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Abstract. We present a novel probabilistic approach for fitting a sta-
tistical model to an image. A 3D Morphable Model (3DMM) of faces is
interpreted as a generative (Top-Down) Bayesian model. Random Forests
are used as noisy detectors (Bottom-Up) for the face and facial landmark
positions. The Top-Down and Bottom-Up parts are then combined us-
ing a Data-Driven Markov Chain Monte Carlo Method (DDMCMC). As
core of the integration, we use the Metropolis-Hastings algorithm which
has two main advantages. First, the algorithm can handle unreliable de-
tections and therefore does not need the detectors to take an early and
possible wrong hard decision before fitting. Second, it is open for integra-
tion of various cues to guide the fitting process. Based on the proposed
approach, we implemented a completely automatic, pose and illumina-
tion invariant face recognition application. We are able to train and test
the building blocks of our application on different databases. The sys-
tem is evaluated on the Multi-PIE database and reaches state of the art
performance.

1 Introduction

Face image understanding is a very important problem in computer vision. We
propose a method to extend the model-based image explanation concept combin-
ing Top-Down and Bottom-Up knowledge. Generative models are a wide-spread
Top-Down method to interpret images. An image is explained by model pa-
rameters obtained with an Analysis-by-Synthesis approach [11]. Given a target
image, the model’s parameters are adapted (fitting) until the generated image
is most similar to the input image and the corresponding parameter values (fit)
are taken as image description.

We apply a 3DMM [16] to explain images of human faces. Traditionally, the
fitting of a 3DMM to an image requires a good initialization of the applied
optimization algorithm to find the best set of parameters. As automatic detec-
tion (Bottom-Up) of facial feature points is unreliable regarding strong pose
and illumination variation, a new concept is needed to properly integrate such
information.

We present a method to reinterpret the model fitting process, which opens
doors to the integration of various sources of information. As a concrete exam-
ple, we show how to integrate unreliable face and facial feature point detectors
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without forcing an early detection decision, which might be based on too little
information. Not only the single best detection but the detector response over
an area is fused with the prior knowledge of the 3DMM in the fitting process.

We formulate the 3DMM as a probabilistic model and the fitting problem as
an inference problem. The fitting process is generalized to a sampling process,
drawing samples from the posterior distribution over the model’s parameters
given an input image. The Metropolis-Hastings algorithm, which is the core of
the integration, allows us to include different sources of information as proposal
distributions. The used method is an example of a DDMCMC method, as pro-
posed by Tu [21] for image parsing. Combined with Random Forests for feature
point detection, this leads to a fully automatically initialized fitter which can
deal with unreliable information of different origins in the form of proposal dis-
tributions.

To successfully integrate the detection into the model fitting of a 3DMM, we
first need to detect face candidates. For each possible face box, the detection
maps of facial features need then to be interpreted using model knowledge, this
is stated as a sampling process. The samples from all the face boxes need to be
combined into a single distribution (“detection posterior”) which is then, in the
last step, conditioned on the image to obtain the posterior distribution (“image
posterior”). The samples from this final distribution represent the model-based
image explanation.

To demonstrate the use of the proposed approach, we solve a face recognition
task on the Multi-PIE database [12] with state of the art results. The recogni-
tion system is built as a direct application on-top of this general purpose face
image understanding method. The result is a database-independent recognition
system. As a big advantage, the concept of our approach would remain valid and
applicable, if the model will be extended to incorporate additional information,
such as expressions, ethnic variability or masks to cope with outliers like hair,
glasses or beards.

2 Prior Work

2.1 Morphable Model

A 3DMM has been proposed by Blanz and Vetter [3,4] to generatively explain
and analyze images of faces. The 3DMM consists of a parametric statistical
model of the 3D shapes and textures of faces obtained from a 3D scanner. The
faces are brought into dense correspondence before building the statistical model.
The model [16] has been successfully used to solve a wide range of problems.

An image is generatively explained or interpreted by the 3DMM by adapting
the set of parameters to the image. In a Analysis-by-Synthesis setting, a cost
function, measuring the degree of fit of a rendered image, is optimized by stan-
dard procedures, such as LBFGS or conjugate gradient methods leading to a fit,
often ending in a local optimum. The optimization process needs to be initialized
since an exhaustive search is not feasible. This initialization is usually provided
by manually annotated landmarks.
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2.2 Detection

A good overview of approaches for face detection is given by [23]. The most
influential work during the last decade was by Viola and Jones [13]. We use
similar features but combine these with a derived Random Forest algorithm
based on [5]. Many elaborate approaches tackle facial landmark localization, such
as [2] or [6]. We use the same Random Forest algorithm as for face detection.

