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Abstract. In this paper we present efficient implementations of several
code-based identification schemes, namely the Stern scheme, the Véron
scheme and the Cayrel-Véron-El Yousfi scheme. We also explain how to
derive and implement signature schemes from the previous identification
schemes using the Fiat-Shamir transformation. For a security of 80 bits
and a document to be signed of size 1 kByte, we reach a signature in
about 4 ms on a standard CPU.
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1 Introduction

Identification schemes are very useful and fundamental tools in many applica-
tions such as electronic fund transfer and online systems for preventing data
access by invalid users. Such schemes are typical applications of zero-knowledge
interactive proofs [I5], which are two-party protocols allowing a party called a
prover to convince another party called a verifier, that it knows some secret piece
of information, without the verifier being able to learn anything about the secret
value except for what is revealed by the prover itself. Zero-knowledge identifica-
tion schemes are of particular interest because it is possible to convert them into
secure signature schemes through the very famous Fiat-Shamir paradigm [13].
Quantum computation arises much interest in cryptography, since Peter Shor
found a polynomial-time algorithm to solve the factoring and discrete logarithm
problems using quantum computers [2I]. Therefore, it is of extreme importance
to come up with cryptosystems that remain secure even when the adversary
has access to a quantum computer; such systems are called post-quantum cryp-
tosystems. One promising candidate is based on codes, since no quantum attack
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exists so far to solve the syndrome decoding problem on which the code-based
cryptosystems are based.

Besides the fact that designing code-based identification schemes offer secu-
rity against quantum attacks, these schemes have other good features. First,
they are usually very fast and easy to implement compared to schemes based on
number-theoretic problems as they use only matrix-vector multiplications. Sec-
ond, their security is directly related to the syndrome decoding problem. Finally,
the complexity of attacks against code-based identification schemes can be given
in the expected number of binary operations and not only through asymptotic
estimations, as in the case of lattice-based cryptosystems for example.

In 1993, Stern proposed in [23] the first efficient zero-knowledge identification
scheme based on the hardness of the binary syndrome decoding problem. A few
years later, Véron in [25] has designed a scheme with a lower communication
cost. Recently, Cayrel-Véron-El Yousfi in [II] have designed a scheme which
reduces this communication cost even more.

Code-based cryptosystems suffer from a major drawback: they require a very
large public key which makes them very difficult to use in many practical situ-
ations. Using quasi-cyclic and quasi-dyadic constructions, several new construc-
tions like [4II7] permits to reduce the size of the public matrices. Recently, there
have been several structural attacks against such constructions, the first attack
presented by Gauthier et al. in [24] and the second attack is due to Faugeére et al.
[12]; these attacks extract the private key of some parameters of these variants.
We should mention that schemes using binary codes are so far unaffected by
such attacks.

Our Contribution. In this paper we provide efficient implementations of the
Stern, the Véron and the Cayrel-Véron-El Yousfi schemes. We also explain how
to derive signature schemes from the previous identification schemes using the
Fiat-Shamir paradigm. In a previous work [9], we have used Keccak [14] for
the generation orandom vectors and hash values. Now we use RFSB [§] for the
same purpose and juxtapose the results. In [I0], the authors presented a smart
implementation of the Stern scheme, but it was more a proof of concept than an
efficient implementation.

Organization of the Paper. First, we give in Section [2] a general overview
of code-based cryptography. Section B describes the Stern, Véron and Cayrel-
Véron-El Yousfi (CVE) schemes. The results of our implementations will be
described in Section @l Finally, we conclude the paper in Section

2 Background of Coding Theory

In this section, we recall basic facts about code-based cryptography. We refer
to [6] for a general introduction to these issues.
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2.1 Definitions

Linear codes are k-dimensional subspaces of an n-dimensional vector space over
a finite field IFy, where k£ and n are positive integers with k < n, and ¢ a prime
power. The theoretical error-correcting capability of such a code is the maximum
number w of errors that the code is able to decode. In short, linear codes with
these parameters are denoted (n,k)-codes or (n,n — r)-codes, where r is the
codimension of a code with r =n — k.

