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Abstract. As we move towards a world where all the traditional household 
appliances and basic industrial devices are being transformed into interactive 
high-computing devices, an ecosystem of these smart devices is emerging. With 
this impending revolution, often coined the Internet of Things, one of the un-
derstated challenges is the security infrastructure that must accompany the dep-
loyment of this ecosystem. In this paper we propose a security framework that 
leverages hierarchical hardware memory mapping, modularity of the Operating 
System, and an efficient biometric aided ECC cryptosystem to work together 
towards this security need. We focus on the secure and efficient implementation 
of OTA updates and inter-device communication. Our work shows that by inte-
grating several novel improvements based on real system considerations with 
state-of-the art techniques, we can build a commercially feasible security 
framework for these devices that is 35% faster and 5% more load efficient than 
current state-of-the-art ECC-based cryptosystems and OTA compression 
schemes. 

Keywords: OTA, security framework, biometrics, elliptic curve cryptography, 
Internet of Things. 

1 Introduction 

While the use of smartphones is already ubiquitous and the number of software-
controlled electronic components in a car continues to increase at a fast rate, we have 
yet to see a widespread deployment of other devices capable of smart computation 
and high user interaction. These devices range from printers and TVs, whose smart 
versions are slowly being introduced to the market, to consumer electronics, such as 
refrigerators and thermostats whose smart versions are yet to achieve a significant 
consumer base.  

While these smart devices lack strong connectivity among each other, their design 
is trending towards high performance computing with innovative capabilities and high 
interconnectivity among them. For example, envision a smart shower system, a ther-
mostat with access to the outside weather, and a smart car, all Wi-Fi enabled. If the 
smart shower system learns that the user will want to drive his car within 10 minutes 
of getting out of the shower, it can query the thermostat to determine whether the 
weather outside is below a certain temperature, it will request the car engine to start as 
soon as the user is out of the shower. Similarly, a smart fridge can keep track of all 
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items stored inside, and if a grocery item is running low, it can query the closest lap-
top in the house to place an order on an online grocery-shopping site. In this manner, 
these devices can create a smart device ecosystem. Figure 1 illustrates an ecosystem 
of this nature. 

 

Fig. 1. Sample ecosystem of smart devices of the future 

Connectivity enablement for these ecosystems has already been recognized as a 
need [1], and has been the leading motivation to create Operating Systems such as 
Tizen [2], which can enable a web API based connectivity infrastructure among all 
these devices.  However, while providing a natural next step towards smart device 
evolution, these ecosystems make attractive targets for security breaches. Going back 
to the examples above, a malicious attacker can now masquerade as the shower sys-
tem, creating a replay attack to turn on the car engine whenever he desires, or mas-
querade as the fridge to charge any grocery items it pleases to the user’s credit card. 
Hence, security for such ecosystems is imperative.  

In this work, we propose a framework to address this security need. Unlike the pre-
viously proposed security frameworks, our work leverages three key unique aspects 
of these devices: (1) Unlike nodes on a WSN, these devices are expected to have 
some level of user interaction; (2) Unlike mobile phones, because these devices live 
within a geographically-limited network, we must consider efficient intra-net com-
munications among them; (3) Given the known software and hardware deployment 
patterns of these devices, there are optimization areas at the software-hardware inte-
gration level. Our work proposes a strong, efficient, and flexible security framework, 
which takes into account unique aspects of smart devices including their physical 
memory layout, the patterns of OTA update deployments, and the need for ergonomic 
and cost-efficient designs. 

The rest of the paper is divided into seven sections. Section 2 discusses previous 
work on the different areas that make up security infrastructures of this nature and 
Section 3 discusses the high level view of the proposed infrastructure. Section 4 con-
tains the description of the framework, including the hierarchical OS design, OTA 
transmission protocol, proposed encryption algorithms and the biometric sensor inte-
gration. Section 5 presents the system performance results and Section 6 concludes 
the paper.  

2 Related Work 

The imminent arrival of the Internet of Things (IoT) infrastructure is best envisioned 
in [1]. Any IoT device must possess an OTA update capability. Several OTA-enabled 
frameworks have been proposed. The essential OTA enablement steps are outlined in 



206 M. Salas 

 

[3]. The OTA-PSD framework [4] shows the underlying mechanism from the user 
and provider necessary for OTA updates, including the XML based software version-
ing scheme. The OTA-WNS framework [5] shows how to model a device’s state as 
an OTA-update-centric state machine.  

