to use
ADTs enables rapid prototyping and design-time analysis. For example, con-
current behavior may first be abstracted into an ADT and only refined later
(dashed arrow). All language layers of ABS are integrated in a homogeneous
framework and have a uniform formal semantics. Mixing ABS with legacy code
or deployment-specific functionality such as I/O is possible via the Java FLI.

Of course, as any other formalism, ABS has also limitations: it is not designed
to model low-level, thread-based concurrency with shared data. Hence, ABS
in its current state is not suitable to model multi-core applications or system
libraries. In this sense, approaches to formalization of low-level concurrency [5]
are complementary to ABS.

The Abstract Behavioral Specification Language: A Tutorial Introduction 35

As mentioned earlier, the analysis capabilities and the ABS runtime component
layer are beyond this tutorial, but some chapters in this volume cover part of that
material.

Acknowledgments. The development and implementation of ABS was a col-
laborative effort of the many researchers involved in the HATS project. While the
text of this tutorial has been written from scratch by the author, it could never
have been done without the background of all the papers, presentations, and dis-
cussions provided by many colleagues. Special thanks go to the main contributors
to Work Package 8: Frank de Boer, Einar Broch Johnsen, and Ina Schaefer.

The hints from two anonymous reviewers led to a number of improvements
and clarifications.

References

[1] Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

[2] The ABS Language Specification, ABS version 1.2.0 edn. (April 2013),
http://tools.hats-project.eu/download/absrefmanual.pdf.

[3] Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Science of Computer Programming 77(12), 1289–1309 (2012)

[4] Albert, E., et al.: Automatic inference of bounds on resource consumption. In:
de Boer, F., Bonsangue, M., Giachino, E., Hähnle, R. (eds.) FMCO 2012. LNCS,
vol. 7866, pp. 119–144. Springer, Heidelberg (2013)

[5] Amighi, A., Blom, S., Huisman, M., Zaharieva-Stojanovski, M.: The VerCors
project: setting up basecamp. In: Claessen, K., Swamy, N. (eds.) Proc. Sixth Work-
shop on Programming Languages Meets Program Verification, PLPV, Philadel-
phia, PA, USA, pp. 71–82. ACM (2012)

[6] Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

[7] Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer (2003)

[8] Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J.,
Schlatte, R., Wong, P.Y.H.: Modeling Spatial and Temporal Variability with the
HATS Abstract Behavioral Modeling Language. In: Bernardo, M., Issarny, V.
(eds.) SFM 2011. LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

[9] Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.: Variability mod-
elling in the ABS language. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 204–224. Springer, Heidelberg (2011)

[10] Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature mod-
elling: Syntax and semantics of TVL. Science of Computer Programming 76(12),
1130–1143 (2011)

[11] Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Model checking
software product lines with SNIP. International Journal on Software Tools for
Technology Transfer (STTT) 14, 589–612 (2012)

[12] Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented
software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I.
LNCS, vol. 7609, pp. 193–207. Springer, Heidelberg (2012)

http://tools.hats-project.eu/download/absrefmanual.pdf

36 R. Hähnle

[13] de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

[14] de Boer, F.S., de Gouw, S.: Run-time verification of black-box components using
behavioral specifications: An experience report on tool development. In: Păsăre-
anu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 128–133. Springer,
Heidelberg (2013)

[15] Report on the Core ABS Language and Methodology: Part A, Part of Deliverable
1.1 of project FP7-231620 (HATS) (March 2010), http://www.hats-project.eu

[16] Final Report on Feature Selection and Integration, Deliverable 2.2b of project
FP7-231620 (HATS) (March 2011), http://www.hats-project.eu

[17] Full ABS Modeling Framework, Deliverable 1.2 of project FP7-231620 (HATS)
(March 2011), http://www.hats-project.eu

[18] Analysis Final Report, Deliverable 2.7 of project FP7-231620 (HATS) (December
2012), http://www.hats-project.eu

[19] Evaluation of Modeling, Deliverable 5.3 of project FP7-231620 (HATS) (March
2012), http://www.hats-project.eu

[20] Model Mining, Deliverable 3.2 of project FP7-231620 (HATS) (March 2012),
http://www.hats-project.eu

[21] Correctness, Deliverable 4.3 of project FP7-231620 (HATS) (March 2013),
http://www.hats-project.eu

[22] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

[23] Giachino, E., Laneve, C.: Analysis of deadlocks in object groups. In: Bruni, R.,
Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 168–182.
Springer, Heidelberg (2011)

[24] Girault, C., Valk, R.: Petri Nets for System Engineering: A Guide to Modeling,
Verification, and Applications. Springer, Secaucus (2001)

[25] Hähnle, R., Helvensteijn, M., Johnsen, E.B., Lienhardt, M., Sangiorgi, D., Schae-
fer, I., Wong, P.Y.H.: HATS abstract behavioral specification: the architectural
view. In: Beckert, B., Damiani, F., de Boer, F., Bonsangue, M.M. (eds.) FMCO
2011. LNCS, vol. 7542, pp. 109–132. Springer, Heidelberg (2013)

[26] Hähnle, R., Schaefer, I.: A Liskov principle for delta-oriented programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 32–46.
Springer, Heidelberg (2012)

[27] Hähnle, R., Schaefer, I., Bubel, R.: Reuse in software verification by abstract method
calls. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 300–314. Springer,
Heidelberg (2013)

[28] Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

[29] Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
Artificial Intelligence. In: Nilsson, N.J. (ed.) Proc. 3rd International Joint Confer-
ence on Artificial Intelligence, pp. 235–245. William Kaufmann, Stanford (1973)

[30] Johnsen, E.B.: Separating cost and capacity for load balancing in ABS deployment
models. In: de Boer, F., Bonsangue, M., Giachino, E., Hähnle, R. (eds.) FMCO
2012. LNCS, vol. 7866, pp. 145–167. Springer, Heidelberg (2013)

[31] Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

http://www.hats-project.eu
http://www.hats-project.eu
http://www.hats-project.eu
http://www.hats-project.eu
http://www.hats-project.eu
http://www.hats-project.eu
http://www.hats-project.eu

The Abstract Behavioral Specification Language: A Tutorial Introduction 37

[32] Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for dis-
tributed concurrent systems. Theoretical Computer Science 365(1-2), 23–66 (2006)

[33] Kurnia, I.W., Poetzsch-Heffter, A.: Verification of open concurrent object systems.
In: de Boer, F., Bonsangue, M., Giachino, E., Hähnle, R. (eds.) FMCO 2012.
LNCS, vol. 7866, pp. 83–118. Springer, Heidelberg (2013)

[34] Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M.: JML Reference Manual. Draft revision
1.235 (September 2009)

[35] Lienhardt, M., Bravetti, M., Sangiorgi, D.: An object group-based component
model. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 64–78. Springer, Heidelberg (2012)

[36] Lienhardt, M., Clarke, D.: Conflict detection in delta-oriented programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 178–192.
Springer, Heidelberg (2012)

[37] Milne, G.: Design for verifiability. In: Leeser, M., Brown, G. (eds.) Hardware Spec-
ification, Verification and Synthesis: Mathematical Aspects. LNCS, vol. 408, pp.
1–13. Springer, Heidelberg (1990)

[38] Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Inform.
and Comput. 100(1), 1–40, 41–77 (1992)

[39] Nobakht, B., de Boer, F.S., Jaghoori, M.M., Schlatte, R.: Programming and de-
ployment of active objects with application-level scheduling. In: Proceedings of
the 2012 ACM Symposium on Applied Computing (SAC). ACM (2012)

[40] Peyton Jones, S. (ed.): Haskell 98 Language and Libraries: The Revised Report
(September 2002), http://haskell.org/

[41] Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer (2005)

[42] Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented
programming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010.
LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

[43] Schaefer, I., Worret, A., Poetzsch-Heffter, A.: A Model-Based Framework for Au-
tomated Product Derivation. In: Proc. of Workshop in Model-based Approaches
for Product Line Engineering, MAPLE 2009 (2009)

[44] Schäfer, J., Poetzsch-Heffter, A.: Jcobox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

[45] Schobbens, P., Heymans, P., Trigaux, J.: Feature diagrams: A survey and a formal
semantics. In: 14th IEEE International Conference on Requirements Engineering,
pp. 139–148 (2006)

[46] van Dooren, M., Clarke, D., Jacobs, B.: Subobject-Oriented programming. In: de
Boer, F., Bonsangue, M., Giachino, E., Hähnle, R. (eds.) FMCO 2012. LNCS,
vol. 7866, pp. 38–82. Springer, Heidelberg (2013)

[47] Welsch, Y., Schäfer, J.: Location types for safe distributed object-oriented pro-
gramming. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS, vol. 6705,
pp. 194–210. Springer, Heidelberg (2011)

[48] Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.:
The ABS tool suite: modelling, executing and analysing distributed adaptable
object-oriented systems. Journal on Software Tools for Technology Transfer 14(5),
567–588 (2012)

http://haskell.org/

Subobject-Oriented Programming

Marko van Dooren, Dave Clarke, and Bart Jacobs

iMinds-DistriNet, Department of Computer Science,
KU Leuven, Belgium

firstname.lastname@cs.kuleuven.be

Abstract. Classes are fundamental elements in object-oriented programming,
but they cannot be assembled in a truly flexible manner from other classes. As a
result, cross-cutting structural code for implementing associations, graph struc-
tures, and so forth must be implemented over and over again. Subobject-oriented
programming overcomes this problem by augmenting object-oriented program-
ming with subobjects. Subobjects can be used as buildings blocks to configure
and compose classes without suffering from name conflicts. This paper gives
an overview of subobject-oriented programming and introduces mechanisms for
subobject initialization, navigation of the subobject structure in super calls, and
subobject refinement. Subobject-oriented programming has been implemented as
a language extension to Java with Eclipse support and as a library in Python.

1 Introduction

Class-based object-oriented programming enables programmers to write code in terms
of abstractions defined using classes and objects. Classes are constructed from building
blocks, which are typically other classes, using inheritance. This allows a new class to
extend and override the functionality of an existing class. More advanced mechanisms
such as multiple inheritance, mixins, and traits extend the basic inheritance mechanism
to improve code reuse. Although becoming increasingly popular in mainstream lan-
guages, these mechanisms suffer from a number of problems: code repetition, concep-
tually inconsistent hierarchies, the need for glue code, ambiguity, and name conflicts.

Code repetition occurs because code cannot be sufficiently modularized in single
and multiple inheritance hierarchies. For instance, many classes are based on high-level
concepts such as associations (uni- or bi-directional relationships between objects) or
graph structures, for example, in classes representing road networks. When implement-
ing such classes, current best practice is to implement these high-level concepts with
lots of cross-cutting, low-level boilerplate code. As a result, what is essentially the same
code, is written over and over again. Attempts to improve reuse often result in concep-
tually inconsistent hierarchies, in which semantically unrelated code is placed in classes
just to enable reuse. Often reuse is achieved by abandoning inheritance and instead del-
egating to auxiliary objects (delegates) that implement the desired functionality. This
requires additional glue code to put the delegates in place and to initialise them. Even
more glue code is required to handle overriding of delegate functionality in subclasses.
Inheritance mechanisms that enable inheritance from multiple sources, such as multiple
inheritance, mixins, and traits, cannot properly deal with methods that have the same
name but come from different super classes or traits.

E. Giachino et al. (Eds.): FMCO 2012, LNCS 7866, pp. 38–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Subobject-Oriented Programming 39

Modern programming languages offer some solutions to these problems, but these
are inadequate for various reasons (see Section 2 for more detail). Composition mech-
anisms such as mixins [4] and traits [21,19,8,7] cannot be used to turn the low-level
code into reusable building blocks, because only one building block of a given kind
can be used in a class. With non-virtual inheritance in C++ [22], the composer has no
control over the inheritance hierarchy of the building block, and methods cannot always
be overridden. With non-conformant inheritance in Eiffel [23], all methods of all build-
ing blocks must be separated individually. This requires a large amount of work and
is error-prone. Aspect-oriented programming [15] does modularize cross-cutting code,
but the cross-cutting code is of a different nature. In current aspect-oriented languages,
the cross-cutting code of aspects augments the basic functionality of a system, whereas
in the case of e.g. the graph functionality for road networks, the cross-cutting code de-
fines the basic structure of the classes. While features such as intertype declarations in
AspectJ [14] and wrappers in CaesarJ [1] can change the class structure, their purpose is
to support aspects. As such, they do not provide the expressiveness to capture structural
patterns that can be added multiple times to a single class, which is needed for a build-
ing block approach. And even if such expressiveness were supported, a class should not
have to rely on aspects to define its basic structure. Together these problems indicate
that the currently available building blocks for constructing classes are inadequate.

Subobject-oriented programming, the class composition mechanism described in this
paper, addresses the limitations described above. Subobject-oriented programming aug-
ments object-oriented programming with subobjects that allow classes to be flexibly
used as building blocks to create other classes. Subobjects do not introduce name con-
flicts, as different subobjects are isolated by default and can only interact after configu-
ration in the composed class. Subobject members are truly integrated into the composed
class and can be redefined in subclasses of the composed class. Subobject-oriented pro-
gramming improves the component relation developed in previous work [26]; it has
been used to make software transactional memory more transparent [24]. In this paper,
we present an overview of subobject-oriented programming, along with the following
new contributions:

– Language constructs for subobject initialization and navigation of the subobject
structure in super calls.

– A simplified, object-oriented, approach to subobject configuration.
– A further binding mechanism to refine subobjects in a subclass.
– A formal models of the semantics of subobjects.
– Experimental validation: we have implemented subobject-oriented programming as

a Java [12] extension called JLo [25], and as a Python 3 [20] library, and developed
an extended example demonstrating how graph functionality can be implemented
top of an existing association mechanism.

Organization: Section 2 presents an evaluation of existing reuse mechanisms. Section 3
defines subobject-oriented programming, including subobject customization and initial-
ization. Section 4 shows additional examples of subobject-oriented programming.
Section 5 discusses the implementation. Section 6 presents a semantic model of
subobject-oriented programming, focusing on the semantics of method dispatch.
Section 7 discusses related work, and Section 8 concludes.

40 M. van Dooren, D. Clarke, and B. Jacobs

2 Evaluation of Current Reuse Mechanisms

This section evaluates existing reuse techniques by trying to compose a simple class of
radios from generic building blocks. The interface of class Radio is shown in
Figure 1(a). The volume of a radio is an integer between 0 and 11, and the frequency is
a float between 87.5 and 108.

class Radio {
Radio(int, float)

int getVolume()
void setVolume(int)
float getFrequency()
void setFrequency(float)

}

(a) The interface of Radio

class BoundedValue
<T extends Comparable<T>> {

BoundedValue(T, T, T)
T getMax()
T getValue()
void setValue(T)
T getMin()

}

(b) The interface of BoundedValue

(c) A user interface for a radio

class Slider {
connect(BoundedValue value)
...

}

(d) The interface of Slider

Fig. 1. The radio example

The behavior of both the volume and frequency is similar in that both are numeric
values that must remain within certain bounds. This behavior is encapsulated in Bound-
edValue, whose interface is shown in Figure 1(b). We want to implement Radio using
two building blocks of this class. Note that BoundedValue itself could be implemented
with three building blocks for the value and the upper and lower bounds, but we do not
consider nested composition for this example as it does not add to the discussion.

To make a user interface for the radio, we want to use two Slider objects and connect
them to the frequency and the volume building blocks as if they were separate objects.

The resulting class Radio should offer at least the same functionality as if it were im-
plemented from scratch. External clients of Radio should see it via an interface similar
to the one in Figure 1(a), and subclasses of Radio should be able to redefine its methods.

2.1 Aspect-Oriented Programming

In the original paper on aspect-orientation [15], aspects captured any kind of cross-
cutting code. Current aspect-oriented languages, however, focus on aspects that modify
the behavior of existing code. Although aspect-oriented languages provide features to
modify the structure of an existing class, such as intertype declarations in AspectJ [14]

Subobject-Oriented Programming 41

and wrappers in CaesarJ [1], they do not provide the expressiveness that is needed to
add them multiple times to a single class. As such, the bounded values of Radio cannot
be added with aspects.

But even if the required expressiveness would be added, the nature of the cross-
cutting code makes aspect-oriented programming inappropriate for the job. In such an
aspect-oriented language, the volume and frequency of the radio would be added to Ra-
dio in a separate aspect. The bounded values for the volume and the frequency, however,
define the basic behavior of a radio, and should therefore be declared in class Radio.

2.2 Mixins

Mixin inheritance [4] provides a limited form of multiple inheritance. A mixin is a
class with an abstract superclass. This super class can be instantiated differently in
different contexts. A concrete class specifies its inheritance hierarchy by declaring a
list of mixins, which is called a mixin composition. The mixin composition linearizes
the inheritance hierarchy of a class by using the successor of each mixin in the list
as the super class for that mixin. By eliminating diamond structures, the linearization
mechanism automatically solves name conflicts. This, however, can cause a method to
override another method with the same signature by accident.

Fig. 2 shows a Scala [18]1 example where we attempt to reuse class BoundedValue
twice in class Radio. Class BoundedValue itself is omitted. Because of the linearization,
it is impossible to use mixins to implement the volume and frequency of a radio in this
fashion. All methods inherited through the clause with BoundedValue[Float] would be
overridden by or cause conflicts with the (same) methods inherited through the clause
with BoundedValue[Integer].

class Radio extends BoundedValue[Int] with BoundedValue[Float]

Fig. 2. An attempt to implement Radio with mixins

2.3 Traits

A trait [21] is a reusable unit of behavior that consist of a set of methods. A class
uses a trait as a building block through trait composition, and resolves name conflicts
explicitly using trait operators such as alias or exclude. The flattening property of traits
states that the behavior of a trait composition is the same as if the trait code was written
in the composing class. Lexically nested traits [7] improve upon the original traits by
allowing a trait to have state and providing a lexical mechanism for controlling the
visibility of the methods provided by a trait. Lexically nested traits are implemented
in the AmbientTalk [7] programming language. For the sake of simplicity, the example
code uses a hypothetical language TraitJava, which adds lexically nested traits to Java.

1 Note that Scala does not support traits; it uses the keyword trait for mixins.

42 M. van Dooren, D. Clarke, and B. Jacobs

Fig. 3 shows an attempt to implement a radio using trait composition in TraitJava.
Trait composition is done by using the trait. Class Radio uses two BoundedValue traits
to model the volume and the frequency. Aliasing is used to resolve the name conflicts
caused by using two traits with methods that have the same name.

class Radio {
uses BoundedValue<Int> {
alias value -> volume, max -> maxVolume,

min -> minVolume, setValue -> setVolume
}
uses BoundedValue<Float> {
alias value -> frequency, max -> maxFrequency,

min -> minFrequency, setValue -> setFrequency
}

}
trait BoundedValue<T> {
T _value;
T value() {return _value;}
void setValue(T t) {
if(t >= min() && t <= max()) {_value = t;}

}
T max() {...}
T min() {...}
...

}

Fig. 3. Traits in the hypothetical language TraitJava

While at first sight this code seems to do what we need, it does not actually work.
The fields of both bounded values are properly isolated from each other due to lexical
scoping, but the methods are not. Remember that the flattening property ensures that
the code behaves as if it were written directly inside the using class. Therefore, the
setVolume and setFrequency methods have an identical implementation and thus use
the same methods to obtain the upper and lower bounds. As a result, both setVolume
and setFrequency try to invoke methods named “min” and “max” on a radio at run-
time. But a radio does not even have methods with names “min” or “max” because
a trait alias is not a true alias. Instead, an alias only inserts a delegation method that
invokes the “aliased” method on the trait object. Note that even if the methods of one
of one of the two traits were not aliased, the other bounded value object would always
use the bound methods of the former.

Trait-based metaprogramming [19] is similar to non-conformant inheritance in Eif-
fel, which is discussed in the next section. Trait-based metaprogramming is discussed
in more detail in the related work section.

Subobject-Oriented Programming 43

2.4 Non-conformant Inheritance in Eiffel

Eiffel [23] and SmartEiffel 2.2 [6] support non-conformant inheritance – inheritance
without subtyping – to insert code into a class through the insert relation. As with the
regular subclassing relation, multiple inheritance and repeated inheritance (inheriting
from the same class more than once) are allowed.

Fig. 4 shows how class RADIO implements its volume and frequency functional-
ity using repeated non-conformant inheritance. Constructors are omitted to save space.
The methods and fields of BOUNDED VALUE are duplicated by giving them distinct
names using renaming. In case of repeated inheritance, self invocations in Eiffel are
bound within the inheritance relation of the current method. Suppose that the construc-
tor of BOUNDED VALUE (make) invokes set value. When make vol is executed in the
constructor of RADIO, the set value call is bound to set vol, which sets the vol field.
This is exactly the behavior that we need.

class RADIO
inherit {NONE}
-- All members must be separated explicitly.
BOUNDED_VALUE

rename make as make freq,

set value as set freq, value as freq,

max as max freq, min as min freq end

BOUNDED_VALUE

rename make as make vol,

set value as set vol, value as vol,

max as max vol, min as min vol end
end
class BOUNDED_VALUE[T <: COMPARABLE[T]]
min, value, max: T
set_value(val: T) do
if min <= val and val <= max then value := val

end end end

Fig. 4. Implementing Radio in Eiffel

By default, members that are inherited via multiple inheritance paths form a single
definition. Therefore, if we want to use the insert relation to create Radio, all members
of the volume and frequency must be renamed individually in order to duplicate them.
This not only requires a lot of work, but is also error-prone because no compile error
is reported when some members are forgotten. For example, if max is not duplicated,
the volume and frequency share the same upper bound. Another problem is that it is not
possible to use two Slider objects for the user interface because neither the volume, nor
the frequency can be used as BOUNDED VALUE objects.

44 M. van Dooren, D. Clarke, and B. Jacobs

2.5 Manual Delegation

The Radio class can also be built using two BoundedValue objects and manually writing
the delegation code, as shown in Fig. 5. Both bounded values are properly separated,
but writing the delegation code is cumbersome and error-prone. Furthermore, it requires
anticipation: at least one special constructor is needed in each class to allow subclasses
to change the behavior of the bounded values. In the example, class EventRadio uses an
EventBoundedValue to send events when the volume is changed. If the special construc-
tor is forgotten, neither the volume nor the frequency can be customized in subclasses.

By exposing the BoundedValue objects via methods volume() and frequency(), the
user interface for the radio can be made by connecting two Slider objects to the Bound-
edValue objects for the volume and the frequency.

class Radio {
BoundedValue<Int> _v;
BoundedValue<Int> volume() { return _v;}

final Int getVolume() {return v.getVal();}
final void setVolume(Int v) { v.setVal(v);}
BoundedValue<Float> _f;
BoundedValue<Float> frequency() { return _f;}

final Float getFreq() {return f.getVal();}
final void setFreq(Float f) { f.setVal(f);}

Radio(Int v, Float f) {this(null,volume,null,f)}
// The BoundedValue objects must be changable.

Radio(BoundedValue<Int> subV, Int v,

BoundedValue<Float> subF, Float f){
if (subV != null) v = subV;

else v=new BoundedValue<Int>(0,v,11);

if (subF != null) f = subFrq;

else f=new BoundedValue<Float>(87.5,f,108);
}

}
class EventRadio {
EventRadio(Int v)
{super(new EventBoundedValue<Int>(0,v,11);}

EventRadio(EventBoundedValue<Int> subV, Int v

EventBoundedValue<Float> subF, Float f)

{super(subV,v,subF,f);}
}

Fig. 5. Manual delegation in Java

Subobject-Oriented Programming 45

2.6 Scala Objects

On the surface it appears that object declarations in Scala can be used. Consider for ex-
ample the code in Fig. 6. The BoundedValue value objects for the volume and frequency
are completely separated, and delegation methods are defined. A subclass EventRadio,
however, cannot change the objects to EventBoundedValue objects since objects cannot
be overridden in Scala. While the delegation methods can be overridden, that does not
affect the behavior of the volume or frequency objects.

class Radio {

// objects for volume and frequency
object volume extends BoundedValue
object frequency extends BoundedValue

// providing aliases for subobject methods
def getVolume = volume.getValue
def setVolume = volume.setValue
def getFrequency = frequency.getValue
def setFrequency = frequency.setValue

}

class EventRadio extends Radio {

// does not override volume.getValue

override def getVolume = ...

// generates compile error

object volume extends EventBoundedValue

}

Fig. 6. Implementing Radio with objects in Scala

2.7 Summary

Even though the radio example is simple, none of the typical reuse techniques is able
to maintain that simplicity in the implementation. Mixins and traits cannot be used at
all because they do not offer support for using multiple building blocks of the same
type. Non-conformant inheritance allows easy customization without anticipation, but
requires a lot of work to separate the building blocks, and does not allow them to be
used as if they were separate objects. With manual delegation, the situation is exactly
the other way around. Isolating the building blocks and using them as separate objects
is easy, but customization is less elegant and requires anticipation.

46 M. van Dooren, D. Clarke, and B. Jacobs

3 Subobject-Oriented Programming

Subobject-oriented programming augments object-oriented programming with subob-
jects, which allow developers to capture cross-cutting structural boilerplate code in a
class and then use it as a configurable building block to create other classes. A subob-
ject can be seen as a combination of inheritance and delegation. It combines the ability
to have isolated and accessible building blocks, as provided by delegation, with the
ability to easily modify their behavior without anticipation and integrate them in the
interface of the composed class, as with inheritance.

Subobject members can be exported to the surrounding class, and customized ei-
ther in the subobject itself or in the surrounding context. Subobjects can be refined in
subclasses of the composed class, they can be treated as real objects.

Fig. 7 shows the syntax of subobjects. Subobjects are named members of the com-
posed class. Type T is the declared superclass of the subobject. Members defined in
the body of a subobject may also redefine members of T . Within the body of a subob-
ject, the this expression refers to the subobject itself. The outer expression refers to the
(sub)object that directly encloses the subobject. The value of outer is equal to the value
of this in the enclosing (sub)object. Similar to invocations on this, invocations on outer
are bound dynamically. Section 3.2 explains export clauses. Section 3.3 explains sub-
object refinement, overrides and refines clauses, and super calls. Section 3.4 explains
subobject initialization. Note that we use the Scala syntax for methods throughout the
paper since it is more concise than the syntax of Java.

Class ::= class T extends T implements T{Member}
Member ::= Method | Field | Subobject | Export
Subobject ::= subobject Id T [Body]
Export ::= export Path [as Id]
Refines ::= Id refines Path
Overrides ::= Id overrides Path
Path ::= Id
SubobjectInit ::= subobject.Path(e)
SuperCall ::= [Prefix .] super [. Path] .m(e)
Prefix ::= outer | Path | outer.Path

Fig. 7. Syntax for subobjects

3.1 Subobject Basics

Fig. 8 shows how Radio implements its volume and frequency with subob-
jects named volume and frequency. These subobjects have declared superclasses
BoundedValue<Integer> and BoundedValue<Float> respectively. The interface of
Radio does not yet contain the setters and getters for the volume and the frequency.

Subobject-Oriented Programming 47

class Radio {
subobject volume BoundedValue<Integer>;
subobject frequency BoundedValue<Float>;

}

class BoundedValue<T> {
BoundedValue(T min, T val, T max) {...}

T getValue() = value;
void setValue(T value) {
if(value >= getMin() && value <= getMax())
{this.value = value;}

}
T value;

// similar code for the min and max values
}

Fig. 8. Using subobjects for the volume and the frequency

The diagram in Fig. 9a shows the class diagram for Radio. A subobject is visualized
as a box inside the composed class because it is used as a building block for that class.
The declared super class of the subobject is shown underneath its name.

Subobjects are isolated by default, without requiring renaming or exporting. The di-
agram in Fig. 9b shows a flattened view of the members of the Radio class of Fig. 8.
The members that are directly available in the interface of Radio are shown in bold.

Radio

volume
BoundedValue<Int>

frequency
BoundedValue<Float>

(a) The class diagram of Radio

Radio

frequency.getValue(): Float
frequency.setValue(Float)
frequency.getMin():Float
...

frequency.value: Float
frequency

volume.getValue():Int
volume.setValue(Int)
volume.getMin():Int
...

volume.value: Int
volume

(b) A flattened view of the members of Radio

Fig. 9. Visualization of class Radio

48 M. van Dooren, D. Clarke, and B. Jacobs

Subobject volume introduces the following members into Radio: volume.getValue, vol-
ume.setValue, volume.value, volume.getMin, and so forth. Similarly, subobject frequency
introduces frequency.getValue, frequency.setValue, and so forth. This avoids an explo-
sion of name conflicts in the enclosing class.

Within the context of a subobject, this binds to that subobject. Therefore, method
calls and field accesses executed in the context of a subobject are bound within that
subobject. For example, to verify that the value of a BoundedValue is not set to an
invalid value, the setValue method of class BoundedValue must call getMin and getMax
to obtain the bounds. During the execution of volume.setValue, these calls are bound to
volume.getMin and volume.getMax respectively.

Using Subobjects as Real Objects. The name of a subobject allows it to be used as a
real object whose type is a subtype of its declared superclass. The subtype reflects any
customization done in the subobject body, such as using a more specific return type.
Fig. 10 illustrates how a subobject is used as a real object. Invoking r.volume returns
an object of type Radio.volume, which is a subtype of BoundedValue<Integer>. This
allows the subobject to be connected to a slider of the user interface.

class Slider<T extends Number> {
BoundedValue<T> _model;
void connect(BoundedValue<T> bv) {...}

}
Radio r = new Radio();
Slider<Int> vs = new Slider<Int>();
vs.connect(r.volume); // similar for frequency

Fig. 10. Using subobjects as real objects

Nested Subobjects. Nested subobjects are also available in the composed class. The
code in Fig. 11 shows a part of the radio example with nested subobjects. Note that this
version is incomplete as it does not perform any bounds checks. The example merely
serves to illustrates nesting. In Sect. 3.2 we show how subobject members can be made
available directly in the interface of the composed class. In Sect. 3.3 we show how
subobject members can be overridden to enforce the upper and lower bounds of Bound-
edValue. Class BoundedValue now uses three Property subobjects with names value,
min, and max for the value and the bounds. Class Property has methods getValue and
setValue and field value. In this case, BoundedValue does not offer getValue and set-
Value directly in its interface.

The diagram in Fig. 12 shows the members of Radio in this scenario. Class Radio
now has members volume.value.getValue, volume.min.getValue, volume.max.getValue,
and so forth. Note that a developer is not confronted with a large number of members
when looking at the interface of Radio. Only the members shown in bold are directly
accessible. The other can only be accessed via the subobjects.

Subobject-Oriented Programming 49

class Radio {
subobject volume BoundedValue<Integer>;
subobject frequency BoundedValue<Float>;

}

class BoundedValue<T> {
subobject min Property<T>;
subobject value Property<T>;
subobject max Property<T>;

}

class Property<T> {
T value;
T getValue() = value;
void setValue(T t) {value = t;}

}

Fig. 11. Part of the radio example with nested subobjects

volume
volume.min
volume.min.value
volume.min.getValue()
volume.min.setValue(int)
volume.value
volume.value.value
volume.value.getValue()
volume.value.setValue(Int)
volume.max.value
volume.max.getValue()
volume.max.setValue(int)
…
frequency
...

Radio

Fig. 12. A flattened view of the members of Radio (nested version)

3.2 Exporting Subobject Members

While a subobject can be accessed as an object, it is more convenient if commonly used
members are available directly in the composed class. In addition, it is desirable to give
such members names that are appropriate for the composed class. Subobject members
are added to the interface of the composed class using export clauses. In Fig. 13, the
getter and setter methods for the volume and the frequency BoundedValues are exported
to Radio as getVolume, setVolume, getFrequency, and setFrequency. Whether the getter
and setter methods are implemented directly in BoundedValue or exported to Bounded-
Value from nested subobjects makes no difference for class Radio.

50 M. van Dooren, D. Clarke, and B. Jacobs

class Radio {
subobject volume BoundedValue<Int> {
export getValue as getVolume,

setValue as setVolume;
}
subobject frequency BoundedValue<Float> {
export getValue as getFrequency,

setValue as setFrequency;
}

}

Fig. 13. Adding getters and setters to Radio

The class diagram of Radio with the exported members is shown in Fig. 14. The
getter and setter methods of the volume subobject can not be invoked directly on an
object of type Radio via getVolume and setVolume respectively. The notation m < f
indicates that member f from the subobject is exported to the composed class as m. The
new name is written at the left side to improve the readability of the interface of the
composed class.

Radio

getVolume < getValue
setVolume < setValue

volume
BoundedValue<Int>

getVolume < getValue
setVolume < setValue

frequency
BoundedValue<Float>

Fig. 14. The class diagram of Radio with exported members

An export clause export path.d in subobject s makes member s.path.d accessible
via name d in the enclosing scope, so long as doing so does not create name conflicts.
The form export path.d as Id can also be used to give a new name to the exported
path. In both cases, the member is still available via its original path (s.path.d).

The alias defined by an export clause cannot be broken, as shown in Fig. 15. Class
BrokenRadio overrides setVolume to set the value to the opposite value of the scale.
Because of the aliasing, volume.setValue is also overridden when setVolume is over-
ridden. Thus regardless of whether the client changes the volume via setVolume or via
volume.setValue, the effect is always the same.

Subobject-Oriented Programming 51

class BrokenRadio extends Radio {
void setVolume(Int vol) {super.setValue(11-vol);}

}
BrokenRadio br = new BrokenRadio();
br.setVolume(1); // write directly
//read through subobject equals direct read
assert(br.volume.getValue() == br.getVolume());
br.volume.setValue(2); //write via subobject.
//read through subobject equals direct read
assert(br.volume.getValue() == br.getVolume());

Fig. 15. Overriding cannot break aliases

Export clauses provide the best of two worlds: ease of use and reuse. The composed
class can provide an intuitive and uncluttered interface. Classes meant to be used as
subobjects can provide a lot of functionality without cluttering the composed classes.
Members that are not exported can still be accessed by using the subobject as a sep-
arate object whose type is its declared superclass, as illustrated in Fig. 16. In other
approaches, such members are no longer available, resulting in code duplication.

3.3 Customizing Subobjects

Methods of a subobject can be overridden in its body. The return type is covariant and
the parameter types are invariant. Otherwise the code in the subobject may break.

Radio

getVolume < getValue
setVolume < setValue

volume
BoundedValue<Int>

getVolume < getValue
setVolume < setValue

frequency
BoundedValue<Float>

getMin()
getValue()
setValue(Int)
getMax()
equals(Object)
sameBounds(BoundedValue<Int>)
...

BoundedValue<Int>
.volume

.frequency

getMin()
getValue()
setValue(Float)
getMax()
equals(Object)
sameBounds(BoundedValue<Float>)
...

BoundedValue<Float>

Fig. 16. Zooming in on a subobject

52 M. van Dooren, D. Clarke, and B. Jacobs

class BoundedValue<T extends Comparable<T>> {
subobject value Property<T> {
export getValue, setValue;
boolean isValid(T t) =

(t != null &&
outer.getMin() <= t && t <= outer.getMax())

}

subobject min Property<T> {
export getValue as getMin, setValue as setMin;
boolean isValid(T t) =

(t!= null && t <= outer.getValue())
}

subobject max Property<T> {
export getValue as getMax, setValue as setMax;
boolean isValid(T t) =

(t!= null && outer.getValue() <= t)
}

}

Fig. 17. Overriding subobject members

Suppose that BoundedValue is implemented using three Property subobjects for the
value and the bounds, as shown in Fig. 17. The setter of Property uses isValid to val-
idate the given value. Class BoundedValue redefines the isValid methods of the three
subobjects to ensure that the value will be between the upper and lower bounds. The
subobjects are isolated by default, thus outer and export are used to cross the boundaries
of the subobjects.

Fig. 18 shows the class diagram of BoundedValue. The members that are overridden
in the subobject are shown in a separate area.

The diagram in Fig. 19 shows the lookup table of Property and a part of the lookup
table of BoundedValue. For each subobject, there is an additional lookup table. Field
reads and writes are bound dynamically. Note that the lookup table for a subobject
contains a new entry for each field of the declared superclass. A new entry is needed
because the position of the fields of a subobject in the memory layout of the object
of the outer class is specific for each outer class. The getValue and setValue methods
of BoundedValue.value point to the corresponding implementations in BoundedValue,
while its isValid method uses the overriding implementation M x.

Overriding in an Enclosing Scope. In some cases, the overriding method cannot be
written directly in the subobject, for example, when a programmer wants to override a
method of a subobject using a method the outer class inherits from a superclass. Another
example is when methods of different subobjects need to be joined to share the same
implementation. In these situations, an overrides clause written in an outer scope can
be used to achieve the desired effect.

Subobject-Oriented Programming 53

BoundedValue
<T extends Comparable T>

isValid(T): boolean

getMin < getValue
setMin < setValue

min
Property<T>

isValid(T): boolean

getValue < getValue
setValue < setValue

min
Property<T>

isValid(T): boolean

getMax < getValue
setMax < setValue

max
Property<T>

Fig. 18. The class diagram of BoundedValue

F_1 value

M_1
M_2
M_3

isValid
getValue
setValue

Property

BoundedValue
value
getValue
setValue
... ...

F_xvalue

M_xisValid
getValue
setValue

BoundedValue.value

Export alias

Inherited

Subobject

Fig. 19. Part of the lookup tables of BoundedValue

54 M. van Dooren, D. Clarke, and B. Jacobs

class StereoRadio {
subobject frequency BoundedValue<Float> {
export getValue as getFrequency,

setValue as setFrequency;
}
subobject left BoundedValue<Int> {
export getValue as getLeftVol,

setValue as setLeftVol;
}
subobject right BoundedValue<Int> {
export getValue as getRightVol,

setValue as setRightVol;
}
setMaxVolume overrides left.setMax;
setMaxVolume overrides right.setMax;
void setMaxVolume(Int v) {
left.super.setMax(v);
right.super.setMax(v);

}
isValidMaxVolume overrides left.max.isValid;
isValidMaxVolume overrides right.max.isValid;
void isValidMaxVolume(Int v) =
left.max.super.isValid(v) && right.max.super.isValid(v)

}

StereoRadio r = new StereoRadio();
// Equivalent ways of setting the maximum volume
r.setMaxVolume(1);
r.left.setMax(1);
r.right.setMax(1);

// Both maximum volumes are always the same.
invariant(r.left.getMax() == r.right.getMax());

Fig. 20. Joining parts of two subobjects

Suppose that we need a stereo radio for which the minimum and maximum volume
of the left and the right channel are always the same. The code in Fig. 20 shows how this
is implemented by joining the BoundedValue subobjects for both maximum volumes to-
gether; the code for the minimum volume is similar. StereoRadio defines a new setter
for the maximum volume which invokes the overridden methods of both subobjects to
set the maximum volumes. The overrides clauses specify that setMaxVolume overrides
the setMax methods of both subobjects. Similar to export clauses, an overrides clause
defines an alias relation between method names that cannot be broken. Therefore, the
maximum volume of both channels is changed regardless of whether it is changed via
setMaxVolume or via one of the subobjects. Without the ability to override methods in

Subobject-Oriented Programming 55

setMaxVolume > left.setMax
setMaxVolume > right.setMax
setMaxVolume(Int)
isValidMaxVolume > left.max.isValid
isValidMaxVolume > right.max.isValid
isValidMaxVolume()

Radio

getLeftVol < getValue
setLeftVol < setValue

left
BoundedValue<Int>

getVolume < getValue
setVolume < setValue

frequency
BoundedValue<Float>

getRightVol < getValue
setRightVol < setValue

right
BoundedValue<Int>

Fig. 21. The class diagram of StereoRadio

the outer scope, these methods would have to be overridden in the subobjects, resulting
in code duplication. The diagram in Fig. 21 shows the class diagram of StereoRadio.
The > symbol represents an override clause that declares that the left-hand side over-
rides the right-hand side.

Merging Fields. The overrides clause can also be used to join fields of nested subob-
jects. For example the bounds of left and right volume of the stereo radio can also be
joined by overriding isValid as in Fig. 20 or by merging the fields of the bounds instead.
This alternative is illustrated in Fig. 22.

class StereoRadio {
maxVolume overrides left.max.value;
maxVolume overrides right.max.value;
Integer maxVolume;

}

Fig. 22. Merging fields of two subobjects

56 M. van Dooren, D. Clarke, and B. Jacobs

Subobject Refinement. As subobjects are class members, they can also be modified in
a subclass. Contrary to methods, subobjects are not overridden but are instead refined.
This is similar to refinement (or further binding) of nested classes in Beta [17] and
gbeta [10]. Our previous approach [26] allowed subobjects to be completely overridden,
but this was fragile and required code duplication.

class EventRadio extends Radio {
subobject frequency EventBoundedValue<Float>;

}

Fig. 23. Changing the declared superclass of a subobject

Suppose that we want to create a subclass of Radio that sends events when the bounds
or the value of the frequency are changed. Fig. 23 shows how this can be implemented
using subobject refinement. We assume that EventBoundedValue is a subclass of Bound-
edValue that sends events. Class EventRadio refines the frequency subobject of Radio
by changing its declared superclass to EventBoundedValue. The export clauses are in-
herited from Radio.frequency.

When subobject t refines subobject s, all members of s are inherited by t. A member
x defined in the body of t overrides or refines a member of s, depending on whether x is
a subobject or not. For export clauses, the existing name mapping cannot be changed;
only additional mappings can be added. The declared superclass of t is equal to the
declared superclass of s, unless t specifies its own declared superclass (T), in which
case T must be a subtype of S.

Suppose now that we want to send an event only when the actual volume changes.
In this case, we refine only the nested value subobject of the volume subobject.
This is shown in Fig. 24. The frequency subobject inherits its declared superclass
(BoundedValue<Float>) from the frequency subobject of Radio. Assume that Event-
Property is a subclass of Property that sends events. The diagram in Fig. 25 shows how
nested refinement is visualized in a class diagram. The subtype relations between the
types of the subobjects involved in the refinement are not shown because that would
clutter the diagram.

class EventRadio extends Radio {
subobject frequency {
subobject value EventProperty<Float>;

}
}

Fig. 24. Nested subobject refinement

Subobject-Oriented Programming 57

Radio

getVolume < getValue
setVolume < setValue

volume
BoundedValue<Int>

getVolume < getValue
setVolume < setValue

frequency
BoundedValue<Float>

EventRadio

frequency

value
EventProperty<Float>

Fig. 25. A class diagram of nested refinement

Super Calls. Subobject refinement gives rise to a form of multiple inheritance because
a subobject inherits members from the refined subobject and possibly a new declared
superclass. Conflicts are detected using the rule of dominance, as used in C++ and
Eiffel. If a subobject would inherit two different definitions for a member, then it must
provide a new definition to resolve the conflict.

Suppose for example that Radio.frequency overrides setValue from its declared
superclass BoundedValue to check whether the current frequency matches a pre-
programmed channel. Class EventBoundedValue also overrides setValue to send events,
which means that EventRadio.frequency has two candidate setValue methods. This con-
flict is resolved by defining a new setValue method as shown in Fig. 26.

Overriding methods typically use super calls to access overridden implementations.
Because of the multiple inheritance, super calls must be disambiguated. Super calls
therefore have the form prefix.super.suffix.m(args). The semantics of a super
call is as follows. The suffix and the method call are looked up in the scope determined
by the prefix. If the prefix ends with a path (Path or outer.Path), then the scope is that
subobject. If the prefix is empty or outer, the scope is the superclass of the enclosing
scope referenced by the prefix. For a subobject, the superclass is the declared superclass.
All binding in a super call is static.

In Fig. 26, expression super.setValue(val) invokes the setValue method of decl-
ared superclass EventBoundedValue, andouter.super.frequency.setValue(val)
invokes the setValue method of Radio.frequency. In the super call, outer jumps to the
enclosing class (EventRadio), super jumps up to Radio, and finally frequency jumps
inward to the frequency subobject. In this case, the value is set twice, but we chose this
implementation to illustrate how to access a refined subobject with a super call.

58 M. van Dooren, D. Clarke, and B. Jacobs

class Radio {
subobject frequency BoundedValue<Float> {
void setValue(Float val) {

super.setValue(val);
checkForPreProgrammedStation();}

}
}
class EventRadio extends Radio {

// refinement changes declared superclass
subobject frequency EventBoundedValue<Float> {
void setValue(Float val) {

super.setValue(val);
outer.super.frequency.setValue(val);

}
}

Fig. 26. Accessing overriding methods

Note that if setValue was overridden in Radio instead of in Radio.frequency, there
would still be a conflict. Even though the setValue method would then not lexically be
in the frequency subobject, it would still be the setValue method of frequency and thus
cause a conflict with EventBoundedValue.setValue.

Refining Subobjects in an Enclosing Scope. Similar to methods and fields, a subob-
ject can also be redefined in a scope that encloses the subobject. A redefining subobject
in an outer scope inherits all regular members from all redefined subobjects, but export
clauses are not inherited. All redefined subobjects are joined into a single subobject.

We illustrate subobject refinement in an outer scope for the stereo radio example
from Section 3.3. Remember that the bounds of both volume channels should always be
the same. The previous approach (Fig. 20) joined the setMax methods from the left and
right subobjects. This is unwieldy if many methods need to be joined. An alternative
approach is to join the nested Property subobjects that represent the bounds. Fig. 27
shows how the nested subobjects for the bounds of the volumes can be joined. The
refines clauses join the nested max subobjects of both channels.

The example in Fig. 27 illustrates the need to customize the rule of dominance for
subobjects. Remember from Fig. 17 that BoundedValue overrides the isValid methods
of its three Property subobjects to do the bounds check. As such, the isValid method
of the max subobject of BoundedValue is more specific than Property.isValid. Using
the traditional rule of dominance, no conflict would be reported because the isValid
methods from both left.max and right.max originate from the same definition in Bound-
edValue. The behavior of these methods, however, is not at all the same. Invoking
left.max.isValid(val) checks whether val is not smaller than the left volume, whereas
right.max.isValid(val) checks whether val is not smaller than the right volume. This
means that there are actually two most specific candidates instead of one. Therefore,
both methods are overridden by a unique most specific version.

Subobject-Oriented Programming 59

class Radio {
subobject left BoundedValue<Int> {
export getValue as getLeftVol,

setValue as setLeftVol;
}
subobject right BoundedValue<Int> {
export getValue as getRightVol,

setValue as setRightVol;
}

// join both upper bounds
maxVolume refines left.max;
maxVolume refines right.max;
subobject maxVolume Property<Int> {
// This method must be redefined because
// the original definition captures its
// context.
boolean isValid(Int val) =

(outer.left.max.super.isValid(val) &&
outer.right.max.super.isValid(val))

}
// similar for the minimum volume

}

Radio r = new Radio();
// equivalent ways of setting the max volume
r.maxVolume.setValue(1);
r.left.setMax(1);
r.right.setMax(1);

// both channels always have the same max value
invariant(r.left.getMax() == r.right.getMax());

Fig. 27. Refining nested subobjects in the composed class

More formally, when member m is redefined in a subobject or in an enclosing scope,
the redefinition of m can access all elements of the composed class T that contains the
subobject. Therefore, the new definition of m depends on T. Suppose that subobject s
refines multiple nested subobjects x.t of type T. Each member mi of nested subobject
xi.t depends on xi and thus has a behavior that is potentially different from all mj with
i �= j. As a result, no mi can be selected automatically as the version of m. Therefore
all member mi conflict with each other in the context of s.

3.4 Initialization of Subobjects

During the construction of an object, its subobjects must be initialized as well. Initializa-
tion of a subobject is similar to a traditional super constructor call. No additional object

60 M. van Dooren, D. Clarke, and B. Jacobs

is created, but the initialization code is executed on the new object of the inheriting
class. In case of a subobject initialization call, however, the initialization code is exe-
cuted on the part of the new object of the composed class that corresponds to the sub-
object. Syntactically, a subobject constructor call consists of the keyword subobject
followed by the name of the subobject and the arguments passed to the constructor.
Subobject constructors must be invoked directly after the super constructor calls. If the
class of a subobject has a default constructor, no explicit subobject constructor call is
required for that subobject. A subobject inherits all constructors from its declared su-
perclass, but it cannot define constructors itself.

Consider the example in Fig. 28. To initialize its subobjects, the constructor of Radio
performs two subobject constructor calls. Both calls invoke the same constructor of
BoundedValue, but each call operates on a different part of the Radio object. Similarly,
the constructor of BoundedValue invokes the constructor of Property for each of its
three subobjects.

class Radio {
Radio(Integer vol, Float freq) {
// initialize the volume subobject
subobject.volume(0,vol,11);
// initialize the frequency subobject
subobject.frequency(87.5,freq,108);

}

subobject volume BoundedValue<Integer> {...}
subobject frequency BoundedValue<Float> {...}

}

Fig. 28. Initializing the subobjects of a radio

Initialization of Refined Subobjects. If a subobject is refined, initialization is more
complicated. Whether the original subobject constructor calls remain valid depends on
whether the declared superclass of the subobject has changed.

class TeenagerRadio extends Radio {
TeenagerRadio(Float freq) {super(0,freq);}
subobject volume {Float getValue() = 11}

}

Fig. 29. The refined subobject does not change the declared superclass

We explore the different scenarios using a special class of radios for teenagers, whose
volume is always set to the maximum. The first way to implement TeenagerRadio is
to override the getter for the volume by refining the volume subobject and overriding
getValue, as shown in Fig. 29. In this case, TeenagerRadio.volume is an anonymous

Subobject-Oriented Programming 61

subclass of Radio.volume, and thus the former inherits its constructors from the latter.
This is similar to constructors of anonymous inner classes in Java. As a result, the
subobject constructor call in Radio remains valid for TeenagerRadio.volume.

The second way to create the teenager radio is to change the declared superclass
of the volume subobject, as shown in Fig. 30. Suppose that MaxBoundedValue is a
subclass of BoundedValue in which getValue always returns the upper bound. Because
the volume subobject now has a different declared superclass, the subobject constructor
call for volume in Radio is no longer valid. Therefore, the constructor of TeenagerRadio
must perform the subobject constructor call itself.

class TeenagerRadio extends Radio {
TeenagerRadio(Float freq) {
super(0,freq);
subobject.volume(0,11);

}
subobject volume MaxBoundedValue<Integer>;

}

Fig. 30. The declared superclass is changed

The subobject constructor call for volume in TeenagerRadio replaces the subobject
constructor call of volume in Radio. The latter is no longer executed when initializing
a TeenagerRadio. Instead, the call in TeenagerRadio is executed at the moment the
subobject constructor call of Radio.volume would have been executed. This ensures
that the subobject is still initialized when the code following the subobject constructor
call in Radio is executed.

Initialization of Nested Refined Subobjects. So far, we implemented TeenagerRadio
by refining the volume subobject, which is a direct subobject of Radio. But since Bound-
edValue itself uses a Property subobject for its value, we can also refine the nested value
subobject of volume.

The third way to implement TeenagerRadio is to override getValue in volume.value,
as shown in Fig. 31. Because the declared superclasses of the volume and volume.value
subobjects have not changed, no explicit subobject constructor calls are needed.

The fourth and final way to implement TeenagerRadio is to change the declared
superclass of volume.value. In the code in Fig. 32, class Eleven is a subclass of
Property<Integer> that always returns 11 as its value. The superclass of the value
subobject of the volume subobject is then redefined to Eleven. Therefore, a new subob-
ject constructor call is required to initialize the volume.value subobject. In this specific
case the subobject constructor call is optional because Eleven has a default constructor.

The subobject constructor call for a nested subobject must be written in a constructor
of the outermost class to avoid ambiguities. Otherwise, a constructor definition would
have to be written inside the enclosing subobject body. But this could lead to the typical

62 M. van Dooren, D. Clarke, and B. Jacobs

class TeenagerRadio extends Radio {
TeenagerRadio(Float freq) {super(0,freq);}
subobject volume {
subobject value {

Float getValue() = 11
}

}
}

Fig. 31. Nested refinement without changing the declared superclass

class TeenagerRadio extends Radio {
TeenagerRadio(Float freq) {
super(0,freq);
// Optional: Eleven has a default constructor.
subobject.volume.value();

}
subobject volume {subobject value Eleven;}

}

Fig. 32. Nested refinement changes the declared superclass

problems with initialization in a multiple inheritance hierarchy when that subobject is
refined. Therefore, subobjects cannot contain constructors. If the host language already
supports multiple inheritance, this could be allowed, but we do not want to force this
problem onto a host language with single inheritance.

If a subobject redefines multiple subobjects, an explicit subobject constructor call
is required. That call is executed the first time one of the redefined subobjects would
been initialized. Since there is always one most specific version of a subobject, there
is always one subobject constructor call used to initialize the subobject, namely, the
subobject constructor call that corresponds to the most specific version.

A remaining issue with subobject initialization is that the superclass constructor can
rely on properties of the subobjects after they have been initialized. Therefore, there is a
need to be able to specify these properties. If a subclass explicitly initializes a subobject,
it must then ensure that these properties hold after the initialization of that subobject. A
mechanism to define such contracts is a topic for future work.

4 Illustrations of Subobject-Oriented Programming

The radio example suffices to illustrate how subobject-oriented programming works,
but it is deceptively simple. In this section, we illustrate the possibilities of subobject-
oriented programming using classes in the JLo library. Section 4.1 presents the classes
for defining associations. Section 4.2 shows how to reuse advanced graph algorithms
by building graphs on top of associations.

Subobject-Oriented Programming 63

targets(): List<TO>
size(): Int
isValid(TO): boolean

AssociationEnd<TO>

set(TO)
get(): TO
size():Int
targets():List<TO>

_target: TO
Property<TO>

from():FROM
reg(Bidi<TO,FROM>)
unreg(Bidi<TO,FROM>)

Bidi<FROM,TO>

connect(TO)
connectedEnd(TO): Bidi<TO,FROM>
get(): TO
target(): List<TO>
size(): Int
reg(Bidi<TO,FROM>)
unreg(Bidi<TO,FROM>)

SingleBidi<FROM,TO>

object < get

- object
Property<FROM>

- other
Bidi<TO,FROM>

Fig. 33. A partial class diagram for the association classes

4.1 Subobjects for Associations

The library of JLo, the subobject-oriented extension of Java, contains classes for uni-
and bi-directional associations. A subobject is used for each navigable end of an as-
sociation. The code in Fig. 33 shows a class diagram of the association classes and
their most important methods. The corresponding code is shown in Fig 34. Most defini-
tions are omitted, and some names have been abbreviated to save space. The association
classes in the JLo library also use wildcards in the type arguments to increase the flex-
ibility. Wildcards are omitted as they are not needed to illustrate the use of association
subobjects. The top interface provides only the functionality to query an association.
Class Property represents an encapsulated field, which is a unidirectional association.
Similar classes are defined for sets and lists.

A bidirectional association end is connected to the object on its side of the associa-
tion, and offers methods for registering and unregistering other bidirectional association
ends. The reg and unreg methods keep the association in a consistent state, and make
it possible to mix unary and n-ary association ends. The reg method of a unary end

64 M. van Dooren, D. Clarke, and B. Jacobs

interface AssociationEnd<TO> {
List<TO> targets();
int size();
boolean isValid(TO t);

}

class Property<TO> implements AssociationEnd<TO> {
TO _target
int size() = 1;
void set(TO t) {if(isValid(t) {_target = t}}
TO get() = _target
List<TO> targets() = List(get())

}

interface Bidi<FROM,TO> extends AssociationEnd<TO> {
FROM object();
// internal bookkeeping methods
void reg(Bidi<TO,FROM> b);
void unreg(Bidi<TO,FROM> b);

}

abstract class SingleBidi<FROM,TO> implements Bidi<FROM,TO> {

private subobject object Property<FROM> {
export get as object;

}
private subobject other

Property<Bidi<TO,FROM>>;

TO get() = other.get().object()
List<TO> targets() = List(get())
int size() = 1;
void connect(TO t) = {
Bidi<TO,FROM> b = connectedEnd(t);
reg(b);
if (b != null) {b.reg(this.other);}

}
void reg(Bidi<TO,FROM> o) = {... other.set(o) ... }
void unreg(Bidi<TO,FROM> o) = {... other.set(null) ... }
abstract Bidi<TO,FROM> connectedEnd(TO t);

}

Fig. 34. Classes for association ends

Subobject-Oriented Programming 65

 ...

Radio

connectedEnd(Mic): Bidi<Mic,Radio>

connect < connect
mic < get

line-in
Bidi<Radio,Mic>

Mic

connectedEnd(Radio): Bidi<Radio,Mic>

connect < connect
radio < get

line-out
Bidi<Mic,Radio>

Fig. 35. Connecting a microphone to the radio

class Radio {
...
subobject line-in SingleBidi<Radio,Mic> {
export connect, get as mic;
Bidi<Mic,Radio> connectedEnd(Mic m) = m.line-out;

}
}

class Mic {
...
subobject line-out SingleBidi<Mic,Radio> {
export connect, get as radio;
Bidi<Radio,Mic> connectedEnd(Radio r) = r.line-in;

}
}

Radio r = new Radio();
Mic m1 = new Mic();
Mic m2 = new Mic();
r.connect(m1);
assert(r.mic() == m1 && m1.radio() == r);
r.connect(m2);
assert(r.mic() == m2 && m2.radio() == r);
assert(m1.radio() == null);

Fig. 36. Connecting a radio to a microphone

disconnects from its current connection (if any) using unreg and connects to the given
association end. The reg method of an n-ary association end simply adds the given
association end.

Abstract class SingleBidi represents unary bidirectional associations. The Property
subobjects to store the object at its own end and the connected association end are
private to hide their setters. The exported methods are still public. The connect and dis-
connect methods uses the reg and unreg methods to keep the association consistent. The
abstract method connectedEnd determines the subobject at the other end of the associ-
ation. It is implemented in the actual subobjects in the application. Similar classes are

66 M. van Dooren, D. Clarke, and B. Jacobs

defined for n-ary bidirectional associations with set and list semantics. The library also
provide classes for passive bidirectional associations, which do not provide a connect
method because they are connected to different subobjects of different classes.