Definition 1 (Hamming weight). The (Hamming) weight of an arbitrary
vector x € Fy is the number of its non-zero entries. We use wt(x) to denote
the Hamming weight of x.

The distance of vectors z,y € Fy is defined as wt(z —y). The weight of x € Fy
is therefore just its distance from the null-vector 0 € Fy. The minimal distance
of a linear code C is defined as d := mingec a0 wWt(z). The error-correcting
capability of a linear code C can be expressed as w = [ 4!].

Definition 2 (Generator and Parity Check Matrix). Let C be a linear
(n, k)-code over Fy. A matriz G € ]F’;X" is called a generator matrixz of C if its
rows form a basis of C:

C:{xG:xE]F’;}.

Vectors x € C are called codewords. A matriz H € Fj*" is called a parity-check
matriz of C if
C={zecF):Hz" =0}.

In other words, H is a parity-check matriz, if GHT = 0 holds. A parity-check
matriz H generates the dual space C- of C, the space perpendicular to C.

As we have already mentioned, there have been some proposals to use quasi-
cyclic or quasi-dyadic codes in order to reduce the public key size of code-based
cryptosystems. The idea is to replace codes having a random parity-check matrix
H by particular type of codes with a very compact representation, namely quasi-
cyclic or quasi-dyadic codes. In both variants, the matrix has the form H =
(Ir|R), where I, denotes the r x r identity matrix and R € F,** is a quasi-
circulant respectively quasi-dyadic matrix. A quasi-cyclic matrix (resp. quasi-
dyadic matrix) is a block matrix whose component blocks are circulant (resp.
dyadic) submatrices.

A circulant matrix is defined by a vector (a1,as,...,a,) € [, and has the
following form:

ayp az as ... Qp

A a1 A2 ... Qr_1

az az a4 ... Qi
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A dyadic matrix is recursively defined: any 1 x 1 matrix is dyadic and for p > 1,
a 2P x 2P dyadic matrix has the form:

R_(BC>’
CB

where B and C are 2P~! x 2P~! dyadic matrices. To give an example, an 4 x 4
dyadic matrix has the following form:

abced
badc
cdab
dcba

where a,b,c,d € F,.

The advantage of a circulant resp. dyadic matrix is the fact that the
whole matrix can be reconstructed from the knowledge of its first row alone.
This is the trick to reduce a public key element.

We describe in the following the main hard problems on which the security

of code-based schemes presented in this paper relies. We denote by z & A the
uniform random choice of x among the elements of a set A, and "®" the exclusive
disjunction (XOR) operation.

Definition 3 (Binary Syndrome Decoding Problem (SD)).

Input : H & F3*" y & F5, and an integer w > 0.
Find : a word s € FY such that wt(s) < w and HsT =y.

This problem was proven to be NP-hard in 1978 [5]. A dual version of the pre-
vious problem, using the generator matrix G instead of the parity-check matrix
H of the code C, can be defined as follows.

Definition 4 (General Decoding Problem (GD)).

Input : G & ]Fgm, Y & F2, and an integer w > 0.
Find : A pair (m,e) € Fs x F%, where wt(e) <w s.t mG ®e =y.

Note that z := mG € F% for m € F% is by definition a codeword. In other
words, GD states that given a vector y € F3, find the (unique) codeword z € C,
such that wt(z — y) is minimal. GD is also proven to be NP-hard. Moreover, it
is assumed that it is hard not only for some worst-case instances, but hard on
average.

An extension of the binary syndrome decoding (SD) problem over an arbitrary
finite field can be formulated as well. It was proven to be NP-hard by A. Barg
in 1994 [2], in russian].
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Definition 5 (¢g-ary Syndrome Decoding (¢SD) problem).