The idea of local detection is limited by principle, the different local parts
have no global consistency. The global consistency additionally needs a model
coupling the individual responses. We use the 3DMM to provide the prior knowl-
edge needed. Other important approaches include the pictorial structures models
operating in the image plane [9,1].

2.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo methods proved to be a useful tool to handle proba-
bility distributions which are more complicated than the most simple analytically
tractable ones. In our case, we apply the Metropolis-Hastings algorithm [20]. As
the algorithm is very general in nature, it is applied to a variety of different
computer vision problems [10,21,22,19].

In computer vision, a useful parametric model consists of many parameters
of different scale and meaning to the image forming process. It is not straight-
forward to design a sampler which can efficiently deal with this.

Most MCMC methods rely completely on designed and fixed proposal distri-
butions, mostly random walks in parameter space. A newer development in the
sampling literature are data-driven proposal distributions which make use of the
input data to form probably useful proposals (heuristics). DDMCMC methods
have been used to segment images [21], do inference about a complex 3D scene
using only monocular input [22], to infer the pose of a human body model [19]
or to localize faces [15].

Compared to other approaches, our model is not of a composite form. We
need to adapt a complex parametric model having many continuous parameters
with different interactions and will not use detection to propose additional object
hypotheses. We will focus not on model selection but on the adaption step of
models with continuous parameters, the fitting. The model we use parameterizes
the geometry and appearance of a surface rendered to a 2D view and has thus
more parameters with very different roles in the image formation process.

3 Methods

3.1 Bayesian Face Model

The generative 3DMM is a parametric face model which is able to render an
image IM(θ) given some parameter values θ. The parameters include camera
settings, the illumination and the PCA face description split into a shape and
a texture part. Using an additional noisy observation model of the generated
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image P (I|IM(θ)), this model can be interpreted in a probabilistic framework
and used in a Bayesian setting. The Bayesian posterior distribution then consists
of the image formation part and the prior on the model parameters P (θ):

P (θ|I) ∝ P (I|θ)P (θ). (1)

The traditional fitting approach then corresponds to a maximum-a-posteriori
(MAP) inference, finding the parameters with the highest posterior probability.
In practice, this yields only local optima of the cost function.

As a noise model, we use the probabilistic interpretation of the traditional
least squares cost function which is the isotropic Gaussian distribution, treating
each pixel independently

P (I|θ) =
∏

p∈FG

N (I(p)|IM(p; θ), Σ)
∏

p∈BG

N (I(p)|μBG, ΣBG), (2)

where Σ = σ2I3 is the covariance matrix. The pixels lying outside the gen-
erated face are considered background (BG) and their likelihood is evaluated
using a multivariate Gaussian N (μBG, ΣBG) trained on all pixels in the observed
image. A background model is needed to fully explain the observed image pre-
venting partial explanation effects, such as “shrinking” of the face in the image.
We evaluate all values related to pixels in the RGB color space.

We adopted the rendering process of the original 3DMM (see [3]) but changed
the illumination model from a Phong model to a spherical harmonics-based
global illumination model with two bands [18]. Such an illumination model allows
us to obtain the optimal illumination coefficients by solving a linear system, for
a fixed geometric setting.

For the 3DMM, we use a slightly modified Basel Face Model (BFM) [16]
without ears and throat. The model comes with a statistical prior on the face
shape and face texture. We use a broad multivariate Gaussian prior for the
camera and illumination models, obtained by analyzing 20k face images in the
AFLW database [14].

The 3DMM can also render the position of the facial feature points in the
image plane x̂i(θ). The observation model of these points is again an independent
isotropic Gaussian distribution with standard deviation σLM. It provides the
likelihood of F observed landmark positions {xi}Fi=1

P (x1,x2, . . . ,xF |θ) =
F∏

i=1

N (xi|x̂i(θ), σ
2
LM). (3)

3.2 Fitting by Sampling from Posterior

The probabilistic interpretation of the 3DMM allows us to deal with uncer-
tainty and thus also to integrate unreliable hints properly. The fitting process
changes from an optimization problem to a process inferring the posterior dis-
tribution (1).
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The rather complicated image generation setting leads to a posterior distri-
bution without a simple representation. We resort to the Metropolis-Hastings
algorithm to simulate samples from the posterior. The algorithm transforms
samples θ′ from a proposal distribution Q(θ′|θ) into samples distributed accord-
ing to the target posterior distribution P (θ|I) by stochastically accepting or
rejecting samples. The specific choice of this algorithm additionally allows us to
work with an unnormalized posterior distribution.

