
Juhani Karhumäki
Arto Lepistö
Luca Zamboni (Eds.)

 123

LN
CS

 8
07

9

9th International Conference, WORDS 2013
Turku, Finland, September 2013
Proceedings

Combinatorics
on Words

Lecture Notes in Computer Science 8079
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Juhani Karhumäki Arto Lepistö
Luca Zamboni (Eds.)

Combinatorics
on Words
9th International Conference, WORDS 2013
Turku, Finland, September 16-20, 2013
Proceedings

13

Volume Editors

Juhani Karhumäki
Arto Lepistö
Luca Zamboni
University of Turku
Department of Mathematics and Statistics
Assistentinkatu 7
20014 Turku, Finland
E-mail:{karhumak, alepisto}@utu.fi; lupastis@gmail.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40578-5 e-ISBN 978-3-642-40579-2
DOI 10.1007/978-3-642-40579-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946036

CR Subject Classification (1998): F.1, F.2, D.2, E.1, F.3, F.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 9th International Conference on WORDS was held at University of Turku
during September 16–20, 2013.

WORDS is the main conference in the area of combinatorics on words. It was
initiated in 1997 in Rouen. Since its inception, the conference has taken place
every second year in the following locations: Rouen, Palermo, Turku, Montreal,
Marseille, Salerno and Prague.

The scope of the conference is to cover diverse topics in the study of finite and
infinite words. This includes combinatorial, algebraic, and algorithmic aspects
of words, as well as applications in mathematics, theoretical computer science,
and theoretical physics.

A unique feature of WORDS 2013 was to publish a refereed proceedings
volume in Springer’s Lecture Notes in Computer Science series. In addition, local
proceedings containing presentations or abstracts of all accepted and invited
papers are edited as a TUCS report. In accordance with the founding spirit of
the conference, the local proceedings provide a forum for recent surveys and/or
previously published contributions. Following the conference, a special issue of
Theoretical Computer Science will be edited.

We received 43 submissions from17 different countries. Of these, 34 papers were
submitted to the refereed proceedings. Following a peer-review process, 20 submis-
sions were selected for LNCS and 13 for the local proceedings. In addition to con-
tributed presentations, the conference program included six invited talks given by
J. Cassaigne (Marseille),M.Dekking (Delft), V. Halava (Turku),G. Levitt (Caen),
N. Rampersad (Winnipeg), andM. Sciortino (Palermo).

We warmly thank all invited speakers and all authors of submitted papers for
their contributions. We are also very grateful to all the PC members and the sub-
referees for their hard work, as well as the Organizing Committee, in particular
M. Bucci. Last but not least, we express our gratitude to the representatives of
Springer, in particular A. Kramer and A. Hofmann, for their professional and
smooth collaboration.

June 2013 J. Karhumäki
A. Lepistö

L. Zamboni

Organization

WORDS 2013 was hosted by the Department of Mathematcs of the University of
Turku (Finland) under the auspices of the European Association for Theoretical
Computer Science. It was organized by the FUNDIM Centre in connection with
FiDiPro program of the Academy of Finland.

Program Committee

Francine Blancet-Sadri University of North Carolina at Greensboro,
USA

Arturo Carpi University of Perugia, Italy
Maxime Crochemore King’s College, London, UK
James Currie University of Winnipeg, Canada
Juhani Karhumäki University of Turku, Finland - Co-chair
Dirk Nowotka University of Kiel, Germany
Edita Pelantová Czech Technical University in Prague,

Czech Republic
Gwénaël Richomme University of Montpellier 3, France
Michel Rigo University of Liège, Belgium
Arseny Shur Ural Federal University, Russia
Luca Zamboni University of Turku, Finland - Co-chair

Steering Committee

Jean Néraud Rouen, France
Dominique Perrin Marne-la-Valle, France
Julien Cassaigne Marseille, France
Maxime Crochemore London, UK
Juhani Karhumäki Turku, Finland - Chair
Jeffrey Shallit Waterloo, Canada
Aldo de Luca Naples, Italy
Antonio Restivo Palermo, Italy
Michail Volkov Ekaterinburg, Russia
Srecko Brlek Montreal, Canada
Christophe Reutenauer Montreal, Canada

VIII Organization

Organizing Committee

Michelangelo Bucci
Svetlana Puzynina
Mari Huova
Aleksi Saarela

Juhani Karhumäki (Chair)
Jetro Vesti
Jarkko Peltomäki
Luca Zamboni

Additional Reviewers

M.-P. Béal
N. Bedaride
G. Bell
M. Berlinkov
J. Bernat
É. Charlier
M. Christodoulakis
F. D’Alessandro
A. De Luca
F. Durand
S. Fazekas
F. Franek
A. Frid
Y. Gamzova
A. Glen

I. Gorbunova
V. Halava
Š. Holub
J. Honkala
D. Jamet
T. Jolivet
T. Kamae
J. Kari
K. Klouda
J. Leroy
F. Manea
Z. Masáková
R. Mercas
T. Monteil
M. Müller

B. Nagy
P. Ochem
A. Parreau
R. Péchoux
E. Petrova
A. Plyushchenko
A. Saarela
C. Selmi
W. Steiner
J.-Y. Thibon
J. Thuswaldner
O. Turek
E. Vandomme
S. Widmer

Sponsoring Institutions

University of Turku Foundation
City of Turku
University of Turku
Finnish Academy of Sciences and Letters, Mathematics foundation
Turke Centre for Computer Science
European Association of Theoretical Computer Science

Table of Contents

Invited

Which Arnoux-Rauzy Words Are 2-Balanced? . 1
Julien Cassaigne

Dynamical Equivalence of Morphisms . 3
Michel Dekking

Deterministic Semi-Thue Systems and Variants of Post Correspondence
Problem . 4

Vesa Halava

Subword Complexity in Free Groups . 14
Gilbert Levitt

Non-constructive Methods for Avoiding Repetitions in Words 15
Narad Rampersad

Words, Trees and Automata Minimization . 18
Giusi Castiglione and Marinella Sciortino

Contributions

Auto-similarity in Rational Base Number Systems 34
Shigeki Akiyama, Victor Marsault, and Jacques Sakarovitch

Infinite Words with Well Distributed Occurrences . 46
Ľubomı́ra Balková, Michelangelo Bucci, Alessandro De Luca, and
Svetlana Puzynina

Generating Discrete Planes with Substitutions . 58
Valérie Berthé, Jérémie Bourdon, Timo Jolivet, and Anne Siegel

Convergence and Factor Complexity for the Arnoux-Rauzy-Poincaré
Algorithm . 71

Valérie Berthé and Sebastien Labbé

The Lexicographic Cross-Section of the Plactic Monoid Is Regular 83
Christian Choffrut and Robert Mercaş

Suffix Conjugates for a Class of Morphic Subshifts
(Extended Abstract) . 95

James D. Currie, Narad Rampersad, and Kalle Saari

X Table of Contents

Periodicity Forcing Words . 107
Joel D. Day, Daniel Reidenbach, and Johannes C. Schneider

Balancedness of Arnoux-Rauzy and Brun Words . 119
Vincent Delecroix, Tomáš Hejda, and Wolfgang Steiner

Open and Closed Prefixes of Sturmian Words . 132
Alessandro De Luca and Gabriele Fici

Finitely Generated Ideal Languages and Synchronizing Automata 143
Vladimir V. Gusev, Marina I. Maslennikova, and
Elena V. Pribavkina

A Note on Square-Free Shuffles of Words . 154
Tero Harju

Strongly k -Abelian Repetitions . 161
Mari Huova and Aleksi Saarela

Similarity Relations and Repetition-Freeness . 169
Tomi Kärki

On Quasiperiodic Morphisms . 181
Florence Levé and Gwénaël Richomme

Enumerating Abelian Returns to Prefixes of Sturmian Words 193
Zuzana Masáková and Edita Pelantová

Regular Ideal Languages and Synchronizing Automata 205
Rogério Reis and Emanuele Rodaro

Another Generalization of Abelian Equivalence: Binomial Complexity
of Infinite Words . 217

Michel Rigo and Pavel Salimov

Weakly Unambiguous Morphisms with Respect to Sets of Patterns
with Constants . 229

Aleksi Saarela

On Infinite Words Determined by L Systems . 238
Tim Smith

Sets Represented as the Length-n Factors of a Word 250
Shuo Tan and Jeffrey Shallit

Author Index . 263

Which Arnoux-Rauzy Words Are 2-Balanced?

Julien Cassaigne

Institut de mathématiques de Luminy, case 907,
13288 Marseille Cedex 9, France
cassaigne@iml.univ-mrs.fr

Abstract. Arnoux-Rauzy words are one possible generalization of Stur-
mian words. They are infinite words with exactly one left special factor
and one right special factor of each length, those special factors being
extendable with any letter in the alphabet. Sturmian words are exactly
binary Arnoux-Rauzy words.

We are interested here in the language of an Arnoux-Rauzy word,
not in the word itself. Just as the language of a Sturmian word depends
only on the associated slope, or equivalently on its continued fraction
expansion, the language of an Arnoux-Rauzy word is defined by the
associated directive sequence.

A classical property of Sturmian words is that they are 1-balanced: any
two factors u and v of the same length of a given Sturmian word contain
almost the same number of occurrences of any given letter, the difference
being at most 1. Actually, this turns out to be a characterization of
Sturmian words: an aperiodic infinite binary word is Sturmian if and
only if it is balanced.

For Arnoux-Rauzy words, the situation is quite different. It was ex-
pected however that they would be C-balanced for some constant C
(the maximum allowed difference in the number of occurrences), but we
proved [1] that it is not the case, constructing an Arnoux-Rauzy word
which is not C-balanced for any C. This was further improved in [2],
where a large class of such words is given. On the other hand, it is easy
to construct 2-balanced infinite words that are not Arnoux-Rauzy.

The question of characterizing Arnoux-Rauzy words with a given bal-
ance arises then naturally. We restrict here to 2-balance and a ternary
alphabet, but even so it does not seem an easy problem. In [3] we ob-
tained a sufficient condition, as well as a necessary condition, both of the
type: the set of prefixes of the directive sequence is in a certain rational
language.

We were able to obtain a characterization [4], at the expense of re-
placing C-balance with a stronger notion, strong C-balance. Also, we
proved that the set of prefixes of directive sequences of 2-balanced ternary
Arnoux-Rauzy words does not form a rational language. Therefore, a
characterization of 2-balanced ternary Arnoux-Rauzy in terms of
rational languages only is not possible.

References

1. Cassaigne, J., Ferenczi, S., Zamboni, L.Q.: Imbalances in Arnoux-Rauzy Sequences.
Ann. Inst. Fourier (Grenoble) 50, 1265–1276 (2000)

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 1–2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 J. Cassaigne

2. Cassaigne, J., Ferenczi, S., Messaoudi, A.: Weak mixing of Arnoux-Rauzy Sequences.
Ann. Inst. Fourier (Grenoble) 58, 1983–2005 (2008)

3. Berthé, V., Cassaigne, J., Steiner, W.: Balance properties of Arnoux-Rauzy words.
Internat. J. Algebra Comput. 23, 689–703 (2013)

4. Cassaigne, J., Nardi, J.: Étude du 2-équilibre des mots d’Arnoux-Rauzy (in prepa-
ration)

Dynamical Equivalence of Morphisms

Michel Dekking

Department of Applied Mathematics
Delft University of Technology

The Netherlands
F.M.Dekking@tudelft.nl

Abstract. Infinite words can be fixed points of morphisms, and if the
morphism is primitive, then such a word determines a unique dynamical
system: the set of infinite words which have the property that each finite
subword occurs in the fixed point word. The map on the dynamical sys-
tem is the shift. Two dynamical systems are isomorphic if there exists a
bi-continuous bijection between them which preserves the dynamics. We
call two primitive morphisms dynamically equivalent if their dynamical
systems are isomorphic. The task is to decide when two morphisms are
dynamically equivalent. A morphism is called uniform if all the images
of the letters have the same length. A first result is that the number of
morphisms (of morphisms with the same length) dynamically equivalent
to a given uniform morphism is finite, if the morphisms are one-to-one
and if we ignore changes of alphabet. We will present the equivalence
class of the Toeplitz morphism 0 → 01, 1 → 00. This is joint work with
Ethan Coven and Mike Keane.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, p. 3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Deterministic Semi-Thue Systems and Variants
of Post Correspondence Problem

Vesa Halava

Department of Mathematics and Statistics
University of Turku

FI-20014 Turku, Finland
vesa.halava@utu.fi

Abstract. We study recent undecidability result on deterministic semi-Thue
systems, and it is applications in the variants of Post Correspondence Problem.
Namely, we discuss the ideas of the new proofs for the circular PCP and the n-
permutation PCP.

1 Introduction

This work is based on the recent articles written jointly with Tero Harju ([3], [4]) and
Tero Harju and Mari Huova ([5]). We begin with the definitions and backround.

A semi-Thue system T is a pair (Σ, R)whereΣ = {a 1, a 2, . . . , a n} is a finite alphabet,
the set of the elements of which are called generators of T , and R ⊆ Σ∗ × Σ∗ is a
relation. The elements of R are called rules of T . We say that T = (Σ, R) is a Thue
system, if the relation R is symmetric, i.e., if (x , y) ∈ R , then also (y ,x) ∈ R . Clearly, a
Thue system corresponds to a semigroup with generators Σ and relations R .

We write u −→T v , if there exists a rule (x , y) ∈ R such that u = u 1x u 2 and v =
u 1y u 2 for some words u 1 and u 2. We denote by −→∗T the reflexive and transitive clo-
sure of R , and by −→+T the transitive closure of R .

In the word problem for a semi-Thue system T we are given two words u , v ∈ Σ∗
and the task is to determine, whether or not there exists a derivation in T starting
from u to v using the transformation rules in R , that is, whether or not u −→∗T v .
The first proof for undecidability of the word problem were given independently by
Post [18] and Markov [9].

The first concrete example of a finite Thue system with an undecidable word prob-
lem was given by Markov [9] in 1947. Markov’s result and the proof of it were stated
in the terminology of finitely presented semigroups. His example, which had 13 gen-
erators and 33 relations, was improved by Ceı̆tin [1] (see also Scott [21]), who proved
that there exists a Thue system T7 over a 5-letter alphabet with seven relations that
has an undecidable word problem. He applied undecidability result of the special
Thue systems, with a reference to Novikov [15], were it was proved that the word
problem is undecidable for finitely presented groups.

Makanin [8] made an improvement in 1966 to Ceı̆tin’s result. Namely, he used
Ceı̆tin’s T7 to prove that the word problem is undecidable for semigroups with 4 gen-
erators and 6 rules. There is a note at the end of Makanin’s article that he has found

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 4–13, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Deterministic Semi-Thue Systems and Variants of PCP 5

a 3–generator and 5–rule semigroup with an undecidable word problem. Makanin
also notes that Matiyasevich had achieved a similar result in [10]. Finally, Matiyase-
vich [11] proved that there exists a three rule Thue-system T3 with an undecidable
word problem. From this Pansiot [16] noted that Thue system T3 can be represented
as a semi-Thue systems with only five rules over a 2-letter alphabet.

In 1996 Matiyasevich and Sénizergues proved that the word problem is undecid-
able for 3–rule semi-Thue systems using a similar approach as Matiyasevich had
in T3; see [12] and [13].

In this article we study the word problem in semi-Thue systems of a restricted type
and its application in special variants of the Post Correspondence Problem (PCP). This
work is based on recent results in [3], [4] and [5].

Here we shall use the following definition of the PCP: Let A and B be two alpha-
bets, in the PCP we are given two morphisms g , h : A∗ → B ∗, and the task is to deter-
mine whether or not there exist a nonempty word w ∈ A+ such that

g (w) =h(w) ?

Now, in [3] it was proved that the word problem is undecidable in the case of de-
terministic semi-Thue system. Indeed, the determinism appears there in a rather
restricted form. We shall give here a bit more general definition of the determinism.
Let T = (Σ, R) be a semi-Thue system. Now T is called (left) deterministic, if, for all
words u ∈ Σ∗, left derivation of u is unique in T . Note that a derivation is called left
derivation if at each step of the derivation the rule of T is used on the leftmost pos-
sible position of the word. Moreover, it follows from the proofs and constructions in
[3] that the word problem is undecidable for deterministic semi-Thue systems.

The semi-Thue systems constructed in [3] are reversible, since the derivation is
also backwards deterministic. Using this reversibility, it was proved in [4] that it is
undecidable for the deterministic semi-Thue systems whether or not there exist a
nonempty derivation u −→+T u , i.e., form u back to itself. Such a derivation is called
cyclic. Moreover, this undecidability of the cyclic word problem was used in [4] to
give a new proof for the circular Post Correspondence Problem. In the circular PCP
we are given two morphism g , h : A∗ → B ∗, but asked to determine whether or not
there exist words u , v ∈ A∗ with u v �= ε such that

g (u v) =h(v u).

Here the words w1 = u v and w2 = v u are called conjugates of each other. Hence,
the circular PCP could be stated by asking does the exist conjugate words w1 and
w2 such that g (w1) = h(w2)? The phrase ‘circular PCP’ refers to the problem setting
where the words are considered to be cyclic, i.e., the last letter is followed by the first
letter.

The circular PCP was originally shown to be undecidable by Ruohonen in [19],
where the proof employs an undecidable property of linearly bounded automata.
The proof by Ruohonen is rather long and technical, and therefore, there was request
for a simpler proof for this problem.

6 V. Halava

In [19] Ruohonen also proved that the n-permutation PCP, asking, for morphisms
g , h : A∗ → B ∗, whether or not there exists a word w =w1w2 · · ·wn and permutation
σ of the set {1, 2, . . . , n} such that

g (w1 · · ·wn) = h(wσ(1) · · ·wσ(n)),

is undecidable. A new proof for the n-permutation PCP was given in [5], using the
undecidability of the cyclic word problem for deterministic semi-Thue systems proved
in [4]. Note that the circular PCP is indeed the 2-permutation PCP and trivially 1-
permutation PCP is the PCP.

Note that the technique for transforming semi-Thue systems to instances of the
PCP was originally introduced by Claus [2]. The idea is to simulate a derivation of the
semi-Thue system T on a word u with two morphisms g , h such that there exist a
word w with g (w) = h(w) if and only if there is a derivation in T starting from u and
ending in the given word v . Here the word w corresponds to a required derivation
according to T . Hence we may say that the morphisms g and h simulate derivations
of T starting from a given word u .

Finally, note also that in some undecidability proofs, the existence of so called re-
versible Turing machine is required. These machines are very restricted in the sense
that in each step of a computation the previous configuration of the computation
can be uniquely determined. Reversible Turing machines are employed for exam-
ple in the case of the injective PCP; see Lecerf [7] and Ruohonen [20]. Indeed, in the
construction of the deterministic, or reversible, semi-Thue system the similar idea
is used, and the reversibility is actually employed to achieve the cyclic computation
back to the beginning. The idea of the reversible rewriting system was already used
in [6]where Karhumäki and Saarela gave a new prove for the undecidability of the in-
jective PCP and the deterministic and reversible semi-Thue systems were originally
discovered from their construction.

2 Special Semi-Thue Systems

The special deterministic (and reversible) semi-Thue systems are constructed from
the deterministic Turing machines in a following way. Let� be a Turing machine
(TM) with a unique halting state, that is,� is a 7–tuple

� = (Q ,Σ,Γ ,δ,q0,�, H) ,

where Q is a finite set of states, q0 is the initial state, H ∈Q is the halting state, Σ is
the input alphabet, Γ is the tape alphabet withΣ ⊆ Γ , and δ : Q×Γ →Q×Γ ×{L, R} is
a partial function called the transition function where L and R are special direction
symbols and �∈ Γ is the blank symbol.

Note that the TM� is deterministic, but we allow δ to be a partial function, i.e.,
it may be undefined for some elements (q , a)∈Q ×Σ.

Each transition of� is of the form δ(p , a) = (q ,b , D) that we shall also write more
conveniently in the following form

(p , a)−→ (q ,b , D) with p ,q ∈Q , a ,b ∈ Γ and D ∈ {L, R} .

Deterministic Semi-Thue Systems and Variants of PCP 7

Here D refers to ‘direction’ and L and R refer to ‘left move’ and ‘right move’, respec-
tively.

A configuration of a TM at some point in its computation is a word u (q , a)v ∈
Γ ∗(Q × Γ)Γ+ where u = ε or u begins with a nonblank letter, v = � or v ends with
a nonblank letter. A configuration describes the global state of the Turing machine:
u a v is the shortest word from the tape containing all squares filled by nonblank
symbols while the TM is currently in state q and reading the symbol a on its position.

A step in a computation or a move γ 	 γ′ yielding from one configuration γ of�
to the next one γ′ is defined as follows. Let γ= a 1a 2 · · ·a i−1(p , a i)a i+1 · · ·a n .

(L) For a left transition δ(p , a i) = (q ,b , L), let

a 1 · · ·a i−1(p , a i)a i+1 · · ·a n 	�
�

a 1 · · ·a i−2(q , a i−1)b a i+1 · · ·a n if i > 1,

(q ,�)b a i+1 · · ·a n if i = 1.

(R) For a right transition δ(p , a i) = (q ,b , R), let

a 1 · · ·a i−1(p , a i)a i+1 · · ·a n 	�
�

a 1 · · ·a i−1b (q , a i+1) · · ·a n if i < n ,

a 1 · · ·a i−1b (q ,�) if i = n .

We notice that, since δ is a (partial) function, for each configuration γ= u (q , a)v ,
there exists at most one configuration γ′ such that γ 	� γ′.

Let 	∗� or 	∗ for simplicity, be the reflexive and transitive closure of the relation
	� . Also, γ 	∗ γ′ is an accepting computation if the state in γ′ is the halting state H .

We shall now start the construction of the semi-Thue system of the desired form
for a given TM� . The construction is from [3] where it is mentioned that it orig-
inates from an article by Karhumäki and Saarela [6] where the authors gave a new
proof for the undecidability of the injective PCP.

Let� = (Q ,Σ,Γ ,δ,q0,�, H) be a given Turing machine. We define three alphabets
Δ,Θ and Λ. First let

Δ= Γ ∪ (Q ×Γ)
and

Θ=Δ× ({S} ∪ (Q ×Γ)),
where S is a new symbol. We write the second component from {S} ∪ (Q × Γ) below
the first component fromΔ. For instance, if q ∈Q and a ∈ Γ , then

(q , a)
S
∈Θ and a

(q ,a)
∈Θ.

Finally, let

Λ=Δ∪Θ∪ {#, $}
= (Γ ∪ (Q ×Γ))∪ (Δ× ({S} ∪ (Q ×Γ)))∪ {#, $} ,

where # and $ are again new symbols.
We define the semi-Thue system S� on Λ for a given TM� as

S� = (Λ, R1),

8 V. Halava

where R1 consists of the following rules for a ,b , c ,b ′ ∈ Γ with a , c ,b ′ �= �, and q ,q ′ ∈Q
and y , z ∈Δ.

a
S

z −→ a z
S

, z �= (q0,�), (1)

a (q ,b)
S
−→ (q ′, a)

(q ,b)
b ′, if δ(q ,b) = (q ′,b ′, L), (2)

#(q ,b)
S
−→ #(q ′,�)

(q ,b)
b ′, if δ(q ,b) = (q ′,b ′, L), (3)

(q ,b)
S

c −→b ′(q ′, c)
(q ,b)

, if δ(q ,b) = (q ′,b ′, R), (4)

(q ,b)
S

$−→b ′(q ′,�)
(q ,b)

$, if δ(q ,b) = (q ′,b ′, R), (5)

a y
(q ,b)
−→ a

(q ,b)
y , (6)

y
(q ,b)
−→ (q ,b)#y

S
. (7)

The idea in the semi-Thue system S� is the following. The special symbols # and $
correspond to the endmarkers of the tape of� . For the initial configuration (q0,�)
of� there corresponds the initial word #(q ,�)

S
$. For a symbol (q , a)

S
, we simulate a

move of the TM� . First, by applying a rule from (2) - (5) we will have the symbol
(q ′,x)
(q ,b)

in our word. Then the lower part (q ,b) is shifted step by step to the left by the

rules (6). On the marker # the pair (q ,b), for which the transition of� was applied, is
written to the left of # by the rule (7), and then we will be dealing with the symbol y

S
.

Finally, the underlying symbol S is shifted under the symbol (q ′,x) with the rule (1).
Note also that the rules (3) and (5) work on the left and right boundary of the con-
figuration by adding a symbol � by the boundary if the head of the Turing machine
moves out of the old configuration.

It follows that the construction of the semi-Thue system S� works in the following
way, for details see [3]: Assume then that there is a halting computation for the initial
configuration (q0,�) of� . This means that

(q0,�) 	∗� u (H , a)v

for some u , v ∈ Γ ∗ and a ∈ Γ . Then in the semi-Thue system S� the unique deduc-
tion stating from the initial word #(q0,�)$ is of the form

#(q0,�)
S

$−→+S� x1x2 · · ·xk #u (H , a)
S

v $,

where xi ∈Q × Γ for each i . Note that the word x1x2 · · ·xk is indeed the the history
of the derivation of S� . We shall define a modified semi-Thue system, using the his-
tory word x1x2 · · ·xk to reverse the computation back to the initial configuration after
meeting the unique halting state. The construction is as follows.

Define the alphabet

Θ =
�

x
y

�� x
y
�= (H , a)

S
, a ∈ Γ �,

Deterministic Semi-Thue Systems and Variants of PCP 9

i.e., Θ contains an overlined copy of the symbols in Θ that are not of the form (H , a)
S

.

Next define the new rules. Let

t = (z x
y

w −→ z ′x ′
y ′

w ′) ∈R1

be a rule of S� , where z , z ′, w , w ′may be empty. If x ′
y ′
�= (H , a)

S
for all a ∈ Γ , we define

a new rule
t = (z ′x ′

y ′
w ′ −→ z x

y
w),

and if x ′
y ′
= (H , a)

S
for some a ∈ Γ , then define

t = (z ′x ′
y ′

w ′ −→ z x
y

w) = (z ′(H , a)
S

w ′ −→ z x
y

w). (8)

Therefore, in effect, the rule t does the reverse transition of the original rule t , but
with a unique symbol fromΘ instead ofΘ. The symbol (H , a)

S
is not overlined as seen

in (8). Set

R1 =
�

t | t ∈R1

�
, R =R1 ∪R1, and Ξ =Λ∪Θ. (9)

Let then
S� = (Ξ, R).

Lemma 1. The semi-Thue system S� is deterministic.

Proof. The proof is omitted here, we only state the idea of the proof. The claim fol-
lows from the construction since in R each rule contains one letter from the set Θ∪Θ
and this symbol together with the surrounding symbols imply that there is a unique
rule in R that can be used on the leftmost possible position of any word from Ξ∗.

For the proof of the following lemma, see [3].

Lemma 2. Let� be a Turing machine and let S� = (Ξ, R) be defined as above for� .
Then there exists a halting computation for empty input in� if and only if

#(q0,�)
S

$−→∗
S�

#(q0,�)
S

$. (10)

Now using the undecidability of the halting problem of Turing machines on empty
input (see, e.g., Manna [14]) Lemma 2 yields the following result.

Theorem 1. The word problem is undecidable for deterministic semi-Thue systems.

It is rather straightforward to modify the semi-Thue system S� to get the unde-
cidability for cyclic derivation of the semi-Thue system. Indeed, it can be done by
adding a single rule to it:

tC = #(q0,�)
S

$−→ #(q0,�)
S

$. (11)

Denote this new semi-Thue system corresponding to the TM� by C� . Note that
the rule tC in (11) simply transforms the unique final configuration back to the initial
configuration.

The next lemma is now obvious by the previous steps of the construction.

10 V. Halava

Lemma 3. Let� be a Turing machine and C� be the semi-Thue system as defined
in the above. Then� halts on the empty input word if and only if there exists a cyclic
derivation

#(q0,�)
S

$−→∗C� #(q0,�)
S

$−→C� #(q0,�)
S

$ (12)

according to CM

3 Circular PCP

The standard reduction, as introduced by Claus [2], of a semi-Thue system to the
PCP uses both initial and final words of the word problem. Here in the cyclic case
these words will be equal. Therefore, we are able to construct a reduction where the
PCP has a circular solution if and only if the derivation in C� returns to the initial
configuration #(q0,�)

S
$.

Let d be a new symbol not inΞ, defined in (9), and let d and rd be the desynchro-
nizing morphisms defined by d (x) = d x and rd (x) = xd for each letter x ∈Δ1.

We define two morphisms, g , h : (Δ1 ∪R ∪ {tC })∗ → (Ξ ∪ {d })∗ as follows. For any
letter a ∈Δ1, set

g (a) = d (a) = d a and h(a) = rd (a) = a d ,

and for t /∈ {t I , tC }, say t = u 1θ1v1 −→ u 2θ2v2, where u 1, u 2, v1, v2 ∈ Δ∗1 and θ1,θ2 ∈
Θ∪Θ, we set

g (t) = d (u 1θ1v1) and h(t) = rd (u 2θ2v2).

For tC , let
g (tC) = d (#(q0,�)

S
$)d and h(tC) = d rd (#(q0,�)

S
$).

We denote the first rule of the unique derivation in the semi-Thue system by t I , i.e.,

t I = #(q0,�)
S

$−→ u 1(q ′,x)
(q0,�)

v1, (13)

for some u 1, v1 ∈Δ∗1, whereΔ1 =Δ∪ {#, $}=Λ \Θ. Now, for the letter t I in (13), set

g (t I) = d (#(q0,�)
S

$) and h(t I) = rd (u 1(q ′,x)
(q0,�)

v1).

The following theorem was proved in [4].

Theorem 2. There exists a nonempty computation

#(q0,�)
S

$−→+ #(q0,�)
S

$

in C� if and only if there exists a non empty w ∈ (Δ1 ∪R ∪ {tC })∗ such that w = u v
and g (u v) = h(v u) for some words u and v .

Deterministic Semi-Thue Systems and Variants of PCP 11

Proof. We only sketch the idea here. The idea is to use the fact that the right hand side
of the rule tC is equal to the left hand side of t I together with the desynchronizing to
force the symbol tC to be the first symbol with respect to the morphism h in order
to get equal images for h and g . Indeed, assume that there is the cyclic derivation in
C� , say of the form

#(q0,�)
S

$−→ β2 −→ β3 −→ · · · −→ βk −→βk+1 = #(q0,�)
S

$, (14)

and the rules used in the derivation are t I , t2, . . . , tk−1, tC . Then clearly there exists
words u i , vi for i = 1, . . . , k , such that g (u i ti vi) = d (βi) and h(u i ti vi) = rd (βi+1),
and d rd (βk) = d h(u k−1tk−1vk−1) = g (tC) = d (#(q0,�)

S
$)d . Then, we have that for

w = t I (u 2t2v2)(u 3t3v3) · · ·(u k−1tk−1vk−1)tC = u v, (15)

where v = tC , and g (w) =h(v u).
The proof for the other direction of the claim is omitted here, since the proof is

quite long and technical.

For the complete proof of the following theorem, see [4].

Theorem 3. The circular PCP is undecidable.

4 n -Permutation PCP

For the n-permutation PCP, the idea of the construction is again rather straight-
forward, but the proof becomes technical while showing that a solution for the n-
permutation PCP implies a cyclic derivation in C� .

First, we take n −1 copies the semi-Thue system C� , meaning that we have n −1
copies of letters of the alphabet Ξ and rule symbols R ∪ {tC }. Denote by α(i) the i th
copy of α ∈ Ξ ∪R ∪ {tC } and for a word w ∈ Ξ ∪ {d }, denote by w (i) the word where
every letter of Ξ is replaced by the i th copy of it (note: there is only one copy of d).
Now let τ be a permutation of the set {1, . . . , n −1} and set for all α∈Δ1 ∪R

g (α(i)) = (g (α))i and h(α(i)) = (g (α))(τ(i))

and for letters t (i)C define

g (t (i)C) = (d (#(q0,�)
S

$))(i) and h(tC) = (rd (#(q0,�)
S

$))(τ(i)+1)

for i = 1, . . . , n −2, and for i =n −1, we define

g (t (n−1)
C) = (d (#(q0,�)

S
$)d)(n−1) and h(tC) = (d rd (#(q0,�)

S
$))(1).

Assume that C� has a cyclic computation of the form (14) and let w be as in (15).
Now setω=w (1)w (2) · · ·w (n−1), then clearly

g (ω) = (d (#(q0,�)
S

$β2 · · ·βk))(1) · · ·(d (#(q0,�)
S

$β2 · · ·βk)d)(n−1)

12 V. Halava

and

h(ω) =(rd (β2 · · ·βk))(τ(1))(rd (#(q0,�)
S

$))(τ(1)+1)

(rd (β2 · · ·βk))τ(2)(rd (#(q0,�)
S

$))(τ(2)+1) · · ·
(rd (#(q0,�)

S
$))(τ(n−2)+1) (rd (β2 · · ·βk))τ(n−1)(d rd (#(q0,�)

S
$))(1).

Define next the permutation σ by setting σ(1) = n and σ(i) = τ(−1)(i − 1) for i =
2, . . . n . Finally, set the words w ′i so that

ω=w ′1t (1)C w ′2t (2)C · · ·w ′n−1t (n−1)
C ,

and, further, set wi = w ′i t (i)C for i = 1, . . . , n − 2, wn−1 = w ′n−1 and wn = t (n−1)
C . It can

be shown that,
g (w1 . . .wn) = h(wσ(1)wσ(2) · · ·wσ(n)).

As mentioned above, to prove that if there exists a solution for the instance (g , h)
of n-permutation, then C� has the cyclic derivation of the form (14), is rather long
and technical. Therefore, we omit it the proof here, for the full proof of the following
theorem, see [5].

Theorem 4. The n-permutation PCP is undecidable.

Note that actually the n-permutation PCP is undecidable for both existence of a
solution for a fixed permutation and existence of solution for any n-permutation.