Furthermore, any OTA framework needs security, as outlined in [6]. The security 
extension for OTA-enabled devices proposed in [7] relies on the use of the TLS ex-
tension over TCP packets. Similarly, the SenseOP framework [8] makes use of ECC 
encryption to provide security guarantees assuming tamper proof device interfaces, 
which do not always hold. In [9], a hash chains based security framework for OTA 
updates on smart cars is proposed, although it is computationally light, it relies exclu-
sively on tamper proof devices that make use of private keys. Similar to the SenseOP 
protocol, such assumptions will create single point vulnerabilities in IoT infrastruc-
tures. Our framework does not rely on these assumptions. 

An OTA-enabled IoT device also needs to take into account the process of selecting 
the data for the OTA update. Since an OTA update must use network bandwidth, we 
are concerned with minimizing the transmission data and latency required. Recently 
proposed efficient solutions such as The Two-step Differential [10] and Queen Diffe-
rential [11] are schemes that transmit only the difference between the current and new 
software and firmware version. Regardless whether such differential schemes are 
applied, typically the data is compressed. Conventional compression schemes are not 
ideal in this model, since the computing should be loaded onto the server whenever 
possible. In contrast, Byte Pair Encoding, explored in [12] and [13], is an asymmetric 
technique fit for this scenario. 

Our framework relies on an improved version of Queen Differential, QDiff. The 
raw QDiff scheme relies in the two-stage differential process shown in figure 2 [10]. 
While QDiff can achieve small deltas in the image, it does so with some drawbacks. 
First, its space pre-allocation creates some slop spaces when existing code is deleted. 
This has the side effect of fragmentation over the long term. Furthermore, once it has 
found the delta it sends the delta over the network without specifying a compression 
scheme. Moreover since QDiff algorithm runs in exponential time with the size of the 
code in question, a large code database can make its runtime prohibitively large. Fi-
nally, QDiff is not optimized towards exploiting the lifecycle patterns of the OTA 
updates, which will be discussed in section V.  

 

Fig. 2. Sample addition/deletion of new code for small-delta OTA updates using two-stage 
differential schemes such as QDiff. (a) Shows an update when a memory component (Y) 
grows. (b) How the scheme attempts to minimize component delta and slop space. 
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Finally, our framework relies on public cryptography because the devices are inhe-
rently heterogeneous and hence do not share a secure channel. Among public crypto-
systems, the RSA public cryptosystem is the most widespread protocol, relying on the 
difficulty of factoring large numbers and finding discrete logarithms. According to the 
NISA, we can achieve a similar security offered by RSA cryptographic systems with 
Elliptic Curve Cryptography (ECC) through the use of a much smaller key size. A 
comparison of key sizes is shown in table 1 [14]. The performance advantages of 
ECC over RSA are outlined in [15], and security frameworks for mobile devices 
based on ECC are proposed in [16] and [17].  Note that as specified by the NISA, this 
relies on choosing a strong ECC curve. 

Table 1. Equivalent security strength guarantees between symmetric key algorithms, RSA and 
ECC, by key sizes 

 

Finally, the key to our scheme is the use of biometrics. However, the use of biome-
trics to authenticate users typically suffers from accuracy issues. Proposed solutions 
can be divided into multi-sensor devices [18][19][20], whereby two or more biometric 
sensors are taken as inputs to improve accuracy, or multi-algorithm, whereby two or 
more algorithms are run independently based on the same biometric sensor. The for-
mer approach suffers from poor ergonomics: asking a user to first log in with a face 
read, then with a fingerprint, and finally with a retina reading might yield a high-
accuracy, high-security system, but it would be far from practical for consumer devic-
es. The latter approach suffers from the limitations of the biometric sensor itself. If a 
biometric sensor reads a fingerprint and takes several patterns of it, the finger itself 
can become a single point of failure. Instead, our approach is a simple and ergonomic 
solution based on a hybrid multi-sensor approach. 

