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Abstract. Active learning is an essential tool to reduce manual anno-
tation costs in the presence of large amounts of unsupervised data. In
this paper, we introduce new active learning methods based on measur-
ing the impact of a new example on the current model. This is done by
deriving model changes of Gaussian process models in closed form. Fur-
thermore, we study typical pitfalls in active learning and show that our
methods automatically balance between the exploitation and the explo-
ration trade-off. Experiments are performed with established benchmark
datasets for visual object recognition and show that our new active learn-
ing techniques are able to outperform state-of-the-art methods.

1 Introduction

The amount of visual data available on the Internet is tremendous and still
rapidly increasing, for an example, around three million images are uploaded
to Facebook every day. When annotated properly, such image collections are
powerful sources for building and improving visual recognition algorithms that
learn object and category models. The ImageNet project [6] for example used
Internet search engines and manual filtering done by Amazon Mechanical Turk
workers to provide labeled images for more than 10, 000 different classes and
semantic concepts. However, the majority of available images on the net is biased
towards very common and similar object instances (e.g., standard white mugs
in different resolutions). If we automatically select relevant sample images and
manually ensure their correct labeling, we would generate annotated visual data
more efficiently. Furthermore, for real-world robotics scenarios, limiting ourselves
to a fixed number of classes beforehand is likely to fail due to the large variety
of application-specific semantic concepts.

Due to these reasons, we consider active learning in this paper, which allows
for actively obtaining labels from human annotators for samples that are likely
to be important to improve the current classifier. In particular, given a set of
unlabeled examples, an active learning algorithm has to pick a specific example,
which is then labeled and added to the training set. The goal of active learning in
this case is to save annotation budget and to allow for steeper learning curves that
lead to higher recognition performances with fewer labeled training examples.
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Fig. 1. Typical pitfalls in active learning scenarios: queried examples are either possible
outliers (unrelated 〈1〉 or dissimilar 〈2〉 to the current distribution), or the samples will
likely to be redundant 〈3〉. Our methods implicitly balance both extrema automatically
by selecting samples that are useful (Given numbers reflect terms in Theorem 1).

The difficulty of active learning is the critical trade-off between exploration
and exploitation, i.e., is it beneficial to explore the feature space by selecting
examples with a large distance to the current training set or should we select
examples nearby with the risk that they are likely to be redundant (see Fig. 1)?
Our approach directly tackles this trade-off by selecting examples that do have
an impact on the classification model. For classification, we use Gaussian process
(GP) models [13], which provide probabilistic non-linear classifiers and achieve
comparable performance to SVM models. One of the advantages of the GP re-
gression framework is that we can update the model in closed form for the case
a new training example is added, which is derived in this paper. The update
formulas allow us to measure the impact of an example on the model in various
ways leading to new active learning methods. We also show the underlying rela-
tion to other approaches, like the one in [10], and compare our results to them
in several experiments. The contributions of this paper are as follows:

1. Model change for GP: We derive update formulas for GP regression which
give interesting insights into what is going on when new examples are added
to the current model.

2. Active learning strategies based on expected change: We derive two
strategies for binary scenarios based on the impact of a new example on
the current classification model. Both strategies are shown to be suitable for
active learning in several scenarios.

3. Robustness with respect to initial set size: In contrast to state-of-the-
art query strategies, our methods are able to significantly reduce the labeling
effort even in the presence of extremely few initially known samples.

We briefly review related approaches and active learning with Gaussian processes
in Sect. 2 and 3. Closed-form model updates for GP regression are presented in
detail and our active learning methods are derived in Sect. 4. Experimental
results are given in Sect. 5 highlighting the benefits of our introduced methods
in several active learning scenarios. A summary and outlook concludes the paper.
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2 Related Work

Definition of Active Learning. The pipeline in an active learning scenario is

as follows: (1) collect a large number of unlabeled examples U = {x̂(1), . . . , x̂(m)},
(2) hand them over to a query functionQ to compute a score for every sample, and

(3) choose a sample x̂(i) ∈ U with best score to label it and provide it as an ad-
ditional training example for a classifier. State-of-the-art methods can be divided
into those that directly aim atminimizing the expected future classification error of
the classifier [8,14] or alternatively try to reduce the space of hypotheses consistent
with the data known so far as fast as possible [4,15,16,17,10].