Acknowledgement. The author is grateful to Prof. Tero Harju for his valuable com-
ments, especially for comments which were completely unrelated to this work or any
other scientific work of the author.

References

1. Ceı̆tin, G.C.: Associative calculus with an unsolvable equivalence problem. Tr. Mat. Inst.
Akad. Nauk 52, 172–189 (1958) (Russian)

2. Claus, V.: Some remarks on PCP(k) and related problems. Bull. EATCS 12, 54–61 (1980)
3. Halava, V., Harju, T.: Word problem for deterministic and reversible semi-Thue systems,

manuscript (submitted), TUCS Technical Report 1044, TUCS (2012)
4. Halava, V., Harju, T.: New Proof for the Undecidability of the Circular PCP (submitted)

TUCS Technical Reports 1059, TUCS (2012)
5. Halava, V., Harju, T., Huova, M.: On n-permutation Post Correspondence Problem.

(manuscript) to appear in TUCS Technical Reports series (2013)
6. Karhumäki, J., Saarela, A.: Noneffective Regularity of Equality Languages and Bounded

Delay Morphisms. Discrete Mathematics & Theoretical Computer Science 12(4), 9–18
(2010)

7. Lecerf, M.Y.: Récursive insolubilité de l’équation générale de diagonalisation de deux
monomorphismes de monoïdes libresϕx =ψx . Comptes Rendus 257, 2940–2943 (1963)

8. Makanin, G.S.: The identity problem in finitely defined semigroups. Dokl. Akad. Nauk
SSR 107(2), 285–287 (1966)

Deterministic Semi-Thue Systems and Variants of PCP 13

9. Markov, A.A.: On the impossibility of certain algorithms in the theory of associative sys-
tems. Dokl. Akad. Nauk 55, 587–590 (1947); 58, 353–356 (1947) (Russian)

10. Matiyasevich, Y.: Simple examples of unsolvable associative calculi. Trudy Mat. Inst.
Steklov 93, 50–88 (1967) (Russian)

11. Matiyasevich, Y.: Simple examples of unsolvable associative calculi. Dokl. Akad. Nauk 173,
1264–1266 (1967) (Russian); Soviet Math. Docl. 8(2), 555–557 (1967) (English)

12. Matiyasevich, Y., Sénizergues, G.: Decision problems for semi-Thue systems with a few
rules. In: Proceedings of the 11th IEEE Symposium on Logic in Computer Science, pp.
523–531 (1996)

13. Matiyasevich, Y., Sénizergues, G.: Decision problems for semi–Thue systems with a few
rules. Theor. Comput. Sci. 330(1), 145–169 (2005)

14. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill Computer Science Series.
McGraw-Hill Book Co. (1974); Reprinted, Dover (2003)

15. Novikov, P.S.: On the algorithmic unsolvability of the problem of equality of words in group
theory. Tr. Mat. Inst. Akad. Nauk 44, 1–144 (1955) (Russian)

16. Pansiot, J.J.: A note on Post’s Correspondence Problem. Inform. Proc. Lett. 12, 233 (1981)
17. Post, E.: A variant of a recursively unsolvable problem. Bulletin of Amer. Math. Soc. 52,

264–268 (1946)
18. Post, E.: Recursive unsolvability of a problem of Thue. J. Symb. Logic 12, 1–11 (1947)
19. Ruohonen, K.: On some variants of Post’s correspondence problem. Acta Informatica 19,

357–367 (1983)
20. Ruohonen, K.: Reversible machines and Post’s correspondence problem for biprefix mor-

phisms. J. Inform. Process. Cybernet. EIK 21, 579–595 (1985)
21. Scott, D.: A short recursively unsolvable problem. J. Symb. Logic 21, 111–112 (1956)

Subword Complexity in Free Groups

Gilbert Levitt

Laboratoire LMNO,
Université de Caen, F14032 Caen Cedex

France
levitt@math.unicaen.fr

Abstract. Subword complexity is a basic invariant for words on a finite
alphabet. I will explain how one can define a complexity for points in
the boundary of a finitely generated free group F or for a lamination
on F. This complexity, or rather the way it grows, is invariant under
automorphisms of F and may be interpreted geometrically. I will discuss
a version of Pansiot’s theorem about the complexity of fixed points of
substitutions in the context of automorphisms of free groups. This is
based on joint work with Arnaud Hilion.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, p. 14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Non-constructive Methods

for Avoiding Repetitions in Words

Narad Rampersad

Department of Mathematics and Statistics, University of Winnipeg
515 Portage Ave., Winnipeg MB, R3B 0M3, Canada

narad.rampersad@gmail.com

Abstract. We survey several different non-constructive methods for
showing the avoidability of certain kinds of repetitions in words.

Many problems in combinatorics on words have the following form:

Let S be a given set of words over an alphabet Σ. Does there exist an
infinite word over the alphabet Σ that avoids S? That is, does there
exist an infinite word w such that no factor of w is an element of S?

For example, one might take S = {xx : x ∈ {0, 1, 2}∗}; i.e., S is the set of
squares over a 3-letter alphabet. In this case, the affirmative answer to the above
question is a classical result of Thue [11].

Thue’s demonstration of this result is constructive. He explicitly produces
an infinite word with the desired property; this word is defined by iterating a
morphism. The study of morphisms and morphic words is itself a very rich area,
but this is by no means the only method for demonstrating avoidability in words.
Here we focus on non-constructive methods, i.e., those based on some type of
counting or probabilistic argument.

One of the earliest results on words to be proved using the probabilistic
method is the following theorem due to Beck [1]:

Theorem 1. For any real ε > 0, there exist an integer Nε and an infinite binary
word w such that for every factor x of w of length n > Nε, all occurrences of x
in w are separated by a distance at least (2− ε)n.

Beck’s proof of this result is based on a lemma from probabilistic combi-
natorics known as the Lovász local lemma. In 2010, Moser and Tardos [7]
gave an algorithmic version of the Lovász local lemma based on an argument
known as entropy compression. Grytczuk, Kozik, and Micek [5] used this entropy
compression method to prove the following theorem.

Theorem 2. For every sequence L1, L2, . . . of 4-element sets, there exists a
squarefree word s1s2 · · · such that si ∈ Li for all i ≥ 1.

Bell and Goh [2] used another non-constructive method, based on generating
functions, to prove some results concerning avoidability of patterns. Their ap-
proach was based on the following special case of a result of Golod (see Rowen
[9, Lemma 6.2.7]):

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 15–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

16 N. Rampersad

Theorem 3. Let S be a set of words over a k-letter alphabet, each word of length
at least 2. Suppose that for each i ≥ 2, the set S contains at most ci words of
length i. If the power series expansion of

G(x) :=

⎛⎝1− kx+
∑
i≥2

cix
i

⎞⎠−1

has non-negative coefficients, then there are least [xn]G(x) words of length n
over an k-letter alphabet that avoid S.

This next result, which confirmed a conjecture of Cassaigne [4], was proved
in 2013 simultaneously and independently by Ochem and Pinlou [8] and by
Blanchet-Sadri and Woodhouse [3].

Theorem 4. Let p be a pattern with m distinct variables.

1. If |p| ≥ 3 · 2m−1, then p is avoidable over a binary alphabet.

2. If |p| ≥ 2m, then p is avoidable over a ternary alphabet.

Pinlou and Ochem obtained this result by applying the Moser–Tardos entropy
compression method, and Blanchet-Sadri and Woodhouse proved the result by
using the method of Theorem 3.

Another criterion for the avoidability of a set S over a k-letter alphabet, which
is somewhat similar to that of Theorem 3, is the following, due to Miller [6].

Proposition 1. Let S be a set of non-empty words over a k-letter alphabet Σ.
If there exists c ∈ (1/k, 1) such that∑

s∈S

c|s| ≤ kc− 1,

then there is an infinite word over Σ that avoids S.

From this one can derive the following result, which had previously been estab-
lished by Rumyantsev and Ushakov [10] using an argument based on Kolmogorov
complexity.

Corollary 1. Let S be a set of non-empty words over a k-letter alphabet Σ and
let α ∈ [0, 1). There is a positive integer d such that if S contains at most kαm

words of length m for each m ≥ d, and none of length less than d, then there is
an infinite word over Σ that avoids S.

These are just some selected examples to illustrate applications of some of
these non-constructive methods. There are, of course, many other results on
words that have been shown using these types of techniques.

Non-constructive Methods for Avoiding Repetitions in Words 17

References

1. Beck, J.: An application of Lovász local lemma: there exists an infinite 01-sequence
containing no near identical intervals. In: Hajnal, A., et al. (eds.) Infinite and Finite
Sets. Colloq. Math. Soc. J. Bolyai, vol. 37, pp.103–107 (1981)

2. Bell, J., Goh, T.L.: Lower bounds for pattern avoidance. Inform. and Comput. 205,
1295–1306 (2007)

3. Blanchet-Sadri, F., Woodhouse, B.: Strict bounds for pattern avoidance (preprint)
4. Cassaigne, J.: Motifs évitables et régularités dans les mots. Thèse de doctorat,

Université Paris 6, LITP research report TH 94–04
5. Grytczuk, J., Kozik, J., Micek, P.: New approach to nonrepetitive sequences. Ran-

dom Structures Algorithms 42, 214–225 (2013)
6. Miller, J.: Two notes on subshifts. Proc. Amer. Math. Soc. 140, 1617–1622 (2012)
7. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma.

J. ACM 57, Art. 11 (2010)
8. Ochem, P., Pinlou, A.: Application of entropy compression in pattern avoidance.

Preprint available at http://arxiv.org/abs/1301.1873
9. Rowen, L.: Ring Theory. Vol. II. Pure and Applied Mathematics, vol. 128. Aca-

demic Press, Boston (1988)
10. Rumyantsev, A.Y., Ushakov, M.A.: Forbidden substrings, Kolmogorov complexity

and almost periodic sequences. In: Durand, B., Thomas, W. (eds.) STACS 2006.
LNCS, vol. 3884, pp. 396–407. Springer, Heidelberg (2006)

11. Thue, A.: Über unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I. Mat.
Nat. Kl. 7, 1–22 (1906)

http://arxiv.org/abs/1301.1873

Words, Trees and Automata Minimization

Giusi Castiglione and Marinella Sciortino

DMI, Università di Palermo, via Archirafi, 34 - 90123 Palermo, Italy
{giusi,mari}@math.unipa.it

Abstract. In this paper we explore some connections between some
combinatorial properties of words and the study of extremal cases of the
automata minimization process. An intermediate role is played by the
notion od word trees for which some properties of words are generalized.
In particular, we describe an infinite family of binary automata, called
word automata and constructed by using standard sturmian words and
more specifically Fibonacci words, that represent the extremal case of
some well known automata minimization algorithms, such as Moore’s
and Hopcroft’s methods. As well as giving an overview of the main results
in this context, the main purpose of this paper is to prove that, even if
a recently introduced polynomial variants of Brzozowski’s algorithm is
considered, such family of word automata represent the worst case for
the number of steps and for its overall time complexity. This fact suggests
that the standard sturmian words, and consequently the associated word
automata, are able to capture some properties for which the minimization
process becomes inherently more complex.

1 Introduction

In this paper we explore and describe some close connections between combi-
natorics on words and automata minimization algorithms. In particular, we are
interested in some combinatorial properties of words that have been fundamental
and useful to study extremal cases of important and well-known minimization
algorithms, such as Hopcroft’s algorithm and Brzozowski’s algorithm.

More in detail, in [10,4] some combinatorial properties of standard sturmian
words, circularly considered, have been related with the execution of Hopcroft’s
algorithm. It has been shown in [10,12] that a circular special factor of a word
corresponds to a refining operation (called split) of the partition of the states
of unary and binary automata constructed by using such a word. In the con-
struction of these unary, and especially binary, automata the words are used to
define the state’s labels and the edge’s labels. Such automata, also called word
automata are in fact constructed from binary trees whose structures and labels
are defined by the words. Such trees are called word trees.

It is well known (cf. [21]) that Hopcroft’s algorithm is ambiguous and it can
produce several and different executions on the same automaton having time
complexity with different orders of magnitude. It has been proved in [13] that
if the word automata are constructed by using word trees associated to stan-
dard sturmian words (also called standard word trees) all the executions have

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 18–33, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Words, Trees and Automata Minimization 19

running time with the same asymptotic growth rate. In particular, lower and
upper bound for the running time of the algorithm can be expressed in terms
of combinatorial properties of the trees and consequently of the standard stur-
mian words. Moreover, for certain subfamilies obtained from circular Fibonacci
words, Hopcroft’s algorithm is tight, i.e. all its executions have time complexity
Θ(n log n), where n is the number of states of the automaton.

Standard sturmian words have a crucial role in extremal cases of many al-
gorithms in several context, such as data compression algorithms (cf. [27]), pe-
riodicity of words [16,15,17], pattern matching algorithm, suffix automata (cf.
[22]). In this paper we show that the combinatorial properties of the standard
sturmian words and the associated word trees, used for the construction of the
word automata above mentioned, have a crucial role in the study of the ex-
tremal cases of the problem of minimizing finite state automata. In fact, it has
been proved in [9] that such families of automata represent a challenge also
for Brzozowski’s minimization algorithm, in the sense that at least quadratic is
the running time for the algorithm on these automata. However, Brzozowski’s
algorithm is exponential in the worst case because a determinization of a non-
deterministic automaton is required, although in [3,28] it is experimentally veri-
fied that in practice Brzozowski’s algorithm has a good performance and usually
outperforms the other algorithms when applied on non-deterministic finite state
automata. In this paper we prove that, even if new polynomial variants of Brzo-
zowski’s algorithm recently introduced in [19] are considered, the family of word
automata associated to standard word trees and more specifically to word trees
constructed from Fibonacci words represent the worst cases in the number of
steps and in the overall time complexity, respectively. This fact suggests that
the standard sturmian words, and consequently the associated word automata,
are able to capture some properties for which the minimization process becomes
inherently more complex.

2 Preliminaries

In this section we recall some basic definitions about words and automata that
will be used in the paper.

Let Σ be a finite alphabet and v, u be two words in Σ∗. We say that v and
u are conjugate if for some words z, w ∈ Σ∗ one has that v = zw and u = wz.
It is easy to see that conjugation is an equivalence relation. Note that many
combinatorial properties of words in A∗ can be thought as properties of the
respective conjugacy classes.

We say that a word v ∈ Σ∗ is a circular factor of a word w if v is a factor
of some conjugate of w. Equivalently, a circular factor of w is a factor of ww of
length not greater than the length of w (|w|). Note that, while each factor of w
is also a circular factor of w, there exist circular factors of a word w that are
not factors of w. For instance, ca is a circular factor of abc without being factor
of abc.

Moreover, a circular factor u of w is said to be special if both ua and ub are
circular factors of w.

20 G. Castiglione and M. Sciortino

In this paper an important role is played by a well known family of words, the
standard sturmian words. Let d1, d2, . . . , dn, . . . be a sequence of natural integers,
with d1 ≥ 0 and di > 0, for i = 2, . . . , n, Consider the following sequence of
words {sn}n≥0 over the alphabet A = {a, b}: s0 = b, s1 = a, sn+1 = sdn

n sn−1 for
n ≥ 1. Each finite word sn in the sequence is called standard sturmian word. It
is uniquely determined by the (finite) directive sequence (d0, d1, ..., dn−1). In the
special case where the directive sequence is of the form (1, 1, ..., 1, ...) we obtain
the sequence of Fibonacci words. We denote by fn the n-th finite Fibonacci word
and Fn = |fn|.

A finite state automaton is a 5-tuple A = (Q,Σ, δ, I, F) where Q is a finite
set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is
the set of final states and δ is the transition function from Q×Σ to 2Q.

The finite state automaton is deterministic iff it has a unique initial state and
δ is a mapping from Q×Σ to Q.

Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton (DFA) over the
finite alphabet Σ, where Q is a finite state set, δ is a transition function Q×Σ →
Q, q0 ∈ Q is the initial state and F ⊆ Q the set of final states. If C is a subset of
Q and a ∈ Σ, with δ−1

a (C) we denote the set {q ∈ Q|δ(q, a) ∈ C}. L(A) denotes
the language recognized by the automaton A.

An automaton is minimal if it has the minimum number of states among
all its equivalent deterministic finite state automata (i.e. recognizing the same
language). For each regular language there exists a unique minimal DFA. It can
be computed using the Nerode equivalence. Given a state p ∈ Q, we define the
language

Lp(A) = {v ∈ Σ∗ | δ(p, v) ∈ F}.

The Nerode equivalence on Q, denoted by ∼, is defined as follows: for p, q ∈ Q,
p ∼ q if Lp(A) = Lq(A). It is known that ∼ is a congruence of A, i.e. for any
a ∈ Σ, p ∼ q implies δ(p, a) ∼ δ(q, a), and it is the coarsest congruence of A that
saturates F , i.e. such that F is a union of classes of the congruence. The Nerode
equivalence can be computed by the Moore construction. For any integer k ≥ 0,
the Moore equivalence ∼k is defined the following way:

Lk
p(A) = {v ∈ Lp(A) | |v| ≤ k}; p ∼k q ⇔ Lk

p(A) = Lk
q (A), ∀p, q ∈ Q.

The depth of the finite automaton A is the smallest k such that the Moore
equivalence ∼k equals the Nerode equivalence ∼. It is also the smallest k such
that ∼k equals ∼k+1.

Theorem 1 (Moore). The depth of the deterministic finite state automaton
A = (Q,Σ, δ, q0, F) is at most |Q| − 2.

Let P = {Q1, Q2, ..., Qm} be the partition corresponding to the Nerode equiv-
alence. For q ∈ Qi, the class Qi is denoted by [q]. Then the minimal au-
tomaton that recognizes L(A) is MA = (QM , Σ, δM , q0M , FM), where: QM =
{Q1, Q2, ..., Qm}, q0M = [q0], δM ([q], a) = [δ(q, a)], ∀ q ∈ Q, ∀ a ∈ Σ and
FM = {[q] | q ∈ F}.

Words, Trees and Automata Minimization 21

3 From Words to Automata

This section is devoted to describe a family of automata constructed by using
words. Such automata have turned interesting for the study of the minimization
process, as it is also shown in this paper, because they have some features that
make complex this process.

Standard sturmian words have been used to define families of unary automata
representing the extremal case of Hopcroft’s algorithm ([10,6]). Since the min-
imization of unary automata can be achieved in linear time (cf. [25]) but the
solution does not seem to extend to larger alphabet, in this paper in order
to study the key features that complicates the minimizazion process we are
interested to a family of binary automata defined as follows.

Let w = a1a2...an be a word of length n over the binary alphabet Σ = {a, b}.
The word automaton associated to w, denoted byAw, is the DFA (Q,Σ, δ, 1, F)

such that Q = {1, 2, · · · , n}, F = {i ∈ Q | ai = b}, and with, for every i ∈ Q
and every x ∈ Σ,

δ(i, x) =

{
i+ 1 if i
= n and x = ai

1 otherwise

In Fig. 1 a word automaton Aw with w = f5 = abaababa is depicted.

1
2

3

4
5

6

7

8

b

a

b

a

a

b

a

b

b

a

a
b

b a

a

b

Fig. 1. The word automaton Af5 associated to the word f5 = abaababa

The minimization process of such automata can be studied by the combina-
torial properties of particular trees, associated to words, that can be considered
the skeleton of the word automata. Such tree, also called word tree, have been
introduced in [12] and are defined below.

Let Σ = {a, b} a binary alphabet. We use the notion of binary labeled tree over
Σ defined as a map τ : Σ∗ → Σ whose domain dom(τ) is a prefix-closed subset
of Σ∗. The elements of dom(τ) are called nodes. If x, y ∈ dom(τ) are nodes of τ
such that x = yi for some i ∈ Σ, we say that y is the father of x and in particular,
if i = a (resp. i = b) x is the left son (resp. right son) of y. A node without sons
is called leaf and the node ε is called the root of the tree. Given a tree τ , the
outer frontier of τ is the set Fr(τ) = {xi|x ∈ dom(τ), i ∈ Σ, xi /∈ dom(τ)}.

22 G. Castiglione and M. Sciortino

Let w = w1w2...wn ∈ Σ∗, by τw we denote the labelled tree that we call word
tree such that dom(τw) is the set of prefixes of w and the map is defined as
follows: {

τw(ε) = w1

τw(w1w2...wi) = wi+1 ∀1 ≤ i ≤ n− 1

In Fig. 2 a word tree τw with w = f5 = abaababa is depicted.

a

b

a

a

b

a

b

a

Fig. 2. The word tree τf5 associated to the word f5 = abaababa

It is easy to note that the word automaton associated to w can be obtained
from τw by adding a transition to the root of the tree for each missing edge.
Moreover, the root is the initial state and the states corresponding to nodes
labeled by a (resp. b) are non-final (resp. final) states.

Using the word tree is useful because, as described in the following sections,
some refinements operations during the minimization algorithms applied on the
word automata, can be connected to combinatorial properties of the circular
factors of the word trees. In order to give such a definition we need to introduce
the notion of simultaneous concatenation of labelled trees defined in [11]. The
tree τ1 ◦ τ2 is the simultaneous concatenation of τ2 to all the nodes of Fr(τ1),
i.e. the root of τ2 is attached to all the nodes of the outer frontier of τ1.

Let τ be a tree, with τω the infinite simultaneous concatenation τ ◦ τ ◦ τ ◦ . . .
is denoted. Notice that, by infinitely applying the simultaneous concatenation,
a complete infinite tree is obtained.

Let τ and τ ′ be two binary labeled trees. We have that τ is a subtree of τ ′ if
there exist a node v ∈ dom(τ ′) such that:

i) v · dom(τ) = {vu|u ∈ dom(τ)} ⊆ dom(τ ′)
ii) τ(u) = τ ′(vu) for all u ∈ dom(τ).

In this case we say that τ is a subtree of τ ′ that occurs at node v.

Words, Trees and Automata Minimization 23

In what follows we recall some notions and definitions about trees given in
[12]. We define factor of a tree a finite complete subtree of the tree. The height
of a finite tree τ , denoted by h(τ), is defined as max{|u|+ 1, u ∈ dom(τ)}.

Let τ be a tree, σ and σ̄ two factors of τ such that σ̄ is the complete prefix
of σ of height h(σ) − 1, then σ is called an extension of σ̄ in τ . A factor σ of a
tree τ is extendable in τ if there exists at least one extension of σ in τ .

A factor σ of τ is 2-special if there exist exactly two different extensions
of σ in τ .

We say that γ is a circular factor of τ if it is a factor of τω with h(γ) ≤ h(τ).
A circular factor γ of τ is a special circular factor if there exist at least two
different extensions of γ in τω (that we can call circular extensions or simply
extensions). A special factor is called 2-special circular factor if it has exactly
two different extensions.

Example 1. In Fig. 3(a) a tree τ and three of its circular factors are depicted.
The single node labeled by b is a 2-special circular factor indeed it has two
different extensions depicted in Fig. 3(b) and Fig. 3(c). The single node labeled
by a has a unique extension depicted in Fig. 3(d).

The concept of circular factor can be easily understood by noting that in the
case of unary tree it coincides with the notion of circular factor of a word.

We say that a finite tree τ is a standard tree if for each 0 ≤ h ≤ h(τ) − 2 it
has only a 2-special circular factor of height h.

Remark 1. It has been proved in [12] that there exists a one-to-one correspon-
dence between the set of circular factors of w and the set of circular factors of
τw. Moreover, w is a standard sturmian word if and only if the word tree τw is
a standard tree.

a

b

b

� �

�

a

b

� �

�

(a)

b

b a
(b)

b

a a
(c)

a

b a
(d)

Fig. 3. A finite tree τ and its circular factors of height 2

As mentioned before, in the following sections a close connection between the
sets of states of the word automaton and the circular factors of the associated
word tree is used. For this purpose the following notation is fundamental. For
any circular factor σ of τw, we define the subset Qσ of states of Aw that are
occurrences of σ in τw. Trivially, we have that Qε = Q, Qb = F and Qa = Q\F .

24 G. Castiglione and M. Sciortino

4 A Worst Case of Minimization

The goal of this section is to show that the family of word automata constructing
from standard sturmian words could represent a complex case for the minimiza-
tion process regardless of the minimization algorithm is used. We will recall the
results regarding the classical Moore’s, Hopcroft’s and Brzozowski’s algorithm.
Then we will give the main contribution that is to prove that, also for some
polynomial variants of Brzozowski’s algorithm, recently introduced in [19], the
family of word automata associated to standard word trees and more specifically
to word trees constructed from Fibonacci words represent the worst cases of the
algorithm. Again we will use combinatorics on words to characterize the running
time of the algorithm. This fact suggests that the standard sturmian words, and
consequently the associated word automata, are able to capture some properties
for which the minimization process becomes inherently more complex.

4.1 Minimization by Equivalence of States

A well known and important family of minimization algorithms work by operat-
ing a sequence of refinements of a partition of the set of states of the automaton.
Moore’s and Hopcroft’s algorithms are two of the main minimization algorithms
in this class. Although based on the same strategy, they are quite different in
behavior and in complexity (cf. [21]).

Moore’s algorithm (cf. [24]) starts from the partition Π = {F,Q \ F} which
corresponds to the equivalence ∼0. The algorithm is iterative and, at each itera-
tion, the partition corresponding to the equivalence ∼i+1 is computed from the
one corresponding to the equivalence ∼i, using the fact that p ∼k+1 q iff p ∼k q
and for all a ∈ Σ, δ(p, a) ∼k δ(q, a). The algorithm halts when no new partition
refinement is obtained, and the result is the Nerode equivalence. Each iteration is
performed in time Θ(|Q|). The time complexity of Moore’ s algorithm applied to
A is therefore Θ(d |Q|), where d is the depth of A. As shown in [9] the following
result can be proved.

Theorem 2. Let w be a standard sturmian word of length n and let Aw be the
correspondent word automaton. Moore’s algorithm runs in Θ(n2) on Aw.

Hopcroft’s algorithm minimizes a complete deterministic finite state automa-
ton with n states, over an alphabet Σ, in O(|Σ|n logn) time (cf. [20]). It is, up
to now, the most efficient algorithm known in the general case.

In Figure 4 a brief description of the algorithm is given.
Given an automaton A = (Q,Σ, δ, q0, F), it computes the coarsest congruence

that saturates F . The algorithm is based on the notion of split operation. More
in detail, given a partition Π = {Q1, Q2, ..., Qm} of Q, we say that the pair
(S, a), with a ∈ Σ, splits the class Qj if δ−1

a (S) ∩ Qj
= ∅ and Qj � δ−1
a (S). In

this case, the class Qj is split into Q′
j = δ−1

a (S)∩Qj and Q′′
j = Qj \ δ−1

a (S). The
partition Π is a congruence if and only if for any 1 ≤ i, j ≤ m and any a ∈ Σ,
the pair (Qi, a) does not splits Qj.

Words, Trees and Automata Minimization 25

Hopcroft Minimization (A = (Q,Σ, δ, q0, F))
1. Π ← {F,Q \ F}
2. for all a ∈ Σ do
3. W ← {(min(F,Q \ F), a)}
4. while W �= ∅ do
5. choose and delete any (C, a) from W
6. for all B ∈ Π do
7. if B is split from (C, a) then
8. B′ ← δ−1

a (C) ∩ B
9. B′′ ← B \ δ−1

a (C)
10. Π ← Π \ {B} ∪ {B′, B′′}
11. for all b ∈ Σ do
12. if (B, b) ∈ W then
13. W ← W \ {(B, b)} ∪ {(B′, b), (B′′, b)}
14. else
15. W ← W ∪ {(min(B′, B′′), b)}

Fig. 4. Hopcroft’s algorithm

Hopcroft’s algorithm operates by a sequence Π1, Π2, . . . , Πl of successive re-
finements of a partition of the states and it is based on the so-called “smaller
half” strategy. Actually, it starts from the partition Π1 = {F,Q \ F} and re-
fines it by means of splitting operations until it obtains a congruence, i.e. until
no split is possible. To do that it maintains the current partition Πi and a set
W ⊆ Πi × Σ, called waiting set, that contains the pairs for which it has to be
checked whether some classes of the current partition are split. The main loop of
the algorithm takes and deletes one pair (C, a) from W and, for each class B of
Πi, checks if it is split by (C, a). If it is the case, the class B in Πi is replaced by
the two sets B′ and B′′ obtained from the split. For each b ∈ Σ, if (B, b) ∈ W ,
it is replaced by (B′, b) and (B′′, b), otherwise the pair (min(B′, B′′), b) is added
to W (where min(B′, B′′) stands for the smaller of the two sets). Let us observe
that a class is split by (B′, b) if and only if it is split by (B′′, b), hence, the pair
(min(B′, B′′), b) is chosen for convenience.

There can be several executions and several sequences of refinements that
starting from the initial partitionΠ1 = {F,Q\F} lead to the coarsest congruence
of the input automaton A. In fact, the algorithm has several degrees of freedom
because, first of all, the pair (C, a) to be processed at each step is freely chosen.
Another free choice intervenes when a set B is split into B′ and B′′ with the
same size and it is not present inW . In this case, the algorithm can, indifferently,
add to W either B′ or B′′. Note that the time complexity of each execution is
proportional to the sum of the cardinality of the elements of the waiting set.

Word automata represent an interesting case study for Hopcroft’s algorithm
from several points of view. The following theorem (cf. [12]) states that in case
of standard word automata, the refinement process of Hopcroft’s algorithm is

26 G. Castiglione and M. Sciortino

unique whatever strategy is used for choosing and deleting any pair from the
waiting set.

Theorem 3. Let Aw be a standard word automaton. The refinement process
Π1, Π2, ...Πm is uniquely determined. Furthermore, m = h(τw)− 1 and for each
1 ≤ k ≤ h(τm)− 1,

Πk = {Qσ| σ is a circular factor of τw with h(σ) = k}

Note that the uniqueness of the refinement process does not necessarily
implies the uniqueness of the execution. Let us denote by CH(n) the running
time of the current execution of Hopcroft’s algorithm to minimize A with n
states. The following theorem proved in [13] expresses the running time of the
best and the worst execution of Hopcroft’s algorithm on a standard word au-
tomata in terms of the occurrences of 2-special circular factors of the standard
word tree.

Theorem 4. Let w be a standard word of length n and Aw the standard automa-
ton associated to the standard tree τw. Each execution of Hopcroft’s algorithm
on this automaton has a running time satisfying the following inequalities:

∑
σ∈sp(τw)

min(|Qσ′ |, |Qσ′′ |) + n− 1 ≤ CH(n) ≤ 2
∑

σ∈sp(τw)

min(|Qσ′ |, |Qσ′′ |).

Previous theorem states that, when applied to word automata associated to
standard sturmian words, all the executions of Hopcroft’s algorithm have run-
ning time with the same asymptotic growth rate whatever strategy is used to
implement the waiting set. The following theorem proved in [12] states that there
exists an infinite family of standard word automata representing the worst case
of the algorithm.

Theorem 5. Let Afn be a standard automaton associated with the standard tree
τfn , where fn is the Fibonacci word of order n. Each execution of Hopcroft’s
algorithm on this automaton has a running time that satisfies the following
inequalities:

K

φ
Fn logFn + Fn − 1 ≤ CH(Fn) ≤ 2KFn logFn,

where K = 3
5logφ .

The key element in the proof of the result is the fact that during the refinement
process of Hopcroft’s algorithm, each class of any partition has as cardinality
a Fibonacci number and, recursively, when it is split, the cardinalities of the
resulting classes are the two preceding Fibonacci numbers, respectively.

Words, Trees and Automata Minimization 27

4.2 Brzozowski’s Minimization Algorithm and Its Polynomial
Variants

In this section we describe Brzozowski’s algorithm introduced in [7] that is a
method of automata minimization that takes as input a non deterministic finite
state automaton. Its time complexity is exponential in the worst case (cf. [14]),
but here we will consider also one of its variants that are recently introduced
(cf. [19]) for deterministic automata and runs in polynomial time.

First, we give some preliminary definitions and notations.
Let A = (Q,Σ, δ, I, F) be a finite state automaton. We say that a state of

Q is accessible if it can be reached by sequence of transitions, that we call path
starting from an initial state. By d(A) we denote the deterministic finite state
automaton equivalent to A, d(A) = (Qd, Σ, δd,�0, Fd), where:

– Qd is the set of subsets � of Q
– �0 = I
– δd(�, a) = {δ(p, a) | p ∈ �}, ∀�∈ Qd, a ∈ Σ
– Fd = {� | �∩ F
= ∅}.

The mechanism of building d(A) from A is called the determinization.
The reverse of the automaton A = (Q,Σ, δ, I, F) is the automaton r(A) =

(Qr, Σ, δr, Ir, Fr) = (Q,Σ, δr, F, I), where for each a ∈ Σ and q ∈ Qr, δr(q, a) =
{p ∈ Q | q ∈ δ(p, a)}.

Brzozowski’s algorithm consists of computing twice a reversal operation fol-
lowed by a determinization. More in detail, if A if the finite state automaton
considered as input, d(r(d(r(A)))) is its minimal equivalent automaton. Since the
reverse operation can be also applied to non-deterministic finite state automata,
this algorithm is able to minimize both deterministic and non-deterministic fi-
nite state automata. Obviously, the reverse of an automaton can easily be com-
puted in linear time with respect to its size (number of states and transitions),
the critical part of the algorithm is the determinization. Hence, the worst-case
running time complexity of the algorithm is exponential because it depends on
the number of states producing during the determinizations. However in [28,3]
it is experimentally verified that in practice Brzozowski’s algorithm has a good
performance and usually outperforms the other algorithms when applied on non-
deterministic finite state automata. In [9] the authors prove that for word au-
tomata associated to Fibonacci words such an operation has a quadratic lower
bound. The result has been obtained by estimating the cardinality of “big” sets
in the determinization and fundamental tools are the properties of Fibonacci
words given in the following propositions.

