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Abstract. It is now well known that Markov random fields (MRFs)
are particularly effective for modeling image priors in low-level vision.
Recent years have seen the emergence of two main approaches for learn-
ing the parameters in MRFs: (1) probabilistic learning using sampling-
based algorithms and (2) loss-specific training based on MAP estimate.
After investigating existing training approaches, it turns out that the
performance of the loss-specific training has been significantly underes-
timated in existing work. In this paper, we revisit this approach and
use techniques from bi-level optimization to solve it. We show that we
can get a substantial gain in the final performance by solving the lower-
level problem in the bi-level framework with high accuracy using our
newly proposed algorithm. As a result, our trained model is on par with
highly specialized image denoising algorithms and clearly outperforms
probabilistically trained MRF models. Our findings suggest that for the
loss-specific training scheme, solving the lower-level problem with higher
accuracy is beneficial. Our trained model comes along with the additional
advantage, that inference is extremely efficient. Our GPU-based imple-
mentation takes less than 1s to produce state-of-the-art performance.

1 Introduction and Previous Work

Nowadays the MRF prior is quite popular for solving various inverse problems
in image processing in that it is a powerful tool for modeling the statistics of
natural images. Image models based on MRFs, especially higher-order MRFs,
have been extensively studied and applied to image processing tasks such as im-
age denoising [14,16,15,7,19,18], deconvolution [17], inpainting [14,16,15], super-
resolution [21], etc.

Due to its effectiveness, higher-order filter-basedMRF models using the frame-
work of the Field of Experts (FoE) [14], have gained the most attention. They
are defined by a set of linear filters and the potential function. Based on the
observation that responses of mean-zero linear filters typically exhibit heavy-
tailed distributions [9] on natural images, three types of potential functions have
been investigated, including the Student-t distribution (ST), generalized Laplace
distribution (GLP) and Gaussian scale mixtures (GSMs) function.
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Table 1. Summary of various typical MRF-based systems and the average denoising
results on 68 test images [14] with σ = 25

model potential training inference PSNR

5× 5 FoE ST&Lap. contrastive divergence MAP, CG 27.77[14]
3× 3 FoE GSMs contrastive divergence Gibbs sampling 27.95[16]
5× 5 FoE GSMs persistent contrastive divergence Gibbs sampling 28.40[7]
5× 5 FoE ST loss-specific(truncated optimization) MAP, GD 28.24[2]
5× 5 FoE ST loss-specific(truncated optimization) MAP, lbfgs [11] 28.39[5]
5× 5 FoE ST loss-specific(implicit differentiation) MAP, CG 27.86[15]

In recent years several training approaches have emerged to learn the parame-
ters of the MRF models [8,20,14,16,15,2,5,7]. Table 1 gives a summary of several
typical methods and the corresponding average denoising PSNR results based on
68 test images from Berkeley database with σ = 25 Gaussian noise.Existing train-
ing approaches typically fall into two main types: (1) probabilistic training using
(persistent) contrastive divergence ((P)CD); (2) loss-specific training. Roth and
Black [14] first introduced the concept of FoE and proposed an approach to learn
the parameters of FoEmodel which uses a sampling strategy and the idea of CD to
estimate the expectation value over the model distribution. Schmidt et al. [16] im-
proved the performance of their previous FoEmodel [14] by changing (1) the poten-
tial function toGSMsand (2) the inferencemethod fromMAPestimate toBayesian
minimum mean squared error estimate (MMSE). The same authors present their
latest results in [7], where they achieve significant improvements by employing an
improved learning scheme called PCD instead of previous CD.

Samuel and Tappen [15] present a novel loss-specific training approach to learn
MRF parameters under the framework of bi-level optimization [3]. They use a
plain gradient-descent technique to optimize the parameters, where the essence
of this learning scheme - the gradients, are calculated by using implicit differ-
entiation technique. Domke [5] and Barbu [2] propose two similar approaches
for the training of MRF model parameters also under the framework of bi-level
optimization. Their methods are some variants of standard bi-level optimization
method [15]. In the modified setting, the MRF model is trained in terms of re-
sults after optimization is truncated to a fixed number of iterations, i.e., they do
not solve the energy minimization problem exactly; instead, they just run some
specific optimization algorithm for a fixed number of steps.