The class diagram in Fig. 35 and the code in Fig. 36 show how we can connect a mi-
crophone to a radio. The bidirectional association is implemented by simply specifying
the association ends that must be connected. This is much simpler than writing the logic
for keeping the association in a consistent state. Many programmers forget to clean up
the back-pointers on at least one side of the association.

4.2 Subobjects for Graphs

The JLo library also contains classes to build weighted and unweighted graphs on top
of the associations. The classes in the library allow advanced graph layouts, but for
reasons of space we only present simple classes for homogeneous graphs.

abstract class DigraphNode<V> {
abstract List<V> successors();
abstract DigraphNode<V> node(V v);
boolean isPredecessorOf(V v) = {...}
List<V> allSuccessors() = {...}
...

}

Fig. 37. A class for graph nodes

The code in Fig. 37 shows the top class of the graph library. The abstract edges
method of DigraphNode must return the direct successor objects. The node method
determines to which graph node of the direct successor this graph is connected. Based
on this method, basic graph functionality can be implemented such as computing all
successors of the current node.

The class diagram in Fig. 38 and the code in Fig. 39 show how graphs can be defined.
A Klass has subobjects for its name, a list of superclasses, and a list of subobjects. A
Subobject has subobjects for its name and its Klass (the declared superclass). A transi-
tive association is used to define an association from a Klass to the declared superclasses
of its subobjects. These associations are then used to build a type graph and an inher-
itance graph. The isValid methods of both ListProperty subobjects are overridden to
forbid loops in the inheritance graph. Only simple configuration code was written, to
obtain full graph functionality.

An alternative implementation could used graph nodes that support AssociationEnd
subobjects as edges. In that case, typeGraph would be a graph node subobject that uses
the superKlasses as its source of edges. For the inheritance graph, a TransitiveAsso-
ciationEnd subobject would be used and configured to use the Klass.subobjects and
Subobject.klass subobjects. This transitive association subobject would then be used as
a source of edges for the inheritance graph, together with superKlasses.

Subobject-Oriented Programming 67

node(V): DigraphNode<V>
successors(): List<V>
isPredecessorOf(V): boolean
allSuccessors(): List<V>
...

DigraphNode<V>

Klass Subobject

name < get

name
Property<String>

klass < get

klass
Property<Klass>

name < get

name
Property<String>

isValid(Klass): boolean

addSuperKlass < add
superKlasses < targets

superKlasses
ListProperty<Klass>

isValid(Subobject): boolean
addSubobject < add

subobjects
ListProperty<Subojects>

successors(): List<Klass>
node(Klass): DigraphNode<Klass>

subtypeOf < isPredecessorOf

typeGraph
DigraphNode<Klass>

successors(): List<Klass>
node(Klass): DigraphNode<Klass>

inheritsFrom < isPredecessorOf

inheritanceGraph
DigraphNode<Klass>

Fig. 38. A class diagram of class with graph subobjects

68 M. van Dooren, D. Clarke, and B. Jacobs

class Klass {
subobject name Property<String> {...}
subobject superKlasses ListProperty<Klass> {
export add as addSuperKlass,

targets as superKlasses;
boolean isValid(Klass klass) = !klass.inheritsFrom(outer);

}
subobject subobjects ListProperty<Subobject> {
export add as addSubobject;
boolean isValid(Subobject s) =
!s.getKlass().inheritsFrom(outer);

}

// define graphs on top of the associations
subobject typeGraph DigraphNode<Klass> {
export isPredecessorOf as subtypeOf
List<Klass> successors() = {
// collect Klasses referenced by the subobjects
... subobject.getKlass() ...

}
DigraphNode<Klass> node(Klass klass) = klass.typeGraph;

}

subobject inheritanceGraph DigraphNode<Klass> {
export predecessorOf as inheritsFrom
List<Klass> successors() = {
// collect Klasses referenced by the subobjects
... subobject.getKlass() ...
// add the superklasses
... outer.superKlasses() ...

}
DigraphNode<Klass> node(Klass klass) = klass.inheritanceGraph;

}
}
class Subobject {
subobject name Property<String> {...}
subobject klass Property<Klass> {...}

}

Fig. 39. Adding graph functionality with subobjects

Subobject-Oriented Programming 69

Weighted Graphs. The JLo library also defines classes for weighted graphs, as shown
in Fig. 40. Weighted graph node use explicit edges because each edge has its own
weight. Class WeightedNode restricts the edges to weighted association ends such that
it can offer additional functionality for weighted graphs. The WeightedEnd class rep-
resents a weighted association to objects of type V via intermediate objects of type E.
The first and second methods return the V objects connected by the intermediate object
such that otherEnd can compute the target objects of the association.

abstract class WeightedNode<V> implements DigraphNodeWithEdge<V> {
abstract List<WeightedEnd<V,?>> edges();
abstract WeightedNode<V> node(V v);
Double shortestDistanceTo(V v) = {...}
...

}
abstract class WeightedEnd<V,I> implements AssociationEnd<V> {
abstract List<I> intermediates();
abstract Double weight(I i);
abstract V first(I i);
abstract V second(I i);
V otherEnd(V v) =

if(first(object()) == v) second(object())
else first(object())

...
}

Fig. 40. Library classes for weighted graphs

The use of the graph subobjects is illustrated in Fig. 41. A road has a length and
is connected to two cities via bidirectional associations. The association ends in Road
are implemented with subobjects first and second. Both are connected to City.roads by
implementing connectedEnd.

Subobject City.cityToCity represents the weighted edge between two cities. Subob-
ject City.roadNetwork implements the abstract methods of WeightedNode to select the
edges and to select the graph node of the connected cities. It also exports the method to
compute the shortest path to another city.

In a standard object-oriented style, where the graph structure is implemented with
lots of low-level fields and methods, the graph algorithms would typically be reimple-
mented. Even if a graph library would be used, additional code would have to be written
to make the graph structure visible for the graph library. In a subobject-oriented style,
these structures are naturally available as defining them requires less effort than writing
the corresponding low-level code.

70 M. van Dooren, D. Clarke, and B. Jacobs

class Road {
Road(City first,City second,Double length) {
subobject.first(this,first);
subobject.second(this,second);
subobject.length(length);

}
subobject length Property<Double> {
export get as getLength;

}
subobject first SingleBidi<Road,City> {
export connect as setFirst, target as getFirst;
Bidi<City,Road> connectedEnd(City c) = c.roads

}
subobject second SingleBidi<Road,City> {
export connect as setSecond, target as getSecond;
Bidi<City,Road> connectedEnd(City c) = c.roads

}
}

class City {
City() {
subobject.roads(this);
subobject.roadNetwork(this);

}
subobject roads PassiveSetBidi<City,Road> {
export targets as getRoads;

}
subobject cityToCity WeightedEnd<City,Road> {
List<Road> intermediates() = outer.getRoads()
Double weight(Road road) = road.getLength()
City first(Road road) = road.getSecond()
City second(Road road) = road.getFirst()

}
subobject roadNetwork SimpleWeightedNode<City> {
export shortestDistanceTo as distanceTo;
List<WeightedEnd<City,?>> edges() = List(outer.cityToCity)
WeightedNode<City> node(City city) = city.roadNetwork

}
}

Fig. 41. A subobject-oriented routing application

Subobject-Oriented Programming 71

5 Implementations

We have implemented subobject-oriented programming in two ways. The first imple-
mentation is a language extension of Java, called JLo, which is translated to Java code.
The second implementation is a library for Python 3 that adds support for subobject-
oriented programming by modifying objects and classes at run-time.

JLo [25] is a subobject-oriented extension of Java supported by an Eclipse plugin.
The current implementation still uses Java syntax instead of the more concise Scala
syntax used in the paper.The JLo compiler generates delegation code and wraps sub-
object constructor calls in Strategy objects. Special constructors are generated to allow
subclasses to refine subobjects. The result is similar to the code in Fig. 5. To preserve
multiple inheritance of subobjects, a JLo class is split into a Java interface and Java
class. To enable super calls, methods are duplicated and given a unique name. Super
calls are first resolved and then rewritten to regular invocations of the generated method
that corresponds to the super method.

We also implemented a library [25] for subobject-oriented programming in Python
3. Support for redefining members in an enclosing scope is ongoing work. The library
is implemented by two functions: with subobjects and subobject, which are used to
decorate classes. In Python, the decorated class definition @expr class C: body expands
to f=expr; class C: body ; C=f(C).

The @subobject(args) decorator replaces the nested class with an instance of in-
ternal class Subobject that records args and the class body. The @with subobjects
decorator collects the Subobject class members, and generates the delegation code. In
addition, it adds a mk s method for initializing the subobject. Finally, it initializes the
self.outer field of the subobject to point to the outer object.

Fig. 42 shows how a subobject-oriented radio is implemented in Python. To define
a subobject s in a class C, a nested class s is defined inside C. Class s is then deco-
rated with subobject, and C is decorated with with subobjects. To export members, a
name mapping is passed as a set-valued argument with name exports. Finally, an object
initializes its subobjects by calling the corresponding mk X methods.

@with_subobjects
class Radio:

@subobject(exports={‘getValue’:‘getVolume’,
‘setValue’:‘setVolume’})

class volume(BoundedValue): pass

@subobject(exports={‘getValue’:‘getFrequency’,
‘setValue’:‘setFrequency’})

class frequency(BoundedValue): pass

def __init__(self,vol,freq):
self.mk_volume(0,vol,11)
self.mk_frequency(87.5,freq,108)

Fig. 42. A subobject-oriented radio in Python

72 M. van Dooren, D. Clarke, and B. Jacobs

6 Semantics of Subobjects

This section presents the core semantics of subobject-oriented programming by de-
scribing how dispatch works for a class-and-subobjects conglomerate in the presence
of method and subobject aliasing, method overriding and further binding of subobjects.
The semantics addresses two core issues: which method body a path resolves to in a
given context; and which context the method body runs in. Given this information, a
complete formal semantics for a language based on subobject-oriented programming
can be designed in a now-standard fashion.

This semantics is useful, for instance, to help compiler writers correctly implement
subobject-oriented programming dispatch mechanism. The semantics also forms the
basis of the notion of ambiguity, which any implementation would need to check. If a
path resolves to two different method bodies, then a class is ambiguous and an explicit
declaration is required to resolve the conflict. Finally, the semantics could form the
basis of a type-theoretic foundation of subobject-oriented programming, but this is left
for future work.

The following conventions will be used in the semantics: m denotes a method name;
t is a class/subobject name. Paths, P , are defined by the following grammar:

P ::= t | this | super | outer | P.P

M ::= P.m

A ::= ε | A.t

P is a path ending in a class or subobject name. M is a path ending in a method name.
Paths may also include this, super and outer, where this refers to the current dynamic
class/subobject, super refers to the superclass, and outer refers to the surrounding class/-
subobject. A path is pure if it contains no occurrence of super, this, or outer. A,B,C
denote absolute paths, consisting only of class/subobject names. Absolute paths refer to
locations in code and are therefore used to uniquely identify classes and subobjects.

The semantics is based on several judgements (Fig. 43) that capture the essence of
method, subobject and aliasing declarations. These play the role of axioms in the for-
mal system and specific instances can easily be derived from the code. Relations of the
form �∈d A capture that some declaration � is made in class A. In contrast, relations
�∈∗ A will be introduced later to capture all the declared and inherited (but not over-
ridden) facts about class/subobject A. Aliasing clauses encode the implicit relationship
introduced via an export clause or through named parameters. For example, a clause
export a as b appearing in subobject P within the context of class/subobject A is mod-
elled by axiom b aliases P.a∈d A.

Both m aliases M ∈d A and t aliases P ∈d A have restrictions. Paths M can be of
the form t.m, for exporting a method of a subobject into the current interface. This will
ensure that the method referred to is one in a direct subobject. The path P is of the form
t′.t′′ to ensure that the aliased subobject is a directly nested subobject of the class/subob-
ject where the declaration occurs. Cases t∈d ε and t subclasses t′ ∈d ε indicate that the
declaration is made at the top level, thus, in this case, t and t′ are classes and t subclasses
t′. For an overriding clause, m overrides M ∈d A, M can only be a pure path, and m
must be a declared or inherited method or an alias to a method, otherwise it is an error.

Subobject-Oriented Programming 73

m �→ b∈d A method m with body b
m aliases M ∈d A aliasing of m and M

t∈d A class/subobject t
t aliases P ∈d A aliasing of t and P

t subclasses t′ ∈d A subclassing or subobject typing
m overrides M ∈d A overriding of method M

Fig. 43. Judgements: Axiom schemes encoding explicit declarations (−∈d A) in class/subob-
ject A

The following predicates, which can be trivially computed based on the axioms
above, will be useful.

m not declared in A =̂ ¬(∃b ·m �→ b∈dA)

t not declared in A =̂ ¬(t∈d A)

m not aliased in A =̂ ¬(∃M ·m aliasesM ∈d A)

t not aliased in A =̂ ¬(∃P · t aliases P ∈d A)

m no new binding A =̂ m not declared in A ∧ m not aliased in A

The remainder of the semantics will be presented in three interdependent fragments,
expressing the inheritance relationships between classes and subobjects (Section 6.1),
expressing what is inherited (Section 6.2), and expressing dispatch by resolving path
expressions (Section 6.3).

6.1 Inheritance

Next we define a set of rules capturing the inheritance relationship between various
classes and subobjects. There are two paths to inheritance: directly via subclassing and
indirectly when (potentially) further binding an inherited subobject. The subclassing
and inheritance relationships is kept separate, as subclassing is needed for resolving
super. The inheritance relation is intransitive and is defined by the two judgements:

A subclasses B A subclasses B
A inherits B A inherits from B

These judgements are defined globally using absolute paths, rather than being defined
within the context of a specific class (Fig. 44). The first rule for inherits converts sub-
classing to inheritance. The second rule captures inheritance of subobjects.

6.2 Class/Subobject Contents

The judgements in Fig. 45 describe the contents of a class or subobject, including
what is inherited and derived. Method bodies and subobjects also record the location
of the corresponding declaration as an absolute path. The judgements for ↓overrides
and overrides↓ are used for resolving the left-hand side and the right-hand side of an

74 M. van Dooren, D. Clarke, and B. Jacobs

t subclasses t′ ∈d A

A.t subclasses t′
P subclasses P ′

P inherits P ′
P inherits P ′ (t,)∈∗ P ′

P.t inherits P ′.t

Fig. 44. Rules: Subclassing and inheritance

overriding clause. The first is used to determine the location of the overriding method
and the second is used to find the end of the alias chain that will dispatch to it. The
judgement for dispatches to gives the methods actually available after overriding and
inheritance, plus an adjustment to move the ‘this’ pointer to the correct location within
class-and-subobjects conglomerate. FIXEXPLAIN—REVIEWER COMMENT. WHAT
IS ROLE of P in dispatcehs to.

(t, B)∈∗ A subobject t from source B
m �→ (b,B)∈∗ A method m with body b from B
m aliases M ∈∗ A aliasing of m and M
t aliases P ∈∗ A aliasing of t and P

M ↓overrides M ′ ∈∗ A resolution of M in overriding
(M, b,B) overrides↓M ′ ∈∗ A relocating method to M ′

m dispatches to (b,B, P)∈∗ A dispatch candidate for m.
P is used to adjust the dynamic pointer

Fig. 45. Judgements: Declared and inherited class/subobject contents for class A. FIX: These
descriptions are terrible.

The judgements in Fig. 46 describe the rules for declared and inherited classes/sub-
objects and subobject aliasing. In the last rule, t not declared in B prevents subobject
t being declared in B. Permitting it would allow non-local further binding, resulting in
ambiguity as subobjects could be further bound in more than one code location.

t∈d A

(t, A.t)∈∗ A
(t, P)∈∗ A B inherits A t not declared in B

(t, P)∈∗ B

t aliases P ∈d A

t aliases P ∈∗ A
t aliases P ∈∗ A B inherits A t not declared in B

t aliases P ∈∗ B

Fig. 46. Rules: Classes/subobjects and subobject aliasing

The rules in Fig. 47 describe method aliasing. An aliasing declaration is inherited
even when a new method is declared, in which case the new method also overrides
the aliased method. Recall that when two method paths are aliased, they can never be
broken apart.

Subobject-Oriented Programming 75

m aliases M ∈d A

m aliases M ∈∗ A
m aliases M ∈∗ A B inherits A

m aliases M ∈∗ B

Fig. 47. Rules: Method aliasing

Based on the previous rules, define the following:

not aliased t∈∗ A =̂ ¬(∃P · t aliases P ∈∗ A)
not aliasedm∈∗ A =̂ ¬(∃M ·m aliasesM ∈∗ A)

The most complicated set of rules deal with the interaction between overriding decla-
rations and aliasing. The first collection of rules (Fig. 48) initiates the resolution process
based on the declared and inherited overriding declarations. The second collection of
rules (Fig. 49) deal with finding an appropriate method body by resolving the LHS of
an overrides clause. The third collection of rules (Fig. 50) ‘move’ this method to the
place being overridden, resolving any aliasing along the way. This sets things up so that
when performing path resolution to dispatch a method call, one simply follows an alias
chain until the end.

m overrides M ∈d A

m↓overrides M ∈∗ A

m overrides M ∈∗ A B inherits A
m no new binding B

m↓overrides M ∈∗ B

Fig. 48. Rules: Initiate overriding resolution

The first rule in Fig. 49 resolves aliasing of m on the left hand side, if no method is
found at M . The second rule deals with a method path starting with a subobject name
that is not aliased: the search moves into the subobject. The third rule deals with the
case that the subobject name is aliased. The fourth and fifth rules switch to resolving
the right-hand side when a candidate method body is found.

The first rule in Fig. 50 removes any outer added in the previous phase and the
second rule removes any t from the right-hand side, both adjusting the P component;
the adjustments will be used to move the dynamic pointer from the end of the alias
chain back to where the method is declared. The third rule expands a subobject alias.
The fourth rule expands a method alias.

The rules in Fig. 51 deal with the ultimate dispatch candidates for simple paths con-
sisting of a single name m in the context of some class/subobject. The three cases are
when a method is declared in the class/subobject, when a method is inherited but not
overridden in any way, and when some external (to the class/subobject) overriding dec-
laration is present.

The diagram in Fig. 52 illustrates the results of applying the rules for ↓overrides
and overrides↓. Assume that the facts derived from code are m aliases t1.t2.t3.n∈∗ A,
and m overrides s1.s2.s3.p∈dA, where the first fact would be derived from
m aliases t1.n∈dA, and n aliases t2.n∈d A.t1, n aliases t3.n∈d A.t1.t2.

76 M. van Dooren, D. Clarke, and B. Jacobs

m↓overrides M ∈∗ A m aliases M ′ ∈∗ A
m not declared in A

M ′↓overrides M ∈∗ A
t.M ′↓overrides M ∈∗ A not aliased t∈∗ A

M ′↓overrides outer.M ∈∗ A.t

t.M ′↓overrides M ∈∗ A t aliases P ∈∗ A
P.M ′↓overrides M ∈∗ A

m↓overrides M ∈∗ A m �→ (b,B)∈∗ A
(b,B, ε) overrides↓M ∈∗ A

m aliases M ∈d A m �→ (b,B)∈∗ A
(b,B, ε) overrides↓M ∈∗ A

Fig. 49. Rules: Non-local overriding—finding method body

(b,B, P) overrides↓outer.M ′ ∈∗ A.t

(b,B, t.P) overrides↓M ′ ∈∗ A

(b,B,P) overrides↓t.M ∈∗ A not aliased t∈∗ A
(b,B, outer.P) overrides↓M ∈∗ A.t

(b,B, P) overrides↓t.M ∈∗ A t aliases P ′ ∈∗ A
(b,B, P) overrides↓P ′.M ∈∗ A

(b,B, P) overrides↓m∈∗ A m aliases M ∈∗ A
(b,B, P) overrides↓M ∈∗ A

Fig. 50. Rules: Non-local overriding—moving to end of alias chain

m �→ b∈d A

m dispatches to (b, A, ε)∈∗ A

m �→ (b, A)∈∗ A B inherits A
m no new binding B

m dispatches to (b, A, ε)∈∗ B

(b,B, P) overrides↓m∈∗ A not aliased m∈∗ A
m dispatches to (b,B, P)∈∗ A

Fig. 51. Rules: Dispatch candidates

The first intermediate result is

n↓overrides outer.outer.outer.s1.s2.s3.p∈∗ A.t1.t2.t3,

giving the result after resolving the aliasing, thus n will be the name of some actual
method with body bn declared in some class/subobject B. From this it immediately
follows that:

Subobject-Oriented Programming 77

(bn, B, ε) overrides↓outer.outer.outer.s1.s2.s3.p ∈ A.t1.t2.t3.

The second intermediate result is

(bn, B, outer.outer.outer.t1.t2.t3) overrides↓p∈∗ A.s1.s2.s3

which gives relates the overriding method body (bn, B) with the place where the over-
riding occurs, namely, A.s1.s2.s3.p. The resulting dispatch candidate will be

p dispatches to (bn, B, outer.outer.outer.t1.t2.t3)∈∗ A.s1.s2.s3.

The additional component, outer.outer.outer.t1.t2.t3, is applied to a dynamic pointer
during dispatch to move it to the correct location (following the dotted arrow in Fig. 52).

6.3 Path Resolution

The semantics of path resolution is based on three judgements (Fig. 53). The judge-
ments describe how to lookup a method body in a given context, how to evaluate a
method body in a given context, and how to resolve a path to a subobject.

Resolving a path involves navigating around a class and its respective subobjects
and their superclasses. Doing so requires keeping track of two ‘pointers’, one for the
dynamic class/subobject of ‘this’, the other for the static code location where the current
class/subobject is found. This will be represented by 〈D,S〉, where D is the dynamic
part and S is the static part of the location.

The rules in Fig. 54 deal with method dispatch. We assume that local method call
paths begin with this, as it plays the role in the semantics to ensure that the most spe-
cific static class/subobject is considered. All other components of the dispatch is done
based on the static pointer. The first rule finds the candidate method associated with the
equivalence class of paths to the method. A path of the form D.outern.P ′, introduced
when P is appended to D in the first rule, can be reduced to an absolute path by iterat-
ing the following equivalence D.t.outer.P = D.P until all occurrences of outer have
been eliminated. The rules for evaluating a method body have been omitted, but can be
added in a straightforward fashion; the key point of interest is that the context in which
that body is run is, namely, some pair 〈D,S〉.

The rules for path resolution are given in Fig. 55. Each part of a path results in
an incremental change to both the dynamic and static parts of the context. The rules
are ambiguous in the case that a subobject and an alias with the same name coexist
together. The compiler must rule out such cases. The rule for this selects most specific
textual class for a given dynamic class to start the search. The two rules for subobject
name t look up the name in the given static path or replace it with the path it aliases,
respectively. The rule for super finds the superclass of the current static code location,
and the rule for outer finds the surrounding class/subobject of the current static code
location. The final rule describes how to resolve longer paths.

78 M. van Dooren, D. Clarke, and B. Jacobs

m

n

p

t1

overrides

alia
se

s

t2

t3

s1
s2

s3

outer.outer.outer. t1.t2.t3

Fig. 52. Example: Overriding resolution, assuming m overrides s1.s2.s3.p and
m overrides s1.s2.s3.p are declared in A

〈D,S〉 M =⇒ v method M evaluates to v
〈D, S〉 b =⇒ v body b evaluates to v (omitted)

〈D,S〉 P−→ 〈D′, S′〉 P moves from 〈D,S〉 to 〈D′, S′〉

Fig. 53. Judgements: Resolution and evaluation — D,S are absolute paths

m dispatches to (b,B, P)∈∗ S 〈D.P,B〉 b =⇒ v

〈D, S〉m =⇒ v

〈D, S〉 P−→ 〈D′, S′〉 〈D′, S′〉 m =⇒ v

〈D,S〉 P.m =⇒ v

Fig. 54. Rules: Method path resolution

These rules capture the essence of the composition mechanism of subobject-oriented
programming. Providing a complete semantics for the full language including type
safety theorems and their proof is a topic for future work.

Subobject-Oriented Programming 79

D = A.t (t, P)∈∗ A

〈D,S〉 this−−→ 〈D,P 〉
(t, P)∈∗ S

〈D,S〉 t−→ 〈D.t, P 〉
t aliases P ∈∗ S 〈D, S〉 P−→ 〈D′, S′〉

〈D,S〉 t−→ 〈D′, S′〉
S subclasses S′

〈D,S〉 super−−−→ 〈D, S′〉

〈D.t, S.t′〉 outer−−−→ 〈D, S〉
〈D, S〉 P−→ 〈D′′, S′′〉 〈D′′, S′′〉 P ′−→ 〈D′, S′〉

〈D, S〉 P.P ′−−−→ 〈D′, S′〉

Fig. 55. Rules: Path Resolution

7 Related Work

For a discussion on aspect-oriented programming, mixins, traits, and non-conformant
inheritance, we refer to Section 2.

Subobject-oriented programming is based on the component relation that we pre-
viously introduced for composition of classes [26]. Subobjects refine the component
relation in a number of ways. With the component relation, member redefinitions were
written in the composed class, and then wired into the subobject with overrides clauses.
This lead to scattering of subobject members throughout the composed class. With
subobjects, such redefinitions can be written directly in the subobject. This eliminates
the overrides clauses, and significantly improves readability. The dedicated parameter
mechanism for connecting components was removed and replaced by using methods
to connect subobjects to each other. Switching to Scala syntax for method definitions
removed most of the overhead. Most importantly, our previous work lacked support for
object initialization and super calls, both of which are essential in real programming
languages. In addition, our previous work was not implemented and demonstrated only
very basic subobjects.

Reppy and Turon present trait-based metaprogramming [19], which is very similar
to non-conformant inheritance in Eiffel. Traits are checked at compile-time and then
inlined. The name of each method is a parameter that is used to rename it in the reusing
class. Because the renaming is deep, this allows proper resolution of name conflicts, but
it also requires a lot of work. If two traits of the same kind are used, all of their methods
must either be renamed or excluded. Contrary to Eiffel, sharing is not the default policy.
Instead, a type error is reported when multiple methods with the same signature are
inlined. A trait can contain fields, which must be initialized by the constructor of a
class that uses the trait. The special type ThisType is used to impose constraints on
the class that reuses a trait. This is similar to requirements in regular traits, and to
abstract methods in subobjects. A method of a trait can override a method of the outer
class. The original method is available as outer.m(. . .). Once a trait method overrides a
method of the outer class, it is considered to be locally defined. As a result, it can again
be overridden by another trait method. The resulting concatenation of traits is similar
to mixin-based inheritance. Contrary to subobjects, traits cannot be used as separate
objects, prevent certain kinds of reuse.

80 M. van Dooren, D. Clarke, and B. Jacobs

Object layout in C++ [22] is often described in terms of subobjects, where each in-
herited class forms a subobject. The key difference with our subobjects is that in our
approach subobjects are placed in separate namespaces, which avoids many of the prob-
lems of C++. More concisely, C++ implements subobject-based inheritance, whereas
subobject-oriented programming is about composition of subobjects. Refinement of
subobjects is not possible in C++. Our approach uses the rule-of-dominance of C++
to resolve conflicts if a single best candidate is available.

Languages that implement further binding include Beta [17], gbeta [10], and Tribe [5].
In these languages, further binding applies to nested classes, which can be used to
create objects of the same family. In our approach, further-binding applies to nested
subobjects, which define a static part of the composed class. Virtual classes [9,11] do
resemble subobjects, but their purpose is completely different. Virtual classes support
family polymorphism, whereas subobjects support composition of classes. As such, nei-
ther technique can be used as a substitute for the other. Any number of objects can be
constructed from virtual classes and path-dependent types are required to ensure that
certain object belong to the same family. With subobjects on the other hand, there is
only one “instance” of each subobject per outer object. Subobject names serve only to
avoid conflicts and access the parts. Therefore, path-dependent types and the associated
complexities are not needed.

Subject-oriented programming [13] differs from subobject-oriented programming in
the purpose of the composition. Composition in subject-oriented programming is about
the separation of concerns, and thus more related to aspects-oriented programming and
family polymorphism, whereas subobject-oriented programming is about composing
classes, and is thus more of a refinement of classical object-oriented programming.
Both approaches are complementary, since the different view-points could implement
parts of their customization with subobjects.

Madsen and Møller-Pedersen [16] introduced part objects in the context of Beta for
better structuring code. A part object is a locally defined object. Part objects know
their location, which in our setting is given by the outer reference. Their motivation
is similar to ours, but their language lacks the constructs for composing and refining
the part objects (subobjects) as ours does—more precisely, these need to be coded up
in regular Beta code. Beta does however also offer refinement/further binding of nested
classes, which is something few other languages support.

A split object [2] consists of a collection of pieces which represent particular view-
points or roles of the split object, have no identity, and are organized in a delegation
hierarchy. Invoking methods is done by selecting a viewpoint to send the message
to. The main difference with subobjects is that subobjects are used to build classes,
whereas pieces are used to model different viewpoints on a class. The substructures in
both approaches have an opposite order with respect to overriding. A piece overrides
methods from its enclosing pieces and class, whereas enclosing subobjects and the com-
posed class override methods of more deeply nested subobjects. In addition, members
in pieces cannot be merged, whereas members from different subobjects can be merged.
Finally, pieces are added dynamically, whereas subobjects are declared statically.

Subobject-Oriented Programming 81

Blake and Cook [3] propose to add part hierarchies to object-oriented languages.
These resemble nesting of subobjects, but the proposed implementation does not in-
clude the advanced features for refining subobjects.

8 Conclusion

Existing object-oriented and aspect-oriented techniques do not offer the features to build
a class using other classes as building blocks. Instead of being encapsulated in a class
and reused, cross-cutting structural code for general purpose concepts such as associa-
tions and graphs must be implemented over and over again.

Subobject-oriented programming improves on object-oriented programming by al-
lowing programmers to easily build a class from other classes. This work improved on
our previous work in a number of ways. We defined subobject initialization and super
calls. We improved the adaptability of subobjects by using refinement instead of over-
riding. We improved the readability of subobjects using a more object-oriented syntax
and removed the functional style parameter mechanism. In addition, we have imple-
mented subobject-oriented programming as a language extension to Java [12], and as
a library in Python 3 [20]. Finally, we have also developed a library of classes that
demonstrates the advanced possibilities of subobject-oriented programming.

References

1. Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An overview of caesarJ. In: Rashid, A.,
Akşit, M. (eds.) Transactions on AOSD I. LNCS, vol. 3880, pp. 135–173. Springer, Heidel-
berg (2006)

2. Bardou, D., Dony, C.: Split objects: A disciplined use of delegation within objects.
In: Proceedings of OOPSLA 1996, pp. 122–137. ACM Press (1996)

3. Blake, E., Cook, S.: On including part hierarchies in object-oriented languages with an im-
plementation in smalltalk. In: Bézivin, J., Hullot, J.-M., Lieberman, H., Cointe, P. (eds.)
ECOOP 1987. LNCS, vol. 276, pp. 41–50. Springer, Heidelberg (1987)

4. Bracha, G., Cook, W.: Mixin-based inheritance. In: Proceedings of OOPSLA/ECOOP 1990,
pp. 303–311 (1990)

5. Clarke, D., Drossopoulou, S., Noble, J., Wrigstad, T.: Tribe: A simple virtual class calculus.
In: Proceedings of AOSD 2007, pp. 121–134 (2007)

6. Colnet, D., Marpons, G., Merizen, F.: Reconciling subtyping and code reuse in object-
oriented languages: Using inherit and insert in SmartEiffel, the GNU Eiffel compiler. In:
Morisio, M. (ed.) ICSR 2006. LNCS, vol. 4039, pp. 203–216. Springer, Heidelberg (2006)

7. Van Cutsem, T., Bergel, A., Ducasse, S., De Meuter, W.: Adding state and visibility control
to traits using lexical nesting. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
220–243. Springer, Heidelberg (2009)

8. Ducasse, S., Wuyts, R., Bergel, A., Nierstrasz, O.: User-Changeable visibility: Resolving
unanticipated name clashes in traits. In: OOPSLA, pp. 171–190 (2007)

9. Ernst, E.: Family polymorphism. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 303–326. Springer, Heidelberg (2001)

10. Ernst, E.: Higher-order hierarchies. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743,
pp. 303–329. Springer, Heidelberg (2003)

11. Ernst, E., Ostermann, K., Cook, W.R.: A virtual class calculus. In: POPL, pp. 270–282 (2006)

82 M. van Dooren, D. Clarke, and B. Jacobs

12. Gosling, J., et al.: The Java Language Specification, 2nd edn. Addison-Wesley Longman
Publishing Co. Inc. (2000)

13. Harrison, W.H., Ossher, H.: Subject-oriented programming (a critique of pure objects). In:
Proceedings of OOPSLA 1993, pp. 411–428 (1993)

14. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–354.
Springer, Heidelberg (2001)

15. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-Oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997 — Object-
Oriented Programming. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

16. Madsen, O.L., Møller-Pedersen, B.: Part objects and their location. In: Proceedings of
TOOLS 1992, pp. 283–297 (1992)

17. Madsen, O.L., Møller-Pedersen, B., Nygaard, K.: Object-Oriented Programming in the Beta
Programming Language. Addison-Wesley (1993)

18. Odersky, M., Zenger, M.: Scalable component abstractions. In: Proceedings of OOPSLA
2005, pp. 41–57 (2005)

19. Reppy, J., Turon, A.: Metaprogramming with traits. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 373–398. Springer, Heidelberg (2007)

20. Rossum, G.V., Drake, F.: Python 3 Reference Manual. CreateSpace (2009)
21. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of behavior. In:

Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274. Springer, Heidelberg (2003)
22. Stroustrup, B.: The C++ programming language, 2nd edn. Addison-Wesley Longman Pub-

lishing Co. Inc., Boston (1991)
23. Technical Group 4 of Technical Committee 39. ECMA-367 Standard: Eiffel Analysis, Design

and Programming Language. ECMA International (2005)
24. van Dooren, M., Clarke, D.: Subobject transactional memory. In: Sirjani, M. (ed.) COORDI-

NATION 2012. LNCS, vol. 7274, pp. 44–58. Springer, Heidelberg (2012)
25. van Dooren, M., Jacobs, B.: Implementations of subobject-oriented programming (2011),

http://people.cs.kuleuven.be/marko.vandooren/subobjects.html
26. van Dooren, M., Steegmans, E.: A higher abstraction level using first-class inheritance rela-

tions. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 425–449. Springer, Heidelberg
(2007)

http://people.cs.kuleuven.be/marko.vandooren/subobjects.html

Verification of Open Concurrent Object Systems�

Ilham W. Kurnia and Arnd Poetzsch-Heffter

University of Kaiserslautern, Germany
{ilham,poetzsch}@cs.uni-kl.de

Abstract. A concurrent object system is a dynamically growing collection of
concurrently interacting objects. Such a system is called open if the environment
of the system is unknown. Proving properties about open systems is challenging
because the properties must be shown to hold for all possible environments of
the system. Hierarchical reasoning, which infers properties of large components
from the properties of smaller subcomponents, is a key enabler to manage the
reasoning effort.

This chapter presents an approach to hierarchically specify and verify open
concurrent object systems. We introduce a core calculus for concurrent object
systems. The behavior of such a system is given by a standard operational se-
mantics. To abstract from the internal representation of the objects, we develop
an alternative trace-based semantics that captures the behavior in terms of the
communication traces between the objects of the system and the environment.
The main advantage of the trace-based model is its extendability to components
and open systems while remaining faithful to the operational model. The spec-
ification approach is also directly based on the traces and supports hierarchical
reasoning using the following two central features. Looseness allows specifica-
tion refinement. Restriction allows expressing assumptions on the environment.
Finally, we provide a Hoare-style proof system that handles the given specifica-
tions.

1 Introduction

Modern software systems are becoming more and more concurrent and distributed. The
main reasons are that they have to exploit the resources of many-core computer archi-
tectures and realize distributed applications. Unfortunately, concurrency increases the
complexity of software and is often a source of errors. Whereas testing is a successful
technique to improve the quality of sequential software, testing is much less appropriate
for concurrent software because of its high degree of nondeterminism. Here, verification
techniques come to help (see, e.g., [8, Chap. 1], [49, Chap. 1]).

Object-oriented framework is a recommended choice for building concurrent and
distributed systems [31]. There are many approaches how concurrency can be intro-
duced into the object-oriented framework (see, e.g., a survey by [47]). In this chapter, we
describe a technique to verify functional properties of concurrent object systems [63]. A
concurrent object (the intrinsic concurrency model of the modeling language ABS [33]

� This work is partially supported by the EU project FP7-231620 HATS: Highly Adaptable and
Trustworthy Software using Formal Models.

E. Giachino et al. (Eds.): FMCO 2012, LNCS 7866, pp. 83–118, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

84 I.W. Kurnia and A. Poetzsch-Heffter

Component/System
Specifications

Class
Specifications

verified from
Implementation

verified from

Fig. 1. Two-tier verification

discussed in this volume) is a computational entity whose state is fully encapsulated.
It communicates with other objects exclusively by exchanging asynchronous messages.
Within each object, only a single, cooperatively scheduled thread is running at any time.
Thus, the behavior of single objects1 can be verified using sequential techniques. Simi-
lar to popular programming languages such as Java and C++ and also ABS, classes are
used as to describe the behavior of objects. The combination of encapsulation, concur-
rency among objects, and sequential execution within objects grants scalability as ex-
plained, e.g., in [6,28]. Concurrent objects are similar to actors [3]; the two approaches
mainly differ in how behavior changes and interfaces are expressed.

There are already a number of verification techniques for concurrent objects avail-
able (see, e.g., [23,11,5,20,22]). The technique presented in this chapter centers around
two specific aspects: openness and hierarchical reasoning. Openness allows the verifi-
cation of components without knowing the environments in which they are used, while
hierarchical reasoning allows verifying larger components from smaller ones in a hier-
archical way. The technique follows a two-tier verification approach proposed by, for
example, Misra and Chandy [43] and Widom et al. [62], as shown in Fig. 1. In the first
tier, the behavior of a class is specified and verified against its implementation. That is,
the program code of the class is used to prove that objects of the class have a specified
behavior at their interfaces. This issue is not treated in this chapter. It is handled, e.g.,
in [5,20,22]. Here we focus on proving the specification of larger components from the
specifications of smaller ones where the smallest components are classes. The verifica-
tion technique is modular, i.e., the specification of smaller components is sufficient to
prove larger ones.

Essential to our verification approach is the notion of “component”. Components
according to this notion should satisfy at least the following requirements:

– The specification technique for components must be applicable to classes, because
they are the base of the hierarchical approach.

– Components should allow the construction of increasingly large systems.
– Components need clear semantical interfaces that can hide internal behavior.

In our approach to components, we follow a basic idea from software component
models such as OSGi [60] and COM [40]. A component has an activator class AC .
A component instance is created by creating an object XAC of class AC . At run time, the
component instance consists of the set O(XAC) of objects transitively created by XAC .
A communication of O(XAC) with the environment happens when an object in O(XAC)
sends a message to an object outside of O(XAC) or vice versa. Of course, the exact for-
mation of a component instance is influenced by how the environment interacts with
the component. A component is then by nature an open system.

1 Henceforth we refer to concurrent objects simply as objects.

Verification of Open Concurrent Object Systems 85

The specification of a component abstracts from the internal messages and objects.
It only describes the communication of the component with the environment. Com-
position is done by developing new components using other components for their im-
plementation. It is similar to procedural programming in that a procedure calls other
procedures and in that the specification abstracts from procedure-local state and local
calls.

To specify the desired properties of components we need to define their semantics.
We first introduce an operational semantics of the classes, that is, of the base compo-
nents, by means of transition systems and core operational rules. From the operational
semantics, we derive a trace semantics. That is, we represent an execution of an object
system by a trace of observable events [30]. The advantage of dealing only with traces
is the abstraction from the actual state representation of the system. The semantics of
objects and components is expressed by trace sets.

Based on the trace semantics, we develop a specification technique relating input
traces to output traces. Input (output) traces represent events an object or a component
receives (produces). Distinguishing input and output traces is done based on the trace
set. Formally, a specification consists of a finite set of Hoare-like triples [29]. A triple
{p} D {q} means that if an input trace satisfies p, component D produces output traces
satisfying q. The component D represents either the behavior of single objects of class C
or the (external) behavior of groups of objects with an initial object of class C . A triple
specifies the behavior of a component only for inputs satisfying p. This input condition
provides assumptions about how the component is used and help to focus the reasoning.

This chapter follows closely on the authors’ previous work [37], which explains
the specification and verification approach in detail. We focus here on the connection
between an operational semantics of concurrent object systems and its trace semantics
in the open system context.

Chapter Structure. In Sect. 2 we explain the setting and provide a running example used
in this chapter. Section 3 deals with the core operational semantics of concurrent object
systems. Section 4 describes how components and their trace semantics can be extracted
from the operational semantics. Section 5 presents the specification and verification
technique with the help of the running example. We conclude this chapter with some
discussion how this approach can be extended. Related work and discussion on the
subject of each section are provided at the end of each section.

2 Setting and Running Example

To have a sufficiently clear background for the following discussion on verification, we
informally introduce a core concurrent object language ActJ together with an example
for illustrating our approach. ActJ can be thought of as a stripped down version of
ABS [33]2. ABS is an object-oriented modeling language that permits, among others,
actor-style synchronous communication. ActJ focuses on the actor concurrency layer of
ABS. It features a Java-like syntax, interfaces, class-based programming, asynchronous

2 Information about ABS can also be found in the chapter by Reiner Hähnle in this volume [27].
Various design choices of ActJ can be inferred from the design choices of ABS.

86 I.W. Kurnia and A. Poetzsch-Heffter

method calls without returns, concurrent objects, abstract data types with first-order
side-effect free functions and typed references. This language is used to describe a
variant of an industrial distributed database system [7].

2.1 ActJ

Objects in ActJ is described by means of classes. A class is a template how an object is
represented and behaves according to the representation. Through fields a class defines
what data can be in an object and through methods a class defines how operations can
be applied on the object. An object can be created by instantiating the class. A method
implementation may be equipped a guard, regulating when a method may be executed
(explained later). All fields are private to individual instances, providing strict encap-
sulation on instance level. Object manipulation described exclusively through methods,
which are public. Methods contain a list of statements. A statement can be an object
creation, an asynchronous method call, a conditional statement, field assignments and
a sequential composition of statements. Expressions contained in a statement are pure
functions and abstract data types such as lists can be used.

ActJ follows the principle of programming to interfaces [25], where the declared
types of objects are interface types. Interfaces consists of a number of method signa-
tures, stating the name and parameters of operations that can be applied on the object.
To focus on the core behavior of the objects, subtyping is not introduced in ActJ. For the
same reason, each class implements exactly one interface. As a simplification, method
signatures do not contain have a return type. Hence, computation result that needs to
be communicated back is delivered through making method calls. Examples of ActJ
programs are given in Figs. 2 and 3, which is explained in the following subsection.

2.2 Running Example

As a running example, we use a variant of the client-server setting treated by Arts and
Dam [7]. The server receives requests from the client, where each request contains a
query. The server system responds to the requests with the appropriate computation
results. To serve each request, the server creates a worker and passes on the query
to be computed. A query can be divided into multiple chunks, therefore concurrent
processing of a request can be introduced as follows. Before each worker processes
the first chunk of the query, it creates another worker to which the rest of the query is
passed on. When the computation of the first query chunk is finished, the worker merges
the previous result with this computation result and propagates the merged result to the
next worker. Eventually all chunks of the query are processed, and the last worker sends
back the final result to the client. The client identity must be passed around, so that the
last worker can return the query computation result to the client.

An implementation of the server side is given in Fig. 2. It consists of two classes:
Server and Worker. The Server class implements the IServer interface, whereas
Worker implements IWorker. These classes use the IClient interface so they can
communicate with the client. A client can send a request to the server by calling the
serve method. A query is represented by the Query data type. The server processes
the request by creating a new Worker object, passing on the query to this new worker

Verification of Open Concurrent Object Systems 87

interface IClient {
response(Value);
link(IServer);

}
interface IServer {
serve(IClient c, Query y);

}
interface IWorker {
do(Query y);

propagate(Value v, IClient c);
}

class Server implements IServer {
serve(IClient c, Query y) {

// querySize(y) ≥ 1
IWorker w = new Worker;
w.do(y);
w.propagate(null, c);

}
}

class Worker implements IWorker {
Value myResult = null;
IWorker nextWorker = null;

do(Query y) {
if (querySize(y) > 1) {
nextWorker = new Worker;

nextWorker.do(restQuery(y));
}
myResult = compute(fstQuery(y));

}
propagate(Value v, IClient c)
guard myResult != null {

if (nextWorker == null) {
c.response(merge(myResult, v));

} else {

nextWorker.propagate(
merge(myResult, v), c);

}

}
}

Fig. 2. Server-worker implementation in ActJ

and then initiate the result propagation. The execution of the serve method acts as an
example how objects can interact with other objects in ActJ.

There are two ways objects can interact with each other: creating new objects and
calling methods of other objects. Object creation is represented in ActJ by the execution
of a statement of the form new C, where C is a class name. Object creation is blocking,
meaning that the execution cannot continue to the next statement before the object is
created. A method call is produced when a statement of the form r.m(p) is executed.
This statement sends the message m(p) to the receiver object r where m is the method
name with a list of parameters p. The parameters can be data values or object identities.
A method call is non-blocking; execution directly continues with the next statement.
Thus, in general, a method call leads to concurrent behavior. The asynchronous nature
of method calls leads to the possibility that when two method calls are sent one after
the other, they may arrive at their respective destination in a different order. For each of
the calls an object receives, it has a body that describes how it reacts to a method call.

The Worker class illustrates how guard is used. The class has two methods do and
propagate and two fields myResult and nextWorker, both initialized to null. The do
method checks (via the function querySize) whether the query the worker has to do
can be split to further subqueries. If the query is splittable, a new worker is created
and the reference of this new worker is stored in the nextWorker field. The new worker
is then sent the rest of the query (via the function restQuery) the current worker is
not handling. The current worker then proceeds on computing the result of the first
subquery (or the entire query if it is not splittable). The computation is done using the
function compute and when it is completed, the result is stored in myResult.

88 I.W. Kurnia and A. Poetzsch-Heffter

class Client implements IClient {
IServer s = null;
link(IServer server) {

s = server;

s.serve(this, randomQuery());
}
response(Value v) {}

}

Fig. 3. A sample Client in ActJ

The propagate method states how a worker propagates the result of its computation.
The guard ensures that the result propagation is carried out only when the worker’s part
of the query computation is finished. If the worker is the last worker handling the query
(indicated by the non-existence of the next worker object), a response call is sent to
the client, whose reference is passed on with the call. This response contains the merged
result of the worker’s computation of the subquery it handled with the value passed on
with the call. Otherwise, the merged result is passed on to the next worker. In short,
the series of propagate calls, initiated by the server, collect and merge the results of
computing the different query chunks and send the clients the response.

It remains to explain what precisely happens when a method call is received. We
assume that objects, similar to actors [3], have an unbounded input queue and are input-
enabled (cf. [39, p. 257]); i.e., objects can always accept new input. An object is always
in one of two modes: idle and active. Whenever an object is idle, meaning it has just
been created or finished executing a method, it selects a method call from its input
queue to be executed. If the queue is empty, then the object is idle. In other cases, an
object is active. When a method call is selected, it is removed from the queue. During
this selection process, the guards of the corresponding method definitions are evaluated.
Method definitions that do not have a guard are equivalent to method definitions whose
guard is always true. Method calls are then selected from the queue primarily in a
First-In-First-Out manner. In other words, the first pending method call in the queue
whose guard is evaluated to true is selected. This selection process guarantees (weak)
fairness, meaning that a method call whose guard is infinitely often evaluated to true
will eventually be picked for processing. The presence of guards gives an object control
over the execution of incoming method calls.

We assume appropriate definitions for the pure functions used in the Worker class.
In addition, the following properties are assumed.

querySize(t) ≥ 1
querySize(t) > 1 =⇒ compute(t) = merge(compute(fstQuery(t)),

compute(restQuery(t)))
querySize(t) = 1 =⇒ compute(t) = compute(fstQuery(t))
merge(null, v) = v

A query consists of at least one chunk; computing a non-primitive query is the same as
merging the result of computing the first query with the computation of the rest of the
query; computing a single query chunk is the same as computing the first query of the
chunk; merging with null with some value v results in the value v.

One possible way to use the server is by constructing a client whose implementation
can be seen in Fig. 3. Through the IServer interface, the client sends some random
query (by means of some built-in method randomQuery) to a server when the client
is linked to the server. When it receives a response, it does nothing. When a client is

Verification of Open Concurrent Object Systems 89

created and the client is linked to a server, the client makes a request to the server. Then
the server creates a number of worker to handle the query, and the last worker returns
the query computation result back to the client.

The running example highlights the features of concurrent objects, namely asyn-
chronous method calls, sequential execution of each method and encapsulation of inter-
nal state. Moreover, the example shows unbounded object creation, a non-trivial aspect
to handle in verifying functional behavior. The unbounded object creation is caused by
the lack of knowledge on the server side with respect to the number of subqueries a
query can be split into. Recall that a subquery is handled by a separate worker.

2.3 Discussion

In object-oriented programming, it is common for objects to interact with other objects
by field access. In the concurrent setting, however, allowing field access also means that
explicit signaling between objects is needed to indicate that an object is being modified.
This leads to complex techniques, such as [1,14], to understand what exactly is going
on with the objects. Fields in ActJ are object private, meaning each object can only see
and modify its own fields; even fields of other objects of the same class are inaccessible.
Putting the plug on field access allows an object to rely on the stability of the values of
its fields during a method execution. More discussion on the mechanisms of concurrent
interaction between objects is available in [32].

In general, it is desirable to be able to synchronize the progress between different
method call executions (cf. await construct in ABS). An object is then allowed to
multitask, meaning that the execution of several messages can be in progress (not just
residing in the queue). This concept does not appear in our running example (only par-
tially through the use of guard). To accommodate this concept, the object idle mode
needs to be extended to the state when a method call execution awaits for certain syn-
chronization. Also, objects need to be equipped with a more specific scheduler.

Methods in ActJ do not have return values except the implicit indication that an
execution of a method is finished. Returning specific values is emulated by sending a
method call. If an object needs any information from other objects or wants to manip-
ulate other objects, it must be done by calling methods of the other objects. A more
elegant way to handle returns is to use futures [9] as in ABS.

3 Core Operational Semantics

To characterize the behavior of a concurrent object system, we first look into the behav-
ior of objects and how they interact with each other. Following the design of modeling
languages such as Creol [34] and ABS [33], classes provide blueprints how their in-
stances, i.e., the objects, behave. Instead of directly providing the operational semantics
based on the code structure, the classes are modeled using parameterized transition sys-
tems. This approach allows for a simple run-time configuration model. We use a slightly
less faithful model in terms of the communication between objects to capture the be-
havior of classes. This model is expressive enough for showing the connection between
operational semantics of concurrent object systems and their trace semantics. The trace
semantics is used as the basis for specification and verification.

90 I.W. Kurnia and A. Poetzsch-Heffter

3.1 Notation

We first define the notation used in this chapter. Capital letters represent sets. Typical
elements of sets and variables are represented by small letters. Constants are written
using a typewriter font, usually to indicate the connection with the running example.
Exceptions to the notation are clearly noted. A summary of numerous helper predicates
and functions used in the semantics description is given in Table 1 as a quick reference.

We use the data structure Seq〈T〉 to represent finite sequences, with T denoting the
type of the sequence elements. An empty sequence is denoted by [] and · represents
sequence concatenation. The function Pref(s) yields the set of all prefixes of a sequence
s. The projection operator s↓T produces the longest subsequence3 of the sequence s that
contains sequence elements in T of type T. The projection operator can be refined by
considering the structure of T.

3.2 Classes

We start the description of our formal model by defining the basic sets. Let O be the set
of all object identities, CL the set of all classes, M the set of messages that can be com-
municated between objects and D, disjoint from O, the set of data values. We use object
identities to represent both the object and its actual identity. The function class(o) gives
the class of an object o. A message m can either be an object creation new C or a method

Table 1. Helper predicates and functions

Predicate/Function Description
Pref(s) The set of all prefixes of sequence s.
class(o) Returns the class of object o.
isMtd(m) Checks if message m is a method call.
callee(e) Returns the callee of event e.
caller(e) Returns the caller of event e.
msg(e) Returns the message of event e.
acq(t) Returns the accumulated object identities exposed in each method call

event in trace t .
cr(t) Returns the set of objects created in trace t .
extMtd(C) Returns the set of method calls that can be received by objects of class C .
t↓O Projects trace t to non-external events of a set of objects O. The operator

can also take callee or caller as an extra parameter.
exposed(t , O) acq(t↓O,callee)∪ cr(t↓O,caller)
idx(t , C) Extracts the identities of objects transitively created by the initial object

of class C from trace t .
sup(t) Returns the event core sequence of t .
split(t , L) Splits t into input and output traces (ti, to) based on local objects L.
bound(T) Extracts the largest visible subset of local objects from a component trace

set T .

3 A sequence s is a subsequence of another sequence s′ if s can be derived from s′ by deleting
some elements of s′ while preserving the order of the remaining elements [26, p. 4].

Verification of Open Concurrent Object Systems 91

call mtd(p), where C is a class, mtd denotes some method name and p is a list of
parameters. A parameter may be a data value d ∈ D or an object identity. The predicate
isMtd(m) checks if the message m is a method call. The messages are the observable
units of communication exchange between objects.

The set of events E is built on the messages. An event e ∈ E represents the occurrence
of a message m =msg(e) being sent by the caller object o1 = caller(e) to the callee ob-
ject o2 = callee(e). If m is a creation message, o2 will be the name of the newly created
object while o1 is its creator. Textually an event e is represented as o1→ o2.new C or
o1→ o2.mtd(p) when the message is an object creation or a method call, respectively.
With respect to some group of objects O ⊆ O, an event o1 → o2.m can be classified
into internal event, if o1, o2 ∈ O; external event, if o1, o2 /∈ O; input event, if o1 /∈ O
and o2 ∈ O; and output event, if o1 ∈ O and o2 /∈ O. To collect the (finite number of)
object identities occurring in the parameter list of a method call, we define a function
acq(mtd(p)), short for acquaintance.

To describe the behavior of a specific object, only the callee and message information
of an event are needed. Following the design choice of ABS, the caller information is
transparent from the callee of a method call. In the same way, an object does not know
who creates it, unless this information is passed on explicitly. Therefore, if we focus
only on a specific object, the caller information becomes redundant. Eliminating the
caller from an event produces an event core. The set of event cores EC are derived from
the set of events E by removing the caller from events in E. The functions msg and callee
applied to event cores are defined as for events.

The class of an object characterizes how the object behaves. One way to model
classes is by transition relations. We model classes using two transition relations: one
describing what an object does when it receives a message and the other describes what
an object does when it reaches a certain state. As the model should reflect common in-
variants on classes, it also contains a function that tells which objects are known to the
class instance. By restricting the model via this function, the class model guarantees,
for example, that method calls can only be sent to known objects.

Definition 1 (Class). A class C is a parameterized tuple 〈Q,q0,ρ,α,κ〉(this) where
– Q is the set of states,
– q0 : O→ Q is the parameterized initial state,
– ρ : M×Q×Q is the message receive relation,
– α : Q× EC×Q is the action relation, and
– κ : Q→ 2O is the function mapping a state to a set of known objects,

where for each state q,q′ ∈ Q, message m ∈ M and event core e ∈ EC, representing
〈m,q,q′〉 ∈ ρ and 〈q,e,q′〉 ∈ α as C : (m,q) → q′ and C : q

e−→ q′, respectively, and
letting q→∗ q′ represent transitive closure of ρ and α, the following holds:

1. κ(q0(this)) = {this} (the object initially knows only its own identity);
2. q0(this)→∗ q =⇒ {this} ∈ κ(q) (the object always knows its own identity);
3. C : (m,q)→ q′ =⇒ κ(q′) ⊆ κ(q)∪ acq(m)

(the object knows another object through incoming method calls)

4. C : q
e−→ q′ ∧ ¬isMtd(msg(e)) =⇒ κ(q′) ⊆ κ(q)∪ callee(e)

(or the object knows another object by creating it);

92 I.W. Kurnia and A. Poetzsch-Heffter

5. C : (m,q)→ q′ =⇒ isMtd(m)
(creation of objects is not part of the class semantics);

6. C : q
e−→ q′ ∧ isMtd(msg(e)) =⇒ {callee(e)} ∪ acq(e)⊆ κ(q)∧κ(q′)⊆ κ(q)

(the callee and parameters of method calls made by the object must be known);

7. C : q
e−→ q′ =⇒ callee(e) �= this (no self calls are allowed).

A class C ∈ CL is defined as a parameterized quintuple. Q is the set of states an object of
class C can have. In general, Q can be an infinite set because an object may have fields
that store object references. Furthermore, the object has an internal buffer to manage
how incoming messages are processed. q0(this) represents the initial state the object
has when it is created. The initial state is parameterized based on the identity of the
object given when the class is instantiated. The transition relation ρ describes when the
object receives a message and the effect of receiving that message on the object’s state.
ρ should be given such that any object of this class can only receive messages of certain
forms, i.e., the class obeys a certain interface. In other words, any object of this class
can only receive messages of certain forms. The transition relation α describes what
an object does when it reaches a certain state, i.e., it can create another object or send
a message to another object. The function κ describes which other objects an object
knows when it is at some state. The single parameter represented by the variable this
is assigned the value o when an object o of class C is created. When necessary, the
members of the tuple are indexed with the class name for clarity.