3 High Level Overview 

In the smart device ecosystem, there are three forms of communications: (1) from the 
device to the OTA provider, (2) among the smart devices inside the ecosystem in an 
ad-hoc wireless network, and (3) from the devices to other HTTP servers on the inter-
net. This is shown in figure 3(a). In this paper we are exclusively concerned with (1) 
and (2) because it is assumed that (3) can be handled using HTTPS requests and de-
pends uniquely on the HTTP server policies of which we have no control over. Thus 
in our framework we optimize towards those two communication paths. Furthermore 
we model communication between the manufacturer and the device to be exclusively 
OTA updates. We assume that the hardware manufacturer and the operating system 
provider act as a joint entity, henceforth referred to as the manufacturer, for device 
updates. Therefore, we assume that OTA updates concern all of the ROM contents: 
the operating system, the firmware, and immutable native user applications. There-
fore, in this paper, any OTA update reference is interchangeable with OTA-ROM 
updates. The high-level scheme is depicted in figure 3(b).  
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Our contributions are as follows. We exploit hierarchical memory mapping for 
OTA benefits and encrypting a secure key. Furthermore, we propose leveraging the 
software update versioning scheme in use today for OTA updates. Finally, we pro-
pose a novel fingerprint-based biometrics to provide user authentication and aid the 
ECC encryption protocol.  

 

Fig. 3. (a). High level overview of the framework. The three types of communication in the 
smart device ecosystem: (1) from the device to its OTA server, (2) intra communication, and 
(3) from the device to other HTTP servers. Notice that we assume heterogeneous devices and 
providers. (b) High level model of the proposed security framework focusing on (1) and (2) 

4 Security Framework Description 

Our framework consists of four different components: a hierarchical memory map-
ping for OTA updatable components, an OTA protocol, an encryption scheme, and a 
biometric sensor support. Each of these is described in detail below. 

4.1 Operating System Support 

We propose the use of a modular Operating System and its firmware components so 
that hierarchical memory mapping in the ROM is achievable. We propose dividing up  
 

 
Fig. 4. Memory organization for the OTA components (a) Shows the proposed memory parti-
tion with sample memory addresses. (b) Shows a two level hierarchy that although one could 
use to partition the memory would result in severe fragmentation. 
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the ROM into a four component hierarchy, so that ROM updates can be treated sepa-
rately for each of these four hierarchies. Figure 4(a) shows the proposed division.  

Note that we arbitrarily choose three major hierarchies and allocate a fourth hie-
rarchy for the rest. Although we could extend this to a two-level hierarchy as ex-
plained conceptually in figure 4(b), we do not do so because more partitions are likely 
to cause code fragmentation and reduce the ability of the compiler to allocate memory 
space efficiently. 

4.2 OTA Update Protocol 

The trend for smart device development, from game consoles to smartphones, is to 
release software and firmware OTA updates backwards compatible with the devices 
up to a target device life cycle. For example, Android and iOS devices can continue 
receiving firmware updates from the device manufacturer up to a few years out in 
time, after which the device is no longer supported. The target device life varies 
sharply among devices, with gaming consoles lasting roughly a decade. However, 
software and/or firmware OTA updates follow a cyclical pattern such that there is a 
major upgrade, encompassing new device features, followed by several minor firm-
ware updates, typically targeted towards bug fixing. Figure 5 illustrates the typical 
firmware OTA update deployment cycle. As mentioned in section 2, in our frame-
work, we propose using a modified version of the Queen Differential (QDiff): the 
Modular and Cycle Aware extended Queen Diff (MCA-QDiff). 

 

Fig. 5. Typical firmware update lifecycle for smart devices, including minor and major releases 