Input : H & Fy "y & 7, and an integer w > 0.

Find : a word s € F} such that wt(s) < w and Hs™ = y.

Best known attack. The most efficient known algorithm to attack code-based
schemes is the Information Set Decoding (ISD) algorithm. Some improvement
of this algorithm have been developed by Peters [19], Niebuhr et al. [I8], and
Bernstein et al. [7], and recently in [I6] and [3]. The main idea of the ISD
algorithm consists in recovering the n — r information symbols as follows: the
first step is to pick 7 of the n coordinates randomly in the hope that most of them
are error-free, then try to recover the message by solving an r X r linear system
(binary or over IFy). The recent results of this attack are taken into account
when choosing our parameters in order to determine the security level needed.
We denote the workfactor of the Information Set Decoding algorithm by WFigp.

3 Code-Based Zero-Knowledge Identification Schemes

In code-based cryptography, there have been many attempts to design identifica-
tion schemes. In such constructions, there are two main goals: on the one hand,
a prover P wants to convince a verifier V of its identity. On the other hand, P
does not want to reveal any additional information that might be used by an
impersonator.

For a fixed positive integer n; let S,, denote the symmetric group of n! per-
mutations on n symbols, and let h be a public hash function. In the following,
we will give an overview of three proposals in this area. The symbol "||" denotes
the concatenating operator.

3.1 Stern Scheme

The first code-based zero-knowledge identification scheme was presented by
Stern [23] at Crypto’93, its security is based on the syndrome decoding (SD)
problem.

Description. The Stern scheme has two parts: a key generation algorithm,
shown in Fig.[I and an identification protocol as given in Fig.[2l It uses a public
parity-check matrix H of the code over the binary field Fs.

The scheme is a multiple-rounds identification protocol, where each round is
a three-pass interaction between the prover and the verifier. A cheater has a
probability of 2/3 per round to succeed in the protocol without the knowledge
of the secret key (sk). The number of rounds depends on the impersonation
resistance required. For instance to achieve the weak and strong authentication
probabilities of 2716 and 2732 according the norm ISO/IEC-9798-5, one needs
respectively 28 and 56 rounds. Stern proposed another identification protocol
with five-pass [23] (like CVE in section B.3]), but it is inefficient.
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KEYGEN:
Let k be the security parameter
Choose n, r,w, such that WFisp(n,r,w,2) > 2~
H & Frxn
s & F5, s.t. wt(s) = w.
y«— Hs”
Output (sk, pk) = (s, (v, H,w))

Fig. 1. Stern key generation algorithm

Prover P Verifier V
(sk, pk) = (s, (y, H,w)) «— KEYGEN
(h public hash function)
us Fy, 0o S Shn
1+ h (o||Hu")
¢z — h(o(w))
c3 — h(oc(u®s)) “,02,6%

Challenge b

b— {0, 1, 2}
o,u
If b=0: _ Check c; and c3
if b=1: 7u®s Check c; and c3,
. o), o(s)
if b=2: e Check ¢ and cs,

wt(s) Zw

Note that Hu” = Hu® s)” +y

Fig. 2. Stern identification protocol

3.2 Véron Scheme

In 1996, Véron proposed in [25] a dual version of Stern’s scheme, its security is
based on general decoding problem (GD).

Description. The scheme uses a generator matrix instead of a parity-check
matrix of the code, which has the advantage to reduce slightly the communication
costs. The Véron scheme, as the Stern’s one, is a multiple rounds zero-knowledge
protocol, where each round is a three-pass interaction between the prover and
the verifier, for which the success probability for a cheater is 2/3 in one round.
The key generation algorithm part Fig. [B] and the identification protocol part
Fig. [ of the Véron’s scheme are given as follows.
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KEYGEN:

Let k be the security parameter

Choose n, k, and w such that WFisp(n, k, w,2) > 2"
G + Fkxn
(m,e) « F& x F3, s.t. wt(e) = w ((m, e) secret key)
y < mG @ e (y public key)
Output (sk, pk) = ((m,e), (v, G,w))

