

A.I. Awad, A.E. Hassanien, and K. Baba (Eds.): SecNet 2013, CCIS 381, pp. 54–64, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Virtualized Network Testbed for Zero-Day Worm
Analysis and Countermeasure Testing

Khurram Shahzad, Steve Woodhead, and Panos Bakalis

Internet Security Research Laboratory, University of Greenwich, Chatham, Kent, UK
{K.Shahzad,S.R.Woodhead,P.Bakalis}@gre.ac.uk

Abstract. Computer network worms are one of the most significant malware
threats and have gained wide attention due to their increased virulence, speed
and sophistication in successive Internet-wide outbreaks. In order to detect and
defend against network worms, a safe and convenient environment is required
to closely observe their infection and propagation behaviour. The same facility
can also be employed in testing candidate worm countermeasures. This paper
presents the design, implementation and commissioning of a novel virtualized
malware testing environment, based on virtualization technologies provided by
VMware and open source software. The novelty of this environment is its scal-
ability of running virtualised hosts, high fidelity, confinement, realistic traffic
generation, and efficient log file creation. This paper also presents the results of
an experiment involving the launch of a Slammer-like worm on the testbed to
show its propagation behaviour.

Keywords: Worms, malware, Slammer, testbed, virtualization, VMware.

1 Introduction

Computer worms are a serious potential threat to network security. The high rate of
propagation of worms and their ability to self-replicate make them highly infectious.
A zero-day worm is a type of worm that uses a zero-day exploit; a publically un-
known and un-patched vulnerability in network daemon software [1]. SQL Slammer
is considered to be the fastest zero-day random scanning worm in history as it in-
fected more than 75K hosts in less than 10 minutes [2]. The Stuxnet worm is a recent
addition to this class of malware that spies on and subverts supervisory control and
data acquisition (SCADA) systems and was the first network worm to include a pro-
grammable logic controller (PLC) rootkit [3].

Whilst other experimental malware testbeds have been reported, further improve-
ments in this area will allow greater effort to be exerted in the development of mal-
ware defense techniques, such as worm countermeasures. Physical network setup
[4, 5, 6, 7], simulation [8, 9, 10, 11], emulation [12, 13, 14] and virtualization [15, 16,
17, 18, 19, 20, 21] are some of key techniques previously reported for creating such
experimental testbeds. The major challenges in implementing such a test environment
are fidelity, scalability, confinement, realistic benign and malicious traffic generation,

 A Virtualized Network Testbed for Zero-Day Worm Analysis 55

efficient log file creation, rebuild and configuration time, analysis and visualization,
multi platform support, portability to different physically distributed testing environ-
ments, and flexibility in adjusting to experimental needs [17]. These diverse require-
ments of network and security experimental research are not well met by any single
existing testbed. Competing methods remain popular because each tries to cover some
portion of these requirements. Hence there is a need to design, implement and eva-
luate a novel virtual testing environment which incorporates increased granularity and
instrumentation functionality.

With the aim of addressing these points, this paper presents the design, implemen-
tation and commissioning of a novel virtualized malware testbed, which employs
VMware virtualisation technology and a range of open source software. We refer to
the testbed as the Virtualized Malware Testbed (VMT). The novelty of this envi-
ronment is its scalability, high fidelity, confinement, realistic traffic generation, and
efficient log file creation. The paper also presents the results of an experiment involv-
ing the launch of a Slammer-like worm within VMT, to show the propagation beha-
vior of the worm, and to validate the operation of the testbed.

The remainder of paper is presented as follows: Section 2 summarises the relevant
previous work; Section 3 details the design, implementation and commissioning of
VMT; Section 4 presents the experimental methodology and results of launching the
Slammer-like pseudo-worm; and finally Section 5 concludes the paper with a discus-
sion summarizing the findings and identifying any limitations, as well as summarising
potential future work in this area.

2 Relevant Previous Work

Various network and malware testing environments have been built and proposed in
the past which can be classified into the following categories:

• Physical machine testbeds
• Simulation testbeds
• Emulation testbeds
• Virtual machine testbeds
• Full system virtualization testbeds

2.1 Physical Machine Testbeds

Physical machine testbeds employ real physical hosts and network hardware for con-
ducting research experiments. Emulab [4] was a distributed physical network setup,
implemented for conducting research experiments. It consists of 218 physical nodes
distributed between two US universities. Netbed [4] is a simulation environment im-
plemented on Emulab that provides time and space sharing and employs ns-2 [11] for
research and development. Emulab evolved into DETER [5], which is a cluster based

56 K. Shahzad, S. Woodhead, and P. Bakalis

testbed, consisting of high end workstations and a control software. It uses
high-performance VLAN-capable switches to dynamically create nearly arbitrary
topologies among the nodes. It was the first testbed to be remotely accessible through
the public internet infrastructure. The 1998 DARPA off-line intrusion detection
evaluation [6] and LARIAT [7] are also two physical machine testbeds sponsored by
US Air Force and developed at the Lincoln Laboratory, MIT.