For the class tuple to represent classes expressed by codes written in, e.g., ActJ, we
put restrictions that explain the relationship between ρ, α and κ. The first four restric-
tions state how κ can evolve. Initially an object knows no other object but itself. An
object can always refer to its own identity regardless of what kind of transition it previ-
ously has. It corresponds directly to the keyword this in ActJ. As in the programming
language, there are two ways how an object o may know another object o′, namely
through references passed on as parameters and by creating o′. Once the reference o′
is available to o, o can decide whether to store this information. As storing this infor-
mation (through variable assignments) may cause o to forget another reference that is
previously stored, the evolution κ is described using the subset relation. The freshness
of a newly created object and its assignment of initial state are handled within the op-
erational semantics, as hinted by the fifth restriction. Using this knowledge, we restrict
the method calls produced by the object such that both the callee and the parameters of
the method calls are known to the object. After making a method call, the object may
forget some references to other objects. The seventh restriction on no self call acts as
a simplification for easier classification of events into input or output events. Changes
that occur with a self call can be simulated by making a nondeterministic choice of
states as the effect of receiving or sending a message.

We assume that classes are defined such that their instances are input-enabled with
respect to some consistent interface. The message part used in ρ and α is assumed to
always be well-typed. The function extMtd(C) extracts the interface supported by C .
The function returns the set of method call messages that objects of class C can receive.

Example 1. The Server class can be represented as follows. Each state in QServer

is partitioned into five parts: internal state qi ∈ {r,d,p} representing ready, do, and

Verification of Open Concurrent Object Systems 93

r d p

m m m
ρServer

r

d

p
w.new

Work
er w.do(t)

w.propagate(null, c)

αServer

Fig. 4. Graphical representation of the message receive and action relations for Server class
where m= serve(c, t) and only the internal states are represented

propagate states, respectively; the client identity c; the worker identity w; the query y ;
and the internal message queue u. We use the sequence data structure Seq〈M〉 to repre-
sent the message queue. By virtue of the internal message queue and the infinite number
of object identities, QServer is an infinite set.

The initial state is 〈r,null,null,null, []〉. The message receive relation ρServer is
represented symbolically by

Server : (serve(c′, y ′), 〈qi , c, w, y,u〉)→ 〈qi , c, w, y,u · serve(c′, y ′)〉 .
Formally this representation is translated as the following relation:

{Server : (m,q)→ q′ | ∃c′, y ′,qi , c, w, y,u •m = serve(c′, y ′) ∧
q = 〈qi , c, w, y,u〉 ∧ q′ = 〈qi , c, w, y,u · serve(c′, y ′)〉} .

Stated in words, the server can always receive a request, which is then stored in the
internal message queue. Other parts of the server’s state remain the same. Applying
extMtd to Server results in

{serve(c, y) | ∃c, y,q,q′ • Server : (serve(c, y),q)→ q′} .

This set represents the interface IServer that the Server class is implementing.
The action relation αServer is represented symbolically as follows.

A1. Server : 〈r, _, _, _,serve(c, t) · u〉 w.new Worker−−−−−−−→ 〈d, c, w, t,u〉
A2. Server : 〈d, c, w, t,u〉 w.do(t)−−−→ 〈p, c, w, t,u〉
A3. Server : 〈p, c, w, t,u〉 w.propagate(null,c)−−−−−−−−−−→ 〈r, c, w, t,u〉

An underscore represents any value and is used when the value of the particular part of
the state is of no significance. The first relation states that the server is in the internal
state of r where it is ready to process another serve message provided one is present
in the internal message queue. As can be seen in Fig. 2, the server then creates a new
worker. In this situation, it is important for the next steps that the server remembers the
query, the client and worker references. The second and third relations proceed with the
execution of the method serve, where d and p act similar to a program counter. All in
all, this relation mimics the serve method of class Server given in Fig. 2. Graphically,
ρServer and αServer can be viewed as in Fig. 4, by focusing only on the internal states.

The known object function κServer is represented symbolically as follows.

K1. κ(〈r, _, _, _, _〉) = {this}
K2. κ(〈d, c, w, _, _〉) = {this, c, w}
K3. κ(〈p, c, w, _, _〉) = {this, c, w}

94 I.W. Kurnia and A. Poetzsch-Heffter

In r, the server forgets specific information about all previous requests that came in.
When the server is processing a request, however, it is important to keep track of the
client and worker references as explained previously. Thus in d and p, both the client
and the worker references are tagged as known.

Discussion. Another way to describe the behavior of the objects is by assigning a
behavior instance to each object. The change in behavior of object after receiving or
producing a message is defined by a global relation (see, e.g., [61,4]). This approach
has the drawback of giving less structure to play with. By having classes as templates,
the behavior of objects can be defined without having to provide a global relation that
works for all objects. See [13] for more comparison between object-based and class-
based approaches on defining object’s behavior.

Din et al. [20] introduce 4-event semantics to faithfully capture asynchronicity (i.e.,
allowing network delay between sending and receiving), similarly to the dual send and
receive in CCS [41] and π-calculus [42]. In this semantics, the sending and the actual
start of the method calls or creation are split into different event types. This distinction
plays a role in the specification part, as it allows specifications to be represented locally
at the cost of a more complex well-formedness condition on the generated traces.

The class definition above does not constrain an object to behave strictly as a pure
concurrent object or a pure actor with multitasking capability. In particular, it does not
enforce that the actions an object takes correspond to processing a single message. This
means that the definition does not explicitly restrict the object to have a single-threaded
computation, except that there cannot be two messages being sent out in parallel due
to the interleaving nature of the transition relation. In this chapter, we assume that the
action relation α follows an actor model with multitasking, such as ABS [33].

3.3 Operational Rules

To describe the interaction between a number of objects, we need run-time configu-
rations that capture the current state of those objects. The current state of each object
determines how objects act and react to incoming messages.

Definition 2 (Run-time configuration). A run-time configuration of an object o is a
tuple 〈C , o,q〉 where C is the class of o and q ∈ QC is the run-time state of the object.
The configuration of a group of objects O ⊆ O is a set of configurations C where for
each object o ∈ O there is at most one configuration of o in C.

A run-time configuration of an object o consists of its class C , its identity o and its
current state q, with respect to the state description of its class. The identity of the
object is used to replace this occurring in any part of the class tuple (i.e., o acts as the
parameter in the class definition). For the remainder of the chapter, we use the notation
C o : q to represent a run-time configuration of o.

Example 2. 〈Server, s, 〈r,null,null,null,serve(c1, y1) · serve(c2, y2)〉〉 is a pos-
sible configuration for a Server object s. This states that s has two incoming serve
method calls and currently is in the initial state to process the next incoming request.

Verification of Open Concurrent Object Systems 95

OBJECTCREATION

C1 : q
e−→ q′ e = o2.new C2 o2 fresh

{C1 o1 : q} � C o1→o2.new C2−−−−−−−→ {C1 o1 : q′, C2 o2 : q0
C2
(o2)} � C

MESSAGESEND

C1 : q1
o2.mtd(p)−−−−→ q′1 C2 : (mtd(p), q2)→ q′2

{C1 o1 : q1, C2 o2 : q2} � C o1→o2.mtd(p)−−−−−−−→ {C1 o1 : q′1, C2 o2 : q′2} � C

Fig. 5. Core operational semantics of concurrent object systems

The way the run-time configuration is affected by interaction between objects is
shown in Fig. 5, representing the core operational semantics of concurrent object
systems. The semantics consists of two rewrite rules that modify the configurations:
OBJECTCREATION and MESSAGESEND. In each of these rules, the transition from
one configuration C to another C′ is labeled by the corresponding event e that is repre-
sented by the rule. Textually, each transition has the form C e−→ C′. The disjoint union
operator � ensures the consistency of having a single configuration of one object within
C . When there are multiple ways to apply the rewrite rules, one is chosen at random.

OBJECTCREATION is applicable when an object o1 is in a state q where it can create
a new object of some class C2 according to its class action relation. The result is that a
new object o2 with fresh identity is created and added into the configuration. The state
of this new object is the initial state q0

C2
(o2) of its class description.

MESSAGESEND states the changes to two parties that act as end points of a method
call (i.e., the caller and the callee). An object o1 (the caller) can perform an asyn-
chronous method call mtd(p) on another object o2 (the callee) if the following con-
ditions hold. First, the caller is in a state where it can send a message mtd(p) to the
callee. By the condition placed on the class definitions, the caller knows the callee. Sec-
ond, the callee is able to receive that message. With the input-enabledness assumption
in place, this part is always fulfilled. Thus, the resulting states q′1 and q′2 of both the
caller and the callee, respectively, can be derived when the method call is made.

A straightforward consequence of the operational semantics is that an object always
keeps its class designation as shown by the lemma below.

Lemma 1 (Class preservation). An object never changes its class.

Proof. Follows from Def. 2 and the operational semantics rules.

Being able to refer to specific entities with regards to the behavior of objects is useful
later on to structure the behavior of a group of objects without needing extra constructs.
Class preservation of objects serves as an important basis to this usage.

Discussion. The operational semantics above has only two rules. The rules cover the
necessary observable operations on a concurrent object model (cf. [58]). The internal
computation needed to produce the messages is abstracted away in our model by means
of object states. Vasconcelos and Tokoro [61] even reduced the number of kinds of ob-
servable operations into one, by just considering the method calls (which in their work

96 I.W. Kurnia and A. Poetzsch-Heffter

are simply called messages). Object creation is encoded implicitly within the internal
computation. In a single transition, the number of objects that are present in the config-
uration can change. In our case, the object creation needs to be considered separately to
extract the initial state from the class definition.

The MESSAGESEND rule pairs the action relation of one class to the message receive
relation of another class. Between pairs of objects o and o′, the order of how methods
are called by o to o′ is the same as the order of the same calls received by o′. The actor
model [16,3,4] retains pure asynchronicity, meaning that it allows message overtaking
even between pairs of objects. Yonezawa, Briot and Shibayama [63] argued, however,
that having this guarantee eases describing distributed algorithms.

As each object can concurrently perform their internal processing at possibly differ-
ent speeds, there is a need for external nondeterminism. This need is covered by the ran-
dom application of operational rules. This choice raises the question about the fairness
of choosing the objects to which the rules are applied. As this issue is not prominent for
our discussion on specification and verification (unlike in the discussion on actors [4],
for example), we assume weak fairness on the operational rule application.

3.4 Translation to Traces

Given a configuration, we can define an execution from this configuration as a sequence
of interleaved configurations and configuration transition, where each transition repre-
sents an application of the operational semantics rules. We can extract from an execu-
tion the trace by taking the concatenation of the labels of configuration transitions. If
we know the default initial configuration, the traces can be used to abstract from the
internal representation of the individual objects [30,12]. For this reason, we use traces
as semantic foundation for specifications.

The following definition states what we mean by executions and traces. The symbol�
distinguishes a maximal execution (i.e., a finished execution where no more opera-

tional rule can be applied [8, p. 96]) from an execution that can still make progress.

Definition 3 (Execution and trace). An execution is a sequence of interleaved config-

urations and events C0
e1−→ C1

e2−→ C2 · . . . which may end with
�

after a configuration. A
trace t ∈ Seq〈E∪{�}〉 of an execution is the projection of the execution to the events by
leaving out the configurations. The trace t ends with

�
if the corresponding execution

ends with
�

.

Example 3. Let a be some Main object which represents the initial object whose task
is to set up the server system. Assume as well a Client object c has been created.
Using an underscore to represent a configuration content of no interest, the following
execution describes a possible way how the server is created and how it responds to an
incoming request from the client.

{Main a : _,Client c : _} a→s.new Server−−−−−−−−→
{Main a : _,Client c : _,Server s : 〈r, _, _, _, []〉} a→c.link(s)−−−−−−→
{Main a : _,Client c : _,Server s : 〈r, _, _, _, []〉} c→s.serve(c,y)−−−−−−−−→
{Main a : _,Client c : _,Server s : 〈r, _, _, _,serve(c, y)〉} s→w.new Worker−−−−−−−−→

Verification of Open Concurrent Object Systems 97

{Main a : _,Client c : _,Server s : 〈d, c, w, y, []〉,Worker w : _} s→w.do(y)−−−−−→
{Main a : _,Client c : _,Server s : 〈p, c, w, y, []〉,Worker w : _} s→w.propagate(null,c)−−−−−−−−−−−−→
{Main a : _,Client c : _,Server s : 〈r, _, _, _, []〉,Worker w : _}
This execution shows six transitions. The first two transitions complete the setup of
the setting, by having the server object created and having it linked to the client. The
OBJECTCREATION and MESSAGESEND rules are respectively applied by assuming
that the states of the main and client objects are the state where they are applicable. The
third transition states that the client sends a request to the server. The server stores this
request in its internal queue. Then the server processes this request in the remaining
transitions as described by the server action relation given in Ex. 11. First it creates a
new worker and takes out the serve message out of the its queue. As an effect of the
transition, the new worker reference is stored as well as the client reference and the
query from the serve message. The internal state also changes to do. Then, it initiates
the result propagation to this new worker. The server is then back to the state where it
is ready to process another request (although no more pending requests are present). In
the last two transitions, we assume that the worker state changes accordingly.

The following trace can be extracted from the execution.
a→ s.new Server · a→ c.link(s) · c→ s.serve(c, y) · s→ w.new Worker ·
s→ w.do(y) · s→ w.propagate(null, c)

This trace is not maximal, because the operational rules can still be applied to the worker
object for processing the query.

To obtain specific information related to a certain object o from a trace t , we use the
projection operator t↓o. This operator states the projection of t to o where all events
where o is neither caller nor callee are removed from t . When necessary, the object
parameter can be enriched with callee or caller to denote that we are focusing on the
events where o is the callee or the caller, respectively. This operator is naturally lifted
to a trace set T and a set of objects O. Other operators are introduced as needed.

Example 4. Let t be the trace from the previous example. Then if we project t to the
server object s, then we obtain the following trace.

t↓s = a→ s.new Server · c→ s.serve(c, y) · s→ w.new Worker · s→ w.do(y) ·
s→ w.propagate(null, c)

An important restriction on the class definition (Def. 1, No. 6.) is that a method call can
be made only if the objects in the parameters of the method call are known. This restric-
tion can be transferred to traces by requiring that an object can only send messages to
other objects it has been exposed to. A trace contains enough information to determine
whether an object is exposed to another object. This information is extracted using the
functions acq and cr. The function cr(b.new C), short for created, extracts the identity
of the newly created object from an object creation (i.e., the callee b). These functions
are lifted to events and traces.

Definition 4 (Well-formed trace). Let e be a method call event o→ o′.mtd(p). A trace
t is well-formed if

∀o ∈ O, t ′ · e ∈ Pref(t) • {o′} ∪ acq(e)⊆ acq(t ′↓o,callee)∪ cr(t ′↓o,caller) .

98 I.W. Kurnia and A. Poetzsch-Heffter

The definition above states that for every method call an object makes, it must know
the identity of the object it is calling and also the identities of each object present as
parameters of the method call. These identities are collected from previous method calls
the caller receives (through the acquaintance function) and the objects that have been
created directly by the caller (represented by the created function). Other properties
of trace well-formedness, such as the freshness of the newly created objects, can be
defined in a similar way. We leave their definition to the reader as an exercise4. Because
there is no self-call and an object only knows its own identity when it is created as per
restriction on κ (Def. 1), we obtain the following corollary.

Corollary 1. A non-empty well-formed trace t begins with a creation event.

The following lemma shows that when we start from a configuration containing an
object in its initial state, using the core operational rules and the restrictions given on
the κ function (Def. 1), the generated trace(s) is well-formed.

Lemma 2 (Well-formedness preservation). Let CL be a set of classes and the single-
ton C = {C o : q0

C(o)} the initial configuration of object o of class C ∈ CL. Then, by
applying the operational rules from Fig. 5, the generated trace is well-formed.

Proof (sketch). Two important factors for the proof are the monotonicity of the func-
tions acq and cr, and that no object identities absent from the events are introduced by
these functions. Because these factors are weaker than the restrictions on κ in Def. 1,
the generated trace is well-formed.

Discussion. We have introduced two different semantics for our objects: the operational
semantics and the trace semantics. These semantics are chosen because they represent
the two common abstraction levels used for reasoning. The operational semantics allows
a program to be executed with respect to some configuration. Trace semantics typically
exhibits full abstractness quality as shown in various concurrent models, e.g., [35,2,44].
It is attractive as the basis for specifying the functional property of a system, because the
specification can independently be given without determining how it is implemented.

Talcott [58] provided more layers of composable semantics of actors to allow local
reasoning at different levels of abstractions. Starting with an operational semantics sim-
ilar to ours (Sect. 3.3), other layers are formed by hiding external events belonging to
the environment, focusing only on the partial order between events, and hiding internal
events. Her approach relies on retaining possible global timings of each event.

4 Systems and Components

Having a semantics for a group of objects is the basis for understanding how a system
behaves. As motivated in Sect. 1, a natural way to structure the grouping is to use classes
to form components. A system’s behavior can be understood by composing the behavior
of its components. In this section, we explore the possible ways to structure groups of
objects into components and link them with the notion of open systems.

4 For example, Din et al. [20] provides such a definition.

Verification of Open Concurrent Object Systems 99

4.1 Closed Systems

First, we need to know whether we have enough information to apply the rules of the
operational semantics. This means we need to have the necessary class definitions.

Definition 5 (Definition-complete). Let C ⊆ CL be a set of classes. C is definition-
complete if for each method call o.mtd(p) such that class(o) = C ′ and object creation
new C ′ appearing in αC of any class C ∈ C, it holds that C ′ ∈ C.

A set of classes is definition-complete if for each object present within the interaction,
the class definition of that object is also available within the set.

Definition 6 (Closed system). A closed system CS = (C, C0) is a definition-complete
set of classes C with a distinguished activator class C0 ∈ C.

A closed system contains all the class definitions necessary for knowing precisely how
each object within the system behaves. An activator class is the class of the initial object
of the system (similar to starting a Java program, for example, with some initial class
containing a main method). This initial object should then create other objects necessary
for the system to run.

Definition 7 (Trace semantics of closed systems). The trace semantics of a closed
system CS = (C, C0) is the trace set Traces(CS) where for each t ∈ Traces(CS), there is
an execution starting from an initial configuration C = {C0 o : q0

C0
(o)} whose trace is t .

The trace semantics of a closed system is a trace set containing all traces that can occur
from a singleton initial configuration of an object of the activator class. Using the closed
system definition, we can define the trace semantics of a class.

Definition 8 (Trace semantics of classes). The trace semantics of a class C is the
trace set Traces(C) where for each trace t ∈ Traces(C), there is a closed system CS =
(C, C0) such that C ∈ C and there is a trace t ′ ∈ Traces(CS) such that t = t ′↓o where
class(o) = C .

The trace semantics of a class C is obtained by taking all traces of all closed systems
that contain C , then projecting all those traces down to objects of class C .

Example 5. A trace of the Server class is a → s.new Server · c → s.serve(c, t) ·
s → w.new Worker · s → w.do(t) · s → w.propagate(null, c). This is obtained by
taking the projection of the trace from Ex. 3 to the Server object s.

Discussion. The trace semantics can as well be directly defined based on the class def-
inition. However, in a concurrent nondeterministic setting, it is not easy to do. In partic-
ular all possible message reception and sending has to be taken into account. Ahrendt
and Dylla [5], for example, apply guess and merge approach when synchronizing the
execution of different method calls to obtain the trace set.

100 I.W. Kurnia and A. Poetzsch-Heffter

4.2 Open Systems and Components

A closed system deals with a group of objects that are completely executable without
any influence from outside, while single classes only deal with the behavior of each
of those objects. A gap is present between single classes and closed systems when we
focus our attention only on the behavior of some particular group of objects of a closed
system. When this group expands dynamically as the system continues to execute (e.g.,
the workers of the server that handle a request in our running example), it is impractical
to know how this group as a whole behaves by referring to the behavior of each of the
objects in the group. In turn, it is impractical to verify whether the behavior of a closed
system follows directly from the class descriptions contained in that system.

To help reason about the behavior of closed systems from single classes, we abstract
a collection of single classes into components. Components should share the character-
istics of closed systems and single classes and allow hiding internal behavior.

In this chapter, we choose an abstraction based on object creation. This abstraction
makes it possible to refer to a component by the class of the component’s initial object.
Its advantage lies in the inference how the component is structured. That is, the struc-
ture of a component comes with how the classes behave, instead of needing to state
individually which classes and subcomponents are contained in the component.

Definition 9 (Creation-complete). Let C ⊆ CL be a set of classes. C is creation-
complete if C ′ ∈ C for each object creation new C ′ appearing in αC of any class C ∈ C.

A set of classes is creation-complete if for each created object, its class is within that set.
In comparison to definition-complete (Def. 5), creation-complete allows the possibility
of having the behavior of some objects unknown. In the context of the interaction of
a group of objects, the creation-complete notion allows the behavior of some objects
whose references are passed on within the interaction to be left open.

Definition 10 (Component). A Component � = (C, C0) is a creation-complete set of
classes C⊆ CL with some activator class C0 ∈ C.

A component is essentially a system that starts with an object of some activator class. In
comparison to a closed system, a component may have some parts open to be matched
with some context. A set only consisting of a single class is possibly not a component
because it may create an object of a different class.

Example 6. The pair ({Server},Server) is not a component because a server may cre-
ate a worker, and the class Worker is not within the set of classes. The pair ({Worker},
Worker) on the other hand is a component because the only objects a worker may cre-
ate are of the same class. In addition, we can combine the Worker component with the
Server class to create a new component: ({Server,Worker},Server). Note that none
of these components are closed systems because they are missing the Client class.

Definition 11 (Context). A context of a component (C, C0) is � = (Cx , C x
0) such that

Cx ∪C is definition-complete and C x
0 ∈ Cx .

A context is a set of classes with some activator class that completes the class defi-
nition of a component. A context may use the same classes as the component, so the

Verification of Open Concurrent Object Systems 101

component can have certain expectation about the behavior of the context. But since
we are following the programming to interfaces principle (see Sect. 2.1), the compo-
nent generally does not know how objects of the context behave other than they adhere
to certain interfaces. A context on its own does not need to be definition-complete or
creation-complete. Paired with a matching component, we get a closed system.

Example 7. Let Main be a class whose instances create a client and a server and link the
server to the client. Then, the pair ({Client,Main},Main) is a context of the component
({Server,Worker},Server).
Similar to the trace semantics of closed systems and classes, the behavior of a com-
ponent can be defined by taking all traces produced by the combination of all possible
contexts with the component. The main issue is to which objects should the resulting
traces be projected. These objects can be derived by following an object creation tree
whose root is the initial object of the component. The object creation tree keeps track of
objects transitively created by the initial object of the component. Instead of formally
defining the tree, we illustrate it using the following example.

Example 8. Consider the server component ({Server,Worker},Server) given in Ex. 6.
The following trace illustrates the creation of the server object s and its (incomplete)
reaction to two requests. All creation events are highlighted.

a→ s.new Server · a→ c.link(s) · c→ s.serve(c, t1) ·
s→ w1.new Worker · s→ w1.do(t1) · s→ w1.propagate(null, c) ·

c→ s.serve(c, t2) · s→ w2.new Worker

s

w1 w2

Each time the server processes a request from the client, it creates a worker. Taking s as
the root of the tree, the tree has also nodes containing the workers w1 and w2. Graphi-
cally, this tree is shown to the right of the trace.

By virtue of the object creation tree, the objects of the component with respect to some
well-formed trace can be tracked using the identity extractor function.

Definition 12 (Identity extraction). Let t be a trace and C is some (activator) class.
The object identity extractor function idx(t, C) is defined as follows.

idx([], C) = �,

idx(t · e, C) =

⎧
⎨
⎩

{callee(e)} if msg(e) = new C ∧ idx(t, C) = �
idx(t, C)∪ {callee(e)} if msg(e) = new C ′ ∧ caller(e) ∈ idx(t, C)
idx(t, C) otherwise

The function idx extracts the identities of objects directly and indirectly created by the
initial object of the component. The function takes as arguments a trace t and a class C .
It works by determining the initial instance o of C in the trace. This initial instance is
the root of the object creation tree. Then the function recursively collects all the objects
transitively created by o.

In a trace, there can be more than a single instance of C being created. For defining
the behavior of a component, only the first instance of C and other instances transitively

102 I.W. Kurnia and A. Poetzsch-Heffter

created from that first instance are returned by idx. This restriction ensures that an object
creation tree can be constructed from the result of applying idx. We lift idx to a trace
set T by taking the union of the application of idx to each trace in T .

Example 9. Let t be the trace given in Ex. 8. Then, idx(t,Server) = {s, w1, w2}.
Using the object identity extractor function, we are ready to define the first variant
of the component trace semantics. We call this variant as the plain trace semantics of
a component. The term plain refers to the lack of hiding performed on the internal
interaction between objects within the component.

Definition 13 (Plain trace semantics of components). Let � = (C, C0) be a com-
ponent. The plain trace semantics of � is a trace set Traces(�) where for each trace
t ∈ Traces(�), there is a context � = (Cx , C x

0) of � such that in the resulting closed
system CS= (Cx ∪C, C x

0), there is a trace in t ′ ∈ Traces(CS) and t = t ′↓idx(t ′,C0).

Implicit within the definition is the usage of object creation tree to build the component
instances. Discussion on other ways to define the component instances is deferred to the
end of this section. The closed system used to obtain the traces is just one way to com-
pose the component with the context. The activator class of the resulting closed system
is taken from the context because it is the context which decides when the component
is instantiated.

This trace semantics supplies enough information to link the operational semantics
to an openness property of the trace semantics. This property is crucial for proving the
soundness of the proof system presented in Sect. 5. The openness property shows that
once an object of the component is exposed to the context (i.e., the component’s envi-
ronment), the context can do anything with it, in particular making all possible method
calls (with respect to all other exposed objects). We adopt the notation from [37], where
the objects of the component instance are grouped into L (for local) and the objects of
the context (i.e., objects not part of the component instance) are grouped into F (for
f oreign). The local objects can be extracted from the plain trace set of a component by
applying the identity extraction function. For defining the openness property, the exact
content of L is left open.

Definition 14 (Open system trace sets [37]). Let T be a trace set of a group of ob-
jects L, F = O − L and e = o → o′.mtd(p) an event such that o ∈ F , o′ ∈ L, and
mtd(p) ∈ extMtd(class(o′)). T is open if

∀t ∈ T, e ∈ E • {o′} ∪ acq(e)⊆ exposed(t, F)∪ F =⇒ t · e ∈ T

where exposed(t, F) = cr(t↓F,caller)∪ acq(t↓F,callee).

We call a trace set open with respect to a set of local objects if for each trace in the trace
set, a method call event directed to an exposed local object can be constructed using
the exposed local objects and the context objects. Appending that method call to the
end of the trace results in another trace which is contained in the trace set. The exposed
references are derived by taking all local objects created by the context and all local
objects whose references are passed on to the context through method calls.

Verification of Open Concurrent Object Systems 103

To instantiate this property in our trace semantics we assume without loss of general-
ity that the identity of the initial object of the component is fixed, and take the collection
of all objects created by that initial object in all traces. The following lemma shows the
connection between the core operational semantics presented in this chapter and the
trace semantics, with respect to the openness property.

Lemma 3 (Openness of plain trace semantics of components). If � = (C, C0) be a
component, then Traces(�) is open.

The main idea behind the proof is that for each context that produces a trace of that
component, we can always construct another context such that the any exposed object
is immediately used by the context in all possible ways. Thus, the other context ensures
that the open system trace property holds.

Proof. Let t ∈ Traces(�) be achieved by composing�with some context�= (Cx , C x
0).

Let also L = idx(Traces(�, C0)), F = O− L, and o′ ∈ exposed(t, F)∩ L. Because of the
interface model5, we can assume without loss of generality that

– Cx ∩C = �, and
– C x

0 is such that all necessary objects of the context are created before the activator
class of the component is created.

We create another context �′ = (Cx ′, C x
0
′) that is the same as �, except that for every

class C ∈ Cx we create C ′ where we pick some new method name mtd′ that does not
appear in any class and add as many states as necessary such that

1. for all o ∈ κC ′(q), o′′ ∈ F , C ′ : q
o′′ .mtd′(o)−−−−−→ q′

(the knowledge is shared among all objects of the context),
2. C ′ : (mtd′(o),q)→ q′ (all objects of the context remain input-enabled), and
3. if o′ ∈ κC ′(q), then for all mtd ∈ extMtd(class(o′)),

C ′ : q
o′ .mtd(p)−−−−→ q′ such that acq(p)⊆ κC ′ (q)

(all objects of the context can send to any exposed object of the run-time component
a method call within the implicit interface of the class of that exposed object).

It can be checked that C ′ follows the class definition (Def. 1) and �′ remains a con-
text (Def. 11). By the operational rules (Sect. 3.3) and Def. 13, we can obtain the
projected trace t where all objects of the context share the identities of all objects
of the context and exposed objects of the component. Because of point 3, once o′ is
exposed any object of the context o ∈ F can make a method call to o′. By the input-
enabledness assumption, MESSAGESEND can be applied and we get a projected trace
t · o→ o′.mtd(p) ∈ Traces(�). ��

5 Not following the programming to interfaces principle brings a problem called replay [56]. The
replay problem appears when the component exposes some object to an object of the context
whose class is part of the component. Because the implementation of the object is fixed, that
context object can only use the exposed component object in a specific way. In particular, this
context object may only store the exposed component object and openness is not achieved.

104 I.W. Kurnia and A. Poetzsch-Heffter

As stated earlier, we want to bridge classes and closed systems. This goal is achieved
by hiding the internal behavior that happens between objects within the component.
Such a view allows bottom-up reuse of the component, for example, when it is a library
or a framework. Moreover, the view is suitable to deal with open systems, in particular
systems with a non-software environment (e.g., GUI interaction with a human user –
see [48] for more discussion). By using idx, hiding is straightforward to define.

Definition 15 (Component trace semantics). Let � = (C, C0) be a component and
Traces(�) its plain trace semantics, so that L = idx(Traces(�), C0) is the set of lo-
cal objects of �. The component trace semantics, written Traces([C0]), is the trace set
Traces(�)↓O−L .

To distinguish the plain trace semantics of components (Def. 13) from the one where
hiding is performed, we use the notation [C0]. This notation, read as boxed C0, comes
from the way we structure our component instances. A component instance can be
thought of as a box of objects starting from the initial instance of the activator class C0.
By projecting the traces to the set of objects of the context, the above definition only
reflects the observable behavior representing the interaction with the context. The com-
ponent’s users only need to focus on the component’s observable behavior. For example,
the client is only interested in how the server component (as a whole) interacts with it,
not in how the server does its job. As the projection does not change the interaction that
happens on the boundary of the component, the following corollary holds.

Corollary 2. If (C, C0) is a component, then Traces([C0]) is open.

Also of interest is that any trace in a component trace semantics contains at most a single
creation event. This event represents the creation of the initial object of the activator
class. In fact, this event is always the first event of a non-empty trace.

Lemma 4 (Initial creation event). Let � = (C, C0) and Traces([C0]) its component
trace semantics. The following properties hold.
1. ∀e · t ∈ Traces([C0]) •msg(e) = new C0

(trace begins with creation of an instance of C0)
2. ∀e · t · e′ ∈ Traces([C0]) • isMtd(msg(e′))

(no other creation event appears in the trace)

Proof. 1. We assume that initially only an object of the context exists. To instantiate
the component, the initial object of the activator class must be created at some point.
Due to the projection, the first event in any non-empty trace of the component trace
semantics is creation of an instance of the activator class.

2. All other objects within the run-time component are created transitively by the
initial object of the run-time component. These creation events are projected away.

��
Discussion. The term activator class used in this chapter comes from OSGi [60]. In
OSGi model, a component is instantiated by creating an object of a class that imple-
ments the BundleActivator interface, an interface each component is required to im-
plement. The model where the component is instantiated by creating an object of the

Verification of Open Concurrent Object Systems 105

activator class is not uncommon. For example, it coincides with the object adaptor of
the CORBA Component Model [46] and the class factory of COM [40]. Should a need
arise for having more than one initial object, it can be simulated by our model by having
the activator class as a stub that only creates the other objects.

The main question with defining the behavior of components is how we separate the
internal and observable behavior. For this purpose, the notions of boundary enclosing
the objects of a component at run-time and encapsulation are important. With our com-
ponent model, we identify three particular ways to group objects into instances of a
component or run-time component. Following the component definition (Def. 10), we
identify three particular ways to group objects into instances of a component, called
run-time components: static, programmer-defined and dynamic. The division between
static and dynamic stems from how the objects created during execution are organized
within the component instances.

Static Run-Time Component. Given a component (C, C0), its static run-time repre-
sentation contains every object of whose class is in C. As such, grouping the ob-
jects into the component is trivial to define, by following the class of each object.
However, the drawbacks of doing so are numerous. As the run-time component
contains all objects whose class in C, every object is at the boundary. By having all
objects at the boundary, the interactions between these objects are visible. In addi-
tion, components cannot share classes, as there is no way to separate the run-time
instances of intersecting components. In our example, a static run-time component
of the ({Server,Worker},Server) component includes all server and worker ob-
jects. Hence, we cannot focus only on a single server with the workers it creates to
represent the run-time view of the component. Not only the focus on the activator
class is lost, it is also difficult to specify the desired behavior of the component.

Programmer-Defined Run-Time Component. A programmer-defined run-time com-
ponent contains all objects in the way how the programmer defines it by specifying
at the point of creation to which run-time component the newly created object be-
longs to. For example, in CoBox [53], this is done by extending the new statement
with in o to say that the newly created object resides in the same run-time com-
ponent as o. Various other ownership approaches can also be used (see [15] for a
survey). This approach is the most flexible as it provides fine-grained information
which objects are at the boundary, but also more complex to handle.

The task of defining the exact nature of the run-time components can also be
deferred to the specification part. For example, Roth [50, Chap. 4] defines a Reach
predicate to indicate whether some object o is reachable from o′ through field and
array accesses (although recall that concurrent objects are not allowed to directly
access fields of other objects). While staying on the specification level, this ap-
proach offers more precision in stating the current content of some run-time com-
ponent (i.e., allowing to state that some component may forget a reference).

Dynamic Run-Time Component. A dynamic run-time component contains all objects
that are created directly or indirectly by the initial object of the activator class. In
other words, the run-time component is formed from the object creation tree, with
the initial object of the activator class as the root. This gives a more fine-grained
grouping than the static approach, but is less specific than the programmer-defined

106 I.W. Kurnia and A. Poetzsch-Heffter

Worker component
specification

Worker class
specification

verified from
1

Server component
specification

Server class
specification

Worker component
specification

verified from +2

Fig. 6. Verification flow of the Server component

approach. Additionally, we can keep track of which objects are then on the boundary,
while keeping track which new objects are included in the run-time component. This
enables staying on focus on the behavior at the component boundary. After all, the
hidden objects do not appear at the boundary and hence hiding them reduces the
communication with the context. Because of its dynamicity, it is less straight forward
than the static approach to give up front the exact instances of a component. In this
chapter, we follow the dynamic approach of identifying run-time components which
allows the use of the activator class to represent the component.

Our notion of context is similar to the notion of program closure in [50, Chap. 2], where
it is defined as the minimal set of additional class skeletons needed for a set of classes
to compile. The closure is used to create an observer that checks whether method call
invocations maintain the program contract. In our setting, it is not necessary for the
context to be the minimal set because traces involving external events are filtered out
by the projection. That is, the form of this closure is not important.

5 Specification and Verification

Using the semantics of object classes and run-time component characterization based
on the object creation tree, we now specify and verify the functional behavior of the
components. As stated in the introduction, the main goal is to achieve verification of
component specifications from the specifications of the class specifications. Component
specifications that have been verified can be used to verify higher level components.

In terms of our running example, this means we give specifications of the functional
behavior of Server and Worker classes and of the Server and Worker components.
In this chapter, we assume the Server and Worker class specifications to hold, so we
can use them directly in our verification effort. To give a complete verification, the
Server and Worker class implementations given in Sect. 2 must be verified against
their respective class specifications. As the main goal is to prove the Server component
property, we may proceed the verification in two steps, as illustrated by Fig. 6. First, we
verify the Worker component specification from the Worker class specification. Then,
we use the verified Worker component specification together with the Server class
specification to show that the Server component specification holds.

In this section, we describe a specification and verification technique to illustrate
how this goal can be achieved. We provide the specifications for the classes and the

Verification of Open Concurrent Object Systems 107

components, but we only illustrate the second part of the verification effort (i.e., proving
the server component specification holds)6.

5.1 Specification

An ideal specification technique should have a similar way to specify the behavior of
classes and components. Our idea is to generalize the specifications of methods in the
sequential case, which relate pre- to poststates, by relating input traces to output traces.
To realize this idea, we use a specification format similar to the Hoare triple [29]. That
is, the specification is of a triple form {p} D {q}, where p and q are trace assertions and
D is either a class or a component. Informally, this triple means that if an input trace
of D satisfies p, the output trace will satisfy q. In the following, we formally define the
meaning of each part of this specification.

A trace assertion is a first-order logic formula in which the special trace variable $
can be used. The trace variable represents the caller suppressed trace. This suppression,
which yields an event core sequence, reflects the lack of knowledge on the receiver
side (i.e., the entity we are specifying) who the sender of a message is. To achieve
this suppression, we let the function sup transform a trace into caller suppressed trace.
Wherever clear, we use caller suppressed trace and normal trace interchangeably.

Definition 16 (Trace assertion). Let $ be a trace variable representing a trace. Trace
assertions p,q are defined inductively by the following first-order logic clauses:

– Expressions of boolean type are assertions ($ may be present).
– If p,q are assertions and x is a variable, then ¬p, p ∧ q, ∃x : p are also assertions.

Other logical operators, e.g., ∨, =⇒ and ∀, are derived in the usual way. For a trace
assertion p, the function free(p) returns the set of all free variables appearing in p.

To define the semantics of a trace assertion, we substitute all occurrences of the trace
variable with the actual trace. As a generic substitution mechanism, we use the notation
p[x/r] to denote the substitution of all (free) occurrences of a variable x or the trace
variable by some expression or assertion r in a trace assertion p. We assume that all
variables and all substitutions are correctly typed. Using first-order logic, we map the
assertion to boolean values {true,false}. Given a trace t , we write �FOL p[$/sup(t)]
if it is mapped to true, and �FOL p if for any trace t , �FOL p[$/sup(t)]. The FOL index
indicates that the variable assignment is done using the first-order logic semantics.

Example 10. $= 〈this.new Worker · this.do(y) · this.propagate(v,c)〉 is a trace asser-
tion stating that the trace starts with a creation of a Worker object, stored into the free
variable this. Then, the worker is sent a query computation request followed by a result
propagation. Only this sequence appears in the trace.

Using trace assertions as the foundation, a specification triple {p} D {q} is described
as follows. The triple specifies the output trace the instance of class or component D
produces when faced with an input trace satisfying p. Because of their nature, we call p
and q input and output trace assertions, respectively. All variables appearing only in q

6 Interested readers can attempt the first part. A complete proof is available in [37].

108 I.W. Kurnia and A. Poetzsch-Heffter

(possibly due to an explicit creation of another object or an implicit exposure of locally
created objects) should be existentially quantified. As convention, the initial object is
referred to by the variable this. The precise trace semantics of the entity represented by
D is as follows. For each trace t ∈ Traces(D) whose input part satisfies p, its output part
satisfies also q. This specification technique does not give information about the rest of
the traces that do not satisfy p. Despite the underspecification, the specification triple
eliminates traces which satisfy p and do not satisfy q.

To define the triple semantics, a trace t needs to be split into input and output traces.
For that we need the set of objects L that represents entity D at run-time. The function
split(t, L) = (t↓F,caller↓L,callee, t↓L,caller↓F,callee) does exactly so, where F = O− L. The
first part produces the input trace of t by focusing on events in t where the caller is a
foreign object and the callee is the local object. The second part produces the output
trace of t in a similar way.

In the case where the entity represented by D is a class C , L is taken to be a singleton
object o whose class is C . We call {p} C {q} a class triple. The split function ensures
that in the input and output traces that are being considered in the semantics of the
specification triple, only the interaction done by o appears.

Definition 17 (Class triple semantics). Let C be a class and o an object such that
class(o) = C . Traces(C) satisfies {p} C {q}, written � {p} C {q}, if for all maximal
traces t ∈ Traces(C) with split(t, {o}) = (ti, to) the following holds:

�FOL p[$/sup(ti)] =⇒ q[$/sup(to)]

Example 11. The following specification of the Server class states that when a server
is created and a request comes, the server creates a new worker and passes the worker
the query and tells it to start propagating the result.
{ $= 〈this := new Server · this.serve(c,y)〉 }
Server
{ ∃w • $= 〈w := new Worker ·w.do(y) ·w.propagate(null,c)〉 }
From Def. 17 above, the semantics of the specification is a trace set of an object s of
class Server, where for each maximal trace, the input and output parts are as stated in
the specification. The trace set may include traces where all output events appear before
the input events. In this case, the specification allows a worker to be created by the server
before the server receives any request. However, the order of the output events must be
as specified by the output trace assertion. This imprecision is as expected because the
specification abstracts from the actual behavior of the implementation. In particular, the
specification need not precisely describe the exact interleaving that happens.

When D is a component represented by its activator class [C], the set of objects L of
the run-time component needs to be extracted from the semantics. From Lemma 4, in
any trace of Traces([C]) there is only one creation event of the initial object of the
component. Thus, we can define the following function that extracts the set of objects
of the run-time component that lies on the boundary of that run-time component.

Definition 18 (Boundary extraction). Let T be a component trace set. L′ = bound(T)
is the subset of objects of the run-time component, where

Verification of Open Concurrent Object Systems 109

bound(T) =
⋃
t∈T

bound(t), bound([]) = �, and

bound(t·e) =
⎧
⎨
⎩

bound(t)∪ {callee(e)} if msg(e) = new C
bound(t)∪ {caller(e)} ∪ acq(e)− (acq(t)− bound(t))

if isMtd(msg(e))∧ callee(e) /∈ bound(t)

This function works similarly to the idx function (Def. 12), but it deals directly with a
component trace set T as defined in Def. 15. The local object extraction of T is done
by analyzing each trace t in T and combining the result of each analysis. If t ends
with a creation event e, then the callee is part of the run-time component. By definition
of the component trace semantics, there is exactly one creation event visible in any
trace of T which is the creation of the initial object of the component instance. If t
ends with a method call and it is directed to some foreign object, the caller of this
event and all exposed objects in the method call arguments are included. Note that it is
necessary to exclude foreign objects that were exposed to the component which is done
by acq(t)− bound(t). Using the boundary extractor function above, the semantics of
{p} [C] {q}, called a component triple, is defined as follows.

Definition 19 (Component triple semantics). Let [C] represent a component and
B = bound(Traces([C])) the boundary objects of the component. Traces([C]) satis-
fies {p} [C] {q}, written � {p} [C] {q}, if for all maximal traces t ∈ Traces([C]) with
split(t, B) = (ti, to) the following holds:

�FOL p[$/sup(ti)] =⇒ q[$/sup(to)]

Example 12. As a component, the worker replies to the client by merging the partial
result passed on to the component with the computation of the remaining subqueries as
a whole. This property can be specified as follows.
{ $= 〈this := new Worker · this.do(y) · this.propagate(v,c)〉 }
[Worker]
{ $= 〈c.response(merge(v,compute(y)))〉 }
Similar to Ex. 11, the semantics of the specification above only deals with the maximal
traces. The input trace consists of creating a new Worker object, obtaining the request to
do a query and then propagating the computation result. When the input part is satisfied,
the worker component produces a response back to the client by computing the whole
remaining subqueries (following the assumption on compute given in Sect. 2.2) and
merging it with the given partial result.

Usually, we want to cover as much as possible of the behavior of the entity we are
specifying. Thus, its specification is a collection of triples. An implementation satisfies
the specification, if its trace semantics satisfies all triples within the specification.

Definition 20 (Specifications). Let D be a class or a component. A specification for D
is a set of specification triples S = {{p1} D {q1}, . . . , {pn} D {qn}}. Traces(D) satisfies
S, written � S, if ∀({pi} D {qi}) ∈ S• � {pi} D {qi}.
Example 13. The worker class is described using two specification triples, each han-
dling the base and inductive cases, respectively. The first triple handles the case when

110 I.W. Kurnia and A. Poetzsch-Heffter

CONSEQUENCE

p =⇒ p1{p1} D {q1}
q1 =⇒ q

{p} D {q}
BOXING{p} C {q ∧ nonCr($)}
{p} [C] {q}

BOXEDCOMPOSITION{p ∧ i= $} C {q ∧ noSelfExp(i, $)}
{q′} [C ′] {r}

match(q, q′, C ′)
{p} [C] {r}

where i /∈ free(p)∪ free(q)

INDUCTION{p ∧m= 0} [C] {q} match(p′, p, C)
{p ∧m= z∧m > 0∧ i= $} C {p′ ∧m< z∧ noSelfExp(i, $)}

{p} [C] {q}
where i /∈ free(p)∪ free(q)

INVARIANCE{p} D {q}
{p ∧ r} D {q ∧ r}
where consFree(r)

SUBSTITUTION {p} D {q}
{p[x/r]} D {q[x/r]}

where x ∈ free(p)∪ free(q) and consFree(r)

Fig. 7. Inference rules for PSA

the query has exactly one subquery. In this case, the worker sends back to the client the
result of merging the propagated result value with the computation of the subquery.
{ $= 〈this := new Worker · this.do(y) · this.propagate(v,c)〉 ∧ size(y) = 1 }
Worker
{ $= 〈c.response(merge(v,compute(y)))〉 }

In the second case, the query consists of multiple subqueries. In this case, the worker
creates another worker, passes on the rest of the subqueries, then processes the current
subquery. When the computation of the current subquery is finished, the worker merges
the computation result with the previous result it receives and propagates the merged
result to the other worker.
{ $= 〈this := new Worker · this.do(y) · this.propagate(v,c)〉 ∧ size(y)> 1 }
Worker
{ ∃w • $= 〈w := new Worker ·w.do(restQuery(y)) ·

w.propagate(merge(v,compute(fstQuery(y))),c)〉 }

5.2 Verification

The semantics of the specifications includes the open system aspect. Unlike the usual
specification technique where one can refer to the program model, we have only the
class or component name. To handle reasoning between class and component specifica-
tions, a special kind of proof system is needed. The proof system should allow one to
verify component specifications by transitively inferring them from the class specifica-
tions. In this section, we provide a proof system that handles systems of similar nature
to the running example to illustrate the complete picture of our approach.

The proof system PSA presented in Fig. 7 has a few inference rules. Each premise
can be a trace assertion, which is applied to any trace using first-order logic semantics,

Verification of Open Concurrent Object Systems 111

or a specification triple with the semantics as declared in Sect. 5.1. A proof is a tree of
inference rule applications. Each node is a (possibly empty) premise and each edge is a
rule application which in the following will be labeled with the applied inference rule.
The root of the proof is the main goal: a specification triple. The leaves are either valid
trace assertions or assumed class triples.

The rule CONSEQUENCE is a standard Hoare logic rule, where the input trace asser-
tion can be weakened and the output trace assertion can be strengthened. This rule can
be applied to a class or a component D.

BOXING transforms a class triple into a component triple, when the output trace
assertion states that no object is created by the instance of that class. The output trace
assertion uses the predicate nonCr, which checks for the lack of creation event in the
output trace. This rule is derived from Def. 15 where the only object creation event that
can be observed is that of the initial object of the component.

The BOXEDCOMPOSITION rule defines how an object o of class C can be combined
with another component instance of initial class C ′ to create boxed component [C]. For
this rule to be applicable, three premises must hold.

First, the class triple C must guarantee that the object identity will not be exposed.

noSelfExp(i, ec) def= ∀e · ec′ ∈ Pref(i) • callee(e) /∈ acq(ec)

The predicate noSelfExp, short for no self exposure, takes variable i and the trace vari-
able $ representing the input and output traces, respectively. To ensure that no self
exposure is made, the acquaintance of the output is checked against the callee of all
events in the input trace, alias the object o. It guarantees one way interaction between o
and objects of component [C ′] because the current object is not exposed.

Second, the instance of C creates a component whose initial class is C ′. Thus, no
foreign object is created by the instance of [C ′].

Third, the output produced by the object of class C must match the input of the in-
stance of D. In other words, the object of class C exclusively feeds the instance of D in
this particular case. This matching is handled by trace assertion match.

match(q,q′, C ′) def
= q =⇒ ∃o ∈ O • firstCreated(o, $)∧ class(o) = C ′ ∧ q′

The predicate firstCreated checks if the first event is an object creation and o represents
the created object. The predicate classOf checks if the created object is of class C ′. The
match assertion relies on the fact that a class or a component trace starts with an object
creation (see Corollary 1, Lemma 4). This restriction applies because the evaluation of
q′ is done against an input trace, which always starts with an object creation. For match
to hold, the free variables of q and q′ should coincide. Because match is only used to
link output trace assertion q to input trace assertion q′, there is no need to explicitly
check that q represents an output trace assertion. Recall that following the semantics of
trace assertion match is checked against all traces, as it is used as a free standing trace
assertion (i.e., not within a triple).

Example 14. Consider the output assertion of server class specification as described in
Ex. 11 and the input assertion of the worker component as described in Ex. 12.

112 I.W. Kurnia and A. Poetzsch-Heffter

– q = ∃w • $= 〈w := new Worker ·w.do(y) ·w.propagate(null,c)〉
– q′ = $= 〈this := new Worker · this.do(y) · this.propagate(v,c)〉

If we instantiate v in q′ with null (i.e., using the worker component to deal with a
original request sent by the client), the output assertion q and input assertion q′ match.
Hence, �FOL match(q,q′[v/null],Worker).

The last rule is INDUCTION. As the name suggests, this inference rule deals with the
case when multiple objects of the same class are created to handle some input with
parameters of method calls coming to those objects converging into a base case, as in-
dicated by the measure variable m. It is similar to making a recursive call inside an
object. The difference is that the concurrent nature of the objects causes each call may
be processed independently by each created object, possibly optimizing the computa-
tion.

In addition to the inference rules above, PSA also includes some standard auxil-
iary rules: INVARIANCE and SUBSTITUTION. INVARIANCE allows a predicate con-
taining no trace variable to strengthen both input and output trace assertions of a triple.
SUBSTITUTION allows a free variable to be substituted to some predicate or expression
r which must not contain the trace variable. As with CONSEQUENCE, these rules also
apply for class and component triples.

Any meaningful proof system should be sound. A proof system is sound if and only
if its inference rules only derive from some premises conclusions which are valid ac-
cording to the given semantics. In our setting, sound means that each of the rules in
PSA derives valid triples according to the corresponding trace semantics. Because of
the open setting, proving the soundness of PSA is challenging. The soundness proof
comes from our previous work.

Theorem 1 (Soundness [37]). The proof system in Fig. 7 is sound.

Using PSA, we can show that the server component replies back to a request from
a client with the appropriate computation result. In the example below, we verify the
server component triple from server class triple and worker component triple.

Example 15. A specification of the server component stating that a request from the
client is replied by a response to the client with the computed result is as follows.
{ $= 〈this := new Server · this.serve(c,y)〉 }
[Server]
{ $= 〈c.response(compute(y))〉 }
Compared to the server class triple given in Ex. 11, there are two notable differences.
The first is that the represented element is the component [Server]. Second, the out-
put trace assertion directly deals with the expected output behavior of the component.
Therefore, the specification hides how the server achieves the production of the output.
The input assertion remains the same.

By applying the inference rules on the worker component (Ex. 12) and server class
specifications (Ex. 11), we can infer the specification of the server component. That
is, when the server is implemented in a way described by the worker component and
the server class specifications, no matter how the server’s context looks like, the server
behaves as specified. We abbreviate the following assertions used in the specifications.

Verification of Open Concurrent Object Systems 113

– InSrv = InSrvC
def= $= 〈this := new Server · this.serve(c,y)〉

– OutSrv
def= $= 〈w := new Worker ·w.do(y) ·w.propagate(null,c)〉

– InWrkC
def= $= 〈this := new Worker · this.do(y) · this.propagate(v,c)〉

– OutWrkC
def= $= 〈c.response(merge(v,compute(y)))〉

– OutSrvC
def= $= 〈c.response(compute(y))〉

The abbreviations are chosen such that InSrv, for example, represents the input event
core equality of the server class triple, whereas OutWrkC represents the output event
core equality of the worker class triple. The C suffix indicates the assertion is used in a
component triple. We also introduce the function cse, short for core sequence extractor,
to extract the event core sequences from these abbreviations.

To achieve the inference of the server component specification, we work backwards
until the server class and worker component specifications are obtained. The suitable
rule for this inference is BOXEDCOMPOSITION. The input to the server component is
handled fully by the server object, while the output of the server object is captured
completely by the worker component instance. To match the output trace assertion of
the server class triple, the partial result variable in the input trace assertion of the worker
component instance has to be initialized to null.

CMP

{InSrvC∧ i= $} Server {∃w •OutSrv∧ noSelfExp(i, $)}
{InWrkC[v/null]} [Worker] {OutSrvC}

match(∃w •OutSrv, InWrkC[v/null],Worker)

{InSrvC} [Server] {OutSrvC}
As both triples left as proof obligation in the proof tree above are not of the assumed
form, they must be transformed. The proof tree below shows how the server class triple
above can be obtained from the original specification. We need to store the input trace
and transfer it to the output trace assertion of the triple, to determine whether a reference
to the created server object is not exposed. In this example, the core sequence extractor
function is used to get the suppressed input trace that we need. Note that the input trace
assertions of the server class and server component triples are the same.

CNS

INV
{InSrv} Server {∃w •OutSrv}

{InSrv∧ i= cse(InSrv)} Server {∃w •OutSrv∧ i= cse(InSrv)}
InSrv∧ i = $ =⇒ InSrv ∧ i= cse(InSrv)

∃w •OutSrv∧ i = cse(InSrv) =⇒ ∃w •OutSrv∧ noSelfExp(i, $)

{InSrv∧ i= $} Server {∃w •OutSrv∧ noSelfExp(i, $)}
The transformation for the worker component triple is straight forward to obtain. All
occurrences of variable v are substituted by null, which transforms the worker compo-
nent output trace assertion into the server component output trace assertion. As all parts
of the proof tree are closed, the proof of the server component triple is completed.

114 I.W. Kurnia and A. Poetzsch-Heffter

CNS

SUB
{InWrkC} [Worker] {OutWrkC}

{InWrkC[v/null]} [Worker] {OutWrkC[v/null]}
OutWrkC[v/null] =⇒ OutSrvC

{InWrkC[v/null]} [Worker] {OutSrvC}

5.3 Discussion and Related Work

The specification technique can handle any triple where the output trace is exclusively
determined by the input trace, that is, it fits to a triple {i = $} D {R(i, $)} where R
forms a trace assertion based on the input and output traces. Particularly, the input trace
assertion may depend on the exposure of some objects which appear in the output trace
assertion. However, the specification technique is incomplete, as it does not provide
any information on the partial order between each message appearing in the input and
the output traces [62]. Stated differently, the technique is sufficient when interleavings
between the input and output traces are not important.

Techniques for specifying and verifying concurrent behavior are the subject of many
well-known papers. The book by de Roever et al. [49] provides a detailed overview.
Here we only focus on those more related to our work.

Several works have focused on concurrent object or actor models. Specification Di-
agram [54] provides a detailed, graphical way to specify how an actor system behaves.
Our specification technique could be encoded into Specification Diagram by utilizing
their choice operator to go through different kinds of interleaving between input and
output events. However, to check whether a component specification produces the same
behavior as the composition of the specification of its subcomponents one has to per-
form a non-trivial interaction simulation on the level of the state-based operational
semantics. By extending π-calculus ([42]), a May testing ([19]) characterization of
Specification Diagram can be obtained [59].

Ahrendt and Dylla [5] and Din et al. [20,22,21] extended Soundarajan’s work to deal
with concurrent object systems. They considered only finite prefix-closed traces, justi-
fying it by having only finite number of objects to consider in the verification process.
The work Din et al. extended previous work [23] where object creation is not treated. In
particular, Din et al. verified whether an implementation of a class satisfies its triples by
transforming the implementation in a simpler sequential language, applying the trans-
formational method proposed by Olderog and Apt [45]. The main difference to our
approach is the notion of component that hides a group of objects into a single entity.
It avoids starting from the class specifications of each object belonging to a component
when verifying a property of the component.

Other state-based specification and verification techniques for concurrent object sys-
tems have also been developed (e.g., [18,17,24,52,11]). However, they rely strongly on
having the actual implementations, bypassing the intermediate tier that we would like
to have. Apart from [17], they also require the knowledge of the environment.

Misra and Chandy [43], Soundarajan [55] and Widom et al. [62] proposed proof
methods handling network of concurrent processes using traces. Misra and Chandy gave

Verification of Open Concurrent Object Systems 115

a specification technique where the behavior of processes is described by using invari-
ants on the traces. For each trace, a specification states an invariant over the next event
that happens afterwards. The semantics of the specification relies on the prefix-closed
properties of the trace semantics. Our specification technique differs from theirs by dis-
tinguishing the treatment of input and output events. Soundarajan related invariants on
process histories of similar style to Misra and Chandy’s to the axiomatic semantics of a
parallel programming language. Widom et al. discussed the necessity of having prefix-
closed trace semantics and partial ordering between messages of different channels to
reach a complete proof system. For this reason, Misra and Chandy’s proof system (and
also ours) is incomplete. The setting used in these papers deal only with closed systems
of fixed finite processes (and channels) and, because of their generality, make no use of
the guarantees and restrictions of the concurrent object model.

De Boer [10] presented a Hoare logic for concurrent processes that communicate by
message passing through FIFO channels in the setting of Kahn’s deterministic process
networks ([36]). He described a similar two-tier architecture, where the assertions are
based on local and global rules. The local rules deal with the local state of a process,
whereas the global rules deal with the message passing and creation of new processes.
However, they only work for closed systems.

