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Abstract. In this paper, we describe a novel approach to create 3D
miniatures of persons using a Kinect sensor and a 3D color printer. To
achieve this, we acquire color and depth images while the person is ro-
tating on a swivel chair. We represent the model with a signed distance
function which is updated and visualized as the images are captured for
immediate feedback. Our approach automatically fills small holes that
stem from self-occlusions. To optimize the model for 3D printing, we ex-
tract a watertight but hollow shell to minimize the production costs. In
extensive experiments, we evaluate the quality of the obtained models as
a function of the rotation speed, the non-rigid deformations of a person
during recording, the camera pose, and the resulting self-occlusions. Fi-
nally, we present a large number of reconstructions and fabricated figures
to demonstrate the validity of our approach.

1 Introduction

The advancements in 3D printing technology have led to a significant break-
through in rapid prototyping in recent years. Modern 3D printers are able to
print colored 3D models at resolutions comparable to 2D paper printers. On
the one hand, the creation of a detailed, printable 3D model is a cumbersome
process and represents even for a skilled graphical designer a significant amount
of effort. On the other hand, the advent of consumer depth sensors such as the
Microsoft Kinect has led to novel approaches to 3D camera tracking and recon-
struction [5,10,19]. Probably the most prominent approach is the KinectFusion
algorithm [10] that demonstrated that dense 3D reconstructions can be acquired
in real-time on a GPU.

However, the resulting models are not well suited for 3D printing as they are
in general incomplete when acquired with a hand-held sensor, not watertight,
unsegmented, and in many other respects not optimized for cost-effective fabrica-
tion. Therefore, the combination of both technologies into a general-purpose 3D
copy machine is still an open research problem. It is clear that this application
bears an enormous economical potential for the future.

In our endeavor towards this goal, we investigate in this paper how an accu-
rate 3D model of a person can be acquired using an off-the-shelf Kinect camera
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Fig. 1. We acquire the 3D model of a person sitting on a swivel chair. The acquisition
process runs in real-time and displays a live view of the reconstruction model on the
screen. Subsequently, the model can be printed in 3D.

and how the resulting model can be reproduced cost-effectively using a 3D color
printer. Thus, our current solution corresponds to the 3D version of a classi-
cal photo booth. Our approach is based on the KinectFusion algorithm [10] for
dense 3D reconstruction that we recently ameliorated for better speed and accu-
racy [1]. In this paper, we provide a detailed analysis of our approach, including
a study of the influence of various parameters on the quality of the resulting
models. Furthermore, we describe several extensions that facilitate the creation
of a cost-effective, printable 3D model. Finally, we demonstrate the validity of
our approach with a large number of fabricated figures.

2 Related Work

To acquire accurate 3D models of human bodies, various sensors and sensor
setups have been proposed in the past [18,17]. Early 3D body scanners using
multiple cameras in combination with line lasers or moiré patterns started to
appear in the late 90s [7,6,20], and have many applications in medical analysis
and apparel design. Camera domes consisting of up to hundreds of calibrated
cameras can be used for accurate 3D reconstruction [14], but are in general not
real-time capable, costly to acquire, and difficult to maintain.

Therefore, we focus in this paper on a setup that only relies on a single, hand-
held sensor with which the user scans an otherwise static object. A pioneering
approach was described in [13], where depth maps were computed from a com-
bination of a structured light projector and a camera and fused into a single
point cloud using ICP. More recent examples include [11,4,15] using monocu-
lar and stereo cameras, respectively. The advent of RGB-D cameras such as
the Microsoft Kinect sensor further stimulated the development of approaches
for live 3D reconstruction. While the first systems generated sparse represen-
tations (i.e., point clouds) of the environment [5,3], the seminal KinectFusion
approach [10] used a truly dense representation of the environment based on
signed distance functions [2]. Since then, several extensions of the original algo-
rithm have appeared such as rolling reconstruction volumes [12,19] and the use
of oct-trees [21]. Furthermore, the first commercial scanning solutions such as
ReconstructMe, KScan, and Kinect@Home became available.
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In contrast to all existing work, we propose in this paper a robust, flexible, and
easy-to-use solution to acquire the 3D model of a person and a method to gener-
ate closed, watertight models suitable for 3D printing. Our work is based on our
recent approach for dense reconstruction [1] that we extend here by the follow-
ing components: We propose a novel weighting function to fill holes, a method
for turn detection, model carving, and the automatic generation of a stand for
the figure. We evaluate our approach on an extensive dataset partially acquired
in a motion capture studio, and provide several examples of reconstructed and
fabricated models.