Fig. 3. Véron key generation algorithm

Prover P Verifier V
(sk, pk) = ((m, €), (y, G, w)) «— KEYGEN
(h public hash function)

¢z — h(o((u®m)G))

cs — h(oc(uG & y)) s
Challenge b b= {0,1,2}
hd Ly
If b=0: 7 udm) Check c¢; and ca
o= 1: ouem)G) o), Check c3 and cs
wt(o(e)) = w
if b=2: # Check ¢; and cs,

Note that o((u® m)G) & o(e) = o(uG S y)

Fig. 4. Véron identification protocol

3.3 CVE Identification Scheme

In 2010, Cayrel, Véron, and El Yousfi presented in [I1] a five-pass identification
protocol using g-ary codes instead of binary codes.

In addition to the new way of computing the commitments, the idea of
this protocol uses another improvement which is inspired by [20022]. The main
achievement of this proposal is to decrease the cheating probability of each round
from 2/3 for the Stern and Véron schemes to 1/2. This allows to decrease the
communication complexity by obtaining the same impersonation probability in
fewer rounds compared to Stern and Véron constructions.

Furthermore, this scheme offers a small public key size, about 4 kBytes,
whereas that of Stern and Véron scheme is almost 15 kBytes for the same level
of security. It is proven in [I1] that this scheme verifies the zero-knowledge proof
and its security is based on the hardness of the g-ary Syndrome Decoding (¢SD)
problem.
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Before presenting the CVE identification scheme, we first introduce a special
transformation that will be used in the protocol.

Definition 6. Let ¥ € S, andy = (71,...,7) € (F;)" such that v; # 0 for all
i. The transformation I, x is defined as follows:

I, x: Fyp — Ty
voo= (Y Usa) - YEm) VD))

Notice that Vo € Fy, Yo € Fy, 11, s(aw) = all, s (v), and wt(Il, (v)) = wt(v).

Description. The key generation algorithm is as follows: in a first step choose
randomly a parity-check matrix H € F;*" and a vector s € Fy with weight
wt(s) = w. s identifies the secret key. Finally, perform Hs’ to get the vector
y € . The public key consists of y, H and w (see Figure ).

KeEYGEN:
Choose n, r,w, and ¢ such that WFisp (n,r, w, q) > 27
H & Fpn
s & Fy, s.t. wt(s) = w.
y « HsT
Output (sk, pk) = (s, (v, H,w))

Fig. 5. CVE key generation algorithm

Prover P Verifier V
(sk, pk) = (s, (y, H,w)) «— KEYGEN
(h public hash function)
wirr s,
v E @)
¢ —h (Z,’y, HuT)

ez h (1L, 5 (u), 1T 5(s))

a $

—_— a—

B

B — Il s(u+ as) B
Challenge b S (0,1}
-0 Xy L2 1 T
Ifb=0: Check ¢1 = h(X,7, HH%E(ﬂ) —ay)
1T, = 2

Else: 7.5(s) Check ¢z = h(B — all,, x(s), I, x(s)),

wt(Iy 5(s) £ w

Fig. 6. CVE identification protocol
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3.4 Signature Schemes via the Fiat-Shamir Transform

Using the Fiat-Shamir transform [I3], respectively its extended version [1], it
is possible to transform the Stern and Véron schemes, respectively the CVE
scheme, given above into signature schemes. The idea of this transformation is
to split the identification scheme in two parts.

In the first part, the signer runs the identification scheme as before, but with-
out any verifier involved. Instead, the signer has to generate the challenges on
his own, for instance using a stream cipher with a predefined start value, which
includes the message to sign. On the one hand, the signer can not predict the
next challenge bits, and on the other hand, the procedure must be repeatable by
the verifier. In other words, concerning the challenges, the signer is simulating
the role of the verifier, and recording the responses without any checks.