The modularity of the OS memory mapping enables MCA-QDiff to operate at a 
finer grain than the original QDiff by enacting the code delta on a ROM hierarchy 
only if it was marked as touched. To obtain this functionality, at the time that an OTA 
is deployed, a header packet contains information about whether a ROM hierarchy 
will receive an update or not. Furthermore, because the order of the ROM is hierar-
chical as described in section 4.1, the area of the ROM that each of these hierarchies 
occupy is bounded by address ranges. This allows the code delta to be applied only at 
that level of hierarchy. For our proposed infrastructure, there are four hierarchies 
living in the OTA updatable ROM image: micro-kernel, native software applications, 
device drivers, and miscellaneous functions that do not fall into any of the previous 
three categories.  Inside any of these hierarchies, memory boundaries blur and we let 
the compiler produce an efficient image implementation. Once a hierarchy in the 
ROM has been marked as needing update by the header packet, it applies the raw 
QDiff approach.  
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As mentioned in section 2, QDiff adds jump instructions to link the current code 
with the new code and pads where the old code is deleted, thus minimizing compile 
image differences. However, conducting this procedure repeatedly can create exces-
sive padding in the gaps of the erased code leading to code fragmentation, and is es-
pecially inefficient when the code deltas are very large. In fact, there is nothing stop-
ping the raw QDiff to produce an image delta that is larger than the whole image it-
self. However, because we now have an idea of how the ROM updates are being per-
formed, we know that it is not reasonable to send a compressed image when it has had 
major code overhaul. So instead, MCA-QDiff chooses to send the complete image of 
a given hierarchy when such overhauls happen, and compute the ROM code delta 
only on minor updates. Note that even on major updates, the full image is not sent. 
For example, if the Micro-kernel and device drivers stayed the same, yet all else 
changed, it would send a header stating so, along with the changes for the other two 
chosen hierarchies. 

 

Fig. 6. Proposed MCA-QDiff transmission protocol for OTA ROM image updates. 

Whether it was a minor update with a minimal image delta produced or a major up-
date with the selectively sent full image, it is compressed prior to sending using Byte 
Pair Encoding as discussed in section 2. This yields a small image for the minor 
firmware version releases, which is asymmetrical in computing time: it takes much 
longer to encode at the server than to decode inside the device, meeting our design 
goals. Finally, we leverage the XML based approach to keep track of the ROM image 
versioning [4]. The entire OTA transmission protocol is shown in figure 6. 

4.3 Encryption Protocol 

Due to the high number of opportunities for malicious attacks, encrypted communica-
tions are a must in this ecosystem. Previously proposed approaches have made use of 
the fact that one can embed a secret key on the hardware ROM itself, often leveraging 
the serial number in the device and storing it in the manufacturer’s server database. 
This approach has two major drawbacks: (1) all encrypted device communications 
must be between the device and the manufacturer’s server that possesses this key, and 
(2) anyone able to compromise the server, can now masquerade as the server to access 
information on the target device. Thus, we turn to public key encryption to bypass 
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these challenges at the cost of increased overhead in the communications. We argue, 
however, that since this overhead is only paid when establishing new communication 
sessions, it is tolerable, given its higher flexibility, resilience, and security. Further-
more, as explained in section 2, we choose public cryptography based on ECC over 
RSA due to its smaller key size. ECC is also a computational asymmetric protocol: 
calculating a computing intensive elliptic curve can be done on the server side, while 
the rest can be done on the client side. Hence, we rely on ECC for encryption. 

To improve performance, our framework attempts to leverage the secret key chan-
nel established by the manufacturing stage process. In our framework, the manufac-
turer will install a set of private keys in the device’s ROM memory. We choose a 224 
bit ECC system because it is equivalent to the 2048 bit key RSA. Notice that a 224 bit 
key requires only 7 32-bit registers in RAM for operation, while a 2048 bit key RSA 
requires 64 32-bit registers, which is roughly the size of an entire register set found in 
simple low-power microprocessor architectures. Thus, calculations involving RSA 
keys would slow down hardware performance significantly.  

Private Key Protection. A public key cryptosystem with a compromised private key 
is no longer reliable. For this reason, our framework takes into account the two main 
security risks in private key deployment: (1) attempting to compromise the ROM 
location where the keys are stored with a bit flip, and (2) attempting to extract the key 
from the ROM location without leaving a trace of device tampering. Note that the 
former also covers reliability, since alpha particles or manufacturing defects can lead 
to bit flips.  

