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Abstract. Real-world images often admit many different segmentations
that have nearly the same quality according to the underlying energy
function. The diversity of these solutions may be a powerful uncertainty
indicator. We provide the crucial prerequisite in the context of seeded
segmentation with minimum spanning trees (i.e. edge-weighted water-
sheds). Specifically, we show how to efficiently enumerate the k smallest
spanning trees that result in different segmentations; and we prove that
solutions are indeed found in the correct order. Experiments show that
about half of the trees considered by our algorithm represent unique seg-
mentations. This redundancy is orders of magnitude lower than can be
achieved by just enumerating the k-smallest MSTs, making the algorithm
viable in practice.

1 Introduction

The most popular algorithms for interactive segmentation are Ising type Markov
random fields (MRFs) [3], the random walker [11] and the seeded watershed
[13]. Their smoothness terms penalize label changes with the L1,L2 and L∞
norms respectively [6]. However, in the process of finding the single lowest energy
solution to the graph partitioning problem a lot of information is lost and other
modes of the solution space which may convey important aspects of the problem
are ignored. An enumeration of more than one low energy solution allows to
obtain a more robust segmentation, and can help defining an uncertainty of
the resulting segmentation which may be used in downstream processing. Thus,
recent work on these algorithms has focused on finding the M lowest energy
solutions [9,14,20], ideally subject to a diversity constraint [1]. These references
solve the problem for Ising-type MRFs. However, systematic empirical studies
[17] show that the seeded watershed outperforms MRFs in certain datasets and
offers computational advantages. The near linear runtime of a seeded watershed
stems from its connection to the minimum spanning tree (MST) of the image
graph [12,7]. The present work presents the first viable algorithm that provides
analogous M-best results for the seeded watershed cut. We build on the seminal
work of Gabow [10] to enumerate only those spanning trees (ST) in an edge-
weighted graph that lead to a change in the resulting segmentation. Furthermore
we give a modification of Gabow’s algorithm that allows to enumerate the M-best
diverse solutions similar to [1], by enforcing a user specified distance between
some of the generated segmentations. Such a diverse set of solutions can in turn
be combined into a final segmentation [4].
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2 Related Work

The M-best solutions problem has been studied in the context of discrete graph-
ical models [2] where it is known as the M-best MAP problem. Several types
of algorithms have been proposed for the M-Best MAP problem: junction tree
based exact algorithms [14,16], dynamic programming based algorithms [15] and
max marginal based algorithms [20]. An interesting extension of the M-best MAP
problem was proposed and studied in [1]. Here, the authors give an algorithm
to enumerate a diverse set of solutions. This is an attractive approach since the
M-best solutions tend to be very similar to the MAP solution for a low M and
thus important aspects of the solution space cannot be found. Generating such
a set of diverse solutions was shown in [1] to remedy the problem of M-best
solutions: when the initial M-best solutions are too close, important aspects of
the solution space may only be found by enforcing a certain amount of diversity.
The authors show that this diverse set of solutions which differ in a user specified
amount from the MAP solution do not exhibit this problem.

The seeded watershed algorithm [13,19] which we adapt enjoys great popular-
ity in applications where large amounts of data have to be processed, including
medical and biological 3D image analysis [17], and where the shrinking bias
typical of MRFs is detrimental.

We rely on the equivalence of the edge weighted seeded watershed and the
minimum spanning tree (MST) algorithm [12,7,8] and draw on the seminal work
of Gabow [10] who solved the k-smallest minimum spanning trees problem.