2.2 Simulation Testbeds

Simulation testbeds employ simulation tools to conduct network experiments. PDNS
and GTNetS [8] were two network simulators for developing packet level worm mod-
els. These simulators allow an arbitrary subject network configuration to be specified
consisting of scan rate, topology and background traffic. On the basis of defined input
parameters, various types of outputs such as number of infected hosts in any given
instance, sub-millisecond granularity of network event statistics or a global snapshot
of the entire system are produced. Ediger reported the development of the Network
Worm Simulator (NWS) [9], which implements a finite sate machine concept to simu-
late network worm behavior. Tidy et al [10] have reported a large scale network
worm simulator aimed at the investigation of fast scanning network worms and can-
didate countermeasures.

2.3 Emulation Testbeds

Emulation testbeds provide a compromise between simulation and real world testing.
ModelNet [12] and PlanetLab [13] are two emulated testbeds, implemented for gener-
al networking and distributed system experiments. In ModelNet, unmodified applica-
tions run on edge nodes, configured to route all their packets through a scalable core
dedicated server cluster, by emulating the characteristics of a special target topology.
PlanetLab was developed for the purpose of creating world-wide distributed systems,
and has a dual nature of being used by developers and clients. Honeypots such as
Honeyd [14] can also be classified as an emulation system as it has been used in many
recent security systems for malware detection and capture.

2.4 Virtual Machines Testbeds

Virtual machine testbeds employ virtualization technologies as their main building
block to conduct security and network experiments. ReVirt [15] is an advanced VM-
based forensic platform which enhances individual virtual machines with efficient
logging and replay capabilities, by redirecting log files from the guest OS to the host
OS, for intrusion analysis purposes, thereby making it possible for malware analysis
researchers to replay the malware exploitation process in an intrusion by intrusion
fashion. Based on ReVirt [15] research, another platform VMWatcher [16] was

 A Virtualized Network Testbed for Zero-Day Worm Analysis 57

developed that places the anti-virus system in the hypervisor layer, in order to be un-
reachable by the attacker. Research in SINTEFF ICT [17] has examined the effect of
malicious software on a Windows XP workstation by utilizing Nessus [22] as the
attacker, Wireshark [23] as a sniffer, Snort [24] as a NIDS and Sysinternals[25] to
provide HIDS functionality.

2.5 Full System Virtualization Testbeds

Full system virtualization testbeds employ full virtualization; a technique that pro-
vides a type of virtual machine environment with complete simulation of the underly-
ing hardware. vGround [18] has extended UML’s virtual networking capabilities by
supporting a VM-create-VM approach to automatically extend the network size. It
uses Snort [24] and Bro [26] as NIDS and Kernort [27] as a HIDS to monitor worm
target discovery and propagation. ViSe [19] provides a virtualization platform where
malware exploits can be tested against the entire range of x86 based operating sys-
tems under controlled conditions, while being monitored by a NIDS. V-NetLab [20]
has implemented a model based on DETER’s [5] remote access capability by utilizing
data link layer virtualization and packet encapsulation, thereby providing a more
secure means of remote access to security related Testbeds. Golath [21] is a virtual
network based on a Java Virtual Machine (JVM) and the Ultra light-weight abstrac-
tion level (ULAL). It provides a virtual environment to run any application written in
Java, independent of the type of host operating system. System behavior can be moni-
tored in this environment by adding different Java plug-in extensions.

2.6 Motivation

As far as the authors of this paper are aware, no previous virtualized malware testing
environment has provided a scalable solution with a large number of virtual machines
for security experiments by using VMware technologies. Isolation of the test envi-
ronment from the management network with remote access also seems to be a prob-
lem. It is also noted that no previous reported work has produced infection and propa-
gation analysis of any fast random scanning worm such as SQL Slammer in a real
network with real world slammer exploitable conditions.

3 Virtualized Malware Testbed (VMT) Design and Capabilities

The Virtualized Malware Testbed (VMT) was designed with the intention of employ-
ing it in an investigation of exiting and hypothetical zero-day worms; and testing can-
didate worm countermeasures. Our goals of implementing VMT were experimental
scalability, fidelity, repeatability, programmability, remote access and efficient log
file creation.