Proposition 1. Let fn be the n-th Fibonacci word, with n ≥ 3. If n is odd
then the circular factor afn−1 has a unique occurrence in fn at position Fn. If
n is even then the circular factor afn−2 has a unique occurrence in in fn at
position Fn−1.

Proposition 2. Let fn be the n-th Fibonacci word, with n ≥ 2, and let u be a
suffix of fn that is also a prefix of fn. Then u is equal to fn−2i, for some i > 0.

28 G. Castiglione and M. Sciortino

Note that, occurrences of circular factors in Fibonacci words are strictly
connected to paths in the determinization of the reverse of Afn here denoted
by d(r(Afn)).

Remark 2. If u = vx , with x ∈ Σ, is a circular factor of the word fn then there
exists a path in r(Afn) labeled by vr. In particular, if u = vb then there exists
in r(Afn) starting from an initial state and labeled with vr.

One can find in d(r(Afn)) some accessible states are closely related with
the properties of the circular factors of fn that label the relative paths, i.e.
occurrences of some circular factors of fn determine the cardinality of subsets
reached by the corresponding paths.

Theorem 6. Let Afn be the word automaton corresponding to the n-th Fi-
bonacci word fn. If n is odd, then in the automaton d(r(Afn)) the state {Fn−1}c
is accessible by the path labelled by fn−1. If n is even, then in the automaton
d(r(Afn)) the state {Fn−1 − 1}c is accessible by the path labelled by fn−2.

One can deduce the following corollary that counts the number of sets in
d(r(Afn)) with cardinality |Q| − 1.

Corollary 1. If n is odd then in the automaton d(r(Afn)) the states {k}c, with
1 ≤ k ≤ Fn− 1, are accessible. If n is even then in the automaton d(r(Afn)) the
states {k}c, with 1 ≤ k ≤ Fn−1 − 1, are accessible.

Such results allow to provide a lower bound on the number of the sum of the
cardinality of the states obtained after the first determinization. Consequently,
this also represents a lower bound on the time complexity of Brzozowski’s algo-
rithm. Let us denote by CB(n) be the time complexity of Brzozowski’s algorithm
on an automaton having n states.

Theorem 7. Let Afn be the word automaton corresponding to the n-th Fi-
bonacci word fn. Then

cB(Fn) = Ω(F 2
n),

where Fn = |fn| is the number of states of Afn .

Studies on generic and average complexities of Brzozowski’s minimization
algorithm have been proposed. Very recently, it has been proved in [26] that
both these complexities are super-polynomial for the uniform distribution on
deterministic automata.

However, a polynomial variant of the Brzozowski’s algorithm has been recently
introduced in [3] for deterministic finite state automata. The classical strategy
proposed by Brzozowski is not based on refinement operations, but such variant
shows Brozowski’s method is not so far from Hopcroft’s minimization algorithm.
Connected results can be found in [1,2,23], where the theory of atomic NFA’s is
considered in order to obtain a more efficient minimization strategy.

Words, Trees and Automata Minimization 29

Minimization by PRD (A = (Q,Σ, δ, q0, F))
1. Π ← {F,Q \ F}
2. S = F
3. L = ∅
4. for all a ∈ Σ do
5. L ← (S, a)
6. while L �= ∅ do
7. choose and delete any (S, a) from L
8. for all B ∈ Π do
9. if B is split by (S, a) then
10. B′ ← δ−1

a (S) ∩B
11. B′′ ← B′ \ δ−1

a (S)
12. Π ← Π \ {B} ∪ {B′, B′′}
13. for all b ∈ Σ do
14. L ← L ∪ {(δ−1

a (S), b)}

Fig. 5. Minimization by Partial Reverse Determinization

Here we describe the minimization algorithm (see Fig. 5) for deterministic
finite state automata given in [19], that is a variant of Brzozowski’s algorithm
but with time complexity bounded by O(kn2), where k = |Σ| and n = |Q|.
The minimization of a DFA is computed by a partial determinization of the
reverse (PRD) and a contemporary refinement of the trivial partition in {F,Q \
F} of Q till to obtain the Nerode equivalence. More precisely, it performs a
determinization of the reverse of the automaton and uses the subsets to refine
the partition. Such a determinization is partial since it takes into account only
accessible sets of states of d(r(A)) that are able to refine the current partition,
i.e. that cause a split. The running time is computed by the sum of cardinalities
of such sets because the subsets that do not cause a split are rejected. Note
that such an algorithm uses instruments of Brzozowski’s algorithm such as the
determinization but also uses the split operation, like Hopcroft’s algorithm. But
in this case the sets used to splits are not the sets of the current partition but
the sets obtained during the determinization.

Let e ∈ Σ∗ and let Qe be the subset of Q such that δr(F, e) = Qe. In order
to compute the running time of the algorithm we have to sum the cardinalities
of sets that are in L during the process i.e. those sets Qe, for some e ∈ Σ∗, that
are stored in L during the process. We call experiments such words e such that
Qe causes a refinement. It is known that L contains at most n−1 elements, then
the time complexity of the algorithm is O(kn2).

In this paper we consider the minimization by PRD algorithm of word au-
tomata. We prove that in order to minimize a standard word automaton, exactly
n − 1 elements in L are processed and that the time complexity is tight. The
statement of the following theorem characterizes, analogously to Hopcroft’s al-
gorithm, the splits of sets and then the refinement process of the partitions
on such automata. In particular, Theorem 8 relates the refinements produced

30 G. Castiglione and M. Sciortino

during the PRD algorithm with the occurrences of 2-special factors of the
standard word tree associated to the input automaton.

Theorem 8. Let Aw be a word automaton, σ a circular factor of τw and e ∈ Σ∗,
we have that (Qe, a) split Qσ for some a ∈ Σ iff σ is a 2-special factor of τw.

Moreover, one can prove that the refinement process is uniquely determined
as a consequence of the fact that a standard word tree has a unique 2-special
factor of each height.

In order to find the extremal case of PRD algorithm we give a characterization
of the set of the experiments needed to minimize standard word automata.

Theorem 9. Let Aw be the standard word automaton associated to a standard
sturmian word of length n. Then, for each length 0 ≤ l ≤ n − 1, there exists
a unique experiment e of length l in the set of experiments that minimize Aw

by PRD.

The theorem is proved by using the following lemma that holds because a
standard tree has not any 3-special factor (cf. Remark 1).

Lemma 1. Let Aw be a standard word automaton and e ∈ Σ∗, if (Qe, a) (resp.
(Qe, b)) refines Qσ then (Qe, b) (resp. (Qe, a)) does not.

Moreover, in case of standard word automaton we are able to exactly
determine the experiments e that minimize the automaton.

Given a word w ∈ Σ∗, by sufl(w) we denote the set of suffixes u of w with
0 ≤ |u| ≤ l. Then the following theorem holds.

Theorem 10. Let Aw be a standard word automaton. The set of experiments
that minimize Aw by PRD is suf|w|−2(w).

In case of standard word automata associated to Fibonacci words, we are
able to determine some crucial sets of states of the PRD that allow to give
a quadratic bound of the running time. Hence we can conclude that to min-
imize word automata associated to Fibonacci words by PRD, |Q| − 1 experi-
ments are needed. We use this fact in the sequel, together with the following
proposition, in order to estimate the accessible part obtained by PRD algorithm
applied on Afn .

Proposition 3. Let Afn be the word automaton associated to the n-th Fibonacci
word fn. If n is odd, then Qfn−1 = {Fn − 1}c. If n is even, then Qfn−2 =
{Fn−1 − 1}c.

We can deduce the following corollary that allows us to determine what sets
of cardinality |Q| − 1 are involved in the partial reverse determinization. Note
that they are not all those with this cardinality that one can find in the reverse
determinization and specified in the Corollary 1 but only those that contribute
to the minimization.

Words, Trees and Automata Minimization 31

Corollary 2. If n is odd then the states {k}c, with Fn−1 + 1 ≤ k ≤ Fn − 1, are
accessible in the PRD of Afn . If n is even then the states {k}c, with Fn−2 +1 ≤
k ≤ Fn − 1, are accessible in the PRD of Afn .

The following theorem establishes that word automata associated to Fibonacci
words represent the extremal case of the polynomial variant of Brzozowski’s
algorithm introduced in [19]. It is a consequence of previous results and it is
closely related to the combinatorial properties of standard sturmian words and
its associated word trees. Let us denote by CPRD(n) the time complexity of
minimization by PRD algorithm on an automaton of n states.

Theorem 11. Let Afn be the word automaton associated to the n-th Fibonacci
word fn, with Fn states. Then

CPRD(Fn) = Θ(F 2
n).

5 Conclusions and Further work

In recent years a bridge between combinatorics on words and the study of com-
plexity of algorithms for the minimization of finite state automata has aroused
great interest (cf. [6,5,12]. In particular, tools and notions from combinatorics
on words have been fundamental to study the worst case of some minimization
algorithms. In this paper we consider a family of binary automata constructed
by using standard sturmian words that inherit combinatorial properties that
plays an important role in the study of extremal cases of the process of mini-
mization of an automaton. An intermediate role is played by the notion of word
trees for which some properties of words are generalized. More in detail, we
prove that a family of binary word automata, in which the states are final or
not by following the letters of Fibonacci words, have combinatorial properties
such that the minimization process of several algorithms become more complex.
It would be interesting to give a characterization of the words for which such
automata are always difficult to minimize. In this direction, results in [5] and the
algorithms proposed in [2,23] could be considered. Finally, from the symmetric
point of view, we highlight that the study of the executions of the minimization
algorithms on word automata (and in particular Hopcroft’s algorithm) has al-
lowed to find new combinatorial properties of the circular sturmian words, by
introducing the notion of reduction tree of a circular sturmian word that is a
recursive tree that is intrinsically connected to the structure of words itself. It is
possible to extend such a definition also to the case of words defined on alpha-
bets with more than two letters (cf. [8]). This allows to define, on one hand, the
notion of reduction tree of circular epichristoffel words (cf. [18]), on the other a
variant of Hopcroft’s algorithm for a more general class of fine state automata,
the automata with output. These trees could provide new tools for investigate
some still open issues related to epichristoffel words.

32 G. Castiglione and M. Sciortino

References

1. Brzozowski, J.A., Tamm, H.: Quotient complexities of atoms of regular languages.
In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 50–61. Springer,
Heidelberg (2012)

2. Brzozowski, J.A., Tamm, H.: Minimal nondeterministic finite automata and atoms
of regular languages. CoRR, abs/1301.5585 (2013)

3. Almeida, M., Moreira, N., Reis, R.: On the performance of automata minimization
algorithms. Technical Report DCC-2007-03, Universidade do Porto (2007)

4. Berstel, J., Boasson, L., Carton, O.: Continuant polynomials and worst-case be-
havior of Hopcroft’s minimization algorithm. Theor. Comput. Sci. 410, 2811–2822
(2009)

5. Berstel, J., Boasson, L., Carton, O., Fagnot, I.: Sturmian trees. Theory of Com-
puting Systems 46(3), 443–478 (2010)

6. Berstel, J., Carton, O.: On the complexity of Hopcroft’s state minimization algo-
rithm. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004.
LNCS, vol. 3317, pp. 35–44. Springer, Heidelberg (2005)

7. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for def-
inite events. Mathematical Theory of Automata 12, 529–561 (1962)

8. Castiglione, C., Sciortino, M.: Moore automata and epichristoffel words. In: ICTCS
2012 - 13th Italian Conference on Theoretical Computer Science (2012)

9. Castiglione, G., Nicaud, C., Sciortino, M.: A challenging family of automata for
classical minimization algorithms. In: Domaratzki, M., Salomaa, K. (eds.) CIAA
2010. LNCS, vol. 6482, pp. 251–260. Springer, Heidelberg (2011)

10. Castiglione, G., Restivo, A., Sciortino, M.: Hopcroft’s algorithm and cyclic au-
tomata. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS,
vol. 5196, pp. 172–183. Springer, Heidelberg (2008)

11. Castiglione, G., Restivo, A., Sciortino, M.: Circular sturmian words and Hopcroft’s
algorithm. Theor. Comput. Sci. 410(43), 4372–4381 (2009)

12. Castiglione, G., Restivo, A., Sciortino, M.: On extremal cases of Hopcroft’s algo-
rithm. Theor. Comput. Sci. 411(38-39), 3414–3422 (2010)

13. Castiglione, G., Restivo, A., Sciortino, M.: Hopcroft’s algorithm and tree-like au-
tomata. RAIRO - Theor. Inf. and Applic. 45(1), 59–75 (2011)

14. Champarnaud, J.-M., Khorsi, A., Paranthoën, T.: Split and join for minimizing:
Brzozowski’s algorithm. In: PSC 2002, pp. 96–104 (2002)

15. de Luca, A.: Combinatories of standard sturmian words. In: Mycielski, J., Rozen-
berg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS,
vol. 1261, pp. 249–267. Springer, Heidelberg (1997)

16. de Luca, A., Mignosi, F.: Some combinatorial properties of sturmian words. Theor.
Comput. Sci. 136(2), 361–385 (1994)

17. Mignosi, F., Restivo, A.: Characteristic sturmian words are extremal for the critical
factorization theorem. Theor. Comput. Sci. 454, 199–205 (2012)

18. Paquin, G.: On a generalization of christoffel words: epichristoffel words. Theor.
Comput. Sci. 410(38-40), 3782–3791 (2009)

19. Garćıa, P., López, D., Vázquez de Parga, M.: DFA minimization: from Brzo-
zowski to Hopcroft. Technical report, Universidad Politécnica de Valencia. Informes
técnicos de investigación DSIC-TLCC (2013),
http://hdl.handle.net/10251/27623

20. Hopcroft, J.E.: An n log n algorithm for mimimizing the states in a finite automa-
ton. In: Theory of Machines and Computations (Proc. Internat. Sympos. Technion,
Haifa, 1971), pp. 189–196. Academic Press, New York (1971)

http://hdl.handle.net/10251/27623

Words, Trees and Automata Minimization 33

21. Berstel, J., Boasson, L., Carton, O., Fagnot, I.: Minimization of automata. CoRR,
abs/1010.5318 (2010)

22. Sciortino, M., Zamboni, L.Q.: Suffix automata and standard sturmian words. In:
Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 382–
398. Springer, Heidelberg (2007)

23. Vazquez de Parga, M., Garcia, P., Lopez, D.: A polynomial double reversal min-
imization algorithm for deterministic finite automata. Theor. Comput. Sci. 487,
17–22 (2013)

24. Moore, E.F.: Gedaken experiments on sequential machines, pp. 129–153. Princeton
University Press (1956)

25. Paige, R., Tarjan, R.E., Bonic, R.: A linear time solution to the single function
coarsest partition problem. Theor. Comput. Sci. 40, 67–84 (1985)

26. De Felice, S., Nicaud, C.: Brzozowski algorithm is generically super-polynomial
for deterministic automata. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS,
vol. 7907, pp. 179–190. Springer, Heidelberg (2013)

27. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and sturmian
words. Inf. Process. Lett. 86(5), 241–246 (2003)

28. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005)

Auto-similarity
in Rational Base Number Systems

Shigeki Akiyama1, Victor Marsault2,�, and Jacques Sakarovitch2

1 University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 350-8571 Japan
2 Telecom-ParisTech and CNRS, 46 rue Barrault, 75013 Paris, France

victor.marsault@telecom-paristech.fr

Abstract. This work is a contribution to the study of set of the repre-
sentations of integers in a rational base number system. This prefix-closed
subset of the free monoid is naturally represented as a highly non regu-
lar tree whose nodes are the integers and whose subtrees are all distinct.
With every node of that tree is then associated a minimal infinite word
(and a maximal infinite word).

The main result is that a sequential transducer which computes for
all n the minimal word associated with n + 1 from the one associated
with n, has essentially the same underlying graph as the tree itself.

These infinite words are then interpreted as representations of real
numbers; the difference between the numbers represented by the maximal
and minimal word associated with n is called the span of n. The preceding
construction allows to characterise the topological closure of the set of
spans.

1 Introduction

The purpose of this work is a further exploration and a better understanding
of the set of words that represent integers in a rational base number systems.
These numeration systems have been introduced and studied in [1], leading to
some progress in the results around the so-called Malher’s problem (cf. [5]).
We give below a precise definition of rational base number systems and of the
representation of numbers in such a system. But one can hint at the results
established in this paper by just looking at the figure showing the ‘representation
tree’ of the integers – that is, the compact way of describing the words that
represent the integers – in a rational base number system (Figure 1b for the
base 3

2) and by comparison with the representation tree (or trie) in an analogous
integer base number system (Figure 1a for the base 3).

In the latter, all subtrees are the same and equal to the full ternary tree,
whereas in the former, all subtrees are different. As a result, the language of the
representations of the integers is not a regular language. It may even be shown
that the language satisfies no iteration lemma of any kind ([6]). With the hope
of finding some order or regularity within what seems to be closer to complete
� Corresponding author.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 34–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Auto-similarity in Rational Base Number Systems 35

randomness (which, on the other hand, is not established either) we consider the
minimal words originating from every node of the tree.

In the case of an integer base, this is meaningless: all these minimal words are
equal to 0ω. In the case of a rational base these words are on the contrary all
distinct and none are even ultimately periodic (as no ultimately periodic word
can be found in this tree). In order to find some invariant of all these distinct
words, or at least a relationship between them, we have studied the function that
maps the minimal word w−

n associated with n onto the one associated with n+1,
and tried to describe this function by a (possibly infinite) transducer.

0 0

0

1

1

2

2

0

0

11

2

2

3

0

41

5

2

6

0

71

8

2

0

0

11

2

2

3

0

41

5

2

6

0

71

8

2

9

0

101

11

2

12

0

131

14

2

15

0

161

17

2

18

0

191

20

2

21

0

221

23

2

24

0

251

26

2

0

0

1

1

2

2

3

0

4

1

5

2

6

0

7

1

8

2

9

0

10

1

11

2

12

0

13

1

14

2

15

0

16

1

17

2

18

0

19

1

20

2

21

0

22

1

23

2

24

0

25

1

26

2

27

0

28

1

29

2

30

0

31

1

32

2

33

0

34

1

35

2

36

0

37

1

38

2

39

0

40

1

41

2

42

0

43

1

44

2

45

0

46

1

47

2

48

0

49

1

50

2

51

0

52

1

53

2

54

0

55

1

56

2

57

0

58

1

59

2

60

0

61

1

62

2

63

0

64

1

65

2

66

0

67

1

68

2

69

0

70

1

71

2

72

0

73

1

74

2

75

0

76

1

77

2

78

0

79

1

80

2

(a) Integer base 3

0 0

0

1

2

0

0

1

2

0

0

1

2

2
1

0

0

1

2

21

3

0

4

2

0

0

1

2

21

3

0

4

2

51

6

0

7

2

0

0

1

2

21

3

0

4

2

51

6

0

7

2

81

9

0

10

2

111

0

0

1

2

21

3

0

4

2

51

6

0

7

2

81

9

0

10

2

111

12

0

13

2

141

15

0

16

2

171

0

0

1

2

21

3

0

4

2

51

6

0

7

2

81

9

0

10

2

111

12

0

13

2

141

15

0

16

2

171

18

0

19

2

201

21

0

22

2

231

24

0

25

2

261

0

0

1

2

21

3

0

4

2

51

6

0

7

2

81

9

0

10

2

111

12

0

13

2

141

15

0

16

2

171

18

0

19

2

201

21

0

22

2

231

24

0

25

2

261

27

0

28

2

291

30

0

31

2

321

33

0

34

2

351

36

0

37

2

381

39

0

40

2

0

0

1

2

21

3

0

4

2

51

6

0

7

2

81

9

0

10

2

111

12

0

13

2

141

15

0

16

2

171

18

0

19

2

201

21

0

22

2

231

24

0

25

2

261

27

0

28

2

291

30

0

31

2

321

33

0

34

2

351

36

0

37

2

381

39

0

40

2

411

42

0

43

2

441

45

0

46

2

471

48

0

49

2

501

51

0

52

2

531

54

0

55

2

561

57

0

58

2

591

60

0

61

2

2
1

3
0

4

2

51

6

0

7

2

81

9

0

10

2

111

12

0

13

2

141

15

0

16

2

171

18

0

19

2

201

21

0

22

2

231

24

0

25

2

261

27

0

28

2

291

30

0

31

2

321

33

0

34

2

351

36

0

37

2

381

39

0

40

2

411

42

0

43

2

441

45

0

46

2

471

48

0

49

2

501

51

0

52

2

531

54

0

55

2

561

57

0

58

2

591

60

0

61

2

621

63

0

64

2

651

66

0

67

2

681

69

0

70

2

711

72

0

73

2

741

75

0

76

2

771

78

0

79

2

801

81

0

82

2

831

84

0

85

2

861

87

0

88

2

891

90

0

91

2

921

(b) Rational base 3
2

Fig. 1. Representation trees in two number systems

The computation of such a transducer in the case of the base 3
2 , and more

generally in the case of a base p
q with p = 2q − 1, leads to a surprising and

unexpected result. If T p
q

denotes the representation tree – viewed as an infinite
automaton, – the transducer, denoted by D p

q
, is obtained by replacing the label

of every transition of T p
q

by a set of pairs of letters that depends upon this label
only. In other words, the underlying graphs of T p

q
and D p

q
coincide, and D p

q
is

obtained from T p
q

by a substitution from the alphabet of digits into the alphabet
of pairs of digits, in this special and remarkable case.

The general case is hardly more difficult to describe, once it has been un-
derstood. Let Bp,q be the digit alphabet with 2q − 1 (consecutive) elementsand

36 S. Akiyama, V. Marsault, and J. Sakarovitch

whose greatest element is p − 1. If p > 2q − 1, then Bp,q is contained in Ap; it
consists of Ap, enlarged with enough negative digits otherwise.

From T p
q

and with the digit alphabet Bp,q, we first define another ‘automaton’

denoted by T̂ p
q
: either by deleting the transitions of T p

q
whose labels do not belong

to Bp,q in the case where p > 2q − 1 or, in the case where p < 2q − 1 by adding
transitions labelled with the new negative digits. Then, D p

q
is obtained from T̂ p

q

exactly as above, by a substitution from the alphabet of digits into the alphabet
of pairs of digits. This construction of D p

q
, which we call the derived transducer,

and the proof of its correctness are presented in Section 3. In the following
Section 4, we turn to a problem seems to be of different nature.

In [1], the tree T p
q
, which is built from the representations of integers, is used

to define the representations of real numbers: the label of an infinite branch of
the tree is the development ‘after the decimal point’ of a real number and the
drawing of the tree as a fractal object — like in Figure 1b — is fully justified by
this point of view. The same idea leads to the definition of the (renormalised)
span of a node n of the representation tree: it is the difference between the reals
represented respectively by the maximal and the minimal words originating in
the node n (see Remark 1, page 44).

Again, this notion is meaningless in the case of an integer base p: the span
of node n is always 1. And again, the notion is far more richer and complex
in the case of a rational base p

q . The trivial relationship between the minimal
word originating at node n + 1 and the maximal word originating at node n
leads to the connexion between the construction of the derived transducer D p

q

and the description of the set of spans Sp
q
. Not only the digit-wise difference

between maximal and minimal words is written on the alphabet Bp,q, but all
these ‘difference words’ are infinite branches in the tree T̂ p

q
. This is explained

in Section 4. From the structure of T̂ p
q
, it then follows (Theorem 3) that the

topological closure of Sp
q

is an interval in the case where p � 2q − 1, and a set
with empty interior in the case where p > 2q − 1.

In conclusion, we have shown that a straightforward computation of w−
n+1

from w−
n requires the same structure as T p

q
itself – despite the fact that every

minimal word looks as complex as the whole tree – whether it be performed
directly on the words, or indirectly via the span of the nodes. It is this phe-
nomenon that we call auto-similarity of the structure T p

q
. In this process, the

number systems where p = 2q − 1 appear to mark the boundary between two
different behaviours, in a more deeper way than that was described in the first
study of rational base number systems [1].

This paper is meant to be self-contained and gives, in particular, all necessary
definitions concerning rational base number systems. However, the reference [1]
where these systems have been defined and the sets of representations first stud-
ied will probably be useful. In order to meet the space constraints, all proofs and
even some figures have been removed. The reader may find them in a complete
version downloadable from arXiv [2].

Auto-similarity in Rational Base Number Systems 37

2 Preliminaries and Notations

2.1 Numbers and Words

Given two real numbers x and y, we denote by x
y their division in R (even if x

or y happens to be integers), by [x, y] the corresponding interval of R and by �x�
the integer n such that (n − 1) < x � n. On the other hand, given two positive
integers n and m, we denote by n÷m and n%m respectively the quotient and the
remainder of the Euclidean division of n by m, that is, n = (n÷m)m+ (n%m)
and 0 � (n%m) < m. Additionally, we denote by �n,m� the integer interval
{n, (n+ 1), . . . ,m}.

An alphabet is a finite set of symbols called letters or digits when they are
integers. Given an alphabet A, we consider both the sets of finite and infinite
words over A respectively denoted by A∗ and Aω and we denote the empty word
by ε. For every positive integer p, we denote by Ap the canonical digit alphabet
of the base p number system: Ap = {0, 1, . . . , p− 1}. For clarity, we denote finite
words by u, v and infinite words by w. The concatenation of two words u, v is
either explicitly denoted by a low dot, as in u.v, or implicitly when there is no
ambiguity, as in uv. A finite word u is said to be a prefix of a finite word v (resp.
an infinite word w) if there exists a finite word v′ (resp. an infinite word w′) such
that v = uv′ (resp. w = uw′). The set of subsets of an alphabet A is denoted
by P(A).

2.2 Automata and Transducers

We deal here with a very special class of automata and transducers only: they
are infinite, their state set is N, they are deterministic (or letter-to-letter and
sequential), the initial state is 0, and all states are final.

As usual, an automaton X over A is denoted by a 5-tuple X = 〈N, A, δ, 0,N 〉,
where δ : N×A→ N is the transition function. The partial function δ is ex-
tended to N×A∗, and δ(n, u) = m is also denoted by n · u = m or by n u−−→ m.
Given an integer n, every state n ·a for some a in A is called a successor of n. A
word u in A∗ (resp. a word w in Aω) is accepted by X if 0 · u exists (resp. if 0 · v
exists for every finite prefix v of w). The language of finite words (resp. of infinite
words) accepted by X is denoted by L(X) (resp. by L (X)).

For transducers, we essentially use the notation of [3], adapted for the infinite
case. A transducer is an automaton whose transitions are labelled by (set of)
pairs of letters. Formally, it is represented by a tuple Y = 〈N, A×B, δ, η, 0,N 〉
where 〈N, A, δ, 0,N 〉 is an automaton, called the underlying input automaton
of Y, A is called the input alphabet, B is the output alphabet and η : N×A→ B is
the output function. The transition function δ is extended as in automata, and η
is extended to N× A∗ → B∗ by η(n, ε) = ε and η(n, ua) = η(n, u).η(n · u, a),
and η(n, u) is also denoted by n ∗ u for short.

Moreover, given two finite words u and v, we denote by n u | v−−−−→ m the
combination of n · u = m and n ∗ u = v . We say that the image of a finite
word u by Y, denoted by Y(u), is the word v, if it exists, such that 0 u | v−−−−→ k

38 S. Akiyama, V. Marsault, and J. Sakarovitch

for some k. Similarly, the image of the infinite word w is w′ if, for every finite
prefix u of w, Y(u) is a prefix of w′.

2.3 Rational Base Number System

Let p and q be two co-prime integers such that p > q > 1. Given a positive
ieger N , let us write N0 = N and define the sequence (Ni)i∈N by all i > 0,

qNi = pN(i+1) + ai for all i > 0 ,

where ai is the remainder of the Euclidean division of qNi by p, hence in the
alphabet Ap = �0, p− 1�. Since p > q, the sequence (Ni)i∈N is strictly decreasing
and eventually stops at Nk+1 = 0. Moreover, it holds that

N =

k∑
i=0

ai
q

(
p

q

)i

.

The evaluation map π is derived from this formula. Given a word anan−1 · · · a0
over Ap, and indeed over any alphabet of digits, its value is defined by

π(anan−1 · · ·a0) =
n∑

i=0

ai
q

(
p

q

)i

. (1)

Conversely, a word u in A∗
p is called a p

q -representation of an integer x

if π(u) = x. Since the representation is unique up to leading 0’s (see
[1, Theorem 1]), u is denoted by 〈x〉 p

q
(or 〈x〉 for short) and can be computed

with the modified Euclidean division algorithm above. By convention, the rep-
resentation of 0 is the empty word ε. The set of all p

q -representations of integers
is denoted by L p

q
:

L p
q
=
{
〈n〉 p

q

∣∣∣ n ∈ N
}

.

It should be noted that a rational base number system is not a β-numeration
— where the representation of a number is computed by the (greedy) Rényi
algorithm (cf. [4, Chapter 7]) — in the special case where β is a rational number.
In such a system, the digit set is {0, 1, . . . , �pq �} and the weight of the i-th leftmost
digit is (pq)

i; whereas the rational base number system, they are {0, 1 . . . (p− 1)}
and 1

q (
p
q)

i respectively.
It is immediate that L p

q
is prefix-closed (since, in the modified Euclidean

division algorithm 〈N〉 = 〈N1〉.a0) and right-extendable (for every representa-
tion 〈n〉, there exists (at least) an a in Ap such that q divides (np + a) and
then 〈np+a

q 〉 = 〈n〉.a). As a consequence, L p
q

can be represented as an infinite
tree, or ‘trie’ (cf. Figure 2).

It is known that L p
q

is not rational (not even context-free), and the following
automaton (accepting indeed the language 0∗L p

q
) is infinite.

Auto-similarity in Rational Base Number Systems 39

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

2 1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0
2

1

0
2

1

0
2

1

0
2

1

0
2

Fig. 2. The tree representation of the language L 3
2

Definition 1. Let τ p
q
: N×Z→ N be the (partial) function defined1 by:

∀n ∈ N , ∀a ∈ Z τ p
q
(n, a) =

(
np+ a

q

)
if (np+ a) is divisible by q. (2)

We denote2 by T p
q

the automaton T p
q
=
〈
N, Ap, τ p

q
, 0,N

〉
.

In T p
q
, we then have the transitions n a−−→

(
np+a

q

)
for every n in N, and

every a in Ap such that (np+ a) is divisible by q. The tree representation of L p
q
,

as in Figure 2 augmented by an additional loop labelled by 0 on the state 0
becomes a representation of T 3

2
.

We call minimal alphabet the subalphabet Aq = �0, q − 1� of Ap and respec-
tively maximal alphabet the subalphabet �(p − q), (p − 1)�. Any letter of Aq is
then called a minimal letter, maximal letter being defined analogously. The def-
inition of τ p

q
implies that every state of T p

q
has a successor by a unique minimal

(resp. maximal) letter.

1 The function τ p
q

is defined on N × Z instead of N × Ap in anticipation of future
developments.

2 In [1], T p
q

is denoted an infinite directed tree. The labels of the (finite) paths starting

from the root precisely formed the language 0∗L p
q
, as is L

(
T p

q

)
in our case.

40 S. Akiyama, V. Marsault, and J. Sakarovitch

Definition 2 (minimal word). A minimal word (in the p
q -system) is an infi-

nite word in Aω
q labelling an (infinite) path of T p

q
(not necessarily starting from

the initial state 0).

It is immediate that, for every n in N, there exists a unique infinite word in Aω
q

starting from the state n in T p
q
. We call this word the minimal word associated

with n and denote it by w−
n . Additionally, we will use the term minimal outgoing

label of n, to designate the first letter of w−
n and minimal successor of n the

unique successor of n by a minimal letter.
We define in a similar way the maximal word w+

n associated with n.

3 The Derived Transducer

The goal of this section is to build a sequential letter-to-letter transducer Aq ×Aq

realising the function w−
n �→ w−

(n+1). We call this transducer the derived trans-
ducer and denote it by D p

q
. It will be obtained from T p

q
by a local transformation

and this is the subject of Section 3.1.

3.1 From Tp
q

to Dp
q

The transformation of T p
q

into D p
q

is a two-step process. First, the structure

of T p
q

is locally modified, by changing the alphabet, and a new automaton T̂ p
q

is obtained. The second step consists in replacing the labels in T̂ p
q

by a subset

of Aq × Aq by means of a substitution (meaning that two transitions of T̂ p
q

labelled by the same letter will be replaced by the same set of pair of letters)
and produces D p

q
.

Changing the Alphabet. We write Bp,q = �p− (2q − 1), (p− 1)�, that is Bp,q

is the alphabet whose maximal element is p−1 and containing 2q−1 consecutive
digits. In particular, if p = (2q − 1), Bp,q = Ap; if p < (2q − 1), Bp,q contains
negative digits; and if p > (2q − 1), Bp,q is an uppermost subset of Ap. Note
that Bp,q is always of cardinal (2q − 1), an odd number, that the digit (p− q) is
then the centre of Bp,q and that its maximal element p − 1 coincides with the
one of Ap.

The automaton T̂ p
q

is then defined by:

T̂ p
q
=
〈
N, Bp,q, τ p

q
, 0,N

〉
.

This is possible, even if Bp,q is larger than Ap because, in Equation 2, τ p
q

is
defined on N×Z, hence on N×Bp,q.

Figure 3 shows an example of the case when p is strictly smaller than 2q − 1,
that is, transitions are added (thick arrows in the figure). The resulting automa-
ton is a DAG (more complex than a tree with one loop).