3 Image Segmentation with Minimum Spanning Trees

We formulate the interactive image segmentation problem as a graph partitioning
problem on the pixel neighborhood graph G(E, V ). All neighboring pixels v ∈ V
are connected with edges (i, j) ∈ E. All edges have an associated edge weight
wij ∈ R which expresses the dissimilarity between the neighboring pixels. The
edge weights wij can be computed for example from the color gradient or another
suitable boundary indicator. It is well known [12,7] that the seeded watershed
cut on a graph G is equivalent to a minimum spanning tree computation on a
suitably augmented graph G′(V ′, E′) that contains a supernode v0 connected to
seed nodes v−l for each label class l ∈ L. These seed nodes are connected to
the root node v0 with zero weight edges. All labeled nodes (i.e. all supervoxels
holding a user seed) are also connected to these seed nodes with zero-weight
edges wi,−l = 0, which are guaranteed to remain in the MST. Once the MST
with root node v0 has been constructed, subtrees originating from seed nodes v−l

form segments of the final segmentation. This graph construction is illustrated
in Figure 1.

4 Gabow’s Algorithm for the k Smallest Spanning Trees

The MST segmentation algorithm outlined in the previous section finds the
single smallest spanning tree of the augmented graph. In the next section, we will
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Fig. 1. Seeded image segmentation using minimum spanning trees. The image nodes
which the user has seeded (blue, green) are connected to virtual seed nodes v−l which
in turn are connected to a virtual root node v0. The associated edge weights are set to
0 which ensures that the edges belong to the minimum spanning tree of the augmented
graph G′. The final label of an image node depends on the subtree to which the node
is assigned in the resulting minimum spanning tree.

propose to generalize the algorithm by Gabow [10] to enumerate spanning trees
that result in different segmentations. To lay the foundation for our extension,
we start with a description of Gabow’s original algorithm.

Gabow’s algorithm starts with a minimum spanning tree for the graph gen-
erated by e.g. Kruskal’s algorithm. This MST constitutes the first solution. The
algorithm then enumerates different spanning trees in the order of increasing
weight by swapping out an edge e belonging to the current spanning tree, and
replacing it by another edge f which is currently not in the tree.

To obtain the smallest spanning tree under such a so-called e, f -exchange, it
finds the pair e, f that gives the smallest weight increase w(f)− w(e).

The main idea of the algorithm is to maintain a set of branchings and two lists
associated with each branch, called IN and OUT, which prevent the algorithm
from enumerating a spanning tree twice. All edges contained in the IN list have
to stay in the spanning tree and all edges contained in the OUT list cannot enter
the spanning tree.

To enumerate all spanning trees in order, the algorithm finds the smallest
weight e, f -exchange which is feasible according to the IN and OUT lists of the
current state and branches on this exchange. Branching is done by considering
two different cases: one branch is constructed by adding the f edge to the OUT
list, the other branch is established by adding f to the IN list. Any further
branching which is executed in the two cases inherits the respective IN and
OUT lists from its parent state. Thus, any spanning tree constructed in the first
branch excludes edge f and any spanning tree constructed in the second branch
includes edge f . By visiting all branchings strictly in the order of increasing tree
weight, the first k minimum spanning trees are constructed in the correct order.
This process is illustrated in Figure 2.

5 Enumerating Changing Segmentations

While Gabow’s algorithm finds the k smallest spanning trees of a given graph,
it cannot be used to find the different modes of a segmentation: a grid graph
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Fig. 2. Illustration of Gabow’s algorithm and our modification (best viewed in color).
The algorithm of Gabow branches after each e, f -exchange into an upper case where
the edge f (indicated by thick black stroke) must stay in the tree and a lower case
where the edge f (thick red stroke) must stay out of the tree. Our modified algorithm
works in the same way, but only considers edges f ∈ C(ST ) which are part of the cut
set for the current spanning tree. By definition, this induces a changed segmentation
in each step. In contrast, in the original Gabow algorithm the segmentation often stays
unchanged. Some of the k smallest spanning trees have a cut set fully contained in
the OUT list and hence do not allow further branching: the set of viable edges for an
exchange has been depleted (crossed out state).
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Fig. 3. Illustration of cut edges. On the left, all edges of a spanning tree (ST) are
shown in bold. In the middle all edges not belonging to the spanning tree a shown. The
subset of the middle edges which belong to the seeded watershed cut – i.e. the edges
which connect the different segments – are shown on the right. We modify Gabow’s
algorithm by only considering these cut edges in any e, f -exchange. This enforces a
changing segmentation between any two STs in the hierarchy of Figure 2, but does not
guarantee that all resulting segmentations are unique.