In a recent work [10], the bi-level optimization technique is employed to train
a non-parametric image restoration framework based on Regression Tree Fields
(RTF), resulting a new state-of-the-art. This technique is also exploited for learn-
ing the so-called analysis sparsity priors [13], which is somewhat related to the
FoE model.

2 Motivation and Contributions

Arguments: The loss-specific training criterion is formally expressed as the
following bi-level optimization problem
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⎧
⎨

⎩

argmin
ϑ

L(x∗(ϑ), g)

subject to x∗(ϑ) = argmin
x

E(x, f, ϑ).
(1)

The goal of this model is to find the optimal parameters ϑ to minimize the
loss function L(x∗(ϑ), g), which is called the upper-level problem in the bi-level
framework. The MRF model is defined by the energy minimization problem
E(x, f, ϑ), which is called the lower-level problem. The essential point for solv-
ing this bi-level optimization problem is to calculate the gradient of the loss
function L(x∗(ϑ), g) with respect to the parameters ϑ. As aforementioned, [15]
employs the implicit differentiation technique to calculate the gradients explic-
itly; in contrast, [5] and [2] make use of an approximation approach based on
truncated optimization. All of them use the same ST-distribution as potential
function; however, the latter two approaches surprisingly obtain much better
performance than the former, as can be seen in Table 1.

In principle, Samuel and Tappen should achieve better (at least similar) results
compared to the approximation approaches, because they use a “full” fitting
training scheme, but actually they fail in practice. Therefore, we argue that
there must exist something imperfect in their training scheme, and we believe
that we will very likely achieve noticeable improvements by refining this “full”
fitting training scheme.

Contributions: Motivated by the above investigation, we think it is necessary
and worthwhile to restudy the loss-specific training scheme and we expect that
we can achieve significant improvements. In this paper, we do not make any
modifications to the training model used in [15] - we use exactly the same model
capacity, potential function and training images. The only difference is the train-
ing algorithm. We exploit a refined training algorithm that we solve the lower-
level problem in the loss-specific training with very high accuracy and make use
of a more efficient quasi-Newton’s method for model parameters optimization.
We conduct a series of playback experiments and we show that the performance
of loss-specific training is indeed underestimated in previous work [15]. We argue
that the the critical reason is that they have not solved the lower-level problem
to sufficient accuracy. We also demonstrate that solving the lower-level problem
with higher accuracy is indeed beneficial. This argument about the loss-specific
training scheme is the major contribution of our paper.

We further show that our trained model can obtain slight improvement by in-
creasing the model size. It turns out that for image denoising task, our optimized
MRF (opt-MRF) model of size 7 × 7 has achieved the best result among exist-
ing MRF-based systems and been on par with state-of-the-art methods. Due to
the simplicity of our model, it is easy to implement the inference algorithm on
parallel computation units, e.g., GPU. Numerical results show that our GPU-
based implementation can perform image denoising in near real-time with clear
state-of-the-art performance.
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3 Loss-Specific Training Scheme: Bi-level Optimization

In this section, we firstly present the loss-specific training model. Then we con-
sider the optimization problem from a more general point of view. Our derivation
shows that the implicit differentiation technique employed in previous work [15]
is a special case of our general formulation.

3.1 The Basic Training Model

Our training model makes use of the bi-level optimization framework, and is
conducted based on the image denoising task. For image denoising, the ST-
distribution based MRF model is expressed as

argmin
x

E(x) =
∑Nf

i=1
αi

∑Np

p=1
ρ((Kix)p) +

λ

2
‖x− f‖22. (2)

This is the lower-level problem in the bi-level framework. Wherein Nf is the
number of filters, Np is the number of pixels in image x, Ki is an Np × Np

highly sparse matrix, which makes the convolution of the filter ki with a two-
dimensional image x equivalent to the product result of the matrix Ki with the
vectorization form of x, i.e., ki ∗ x ⇔ Kix. In our training model, we express
the filter Ki as a linear combination of a set of basis filters {B1, · · · , BNB}, i.e.,
Ki =

∑NB

j=1 βijBj . Besides, αi ≥ 0 is the parameters of ST-distribution for filter
Ki, and λ defines the trade-off between the prior term and data fitting term. ρ(·)
denotes the Lorentzian potential function ρ(z) = log(1 + z2), which is derived
from ST-distribution.