To address the bit flip concerns, we create a redundant copy of the key in the ROM 
at manufacturing time. Because we are trying to address bit flips, we cannot store the 
key copies in adjacent memory locations, due to the locality principle of manufactur-
ing defects and typical ROM attacks. However, we cannot place them at random 
memory locations as this would create unnecessary code fragmentation. Therefore we 
leverage the memory hierarchy proposed in section 4.1 by placing the redundant keys 
at the start of each of these hierarchies. To address device tampering on the secret 
key, the manufacturer will not just install a key, but instead create two 112 bit keys 
which will be concatenated to create the 224 bit key. Because we assume keys are 
stored in pages with 32-bit addressing, the device simply needs 4 memory locations 
for each of the two 122 bit keys, with the last memory location per key padded with 
16 bits of random data. Such system avoids an unnecessary XOR or more complex 
hash operation to produce a key based on two other keys at run-time. We assume that 
while a malicious user might snatch one of the 122 bits private keys, it is unfeasible 
that he might find both and know to concatenate them. 

Finally, since we need a dual key system for the reliability concern and a dual key 
system for the tampering concern, we use a set of four 122-bit keys, which match 
seamlessly with the four hierarchies used in the memory mapping. The full private 
key installing scheme, which we refer to as the Memory Hierarchy based Private Key 
(MHPK) scheme is illustrated in figure 7. Note that our system can detect bit flips and 
key tampering because after the first set of keys do not yield successful authentica-
tion, it will attempt its second set of keys. In the extremely rare case that the second 
key also fails, to avoid leaving the device in an obsolete state, we rely on biometric 
user authentication to request a ROM update from the server, as will be discussed in 
section 4.4.   
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Session Key Generation. While having a reliable private key in the device is the first 
step towards an ECC cryptosystem, it is far from enough. In our framework, the man-
ufacturer will install the device with its public key as well. This requires calculating 
the Elliptic Curve math at install time. The server will calculate a strong elliptic 
curve, pick a point on the curve and come up with the device’s public key based on 
the curve parameters. Once the device public key has been determined, the manufac-
turer will install the device’s public key and the manufacturer’s public key in the 
ROM of the device. This public key pair will not have the same protection scheme as 
the private key. When the device is deployed, it will now be able to calculate the ses-
sion key from the start up, based on its own private key and the server’s installed 
public key. Finally, note that it also installs the elliptic curve parameter p, a, b into the 
device so that the device will be able to just pick random points on the curve to gener-
ate different public keys later on, but will not waste resources computing another 
strong elliptic curve. 

 

Fig. 7. Memory Hierarchy based Private Key MHPK scheme. In this scheme, we use four 112 
bits to protect against malicious attacks in producing a trusted 224 bit key for ECC encryption. 
After using up the spare key, the device will request user input to re-flash the contents. 

Notice that the server only keeps the record of the device’s public key but it dis-
cards the device’s private key, yielding an attack on the server useless against the 
device itself. Finally, a packet sequence number, which resets after 232 bits for ease of 
implementation, is used as cryptographic nonce to protect against replay attacks.  

Authentication. Authentication protects the devices from man-in-the-middle attacks, 
as well as providing integrity checks. While typical authentication protocols with 
public key cryptosystems would require the use of a trusted third party to verify that 
each other’s public key is indeed what is claimed, we choose to not use certificates 
due to the large overhead of public key infrastructure such as the use of third party 
certificates. As discussed in section 3, we only concern ourselves with addressing 
communication between a device and its manufacturer server, and between two de-
vices inside the ecosystem. We choose to authenticate these connections by using a 
hash-based message authentication code. The HMAC’s secret key input is the user’s 
biometrics, whose mechanism will be discussed in detail in the next section. A strong 
but hardware efficient HMAC like the 128-bit SHA-3 [22] is suggested. Note that a 
system that authenticates devices belonging to the ecosystem using a secret key gen-
erated by the user biometrics can now block man-in-the-middle attacks because a 
malicious user without access to this key cannot masquerade as one of the devices 
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belonging to the ecosystem. Likewise, we use this key to digitally sign messages for 
inter-device communications and between the devices and their OTA provider. Note 
this supports heterogeneous devices coming from different OTA providers as it is 
likely to be the case for commercially deployed smart device ecosystems.  

 

Fig. 8. Device cryptosystem. Notice that it embeds the elliptic curve at installation time. It only 
encrypts with the ECC session key and provides authentication and integrity guarantees using a 
HMAC whose key is the hash of the user biometric, common to all ecosystem devices. The 
HMAC key is the user biometric, common among all the user’s devices. 