3 CopyMe3D: Fast Unsupervised 3D Modeling of People

In this section, we explain how we acquire the 3D model of a person and how
we prepare the model for 3D printing. Our experimental setup is as follows
(see Fig. 1): The person to be scanned is sitting on a swivel chair in front of
the Microsoft Kinect sensor. After the scanning software has been started, the
person is rotated (by a second person) in front of the sensor. A live view of
the colored 3D model is shown during scanning on the monitor to provide live
feedback to the user. Scanning automatically terminates when a full turn is
detected. Subsequently, a printable 3D model is generated and saved to disk.
Typically, scanning takes around 10 seconds (300 frames) while the full process
typically consumes less than one minute on a normal PC. In the following, we
describe each of the processing steps in more detail.

3.1 Live Dense 3D Reconstruction

In this section, we briefly explain how we track the camera pose and generate the
dense 3D model. We kept this section intentionally short and refer the interested
reader to [10,1] for more details on signed distance functions, the KinectFusion
algorithm, and our recent extensions.

Preliminaries. In each time step, we obtain a color image and a depth image
from the Kinect sensor, i.e.,

IRGB : R2 → R
3 and IZ : R2 → R. (1)

We assume that the depth image is already registered on to the color image, so
that pixels between both images correspond. Furthermore, we require a signed
distance function (SDF), a weight function, and a color function that are defined
for each 3D point p ∈ R

3 within the reconstruction volume:

D : R3 → R,W : R3 → R, and C : R3 → R
3. (2)

The SDF represents the distance of each point to the closest surface, i.e., D(p) =
0 holds for all points p lying on surface,D(p) < 0 for free space, andD(p) > 0 for
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occupied space. In the following, we treat IRGB , IZ , D, W , and C as continuous
functions, but we represent them internally as discrete pixel/voxel grids (of size
640×480 and 256×256×256, respectively). When access to a non-integer value
is needed, we apply bi-/tri-linear interpolation between the neighboring values.
We assume the pinhole camera model, which defines the relationship between a
3D point p = (x, y, z)� ∈ R

3 and a 2D pixel x = (i, j)� ∈ R
2 as follows,

(i, j)� = π(x, y, z) =

(
fxx

z
+ cx,

fyy

z
+ cy

)�
. (3)

Here, fx, fy, cx, cy refer to the focal length and the optical center of the camera,
respectively. In reverse, given the depth z = IZ(i, j) of a pixel (i, j), we can
reconstruct the corresponding 3D point using

ρ(i, j, z) =

(
(i− cx)z

fx
,
(j − cy)z

fy
, z

)�
. (4)

In each time step, we first estimate the current camera pose ξ given the current
depth image IZ and SDF D, and subsequently integrate the new data into the
voxel grids. We represent the current camera pose using twist coordinates, i.e.,

ξ = (ω1, ω2, ω3, v1, v2, v3) ∈ R
6. (5)

These Lie algebra coordinates form a minimal representation and are well suited
for numerical optimization. Twist coordinates can be easily converted to a ro-
tation matrix R ∈ R

3×3 and translation vector t ∈ R
3 (and vice versa) when

needed [9].
Finally, we assume that the noise of the Kinect sensor can be modeled with a

Gaussian error function, i.e.,

p(zobs | ztrue) ∝ exp
(−(ztrue − zobs)

2/σ2
)
. (6)

In principle, the noise of the Kinect (and any disparity-based distance sensor) is
quadratically proportional to the distance, i.e., σ ∝ z2true. However, as our object
of interest is located at a fixed distance to the sensor (typically 1.5m) and its
depth variations are relatively small, we can assume σ to be constant over all
pixels.