The loss function L(x∗, g) (upper-level problem) is defined to measure the
difference between the optimal solution of energy function and the ground-truth.
In this paper, we make use of the same loss function as in [15], L(x∗, g) =
1
2‖x∗ − g‖22, where g is the ground-truth image and x∗ is the minimizer of (2).

Given the training samples {fk, gk}Nk=1, where gk and fk are the kth clean
image and the associated noisy version respectively, our aim is to learn an optimal
MRF parameter ϑ = (α, β) (we group the coefficients βij and weights αi into
a single vector ϑ), to minimize the overall loss function. Therefore, the learning
model is formally formulated as the following bi-level optimization problem

⎧
⎨

⎩

min
α≥0,β

L(x∗(α, β)) =
∑N

k=1
1
2‖x∗

k(α, β)− gk‖22
where x∗

k(α, β) = argmin
x

∑Nf

i=1 αiρ(Kix) +
1
2‖x− fk‖22,

(3)

where ρ(Kix) =
∑Np

p=1 ρ((Kix)p). We eliminate λ for simplicity, since it can be
incorporated into weights α.

3.2 Solving the Bi-level Problem

In this paper, we consider the bi-level optimization problem from a general point
of view. In the following derivation we only consider the case of a single training
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sample for convenience, and we show how to extend the framework to multiple
training samples in the end.

According to the optimality condition, the solution of the lower-level prob-
lem in (3) is given by x∗, such that ∇xE(x∗) = 0. Therefore, we can rewrite
problem (3) as following constrained optimization problem

⎧
⎨

⎩

min
α≥0,β

L(x(α, β)) = 1
2‖x(α, β) − g‖22

subject to ∇xE(x) =
∑Nf

i=1 αiK
T
i ρ

′(Kix) + x− f = 0,
(4)

where ρ′(Kix) = (ρ′((Kix)1), · · · , ρ′((Kix)p))
T ∈ R

Np . Now we can introduce
Lagrange multipliers and study the Lagrange function

L(x, α, β, p, μ) = 1

2
‖x− g‖22 + 〈−α, μ〉+ 〈

∑Nf

i=1
αiK

T
i ρ

′(Kix) + x− f, p〉, (5)

where μ ∈ R
Nf and p ∈ R

Np are the Lagrange multipliers associated to the
inequality constraint α ≥ 0 and the equality constraint in (4), respectively. Here
〈·, ·〉 denotes the standard inner product. Taking into account the inequality
constraint α ≥ 0, the first order necessary condition for optimality is given by

G(x, α, β, p, μ) = 0, (6)

where

G(x, α, β, p, μ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
∑Nf

i=1 αiK
T
i DiKi + I)p+ x− g

(〈KT
i ρ

′(Kix), p〉)Nf×1 − μ

(〈BT
j ρ

′(Kix) +KT
i DiBjx, p〉)n×1

∑Nf

i=1 αiK
T
i ρ

′(Kix) + x− f

μ−max(0, μ− cα)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Wherein Di(Kix) = diag(ρ′′((Kix)1), · · · , ρ′′((Kix)p)) ∈ R
Np×Np , (〈·, p〉)N×1 =

(〈(·)1, p〉, · · · , 〈(·)r, p〉)T , in the third formulation n = Nf×NB. Note that the last
formulation is derived from the optimality condition for the inequality constraint
α ≥ 0, which is expressed as α ≥ 0, μ ≥ 0, 〈α, μ〉 = 0. It is easy to check that
these three conditions are equivalent to μ−max(0, μ− cα) = 0 with c to be any
positive scalar and max operates coordinate-wise.

Generally, we can continue to calculate the generalized Jacobian of G, i.e., the
Hessian matrix of Lagrange function, with which we can then employ a Newton’s
method to solve the necessary optimality system (6). However, for this problem
calculating the Jacobian of G is computationally intensive; thus in this paper we
do not consider it and only make use of the first derivatives.

Since what we are interested in is the MRF parameters ϑ = {α, β}, we can
reduce unnecessary variables in (6). By solving for p and x in (6), and substitut-
ing them into the second and the third formulation, we arrive at the gradients
of loss function with respect to parameters ϑ⎧

⎪⎨

⎪⎩

∇βijL = −(BT
j ρ

′(Kix) +KT
i DiBjx)

T (HE(x))
−1 (x− g)

∇αiL = −(KT
i ρ

′(Kix))
T (HE(x))

−1 (x− g)

where ∇xE(x) =
∑Nf

i=1 αiK
T
i ρ

′(Kix) + x− f = 0.