Combining Exploration and Exploitation. In active learning scenarios,
the decision has to be made whether to spend some (annotation) budget in ex-
ploring unseen regions of the feature space or whether to alternatively refine the
current decision boundaries in order to improve separability of known classes.
While the first aspect is denoted as exploration, the second one is usually referred
to as exploitation. However, relying on a single active learning aspect is unfeasi-
ble for many if not all real-world applications [12,7]. Depending on the dataset
as well as the actual problem and the currently known samples, both aspects
need to be taken into account but are not equally important. Baram et al. [1]
propose selecting the current criterion from a pool of query strategies using a
multi-armed bandit. Osugi et al. [12] flip a biased coin to decide between pure
exploration and pure exploitation. Furthermore, they update the probability de-
pending on the change of the current model but without considering the actual
success of the query. Ebert et al. [7] propose switching between different explo-
rative and exploitative methods using a Markov decision process formulation
and update the state transitions online as well. All of the previously presented
approaches aim at explicitly selecting the currently most valuable query strat-
egy. In contrast, our approach implicitly combines exploration and exploitation
without the necessity of a selection step or a decision model.

Work Most Similar to Our Approach. Cebron and Berthold [5] pro-
pose using a linear combination of an explorative and an exploitative strategy.
However, the linear weighting has to be defined explicitly and in addition the ex-
ploration method is “out-of-the-box” without a clear relation to the classification
model used. Kapoor et al. [10] propose combining expected mean and variance of
a Gaussian process classifier by dividing both scores, which can only be justified
heuristically. In contrast to both approaches, our techniques are derived from
the underlying classification model without any parameters to tune. Similar in
spirit is the approach of Vezhnevets et al. [18], where the expected change of
a conditional random field after including a labeled example is taken as active
learning score. To compute the expected change, assumptions and simplifications
have to be made to handle computational costs. For Gaussian process models,
Bodesheim et al. [3] introduced an approximation of the expected model change
only based on the change of the model output for the new sample. In contrast to
both techniques, our approach does not need any assumption or simplification
to assess the change of the model.
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3 Active Learning with Gaussian Processes

It has been shown that Gaussian process models are useful for active learn-
ing [16], especially in visual object categorization [10]. Using the Gaussian pro-
cess regression framework, binary class labels yi ∈ {1,−1} of samples x(i) are
treated as continuous values which are assumed to be outputs of a latent function
f . Following a Gaussian noise model, function values are assumed to be disturbed
by white Gaussian noise ε ∼ N (0, σ2

n) leading to yi = f(x(i))+ε. Latent function
values f for any finite set of samples X = {x(1), . . . ,x(n)} are modeled to be
jointly Gaussian with a zero mean function and a covariance function κ, i.e.,
f ∼ GP (0, κ(X,X)). Given a set of training samples, marginalization over la-
tent function values leads to a Gaussian posterior distribution for the label of a
test sample x∗, where predictive mean and variance can be computed in closed
form:

μ∗(x∗) = kT
∗
(

K+ σ2
nI
)−1

y = kT
∗α , (1)

σ2
∗(x

∗) = k∗∗ + σ2
n − kT

∗
(

K+ σ2
nI
)−1

k∗ = σ2
f∗ + σ2

n . (2)

Here, we useK, k∗, and k∗∗ to denote the kernel matrix containing covariances of
training samples, the kernel vector containing covariances between the training
samples and the test sample, and the covariance of the test sample to itself,
respectively. The sign of the predictive mean is typically used for classification.
Note that within this paper, we focus on binary classification as done by [10],
which offers a large variety of scenarios to be tackled. Object detection methods
for example rely on this setup and learn from positive samples of a specific
object class and lots of negative data from arbitrary other classes and background
textures. For multi-class settings, simple techniques like using the score difference
between the best and the second best class usually work well.