has exponentially many spanning trees (1040 for a 4-connected grid graph of
size 10 × 10, [18]). In typical images, exceedingly many spanning trees lead
to the same segmentation. This effect is visible in the illustration of Gabow’s
algorithm in Figure 2: while the algorithm always produces a new spanning tree,
the associated segmentation does not necessarily change. This is especially true
when there are large basins, or areas with low edge weights, as are typical for
graphs constructed from natural images.

Thus, when generating the k smallest spanning trees, many if not all (when
k is small) of the trees correspond to the same segmentation result. Luckily
we can identify the sufficient and necessary condition that leads to a different
segmentation result (compared to the previous state) in an e, f -exchange in
Gabow’s algorithm.

In the case of a spanning tree segmentation, the assigned label (color) of a
node depends on the subtree to which the node is connected in the spanning
tree: the node is assigned the label of the virtual seed node v−l of which it is a
child in the spanning tree (see Figure 1). All edges in the spanning tree connect
nodes of the same color. An edge connecting two nodes of different color cannot
be part of the spanning tree segmentation.

Now, if an e, f -exchange removes an edge e from the tree and replaces it
with an edge f that connects two nodes of the same color it is clear that the
segmentation cannot change: the resulting spanning tree is merely a different
way to express the same segmentation.

We now come to the core idea: to enforce a different segmentation, the edge f
that is swapped in has to connect two nodes of different colors. After swapping
in the edge f , both nodes belong to the same subtree and thus one of the two
nodes changes its color. The resulting segmentation is different.

We call these edges f that connect nodes of different color in a ST segmenta-
tion “cut edges” f ∈ C(ST ). See Figure 3 for an illustration.
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At this point, we are able to modify Gabow’s algorithm to not only enumerate
different spanning trees in order of increasing weight, but to enumerate changing
segmentations in the order of increasing weight.

A small change is sufficient to reach the desired behavior: by adding all edges
f which are not part of the cut set to a list OUTC = {f : f /∈ C(ST )} , Gabow’s
algorithm can only consider edges f ∈ C(ST ) for any e, f -exchange since all
edges in the OUT and OUTC list are not eligible. Thus the segmentation of
any spanning tree that is generated differs from the previous segmentation. The
OUTC list is always updated once a new spanning tree has been generated and
ensures the desired behavior.

Our modification of Gabow’s algorithm does not change its computational
complexity, the scanning of the edges and the calculation of the OUTC list take
time proportional to the number of edges in the graph which is of the same order
as the normal Gabow algorithm takes in each iteration.

5.1 Algorithm Correctness

Our algorithm may enumerate a segmentation (though not a spanning tree) more
than one time and in that sense is an approximation. However, our modifica-
tion of Gabow’s algorithm generates all possible segmentations in their order of
increasing weight and finds the lowest cost spanning tree that represents each
segmentation. We first show that any spanning tree of minimum weight that
represents a segmenation is found by our algorithm.

Definition: A minimum spanning tree S of a given segmentation can be found
by computing the cut edges C(S) of the desired segmentation: it contains all
edges c = (i, j), xi �= xj that connect nodes of different color xi �= xj . The
minimum spanning tree S of this segmentation can then be found by removing
these edges from the graph (or adding them to the OUT list) and computing
the minimum spanning tree of the modified graph.

A set of constraints INS , OUTS that induce the minimum spanning tree S for
a given segmentation can be found easily: the largest such set is INS = {e : e ∈
S}, OUTS = {e : e /∈ S}. Computing a spanning tree obeying these constraints
will produce S. This shows the existence of at least one such set of constraints.