Classical models CSP [30], CCS [41] and π-calculus [42] allow specifying inter-
actions among processes. Logics proposed, e.g., in [38] and [57] allow reasoning on
CSP and CCS, respectively, while π-calculus models are usually analyzed by means
of bisimulation. But because of their minimalistic approach, they are too abstract for
two-tier verification. A possibility to apply these models is on the upper level tier (i.e.,
verifying component/system specifications from class specifications). However, show-
ing the connection between component/system specifications and class specifications
requires a significant adaptation to the setting. For example, Sangiorgi and Walker de-
voted a chapter in the final part of their book [51] to show how to restrict π-calculus to
simulate object-orientation.

6 Conclusion

We have seen in this chapter a formal system that covers a part of open concurrent ob-
ject systems. An attempt is made to describe what it means to compose classes (and
smaller components) into components and how to use the composition to verify func-
tional properties of the composed entity in an open setting. The notion of class compo-
sition chosen in this chapter is closely related to popular component frameworks. While
it is clear that components should have interfaces and hide behavior, connecting these
concepts to verification is not clear. The approach given here suggests that to obtain a
sound verification technique which makes use of components, one needs to be explicit
about the class of properties and how they are specified.

The investigation on how to apply the component notion for this verification purpose
is still ongoing. While the connection between the first layer of verification (i.e., from
the implementation to the class specification) given in the introduction is dealt with by
the latest research [5,20,22], the connection between the proposed specification tech-
niques is not yet explored. Furthermore, the presented proof system is useful for one

116 I.W. Kurnia and A. Poetzsch-Heffter

way pipeline communicating components. To extend the proof system into other cases,
other common patterns of communication between components need to be considered.
Two particular extensions of interest are the sound rules to compose more than two
components/classes and two-way communication between components. And closer to
ABS, it is also of interest to investigate patterns involving futures.

Acknowledgment. We thank Yannick Welsch and anonymous reviewers for sugges-
tions to improve the presentation.

References

1. Ábrahám-Mumm, E., de Boer, F.S., de Roever, W.-P., Steffen, M.: Verification for Java’s
reentrant multithreading concept. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002.
LNCS, vol. 2303, pp. 5–20. Springer, Heidelberg (2002)

2. Ábrahám, E., Grabe, I., Grüner, A., Steffen, M.: Behavioral interface description of an object-
oriented language with futures and promises. J. Log. Algebr. Program. 78(7), 491–518 (2009)

3. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge (1986)

4. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation. J.
Funct. Program. 7(1), 1–72 (1997)

5. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous objects.
Sci. Comput. Program. 77(12), 1289–1309 (2012)

6. Armstrong, J.: Erlang. Commun. ACM 53, 68–75 (2010)
7. Arts, T., Dam, M.: Verifying a distributed database lookup manager written in Erlang. In:

Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 682–700. Springer, Heidel-
berg (1999)

8. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
9. Baker Jr., H.G., Hewitt, C.: The incremental garbage collection of processes. SIGART Bull.,

55–59 (August 1977)
10. de Boer, F.S.: A Hoare logic for dynamic networks of asynchronously communicating deter-

ministic processes. Theor. Comput. Sci. 274(1-2), 3–41 (2002)
11. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De Nicola, R.

(ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007)
12. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus on

Streams, Interfaces, and Refinement. Springer, New York (2001)
13. Cardelli, L.: Class-based vs. object-based languages. PLDI Tutorial (1996)
14. Cenciarelli, P., Knapp, A., Reus, B., Wirsing, M.: An event-based structural operational se-

mantics of multi-threaded Java. In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of Java.
LNCS, vol. 1523, pp. 157–200. Springer, Heidelberg (1999)

15. Clarke, D., Östlund, J., Sergey, I., Wrigstad, T.: Ownership types: A survey. In: Clarke, D.,
Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Programming. LNCS, vol. 7850,
pp. 15–58. Springer, Heidelberg (2013)

16. Clinger, W.D.: Foundations of Actor Semantics. Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, MA (1981)

17. Dam, M., Fredlund, L.-Å., Gurov, D.: Toward parametric verification of open distributed
systems. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS,
vol. 1536, pp. 150–185. Springer, Heidelberg (1998)

18. Darlington, J., Guo, Y.: Formalising actors in linear logic. In: OOIS, pp. 37–53 (1994)

Verification of Open Concurrent Object Systems 117

19. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput. Sci. 34,
83–133 (1984)

20. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed sys-
tems: Component reasoning for concurrent objects. J. Log. Algebr. Program. 81(3), 227–256
(2012)

21. Din, C.C., Dovland, J., Owe, O.: An approach to compositional reasoning about concurrent
objects and futures. Research Report 415 (2012)

22. Din, C.C., Dovland, J., Owe, O.: Compositional reasoning about shared futures. In: Eleft-
herakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 94–108.
Springer, Heidelberg (2012)

23. Dovland, J., Johnsen, E.B., Owe, O.: Verification of concurrent objects with asynchronous
method calls. In: SwSTE, pp. 141–150. IEEE Computer Society (2005)

24. Duarte, C.H.C.: Proof-Theoretic foundations for the design of actor systems. Mathematical
Structures in Computer Science 9(3), 227–252 (1999)

25. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

26. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and Compu-
tational Biology. Cambridge University Press (1997)

27. Hähnle, R.: The Abstract Behavioral Specification language: A tutorial introduction. In: de
Boer, F., Bonsangue, M., Giachino, E., Hähnle, R. (eds.) FMCO 2012. LNCS, vol. 7866,
pp. 1–37. Springer, Heidelberg (2013)

28. Haller, P.: On the integration of the actor model in mainstream technologies: The Scala per-
spective. In: AGERE! 2012, pp. 1–6. ACM, New York (2012)

29. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–
580 (1969)

30. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978)

31. International Telecommunication Union: Open distributed processing – reference models
parts 1–4. Tech. rep., ISO/IEC (1995)

32. Johnsen, E.B., Blanchette, J.C., Kyas, M., Owe, O.: Intra-Object versus Inter-Object: Con-
currency and reasoning in Creol. Electr. Notes Theor. Comput. Sci. 243, 89–103 (2009)

33. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core language for
abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.)
FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

34. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for distributed
concurrent systems. Theor. Comput. Sci. 365(1-2), 23–66 (2006)

35. Jonsson, B.: A fully abstract trace model for dataflow and asynchronous networks. Dis-
tributed Computing 7(4), 197–212 (1994)

36. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP Congress,
pp. 471–475 (1974)

37. Kurnia, I.W., Poetzsch-Heffter, A.: A relational trace logic for simple hierarchical actor-
based component systems. In: AGERE! 2012, pp. 47–58. ACM, New York (2012),
http://doi.acm.org/10.1145/2414639.2414647

38. Lamport, L., Schneider, F.B.: The “Hoare logic” of CSP, and all that. ACM Trans. Program.
Lang. Syst. 6(2), 281–296 (1984), http://doi.acm.org/10.1145/2993.357247

39. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
40. Microsoft: Component Object Model (COM) (January 1999),

http://www.microsoft.com/com/default.asp
41. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secau-

cus (1982)

http://doi.acm.org/10.1145/2414639.2414647
http://doi.acm.org/10.1145/2993.357247
http://www.microsoft.com/com/default.asp

118 I.W. Kurnia and A. Poetzsch-Heffter

42. Milner, R.: Communicating and Mobile Systems – The π-Calculus. Cambridge University
Press (1999)

43. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Software Eng. 7(4),
417–426 (1981)

44. Nain, S., Vardi, M.Y.: Trace semantics is fully abstract. In: LICS, pp. 59–68. IEEE Computer
Society (2009)

45. Olderog, E.R., Apt, K.R.: Fairness in parallel programs: the transformational approach. ACM
Trans. Program. Lang. Syst. 10(3), 420–455 (1988)

46. OMG: CORBA component model v4.0 (2006), http://www.omg.org/spec/CCM/
47. Philippsen, M.: A survey of concurrent object-oriented languages. Concurrency - Practice

and Experience 12(10), 917–980 (2000)
48. Poetzsch-Heffter, A., Feller, C., Kurnia, I.W., Welsch, Y.: Model-based compatibility check-

ing of system modifications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS,
vol. 7609, pp. 97–111. Springer, Heidelberg (2012)

49. de Roever, W.P., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers,
J.: Concurrency Verification: Introduction to Compositional and Noncompositional Methods.
Cambridge Tracts in Theoretical Computer Science, vol. 54. Cambridge University Press
(2001)

50. Roth, A.: Specification and Verification of Object-Oriented Software Components. Ph.D.
thesis, University of Karlsruhe (2006)

51. Sangiorgi, D., Walker, D.: The Pi-Calculus – A Theory of Mobile Processes. Cambridge
University Press (2001)

52. Schacht, S.: Formal reasoning about actor programs using temporal logic. In: Agha, G., De
Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 445–460. Springer, Hei-
delberg (2001)

53. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent compo-
nents. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299. Springer, Heidel-
berg (2010)

54. Smith, S.F., Talcott, C.L.: Specification diagrams for actor systems. Higher-Order and Sym-
bolic Computation 15(4), 301–348 (2002)

55. Soundarajan, N.: A proof technique for parallel programs. Theoretical Computer Sci-
ence 31(1-2), 13–29 (1984)

56. Steffen, M.: Object-Connectivity and Observability for Class-Based, Object-Oriented Lan-
guages. Habilitation thesis, Technische Faktultät der Christian-Albrechts-Universität zu Kiel,
281 pages (Jul 2006)

57. Stirling, C.: An introduction to modal and temporal logics for CCS. In: Yonezawa, A., Ito, T.
(eds.) UK/Japan WS 1989. LNCS, vol. 491, pp. 1–20. Springer, Heidelberg (1991)

58. Talcott, C.L.: Composable semantic models for actor theories. Higher-Order and Symbolic
Computation 11(3), 281–343 (1998)

59. Thati, P., Talcott, C., Agha, G.: Techniques for executing and reasoning about specification
diagrams. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
pp. 521–536. Springer, Heidelberg (2004)

60. The OSGi Alliance: OSGi core release 5 (2012), http://www.osgi.org
61. Vasconcelos, V.T., Tokoro, M.: Traces semantics for actor systems. In: Zatarain-Cabada,

R., Wang, J. (eds.) ECOOP-WS 1991. LNCS, vol. 612, pp. 141–162. Springer, Heidelberg
(1992)

62. Widom, J., Gries, D., Schneider, F.B.: Completeness and incompleteness of trace-based net-
work proof systems. In: POPL, pp. 27–38 (1987)

63. Yonezawa, A., Briot, J.P., Shibayama, E.: Object-oriented concurrent programming in AB-
CL/1. In: OOPSLA, pp. 258–268 (1986)

http://www.omg.org/spec/CCM/
http://www.osgi.org

Automatic Inference of Bounds

on Resource Consumption

Elvira Albert1, Diego Esteban Alonso-Blas1, Puri Arenas1, Jesús Correas1,
Antonio Flores-Montoya2, Samir Genaim1, Miguel Gómez-Zamalloa1,

Abu Naser Masud3, German Puebla3, José Miguel Rojas3,
Guillermo Román-Dı́ez3, and Damiano Zanardini3

1 Complutense University of Madrid (UCM), Spain
2 Technische Universität Darmstadt (TUD), Germany

3 Technical University of Madrid (UPM), Spain

Abstract. In this tutorial paper, we overview the techniques that un-
derlie the automatic inference of resource consumption bounds. We first
explain the basic techniques on a Java-like sequential language. Then,
we describe the extensions that are required to apply our method on
concurrent ABS programs. Finally, we discuss some advanced issues in
resource analysis, including the inference of non-cumulative resources
and the treatment of shared mutable data.

1 Introduction

Having information about the execution cost of programs, i.e., the amount of
resources that the execution will require, is useful for many different purposes,
including program optimization, verification and certification. Reasoning about
execution cost is difficult and error-prone. Therefore, it is widely recognized
that cost analysis, sometimes also referred to as resource analysis or automatic
complexity analysis, is quite important. COSTA [46,45]1 is a state-of-the-art
cost and termination analyzer which automates this task. The system is able to
infer upper and lower bounds on the resource consumption of a large class of
programs. Given a program P , the analysis results allow bounding the cost of
executing P on any input data x without having to actually run P (x).

The first successful proposal for automatically computing the complexity of
programs was the seminal work of Wegbreit [42]. Since then, a number of cost
analysis frameworks have been proposed, mostly in the context of declarative
programming languages (functional programming [31,36,41,37,18] and logic pro-
gramming [21,33]). Cost analysis of imperative programming languages has re-
ceived significantly less attention. It is worth mentioning the pioneering work
of [1]. To the best of our knowledge, COSTA has been the first system which
automatically infers bounds on cost for a large class of Java-like programs, get-
ting meaningful results. The system is implemented in Prolog (it runs both on

1 Further information of the system is available at
http://costa.ls.fi.upm.es/~costa/costa/costa.php

E. Giachino et al. (Eds.): FMCO 2012, LNCS 7866, pp. 119–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://costa.ls.fi.upm.es/~costa/costa/costa.php

120 E. Albert et al.

Ciao [26] and SWI Prolog [43]) and uses the Parma Polyhedra Library [17] for
manipulating linear constraints.

1.1 Organization of the Tutorial

We use the classical approach to static cost analysis which consists of two phases.
First, given a program and a cost model, the analysis produces cost relations,
i.e., a system of recursive equations which capture the cost of the program in
terms of the size of its input data. Section 2 overviews this first phase which
requires, among other things, the translation of the imperative program into
an intermediate representation and the inference of size relations. In a second
phase the cost relations are solved into a closed-form, i.e., an expression which
is not in recursive form and that can be directly evaluated. Section 3.1 describes
our approach to infer closed-form upper bounds on the worst-case cost and
Section 3.2 the techniques to infer closed-form lower bounds on the best-case
cost. Known limitations of this classical approach are described in Section 3.3,
where we also compare our approach with amortized cost analysis.

Section 4 overviews the extensions needed to infer the resource consumption
of ABS programs [6] which adopt the concurrent objects concurrency model.
The main challenge is in handling concurrent interleavings in a sound and pre-
cise way. This requires redefining the size analysis component for the concurrent
objects model. Also, the fact that concurrent objects represent distributed com-
ponents brings in a new notion of cost which is not monolithic (like in traditional
sequential applications) but rather it captures the cost attributed to each dis-
tributed component separately. These two issues are explained in Section 4.1.
The precision of the resource analysis of concurrent languages can be improved if
we infer may-happen-in-parallel (MHP) relations that over-approximate the set
of program points that may execute in parallel. Section 4.2 describes the MHP
analysis integrated in COSTABS [4]. COSTABS is the extension of the COSTA
system to analyze ABS programs.

Section 5 discusses advanced issues in resource analysis. We start by describ-
ing the analysis of memory consumption in Section 5.1. Memory consumption is
different from other type of (cumulative) resources if the language has a garbage
collector. We will see that the information on which objects are garbage col-
lected can be integrated in the analysis. As a follow-up, we will discuss in Sec-
tion 5.2 the inference of the task-level of a concurrent program which tries to
over-approximate the number of tasks that can be simultaneously executing in
a concurrent system. The similarity with the heap consumption analysis is that
both types of resources are non-cumulative. Another advanced issue that we
describe in Section 5.3 is the treatment of the shared mutable data in resource
analysis. This is currently one of the main challenges in static analysis of object-
oriented programs. Finally, Section 5.4 overviews the design of an incremental
resource analysis which, given some previous analysis results and a change in a
program, is able to recompute the analysis information by reanalyzing only the
components affected by the changes.

Section 6 concludes and points out directions for future work.

Automatic Inference of Bounds on Resource Consumption 121

2 From Programs to Cost Relations

This section describes how a program is analyzed in order to produce a cost
relation system which defines its resource consumption. The analysis consists of
a number of steps: (1) the program is transformed into a rule-based representation
which facilitates the subsequent steps of the analysis without losing information
about the resource consumption; (2) size analysis and abstract compilation are
used to generate size relations which describe how the size of data changes during
program execution; (3) the chosen cost model is applied to each instruction in
order to obtain an expression which represents its cost; (4) finally, a cost relation
system is obtained by joining the information gathered in the previous steps. Let
us illustrate these steps by means of an example.

Rule-Based Intermediate Representation. The input language of the programs
that COSTA analyze is Java bytecode [32]. The bytecode program is first trans-
formed into a recursive intermediate representation (RBR) [8]. The transfor-
mation starts by constructing the Control Flow Graph (CFG) of the program.
Each block of the CFG is transformed into one rule in the RBR. Iteration (i.e.
for/while/do loops) is transformed into recursion and conditional constructs are
represented as multiple (mutually exclusive) guarded rules. Bytecode instruc-
tions for method calls are transformed into the call of the corresponding rule
in RBR and recursive method calls are thus transformed into recursions. These
transformations determines the recursive structure of the resulting cost rela-
tion system (CR). Each rule in the RBR program will result in an equation
in the CR. Intermediate programs resemble declarative programs due to their
rule-based form. However, they are still imperative, since they use destructive
assignment and store data in mutable data structures (stored in a global memory
or heap).

Example 1. Fig. 1 shows at the top the Java source code of our running example.
The Java code is shown only for clarity, since the analysis works directly on the
bytecode. The example implements a sorting algorithm over an input array of
integers. At the bottom of Fig. 1, the CFG and the RBR corresponding to the
inner loop in the example are shown. The parameters in the rules of the RBR
are tupled into input parameters corresponding to the variables on which they
operate on, and the single output parameter corresponding to the return value
of the rules. The CFG contains the bytecode instructions of the original input
program. The entry rule to the loop is while1. Its input arguments are the array
a and local variables j and v and its output argument is the possibly modified
array. Procedures while2 and while3 correspond to the two conditions of the loop
and both are defined by two mutually exclusive guarded rules. The iterative
structure of the loop is preserved by the recursive call to while1 in the second
while3 rule.

Cost Models. A cost model M determines the cost (a natural number) of each
basic instruction b of the language. COSTA incorporates, among others, the
following cost models:

122 E. Albert et al.

stat ic void sort(int a[]) {

for (int i = a.length -2; i>=0; i--)

{

q© int j = i+1;

int v = a[i];

while (j<a.length && a[j]<v) {

p© a[j-1] = a[j];

j++;

}

a[j-1]=v;

}

}

while1(〈a, j, v〉, 〈a′〉) ← while2(〈a, j, v〉, 〈a′〉).
while2 (〈a, j, v〉, 〈a〉) ← j≥a.length.
while2 (〈a, j, v〉, 〈a′〉) ← j<a.length,

while3 (〈a, j, v〉, 〈a′〉.
while3 (〈a, j, v〉, 〈a〉) ← a[j]≥v.
while3 (〈a, j, v〉, 〈a′〉) ← a[j]<v,

a[j − 1]=a[j], j=j + 1,
while1 (〈a, j, v〉, 〈a′〉).

Fig. 1. Running Java example, Control Flow Graph and RBR

– Number of instructions: we have that Mi(b) = 1, i.e., each bytecode instruc-
tion b in the rule-based program counts 1;

– Number of calls to a method : calls to methods in bytecode are of the form
invoke method name, thusMc(b) = 1 if b ≡ invoke m; otherwiseMc(b) = 0.

– Heap consumption: Mh(b) = size(C) if b ≡ new C, otherwise Mc(b) = 0,
where size(C) returns the amount of memory allocated in the heap when
executing new C.

Generation of Cost Relations. Given a program P (in RBR form) and a cost
model M, we automatically generate a cost relations system (CR) which defines
the cost of executing the program on some input x w.r.t. the selected cost model
M. CR are basically an extended form of recurrence relations. A CR is defined by
a finite set of equations of the form 〈c(x̄) = e, ϕ〉, where e is a cost expression and
ϕ is a set of linear constraints which define the applicability conditions for the
equations and the size relations among the variables. Variables in the equations
represent the “sizes” of the corresponding data in the program according to
the selected size measure [19]. Each program variable is abstracted using a size
measure such that every non-integer value is represented as a natural number.
Classical size measures used for non-integer types are: array length for arrays,
the length of the longest reference path for linked data structures, etc. In our
running example, arrays are abstracted to their length. Thus, variable a in the

Automatic Inference of Bounds on Resource Consumption 123

CR represents the length of the array a. Note that due to this choice of size
abstraction, we cannot observe the values stored in the elements of the array.
All information about them is not present in the CR.

The inference of ϕ is defined as a fixpoint computation which comprises two
steps: First, abstract compilation of the program replaces bytecode instructions
in the RBR by size constraints. Then, size analysis infers size-relations between
the states at different program points, i.e., it approximates how the sizes of
variables change from one call in the cost relation to another. Analysis is often
done by obtaining an abstract version of the program by relying on abstract
interpretation [20]. In Fig. 2, such size relations are shown to the right of the
equations.

Example 2. Let us assume that q© (resp. p©) represents the cost of executing the
body of the for excluding the cost of the inner loop (resp. the cost of executing
the body of the while loop). Here, q© and p© are symbolic cost expressions
(or constants) and we assume this for simplicity at this stage. Fig. 2 shows
the resulting CR for the running example of Fig 1. Here, variables are constraint
variables corresponding to those of the original rule, e.g. i and i′ both correspond
to values of variable i, but at different program points. Instructions are replaced
by linear constraints. Array a is abstracted to its length a. Thus, the first rules
for while1 become non-deterministic, as it is not possible to observe the array
elements. Output variables are removed by inferring input-output size relations.

sort(a) = for(a, i) {i=a−2, a≥0}
for(a, i) = 0 {i<0}
for(a, i) = q©+while1(a, j)+for(a′, i′) {i≥0, j=i+1, i′=i−1,a′=a}

while1(a, j) = 0 {j≥a}
while1(a, j) = 0 {j<a}
while1(a, j) = p©+while1(a

′, j′) {j<a, j′=j+1, a′=a}

Fig. 2. CR from example in Fig 1

In practice, the process of generating cost relations additionally involves sev-
eral other static analysis techniques. In particular, class analysis is performed to
compute the reachable code; nullity and array bound analysis for dead code elim-
ination, slicing to eliminate variables which are irrelevant to cost and cyclicity
analysis to identify cyclic data structures.

3 From Cost Relations to Closed-Form Bounds

Though CRs are simpler than the programs they originate from, since all vari-
ables are of integer type, in several respects they are not as static as one would

124 E. Albert et al.

expect, namely: (1) in order to obtain a concrete bound, for a given input, we
still need to evaluate the CRs, and moreover, due to the nondeterministic nature
of CRs, such evaluation must consider all possibilities and select the worst/best
among them; and (2) CRs do not provide a clear insight on the complexity class
to which the resource consumption belongs, e.g., polynomial, exponential, etc.
For these reasons, closed-form bounds, which are functions composed from sim-
ple arithmetic expressions, are preferable. This form makes it possible to address
the above two issues efficiently. COSTA includes a solver called PUBS, that is
encharged of solving CRs into closed-form upper and lower bounds.

Solving CRs into closed-form (lower or upper) bounds in PUBS is done in
two phases. In the first phase, the CRs are simplified such that all recursions
are direct (i.e. cycles in the call graph are of length one), which is achieved
by applying partial evaluation [29] in order to unfold intermediate equations.
After this step, each iterative or recursive construct in the original program
is represented by a single directly recursive CR. The CRs of Fig. 2 are given
in this form. In the second phase, the CRs are solved into closed-form bounds
in a compositional way, by handling one CR at a time, in a reversed order to
the calling relation. E.g., for the CRs of Fig. 2 the solving proceeds as follows:
it solves CR while1; substitutes the resulting bound in the CR for ; solves CR
for ; substitutes the resulting bound in CR sort ; and finally solves CR sort .
These two phases are common for inferring both upper and lower bounds, the
difference is in how each CR (that does not call any other CRs, i.e., standalone),
in the second phase above, is solved. This is discussed in sections 3.1 and 3.2.
Sec. 3.3 discusses programs whose cost cannot be modeled precisely with CRs,
and explain a corresponding solution.

Note that a common feature to all solving methods, that we describe in this
section, is that they heavily rely on the use of program analysis techniques. This,
we believe, is the most important factor that made COSTA succeed where other
previous cost analyses had failed.

3.1 Upper Bounds

PUBS includes two approaches for solving CRs into closed-form upper-bounds.
They have different applicability and precision properties. In what follows we
explain the essentials of both approaches.

We start by intuitively explaining the first approach using the CRs of Fig. 2,
starting with the standalone CR while1. Let a0 and j0 be unknown initial values,
for a and j respectively, with which while1 is called. Solving this CR is done by
inferring an upper-bound f̂(a0, j0) on the number of times that the recursive

equation can be applied, when evaluating while1(a0, j0), then, f̂(a0, j0) ∗ p© is
guaranteed to be an upper-bound for while1(a0, j0) since all applications of the

recursive equation contribute the constant symbol p©. Inferring f̂(a0, j0) auto-
matically can be done by relying on techniques from the field of termination
analysis, such as synthesis of ranking functions [34]. For the case of while1, we

automatically infer f̂(a0, j0) = nat(a0−j0), where nat(v) = max(v, 0), and thus,

Automatic Inference of Bounds on Resource Consumption 125

nat(a0 − j0) ∗ p© is an upper-bound for while1(a0, j0). The nat function is used
to lift negative values to zero because negative evaluations of a0− j0 means that
the number of times the recursive equation of while1 applied in an evaluation is
zero.

Next we proceed to solve the CR for . First we substitute the upper-bound of
while1 in the CR of for , which converts it into standalone

for (a, i) = 0 {i<0}
for (a, i) = q©+ nat(a− j) ∗ p©+for(a′, i′) {i≥0, j=i+1, i′=i−1,a′=a}

In this case, f̂(a0, i0) = nat(i0 − 1) is an upper-bound on the number of times
that the recursive equation can be applied, when evaluating for(a0, i0). Assuming
that we have a function ê(a0, i0) such that it is guaranteed to be bigger than any

instance of q© + nat(a − j) ∗ p©, then f̂(a0, i0) ∗ ê(a0, i0) is an upper-bound
for for (a0, i0). Let us explain how to automatically compute ê(a0, i0). Since
q© + nat(a − j) ∗ p© takes its maximum values when a − j is maximal, it is
enough to compute an upper-bound on a−j (in terms of a0 and j0). This can be
done using invariant generation and linear programming as follows: (1) we infer
an invariant Ψ that relates the initial values a0 and i0 to the values of a and i at
any call for (a, i), which is Ψ = {a=a0, i0≥i} in this case; and (2) the maximum
value to which a−j can be evaluated is obtained applying the recursive equation
in the context of Ψ , and asking what is the maximum of a−j for this application.
This is equivalent to solving the following parametric integer programming [22]
problem:

maximize a−j w.r.t

{a=a0, i0≥i} ∧ {i≥0, j=i+1, i′=i−1,a′=a} and the parameters a0, i0

which results in a0− 1. Then, ê(a0, i0) = q©+nat(a0− 1)∗ p©, and thus nat(i0+
1) ∗ (q© + nat(a0 − 1) ∗ p©) is an upper-bound for CR for . An upper-bound
nat(a0− 1) ∗ (q©+ nat(a0− 1) ∗ p©) for CR sort is then obtained by substituting
the one of for in the corresponding equation. Note that this approach is general
enough to handle the CRs which is constructed with possible multiple equations
having possible multiple recursive calls. E.g, if CR while1 had two recursive
calls, then it would obtain the upper-bound 2nat(a0−j0) ∗ p© – For more details
see [6]. Note also that PUBS provides a mechanism for converting the above non-
asymptotic bounds to asymptotic ones [2], e.g., for the case of sort it computes
O(nat(a0)

2 ∗ p©+ nat(a0) ∗ q©).
In the above approach, the contributions of all applications of the recursive

equation are approximated by the same amount. E.g., in the case of CR for ,
all instances of q©+ nat(a − j) ∗ p© are approximated by q©+ nat(a0 − 1) ∗ p©,
while in practice this happens only in the last application, when j = 1 (i.e.,
when i = 0 since j = i + 1). This leads to some imprecision that might be
crucial for some applications. To overcome this imprecision, PUBS provides an
alternative approach that is based on simulating the contributions of the different
applications using sequences (arithmetic, geometric, etc.). E.g., in the case of CR

126 E. Albert et al.

while1(a, j, λ) =0 {j≥a}
while1(a, j, λ) =0 {j<a}
while1(a, j, λ) = p©+while1(a

′, j′, λ′) {j<a, j′=j+1, a′=a, λ′ = λ+ 1}

Fig. 3. CR after instrumenting counter variables in the CRs in Fig 2

for , it first infers that the difference between the contributions of two consecutive
application is at least d̂ = 1, and then it considers the arithmetic sequence
û1 = ê(a0, i0), ûi = ûi−1 − d̂, and sum the first f̂(a0, i0) elements (which are
positive) of this sequence. This sum is guaranteed to be an upper-bound for

for (a0, i0) since the equation is applied at most f̂(a0, i0) times, and moreover
the sequence starts from the maximum value ê(a0, i0). For the case of CR for
we obtain 1

2 ∗ p© ∗ (nat(a0 − 1) ∗ (nat(a0 − 1) − 1)) + q© ∗ nat(a0 − 1) which is
more precise than what we have obtained above. Note, however, that they are
asymptotically equivalent. In practice, the summation is computed by solving a
corresponding recurrence relation using a computer algebra system – For more
details see [14].

3.2 Lower Bounds

In the latter approach [14], the inference of LBs is a dual problem to that of
inferring UBs. The main difference is that one has to use (new) techniques for
inferring LBs on the number of iterations and obtaining the best-case cost of
each iteration. LB on the number of iterations can be inferred by instrumenting
the given CR and inferring an invariant on that CR. First, the arguments of
each head of the given CR are augmented with a new counter variable λ that
is incremented by 1 in each recursive call of that CR. Next, an invariant Ψ is
inferred for this new CR such that Ψ holds between an initial call with 0 as the
initial counter value and any other call to the new CR with counter variable
λ. Then, the LB on the number of iterations is obtained by minimizing λ w.r.t
Ψ and ϕ0, where ϕ0 is the set of constraints in the base-case of the new CR.
Minimization of λ can be done using parametric integer programming or by
looking syntactically λ ≥ l in Ψ ∧ ϕ0 where l is over the initial arguments.

Example 3. Let us consider the CR while1 in Fig. 2. We now instrument it with
the counter variable λ as shown in Fig. 3. The invariant Ψ between an initial
call while1 (a0, j0, 0) and another call while1 (a, j, λ) is Ψ ≡ {j ≥ j0, a = a0, λ =
j−j0}. λ is minimized to 0 w.r.t Ψ and the base-case constraints (j ≥ a∨j < a).
The LB on the iterations of for obtained is nat(i0 + 1) where i0 is the initial
value of i.

The best-case cost in each iteration is obtained by transforming the given CR
into a best-case recurrence relation (RR for sort). Suppose 〈C(x̄) = e+C(x̄′), ϕ〉
be any CR and e1, · · · , en be the costs contributed by e along the n iterations
of C(x̄). In order to obtain the LB cost for C, first, a LB ň on n (i.e. ň ≤ n)

Automatic Inference of Bounds on Resource Consumption 127

is obtained (as above). Then, a series of costs u1, · · · , uň such that ui ≤ ei for
all 1 ≤ i ≤ ň are obtained, and then u1 + · · · + uň is the LB of C. When e is
a simple linear expression, the novel idea is to view u1, · · · , uň as an arithmetic
sequence that starts from u1 ≡ ě and each time increases by ď , i.e., ui =
ui−1 + ď where ě is the minimization of e, and ď is an under-approximation of
all di = ei+1 − ei. Minimization of e, i.e. ě, can be obtained by using parametric
integer programming w.r.t an appropriate invariant. When e is a complex non-
linear expression, e.g., l ∗ l′, it can be approximated by approximating each sub-
expressions (which are linear) separately. Technically, the summation u1+· · ·+uň

can be approximated by transforming the CR into a RR whose closed-form
solution is the LB cost after instantiating the recurrence counter by ň.

Example 4. Let us consider again the CR in Fig. 2. The LB cost of while1 is
0 since the LB on the iterations of while1 is 0 (see example 3). After sub-
stituting the cost of while1 , the recursive equation for CR for is 〈for(a, i) =
q©+for(a′, i ′), {i≥0 , j=i+1 , i ′=i−1 ,a′=a}〉. Here, ď = 0 as cost q© is con-
stant and ň = nat(i0 + 1). Next, the RR of for is 〈Pfor (0) = 0, Pfor (N) =
q© + Pfor (N − 1)〉 whose closed-form solution is E = q© ∗ N , and LB cost is
q© ∗ nat(i0 + 1) (after replacing N by nat(i0 + 1) in E). Finally, the LB cost of
sort(a0) is q©∗nat(a0−1). This is the LB that we have expected, since when the
array is sorted, the inner loop does not perform any iteration and the best-case
cost is linear on the length of the array.

3.3 Amortised Cost Analysis

The classical approach of COSTA is based on assuming that the cost of a proce-
dure is solely determined by the size of its input data. In some procedures, there
is also a codependency between the outputs and the cost, which may be crucial
to infer precise cost bounds. Yet, since CRS do not model this codependency,
for such programs the COSTA approach necessarily infers imprecise bounds.

Example 5. Consider the program of Fig. 4 (left), adapted from [40], where ∗
in the guard of the while loop corresponds to a nondeterministic evaluation
of true or false. This nondeterministic choice is reflected in the constraints
of equation rpop(s) = 0 in Fig. 4 (right) as the while loop can terminate for
any value of s ≥ 0. The procedure main admits the UB r©∗s, but COSTA
gets the asymptotically imprecise UB r©∗s∗m instead. The reason is that the
nondeterministic procedure rpop sets up a codependency between its cost and s′,
its return value: a possible execution of rpop(s) consumes r©∗s and returns s′=0;
another one returns s′=s and consumes zero; but no one both consumes r©∗s
and also returns s′=s. COSTA abstracts the program into the CRS at Fig. 4
(right up), solves rpop(s) into the precise bound s∗ r© and unfolds this bound
in the main CRS (right down). Although both this UB and the postcondition
s ≥ s′ ≥ 0 are precise abstractions w.r.t. rpop, they miss the described output-
cost codependency. Thus, the CRS semantics now includes the spurious case of
an execution of rpop consuming r©∗s and returning s′ = s. For this reason, the

128 E. Albert et al.

int rpop(int s){

while(s > 0 && *)

s-- ;

return s ;

}

void main(int s, int m){

for (;m>0;m--)
s = rpop (s);

}

rpop(s) =0 {s ≥ 0}
rpop(s) = r©+ rpop(s− 1) {s ≥ 1}

main(s,m) =0 {m = 0, s ≥ 0}
main(s,m) =

rpop(s)+
main(s′,m− 1)

{
m ≥ 1
s ≥ s′ ≥ 0

}

main(s,m) =0 {m = 0, s ≥ 0}
main(s,m) =

r©∗ s+
main(s′,m− 1)

{
m ≥ 1
s ≥ s′ ≥ 0

}

Fig. 4. Example of Amortised cost, with the Java program (left), the inferred CRS
(right up) and the CRS unfolding the UB for rpop (right down)

CRS does not admit the bound r©∗s that we look for, and the techniques of
Section 3.1 give r©∗s∗m as the most precise UB for the main CRS.

Examples like this usually appear in the context of amortised cost analysis [40].
There, the output-cost codependency is described like the variable s storing credit
or potential to pay the decrement operations. To overcome these limitations, we
have recently developed [16] a novel definition of UBs that involve input and
output arguments: a net-cost UB ˜rpop(s|s′) bounds the cost of any terminating
evaluation of rpop from an input s to an output s′. By making s′ an input of the
UB, net-cost UBs capture the output-cost codependency. In [16] we also describe
a solving procedure based on real quantifier elimination, and draw a relation
between net-cost functions and the potential functions used in the automated
amortised approach [27,30,35].

4 Concurrency and Distribution

In order to develop a resource analysis for distributed and concurrent programs,
we have considered a concurrency model based on the notion of concurrently
running (groups of) objects, similar to the actor-based and active-objects ap-
proaches [38,39]. These models take advantage of the concurrency implicit in
the notion of object in order to provide programmers with high-level concur-
rency constructs that help in producing concurrent applications more modularly
and in a less error-prone way. The main novelty of the analysis is that it provides
the resource consumption per cost center, where each cost center represents a dis-
tributed component. Having anticipated knowledge on the resource consumption
of the different components which constitute a system is useful for distributing
the load of work. Upper bounds can be used to predict that one component may
receive a large amount of remote requests, while other siblings are idle most of
the time. Also, our framework allows instantiating the different components with
the particular features of the infrastructure on which they are deployed.

Automatic Inference of Bounds on Resource Consumption 129

def B look〈A,B〉(Map〈A,B〉 ms, A k) =
case ms {Ass(Pair(k,y),) ⇒ y;

Ass(,tm) ⇒ look(tm,k);
}
class AddrBook {

Map〈String ,User〉 users = EmptyM ;
User getUser(String email){
return look(users,email);

}
}
class User {

List〈String〉 msgs = Nil ;
Unit receive(String m) {

msgs = Cons(m,msgs);
}

}

class MailServer(AddrBook ab) {
List〈String〉 emails =Nil;

Unit addUser(String email) {
emails = Cons(email, emails);

}
Unit addUsers(List〈String〉 l) {

while (l != Nil) {
this ! addUser(head(l));
l=tail(l);

}
}
Unit notify(String m) {

while (emails != Nil) {
Fut〈User〉 u;
u = ab ! getUser(head(emails));
await u ? ;
User us = u.get;
us ! receive(m);
emails = tail(emails);

}
}

}

Fig. 5. ABS Implementation of a Mail Server

4.1 The Basic Cost Analysis Framework for Concurrency

ABS [28] is an abstract behavioral specification language for distributed object-
oriented systems.COSTAhas been recently extended to be able to infermeaningful
bounds for ABS programs [3]. The main novelties are related to the concurrency
and distribution aspects of the language.Concurrency poses new challenges to the
process of obtaining sound and precise size relations. This is mainly because the
interleaving behaviour inherent to concurrent computations can influence how the
sizes of data are modified. Distribution does not match well with the traditional
monolithic notion of cost which aggregates the cost of all distributed components
together.We use cost centers to keep the resource consumption of the different dis-
tributed components separate. An implementation of this cost analysis framework
is described in [4]. The system is open-source and canbe downloaded (togetherwith
examples, documentation, etc.) from: http://costa.ls.fi.upm.es/costabs.

Example 6. The example in Fig. 5 shows a simple mail server application pro-
grammed in ABS. Due to lack of space, we omit data and type definitions. At
the top, we see a fragment of the functional subprogram which includes the
function look . The imperative concurrent part contains the implementation of
all classes. Calls to functions and functional data structures appear in italics. A
mail server is composed of an address book (the class parameter ab) and a list of
email addresses (the field emails). Email addresses can be added to the server by

130 E. Albert et al.

invoking method addUser and addUsers. Method notify sends a message (m) to
all users in the list emails. To this end, it first asynchronously invokes getUser in
order to retrieve the next user (variable u) in the list. The await instruction al-
lows releasing the processor if the information is not ready. The next instruction
get blocks the execution of the current task until the requested information has
arrived. When it arrives, the asynchronous call to receive is encharged of sending
the message to the corresponding user without any kind of synchronization.

In what follows, we explain briefly the differences w.r.t. cost analysis in a
sequential setting on the running example:

Cost Models for Concurrency. We consider the cost models steps, memory, ob-
jects and task-level. The first two ones are inherited from the sequential setting
(see Section 2), while the last two ones are specific for concurrency. The “ob-
jects” cost model counts the total number of objects created along the execution.
This provides an indication of the amount of parallelism that might be achieved,
since each object could be running in a different processor. The “task-level”
cost model estimates the number of tasks that are spawned along an execution.
This can be counted by tracing how many asynchronous calls are performed.
The task-level is useful for finding optimal deployment configurations, and de-
tect situations like when one component is receiving too many requests while its
siblings are idle.

Size Analysis. In order to handle the concurrency primitives, the classical se-
quential size analysis described in Section 2 is modified as follows: (a) when ex-
ecuting an instruction which does not cause the suspension of the current task,
then fields (i.e., the global state) are tracked as if they were local variables, since
in the concurrent objects setting it is guaranteed that in such circumstances no
other tasks can modify those fields simultaneously; and (b) when executing an
instruction that might cause suspension (e.g., await) of the current task, then
the analysis loses all information about the corresponding fields, this is because
they might be modified by other tasks in the meantime. This simple modifica-
tion guarantees soundness of size analysis for a concurrent setting. However, it
often loses precision. For example, in the while loop of method notify, losing the
information on the field emails when executing await prevents us from proving
that its size decreases in each iteration. Thus, the technique fails to bound the
number of iterations of that loop. To overcome this problem, we provide a way
to incorporate class invariants. For example, if we add the following invariant
(using JML syntax) //@invariant \old(emails) == emails before the await
instruction in the while loop of method notify, then we state that it is guar-
anteed that when the process resumes, the value of emails will be the same as
when the process has been suspended. At present, we can infer class invariants
automatically in a limited manner (See [3] for details). For example, if a variable
(or shared location) is initialized and is never updated afterwards, we can infer
that the values of this variable before and after a release point are always equal.

Automatic Inference of Bounds on Resource Consumption 131

Cost Centers. The last step in this framework uses the inferred size relations
and the selected cost model in order to generate cost equations and solve them
into closed-form bounds. See Section 2 for more details. Now, let us explain the
upper bounds that we obtain for the running example.

By applying the analysis starting from method notify and using the steps cost
model, we obtain the following upper bound (after simplifying the constants for
the sake of readability): 5 + (22 + 4 ∗ users+) ∗ emails+. Variables emails+ and
users+ refer to the maximum sizes of the fields emails and users respectively.
The subexpression (22 + 4 ∗ users+) refers to the cost of each iteration of the
while loop. Note that the subexpression 4∗users+ refers to the cost consumed by
function look . The constant 4 is for executing the code of look once, and users+

is the number of recursive calls. The cost of each iteration is then multiplied by
emails+, which is a bound on the number of iterations of the while loop. Finally,
we add 5 to account for the cost of the instructions outside the loop (in this case
it refers to the last comparison of the while loop’s guard).

Instead of computing a monolithic cost expression, there exists the option
of splitting the cost into Cost Centers that represent the different distributed
components of the system. By assuming that objects of the same type belong to
the same cost center, we obtain the following upper bounds (after simplification
of constants for the sake of readability):

Cost Center Upper Bound

MailServer 5 + 16 ∗ emails+

User 3 ∗ emails+

AddrBook (3 + 4 ∗ users+) ∗ emails+

Observe that the sum of these bounds is identical to the single bound we have
obtained before.

4.2 MHP

In the previous section, an invariant was used to ensure that the list of emails was
not modified during the await. However, in order for the analysis to be safe, this
invariant must be proven correct. An invariant in an await instruction expresses
properties of the object fields that are maintained during the execution of the
await. Therefore, the validity of these invariants depends on the actual changes
that can take place while the current task is suspended.

A first step towards verifying these invariants consists on approximating the
instructions that can be executed at that point. In our example, the invariant
//@invariant \old(emails) == emails will hold if the instructions that can
be executed during the await do not modify the field emails. For that purpose,
a may-happen-in-parallel analysis has been developed [11,12].

To illustrate the behavior of the MHP analysis, we complete our example code
with the main block in Figure 6 that defines the entry point of the program. The
main block implements the following usage scenario: (a) it creates several User
objects, each with a unique email address; (b) it creates an AddrBook object,

132 E. Albert et al.

and passes to it a list of pairs (name,user), [p1,...]; (c) it creates a Notifier

object which receives the address book ab as class parameter; (d) it adds some
email addresses to be notified by asynchronously calling addUsers, and waits
until it has terminated; and (e) finally it calls method notify in order to notify
all registered users with a given message.

User u1=new UserImp () ;
Pair<Str ing , User> p1 =Pair (”John” , u1) ;
. . .
AddrBook ab=new AddrBook(map [p1 , p2 , p3]) ;
Mai lServer ms =new MailServer (ab) ;
Fut<Unit> x =ms ! addUsers (l i s t [” A l i c e ” , ”Bob”]) ;
await x ? ;
ms ! n o t i f y (”He l l o A l i c e and Bob”) ;

Fig. 6. Usage scenario: Main method

First, the MHP analysis generates a MHP graph that captures all MHP re-
lations between the different program points of the program. Then, using this
graph, it infers the set of MHP pairs of the form (i,j) which indicates that the
instruction at program point i might execute in parallel with the one at program
point j, and vice versa.

addUsers

addUsers

7

8

notify

notify

4

5

6

addUser

addUser

13

14

receive

receive

11

12

getUser

getUser

9

10

main

main

1

2

3

1

1

1

∞

1

∞
∞

∞
∞

Fig. 7. MHP graph

MHP Graphs. The MHP graph corresponding to our current example is de-
picted in Fig. 7. Each program point i that corresponds to a context switch,
i.e., a program point in which the execution might switch from one method to
another, is represented by a node i©. These nodes always include the method’s
entry and exit program points. In principle, other program points can be in-
cluded, however, these are the only ones required for soundness. Each method m

contributes two nodes: m represents an instance of m that is active, i.e., running

Automatic Inference of Bounds on Resource Consumption 133

and can be at any program point, and m represents an instance of m that is
finished, i.e., it is at the exit program point.

The MHP graph is composed of 6 subgraphs, one for each method and that are
represented as dashed rectangles. In each subgraph: (a) the active method node
(the white rectangle) is connected to all program point nodes of that method,
meaning that when the method is active it can be executing at any of those pro-
gram points; and (b) the finished method node (the gray rectangle) is connected
to the exit program point node, meaning that when the method is finished it
must be at the exit program point. For example, in the subgraph of method
main, there are edges from main to nodes 1©, 2©, and 3©; and from main to 3©.

The subgraphs are interconnected by weighted edges. Each such edge starts
at a program point node in one subgraph, and ends in an active or finished
method node in another subgraph (it can be the same if the method is recur-
sive). These edges are inferred by applying a method-level MHP analysis which
analyzes each method separately. This analysis infers, for each program point,
which methods might be running in parallel with that program point, how many
instances of each, and in which mode (active or finished). This information is
inferred by considering only the code of the corresponding method. For example,
the method-level analysis infers: (a) for method main, at 2 (that corresponds to
the await instruction), there might be one active instance of method addUsers.
This will add an edge from 2© to addUsers . The edge is labeled with 1 to indi-
cate that it is only one instance of addUsers; and (b) for method notify, at 5(the
await instruction), there might be an active instance of getUser, many finished
instances of getUser, and many active instances of receive. This will add an edge
from 5© to getUser with label 1, to getUser with label ∞, and to receive

with label ∞. Edges with ∞ should be interpreted as infinitely many edges with
weight 1.

MHP Property. The MHP graph guarantees that if there is an execution in
which the instructions at program points i and j might execute in parallel, at
least one of the following holds:

– direct relation: there is a path from i© to j© (or vice versa); or

– indirect relation: there is a node k© that has two different paths to both i©
to j©.

These properties are the base of the MHP inference. We can see that there is a
path from 2© to 13© which induces the direct MHP pair (2 ,13). Also, there are
different paths from 3© to both 13© and 5© which induces the indirect MHP pair
(5,13). Given this pair we cannot verify our invariant. In fact, we just detected
a synchronization error. At 5(where our invariant is placed) the emails list can
be modified by the method addUser.

The MHP analysis can also be used to spot synchronization errors, find the
causes of those errors (debugging), and acquire a better understanding of the
program concurrent behavior (program understanding) –See [11,12].

134 E. Albert et al.

5 Advanced Topics in Resource Analysis

We briefly overview some advanced topics in resource analysis which we have
investigated within the context of the COSTA system.

5.1 Memory Consumption Analysis

Predicting the dynamic memory (heap) required to run a program is crucial in
many contexts such as in embedded applications with stringent space require-
ments or in real-time systems which must respond to events or signals within
a predefined amount of time. On the other hand, garbage collection (GC) is a
very powerful and useful mechanism which is increasingly used in high-level lan-
guages such as Java. Unfortunately, GC makes it difficult to predict the amount
of memory required to run a program. A first approximation to this problem is
to simply ignore the GC and infer bounds on the total heap consumption, i.e.,
the accumulated amount of memory dynamically allocated by a program. This
can be done directly applying the COSTA framework using the Mh cost model
defined in Section 2. If such amount of memory is available it is ensured that
the program can be executed without exhausting the memory, even if no GC is
performed during its execution. However, this is an overly pessimistic estimation
of the actual heap consumption since, in the presence of GC, the memory usage
increases and decreases along the execution.

COSTA incorporates a novel peak heap space analysis [13], also known as
live heap space analysis, which aims at approximating the maximum size of the
data on the heap during a program’s execution, which provides a much tighter
estimation. Whereas analyzing the total heap consumption requires to observe
the consumption at the final state only, peak heap consumption analysis has to
reason on the heap consumption at all program states along the execution. As a
consequence, the basic COSTA framework cannot be directly applied.

When considering GC, several techniques exist which differ on:

(1) what can be collected, i.e., the lifetime of objects;
(2) when GC is performed.

As regards (1), a GC strategy classifies objects in the heap into two categories:
those which are collectible and those which are not. Most types of garbage col-
lectors determine unreachable objects as collectible, i.e., they eliminate those
objects to which there is no variable in the program environment pointing di-
rectly or indirectly. The more precise alternative is to rely on the notion of
liveness. An object is said to be not live (or dead) at some state if it is not used
from that point on during the execution.

As regards (2), we consider several possibilities. One is scope-based GC in
which deallocation of unreachable objects takes place on methods’ return, and,
only those objects created during the method’s execution can be freed. Another
possibility is the so-called ideal GC in which objects are collected as soon as
they become collectible. The third one assumes a given limit on the heap, and
applies GC only when we are about to exceed this limit.

Automatic Inference of Bounds on Resource Consumption 135

void m1() {
A a=new A(); 1©
a.f=new B(); 2©
a=m2(a); 4©
D d=new D();

}
A m2(A a) {
C c=new C();
int i=a.f.data+c.data
a.f = null; 3©
return new E(i);

}

m1(〈〉,〈〉) ←
a:=new A, 1©
a.f:=new B, 2©
m2(〈a〉, 〈a〉), 4©
d:=new D.

m2(〈a〉,〈r〉) ←
c:=new C,
i:=a.f.data+c.data,
a.f:=null, 3©
r:=new E.
initE(〈r, i〉, 〈〉).

T = s(A) + s(B) + s(C) + s(D) + s(E)
S = s(A) + s(B) + s(E) + max(s(C), s(D))
R = max(s(A) + s(B) + s(C), s(A) + s(C) + s(E), s(E) + s(D))
L = max(s(A) + s(B) + s(C), s(E), s(D))

Fig. 8. A Java Program and its memory requirements: T=total-allocation; S=scope-
based; R=reachability-based; L=liveness-based.

COSTA offers a general framework to infer accurate bounds on the peak heap
consumption of bytecode programs which improves the state-of-the-art in that:

– it is not restricted to any complexity class and deals with all bytecode lan-
guage features including recursion,

– it is parametric w.r.t the lifetime of objects and,
– it can be instantiated with different GC strategies, e.g., the scope-based and

ideal GC discussed above.

Example 7. Let us consider the Java program in Figure 8 (to the left). To the
right, we show the RBR. Because the program has simple (constant) memory
consumption, it is useful to describe intuitively the differences among the dif-
ferent approximations to memory consumption. In Figure 8 (to the bottom)
we provide four possible approximations inferred by our analysis for the mem-
ory consumption of executing method m1, where the notation s(X) means the
memory required to hold an instance of class X.

First, we consider a scope-based GC in which objects lifetimes are inferred
by an escape analysis. In this case, we can take advantage of the knowledge
that at 4© (i.e., upon exit from m2) the object to which “c” refers can be freed,
i.e., it does not escape from the method. Hence, the UB S is obtained. The
important point is that s(A) and s(B) are always accumulated, plus the largest
of the consumption of m2 (i.e., s(C) + s(E)) and the memory escaped from m2

(i.e., s(E)) plus the continuation (i.e., s(D)).
As another instance, we consider a reachability-based GC but without the

assumption of being scope-based, rather we assume an ideal GC. Then, our

136 E. Albert et al.

method is able to obtain the UB R in Fig 8. This is due to the fact that the object
to which “a.f” points becomes unreachable at program point 3©, the object to
which “c” points becomes unreachable upon exit from m2, and the object created
immediately before 1© becomes unreachable at 4©. We can observe that this
information is reflected in R by taking the maximum between: the consumption
up to the first allocation instruction in m2; the consumption up to the end of m2

taking into account that the object to which “a.f” points becomes unreachable,
plus the consumption until the end of m1 taking into account that both the
object pointed by “a.f” and the object created immediately before 1© become
unreachable.

As the third instance, we consider the combination of an ideal garbage collec-
tor based on liveness, i.e., objects are reclaimed as soon as they become dead (i.e,
will not be used in the future). Then, we obtain the UB L by taking advantage
of the fact that the object created immediately before 1© and those to which
“a.f” and “c” point are dead at program point 3©, and that the object created at
the end of m2 is dead at program point 4©. This information is reflected in the
elements of the max similarly to what we have seen for R. Note that, in theory,
the peak heap consumption L is indeed the minimal memory requirement for
executing the method.

5.2 Inference of Task-Level in Concurrent Languages

Another type of non-cumulative resource is the task-level. In parallel languages,
we refer to a task as the unit of parallelism in a program execution, i.e., a
sequential computation which can be executed in parallel and communicate with
a number of other computations going on at the same time. The task level of a
program is the maximum number of tasks that can be available (i.e., not finished
nor suspended) simultaneously during its execution, regardless of the input data
(e.g., considering all possible inputs). Knowing statically the task level of a
program is of utmost importance for program understanding, debugging, and
task scheduling.

COSTA includes a component which estimates the task level of parallel pro-
grams written in a subset of the X10 programming language. X10 features async-
finish parallelism, where async and finish are basic constructs for, respectively,
spawning a new task and waiting until some tasks terminate. In particular finish
waits until all tasks spawned within the block that it delimits finish. Given a
parallel program, our analysis [9] returns a task-level upper bound, i.e., a function
on the input arguments that guarantees that the task level of the program will
never exceed its value along any execution.

Example 8. The following recursive program implements the merge-sort algo-
rithm working on a global array, and shows how async-finish parallelism works:

void msort(int from , int to) {

i f (from <to) {

mid=(from+to)/2;

Automatic Inference of Bounds on Resource Consumption 137

finish {

async msort(from ,mid);

async msort(mid+1,to);

}

merge(from ,to,mid);

} }

msort recursively calls itself twice inside async: this means that the tasks msort

(from,mid) and msort(mid+1,to) are spawned asynchronously and can execute
independently. However, calling them inside finish means that the main proce-
dure cannot continue to merge(from,to,mid) until both tasks have finished.

In the above example, the total number of tasks (i.e., all the tasks which may
be spawned along the execution) spawned by a call to msort(from,to) is bounded
by 2(to−from+1)−2. Moreover, it can also be inferred that the peak of live tasks
(i.e., the maximum number of tasks which can be alive at the same time) is
bounded by the same expression. In general, the peak of live tasks is smaller
than the total number since it is often the case that tasks are created only after
other tasks have finished (this can be implemented by using finish).

Both notions of task level discussed above disregard whether a created task is
active, i.e., actually executing, or suspended. In the example, the main procedure
is suspended while the execution of the finish block is going on. Our analysis
can give an upper bound to−from+1 to the peak of available tasks (i.e., those
which can be active at the same time), which is almost half the one obtained for
total and live tasks. Such bound is useful when allocating tasks on processors,
since active tasks are the only ones actually needing a processor to execute.

The analysis uses most of the machinery already developed in COSTA, and
defines all the notions of task level as something similar to cost models. Further
effort has been devoted to adapting the analyzer to this specific language, and
to optimizations: for example, knowing which tasks, among the ones spawned
inside a procedure p, are still live after p ends allows, in general, improving the
obtained upper bounds.

5.3 Heap-Sensitive Analysis

Shared mutable data structures, such as those stored in the heap, are the bane
of formal reasoning and static analysis. In object-oriented programs most data
reside in objects and arrays stored in the heap. Analyses which keep track of
heap-allocated data are referred to as heap-sensitive. Most existing value analyses
are only applicable to numeric variables which satisfy two locality conditions: (1)
all occurrences of a variable refer to the same memory location, and (2) memory
locations can only be modified using the corresponding variable. The conditions
above are not satisfied when numeric variables are stored in shared mutable
data structures such as the heap. Condition (1) does not hold because memory
locations (numeric variables) are accessed using reference variables, whose value
can change during the execution. Condition (2) does not hold because a memory

138 E. Albert et al.

location can be modified using different references which are aliases and point
to such memory location.

Example 9. Consider the following loops where f is a field of integer type:

1©while (x . f > 0) {
x . f = x . f −1;

}

2©while (x . f > 0) {
x . f = x . f −1;
x = x . next ;

}

3©while (x . y . f > 0) {
x . f = x . f −1;
y . f = y . f +1;

}
Loop 1© terminates in sequential execution because x.f decreases at each it-

eration and, for any initial value of x.f, there are only a finite number of values
which x.f can take before reaching zero. Unfortunately, applying standard value
analyses on numeric fields can produce wrong results, and further conditions are
required. E.g., if we add the instruction x=x.next; as in loop 2©, the memory
location pointed to by x.f changes, invalidating Condition 1. Also, Condition 2
is false if we add y.f=y.f+1 as in loop 3©, as x and y may be aliases.