Table 2. Denial of Service protection provided by the framework.  Note that when there are 
only a few failed attempts, the wait time penalty is tolerable, taking into account legitimate 
failed attempts, but is unforgiving to large numbers of failed attempts. 

 

Furthermore, note we chose to use an ECC encryption scheme, instead of a sym-
metric key encryption protocol based on the device private key because the devices 
will have the different private keys with different OTA providers, and can only com-
municate with their own OTA server. Similarly, we did not rely on a symmetric key 
based on the user biometrics because if the biometric reading device were tampered 
with, it would mean that every device in the ecosystem is hopelessly compromised. 
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The entire protocol is depicted in figure 8. Finally, to protect against denial of service 
attacks, unlike the approach in [8] with a linear wait time DoS protection, our algo-
rithm will double the response time after every failed authentication attempt as depicted 
in table 2, which contains a binary factor for efficient hardware implementation.  

4.4 Biometric Authentication 

While ASCII-password-based authentication schemes remain the most popular way to 
let users take control of their systems, economical and practical biometric based sys-
tems are starting to be deployed. Biometric based systems are attractive from a user 
convenience perspective, but they pose unique challenges: (1) If a user’s raw biome-
tric data is compromised, there could be cultural and legal repercussions, (2) biome-
tric devices tend to not be 100% accurate, with the possibility of false positives and 
false negatives, and (3) the user’s biometric data must be stored in the device in a 
protected manner to avoid the compromise of this data. 

Instead of the proposed approaches discussed in section 2, ours is a hybrid multi-
sensor multi-reading approach that is both ergonomic and commercially viable. Instead 
of using heterogeneous biometric sensors, we only use fingerprint readings, one of the 
most economical biometric sensors. In our scheme, the user places all of his five fingers 
on a palm-sized finger-reading platform, and the system takes at least 3 successful fin-
gerprint readings from each of the fingers. This is because it requires the fingerprint data 
to be consistent before accepting it, as the rest of the devices will rely on this. Then, 
after having chosen the fingerprint data, it applies a one-way hash creating a key which 
will be used for the authentication scheme described in section 4.3.  

 

Fig. 9. Registration and user-authentication schemes using economical and ergonomic biome-
trics. (a) For the user registration step, it stores the hash of the user biometric after a reliable 
result has been found. (b) For the authentication step, it performs the AND-OR function. Note 
its scheme can bump a 20% false negative and positives into a system with negligible failure 
rates, as seen in part (c). 
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Finally, it allows a user to control the device settings and manual OTA ROM up-
dates by authenticating user manual activity with a scheme that can yield false posi-
tives and negatives with near zero probability. The results from first, second and third 
individual fingerprint reads are AND-ed, while in parallel, the results from the third, 
fourth and fifth fingers are also AND-ed. Then, these two results are OR-ed together 
to get the final verdict. Our full biometric based scheme is shown in figure 9. Note 
that to protect against a malicious user trying to obtain the user biometric data, we 
never store the data in the device in a raw fashion. Instead, we perform a one-way 
hash for key generation, and store this same hash to be used for user authentication as 
well. To verify user authentication, we take the input data, perform the same hash and 
compare hashes inside the device. Such scheme protects against user privacy attacks 
on the raw fingerprints themselves. 

5 Results 

We tested our protocol using a high level simulator that sets up a client acting as the 
device and two servers, one simulating the manufacturer’s OTA provider and the 
other acting as another device in the ecosystem. Finally, we set up another server 
acting as a public key infrastructure provider for certain comparison schemes, as will 
be discussed below. We simulate on four machines, all using Linux centOS 6.4, an 
Intel Xeon quad core running at a nominal frequency of 2.8 GHz, and 8 GB of RAM. 
To measure a consistent amount of data sent over the network, we send images made 
of solely ASCII characters to guarantee a deterministic 1 byte per character ASCII 
encoding at the network interface. To create more accurate performance comparisons, 
we maintain the same type of data structures in the code, including encryption and 
compression algorithms. We measure the performance of our scheme first by measur-
ing the OTA encoding efficiency in terms of the net number of bytes sent and latency 
for each scheme over a sample software update cycle made of six software updates. 
We then measure our proposed cryptosystem against an unencrypted system, the de-
facto RSA based cryptosystem with a public key infrastructure (PKI), and a similar 
ECC based cryptosystem with a PKI, using CPU load and latency as the metrics.  