Theorem 1: Let T be a minimum spanning tree of graph G and let S be the
minimum weight spanning tree that induces a given segmentation. Let INS ,
OUTS be a set of constraints that induce spanning tree S. Then there exists a
series of branchings that leads to INS , OUTS .

Proof. Let C(T ) be the cut edges of spanning tree T . Then any edge f ∈ C(T )
which is eligible for an e, f -exchange in our algorithm is either (a) /∈ S or (b)
∈ S. The algorithm now picks the f ∈ C(T ) that has the smallest exchange
weight w(f)−w(e) using their best respective exchange partner e. In case (a) if
f /∈ S we follow the branch where f is added to the OUT list. This leads to a
new state that has the same induced segmentation (and cut set) but a modified
OUT list. In the new state the next best exchange pair e′, f ′ with f ′ ∈ C(T ) will
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be considered and the same case consideration applies. In case (b) when f ∈ S
we follow the other branch by adding f to the IN list. This leads to a new state
with a new segmentation (and new cut set), but starting from this new state the
same consideration applies. Both cases (a) and (b) lead to a state which is closer
to a set of constraints INS , OUTS. After a finite number of branchings we end
up with a set of constraints INS, OUTS that define the minimum cost spanning
tree that induces a given segmentation.

The proof shows that all segmentations that are representable by a spanning
tree will be found by our algorithm, forbidden branchings as in Figure 2 do not
pose a problem: they occur when the OUT list contains all edges in the current
cut set. By construction of the proof, for all edges f ∈ OUT we know f /∈ S.
Since the current cut set is fully contained in the OUT list no edge in the current
cut set can be part of the segmentation inducing spanning tree S. But if no edge
of the current cut set is ∈ S then the current state already defines the correct
segmentation.

Definition [10]: T -exchange. Let T be a spanning tree of graphG. A T -exchange
is a pair of edges e,f where e ∈ T , f /∈ T , and T − e ∪ f is a spanning tree.

Lemma 1 [10]: A spanning tree T has minimum weight if and only if no T -
exchange has negative weight.

Theorem 2: Let T be a minimum spanning tree of graph G and let f be an edge
not in T . Let e, f be a T -exchange having the smallest weight of all exchanges
e′, f . Then T − e ∪ f is a minimum weight spanning tree of graph G under the
constraint that f is in this tree.

Proof. Let S = T −e∪f . Suppose S does not have minimum weight. By Lemma
1, there is a S-exchange g, h having negative weight. We derive a contradiction
below. Let T − e consist of the two trees U, V . Edge e joins U and V . Edge f
must also join U and V since e, f is a T -exchange. Edge h also joins U and V .
For if not, assume without loss of generality that h joins two vertices in U . Since
g, h is an S-exchange g is also in subtree U and thus g, h is also a T -exchange.
Thus, by Lemma 1 it has positive weight which violates our assumption, thus h
must join U and V . Edge g �= f is in U ∪ V since exchange g, h cannot remove
edge f from S due to the constraint. Assume without loss of generality that
g ∈ U . Now let U − g consist of the two trees W,X . Edge e is incident to one of
those trees, say W . Since T − e − g ∪ f ∪ h is a spanning tree, either f or h is
incident to X . If h is incident to X then g, h is also a T-exchange which would
violate Lemma 1 and leads to a contradiction. If f is incident to X then g, f is
also a T-exchange, but since w(g) ≤ w(e) this would imply the T-exchange e, h
being negative since w(h) ≤ w(g) ≤ w(e): also a contradiction.

Induction and Theorem 2 gives us the property that our algorithm always
produces spanning trees of increasing weight. No permitted e, f -exchange is of
negative weight.

