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Abstract. In 2-D image compression, recent approaches based on image inpaint-
ing with edge-enhancing anisotropic diffusion (EED) rival the transform-based
quasi-standards JPEG and JPEG 2000 and are even able to surpass it. In this pa-
per, we extend successful concepts from these 2-D methods to the 3-D setting,
thereby establishing the first PDE-based 3-D image compression algorithm. This
codec uses a cuboidal subdivision strategy to select and efficiently store a small
set of sparse image data and reconstructs missing image parts with EED-based
inpainting. An evaluation on real-world medical data substantiates the superior
performance of this new algorithm in comparison to 2-D inpainting methods and
the compression standard DICOM for medical data.
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1 Introduction

Even with today’s advances in storage capacity and transfer bandwiths, image compres-
sion remains an important area of research. In addition to 2-D images, great amounts of
volumetric 3-D data is produced from a wide variety of recording sources such as CT
or MRI scans. With JPEG 2000 [9]] and DICOM [7]] for medical imaging, both the 2-D
and 3-D setting are dominated by transform-based approaches. However, a new family
of image compression algorithms based on partial differential equations (PDE) has re-
cently emerged [116/8]. Those methods have successfully challenged and in some cases
surpassed the quality of the established codecs. In this paper, we aim to achieve three
goals: 1. Introduce the first PDE-based compression codec explicitly designed for 3-D
data. 2. Assess its potential in relation to established codecs. 3. Analyse the influence
of 3-D diffusion on compression quality.

Related Work. PDE-based approaches [1l6/8] rely on the common idea to store only a
small, systematically chosen subset of the image efficiently and reconstruct the missing
parts by PDE-based interpolation. Methods based on edge-enhancing diffusion (EED)
[LLi8] restrict the selection of known data for the sake of storage efficiency and compen-
sate this with the powerful interpolation capacities of EED. Compression using edge
information and homogeneous diffusion [6] is mostly efficient on cartoon-like images.
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Our 3-D compression algorithm is modelled after R-EED [§]], an algorithm that chooses
sparse data with a rectangular subdivision scheme and fills in missing image parts with
EED-based interpolation. To our best knowledge, PDE-based codecs have not been
used for spatial 3-D data before our approach. However, there are video codecs that
rely on inpainting techniques [2I5/411]]. In particular, PDE-based video compression
approaches based on [1]] were proposed in [2] and [4]].

Our Contribution. We extend the rectangular 2-D subdivision scheme R-EED [8§]]
to 3-D, thereby proposing the first PDE-based 3-D compression codec. We introduce
cuboidal subdivision as a natural 3-D extension of R-EED’s rectangular subdivision
scheme in order to store a sparse subset of the 3-D data. The rest of the image is re-
constructed using 3-D EED inpainting. Following R-EED’s naming scheme, the new
codec is called C-EED. Furthermore, we analyse the influence of the 3-D diffusion step
on compression quality by identifying all sources for performance gains of C-EED in
comparison to R-EED applied to a sequence of 2-D image slices. Finally, we compare
the overall performance of C-EED, its predecessor R-EED and the DICOM standard
[[7] on medical data.

2 Three-Dimensional EED-Based Inpainting

PDE-based inpainting acts as the foundation of our compression algorithm. In general,
inpainting denotes the reconstruction of missing image parts from known data. We ex-
ploit this concept for lossy compression by keeping only fractions of the original data
and filling in the rest via inpainting. The following sections cover both a continuous
model for inpainting as well as the discretisation that we apply in our method.

Continuous Inpainting Model. In the following, we consider 3-D grey value images
as sufficiently smooth functions that map image coordinates from the cuboidal image
domain {2 C R? to a continuous grey value range. The goal of the inpainting process
is to use a set of known data, the so-called inpainting mask M C {2, to reconstruct
the contents of the inpainting domain (2 \ M. Based on its superior performance in
2-D [8] we choose edge-enhancing anisotropic diffusion (EED) [10] as the basis for the
inpainting algorithm. EED inpainting is defined by a boundary value problem:

Owuw = div(DVu) on 2\ M x (0,00),
u(x,t) = f(®) on IM x (0,00), (D
(DVu,m)=0 on 91 x (0,00).