(7)
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In (7), HE(x) denotes the Hessian matrix of E(x),

HE(x) =
∑Nf

i=1
αiK

T
i DiKi + I. (8)

In (7), we also eliminate the Lagrange multiplier μ associated to the inequality
constraint α ≥ 0, as we utilize a quasi-Newton’s method for optimization, which
can easily handle this type of box constraints. We can see that (7) is equivalent
to the results presented in previous work [15] using implicit differentiation.

Considering the case of N training samples, in fact it turns out that the
derivatives of the overall loss function in (3) with respect to the parameters ϑ
are just the sum of (7) over the training dataset.

As given by (7), we have collected all the necessary information to compute
the required gradients, so we can now employ gradient descent based algo-
rithms for optimization, e.g., steepest-descent algorithm. In this paper, we turn
to a more efficient non-linear optimization method–the LBFGS quasi-Newton’s
method [11]. In our experiments, we will make use of the LBFGS implementation
distributed by L. Stewart1. In our work, the third equation in (7) is completed
the L-BFGS algorithm, since this problem is smooth, to which L-BFGS is per-
fectly applicable. The training algorithm is terminated when the relative change
of the loss is less than a tolerance, e.g., tol = 10−5 or a maximum number of
iterations e.g., maxiter = 500 is reached or L-BFGS can not find a feasible step
to decrease the loss.

4 Training Experiments

In order to demonstrate that the loss-specific training scheme was undervalued
in previous work [15], we conducted a playback experiment using (1) the same
40 images for training and 68 images for testing; (2) the same model capacity–
24 filters of size 5 × 5; (3) the same basis –“inverse” whitened PCA [14], as in
Samuel and Tappen’s experiments. We randomly sampled four 51× 51 patches
from each training image, resulting in a total of 160 training samples. We then
generated the noisy versions by adding Gaussian noise with standard deviation
σ = 25.

The major difference between our training experiment and previous one is
the training algorithm. In our refined training scheme, we employed (1) our
proposed algorithm to solve the lower-level problem with very high accuracy,
and (2) LBFGS to optimize the model parameters, but in contrast, Samuel and
Tappen used non-linear conjugate gradient and plain gradient descent algorithm,
respectively. In our refined training algorithm, we used the normalized norm of

the gradient, i.e., ‖∇xE(x∗)‖2√
N

≤ εl (N is the pixel number of the training patch)

as the stopping criterion for solving the lower-level problem. In our training
experiment, we set εl = 10−5 (gray-value in range [0 255]), which implies a very
accurate solution.

1 http://www.cs.toronto.edu/~liam/software.shtml

http://www.cs.toronto.edu/~liam/software.shtml
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Fig. 1. Performance curves (test PSNR value and training loss value) vs.{the solution
accuracy of the lower-level problem εl & the filter size}. It is clear that solving the lower-
level problem with higher accuracy is beneficial and larger filter size can normally bring
some improvement.

Based on this training configuration, we learned 24 filters of size 5 × 5, then
we applied them to image denoising task to estimate the inference performance
using the same 68 test images. Finally, we got an average PSNR value of 28.51dB
for noise level σ = 25, which is significantly superior to previous result of 27.86dB
in [15]. We argue that the major reason lies in our refined training algorithm
that we solve the lower-level problem with very high accuracy.

To make this argument more clear, we need to eliminate the possibility of
training dataset, because we did not exploit exactly the same training dataset
as previous work (unfortunately we do not have their dataset in hand). Since the
training patches were randomly selected, we could run the training experiment
multiple times by using different training dataset. Finally, we found that the
deviation of test PSNR values based on 68 test images is within 0.02dB, which
is negligible. Therefore, it is clear that training dataset is not the reason for this
improvement, and the only remaining reason is our refined training scheme.