 
Fig. 10. Comparison of OTA compression schemes: no compression, QDiff, Modular only 
QDiff, and MCA-QDiff 
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We first simulate the performance of our OTA protocol against the behavior of the 
raw QDiff using 600MB images as an input, roughly the expected size of a full OS 
update [23]. For consistency, all schemes are sent using a biometric-aided ECC en-
crypted scheme, and all QDiff-based schemes contain a BPE compression step. Figure 
10 contains the performance of the OTA protocols given the versioning scheme pat-
tern, comparing four possible scenarios: (1) sending the full image per release, (2) 
using QDiff, (3) using the modular memory mapping enabled QDiff algorithm with a 
reduced search space, and (4) using our full MCA-QDiff scheme. Note that the sent 
bytes do not scale perfectly with transmission delay per byte because QDiff based 
schemes spend time compressing and decompressing with BPE. Furthermore, notice 
that modular QDiff performs just as QDiff for small deltas, but for larger code deltas, 
Modular QDiff outperforms the raw QDiff. Finally, as new software versions come 
out, the code deltas found by QDiff steadily increase, due to lack of self-cleaning and 
accumulated slop spaces. It is only after the device has gone through enough changes 
that the advantages of MCA-QDiff become significant. MCA-QDiff obtains an aver-
age latency performance improvement of 15% over a sample update cycle. 

 

Fig. 11. Comparison of cryptosystem schemes: Unencrypted system, a standard 2048 bit RSA-
encrypted system with a PKI, a 224 bit ECC-encrypted system with a PKI, and a 224 bit ECC 
encrypted system using the biometric for signature instead of a PKI.  

To compare the efficiency of our cryptosystem, we implemented four different 
schemes: (1) sending the unencrypted image; (2) sending the encrypted image using 
the RSA protocol with a PKI; (3) sending the encrypted image using ECC with a PKI; 
(4) and finally, sending the encrypted image with our ECC method that bypasses the 
need of a PKI. We choose to send a 100MB image, the typical size of an OTA iOS 
update [23]. To emulate a public key infrastructure, we require that each communicat-
ing party contact the fourth sever, establish an independent encrypted channel, and 
have that server search a very large database for a matching key. Notice that when 
implementing an algorithm, we do so efficiently by exploiting several modulus opera-
tion rules, Euclid’s algorithm and Fermat’s test for compositeness [24], among others. 
Furthermore, when choosing an ECC curve in our implementation, we pick an arbi-
trary elliptic curve. However, note that the NST has published a set of “safe” curves 
[25], and hence on a real implementation, they would be preferred. Figure 11 shows 
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the full comparison in terms of absolute latency and through a CPU utilization histo-
gram captured at five points during the execution of the simulation. Note that while the 
unencrypted image has the lowest load and latency on the system, its lack of security is 
intolerable. Our scheme shows the best balance between performance and security. In 
particular, our scheme shows a 25% latency reduction over a vanilla ECC system, and 
a 5% lower average load. Coupled with a 15% latency reduction in our OTA protocol, 
we obtain a net 35% reduction in latency. Finally notice that our biometric-aided 
scheme is not only faster, but will also have several other benefits not accounted for in 
this test bench because a typical public key infrastructure requires additional hardware 
use and protection schemes, since it is an added source of vulnerability. 

6 Conclusion 

This paper presented an integrated security framework for a smart device ecosystem. 
This ecosystem poses unique challenges because the devices are interconnected in a 
similar manner to wireless sensor networks yet their OTA-ROM provider model is 
similar to that of smart phones. Furthermore, they have unique characteristics such a 
level of user interaction much less prominent than smart phones, and yet much more 
so than conventional WSNs. Updating their software and firmware is done over the 
air, adding another layer of vulnerability but also opening several optimization areas. 
Thus, we have presented a system to address this imminent security challenge through 
design modularity, hardware and software co-design, and finally, through computa-
tion and cost efficient design choices. As these smart devices become widely dep-
loyed, they will start forming ad-hoc networks on household and industrial settings, 
meanwhile potential security breach points as well as their treat level will increase 
exponentially. Hence, designers looking to successfully deploy these ecosystems 
should turn towards a strong, yet efficient, security framework. 
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