From Theorem 1 and Theorem 2 we have that our algorithm produces all
possible segmentations in the order of increasing weight.
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6 Enumerating Diverse Segmentations

When enumerating the M-best solutions and choosing a sensible M, say 50, there
is a certain danger that the returned solution set is very similar and only dif-
fers marginally from the lowest energy solution. To remedy this problem in the
M-best MAP setting the authors in [1] propose to enumerate diverse solutions
S that obey a given minimum distance Δ(MAP,S) to the MAP solution. We
now show that a similar constraint can be incorporated into our algorithm with-
out increasing computational complexity. We will modify our algorithm that
enumerates changing segmentations in such a way that it returns a changing
segmentation which differs in at least Δ nodes from the previous segmentation.

The core part of our modified Gabow algorithm from the previous section is
the e, f -exchange with a restriction that only allows edges f from the current
cut set to be moved into the tree. This restriction of f enforces that at least
one node changes its color because it is attached (via edge f) to a differently
colored subtree. The exact number of nodes that change their color depends on
the edge e which is removed from the tree: all nodes and edges below edge e
are reconnected by edge f to another subtree with different color. Thus, by also
restricting the edges e for an e, f -exchange we can control how many nodes will
change their color in that exchange.

The exact implementation is straightforward: in each step of our modified
algorithm, we compute for each edge e the number of nodes #(e) below this
edge. This can be done in time linear in the number of edges. Then, we add all
edges e which do not fullfill the user specified diversity requirement Δ to an IND
list: IND = {e : #(e) < Δ}. The algorithm is adapted to use both lists, IN and
IND. Thus, the IND edges are not considered for an e, f -exchange in the current
iteration since they must stay in the tree and any eligible e, f -exchange must
change the color of at least Δ nodes. The IND list is updated in each iteration
of the algorithm.

7 Experiments

The proposed algorithm is a heuristic because it may produce multiple span-
ning trees that induce the same segmentation, see section 5.1. To study how
many unique segmentations are generated, we choose a segmentation task that
is suitable for a minimum spanning tree segmentation [17]: the segmentation of
single cells in neural tissue. We ran Gabow’s original algorithm and our modified
version and compared the induced segmentation of each generated spanning tree
to all previous generated segmentations to see how many unique segmentations
each of the algorithm generates. As can be seen in Figure 5, Gabow’s original
algorithm fails to generate even two unique segmentations in k′ = 300 iterations.
Each generated spanning tree differs, but all spanning trees induce an equivalent
segmentation. The same effect can be observed in the toy example in Figure 2.
Our modification ensures that each generated spanning tree induces a different
segmentation compared to the previous state. It works well in practice: more
than half of the generated MST’s induce a unique segmentation.
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Fig. 4. Modified Gabow example. The top-left image shows an electron micropscopy
image of cells in neural tissue [5] and user given seeds (red,green). The k = 1, 2, 3, 4, 5
first segmentations generated by our modified Gabow algorithm are shown in black
and white. The algorithm successfully finds different modes of the segmentation.

Fig. 5. This plot shows how many unique segmentations are generated when varying
the parameter k′ that determines how many spanning trees are generated. Shown are
the results for Gabow’s original algorithm and for our modified version. Gabow’s orig-
inal algorithm fails to generate different segmentations: the spanning trees differ, but
the induced segmentation is always the same. In contrast, in the proposed algorithm,
more than half of the generated spanning trees induce a unique segmentation.

8 Conclusion

Recently a way to enumerate the diverse M-best solutions for Markov random
fields has been proposed in [1]. We present an algorithm that allows to enumerate
locally changing segmentations in order of increasing spanning tree weight. We
prove that the algorithm finds the smallest weight spanning tree that represents
a given segmentation. We experimentally validate the algorithm and show that
it can be used to effectively enumerate different smallest spanning tree segmen-
tations. Furthermore we show how a diversity constraint can be incorporated
into the algorithm that allows to enumerate segmentations which differ in a user
specified number of nodes.



384 C. Straehle et al.

We expect the proposed algorithm to be of value in the pursuit of meaningful
uncertainty measures as well as user guidance in a 3D segmentation setting.
We also trust that more robust segmentations can be obtained by taking into
account the information contained in a diverse set of solutions.
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