The Influence of εl: To investigate the influence of the solution accuracy of
the lower-level problem εl more detailedly, we conducted a series of training
and testing experiments by setting εl to different magnitudes. Based on a fixed
training dataset (160 patches of size 51 × 51) and 68 test images, we got the
performance curves with respect to the solution accuracy εl, as shown in Fig-
ure 1 (left). From Figure 1 (left), we can clearly see that it is indeed the high
solution accuracy that helps us to achieve the above siginificant improvement.
This finding is the main contribution of our paper. We also make a guess how
accurate Samuel and Tappen solve the lower-level problem according to their
result and our performance curve, which is marked by a red triangle in Figure 1
(left). The argument that higher solution accuracy of the lower-level problem is
helpful is explicable, the reason is described below.

As we know, the key aspect of our approach is to calculate the gradients of
the loss function with respect to the parameters ϑ. According to (7), there is a
precondition to obtain accurate gradients: both the lower-level problem and the
inverse matrix of Hessian matrix HE must be solved with high accuracy, i.e., we
need to calculate a x∗ such that ∇xE(x∗) = 0 and compute (HE)

−1 explicitly.
Since the Hessian matrix HE is highly sparse, we can solve the linear system
HEx = b efficiently with very high accuracy (we use the “backslash” operator in
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(8.39,0.32) (8.00,0.02) (8.00,0.03) (8.00,0.01) (8.00,0.03) (8.00,0.02) (7.97,0.06) (7.97,0.10) (7.93,0.11) (7.91,0.38) (7.89,0.10) (7.74,0.13)

(7.39,0.07) (7.36,0.29) (7.30,0.39) (7.21,0.23) (6.91,0.28) (6.49,0.24) (6.03,0.42) (5.07,0.48) (4.66,0.39) (4.16,0.51) (3.37,0.67) (3.20,0.71)

(8.00,0.05) (8.00,0.04) (8.00,0.01) (8.00,0.02) (8.00,0.02) (7.99,0.03) (7.97,0.04) (7.94,0.04) (7.92,0.18) (7.89,0.13) (7.82,0.18) (7.72,0.33)

(7.37,0.29) (7.35,0.24) (7.26,0.09) (7.02,0.44) (6.51,0.21) (6.31,0.25) (5.60,0.39) (4.83,0.48) (4.25,0.47) (3.38,0.78) (3.25,0.45) (3.20,0.82)

Fig. 2. 48 learned filters (7× 7). The first number in the bracket is the weight αi and
the second one is the norm of the filter.

Matlab). However, for the lower-level problem, in practice we can only solve it

to finite accuracy by using certain algorithms, i.e., ‖∇xE(x∗)‖2√
N

≤ εl. If the lower-

level problem is not solved to sufficient accuracy, the gradients∇ϑL are certainly
inaccurate which will probably affect the training performance. This has been
demonstrated in our experiments. Therefore, for the bi-level training framework,
it is necessary to solve the lower-level problem as accurately as possible, e.g., in
our training we solved it to a very high accuracy with εl = 10−5.

The Influence of Basis: In our playback experiments, we used the “inverse”
whitened PCA basis to keep consistent with previous work. However, we argue
that the DCT basis is a better choice, because meaningful filters should be mean-
zero according to the findings in [9], which is guaranteed by DCT basis without
the constant basis vector. Therefore, we will exploit the DCT filters excluding
the filter with uniform entries from now on. Using this modified DCT basis, we
retrained our model and we got a test PSNR result of 28.54dB.

The Influence of Training Dataset: To verify whether larger training dataset
is beneficial, we retrained our model by using (1) 200 samples of size 64 × 64
and (2) 200 samples of size 100× 100, which is about two times and four times
larger than our previous dataset, respectively. Finally, we got a test PSNR result
of 28.56dB for both cases. As shown before, the influence of training dataset is
marginal.

The Influence of Model Capacity: In above experiments, we concentrated
on the model of size 5 × 5 to keep consistent with previous work. We can also
train models of different filter sizes, e.g., 3 × 3, 7 × 7 or 9 × 9, to investigate
the influence of model capacity. Based on the training dataset of 200 patches
of size 64 × 64, we retrained our model with different filter size; the training
results and testing performance are summarized in Figure 1 (right). We can see
that normally increasing the filter size can bring some improvement. However,
the improvement of filter size 9 × 9 is marginal compared to filter size 7 × 7,
yet the former is much more time consuming. The training time for the model
with 48 filters of size 7× 7 was approximately 24 hours on a server (Intel X5675,
3.07GHz, 24 cores), but in contrast, the model of size 9× 9 took about 20 days.
More importantly, the inference time of the model of size 9 × 9 is certainly
longer than the model of size 7 × 7, in that it involves more filters of larger
size. Therefore, the model of size 7 × 7 offers the best trade-off between speed
and quality, and we use it for the following applications. The learned 48 filters
together with their associated weights and norms are presented in Figure 2.
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Table 2. Summary of denoising experiments results (average PSNRs over 68 test
images from the Berkeley database). We highlighted the state-of-the-art results.