Auto-similarity in Rational Base Number Systems 41

0 1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

3 2 1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0 −1

−1

−1
−1

−1

Fig. 3. Transforming T 4
3

into T̂ 4
3

Figure 4a shows an example of the case when p is strictly greater than 2q − 1,
that is, transitions are removed (dotted arrows in the figure). In this case, the
resulting automaton is a forest (that is, an infinite union of trees). The accessible
part is the tree rooted in 0. The other trees of the forest are not accessible; they
are kept in T̂ p

q
, as they will come into play at Section 4. Furthermore, as already

noted, if p = (2q − 1), Bp,q = Ap and T p
q
=T̂ p

q
.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

3

6

2

5

4

3
6

2
5

4

3
6

0

1

0

1

0

(a) Transforming T 7
3

into T̂ 7
3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 |0
2 |1

0 |2

2 |0

0 |1
1 |2

0 |0
1 |1
2 |2

1 |0
2 |1

0 |2

2 |0

0 |1
1 |2

0 |0
1 |1
2 |2

1 |0
2 |1

0 |2

(b) The derived transducer D 7
3

Fig. 4. From T 7
3

to D 7
3

This construction ensures that every state of T̂ p
q

congruent to −1 modulo q

has a unique successor and that every other state has exactly two successors.

Changing the Labels. Every label of T̂ p
q

(which is a letter of Bp,q) is re-
placed by a set of pairs of digits in Aq × Aq. The label replacement function

42 S. Akiyama, V. Marsault, and J. Sakarovitch

ω p
q
: Bp,q → P(Aq ×Aq) (or ω for short), is more easily defined in two steps.

First, the function ω computes the distance of the input to the centre of Bp,q:
ω(a) = a− (p− q) , for every a in Bp,q. Then, the image of a by ω is the set of
pairs of letters in Aq whose difference is ω(a):

∀a ∈ Bp,q ω(a) = {(b |c) ∈ Aq ×Aq | c− b = ω(a)} . (3)

Example 1 (Case 3
2). The functions ω 3

2
and ω 3

2
are as follows:

ω 3
2
: 0 �−→ −1 ω 3

2
: 0 �−→ { 1 |0 }

ω 3
2
: 1 �−→ 0 ω 3

2
: 1 �−→ { 0 |0, 1 |1 }

ω 3
2
: 2 �−→ 1 ω 3

2
: 2 �−→ { 0 |1 }

and Fig.5 shows D 3
2

(D 7
3

has been placed at Figure 4b in anticipation).

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

0 |1 0 |0
1 |1

1 |0

0 |1

0 |0
1 |1

1 |0

0 |1

0 |0
1 |1

1 |0

0 |1

0 |0
1 |1

1 |0

0 |1

0 |0
1 |1

1 |0

0 |1

0 |0
1 |1

1 |0
0 |1

0 |0
1 |1

1 |0
0 |1

0 |0
1 |1

1 |0
0 |1

0 |0
1 |1

1 |0

Fig. 5. The derived transducer D 3
2

Formally, the transducer D p
q
= 〈N, Aq ×Aq, δ, η, 0,N 〉 is defined implicitly

or, more precisely, the transition function δ and the output function η are implicit
functions defined by the following statement:

∀n ∈ N , ∀a ∈ Bp,q , ∀(b, c) ∈ ω(a)

τ p
q
(n, a) defined =⇒ n b | c−−−→ τ p

q
(n, a) is a transition of D p

q
,

that is, δ(n, b) = τ p
q
(n, a) and η(n, b) = c. (4)

In other words, the transitions of D p
q

are labelled as follows: if n ≡ −1 [q], the
state n has exactly one outgoing transition with labels 0 |0, 1 |1, . . . , q − 1 |q − 1.

Auto-similarity in Rational Base Number Systems 43

Otherwise, the state n has two outgoing transitions. If we write k = a− (p− q)
where a is the maximal outgoing label of n in T p

q
: the label of the upper transition

is 0 |k, 1 |k + 1, . . . , (q − 1− k) |q − 1 ; while the label of the lower transition
is q − k |0, (q − k + 1) |1, . . . , q − 1 |k − 1 .

The transducer constructed in this manner is sequential and input-complete,
as stated by the following lemma.

Lemma 1. For every state n of D p
q

and every letter b of Aq, there exists a
unique state m and a unique letter c such that n b | c−−−→ m.

Corollary 1. For every infinite word w in Aω
q , D p

q
(w) exists and is unique.

3.2 Correctness of Dp
q

It remains to establish that D p
q

has the expected behaviour, as stated below.

Theorem 1. For every n in N, D p
q
(w−

n) = w−
(n+1) .

The proof of Theorem 1 relies on the equivalent (and more explicit) definition
of the transitions of D p

q
, stated in the following proposition.

Proposition 1. If n b | c−−−→ m is a transition of D p
q
, then

c = (b− (n+ 1)p)%q and m =

⌈
(n+ 1)p− b

q
− 1

⌉
.

In the case of finite words, a stronger version can be stated.

Theorem 2. Given a base p
q and two words u, v in A∗

q , the image of u by D p
q

is v if and only if there exists an integer n such that u is a prefix of w−
n and v

is a prefix of w−
n+1.

Theorem 2 is purposely stated on finite words and a similar statement for
infinite words would be false: for every infinite word w of Aω

q , D p
q
(w) exists,

hence there are uncountably many pairs of infinite words w |D p
q
(w) accepted

by D p
q

while there are only countably many pairs w−
n |w−

n+1.

4 Span of a Node

Lets us consider now the real value of infinite words. We denote by ρ : Aω
p → R,

the real evaluation function, defined as follows:

ρ(a1a2 · · · an · · ·) =
∑
i�0

ai
q

(
p

q

)−i

. (5)

We denote by W p
q

the language of infinite words L(T p
q
). It is proven in

[1, Theorem 2] that ρ(W p
q
) is the interval [0, ρ

(
w+

0

)
]. By extension, we denote

44 S. Akiyama, V. Marsault, and J. Sakarovitch

by W p
q ,n

(or, for short, Wn) the language of infinite words 〈n〉−1W p
q
. Intuitively,

an infinite word w over Ap is in Wn if n · u exists in T p
q

for every finite prefix u

of w. Analogously to W p
q
, the following holds.

Lemma 2. For every integer n, ρ(W p
q ,n

) is the interval [ρ(w−
n) , ρ(w+

n)].

Definition 3. For every integer n, the span of n, denoted by span(n), is the
size of ρ(Wn): span(n) = (ρ(w+

n)− ρ(w−
n)).

Remark 1. Let us stress that what we call the span of the node n is not, in the
fractal drawing (Figure 1b), the width of the subtree rooted in n. This quantity
is obviously decreasing exponentially with the depth of the node n and the set
of these has 0 as unique accumulation point. What we call span is this quantity
renormalised by multiplication by (pq)

k, where k is the depth of the node n.

Let a be a letter from the minimal alphabet Aq = �0, (q − 1)� and b a letter
from the maximal alphabet �(p− q), (p− 1)�. The integer (b − a) is necessarily
in �p−(2q−1), p−1� = Bp,q. Hence, through this digit-wise subtraction, denoted
by ‘�’, (w+

n � w−
n) is a word over Bp,q, and is called the span-word of n. It is

routine to check that the following statement is true.

Lemma 3. For all integer n, span(n) = ρ(w+
n � w−

n).

Let Sp
q

be the set of real numbers Sp
q
= {span(n) | n ∈ N}; the following

statement holds.

Theorem 3.

(i) If p � 2q − 1, Sp
q

is dense in [0, ρ
(
w+

0

)
].

(ii) If p > 2q − 1, Sp
q

is nowhere dense.

The key to Theorem 3 is the connexion between the span-words and T̂ p
q
,

achieved by Theorem 4 and Proposition 3.

Theorem 4. All span-words are accepted by T̂ p
q
.

The proof of this theorem is a direct consequence of Proposition 2, below
and requires more definitions. There exists a (trivial) map m from the minimal
alphabet to the maximal alphabet, such that, for all integer n, m(w−

n+1) = w+
n .

m : Aq −→ �(p− q), (p− 1)�

a �−→ m(a) = maxLetter(a+ p)

where maxLetter(x) is the greatest integer congruent to x modulo q and strictly
smaller than p. By extending m to Aω

q , Theorem 4 reduces to the statement
that T̂ p

q
accepts (m(w−

n+1) � w−
n) for every n:

Proposition 2. If w |w′ is a pair of infinite words accepted by D p
q

then T̂ p
q

accepts the word (m(w′) � w).

Auto-similarity in Rational Base Number Systems 45

Analogously to the case of D p
q
, T̂ p

q
accepts uncountably many infinite words,

therefore words that are not (w+
n � w−

n) for any n. That being said, it seems to
be the best result we can hope for, as the following two statements hold.

Proposition 3. Every finite word accepted by T̂ p
q

is the prefix of a span-word.

Corollary 2. The language of infinite words of T̂ p
q

is the topological closure of
the span-words.

5 Conclusion

In the search of elucidating the structure of the set of representations of integers
in a rational base number system, we have shown that the correspondence be-
tween two consecutive minimal words is achieved by a transducer that exhibits
essentially the same structure as the one of the set of representations we started
with. We have called this property an “auto-similarity” of the structure, as the
structure is indeed not self-similar.

Let us note that the infinite transducer we have built realises the correspon-
dence for all minimal words. It does not contradict the following conjecture that
would express that each minimal word contains the complexity of the whole tree.

Conjecture 1. For every integer n, there exists a finite transducer that transforms
w−

n into w−
n+1.

It is also remarkable that in this construction, the case p = 2q − 1 appears
as the frontier between two completely different behaviours of the systems, in a
much stronger way than it was described in our first work [1] on rational base
number systems. It was hinted that there might be structural differences between
two classes of rational base number systems. Indeed, those where p � 2q − 1
have an additional property, namely that, for every integer n, the span of n
is never equal to 0. It was however never proved that this property was false
when p < 2q − 1.

References

1. Akiyama, S., Frougny, C., Sakarovitch, J.: Powers of rationals modulo 1 and rational
base number systems. Israel J. Math. 168, 53–91 (2008)

2. Akiyama, S., Marsault, V., Sakarovitch, J.: Auto-similarity in rational base number
systems (full version), http://arxiv.org/abs/1305.6757

3. Berstel, J.: Transductions and Context-Free Languages. Teubner (1979)
4. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press

(2002)
5. Mahler, K.: An unsolved problem on the powers of 3/2. J. Austral. Math. Soc. 8,

313–321 (1968)
6. Marsault, V., Sakarovitch, J.: On sets of numbers rationally represented in a rational

base number system. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013.
LNCS, vol. 8080, pp. 89–100. Springer, Heidelberg (2013)

http://arxiv.org/abs/1305.6757

Infinite Words with Well Distributed Occurrences

Ľubomíra Balková1, Michelangelo Bucci2,
Alessandro De Luca3, and Svetlana Puzynina2,4

1 Department of Mathematics, FNSPE, Czech Technical University in Prague,
Trojanova 13, 120 00 Praha 2, Czech Republic

lubomira.balkova@gmail.com
2 Department of Mathematics, University of Turku, FI-20014 Turku, Finland

{michelangelo.bucci,svepuz}@utu.fi
3 DIETI, Università degli Studi di Napoli Federico II

via Claudio, 21, 80125 Napoli, Italy
alessandro.deluca@unina.it

4 Sobolev Institute of Mathematics, Russia

Abstract. In this paper we introduce the well distributed occurrences
(WDO) combinatorial property for infinite words, which guarantees good
behavior (no lattice structure) in some related pseudorandom number
generators. An infinite word u on a d-ary alphabet has the WDO prop-
erty if, for each factor w of u, positive integer m, and vector v ∈ Zd

m,
there is an occurrence of w such that the Parikh vector of the prefix
of u preceding such occurrence is congruent to v modulo m. We prove
that Sturmian words, and more generally Arnoux-Rauzy words and some
morphic images of them, have the WDO property.

Introduction

The combinatorial problem studied in this paper comes from random number
generation. Pseudorandom number generators aim to produce random numbers
using a deterministic process. No wonder they suffer from many defects. The
most usual ones – linear congruential generators – are known to produce periodic
sequences having a defect called lattice structure. Guimond et al. [2] proved
that when two linear congruential generators are combined using infinite words
coding certain classes of quasicrystals or, equivalently, of cut-and-project sets,
the resulting sequence is aperiodic and has no lattice structure.

We have found a combinatorial condition – well distributed occurrences, or
WDO for short – that guarantees absence of lattice structure if two arbitrary
generators having the same output alphabet are combined using an infinite word
having the WDO property. The WDO property for an infinite word u over an
alphabet A means that for any integer m and any factor w of u, the set of Parikh
vectors modulo m of prefixes of u preceeding the occurrences of w coincides with
{0, 1, . . . ,m − 1}|A| (see Definition 2.1). In other words, among Parikh vectors
modulo m of such prefixes one has all possible vectors. Besides giving generators
without lattice structure, the WDO property is an interesting combinatorial
property of infinite words itself.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 46–57, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Infinite Words with Well Distributed Occurrences 47

We have proved first that Sturmian words have well distributed occurrences,
and then we have shown this property for Arnoux-Rauzy words. The proof for
Sturmian words is based on different ideas than the one for Arnoux-Rauzy words,
therefore we will provide in the sequel both of them.

In the next section, we deal with pseudorandom number generation, thus
establishing the motivation for our work. Next, in Section 2, we give the ba-
sic combinatorial definitions needed for our main results, including the WDO
property. Finally, in the last two sections, we prove that the property holds for
Sturmian and Arnoux-Rauzy words, respectively.

1 Motivation in Pseudorandom Number Generation

For the sake of our discussion, any infinite sequence of integers can be understood
as a pseudorandom number generator (PRNG); see also [2].

Let X = (xn)n∈N and Y = (yn)n∈N be two PRNGs with the same output
M ⊂ N and the same period m ∈ N, and let u = u0u1u2 . . . be a binary infinite
word, i.e., an infinite sequence over {0, 1}.

The PRNG
Z = (zn)n∈N (1)

based on u is obtained by the following algorithm:

1. Read step by step the letters of u.
2. When you read 0 for the i-th time, copy the i-th symbol from X to the end

of the constructed sequence Z.
3. When you read 1 for the i-th time, copy the i-th symbol from Y to the end

of the constructed sequence Z.

Of course, it is possible to generalize this construction – using infinite words over
a multiliteral alphabet, one can combine more than two PRNGs.

1.1 Lattice Structure

Let X = (xn)n∈N be a PRNG whose output is a finite set M ⊂ N. We say that
X has the lattice structure if there exists t ∈ N such that

{(xi, xi+1, . . . , xi+t−1)
∣∣ i ∈ N}

is covered by a family of parallel equidistant hyperplanes and at the same time,
this family does not cover the whole lattice

M t = {(a1, a2, . . . , at)
∣∣ ai ∈M for all i ∈ {1, . . . , t}}.

It is known that all linear congruential generators have the lattice structure.
Recall that a linear congruential generator (xn)n∈N is given by a,m, c ∈ N and
defined by the recurrence relation xn+1 = axn + c mod m. Let us mention
a famous example of a PRNG with a striking lattice structure. For t = 3, the
set of triples of RANDU, i.e., {(xi, xi+1, xi+2)

∣∣ i ∈ N} is covered by only 15
equidistant hyperplanes, see Figure 1.

48 Ľ. Balková et al.

Fig. 1. The triples of RANDU – the linear congruential generator with a = (216 +
3),m = 231, c = 0 – are covered by as few as 15 parallel equidistant planes

1.2 Combinatorial Condition on Absence of the Lattice Structure

Guimond et al. in [2] have shown that PRNGs based on infinite words coding
a certain class of cut-and-project sets have no lattice structure. A crucial part
of their proof is the following lemma.

Lemma 1.1. Let Z be the PRNG from (1) based on an aperiodic infinite word.
If there exist for any a, b ∈ M and for any � ∈ N an �-tuple z such that both
za and zb are (�+ 1)-tuples of the sequence Z, then Z does not have the lattice
structure.

We have found the following combinatorial condition on binary infinite words
guaranteeing that the assumptions of the previous lemma are met: we say that
a binary aperiodic infinite word u over the alphabet {0, 1} has well distributed
occurrences (or has the WDO property) if u satisfies for any m ∈ N and any
factor w of u the following condition. If we denote i0, i1, . . . the occurrences of
w in u, then{(

|u0u1 · · ·uij−1|0, |u0u1 · · ·uij−1|1
)
mod m | j ∈ N

}
= Z2

m ,

where mod m is applied elementwise.
See the next section for the definition of aperiodicity, factor occurrences, and

the WDO property for general alphabets.
The WDO property for binary words thus ensures no lattice structure for

PRNGs defined in (1).

Theorem 1.2. Let Z be the PRNG from (1) based on a binary aperiodic infinite
word having the WDO property. Then Z has no lattice structure.

We omit the proof of this theorem for the sake of brevity.

Infinite Words with Well Distributed Occurrences 49

Moreover, we have shown that the class of infinite words satisfying the WDO
property for binary words is larger than the class described in [2] (see Section 3).

2 Combinatorics on Words and the WDO Property

By A we denote a finite set of symbols called letters ; the set A is therefore
called an alphabet. A finite string w = w1w2 . . . wn of letters from A is said to
be a finite word, its length is denoted by |w| = n and |w|a denotes the number
of occurrences of a ∈ A contained in w. The empty word, a neutral element for
concatenation of finite words, is denoted ε and it is of zero length.

Under an infinite word we understand an infinite sequence u = u0u1u2 . . . of
letters from A. A finite word w is a factor of a word v (finite or infinite) if there
exist words p and s such that v = pws. If p = ε, then w is said to be a prefix
of v; if s = ε, then w is a suffix of v. The set of factors and prefixes of v are
denoted by Fact(v) and Pref(v), respectively. If v = ps for finite words v, p, s,
then we write p = vs−1 and s = p−1v.

An infinite word u over the alphabet A is called eventually periodic if it is of
the form u = vwω , where v, w are finite words over A and ω denotes an infinite
repetition. An infinite word is called aperiodic if it is not eventually periodic.

For any factor w of an infinite word u, every index i such that w is a prefix
of the infinite word uiui+1ui+2 . . . is called an occurrence of w in u.

The factor complexity of an infinite word u is a map Cu : N �→ N defined
by Cu(n) := the number of factors of length n contained in u. The factor com-
plexity of eventually periodic words is bounded, while the factor complexity of
an aperiodic word u satisfies Cu(n) ≥ n + 1 for all n ∈ N. A right extension of
a factor w of u over the alphabet A is any letter a ∈ A such that wa is a factor
u. Of course, any factor of u has at least one right extension. A factor w is called
right special if w has at least two right extensions. Similarly, one can define a left
extension and a left special factor. A factor is bispecial if it is both right and left
special. An aperiodic word contains right special factors of any length.

The Parikh vector of a finite word w over an alphabet {0, 1, . . . , d − 1} is
defined as (|w|0, |w|1, . . . , |w|d−1). For a finite or infinite word u = u0u1u2 . . . ,
we denote by Prefn u the prefix of length n of u, i.e., Prefn u = u0u1 . . . un−1.

Let us generalize the combinatorial condition on infinite words that guaran-
tees no lattice structure for pseudorandom number generators from binary to
multiliteral alphabets.

Definition 2.1 (The WDO property). We say that an aperiodic infinite
word u over the alphabet {0, 1, . . . , d − 1} has well distributed occurrences (or
has the WDO property) if u satisfies for any m ∈ N and any factor w of u the
following condition. If we denote i0, i1, . . . the occurrences of w in u, then{(

|u0u1 · · ·uij−1|0, . . . , |u0u1 · · ·uij−1|d−1

)
mod m | j ∈ N

}
= Zd

m ;

that is, the Parikh vectors of Prefij (u) for j ∈ N, when reduced modulo m, give
the whole Zd

m.

50 Ľ. Balková et al.

We define the WDO property for aperiodic words since it clearly never holds
for periodic ones.

With the above notation, it is easy to see that if a recurrent infinite word u
has the WDO property, then for every vector v ∈ Zd

m there are infinitely many
values of j such that the Parikh vector of Prefij (u) is congruent to v modulo m.

Example 2.2. The Thue-Morse word t = 0110100110010110 · · · , which is a fixed
point of the morphism 0 �→ 01, 1 �→ 10, does not satisfy the WDO property.
Indeed, take m = 2 and w = 00, then w occurs only in odd positions ij so that
(|t0 · · · tij−1|0+|t0 · · · tij−1|1) = ij is odd. Thus, e.g., (|t0 · · · tij−1|0, |t0 · · · tij−1|1)
mod 2
= (0, 0), and hence {(|t0 · · · tij−1|0, |t0 · · · tij−1|1) mod 2 | j ∈ N}
= Z2

2.

Example 2.3. We say that an infinite word u over an alphabet A, |A| = d, is
universal if it contains all finite words over A as its factors. It is easy to see that
any universal word satisfies the WDO property. Indeed, for any word w ∈ A∗

and any m there exists a finite word v such that if we denote i0, i1, . . . , ik the
occurrences of w in v, then{(

|Prefijv|0, . . . , |Prefijv|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
= Zd

m .

Since u is universal, v is a factor of u. Denoting by i an occurrence of v in u,
one gets that the positions i+ ij are occurrences of w in u. Hence{(

|Prefi+iju|0, . . . , |Prefi+iju|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
=

= (|Prefiu|0, . . . , |Prefiu|d−1) +

+
{(
|Prefijv|0, . . . , |Prefijv|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
= Zd

m .

Therefore, u satisfies the WDO property.

3 Sturmian Words

In this section, we show that Sturmian words have well distributed occurrences.

Definition 3.1. An aperiodic infinite word u is called Sturmian if its factor
complexity satisfies Cu(n) = n+ 1 for all n ∈ N.

So, Sturmian words are by definition binary and they have the lowest possible
factor complexity among aperiodic infinite words. Sturmian words admit various
types of characterizations of geometric and combinatorial nature. One of such
characterizations is via irrational rotations on the unit circle. In [4] Hedlund and
Morse showed that each Sturmian word may be realized measure-theoretically
by an irrational rotation on the circle. That is, every Sturmian word is obtained
by coding the symbolic orbit of a point on the circle of circumference one under a
rotation Rα by an irrational angle1 α, 0 < α < 1, where the circle is partitioned
into two complementary intervals, one of length α and the other of length 1−α.
And conversely each such coding gives rise to a Sturmian word.
1 Measured by arc length (thus equivalent to 2πα radians).

Infinite Words with Well Distributed Occurrences 51

Definition 3.2. The rotation by angle α is the mapping Rα from [0, 1) (identi-
fied with the unit circle) to itself defined by Rα(x) = {x+α}, where {x} = x−�x�
is the fractional part of x. Considering a partition of [0, 1) into I0 = [0, 1− α),
I1 = [1− α, 1), define a word

sα,ρ(n) =

{
0, if Rn

α(ρ) = {ρ+ nα} ∈ I0,

1, if Rn
α(ρ) = {ρ+ nα} ∈ I1.

One can also define I ′0 = (0, 1 − α], I ′1 = (1 − α, 1], the corresponding word is
denoted by s′α,ρ.

For more information on Sturmian words we refer to [3, Chapter 2].

Theorem 3.3. Let u be a Sturmian word on {0, 1}. Then u has the WDO prop-
erty.

Proof. In the proof we use the definition of Sturmian word via rotation. The
main idea is controlling the number of 1’s modulo m by taking circle of length
m, and controlling the length taking the rotation by mα.

For the proof we will use an equivalent reformulation of the theorem:

Let u be a Sturmian word on {0, 1}, for any natural number m and any factor
w of u let us denote i0, i1, . . . the occurrences of w in u. Then{(

ij , |u0u1 · · ·uij−1|1
)
mod m | j ∈ N

}
= {0, 1, ...,m− 1}2.

That is, we will control the number of 1’s and the length instead the number
of 0’s.

Since a Sturmian word can be defined via rotations by an irrational angle on
a unit circle, without loss of generality we may assume that u = sα,ρ for some
0 < α < 1, 0 ≤ ρ < 1, α irrational (see Definition 3.2). Equivalently, we can
consider m copies of the circle connected into one circle of length m with m
intervals Ii1 = [i − α, i) of length α corresponding to 1. The Sturmian word is
obtained by rotation by α on this circle of length m (see Fig. 2).

Namely, we define the rotation Rα,m as the mapping from [0,m) (identified
with the circle of length m) to itself defined by Rα,m(x) = {x + α}m, where
{x}m = x − �x/m�m and for m = 1 coincides with the fractional part of x. A
partition of [0,m) into 2m intervals Ii0 = [i, i + 1 − α), Ii1 = [i + 1 − α, i + 1),
i = 0, . . . ,m− 1 defines the Sturmian word u = sα,ρ:

sα,ρ(n) =

{
0, if Rn

α,m(ρ) = {ρ+ nα} ∈ Ii0 for some i = 0, . . . ,m− 1,

1, if Rn
α,m(ρ) = {ρ+ nα} ∈ Ii1 for some i = 0, . . . ,m− 1.

It is well known that any factor w = w0 · · ·wk−1 of u corresponds to an interval
Iw in [0, 1), so that whenever you start rotating from the interval Iw, you obtain
w. Namely, x ∈ Iw if and only if x ∈ Iw0 , Rα(x) ∈ Iw1 , . . . , R

|w|−1
α (x) ∈ Iw|w|−1

.

52 Ľ. Balková et al.

Fig. 2. Illustration to the proof of Theorem 3.3: the example for m = 5

Similarly, we can define m intervals corresponding to w in [0,m) (circle of
length m), so that if Iw = [x1, x2), then Iiw = [x1 + i, x2 + i), i = 0, . . . ,m− 1.

Fix a factor w of u, take arbitrary (j, i) ∈ {0, 1, . . . ,m − 1}2. Now we will
organize (j, i) among the occurrences of w, i.e., find l such that ul . . . ul+|w|−1 =
w, l mod m = j and |Preflu|1 mod m = i.

Consider rotation Rmα,m(x) by mα instead of rotation by α, and start m-
rotating from jα + ρ. Formally, Rmα,m(x) = {x + mα}m, where, as above,
{x}m = x − [x/m]m. This rotation will put us to positions mk + j, k ∈ N in
the Sturmian word: for a ∈ {0, 1} one has sα,ρ(mk+ j) = a if Rk

mα,m(jα+ ρ) =

{jα+ ρ+ kmα}m ∈ Iia for some i = 0, . . . ,m− 1.
Remark that the points in the orbit of an m-rotation of a point on the m-circle

are dense, and hence the rotation comes infinitely often to each interval. So pick
k when jα+mkα+ ρ ∈ Iiw ⊂ [i, i+ 1) (and actually there exist infinitely many
such k). Then the length l of the corresponding prefix is equal to km + j, and
the number of 1’s in it is i+mp, where p is the number of complete circles you
made, i.e., p = [(jα+mkα+ ρ)/m]. ��

Remark 3.4. In the next section we will show that Arnoux-Rauzy words [1],
which are natural extensions of Sturmian words to larger alphabets, also satisfy
the WDO property. Note that the proof above cannot be generalized to Arnoux-
Rauzy words, because it is based on the geometric interpretation of Sturmian
words via rotations, while this interpretation does not extend to Arnoux-Rauzy
words.

Infinite Words with Well Distributed Occurrences 53

4 Arnoux-Rauzy Words

4.1 Basic Definitions

Definition 4.1. Let A be a finite alphabet. The reversal operator is the operator
∼: A∗ �→ A∗ defined by recurrence in the following way:

ε̃ = ε, ṽa = aṽ

for all v ∈ A∗ and a ∈ A. The fixed points of the reversal operator are called
palindromes.

Definition 4.2. Let u ∈ A∗ be a finite word over the alphabet A. We define
the right palindromic closure of u, and we denote it by u(+) as the shortest
palindrome that has u as a prefix. It is readily verified that if p is the longest
palindromic suffix of u = vp, then u(+) = vpṽ.

Definition 4.3. We call the iterated (right) palindromic closure operator the
operator ψ recurrently defined by the following rules:

ψ(ε) = ε, ψ(va) = (ψ(v)a)(+)

for all v ∈ A∗ and a ∈ A. The definition of ψ may be extended to infinite
words u over A as ψ(u) = limn ψ(Prefn u), i.e., ψ(u) is the infinite word having
ψ(Prefn u) as its prefix for every n ∈ N.

Definition 4.4. Let Δ be an infinite word on the alphabet A such that every
letter occurs infinitely often in Δ. The word c = ψ(Δ) is then called a charac-
teristic (or standard) Arnoux-Rauzy word and Δ is called the directive sequence
of c. An infinite word u is called an Arnoux-Rauzy word if it has the same set
of factors as a (unique) characteristic Arnoux-Rauzy word, which is called the
characteristic word of u. The directive sequence of an Arnoux-Rauzy word is the
directive sequence of its characteristic word.

Let us also recall the following well-known characterization:

Theorem 4.5. Let u be an aperiodic infinite word over the alphabet A. Then u
is a standard Arnoux-Rauzy word if and only if the following hold:

1. Fact(u) is closed under reversal (that is, if v is a factor of u so is ṽ).
2. Every left special factor of u is also a prefix.
3. If v is a right special factor of u then va is a factor of u for every a ∈ A.

From the preceding theorem, it can be easily verified that the bispecial factors
of a standard Arnoux-Rauzy correspond to its palindromic prefixes (including
the empty word), and hence to the iterated palindromic closure of the prefixes
of its directive sequence. That is, if

ε = b0, b1, b2, . . .

54 Ľ. Balková et al.

is the sequence, ordered by length, of bispecial factors of the standard Arnoux-
Rauzy word u, Δ = Δ0Δ1 · · · its directive sequence (with Δi ∈ A for every i),
we have bi+1 = (biΔi)

(+).
A direct consequence of this, together with the preceding definitions, is the

following statement, which will be used in the sequel.

Lemma 4.6. Let u be a characteristic Arnoux-Rauzy word and let Δ and (bi)i≥0

be defined as above. If Δi does not occur in bi, then bi+1 = biΔibi. Otherwise let
j < i be the largest integer such that Δj = Δi. Then bi+1 = bib

−1
j bi.

4.2 Parikh Vectors and Arnoux-Rauzy Factors

Where no confusion arises, given an Arnoux-Rauzy word u, we will denote by

ε = b0, b1, . . . , bn, . . .

the sequence of bispecial factors of u ordered by length and we will set for any
i ∈ N, Bi as the Parikh vector of bi.

Remark 4.7. By the pigeonhole principle, it is clear that for every m ∈ N there
exists an integer N ∈ N such that, for every i ≥ N , the set {j > i | Bj ≡m Bi}
is infinite. Where no confusion arises and with a slight abuse of notation, fixed
m, we will always denote by N the smallest of such integers.

Lemma 4.8. Let u be a characteristic Arnoux-Rauzy word and let m ∈ N. Let

α1Bj1 + · · ·+ αkBjk ≡m v̄ ∈ Zd
m

be a linear combination of Parikh vectors such that
∑k

i=1 αi = 0, with ji ≥ N
and αi ∈ Z for all i ∈ {1, . . . k}. Then, for any � ∈ N, there exists a prefix v of
u such that the Parikh vector of v is congruent to v̄ modulo m and vb
 is also a
prefix of u.

Proof. Without loss of generality, we can assume α1 ≥ α2 ≥ · · · ≥ αk, hence
there exists k′ such that

α1 ≥ αk′ ≥ 0 ≥ αk′+1 ≥ αk.

We will prove the result by induction on β =
∑k′

j=1 αj . If β = 0, trivially, we can
take v = ε and the statement is clearly verified. Let us assume the statement
true for all 0 ≤ β < M and let us prove it for β = M . By the remark preceding
this lemma, for every � we can choose i′ > j′ > � such that Bj1 ≡m Bi′ and
Bjk ≡m Bj′ . Since every bispecial factor is a prefix and suffix of all the bigger
ones, in particular we have that bj′ is a suffix of bi′ , and b
 is a prefix of bj′ ;
this implies that bi′b

−1
j′ b
 is actually a prefix of bi′ . By assumption, the Parikh

vector of bi′b−1
j′ is clearly Bi′−Bj′ ≡m Bj1−Bjk . Since α1 ≥ 1 implies αk ≤ −1,

we have, by induction hypothesis, that there exists a prefix v of u such that the
Parikh vector of v is congruent modulo m to

(α1 − 1)Bj1 + · · ·+ (αk + 1)Bjk

Infinite Words with Well Distributed Occurrences 55

and vbi′ is a prefix of u. Hence vbi′b
−1
j′ b
 is also a prefix of u and, by simple

computation, the Parikh vector of vbi′b−1
j′ is congruent modulo m to v̄. ��

Definition 4.9. Let n ∈ Z. We will say that an integer linear combination of
integer vectors is a n-combination if the sum of all the coefficients equals n.

Lemma 4.10. Let u be a characteristic Arnoux-Rauzy word and let n ∈ N.
Every n-combination of Parikh vectors of bispecial factors can be expressed as a
n-combination of Parikh vectors of arbitrarily large bispecials. In particular, for
every K,M ∈ N, it is possible to find a finite number of integers α1, . . . , αk such
that BK = α1Bj1 + · · ·+ αkBjk with ji > M for every i and α1 + · · ·+ αk = 1.

Proof. A direct consequence of Lemma 4.6 is that for every i such that Δi

appears in bi, we have Bi+1 = 2Bi − Bj , where j < i is the largest such that
Δj = Δi. This in turn (since every letter in Δ appears infinitely many times
from the definition of Arnoux-Rauzy word) implies that for every non-negative
integer j, there exists a positive k such that Bj = 2Bj+k − Bj+k+1, that is, we
can substitute each Parikh vector of a bispecial with a 1-combination of Parikh
vectors of strictly larger bispecials. Simply iterating the process, we obtain the
statement. ��

In the following we will assume the set A to be a finite alphabet of cardinality
d. For every set X ⊆ A∗ of finite words, we will denote by PV(X) ⊆ Zd the
set of Parikh vectors of elements of X and for every m ∈ N we will denote by
PVm(X) ⊆ Zd

m the set of elements of PV(X) reduced modulo m.
Let u be an infinite word over A and let v be a factor of u. We denote by

Sv(u) the set of all prefixes of u followed by an occurrence of v. In other words,

Sv(u) = {p ∈ Pref(u) | pv ∈ Pref(u)}.