In the second part, the verifier uses the same stream cipher and starting value
and replays the protocol with the saved responses and performs the necessary
checks. This also explains the relatively big signature sizes of schemes based on
the Fiat-Shamir transform as the signer is recording a history of the actions
involved. This history is used by the verifier in the verification process. It also
shows the varying sizes of the signatures, as the given responses change from run
to run with high probability.

4 Implementation

In total, six different schemes have been implemented in C: the Stern, Véron
and CVE identification schemes and the corresponding signature schemes based
on the Fiat-Shamir transform [I3/1].

The implementation assumes that the dimensions of the matrices are a multi-
ple of 64. The public keys G and H are given in systematic form, i.e. G = [I;|R]
and H = [I,,_|R)] respectively, where only the redundant part R is used. In the
quasi-cyclic and quasi-dyadic cases, the matrices G and H consist of cyclic and
dyadic submatrices of size 64 x 64, because 64 is the natural number to use on
a 64-bit machine.

For the generation of random vectors and hash values, we deployed the code-
based RFSB-509 hash function presented by Bernstein et al. [8]. This choice is
driven by the intension to base the security of the schemes on only one hardness
assumption, namely the hardness of solving the syndrome decoding problem. But
note that it can be replaced by any other suitable scheme providing the necessary
functionality: for comparison, we also implemented the signature schemes using
Keccak [I4].

The experiments were performed on an Intel Xeon E5-1602 running at 2.80
GHz, having 8 GB of RAM and running a 64bit version of Debian 6.0.6.

4.1 Identification Schemes

Stern Scheme. This scheme uses a binary parity check matrix H = [I,_|R]
of size r x n, where r = n — k and k = n/2. For the implementation we used
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n = 768 and k = 384. Due to the row-major order of C, the product sH” is
more efficient as Hs” (s € F%). Hence, the implementation uses the transposed
matrix HT instead of H.

Table 1. Stern timing results for 28 rounds when the impersonation probability is
bounded by 2716

Matrix Type Dimension [n x r] Weight Time [ms] Sec. Level};

Random 768 x 384 76 2.79 80
Quasi-cyclic 768 x 384 76 2.57 80
Quasi-dyadic 768 x 384 76 3.78 80

Véron Scheme: This scheme uses a binary generator matrix G = [I;|R] of

dimensions k x n, where k = n/2. Again, in the quasi-cyclic and quasi-dyadic
case, the cyclic and dyadic submatrices have a size of 64 x 64 bits, n = 768 and
k = 384. As in Stern, if G is quasi-cyclic or quasi-dyadic, then the submatrix R
would consist of 36 cyclic or dyadic submatrices of size 64 x 64 bits.

Table 2. Véron timing results for 28 rounds when the impersonation probability is
bounded by 2716

Matrix Type Dimension [k x n] Weight Time [ms] Sec. Level;

Random 768 x 384 76 2.65 80
Quasi-cyclic 768 x 384 76 2.47 80
Quasi-dyadic 768 x 384 76 3.57 80

Memory Requirements. The memory requirements for the Stern and Véron
scheme are as follows: using a random matrix 384 x 384 = 147.456 bits are
necessary to store the redundancy part R of H resp. G. Using quasi-cyclic (quasi-
dyadic) matrices, the memory footprint for the matrices drops by a factor of 64.
Only 6 x 6 x 64 = 2.304 = 147.456/64 bits are needed. Hence, although the
timings using quasi-cyclic (quasi-dyadic) matrices are worse than for random
matrices, in some environments the smaller memory footprint might compensate
for the loss in performance.

CVE Scheme. It uses a parity check matrix H of size r x n over F,, where
g=2"1<m<16,r =n—k and k = n/2. As in the Stern scheme, the
implementation uses the transposed matrix H” instead of H. If H is quasi-
cyclic or quasi-dyadic, then the submatrix R would consist of 81 cyclic or dyadic
submatrices of 8 x 8 field elements.