σ KSVD FoE BM3D LSSC EPLL Ours

15 30.87 30.99 31.08 31.27 31.19 31.18
25 28.28 28.40 28.56 28.70 28.68 28.66
50 25.17 25.35 25.62 25.72 25.67 25.70

Table 3. Typical run time of the denoising methods for a 481 × 321 image (σ = 25)
on a server (Intel X5675, 3.07GHz). The highlighted number is the run time of GPU
implementation.

KSVD FoE BM3D LSSC EPLL Ours

T(s) 30 1600 4.3 700 99 12 (0.3)
psnr 28.28 28.40 28.56 28.70 28.68 28.66

5 Application Results

An important question for a learned prior model is how well it generalizes. To
evaluate this, we directly applied the above 48 filters of size 7× 7 trained based
on image denoising task to various image restoration problems such as image
deconvolution, inpainting and super-resolution, as well as denoising. Due to space
limitation, here we only present denoising results and the comparison to state-
of-the-arts. The other results will be shown in the final version [1].

We applied our opt-MRF model to image denoising problem and compared
its performance with leading image denoising methods, including three state-
of-the-art methods: (1) BM3D [4]; (2) LSSC [12]; (3) GMM-EPLL [22] along
with two leading generic methods: (4) a MRF-based approach, FoE [7]; and (5)
a synthesis sparse representation based method, KSVD [6] trained on natural
image patches. All implementations were downloaded from the corresponding
authors’ homepages. We conducted denoising experiments over 68 test images
with various noise levels σ = {15, 25, 50}. To make a fair comparison, we used
exactly the same noisy version of each test image for different methods and
different test images were added with distinct noise realizations. All results were
computed per image and then averaged over the test dataset. We used L-BFGS
to solve the MAP-based MRF model (2). When (2) is applied to various noise
level σ, we need to tune the parameter λ (empirical choice λ = 25/σ).

Table 2 shows the summary of results. It is clear that our opt-MRF model
outperforms two leading generic methods and has been on par with three state-
of-the-art methods for any noise level. Comparing the result of our opt-MRF
model with results presented in Table 1, our model has obviously achieved the
best performance among all the MRF-based systems. To the best of our knowl-
edge, this is the first time that a MRF model based on generic priors of natural
images has achieved such clear state-of-the-art performance. We provide image
denoising examples in the final version [1].
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In additional, our opt-MRF model is well-suited to GPU parallel computation
in that it only contains the operation of convolution. Our GPU implementation
based on NVIDIA Geforce GTX 680 accelerates the inference procedure signif-
icantly; for a denoising task with σ = 25, typically it takes 0.42s for image size
512 × 512, 0.30s for 481 × 321 and 0.15s for 256 × 256. In Table 3, we show
the average run time of the considered denoising methods on 481× 321 images.
Considering the speed and quality of our model, it is a perfect choice of the base
methods in the image restoration framework recently proposed in [10], which
leverages advantages of existing methods.

6 Conclusion

In this paper, we revisited the loss-specific training approach proposed by Samuel
and Tappen in [15] by using a refined training algorithm. We have shown that
the performance of the loss-specific training was indeed undervalued in previous
work. We argued that the major reason lies in the solution accuracy of the lower-
level problem in the bi-level framework, and we have demonstrated that solving
the lower-level problem with higher accuracy is beneficial. We have shown that
we can further improve the performance of the learned model a little bit by using
larger filters. For image denoising task, our learned opt-MRF model of size 7× 7
presented the best performance among existing MRF-based systems, and has
already been on par with state-of-the-art denoising methods. The performance
of our opt-MRF model proves two issues: (1) the loss-specific training scheme
under the framework of bi-level optimization, which is convergence guaranteed,
is highly effective for parameters learning; (2) MAP estimate should be still
considered as one of the leading approaches in low-level vision.
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