Definition 4.11. For any set of finite words X ⊆ A∗, we will say that u has
the property PX (or, for short, that u has PX) if, for every m ∈ N and for every
v ∈ X we have that

PVm(Sv(u)) = Zd
m.

That is to say, for every vector v ∈ Zd
m there exists a word w ∈ Sv(u) such that

the Parikh vector of w is congruent to v modulo m.

With this notation, an infinite word u has the WDO property if and only if it
has property PFact(u).

Proposition 4.12. Let u be a characteristic Arnoux-Rauzy word over the
d-letter alphabet A. Then u has the property PPref(u).

Proof. Let us fix an arbitrary m ∈ N. We want to show that, for every v ∈
Pref(u), PVm(Sv(u)) = Zd

m. Let then v̄ ∈ Zd and � be the smallest number
such that v is a prefix of b
. Let i1 < i2 < · · · < id be such that Δij does not
appear in bij , where Δ is the directive word of u. Without loss of generality,
we can rearrange the letters so that each Δij is lexicographically smaller than

56 Ľ. Balková et al.

Δij+1 . With this assumption if, for every j, we set v̄j as the Parikh vector
of bij+1, which, by the first part of Lemma 4.6, equals bijΔij bij , we can find
j − 1 positive integers μ1, . . . , μj−1 such that v̄j = (μ1, μ2, . . . , μj−1, 1, 0, . . . , 0).
It is easy to show, then, that the set V = {v̄1, . . . , v̄d} generates Zd, hence
there exists an integer n such that v̄ can be expressed as an n-combination of
elements of V (which are Parikh vectors of bispecial factors of u). Trivially, then,
v̄ = v̄ − n0̄ = v̄ − nB0; thus, it is possible to express v̄ as a 0-combination of
Parikh vectors of (by the previous Lemma 4.10) arbitrarily large bispecial factors
of u. By Lemma 4.8, then there exists a prefix p of u with Parikh vector p̄ such
that p̄ ≡m v̄ and pb
 is a prefix of u. Since we picked � such that v is a prefix of
b
, we have that p ∈ Sv(u). From the arbitrariness of v, v̄ and m, we obtain the
statement. ��

As a corollary of Proposition 4.12, we obtain the main result of this section.

Theorem 4.13. Let u be an Arnoux-Rauzy word over the d-letter alphabet A.
Then u has the property PFact(u).

Proof. Let m be a positive integer and let c be the characteristic word of u. Let
v be a factor of u and xvy be the smallest bispecial containing v. By Proposition
4.12, we have that PVm(Sxv(c)) = Zd

m and, since the set is finite, we can find a
prefix p of c such that PVm(Sxv(p)) = Zd

m. Let w be a prefix of u such that wp
is a prefix of u. If x̄ and w̄ are the Parikh vectors of, respectively, x and w, it is
easy to see that

w̄ + x̄+ PV(Sxv(p)) ⊆ w̄ + PV(Sv(p)) ⊆ PV(Sv(u))

Since we have chosen p such that PVm(Sxv(p)) = Zd
m, we clearly obtain

that PVm(Sv(u)) = Zd
m and hence, by the arbitrariness of v and m, the

statement. ��

Remark 4.14. Actually, Theorem 4.13 implies Theorem 3.3.

Remark 4.15. Note the following simple method of obtaining words satisfying
the WDO property. Take a word u with the WDO property over an alphabet
{0, 1, . . . , d−1}, d > 2, apply a morphism ϕ : d−1 �→ 0, i �→ i for i = 0, . . . , d−2, i.
e., ϕ joins two letters into one. It is straightforward that ϕ(u) has WDO property.
So, taking Arnoux-Rauzy words and joining some letters, we obtain other words
than Sturmian and Arnoux-Rauzy satisfying the WDO property.

Acknowledgements. The first author was supported by the Czech Science
Foundation grant GAČR 13-03538S, and thanks L’Oréal Czech Republic for
the Fellowship Women in Science. The third author was partially supported by
the Italian Ministry of Education (MIUR), under the PRIN 2010–11 project
“Automi e Linguaggi Formali: Aspetti Matematici e Applicativi”. The fourth
author is supported in part by the Academy of Finland under grant 251371 and
by Russian Foundation of Basic Research (grants 12-01-00089 and 12-01-00448).

Infinite Words with Well Distributed Occurrences 57

We would like to acknowledge statistical testing of the pseudorandom number
generators based on Sturmian and Arnoux-Rauzy words made by Jiří Hladký. He
has shown using the Diehard and U01 tests that not only the lattice structure is
absent, but also other important properties of PRNGs are improved when LCGs
are combined using infinite words having the WDO property.

References

1. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n+ 1.
Bull. Soc. Math. France 119, 199–215 (1991)

2. Guimond, L.-S., Patera, J., Patera, J.: Statistical properties and implementation of
aperiodic pseudorandom number generators. Applied Numerical Mathematics 46(3-
4), 295–318 (2003)

3. Lothaire, M.: Algebraic combinatorics on words. Encyclopedia of Mathematics and
its Applications, vol. 90. Cambridge University Press (2002)

4. Morse, M., Hedlund, G.A.: Symbolic Dynamics II: Sturmian trajectories. Amer. J.
Math. 62(1), 1–42 (1940)

Generating Discrete Planes with Substitutions

Valérie Berthé1, Jérémie Bourdon2, Timo Jolivet1,3, and Anne Siegel4

1 LIAFA, CNRS, Université Paris Diderot, France
2 LINA, Université de Nantes, France

3 FUNDIM, Department of Mathematics, University of Turku, Finland
4 INRIA, Centre Rennes-Bretagne Atlantique, Dyliss, Rennes, France

Abstract. Given a finite set S of unimodular Pisot substitutions, we
provide a method for characterizing the infinite sequences over S that
allow to generate a full discrete plane when, starting from a finite seed,
we iterate the multidimensional dual substitutions associated with S. We
apply our results to study the substitutions associated with the Brun
multidimensional continued fraction algorithm.

1 Introduction

The study of Pisot substitutions has been initiated by Rauzy [18] and has led
to many developments in several domains, including combinatorics on words,
symbolic dynamics, fractal topology and number theory [12,7].

Dual substitutions, introduced by Arnoux and Ito [1] have proven to be a
very powerful combinatorial tool in several contexts (see, e.g., [7]). Intuitively, a
3-letter substitution σ acts on broken lines made of translated unit vectors in
Z3, and its dual E�

1(σ) acts on 2-dimensional unit faces in Z3; see Definition 2.4.
A striking fact is that the image by a dual substitution of a discrete plane

remains a discrete plane. This link between substitutions and discrete planes
leads us to our main concern: given a finite patch V (a seed) of a discrete plane,
iterating dual substitutions starting from V yields finite patches of increasing
size. When does this procedure generate a whole discrete plane?

A finite seed of particular interest is U := (the largest pattern included in
every discrete plane, see Remark 2.6). The above question with V = U has many
equivalent formulations and implications, which constitutes our main motivation
for this work, as described in Section 1.1.

Our results Let σBrun
1 , σBrun

2 , σBrun
3 be the substitutions associated with the Brun

continued fraction algorithm. In this paper, we obtain in Theorem 5.2:

– The existence of a finite seed V from which iterating E�
1(σBrun

in
) generates a

whole discrete plane, for every Brun-admissible sequence (in)n�0.
– A characterization the sequences (in)n�0 for which the seed V = U is not

sufficient to generate a whole discrete plane when iterating the E�
1(σBrun

in
).

The methods we use are generic and allow the study of other families than
the Brun substitutions. Note that the above properties are easy to check for

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 58–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Generating Discrete Planes with Substitutions 59

a given single substitution σ [7]. Our main contribution is to extend such re-
sults to infinite families of substitutions obtained as arbitrary products from a
finite set.

1.1 Motivation and Applications

The work presented in this article is motivated by the following consequences
(and equivalent formulations) of our results. Establishing these links in detail
will be the subject of a forthcoming article.

Multidimensional Sturmian sequences. One-dimensional Sturmian sequences can
be defined as the coding (in {1, 2}Z) of the discretization of a line in the plane.
They can also be described as the infinite sequences generated by iterating the
substitutions 1 → 1, 2 → 21 and 1 → 12, 2 → 2 (see [12, Chapter 6]). We
generalize this result to two-dimensional Sturmian sequences, that is, discrete
planes coded in {1, 2, 3}Z2. The link between a discrete plane of normal vector v
and substitutions can be made thanks to the multidimensional continued fraction
expansion of v (as it is done for Sturmian sequences with the classical continued
fraction algorithm). We use the Brun algorithm for this purpose.

Symbolic dynamics. The subshift associated with a unimodular Pisot substi-
tution σ has pure discrete spectrum if and only if the patches generated by
iterating the dual substitution E�

1(σ) on U cover balls of arbitrarily large radius
[16,7]. The Pisot conjecture states that this is always the case. Our present re-
sults allow us to prove this property for some infinite families defined by finite
products of substitutions over a finite set. (It remains to prove that, in the case
where a whole plane is not generated from U , some arbitrarily large balls are
still covered somewhere.)

Topology of Rauzy fractals. The periodic sequences of substitutions that fail to
generate a whole plane correspond precisely to the finite products of substitu-
tions whose Rauzy fractal does not contain 0 as an interior point (see [6,20]).
Moreover, our results imply that the Rauzy fractal associated with a finite prod-
uct of substitutions is always connected.

Number theory. Generating arbitrarily large patches of a discrete plane allows us
to approximate its normal vector. We hence obtain proofs of convergence for the
associated multidimensional continued fraction algorithms if the substitutions
have been chosen accordingly, see Corollary 5.3.

Generating a whole discrete plane can be seen as an analog of the finiteness
property in β-numeration (see the extended (F) property in [6]). Such properties
have already been proved for some infinite families of algebraic numbers (see for
example [13]).

We are also able to associate fractal tiles with every real cubic number field,
thanks to a result by Paysant-Le-Roux and Dubois [17] and a similar study of
the Jacobi-Perron algorithm.

60 V. Berthé et al.

S-adic systems. The study of the dynamical systems and the fractal tiles associ-
ated with arbitrary infinite products (S-adic sequences) is still at its beginnings.
It is for example not completely understood in what cases an S-adic sequence
can be associated with a fractal tile. Our tools provide a starting point for the
study of such systems, as initiated in [8].

1.2 Methods

Ito and Ohtsuki [15] initiated the study of the generation of discrete planes
with substitutions, while investigating properties of the Jacobi-Perron algorithm.
Their main argument is to prove that some topological annuli are preserved under
the image by a substitution, and that these annuli grow to a whole discrete plane
when the substitutions are iterated.

We use the same approach in Section 4, but with additional combinatorial
restrictions (strong coverings) introduced in Section 2.3 that are crucial in order
to prove the annulus property (the fact that the image of an annulus remains an
annulus). We introduce a combinatorial criterion, Property A (Definition 4.1),
which allows for more systematic proofs.

The algorithmic methods developed in Section 3 (the generation graph, Defi-
nition 3.1) provide powerful tools to manage the complicated behaviour of the
growth of the patterns, without having to deal with numerous cases by hand.

The main steps of our argument are:

1. Choose good substitutions and good patterns for strong coverings. Describe
all the possible minimal strongly-covered annuli. (Section 2.2.)

2. Construct generation graphs, both to prove that a first annulus is generated,
but also to characterize the sequences that fail to generate whole discrete
planes. (Section 3.)

3. Prove that annuli are preserved by substitutions. (Section 4.)

Many of the computational tasks performed in Sections 3 and 4 have been
performed using the Sage mathematics software.

1.3 Related Works

The study of the Jacobi-Perron substitutions in this context was initiated in [15].
Arnoux-Rauzy substitutions have been treated in [4] and [5] (for them the seed
U is always enough). The Modified Jacobi-Perron algorithm is studied in [14]
and the substitutions associated with the ordered fully subtractive algorithm
have been used in [3] for other (discrete geometrical) purposes.

Our work focuses on the case where the coordinates of the normal vector of
the discrete plane are linearly independent over Q. The case of rational vectors
has been treated by Fernique [11].

Let us note also that depending on the substitutions studied, our techniques
can fail to work if the topological features of the generated patterns are too
complicated (for example if many holes appear). This is the case for example
with the Selmer algorithm (which is described in [19]).

Generating Discrete Planes with Substitutions 61

2 Preliminaries

2.1 Discrete Planes and Substitutions

Before defining discrete planes we introduce faces [x, i]�, which are defined by

[x, 1]� = {x + λe2 + μe3 : λ, μ ∈ [0, 1]} =
[x, 2]� = {x + λe1 + μe3 : λ, μ ∈ [0, 1]} =
[x, 3]� = {x + λe1 + μe2 : λ, μ ∈ [0, 1]} =

where i ∈ {1, 2, 3} is the type of [x, i]�, and x ∈ Z3 is the vector of [x, i]�.

Definition 2.1 (Discrete plane). Let v ∈ R3
>0. The discrete plane Γv of

normal vector v is the union of faces [x, i]� satisfying 0 � 〈x, v〉 < 〈ei, v〉.
More intuitively, Γv can also be seen as the boundary of the union of the

unit cubes with integer coordinates that intersect the lower half-space {x ∈ R3 :
〈x, v〉 < 0}.

Remark 2.2. We will often use the arithmetic restrictions of Definition 2.1 in
order to simplify the combinatorics of the patterns that appear in a discrete plane
of normal vector v = (v1, v2, v3). For example, if v1 � v3 and v2 � v3, then Γv

cannot contain any translate of the two-face pattern [0, 1]� ∪ [(0, 1, 0), 1]� =

or [0, 2]� ∪ [(0, 0, 1), 2]� = . If moreover v1 � v2, then the pattern [0, 1]� ∪
[(0, 1, 0), 1]� = also never appears.

Definition 2.3 (Substitution). Let A = {1, . . . , n} be a finite set of symbols.
A substitution is a non-erasing morphism of the free monoid A�, i.e., a function
σ : A� → A� such that σ(uv) = σ(u)σ(v) for all words u, v ∈ A�, and such that
σ(a) is non-empty for every a ∈ A.

The incidence matrix Mσ of σ is the matrix of size n × n defined by Mσ =
(mij), where mi,j is the number of occurrences of the letter i in σ(j). A substi-
tution σ is unimodular if det Mσ = ±1.

Definition 2.4 (Dual substitution). Let σ be a unimodular substitution. The
dual substitution E�

1(σ) is defined by

E�
1(σ)([x, i]�) =

⋃
(p,j,s)∈A�×A×A� : σ(j)=pis

[M−1
σ (x + �(s)), j]�,

where � : w �→ (|w|1, . . . , |w|n) ∈ Z3 is the abelianization map and |w|i denotes
the number of occurrences of i in w. We extend the above definition to any union
of faces: E�

1(σ)(P1 ∪ P2) = E�
1(σ)(P1) ∪ E�

1(σ)(P2).

Note that for every face [x, i]� we have E�
1(σ)([x, i]�) = M−1

σ x + E�
1([0, i]�),

which implies the linearity E�
1(σ). We also have E�

1(σ ◦ σ′) = E�
1(σ′) ◦ E�

1(σ) for
every unimodular σ and σ′ [1]. The next proposition establishes a fundamental
link between discrete planes and E�

1 maps.

62 V. Berthé et al.

Proposition 2.5 ([1,10]). Let Γv be a discrete plane and σ be a unimodular
substitution. We have:
1. E�

1(σ)(Γv) is the discrete plane ΓtMσv.
2. If f, g ∈ Γv are distinct, then E�

1(σ)(f)∩E�
1(σ)(g) does not contain any face.

Remark 2.6. The pattern U = [0, 1]� ∪ [0, 2]� ∪ [0, 3]� = is included in every
discrete plane because the coordinates of the normal vector of a discrete plane
are assumed to be positive.

2.2 The Brun Algorithm
Let v ∈ R3

>0 such that v = (v1, v2, v3) and v1 � v2 � v3. The algorithm of Brun
[9] is one of the possible natural generalizations of Euclid’s algorithm: subtract
the second largest component of v to the largest, and iterate. Here we reorder
the coordinates at each step, so that the condition v1 � v2 � v3 always holds.
More formally:

v �→

⎧⎪⎨
⎪⎩

(v1, v2, v3 − v2) if v1 � v2 � v3 − v2

(v1, v3 − v2, v2) if v1 � v3 − v2 � v2

(v3 − v2, v1, v2) if v3 − v2 � v1 � v2.

Iterating this map yields an infinite sequence of vectors v0 = v, v1, v2, . . . and
the algorithm can be rewritten in matrix form: vn = Minvn−1 for every n � 1,
where

M1 =

⎛
⎝1 0 0

0 1 0
0 −1 1

⎞
⎠ M2 =

⎛
⎝1 0 0

0 −1 1
0 1 0

⎞
⎠ M3 =

⎛
⎝0 −1 1

1 0 0
0 1 0

⎞
⎠

and in ∈ {1, 2, 3}. This allows us to define the Brun expansion of v as the infinite
sequence (in)n�1 obtained above. It enjoys the following nice property.
Proposition 2.7 ([9]). The Brun expansion (in)n�1 of v ∈ R3

>0 contains in-
finitely many 3’s if and only if v is totally irrational.

We now define some substitutions associated with the Brun algorithm.

σBrun
1 :

⎧⎨
⎩

1 �→ 1
2 �→ 2
3 �→ 32

σBrun
2 :

⎧⎨
⎩

1 �→ 1
2 �→ 3
3 �→ 23

σBrun
3 :

⎧⎨
⎩

1 �→ 2
2 �→ 3
3 �→ 13

and ΣBrun
i = E�

1(σBrun
i). The maps ΣBrun

1 , ΣBrun
2 , ΣBrun

3 are respectively given by

[0, 1]� �→ [0, 1]�
[0, 2]� �→ [0, 2]� ∪ [0, 3]�
[0, 3]� �→ [(0, 1, 0), 3]�

[0, 1]� �→ [0, 1]�
[0, 2]� �→ [(0, 1, 0), 3]�
[0, 3]� �→ [0, 2]� ∪ [0, 3]�

[0, 1]� �→ [(0, 1, 0), 3]�
[0, 2]� �→ [0, 1]�
[0, 3]� �→ [0, 2]� ∪ [0, 3]�

,

or more graphically

ΣBrun
1 :

⎧⎨
⎩

�→
�→
�→

ΣBrun
2 :

⎧⎨
⎩

�→
�→
�→

ΣBrun
3 :

⎧⎨
⎩

�→
�→
�→

.

Generating Discrete Planes with Substitutions 63

2.3 Coverings and Strong Coverings

We call a pattern any finite union of faces. In the definitions below, L will always
denote a set of patterns which is closed by translation of Z3, so we will define
such sets by giving only one element of each translation class. The following set
of patterns will be used throughout this article:

LBrun =
{

, , , , , , ,
}

.

We now introduce L-coverings and strong L-coverings, which are the combina-
torial tools we will use in order to prove the annulus property in Section 4.

Definition 2.8 (L-covering). Let L be a set of patterns. A pattern P is L-
covered if for all faces e, f ∈ P , there exist patterns Q1, . . . , Qn ∈ L such that

1. e ∈ Q1 and f ∈ Qn;
2. Qk ∩ Qk+1 contains at least one face, for all k ∈ {1, . . . , n − 1};
3. Qk ⊆ P for all k ∈ {1, . . . , n}.

Proposition 2.9 ([15]). Let P be an L-covered pattern, Σ be a dual substitu-
tion and L be a set of patterns such that Σ(Q) is L-covered for every Q ∈ L.
Then Σ(P) is L-covered.

Definition 2.10 (Strong L-covering). A pattern P is strongly L-covered if P
is L-covered and if for every pattern X ⊆ P that is edge-connected and consists
of two faces, there exists a pattern Y ∈ L such that X ⊆ Y ⊆ P .

Proposition 2.11 (Brun strong covering). Let P be an LBrun-covered pat-
tern such that the patterns , and do not occur in P . Then ΣBrun

i (P) is
strongly LBrun-covered for i ∈ {1, 2, 3}.

Proof (Sketch). First, ΣBrun
i (P) is LBrun-covered thanks to Proposition 2.9, be-

cause ΣBrun
i (Q) is LBrun-covered for every Q ∈ LBrun (there are 24 patterns to

check). To prove that ΣBrun
i (P) is strongly LBrun-covered, we can enumerate the

preimages by Σi of all the two-face connected patterns X to check that there is
always a suitable Y ∈ LBrun that satisfies the requirements of Definition 2.10. ��

2.4 Minimal Annuli

Definition 2.12 (L-annulus). An L-annulus of a pattern P is a pattern A
such that A is strongly L-covered and P ∩ ∂(P ∪ A) = ∅.

Example 2.13. Let A1, A2 and A3 be defined by

A1 ∪ U = A2 ∪ U = A3 ∪ U = ,

64 V. Berthé et al.

where U is shown in dark gray and the other faces are the Ai. We have:

– A1 is not an annulus of U because it does not satisfy U ∩ ∂(U ∪ A1) = ∅ (U
is not well surrounded).

– A2 is not an LBrun-annulus of U because of the two-face pattern X =
depicted in white: the only pattern in LBrun that contains X is Y = , but
it cannot be included in A2 so A2 is not strongly LBrun-covered.

– A3 is an LBrun-annulus of U .

Proposition 2.14 (Brun minimal annuli). Let A be an LBrun-annulus of U
that is included in a discrete plane of normal vector v with v1 < v2 < v3. Then
A contains one of the following two LBrun-annuli ABrun

1 or ABrun
2 (shown in light

gray) of U (shown in dark gray):

ABrun
1 ∪ U = ABrun

2 ∪ U = .

Proof (Sketch). This proposition can be proved by enumerating all the possible
surroundings of U of “thickness 1”, and by doing a case analysis on the problem-
atic patterns that appear using the definition of LBrun. ��

Example 2.15. Let P be a pattern equal to the union of [0, 3]�∪[(1, 0, −1), 2]�∪
[(0, 1, −1), 1]� (in dark gray) and some other faces in light gray.

P = ΣBrun
1 ΣBrun

2 (P) =

The images of the annulus in light gray fail to be annuli. However, the annulus
in P is not strongly LBrun-covered, which shows the need for strong coverings if
we want the image of an annulus to remain an annulus.

The substitutions above are chosen in such a way that Mi = tM−1
σBrun

i
for

i ∈ {1, 2, 3}, which allows us to define the sequence of pattern we will use to
generate the discrete plane Γv, as described by the proposition below.

Proposition 2.16. Let v ∈ R3
>0 and (in)n�1 be its Brun expansion. We have

Σi1 · · · Σin(V) ⊆ Γv for all n � 1, where V = U , or V = U ∪ABrun
1 (if i1 ∈ {1, 2}),

or V = U ∪ ABrun
2 (if i1 = 3).

Proof. Since we have v = M−1
i1

· · · M−1
in

vn, and tMσBrun
in

= M−1
in

, and since V ⊆
Γvn , it follows from Proposition 2.5 that Σi1 · · · Σin(V) ⊆ Σi1 · · · Σin(Γvn) =
ΓtM

σBrun
i1

···tM
σBrun

in

vn
= Γv. ��

Generating Discrete Planes with Substitutions 65

3 Generation Graphs

We fix the following notation for this section:
– Σ1, . . . , Σk are dual substitutions,
– X and Y are finite sets of faces,
– F is an infinite family of faces.

We want to characterize the sequences (i1, . . . , in) ∈ {1, . . . , k}n and the faces
f ∈ Y such that f cannot be reached by iterating Σi1 , . . . , Σin starting from the
“seed” X . Our approach below is to recursively track all the possible preimages of
the faces in Y, by constructing a generation graph providing us with the desired
characterization. The set F is used as a filter, in order to make the generation
graph as simple as possible by eliminating some useless faces.
Definition 3.1. The generation graph is defined by G =

⋃
n∈N

Gn (an increasing
union which is not always finite), where (Gn)n∈N is the sequence of directed
graphs defined by induction as follows.

1. Initialization. G0 has no edges and its set of vertices is Y.
2. Iteration. Suppose that Gn is constructed for some n � 0. Start with Gn+1

having the same vertices and edges as Gn. Then, for each vertex f of Gn, for
each i ∈ {1, . . . , k} and for each g ∈ F such that f ∈ Σi(g), add the vertex
g and the edge g

i→ f to Gn+1.

Proposition 3.2. Let G be the graph defined in Definition 3.1, let f0 ∈ G be a
face and let (i1, . . . , in) ∈ {1, . . . , k}n. Consider the following two statements.

1. f0 /∈ Σi1 · · · Σin(X).
2. There exists a path fn

in→ · · · i2→ f1
i1→ f0 in G with fn /∈ X .

We have:

(i) (1) ⇒ (2) if for every f ∈ F and every i ∈ {1, . . . , k}, there exists g ∈ F
such that f ∈ Σi(g).

(ii) (2) ⇒ (1) if X = U and if every face of F belongs to a discrete plane.

Proof. (i). The assumption in (i) implies that a path fn
in→ · · · i2→ f1

i1→ f0
must exist in G. By (1), we cannot have have fn ∈ X , which proves the first
implication.

(ii). Let P = Σi1 · · · Σin(fn), g ∈ X and Q = Σi1 · · · Σin(g). By the assump-
tion in (ii), fn and g must belong to a common discrete plane because g ∈ U ,
fn belongs to a discrete plane and U is included in every discrete plane. Hence,
Proposition 2.5 implies the patterns P and Q do not have any face in common.
It follows that f0 /∈ Σi1 · · · Σin(g) for every g ∈ X . ��
Remark 3.3. Part (i) of Proposition 3.2 will be used to obtaine “positive” re-
sults, such as proving that a given seed always generate a full discrete plane (see
Lemma 3.5, Proposition 5.1 and Theorem 5.2 (1)). Conversely, part (ii) will be
used to characterize which sequences do not generate a full discrete plane (see
Lemma 3.4 and Theorem 5.2 (2)).

66 V. Berthé et al.

Generation graphs for Brun. We now consider substitutions ΣBrun
1 , ΣBrun

2 , ΣBrun
3 .

We will take the filter FBrun to be the set of all the faces f that belong to
a discrete plane Γ(v1,v2,v3) with 0 < v1 < v2 < v3. We use Definition 3.1 to
compute the following graphs.

– The graph GBrun is obtained by starting with Y = ABrun
1 ∪ ABrun

2 . Its compu-
tation stops after two iterations of the algorithm. It has 19 vertices and 47
edges. We will use it below with X = U .

– The graph HBrun is obtained by starting with Y equal to the set of faces of
all the possible minimal LBrun-annuli of ABrun

1 and ABrun
2 (a total of 60 faces).

Its computation stops after six iterations of the algorithm. It has 101 vertices
and 240 edges. We will use it below with X = U ∪ ABrun

1 or U ∪ ABrun
2 .

Lemma 3.4. The graph GBrun verifies (i) and (ii) of Proposition 3.2 with
X = U .

Lemma 3.5. The graph HBrun verifies item (i) of Proposition 3.2, both with
X = U ∪ ABrun

1 and X = U ∪ ABrun
2 .

Proof. For both lemmas we have to check that the assumption in (i) is satisfied.
Let f ∈ FBrun and let i ∈ {1, 2, 3}. Because f ∈ FBrun, there exists v = (v1, v2, v3)
such that 0 < v1 < v2 < v3 and f ∈ Γv. By Proposition 2.5 and by definition of
the Brun algorithm (Section 2.2), we have Γv = ΣBrun

i (Γw), where w = tM−1
σBrun

i
v.

We have 0 < w1 < w2 < w3, so all the faces of Γw belong to FBrun, so there
exists a face g ∈ FBrun such that f ∈ Σi(g) because f ∈ Γv = Σi(Γw). Finally
(for Lemma 3.5 only), the assumptions required in (ii) trivially hold. ��

In Section 5 we will need to consider only the infinite paths in GBrun and HBrun

that contain infinitely many edges labelled by 3, and that avoid X . In the case
of HBrun, there turns out to be no such infinite path, which is the key point to
prove Proposition 5.1. However GBrun is more interesting, and removing all the
vertices which are not contained in such a path yields the following graph.

fa fb fc

fd fe ff

fg

fh

fi

1

1
1

1

2

2

3

33

2

3

2

1

3

1

2

3

Generating Discrete Planes with Substitutions 67

The faces corresponding to the vertices of the graph are

fa = [(1, 1, −1), 1]� fd = [(−1, 1, 0), 2]� fg = [(−1, 0, 1), 2]�

fb = [(1, −1, 1), 3]� fe = [(−1, 0, 1), 3]� fh = [(−1, −1, 1), 3]�

fc = [(1, 1, −1), 2]� ff = [(−1, 1, 0), 3]� fi = [(1, 1, −1), 3]�.

4 The Annulus Property

Definition 4.1 (Property A). Let Σ be a dual substitution and let L be a
set of edge-connected patterns. Property A holds for Σ with L if for all faces
f, g, f0, g0 such that f ∈ Σ(f0), g ∈ Σ(g0), f ∪ g is connected and f0 ∪ g0 is
disconnected, there cannot exist a pattern P and an L-annulus A of P which
are included in a common discrete plane Γ such that f0 ∈ P , g0 /∈ A ∪ P , and
f0 ∪ g0 ⊆ Γ and f ∪ g ⊆ Σ(Γ).

Proposition 4.2. Let Σ be a dual substitution and L be a set of edge-connected
patterns such that Property A holds for Σ with L, and such that the image by
Σ of every strongly L-covered pattern is strongly L-covered. Let P be a pattern
and A be an L-annulus of P , both included in a common discrete plane. Then
Σ(A) is an L-annulus of Σ(P).

Proof. The pattern A is strongly L-covered because it is an L-annulus, so Σ(A) is
also strongly L-covered, by assumption. It remains to show that Σ(P)∩∂(Σ(P)∪
Σ(A)) = ∅. Suppose the contrary. This means that there exist faces f, g, f0, g0
such that f ∈ Σ(f0), g ∈ Σ(g0), f ∪ g is connected, and f0 ∪ g0 is disconnected
(because f0 ∈ P and g0 /∈ A ∪ P). These are precisely the conditions stated in
Property A, so such a situation cannot occur and the proposition holds. ��
Proposition 4.3 (Property A for Brun). Property A holds for Brun substi-
tutions with LBrun, when restricted to planes Γ(v1,v2,v3) with v1 � v2 � v3.

Proof. There are finitely many two-face connected patterns f ∪ g, so we can
enumerate all the faces f, g, f0, g0 that satisfy the three conditions of Definition
4.1, for ΣBrun

1 , ΣBrun
2 and ΣBrun

3 . It turns out that there are 9 such possibilities,
where the corresponding values for f0 ∪ g0 are shown in the table below.

ΣBrun
1 ΣBrun

2 ΣBrun
3

[0, 2]� ∪ [(0, 1, 0), 1]� [0, 3]� ∪ [(1, 0, −1), 3]� [0, 3]� ∪ [(0, 1, −1), 3]�
[0, 2]� ∪ [(1, −1, 0), 2]� [0, 3]� ∪ [(0, 1, 1), 1]� [0, 3]� ∪ [(0, 0, 1), 2]�
[0, 2]� ∪ [(0, 1, 1), 1]� [0, 3]� ∪ [(0, 0, 1), 1]� [0, 3]� ∪ [(1, 0, 1), 2]�

Let us treat the case f0 ∪ g0 = [0, 2]� ∪ [(1, −1, 0), 2]�. Suppose that there exists
a pattern P and an LBrun-annulus A of P that is included in a discrete plane
such that f0 ∈ P and g0 ∈ A. Because A is an annulus of P , any extension of
f0 ∪ g0 within a discrete plane must be of the form or , where f0 ∪ g0
is shown in light gray and the dark gray faces are included in A.

68 V. Berthé et al.

The first case cannot happen because it contains an occurrence of , which
is forbidden since we are restricted to discrete planes with normal vector v
satisfying v1 < v2 < v3 (see Remark 2.2). The second case also cannot happen,
because A is strongly LBrun-covered. Indeed, ⊆ A, so there must exist a
translation of a pattern of LBrun that is included in A and that contains .
The only such pattern in LBrun is (note that /∈ LBrun). This is impossible
because then and f0 ∪ g0 overlap, which is a contradiction because f0, g0 /∈ A

and ∈ A. The same reasoning applies to the eight other cases. ��

5 Main Results

Let P be a pattern that contains U . The combinatorial radius of P is the length
of the shortest path of faces f1, . . . , fn in P such that: f1 ∈ U , the fi and fi+1
are adjacent, and fn shares an edge with the boundary of P .

Proposition 5.1. Let (un = un,1 · · · un,kn)n�1 be an infinite sequence of words
in {1, 2, 3}� such that the number of 3’s in the un is strictly increasing. Let V
be equal either U ∪ ABrun

1 or to U ∪ ABrun
2 . Then the pattern ΣBrun

un,1 · · · ΣBrun
un,kn

(V)
has arbitrarily large combinatorial radius when n → ∞.

Proof. Let R be a positive integer (an arbitrary radius that we want to bound
above). We can algorithmically check that, in the graph HBrun described in Sec-
tion 3, there are no infinite paths containing infinitely many 3’s that avoid
ABrun

1 ∪ ABrun
2 ∪ U . Hence by Lemma 3.5 there exists an integer N such that

R annuli are generated from V by ΣBrun
uN,1 · · · ΣBrun

uN,kN
. By Propositions 4.2 and

4.3, these annuli remain annuli, so the combinatorial radius cannot be less
that R. ��
Theorem 5.2. Let v ∈ R3

>0 be an ordered totally irrational vector and let (in) ∈
{1, 2, 3}N be its Brun expansion. We have:

1.
⋃

n�1 ΣBrun
i1 · · · ΣBrun

in
(V) = Γv, where V =

{
U ∪ ABrun

1 if i1 ∈ {1, 2},

U ∪ ABrun
2 if i1 = 3.

2.