Using the simple Propose-and-Verify architecture of the algorithm, we com-
bine many different proposal distributions in a mixture distribution and thus
integrate information from many sources, including our detections, directly into
the posterior inference process. As only point-wise evaluation of (1) is necessary,
we can also include proposals without a simple analytic representation. Tra-
ditional gradient moves and optimization steps can be integrated by restating
them as additional proposals.

As basic proposals, we make use of Gaussian diffusion moves which lead to a
random walk in parameter space. A random walk is not very efficient but can
prevent the method from being stuck in local optima. Since the nature and scal-
ing of the different parameters in the model (light, shape, texture and camera)
varies drastically, we designed the random walk to be a mixture of block-wise al-
ternating form, with different model parts as blocks. For each block we mix three
different parameter scales, leading to a mixture of Gaussians distribution for the
random walk stepping. Where appropriate, we included prior world knowledge
to decorrelate the proposal distributions, such as compensating for scaling in
distance modification proposals thus separating scaling and perspective effects.
From time to time, the illumination is explicitly optimized, as the strongest part
of mismatch between the rendered and the observed image is usually due to
non-adapted light and dominates all other sources of misfit.

3.3 Detections

To include the face and landmarks detection results into the inference process we
need a probabilistic output from the detectors in the form of a detection map,
assigning each point in the image a likelihood of seeing a specific facial feature
at that location.

The face detector and 9 facial feature point detectors (see Figure 1b) were
trained using a standard Random Forest algorithm closely related to [5]. For
each Random Forest detector we trained 256 trees. Each of these trees is learned
using 30% of the training data, randomly selected. A node is split if it is not
at a maximal depth of 30 and the data reaching that node is not pure. For a
node to learn a random candidate set of 500 features is generated. Based on the
information gain criterion the best threshold for each feature is calculated and
the best split is selected. A leaf stores the percentage of positives in the data
reaching that leaf. This is the certainty of a classification given the patch reaches
the leaf. The response of the forest is then the mean of all responses of the trees

The training patches were gathered in a manner proposed in [7]. From the
AFLW database [14], we selected for each detector approximately 25k positives
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and 100k negatives. For the face detector, we selected additional 400k negative
patches randomly sampled from the PASCAL-VOC 2012 [8] marked as not con-
taining any person. To have more positive face samples we mirrored the face
patches horizontally. As features we used Haar-like features also used in [13].

To detect faces we use a standard sliding window approach over all possible
scales. The image is scaled by a factor of 0.9 between subsequent scales. We
select the 10 best candidates not having a higher overlap than 60%. The feature
response maps are then computed in a 40% enlarged area around each selected
face box. The maps are averaged from three neighboring scales around the one
the face is detected in.

The detection map Di(x) of landmark i needs to be combined with the ob-
servation noise model for landmarks (3). This is accomplished by performing a
maximum convolution with the distance term on the response map as proposed
in [9]. At each location x we then get

logP (x|Di) = max
t

{
−‖x− t‖2

2σ2
LM

+
1

2
logP (Di(t))

}
. (4)

3.4 Data-Driven Proposals

To properly integrate the information provided by the feature point detectors,
this information must be stated as a proposal distribution which is used to
generate samples in the parameter space of the model. As we have no explicit
parameters encoding directly the position of the feature points, we resort to a
generative type of inclusion.

The proposal distribution is created in an iterative Bayesian manner. For
each possible face box, we build a proposal distribution by filtering unbiased
proposals from the prior through a Metropolis acceptance-step, thus biasing
the proposals with the ith face box’s position and size and all the landmarks
detection likelihoods Di of the respective face box:

P (θ) → P (θ|boxi,Di). (5)

The proposals from all the possible face boxes are combined in a mixture
proposal and put through a Metropolis filter step which evaluates a proposed
sample using the likelihood of the best face box available for each proposal,
corresponding to an OR/union of the different boxes. This step thus mixes the
different face box-conditionals (5) according to their consistency with the model:

1

10

10∑

i

P (θ|boxi,Di) → P (θ|allboxes,D). (6)

The distribution P (θ|allboxes,D) includes knowledge about all the possible
detections but never forces us to take an explicit decision on the detection results.

Samples from the distribution (6) prefer other face boxes than the strongest
detection in roughly one third of the cases. This implements an implicit model-
based verification step without an explicit choice of a face box. A few samples
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from (6) for a single image are visualized as a video and available as supplemen-
tary material.

3.5 Integration

The samples of the landmarks posterior (6) can now be used in the next step.
By conditioning additionally on the actual image using the observation model
(2) leads to the desired posterior distribution, summarizing all information:

P (θ|allboxes,D) → P (θ|I, allboxes,D). (7)

This rather wasteful generative approach to generate samples is feasible, as
the evaluation of the landmark distribution is precomputed in (4) and is very
cheap compared to the rendering needed to evaluate the image likelihood (2) at
the end. The landmarks detection maps and the pinhole camera model used do
not allow for a fast analytical calculation of the landmarks detection posterior
anyway.