The matrix size is always measured in numbers of field elements. Each field
element occupies invariably 2 bytes of memory. Strictly speaking, this would be
necessary only in the case m = 16. However, using only the necessary bits would
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complicate the code and slow down the computation. In environments in which
memory is a very valuable resource, this fact had to be taken into account.

For the measurements we used m = 8.

Table 3. CVE timing results for 16 rounds when the impersonation probability is
bounded by 2716

Matrix Type Dimension [n x r] Degree ¢ = 2™ Weight Time [ms] Sec. Level;

Random 144 x 72 256 55 1.40 80
Quasi-cyclic 144 x 72 256 55 1.38 80
Quasi-dyadic 144 x 72 256 55 1.67 80

Memory Requirements for the CVE Scheme. Using a random matrix,
72 x 72 x 2 = 10.368 bytes are necessary to store the redundancy part R of H
resp. G. Using quasi-cyclic (quasi-dyadic) matrices, the memory footprint for the
matrices drops by a factor of 8, because in this case only 9 x 9 x 8 x 2 =1.296 =
10.368/8 bytes are needed. Again, as with the Stern and Véron scheme, memory
savings using the structured matrix types might be more important than the
loss in runtime.

4.2 Signature Schemes Based on Fiat-Shamir Transform

Using the Fiat-Shamir transform [I3], one can transform identification schemes
to signature schemes. We describe the process in detail for the Stern scheme
(respectively Véron scheme). It is straightforward to adapt it to the non canonical
(more than three-pass) CVE case, see [1] for more details.

Note that the signer and verifier parts are always located in the same ex-
ecutable, thus the two parts can communicate in almost no time. In reality,
they would reside on different machines, such that additional costs over some
communication link had to be taken into account.

4.3 The Signing Procedure

Let 0 the number of rounds needed to achieve the required cheating probability.
In a first step, a commitment CMT is computed as

CMT = (co1, coz, co3) || (c11,¢12,¢13) || --- || (cs5-1,1, €5-1,2, C5-1,3)-

More precisely, in each round we run one of the above identification schemes to
generate a corresponding commitment (¢;1, ¢z, ¢;3), where 0 < ¢ < § — 1. Note
that the ¢;1, ¢;2 and ¢;3 are hashed values (using RFSB-509) and that each such
triple has 3 x 160 = 480 bits. The number of rounds J is a predefined value (e.g.
141 for Stern and Véron schemes or 80 for the CVE scheme to achieve a im-
personation resistance of 1/289). All round-triples together form the compound
commitment CMT.
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In a second step, we compute the challenge CH = hA(CMT || M), where
h denotes the RFSB-509 hash function and M is the message, typically the
content of some file. CH has a length such that it consists of twice as many bits
as there are rounds, because for each round the signer needs a new challenge.
Each two bits of CH give a partial challenge, where the bit pattern 11 is mapped
to b € {0,1,2} in a cyclic fashion.

Finally, compute for each partial challenge b the response according to the
deployed identification scheme. Note that the response size for each b varies
depending on its actual value of 0, 1 or 2. Denote all responses by RSP =
(rollr1i |l --- || 7s=1)- The final signature is (CMT || RSP).

4.4 The Verification Procedure

Upon receiving the signature, the verifier extracts CMT and computes CH =
R(CMT || M). As in the signing step, the verifier uses the individual bytes of CH
modulo 3 to obtain § many challenges b € {0,1,2}. Using b, the verifier extracts
the corresponding response contained in RSP and calculates the commitment
cij, where j = b and 7 denotes the current round. Finally, the verifier computes
h(ci;) of CMT and compares this value with the ¢;; contained in the triple
(ci1, Ci2, ciz). We identify here the value h(c;;) and ¢;;. In case the values of ¢;;
match for all rounds, the signature is considered valid.