⋃
n�1 ΣBrun

i1 · · · ΣBrun
in

(U) � Γv if and only if

there exists N � 0 such that • iN← • iN+1← · · ·
is an infinite path in the following graph: 1

1 1
2

2
2

3

33

Proof. Assertion (1) follows from Propositions 2.16 and 5.1, and (2) follows
directly from (1), Lemma 3.4 and the description of GBrun given in Section 3. ��

Generating Discrete Planes with Substitutions 69

Some Applications. Theorem 5.2 implies the following for finite products of
Brun substitutions: for every σ = σBrun

i1
· · · σBrun

in
such that at least one in = 3, we

have
⋃

n�1 E�
1(σ)(U) = Γv if and only if there is no infinite periodic path labelled

by (i1 · · · in)∞ in the graph above. This has several consequences, as mentioned
in Section 1.1. Note that such substitutions σ are always Pisot irreducible [2].

Another application (also mentioned in Section 1.1) is Corollary 5.3 below: the
convergence of the Brun algorithm. Indeed, similarly as in the proof of Proposi-
tion 2.16, the approximated discrete planes Γwn contain patterns of arbitrarily
large radius. These patterns are also included in Γv, so the approximated vectors
wn are constrained and their direction must tend to that of v.

Corollary 5.3. Let v ∈ R3
>0 be an ordered totally irrational vector and let

(in) ∈ {1, 2, 3}N be its Brun expansion. Let wn = M−1
i1

· · · M−1
in

· (1, 1, 1), where
the Mi are the Brun matrices given in Section 2.2. Then, the sequence
(wn/‖wn‖)n�1 converges to v/‖v‖ as n → ∞.

Lastly, note that the above results do not directly imply that iterating sub-
stitutions from U generates patterns containing translations of patterns with
arbitrarily large radius. This requires another proof (to be published in a forth-
coming article), and is linked with the Pisot conjecture (see Section 1.1).

Acknowledgements. This work was supported by Agence Nationale de la
Recherche through project Fractals and Numeration ANR-12-IS01-0002. and
project Kidico ANR-2010-BLAN-0205.

References

1. Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc.
Simon Stevin 8(2), 181–207 (2001)

2. Avila, A., Delecroix, V.: Pisot property for the Brun and fully subtractive algo-
rithms (preprint, 2013)

3. Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin
arithmetical discrete planes. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B.
(eds.) DGCI 2013. LNCS, vol. 7749, pp. 107–118. Springer, Heidelberg (2013)

4. Berthé, V., Jolivet, T., Siegel, A.: Substitutive arnoux-rauzy sequences have pure
discrete spectrum. Unif. Distrib. Theory 7(1), 173–197 (2012)

5. Berthé, V., Jolivet, T., Siegel, A.: Connectedness of Rauzy fractals associated with
Arnoux-Rauzy substitutions (preprint, 2013)

6. Berthé, V., Siegel, A.: Tilings associated with beta-numeration and substitutions.
Integers 5(3), A2, 46 (2005)

7. Berthé, V., Siegel, A., Thuswaldner, J.M.: Substitutions, Rauzy fractals, and tilings.
In: Combinatorics, Automata and Number Theory, Encyclopedia of Mathematics
and its Applications, vol. 135. Cambridge University Press (2010)

8. Berthé, V., Steiner, W., Thuswaldner, J.M.: Tilings with S-adic Rauzy fractals
(preprint, 2013)

9. Brun, V.: Algorithmes euclidiens pour trois et quatre nombres. In: Treizième Con-
grès des Mathèmaticiens Scandinaves, Tenu à Helsinki, Août 18-23, pp. 45–64
(1957)

70 V. Berthé et al.

10. Fernique, T.: Multidimensional Sturmian sequences and generalized substitutions.
Internat. J. Found. Comput. Sci. 17(3), 575–599 (2006)

11. Fernique, T.: Generation and recognition of digital planes using multi-dimensional
continued fractions. Pattern Recognition 42(10), 2229–2238 (2009)

12. Fogg, N.P.: Substitutions in dynamics, arithmetics and combinatorics. Lecture
Notes in Mathematics, vol. 1794. Springer, Berlin (2002)

13. Frougny, C., Solomyak, B.: Finite beta-expansions. Ergodic Theory Dynam. Sys-
tems 12(4), 713–723 (1992)

14. Furukado, M., Ito, S., Yasutomi, S.I.: The condition for the generation of the
stepped surfaces in terms of the modified Jacobi-Perron algorithm (preprint, 2013)

15. Ito, S., Ohtsuki, M.: Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J.
Math. 17(1), 33–58 (1994)

16. Ito, S., Rao, H.: Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel
J. Math. 153, 129–155 (2006)

17. Paysant-Le Roux, R., Dubois, E.: Une application des nombres de Pisot à
l’algorithme de Jacobi-Perron. Monatsh. Math. 98(2), 145–155 (1984)

18. Rauzy, G.: Nombres algébriques et substitutions. Bull. Soc. Math. France 110(2),
147–178 (1982)

19. Schweiger, F.: Multidimensional continued fractions. Oxford Science Publications,
Oxford University Press (2000)

20. Siegel, A., Thuswaldner, J.M.: Topological properties of Rauzy fractals. Mém. Soc.
Math. Fr. (N.S.) (118), 140 (2009)

Convergence and Factor Complexity
for the Arnoux-Rauzy-Poincaré Algorithm

Valérie Berthé and Sebastien Labbé

LIAFA, Université Paris Diderot, Paris 7 - Case 7014, F-75205 Paris Cedex 13
{berthe,sebastien.labbe}@liafa.univ-paris-diderot.fr

Abstract. We introduce a multidimensional continued fraction algo-
rithm based on Arnoux-Rauzy and Poincaré algorithms, and we study
its associated S-adic system. An S-adic system is made of infinite words
generated by the composition of infinite sequences of substitutions with
values in a given finite set of substitutions, together with some restric-
tions concerning the allowed sequences of substitutions, expressed in
terms of a regular language. We prove that these words have a factor
complexity p(n) with lim sup p(n)/n < 3, which provides a proof for the
convergence of the associated algorithm by unique ergodicity.

1 Introduction

Given a vector of frequencies (f1, f2, · · · , fd) ∈ Rd
+ (with

∑
fi = 1), our goal

here is to propose a construction of an infinite word w over the alphabet A =
{1, 2, · · · , d} such that the frequency of each letter i ∈ A exists and is equal to
fi. We also would like the word w to have particular combinatorial properties,
namely a linear factor complexity and a bounded balance. In dimension two, the
question is completely answered. The Sturmian words form a well-known family
of infinite balanced words having a linear factor complexity (p(n) = n + 1). But
the situation is more contrasted in higher dimensions.

In [BL11, Lab12], we considered this question under the approach of multidi-
mensional continued fraction algorithms and S-adic systems. Experimentations
suggested that Brun multidimensional continued fraction algorithm as well as a
fusion of Arnoux-Rauzy and Poincaré algorithms were the two best choices to
investigate for such an approach. In this article, we focus on the Arnoux-Rauzy-
Poincaré algorithm (a bit better than Brun experimentally), and construct an in-
finite word for Lebesgue almost each frequency vector (f1, f2, f3) ∈ R3

+. We show
that such words have a linear factor complexity, namely p(n + 1) − p(n) ∈ {2, 3}
for all n ≥ 0, by describing extensively the life of every bispecial factor, including
strong and weak ones which come in pairs (as proved in Lemma 10 below).

More precisely, we introduce an S-adic system associated with a set of 9
substitutions. Three of them are substitutions known under the name of Arnoux-
Rauzy substitutions [AR91], and the other six are named Poincaré substitutions
after Poincaré algorithm [Nog95]. The execution of the Arnoux-Rauzy-Poincaré
algorithm yields restrictions to the allowed infinite sequences of substitutions,

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 71–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

72 V. Berthé and S. Labbé

expressed in terms of a regular language. We show that we have a bijection (up to
a set of zero measure) between infinite words and R3

+. We show that these words
have a factor complexity p(n) that satisfies with lim sup p(n)/n < 3. The proof
relies on the fact that weak and strong bispecial factors are alternating in the
sequence (ordered by increasing length) of non neutral bispecial factors. Then,
by using a result of Boshernitzan [Bos85], we deduce the existence of (uniform)
frequency of any factor, and thus of the letters. This provides a combinatorial
proof of convergence for this multidimensional continued fraction algorithm.

The article is structured as follows. In Section 2, we introduce the Arnoux-
Rauzy-Poincaré multidimensional continued fraction algorithm, with its nine
associated substitutions, as well as our main result on the factor complexity and
on the convergence. In Section 3, we study bispecial factors under Arnoux-Rauzy
and Poincaré substitutions with no restriction on the application of substitutions.
In Section 4, we prove the result on factor complexity of the associated S-adic
system where the language of substitutions is restricted to a regular language
defined by a finite automaton.

2 The Arnoux-Rauzy-Poincaré Algorithm

The Arnoux-Rauzy-Poincaré multidimensional continued fraction algorithm be-
longs to the family of multidimensional continued fraction algorithms defined
in terms of triangle maps such as introduced in [Gar01]. It combines the two
classical algorithms that are Poincaré algorithm and Arnoux-Rauzy algorithm,
which are respectively defined in dimension 3 as follows: Poincaré algorithm acts
on a triple of non-negative entries by subtracting the smallest entry to the me-
dian and the median to the largest, whereas Arnoux-Rauzy algorithm acts by
subtracting the sum of the two smallest entries to the largest, when possible.
Our fusion algorithm privilegiates an Arnoux-Rauzy step if possible, otherwise
it perfoms a Poincaré step.

We follow here the formalism described in Section 2.1 of [DFG+12]. The
Arnoux-Rauzy-Poincaré multidimensional continued fraction algorithm is a fu-
sion algorithm such as introduced in [BL11, Lab12]. It is defined on the 2-simplex

Δ = {(x1, x2, x3) ∈ R3
+ : x1 + x2 + x3 = 1}

whose vertices are the vectors e1 = (1, 0, 0)�, e2 = (0, 1, 0)� and e3 = (0, 0, 1)�.
In order to partition Δ, we consider the following fifteen matrices:

A1 =

(1 1 1
0 1 0
0 0 1

)
, P21 =

(1 1 1
0 1 1
0 0 1

)
, P31 =

(1 1 1
0 1 0
0 1 1

)
, H21 =

(1 0 0
0 1 0
1 0 1

)
, H31 =

(1 0 0
1 1 0
0 0 1

)
,

A2 =

(1 0 0
1 1 1
0 0 1

)
, P12 =

(1 0 1
1 1 1
0 0 1

)
, P32 =

(1 0 0
1 1 1
1 0 1

)
, H12 =

(1 0 0
0 1 0
0 1 1

)
, H32 =

(1 1 0
0 1 0
0 0 1

)
,

A3 =

(1 0 0
0 1 0
1 1 1

)
, P13 =

(1 1 0
0 1 0
1 1 1

)
, P23 =

(1 0 0
1 1 0
1 1 1

)
, H13 =

(1 0 0
0 1 1
0 0 1

)
, H23 =

(1 0 1
0 1 0
0 0 1

)
,

Convergence and Factor Complexity 73

H12

H13

e1 e2

e3

H21

H23

e1 e2

e3

H32 H31

e1 e2

e3

A1 A2

A3

e1 e2

e3

P31

P21

P32

P12

P23P13

e1 e2

e3 P
31H

31

P
2
1
H

2
1 P32

H32

P
1
2
H

1
2

P23
H23

P
13H

13

A1 A2

A3

e1 e2

e3

Fig. 1. Left: the three Arnoux-Rauzy matrices, the six Poincaré matrices and the six
half triangles. Right: the partition of Arnoux-Rauzy-Poincaré algorithm.

whose column vectors are represented at Figure 1. Then, the column vectors
of A1, A2, A3, P31H31, P13H13, P23H23, P32H32, P12H12 and P21H21 describe
a disjoint partition of Δ depicted in Figure 1. This partition then allows the
definition of the following map:

T : Δ → R3
+

x �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A−1
k x, if x ∈ AkΔ (subtract the sum of the two smallest entries

to the largest),
P −1

jk x, if x ∈ PjkHjkΔ (subtract the smallest entry to the median
and the median to the largest).

The Arnoux-Rauzy-Poincaré multidimensional continued fractions algorithm is
defined as the iteration of the function T : Δ → Δ, x �→ T (x)

||T (x)|| with ||x|| =
x1 + x2 + x3. For each x, it generates a sequence of matrices (Mn)n with values
in the set {Ak, Pjk | j, k ∈ {1, 2, 3}, j �= k}.

2.1 The Arnoux-Rauzy-Poincaré S-Adic System

We recall below the definition of an S-adic system. For more on S-adic words see
[BD13, CN10, DLR13, Ler12]. We say that the infinite word w ∈ AN admits an
S-adic representation if there exist a finite set S of substitutions defined on the
alphabet A, a sequence s = (σn)n∈N ∈ SN of substitutions that all belong to S,
and (an)n∈N a sequence of letters in A such that w = limn→∞ σ0σ1 · · · σn(an).
The word w is said to be S-adic, and the sequence s is called the directive
sequence. An S-adic system is obtained by adding restrictions on the set of
allowed directive sequences s ∈ SN: an S-adic system is given by a finite directed
strongly connected graph G labeled by the substitutions in S, with each infinite
path giving rise to a directive sequence.

74 V. Berthé and S. Labbé

Here sequences of letters (an)n are constant sequences. Let i, j, k be such
that {i, j, k} = {1, 2, 3}. A Poincaré substitution is a substitution of the form
πjk : i �→ ijk, j �→ jk, k �→ k. An Arnoux-Rauzy substitution is given by αk : i �→
ik, j �→ jk, k �→ k. Let

S := {πjk, αk | j, k ∈ {1, 2, 3}, j �= k}.

For each {i, j, k} = {1, 2, 3}, Pjk is the incidence matrix of the substitution πjk

and Ak is the incidence matrix of αk.
The automaton G = (Q, S, T, I) is defined by the states Q = {Δ, H12, H13, H21,

H23, H31, H32}, the transitions T = {(Δ, αk, Δ), (Δ, πjk , Hjk), (Hjk, αj , Hjk),
(Hjk, αi, Δ), (Hjk , πij , Hij), (Hjk, πki, Hki), (Hjk, πji, Hji) : for each {i, j, k} =
{1, 2, 3}} ⊂ Q × S × Q and the initial state I = {Δ} (see Figure 2). We consider
the S-adic system associated with the regular language L(G). This language
corresponds to directive sequences (sn)n for which the sequence of incidence
matrices (Msn)n is generated by the execution of the Arnoux-Rauzy-Poincaré
algorithm.

Proposition 1 (ARP regular language). The set of directive sequences pro-
duced by the Arnoux-Rauzy-Poincaré algorithm is exactly the set of labeled infi-
nite paths starting in Δ in the graph G illustrated in Figure 2.

We now state the main theorem. Its proof is given in Section 4. Let us say that
x ∈ Δ is totally irrational if x1, x2, x3 are linearly independent over Q.

Theorem 1 (Factor Complexity). Let w be an S-adic word generated by the
Arnoux-Rauzy-Poincaré algorithm applied to a totally irrational vector x ∈ Δ.
Then the factor complexity of w is such that p(n) ≤ 3n+1, p(n+1)−p(n) ∈ {2, 3}
for all n ≥ 0, and lim supn→∞

p(n)
n < 3.

Theorem 2 (Frequencies and Convergence). Let w be an S-adic word gen-
erated by the Arnoux-Rauzy-Poincaré algorithm applied to a totally irrational

H23Δ

H31

H12

H21 Δ

H32

H13

Δ

Hjk

α3 α3

α1 α1

α2 α2

α1
α3

α2 α1

α3
α2

π

π

π

π

π

π

π

π

π
αk

πjk

Fig. 2. The deterministic automaton G. To avoid crossing arrows, the initial state Δ is
drawn at three places. Also, the indices of π transitions are not written because they
are determined by the indices of the arrival state: π−→ Hjk means

πjk−−→ Hjk.

Convergence and Factor Complexity 75

vector x ∈ Δ. Then the symbolic dynamical system generated by w is uniquely
ergodic, and the frequencies of letters are proved to exist in w and to be equal to
the coordinates of x.

Furthermore, the Arnoux-Rauzy-Poincaré algorithm is a weakly convergent
algorithm, that is, for Lebesgue almost every x ∈ Δ, if (Mn)n stands for the
sequence of matrices produced by the Arnoux-Rauzy-Poincaré algorithm, then
one has ∩nM0 · · · Mn(R3

+) = R+x.

Theorem 2 is a direct consequence of Theorem 1 together with Theorem 1.5
of [Bos85] for the unique ergodicity statement (see also [FM10]). The weak con-
vergence comes from the unique ergodicity. Usual proofs of convergence rely on
linear algebra and on the use of the Hilbert projective metric (see e.g. [Sch00]).
Let us stress the fact that we provide here a purely combinatorial proof of con-
vergence for a multidimensional continued fraction algorithm.

3 Bispecial Factors under Arnoux-Rauzy and Poincaré
Substitutions

3.1 Bispecial Factors and Extension Types

The proof of Theorem 4 requires some preparation. In this section, we follow
the notation of [CN10]. Let w be a factor of a recurrent infinite word u. We let
E+(w) = {x ∈ A | wx ∈ L(u)} denote the set of right extensions of w in u.
The right valence d+(w) = Card E+(w) of w (in u) is the number of distinct
right extensions of w. Left extensions E−(w) and left valence d−(w) are defined
similarly. A factor whose right valence is at least 2 is called right special. A factor
whose left valence is at least 2 is called left special. A factor which is both left
and right special is called bispecial. The set of bispecial factors of length n are
identified by BSn(u). The extension type Eu(w) of a factor w of u is the set of
pairs (a, b) of A × A such that w can be extended in both directions as awb :

Eu(w) = {(a, b) ∈ A × A | awb ∈ L(u)}.

We let denote Eu(w) by E(w) when the context is clear. The bilateral multiplicity
of a factor w is the number

m(w) = Card E(w) − d−(w) − d+(w) + 1.

A bispecial factor is said strong if m(w) > 0, weak if m(w) < 0 and neutral if
m(w) = 0. A bispecial factor whose extension type satisfies

E(w) ⊆ ({a} × A) ∪ (A × {b}) for a pair of letters (a, b) ∈ E(w) (1)

is said ordinary. An ordinary bispecial factor is neutral, but the converse is not
true for |A| > 2. It is convenient to represent extension type E(w) of a bispecial
factor w graphically. Often represented as a bipartite graph, we choose a table
representation: a cross (×) is drawn at the intersection of row a and column b if
and only if (a, b) ∈ E(w) (see Figure 3).

76 V. Berthé and S. Labbé

1 2 3
1 ×
2 ×
3 × × ×
m(w) = 0
neutral and
ordinary

1 2 3
1 ×
2 ×
3 × × ×
m(w) = 0

neutral but not
ordinary

1 2 3
1 ×
2
3 ×

m(w) = −1
weak

1 2 3
1
2 × ×
3 × × ×
m(w) = 1
strong

Fig. 3. We represent the extension type E(w) of a bispecial factor w by a table. A
cross (×) is at the intersection of row a and of column b if and only if (a, b) ∈ E(w).

Definition 1 (Left equivalence). Let w and w′ be two bispecial factors defined
on the alphabet A. We say that their extension types are left equivalent if there
exists a permutation τ acting on A such that E(w′) = {(τ(a), b) | (a, b) ∈ E(w)}.

Right equivalence is defined similarly. Left equivalence can be interpreted on the
table representation of the extension type as follows: one representation can be
obtained from the other by a permutation of the rows:

E(w) =

1 2 3
1 ×
2
3 × × ×

and E(w′) =

1 2 3
1 × × ×
2 ×
3

Substitutions considered in this article preserve the first letter and thus pre-
serve the right extensions. Then, the notion of left-equivalence is sufficient for
our need. When the extension type of two words are equivalent, they share com-
mon properties. In particular, being ordinary, strong or weak is preserved under
equivalence.

3.2 Factor Complexity

Let p(n) be the factor complexity function of w. The sequences of finite differ-
ences of order 1 and 2 respectively of p(n), that is, s(n) = p(n + 1) − p(n) and
b(n) = s(n + 1) − s(n), are used to show upper bounds for p(n).

Lemma 1. Suppose |A| = 3. Then, p(n + 1) − p(n) ∈ {2, 3} if and only if∑n−1
�=0 b(�) ∈ {0, 1}. Also, if the sequence of finite differences of order 2 is such

that (b(�))� = 0, . . . , 0, 1, 0, . . . , 0, −1, 0, . . . , 0, 1, 0, . . . then
∑n−1

�=0 b(�) ∈ {0, 1}.

Proof. Since |A| = 3, then p(1) = 3 and s(0) = p(1) − p(0) = 3 − 1 = 2. We have
p(n + 1) − p(n) = s(n) = s(0) +

∑n−1
�=0 b(�) = 2 +

∑n−1
�=0 b(�).

Function b(n) is related to the multiplicity of bispecial factors.

Theorem 3. [CN10, Theorem 4.5.4] Let u ∈ AN be an infinite recurrent word.
Then, for all n ∈ N: b(n) =

∑
w∈BSn(u) m(w).

Convergence and Factor Complexity 77

3.3 Synchronization Lemmas

The goal of the next sections is to describe strong and weak bispecial factors.
From now on, the alphabet is set to A = {1, 2, 3}. The next lemma describes the
preimage of a factor under Arnoux-Rauzy (AR) and Poincaré (P) substitutions.

Lemma 2 (Synchronization). Let u ∈ A∗ and w be a factor of αk(u) for
some {i, j, k} = {1, 2, 3}.

(i) If w is empty or if the first letter of w is i or j, then there exists a unique
v ∈ A∗ and a unique s ∈ {ε, i, j} such that w = αk(v) · s.

(ii) If the first letter of w is k, then there exists a unique v ∈ A∗ and a unique
s ∈ {ε, i, j} such that w = k · αk(v) · s.

Let u ∈ A∗ and w be a factor of πjk(u) for some {i, j, k} = {1, 2, 3}.

(i) If w is empty or if the first letter of w is i, then there exists a unique v ∈ A∗

and a unique s ∈ {ε, i, j, ij} such that w = πjk(v) · s.
(ii) If w = j, then there exists a unique v(= ε) such that w = j · πjk(v).
(iii) If the first letter of w is j and |w| > 1, then there exists a unique v ∈ A∗

and a unique s ∈ {ε, i, j, ij} such that w = jk · πjk(v) · s.
(iv) If the first letter of w is k, then there exists a unique v ∈ A∗ and a unique

s ∈ {ε, i, j, ij} such that w = k · πjk(v) · s.

Proof. The sets {ik, jk, k} and {ijk, jk, k} form a prefix code.

Definition 2 (Antecedent, extended image). Let σ = αk or σ = πjk, u ∈
A∗ and w be a factor of σ(u). We say that the antecedent of w under σ is the
unique word v as defined by Lemma 2. If v is the antecedent of a word w, then
we say that the word w is an extended image of v.

While the antecedent is unique, a word v may have more than one extended
image. For example, w1 = 23π23(11)1 = 231231231 and w2 = 3π23(11)2 =
31231232 are two distinct extended images of v = 11. This is why the situation
becomes here quite intricate especiallly for bispecial factors (it happens that
strong and weak bispecial words appear in pairs, see Lemma 10 below).

Definition 3 (Bispecial extended image). We shall say that a bispecial
extended image w of v under σ is a bispecial word which is an extended image
of v under σ.

3.4 Antecedents and Images of Bispecial Words

Lemma 3 (AR - Bispecial extended image). Let v be a bispecial factor.
There is a unique bispecial extended image w = kαk(v) of v under αk.

Lemma 4 (AR - Antecedent of a bispecial). Let u ∈ A∗ and w �= ε be a
bispecial factor of αk(u). Let v be the unique antecedent of w under αk such that
w = kαk(v). Then, v is bispecial and it has the same extension type Eαk(u)(w) =
Eu(v) and same multiplicity m(w) = m(v) as w.

78 V. Berthé and S. Labbé

w

αk(v)

a

k k

b

va b

αk

Fig. 4. The preimage of the bispecial word w under αk

Proof. One checks that (a, b) ∈ E(v) if and only if (a, b) ∈ E(kαk(v)) (see
Figure 4). Then E(kαk(v)) = E(v). We deduce that E+(kαk(v)) = E+(v) and
E−(kαk(v)) = E−(v). From this we conclude that m(kαk(v)) = m(v).

Lemma 5 (P - Bispecial extended images). Let v be a bispecial factor.
There are at most two distinct bispecial extended images of v under πjk. They
are either kπjk(v) or jkπjk(v).

Proof. Let w be a bispecial extended images of v under πjk. Since it is a bispecial
factor, it must start with letter j or k and end with letter k. From Lemma 2,
w ∈ {jkπjk(v), kπjk(v)}.

Lemma 6 (P - Antecedent of a bispecial). Let u ∈ A∗ and w �= ε be a
bispecial factor of πjk(u). Let v be the unique antecedent of w under πjk such
that w = kπjk(v) or w = jkπjk(v). Then, v is bispecial.

Now we want to describe more precisely under which conditions a bispecial
word v has a unique bispecial extended image under Poincaré substitutions and
give its extension type. In general, this depends on its left extensions E−(v).
However, if the value of the left valence d−(v) = 2, we deduce the unicity of the
bispecial extended image as well as important information on the extension type
of the extended image.

Lemma 7 (P - Bispecial extended images in details). Let v be a bispecial
factor.

(i) If d−(v) = 2, v admits a unique bispecial extended image w ∈
{kπjk(v), jkπjk(v)} under πjk and d−(w) = 2. Moreover, the extension types
E(v) and E(w) are left equivalent.

(ii) If d−(v) = 3, then v admits either one, or two bispecial extended images
w ∈ {kπjk(v), jkπjk(v)} under πjk. In any case, d−(w) = 2 and the two non
empty rows of E(w) are obtained by projection of rows of E(v).

3.5 Life of a Bispecial Factor under Arnoux-Rauzy-Poincaré
Substitutions

In this section, the life of a bispecial factor is analyzed more precisely under the
application of Arnoux-Rauzy and Poincaré substitutions in the spirit of Section

Convergence and Factor Complexity 79

4.2.2 of [Cas97] where bispecial factors are described under the image of circular
morphisms. To achieve this, we need to understand exactly the left extensions
which will give information about the multiplicity of the bispecial factors. We
denote by Sα, Sπ, respectively the following sets of substitutions:

Sα = {α1, α2, α3}, Sπ = {π12, π13, π23, π21, π31, π32}, with S = Sα ∪ Sπ.

Let w be a factor of limk→∞ σ0σ1 · · · σk(ak), ak ∈ A, where σi ∈ S. Let w0 = w
and wi+1 be the unique antecedent of wi under σi for i ≥ 0. If |wi| > 0, then
|wi+1| < |wi|, then there exists n such that wn = ε.

Definition 4 (Age). The smallest of those integers n is called the age of w
and is noted age(w).

Thus, w1 is the antecedent of w0 under σ0 and w2 is the antecedent of w1 under
σ1. If n = age(w), wn is the antecedent of wn−1 under σn−1 and the extension
type E(wn) of wn = ε depends on σn.

Definition 5 (History, life). We say that the finite sequence σ0σ1 · · · σn is the
history and the sequence (wi)0≤i≤n is the life of the bispecial word w.

w = w0 w1 w2 · · · wk wk+1 · · · wn−1 wn = ε

σ0 σ1 σk
σn−1 σn

Fig. 5. Life and history of a factor w

Lemma 8. Let n ≥ 0 be an integer. Let Bn be the set of all bispecial factors of
age n of limn→∞ σ0σ1 · · · σn(an), an ∈ A, where σi ∈ S. Then Card Bn ≤ 2.

The life (wi)0≤i≤n of bispecial factors starts as an empty word at i = n. The
word wi for i < n is the concatenation of one or two letters and σi(wi+1). These
letters depend on the extension type E(wi+1) and recursively on the extension
type E(wn) of wn = ε. Thus, it is important to understand properly what are
the possible extension types of the empty word under the application of Arnoux-
Rauzy and Poincaré substitutions. Below, the extension type E(ε) of the empty
word considered as a bispecial factor in the language of σ(u) is denoted by
Eσ(u)(ε).

Lemma 9. Let u ∈ A∗ ∪ AN be such that all letters of A appear as proper
factors of u. Considered as a bispecial factor of the language of the word αk(u),
the empty word ε is ordinary. Considered as a bispecial factor of the language of
the word πjk(u), the empty word ε is neutral but not ordinary:

Eαk(u)(ε) =

i j k
i ×
j ×
k × × ×

and Eπjk(u)(ε) =

i j k
i ×
j ×
k × × ×

.

80 V. Berthé and S. Labbé

In the next lemma, we describe exactly what are the bispecial factors associ-
ated with each possible history.

Lemma 10. Let u = limn→∞ σ0σ1 · · · σn(an). Let w be a bispecial factor of u
such that n = age(w) and limm→∞ σn+1σn+2 · · · σm(am) contains all letters of
A as proper factors. Let z be the other bispecial factor of the same age as w if it
exists. Then the history σ0σ1 · · · σn of w determine the left valence, multiplicity
and extension type of w and z according to the following table.

σ0σ1 · · · σn ∈ d−(w) m(w) ordinary d−(z) m(z) ordinary
S∗

αSα 3 0 yes
S∗

αSπ 3 0 no
S∗ πjk S∗

α{αk} 2 0 yes
S∗ πjk S∗

α{αi, αj} 2 0 yes 2 0 yes
S∗ πjk S∗

α{πji, πki, πij , πkj} 2 0 yes 2 0 yes
S∗ πjk S∗

α{πik, πjk} 2 +1 no 2 −1 no

Strong and weak bispecial words thus appear in pairs under the application
of Poincaré substitutions each time πjk is followed by πjk or πik for {i, j, k} =
{1, 2, 3} with possibly some Arnoux-Rauzy substitutions αk, k ∈ {1, 2, 3}, in
between.

4 Proof of Theorem 1

Restricted to the language of the automaton G, illustrated in Figure 2, the his-
tory of a strong or weak bispecial factor necessarily contains Arnoux-Rauzy
substitutions.

Lemma 11. Let u = limn→∞ σ0σ1 · · · σn(an). Let w be a bispecial factor of u
such that n = age(w) and limm→∞ σn+1σn+2 · · · σm(am) contains all letters of
A as proper factors. If w is weak or strong and the history of w is in the regular
language σ0σ1 · · · σn ∈ L(G), then

σ0σ1 · · · σn ∈ S∗ πjk{αj}∗ αi S∗
α {πik, πjk}

for some {i, j, k} = {1, 2, 3}.

Lemma 12. Let z+ and z− be two bispecial factors of a word u of the same age
age(z+) = age(z−). Suppose that z− is weak and z+ is strong. Then |z+| < |z−|.

Lemma 13. Let z− and w+ be two bispecial factors of a word u such that z−

is weak and w+ is strong. If age(z−) < age(w+), then |z−| < |w+|.

Lemma 14. Let z−, w+ and w− be bispecial factors of a word u such that z−

is weak, w+ is strong and w− is weak. If age(z−) < age(w+) = age(w−), then
|w+| − |z−| > |w−| − |w+|.

Convergence and Factor Complexity 81

z− z−1 z−2 · · · z−h

zh+1 zh+2 · · · zm = ε

z+hz+

weak

strong

neutral
σ0 σ1

σh

σh+1 σm
σh

σ0σ1 · · ·σh−1

w+ w+
1 w+

2 · · · w+
h w+

h+1 w+
h+2 · · · w+

w
+1 w
+2 · · · wn = ε

w−

w−

σ0 σ1 σh
σh+1

σ
 σ
+1 σn

σ

σ0σ1 · · ·σ
−1

strong

weak
neutral

Fig. 6. Lifes of two pairs of strong and weak bispecial factors: z+, z− and w+, w−

We now have gathered all the elements for giving a proof of Theorem 1. We
show that strong and weak bispecial words alternate when the length increases
and make use of Lemma 1 (see Figure 6). Note that the notion of alternance was
used to prove Theorem 4.11.2 in [CN10, p. 238].

Proof (of Theorem 1). Note first that the assumption on x, i.e., x is totally
irrational, is required for applying Lemma 11 for bispecial factors of all age.
The set of bispecial factors of length n contains at most one weak or strong
bispecial factor. Indeed, suppose on the contrary that it contains two of them: w
and z. They cannot have the same age according to Lemma 12 since this would
otherwise imply |w| �= |z|. Also, if one is older, e.g. age(w) > age(z), then |w| >
|z| from Lemma 13. Then b(n) ∈ {−1, 0, +1} according to Theorem 3. Finally,
it remains to prove that the assumptions of Lemma 1 are satisfied. The first
non-zero value of b(n) is +1 because strong and weak bispecial factors come in
pairs and the strong one is smaller than the weak one from Lemma 12. Moreover,
non-zero values are alternating. Indeed, let z+ and w+ be two strong bispecial
factors such that age(w+) > age(z+). Let z− be the weak bispecial factor such
that age(z−) = age(z+). From Lemma 12 and Lemma 13, |z+| < |z−| < |w+|.
Hence, there is always a −1 between two +1 in the sequence (b(n))n≥0. This
shows that p(n + 1) − p(n) ∈ {2, 3} (Lemma 1), so that p(n) ≤ 3n + 1 for
n ≥ 0. Moreover, p(n) < 3n for each n > 0 since p(1) = 3 and p(2) = 5. We
can show even more. From Lemma 14, the range of consecutive values of 2 for
p(n + 1) − p(n) is larger than the range of consecutive values of 3 which follows
immediately. From this we conclude that lim supn→∞

p(n)
n ≤ 5

2 .

5 Concluding Remarks

The restriction to the regular language L(G) is clearly important; there exist
examples of S-adic words constructed with the alphabet of substitutions S for
which the upper bound of 3n is false otherwise. Moreover, a quadratic complexity
is even also achievable (fixed point of π23π13). Hence, this gives some more insight

82 V. Berthé and S. Labbé

on a statement of the S-adic conjecture which is to find conditions for which
S-adic sequences have a linear complexity (see e.g. [DLR13, Ler12]).