Camera Pose Estimation. Given a new depth image IZ and our current
estimate of the SDF D, our goal is to find the camera pose ξ that best aligns the
depth image with the SDF, i.e., each pixel of the depth image should (ideally)
map onto the zero crossing in the signed distance function. Due to noise and other
inaccuracies, the depth image will of course never perfectly match the SDF (nor
will our estimate of the SDF be perfect). Therefore, we seek the camera pose
that maximizes the observation likelihood of all pixels in the depth image, i.e.,

p(IZ | ξ, D) ∝
∏
i,j

exp(−D(Rxij + t)2/σ2), (7)
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KinFu Ours Ratio

fr1/teddy 0.154m 0.089m 1.73
fr1/desk 0.057m 0.038m 1.50
fr1/desk2 0.420m 0.072m 5.83
fr1/360 0.913m 0.357m 2.56
fr1/room 0.313m 0.187m 1.67
fr1/plant 0.598m 0.050m 11.96
fr3/household 0.064m 0.039m 1.64

(a)

−2 −1 0 1 2

−1

0

1

distance from surface dobs

d w wKinFu

(b)

Fig. 2. (a) Our approach clearly outperforms KinFu on benchmark datasets in terms of
the absolute trajectory error (RMSE). (b) We use a truncated signed distance function
and a modified weighting function.

where R = R(ξ) is a short hand for the current camera rotation, t = t(ξ) for
the camera translation, and xij = ρ(i, j, IZ(i, j)) for the reconstructed 3D point
to keep our notation uncluttered. Note that a circular motion constraint is not
imposed in the estimation process. By taking the negative logarithm, we obtain

L(ξ) ∝
∑
i,j

D(Rxij + t)2. (8)

To find its minimum, we set the derivative to zero and apply the Gauss-Newton
algorithm, i.e., we iteratively linearize D(Rxij + t) with respect to the camera
pose ξ at our current pose estimate and solve the linearized system.

Note that KinectFusion pursues a different (and less) effective approach to
camera tracking, as it first extracts a second depth image from the SDF and
then aligns the current depth image to the extracted depth image using the iter-
atively closest point algorithm (ICP). As this requires an intermediate data as-
sociation step between both point clouds, this is computationally more involved.
Furthermore, the projection of the SDF onto a depth image looses important
information that cannot be used in the iterations of ICP. To evaluate the perfor-
mance of both approaches, we recently compared [1] our approach with the free
KinFu implementation in PCL 1 on publicly available datasets [16]. The results
are presented in Fig. 2a and clearly show that our approach is significantly more
accurate.

Updating the SDF. After the current camera pose has been estimated, we
update the SDF D, the weights W , and the texture C similar to [2,1]. We
transform the global 3D coordinates p = (x, y, z)� of the voxel cell into the
local frame of the current camera p′ = (x′, y′, z′)� = R�(p − t). Then we
compare the depth of this voxel cell z′ with the observed depth IZ(π(x

′, y′, z′)),

dobs = z′ − IZ(π(x
′, y′, z′)). (9)

1 http://svn.pointclouds.org/pcl/trunk/

http://svn.pointclouds.org/pcl/trunk/
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As dobs is not the true distance but an approximation, dobs gets increasingly
inaccurate the further we are away from the surface. Furthermore, the projective
distance is inaccurate when the viewing angle is far from 90◦ onto the surface
as well as in the vicinity of object boundaries and discontinuities. Therefore, we
follow the approach of [2] by truncating the distance function at a value of δ and
defining a weighting function to express our confidence in this approximation:

d(dobs) =

⎧⎨
⎩
−δ if dobs < − δ
dobs if |dobs| ≤ δ
δ if dobs > δ

, (10)

w(dobs) =

{
1 if dobs ≤ 0
max(wmin, exp(−(dobs/σ)2)) if dobs > 0

. (11)

Note that KinectFusion uses a linear weighting function wKinFu that yields a
weight of zero for d > δ. In contrast, our weighting function w also decreases
quickly, but assigns an update weight of at least wmin. In this way, small holes
that stem from occlusions are automatically filled. Yet, the small weight ensures
that the values can be quickly overwritten when better observations becomes
available. Experimentally, we determined δ = 0.02m and wmin = 0.01 to work
well for our application. A visualization of these functions is given in Fig. 2b.
We update each voxel cell with (global) 3D coordinates (x, y, z)� according to

D ← (WD + wd)/(W + w), (12)

C ← (WC + wc)/(W + w), (13)

W ←W + w, (14)

where c = IRGB(π(x
′, y′, z′)) is the color from the RGB image.