The approach developed in COSTA [15,7,5] is based on the observation that,
by analyzing scopes, rather than the application as a whole, it is often possible to
keep track of heap accesses in a similar way to local variables. Our approach con-
sists of the following steps: (1) partition the program to be analyzed into scopes,
in our case we use the strongly connected components of the program, (2) identify
with a reference constancy analysis the access paths used to access to the heap,
(3) check the above locality conditions for the access paths, that is, if an access
path meets the above conditions it can be safely handled by a heap-insensitive
analysis, (4) transform the program by introducing local ghost variables whose
values represent the values of the corresponding heap accesses, and (5) analyze
the transformed program scope by scope using any heap-insensitive static ana-
lyzer, in particular, the one that we already have in COSTA. Let us describe the
main components of the heap-sensitive analysis implemented in COSTA:

Reference Constancy Analysis. We first develop a reference constancy analysis
which infers those memory locations of fields which are constant in the con-
sidered scope. The idea behind this analysis is similar in spirit to that of the
classical numeric constant propagation analysis [20]. However, in addition to
numerical constants, the values computed by our analysis can include symbolic
expressions that refer to locations in (the initial) heap. Such expressions encode
as well the way in that the corresponding memory locations are reached (e.g.,
the dereferenced fields). Intuitively, our analysis will assign to each variable (at
each program point) an access path which describes its possible memory loca-
tions whenever the execution reaches that point. Access paths can be separated
in read accesses and write accesses. In the analysis, if a reference variable is
updated inside a scope its access path is not constant in this scope, so we cannot
keep track of this variable by using a local variable.

Example 10. Let us consider the loops in Ex. 9. We obtain the following read
R(f) and write setsW (f) for field f by applying the reference constancy analysis.

Automatic Inference of Bounds on Resource Consumption 139

1©R(f) = {x.f} 2©R(f) = ∅ 3©R(f) = {x.f, y.f}
W (f) = {x.f} W (f) = ∅ W (f) = {x.f, y.f}

Observe that in loop 1© field f is accessed only using reference variable x. In
loop 2© the sets are empty because the location of variable x is updated by the
instruction x = x.next inside the loop, so it is not constant in the scope of the
loop. Loop 3© has two different access paths through x and y to field f.

Locality. Intuitively, in order to ensure a sound transformation, a field f can be
considered local in a scope S if all read and write accesses to it in all reachable
scopes are performed through the same access path l, that is, if R(f)∪W (f) =
{l}. This makes it safe to replace such heap access by a corresponding local ghost
variable.

Example 11. From the results obtained in Ex. 10, and according to the locality
condition above, field accesses in loop 1© meet the locality condition since R(f)∪
W (f) = {x.f}. Field f is not local in the scope of loops 2© neither 3©, in 2©
because the union R(f) ∪ W (f) is empty, and in 3©, the union contains two
different references accessing field f, {x.f, y.f}.

Transformation. Our approach is based on instrumenting the program with
extra local (ghost) variables that expose the values of those locations to a heap-
insensitive analysis as follows: (1) for each heap access that is local in scope S,
we introduce a ghost variable g; (2) when the content of the memory location is
modified, we modify g accordingly; and (3) when the memory location is read, we
read the value from g. This approach has one clear advantage: there is no need
to change existing static analysis tools to make them heap-sensitive, we simply
apply them on the transformed program, and then the properties inferred for
the ghost variables hold also for the corresponding memory locations.

Example 12. Field f behaves locally in loop 1©, so the heap accesses to f can
be transformed into ghost variables resulting in the following program, whose
termination and cost can be inferred by a heap-insensitive analyzer:

g = x . f ;
while (g > 0) {

g = g−1;
}
x . f = g ;

Recently, COSTA has included an abstract interpretation based heap-sensitive
analysis [44] that infers reachability and acyclicity of heap allocated data struc-
tures. This analysis infers weather some reference variables point to an acyclic
data structure which is useful for the analysis of termination and resource usage.

5.4 Incremental Resource Analysis

A key challenge for static analysis techniques is achieving a satisfactory combi-
nation of precision and scalability. Making precise (and hence expensive) static

140 E. Albert et al.

analysis incremental is a step forward in this direction. The difficulty when de-
vising an incremental analysis framework is to recompute the least possible in-
formation and do it in the most efficient way. Incremental resource usage analysis
comprises two phases: (1) devising an incremental analysis framework for all pre-
analysis required to infer cost relations and (2) making the process of computing
a closed-form upper bound incremental.

As regards (1), in other approaches to incremental analysis, such as in the logic
programming context [25], the analysis is focused in a single abstract domain. In
contrast, COSTA includes amulti-domain incremental analysis engine [10] which
can be used by all global pre-analyses required to infer the resource usage of a
program (including class analysis, sharing, cyclicity, constancy and size analysis).
The engine is multi-domain in the sense that it interleaves the computation for
the different domains and takes into account dependencies among them, in such
a way that it is possible to invalidate only partial pre-computed information.

The incremental analysis engine starts from a program, its analysis results,
and a modified method m. In addition to reanalyzing method m for all do-
mains, other methods may require reanalysis as well: namely methods invoked
by m with a different calling description (those methods are the descendants
of m in the program call-graph); and methods which invoke m and, because of
new results, require their reanalysis (referred to as ancestors of m). The pro-
cess of incremental reanalysis transitively reanalyzes descendants and ancestors
of previously reanalyzed methods, until a fixed point is reached. Once the new
pre-analyses results have been computed, cost relations that correspond to re-
analyzed methods are recomputed.

As regards (2), an upper bound is a global expression which includes the
upper bounds of the relations it calls. If method m changes, the upper bound
expressions that (directly or transitively) use m are no longer valid, since it is not
possible to distinguish within an upper bound which part of the cost is associated
to m. A fundamental idea to support incremental inference of upper bounds is to
annotate each cost subexpression with the name of the relation it comes from.
For this purpose, we define the notion of upper bound summary to keep the
annotated cost expression, the invariant and the size relations for a method m.
Given an upper bound summary for a method, it is possible to replace the cost
subexpressions associated to those methods invoked from it whose upper bounds
have changed by their new upper bounds, and without having to recompute the
whole upper bound for the method.

6 Conclusions and Future Work

We have overviewed the main techniques used to infer resource consumption
bounds in the COSTA system. In the future, we plan to extend our work along
the following directions.

Improvements in Computing Symbolic Bounds. We plan to study new techniques
to infer more precise lower/upper bounds on the number of iterations that loops

Automatic Inference of Bounds on Resource Consumption 141

perform. As this is an independent component, COSTA will directly be benefited
from any improvement in this regard. In addition, so far we have used linear in-
variants for inferring linear ranking functions, minimum number of iterations of
a loop and maximization or minimization of cost expressions. Another extension
of our work would be inferring nonlinear loop invariants using symbolic summa-
tion and algebraic techniques. Another possible direction is inferring nonlinear
input-output (size) relations for methods by viewing the output as the cost that
is consumed by the corresponding method. This way, we can view the problem
of inferring such input-output relations as solving corresponding CR. Also, we
plan to develop new techniques to solve cost relations, to handle some programs
for which amortised analysis is not needed.

Acyclicity Analysis. COSTA contains a component which performs an acyclicity
analysis [23] based on tracking the reachability between locations in the heap.
Future work includes improving this analysis by considering, for a path between
two heap locations, the name of the fields involved. For example, this could allow
to detect that, in a double-linked list, cycles must forcefully traverse both the
next and the prev field, so that a loop where the data structure is traversed by
x=x.next is guaranteed to terminate in spite of the cyclicity of the data structure,
since only next is traversed.

Heap-sensitive Analysis. The heap-sensitive approach contained in COSTA shows
that analyzing program fragments rather than the application as a whole, and
under certain locality conditions, it is feasible to keep track of heap-allocated
data by means of local variables. However, there are cases when the locality
conditions cannot be proven unconditionally. In such cases, we seek to provide
aliasing preconditions between the input arguments which, when satisfied in the
initial state, can guarantee the termination of the program.

Proving Termination of Concurrent Programs. In the current COSTA system,
termination is independently proved for each concurrent component. That is,
no assumptions are made about the interactions between different concurrent
components. Unfortunately, this approach is insufficient for many real world
applications where several concurrent tasks depend on each other. We plan to
investigate these cases in the future. Another possible research line is to consider
conditional termination in open systems. In this case, we should extract under
which conditions a given component terminates.

Deadlock Analysis of ABS Programs. Deadlocks are one of the most common
errors in concurrent programs. There has been some theoretical research about
deadlocks in ABS programs [24]. However, there is no practical analysis that
can be used for real programs. Deadlocks can occur when several concurrent
components are waiting for each other (Circular dependency). We intend to
develop a deadlock analysis that combines the MHP analysis and a points-to
analysis. The MHP information can detect sets of synchronization instructions
that may happen in parallel and the points-to analysis can identify dependencies
(which components are waiting for which others) within these sets.

142 E. Albert et al.

Cost Analysis of Concurrent Java programs. At present, the extension of COSTA
handles concurrent primitives of ABS programs where the number of context
switches among concurrently running objects are determined by the release
points defined by the high level language constructs. That means the concurrent
code runs sequentially between two release points which simplifies the resource
usage analysis for ABS programs. However, in thread-based concurrent java pro-
grams, the context switch can happen at any program point. Hence, existing
analysis looses too much precision in inferring size relations or bounding loop
iterations and thus does not provide any useful information on resource usage
of concurrent java programs. In order to extend our analysis to handle thread-
based concurrent primitives, it is essential to infer relational invariants both on
shared variables and thread local variables at every program points. It is also
essential to infer relations between shared and thread local variables. Thus, these
invariants can be used to infer the size relations which capture the cost of the
programs.

Acknowledgments. This work was funded in part by the Information &
Communication Technologies program of the European Commission, Future
and Emerging Technologies (FET), under the ICT-231620 HATS project, by
the Spanish Ministry of Science and Innovation (MICINN) under the TIN-
2008-05624, TIN2012-38137-C02 and PRI-AIBDE-2011-0900 projects, by UCM-
BSCH-GR35/10-A-910502 grant and by the Madrid Regional Government under
the S2009TIC-1465 PROMETIDOS-CM project.

References

1. Adachi, A., Kasai, T., Moriya, E.: A Theoretical Study of the Time Analysis of
Programs. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 201–207. Springer,
Heidelberg (1979)

2. Albert, E., Arenas, P., Alonso, D., Genaim, S., Puebla, G.: Asymptotic Resource
Usage Bounds. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 294–310.
Springer, Heidelberg (2009)

3. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis
of Concurrent OO programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078,
pp. 238–254. Springer, Heidelberg (2011)

4. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS:
A Cost and Termination Analyzer for ABS. In: Procs. of PEPM 2012, pp. 151–154.
ACM Press (2012)

5. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Field-Sensitive Value Analysis by
Field-Insensitive Analysis. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 370–386. Springer, Heidelberg (2009)

6. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)

7. Albert, E., Arenas, P., Genaim, S., Puebla, G., Ramı́rez Deantes, D.V.: From
Object Fields to Local Variables: a Practical Approach to Field-Sensitive Analysis.
In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 100–116. Springer,
Heidelberg (2010)

Automatic Inference of Bounds on Resource Consumption 143

8. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Object-Oriented Bytecode Programs. Theoretical Computer Science (Special Issue
on Quantitative Aspects of Programming Languages) 413(1), 142–159 (2012)

9. Albert, E., Arenas, P., Genaim, S., Zanardini, D.: Task-Level Analysis for a Lan-
guage with Async-Finish parallelism. In: Proc. of LCTES 2011, pp. 21–30. ACM
Press (2011)

10. Albert, E., Correas, J., Puebla, G., Román-Dı́ez, G.: Incremental Resource Usage
Analysis. In: Procs. of PEPM 2012, pp. 25–34. ACM Press (2012)

11. Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of May-Happen-in-Parallel
in Concurrent Objects. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS
2012. LNCS, vol. 7273, pp. 35–51. Springer, Heidelberg (2012)

12. Albert, E., Flores-Montoya, A., Genaim, S.: Maypar: A May-Happen-in-Parallel
Analyzer for Concurrent Objects. In: Proc. of FSE-20, SIGSOFT/FSE 2012, pp.
1–4. ACM (2012)

13. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Heap Space Analysis for Garbage
Collected Languages. Science of Computer Programming (2012) (to appear)

14. Albert, E., Genaim, S., Masud, A.N.: More Precise yet Widely Applicable Cost
Analysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp.
38–53. Springer, Heidelberg (2011)

15. Albert, E., Genaim, S., Román-Dı́ez, G.: Conditional Termination of Loops over
Arrays. In: Proc. of Bytecode 2012 (2012)

16. Alonso-Blas, D.E., Genaim, S.: On the Limits of the Classical Approach to Cost
Analysis. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 405–421.
Springer, Heidelberg (2012)

17. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward
a Complete Set of Numerical Abstractions for the Analysis and Verification of
Hardware and Software Systems. Science of Computer Programming 72(1-2), 3–21
(2008)

18. Benzinger, R.: Automated Higher-Order Complexity Analysis. Theoretical Com-
puter Science 318(1-2), 79–103 (2004)

19. Bruynooghe, M., Codish, M., Gallagher, J.P., Genaim, S., Vanhoof, W.: Termina-
tion analysis of logic programs through combination of type-based norms. ACM
Transactions on Programming Languages and Systems 29(2) (2007)

20. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of
POPL 1977, pp. 238–252. ACM Press (1977)

21. Debray, S.K., Lin, N.W.: Cost Analysis of Logic Programs. ACM Transactions on
Programming Languages and Systems 15(5), 826–875 (1993)

22. Feautrier, P.: Parametric Integer Programming. RAIRO Recherche
Opérationnelle 22(3), 243–268 (1988)

23. Genaim, S., Zanardini, D.: The Acyclicity Inference of COSTA. In: 11th Interna-
tional Workshop on Termination (2010)

24. Giachino, E., Laneve, C.: Analysis of Deadlocks in Object Groups. In: Bruni, R.,
Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 168–182.
Springer, Heidelberg (2011)

25. Hermenegildo, M., Puebla, G., Marriott, K., Stuckey, P.: Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and
Systems 22(2), 187–223 (2000)

26. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J.F.,
Puebla, G.: An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming 12(1-2), 219–252 (2012), http://arxiv.org/abs/1102.5497

http://arxiv.org/abs/1102.5497

144 E. Albert et al.

27. Hoffmann, J., Aehlig, K., Hofmannn, M.: Multivariate Amortized Resource Analy-
sis. ACM Transactions on Programming Languages and Systems 34(3), 14:1–14:62
(2012)

28. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

29. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall (1993)

30. Jost, S.: Automated Amortised Analysis. PhD thesis, Ludwig-Maximilians-
Universität (August. 2010)

31. Le Metayer, D.: ACE: An Automatic Complexity Evaluator. ACM Transactions
on Programming Languages and Systems 10(2), 248–266 (1988)

32. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley
(1996)

33. Navas, J., Mera, E., López-Garćıa, P., Hermenegildo, M.V.: User-Definable Re-
source Bounds Analysis for Logic Programs. In: Dahl, V., Niemelä, I. (eds.) ICLP
2007. LNCS, vol. 4670, pp. 348–363. Springer, Heidelberg (2007)

34. Podelski, A., Rybalchenko, A.: A complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

35. Rodriguez, D.: Amortised Resource Analysis for Object-Oriented Programs. Phd
thesis, LMU Munich (October 2012)

36. Rosendahl, M.: Automatic Complexity Analysis. In: Proc. of FPCA 1989,
pp. 144–156. ACM Press (1989)

37. Sands, D.: A Näıve Time Analysis and its Theory of Cost Equivalence. Journal of
Logic and Computation 5(4), 495–541 (1995)

38. Schäfer, J., Poetzsch-Heffter, A.: Jcobox: Generalizing Active Objects to Concur-
rent Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–
299. Springer, Heidelberg (2010)

39. Srinivasan, S., Mycroft, A.: Kilim: Isolation-Typed Actors for Java. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

40. Tarjan, R.E.: Amortized Computational Complexity. SIAM Journal on Algebraic
and Discrete Methods 6(2), 306–318 (1985)

41. Wadler, P.: Strictness Analysis Aids Time Analysis. In: ACM Symposium on Prin-
ciples of Programming Languages (POPL 1988). ACM Press (1988)

42. Wegbreit, B.: Mechanical Program Analysis. Communications of the ACM 18(9),
528–539 (1975)

43. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and
Practice of Logic Programming 12(1-2), 67–96 (2012)

44. Genaim, S., Zanardini, D.: Reachability-based Acyclicity Analysis by Abstract In-
terpretation. Theoretical Computer Science (2013)

45. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)

46. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design and
implementation of a cost and termination analyzer for java bytecode. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS,
vol. 5382, pp. 113–132. Springer, Heidelberg (2008)

Separating Cost and Capacity for Load Balancing
in ABS Deployment Models �

Einar Broch Johnsen

Department of Informatics, University of Oslo, Norway
einarj@ifi.uio.no

Abstract. Software is often developed for a range of deployment sce-
narios; different versions of the software may be specialized for a number
of distributed and even virtualized architectures. Since software perfor-
mance can vary significantly depending on the target architecture, design
decisions may need to address which features to include and what perfor-
mance to expect for the different architectures. If the load of the software
system depends on external parameters (such as users), the software may
also need to include dynamic load balancing strategies to alleviate con-
gestion and thereby improve its own performance.

Executable models in the abstract behavioral specification language
ABS can support such design decisions by explicitly modeling deploy-
ment scenarios, including load, congestion, response time, etc. This paper
gives an overview of how deployment scenarios can be captured in ABS.
A separation of concerns between execution cost at the object level and
execution capacity at the deployment level makes it easy to compare tim-
ing and performance for different deployment scenarios early in system
modeling. The language and associated simulation tool is demonstrated
on an example of a virtual world framework for distributed gaming.

1 Introduction

This paper introduces deployment modeling in the abstract behavioral specifi-
cation language ABS by examples. ABS aims at high-level models that abstract
from implementation details but captures essential behavioral aspects of the
targeted systems [20]. ABS supports the design of concurrent, component-based
systems by means of executable object-oriented models which are easy to under-
tand for the software developer and allow rapid prototyping and analysis.

To express and compare deployment decisions at the modeling level, ABS has
been extended with deployment components [23]. Whereas software components
reflect the logical architecture of systems, deployment components reflect their
deployment architecture. The deployment architecture expresses how computing
units are statically or dynamically mapped to virtual or physical locations where
execution occurs. A deployment component is a context with a given execution

� Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Models (http://www.hats-project.eu).

E. Giachino et al. (Eds.): FMCO 2012, LNCS 7866, pp. 145–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.hats-project.eu

146 E.B. Johnsen

capacity which restricts how much computation can occur in an accounting pe-
riod. Individual statements in ABS have an associated execution cost. By sepa-
rating cost and capacity, the time needed to perform an execution will depend on
where the execution occurs; for example, selecting a server with higher capacity
will normally (but not always) decrease the computation time.

ABS is a modeling language based on concurrent object groups which execute
in parallel and communicate by asynchronous method calls. Inside an object
group, different tasks may be executed in an interleaved way by means of coop-
erative scheduling [21]. This allows an object to temporarily suspend its active
task and pursue another task, for example while the first task is waiting for a
reply from another object. In this setting, deployment components may be dy-
namically created in the same way as objects, and they are parametric in the
resource capacity they provide to their set of concurrent object groups. This
explicit representation of deployment architectures allows application-level re-
sponse time and load balancing to be expressed in the system models in a very
natural and flexible way, relative to the resources allocated to an application.

Although this paper is informal and example-driven, ABS and its extension
to real-time and deployment models are formally defined specification languages
which have been detailed in a number of papers. For further details of deploy-
ment modeling in ABS, including the formalization and other complementary
examples, the reader is referred to the following papers: The formal syntax and
semantics of ABS is presented in [20], the extension to real-time in [7], and the
formal explanation of how deployment components can be integrated with ABS
has been studied in [4,22–25]. A paper at FMCO 2011 proposed an ABS model
for cloud provisioning [27], based on deployment components. This library has
been used in two larger case studies of virtualized computing on the cloud [12,26].

This paper illustrates the use of deployment components in ABS by developing
an example which models congestion in distributed online games, inspired by a
framework for virtual worlds [30]. In this example, players move their avatars
between rooms and collect artifacts they find in these rooms. The actions of
avatars have deadlines, expressing the quality of service expected by the players.
When an action is performed, its cost depends on a weight associated with
the involved artifacts. The rooms are deployed on deployment components with
given capacities that we use to measure the congestion in different rooms. We
then show how load balancing may be introduced in this scenario in a way which
is orthogonal to the behavioral specification of the virtual worlds.

The paper is structured as follows. Section 2 introduces ABS and shows how to
express, e.g., deadlines in ABS models. Section 3 presents the running example of
virtual worlds and a behavioral model for the example. Section 4 introduces the
modeling of deployment architecture in terms of deployment components with
resource capacities and code annotated with resource cost. Section 5 considers
how load balancing in the deployment architecture can be controlled by the
behavioral model, and integrates load balancing in the virtual worlds example.
Section 6 discusses related work and Sect. 7 concludes the paper.

Separating Cost and Capacity for Load Balancing in ABS 147

2 ABS: Abstract Behavioral Specification

ABS [20] is an executable object-oriented modeling language which targets dis-
tributed systems. It is based on concurrent object groups, akin to concurrent
objects (e.g., [8, 11, 21]), Actors (e.g., [1, 18]), and Erlang processes [5]. In ABS,
concurrent object groups execute processes which stem from method activa-
tions. A characteristic feature of concurrent object groups in ABS is that they
internally support interleaved concurrency of processes by means of guarded
commands. This allows active and reactive behavior to be easily combined in
the concurrent object groups, based on cooperative scheduling of processes. A
concurrent object group has at most one active process at any time and a queue
of suspended processes waiting to execute on an object in the group. Objects
in ABS are dynamically created from classes but typed by interface; i.e., there
is no explicit notion of hiding as the object state is always encapsulated behind
interfaces which offer methods to the environment. For simplicity in this paper,
we do not consider other code structuring mechanisms, such as deltas [10]. This
section informally reviews the core ABS language and its timed extension (for
technical details, see [7, 20]).

2.1 The Layers of ABS

ABS combines functional and imperative modeling layers to develop high-level
executable models. Concurrent object groups execute in parallel and communi-
cate by asynchronous method calls. To intuitively capture internal computation
inside a method, ABS offers a simple functional layer based on user-defined alge-
braic data types and functions. Thus, the modeler may abstract from the details
of low-level imperative implementations of data structures, and still maintain
an overall object-oriented design and execution flow which is close to the target
system. At a high level of abstraction, concurrent object groups typically con-
sist of a single concurrent object; other objects may be introduced into a group
as required to give some of the algebraic data structures an explicit imperative
representation in the model.

The functional layer of ABS consists of algebraic data types such as the
empty type Unit, booleans Bool, integers Int, parametric data types such as
sets Set<A> and maps Map<A> (given a value for the type variable A), and
(parametric) functions over values of these data types.

Example 1. Polymorphic sets can be defined using a type variable A and two
constructors EmptySet and Insert:

data Set<A> = EmptySet | Insert(A, Set<A>);

Two functions contains, which checks whether an item el is an element in a set
set, and take, which selects an element from a non-empty set set, can be defined
by pattern matching over set:

148 E.B. Johnsen

def Bool contains<A>(Set<A> set, A el) =
case set {

EmptySet => False ;
Insert(el, _) => True;
Insert(_, xs) => contains(xs, el); };

def A take<A>(Set<A> set) =
case set {

Insert(e, _) => e; };

Here, the cases p => exp are evaluated in the listed order, underscore works as
a wild card in the pattern p, and variables in p are bound in the expression exp.
ABS provides a library with standard data types and functions.

Example 2. The data type DCData models CPU capacity, which may be either
unrestricted, expressed by the constructor InfCPU, or restricted to r resources,
expressed by the constructor CPU(r).

data DCData = InfCPU | CPU(Int capacity);

The observer function capacity is defined for the constructor CPU, such that
capacity(CPU(r)) returns r. It is not defined for InfCPU.

The imperative layer of ABS addresses concurrency, communication, and
synchronization at the concurrent object level in the system design, and defines
interfaces and methods with a Java-like syntax. ABS objects are active; i.e.,
their run method, if defined, gets called upon creation. Statements are standard
for sequential composition s1; s2, assignments x = rhs, and for the skip, if, while,
and return constructs. The statement suspend unconditionally suspends the ex-
ecution of the active process of an object by adding this process to the queue,
from which an enabled process is then selected for execution. In await g, the
guard g controls the suspension of the active process and consists of Boolean
conditions b and return tests x? (see below). Just like functional expressions e,
guards g are side-effect free. If g evaluates to false, the active process is sus-
pended; i.e., the active process is added to the queue, and some other process
from the queue may execute. Expressions rhs include the creation of an object
group new cog C(e), object creation inside the group of the creator new C(e),
method calls o!m(e) and o.m(e), future dereferencing x.get (see below), and pure
expressions e apply functions from the functional layer to state variables.

Communication and synchronization are decoupled in ABS. Communication
is based on asynchronous method calls, denoted by assignments f=o!m(e) to
future variables f. Here, o is an object expression and e are (data value or object)
expressions providing actual parameter values for the method invocation. (Local
calls are written this!m(e).) After calling f=o!m(e), the future variable f refers to
the return value of the call and the caller may proceed with its execution without

Separating Cost and Capacity for Load Balancing in ABS 149

blocking on the method reply. There are two operations on future variables, which
control synchronization in ABS. First, the guard await f? suspends the active
process unless a return to the call associated with f has arrived, allowing other
processes in the object group to execute. Second, the return value is retrieved by
the expression f.get, which blocks all execution in the object until the return value
is available. The statement sequence x=o!m(e);v=x.get encodes commonly used
blocking calls, abbreviated v=o.m(e) (often referred to as synchronous calls). If
the return value of a call is without interest, the call may occur directly as a
statement o!m(e) with no associated future variable. This corresponds to message
passing in the sense that there is no synchronization associated with the call.

The timed layer of ABS is an extension of ABS, called Real-Time ABS [7],
which captures the timed behavior of ABS models. An ABS model is a model
in Real-Time ABS in which execution takes zero time. Timing aspects may be
added incrementally to an untimed behavioral model. Real-Time ABS extends
ABS with deadlines and with both explicit and implicit time.

Deadlines. The object-oriented perspective on timed behavior is captured by
deadlines to method calls. Every method activation in Real-Time ABS has an
associated deadline, which decrements with the passage of time. This deadline
can be accessed inside the method body using the expression deadline(). Dead-
lines are soft ; i.e., deadline() may become negative but this does not in itself
block the execution of the method. By default the deadline associated with a
method activation is infinite, so in an untimed model deadlines will never be
missed. Other deadlines may be introduced by means of call-site annotations.

Real-Time ABS introduces two data types into the functional layer of ABS.
The data type Time has the constructor Time(r) and the accessor function timeVal
which returns r for the value Time(r). The data type Duration has the construc-
tors InfDuration and Duration(r), where r is a value of the type Rat of rational
numbers, and the accessor function durationValue which returns r for the value
Duration(r). For simplicity ABS does not support operator overloading, instead
we can define a function scale which multiplies a duration by a rational number
and a function timeDifference which compares two time values.

Example 3. The data types Time and Duration and the functions scale and
timeDifference can be defined as follows:

data Time = Time(Rat timeValue);
data Duration = Duration(Rat durationValue) | InfDuration;

def Duration scale(Rat r, Duration d)= Duration(r∗durationValue(d));
def Rat timeDifference(Time t1, Time t2) = abs(timeValue(t2)−timeValue(t1));

Here, the function abs returns the absolute value.

150 E.B. Johnsen

Example 4. Consider a class which implements two methods m and n. Method
m performs some computation depending on an input x and returns a Boolean
value which indicates whether the method activation has met its provided dead-
line. Method n calls m on this and specifies a deadline for this call, given as an
annotation and expressed in terms of its own deadline. Remark that if the dead-
line to the call to n is InfDuration, then the deadline to m will also be InfDuration
and n will return true independent of the actual value provided for x.

Bool m(T x){ s; return deadline()>0; }

Int n (T x){
[Deadline: scale(9/10,deadline())] Bool result = this.m(x);
return result; }

Explicit Time. The execution time of a computation is captured by a duration
statement duration(e1,e2) in the explicit time model of Real-Time ABS [13],
expressing an execution time between the best case e1 and the worst-case e2. This
is a standard approach to modeling timed behavior, in, e.g., timed automata in
UPPAAL [28]. In the context of deployment modeling in ABS, these statements
can be inserted into the model to capture execution time which is independent
of how the system is deployed.

Example 5. Let f be a function defined in the functional layer of ABS, which
recurs through some data structure of type T, and let size(x) be a measure of
the size of this data structure. Consider a method m which takes as input such
a value x and returns the result of applying f to x. Let us assume that the time
needed for this computation depends on the size of x; e.g., the computation time
is between a duration 1/2∗size(x) and a duration 4∗size(x). An interface I which
provides the method m and a class C which implements I, including the execution
time for m using the explicit time model, are specified as follows:

interface I { T m(T x); }
class C implements I {

T m (T x){ duration(1/2∗size(x), 4∗size(x)); return f(x);
}

}

Implicit Time. In the implicit time model of Real-Time ABS, the execution
time is not specified explicitly in terms of durations, but rather observed (or
measured) during the executing of the model. This is done by comparing clock
values from a global clock, which can be read by an expression now() of type
Time.

Example 6. Consider an interface J with a method p which, given a value of
type T, returns a value of type Duration. Let a class D implement J such that p
measures the time needed to call the method m above, as follows:

Separating Cost and Capacity for Load Balancing in ABS 151

interface J { Duration p (T x); }
class D (I o) implements J {

Duration p (T x){
Time start = now();
T y=o.m(x);
return Duration(timeDifference(now(),start));

}
}

Observe that by using the implicit time model, no assumptions about exe-
cution times are specified in the model above. The execution time depends on
how quickly the method call is effectuated by the called object. The execution
time is simply measured during execution by comparing the time before and
after making the call. As a consequence, the time needed to execute a statement
with the implicit time model depends on the capacity of the chosen deployment
architecture and on synchronization with (slower) objects.

3 Example: Virtual Worlds

A virtual world is a simulated environment in which agents with local state
interact with each other and manipulate objects. Virtual worlds are used in, e.g.,
computer games and social simulations. In games, the agents (or avatars) are
controlled by players who try to “win” the game. In social simulations, the agents
comply with simple laws or behaviors reflecting, e.g., social norms, elections, or
aspects of economics, and the purpose is to study emergent structures arising
from these laws or behaviors. In frameworks for virtual worlds (e.g., [30]), a
world consists of rooms which are connected to each other by means of portals.
An avatar may move from one room to another if these rooms are connected by
a portal which will accept the agent. In addition, the world contains artifacts
which can be in a room and which can be in the possession of an avatar.

The number of avatars and artifacts in a room varies over time. Since avatars
can interact with each other, the avatars in a room are notified when another
avatar enters or leaves that room. Since avatars can discover artifacts in a room,
the avatars in a room are notified when artifacts become discoverable or stop
being discoverable (for example, because the artifact is picked up or dropped
by another avatar). Since avatars move between rooms, bringing the artifacts
in their possession along, the processing load associated with different rooms
vary over time. Avatars may like to interact, potentially creating congestion in
particular rooms. Thus, the quality of service of the virtual world depends on
how its rooms are deployed on the available servers. If we consider a virtual
world for a game, the quality of service corresponds to the time it takes for the
virtual world to react to the way a player controls her avatar; e.g., the virtual
world should respond to each action selected by the player within x time units.

152 E.B. Johnsen

3.1 Data Types for Artifacts and Portals

Passive objects are typically modeled in the functional layer of ABS. In the
virtual world, artifacts are passive entities manipulated by avatars, which are
modeled by a data type Artifact with a constructor Artifact. Since artifacts can
be moved from one room to another by a moving avatar, each artifact has an
associated weight. A portal connects the exit from one room to the entrance of
another, so each portal has an associated exit which can be retrieved by the
accessor function getExit:

data Artifact = Artifact(Int weight);
data Portal = Channel(Room getExit);

3.2 Interfaces for Avatars and Rooms

Avatars and rooms are the active entities in the virtual world system. An avatar
virtually represents a player. A room represents the infrastructure of the virtual
world, which notifies the avatars located in that room of events; e.g., an artifact
can be discovered, an avatar has arrived, an avatar has left the room, etc.

The model considers two actions for an avatar: picking up an artifact in the
room where the avatar is located, and moving from the current room to another
room via one of the room’s exits. In the Avatar interface there are two methods
which can be selected by the player: moveto allows the avatar to relocate to a
new room, by choosing one of the portals leading from the current room, and
pickup makes the avatar acquire an artifact located in the current room.

In the model, we consider the following functionality of the infrastructure for
a room with which an avatar interacts. The method getExits is used to retrieve
possible exits from the room. The method getArtifact is used by an avatar to take
an artifact located in the room into its possession (so it is no longer visible to
other avatars in the room). The methods receiveAvatar and removeAvatar notify
the framework about the arrival and departure of avatars from the room.

It is straightforward to extend the model with additional functionality usu-
ally found in virtual worlds; e.g., the ability to create new artifacts and rooms,
to reconnect the rooms dynamically by moving portals, etc. To illustrate such
functionality, the interface RoomAdministration provides a method connectExit
which adds a new exit portal to the room. The interface FullRoom combines the
two interfaces Room and RoomAdministration, so FullRoom is a subtype of both
Room and RoomAdministration. The interfaces are defined in Figure 1.

3.3 Implementing the Avatar and Room Interfaces

Two classes Person and Location implement the interfaces Avatar and FullRoom,
respectively. The class Player represents an active entity in the model, and will
have a run method which is activated on an instance at creation time. The class
Location represents the virtual world framework, and performs computations to
notify players when the artifacts and players at the location change.

Separating Cost and Capacity for Load Balancing in ABS 153

interface Avatar {
Unit moveto(Portal door);
Unit pickup(Artifact item);

}
interface Room {

Set<Portal> getExits();
Set<Artifact> getArtifact();
Unit receiveAvatar(Avatar avatar,Int weight);
Unit removeAvatar(Avatar avatar,Int weight);

}
interface RoomAdministration {

Unit connectExit(Portal door);
}
interface FullRoom extends Room, RoomAdministration {}

Fig. 1. The interfaces for avatars and rooms

Person. The class Person, which implements the Avatar interface, is given in
Figure 2. The method pickup adds an artifact to the possessions of the Person.
Method moveto calculates the accumulated weight of the object and its posses-
sions, calls the removeAvatar method of the current room so the framework can be
updated, gets the new room from the requested exit, and calls the receiveAvatar
method of the new room so the framework can be updated. Moving an avatar
depends on its accumulated weight, which is computed by the internal method
getWeight (this method is not exported through the interface of the class).

The decisions of the player selecting the actions of the artifact are simulated
by the run method of the class, which is activated upon object creation. The run
method is a loop which executes until the object is in the desired room target.
Each iteration of the loop executes the method cycle which picks up some artifact
from the current room and moves to another room. The invocation of the cycle
method has limit as its deadline; this deadline represents the acceptable delay
for reacting to the player’s choice of actions for the avatar. Thus, the violation
of this deadline models the degradation of the virtual world’s quality of service.
The cycle method returns false when its deadline was violated.

Location. The class Location, which implements the FullRoom interface, is given
in Figure 3. It has a getter-method getExits. The method getArtifact returns an
empty set if the location has no artifacts available, and otherwise a singleton
set with one artifact, which is removed from the available artifacts of the lo-
cation. Thus, the avatar receives all possible exits and can select one, whereas
it will receive one artifact selected by the location. The methods receiveAvatar,
removeAvatar, connectExit are straightforward; the parameter weight will be ex-
plained in Example 10.

154 E.B. Johnsen

class Person(Room originalPosition, Room target, Duration limit)
implements Avatar {

Room position=originalPosition;
Set<Artifact> myPossessions=EmptySet;
Int cycles=0; Int misses=0; Bool finished = False;

Unit pickup(Artifact item){ myPossessions=Insert(item,myPossessions);
}

Unit moveto(Portal door){
Int myWeight=this.getWeight();
await position!removeAvatar(this,myWeight); // Leave old room
position = getExit(door);
duration(1,1);
await position!receiveAvatar(this,myWeight); // Enter new room

}
Int getWeight(){ Int myWeight=10;

Set<Artifact> items=myPossessions;
while (not(emptySet(items))){

Artifact item = take(items); items = remove(items,item);
myWeight=myWeight+weight(item); }

return myWeight;
}
Unit run () { // Active method

while (position != target){
[Deadline:limit] Bool success=this.cycle(); // Response time deadline
cycles = cycles+1;
if (not(success)){misses=misses+1;}

}
finished = True;

}
Bool cycle(){

Set<Artifact> availableThings = await position!getArtifact();
if (not(emptySet(availableThings))) {

this.pickup(take(availableThings)); // Pick up some artifact
}

Set<Portal> doors = await position!getExits();
if (not(emptySet(doors))) {

Portal door = take(doors);
this.moveto(door); // Move to a new room

}
return (durationValue(deadline())>0);

}
}

Fig. 2. The class Person, implementing the Artifact interface

Separating Cost and Capacity for Load Balancing in ABS 155

class Location(Int amount, Int weight) implements FullRoom {
Set<Avatar> players=EmptySet;
Set<Artifact> stuff=EmptySet;
Set<Portal> exits=EmptySet;

{ // Initialization code
while (amount>0){

stuff = Insert(Artifact(weight),stuff); amount = amount −1;
}

}
Set<Portal> getExits(){ return exits; }
Set<Artifact> getArtifact(){

Set<Artifact> result = EmptySet;
if (not(emptySet(stuff))){

Artifact item = take(stuff);
result = Insert(item,result);
stuff=remove(stuff,item);

}
return result; }

Unit receiveAvatar(Avatar avatar,Int weight){ players=Insert(avatar,players); }
Unit removeAvatar(Avatar avatar,Int weight){ players=remove(players,avatar);}
Unit receiveArtifact(Artifact artifact,Int weight){ stuff = Insert(artifact,stuff); }
Unit connectExit(Portal door){ exits=Insert(door,exits); }

}

Fig. 3. The Rooms

4 Deployment Models in ABS

A deployment model in ABS describes the resource capacity of different loca-
tions where execution takes place, expressing where the executions in a specific
concurrent object group will take place, and the resource cost of executing dif-
ferent parts of the behavioral model. Figure 4 illustrates a typical scenario for
deployment models in ABS.

4.1 Deployment Components with Resource Capacities

A deployment component in Real-Time ABS captures the execution capacity
associated with a number of concurrent object groups. Deployment components
are first-class citizens in Real-Time ABS, and provide a given amount of re-
sources which are shared by their allocated objects. Deployment components
may be dynamically created depending on the control flow of the ABS model or

156 E.B. Johnsen

Clock
Deployment
Component

Resources

Server2

Server1

Client

Client

request()

request()

request()

request()

Service1

Service2

Fig. 4. Deployment models in ABS

statically created in the main block of the model. There is a deployment compo-
nent environment with unlimited resources, to which the root object of a model
is allocated. When objects are created they are by default allocated to the same
deployment component as their creator, but they may also be allocated to a dif-
ferent component. Thus, for a model without explicit deployment components
all execution takes place in environment, which does not impose any restrictions
on the execution capacity of the model. A model may be extended with other
deployment components with different processing capacities.

Deployment components in Real-Time ABS have the type DC and are in-
stances of the class DeploymentComponent. This class takes as parameters a
name, given as a string, and a set of restrictions on resources. (The name is
mainly used for monitoring purposes.) Here we focus on resources reflecting the
deployment components’ processing capacity, which are specified in Example 2
by the constructor InfCPU for unbounded execution capacity and the constructor
CPU(r) for bounded capacity, where r represents the amount of abstract process-
ing resources available in each accounting period. Thus, the processing capacity
is expressed for a fixed period of time, corresponding to discrete time intervals
of Real-Time ABS.

Example 7. Figure 5 configures a deployment scenario for a virtual world with
six rooms. First, six servers are created with a CPU capacity of 100 resources
each. Then, six rooms are explicitly allocated to the servers by annotations;
below, entr1 is allocated to server1, etc. Thus, each room is deployed on its own
server. To connect the rooms; the method connectExit is called on each room
except room4, to provide an exit via a Portal data value.

Separating Cost and Capacity for Load Balancing in ABS 157

{ // This main block initializes a static virtual world deployment architecture:
// The deployment components

DC server1 = new cog DeploymentComponent("entrance1server",CPU(100));
DC server2 = new cog DeploymentComponent("entrance2server",CPU(100));
DC server3 = new cog DeploymentComponent("room1server",CPU(100));
DC server4 = new cog DeploymentComponent("room2server",CPU(100));
DC server5 = new cog DeploymentComponent("room3server",CPU(100));
DC server6 = new cog DeploymentComponent("room4server",CPU(100));

// The rooms
[DC: server1] FullRoom entr1 = new cog Location(50,1);
[DC: server2] FullRoom entr2 = new cog Location(50,2);
[DC: server3] FullRoom room1 = new cog Location(40,3);
[DC: server4] FullRoom room2 = new cog Location(30,4);
[DC: server5] FullRoom room3 = new cog Location(50,5);
[DC: server6] FullRoom room4 = new cog Location(10,6);

// Connecting the rooms
entr1.connectExit(Channel(room1));
entr2.connectExit(Channel(room2));
room1.connectExit(Channel(room3));
room2.connectExit(Channel(room3));
room3.connectExit(Channel(room4));

}

Fig. 5. The deployment of a virtual worlds scenario

Interacting with Deployment Components. Language primitives allow objects
in the behavioral model to interact with deployment components. All concur-
rent object groups in an ABS model are allocated to some deployment compo-
nent (which is environment unless overridden by an annotation). The expression
thisDC() evaluates to the local deployment component of a concurrent object
group. Deployment components support the following method calls:

– A call to the method total() of a deployment component returns its total
amount of allocated CPU resources;

– a call to the method load(n) of a deployment component returns its average
load for the n last accounting periods (where n is an Integer); and

– a call to the method transfer(r,dc) of a deployment component transfers r
of its resources to the deployment component dc.

In addition, a concurrent object group may relocate to a deployment component
dc by the expression movecogto(dc). This primitive is not further explored in
this paper; for details of its usage the reader is referred to [24].

158 E.B. Johnsen

4.2 Execution with Resource Costs

The available resource capacity of a deployment component determines how
much computation may occur in the objects allocated to that deployment com-
ponent. These objects compete for the shared resources of the deployment com-
ponent in order to execute. They may execute until the deployment component
runs out of resources or they are otherwise blocked. For CPU resources, the
resources of the deployment component define its processing capacity per ac-
counting period, after which the resources are renewed.

Cost Models. The cost of executing statements in the ABS model is determined
by a cost expression for each statement. For convenience, a default value can be
given as a compiler option (e.g., defaultcost=10). However, the default cost does
not discriminate between statements and we often want to introduce a more
refined cost model for certain parts of a model. For example, if e is a complex
expression, then the statement x=e should have a significantly higher cost than
skip in a realistic model. For this reason, more fine-grained costs can be inserted
into Real-Time ABS models by means of annotations.

Example 8. Assume that the cost of computing the function f(x), which is defined
in Example 5, may be given as a function g which depends on the size of the
input value x. In the context of deployment components, we may redefine the
implementation of interface I above to be resource-sensitive instead of having a
predefined duration as in the explicit time model. The resulting class C2 can be
defined as follows:

class C2 implements I {
Int m (T x){ [Cost: g(size(x))] return f(x); }

}

It is the responsibility of the modeler to specify an appropriate cost model. A
behavioral model with default costs may be gradually refined to provide more
realistic resource-sensitive behavior. For the computation of the cost functions
such as g in our example above, the modeler may be assisted by the COSTABS
tool [2], which computes a worst-case approximation of the cost for f in terms
of the input value x based on static analysis techniques, when given the ABS
definition of the expression f. However, the modeler may also want to capture
resource consumption at a more abstract level during the early stages of system
design, for example to make resource limitations explicit before a further refine-
ment of a behavioral model. Therefore, cost annotations may be used by the
modeler to abstractly represent the cost of some computation which remains to
be fully specified.

Example 9. Class C3 represents a draft version of our method m in which the
computation cost is specified although the function f has yet to be introduced:

Separating Cost and Capacity for Load Balancing in ABS 159

class C3 implements I {
Int m (T x){ [Cost: size(x)∗size(x)] return 0; }

}

Example 10. The class Location of the virtual world model is refined by adding a
cost annotation to the methods receiveAvatar and removeAvatar. We let
the resource cost of these methods correspond to the accumulated weight of
the moving avatar, which again depends on the artifacts in the possession of
the avatar. Here, the cost is provided by a formal parameter weight for these
methods:

Unit receiveAvatar(Avatar avatar,Int weight){
[Cost: weight] players=Insert(avatar,players); }

Unit removeAvatar(Avatar avatar,Int weight){
[Cost: weight] players=remove(players,avatar); }

5 Load Balancing in ABS

Objects can interact with deployment components in ABS as described in Sec-
tion 4. This allows the behavior of the ABS model to depend on the resource
capacities and execution loads of its deployment component at a given point
in the execution. This way, dynamic load balancing policies can be expressed
and compared at the abstraction level of the modeling language. Typically, load
balancing happens as follows:

– Initial deployment decision for a concurrent object group. The deployment
component where a concurrent object group is deployed, can be decided at
creation time depending on the load of available deployment components.

– Relocation of deployed concurrent object groups. Concurrent object groups
can move between deployment components depending on the load of the
deployment components or on the expected cost of an on-going or expected
method activation; for example, concurrent object groups with long-running
or low-priority activities may be relocated to a backup server.

– Redistribution of resources. Resources may be redistributed between deploy-
ment components in the setting of virtualized computing.

Other criteria may be combined with the load of the deployment components for
specific load balancers; for example, a virtualized service may have a budget for
how many deployment components it can acquire from a cloud provider, or it
may have a quality of service requirement in terms of the acceptable percentage
of missed deadlines.

Example 11. The interface LoadBalancer receives requests for resources to a de-
ployment component dc. It is implemented by a class Balancer which checks

160 E.B. Johnsen

interface LoadBalancer { Unit requestdc(DC comp); }
class Balancer(Int limit, BalancerGroup gr) implements LoadBalancer {

Unit run() {
DCData total = thisDC().total(); await gr!register(this,capacity(total));
while (True) {

await duration(1, 1);
total = thisDC().total(); Int ld = thisDC().load(1);
gr.updateAvail(this, capacity(total)−ld);
if (capacity(total) < ld ∗ limit) {

LoadBalancer partner = gr.getPartner();
await partner!requestdc(thisDC()); } } }

Unit requestdc(DC comp) {
DCData total = thisDC().total(); Int ld = thisDC().load(1);
if (ld < (capacity(total)/2)){thisDC()!transfer(comp, capacity(total)/3);}}

}

Fig. 6. A load balancer for virtualized resources

interface BalancerGroup {
Unit register(LoadBalancer b, Int load);
Unit unregister(LoadBalancer b);
Unit updateAvail(LoadBalancer b, Int w);
LoadBalancer getPartner();

}
class BalancerGroup() implements BalancerGroup {

List<Pair<LoadBalancer,Int>> sorted = Nil;
Unit register(LoadBalancer b, Int load){

sorted = weightedInsert(Pair(b,load),sorted);}
Unit unregister(LoadBalancer b){

Int w = findWeight(b,sorted); sorted = without(sorted,Pair(b,w)); }
Unit updateAvail(LoadBalancer b, Int w){this.unregister(b);this.register(b,w);}

LoadBalancer getPartner(){
LoadBalancer p = fst(head(sorted)); this.unregister(p); return p;}

}

Fig. 7. The class BalancerGroup

[DC: server6] BalancerGroup balGroup = new cog BalancerGroup();
[DC: server1] LoadBalancer bal1 = new cog Balancer(3,balGroup);
[DC: server2] LoadBalancer bal2 = new cog Balancer(3,balGroup);
[DC: server3] LoadBalancer bal3 = new cog Balancer(3,balGroup);
[DC: server4] LoadBalancer bal4 = new cog Balancer(3,balGroup);
[DC: server5] LoadBalancer bal5 = new cog Balancer(3,balGroup);
[DC: server6] LoadBalancer bal6 = new cog Balancer(3,balGroup);

Fig. 8. Load balancing the virtual world

Separating Cost and Capacity for Load Balancing in ABS 161

whether there are enough available resources to comply with the request on the
deployment component where it is located. The interface LoadBalancer and its
implementation Balancer are given in Figure 6. The Balancer receives requests for
resources for a deployment component dc through the method requestDC; If the
current load on its deployment component is less than half of its capacity, it will
transfer one third of its capacity to dc. The Balancer exchanges resources with
other LoadBalancer objects via a BalancerGroup. The Balancer has a run method
which monitors the load on its deployment component for every accounting pe-
riod and updates its available resources with the BalancerGroup. The run method
consists of a loop which is suspended for the duration of one accounting period,
then it compares the current capacity and load of the deployment component. If
its current capacity is less than limit ∗ load, it will request a LoadBalancer part-
ner from the BalancerGroup and request additional resources from this partner.

The interface BalancerGroup allows LoadBalancer objects to register and un-
register their participation in the group. Furthermore, the interface provides a
method updateAvail for a LoadBalancer to update its available resources and a
method getPartner to request a LoadBalancer partner. The implementation of the
BalancerGroup keeps its registered LoadBalancer objects sorted by their available
resources in the list sorted. The interface BalancerGroup and its implementation
BalancerGroup are given in Figure 7. The function weightedInsert updates sorted
when a LoadBalancer is registered, and findWeight finds the current registered
available resources of a LoadBalancer. These functions are defined as follows:

def List<Pair<LoadBalancer,Int>> weightedInsert(Pair<LoadBalancer,Int> el,
List<Pair<LoadBalancer,Int>> list) =

case list {
Nil => Cons(el,Nil);
Cons(el2,list2) =>

if (snd(el2) > snd (el)) then Cons(el2, weightedInsert(el,list2))
else Cons(el,list); };

def Int findWeight(LoadBalancer b, List<Pair<LoadBalancer,Int>> list) =
case list { Nil => 0;

Cons(Pair(b,weight),_) => weight;
Cons(_,list2) => findWeight(b,list2); };

The method updateAvail updates the available resources of a LoadBalancer in
sorted and getPartner returns the head of this list.

5.1 Example: Load Balancing the Virtual Worlds

Load balancing is introduced into the virtual worlds example by extending the
main block with one BalancerGroup as well as one LoadBalancer for each de-
ployment component. Observe that the load balancer code is orthogonal to the
behavioral code of the model: the code of the previous model has not been modi-
fied and it is straightforward to compare different load balancing strategies. The
extension of the main block is given in Figure 8.

162 E.B. Johnsen

room1
bal3

server3

entr1
bal1

server1

entr2
bal2

server2

room2
bal4

server4

room3
bal5

server5

room4
bal6

server6

Channel(room3)

Channel(room2)Channel(room1)

Channel(room4)

Channel(room3)

bal-
Group

Avatars

Fig. 9. The deployment model of the virtual world example

Figure 9 illustrates the virtual world model with load balancing. The dark
(blue) arrows depict the Channels through which Avatar objects are moving,
starting at the entrance rooms entr1 and entr2. The light (red) arrows depict the
layout of the load balancing strategy, where the LoadBalancer objects deployed
on the different deployment components communicate with the BalancerGroup
object on deployment component server6.

To illustrate observations that can be made from executing the ABS model,
we consider a scenario in which avatars with a given deadline 5 for their internal
cycles, enter by the entr1 and entr2 rooms, 10 at the time. Figure 10 shows
the percentage of missed deadlines for both static deployment and with added
load balancing in this scenario; the vertical axis shows the percentage of missed
deadlines and the horizontal axis shows the number of players (with avatars
equally distributed over the two entrances). In the presented model, the reaction
time of the load balancer is too slow to be beneficial at light loads, as it requires
three accounting periods. When loads are equally distributed between the rooms,
load balancing unnecessarily moves resources. The further calibration of a model
to realistically reflect the domain is challenging. For example, it can be done in
terms of observations of a reference implementation (see [12]).

Separating Cost and Capacity for Load Balancing in ABS 163

���

����

����

����

����

	���

���

����

���
�� ��� ���� ���� ���� �
�� ���� ����

����������������

���������������

Fig. 10. Percentage of missed deadlines ranging over the number of avatars

6 Related Work

The concurrency model of ABS is akin to concurrent objects and Actor-based
computation, in which software units with encapsulated processors communicate
asynchronously [5, 18, 21, 32]. Their inherent compositionality allows concurrent
objects to be naturally distributed on different locations, because only the lo-
cal state of a concurrent object is needed to execute its methods. In previous
work [4, 22, 23], the authors have introduced deployment components as a mod-
eling concept for deployment architectures, which captures restricted resources
shared between a group of concurrent objects, and shown how components with
parametric resources may be used to capture a model’s behavior for different
assumptions about the available resources. The formal details of this approach
are given in [23]. In previous work, the cost of execution was fixed in the lan-
guage semantics. In this paper, we generalize that approach by proposing the
specification of resource costs as part of the software development process. This
is supported by letting default costs be overridden by annotations with user-
defined cost expressed in terms of the local state and the input parameters to
methods. This way, the cost of execution in the model may be adapted by the
modeler to a specific cost scenario. This allows us to abstractly model the effect of
deploying concurrent objects on deployment components with different amounts
of allocated resources at an early stage in the software development process,
before modeling the detailed control flow of the targeted system. In two larger
case studies addressing resource management in the cloud [12,26], the presented
approach is compared to specialized simulation tools and to measurements on
deployed code.

Techniques for prediction or analysis of non-functional properties are based
on either measurement or modeling. Measurement-based approaches apply to

164 E.B. Johnsen

existing implementations, using dedicated profiling or tracing tools like JMeter
or LoadRunner. Model-based approaches allow abstraction from specific system
intricacies, but depend on parameters provided by domain experts [15]. A survey
of model-based performance analysis techniques is given in [6]. Formal systems
using process algebra, Petri Nets, game theory, and timed automata have been
used in the embedded software domain (e.g., [9,16]), but also to the schedulability
of processes in concurrent objects [19]. The latter work complements ours as it
does not consider restrictions on shared deployment resources, but associates
deadlines with method calls with abstract duration statements.

Work on modeling object-oriented systems with resource constraints is more
scarce. Eckhardt et al. [14] use statistical modeling of meta-objects and vir-
tual server replication to maintain service availability under denial of service
attacks. Using the UML SPT profile for schedulability, performance, and time,
Petriu and Woodside [29] informally define the Core Scenario Model (CSM) to
solve questions that arise in performance model building. CSM has a notion
of resource context, which reflects an operation’s set of resources. CSM aims
to bridge the gap between UML and techniques to generate performance mod-
els [6]. Closer to our work is M. Verhoef’s extension of VDM++ for embedded
real-time systems [31], in which static architectures are explicitly modeled us-
ing CPUs and buses. The approach uses fixed resources targeting the embedded
domain, namely processor cycles bound to the CPUs, while we consider more
general resources for arbitrary software. Verhoef’s approach is also based on ab-
stract executable modeling, but the underlying object models and operational
semantics differ. VDM++ has multi-thread concurrency, preemptive scheduling,
and a strict separation of synchronous method calls and asynchronous signals,
in contrast to our work with concurrent objects, cooperative scheduling, and
caller-decided synchronization.

Others interesting lines of research are static cost analysis (e.g., [3, 17]) and
symbolic execution for object-oriented programs. Most tools for cost analysis
only consider sequential programs, and assume that the program is fully devel-
oped before cost analysis can be applied. COSTABS [2] is a cost analysis tool
for ABS which supports concurrent object-oriented programs. Our approach, in
which the modeler specifies cost in annotations, can be combined with COSTABS
to derive cost annotations for the parts of a model that are fully implemented. In
collaboration with Albert et al., this approach has been used for memory anal-
ysis of ABS models [4]. Extending our approach with symbolic execution would
allow the best- and worst-case response time to be calculated for the different
balancing strategies depending on the available resources and user load.

7 Conclusion

This paper gives an overview of a simple and flexible approach to integrat-
ing deployment architectures and resource consumption into executable object-
oriented models. The approach is based on a separation of concerns between
the resource cost of performing computations and the resource capacity of the

Separating Cost and Capacity for Load Balancing in ABS 165

deployment architecture. The paper considers resources which abstractly reflect
execution: each deployment component has a resource capacity per accounting
period and each computation step has a cost, specified by a user-defined cost
expression or by a default. This separation of concerns between cost and ca-
pacity allows the performance of a model to be easily compared for a range of
deployment choices. By comparing deployment scenarios, interesting questions
concerning performance can be addressed already at an early phase of the soft-
ware design.

By integrating deployment architectures into software models, application-
level resource management policies become an integral part of the software de-
sign. This concept is illustrated through the running example of the paper, a
virtual world which is extended by a load balancing strategy based on group
collaboration. The load balancing strategy is compared to static deployment by
means of simulations which count the deadline misses in the model.

Whereas most work on performance either specifies timing or cost as part of
the model (assuming a fixed deployment architecture) or measures the behavior
of the compiled code deployed on an actual deployment architecture, the ap-
proach presented in this paper addresses a need in formal methods to capture
models which vary over the underlying deployment architectures, for example to
model deployment variability in software product lines and resource management
of virtualized resource management for the cloud.

Acknowledgement. The contributions of Rudi Schlatte and Lizeth Tapia, who
have been directly involved in the development of deployment modeling in ABS,
are gratefully acknowledged. The author would further like to thank the HATS
project members for a friendly and fruitful working environment. This work has
in particular profited from collaboration with Peter Wong, Elvira Albert and the
COSTA team, Reiner Hähnle, Frank de Boer, and Olaf Owe.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge (1986)

2. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS:
A cost and termination analyzer for ABS. In: Kiselyov, O., Thompson, S. (eds.)
Proc. Workshop on Partial Evaluation and Program Manipulation (PEPM 2012),
pp. 151–154. ACM (2012)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

4. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R., Tapia
Tarifa, S.L.: Simulating concurrent behaviors with worst-case cost bounds. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 353–368. Springer,
Heidelberg (2011)

5. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

166 E.B. Johnsen

6. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Transactions on Software En-
gineering 30(5), 295–310 (2004)

7. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. Innovations in Systems and
Software Engineering 9(1), 29–43 (2013)

8. Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer (2005)
9. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.