Factor complexity of Poincaré and Arnoux-Rauzy substitutions can be de-
scribed exactly by considering left and right extensions of length one. It is not
always the case, and Brun substitutions seems to be an example for which exten-
sions of length longer than 1 are necessary to describe bispecial factors. Recently,
Klouda [Klo12] described bispecial factors in fixed point of morphisms where ex-
tensions of length longer than one were considered. Extending this work to S-adic
words deserves further research.

Balance of the Poincaré and Arnoux-Rauzy S-adic system also has nice
properties and its study will be part of a extended version of this article.

References
[AR91] Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité

2n+1. Bull. Soc. Math. France 119(2), 199–215 (1991)
[BD13] Berthé, V., Delecroix, V.: Beyond substitutive dynamical systems: s-adic

expansions (preprint, 2013)
[BL11] Berthé, V., Labbé, S.: Uniformly balanced words with linear complexity and

prescribed letter frequencies. In: Proc. 8th Int. Conf. on Words. EPTCS,
vol. 63, pp. 44–52. Open Publishing Association (2011)

[Bos85] Boshernitzan, M.: A unique ergodicity of minimal symbolic flows with linear
block growth. J. Analyse Math. 44, 77–96 (1984/1985)

[Cas97] Cassaigne, J.: Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon
Stevin 4(1), 67–88 (1997); Journées Montoises (Mons, 1994)

[CN10] Cassaigne, J., Nicolas, F.: Factor complexity. In: Combinatorics, Automata
and Number Theory. Encyclopedia Math. Appl., vol. 135, pp. 163–247.
Cambridge Univ. Press, Cambridge (2010)

[DFG+12] Dasaratha, K., Flapan, L., Garrity, T., Lee, C., Mihaila, C., Neumann-
Chun, N., Peluse, S., Stroffregen, M.: Cubic irrationals and periodicity via a
family of multi-dimensional continued fraction algorithms. arXiv:1208.4244
(2012)

[DLR13] Durand, F., Leroy, J., Richomme, G.: Do the Properties of an S-adic Rep-
resentation Determine Factor Complexity? J. of Int. Seq. 16 (2013)

[FM10] Ferenczi, S., Monteil, T.: Infinite words with uniform frequencies, and in-
variant measures. In: Combinatorics, Automata and Number Theory. En-
cycl. Math. Appl., vol. 135, pp. 373–409. Cambridge Univ. Press (2010)

[Gar01] Garrity, T.: On periodic sequences for algebraic numbers. J. Number The-
ory 88(1), 86–103 (2001)

[Klo12] Klouda, K.: Bispecial factors in circular non-pushy D0L languages. Theoret.
Comput. Sci. 445, 63–74 (2012)

[Lab12] Labbé, S.: Structure des pavages, droites discèrtes 3D et combinatoire des
mots. PhD thesis, Université du Québec à Montréal (May 2012)

[Ler12] Leroy, J.: Some improvements of the S-adic conjecture. Adv. in Appl.
Math. 48(1), 79–98 (2012)

[Nog95] Nogueira, A.: The three-dimensional Poincaré continued fraction algorithm.
Israel J. Math. 90(1-3), 373–401 (1995)

[Sch00] Schweiger, F.: Multidimensional continued fractions. Oxford Science Pub-
lications. Oxford University Press, Oxford (2000)

The Lexicographic Cross-Section

of the Plactic Monoid Is Regular

Christian Choffrut1 and Robert Mercaş2,�

1 L.I.A.F.A., Université Paris 7, 2 Pl. Jussieu, 75 251 Paris Cedex, France
Christian.Choffrut@liafa.univ-paris-diderot.fr

2 Christian-Albrechts-Universität zu Kiel, Institut für Informatik,
D-24098 Kiel, Germany

rgm@informatik.uni-kiel.de

Abstract. The plactic monoid is the quotient of the free monoid by the
congruence generated by Knuth’s well-celebrated rules. It is well-known
that the set of Young tableaux is a cross-section of this congruence which
happens to be regular. The main result of this work shows that the set of
alphabetically minimal elements in the congruence classes is also regular.
We give a full combinatorial characterization of these minimal elements
and show that constructing them is as fast as constructing a tableau.

1 Introduction

Young tableaux were introduced in 1900 as combinatorial objects for studying
the linear representations of the symmetric group. They can be thought of as
Ferrers diagrams filled with the n first nonnegative integers subject to ordering
properties along the rows and columns. Allowing arbitrary repetitions of the
same integer lead to more general objects, the so-called semistandard Young
tableaux. Knuth considered them as a possible data structure for sorting but
showed that they perform relatively poorly, cf. [10, paragraph 5.1.4.]. Here, we
view Young tableaux as representatives of elements of a monoid, called the plac-
tic monoid by Lascoux and Schützenberger. The purpose of this work is to study
the probably most natural cross-section of this monoid, namely the set of lexico-
graphically minimal elements of each class and to show that this set is regular,
i.e., recognizable by a finite automaton.

When a monoid is specified by generators and relators, it is desirable, but
not always possible, to have at one’s disposal a regular set of representatives. A
natural way of selecting a particular element in a congruence class is to pick up
the lexicographically minimal element when it exists which is guaranteed when
the classes are finite. Examples of such monoids are the trace monoids defined
as the quotient of the free monoid by commutation relations of some pairs of the
generators, see the classical textbooks [5,11]. For these monoids, there exist two
known normal forms of congruence classes. The first one is the Cartier-Foata
normal form consisting of the products of successive ordered subalphabets that

� Supported by the Alexander von Humboldt Foundation and DFG grant 582014.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 83–94, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

84 C. Choffrut and R. Mercaş

are allowed to occur in the word, [3]. A second normal form is simply defined as
the lexicographically minimal element of the class for an arbitrary ordering of
the alphabets, [1]. In both cases, the set of representatives is regular. A stronger
result would be that all regular subsets of the monoid, not only the monoid itself,
have a regular cross-section, possibly composed of the minimal representatives. It
can be shown that no regular cross-section exists for general trace monoids, which
is equivalent to saying that regular subsets of trace monoids are not unambiguous
in general.

Extensions of trace monoids considering partial commutations depending on
the context were studied in [2]. This paper studies the plactic monoid generated
by two elements and, shows that for all regular subsets of this monoid there
exists a regular cross-section. In [4] the authors consider “half” of the rules of
the plactic monoid and study the closure properties of the regular subsets which
possess a regular cross-section.

In the most favorable case, not only the monoid has a regular set of represen-
tatives but also the multiplication by a generator, viewed as a binary relation,
is recognized by a two tape finite automaton as developed in the theory of
automatic groups, [8]. More generally, there is a vast literature on so-called au-
tomatic structures consisting of encoding the elements of an algebraic structure
by words, and its operations by relations between words, in such a way that all
these objects are recognizable by finite automata.

We briefly outline our contribution. In the preliminaries we recall all the ma-
terial necessary for a good understanding of the results and we put the emphasis
on the basic notions of plactic monoid, Young tableaux and so forth, for which
we assume the reader has little familiarity. As much as possible we rely not only
on formal definitions but also on illustrations through examples since the objects
are of geometric nature.

The main result concerns the characterization of the lexicographically mini-
mal words in a congruence class via the notion of P-sequence, see paragraph 3.1.
This allows us to draw interesting conclusions such as the fact that the set of
lexicographically minimal representatives is regular. As a byproduct we show
a property “à la Green”: the lexicographically minimal representative and the
equivalent Young tableau have the same length distribution of their maximal
columns. We also give an upper bound on the complexity for effectively comput-
ing this representative. In the last part we show via simple observations why the
regularity of the lexicographic cross-section is remarkable: the plactic monoid
is not “regularity” friendly. We end the paper with the solution of a problem
concerning the relation of conjugacy as an illustration of the type of issues that
we think still deserves investigation.

2 Preliminaries

We assume some familiarity of the reader with the first part of these preliminaries
which deals with words and free monoids. We try to be more thoroughful in the
second part and refer, among the vast literature, to [10] and [12,13] for a more
detailed exposition of the theory of the Young tableaux and the plactic monoid.

The Lexicographic Cross-Section of the Plactic Monoid Is Regular 85

2.1 Words

Throughout this paper, we consider a finite alphabet Σ consisting of the first
nonzero positive integers ordered in the usual way. The elements of the free
monoid Σ∗ generated by the alphabet are words, also called strings. The length
of a word u ∈ Σ∗ is denoted by |u|. The lexicographic ordering on Σ∗ is denoted
by <lex and is defined by the condition u <lex v if u is a prefix of v or if u = xau′,
v = xbv′ and a < b. Given a string u ∈ Σ∗, we denote by H(u) and T(u)
respectively its first and last element (H for head and T for tail). E.g., H(2615) =
2 and T(2615) = 5. A (concatenation) product of n words u1, u2, . . . , un is
simply written u = u1u2 · · ·un. This also holds when the words ui for 1 ≤ i ≤ n
are themselves reduced to a single letter in which case n = |u|. This notation
is a potential source of ambiguity which should be solved by the context. When
we want to decompose each ui into its letters, we use a double index: ui =
ui,1ui,2 · · ·ui,ni , where ni = |ui|.

We are interested in two special types of words. A column is a word with
strictly decreasing letters; a row is a word with nondecreasing letters (the choice
of these terms is standard and justified by the notion of Young tableau, see
below). Clearly, every word can be uniquely factored as a product of columns of
maximal length (respectively as a product of rows of maximal length). E.g., with
314521 we have respectively three columns 31/4/521 and four rows 3/145/2/1.

Since this work is mainly interested in subsets of words, and more precisely
in subsets which are computationally simple, we recall that X ⊆ Σ∗ is regular
(or recognizable) if it can be recognized by a finite automaton. By Kleene the-
orem this is equivalent to saying that the subset is rational, i.e., that it can be
constructed from the single letters by performing finitely many times one of the
three operations of set union, set concatenation and Kleene star.

2.2 The Plactic Monoid

The plactic monoid is the quotient of the free monoid Σ∗ by the congruence
generated by the following relations, known as Knuth’s rules

bac ≡ bca where a < b ≤ c,
acb ≡ cab where a ≤ b < c

The simplicity of the rules hides the complexity of the resulting monoid. In
particular, it is clearly neither right nor left cancellative. Also, we do not know
of any Knuth-Bendix method which would enable us to test equality of two
elements of the monoid. Such a verification almost necessarily goes through the
construction of the Young tableaux associated with the elements.

We recall the famous bump rules which are immediate application of the
Knuth relations and on which the construction of the Young tableaux is based.

Lemma 1 (Bump rule for rows). Let u ∈ Σ∗ be a row and let a < T(u).
Then ua ≡ bxay where xby = u and b is the leftmost element greater than a. ��
Example 2. 122345 · 2 ≡ 3 · 122245.
There is a similar rule for columns.

86 C. Choffrut and R. Mercaş

Lemma 3 (Bump rule for columns). Let u ∈ Σ∗ be a column and let a ≤
H(u). Then au ≡ xayb where xby = u and b is the least element greater than or
equal to a. ��

Example 4. 3 · 54321 ≡ 54321 · 3, 2 · 5431 ≡ 5421 · 3 and 5 · 54321 ≡ 54321 · 5.

2.3 Young Tableaux

The definition of a Young tableau requires the following relation.

Definition 5. A column u dominates a column v, written u � v, if |u| ≥ |v|
and if u|u|−|v|+i ≤ vi for all i = 1, 2, . . . , |v|.

This relation is clearly an ordering on the set of columns. There exists a
graphical representation of a nonincreasing sequence of columns, namely v1 �
v2 � . . . � vp, called a Young tableau. Indeed, write each vj vertically on the
first quadrant of the discrete plane with the tail on the horizontal axis with each
row left justified. Then each row of the tableau is a sequence of nondecreasing
letters.

Example 6. A Young tableau
5
3 4 5
1 2 4 5

We recall Schensted’s algorithm for associating a tableau Y (u) with a word
u. The tableau is constructed by reading off from left to right the letters of the
word one at a time and by inserting them in the tableau under construction.
Given the tableau for u, it suffices to show how to modify it in order to get the
tableau for ua, a ∈ Σ. If a is greater than or equal to the rightmost letter of
the bottom row, just append it to the right of this row. Otherwise, let b denote
the element of the bottom row which is bumped out by a, as explained above.
Substitute a for b and repeat the procedure by inserting b in the second lowest
row of the Young tableau by applying the same rule, and so forth until reaching
the top row, if necessary.

2 5
1 2 3 ← 2
insert 2
bump out 3

2 5 ← 3
1 2 2
insert 3
bump out 5

← 5
2 3
1 2 2
insert 5

5
2 3
1 2 2
done

Due to the construction rules, it is clear that the tableau is congruent to
the concatenation of its columns from left to right. It is also congruent to the
concatenation of its rows from top to bottom.

In the sequel we use the same term “Young tableau” indifferently to denote the
above diagram or the �-sequence of columns, the context ensuring the notation
is not ambiguous.

The Lexicographic Cross-Section of the Plactic Monoid Is Regular 87

Dual to Young tableaux are contretableaux. The contretableau occupies the
southwest quadrant of the plane. The rows are nonincreasing from right to left
and the columns are strictly decreasing from top to bottom. The word is read
off from right to left and the insertion rules are dual to those of the tableaux.

Example 7. A Young tableau and its equivalent contretableau

5
4 5
3 3 4
1 2 2

3 5 5
1 4 4
2 3
2

The following technical result will be used in the proof of the main theorem.

Proposition 8. Let u and v be two columns defining a Young tableau, i.e.,
u � v Let w be a column such that H(w) < T(u). Then uvw ≡ uwv.

Proof. Observe that it suffices to prove it in the case where w is a single letter
a. The product uv is a Young tableau. Inserting a according to Schensted’s rule
yields the Young tableau uav. ��

2.4 Cross-Section

We recall that a cross-section of an equivalence relation is a set consisting of
exactly one element in each class. It is known that Young tableaux, as well as
contretableaux, define a cross-section of the plactic monoid, cf. [12, Thm 5.2.5.].

The purpose of this work is to prove that the cross-section of the lexico-
graphically minimal representatives, abbreviated as lexicographic cross-section,
is regular. For example it is an easy exercise to verify that 1∗(21)∗2∗ is the
lexicographic cross-section over the two letter alphabet. A bit more tedious
is to verify that over a three letter alphabet the lexicographic cross-section is
1∗(21)∗(2∗ + (31)∗)(321)∗(32)∗3∗. The case of four letters can still be computed
by hand and is again regular which led us to conjecture that this is a general re-
sult, but computing the five letter case is rather tedious. On the contrary, the set
of lexicographically maximal representatives is not regular from the two-letter
plactic monoid on, since it is the set {2n1m2p | 0 ≤ n < m if p
= 0}.

Clearly the set of Young tableaux provides us with the regular cross-section
which is the finite union of all subsets of the form

v∗1v
∗
2 · · · v∗p with v1 � v2 � . . . � vp

This is a special case of the rational cross-section with entropy equal to 0, see [2,
Proposition 8]. Actually, this subset lies very low in the hierarchy of rational
subsets since it is local in the sense that the current state of any input depends
on the last |Σ| + 1 letters. Still we believe it is challenging to ask whether the
lexicographic cross-section is also regular.

88 C. Choffrut and R. Mercaş

3 Minimal Representatives

3.1 A Combinatorial Property for Minimal Representatives

The following relation on the set of columns is needed for determining the lex-
icographically minimal representatives. We write u � v whenever the following
conditions hold

– for all i = 1, 2, . . . ,min{|u|, |v|}, the condition ui ≤ vi holds;
– furthermore, if |u| < |v|, then u|u| ≤ v|u|+1 holds.

The relation � is not transitive. Indeed, we have 432 � 43 and 43 � 6541
but the relation 432� 6541 does not hold. However the transitive closure of the
relation is an ordering.

Proposition 9. The transitive closure of � is antisymmetric.

Proof. We prove the result by contradiction. Assume there exists an element x
and a sequence

z0 � z1 � . . .� zp (1)

with z0 = zp = x, such that for some 0 < i < p we have zi
= x. Furthermore,
we assume that p is minimal.

Let 0 < μ ≤ p be the greatest integer i such that |zj | ≥ |zi|, for all 0 ≤ j ≤ p. If
μ = p, then for all y = zi and for all k with 0 ≤ k ≤ |x|, by the definition of �, we
have xk ≤ yk ≤ xk and, thus, x is a prefix of y. Since x has a unique occurrence
in the sequence, because of the minimality of its length, x is in particular a
proper prefix of z1, which violates the condition z0 � z1. So we must assume
μ < p. Set |zμ| = m. Then, for all 1 ≤ i ≤ m, we have

xi ≤ zμ,i ≤ zμ+1,i ≤ xi,

thus zμ is a proper prefix of zμ+1, a contradiction of the relation zμ � zμ+1. ��

The characterization of the lexicographically minimal representatives is based
on the following notion.

Definition 10. A sequence of columns u1, u2, . . . , un is a P-sequence if it sat-
isfies the condition

ui � uj, for all 1 ≤ i < j ≤ n. (2)

The following technical result is crucial in establishing Theorem 12. The proof
is routine and consists in applying inductively Proposition 8.

Lemma 11. Let u1, u2, . . . , un be a P-sequence such that |u1| ≥ |ui| for all
i = 2, . . . , n. Then there exists a sequence of columns w1, w2, . . . , wn satisfying
the following conditions

(1) |w1| = |u2|, |w2| = |u3|, . . . , |wn−1| = |un|, |wn| = |u1|
(2) for all 1 ≤ k ≤ p we have wn,k = max{ui,k | i = 1, 2, . . . , n}
(3) for all columns x such that u1x is still a column we have

u1xu2 · · ·un ≡ w1w2 · · ·wnx ��

The Lexicographic Cross-Section of the Plactic Monoid Is Regular 89

6 7 8 9 10 6 7 8 9 10 6 7 8 9 10 6 7 8 9 10 6 7 8 9 10
5 6 7 9 5 6 7 9 5 6 7 9 5 6 7 9 5 6 7 9

4 6 8 −−→ 4 6 8 −→ 4 6 8 −−→ 4 6 8 −→ 4 6 8
3 6 3 6 3 6 3 6 3 6
1 1 1 1 1

Fig. 1. An illustration of Lemma 11

Theorem 12. Let u = u1u2 · · ·un be a factorization of maximal columns. Then,
u is lexicographically minimal in its congruence class if and only if the sequence
u1, u2, . . . , un is a P-sequence.

Proof. That the condition is necessary in the case n = 2 is a consequence of the
following.

Lemma 13. Let u, v be two columns such that uv is not a column.

(i) if v = v′w such that |u| = |v′|, u� v′ and H(w) < T(u), then uv ≡ uwv′.

(ii) if u = u′xby and v = v′a such that |u′| = |v′|, u′� v′ and b ≤ a < T(x), then
uv ≡ u′bv′xay and u′bv′xay � uv.

Proof. Indeed, the first assertion is a consequence of Proposition 8. Concerning
the second assertion we have

u′xbyv′a ≡ u′v′xbya ≡ u′v′bxay ≡ u′bv′xay

The first and third equivalences are obtained as an application of Proposition 8.
The second one is an application of the bump rule on the column xby. ��

We now return to the Theorem and prove the necessity of the condition. Let
u be minimal in its class and assume by contradiction, that there exist i, j such
that ui
� uj with i < j and j−i minimal. By previous Lemma we have j > i+1.

We first observe that all columns uk with i < k < j have length less than
min{|ui|, |uj |}. Indeed, consider first the case where there exists a minimal po-
sition p such that ui,p > uj,p, implying in particular p ≤ min{|ui|, |uj |}. Let uk

with i < k < j be a column of length at least p. Then we have uk,p ≥ ui,p > uj,p,
i.e., uk
� uj , contradicting the minimality of j − i. In the second case we have
uj,p+1 < ui,p, where p = |ui|. Let uk with i < k < j be a column with length
at least p. Since uk � uj , we have either uk,p+1 ≤ uj,p+1, thus uk,p+1 < ui,p, or
uk,p ≤ uj,p+1, thus uk,p < ui,p whenever |uk| = p, a contradiction in both cases
with the minimality of j − i.

Now we shall consider the two causes for the condition ui
� uj and we will
show in both cases that it is possible to replace the factor uiui+1 · · ·uj by a
factor of the same length but lexicographically smaller.

90 C. Choffrut and R. Mercaş

First we assume that there exists a minimal position p such that ui,p > uj,p.
We set ui = u′

ix, where u
′
i is the prefix of ui of length p−1. Applying Lemma 11

there exists a sequence of columns w1, w2, . . . , wn such that

u′
iyui+1 · · ·uj−1 ≡ wiwi+1 · · ·wj−1y (3)

holds for all columns y such that u′
iy is still a column. We apply it first with

y = x. Because of condition (2) of the lemma the words wj−1x and uj fail to
satisfy wj−1x� uj, since p is the least integer such that wj−1x and uj disagree
on the letter on position p. Following Lemma 13 we have wj−1xuj ≡ wj−1zu

′
j,

where H(z) < H(x). Then we have

u′
ixui+1 · · ·uj−1uj ≡ wiwi+1 · · ·wj−1xuj

≡ wiwi+1 · · ·wj−1zu
′
j ≡ u′

izui+1 · · ·uj−1uju
′
j

Because u′
iz <lex u

′
ix we obtain a lexicographically smaller representative.

The second possibility is when |ui| = p, ui,
 ≤ uj,
 for all 1 ≤ � ≤ p and
uj,p+1 < ui,p. We still have condition (3) with u′

i = ui. Define uj = u′
ju

′′
j , where

u′
j is the prefix of uj of length p, and observe that by Lemma 13 the condition

wj−1 � u′
j holds. This, via Proposition 8 implies wj−1uj ≡ wj−1u

′′
ju

′
j . Therefore

uiui+1 · · ·uj−1uj ≡ wiwi+1 · · ·wj−1uj

≡ wiwi+1 · · ·wj−1u
′′
j u

′
j ≡ uiu

′′
j ui+1 · · ·uj−1u

′
j

Again uiu
′′
j <lex uiui+1 and we obtain a lexicographically smaller representative.

In order to prove the sufficiency of the property, we need to define the pack-
ing operation which associates with every P-sequence a unique equivalent con-
tretableau. We consider a P-sequence represented as a sequence of columns
u1 � u2 � . . . � un. The reader is encouraged to have the example below in
mind. The contretableau is obtained by pushing all elements of the columns to
the right, along the same row, in order to leave no hole between consecutive
elements, in other words to right justify all rows. Then the sufficiency will follow
from the fact that every sequence can be packed into an equivalent contretableau
and that this correspondence is injective.

4 5 5 7 8 4 5 5 7 8
3 5 6 −→ 3 5 6

2 5 −−→ 2 5

1 −−−−→ 1

Fig. 2. A P-sequence and its equivalent contretableau obtained by packing

We first prove that packing yields a contretableau. From the definition of
the P-sequence, all rows are nondecreasing and their length is not increasing
from top to bottom. Now, denote by v1, v2, . . . , vn the n sequences obtained by
packing. Fix one of them, say vi, and consider two entries, vi,
 and vi,k with
� < k. Then there exists α ≤ β ≤ i such that

vi,
 = uβ,
, vi,k = uα,k

The Lexicographic Cross-Section of the Plactic Monoid Is Regular 91

Now we have uβ,
 ≥ uα,
 > uα,k and therefore vi,
 > vi,k, which proves that the
vi’s are columns and the resulting diagram a contretableau.

Given a contretableau, there is a unique way to “unpack” it. Indeed, we con-
struct the rows of the P-sequence one at a time from top to bottom. Assume
the r first rows are processed, and consider the r + 1-th row. Then the leftmost
element of the contretableau, say a, can only go under the leftmost element of
the P-sequence under construction, which is greater than a. Such an element
exists because in the contretableau a is below a greater element. The second
leftmost element of the contretableau, say b, goes below the leftmost element of
the P-sequence greater than b, and so forth.

2 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4
1 2 ≡ 1 2 ≡ 1 2 ≡ 1 2 ≡ 1 2
1 1 1 1 1

Fig. 3. Packing a P-sequence into a congruent contretableau

It remains to prove that the P-sequence and the contretableau are congruent.
However, this is obtained as a repetitive application of Proposition 8, and the
proof is completed. ��

Corollary 14. The minimal representative of a class has the same column
length distribution as its Young tableau.

Proof. Indeed, Young tableaux and contretableaux have the same column length
distribution by Greene’s invariant Theorem, cf. [9] (this theorem asserts that
the sequence, over k, of the maximum sums of lengths of k disjoint columns,
is an invariant of the congruence class). The above construction shows
that the minimal representative has the same column distribution as its
contretableau. ��

3.2 Complexity Issues

Here we consider the effective construction of the minimal representative as a
consequence of Theorem 12.

A naive method to obtain the minimal representative in the class of a Young
tableau would be to apply the inverse operation of inserting an element in a
tableau. More precisely, start from the element in one of the corners of a Young
tableau. In Example 6 there are 3 corners all labeled by 5. From one chosen
corner on, process the columns from right to left. Substitute the element, say
a, on the corner for the element of the column to its left which is the highest
element less than or equal to a. If b is this element repeat the process with b
instead of a, and next column. This results in pushing elements from column to
column, and expelling an element to the left of the Young tableau. This element
is a possible first letter of a word in the equivalence class.

92 C. Choffrut and R. Mercaş

3 4 5
(5) 1 2 4 5

5
4 5

(3) 1 2 4 5

5
4 5 5

(3) 1 2 4

Fig. 4. Extracting a possible first letter from the Young tableau of Example 6

In Example 6, starting from the three corners, from top to bottom, yields 3
possible first letters, namely 5, 3 and 3. The first decomposition is ruled out. At
this point we know for sure that the minimal representative starts with the letter
3. However, canceling this letter leads to two nonequivalent Young tableaux and
it is not clear whether to compute the next letter from the second or from the
third decomposition.

Proposition 15. Given a word w of length n, there exists an O(n
3
2) algorithm

which finds the lexicographically minimal representative equivalent to w.

Proof. Given a word w, construct its contretableau. If n is the length of w, its
construction as sketched in paragraph 2.3 has complexity O(n

3
2). The unpacking

operation is similar to a merge of k arrays, where each array is a row of the
contretableau. This costs again O(n) operations. ��

3.3 Application to the Cross-Section

Consequently we get the main result.

Theorem 16. The set of alphabetically minimal words of the plactic congruence
over an arbitrary finite alphabet is regular.

Proof. An informal description of the automaton will do. The set of columns
define a (suffix) code. Read the word and perform its decomposition into maximal
columns. Record all different columns encountered in the order of appearance.
If a next column, say u is not the last column recorded, or if it fails to satisfy
the condition v � u with all columns v recorded, stop. Otherwise, put u in the
record. If the word can be read off entirely, it is minimal. ��

4 Final Remarks

The purpose of this last section is twofold. The fact that the lexicographic cross-
section is regular, is remarkable to the extent that most possible related con-
structions cannot be recognized by finite memory machines. The second remark
concerns an interesting property of yet another classical relation and may be
viewed as an invitation to investigate the field further.

The Lexicographic Cross-Section of the Plactic Monoid Is Regular 93

4.1 Natural Binary Relations on the Plactic Monoid

None of the following natural binary relations is rational, in the sense that there
is no two-tape finite automata recognizing them.

Equivalence {(x, y) ∈ Σ∗ ×Σ∗ | x ≡ y}

Minimization {(x, y) ∈ Σ∗ × Σ∗ | x ≡ y and y is lexicographically minimal},

Multiplication for some a ∈ Σ,

{(x, y) ∈ Σ∗ ×Σ∗ | xa ≡ y and x, y are lexicographically minimal}

The proof of these claims is a simple exercise if one has in mind Eilenberg’s
result on length preserving relations that are recognized by two-tape automata,
see [7, Thm IX. 6.3].

4.2 The Relation of Conjugacy

We recall that two elements x, y of a monoid are conjugate, if there exists an
element z such that xz = yz holds, written as C(x, y), and that they are trans-
posed, if there exist u, v such that x = uv and y = vu, written as T (x, y). It
is a simple exercise to verify that the former relation is reflexive and transitive,
while the latter is reflexive and symmetric. For free monoids, these relations co-
incide, see [14]. This is no longer the case for general monoids. The only claim
that can be made in all generality is that the transitive closure of the relation
of transposition is always included in the conjugacy relation. In the case of the
trace monoids equality C = T k holds where k is the diameter of the graph of
noncommutations, [6]. In the present case it is still true that the relation of con-
jugacy is the transitive closure of the relation of transposition, but we are able
to bound the number of compositions by a parameter depending on the size of
the alphabet. Consequently, the conjugacy relation is an equivalence relation.

Theorem 17. The equality C = T2(k−1) holds where k = |Σ|.

Proof. We prove a stronger result which implies the theorem. Let p be the num-
ber of different symbols of an element x of the plactic monoid. We show that
(x, y) ∈ Tp where y is the commutative image of x, i.e., y = 1|x|12|x|2 · · · k|x|k .

Indeed, let 1 ≤ a1 < . . . < ap ≤ k be the ordered set of all the different
letters occurring in x. Let λ1λ2 · · ·λr be the concatenation of the rows of its
Young tableau from top to bottom. Clearly we may assume that r > 1 since
otherwise we are done. All |x|1 occurrences of a1 are the first letters of row λr .
Consider the word w = λrλ1λ2 · · ·λr−1 which is a representative of a conjugate.
By Schensted’s rules, all |x|1 occurrences of a1 are followed by all |x|2 occurrences
of a2, and these are the first |x|1 + |x|2 letters of the bottom row of the Young
tableau associated with w. It suffices to carry on this process of putting the last
row to the left of the remaining rows at most p − 1 times in order to get the
result. ��

94 C. Choffrut and R. Mercaş

References

1. Anisimov, A.V., Knuth, D.E.: Inhomogeneous sorting. International Journal of
Computer and Information Sciences 8(4), 255–260 (1979)

2. Arnold, A., Kanta, M., Krob, D.: Recognizable subsets of the two letter plactic
monoid. Information Processing Letters 64, 53–59 (1997)

3. Cartier, P., Foata, D.: Problèmes combinatoires de commutation et réarrangements.
Lecture Notes in Mathematics, vol. 85 (1969)

4. Choffrut, C., Mercaş, R.: Contextual partial commutations. Discrete Mathematics
and Theoretical Computer Science 12(4), 59–72 (2010)

5. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing Co.,
Singapore (1995)

6. Duboc, C.: On some equations in free partially commutative monoids. Theoretical
Computer Science 46(2-3), 159–174 (1986)

7. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press (1974)
8. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston,

W.P.: Word processing in groups. Jones and Bartlett (1992)
9. Greene, C.: An extension of Schensted’s Theorem. Advances in Mathematics 14(2),

254–265 (1974)
10. Knuth, D.E.: The art of computer programming, vol. 3. Addison Wesley (1973)
11. Lallement, G.: Semigroups and Combinatorial Applications. John Wiley & Sons

(1979)
12. Lascoux, A., Leclerc, B., Thibon, J.-Y.: The plactic monoid. In: Lothaire, M.

(ed.) Algebraic Combinatorics on Words, pp. 144–173. Cambridge University Press
(2002)

13. Lascoux, A., Schützenberger, M.-P.: Le monöıde plaxique. In: de Luca, A. (ed.)
Non-commutative Structures in Algebra and Geometric Combinatorics, vol. 109,
pp. 129–156. C.N.R. (1981)

14. Lentin, A., Schützenberger, M.-P.: A combinatorial problem in the theory of free
monoids. In: Bose, R.C., Bowlings, T.E. (eds.) Combinatorial Mathematics, pp.
112–144. North Carolina Press, Chapel Hill (1967)

Suffix Conjugates for a Class of Morphic Subshifts

(Extended Abstract)

James D. Currie, Narad Rampersad, and Kalle Saari

Department of Mathematics and Statistics
University of Winnipeg
515 Portage Avenue

Winnipeg, MB R3B 2E9
Canada

j.currie@uwinnipeg.ca, {narad.rampersad,kasaar2}@gmail.com

Abstract. Let A be a finite alphabet and f : A∗ → A∗ a morphism with
an iterative fixed point fω(α), where α ∈ A. Consider the subshift (X , T),
where X is the shift orbit closure of fω(α) and T : X → X is the shift
operation. Let S be a finite alphabet that is in bijective correspondence
via a mapping c with the set of nonempty suffixes of the images f(a) for
a ∈ A. Let S ⊂ SN be the set of infinite words s = (sn)n≥0 such that
π(s) := c(s0)f

(
c(s1)

)
f2

(
c(s2)

)
· · · ∈ X . We show that if f is primitive

and f(A) is a suffix code, then there exists a mapping H : S → S such
that (S ,H) is a topological dynamical system and π : (S ,H) → (X , T) is
a conjugacy. We call (S ,H) the suffix conjugate of (X , T). Furthermore,
in the special case when f is the Fibonacci or the Thue-Morse morphism,
we show that (S , T) is a sofic shift, that is, the language of S is regular.