Both steps (the estimation of the camera pose and updating the voxel grids)
can be easily parallelized using CUDA. With our current implementation, the
computation time per frame is approximately 27ms on a Nvidia GeForce GTX
560 with 384 cores, and runs thus easily in real-time with 30fps.
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Fig. 3. (a) Analysis of our turn detection, 10 turns in a row. (b) Transfer function for
the SDF to hollow out the model.
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Live View and Turn Detection. With the algorithm described above, we
obtain an estimate of the signed distance and color for every cell of the voxel
grid. To display this model to the user, we copy the data every two seconds
from the GPU to the CPU (which consumes 60ms) and run a threaded CPU
implementation of the marching cubes algorithm [8]. The mesh generation takes
around between 1000 and 1500ms on a single CPU core. The resulting triangle
mesh typically consists of approximately 200.000–500.000 vertices (and faces),
that we display together with the estimated camera trajectory to the user using
OpenGL (see Fig. 1).

We implemented a simple strategy to detect when a full 360◦ turn is complete.
To achieve this, we summarize the angular motion of the camera, i.e., we compute
the motion between two consecutive frames and determine the rotation angle
according to [9], i.e.,

αt = cos−1(trace(R�
t−1Rt)− 1). (15)

We terminate data acquisition when
∑

t αt > 2π. Figure 3a compares the esti-
mated rotation angle in comparison to the (absolute) position of the chair. We
use this principle to automatically stop data acquisition after the person has
performed a full turn.

3.2 Model Post-processing

While live feedback is important for the user (e.g., to find the right position for
the chair), we found that further post-processing is required for 3D printing.

The first problem is that the triangle mesh is unclosed where objects stick
out of the reconstruction volume. This is in particular the case at the bottom
of the body, for which no triangles are generated. To remedy this problem, we
augment the SDF by an additional layer from all sides with D = −δ, which
ensures that the triangle mesh is guaranteed to be closed and watertight and
thus 3D printable (see Fig. 4a for a profile).

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Illustration of various parameters of the model acquisition process. (a) Pro-
file of the solid model, (b) hollow model (s=0.01m), (c) automatically added solid
stand, (d) hollow version. (e–g) Self-occlusions for a camera at eye height based on the
accumulated weights W .
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Depending on the body posture, the center of mass will not be above the
footprint of the object, and thus the fabricated figure would fall over. To prevent
this, we automatically add a small cylindrical stand to the model as shown
in Fig. 4c+d. To this end, we first determine the center of mass xm, ym (by
summing the positions of all voxel cells with D > 0) and the radius r of the
model. Subsequently, we add a cylindrical disk below the model by updating
each cell (x, y, z) of the SDF with z < zbase according to

D = r −
√
(x− xm)2 + (y − ym)2. (16)

Finally, we found that the printing costs prevailingly depend on the amount
of the printed material, i.e., the printing costs can be reduced by a factor of five
when the model is hollow. To achieve this, we transform the values in the SDF
according to

D′ =

{
s−D if D > s/2

D otherwise
, (17)

so that voxels that are located deeper than s within the object will be mapped to
the outside afterwards. This transfer function is visualized in Fig. 3b. However,
our estimate of the SDF is only a coarse approximation, so that the above
transformation leads to strong artifacts and unconnected components. Therefore,
we re-compute the SDF with the correct signed distance values by finding the
nearest neighbor from the pre-computed triangulated mesh. To speed up this
computation, we insert all vertices into an oct-tree structure and only update
voxel cells within the object (i.e., cells with D > 0). Example profiles of the
resulting models are given in Fig. 4b+d.

Fig. 5. More examples of 3D models acquired with our approach and the resulting
printed figures

4 Results

Figures 1 and 5 show the acquired 3D models and printed figures of several
persons. To obtain a high quality model, we observed that a raw beginner needs
around two to three trials to reduce body motions and articulations during model
acquisition. For example, a small head motion during recording can already lead
to significant inaccuracies in the reconstructed model, such as a double nose.
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(a)

condition rot. time [s] deformation [mm]

external rotation 7.0 (± 0.8) 22.3 (± 21.7)
external, fast 2.7 (± 0.3) 15.8 (± 4.8)
self rotation 6.2 (± 0.4) 46.2 (± 15.3)
self, fast 2.6 (± 0.8) 60.8 (± 28.2)
mannequin 7.8 (± 1.7) 8.9 (± 4.8)
mannequin, fast 4.8 (± 1.7) 11.4 (± 1.3)

(b)

Fig. 6. Evaluation of non-rigidity due to body motions during model acquisition in a
motion capture studio (see text). (a) Experimental setup. (b) Results.