As proposed in [10], samples from a huge pool of unlabeled data can be queried
using one of the following three strategies. Selecting samples by minimum abso-

lute predictive mean: Qμ∗(U) = argminx̂(i)∈U |μ∗(x̂
(i))| is an exploitative strat-

egy, since such samples are near the decision boundary of the classification model.
Samples that are far from already known data can be selected via a large predic-

tive variance: Qσ2∗(U) = argmaxx̂(i)∈U σ2∗(x̂
(i)) to explore the feature space. As

a combination of exploitation and exploration it is suggested to query samples

based on uncertainty defined by: Qunc(U) = argminx̂(i)∈U
|μ∗(x̂(i))|√
σ2∗(x̂

(i))
.

However, rather than defining a combination of exploration and exploitation
heuristically, we present strategies that are based on theoretical foundations of
Gaussian process regression models and corresponding model changes. These
strategies are derived in the next section.

4 Relevance-Based Active Learning

In an active learning setup, one seeks to query examples that are most valuable
with respect to the given task. As presented in Sect. 2, several approaches exist
to define what is valuable, e.g., examples that are maximally unknown or those
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leading to the largest estimated gain of recognition rates. However, when we
pick a new example to be labeled, we should ensure that the labeling process
will not be in vain, i.e., that the chosen example will be taken into account when
building the new model.

Due to the representer theorem, classification scores of many popular classi-
fication models can be computed as a weighted sum of similarities between test
example x∗ and all training data, i.e., s(x∗) = kT

∗ α. Common examples are
support vector machines (SVM) or Gaussian processes (GP), which have been
briefly reviewed in the previous section. If an entry αi is almost zero, the influ-
ence of the corresponding example vanishes. If we estimate or even predict the
weight ᾱn+1 of the updated model parameters ᾱ for a new example, we could
only take examples into account for labeling, that have a large influence and are
therefore worth being labeled.

4.1 Computing Impact Using Gaussian Processes

In contrast to SVMs, where ᾱ is only available after convex optimization [19],
we can indeed compute ᾱ for GP in closed form. Let us have a closer look on the
change of the weight vector when a new example x∗ is added. The new kernel
matrix K̄ after selecting x∗ with binary label y∗ is given by:

K̄ =

[

K+ σ2
n · I k∗

kT
∗ κ(x∗,x∗) + σ2

n

]

. (3)

Based on the following theorem1 , we can compute new weights ᾱ in closed form.

Theorem 1 (Closed form update of GP regression weights). Let x∗, y∗,
K, k∗, k∗∗, α, σ2

n , and σ2
f∗ be as previously defined. Then we can compute the

weight vector ᾱ after adding x∗ to the training set as follows:

ᾱ = K̄−1

[

y
y∗

]

=

[

α
0

]

+
1

σ2
f∗ + σ2

n
︸ ︷︷ ︸

〈1〉

[
(

K+ σ2
n · I)−1

k∗
−1

]

︸ ︷︷ ︸

〈2〉

(

kT
∗α− y∗

)

︸ ︷︷ ︸

〈3〉

. (T1)

The three factors in Eq. (T1) can be nicely interpreted. The first term 〈1〉
states that if a new example is unrelated to the distribution of current train-
ing data, i.e., the predictive variance is large indicating a possible outlier [11],
the weight ᾱn+1 for the example as well as the overall model change � =
∣

∣

∣

∣ᾱ− (αT, 0)T
∣

∣

∣

∣ will be small. Expression 〈2〉 can also be interpreted in a similar
fashion as a weighted Parzen estimate and we observe that if a new example is
again dissimilar with respect to currently known training examples, the overall
model change � will again be small. Finally, in 〈3〉 we notice that if redundant
information is to be added, i.e., the new label can already be explained given
the current model, the new weight ᾱn+1 as well as the overall model change �
will be small as well. A visual explanation of this behavior is shown in Fig. 1.
1 A complete proof based on block matrix inversion [2, p. 117] is given in the suppl.
material.
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4.2 Derived Active Learning Strategies

We derive two new GP query methods from the previous result. Whereas the
first strategy only considers the resulting weight for a new example, the second
takes the overall model change into account.