58 K. Shahzad, S. Woodhead, and P. Bakalis

3.1 Architecture, Design and Implementation

VMT uses VMware ESXi [28] as the core virtualization technology and Damn Small
Linux (DSL) [29] as the main virtualised operating system. It also uses Quagga [30]
to provide a software routing suite. VMware vCenter Server [31] provides a graphical
user interface to manage VMware ESXi servers remotely.

Fig. 1. Physical Network Setup

Figure 1 illustrates the physical architecture of VMT. It consists of a server farm
with five servers, a management server and Ethernet switches. Each server in the
server farm is running ESXi while the management server is running VMWare vCen-
ter Server. One network interface card in each server farm machine is connected to a
logically isolated management network along with the management server; thereby
allowing access to all resources from one interface. Multiple virtual topologies can be
created within the server farm by using virtual local area networks (VLANs) and
Quagga. Each DSL virtual machine image is installed with 32 MB of memory and 1
GB hard disk. Table 1 summarizes the hardware and operating systems which make
up the VMT infrastructure.

 A Virtualized Network Testbed for Zero-Day Worm Analysis 59

Table 1. VMT Hardware and Operating System Infrastructure

 Processors No of

cores

Operating

System

Memory Storage VMs

Server 1 i7 6 ESXi 5.1 64 GB 1 TB DSL,

Ubuntu

Server 2 i7 4 ESXi 4.1 24 GB 1 TB DSL,

Ubuntu

Server 3 i7 4 ESXi 4.1 24 GB 1 TB DSL,

Ubuntu

Server 4 Xeon 4 ESXi 4.1 8 GB 512GB DSL,

Ubuntu

Server 5 Xeon 4 ESXi 5.1 8 GB 512GB DSL,

Ubuntu

Management

Server

i7 4 Windows

Server

2003 R2

8 GB 2 TB N.A

Routing Server i5 2 Ubuntu

Quagga

4 GB 512GB N.A

A minimum rebuild and configuration time are key goals of any security testing

environment. VMware vCenter Server provides PowerCLI [32]; a command line in-
terface tool that allows administrators to create simple and robust scripts to automate
the main tasks, including virtual machines cloning.

4 Experimentation

4.1 Slammer-Like Pseudo Worm

In order to analyze the behavior of a SQL Slammer-like worm; we developed a net-
work daemon which implements a Slammer-like pseudo-worm. This daemon listens
on UDP port 1434 and upon receiving a datagram with an appropriate authentication
string (included for safety reasons), it begins generating UDP datagrams addressed to
port 1434 and to random IP addresses. The speed of datagram generation per second,
and the pool from which the random destination IP addresses are chosen are configur-
able parameters. We have also implemented a logging server. At the point of “infec-
tion”, the pseudo-worm daemon sends an infected time message to the central logging
server.

4.2 Experimental Setup

We have setup a virtual test network comprising of a single Class A address space
10.0.0.0/8 but divided into four subnets; 10.0.0.0/10, 10.64.0.0/10, 10.128.0.0/10 and
10.192.0.0/10 as shown in Figure 2. These four subnets are connected through a cen-
tral router by using RIP, configured on Quagga. Four further Quagga based routers

60 K. Shahzad, S. Woodhead, and P. Bakalis

are implemented (one for each subnet). One Linux based virtual machine is running in
each subnet to provide a DHCP service. DSL is installed with the pseudo-worm dae-
mon on each of the susceptible virtualised hosts. All hosts in the network are time
synchronized by using the Network Time Protocol (NTP).

Fig. 2. Virtual Experimental setup for Slammer- like Pseudo Worm Behavior Analysis

4.3 Experimental Methodology

Moore et al. [2] reported a set of key characteristics of the Slammer worm outbreak in
2003 and these were used to set up the experimental parameters. Moore et al. reported
that 18 hosts per million of the entire IPv4 addresses space were susceptible to infec-
tion. They also observed that the Slammer worm exhibited an average scan rate of
4,000 datagrams per infected host per second.

A single class A network has 224 hosts, and so will contain 224 * 0.000018 = 302 sus-
ceptible hosts. On this basis, 302 virtual machines with the Slammer like pseudo-worm

 A Virtualized Network Testbed for Zero-Day Worm Analysis 61

daemon were deployed across the four subnets. Each worm daemon was configured to
scan within a single class A network (10.0.0.0/8). In order to avoid overloading the
server farm hardware (in which case we would have been measuring the effect of the
hardware restrictions, rather than the properties of the worm) we scaled back the aver-
age worm scanning rate by a factor of 80. Therefore, based on an average scan rate
reported by Moore et al of 4000 scans per second, we configured the Slammer-like
network daemons to scan at 50 scans per seconds in our experiment.