This system describes the evolution of the inpainted image v under EED with initial data
f and mixed boundary conditions: on the image boundaries 02, Neumann conditions
are applied, while the boundary O M of the inpainting mask is treated with Dirichlet con-
ditions. Here, Vu denotes the spatial gradient and div the spatial divergence operator.
The diffusion tensor D & R3*3 defines the characteristic properties of EED:
Diffusion is performed only along image edges, not across them. This behaviour is
achieved by carefully designing D in terms of its eigenvectors v, vz, vs and eigen-
values 1, po, 13- Each eigenvalue determines the amount of diffusion performed in
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the direction of the corresponding eigenvector. In 2-D, Vu is perpendicular to the lo-
cal edge direction. Thus, the relevant directions are defined parallel to Vu (across the
edge) and parallel to Vu (edge direction). In 3-D, Vu still defines the direction across
the edge. However, diffusion along the edge is performed in the 2-D plane with normal
vector Vu.

v1 || Vu, with 1 (Vu,) : 2)

\/1 + Vel?

V2l Vuy,v31Vu,, valvg with po = s =1 3)

Equation (@) ensures unrestricted diffusion along the edges. As in [8]], diffusion across
edges is penalised proportional to the edge detector |Vu,|? by the Charbonnier diffu-
sivity in Equation (2)). The free parameter \ can be used to adjust the edge preservation
of EED and thereby the contrast of the diffusion results. The presmoothing of the image
u by convolution u, := K, * u with a Gaussian kernel K, with standard deviation o
robustifies the edge detection.

Discretisation. We discretise the system (I)) by a finite difference approximation on a
spatiotemporal grid with grid sizes h., hy, h, and h;. Solving the resulting equations
for the evolved image after one discrete time step yields a so-called explicit scheme
which allows to implement EED with a fast explicit diffusion approach [3]. In order
to account for real-world images with nonuniform voxel size, we adapt the spatial grid
sizes accordingly.

3 The C-EED Codec

Our C-EED algorithm is modeled after the 2-D codec R-EED [§]]. Both methods share
the common idea of reconstructing the image from a sparse subset of the image data.
One of the most prominent changes is the 3-D inpainting described in the previous
section. However, the inpainting process alone does not necessarily yield a good recon-
struction. The choice of the inpainting mask M is an equally important problem.

Cuboidal Subdivision. Selecting the inpainting mask M is guided by three competing
factors: 1. The choice of mask points influences the quality of the inpainting results. 2.
Storage efficiency must be considered. This includes the storage of mask point locations
and the influence on efficient grey value storage by entropy coding. 3. The complexity
of finding the optimal mask for a given compression ratio is large. Paying tribute to all
of these factors, the choice of mask points is restricted to an adaptive grid that allows
to encode mask point locations in a binary tree. This tree is constructed by a threshold-
based subdivision scheme. First, a static point pattern is chosen, in our case the corners
and center of the cuboidal image domain. These points are added to the inpainting mask
M and used to compute a preliminary reconstruction result. If the reconstruction error
exceeds an error threshold F, the current image is split in the middle of its largest side
into two cuboidal subimages of equal size. Mask points are added in these subimages
according to the point pattern, and the splitting process is repeated for each subimage
until all subimages respect the threshold E. Each split is represented by one node of the
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Fig. 1. Cuboidal Subdivision. The schematic representation on the left shows the construction
of an inpainting mask with cuboidal subdivision. The two medical volume images are examples
for an inpainting mask (middle) and a C-EED reconstruction (right).
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Fig.2. Encoding with C-EED. The flow chart above describes the C-EED steps performed for
image encoding. Highlighted steps mark prominent differences between C-EED and R-EED.

corresponding binary subdivision tree. The error threshold is adapted to the tree depth
by the formula £ = a/?, where d is the tree depth and a and / are free parameters. This
subdivision scheme is illustrated by Fig. [Tl