From Theorem 1 we know that the new entry of the updated alpha vector
only depends on the first and third term. However, the ground-truth label y∗ is
not known before querying it, and we have to make assumptions based on the
information currently available. In absence of further information, we choose the
most pessimistic estimate of model change for a given example x̂:

Qweight(U) = argmax
x̂(i)∈U

min
y(i)∈{−1,1}

|μ∗(x̂
(i))− y(i)|

σ2
f (x̂

(i)) + σ2
n

. (4)

This strategy can be interpreted as an implicit balancing between exploitative
methods (enumerator) and explorative methods (denominator) [5,7].

As mentioned earlier, the second strategy will also take the overall model
change into account. The underlying assumption is that a sample, which would
heavily affect the current model even with the most plausible label, is worth
being labeled. We make use of Theorem 1 and arrive at the following:

Qimpact(U) = argmax
x̂(i)∈U

min
y(i)∈{−1,1}

∣

∣

∣

∣

∣

∣Δα(i)
∣

∣

∣

∣

∣

∣

1
(5)

= argmax
x̂(i)∈U

min
y(i)∈{−1,1}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|μ∗(x̂
(i))− y(i)|

σ2
f (x̂

(i)) + σ2
n

·
[
(

K+ σ2
n · I

)−1
k(i)
∗

−1

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

(6)

We see in the next section as well as in the experimental results (Sect. 5)
that both methods implicitly adapt the amount of exploration and exploitation
leading to superior learning rates compared to state-of-the-art techniques.

4.3 Trade-Off between Exploration and Exploitation

In the following, we analyze the behavior of the derived strategies on a synthetic
1D toy example. As visualized in Fig. 2, we only know two positive and a single
negative example. Examples are represented based on a single 1D feature value,
and similarity is measured using a standard RBF kernel. Both plots show the
scores of the different GP based query strategies for a broad range of possible
inputs. Note that we do not include Qunc into the figure for the sake of simplicity.
Apart from this, its behavior is pretty similar to Qμ∗ .

For computing the left plot, the bandwidth parameter of the RBF kernel σRBF

was set to a rather small value of 0.15, which simulates a sparsely sampled feature
space in the current region of investigation. Since there is almost no interaction
between the different examples with respect to this modeling, exploration of
almost every part of the space is important and will add valuable information.
In contrast to this, the right plot was computed with σRBF = 1.5 which simulates
a densely packed feature space. In this case, improving the actual discrimination
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Fig. 2. A synthetic 1D example visualizing the different active learning strategies. In
the left plot, known samples indicated by black dots are widely spread (a sparsely
sampled feature space), i.e., exploration matters, whereas in the right plot, known
samples are close together (a densely packed space) where exploitation is more urgent.

ability of the model is more important and clarifying the actual class boundaries
should be in the focus of actively selecting new samples. However, we note that
both mean and variance favor samples maximally far away from the current
distribution, which leads to outliers that are unrelated to the current problem.
We see in the next section that these observations are confirmed in several visual
recognition scenarios.

5 Experimental Evaluation

Active learning experiments are conducted on established image categorization
datasets. Our findings can be summarized as follows:

1. For a small number of initial training examples, our new strategies
perform significantly better than state-of-the-art strategies for GP due to a
suitable trade-off between exploration and exploitation.

2. For representative initial training sets, our new strategies perform as
good as established methods and lead to significant performance gains over
random sampling.