In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

10. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling spatial and temporal variability with the HATS ab-
stract behavioral modeling language. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

11. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

12. de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Wong, P.Y.H.: Formal mod-
eling of resource management for cloud architectures: An industrial case study. In:
De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592,
pp. 91–106. Springer, Heidelberg (2012)

13. de Boer, F.S., Jaghoori, M.M., Johnsen, E.B.: Dating concurrent objects: Real-
time modeling and schedulability analysis. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 1–18. Springer, Heidelberg (2010)

14. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable avail-
ability under denial of service attacks through formal patterns. In: de Lara, J.,
Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 78–93. Springer, Heidelberg
(2012)

15. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: Proc. 31st International Conference on Software
Engineering (ICSE 2009), pp. 111–121. IEEE (2009)

16. Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: Schedulability,
decidability and undecidability. Information and Computation 205(8), 1149–1172
(2007)

17. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In: POPL, pp. 127–139. ACM
(2009)

18. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

19. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. Journal of Logic and Algebraic Program-
ming 78(5), 402–416 (2009)

20. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

21. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

22. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic resource real-
location between deployment components. In: Dong, J.S., Zhu, H. (eds.) ICFEM
2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010)

Separating Cost and Capacity for Load Balancing in ABS 167

23. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Validating timed models of
deployment components with parametric concurrency. In: Beckert, B., Marché, C.
(eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 46–60. Springer, Heidelberg (2011)

24. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: A formal model of object mobility
in resource-restricted deployment scenarios. In: Arbab, F., Ölveczky, P.C. (eds.)
FACS 2011. LNCS, vol. 7253, pp. 187–204. Springer, Heidelberg (2012)

25. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: A formal model of user-defined re-
sources in resource-restricted deployment scenarios. In: Beckert, B., Damiani, F.,
Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 196–213. Springer, Heidel-
berg (2012)

26. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling Resource-Aware Virtual-
ized Applications for the Cloud in Real-Time ABS. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 71–86. Springer, Heidelberg (2012)

27. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling application-level man-
agement of virtualized resources in ABS. In: Beckert, B., Bonsangue, M.M. (eds.)
FMCO 2011. LNCS, vol. 7542, pp. 89–108. Springer, Heidelberg (2012)

28. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

29. Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. Software and Sys-
tem Modeling 6(2), 163–184 (2007)

30. Vellon, M., Marple, K., Mitchell, D., Drucker, S.: The architecture of a distributed
virtual worlds system. In: Proc. 4th USENIX Conference on Object-Oriented Tech-
nologies and Systems (COOTS), pp. 211–218. USENIX (1998)

31. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed em-
bedded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E.
(eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

32. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proc. Ob-
ject oriented programming, systems, languages, and applications (OOPSLA 2005),
pp. 439–453. ACM Press, New York (2005)

Composing Distributed Systems:

Overcoming the Interoperability Challenge

Valérie Issarny and Amel Bennaceur

Inria Paris-Rocquencourt, France
firstname.lastname@inria.fr

Abstract. Software systems are increasingly composed of independently-
developed components, which are often systems by their own. This compo-
sition is possible only if the components are interoperable, i.e., are able to
work together in order toachieve someuser task(s).However, interoperabil-
ity is often hampered by the differences in the data types, communication
protocols, and middleware technologies used by the components involved.
In order to enable components to interoperate despite these differences,
mediators that perform the necessary data translations and coordinate the
components’ behaviours appropriately, have been introduced. Still, inter-
operability remains a critical challenge for today’s and even more tomor-
row’s distributed systems that are highly heterogeneous anddynamic.This
chapter introduces the fundamental principles and solutions underlaying
interoperability in software systemswith a special focus on protocols. First,
we take a software architecture perspective and present the fundamentals
for reasoning about interoperability and bring out mediators as a key so-
lution to achieve protocol interoperability. Then, we review the solutions
proposed for the implementation, synthesis, and dynamic deployment of
mediators. We show how these solutions still fall short in automatically
solving the interoperability problem in the context of systems of systems.
This leads us to present the solution elaborated in the context of the Eu-
ropean Connect project, which revolves around the notion of emergent
middleware, whereby mediators are synthesised on the fly. We consider
the GMES (Global Monitoring of Environment and Security) initiative
and use it to illustrate the different solutions presented.

Keywords: Architectural mismatches, Interoperability, Mediator
synthesis, Middleware.

1 Introduction

Modern software systems are increasingly composed of many components, which
are distributed across the network and collaborate to perform a particular task.
These components, often being complex systems themselves, led to the emer-
gence of what is known as “systems of systems” [32]. The realisation of a system
of systems depends on the ability to achieve interoperability between its different
component systems. Traditionally, “Interoperability characterises the extent by

E. Giachino et al. (Eds.): FMCO 2012, LNCS 7866, pp. 168–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Composing Distributed Systems: Overcoming the Interoperability Challenge 169

which two implementations of systems or components from different manufac-
turers can co-exist and work together by merely relying on each other’s services
as specified by a common standard” [48]. However, assuming the reliance on
a common standard is often unrealistic given that components are increasingly
highly heterogeneous (from the very tiny thing to the very large cloud) and devel-
oped (from design to deployment) independently without knowing the systems
with which they will be composed. As a result, even though the services that
component systems (or components for short) require or provide to each other
are compatible at some high-level of abstraction, their implementations may en-
compass many differences that prevent them from working together. Hence, we
re-state the definition of interoperability to components that require and pro-
vide compatible high-level functionalities and can be made to work together. We
qualify such components as being functionally compatible.

In order to make functionally-compatible components work together, we must
reconcile the differences between their implementations. The differences may be
related to the data types or the format in which the data are encapsulated,
that is, data heterogeneity. Differences may also concern the protocols according
to which the components interact, that is, behavioural heterogeneity, which is
the main focus of this chapter. Middleware, which is a software logically placed
between the higher layer consisting of users and applications, and the layer un-
derneath consisting of operating systems and basic communication facilities,
provides an abstraction that facilitates the development of applications despite
the heterogeneity of the underlying infrastructure. However, the abstractions
defined by the middleware constrain the structure of the data that components
exchange and the coordination paradigm according to which they communicate.
This makes it impossible for components implemented using different middleware
technologies to interoperate. As a result, interoperability must be considered
at both application and middleware layers. To achieve interoperability between
components featuring data and behavioural heterogeneity, intermediary software
entities, called mediators, are used to perform the necessary translations of the
data exchanged and to coordinate the components’ protocols appropriately [52].
Using mediators to achieve interoperability has received a great deal of interest
and led to the definition of a multitude of solutions, both theoretical and practi-
cal, for the specification, synthesis, and deployment of mediators, although they
are predominantly oriented toward design time.

With the growing emphasis on spontaneous interaction whereby components
are discovered at runtime and need to be composed dynamically, mediators can
no longer be specified or implemented at design time. Rather, they have to be
synthesised and deployed on the fly. Therefore, the knowledge necessary for the
synthesis of mediators must be represented in a form that allows its automated
processing. Research on knowledge representation in general, and ontologies in
particular, has now made it possible to model and automatically reason about
domain information crisply, if not with the same nuanced interpretation that a
developer might [45]. Semantic Web Services are an example of the use of on-
tologies in enabling mediation on the fly [38]. However, they are restricted to

170 V. Issarny and A. Bennaceur

interoperability at the application layer, assuming that the composed compo-
nents are implemented using the same middleware.

Acknowledging the extensive work on fostering interoperability, while at the
same time recognising the increasing challenge that it poses to developers, this
chapter provides a comprehensive review of the interoperability challenge, from
its formal foundations to its automated support through the synthesis of media-
tors. The work that is reported extensively builds on the result of the European
collaborative project Connect1, which introduced the concept of emergent mid-
dleware and related enablers so as to sustain interoperability in the increasingly
connected digital world. An emergent middleware is a dynamically generated
distributed system infrastructure for the current operating environment and con-
text, which allows functionally-compatible systems to interoperate seamlessly.

This chapter is organised as follows. In Section 2, we introduce the GMES case
study, which we use throughout the chapter to illustrate the different solutions
to interoperability. In Section 3, we take a software architecture perspective to
understand and further formalise the interoperability problem in the case of sys-
tems of systems, which are characterised by the extreme heterogeneity of their
components and the high-degree of dynamism of the operating environment. In
Section 4, we survey the approaches to achieving interoperability from (i) a mid-
dleware perspective where we concentrate on the effort associated with the imple-
mentation of mediators, (ii) a protocol perspective where we are concerned with
the synthesis of mediators based on the behavioural specification of component
systems, thereby greatly facilitating the developer’s task and further promoting
software correctness, and (iii) a Semantic Web perspective where we focus on
the fully automated synthesis of mediators at runtime, so as to enable on-the-fly
composition of component systems in the increasingly open and dynamic net-
working environment. Following this state of the art review, in Section 5, we
introduce a multifaceted approach to interoperability which brings together the
different perspectives in order to provide a solution to interoperability based on
the automated synthesis of mediators and their dynamic deployment, which we
call emergent middleware. Finally, in Section 6, we conclude on where interop-
erability stands in today’s systems and present directions for future work.

2 GMES: A System of Systems Case Study

To highlight the interoperability challenge in systems of systems, we consider
one representative application domain, that of global monitoring of the natural
environment, as illustrated by the GMES2 initiative. GMES is the European
Programme for the establishment of a European capacity for Earth Observa-
tion. A special interest is given to the support of emergency situations across
different European countries [22]. In emergency situations, the context is highly
dynamic and involves highly heterogeneous components that interact in order
to perform the different tasks necessary for decision making. The tasks include,

1 http://www.connect-forever.eu/
2 Global Monitoring for Environment and Security – http://www.gmes.info/

http://www.connect-forever.eu/
http://www.gmes.info/

Composing Distributed Systems: Overcoming the Interoperability Challenge 171

Country 1 Country 2

Weather Service

Positioning-A

Weather Station Client

Positioning-BC2 Positioning-B Subscriber

UAV ClientUAVUGV

SOAP

SOAP

SO
AP

CORBA

AMQP

SOAP

Med
iat

or

Mediator

M
ediator

Weather Station

Fig. 1. The GMES use case

among others, collecting weather information, and capturing video using differ-
ent devices. GMES makes a strong case of the need for on-the-fly solutions to
interoperability in systems of systems. Indeed, each country defines an emer-
gency management system that composes different components, which interact
according to standards proper to the country. However, in special circumstances,
assistance may come from other countries, which bring their own components
defined using different standards.

Figure 1 depicts the case where the emergency system of Country 1 is com-
posed of a Command and Control centre (C2) which takes the necessary decisions
for managing the crisis based on the information about the weather provided by
the Weather Service component, the positions of the various agents in field given
by Positioning-A, and the video of the operating environment captured by UGV
(Unmanned Ground Vehicle) robots with sensing capabilities. The different com-
ponents use SOAP3 to communicate. Country 2 assists Country 1 by supplying
components that provide the C2 component with extra information. These com-
ponents consists in Weather Station, the Positioning-B positioning system, and
a UAV (Unmanned Aerial Vehicle) drone. However, C2 cannot use these compo-
nents directly [23]. Indeed, Weather Station that is implemented using CORBA4,
provides specific information such as temperature or humidity whereas Weather
Service, which is used by C2, returns all of this information using a single oper-
ation. Further, Positioning-A is implemented using SOAP and interacts accord-
ing to the request/responseparadigmwhereasPositioning-B is implemented using
AMQP5 and hence interacts according to the publish/subscribe paradigm. Also,

3 http://www.w3.org/TR/soap/
4 http://www.omg.org/technology/documents/corba_spec_catalog.htm
5 http://www.amqp.org

http://www.w3.org/TR/soap/
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.amqp.org

172 V. Issarny and A. Bennaceur

Weather_Connector1

login

getWeather

logout

login

getWeather

logout

C2 Weather Service

Fig. 2. C2 and Weather Service, and associated connector in Country 1

UGV requires the client to login, then it can move in the four cardinal directions
while UAV is required to takeoff prior to any operation and to land before logging
out. To enable C2 to use the components provided by Country 2, with which it is
functionally compatible, mediators have to be synthesised and deployed in order
to make C2 interoperate with Weather Station, Positioning-B, and UAV.

3 The Interoperability Problem Space: A Software
Architecture Perspective

Software systems may be abstractly described at the architectural level in terms
of components and connectors: components are meant to encapsulate compu-
tation while connectors are meant to encapsulate interaction. In other words,
control originates in components, and connectors are channels for coordinating
the control flow (as well as data flow) between components [46].

So as to sustain software composition, software components must not only
specify their (provided) interfaces, i.e., the subset of the system’s functionality
and/or data that is made accessible to the environment, but also the assumptions
they make in terms of other components/interfaces that must be present for a
component to fulfill its functionality, making all dependencies explicit [49,24]. A
software connector is an architectural element tasked with effecting and regulat-
ing interactions among components via their interfaces [49]. As an illustration,
Figure 2 depicts the case of the C2 component interacting with Weather Ser-
vice, where C2 exhibits an interface in which it requires the operations login,
getWeather, and logout, and Weather Service defines an interface in which it
provides these same operations. The connector Weather Connector1 coordinates
these operations based on the SOAP middleware technology.

From the standpoint of implementation, middleware provides the adequate
basis for implementing connectors. Indeed, middleware greatly eases the compo-
sition of components by introducing abstractions that hide the heterogeneity of
the underlying infrastructure. However, middleware defines specific data formats
and interaction paradigms, making it difficult for components developed using
different middleware to communicate [42].

In general, the assembly of components via connectors may conveniently be
reasoned about based on the appropriate formalisation of software architecture,
as discussed in the following section.

Composing Distributed Systems: Overcoming the Interoperability Challenge 173

Table 1. FSP syntax overview

Definitions

αP The alphabet of a process P

END Predefined process.
Denotes the state in which a process successfully terminates

set S Defines a set of action labels

[i : S] Binds the variable i to a value from S

Primitive Processes (P)

a → P Action prefix

a → P |b → P Choice

P ;Q Sequential composition

P (X =′ a) Parameterised process: P is described using parameter X
and modelled for a particular parameter value, P (a1)

P/{new 1/old 1, ..., new n/old n} Relabelling

P\{a1, a2, ..., an} Hiding

P + {a1, a2, ..., an} Alphabet extension

Composite Processes (‖P)

P‖Q Parallel composition

forall [i : 1..n] P (i) Replicator construct: equivalent to the parallel composition
(P (1)‖...‖P (n)).

a : P Process labelling

3.1 Formal Foundations for Software Architectures

To enable formal reasoning about software architecture composition, the inter-
action protocols implemented by components and connectors may be specified
using a process algebra, as introduced in the pioneering work of Allen and Gar-
lan [1]. In the context of this chapter, we concentrate more specifically on the
use of FSP (Finite State Processes) based on the work of Spitznagel and Garlan,
which in particular considers the adaptation of connectors to address depend-
ability as well as interoperability concerns [47].

Finite State Processes. FSP [35] is a process algebra that has proven to be a
convenient formalism for specifying concurrent components, analysing, and rea-
soning about their behaviours. Table 1 provides an overview of the FSP operators,
while the interested reader is referred to [35] for further detail. Briefly stated, FSP
processes describe actions (events) that occur in sequence, and choices between ac-
tion sequences. Each process has an alphabet, αP , of the actions that it is aware
of (and either engages in or refuses to engage in). There are two types of processes:
primitive processes and composite processes. Primitive processes are constructed
through action prefix, choice, and sequential composition. Composite processes are
constructed using parallel composition or process relabelling. The replicator forall

174 V. Issarny and A. Bennaceur

is a convenient syntactic construct used to specify parallel composition over a set
of processes. Processes can optionally be parameterised and have re-labelling, hid-
ing or extension over their alphabet. A composite process is distinguished from a
primitive process by prefixing its definition with ‖.

The semantics of FSP is given in terms of Labelled Transition Systems (LTS)
[33]. The LTS interpreting an FSP process P can be regarded as a directed graph
whose nodes represent the process states and each edge is labelled with an action
a ∈ αP representing the behaviour of P after it engages in a. P

a→ P ′ then
denotes that P transits with action a into P ′. Then, P s⇒ P ′ is a shorthand
for P

a1→ P1
a2→ P2...

an→ P ′, s = 〈a1, a2, ..., an〉 , ai ∈ αP . There exists a start
node from which the process begins its execution. The END state indicates a
successful termination. When composed in parallel, processes synchronise on
shared actions: if processes P and Q are composed in parallel, actions that are
in the alphabet of only one of the two processes can occur independently of the
other process, but an action that is in the alphabets of both processes cannot
occur until the two of them are willing to engage in it, as described below:

P
a→ P ′, ∃a ∈ αQ

P‖Q a→ P ′‖Q
Q

a→ Q′, ∃a ∈ αP

P‖Q a→ P‖Q′
P

a→ P ′, Q a→ Q′

P‖Q a→ P ′‖Q′

Formalising Components and Connectors Using FSP. The interaction
protocols run by components are described using a set of FSP processes called
ports. For example, consider the port of C2 dedicated to the interaction with
Weather Service (see Figure 2): C2 logs in, invokes the operation getWeather
several times, and finally logs out. The port of C2 is specified, using FSP, as
follows:

C2 port = (req.login → P1),
P1 = (req.getWeather → P1|req.logout → C2 port).

We further use FSP processes to describe a connector as a set of roles and a
glue. Roles are the processes that specify the expected local behaviours of the
various interacting parties coordinated by the connector, while the glue process
describes the specific coordination protocol that is implemented [1]. Still consid-
ering our example of Figure 2, the Weather Connector1 connector managing the
interactions between C2 and Weather Service defines a role associated with each
of them, that is, C2 role and WeatherService role, respectively. The connector
also defines how these operations are realised using a SOAP request/response
paradigm. More specifically, each required operation corresponds to the send-
ing of a SOAP request parameterised with the name of the operation, and the
reception of the corresponding SOAP response, which is specified by the pro-
cess SOAPClient. The dual provided operation corresponds to the receiving of a
SOAP request parameterised with the name of the operation, and the send of the
corresponding SOAP response, which is specified by the process SOAPServer.
Furthermore, a request sent from one side is received from the other and similarly
for a response, which is specified by the process SOAPGlue.Weather Connector1
is then specified as the parallel composition of all these processes:

Composing Distributed Systems: Overcoming the Interoperability Challenge 175

set weather actions1 = {login, getWeather, logout}
C2 role = (req.login → P1),
P1 = (req.getWeather → P1|req.logout → C2 Role).

WeatherService role = (prov.login → P2),
P2 = (prov.getWeather → P2|prov.logout → WeatherService role).

SOAPClient (X =′ op) = (req.[X] → sendSOAPRequest[X] → receiveSOAPResponse[X]
→ SOAPClient).

SOAPServer (X =′ op) = (prov.[X] → receiveSOAPRequest[X] → sendSOAPResponse[X]
→ SOAPServer).

SOAPGlue (X =′ op) = (sendSOAPRequest[X] → receiveSOAPRequest[X] →
sendSOAPResponse[X] → receiveSOAPResponse[X] → SOAPGlue).

‖Weather Connector1 = (C2 role
‖ WeatherService role
‖ (forall[op : weather actions1]SOAPClient(op))
‖ (forall[op : weather actions1]SOAPGlue(op))
‖ (forall[op : weather actions1]SOAPServer(op))).

Weather_Connector2
getTemperature

getHumidity
logout

login
getTemperature

getHumidity
logout

login

Weather Station Client Weather Station

Fig. 3. The Weather Station and associated client in Country 2

Consider now the case of the Weather Station component interacting with its
specific client (see Figure 1). As depicted in Figure 3, Weather Station exhibits
an interface through which it provides the operations login, getT emperature,
getHumidity, and logout, while the associated port is specified as follows:

WeatherStation port = (prov.login → P2),
P2 = (prov.getTemperature → P2

| prov.getHumidity → P2
| prov.logout → WeatherStation port).

The connector Weather Connector2 then coordinates the operations between
Weather Station and the corresponding client according to the CORBA re-
quest/response paradigm and is specified as follows:

set weather actions2 = {login, getTemperature, getHumidity, logout}
WeatherStationClient role = (req.login → P1),
P1 = (req.getTemperature → P1

| req.getHumidity → P1
| req.logout → WeatherStationClient role).

WeatherStation role = (prov.login → P2),
P2 = (prov.getTemperature → P2

| prov.getHumidity → P2
| prov.logout → WeatherStation role).

176 V. Issarny and A. Bennaceur

Weather_Connector1
(SOAP)

Weather_Connector2
(CORBA)

getTemperature
getHumidity

logout

login

???

login

getWeather

logout

C2 Weather Station

Fig. 4. Architectural mismatch between C2 and Weather Station

CORBAClient (X =′ op) = (req.[X] → sendCORBARequest[X]
→ receiveCORBAResponse[X] → CORBAClient).

CORBAServer (X =′ op) = (prov.[X] → receiveCORBARequest[X]
→ sendCORBAResponse[X] → CORBAServer).

CORBAGlue (X =′ op) = (sendCORBARequest[X] → receiveCORBARequest[X]
→ sendCORBAResponse[X] → receiveCORBAResponse[X]
→ CORBAGlue).

‖Weather Connector2 = (WeatherStationClient role
‖ WeatherStation role
‖ (forall[op : weather actions2]CORBAClient(op))
‖ (forall[op : weather actions2]CORBAGlue(op))
‖ (forall[op : weather actions2]CORBAServer(op))).

Thanks to the formal specification of architectural components and connectors,
architectural mismatches may be reasoned about. Specifically, architectural mis-
matches occur when composing two, or more, software components to form a
system and those components make different assumptions about their environ-
ment [27], thereby preventing interoperability. These assumptions relate to: (i)
the data and control models of the involved components, (ii) the protocols and
the data model specified by the connector, and (iii) the infrastructure and the
development environment on top of which the components are built. Consider
for example the composition of C2 and Weather Station. There exists an ar-
chitectural mismatch between the two, which hampers their interoperation (see
Figure 4). Indeed, the components manipulate different data: C2 deals with
weather whereas Weather Station manages temperature and humidity. They are
also implemented using different middleware technologies: SOAP for C2 and
CORBA for Weather Station. In the following section, we show how to reason
about the different assumptions that components make about their connection.

3.2 Reasoning about Architectural Mismatches

Architectural mismatches can be reasoned about formally by comparing compo-
nent port and connector roles [1]. More specifically, a component can be attached
to a connector only if its port is behaviourally compatible with the connector role
it is bound to. Behavioural compatibility between a component port and a con-
nector role is based upon the notion of refinement, i.e., a component port is
behaviourally compatible with a connector role if the process specifying the be-
haviour of the former refines the process characterising the latter [1]. In other
words, it should be possible to substitute the role process by the port process.

For example, the C2 component can be attached to Weather Connector1
connector since C2 port refines C2 role — they are actually the same.
Likewise, WeatherStation port refines WeatherStation role defined by

Composing Distributed Systems: Overcoming the Interoperability Challenge 177

C2

Mediator
getTemperature

getHumidity
logout

loginlogin

getWeather

logout

Weather Station

Fig. 5. Mediator to solve architectural mismatch between C2 and Weather Station

Weather Connector2. However, WeatherStation port cannot be attached
to Weather Connector1 since it does not refine any of its ports, nor C2 role
can be attached to Weather Connector2. Hence, in the case of C2 willing to
interact with Weather Station, none of the available connectors can readily be
used resulting in an architectural mismatch, which needs to be overcome by a
mediator, as depicted in Figure 5.

3.3 Mediators Adapting Connectors for Interoperability

In order to solve architectural mismatches without modifying the compo-
nents themselves, it is necessary to construct a connector that reconciles
the assumptions that each of the components makes about its environ-
ment. The connector need not necessarily be constructed from scratch. It
can also be developed by transforming existing connectors. Hence, a con-
nector with n roles coordinated using a Glue process and specified as:
Connector = R1‖...‖Rn‖Glue can be adapted into a mediator: Mediator =
f1(R1)‖...‖fn(Rn)‖Rn+1‖...‖Rn+k‖fG(Glue) with which the ports of the compo-
nents at hand are behaviourally compatible. For example, the mediator between
C2 and Weather Station includes roles behaviourally compatible with C2 port
and WeatherStation port and encompasses the glue that coordinates them.

Spitznagel and Garlan [47] introduce a set of transformation patterns (e.g.,
data translation and event aggregation), which a developer can specify
and compose in order to construct complex connectors based on existing ones.
The complex connectors that are specifically considered in [47] enhance the coor-
dination of components with respect to enforcing stronger dependability guaran-
tees. However, complex connectors may as well be built to overcome architectural
mismatches. Still, the question that raises itself is which transformations (i.e.,
composition of the given connector with transformation patterns) are valid and
which do not make sense for a specific mismatch at hand. For example, the
mediator between C2 and Weather Station has to translate the getWeather
operation required by C2 into the getT emperature and getHumidity opera-
tions provided by Weather Station. Hence, it needs to compose the connectors
Weather Connector1 and Weather Connector2 , respectively associated with C2
and the Weather Station, with the process:

Map = (req.getWeather → prov.getT emperature → prov.getHumidity).

178 V. Issarny and A. Bennaceur

However, this only solves mismatches occurring at the application layer and
mediation is also necessary at the middleware layer so as to bridge SOAP and
CORBA. Another concern for the composition of connectors is the increasing
dynamics of the networking environment, which calls for on-the-fly mediation.

3.4 Dynamic Software Architecture and Mediation

In dynamic environments where components are discovered at runtime and com-
posed dynamically, mediators can no longer be specified or implemented at de-
sign time. Instead, they have to be synthesised and deployed on the fly. However,
the synthesis of mediators not only requires knowledge of the data and behaviour
of the components but also knowledge of the domain, which specifies the rela-
tion between the data and operations of the different components. In particular,
ontologies build upon sound logical theory to provide a machine-interpretable
means to reason, automatically, about the semantics of data based on the shared
understanding of the domain [4]. As a matter of fact, ontologies prove valuable
when dealing with data interoperability. In this context, ontologies are used
to specify a shared vocabulary precisely and offer a common basis to reconcile
data syntactic differences based on their semantic definitions. They further play
a valuable role in software engineering by supporting the automated integra-
tion of knowledge among teams and project stakeholders [17]. For example, a
weather ontology would allow us to infer the relation between getWeather and
getT emperature and getHumidity without a need for human intervention.

Ontologies have also been widely used for the modelling of Semantic Web
Services and to achieve efficient service discovery and composition [41,40]. Se-
mantic Web Services use ontologies as a central point to achieve interoperability
between heterogeneous clients and services at runtime. For example, WSMO
(Web Service Modelling Ontology) relies on ontologies to support runtime medi-
ation based on pre-defined patterns. However, the proposed approach does not
ensure that such mediation does not lead to an erroneous execution (e.g., dead-
lock) [20]. It further assumes that components are implemented using the same
middleware, SOAP.

Overall, the issue of overcoming architectural mismatches to make interop-
erable components that are functionally compatible, is a cross-cutting concern
where protocol mismatches need to be addressed at both application and mid-
dleware layers. Interoperability solutions must consider conjointly application
and middleware layers: (i) the application layer provides the appropriate level
of abstraction to reason about interoperability and automate the generation of
mediators; and (ii) the middleware layer offers the necessary services for realis-
ing the mediation by selecting and instantiating the specific data structures and
protocols. In addition, mediators need to be synthesised on the fly, as the net-
working environment is now open and dynamic, thereby leading to the assembly
of component systems that are known to one another other at runtime, as op-
posed to design time. As discussed next, supporting such a dynamic cross-layer
mediation requires a multifaceted solution.

Composing Distributed Systems: Overcoming the Interoperability Challenge 179

4 The Interoperability Solution Space: A Multifaceted
Review

Sustaining interoperability has received a great deal of attention since the emer-
gence of distributed systems and further promotion of component-based and
service-oriented software engineering. We may classify solutions to protocol in-
teroperability according to three broad perspectives: (i) the middleware perspec-
tive is specifically concerned with the implementation of middleware-layer medi-
ators, based on the introduction of frameworks that allow bridging components
that are implemented on top of heterogeneous infrastructures, (ii) the protocol
perspective is focused on the systematic synthesis of mediators based on the
specification of the protocols implemented by components to be made interoper-
able, and (iii) the semantic perspective is oriented toward automated reasoning
about the matchmaking of components, both functionally and behaviourally.

4.1 The Middleware Perspective: Implementing Protocol Mediators

By definition, middleware defines an infrastructure mediator that overcomes the
heterogeneity occurring in the lower layer. While original middleware solutions
primarily targeted data heterogeneity, later middleware solutions had to deal
with behavioural heterogeneity due to the composition of component systems
relying on heterogeneous middleware protocols, as exemplified by the GMES
case study. We then identify two basic approaches for the implementation of
protocol mediators: (i) pairwise mediation where a specific bridge is implemented
for each pair of heterogeneous protocols that need to be composed, and (ii)
mediation through a reference protocol where protocol interoperability is achieved
by bridging any protocol that needs to be composed with a reference protocol.
The former leads to highly customised mediators while the latter significantly
decreases the development effort associated with mediation. In the following, we
describe both approaches in more detail.

Pairwise Mediation. Under pairwise mediation, the developer has to define
the transformations necessary to reconcile the data and behaviour of the proto-
cols involved and to ensure the correctness of these transformations. Mediation
must be addressed at all the layers of protocol heterogeneity. This especially
stands for the application and middleware layers, while lower network layer het-
erogeneity remains largely addressed through IP-based networking. For exam-
ple, at the middleware layer, OrbixCOMet6 performs the necessary translation
between DCOM and CORBA and SOAP2CORBA7 ensures interoperability be-
tween SOAP and CORBA in both directions.

Figure 6 depicts the example of the composition of C2 with Weather Station
using SOAP2CORBA, which allows the SOAP requests issued by C2 to be
translated into CORBA requests, and the corresponding CORBA responses to

6 http://www.iona.com/support/whitepapers/ocomet-wp.pdf
7 http://soap2corba.sourceforge.net/

http://www.iona.com/support/whitepapers/ocomet-wp.pdf
http://soap2corba.sourceforge.net/

180 V. Issarny and A. Bennaceur

C2

SOAP

Weather Station

CORBASOAP2CORBA

Fig. 6. Pairwise mediation between layered protocols

be translated into SOAP responses. This translation is relative to a specific
operation. Hence, this translation can be specified as follows:

SOAP2CORBA(X =′ op) = (receiveSOAPRequest[X] → sendCORBARequest[X]
→ receiveCORBAResponse[X] → sendSOAPResponse[X]
→ SOAP2CORBA).

However, the connector Weather Connector12 Pairwise defined as:

‖Weather Connector12 Pairwise = (C2 role
‖ WeatherStation role
‖ (forall[op : weather actions1]SOAPClient(op))
‖ (forall[op : weather actions1]SOAPGlue(op))
‖ (forall[op : weather actions1]SOAPServer(op))).
‖ (forall[op : weather actions2]CORBAClient(op))
‖ (forall[op : weather actions2]CORBAGlue(op))
‖ (forall[op : weather actions2]CORBAServer(op))).
‖ SOAP2CORBA

is not a valid connector since the translation is carried out assuming that the
components refer to the same application-layer operations to coordinate. For
example, when C2 sends a SOAP request for getWeather, it is translated
into a CORBA request for getWeather, but there is no counter part on the
server side since Weather Station does not provide this operation. Indeed, higher
application-layer mediation also needs to be implemented.

In general, the implementation of pairwise mediators is a complex task: de-
velopers have to deal with a lot of details and therefore must have a thorough
understanding of the protocols at hand. As a result, solutions that help develop-
ers defining middleware-layer mediators have emerged. These solutions consist
in a framework whereby the developer provides a declarative specification of the
message translation across protocols, based on which the actual transformations
are computed. For example, z2z [16] introduces a domain-specific language to
describe the protocols to be made interoperable as well as the translation logic
to compose them and then generates the corresponding bridge. Starlink [14] uses
the same domain-specific models to specify bridges, which it deploys dynamically
and interprets at runtime (see Figure 7). However, these solutions still require
the developer to specify the translations to be made and hence to know both
middleware in advance.

Mediation through a Reference Protocol. To reduce the development effort
induced by pairwise mediation, a reference protocol can be used as an interme-
diary to translate from one protocol to another. Such mediation is especially
appropriate for the middleware layer where heterogeneous middleware protocols

Composing Distributed Systems: Overcoming the Interoperability Challenge 181

C2

SOAP

Weather Station

CORBAStarlink

Fig. 7. Pairwise middleware-layer mediation based on high-level specification

may rather easily be mapped onto a common protocol when the middleware
implement the same interaction paradigm. Application-layer reference protocols
may also be considered for commonly encountered applications like messaging
systems [7].

Enterprise Service Buses (ESBs), e.g., Oracle Service Bus8 and IBM Web-
Sphere Enterprise Service Bus9, represent the most mature and common use
of mediation through a reference protocol. An ESB [39] is an open standard,
message-based, distributed integration infrastructure that provides routing, in-
vocation and mediation services to facilitate the interactions of disparate dis-
tributed applications and services.

C2

SOAP

Weather Station

CORBACORBA2RPC

SOAP2RPC

RPC

Fig. 8. Mediation through a reference protocol

When the intermediary reference protocol is defined independently of the set
of middleware for which it guarantees interoperability, it does not necessarily
capture all their details and specificities. Bromberg [12] puts forward the infer-
ence of the best-suited intermediary protocol based on the behaviours of the
middleware involved. The author applies this approach to ensure interoperabil-
ity in pervasive systems between different service discovery protocols using IN-
DISS [15] and across RPC protocols (assuming the same application atop) using
NEMESYS [12].

8 http://www.oracle.com/technetwork/middleware/service-bus/
9 http://www-01.ibm.com/software/integration/wsesb/

http://www.oracle.com/technetwork/middleware/service-bus/
http://www-01.ibm.com/software/integration/wsesb/

182 V. Issarny and A. Bennaceur

Going back to our example of the C2 component willing to interact with
Weather Station, both of them interact according to the RPC paradigm, which
we can use as a reference protocol for ensuring interoperability between SOAP
and CORBA (see Figure 8). Hence, we define the RPC (reference) connector as
follows:

set interface = {any}
Client (X =′ op) = (sendRequest[X] → receiveResponse[X] → Client).
Server (X =′ op) = (receiveRequest[X] → sendResponse[X] → Server).
Glue (X =′ op) = (sendRequest[X] → receiveRequest[X]

→ sendResponse[X] → receiveResponse[X] → Glue).
‖RPCConnector = ((forall[op : interface]Client(op))

‖ (forall[op : interface]Glue(op))
‖ (forall[op : interface]Server(op))).

We also need to define the transformations between each protocol and the ref-
erence protocol as follows:

SOAP2RPC(X =′ op) = (sendSOAPRequest[X] → translateSOAP2Request
→ sendRequest[X] → SOAP2RPC

| receiveRequest[X] → translate2SOAPRequest
→ receiveSOAPRequest[X] → SOAP2RPC

| sendSOAPResponse[X] → translateSOAP2Response
→ sendResponse[X] → SOAP2RPC

| receiveSOAPResponse[X] → translate2SOAPResponse
→ receiveResponse[X] → SOAP2RPC).

CORBA2RPC(X =′ op) = (sendCORBARequest[X] → translateCORBA2Request
→ sendRequest[X] → CORBA2RPC

| receiveRequest[X] → translate2CORBARequest
→ receiveCORBARequest[X] → CORBA2RPC

| sendCORBAResponse[X] → translateCORBA2Response
→ sendResponse[X] → CORBA2RPC

| receiveCORBAResponse[X] → translate2CORBAResponse
→ receiveResponse[X] → CORBA2RPC).

We obtain the Weather Connector12 Reference connector:

‖Weather Connector12 Reference = (C2 role
‖ WeatherStation role
‖ (forall[op : weather actions1]SOAPClient(op))
‖ (forall[op : weather actions1]SOAP2RPC(op))
‖ (forall[op : weather actions2]CORBAServer(op))
‖ (forall[op : weather actions2]CORBA2RPC(op))
‖ (forall[op : weather actions1]Client(op))
‖ (forall[op : weather actions1]Glue(op))
‖ (forall[op : weather actions1]Server(op))
‖ (forall[op : weather actions2]Client(op))
‖ (forall[op : weather actions2]Glue(op))
‖ (forall[op : weather actions2]Server(op))).

However, as in the case of Weather Connector12 Pairwise, the
Weather Connector12 Reference connector only solves interoperability at
the middleware layer and must be further enhanced to deal with interoperabil-
ity at the application layer.

To sum up, a great amount of work exists on the development of concrete
interoperability solutions to overcome middleware heterogeneity [9]. All these
approaches tackle middleware interoperability assuming the use of the same ap-
plication on top, while for components to be able to work together, differences

Composing Distributed Systems: Overcoming the Interoperability Challenge 183

at both application and middleware layers need to be addressed. Similar ap-
proaches may be applied for application-layer protocols and actually are, but
this is restricted to specific applications that are commonly encountered nowa-
days, like messaging applications [7]. In general, interoperability solutions based
on the implementation of mediators do not scale to the unbounded universe of
applications. Another issue is that middleware heterogeneity is often tackled for
middleware defining the same interaction paradigm, while systems envisioned for
the Future Internet are increasingly heterogeneous and require to compose sys-
tems based on distinct paradigms. The notion of extensible service buses enabling
highly heterogeneous systems to interoperate across interaction paradigms has
recently emerged but it is in its infancy [28]. The provision of interoperability
solutions remains, however, a complex task for which automated support is of a
great help.

4.2 The Protocol Perspective: Synthesising Protocol Mediators

In order to ease the task of the developers in achieving interoperability between
functionally-compatible components, one approach is to provide methods and
tools for the automated synthesis of mediators based on the specification of
the protocols involved. The approaches can be applied at the application and
middleware layers as long as they are isolated.

Lam [34] defines an approach for the synthesis of mediators using a reference
protocol, which represents the glue of the mediator. Developers define the ref-
erence protocol based on an intuitive understanding of the features common to
the protocols at hand. The author defines an approach for computing the rela-
belling function that maps the individual protocol onto the reference protocol.
The mediator is then composed of the relabelling functions together with the
reference protocol. As discussed in Section 4.1, at the middleware layer, we can
specify the following reference protocol, which represents the glue of an RPC
protocol:

‖Reference Middleware protocol (X =′ op) = (sendRequest[X] → receiveRequest[X]
→ sendResponse[X] → receiveResponse[X]
→ Reference Mdw protocol).

However at the application layer, the synthesis cannot be applied as relabelling
involves the translation of one operation only and not a sequence of operations.
That is getWeather, getT emperature, and getHumidity cannot be mapped
to the same operation. Hence, the Weather Connector12 Synthesised connector
does not allow C2 and WeatherStation to interoperate:

‖Weather Connector12 Synthesised = (C2 role
‖ WeatherStation role
‖ (forall[op : weather actions1]SOAPClient(op))

/{sendSOAPRequest/sendRequest,
‖ receiveSOAPResponse/receiveResponse}
‖ (forall[op : weather actions2]CORBAServer(op))

/{receiveCORBARequest/receiveRequest,
sendCORBAResponse/sendResponse}

‖ (forall[op : weather actions1]Glue(op))

184 V. Issarny and A. Bennaceur

The aforementioned solution consists in defining an abstraction common to the
protocols to be mediated. An alternative approach is to synthesise a pairwise
mediator based on a partial specification of the translations to be made, either
as a goal, which represents a global specification of the composed system, or as an
interface mapping, which represents the correspondence between the operations
of the components. In the case of interoperability between C2 and Weather
Station, consider for example the following goal:

Req1 = (Country1.req.login → Country2.prov.login → Req1).
Req2 = (Country1.req.getWeather → P1),
P1 = (Country2.prov.getTemperature → Country2.prov.getHumidity → Req2

| Country2.prov.getHumidity → Country2.prov.getTemperature → Req2).
Req3 = Country1.req.logout → Country2.prov.logout → Req3).
property ‖Goal = (Req1 ‖ Req2 ‖ Req3).

Note that the actions are prefixed with either Country1 or Country2 so as to
prevent synchronisations outside the mapping processes. The goal ensures that
each time C2 performs a login or a logout, then Weather Station eventually
performs it as well. When C2 issues a request for getWeather, then Weather
Station eventually provides getT emperature and getHumidity in any order.
Calculating the mediator amounts to computing the process M , which refines
the composition (C2 ‖ WeatherStation) so as to satisfy the Goal property.

Calvert and Lam [18] propose to calculate the composition first, then to elim-
inate the traces that violate the goal. Applied to our running example, first
the composition (C2 ‖ WeatherStation ‖ Goal) is calculated, then all the traces
where the goal cannot be satisfied are removed, which results in the most general
mediator called quotient. However, this calculation is computationally expensive
as it requires covering all the trace set. In order to eliminate execution errors
(e.g., deadlocks) efficiently, model checking can be used in the generation of
mediators [8,19,37].

To avoid the reliance on model checking techniques, Yellin and Strom
[53] propose an algorithm for the automated synthesis of mediators based on
a declarative interface mapping. The authors assume a non-ambiguous one-to-
one interface mapping, i.e., an operation corresponds to one operation only. They
construct the mediator by exploring the protocols of the mediator and perform-
ing the necessary translations so as to guarantee that no deadlock can happen.

All the aforementioned approaches expect the transformations to be partially
specified. In other words, the mediation problem has been shifted to the goal
or interface mapping definition. Most of the difficulty remains on the definition
of the partial specification, which require developers to know the protocols of
both components and to have an intuitive understanding of the translations
that need to be performed to enable them to interoperate. Given the size and
the number of parameters of the interface of each component, this task may be
error-prone and perhaps as difficult as providing the mediator itself. For example,
the Amazon Web Service10 includes 23 operations and no less than 72 data type
definitions and eBay11 contains more than 156 operations. Given all possible

10 http://soap.amazon.com/schemas2/AmazonWebServices.wsdl
11 http://developer.ebay.com/webservices/latest/ebaysvc.wsdl

http://soap.amazon.com/schemas2/AmazonWebServices.wsdl
http://developer.ebay.com/webservices/latest/ebaysvc.wsdl

Composing Distributed Systems: Overcoming the Interoperability Challenge 185

combinations, methods that automatically compute this partial specification are
necessary, which we survey next.

4.3 The Semantic Perspective: Emergent Protocol Mediators

Ontologies provide experts with a means to formalise the knowledge about do-
mains as a set of axioms that make explicit the intended meaning of a vocab-
ulary [30]. Hence, besides general purpose ontologies, such as dictionaries (e.g.,
WordNet12) and translators (e.g., BOW13), there is an increasing number of on-
tologies available for various domains such as biology [3], geoscience [44], and
social networks [29], which in turn foster the development of a multitude of
search engines for finding ontologies on the Web [25].

Ontologies are supported by a logic theory to reason about the properties and
relations holding between the various domain entities. In particular, OWL14

(Web Ontology Language), which is the W3C standard language to model on-
tologies, is based on Description Logics (DL). While traditional formal specifica-
tion techniques (e.g., first-order logic) might be more powerful, DL offers crucial
advantages: it excels at modelling domain-specific knowledge while providing
decidable and efficient reasoning algorithms. DL is used to formally specify the
vocabulary of a domain in terms of concepts, features of each concept, and rela-
tionships between these concepts [26]. DL also allows the definition of complex
types out of primitive ones, is able to detect specialisation relations between
complex types, and to test the consistency of types. Traditionally, the basic rea-
soning mechanism in DL is subsumption, which can be used to implement other
inferences (e.g., satisfiability and equivalence) using pre-defined reductions [4]. In
this sense, DL in many ways resembles type systems with some inference mech-
anisms such as subsumption between concepts and classification of instances
within the appropriate concept, corresponding to type subsumption and type
inference respectively. Nevertheless, DL is by design and tradition well-suited
for application- and domain-specific services [11].

Besides defining the semantics of data, OWL-S [36] adds the definition of the
capability of a service, which defines the service’s functionality, and the service’s
process model, which defines how this functionality is performed. Services can
then be matched based on their capabilities [43] or based on their process model.
In this latter case, Vacuĺın et al. [51] devise a mediation approach for OWL-S
processes. They first generate all requesters’ paths, then find the appropriate
mapping for each path by simulating the provider process. This approach deals
only with client/server interactions and is not able to generate a mediator if many
mappings exist for the same operation. However, OWL-S only has a qualified
consent because it specifies yet another model to define services. In addition,
solutions based on process algebra and automata have proven to be more suitable
for reasoning about protocol interoperability.

12 http://www.w3.org/TR/wordnet-rdf/
13 http://BOW.sinica.edu.tw/
14 http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/wordnet-rdf/
http://BOW.sinica.edu.tw/
http://www.w3.org/TR/owl2-overview/

186 V. Issarny and A. Bennaceur

C2

SOAP

Weather Station

CORBA

Ontology-based Mediation

Ontology
Country 2

Ontology
Country 1

Lowering
& Lifting
XSLT2

Lowering
& Lifting
XSLT2

???

Fig. 9. Ontology-based mediation

In this direction, WSMO [20] defines a description language that integrates
ontologies with state machines for representing Semantic Web Services. However,
these states machines are not used to synthesise mediators. Instead, a runtime
mediation framework, the Web Service Execution Environment (WSMX) me-
diates interaction between heterogeneous services by inspecting their individual
protocols and perform the necessary translation on the basis of pre-defined me-
diation patterns while the composition of these patterns is not considered, and
there is no guarantee that it will not lead to a deadlock.

Considering again our GMES example, with the knowledge of the weather do-
main encoded within a weather ontology, it can be inferred that the getWeather
operation required by C2 corresponds to the getT emperature and getHumidity
operations provided by Weather Station. As a result, the following mapping pro-
cess can be generated:

Map = (req.getWeather → prov.getTemperature → prov.getHumidity).

We obtain the following connector:
‖Weather Connector12 Semantic = (C2 role

‖ WeatherStation role
‖ (forall[op : weather actions1]SOAPClient(op))
‖ (forall[op : weather actions1]SOAPGlue(op))
‖ (forall[op : weather actions1]SOAPServer(op)))
‖ (forall[op : weather actions2]CORBAClient(op))
‖ (forall[op : weather actions2]CORBAGlue(op))
‖ (forall[op : weather actions2]CORBAServer(op))).
‖ Map

However, C2 and Weather Station cannot interact successfully through
Weather Connector12 Semantic since the coordination at the middleware layer
is not performed. For example, it is not specified how to coordinate the
getWeather SOAP request with the getT emperature and getHumidity CORBA
requests (see Figure 9).

The need for ontologies to achieve interoperability is not specific to the Web
Service domain but should be considered for highly heterogeneous environments
where components may be built using diverse middleware technologies. It is in
particular worth highlighting the consensus that ontologies are key to the IoT
vision [50]. As a result, it is indispensable to combine appropriate techniques
to handle the multifaceted nature of interoperability. These techniques include
formal approaches for the synthesis of mediators with support of ontology-based

Composing Distributed Systems: Overcoming the Interoperability Challenge 187

�������	
�
�����	�

���	���
�����	�

�
�������
�����	�

��������	�

������

��������	�

�������

��������	�

������

��������	�

�������

���	����
��������	��

��	�������
�������

���
�������

������
����������

�����	���
�����

Fig. 10. The Connect architecture for the realisation of emergent middleware [10]

reasoning so as to automate the synthesis, together with middleware solutions
to realise and execute these mediators and enable components to interoperate
effectively. We have investigated such a multifaceted solution to interoperability
within the Connect project [10].

5 Emergent Middleware: A Multifaceted Approach to
Interoperability

In this section, we present the solution elaborated in the context of the European
Connect project that revolves around the notion of emergent middleware and
related enablers so as to sustain interoperability in the increasingly connected
digital world. An emergent middleware is a dynamically generated distributed
system infrastructure for the current operating environment and context, which
allows functionally-compatible systems to interoperate seamlessly.

5.1 Emergent Middleware Enablers

In order to produce an emergent middleware, an architecture of Enablers is
required that support the realisation of mediators into emergent middleware. An
Enabler is a software component responsible for a specific step in the realisation
of emergent middleware and which coordinates with other Enablers during this
process.

As depicted in Figure 10, the emergent middleware Enablers are informed by
domain ontologies that formalise the concepts associated with the application
domains (i.e., the vocabulary of the application domains and their relationships)
of interest as well as with middleware solutions (i.e., the vocabulary defining

188 V. Issarny and A. Bennaceur

middleware peculiarities, from interaction paradigms to related messages). Three
Enablers, which are presented below, must then be comprehensively elaborated
to fully realise emergent middleware.

Discovery Enabler: The Discovery Enabler is in charge of finding the compo-
nents operating in a given environment. The Discovery Enabler receives both
the advertisement messages and lookup request messages that are sent within
the network environment by the components using legacy discovery protocols
(e.g., SLP15, WS-Discovery16, UPnP-SSDP17, Jini18). The Enabler obtains this
input by listening on known multicast addresses (used by legacy discovery proto-
cols), as common in interoperable service discovery [15]. These messages are then
processed, using plug-ins associated with legacy discovery protocols, thereby al-
lowing to extract basic component models from the information exposed by the
components, i.e., identification of the components’ interfaces together with mid-
dleware used for interactions. We build upon the ontology-based modelling as
defined by Semantic Web Services (presented in Section 4.3) to model compo-
nents. The model of a component includes: (i) a semantic description of the
functionality it requires or provides, that is, its capability, (ii) a description of
the interface of the component, which is augmented with ontology-based anno-
tations attached to the operations required or provided by the component, (iii) a
description of the interaction protocol run by the component, that is behaviour,
and (iv) a specific middleware used to implement this behaviour and further re-
fine the execution of operations. For example, as illustrated in Section 3.1, in the
case of a SOAP middleware, a required operation corresponds to the sending of a
SOAP request parameterised with the name of the operation, and the reception
of the corresponding SOAP response. In a dual manner, a provided operation
corresponds to the reception of a SOAP request parameterised with the name of
the operation, and the sending of the corresponding SOAP response. However,
using existing discovery protocols, components only expose their syntactic inter-
faces. Hence, the Discovery Enabler relies on the Learning Enabler to complete
the model of a component.

Learning Enabler: The Learning Enabler uses advanced learning algorithms to
dynamically infer the ontology-based semantics of the component’s capability
and operations, as well as determine the behaviour of a component, given the
interface description it exposes through some legacy discovery protocol. The
Learning Enabler implements both statistical and automata learning to feed
component models with adequate semantic knowledge, i.e., functional and be-
havioural semantics, respectively [6]. The Learning Enabler must interact di-
rectly with a component in order to learn its behaviour.

15 http://www.openslp.org/
16 http://docs.oasis-open.org/ws-dd/discovery/1.1/os/

wsdd-discovery-1.1-spec-os.pdf
17 http://www.upnp.org/
18 http://www.jini.org/

http://www.openslp.org/
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf
http://www.upnp.org/
http://www.jini.org/

Composing Distributed Systems: Overcoming the Interoperability Challenge 189

Synthesis Enabler: Once component models are complete, initial semantic match-
ing of their capabilities is performed to determine whether or not the components
are functionally compatible [43]. The automated synthesis of mediators between
functionally compatible components, which is the main role of the Synthesis En-
abler, lies at the heart of the realisation of the emergent middleware. It puts
together the various perspectives on interoperability presented in Section 4 so
as to provide a unified solution to the automated generation of mediators and
their implementation as emergent middleware.

The semantic perspective provides us with tools to compute the interface
mapping automatically by using domain ontologies in order to reason about the
semantics of the required and provided operations of the components and to in-
fer the semantic correspondence between them. More specifically, we first define
the conditions under which a sequence of required operations can be mapped
to a sequence of provided operations. These conditions state that (i) the func-
tionality offered by the provided operations covers that of the required ones,
(ii) each provided operation has its input data available (in the right format)
at the time of execution, and (iii) each required operation has its output data
available (also in the appropriate format) at the time of execution. Then, we
use constraint programming, which we leverage to support ontology reasoning,
in order to compute the interface mapping efficiently [21].

The protocol perspective provides us with the foundations for synthesising
mediators based on the generated interface mapping. More specifically, we de-
fine an approach that uses interface mapping to build the mediator incrementally
by forcing the protocols at hand to progress consistently so that if one requires a
sequence of operations, the interacting process is ready to engage in a sequence of
provided operations to which it maps according to the interface mapping. Given
that an interface mapping guarantees the semantic compatibility between the
operations of the components, then the mediator synchronises with both pro-
tocols and compensates for the differences between their actions by performing
the necessary transformations. The mediator further consumes the extra output
actions so as to allow protocols to progress. The synthesis of mediators deals
only with required and provided operations, while their actual implementation
is managed by specific middleware [31].

Finally, the middleware perspective provides the background necessary to
implement mediators and turn them into emergent middleware. In particular,
we build upon the approach of a pairwise-mediation framework which, given a
specification of the translations that need to be made, deploys the mediator and
executes the necessary translations to make functionally compatible components
interoperate. Hence, it suffices to provide the mediator previously synthesised as
input to the mediation framework.

AdaptiveEmergentMiddleware: TheLearning phase is a continuous processwhere
theknowledge about components is enrichedover time, thereby implying that emer-
gentmiddleware possibly needs to adapt as the knowledge evolves. The synthesised
emergentmiddleware is equipped with monitoring probes that gather information
on actual interaction between connected systems. This observedMonitoring Data

190 V. Issarny and A. Bennaceur

Weather
Station

 prov.login(username, password): token
 prov.getHumidity(token): humidity
 prov.getTemperature(token):
temperature
 prov.logout(token): acknowledgment
Middleware: CORBA

<functionality name="WeatherStation"
kind="provided">
 <operation>Weather<operation>
</functionality>

Interface

Weather station Model

Behaviour

Functionality

WeatherStation = (prov.login -> P2),
P2 = (prov.getTemperature -> P2
 | prov.getHumidity -> P2
 | prov.logout ->WeatherStation).

req.login(password, username): token
req.getWeather(token): weatherInfo
req.logout(token):

Middleware: SOAP

<functionality name="C2Weather"
kind="required">
 <operation>Weather<operation>
</functionality>

Interface

C2 Model
(weather projection)

Behaviour

Functionality

C2 = (req.login -> P1),
P1 = (req.getWeather -> P1
 ->req.logout -> C2).

wind

Atmosphere
Thing

Nothing

Ontology

weatherInfo

HumidityTemperature

Ontology-based
Interface Mapping

 Concretization

C2
Message
Parsers/

Composers

Message
Parsers/

Composers

Emergent Middleware

?β1!ρ1

?ρ2 !β2
?δ2

!α2

!δ1?α1

?λ1

t1

t2 t3

t4

Mediation Framework

M1… M4

Abstract_Mediator

MapLearning Learning

Deployment

1

2 Mediator Synthesis

3

4

Fig. 11. Emergent middleware between C2 and Weather Station

(see Figure 10) is delivered to the Learning Enabler, where the learned hypothe-
ses about the components’ behaviour are compared to the observed interactions.
Whenever an observation ismade by themonitoring probes that is not contained in
the learned behavioural models, another iteration of learning is triggered, yielding
refined behavioural models. These models are then used to synthesise and deploy
an updated emergent middleware.

5.2 Emergent Middleware in GMES

Figure 11 depicts the steps to produce the emergent middleware that makes C2
and Weather Station interoperate. The models of C2 and Weather Station can
be automatically inferred from their discovered interface as detailed in [6]. In
this section, we focus on the steps for synthesising the mediator that ensures
interoperability between C2 and Weather Station.

Using a weather ontology, we calculate the interface mapping (see Figure 11-
❶), which results in the definition of the following processes:

Composing Distributed Systems: Overcoming the Interoperability Challenge 191

M1 = (Country1.req.login → Country2.prov.login → END).
M2 = (Country1.req.getWeather → Country2.prov.getTemperature

→ Country2.prov.getHumidity → END).
M3 = (Country1.req.getWeather → Country2.prov.getHumidity

→ Country2.prov.getTemperature → END).
M4 = (Country1.req.logout → Country2.prov.logout → END).

The abstract mediator Abstract Map coordinates these processes in order for the
composition (C2 ‖ Abstract Map ‖ WeatherStation) to be free from deadlocks.
When translating the getWeather operation required by C2, both M2 and M3
are applicable but we have to choose only one of them as the mediator cannot
perform internal choice (see Figure 11-❷). The abstract mediator is as follows:

Abstract Mediator = (Country1.req.login → Country2.prov.login → AMap),
AMap = (Country1.req.getWeather → Country2.prov.getTemperature

→ Country2.sendCORBARequest.getHumidity → AMap
| Country1.req.logout → Country2.prov.logout → Abstract Mediator).

We concretise the abstract mediator by taking into account the middleware
used by each component. For example, the SOAP request for the login opera-
tion received from C2 is translated to a CORBA request for the login operation
and forwarded to Weather Station. Then, the associated CORBA response re-
ceived from Weather Station is transformed to a SOAP response and sent to
C2. A SOAP request for a getWeather is translated to a CORBA request for
getTemperature together with another CORBA request for getHumidity. Then
the CORBA responses for getTemperature and getHumidity are translated into
a SOAP response for getWeather [5]. The resulting Map process is as follows
(see Figure 11-❸):

Map = (Country1.receiveSOAPRequest.login → Country2.sendCORBARequest.login
→ Country2.receiveCORBAResponse.login → Country1.sendSOAPResponse.login
→ Map1),

Map1 = (Country1.receiveSOAPRequest.getWeather
→ Country2.sendCORBARequest.getTemperature
→ Country2.receiveCORBAResponse.getTemperature
→ Country2.sendCORBARequest.getHumidity
→ Country2.receiveCORBAResponse.getHumidity
→ Country1.sendSOAPResponse.getWeather
→ Map1

| Country1.receiveSOAPRequest.logout → Country2.sendCORBARequest.logout
→ Country2.receiveCORBAResponse.logout → Country1.sendSOAPResponse.logout
→ Map).