The system as a whole is able to integrate knowledge from different parts and
allows uncertainty by its probabilistic nature. To gain full benefit of this integra-
tive system, one is encouraged to include many different Bottom-Up heuristics
increasing the probability that at least one makes a good guess.

4 Experiments and Results

We evaluated our method on an unconstrained face recognition task on the
Multi-PIE database [12]. Multi-PIE consists of 755k images including pose, il-
lumination, expression and time (sessions). For our experiments we used the
neutral photographs of 249 individuals in the first session in 3 poses (0◦, 30◦,
45◦) cut to 512 x 512 pixels (see Figure 1). The exact setting can be easily
reproduced by the pose and illumination indication in Table 1.

Contrary to most other approaches, we do not adapt any part of our recogni-
tion system to the Multi-PIE database.

The standard deviation σ = 0.05 of the image color1 noise model has been ob-
tained empirically by analyzing roughly 200 acceptably explained face images of
an internal database. The standard deviation of the landmarks position is in the
range of a few pixels. We use a value of σLM = 4 pixels. Our system does not use
any given knowledge about landmarks, pose or illumination present in the image.
The only assumption we take, is that there is exactly one face in every image.

We use the detection maps of 9 fiducial points (mouth corners, eye corners,
nose tip, nose wingtips). By drawing 5000 samples from the Markov chain, we
adapt the pose, the illumination, 50 texture and 50 shape parameters. For the
recognition experiment, we use the best sample (maximum posterior probability)
given the image and detection maps obtained during the sampling run. The
overall runtime per image is under 10 minutes on current consumer hardware.

1 Color values are ranged c ∈ [0, 1].
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(a) (b) (c) (d) (e)

Fig. 1. Sample images for the ID 1 in the Multi-PIE database. The poses used for our
recognition experiment are a) 45◦, b) 30◦ and c) 0◦. Feature points we detect are shown
in b). In c), the ten best face candidates are drawn. For the best face box (brightest
red) we show the detection map for the right inner eye corner in d). Our fully automatic
fitting result is shown in e).

Table 1. Rank-1 Identification rates (percent) and Rank-3 Identification rates (per-
cent, in brackets) across pose, obtained by frontal 0◦ (051 16) images of all 249 first
session individuals as gallery and the respective pose views as probes.

30◦ (130 16) 45◦ (080 16)

our method 90.36 (96.39) 74.70 (86.75)
manual landmarks 93.57 (97.99) 81.93 (90.76)
3DGEM [17] 86.70 65.00

To measure the similarity between two faces f1 and f2, the cosine angle be-
tween the concatenation of our shape and color model coefficients is used, as
suggested by Blanz and Vetter [4]: d = 〈f1, f2〉/(‖f1 ‖·‖ f2‖).

The Rank-1 identification rate refers to the proportion of probe images where
the closest face in the gallery is of the same individual as the probe image. The
Rank-3 allows the correct face to appear within the 3 closest faces.

Fig. 2. Original image with unreliable face detections (boxes), on the right: face region
selected by the algorithm as original (top) and final face reconstruction result (lower)
(Image: Keystone/epa/Jason Szenes)
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Although our method is much more general (see Figure 2), we outperform
state of the art methods for face recognition. Prabhu et al. reached the results
closest to ours across pose variation using 3D Generic Elastic Models [17].

Previous approaches to fit a 3DMM [4,16] relied on manually annotated land-
marks. If we use our system with these user-provided landmarks, implementing
a perfectly reliable feature detection, we can slightly improve the recognition
performance.

5 Conclusion

We presented a novel general concept to integrate unreliable information of var-
ious sources into the fitting process of a Morphable Model. In contrast to other
fitting methods our proposed stochastic approach is not susceptible to local min-
ima. Additionally, the DDMCMC integration concept, based on the Metropolis
algorithm, is open to integrate further sources of information like an outlier
model for glasses or segmentation of the face into different classes, such as skin,
hair and eyes. Regression on the facial pose or expression would add further
hints. More information can be used to explore probable hypotheses directly
and should therefore improve the final result. All these noisy proposals can be
integrated in the proposed approach in contrast to traditional fitters.

Using this concept, we demonstrated a straightforward application integrating
unreliable face and landmark detection into model fitting without commitment
to a single detection hypothesis. The developed method solves a face recognition
task with state of the art performance, without any user input or database
adaption.
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