Experimental Setup. We conduct active learning experiments on popular
image recognition datasets. For every dataset, we first randomly select 100 sub-
sets consisting of a single positive and 9 negative classes, and average results
over 10 random initializations per subset. In total, this results in 1, 000 different
active learning scenarios per dataset. Accuracies after every query are evalu-
ated on disjoint test sets using the area under receiver operator curves (AUC).
Final learning curves are computed by averaging AUC scores over all subsets
and initializations. The noise parameter for model regularization was optimized
by maximizing the marginal likelihood. Experiments were conducted in Mat-
lab2 . Runtimes are not visualized, since the majority of computational time is
spent for updating classifier and kernel values. In addition, asymptotic runtimes

2 Source code is available at www.inf-cv.uni-jena.de/active_learning

www.inf-cv.uni-jena.de/active_learning
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Fig. 3. Gain of active over passive learning on Caltech-256. Initial number of samples
per class is 1 and 5, respectively.

for the introduced methods are in the same order of complexity as Qσ2∗ and
Qunc. Results are presented for passive learning (random), three state-of-the-
art strategies based on a GP model (gp-mean, gp-var, and gp-unc) as well as
the two introduced strategies (gp-weight and gp-impact). Note that absolute
performance values are part of the supplementary material.

Results on Caltech-256. A commonly used benchmark datasets for visual
object recognition is Caltech-256, which consists of 256 object categories from
different areas of real-world situations, e.g., animals, vehicles, or persons. For the
sake of simplicity and reproducibility, we represent images with L1-normalized
bag-of-visual-words histograms over densely sampled SIFT features3.

In Fig. 3, experimental results averaged over 1, 000 binary settings are visu-
alized4 . First of all, we observe the prominent gain of active learning methods
over passive learning except for variance-based queries. This clearly stresses the
benefit of active learning in general. Apart from this, we note that the new
strategies outperform existing methods in the presence of few labeled examples
and lead to comparable results if more examples are already known. In both
settings they outperform random querying by far.

Results on ImageNet. Within the last years, the ImageNet database be-
came a standard benchmark for large-scale visual object classification. In total,
1, 000 different classes from a wide range of different synsets are provided. We
again represent images with L1-normalized bag-of-visual-words histograms over
densely sampled SIFT features5.

In Fig. 4, the experimental results are visualized4 . If the number of initial
samples is low, we again observe that state-of-the-art strategies cannot improve
accuracies over passive learning, since the majority of unlabeled samples gives
valuable information in this early stage. However, even for this setup our strate-
gies are able to clearly improve results. Especially in medical applications, where
obtaining even a handful of labeled samples is extremely expensive, choosing the
informative ones is highly valuable. For larger initial sets, we notice that our new
methods lead to results comparable to those of state-of-the-art strategies. Again,
passive learning is significantly outperformed.

3 http://homes.esat.kuleuven.be/~tuytelaa/unsup_features.html
4 Further learning curves can be found in the supplementary material.
5 http://www.image-net.org/download-features

http://homes.esat.kuleuven.be/~tuytelaa/unsup_features.html
http://www.image-net.org/download-features
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Fig. 4. Gain of active over passive learning on ImageNet. Initial number of samples
per class is 1 and 5, respectively.
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Fig. 5. Fraction of positive examples within queried images averaged over 1, 000 ex-
periments on ImageNet. Initial number of samples per class is 1 and 5, respectively.
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Fig. 6. Queried images using Qimpact (top) and Qσ2∗ (bottom) in a single run on Ima-
geNet. Green and blue borders indicate images of positive and negative classes, respec-
tively. Queries of the remaining strategies can be found in the supplementary material.

One reason for the superior behavior of our strategies can be derived from
Fig. 5: both strategies Qweight and Qimpact are able to balance the selection
of positive and negative samples, which is essential for building a representative
model. In contrast to that, established methods are more biased towards negative
examples, which leads to models less useful for the binary classification task. A
qualitative example is given in Fig. 6 which further highlights this observation.

6 Conclusion and Further Work

We presented new active learning methods that explicitly select non-redundant
(relevant) unlabeled examples for annotation. Our methods are based on mea-
suring the impact of an unlabeled example on a Gaussian process model in the
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case the example would be added as a new labeled training example. The re-
sulting active learning approaches were able to outperform previous methods
significantly on established benchmark datasets.

Future work will focus on combining active learning methods and learning
optimal combinations from auxiliary data, i.e., we would like to perform ac-
tive learning in a transfer learning fashion, where we learn priors for suitable
strategies from other (visual) classification tasks. Another topic is to combine
our active learning methods with large-scale Gaussian process approaches [9].
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