Finally, the mediator is deployed on top of a mediation framework, Starlink [13],
which executes the Map process and generates parsers and composers to deal
with middleware-specific messages (see Figure 11-❹). The resulting connector
Weather Mediator make C2 and Weather Station interoperate:

‖Weather Mediator = (Country1 : C2 role
‖ Country2 : WeatherStation role
‖ (forall[op : weather actions1]Country1 : SOAPClient(op))
‖ (forall[op : weather actions1]Country1 : SOAPGlue(op))
‖ (forall[op : weather actions1]Country1 : SOAPServer(op))
‖ (forall[op : weather actions2]Country2 : CORBAClient(op))
‖ (forall[op : weather actions2]Country2 : CORBAGlue(op))
‖ (forall[op : weather actions2]Country2 : CORBAServer(op))).
‖ Map).

192 V. Issarny and A. Bennaceur

To sum up, this simple example allows us to illustrates the Connect approach
to the synthesis of emergent middleware in order to achieve interoperability
between components that feature differences at both the application and mid-
dleware layers. Ontologies play a crucial role in this process by allowing us to
reason about the meaning of information exchanged between components and in-
fer the mappings necessary to make them operate together. Likewise, behavioural
analysis enables us to synthesise the mediator that coordinates the components’
behaviours and guarantees their successful interaction. Finally, middleware tech-
nologies allow us to enact the mediator through the concept of emergent middle-
ware. Nevertheless, to enable automated reasoning about interoperability and
the generation of appropriate mediators, we focus on the ontological concepts,
which represent the types of the input/output data exchanged between com-
ponents. However, there are situations where reasoning about the value of the
data is also necessary. For example, to be able to ensure interoperability be-
tween components using different streaming protocols, the mediator is required
to deal with lower-level details such as the appropriate encoding and the seg-
mentation of data. In this particular case, the mediator can be partially specified
at design-time and deployed at runtime, as is the case for AmbiStream [2].

The accuracy of the components’ models may also impact the emergent mid-
dleware. While machine learning significantly improves automation by inferring
the model of the component from its implementation, it also induces some in-
accuracy that may lead the emergent middleware to reach an erroneous state.
Hence, the system needs to be continuously monitored so as to evaluate the
correspondence between the actual system and its model. In the case where the
model of one of the components changes, then the mediator should be updated
accordingly in order to reflect this change. Another imprecision might also be
due to ontology alignment. Hence, incremental re-synthesis would be very im-
portant to cope with both the dynamic aspect and partial knowledge about the
environment.

6 Conclusion

In spite of the extensive research effort, interoperability remains an open and
critical challenge for today’s and even more tomorrow’s highly heterogeneous
and dynamic networking environments. This chapter has surveyed state-of-the-
art approaches to interoperability, highlighting the multiple perspectives that
need to be considered and which span: (i) middleware-layer implementation so
as to provide abstractions hiding the heterogeneity of the environment, (ii) pro-
tocol synthesis so as to relieve as much as possible the developers in dealing with
the implementation of custom mediators that must overcome heterogeneity from
the application down to the middleware layers, and (iii) ontology-based specifica-
tion of system models so as to allow fully automated mediator synthesis that is a
key requirement of the dynamic networking environment. The chapter has then
outlined the Connect approach to interoperability, which unifies these different
perspectives so as to enable interoperability in a future-proof manner. Connect

Composing Distributed Systems: Overcoming the Interoperability Challenge 193

specifically advocates a solution based on maintaining a sophisticated model of
the system at runtime [5]. This includes capturing aspects related to the com-
ponents’ capabilities, interfaces, associated data and behaviour. The solution is
then supported by a range of enablers that capture or act on this information
to enable the runtime realisation of emergent middleware between given compo-
nents, i.e., protocol mediators that reconcile the discrepancies occurring in both
application- and middleware-layer protocols. The end result can be seen as a two
dimensional space related to (i) the meta-information that is captured about the
system, and (ii) the associated middleware functions that operate on this meta-
information space. This is then supported by ontologies that provide meaning
and reasoning capabilities across all enablers and aspects of meta-information
known about the system.

It is important to stress that interoperability is, as with many features of
distributed systems, an end-to-end problem. For example, it is not sufficient
to achieve interoperability between application-level interfaces. Rather, interop-
erability can only be achieved through a coordinated approach involving ap-
plication, middleware and underlying network levels so that components can
interoperate in spite of potential heterogeneity in descriptions, in middleware
deployments and network environments they operate in. And, this needs to be
achieved dynamically according to the current context, assuming contexts may
change, thereby requiring self-adaptive emergent middleware. More generally,
future work includes examining the application of the Connect approach to
deal with uncontrolled changes in the environment, and expanding the scope
of the work to include non-functional concerns associated with communication
instances (including performance, dependability and security properties). There
is also considerable potential for core research on emergent middleware in areas
such as the role of probabilistic reasoning in order to support uncertainties in the
ontology, the possibility of learning new ontological information as it becomes
available, and also dealing with heterogeneity in the ontologies.

Acknowledgments. This work is carried out as part of the European FP7 ICT
FET Connect (http://connect-forever.eu/) project.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. (1997)

2. Andriescu, E., Speicys Cardoso, R., Issarny, V.: AmbiStream: A middleware for
multimedia streaming on heterogeneous mobile devices. In: Kon, F., Kermarrec,
A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 249–268. Springer, Heidelberg
(2011)

3. Aranguren, M., Bechhofer, S., Lord, P., Sattler, U., Stevens, R.: Understanding
and using the meaning of statements in a bio-ontology: recasting the gene ontology
in OWL. BMC Bioinformatics 8(1), 57 (2007)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook. Cambridge University Press (2003)

http://connect-forever.eu/

194 V. Issarny and A. Bennaceur

5. Bencomo, N., Bennaceur, A., Grace, P., Blair, G., Issarny, V.: The role of mod-
els@run.time in supporting on-the-fly interoperability. Springer Journal on Com-
puting (2012)

6. Bennaceur, A., Issarny, V., Sykes, D., Howar, F., Isberner, M., Steffen, B., Johans-
son, R., Moschitti, A.: Machine learning for emergent middleware. In: Proc. of the
Joint Workshop on Intelligent Methods for Soft. System Eng., JIMSE (2012)

7. Bennaceur, A., Issarny, V., Spalazzese, R., Tyagi, S.: Achieving interoperability
through semantics-based technologies: The instant messaging case. In: Cudré-
Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 17–33. Springer,
Heidelberg (2012)

8. Bersani, M., Cavallaro, L., Frigeri, A., Pradella, M., Rossi, M.: SMT-based veri-
fication of ltl specification with integer constraints and its application to runtime
checking of service substitutability. In: 2010 8th IEEE International Conference on
Software Engineering and Formal Methods (SEFM), pp. 244–254. IEEE (2010)

9. Blair, G.S., Paolucci, M., Grace, P., Georgantas, N.: Interoperability in com-
plex distributed systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 1–26. Springer, Heidelberg (2011)

10. Blair, G.S., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V., Nundloll, V.,
Paolucci, M.: The role of ontologies in emergent middleware: Supporting inter-
operability in complex distributed systems. In: Kon, F., Kermarrec, A.-M. (eds.)
Middleware 2011. LNCS, vol. 7049, pp. 410–430. Springer, Heidelberg (2011)

11. Borgida, A.: From type systems to knowledge representation: Natural semantics
specifications for description logics. Int. J. Cooperative Inf. Syst. 1(1), 93–126
(1992)

12. Bromberg, Y.-D.: Solutions to middleware heterogeneity in open networked envi-
ronment. Ph.D. thesis, Université de Versailles Saint-Quentin-en-Yvelynes (2006)

13. Bromberg, Y.-D., Grace, P., Réveillère, L.: Starlink: Runtime interoperability be-
tween heterogeneous middleware protocols. In: International Conference on Dis-
tributed Computing Systems, ICDCS (2011)

14. Bromberg, Y.-D., Grace, P., Réveillère, L., Blair, G.S.: Bridging the interoperability
gap: Overcoming combined application and middleware heterogeneity. In: Kon, F.,
Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 390–409. Springer,
Heidelberg (2011)

15. Bromberg, Y.-D., Issarny, V.: INDISS: Interoperable discovery system for networked
services. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 164–183.
Springer, Heidelberg (2005)

16. Bromberg, Y.-D., Réveillère, L., Lawall, J.L., Muller, G.: Automatic generation of
network protocol gateways. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009.
LNCS, vol. 5896, pp. 21–41. Springer, Heidelberg (2009)

17. Calero, C., Ruiz, F., Piattini, M.: Ontologies for Software Engineering and Software
Technology. Springer (2006)

18. Calvert, K.L., Lam, S.S.: Deriving a protocol converter: A top-down method.
In: Proc. of the Symposium on Communications Architectures & Protocols, SIG-
COMM, pp. 247–258 (1989)

19. Cavallaro, L., Di Nitto, E., Pradella, M.: An automatic approach to enable replace-
ment of conversational services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 159–174. Springer, Heidelberg (2009)

20. Cimpian, E., Mocan, A.: WSMX process mediation based on choreographies. In:
Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 130–143. Springer,
Heidelberg (2006)

Composing Distributed Systems: Overcoming the Interoperability Challenge 195

21. Connect Consortium: Connect Deliverable D3.3: Dynamic connector synthesis:
Revised prototype implementation. FET IP Connect EU project,
http://hal.inria.fr/hal-00695592/

22. Connect Consortium: Connect Deliverable D6.3: Experiment scenarios, proto-
types and report - Iteration 2. FET IP Connect EU project,
http://hal.inria.fr/hal-00695639

23. Connect Consortium: Connect Deliverable D6.4: Assessment report: Experi-
menting with CONNECT in Systems of Systems, and Mobile Environments. FET
IP Connect EU project,
http://hal.inria.fr/hal-00793920

24. Coulouris, G.F., Dollimore, J., Kindberg, T., Blair, G.: Distributed systems: con-
cepts and design, 5th edn. Addison-Wesley, Longman (2012)

25. d’Aquin, M., Noy, N.F.: Where to publish and find ontologies? a survey of ontology
libraries. J. Web Sem. 11, 96–111 (2012)

26. Dong, J.S.: From semantic web to expressive software specifications: a modeling
languages spectrum. In: Proc. of the International Conference on Software Engi-
neering, ICSE (2006)

27. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard
to build systems out of existing parts. In: International Conference on Software
Engineering, ICSE (1995)

28. Georgantas, N., Rahaman, M.A., Ameziani, H., Pathak, A., Issarny, V.: A coordina-
tion middleware for orchestrating heterogeneous distributed systems. In: Riekki, J.,
Ylianttila, M., Guo, M. (eds.) GPC 2011. LNCS, vol. 6646, pp. 221–232. Springer,
Heidelberg (2011)

29. Golbeck, J., Rothstein, M.: Linking social networks on the web with foaf: A se-
mantic web case study. In: AAAI, pp. 1138–1143 (2008)

30. Guarino, N.: Helping people (and machines) understanding each other: The role of
formal ontology. In: Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE 2004,
Part 1. LNCS, vol. 3290, p. 599. Springer, Heidelberg (2004)

31. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-layer connector synthesis:
Beyond state of the art in middleware interoperability. In: Bernardo, M., Issarny,
V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 217–255. Springer, Heidelberg (2011)

32. Jamshidi, M.: Systems of systems engineering: principles and applications. CRC
Press (2008)

33. Keller, R.M.: Formal verification of parallel programs. Communications of the
ACM 19(7), 371–384 (1976)

34. Lam, S.S.: Protocol conversion. IEEE Transaction Software Engineering (1988)
35. Magee, J., Kramer, J.: Concurrency: State models and Java programs. Wiley, Hobo-

ken (2006)
36. Martin, D.L., Burstein, M.H., McDermott, D.V., McIlraith, S.A., Paolucci, M.,

Sycara, K.P., McGuinness, D.L., Sirin, E., Srinivasan, N.: Bringing semantics to
web services with owl-s. In: Proc. of the World Wide Web Conference, WWW 2007,
pp. 243–277 (2007)

37. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process
algebra and on-the-fly reduction techniques. IEEE Trans. Software Eng. 38(4),
755–777 (2012)

38. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent Sys-
tems 16(2), 46–53 (2001)

39. Menge, F.: Enterprise Service Bus. In: Proc. of the Free and Open Source Soft.
Conf. (2007)

http://hal.inria.fr/hal-00695592/
http://hal.inria.fr/hal-00695639
http://hal.inria.fr/hal-00793920

196 V. Issarny and A. Bennaceur

40. Mokhtar, S.B., Georgantas, N., Issarny, V.: Cocoa: Conversation-based service com-
position in pervasive computing environments with qos support. Journal of Systems
and Software 80(12), 1941–1955 (2007)

41. Ben Mokhtar, S., Kaul, A., Georgantas, N., Issarny, V.: Efficient semantic service
discovery in pervasive computing environments. In: van Steen, M., Henning, M.
(eds.) Middleware 2006. LNCS, vol. 4290, pp. 240–259. Springer, Heidelberg (2006)

42. Nitto, E.D., Rosenblum, D.S.: Exploiting adls to specify architectural styles in-
duced by middleware infrastructures. In: Proc. of International Conference on Soft-
ware Engineering, ICSE (1999)

43. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of
web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

44. Raskin, R.G., Pan, M.J.: Knowledge representation in the semantic web for
earth and environmental terminology (SWEET). Computers & Geosciences 31(9),
1119–1125 (2005)

45. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intel-
ligent Systems 21(3), 96–101 (2006)

46. Shaw, M.: Procedure calls are the assembly language of software interconnection:
Connectors deserve first-class status. In: Lamb, D.A. (ed.) ICSE-WS 1993. LNCS,
vol. 1078, pp. 17–32. Springer, Heidelberg (1996)

47. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: International Conference on Software Engineering, ICSE (2003)

48. Tanenbaum, A., Van Steen, M.: Distributed systems: principles and paradigms,
2nd edn. Prentice Hall (2006)

49. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software architecture: foundations,
theory, and practice. Wiley, Hoboken (2009)

50. Uckelmann, D., Harrison, M., Michahelles, F.: Architecting the internet of things.
Springer (2011)

51. Vacuĺın, R., Neruda, R., Sycara, K.P.: The process mediation framework for seman-
tic web services. International Journal of Agent-Oriented Software Engineering,
IJAOSE 3(1), 27–58 (2009)

52. Wiederhold, G.: Interoperation, mediation, and ontologies. In: Proc. of the Fifth
International Symposium on Generation Computer Systems Workshop on Hetero-
geneous Cooperative Knowledge-Bases, pp. 33–48. Citeseer (1994)

53. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. (1997)

Controlling Application Interactions

on the Novel Smart Cards
with Security-by-Contract

Olga Gadyatskaya and Fabio Massacci

DISI, University of Trento,
via Sommarive, 14, Povo 0, Trento, Italy, 38123

name.surname@unitn.it

Abstract. In this paper we investigate novel use cases for open multi-
application smart card platforms. These use cases require a fine-grained
access control mechanism to protect the sensitive functionality of on-
card applications. We overview the Security-by-Contract approach that
validates at load time that the application code respects the interaction
policies of other applications already on the card, and discuss how this
approach can be used to address the challenging change scenarios in the
target use cases.

1 Introduction

The smart card technology supports asynchronous coexistence of multiple appli-
cations from different providers on the same chip since a long time ago. However,
the actual use cases for such cards have appeared only recently. In this paper we
briefly overview two novel use cases formulti-application smart cards,whichwe ex-
plore as illustrative examples. The first use case is the Near Field Communication
(NFC)-enabled smartphone, where the (U)SIM card hosts payment, transport and
other types of sensitive applications coming fromdifferent vendors. The second use
case is a smart card-based enhancement of a smart meter system. A telecommu-
nications hub, implemented as a smart card and installed at a house, hosts and
manages traditional utility consumption applications, such as gas or electricity
consumption applications, and also a set of telecare applications. The telecare ap-
plications enable remote monitoring of health status of the inhabitants; they are
connected to devices such as weights or a heart rate monitor. This architectural
solution was developed within the Hydra Project [12].

In both these scenarios the applications deployed on the multi-application
smart cards are quite sensitive, as they may have access to the private data of
the device owner or the application provider. However, these applications are
not necessarily fully sandboxed. On the contrary, the applications might need to
interact with each other on the card in order to provide an enhanced functionality
to the device owner. Thus the key challenge for such cards it ensuring that only
trusted partners will have access to the shared functionality (called service in
the smart card jargon).

E. Giachino et al. (Eds.): FMCO 2012, LNCS 7866, pp. 197–215, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

198 O. Gadyatskaya and F. Massacci

The existing solutions for control of application interactions on multi-tenant
platforms mostly propose to verify of a pre-defined set of applications off-card [2]
or enforce the desired policies at run-time [1]. The first approach is not appealing
from the business perspective: as the platform is open, each time a new appli-
cation will be loaded a full offline re-verification will be required. The second
approach is simply not suitable for smart cards due to the resource constraints.
The approach that is currently adopted by the smart card community is embed-
ding the access control checks into the functional code. Each time the sensitive
service is invoked it checks that the caller is authorized to use it. However, this
approach suffers from the fact that partial code updates are not available on
smart cards; only the full reinstallation is supported by the runtime environment.
Therefore each time a new trusted caller needs to be added a full reinstallation
of the application will be required.

Recently load time verification was adopted for multi-application smart cards
[4,5,8,6,7]. With this approach the platform is always in a secure state across
all possible changes, such as loading of a new application or removal of an old
one. In the current paper we overview the Security-by-Contract (S×C) approach
for load time verification on multi-application Java Cards and identify how the
novel multi-application smart card use cases can be handled with this approach.

The paper is structured is follows. We overview the target use cases in Sec. 2
and present the workflows of the S×C approach for each change scenario in Sec. 3.
The necessary background on Java Card is presented in Sec. 4, the design details
of the framework are summarized in Sec. 5, and the concrete contracts for the
identified motivational scenarios are listed in Sec. 6. We overview the related
work in Sec. 7 and conclude in Sec. 8.

2 Multi-application Java Card Use Cases

In this section we present the target use cases recently introduced in the multi-
application smart cards domain.

2.1 NFC-Enabled Phones

Currently NFC offerings from various vendors include payment applications (the
Google wallet1, PayPass from MasterCard2, payWave from VISA3), ticketing
applications (Calypso is a set of technical specifications for NFC ticketing; its
handbook contains an overview of the NFC ticketing status in various coun-
tries4) and entertainment applications (including NFC tap-triggered messages
from Santa Claus5).

1 http://www.google.com/wallet/
2 http://www.paypass.com/
3 http://www.paypass.com/
4 http://www.calypsonet-asso.org/
downloads/100324-CalypsoHandbook-11.pdf

5 http://www.nfcworld.com/2012/12/07/321480/
christmas-app-conjures-up-santa-with-an-nfc-tap/

http://www.google.com/wallet/
http://www.paypass.com/
http://www.paypass.com/
http://www.calypsonet-asso.org/downloads/100324-CalypsoHandbook-11.pdf
http://www.calypsonet-asso.org/downloads/100324-CalypsoHandbook-11.pdf
http://www.nfcworld.com/2012/12/07/321480/christmas-app-conjures-up-santa-with-an-nfc-tap/
http://www.nfcworld.com/2012/12/07/321480/christmas-app-conjures-up-santa-with-an-nfc-tap/

Controlling Application Interactions on the Novel Smart Cards 199

The NFC functionality requires a secure element to store the sensitive NFC
credentials, and one of the existing solutions is usage of the (U)SIM card within
the phone to store this data. For instance, an NFC-enabled multi-application
(U)SIM card, called UpTeq6, is currently offered by Gemalto. This card is cer-
tified by the VISA, MasterCard and Amex payment systems.

Fig. 1. (U)SIM as a secure element [14]

Figure 1 presents an architecture of a (U)SIM card used as a secure element
within an NFC-enabled phone. The NFC controller enables a communication
link between the phone and various NFC tags and devices.

Scenario 1: New Application Is Loaded. We consider the following scenario
of an NFC-enabled smartphone with a (U)SIM-based secure element. The sce-
nario is purely fictional scenario and we use real commercial product names only
for the sake of clarity. Two applications (applets for short) are already hosted by
the (U)SIM card: the payment application payWave from VISA and the ticket-
ing application Touch&Travel from Deutsche Bahn7. The phone holder can use
the payWave application for executing payment operations in shops, and the
Touch&Travel application to pay for train tickets and display ticket barcodes to
the phone holder and the train authorities. The VISA consortium and Deutsche
Bahn are business partners, and therefore the applications can interact on card:
Touch&Travel relies on payWave for the ticket payments. The (U)SIM card is
managed by a telecom operator, which has agreements with both VISA and

6 http://www.gemalto.com/telecom/upteq/index.html
7 https://www.touchandtravel.de/

http://www.gemalto.com/telecom/upteq/index.html
https://www.touchandtravel.de/

200 O. Gadyatskaya and F. Massacci

Deutsche Bahn; these agreements do not limit the telecom operator in which
other applications can be loaded on the card, provided the operator guarantees
that only authorized applications will interact with payWave and Touch&Travel.

The phone holder travels from Germany to France, where she installs the
public ticketing application Navigo8 produced by the French public transporta-
tion organization STIF. STIF and VISA do not have an agreement, therefore the
Navigo application can be recharged only at the metro stations, and not through
payWave. However, the telecom operator still has to ensure that Navigo will not
try to access payWave directly on the card. In the next sections we will discuss
how this can be implemented.

2.2 Communication Hubs within the Smart Grids

Our second motivating use case for multi-application smart cards is the telecom-
munications hub within the smart metering system proposed by the Hydra
project [12]. The project aims to introduce remote care services as an extension
to the smart metering system. The architecture of this extension is presented in
Fig. 2. Existing utility meters and telecare devices, such as blood pressure moni-
tor or heart-rate monitor, are connected to the smart card, which acts as a proxy
between the metering devices and the corresponding utility/telecare providers.

Fig. 2. Extension of a smart metering system with telecare services [12]

The main idea behind the smart card utilization is privacy of the utility con-
sumption data. The smart metering systems measure the utility consumption
at high granularity. By gathering a lot of data points throughout the day the
utility companies can learn a lot about the private life of their customers: when
they leave to work and come back, when they wake up and go to sleep. In an
industrial setting the utility consumption can reveal details of the production
process: what machinery is used, or when a new process is adopted [13]. The fact

8 http://test.navigo.fr/

http://test.navigo.fr/

Controlling Application Interactions on the Novel Smart Cards 201

that the utility companies can leak this private data to third parties is even more
disturbing [17]. Solutions to this privacy problem in the smart grid have started
to emerge, focusing on introducing a mediator for the utility consumption or de-
vising privacy-preserving protocols among the utility provider, the user and the
meter. The mediator (for instance, a battery in case of the energy consumption)
can obfuscate the actual consumption of the house owner by withdrawing the
energy from the grid in a manner that would be probabilistically-independent of
the actual consumption [13]. In contrast, with the privacy-preserving protocols
the user will compute the utility bill from the actual utility usage and trans-
mit this bill to the provider alongside a zero-knowledge proof that ensures the
calculation to be correct and leaks no utility consumption calculation [15].

Similarly to the privacy-preserving protocols idea, in the smart meter system
architecture proposed in the Hydra project the utility consumption is computed
and billed directly on the smart card; afterwards the billing is displayed to the
customer via the standard web interface. Therefore the private consumption data
does not leave the metering system, and the utility provider can only see the total
amount of the consumed utility. The Hydra architecture invites multiple utility
providers to share the platform; this is possible with the multi-application smart
card solution. The secure communication channels are established between a
utility meter, the corresponding application on the card and the provider. These
channels are available due the GlobalPlatform middleware present on the card.

GlobalPlatform is a set of card and device specifications produced and main-
tained by the GlobalPlatform consortium9. The specifications identify interoper-
ability and security requirements for development, deployment and management
of smart cards. However, the application interactions are not controlled by Glob-
alPlatform; they are managed by the Java Card run-time environment (JCRE),
which we will further overview.

Scenario 2: Existing Application Updates Its Policy. We refine the sce-
nario in Fig. 2 and introduce an additional Consumption Optimization applica-
tion from the electricity provider. This application is connected to the household
appliances in order to manage the electricity consumption in a cost-efficient man-
ner. For instance, this application will turn on the washing machine only in the
evenings when the electricity cost is the lowest.

The Consumption Optimization applet receives data on the current electricity
consumption from the Electricity applet; therefore these applets interact directly
on the hub. We consider that the gas provider would also like to provide the opti-
mization services for the customer: he would like to manage the gas consumption
(for instance, for heating) in a cost-efficient manner. For this purpose the Con-
sumption Optimization applet can be used, because it is already connected to all
the appliances. The electricity and the gas providers sign an agreement, and the
interaction between the Gas applet and the Consumption Optimization applet is
established on the hub. We emphasize that our focus in this illustrative scenario
is authorization of applications for interactions; we do not consider the privacy

9 www.globalplatform.org

www.globalplatform.org

202 O. Gadyatskaya and F. Massacci

(a) Allowed Applet Interactions Be-
fore Policy Update

(b) Allowed Applet Interactions Af-
ter Policy Update

Fig. 3. Application Interactions on the Smart Meter System Communications Hub

concerns that potentially arise from the interaction of the Gas and Consumption
Optimization applets. The privacy problem must be handled by the providers
separately.

Initially the telecare provider and the electricity provider do not have an
agreement; therefore, their applets cannot interact. However, later the electricity
provider might be interested in lending the Consumption Optimization applet
services also to the Telecare provider, and he will allow the interaction. Fig. 3
summarizes the authorized interactions before and after this policy update of
the Consumption Optimization applet.

Notice, that the standard smart card application update procedure is full
deletion of the old version and loading of the new one; partial code updates
are not supported. In this setting the cost of adding a single authorization is
quite significant: for some cards each new code version needs to be agreed with
the platform controlling authority or the application provider himself does not
have a code loading privilege and has to request the entity with this privilege to
perform the code loading. Therefore the provider would like to execute the policy
update independently, using the standard protocols for communication with the
platform. In the S×C approach we enable the providers with this option.

3 The Security-by-Contract Components and Workflows

The illustrative use cases and scenarios presented in §§2.1-2.2 identify the need of
the smart card system to provide access control facilities for applet interaction.
We propose the S×C approach for multi-application smart cards to enable the
applet authorization and validate the applet code with respect to the interaction
policies at load time. This approach ensures that the platform is secure with
respect to the applet interactions across the platform changes: installation of a
new applet, removal or update of an old one. The main components of the S×C
framework are the ClaimChecker, the PolicyChecker and the PolicyStore, their
responsibilities are specified for each type of the platform change.

Controlling Application Interactions on the Novel Smart Cards 203

Fig. 4. The S×C workflow for load time validation

The schema for load time validation is presented in Fig. 4. The application
provider delivers on the platform the applet code together with the contract.
The contract specifies the claimed interactions (the services that are provided
in this applet and the services of other applets that the applet may invoke at
run-time) and the policy of this application (which applets are authorized to
interact with its services and the necessary services from other applets). Notice
that the service deemed necessary for some application have to be a subset of
the services called by this application. The first step of load time validation on
the card is the check that the contract is compliant with the code; this check
is executed by the ClaimChecker component. The second step is matching the
contract and the platform policy, which is composed by the contracts of all
currently installed applications; this check is performed by the PolicyChecker
component that retrieves the platform policy from the PolicyStore. If both steps
are successful, the S×C admits this applet on the card, and the contract of this
applet is added to the platform policy. If any of the checks failed, the loading
process will be aborted and this applet will not be admitted to the platform.

For the case of the applet deletion from the platform, the S×C framework has
to check that the platform will be secure with respect to application interactions
once the requested deletion is performed. We present the workflow for removal
in Fig. 5. In the removal workflow only the PolicyChecker and the PolicyStore
components are invoked; the ClaimChecker is not required. For the application
policy update scenario (presented in Fig. 6) the PolicyChecker has to ensure
that after the update the platform will be in the secure state. In this case the
ClaimChecker is not invoked, because the code-contract compliance was already
validated at the installation step. The S×C workflow for update is designed only
for the policy updates; it cannot handle the code updates, which have to be
executed throughout the standard smart card code loading process.

204 O. Gadyatskaya and F. Massacci

Fig. 5. The S×C workflow for load time validation

Fig. 6. The S×C workflow for applet policy update validation

4 A Primer on the Java Card Technology

Before describing the concrete contract and policy implementation and the S×C
framework design details, we provide a necessary background on Java Card.

The Java Card platform architecture consists of several layers that include
device hardware, a proprietary embedded operating system (Native OS), the
JCRE and the installed applications [18]. The JCRE comprises multiple com-
ponents, some of them belong to the Java Card interface and other belong to
the Native interface. The Java Card interface components are the Installer (the
entity responsible for the loading and installation processes, it is exposed for
communications from the terminal, which is an external device that powers the
card up and communicates with it) and the Java Card API; these parts are
written in Java Card (subset of Java) and can allocate the EEPROM memory
(the persistent modifiable memory).

The Native interface components are the Java Card Virtual Machine (JCVM),
the Loader (entity responsible for processing the delivered CAP files) and the

Controlling Application Interactions on the Novel Smart Cards 205

Fig. 7. The Java Card architecture and the applet deployment process

Native API. These components are typically written in the native code (C); they
are printed in ROM (non-modifiable persistent memory) and are not allowed to
allocate the EEPROM memory.

An application package is written in Java, compiled into a set of class files
and converted into a CAP (Converted APplet) file, which is delivered on the
card. CAP files are optimized by the Converter in order to occupy less space.
For instance, a CAP file contains a single Constant Pool component, a single
Method component with the full bytecode set of all methods defined in this
package, etc. A quite similar approach for optimization of packages loaded on the
device is adopted on the Android platform10. Each package can contain multiple
applications, but interactions inside a package cannot be regulated. Also, each
package is loaded in a single pass, and it is not possible to add a malicious
applet to the package of an honest applet. Therefore in the sequel we consider
that each package contains exactly one application and use words package and
applet interchangeably.

The CAP file is transmitted onto a smart card, where it is processed, linked
and then an application instance can be created. One of the main technical
obstacles for the verifier running on Java Card is unavailability of the application
code for reverification purposes after linking. Thus the application policy cannot
be stored within the application code itself, as the verifier will not have access
to it later.

The Java Card platform architecture and the applet deployment process are
summarized in Fig. 7.

4.1 Application Interactions

Applications on Java Card are separated by a firewall, and the interactions
between applets from different packages are always mediated by the JCRE.

10 www.android.com

www.android.com

206 O. Gadyatskaya and F. Massacci

If two applets belong to different packages, they belong to different contexts.
The Java Card firewall confines applet’s actions to its designated context. Thus
an applet can freely reach only objects belonging to its own context. The only
objects accessible through the firewall are methods of shareable interfaces, also
called services. A shareable interface is an interface that extends javacard.
framework.Shareable.

An applet A implementing some services is called a server. An applet B that
tries to call any of these services is called a client. A typical scenario of service us-
age starts with a client’s request to the JCRE for a reference to A’s object (that is
implementing the necessary shareable interface). The firewall passes this request
to application A, which decides if the reference can be granted or not based on
its access control rules. The current method for services access control implemen-
tation on Java Card is the list of trusted clients embedded into the applet code.
The caller can be identified through the Java Card getPreviousContext
API. If the decision is positive, the reference is passed through the firewall and
the client can now invoke any method declared in the shareable interface which
is implemented by the referenced object. During invocation of a service a context
switch will occur, thus allowing invocation of a method of the application A from
a method of the application B. A call to any other method, not belonging to
the shareable interface, will be stopped by the Java Card firewall; while the calls
from A to its own methods or the JCRE entry points are allowed by the fire-
wall rules [18]. Notice that with the S×C framework on board the access control
policies embedded into the applet code will become obsolete.

In order to realize the interaction scenario the client has necessarily to
import the shareable interface of the server and to obtain the Export file of the
server, that lists shared interfaces and services and contains their tokens. Tokens
are used by the JCRE for linking on the card similarly as Unicode strings are
used for linking in standard Java class files. A service s can be uniquely identi-
fied as a tuple 〈A, I, t〉, where A is a unique application identifier (AID) of the
package that provides the service s, that is assigned according to the standard
ISO/IEC 7816-5, I is a token for a shareable interface where the service is de-
fined and t is a token for the method in the interface I. Further, in case the
origin of the service is clear, we will omit the AID and will refer to a service as
a tuple 〈I, t〉.

The server’s Export file is necessary for conversion of the client’s package
into a CAP file. In a CAP file all methods are referred to by their tokens, and
during conversion from class files into a CAP file the client needs to know correct
tokens for services it invokes from other applications. Shareable interfaces and
Export files do not contain any implementation, therefore it is safe to distribute
them.

5 Design and Implementation Details

Let us present the details of the S×C framework implementation.

javacard.framework.Shareable
javacard.framework.Shareable

Controlling Application Interactions on the Novel Smart Cards 207

5.1 Contracts

The contract of an application is defined as follows. AppClaim of an application
specifies provided (the Provides set) and invoked (the Calls set) services. Let A
be an application and A.s be its service. We say that the service A.s is provided
if applet A is loaded and it has service s. Service B.m is invoked by applet A if
A may try to call B.m during its execution. The AppClaim will be verified for
compliance with the bytecode (the CAP file) by the ClaimChecker.

The application policy AppPolicy contains authorizations for services access
(the sec.rules set) and functionally necessary services (the func.rules set). We
say a service is necessary if a client will not be functional without this service
on board. The AppPolicy lists applet’s requirements for the smart card platform
and other applications loaded on it.

Thus the application contract is: Contract = 〈AppClaim,AppPolicy〉, where
AppClaim = 〈Provides,Calls〉 and AppPolicy = 〈sec.rules, func.rules〉.

Writing and Delivering Contracts. A provided service is identified as a
tuple 〈A, I, s〉, where A is the AID of package A (as the AID of A is explicit
in the package itself, it can be omitted from the provided service identification
tuple), and I and s are the tokens of the shareable interface and the method
that define the service. Correspondingly, a called service can be identified as a
tuple 〈B, I, s〉, where B is the AID of the package containing the called service.

An authorization rule is a tuple 〈B, I, s〉, where B is the AID of packageB that
is authorized to access the provided service with interface token I and method
token s. Notice that A is not specified in its authorization rules because the
rules are delivered within the A’s package and the service provider is implicitly
identified. Later, when the authorization rules will be added to the platform
security policy, the service provider will be explicitly specified.

func.rulesA is a set of functionally necessary services for A, we consider that
without these services provided, an application A cannot be functional. Thus
we can ensure availability of necessary services. A functionally necessary service
can be identified in the same way as a called service. Moreover, we insist that
func.rulesA ⊆ CallsA, as we cannot allow to declare arbitrary services as necessary,
but only the ones that are at least potentially invoked in the code.

The provided service tokens can be found in the Export file, where the fully-
qualified interface names and method names are present. The called services
can be determined from the Export files of the desired server applets, which are
consumed for conversion. More details on the token extraction from the Export
files can be found in [6,7]. However, the contract-code matching will be performed
on card with the CAP file, as the Export files are not delivered on board.

An important problem is contract delivery on the platform. The Java Card
specification, besides the standard CAP file components, allows Custom compo-
nents to be present in CAP files [18]. We have organized the contract delivery
within a specific Contract Custom component. In this way the contract can be
securely attached to the bytecode and sealed by the provider’s signature. The
standard Java Card tools do not include means to provide Custom components,

208 O. Gadyatskaya and F. Massacci

so for the proof-of-concept implementation we have designed a simple CAP Mod-
ifier tool with a GUI that provides means to write contracts and add them as a
Custom component to standard CAP files. More details are available in [7].

5.2 The S×C Components

We now specify the design of each component of the S×C framework.

The ClaimChecker. The ClaimChecker is responsible for the contract-codematch-
ing step. It has to retrieve the contract from the Custom component and verify
that the AppClaim is faithful (the application policy part is not matched with
the code). For every service from the Provides set the ClaimChecker will find its
declaration in the Export component of the CAP file; and it will ensure no un-
declared services are present in the Export component. For every called service
from the Calls set the ClaimChecker will identify the point in the code when this
service is invoked.

Specifically, the ClaimChecker will parse the CAP file and find all the service
invocation instructions (the invokeinterface opcode). From the operands of
this instruction we can identify the invoked method token and the pointer to the
Constant Pool component, from which we can resolve the needed invoked inter-
face token and the AID of the called applet. Concrete details of this procedure
are available in [7]. To implement the CAP file processing the ClaimChecker has
to be integrated with the platform Loader component, as only this component
has direct access to the loaded code.

The PolicyChecker. The PolicyChecker component is responsible for ensuring
compliance of the platform security policy and the contract for the loading proto-
col. Namely, it will check that 1) for all called services from Calls, their providers
have authorized the interaction in the contracts; 2) for any provided service from
Provides if there is some applet on the platform that can try to invoke this ser-
vice, there is a corresponding authorization rule for these service and applet in
sec.rules; 3) all services in func.rules are present on the platform (provided by
some applets). We have integrated the PolicyChecker with the ClaimChecker, to
ease the contract delivery. The PolicyChecker is a part of the SxCInstaller com-
ponent that is the main verification interface with the Loader.

For the applet removal scenario, the PolicyChecker has to retrieve the platform
policy, identify the contract of the applet to be removed and check if this applet
provides any service that is listed as functionally necessary by some other applet.
This is the only incompliance problem, because removal of an applet cannot
introduce unauthorized service invocation. If the applet is not needed by the
others, the PolicyChecker will remove its contract from the platform policy and
send the new policy to the PolicyStore.

If any compliance check performed by the ClaimChecker or the PolicyChecker
has failed, the components signal to the Loader, which will stop the executed
change on the platform (due to the transaction mechanism on Java Card the
platform will return to the previous secure state).

Controlling Application Interactions on the Novel Smart Cards 209

The PolicyStore. The PolicyStore is used to maintain the security policy
across the card sessions. As the policy of the platform is dynamic in nature
and cannot be static throughout the card lifecycle, it has to be stored in the
EEPROM. Therefore, as we have specified in §4, the PolicyStore cannot be im-
plemented as a part of the Native interface of the JCRE, but instead it should
be the part of the Java Card interface. We have integrated the PolicyStore with
the Installer component. However, the ClaimChecker needs to be integrated with
the native Loader, thus the S×C framework has to be divided across the Native
and the Java Card interfaces. In the same time, we need to enable the commu-
nication between these parts, in order to retrieve the current card policy and
update it after changes. This communication is realized using a new dedicated
Native API.

The security policy data structures were designed to be memory-saving. For
example, the applet AID can occupy up to 16 bytes, therefore each called service
can occupy up to 18 bytes (the interface and method tokens each occupy 1 byte).
We decided to store the policy in the bit array format that allows to speed up
the policy matching operations. The platform policy data structure currently
supports up to 10 loaded applets, each containing up to 8 provided services; but
these applets are not pre-defined and any AID can be listed in the policy.

The final implementation of the S×C framework delegates the validation for
the scenario of application policy update to the PolicyStore. The reason for this
decision is the fact, that it is integrated with the platform Installer, which is
already exposed to the communications with the outside world. In this way we
do not need to identify new protocols for the policy update, what would be
necessary if we needed to invoke the PolicyChecker, and hence - the Loader.
The application policy update is atomic: each time only one authorization rule
can be added or removed, or one functionally necessary service can be added
or removed. For the authorization service addition and functionally necessary
service removal the update can be executed directly, as these changes cannot
introduce inconsistency. For the removal of an authorization the PolicyStore will
ensure the de-authorized client does not call this service. For the addition of a
functionally necessary service the PolicyStore will check this service is actually
called and is provided on the platform. If the check is successful, the update is
applied, otherwise the policy is not modified.

5.3 Integration with the Java Card Platform

Fig. 8 presents the Java Card architecture extended with the S×C framework
and the new steps in the applet development and deployment process. The S×C
framework is fully backward-compatible with the existing Java Card platforms.
The platforms that do not know about the framework will be able to process ap-
plets with contracts, because unknown Custom components are just ignored by
default. The applets without the contract can be still deployed on the platform:

210 O. Gadyatskaya and F. Massacci

Fig. 8. The Java Card architecture and the applet deployment process in presence of
the S×C framework. The grey components are introduced by the S×C approach, the
dashed lines denote new steps in the development and deployment process.

they will be treated as providing and calling no services. We did not modify the
standard loading protocol or the JCVM. The interested reader can find more
information on the S×C design challenges and the implementation details in [7].

6 Application to the Use Case Scenarios

Let us now present concrete contracts we devised for the motivating scenarios
introduced in §§2.1-2.2.

6.1 The NFC-Enabled Phone and the New Applet Installation

We consider the payment functionality of the payWave application to be imple-
mented in the shareable PaymentInterface and the service payment. Let the
Touch&Travel applet has the AID 0xAA01CA71FF10 and the payWave applet
has the AID 0x4834D26C6C6F417011.

We can notice in Tab. 1, which presents the contracts of the scenario applets,
that one of the presented contracts of Navigo (Non-Compliant) is not compliant
with the contract of the payWave application (specifically, Navigo calls the pay-
ment service, but is not authorized to do so). Therefore in our scenario, when
the device holder requests the loading of Navigo with this contract, the loading
will be rejected by the S×C framework. If the device holder installs the Nav-
igo version without the non-authorized call to payWave (the Compliant option),
then it will be installed without any problems.

11 The chosen AIDs are fictional, but they are compliant with the ISO/IEC 7816-5
standard to give an idea how an actual contract can look like.

Controlling Application Interactions on the Novel Smart Cards 211

Table 1. Contracts of the payWave, Touch&Travel and Navigo applets

Contract Fully-qualified names Token
structure identifiers

payWave

Provides PaymentInterface.payment() 〈0, 0〉
Calls

sec.rules Touch&Travel is authorized to call 〈 0xAA01CA71FF10, 0, 0〉
PaymentInterface.payment()

func.rules

Touch&Travel

Provides

Calls payWave.PaymentInterface.payment() 〈0x4834D26C6C6F4170, 0, 0〉
sec.rules
func.rules

Navigo – Non Compliant

Provides
Calls payWave.PaymentInterface.payment() 〈0x4834D26C6C6F4170, 0, 0〉

sec.rules

func.rules

Navigo – Compliant

Provides
Calls

sec.rules

func.rules

6.2 The Telecommunications Hub and the Application Policy
Update

For the application policy update scenario we present the contracts of the
Consumption Optimization applet before and after the update. We con-
sider the consumption optimzation functionality to be implemented in the
shareable OptimizationInterface and the service optimization. Let
the Electricity applet has the AID 0xEE06D7713386, the Consumption
Optimization applet has the AID 0xEE06D7713391,the Gas applet has
the AID 0xGG43F167B2890D6C and the Telecare applet has the AID
0x4D357F82B1119AEE.

Tab. 2 presents contracts the Electricity, Gas, Telecare and Consumption
Optimization applets. Notice that the application policy update for addition
of the authorization for Telecare is possible and will be executed by the S×C
framework. The Telecare applet can later be updated and in the new version the
call to the optimization service will appear.

7 Related Work

Fontaine et al. [5] design a mechanism for implementing transitive control flow
policies on Java Card. These policies are stronger than the access control policies
provided by our framework, because the S×C approach targets only direct service
invocations. However, the S×C approach has the advantage of the openness of

212 O. Gadyatskaya and F. Massacci

Table 2. Contracts of the Electricity, Consumption Optimization, Gas and Telecare
applets

Contract Fully-qualified names Token
structure identifiers

Consumption Optimization – Before

Provides OptimizationInterface.optmization() 〈0, 0〉
Calls

sec.rules Electricity applet is authorized to call 〈0xEE06D7713386, 0, 0〉
OptimizationInterface.optmization()

Gas applet is authorized to call 〈0xGG43F167B2890D6C, 0, 0〉
OptimizationInterface.optmization()

func.rules

Electricity

Provides
Calls ConsumptOptim.OptimizationInterface.optimization() 〈0xEE06D7713391, 0, 0〉

sec.rules

func.rules

Gas

Provides

Calls ConsumptOptim.OptimizationInterface.optimization() 〈0xEE06D7713391, 0, 0〉
sec.rules

func.rules

Telecare

Provides

Calls
sec.rules

func.rules

Consumption Optimization – After

Provides OptimizationInterface.optmization() 〈0, 0〉
Calls

sec.rules Electricity applet is authorized to call 〈0xEE06D7713386, 0, 0〉
OptimizationInterface.optmization()

Gas applet is authorized to call 〈0xGG43F167B2890D6C, 0, 0〉
OptimizationInterface.optmization()

Telecare applet is authorized to call 〈0x4D357F82B1119AEE, 0, 0〉
OptimizationInterface.optmization()

func.rules

the policy to any applet AID. The main limitation of [5] is the focus on ad-hoc
security domains, which are very coarse grained administrative security roles
(usually a handful), typically used to delegate privileges on GlobalPlatform. As
a consequence we can provide a much finer access control list closer to actual
practice.

An information flow verification system for small Java-based devices is pro-
posed by Ghindici et al. [9]. The system relies on off-device and on-device steps.
First, an applet certificate is created off device (contains information flows within
the applet). Then on device the certificate is checked in a proof-carrying-code
fashion and matched with the information flow policies of other applets. The
information flow policies are very expressive. However, we believe the on device
information flow verification for Java Card is not yet practical due to the resource
and architecture limitations. The proposed system cannot be implemented for
Java Card version 2.2 because the latter does not allow custom class loaders,

Controlling Application Interactions on the Novel Smart Cards 213

and even implementation for Java Card version 3.0 may not be effective due to
significant amount of memory required to store the information flow policies.

There were investigations [2,3,10,11,16] of static scenarios, when all applets
are known and the composition is analyzed off-device. For example, Avvenuti et
al. [2] have developed the JCSI tool which verifies whether a Java Card applet
set respects pre-defined information flow policies. This tool runs off-card, so it
assumes an existence of a controlling authority, such as a telecom operator, that
can check applets before loading.

The investigation of the Security-by-Contract techniques for Java Card is
carried out in [4,8,6,7] targeting dynamic scenarios when third-party applets
can be loaded on the platform.

Dragoni et al. [4] and Gadyatskaya et al. [8] propose an implementation of
the PolicyChecker component as an applet. While very appealing due to avoiding
the JCRE modification, it has not solved in any way the actual issue of inte-
gration with a real platform. This solution could only work if the authors of
[4,8] had access to the full Java-based JCRE implementation, because only in
this way the Loader can be implemented as a part of the Java Card interface.
The Java Card specifications do not prohibit this, but in practice full Java-based
implementations do not exist.

8 Conclusions and the Future Work

The S×C framework enables load time bytecode validation for multi-application
Java cards. Now each application provider can independently deploy her appli-
cations and update the application policies. The proposed approach fits on a
real smart card, it enables the backward compatibility and is not very invasive,
as the changes to the platform are kept at minimum.

The main benefit of the proposed solution is the validation of the code on card.
In this way each card is independent in the decision it takes; we can envisage that
(U)SIM cards from the same telecom operator can contain different application
sets, depending on the needs of the phone holder. The telecom operator now does
not need to verify security for each possible set of applets; therefore the costs
of managing the device are lower. We can envisage that the S×C approach will
be quite efficient for less expensive applets (like the already mentioned messages
from Santa) that do not provide and do not call any services. This fact can be
easily ensured on the card itself, and these applets do not need to pass the costly
certification process.

Our framework performs the load time on-card checks of Java Card bytecode.
The restrictions of the Java Card platform (the dedicated service invocation in-
struction and the static invoked class binding in the CAP file) allow our frame-
work to efficiently analyze the sets of invoked and provided services in the code
and match them with the contract. We can notice that our bytecode analysis
techniques will have to be improved, for example, following [19], before appli-
cation to full Java, because the inference of method invocation targets will be
more complicated. However, the idea of performing load time on-device checks

214 O. Gadyatskaya and F. Massacci

on the bytecode is promising for computationally-restricted devices, e.g. the
Android phones. The users expect certain delay when an application is being in-
stalled, but they will not tolerate any runtime lags. Therefore, we think that the
Security-by-Contract idea is very promising for Android and other constrained
devices.

We have chosen the conservative approach for verification: if the change can
lead to an insecure state it is rejected. However, this might not be acceptable in
the business community. For instance, we can envisage that application providers
would like to be able to revoke the access to their sensitive service at any time.
The S×C framework currently does not provide this option: the access to a service
for a specific client can be revoked only if this client does not actually invoke this
service. To be more practical, the card should be able to perform some conflict
resolution. For instance, one can choose an approach in which the application
provider is always able to revoke access to her service, and the client applet will
become locked until the new version without service invocation is deployed. An-
other possibility is to explore more the centralized policy management facilities
offered by the next generations of the Java Card platform. We expect a lot of
interesting research challenges in this direction.

Acknowledgements. This work was partially supported by the EU under
grants EU-FP7-FET-IP-SecureChange and FP7-IST-NoE-NESSOS. We thank
Eduardo Lostal for implementing the first version of the S×C prototype and
Boutheina Chetali and Quang-Huy Nguyen for evaluation of the prototype and
valuable information on the platform internals. We also thank Davide Sangiorgi
and Elena Giachino for the invitation to give the S×C tutorial at the HATS-2012
Summer School.

References

1. Aljuraidan, J., Fragkaki, E., Bauer, L., Jia, L., Fukushima, K., Kiyomoto, S.,
Miyake, Y.: Run-time enforcement of information-flow properties on Android.
Technical Report CMU-CyLab-12-015, Carnegie Mellon University,
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1110&
cgi/viewcontent.cgi?article=1110&context=cylab (accessed on the
web in December 2012)

2. Avvenuti, M., Bernardeschi, C., De Francesco, N., Masci, P.: JCSI: A tool for
checking secure information flow in Java Card applications. J. of Systems and
Software 85(11), 2479–2493 (2012)

3. Bieber, P., Cazin, J., Wiels, V., Zanon, G., Girard, P., Lanet, J.-L.: Checking secure
interactions of smart card applets: Extended version. J. of Comp. Sec. 10(4), 369–398
(2002)

4. Dragoni, N., Lostal, E., Gadyatskaya, O., Massacci, F., Paci, F.: A load time Policy
Checker for open multi-application smart cards, pp. 153–156. IEEE Press

5. Fontaine, A., Hym, S., Simplot-Ryl, I.: On-device control flow verification for Java
programs. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS,
vol. 6542, pp. 43–57. Springer, Heidelberg (2011)

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1110&context=cylab
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1110&context=cylab

Controlling Application Interactions on the Novel Smart Cards 215

6. Gadyatskaya, O., Lostal, E., Massacci, F.: Load time security verification. In: Jajo-
dia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS, vol. 7093, pp. 250–264. Springer,
Heidelberg (2011)

7. Gadyatskaya, O., Massacci, F., Nguyen, Q.-H., Chetali, B.: Load time code vali-
dation for mobile phone Java Cards. Technical Report DISI-12-025, University of
Trento (2012)

8. Gadyatskaya, O., Massacci, F., Paci, F., Stankevich, S.: Java Card architecture
for autonomous yet secure evolution of smart cards applications. In: Aura, T.,
Järvinen, K., Nyberg, K. (eds.) NordSec 2010. LNCS, vol. 7127, pp. 187–192.
Springer, Heidelberg (2012)

9. Ghindici, D., Simplot-Ryl, I.: On practical information flow policies for Java-
enabled multiapplication smart cards. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 32–47. Springer, Heidelberg (2008)

10. Girard, P.: Which security policy for multiapplication smart cards? In: Proc. of
USENIX Workshop on Smartcard Technology. USENIX Association (1999)

11. Huisman, M., Gurov, D., Sprenger, C., Chugunov, G.: Checking absence of illicit
applet interactions: A case study. In: Wermelinger, M., Margaria-Steffen, T. (eds.)
FASE 2004. LNCS, vol. 2984, pp. 84–98. Springer, Heidelberg (2004)

12. Project Hydra. Project Hydra - Smart care for smart meters. Final report (October
2012), http://projecthydra.info/wp-content/uploads/2012/10/
Hydra Final Report.pdf (accessed on the web in December 2012)

13. Koo, J., Lin, X., Bagchi, S.: PRIVATUS: Wallet-friendly privacy protection for
smart meters. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 343–360. Springer, Heidelberg (2012)

14. Langer, J., Oyrer, A.: Secure element development. In: NFC Forum Spotlight for
Developers, http://www.nfc-forum.org/events/oulu spotlight/
2009 09 01 Secure Element Programming.pdf (accessed on the web in De-
cember 2012)

15. Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Proc. of the ACM
WPES 2011, pp. 49–60. ACM (2011)

16. Schellhorn, G., Reif, W., Schairer, A., Karger, P., Austel, V., Toll, D.: Verifica-
tion of a formal security model for multiapplicative smart cards. In: Cuppens, F.,
Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895,
pp. 17–36. Springer, Heidelberg (2000)

17. Sullivan, B.: What will talking power meters say about you?
http://redtape.nbcnews.com/ news/2009/10/09/6345711-what-
will-talking-power-meters-say-about-you (accessed on the web in De-
cember 2012)

18. Sun. Runtime environment and virtual machine specifications. Java CardTM plat-
form, v.2.2.2. Specification (2006)

19. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallee-Rai, R., Lam, P., Gagnon,
E., Godin, C.: Practical virtual method call resolution for Java. In: Proc. of OOP-
SLA 2000, pp. 264–280. ACM Press (2000)

http://projecthydra.info/wp-content/uploads/2012/10/Hydra_Final_Report.pdf
http://projecthydra.info/wp-content/uploads/2012/10/Hydra_Final_Report.pdf
http://www.nfc-forum.org/events/oulu_spotlight/2009_09_01_Secure_Element_Programming.pdf
http://www.nfc-forum.org/events/oulu_spotlight/2009_09_01_Secure_Element_Programming.pdf
http://redtape.nbcnews.com/_news/2009/10/09/6345711-what-will-talking-power-meters-say-about-you
http://redtape.nbcnews.com/_news/2009/10/09/6345711-what-will-talking-power-meters-say-about-you

Formal Aspects of Free and Open Source

Software Components�

A Short Survey

Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli

Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS
roberto@dicosmo.org, {treinen,zack}@pps.univ-paris-diderot.fr

Abstract. Free and Open Source Software (FOSS) distributions are
popular solutions to deploy and maintain software on server, desktop,
and mobile computing equipment. The typical deployment method in
the FOSS setting relies on software distributions as vendors, packages as
independently deployable components, and package managers as upgrade
tools. We review research results from the past decade that apply formal
methods to the study of inter-component relationships in the FOSS con-
text. We discuss how those results are being used to attack both issues
faced by users, such as dealing with upgrade failures on target machines,
and issues important to distributions such as quality assurance processes
for repositories containing tens of thousands, rapidly evolving software
packages.

1 Introduction

Free and Open Source Software [47], or FOSS, is used daily, world-wide, to
manage computing infrastructures ranging from the very small, with embedded
devices like Android-based smart phones, to the very big, with Web servers where
FOSS-based solutions dominate the market. From the outset, most FOSS-based
solutions are installed, deployed, and maintained relying on so-called distribu-
tions. The aspect of software distributions that will interest us in this paper is
that they provide a repository: a typically large set of software packages main-
tained as software components that are designed to work well together. Software
distributions, like for instance GNU/Linux distributions, have in fact additional
aspects that are crucial but which are not considered in this work, like for in-
stance an installer that allows a user to install an initial system on a blank
machine, or infrastructure for interaction between users and developers like a
bug tracking system.

While specific technologies vary from distribution to distribution, many as-
pects, problems, and solutions are common across distributions. For instance,
packages have expectations on the deployment context: they may require other

� Work partially supported by Aeolus project, ANR-2010-SEGI-013-01, and per-
formed at IRILL, center for Free Software Research and Innovation in Paris, France,
www.irill.org

E. Giachino et al. (Eds.): FMCO 2012, LNCS 7866, pp. 216–239, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.irill.org

Formal Aspects of Free and Open Source Software Components 217

packages to function properly—declaring this fact by means of dependencies—
and may be incompatible with some other packages—declaring this fact by means
of conflicts. Dependencies and conflicts are captured as part of package meta-
data. Here as an example showing the popular Firefox web browser as a package
in the Debian distribution:

Package: firefox

Version: 18.0.1 -1

Depends: libc6 (>= 2.4), libgtk2.0-0 (>= 2.10), libstdc ++6,

fontconfig , procps , xulrunner -18.0, libsqlite3 -0, ...

Suggests: fonts -stix | otf -stix , mozplugger ,

libgssapi -krb5 -2 | libkrb53

Conflicts : mozilla -firefox (<< 1.5-1)

Provides: www -browser , gnome -www -browser

A couple of observations are in order. First, note how the general form of inter-
package relationships (conflicts, dependencies, etc.) is that of propositional logic
formulae, having as atoms predicates on package names and their versions. Sec-
ond, we have various degrees of dependencies, strong ones (like “Depends”) that
must be satisfied as deployment preconditions and weak ones (like “Suggests”
and “Recommends”, the latter not shown). Finally, we also observe an indi-
rection layer in the package namespace implemented by “Provides”. Provided
packages are sometimes referred to as features, or virtual packages and mean
that the providing package can be used to satisfy dependencies for—or induce
conflicts with—the provided name.