To better understand the source andmagnitude of bodymotions during record-
ing, we tracked the positions of 15 distinct visual markers in a motion capture stu-
dio (see Fig. 6a).We tested four different conditions, i.e., external vs. self-propelled
rotation, slow vs. fast rotation speed, and real persons vs. a shop-window man-
nequin. We averaged the results over five different persons with ten trials each.
The results are given in Fig. 6b. We obtained the best results (least body motions)
when the swivel chair was rotated quickly (3s) by a second person.

Furthermore, we analyzed the amount and locations of self-occlusions as a
function of the camera configuration. We tried three different camera heights
(at chest height, at eye height, above head) and inspected the resulting models.
While all camera positions inevitably lead to some self-occlusions, we found that
positioning the camera at eye height leads to the visually most pleasing result
(see Fig. 4e–h for a visualization of the resulting self-occlusions).

Lastly, we evaluated how far we can lower the frame rate of the Kinect sensor
before our reconstruction algorithm fails. Here, we found that our algorithm
typically diverges for frame rates below 6 Hz for the slow and 15 Hz for the fast
rotation speed. It should be noted that our algorithm never failed over ten trials
on all subjects when operated at the full frame rate (30 Hz), neither for the
slow, nor for the fast rotation speed. Therefore, we conclude that our approach
is highly robust and still bears significant potential for further reduction of the
computational requirements.

5 Conclusion

In this paper, we presented a novel approach to scan a person in 3D and repro-
duce the model using a color 3D printer. Our contributions on the scanning side
include an efficient solution to camera tracking on SDFs, an improved weighting
function that automatically closes holes, and a method for 3D texture estima-
tion. To prepare the model for 3D printing, we described a technique to generate
a closed, watertight model, to automatically add a stand, and to make it hollow.
We evaluated the robustness of our algorithm with respect to the frame rate and
rotation speed, and the severity of self-occlusions as a function of the camera
pose. We presented a large number of 3D models from different persons and
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the corresponding printed figures. With this work, we hope to contribute to the
development of a general, low-cost 3D copy machine.

References

1. Bylow, E., Sturm, J., Kerl, C., Kahl, F., Cremers, D.: Real-time camera tracking
and 3D reconstruction using signed distance functions. In: RSS (2013)

2. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: SIGGRAPH (1996)

3. Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Real-time 3D visual
SLAM with a hand-held camera. In: RGB-D Workshop at ERF (2011)

4. Fuhrmann, S., Goesele, M.: Fusion of depth maps with multiple scales. ACM Trans.
Graph. 30(6), 148 (2011)

5. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using depth
cameras for dense 3D modeling of indoor environments. In: ISER (2010)

6. Horiguchi, C.: BL (body line) scanner: The development of a new 3D measurement
and reconstruction system. Photogrammetry and Remote Sensing 32 (1998)

7. Jones, R., Brooke-Wavell, K., West, G.: Format for human body modelling from
3D body scanning. International Journal on Clothing Science Technology (1995)

8. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface con-
struction algorithm. Computer Graphics 21(4), 163–169 (1987)

9. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3D Vision: From Images
to Geometric Models. Springer (2003)

10. Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A., Kohli,
P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time dense surface
mapping and tracking. In: ISMAR (2011)

11. Newcombe, R., Lovegrove, S., Davison, A.: DTAM: Dense tracking and mapping
in real-time. In: ICCV (2011)

12. Roth, H., Vona, M.: Moving volume KinectFusion. In: BMVC (2012)
13. Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. In:

SIGGRAPH (2002)
14. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and

evaluation of multi-view stereo reconstruction algorithms. In: CVPR (2006)
15. Strobl, K., Mair, E., Bodenmüller, T., Kielhöfer, S., Sepp, W., Suppa, M.,
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