4.4 Experimental Results

Figure 3 shows the results of the experiment, with the time axis scaled down by a
factor of 80, to make the results comparable with the real infection event of 2003,
reported by Moore et al [2].

In order to provide a baseline comparison, we have also plotted a suscepti-
ble/infected analytical model, based on the Logistic Equation, reported by Ediger [9].

The VMT experiment achieved infection of 99% of vulnerable hosts within ap-
proximately 14 minutes. This time is directly comparable with that reported in [2]
for the real Slammer event of 2003. We have also plotted available data from [2] for
the 2003 event, in Figure 3 (empirical data is only available for the first 4 minutes of
infection), and it can be seen that the VMT experimental results are again, broadly
comparable.

Fig. 3. Experimental Results for Slammer-Like Worm Infection on VMT

5 Discussion

The cyber-epidemiological analysis of zero-day internet worms remains a significant
challenge and use of virtualized testbeds remains a viable tool for such research. This
paper has presented a novel Virtualized Malware Testbed (VMT) for worm testing
based on VMware ESXi and open source software. We have also demonstrated its
feasibility for epidemiological experimentation for a Slammer–like pseudo-worm.

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

Time (mins)

N
um

be
r

of
 In

fe
ct

ed
 H

os
ts

 in
 a

 C
la

ss
 A

 N
et

w
or

k

Number of Infected Hosts against Time for Slammer-like Worm

VMT Experimental data

Empirical data from Moore et al
Analytical Model Data

62 K. Shahzad, S. Woodhead, and P. Bakalis

In comparison with other network and security testing environments, VMT pro-
vides an effective, scalable, remotely manageable and isolated environment, which
also incorporates efficient log creation. It is expected that VMT will be a useful expe-
rimentation environment for epidemiological investigations of existing and hypotheti-
cal zero-day worms, as well as the investigation and evaluation of candidate counter-
measures.

5.1 Limitations and Future Work

This paper has reported the design, implementation and initial testing of VMT with a
single network worm type. The experimentation has also been limited to the scale of
a single class A network (circa 16M hosts).

In terms of future work, we shall be exploring the use of VMT to explore the sto-
chastic properties of worms, as well as its ability to investigate other types of network
worm. We also expect to experiment with a range of candidate worm countermea-
sures, and to explore the applicability of VMT for charactering the epidemiology of
more sophisticated malware threats, such as Stuxnet.

Acknowledgment. VMware ESXi, VMware VCenter servers are provided as part of
VMware Academic Program. (http://www.vmware.com/partners/academic/
program-overview.html).

References

1. Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: A taxonomy of computer worms.
In: Proceedings of 2003 ACM Workshop on Rapid Malcode, pp. 11–18. ACM Press, New
York (2003)

2. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside the
Slammer worm. IEEE Security and Privacy 1(4), 33–39 (2003)

3. Langner, R.: Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Privacy 9(3),
49–51 (2011)

4. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S.: An integrated experimental
environment for distributed systems and networks. In: Proceedings of 5th Symposium on
Operating Systems Design and Implementation, Boston, MA, USA, pp. 265–270.
USENIX (2002)

5. Benzel, T., Braden, R., Kim, D., Neuman, C.: Design, deployment and use of the DETER
testbed. In: Proceedings of DETER Community Workshop on Cyber Security Experimen-
tation and Test 2007, Berkeley, CA, USA, pp. 1–8. USENIX (2007)

6. Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D., Weber,
D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., Zissman, M.A.: Evaluating intru-
sion detection systems: the 1998 DARPA off-line intrusion detection evaluation. In: Pro-
ceedings of the 2000 DARPA Information Survivability Conference and Exposition
(DISCEX), vol. 2, pp. 12–26. IEEE Press, New York (2000)

7. Rossey, L.M., Cunningham, R.K., Fried, D.J., Rabek, J.C., Lippmann, R.P.: LARIAT:
Lincoln Adaptable Real Time Information Assurance Testbed. In: Proceedings of IEEE
Aerospace Conference, Big Sky, Montana, USA, vol. 6, pp. 2671–2682. IEEE (2002)

 A Virtualized Network Testbed for Zero-Day Worm Analysis 63

8. Perumalla, K.S., Sundaragopalan, S.: High fidelity modeling of computer network worms.
In: Proceedings of the 20th Annual Computer Security Applications Conference
(ACSAC), Tucson, AZ, USA, pp. 126–135. ACSA (2004)