To maintain package assemblies, semi-automatic package manager applica-
tions are used to perform package installation, removal, and upgrades on target
machines—the term upgrade is often used to refer to any combination of those ac-
tions. Package managers incorporate numerous functionalities: trusted retrieval
of components from remote repositories, planning of upgrade paths in fulfillment
of deployment expectations (also known as dependency solving), user interaction
to allow for interactive tuning of upgrade plans, and the actual deployment of
upgrades by removing and adding components in the right order, aborting the
operation if problems are encountered at deploy-time [24].

Unfortunately, due to the sheer size of package repositories in popular FOSS
distributions (in the order of tens of thousands [33]), several challenges need
to be addressed to make the distribution model viable in the long run. In the
following we will focus on two classes of issues and the related research directions:

1. issues faced by distribution users, who are in charge of maintaining their
own installations, and

2. issues faced by distribution editors, who are in charge of maintaining the
consistency of distribution repositories.

As motivating example of issues that are faced by users consider the seemingly
simple requirement that a package manager should change as little as possible
on the target machine in order to satisfy user requests. Unfortunately, as demon-
strated in Fig. 1, that property is not yet offered by most mainstream package

218 R.D. Cosmo, R. Treinen, and S. Zacchiroli

aptitude install baobab
[...]
The following packages are BROKEN : gnome -utils
The following NEW packages will be installed: baobab [...]
The following actions will resolve these dependencies:
Remove the following packages : gnome gnome -desktop -environment libgdict -1.0-6
Install the following packages : libgnome -desktop -2 [2.22.3 -2 (stable)]
Downgrade the following packages :

gnome -utils [2.26.0-1 (now) -> 2.14.0-5 (oldstable)] [...]
0 packages upgraded , 2 newly installed , 1 downgraded ,
180 to remove and 2125 not upgraded . Need to get 2442kB
of archives . After unpacking 536MB will be freed.
Do you want to continue ? [Y/n/?]

Fig. 1. Attempt to install a disk space monitoring utility (called baobab) using the
Aptitude package manager. In response to the request, the package manager proposes
to downgrade the GNOME desktop environment all together to a very old version
compared to what is currently installed. As shown in [4] a trivial alternative solution
exists that minimizes system changes: remove a couple of dummy “meta” packages.

managers. A related issue, that we will also discuss in the following, is that of
providing expressive languages that allow users of package managers to express
their preferences, e.g. the demand to minimize the size occupied by packages
installed on their machines.

Distribution editors, on the other hand, face the challenging task of avoiding
inconsistencies in huge package archives. A paradigmatic example of inconsis-
tency that they should avoid is that of shipping uninstallable packages, i.e. pack-
ages that, no matter what, cannot be installed on user machines because there
is no way to satisfy their dependencies and conflicts. Consider for instance the
following (real) example involving the popular Cyrus mail system:

Package: cyrus -common -2.2

Version: 2.4.12 -1

Depends: cyrus -common -2.4

Package: cyrus -common -2.4

Version: 2.4.12 -1

Conflicts : cyrus -common -2.2

It is easy to verify that it is not possible to install the above cyrus-common-2.2
package—a dummy package made to ease upgrades to Cyrus 2.4—out of any
package repository that also contains the cyrus-common-2.4 package shown in
the example. Even worse, it can be shown that the issue is not transitional,
i.e. the team responsible for cyrus-common-2.2 (its maintainers) cannot simply
wait for the issue to go away, they have to manually fix the metadata of their
package so that the cause of the uninstallability goes away. The challenge here is
that, while it is easy to reason on simple cases like this one, distribution editors
actually need semi- or fully-automated tools able to spot this kind of quality
assurance issues and point them to the most likely causes of troubles.

Paper Structure. In the following we provide a short summary of research from
the past decade on the formal aspects of FOSS packages. We first present, in
Sect. 2, different formal models able to capture the parts of package metadata

Formal Aspects of Free and Open Source Software Components 219

that are relevant to attack both issues faced by users and by distributions. Then,
in Sect. 3, we give an overview of results that foster the development of complete
and expressive package managers that would provide a better package manage-
ment experience to users. Finally, in Sect. 4, we do the same with research results
that have been used to develop and deploy semi-automated quality assurance
tools used daily by editors of popular FOSS distributions to assess the quality
of their package repositories.

2 Formal Package Models

Different formal treatments of packages and their relationships are needed for
different purposes. Two main approaches have been devised: a syntactic (or
concrete) one which captures the syntax of inter-package relationships, so that
they can be treated symbolically, similarly to how package maintainers reason
about them. We will use such an approach to reason about the future evolution
of repositories (see Sect. 4), taking into account yet unknown package versions.

A more abstract package model is useful too, in order to make the modeling
more independent from specific component technologies and their requirement
languages. We will use this kind of modeling to recast the problem of verifying
package installability as a SAT problem (see Sect. 2.3).

2.1 Concrete Package Model

A concrete package model, originally inspired by Debian packages, has been
given in [5] and further detailed in [6]. In this model packages are captured as
follows:

Definition 1 (Package). A package (n, v,D,C) consists of

– a package name n ∈ N,
– a version v ∈ V,
– a set of dependencies D ⊆ ℘(N ×Con),
– a set of conflicts C ⊆ N×Con,

where N is a given set of possible package names, V a set of package versions,
and Con a set of syntactic constraints on them like �, = v, > v, ≤ v, . . . The
intuition is that dependencies should be read as conjunctions of disjunctions.
For example: {{(p,≥ 1), (q,= 2)}, {(r,< 5)}} should be read as ((p ≥ 1) ∨ (q =
2)) ∧ (r < 5). Starting from this intuition, the expected semantics of package
constraints can be easily formalized.

Notation 1. Given a package p we write p.n (resp. p.v, p.D, p.C) for its name
(resp. version, dependencies, conflicts).

Repositories can then be defined as package sets, with the additional constraint
that name/version pairs are unambiguous package identifiers:

220 R.D. Cosmo, R. Treinen, and S. Zacchiroli

Table 1. Sample package repository

Package: a Package: b Package: d

Version: 1 Version: 2 Version: 3

Depends: b (≥ 2) | d Conflicts: d

Package: a Package: c Package: d

Version: 2 Version: 3 Version: 5

Depends: c (> 1) Depends: d (> 3)

Conflicts: d (= 5)

Definition 2 (Repository). A repository is a set of packages, such that no
two different packages carry the same name and version.

A pair of a name and a constraint has a meaning with respect to a given reposi-
tory R, the precise definition of which would depend on the formal definition of
constraints and their semantics:

Notation 2. Given a repository R, n ∈ N and c ∈ Con, we write [[(n, c)]]R for
the set of packages in R with name n and whose version satisfies the constraint c.

We can then finally capture the important notions of installation and of
(co-)installability:1

Definition 3 (Installation). Let R be a repository. An R-installation is a set
of packages I ⊆ R such that ∀p, q ∈ I:

abundance for each element d ∈ p.D there exists (n, c) ∈ d and a package q ∈ I
such that q ∈ [[(n, c)]]R.

peace for each (n, c) ∈ p.C: I ∩ [[(n, c)]]R = ∅
flatness if p �= q then p.n �= q.n

Definition 4 (Installability). p ∈ R is R-installable if there exists an R-
installation I with p ∈ I.

Definition 5 (Co-Installability). S ⊆ R is R-co-installable if there exists an
R-installation I with S ⊆ I.

Example 1 (Package Installations). Consider the repository R shown in Table 1.
The following sets are not R-installations:

– R as a whole, since it is not flat;

1 We remind that this is a specific concrete package model, inspired by Debian pack-
ages. Therefore not all installation requirements listed here have equivalents in all
component technologies. Most notably the presence of the flatness property varies
significantly from technology to technology. As discussed in [4,6] this does not affect
subsequent results.

Formal Aspects of Free and Open Source Software Components 221

– {(a, 1), (c, 3)}, since both a’s and b’s dependencies are not satisfied;
– {(a, 2), (c, 3), (d, 5)}, since there is a conflict between c and d.

The following sets are valid R-installations: {(a, 1), (b, 2)}, {(a, 1), (d, 5)}. We can
therefore observe that the package (a, 1) is R-installable, because it is contained
in an R-installation.

The package (a, 2) is not R-installable because any installation of it must also
contain (c, 3) and consequently (d, 5), which will necessarily break peace. ��

2.2 Abstract Package Model

A more abstract package model [43] was the basis for several of the studies
discussed in the present work. The key idea is to model repositories as non
mutable entities, under a closed world assumption stating that we know the set
of all existing packages, that is that we are working with respect to a given
repository R.

Definition 6. An abstract repository consists of

– a set of packages P ,
– an anti-reflexive and symmetric conflict relation C ⊆ P × P ,
– a dependency function D:P −→ ℘(℘(P)).

The nice properties of peace, abundance, and (co-)installability can be easily
recast in such a model.

The concrete and abstract models can be related. In particular, we can trans-
late instances of the concrete model (easily built from real-life package reposi-
tories) into instances of the more abstract model, preserving the installability
properties. To do that, the main intuition is that (concrete) package constraints
can be “expanded” to disjunctions of all (abstract) packages that satisfy them.
For example, if we have a package p in versions 1, 2, and 3, then a dependency
on p ≥ 2 will become {{(p, 2), (p, 3)}}. For conflicts, we will add a conflict in the
abstract model when either one of the two (concrete) packages declare a conflict
on the other, or when we have two packages of the same name and different
versions. The latter case implements the flatness condition. Formally:

Notation 3. Let R be a repository in the concrete model. We can extend the
semantics of pairs of names and constraints to sets as follows:

[[{(n1, c1), . . . , (nm, cm)}]]R = [[(n1, c1)]]R ∪ . . . ∪ [[(nm, cm)]]R

Definition 7 (Concrete to Abstract Model Translation). Let R be a
repository in the concrete model. We define an abstract model Ra = (Pa, Da, Ca).

– Pa: the same packages as in R
– We define the dependency in the abstract model:

Da(p) = {[[φ]]R | φ ∈ p.D}
– We define conflicts in the abstract model:

Ca = {(p1, p2) | p1 ∈ [[p2.C]]R ∨ p2 ∈ [[p1.C]]R}
∪ {(p1, p2) | p1.n = p2.n ∧ p1.v �= p2.v}

222 R.D. Cosmo, R. Treinen, and S. Zacchiroli

Install libc6 version

2.3.2.ds1-22 in

Package: libc6
Version: 2.2.5 -11.8

Package: libc6
Version: 2.3.5 -3

Package: libc6
Version: 2.3.2.ds1 -22
Depends: libdb1 -compat

Package: libdb1 -compat
Version: 2.1.3 -8
Depends: libc6 (>= 2.3.5-1)

Package: libdb1 -compat
Version: 2.1.3 -7
Depends: libc6 (>= 2.2.5 -13)

⇒

libc62.3.2.ds1−22

∧
¬(libc62.3.2.ds1−22 ∧ libc62.2.5−11.8)
∧
¬(libc62.3.2.ds1−22 ∧ libc62.3.5−3)
∧
¬(libc62.3.5−3 ∧ libc62.2.5−11.8)
∧
¬(libdb1-compat2.1.3−7∧libdb1-compat2.1.3−8)
∧
libc62.3.2.ds1−22 →
(libdb1-compat2.1.3−7∨libdb1-compat2.1.3−8)
∧
libdb1-compat2.1.3−7 →
(libc62.3.2.ds1−22 ∨ libc62.3.5−3)
∧
libdb1-compat2.1.3−8 → libc62.3.5−3

Fig. 2. Example: package installability as SAT instance

2.3 On the Complexity of Installability

Now that we have rigorously established the notion of package (co-)installability,
it is legitimate to wonder about the complexity of deciding these properties.
Is it “easy enough” to automatically identify non-installable packages in large
repositories of hundreds of thousands of packages? The main complexity result,
originally established in [43], is not encouraging:

Theorem 1. (Co-)installability is NP-hard (in the abstract model).

The gist of the proof is a bidirectional mapping between boolean satisfiability
(SAT) [19] and package installability. For the forward mapping, from packages
to SAT, we use one boolean variable per package (the variable will be true if
and only if the corresponding package is installed), we expand dependencies as
implications p → (r1 ∨ · · · ∨ rn) where ri are all the packages satisfying the
version constraints, and encode conflicts as ¬(p∧ q) clauses for every conflicting
pair (p, q). Thanks to this mapping, we can use SAT solvers for checking the
installability of packages (see Fig. 2 and Sect. 4).

The backward mapping, from SAT to package installability, can be established
considering 3-SAT instances, as detailed in [30].

Given that the proof is given for the abstract model, one might wonder to
which kind of concrete models it applies. The question is particularly relevant
to know whether dependency solving in the context of specific component tech-
nologies can result in corner cases of unmanageable complexity or not. Several
instances of this question have been answered in [4], considering the common fea-
tures of several component models such as Debian and RPM packages, OSGi [45]
bundles, and Eclipse plugins [20,15]. Here are some general results:

Formal Aspects of Free and Open Source Software Components 223

– Installability is NP-complete provided the component model features con-
flicts and disjunctive dependencies.

– Installability is in PTIME if the component model does not allow for conflicts
(neither explicitly, nor implicitly with clauses like Eclipse’s “singleton”).

– Installability is in PTIME if the component model does not allow for disjunc-
tive dependencies or features, and the repository does not contain multiple
versions of packages.

3 Upgrade Optimization

The discussed complexity results provide convincing evidence that dependency
solving is difficult to get right, more than developers might imagine at first.
Several authors [39,34,40,55,51,54,24,36] have pointed out two main deficien-
cies of state-of-the-art package managers in the area of dependency solving—
incompleteness and poor expressivity—some of them have proposed various al-
ternative solutions.

A dependency solving problem, as usually faced by dependency solvers, can
be described as consisting of: (i) a repository of all available packages (some-
times also referred to as a package universe); (ii) a subset of it denoting the set
of currently installed packages on the target machine (package status); (iii) a
user request usually asking to install, upgrade, or remove some packages. The
expected output is a new package status that both is a proper installation (in
the sense of Def. 3) and satisfies the user request. Note that, due to the presence
of both implicit and explicit disjunctions in the dependency language, there are
usually many valid solutions for a given upgrade problem. In fact, it has been
shown in [4] that there are exponentially many solutions to upgrade problems in
all non-trivial repositories.

A dependency solver is said to be complete if it is able to find a solution to
an upgrade problem whenever one exists.

Given the huge amount of valid solutions to any given upgrade problem, we
need languages that allow the user to express her preferences such as “favor
solutions that minimize the amount of used disk space”, “favor solutions that
minimize the changes to the current package status”, “do not install packages
that are affected by outstanding security issues”, etc.

Unfortunately, most state-of-the-art package managers are neither complete
nor offer expressive user preference languages [53].

3.1 The Common Upgradeability Description Format

CUDF [52,4] (the Common Upgradeability Description Format)2 is a language
devised to solve the issues of completeness and expressivity by inducing a syn-
ergy among package managers developers and researchers in the various fields of
constraint solving. At first glance, a CUDF document captures an instance of a

2 http://www.mancoosi.org/cudf/, retrieved May 2013

http://www.mancoosi.org/cudf/

224 R.D. Cosmo, R. Treinen, and S. Zacchiroli

preamble:
property: bugs: int = 0, suite : enum(stable ,unstable) = "stable ",

package: car

version: 1

depends: engine , wheel > 2, door , battery <= 13

instal led : true
bugs: 183

package: bicycle

version: 7

suite: unstable

package: gasoline -engine

version: 1

depends: turbo

provides: engine

conf l i cts: engine , gasoline -engine

instal led : true
...

request:
i ns ta l l : bicycle , gasoline -engine = 1

upgrade: door , wheel > 3

Fig. 3. Sample CUDF document

dependency solving problem using a human readable syntax, as shown in Fig. 3.
CUDF is an extensible language—i.e. it allows to represent ad-hoc package prop-
erties that can then be used to express user preferences—and provides a formal
semantics to unambiguously determine whether a given solution is correct with
respect to the original upgrade problem or not.

CUDF is also neutral on both specific packaging and solving technologies.
Several kinds of package manager-specific upgrade problems can be encoded in
CUDF and then fed to solvers based on different constraint solving techniques.
Fig. 4 enumerates a number of packaging technologies and solving techniques
that can be used together, relying on CUDF for data exchange.

This is achieved by instrumenting existing package managers with the abil-
ity to communicate via the CUDF format with external dependency solvers.
Such an arrangement, depicted in Fig. 5 and studied in [3,7], allows to share
dependency solvers across package managers. Several modern package managers
have followed this approach either offering the possibility to use external CUDF
solvers as plugins, or even abandoning the idea of an integrated solver and always
using external CUDF solvers. Examples are the APT package manager used by
the Debian and Ubuntu distributions, the P2 provisioning platform for Eclipse
plugins, and the OPAM package manager for the OCaml language.

Formal Aspects of Free and Open Source Software Components 225

Fig. 4. Sharing upgrade problems and solvers among communities

3.2 User Preferences

In itself, CUDF does not mandate a specific language for user preferences, but
supports them, in various ways. On one hand, CUDF captures and exposes all
relevant characteristics of upgrade problems (e.g. package and user request prop-
erties) that are needed to capture user preferences in common scenarios [53].
Also, CUDF does so in an extensible way, so that properties that are specific to
a given package technology can still be captured. On the other hand, the CUDF
model is rigorous, providing a solid base to give a clear and measurable seman-
tics to user preferences, which would allow to compare solutions and decide how
well they score w.r.t. user preferences.

Several proposals of user preference languages have been advanced. The main
challenge consists in finding a middle ground between the expressivity that users
desire and the capabilities of modern constraint solvers.

Historically, OPIUM [55] has used SAT-based optimization to hard-code a
fairly typical user preference, corresponding to the desire of minimizing the num-
ber of packages that are installed/removed to satisfy user request.

For the first time in [4], a flexible preference language has been proposed,
based on a set of metrics that measure the distance between the original pack-
age status and the solution found by the dependency solver. Distance can be
measured on various axes: the number of packages removed, newly installed,
changed, that are not up to date (i.e. not at the latest available version), and
with unsatisfied “weak” dependencies (i.e. packages that are “recommended” to
be installed together with others, but not strictly required). Those metrics can
be combined using a dictionary of aggregation functions that are commonly sup-
ported by solvers capable of multicriteria optimization [49], in particular lexico-
graphic orderings and weighted sums. Using the resulting formalism it is possible
to capture common user preference use cases such as the following paranoid one

paranoid = lex (−removed ,−changed)

The solution scoring best under this criterion is the one with the smallest num-
ber of removed functionalities, and then with the smallest number of changes

226 R.D. Cosmo, R. Treinen, and S. Zacchiroli

Fig. 5. Modular package manager architecture

(e.g. upgrade/downgrade/install actions). A trendy preference, i.e. the desire of
having the most recent versions of packages, is also easy to write as:

trendy = lex (−removed ,−notuptodate,−unsatrec,−new)

This set of preference combinators is bound to grow to encompass new user needs.
For example, it is often the case that a single source package can produce many
binary packages, and that using a mix of binary packages coming from different
versions of the same source package is problematic. In recent work, it has been
shown how to implement an optimization criterion that allows to specify that
some packages need to be aligned, for different notions of alignment [23].

3.3 The MISC Competition

The existence of a language like CUDF allows to assemble a corpus of challenging
(for existing dependency solvers) upgrade problems coming from actual users of
different package managers. Using such a corpus, researchers have established
the MISC (for Mancoosi International Solver Competition)3 that has been run
yearly since 2010. The goal of the competition is to advance the state of the art
of real dependency solvers, similarly to what has happened in others fields with,
e.g., the SAT competition [35].

A dozen solvers have participated in the various editions, attacking CUDF-
encoded upgrade problems using solvers based on a wide range of constraint
solving techniques. Table 2 shows a sample of MISC participants from the 2010
and 2011 editions.

Analysis of the competition results has allowed us to experimentally establish
the limits of state-of-the-art solvers. In particular, they have been shown to sig-
nificantly degrade their ability to (quickly) find solutions as the number of used
package repositories grows, which is a fairly common use case. Each competi-
tion edition has established one or more winners, e.g. one winner in the trendy
track and one in the paranoid one. Modular package managers that follow the
architecture of Fig. 5 can then use winning solvers, or other entrants, as their
dependency solver of choice.

3 http://www.mancoosi.org/misc/, retrieved May 2013

http://www.mancoosi.org/misc/

Formal Aspects of Free and Open Source Software Components 227

Table 2. Sample of MISC competition entrants, ed. 2010 and 2011

solver author/affiliation technique/solver

apt-pbo [54] Trezentos / Caixa Magica Pseudo Boolean Optimization
aspcud Matheis / University of Potsdam Answer Set Programming
inesc [9] Lynce et. al / INESC-ID Max-SAT
p2cudf [9] Le Berre and Rapicault / Univ. Artois Pseudo Boolean Optimization

/ Sat4j (www.sat4j.org)
ucl Gutierrez et al. / Univ. Luvain Graph constraints
unsa [44] Michel et. al / Univ. Sophia-Antipolis Mixed Integer Linear Programming

/ CPLEX (www.cplex.com)

Solvers able to handle these optimization combinators can also be used for a
variety of other purposes. It is worth mentioning one of the most unusual, which
is building minimum footprint virtual images for the cloud: as noticed in [46],
virtual machine images often contain largely redundant package selections, wast-
ing disk space in cloud infrastructures. Using the toolchain available in the dose
library,4 which is at the core of the MISC competition infrastructure, one can
compute the smallest distribution containing a given set of packages. This prob-
lem has actually been used as one of the track of the 2012 edition of the MISC
competition.

More details on CUDF and MISC are discussed in [4,7].

4 Quality Assurance of Component Repositories

A particularly fruitful research line tries to solve the problems faced by the
maintainers of component repositories, and in particular of FOSS distributions.

A distribution maintainer controls the evolution of a distribution by regulat-
ing the flow of new packages into and the removal of packages from it. With
the package count in the tens of thousands (over 35.000 in the latest Debian de-
velopment branch as of this writing), there is a serious need for tools that help
answering efficiently several different questions. Some are related to the current
state of a distribution, like: “What are the packages that cannot be installed
(i.e., that are broken) using the distribution I am releasing?”, “what are the
packages that block the installation of many other packages?”, “what are the
packages most depended upon?”. Other questions concern more the evolution
of a distribution over time, like: “what are the broken packages that can only
be fixed by changing them (as opposed to packages they depend on)?”, “what
are the future version changes that will break the most packages in the distribu-
tion?”, “are there sets of packages that were installable together in the previous
release, and can no longer be installed together in the next one?”.

In this section, we highlight the most significant results obtained over the past
years that allow to answer some of these questions, and led to the development
of tools which currently are being adopted by distribution maintainers.

4 http://www.mancoosi.org/software/, retrieved May 2013

www.sat4j.org
www.cplex.com
http://www.mancoosi.org/software/

228 R.D. Cosmo, R. Treinen, and S. Zacchiroli

4.1 Identifying Broken Packages

As we have seen in Sect. 2.3, the problem of determining whether a single package
is installable using packages from a given repository is NP-hard. Despite this
limiting result, modern SAT solvers are able to handle easily the instances coming
from real world repositories. This can be explained by observing that explicit
conflicts between packages are not very frequent, even if they are crucial when
they exist, and that when checking installability in a single repository one usually
finds only one version per package, hence no implicit conflicts. As a consequence,
there is now a series of tools, all based on the original edos-debcheck tool
developed by Jérôme Vouillon in 2006 [43], that are part of the dose library and
can check installability of Debian or RPM packages, as well as Eclipse plugins,
in a very short time: a few seconds on commodity desktop hardware are enough
to handle the ≈ 35.000 packages from the latest Debian distribution.5

4.2 Analyzing the Dependency Structure of a Repository

Identifying the packages that are not installable in a repository is only the first
basic analysis which is of interest for a distribution maintainer: among the large
majority of packages that are installable, not all have the same importance, and
not all can be installed together.

It is quite tempting, for example, to use the number of incoming dependencies
on a package as a measure of its importance. Similarly, it is tempting to analyze
the dependency graph trying to identify “weak points” in it, along the tradition
of studies on small-world networks [8]. Several studies in the literature do use
explicit dependencies, or their transitive closure, to similar ends (e.g. [37,42]).
The explicit, syntactic dependency relation p → q is however too imprecise
for them and can be misleading in many circumstances. Intuitively, this is so
because paths in the explicit dependency graph might connect packages that are
incompatible, in the sense that they cannot be installed together. To solve that
problem we need to distinguish between the syntactic dependency graph and a
more meaningful version of it that takes into account the actual semantics of
dependencies and conflicts.

This was the motivation for introducing the notion of strong dependency [1]
to identify the packages that are at the core of a distribution.

Definition 8. A package p strongly depends on q (written p ⇒ q) with respect
to a repository R if it is not possible to install p without also installing q.

This property is easily seen equivalent to the implication p → q in the logical
theory obtained by encoding the repository R, so in the general case this problem
is co-NP-complete, as it is the dual of an installation problem, and the strong
dependency graph can be huge, because it is transitive. Nevertheless, it is pos-
sible on practical instances to compute the strong dependency graph of a recent

5 A daily updated showcase of uninstallable Debian packages, used by
the distribution for quality assurance purposes, is currently available at
http://edos.debian.net/edos-debcheck/ (retrieved January 2013).

http://edos.debian.net/edos-debcheck/

Formal Aspects of Free and Open Source Software Components 229

Table 3. Top sensitive packages in Debian 5.0 “Lenny”

package deps s. deps closure

1 gcc-4.3-base 43 20128 20132
2 libgcc1 3011 20126 20130
3 libc6 10442 20126 20130
4 libstdc++6 2786 14964 15259
5 libselinux1 50 14121 14634
6 lzma 4 13534 13990
7 libattr1 110 13489 14024
8 libacl1 113 13467 14003
9 coreutils 17 13454 13991

10 dpkg 55 13450 13987
11 perl-base 299 13310 13959
12 debconf 1512 11387 12083
13 libncurses5 572 11017 13466
14 zlib1g 1640 10945 13734
15 libdb4.6 103 9640 13991

. . .

Debian distribution in a few hours on a modern multicore machine. The opti-
mized algorithms able to do so have been discussed in [1] and are implemented
in the dose toolchain.6

Once the strong dependencies graph is known, it is possible to define the
impact set of a package, as the set of packages that strongly depend on it: this is
a notion of robustness, as removing p from the distribution renders uninstallable
all packages in its impact set, while this is not the case if one uses direct or
transitive dependencies.

In Table 3 are shown the ten packages from the Debian Lenny distribution
with the largest impact set, and it is easy to see that the number of direct incom-
ing dependencies is totally unrelated to the real importance of the package, while
the number of transitive incoming dependencies is always an overapproximation.

In the list of Table 3, a knowledgable maintainer will recognize a cluster
of interrelated packages: gcc-4.3-base, libgcc1 and libc6 are all essential
components of the C library, and they have similar sized impact sets. In the
general case, though, as shown by the examples configurations drawn in Fig. 6,
two packages having similar sized impact sets need not be correlated.

To identify those packages that are correlated, and identify the most relevant
ones among them, one can define, on top of the strong dependency graph, a
dominance relation similar to the one used in traditional flow graphs [41].

Definition 9 (Strong Dominance). We say that q strongly dominates r if:

– q strongly depends on r, and
– every package that strongly depends on r also strongly depends on q.

6 http://www.mancoosi.org/software/, retrieved May 2013

http://www.mancoosi.org/software/

230 R.D. Cosmo, R. Treinen, and S. Zacchiroli

p1

�� ���
��

��
��

��
��

��
��

��
��� pi

���
��
��
��
��
��
��

����
��
��
��
��
��
�

��� pn

����
��
��
��
��
��
��
��
�

��
q r

(a) Coincidence

p1

���
��

��
��

�
��� pi

��

��� pn

����
��
��
��

s1

����
��
��
��
��
��
��
��
��

��� sk

��			
			

			
			

			
			

			
			

q

��
r

(b) General case

p1

���
��

��
��

�
��� pi

��

��� pn

����
��
��
��

q

��
r

(c) Dominance

Fig. 6. Significant configurations in the strong dependency graph

Intuitively, in a strong dominance configuration, that looks like Fig. 6c, the
strong dependency on r of packages in its impact set is “explained by” their
strong dependency on q.

Strong dominance can be computed efficiently [13] and properly identifies
many relevant clusters of packages related by strong dependencies like the libc6
one, but the tools built on the work of [1] also allow to capture partial dominance
situations as in Fig. 6b.

4.3 Analyzing the Conflict Structure of a Repository

In a repository there are packages that can be installed in isolation, but not
together: despite the existence of interesting approaches that make it possible
to reduce the need for package conflicts when installing user-level packages [29],
there are good reasons for making sure, for example, that only one mail transport
agent, or database server, is installed on a given machine, and that only one copy
of a dynamic library needs to be updated if a security issue is uncovered. This is
why in the current Debian distribution one can find over one thousand explicit
conflicts declared among packages [10,11].

Once conflicts are part of a distribution, it is important to be able to assess
their impact, identifying those packages that are incompatible. This is not an
easy task, even when looking just for incompatibilities between package pairs,
that are known as strong conflicts [17], as opposed to “ordinary” conflicts.

Definition 10 (Strong Conflicts). The packages in S are in strong conflict
if they can never be installed all together.

Indeed, by duality with the installability problem, one obtains the following

Theorem 2. Determining whether S is in strong conflict in a repository R is
co-NP-complete.

In practice, though, strong conflicts can be computed quite efficiently [25], and
this allows to identify packages with an abnormal number of incompatibilities,
that are simply undetectable using other kinds of metrics. For example, Table 4
lists the ten packages from Debian Lenny with the highest number of strong

Formal Aspects of Free and Open Source Software Components 231

conflicts, and the package ppmtofb clearly stands out as a problematic one: it
is installable, so it will not be flagged by the edos-debcheck tool, but it is in
practice incompatible with a large part of the Debian distribution. It turned out
that this package depended on an old version of Python, which was phased out,
but was never updated; after reporting the issue, the package was dropped from
the distribution, because of lack of maintainers, but could have been adapted to
the latest Python versions too.

Table 4. Top packages with the highest number of strong conflicts in Debian Lenny

Strong Package Explicit Explicit Cone Cone
Conflicts Conflicts Dependencies Size Height

2368 ppmtofb 2 3 6 4
127 libgd2-noxpm 4 6 8 4
127 libgd2-noxpm-dev 2 5 15 5
107 heimdal-dev 2 8 121 10
71 dtc-postfix-courier 2 22 348 8
71 dtc-toaster 0 11 429 9
70 citadel-mta 1 6 123 9
69 citadel-suite 0 5 133 9
66 xmail 4 6 105 8
63 apache2-mpm-event 2 5 122 10

More generally, one is interested in identifying the sets of packages that are
incompatible, and in providing a way for a distribution maintainer to visualize
the problematic configurations. With over 35.000 packages, and hundreds of
thousands of relationships, this may look like an impossible task.

The key idea for properly addressing this challenge is to extract from the
original, huge repository, a much smaller one, called a coinstallability kernel, that
contains a representative of each package of the original repository, and preserves
co-installability of packages [25]. That is, even if a coinstallability kernel is a
much more compact representation of package relationships than the original
one, all relevant information to decide whether packages are co-installable or
not is retained by it.

To obtain a coinstallability kernel, we start from the original repository and
perform a series of transformations on it. As a first step, one builds a transitive
closure of the dependency relation, reminiscent of the conversion to conjunctive
normal form of propositional formulae, but dropping at the same time some
redundant dependencies to avoid combinatorial explosion. This phase produces
a repository that has a two-level structure, which one may simplify further by
removing other redundant dependencies that are exposed by the transitivization
phase; after closing the dependency function reflexively, one can finally collapse
packages that have the same behavior with respect to co-installability into equiv-
alence classes, and then remove the reflexive dependencies to obtain a compact
visualization of the kernel of the repository.

232 R.D. Cosmo, R. Treinen, and S. Zacchiroli

(a) Original
repository

(b) Transitivity (c) Pruning

(d) Self dependency
addition

(e) Simplification (f) Quotient

(g) Drawing

Fig. 7. Transformations of a repository. Conflicts edges are denoted with #; arrows
denote direct (conjunctive) dependencies, whereas disjunctive dependencies use explicit
“OR” nodes. Dashed lines are used, at each phase, to highlight edges that will disappear
in the next phase.

These phases are shown on a sample repository in Fig. 7: it is clear from this
example that in the final repository package g can always be installed, while
b and c are incompatible, and all the packages a, d, e, f behave the same
with respect to co-installability, and are only incompatible with c. Due to the
fundamental theorems proved, and machine checked, in [25], this is also the case
in the original repository.

On real-world repositories, the simplification obtained is astonishing, as can
be seen in the following table, that also indicates the running time of the coinst
tool7 on a commodity laptop:

Debian Ubuntu Mandriva

before after before after before after

Packages 28919 1038 7277 100 7601 84
Dependencies 124246 619 31069 29 38599 8
Conflicts 1146 985 82 60 78 62

Running time (s) 10.6 1.19 11.6

4.4 Predicting Evolutions

Some aspects of the quality assessment in FOSS distributions are best modeled
by using the notion of futures [2,5] of a package repository. This allows to in-
vestigate under which conditions a potential future problem may occur, or what

7 http://coinst.irill.org, retrieved January 2013

http://coinst.irill.org

Formal Aspects of Free and Open Source Software Components 233

Package: bar

Version: 2.3

Package: baz

Version: 2.5

Conflicts : bar (> 2.4)

Package: foo

Version: 1

Depends: (baz (=2.5) | bar (=2.3)) ,

(baz (<2.3) | bar (>2.6))

Fig. 8. Package foo in version 1 is outdated

changes to a repository are necessary to make a currently occurring problem
go away. This analysis can give package maintainers important hints about how
problems may be solved, or how future problems may be avoided. The precise
definition of these properties relies on the definition of the possible future of a
repository:

Definition 11 (Future). A repository F is a future of a repository R if the
following two properties hold:

uniqueness R ∪ F is a repository; this ensures that if F contains a package p
with same version and name as a package q already present in R, then p = q;

monotonicity For all p ∈ R and q ∈ F : if p.n = q.n then p.v ≤ q.v.

In other words, when going from the current repository to some future of it
one may upgrade current versions of packages to newer versions, but not down-
grade them to older versions (monotonicity). One is not allowed to change the
meta-data of a package without increasing its version number (uniqueness), but
besides this the upgrade may modify the meta-data of a package in any possible
way, and may even remove a package completely from the repository, or intro-
duce new packages. This notion models all the changes that are possible in the
maintenance process usually used by distribution editors, even if the extreme
case of a complete change of meta-data allowed in this model is quite rare in
practice. Note that the notion of future is not transitive as one might remove a
package and then reintroduce it later with a lower version number.

The first property using futures that we are interested in is the following one:

Definition 12 (Outdated). Let R be a repository. A package p ∈ R is out-
dated in R if p is not installable in any future F of R.

That is, p is outdated in R if it is not installable (since R is itself one of its
futures) and if it has to be upgraded to make it ever installable again. In other
words, the only way to make p installable is to upload a fixed version of the
package since no modification to other packages than p can make p installable.
This information is useful for quality assurance since it pinpoints packages where
action is required. An example of an outdated package is given in Fig. 8.

234 R.D. Cosmo, R. Treinen, and S. Zacchiroli

Definition 13 (Challenges). Let R be a repository, p, q ∈ R, and q installable
in R. The pair (p.n, v), where v > p.v, challenges q if q is not installable in any
future F which is obtained by upgrading p to version v.

Intuitively (p.n, v) challenges q, when upgrading p to a new version v without
touching any other package makes q not installable. This permits to pinpoint
critical future upgrades that challenge many packages and that might therefore
need special attention before being pushed to the repository. An example is given
in Fig. 9.

Package: foo

Version: 1.0

Depends: bar (<= 3.0) | bar (>= 5.0)

Package: bar

Version: 1.0

Package: baz

Version: 1.0

Depends: foo (>= 1.0)

Fig. 9. Package bar challenges package foo for versions in the interval]3.0, 5.0[

The problem in deciding these properties is that any repository has an infinite
number of possible futures. The two properties we are interested in belong to
the class of so-called straight properties. For this class of properties it is in fact
sufficient to look at a finite set of futures only which cover all of the problems that
may occur in any future. One can show [5] that it is sufficient to look at futures
where no package has been removed and new packages have been introduced
only when their name was already mentioned in R, and where all new versions
of packages have no conflicts and no dependencies. For any package there is an
infinite space of all future version numbers, however, there is only a finite number
of equivalence classes of these with respect to observational equivalence where
the observations are the constraints on versions numbers used in R.

In reality, the definition of a future is more involved than the one given in
Def. 11. In almost all distributions, packages are in fact not uploaded inde-
pendently from each other but are updated together with all other packages
stemming from the same source package. The complete definition of a future
also takes into account a notion of clusters of packages, which are in our case
formed by all binary packages stemming from the same source. Def. 13 has to
be adapted accordingly, by allowing for all packages in the same cluster as p to
be upgraded.

The full version of the algorithms in presence of package clusters, together
with their proof of soundness, can be found in [5].

The top challenging upgrades in Debian Lenny found by our tool are listed in
Table 5. Regularly updated reports on outdated Debian packages are available
as part of the distribution quality assurance infrastructure.8

8 http://edos.debian.net/outdated.php, retrieved January 2013

http://edos.debian.net/outdated.php

Formal Aspects of Free and Open Source Software Components 235

Table 5. Top 13 challenging upgrades in Debian lenny

Source Version Target Version Breaks

python-defaults 2.5.2-3 ≥ 3 1079
python-defaults 2.5.2-3 2.6 ≤ . < 3 1075
e2fsprogs 1.41.3-1 any 139
ghc6 6.8.2dfsg1-1 ≥ 6.8.2+ 136
libio-compress-base-perl 2.012-1 ≥ 2.012. 80
libcompress-raw-zlib-perl 2.012-1 ≥ 2.012. 80
libio-compress-zlib-perl 2.012-1 ≥ 2.012. 79
icedove 2.0.0.19-1 > 2.1-0 78
iceweasel 3.0.6-1 > 3.1 70
haskell-mtl 1.1.0.0-2 ≥ 1.1.0.0+ 48
sip4-qt3 4.7.6-1 > 4.8 47
ghc6 6.8.2dfsg1-1 6.8.2dfsg1+ ≤ . < 6.8.2+ 36
haskell-parsec 2.1.0.0-2 ≥ 2.1.0.0+ 29

With the same philosophy of identifying the impact of repository evolutions,
it is important for quality assurance to be able to spot easily whether a new
release has introduced new errors, and one particular error that affects FOSS
distributions is the introduction of new incompatibilities among packages that
were co-installable in a previous version. At first sight, identify such errors seems
unfeasible: one would need to enumerate all possible sets of incompatible pack-
ages in the new distribution, and then check whether they were already incom-
patible in the previous release. Since there are 2n package sets in a distribution
with n packages, and n is in the tens of thousands, this approach is unfeasible.
Recent work has shown that by introducing a notion of cover for incompati-
ble package sets, it is actually possible to identify all such new errors in a very
limited amount of time [21].

5 Related Work

Upgrade Simulation. Incompleteness and poor expressivity are just some of the
issues that might be encountered while upgrading FOSS-based systems [18,24].
Several other issues can be encountered during actual package deployment, due
to the unpredictability of configuration scripts execution on target machines.
The formal treatment of those scripts is particularly challenging due to the fact
that they are usually implemented in languages such as shell script and Perl,
which are Turing-complete languages that also heavily rely on dynamic features
such as shell expansions.

Model-driven techniques [12] have been applied to first capture the syntax
and semantics of common high-level actions performed by configuration scripts
in popular FOSS distributions, and then to instrument package deployment with
simulators able to predict a significant range of upgrade failures before the actual
target machine is affected [22,48,14,28].

236 R.D. Cosmo, R. Treinen, and S. Zacchiroli

Packages and Software Components. Packages share important features with
software components [50,38], but exhibit also some important differences. On
the one hand, packages, like components, are reusable software units which can
be combined freely by a system administrator; they are also independent units
that follow their own development time-line and versioning scheme.

On the other hand, packages, unlike what happens in many software com-
ponent models, cannot be composed to build a larger component, and it is not
possible to install more than one copy of a given package on a given system. Fur-
thermore, installation of packages, and execution of software contained in pack-
ages, acts on shared resources that are provided by the operating system, like
creating files on the file system, or interacting through the systems input/out-
put devices. As a consequence, packages may be in conflict with each other, a
phenomenon which is not (yet?) commonplace for software components.

Software components come with an interface describing their required and
provided services. In the case of packages, requirements and provided features
are given by symbolic names (either names of packages, or names of abstract
features) whose semantics is defined separately from the package model. For
instance, a policy document may describe how an executable must behave in
order to provide a feature mail-transport-agent, or an external table will tell
us which symbols have been provided in version 1.2.3 of library libfoo.

Packages and Software Product Lines. Issues similar to dependency solving are
faced by semi-automatic configurators for software product lines [16]: they too
have dependencies and conflicts, this time among features, and need to find a
subset of them that work well together. Independently from packaging work,
the application of SAT solving to feature selection has been investigated, among
others, in [34].

The analogy between software product lines (SPL) and package repositories
have been recently observed in other works, that explicitly show how to map
one formalism into the other and vice-versa. The goal is to allow sharing of tools
and techniques between the two worlds. The mapping from software product
lines, based on the feature diagram formalism, to package repositories has been
established in [26]; whereas a converse mapping, from Debian packages to SPL,
has been more recently proposed in [32].

Packages and the Cloud. The idea of relying on automated tools to configure a
software system based on (i) a repository of components and (ii) a user request to
satisfy, can be applied in contexts larger than a single machine. The idea can in
fact be extended to networks of heterogeneous machines, where each machine is
associated to a specific package repository, and to higher-level services that span
multiple machines and might induce inter-dependencies (and conflicts) among
them.

This approach has been recently explored in the context of the Aeolus project
[27], which directly tries to apply constraint solving to network and cloud settings
and, with a slightly narrower but more easily automatable scope, also in the
context of the Engage system [31].

Formal Aspects of Free and Open Source Software Components 237

References

1. Abate, P., Boender, J., Di Cosmo, R., Zacchiroli, S.: Strong dependencies between
software components. In: ESEM 2009: 3rd International Symposium on Empirical
Software Engineering and Measurement, pp. 89–99 (2009)

2. Abate, P., Di Cosmo, R.: Predicting upgrade failures using dependency analysis.
In: Abiteboul, S., Böhm, K., Koch, C., Tan, K.L. (eds.) Workshops Proceedings
of the 27th International Conference on Data Engineering, ICDE 2011, Hannover,
Germany, April 11-16, pp. 145–150. IEEE (2011)

3. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Mpm: a modular package
manager. In: CBSE 2011: 14th International ACM SIGSOFT Symposium on Com-
ponent Based Software Engineering, pp. 179–188. ACM (2011)

4. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Dependency solving: a sepa-
rate concern in component evolution management. Journal of Systems and Soft-
ware 85(10), 2228–2240 (2012)

5. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Learning from the future
of component repositories. In: CBSE 2012: 15th International ACM SIGSOFT
Symposium on Component Based Software Engineering, pp. 51–60. ACM (2012)

6. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Learning from the future of
component repositories. Science of Computer Programming (2012) (to appear)

7. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: A modular package manager
architecture. Information and Software Technology 55(2), 459–474 (2013)

8. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex net-
works. Nature 406(6794), 378–382 (2000)

9. Argelich, J., Le Berre, D., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving Linux
upgradeability problems using boolean optimization. In: LoCoCo: Logics for Com-
ponent Configuration. EPTCS, vol. 29, pp. 11–22 (2010)

10. Artho, C.V., Di Cosmo, R., Suzaki, K., Zacchiroli, S.: Sources of inter-package con-
flicts in debian. In: LoCoCo 2011 International Workshop on Logics for Component
Configuration (2011)

11. Artho, C.V., Suzaki, K., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Why do soft-
ware packages conflict? In: MSR 2012: 9th IEEE Working Conference on Mining
Software Repositories, pp. 141–150. IEEE (2012)

12. Bézivin, J.: On the unification power of models. SOSYM 4(2), 171–188 (2005)
13. Boender, J.: Efficient computation of dominance in component systems (Short pa-

per). In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041,
pp. 399–406. Springer, Heidelberg (2011)

14. Cicchetti, A., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: A model
driven approach to upgrade package-based software systems. In: Maciaszek, L.A.,
González-Pérez, C., Jablonski, S. (eds.) ENASE 2008/2009. CCIS, vol. 69, pp.
262–276. Springer, Heidelberg (2010)

15. Clayberg, E., Rubel, D.: Eclipse Plug-ins, 3rd edn. Addison-Wesley Professional
(December 2008)

16. Clements, P., Northrop, L.: Software product lines. Addison-Wesley (2002)
17. Cosmo, R.D., Boender, J.: Using strong conflicts to detect quality issues in

component-based complex systems. In: Padmanabhuni, S., Aggarwal, S.K., Bel-
lur, U. (eds.) ISEC, pp. 163–172. ACM (2010)

18. Crameri, O., Knezevic, N., Kostic, D., Bianchini, R., Zwaenepoel, W.: Staged de-
ployment in mirage, an integrated software upgrade testing and distribution sys-
tem. SIGOPS Oper. Syst. Rev. 41(6), 221–236 (2007)

238 R.D. Cosmo, R. Treinen, and S. Zacchiroli

19. Davis, M., Putnam, H.: A computing procedure for quantification theory.
J. ACM 7(3), 201–215 (1960)

20. Des Rivières, J., Wiegand, J.: Eclipse: a platform for integrating development tools.
IBM Systems 43(2), 371–383 (2004)

21. Vouillon, J., Di Cosmo, R.: Broken sets in software repository evolution. In: ICSE
2013. ACM (to appear, 2013)

22. Di Cosmo, R., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Sup-
porting software evolution in component-based FOSS systems. Science of Computer
Programming 76(12), 1144–1160 (2011)

23. Di Cosmo, R., Lhomme, O., Michel, C.: Aligning component upgrades. In:
Drescher, C., Lynce, I., Treinen, R. (eds.) LoCoCo 2011 International Workshop
on Logics for Component Configuration, vol. 65, pp. 1–11 (2011)

24. Di Cosmo, R., Trezentos, P., Zacchiroli, S.: Package upgrades in FOSS distribu-
tions: Details and challenges. In: HotSWUp 2008: Hot Topics in Software Upgrades.
ACM (2008)

25. Di Cosmo, R., Vouillon, J.: On software component co-installability. In: Gyimóthy,
T., Zeller, A. (eds.) SIGSOFT FSE, pp. 256–266. ACM (2011)

26. Di Cosmo, R., Zacchiroli, S.: Feature diagrams as package dependencies. In: Bosch,
J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 476–480. Springer, Heidelberg
(2010)

27. Di Cosmo, R., Zacchiroli, S., Zavattaro, G.: Towards a formal component model
for the cloud. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 156–171. Springer, Heidelberg (2012)

28. Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Towards maintainer
script modernization in FOSS distributions. In: IWOCE 2009: International Work-
shop on Open Component Ecosystem, pp. 11–20. ACM (2009)

29. Dolstra, E., Löh, A.: NixOS: A purely functional linux distribution. In: ICFP (2008)
(to appear)

30. EDOS Project: Report on formal management of software dependencies. EDOS
Project Deliverables D2.1 and D2.2 (March 2006)

31. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management
system. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp. 263–274. ACM (2012)

32. Galindo, J., Benavides, D., Segura, S.: Debian packages repositories as software
product line models. towards automated analysis. In: Dhungana, D., Rabiser, R.,
Seyff, N., Botterweck, G. (eds.) ACoTA. CEUR Workshop Proceedings, vol. 688,
pp. 29–34. CEUR-WS.org (2010)

33. Gonzalez-Barahona, J., Robles, G., Michlmayr, M., Amor, J., German, D.: Macro-
level software evolution: a case study of a large software compilation. Empirical
Software Engineering 14(3), 262–285 (2009)

34. Janota, M.: Do SAT solvers make good configurators? In: SPLC: Software Product
Lines Conference, vol. 2, pp. 191–195 (2008)

35. Järvisalo, M., Berre, D.L., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Magazine 33(1) (2012)

36. Jenson, G., Dietrich, J., Guesgen, H.W.: An empirical study of the component
dependency resolution search space. In: Grunske, L., Reussner, R., Plasil, F. (eds.)
CBSE 2010. LNCS, vol. 6092, pp. 182–199. Springer, Heidelberg (2010)

37. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source
software. CoRR cs.SE/0411096 (2004)

38. Lau, K.K., Wang, Z.: Software component models. IEEE Trans. Software
Eng. 33(10), 709–724 (2007)

Formal Aspects of Free and Open Source Software Components 239

39. Le Berre, D., Parrain, A.: On SAT technologies for dependency management and
beyond. In: SPLC 2008: Software Product Lines Conference, vol. 2, pp. 197–200
(2008)

40. Le Berre, D., Rapicault, P.: Dependency management for the Eclipse ecosys-
tem. In: IWOCE 2009: International Workshop on Open Component Ecosystems,
pp. 21–30. ACM (2009)

41. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

42. Maillart, T., Sornette, D., Spaeth, S., von Krogh, G.: Empirical tests of zipf’s law
mechanism in open source linux distribution. Phys. Rev. Lett. 101, 218701 (2008),
http://link.aps.org/doi/10.1103/PhysRevLett.101.218701

43. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the complexity of large free and open source package-based
software distributions. In: ASE 2006: Automated Software Engineering, pp. 199–
208. IEEE (2006)

44. Michel, C., Rueher, M.: Handling software upgradeability problems with MILP
solvers. In: LoCoCo 2010: Logics for Component Configuration. EPTCS, vol. 29,
pp. 1–10 (2010)

45. OSGi Alliance: OSGi Service Platform, Release 3. IOS Press, Inc. (2003)
46. Quinton, C., Rouvoy, R., Duchien, L.: Leveraging feature models to configure vir-

tual appliances. In: Proceedings of the 2nd International Workshop on Cloud Com-
puting Platforms, CloudCP 2012, pp. 2:1–2:6. ACM, New York (2012),
http://doi.acm.org/10.1145/2168697.2168699

47. Raymond, E.S.: The cathedral and the bazaar. O’Reilly (2001)
48. Ruscio, D.D., Pelliccione, P., Pierantonio, A.: EVOSS: A tool for managing the

evolution of free and open source software systems. In: Glinz, M., Murphy, G.C.,
Pezzè, M. (eds.) ICSE, pp. 1415–1418. IEEE (2012)

49. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation and Applica-
tion. Wiley (1986)

50. Szyperski, C.: Component Software. Beyond Object-Oriented Programming.
Addison-Wesley (1998)

51. Treinen, R., Zacchiroli, S.: Solving package dependencies: from EDOS to Mancoosi
(2008)

52. Treinen, R., Zacchiroli, S.: Common upgradeability description format (CUDF)
2.0. Technical Report 3, The Mancoosi Project (November 2009),
http://www.mancoosi.org/reports/tr3.pdf

53. Treinen, R., Zacchiroli, S.: Expressing advanced user preferences in component in-
stallation. In: IWOCE 2009: International Workshop on Open Component Ecosys-
tems, pp. 31–40. ACM (2009)

54. Trezentos, P., Lynce, I., Oliveira, A.: Apt-pbo: Solving the software dependency
problem using pseudo-boolean optimization. In: ASE 2010: Automated Software
Engineering, pp. 427–436. ACM (2010)

55. Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: OPIUM: Optimal package instal-
l/uninstall manager. In: ICSE 2007: International Conference on Software Engi-
neering, pp. 178–188. IEEE (2007)

http://link.aps.org/doi/10.1103/PhysRevLett.101.218701
http://doi.acm.org/10.1145/2168697.2168699
http://www.mancoosi.org/reports/tr3.pdf

Author Index

Albert, Elvira 119
Alonso-Blas, Diego Esteban 119
Arenas, Puri 119

Bennaceur, Amel 168

Clarke, Dave 38
Correas, Jesús 119

Di Cosmo, Roberto 216

Flores-Montoya, Antonio 119

Gadyatskaya, Olga 197
Genaim, Samir 119
Gómez-Zamalloa, Miguel 119

Hähnle, Reiner 1

Issarny, Valérie 168

Jacobs, Bart 38
Johnsen, Einar Broch 145

Kurnia, Ilham W. 83

Massacci, Fabio 197
Masud, Abu Naser 119

Poetzsch-Heffter, Arnd 83
Puebla, German 119

Rojas, José Miguel 119
Román-Dı́ez, Guillermo 119

Treinen, Ralf 216

van Dooren, Marko 38

Zacchiroli, Stefano 216
Zanardini, Damiano 119

	Preface
	Organization
	Table of Contents
	The Abstract Behavioral Specification Language: A Tutorial Introduction
	1 Introduction
	1.1 Structure of This Chapter
	1.2 Further Reading
	1.3 Installation of the ABS Eclipse Plugin

	2 Design Principles of ABS
	3 Architecture of ABS
	4 The Functional Layer
	4.1 Algebraic Data Types
	4.2 Functions
	4.3 Modules
	4.4 Abstract Data Types

	5 The OO-Imperative Layer
	5.1 The Object Model
	5.2 The Imperative Layer

	6 The Concurrency Layers
	6.1 Background
	6.2 Component Object Groups
	6.3 Scheduling and Synchronization
	6.4 Object and COG Creation
	6.5 Formal Semantics of Concurrent ABS

	7 Extensions
	7.1 Pluggable Type System
	7.2 Foreign Language Interface

	8 Product Line Modeling with ABS
	8.1 Product Line Engineering
	8.2 Feature Description
	8.3 Delta Modeling
	8.4 Product Line Configuration
	8.5 Product Selection

	9 Concluding Remarks
	References

	Subobject-Oriented Programming
	1 Introduction
	2 Evaluation of Current Reuse Mechanisms
	2.1 Aspect-Oriented Programming
	2.2 Mixins
	2.3 Traits
	2.4 Non-conformant Inheritance in Eiffel
	2.5 Manual Delegation
	2.6 Scala Objects
	2.7 Summary

	3 Subobject-Oriented Programming
	3.1 Subobject Basics
	3.2 Exporting Subobject Members
	3.3 Customizing Subobjects
	3.4 Initialization of Subobjects

	4 Illustrations of Subobject-Oriented Programming
	4.1 Subobjects for Associations
	4.2 Subobjects for Graphs

	5 Implementations
	6 Semantics of Subobjects
	6.1 Inheritance
	6.2 Class/Subobject Contents
	6.3 Path Resolution

	7 Related Work
	8 Conclusion
	References

	Verification of Open Concurrent Object Systems
	1 Introduction
	2 Setting and Running Example
	2.1 ActJ
	2.2 Running Example
	2.3 Discussion

	3 Core Operational Semantics
	3.1 Notation
	3.2 Classes
	3.3 Operational Rules
	3.4 Translation to Traces

	4 Systems and Components
	4.1 Closed Systems
	4.2 Open Systems and Components

	5 Specification and Verification
	5.1 Specification
	5.2 Verification
	5.3 Discussion and RelatedWork

	6 Conclusion
	References

	Automatic Inference of Bounds on Resource Consumption�
	1 Introduction
	1.1 Organization of the Tutorial

	2 From Programs to Cost Relations
	3 From Cost Relations to Closed-Form Bounds
	3.1 Upper Bounds
	3.2 Lower Bounds
	3.3 Amortised Cost Analysis

	4 Concurrency and Distribution
	4.1 The Basic Cost Analysis Framework for Concurrency
	4.2 MHP

	5 Advanced Topics in Resource Analysis
	5.1 Memory Consumption Analysis
	5.2 Inference of Task-Level in Concurrent Languages
	5.3 Heap-Sensitive Analysis
	5.4 Incremental Resource Analysis

	6 Conclusions and Future Work
	References

	Composing Distributed Systems: Overcoming the Interoperability Challenge
	1 Introduction
	2 GMES: A System of Systems Case Study
	3 The Interoperability Problem Space: A Software Architecture Perspective
	3.1 Formal Foundations for Software Architectures
	3.2 Reasoning about Architectural Mismatches
	3.3 Mediators Adapting Connectors for Interoperability
	3.4 Dynamic Software Architecture and Mediation

	4 The Interoperability Solution Space: A Multifaceted Review
	4.1 The Middleware Perspective: Implementing Protocol Mediators
	4.2 The Protocol Perspective: Synthesising Protocol Mediators
	4.3 The Semantic Perspective: Emergent Protocol Mediators

	5 Emergent Middleware: A Multifaceted Approach to Interoperability
	5.1 Emergent Middleware Enablers
	5.2 Emergent Middleware in GMES

	6 Conclusion
	References

	Controlling Application Interactions on the Novel Smart Cards with Security-by-Contract
	1 Introduction
	2 Multi-application Java Card Use Cases
	2.1 NFC-Enabled Phones
	2.2 Communication Hubs within the Smart Grids

	3 The Security-by-Contract Components and Workflows
	4 A Primer on the Java Card Technology
	4.1 Application Interactions

	5 Design and Implementation Details
	5.1 Contracts
	5.2 The SC Components
	5.3 Integration with the Java Card Platform

	6 Application to the Use Case Scenarios
	6.1 The NFC-Enabled Phone and the New Applet Installation
	6.2 The Telecommunications Hub and the Application Policy

	7 Related Work
	8 Conclusions and the Future Work
	References

	Formal Aspects of Free and Open Source Software Components
	1 Introduction
	2 Formal Package Models
	2.1 Concrete Package Model
	2.2 Abstract Package Model
	2.3 On the Complexity of Installability

	3 Upgrade Optimization
	3.1 The Common Upgradeability Description Format
	3.2 User Preferences
	3.3 The MISC Competition

	4 Quality Assurance of Component Repositories
	4.1 Identifying Broken Packages
	4.2 Analyzing the Dependency Structure of a Repository
	4.3 Analyzing the Conflict Structure of a Repository
	4.4 Predicting Evolutions

	5 Related Work
	References

	Author Index