Encoding. The additional encoding steps that were not discussed in previous sections
are natural extensions of the compressions steps of R-EED [8]]. First, a quantisation
of the grey value domain is performed in order to increase the efficiency of the final
entropy coding step. Afterwards, the inpainting mask is computed by cuboidal subdivi-
sion with inpainting operations that are restricted to subimages. The inpainting quality
can be increased further by brightness optimisations: grey values of the inpainting mask
are modified in order to improve inpainting results. While this introduces an error to the
mask points, the quality gain in the inpainting domain significantly outweighs this loss.
Finally, the data is stored to the hard disk. The file header contains the image size and
the compression parameters EED-contrast A, number of quantised grey values ¢ and
swapping parameter s (see decoding step). Additionally the subdivision tree is saved in
binary code. The grey value data is stored losslessly by entropy-coding. Note that the
encoding procedure in Fig. 2l assumes that all free parameters are given. In practice, all
parameters are optimised to achieve results of the highest quality possible.

Decoding. The compression parameters, subdivision tree and grey values are decoded.
From these values, the inpainting mask is constructed and with a single inpainting step,
the decompressed image is obtained. As a post processing step, an interpolation swap
can be performed: the role of known and unknown data is inverted and thereby mask
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Fig. 3. Images obtained with DICOM, R-EED and C-EED with compression rates close to 90:1
(top) and 207:1 (bottom). The test image (size 256 x 256 x 64) consists of the first 64 slices of
a trabular bone CT provided by Wiro Niessen. The images above display the last 2-D slice of the
test image. Smaller MSE values are better.

point degradation by quantisation and brightness optimisation can be attenuated. The
new inpainting domain consists of spheres with radius s around all mask points.

4 Experiments

Experiment Design. Due to space constraints we present a small representative subset
of our experiments with C-EED, R-EED and DICOM [[7] on spatial 3-D data. Image
quality is assessed with respect to the mean squared error (MSE). For compression with
DICOM the most efficient method in the standard, JPEG 2000, is used. The application
of 2-D codecs to 3-D data is usually achieved by separation of 3-D data into 2-D slices.
On of our main goals is to assess the influence of 3-D EED-based inpainting in com-
parison to slice-wise inpainting with 2-D EED. In order to isolate the 3-D diffusion’s
contribution, further sources for efficiency improvements must be incorporated into R-
EED: 1. Header redundancies appear due to duplicate header data in each compressed
2-D slice. 2. Global entropy coding is, in most cases, more efficient than individual cod-
ing for each slice. Therefore, all experiments were conducted with a modified version
of R-EED that contains all improvements of C-EED except for 3-D EED.

Results. The results in Fig. B reveal that quality gaps between the different approaches
in terms of the MSE are amplified for increasing compression rates. For medium to high
compression rates the quality of DICOM degrades much faster than the PDE-based
approaches. In the same range C-EED shows significant advantages over R-EED. Vi-
sually, DICOM suffers from heavy block artifacts, while R-EED and C-EED produce
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smooth results that only lose detail with increasing compression rate. Similar results
were observed on all medical test data. On synthetic data with high redundancy in one
dimension, C-EED yields improvements over R-EED of up to 50%.

Overall, the experiments demonstrate the application of 3-D inpainting in C-EED is
very well suited for the compression of spatial 3-D data and offers significant advan-
tages over R-EED and DICOM.

5 Conclusion

In this paper we introduced the first PDE-based 3-D image compression algorithm and
demonstrated its superior performance on 3-D spatial data in comparison to DICOM and
R-EED. In particular, we analysed the influence of 3-D diffusion on image quality and
verified that it offers significant advantages over 3-D compression based on 2-D diffusion.

In future work, the potential of 3-D diffusion on other 3-D data should be closely
investigated. In particular, C-EED should be well suited for seismic data sets with huge
file sizes (1 TB and more) where the aim is very high compression rates. Furthermore,
the potential of C-EED compression on spatiotemporal data should be investigated,
since this could pave the way for competitive PDE-based video codecs.
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