9. Ediger, B.: Simulating Network Worms, http://www.stratigery.com/nws/
10. Tidy, L., Woodhead, S.R., Wetherall, J.C.: A Large-scale Zero-day Worm Simulator for

Cyber-Epidemiological Analysis. UACEE International Journal of Advances in Computer
Networks and Security 3(2), 69–73 (2013)

11. ns (network simulator), http://www.isi.edu/nsnam/ns
12. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P.: Scalability and accuracy in a large-

scale network emulator. In: Proceedings of USENIX 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI), Boston, MA, USA, pp. 271–284. USENIX
(2002)

13. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blue print for introducing disruptive
technology into the internet. SIGCOMM Computer Communication Review 33(1), 59–64
(2003)

14. Provos, N.: A virtual Honeypot framework. In: Proceeding of USENIX 13th Security
Symposium, San Diego, USA, pp. 1–14. USENIX (2004)

15. Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P.: ReVirt: enabling intrusion analysis
through virtual machine logging and replay. In: Proceeding of USENIX 5th Symposium on
Operating Systems Design and Implementation (OSDI), Boston, MA, pp. 208–223.
USENIX (2002)

16. Jiang, X., Wang, X.: Stealthy malware detection through VMM-Based “out-of-the-box”
semantic view reconstruction. In: Proceedings of 14th ACM Conference on Computer and
Communication Society (CCS), Alexandria, VA, USA, pp. 128–138. ACM (2007)

17. Jenson, J.: A novel testbed for detection of malicious software functionality. In: Proceed-
ing of Third International Conference on Availability, Security and Reliability, Barcelona,
Spain, pp. 292–301. IEEE (2008)

18. Jiang, X., Xu, D., Wang, H.J., Spafford, E.H.: Virtual Playgrounds for Worm Behavior In-
vestigation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 1–21.
Springer, Heidelberg (2006)

19. Årnes, A., Haas, P., Vigna, G., Kemmerer, R.A.: Digital Forensic Reconstruction and the
Virtual Security Testbed ViSe. In: Büschkes, R., Laskov, P. (eds.) DIMVA 2006. LNCS,
vol. 4064, pp. 144–163. Springer, Heidelberg (2006)

20. Sun, W., Katta, V., Krishna, K., Sekar, R.: V-netlab: an approach for realizing logically
isolated networks for security experiments. In: CSET 2008: Proceedings of the Conference
on Cyber Security Experimentation and Test, Berkeley, CA, USA, pp. 1–6. USENIX
(2008)

21. Fagen, W., Cangussu, J., Dantu, R.: A virtual environment for network testing. Journal of
Network and Computer Applications Archive 32(1), 184–214 (2009)

22. Nessus Vulnerability Scanner, http://www.tenable.com/products/nessus
23. Wireshark, http://www.wireshark.org/
24. Snort, http://www.snort.org/
25. Windows Sysinternals,

http://technet.microsoft.com/en-US/sysinternals
26. The Bro Network Security Monitor, http://www.bro.org/
27. Jiang, X., Xu, D., Eigenmann, R.: Protection mechanisms for application service hosting

platforms. In: Proceedings of 4th IEEE/ACM International Symposium on Cluster Compu-
ting and the Grid (CCGrid 2004), Chicago, Illinois, USA, pp. 633–639. IEEE Computer
Society (2004)

64 K. Shahzad, S. Woodhead, and P. Bakalis

28. VMware ESXi, http://www.vmware.com/products/vsphere/
esxi-and-esx/overview.html

29. Damn Small Linux (DSL), http://www.damnsmalllinux.org
30. Quagga Software Routing Suite, http://www.nongnu.org/quagga
31. VMware vCenter Server,

http://www.vmware.com/products/vcenter-server/overview.html
32. VMware vSphere PowerCLI,

http://communities.vmware.com/community/vmtn/server/
vsphere/automationtools/powercli?view=overview

	A Virtualized Network Testbed for Zero-Day Worm Analysis and Countermeasure Testing
	1 Introduction
	2 Relevant Previous Work
	2.1 Physical Machine Testbeds
	2.2 Simulation Testbeds
	2.3 Emulation Testbeds
	2.4 Virtual Machines Testbeds
	2.5 Full System Virtualization Testbeds
	2.6 Motivation

	3 Virtualized Malware Testbed (VMT) Design and Capabilities
	3.1 Architecture, Design and Implementation

	4 Experimentation
	4.1 Slammer-Like Pseudo Worm
	4.2 Experimental Setup
	4.3 Experimental Methodology
	4.4 Experimental Results

	5 Discussion
	5.1 Limitations and Future Work

	References