In the following, tables are given for runtime measurement of the three sig-
nature schemes derived from the corresponding identification schemes using the
Fiat-Shamir transform.

4.5 Signature Scheme Timings

Table 4. Stern timing results: separate signing and verification time (s/v) for 141
rounds

Timep,,

Matrix Type Dimensiony,,,; Weight
yp [roxr] & Keccak RFSB

Msg.(kBytes] S€C-[bits]

Random 768 x 384 76 7.18 3.57 7.67 4.88 1 80
768 x 384 76 7.32 3.92 7.88 3.70 10 80
768 x 384 76 749 4.02 8.11 3.93 25 80
Quasi-cyclic 768 x 384 76 6.59 3.25 7.01 4.59 1 80
768 x 384 76 6.70 3.35 7.18 4.16 10 80
768 x 384 76 6.84 3.49 7.44 4.03 25 80
Quasi-dyadic 768 x 384 76 10.13 5.61 10.46 6.07 1 80
768 x 384 76 10.25 5.64 10.87 4.71 10 80

768 x 384 76 10.49 5.65 10.97 7.77 25 80
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4.6 Remarks

The signature size in the Stern and Véron schemes is about 25 kBytes and
respectively 19 kBytes in the CVE scheme for 80-bit security. The numbers
mean an average value of several runs over 141 resp. 80 rounds. Note that the
signature size is independent from the message to be signed.

Table 5. Véron timing results: separate signing and verification time (s/v) for 141
rounds

Time[ms]

Matrix Type Dimension,,,; Weight
P o) OB Keccak  RFSB

Msg. (kBytes] S€C.[pits]

Random 768 x 384 76 10.26 4.86 7.98 3.76 1 80
768 x 384 76 10.37 5.53 7.99 4.22 10 80
768 x 384 76 10.55 5.26 8.33 4.14 25 80
Quasi-cyclic 768 x 384 76 9.37 4.80 6.87 3.89 1 80
768 x 384 76 9.47 492 725 3.33 10 80
768 x 384 76 9.64 5.07 7.35 3.89 25 80
Quasi-dyadic 768 x 384 76 13.79 6.23 11.66 4.17 1 80
768 x 384 76 14.23 7.01 11.99 3.88 10 80
768 x 384 76 14.02 6.13 12.40 3.65 25 80

Table 6. CVE timing results: separate signing and verification time (s/v) for 80 rounds

Time[ms]

Matrix Type Dimension,y,; Weight
P roxr] o Keccak RFSB

MSg-[kBytes] Sec'[bits]

Random 144 x 72 55 4.25 190 4.21 3.73 1 80
144 x 72 55 4.38 2.03 4.36 2.40 10 80
144 x 72 55 4.59 297 4.59 2.30 25 80
Quasi-cyclic 144 x 72 55 5.21 2.42 5.20 2.62 1 80
144 x 72 55 5.32 2.51 5.31 3.02 10 80
144 x 72 55 5.56 3.70 5.55 2.80 25 80
Quasi-dyadic 144 x 72 55 4.44 2.07 4.41 2.18 1 80
144 x 72 55 4.58 2.13 4.56 2.53 10 80
144 x 72 55 4.79 3.13 4.77 2.42 25 80
The runtime is dominated by RFSB creating random vectors u[0], ..., u[d — 1]

before entering the loop of 141 resp. 80 rounds, which could also be confirmed
profiling the implementation directly with gprof, the profiler contained in gcc.
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Conclusion

In this paper, we have described three existing code-based identification and their
corresponding signature schemes and provided running times of their implemen-
tation. As a result, we obtain three very fast signature schemes. Depending on
the message size it is possible to sign and verify in the order of milliseconds,
but at the cost of very long signature sizes: typically 19 kBytes for CVE and 25
kBytes bytes for Stern resp. Véron.

The source code of the C implementation is available under the following

link: http://cayrel.net/research/code-based-cryptography/code-based-
cryptosystems/article/implementation-of-code-based-zero.
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