1 Introduction

Let A be a finite alphabet and f : A∗ → A∗ a morphism with an iterative
fixed point fω(α) = limn→∞ fn(α). Consider the shift orbit closure X generated
by fω(α). If x ∈ X , then there exist a letter a ∈ A and an infinite word y ∈ X
such that x = sf(y), where s is a nonempty suffix of f(a) [4, Lemma 6]. This
formula has been observed several times in different contexts, see [6] and the
references therein. Since y ∈ X , this process can be iterated to generate an
expansion

x = s0f(s1)f
2(s2) · · · fn(sn) · · · , (1)

where each sn is a nonempty suffix of an image of some letter in A. In general,
however, not every sequence (sn)n≥0 of suffixes gives rise to an infinite word in
X by means of this kind of expansion. Therefore, in this paper we introduce the
set S that consists of those (sn)n≥0 whose expansion (1) is in X . Our goal is
then to understand the structure of S. By endowing S with the usual metric
on infinite words, S becomes a metric space. Furthermore, S can be associated
with a mapping G : S → S (see below) giving rise to a topological dynamical
system (S, G) that is an extension of (X , f); see the discussion around Eq. (4)

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 95–106, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

96 J.D. Currie, N. Rampersad, and K. Saari

However, imposing some further restrictions on f , we obtain a much stronger
result: If f is a circular morphism such that |fn(a)| → ∞ for all a ∈ A and f(A)
is a suffix code, then there exists a mapping H : S → S such that (S, H) and
(X , T), where T is the usual shift operation, are conjugates (Theorem 1). We call
(S, H) the suffix conjugate of (X , T). Since primitive morphisms are circular (i.e.,
recognizable) by Mossé’s theorem [13], primitivity of f together with the suffix
code condition suffice for the existence of the suffix conjugate. In particular,
both the Fibonacci morphism ϕ : 0 �→ 01, 1 �→ 0 and the Thue-Morse morphism
μ : 0 �→ 01, 1 �→ 10 satisfiy these conditions, and so the corresponding Fibonacci
subshift (Xϕ, T) and the Thue-Morse subshift (Xμ, T) have suffix conjugates. In
this paper we characterize the language of both subshifts and show that they
are regular.

An encoding scheme for X related to ours was considered by Holton and
Zamboni [6] and Canterini and Siegel [3], who studied bi-infinite primitive mor-
phic subshifts and essentially used prefixes of images of letters where we use
suffixes. Despite of this seemingly insignificant difference, though, we are not
aware of any mechanism that would allow transferring results from one encod-
ing scheme to another. See also the work by Shallit [14], who constructed a finite
automaton that provides an encoding for the set of infinite overlap-free words.

2 Preliminaries and Generalities

In this paper we will follow the standard notation and terminology of combina-
torics on words [10,1] and symbolic dynamics [9,8].

Let A be a finite alphabet and f : A∗ → A∗ a morphism with an iterative
fixed point fω(α) = limn→∞ fn(α), where α ∈ A. Let X be the shift orbit closure
generated by fω(α). Let S′ be the set of nonempty suffixes of images of letters
under f . Denote S = {0, 1, . . . , |S′| − 1} and let c : S → S′ be a bijection. We
consider S as a finite alphabet.

If s = s0s1 · · · sn with si ∈ S, then we denote by π(s) the word

π(s) = c(s0)f(c(s1))f
2(c(s2)) · · · fn(c(sn)) ∈ A∗.

Then π extends to a mapping π : SN → AN in a natural way, and so we may
define

S =
{
s ∈ SN | π(s) ∈ X

}
.

Our goal in this section is to find sufficient conditions on f so that S can be
endowed with dynamics that yields a conjugate to (X , T) via the mapping π. Ex-
amples 1 and 2 below show that this task is not trivial. Such sufficient conditions
are laid out in Definition 1.

If x ∈ X and s ∈ S such that π(s) = x, we say that x is an expansion of s.

Lemma 1 (Currie, Rampersad, and Saari [4]). For every x ∈ X , there
exist a ∈ A, a non-empty suffix s of f(a), and an infinite word y ∈ X such that
x = sf(y) and ay ∈ X . Therefore the mapping π : S → X is surjective.

Suffix Conjugates for a Class of Morphic Subshifts 97

Both AN and SN are endowed with the usual metric

d
(
(xn)n≥0, (yn)n≥0

)
=

1

2n
, where n = inf

{
n | xn
= yn

}
,

The following lemma is obvious.

Lemma 2. The mapping π : S → X is continuous.

We denote the usual shift operation (xn)n≥0 �→ (xn+1)n≥0 in both spaces AN

and SN by T . We have T (X) ⊂ X and f(X) ⊂ X by the construction of X , and
both T and f are clearly continuous on X , so we have the topological dynamical
systems (X , T) and (X , f). Note, however, that in general T (S) is not necessarily
a subset of S, as the following example shows.

Example 1. Let f : {α, a, b}∗ → {α, a, b}∗ be the morphism α �→ αab, a �→ a,
and b �→ ab. Then

fω(α) = αf(b)f2(b)f3(b) · · · and bf(b)f2(b)f3(b) · · · = babaabaaab · · · .

Since the latter sequence is not in the shift orbit closure X generated by fω(α),
this shows that S is not closed under T for this particular morphism.

If f is the morphism 0 �→ 01, 1 �→ 0, then f is called the Fibonacci morphism
and we write f = ϕ. The unique fixed point of ϕ is denoted by f and it is called
the Fibonacci word. The shift orbit closure it generates is denoted by Xϕ and
pair (Xϕ, T) is called the Fibonacci subshift.

Similarly, if f is 0 �→ 01, 1 �→ 10, then f is the Thue-Morse morphism and
we write f = μ. The fixed point μω(0) of μ is denoted by t and it is called the
Thue-Morse word. The shift orbit closure generated by t is denoted by Xμ, and
the pair (Xμ, T) is called the Thue-Morse subshift.

Example 2. Let f be the morphism 0 �→ 010, 1 �→ 10. The two fixed points
of f generate the Fibonacci subshift. The set of suffixes of f(0) and f(1) is
S′ = {0, 10, 010}, and we define a bijection c : {0, 1, 2} → S′ by c(0) = 0,
c(1) = 10, and c(2) = 010. Then π(01) = π(20) = 010010, and therefore
π(01ω) = π(201ω). This word equals the Fibonacci word f as can be seen by
observing that

f = 010ϕ2(10)ϕ4(10)ϕ6(10) · · ·
and 010fn(a) = ϕ2n(a)010 for all n ≥ 0 and a ∈ {0, 1}. This shows that it is
possible for two distinct words in S to have the same expansions.

The following lemma is a straightforward consequence of the definition of π.

Lemma 3. Let s = s0s1s2 · · · , where si ∈ S. Then

f
(
π ◦ T (s)

)
= T |c(s0)|π(s).

and
π(s) = π(s0s1 · · · sn−1)f

n
(
π(T ns)

)
. (2)

For finite words x, y ∈ S∗, the above reads π(xy) = π(x)f |x|(π(y)).

98 J.D. Currie, N. Rampersad, and K. Saari

Note that if s ∈ S such that c(s) ∈ S′ is a letter, then f
(
c(s)
)
∈ S′. As this

connection will be frequently referred to, we define a morphism

λ : S∗
1 → S∗ with λ(s) = c−1

(
f
(
c(s)
))
, (3)

where S1 ⊂ S consists of those s ∈ S for which |c(s)| = 1. Then in particular,
c
(
λ(s)

)
= f
(
c(s)
)
.

Lemma 4. Let s = s0s1 · · · ∈ S with si ∈ S, and write x = π(s) ∈ X . Let r ≥ 0
be the smallest integer, if it exists, such that |c(sr)| ≥ 2 and write c(sr) = au,
where a ∈ A and u ∈ A+. Then f(x) = π(t), where t = t0t1 · · · ∈ S satisfies

– ti = λ(si) for i = 0, 1, . . . , r − 1,
– tr = c−1

(
f(a)

)
,

– tr+1 = c−1(u), and
– ti = si−1 for i ≥ r + 2.

If each of c(si) is a letter, then f(x) = π(t), where

t = λ(s0)λ(s1) · · ·λ(sn) · · · .

Proof. Suppose r exists. The identity x = π(s) says that

x = c(s0)f
(
c(s1)

)
· · · f r−1

(
c(sr−1)

)
f r
(
c(sr)

)
f r+1

(
c(sr+1)

)
· · ·

Therefore, by denoting f
(
c(si)

)
= ŝi ∈ S′ for i = 0, 1, . . . , r − 1, we see that

f(x) = f
(
c(s0)

)
f2
(
c(s1)

)
· · · f r

(
c(sr−1)

)
f r+1

(
c(sr)

)
f r+2

(
c(sr+1)

)
· · ·

= ŝ0f(ŝ1) · · · f r−1(ŝr−1)f
r+1(au)f r+2

(
c(sr+1)

)
· · ·

= ŝ0f(ŝ1) · · · f r−1(ŝr−1)f
r
(
f(a)

)
f r+1(u)f r+2

(
c(sr+1)

)
· · ·

= c(t0)f
(
c(t1)

)
f2
(
c(t2)

)
· · · ,

where the ti’s are as in the statement of the lemma. The case when r does not
exist is a special case of the above.

Let s ∈ S and t ∈ S be defined as in the previous lemma. This defines a
mapping G : S → S for which G(s) = t, which is obviously continuous. Thus we
have a topological dynamical system (S, G). Furthermore, by the definition of
G, we have

f ◦ π = π ◦G. (4)

Therefore π : (S, G)→ (X , f) is a factor map because π is surjective by Lemma 1
and continuous by Lemma 2. We can get a more concise definition for G if we
extend the domain of λ defined in (3) to S as follows. If s ∈ S \ S1, then
f
(
c(s)
)
= au with a ∈ A and u ∈ A+, and we define

λ(s) = c−1
(
f(a)

)
c−1(u). (5)

Suffix Conjugates for a Class of Morphic Subshifts 99

Then we have, for all s ∈ S,

G(s) =

{
λ(ps)t if s = pst with p ∈ S∗

1 and s ∈ S \ S1

λ(s) if s ∈ SN
1 .

(6)

We got this far without imposing any restrictions on f , but now we have to
introduce some further concepts.

If Y is a shift orbit closure of some infinite word x, then the set of finite factors
of x is called the language of Y or x and denoted by L(Y) or by L(x).

If x is a finite word and y a finite or infinite word and x is a factor of y, we
will express this by writing x ⊂ y. This handy notation has been used before at
least in [5].

A key property we would like our morphism f to have is circularity, which has
various formulations and is also called recognizability. We use the formulation of
Cassaigne [2] and Klouda [7]; see also [11,8]. The morphism f whose fixed point
generates the shift orbit closure X is called circular on L(X) if f is injective on
L(X) and there exists a synchronization delay � ≥ 1 such that if w ∈ L(X) and
|w| ≥ �, then it has a synchronizing point (w1, w2) satisfying the following two
conditions: First, w = w1w2. Second,

∀v1, v2 ∈ A∗ [v1wv2 ∈ f
(
L(X)

)
=⇒ v1w1 ∈ f

(
L(X)

)
and w2v2 ∈ f

(
L(X)

)]
.

A well-known result due to Mossé [13] (see also [8]) says that a primitive
morphism with an aperiodic fixed point is circular (or recognizable).

Definition 1. We write f ∈ N to indicate that f : A∗ → A∗ with an iterative
fixed point fω(α) has the following properties.

(i) f is circular on the language of fω(α);
(ii) the set f(A) is a suffix code; i.e., no image of a letter is a suffix of another;
(iii) each letter a ∈ A is growing; i.e., |fn(a)| → ∞ as n→∞.

In particular, if f is primitive and fω(α) aperiodic, then f is circular by
Mossé’s theorem, and if in addition f(A) is a suffix code, then f ∈ N . Therefore
both the Fibonacci morphism ϕ and the Thue-Morse morphism μ are in N .

In Example 1 we saw that, in general, S is not necessarily closed under the
shift map T for a general morphism f . The next lemma shows, however, that if
f ∈ N , this problem does not arise.

Lemma 5. If f ∈ N , then T (S) ⊆ S. Thus (S, T) is a subshift.

Proof. Let s = s0s1 · · · ∈ S; then π(s) ∈ X . Equation (2) says that π(s) =
c(s0)f

(
π(T s)

)
, and so f

(
π(T s)

)
∈ X . Suppose that π(T s) /∈ X .

Since f ∈ N , it is circular. Let � ≥ 1 be a synchronization delay for f . Note
that fn−1(sn) occurs both in π(T s) and in fω(α) for every n ≥ 1. Since also
|fn−1(sn)| → ∞ as n → ∞ because f ∈ N , it follows that there are arbitrarily
long words in L(X) that occur in infinitely many positions in π(T s). Therefore
there exists a word zy ⊂ π(T s) such that z is not in L(X), y ∈ L(X), and |y| ≥ �.

100 J.D. Currie, N. Rampersad, and K. Saari

Next, consider the word f(zy) ⊂ f
(
π(T s)

)
. Since f(y) ∈ L(X) and |f(y)| ≥ �,

the word f(y) has a synchronizing point (w1, w2). In particular, since y ∈ L(X),
there exists y1, y2 for which y = y1y2, f(y1) = w1, and f(y2) = w2. On the
other hand, f(zy) ∈ L(X) implies that we can write fω(α) = putx such that
f(zy) ⊂ f(ut) and f(y) ⊂ f(t). Thus there exists t1, t2 such that t = t1t2, the
word w1 is a suffix of f(t1), and w2 is a prefix of f(t2). Thus f(y1) is a suffix of
f(t1). Since f(A) is a suffix code and f is injective, it follows that y1 is a suffix of
t1, and furthermore that zy1 is a suffix of ut1. But then z ∈ L(X) contradicting
the choice of z. Therefore π(T s) ∈ X and so T s ∈ S.

Lemma 6. If f ∈ N , then the mapping π : S → X is injective.

Proof. For every u, v ∈ A∗ and x,y ∈ X , we have that uf(x) = vf(y) implies
u = v and x = y. This follows from the circularity and suffix code property of f .
(See also the proof of Lemma 5.) Therefore if s, s′ ∈ S and π(s) = π(s′), then
Lemma 3 gives

c(s0)f
(
π(T s)

)
= c(s′0)f

(
π(T s′)

)
,

so that c(s0) = c(s′0) and π(T s) = π(T s′). Thus s0 = s′0, and since T s, T s′ ∈ S
by Lemma 5, we can repeat the argument obtaining s1 = s′1, s2 = s′2,
Therefore s = s′.

Now we are ready to define the desired dynamics on S.

Theorem 1. Suppose that f ∈ N . Let H : S → S be the mapping given by
H = T ◦G. Then π ◦H = T ◦ π and so π : (S, H)→ (X , T) is a conjugacy.

S S

X X

H

T

π π

Proof. Observe first that H(S) ⊂ S by Lemma 5, so the definition of H is
sound. The mapping π is surjective by Lemma 1 and injective by Lemma 6, so
it is a bijection. Furthermore π is continuous by Lemma 2. Finally, let us verify
π ◦H = T ◦ π. Let s = s0s1 · · · ∈ S with si ∈ S. If |c(s0)| ≥ 2, then we leave it
to the reader to check that, by denoting c(s0) = au with a ∈ A, we have

π ◦H(s) = π ◦ T ◦G(s) = uf
(
c(s1)

)
f2
(
c(s2)

)
· · · = T ◦ π(s).

If |c(s0)| = 1, then it is readily seen that T ◦ G(s) = G ◦ T (s). Using this,
Equation (4), and Lemma 3 in this order gives

π ◦H(s) = π ◦ T ◦G(s) = π ◦G ◦ T (s) = f ◦ π ◦ T (s) = T |c0| ◦ π(s) = T ◦ π(s),

and the proof is complete.

Suffix Conjugates for a Class of Morphic Subshifts 101

The rest of this section is devoted to developing a few results for understanding
the language of S. They will be needed in the next sections that deal with the
suffix conjugates of the Fibonacci and the Thue-Morse subshifts.

If u is a finite nonempty word, we denote by u and u the words obtained
from u by deleting its last and first letter, respectively.

If a finite word u is not in L(X), then u is called a forbidden word of X . If
both u and u are in L(X), then u is a minimal forbidden word of X . There is
a connection between the minimal forbidden words and the so-called bispecial
factors of an infinite word. See a precise formulation of this in [12] and examples
in Sections 3 and 4.

We say that a word u ∈ S∗ is a cover of a word v ∈ A∗ if v ⊂ π(u). Further-
more, we say that the cover u is minimal if v
⊂ π(u) and v
⊂ f

(
π(u)

)
. The

latter expression comes from the identity π(u) = c(u0)f
(
π(u)

)
, where u0 is the

first letter of u, given by Lemma 3.
Let C be the set of minimal covers of the minimal forbidden factors of X .

Lemma 7. Suppose f ∈ N . Let s ∈ SN. Then s /∈ S if and only if s has a
factor in C.

Proof. Suppose that s has a factor in C, so that s = pts′ with t ∈ C. If s ∈ S, then
T |p|s = ts′ ∈ S by Lemma 5. But π(ts′) has prefix π(t), in which a forbidden
word occurs by the definition of C, a contradiction.

Conversely, suppose that s /∈ S. Then π(s) /∈ X , so there exists a minimal
forbidden word v0 of X occurring in π(s). Let u0 be the shortest prefix of s such
that v0 ⊂ π(u0). Then either u0 is a minimal cover of v0 or v0 ⊂ f

(
π(u0)

)
. In the

former case we are done, so suppose the latter case holds. Then v0 ⊂ f
(
π(T s)

)
and so π(T s) has a factor v1 such that v0 ⊂ f(v1) and |v1| ≤ |v0|. Since f(L) ⊂ L,
it follows that v1 is a forbidden word of X ; by taking a factor of v1 if necessary,
we may assume v1 is also minimal. Let u1 be the shortest prefix of T s such
that v1 ⊂ π(u1). Then either u1 is a minimal cover of v1 or v1 ⊂ f

(
π(u1)

)
.

In the former case u1 ∈ C and so s has a factor u1 in C. In the latter case
v1 ⊂ f

(
π(T 2s)

)
, and we continue the process. This generates a sequence v0, v1,

. . . of minimal forbidden words of X such that vn ⊂ f
(
π(T n+1s)

)
, vn+1 ⊂ f(vn),

and |vn+1| ≤ |vn|. Each letter a ∈ A is growing because f ∈ N , and therefore the
words vn are pairwise distinct. Thus the length restriction on the vn’s implies
that the sequence v0, v1, . . . is finite with a last element, say, vk. The fact that
there is no element vk+1 means that T k+1s has a prefix uk that is a minimal
cover of vk. Since uk ∈ C then occurs also in s, we are done.

Theorem 2. Suppose that f ∈ N and that the set C of minimal covers of min-
imal forbidden words is a regular language. Then the language of S is regular.
In particular, (S, T) is a sofic subshift.

Proof. Since C is regular, so is the complement S∗ \ S∗CS∗, which we denote
by L0. Let M0 be the minimal DFA accepting L0. Modify M0 by removing the
states from which there are no arbitrarily long directed walks to accepting states.

102 J.D. Currie, N. Rampersad, and K. Saari

Remove also the corresponding edges and denote the obtained NFA by M . We
claim that the language L(S) of S is the language L(M) recognized by M .

If w ∈ L(S), then w is in S∗ \ S∗CS∗ by Lemma 7, so that it is accepted by
M0. Furthermore, since w has arbitrarily long extensions to the right that are
also in L(S), each accepted by M0 of course, it follows that w is accepted by M .
Conversely, by the construction of M , if w ∈ L(M), then there exists an infinite
walk on the graph of M whose label contains w. The label of this infinite path
is in S.

3 The Suffix Conjugate of the Fibonacci Subshift

Recall the Fibonacci morphism ϕ for which 0 �→ 01 and 1 �→ 0, the Fibonacci
word f = ϕω(0), and the Fibonacci subshift (Xϕ, T). The suffix conjugate
(Sϕ, Hϕ) of the Fibonacci subshift is guaranteed to exist by Theorem 1. The
goal of this section is to give a characterization for Sϕ and Hϕ, and it will be
achieved in Theorem 3.

The set of suffixes of ϕ is S′ = {0, 1, 01}, and we define a bijection c between
S = {0, 1, 2} and S′ as c(0) = 0, c(1) = 1, and c(2) = 01. In this case we have
Sϕ ⊂ {0, 1, 2}N.

We will now continue by finding a characterization for the set Cϕ of minimal
covers of minimal forbidden words of the Fibonacci subshift.

Denote fn = ϕn−1(0) for all n ≥ 1, so that in particular f1 = 0 and f2 = 01.
For n ≥ 2, we let pn be the word defined by the relation fn = pnab, where
ab ∈ {01, 10}. Then p2 = ε and p3 = 0. The words pn are known as the bispecial
factors of the Fibonacci word, and they possess the following well-known and
easily established properties:

– For all n ≥ 2, we have

fnfn−1 = pn+1ab and fn−1fn = pn+1ba, (7)

where ab = 10 for even n and ab = 01 for odd n.
– For all n ≥ 2, we have ϕ(pn)0 = pn+1.

The minimal forbidden words of the Fibonacci word f can be expressed in
terms of the bispecial factors pn as follows [12]. For every n ≥ 2, write

dn =

{
1pn1 for n even,

0pn0 for n odd.

Then a word is a minimal forbidden word of f if and only if it equals dn for some
n ≥ 2. The first few dn’s are 11, 000, and 10101.

Lemma 8. We have d3 = π(01)0 and d4 = π(10)01. For all n ≥ 0, we have

π(0212n2) = d2n+51 and π(1212n+12) = d2n+60

Suffix Conjugates for a Class of Morphic Subshifts 103

Lemma 9. The forbidden word d2 = 11 does not have covers. The minimal
covers of d3 are the words in 01(0 + 1 + 2). The minimal covers of d4 are the
words in (1+ 2)0(0+ 1+ 2). For other forbidden words, we have the following.
Let n ≥ 0.

(i) The minimal covers of d2n+5 are

0212n
(
2+ 00+ 01+ 02

)
. (8)

(ii) The minimal covers of d2n+6 are

(1 + 2)212n+1
(
2+ 00+ 01+ 02

)
.

Theorem 3. The language L(Sϕ) of the suffix conjugate (Sϕ, Hϕ) of the Fi-
bonacci subshift (Xϕ, T) is regular. An infinite word s ∈ SN is in Sϕ if and only
if it is the label of an infinite walk on the graph depicted in Fig. 1b. The mapping
Hϕ : Sϕ → Sϕ is given by

Hϕ(s) =

⎧⎪⎨⎪⎩
1t if s = 2t;

λ(t) if s = at with a ∈ {0, 1} and t ∈ {0, 1}N;
λ(x)21t if s = ax2t with a ∈ {0, 1}, x ∈ {0, 1}∗,

where λ is the morphism given by λ(1) = 0, λ(0) = 2, and λ(2) = 21.

We say that an infinite word x is the positive orbit of z if T n(z) = x for some
n > 0 and that x is the negative orbit of z if T n(x) = z for some n > 0.

Since f = 01ϕ(1)ϕ2(1) · · · , we have f = π(21ω). Thus using Theorem 3,

T 2(f) = T 2 ◦ π(21ω) = π ◦H2(21ω) = π(0ω).

q0

q1 q2

q3 q4

0 1, 2

0 1

2

1

1

2

2

(a) An NFA accepting the language of
L(Sϕ).

q1 q3 q4

2
0

1
2

1

(b) A graph for the sequences in Sϕ.

Fig. 1. The suffix conjugate of the Fibonacci subshift

104 J.D. Currie, N. Rampersad, and K. Saari

The next result shows that T 2(f) acts as a divider in the shift orbit of the
Fibonacci word. We omit the proof here.

Theorem 4. Let s ∈ Sϕ. Then

(i) π(s) is in the positive orbit of T 2(f) if and only if s has a suffix 2ω.
(ii) π(s) is in the negative orbit of T 2(f) if and only if s has a suffix 1ω.

4 The Suffix Conjugate of the Thue-Morse Subshift

Let μ be the Thue-Morse morphism 0 �→ 01, 1 �→ 10, t = μω(0) the Thue-Morse
word. Denoting the shift orbit closure of t by Xμ, the Thue-Morse subshift is
(Xμ, T). In this section we will characterize its suffix conjugate (Sμ, Hμ) defined
in Theorem 1.

Here the set of suffixes is S′ = {0, 1, 01, 10} and S = {0, 1, 2, 3}, and we let c
be the bijection between S and S′ given by

c(0) = 0, c(1) = 1, c(2) = 01, c(3) = 10.

The structure of the minimal forbidden words of the Thue-Morse word is
well-known [12,15]. They are exactly the words 000, 111,

0μ2n(010)0, 0μ2n(101)0, 1μ2n(010)1, 1μ2n(101)1

and

1μ2n+1(010)0, 1μ2n+1(101)0, 0μ2n+1(010)1, 0μ2n+1(101)1

for all n ≥ 0.
Let us introduce a convenient shorthand. For x, y, z ∈ {0, 1} and k ≥ 0, we

write
γ(k, x, y, z) = xμk(yyy)z.

Here the overline notation ∗ swaps 0’s and 1’s, as usual. Then the minimal
forbidden words of t can be written as xxx and

γ(2n, x, x, x), γ(2n, x, x, x), γ(2n+ 1, x, x, x), γ(2n+ 1, x, x, x), (9)

for all n ≥ 0 and x ∈ {0, 1}, and the following holds:

– We have μ
(
γ(k, x, y, z)

)
= xγ(k + 1, x, y, z)z.

– The word γ(k, x, y, z) is a forbidden word if and only if γ(k − 1, x, y, z) is a
forbidden word, where k ≥ 1.

The mapping λ defined in (3) and (5) in the current case is

λ(0) = 2, λ(1) = 3, λ(2) = 21, λ(3) = 30.

Suffix Conjugates for a Class of Morphic Subshifts 105

Lemma 10. Let x ∈ {0, 1}. The forbidden words xxx and γ(0, x, x, x) do not
have covers. For other forbidden words, we have the following.

(i) The minimal covers of γ(0, x, x, x) are in(
x+ λ(x)

)
x
(
x+ λ(x)

)
and λ(x)x

(
x+ λ(x)

)
.

(ii) The minimal covers of γ(1, x, x, x) are in(
x+ λ(x)

)
xx
(
x+ λ(x)

)
and

(
x+ λ(x)

)
λ(x)

(
x+ λ(x)

)
.

(iii) The minimal covers of γ(1, x, x, x) are in(
x+ λ(x)

)
xx
(
x+ λ(x)

)
and

(
x+ λ(x)

)
xλ(x).

Lemma 11. Let x, y ∈ {0, 1} and k ≥ 2. A word is a minimal cover of
γ(k, x, y, y) if and only if it is in(

x+ λ(x)
)
λ(y)yk−2λ(y)

(
y + λ(y)

)
. (10)

A word is a minimal cover of γ(k, x, y, y) if and only if it is in(
x+ λ(x)

)
λ(y)yk−2

[
λ(y)

(
y + λ(y)

)
+ y
(
y + λ(y)

)]
. (11)

Theorem 5. The language L(Sμ) of the suffix conjugate (Sμ, Hμ) of the Thue-
Morse subshift (Xμ, T) is regular. An infinite word s ∈ SN is in Sμ if and only
if it is the label of an infinite walk on the graph depicted in Fig. 2. The mapping
Hμ : Sμ → Sμ is given by

Hμ(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1t if s = 2t;

0t if s = 3t;

λ(t) if s = at with a ∈ {0, 1} and t ∈ {0, 1}N;
λ(x)21t if s = ax2t with a ∈ {0, 1}, x ∈ {0, 1}∗;
λ(x)30t if s = ax3t with a ∈ {0, 1}, x ∈ {0, 1}∗,

where λ is the morphism given by λ(0) = 2, λ(1) = 3, λ(2) = 21, and λ(3) = 30.

0
3

0

1

1

2 3

2

Fig. 2. The suffix conjugate of the Thue-Morse subshift

106 J.D. Currie, N. Rampersad, and K. Saari

References

1. Allouche, J.-P., Shallit, J.: Automatic sequences: Theory, Applications, and Gen-
eralizations. Cambridge University Press (2003)

2. Cassaigne, J.: An algorithm to test if a given circular HD0L-language avoids a
pattern. In: Information Processing 1994, Hamburg. IFIP Trans. A Comput. Sci.
Tech., vol. I, A-51, pp. 459–464. North-Holland, Amsterdam (1994)

3. Canterini, V., Siegel, A.: Automate des préfixes-suffixes associé à une substitution
primitive. J. Théorie Nombres Bordeaux 13, 353–369 (2001)

4. Currie, J.D., Rampersad, N., Saari, K.: Extremal words in the shift orbit clo-
sure of a morphic sequence. In: Béal, M.-P., Carton, O. (eds.) DLT 2013.
LNCS, vol. 7907, pp. 143–154. Springer, Heidelberg (2013), preprint available at
http://arxiv.org/abs/1301.4972

5. Holton, C., Zamboni, L.Q.: Descendants of primitive substitutions. Theory Com-
put. Systems 32, 133–157 (1999)

6. Holton, C., Zamboni, L.Q.: Directed graphs and substitutions. Theory Comput.
Systems 34, 545–564 (2001)

7. Klouda, K.: Bispecial factors in circular non-pushy D0L languages. Theoret. Com-
put. Sci. 445, 63–74 (2012)

8. Kůrka, P.: Topological and Symbolic Dynamics. Société Mathématique de France,
Paris (2003)

9. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cam-
bridge University Press (1995)

10. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications, vol. 90, Cambridge University Press, Cambridge (2002)

11. Mignosi, F., Séébold, P.: If a D0L language is k-power free then it is circular. In:
Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp.
507–518. Springer, Heidelberg (1993)

12. Mignosi, F., Restivo, A., Sciortino, M.: Words and forbidden factors. Theoret.
Comput. Sci. 273, 99–117 (2002)

13. Mossé, B.: Puissances de mots et reconnaissabilité des points fixes d’une substitu-
tion. Theoret. Comput. Sci. 99, 327–334 (1992)

14. Shallit, J.: Fife’s theorem revisited. In: Mauri, G., Leporati, A. (eds.) DLT 2011.
LNCS, vol. 6795, pp. 397–405. Springer, Heidelberg (2011)

15. Shur, A.: Combinatorial complexity of rational languages. Discr. Anal. and Oper.
Research, Ser. 1 12(2), 78–99 (2005) (in Russian)

http://arxiv.org/abs/1301.4972

Periodicity Forcing Words�

Joel D. Day1,��, Daniel Reidenbach1, and Johannes C. Schneider2

1 Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, UK

J.Day-10@student.lboro.ac.uk,

D.Reidenbach@lboro.ac.uk
2 DIaLOGIKa GmbH, Pascalschacht 1,

66125 Saarbrücken, Germany
johannes.schneider@dialogika.de

Abstract. The Dual Post Correspondence Problem asks, for a given
word α, if there exists a non-periodic morphism g and an arbitrary mor-
phism h such that g(α) = h(α). Thus α satisfies the Dual PCP if and only
if it belongs to a non-trivial equality set. Words which do not satisfy the
Dual PCP are called periodicity forcing, and are important to the study
of word equations, equality sets and ambiguity of morphisms. In this pa-
per, a ‘prime’ subset of periodicity forcing words is presented. It is shown
that when combined with a particular type of morphism it generates ex-
actly the full set of periodicity forcing words. Furthermore, it is shown
that there exist examples of periodicity forcing words which contain any
given factor/prefix/suffix. Finally, an alternative class of mechanisms for
generating periodicity forcing words is developed, resulting in a class of
examples which contrast those known already.

Keywords: Equality sets, Morphisms, Dual Post Correspondence
Problem, Periodicity forcing sets, Periodicity forcing words, Ambiguity
of morphisms.

1 Introduction

The Dual Post Correspondence Problem (Dual PCP) is a decidable variation
of the famous Post Correspondence Problem (see Post [10]). It was introduced
by Culik II and Karhumäki in [1], where the authors make progress towards a
characterisation of binary equality sets. A word is said to satisfy the Dual PCP
if it belongs to an equality set E(g, h) for two morphisms g, h where at least
one morphism is non-periodic. For example, the word abba belongs to E(g, h)
where g(a) := aba, g(b) := b, h(a) := a, and h(b) := bab. Thus abba satisfies
the Dual PCP; in other words, it is a non-trivial equality word. In contrast, the
word abaab does not satisfy the Dual PCP, but this claim is much harder to
verify.

� This work was supported by the London Mathematical Society, grant SC7-1112-02.
�� Corresponding author.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 107–118, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

108 J.D. Day, D. Reidenbach, and J.C. Schneider

In this paper, words which do not satisfy the Dual PCP (often referred to as
periodicity forcing words) are examined. Periodicity forcing words are of imme-
diate importance to the study of equality sets, since they are words which do
not belong to any non-trivial equality set. As a result, they can be viewed as
being opposite to equality words. Furthermore, they are strongly related to the
studies of word equations and of the ambiguity of morphisms.

Due to both the original research by Culik II and Karhumäki [1], and from
more recent research into equality sets (e. g., Holub [5], Hadravova, Holub [4])
and word equations (e. g., Czeizler et al. [2], Karhumäki, Petre [7]), quite a lot
is known about the binary case. Much less, however, is known about the general
case. One reason for this is that although the Dual PCP is known to be decidable
(due to Makanin’s algorithm [9], as shown by Culik II and Karhumäki [1]) decid-
ing on whether a word is periodicity forcing can be a particularly intricate task,
and becomes even more so as the alphabet size increases. In [3], we overcome
this problem by employing the use of morphisms to generate periodicity forcing
words over arbitrary alphabets.

In Sect. 3 of the present paper, we explore the structure of the set of periodicity
forcing words (DPCP¬) in relation to morphisms. Specifically, a ‘prime’ subset of
DPCP¬ is considered from which all periodicity forcing words may be generated
using a specific type of morphism, characterised in [3]. In Sect. 4, it is shown
that there exist periodicity forcing words with arbitrary factors, providing a
level of generality not yet achieved. Finally, in light of the results on ‘prime’
periodicity forcing words, some alternative approaches to generating periodicity
forcing words (specifically over large alphabets) are investigated.

2 Notation and Preliminary Results

Let N = {1, 2, ...} be the set of natural numbers, and let N0 := N∪{0}. The set
N is used as an infinite alphabet of symbols, and words over N are referred to
as patterns. The symbols occurring in a pattern are called variables, and the set
of variables occurring in a pattern α is denoted by var(α). Symbols from words
which are not patterns (referred to as letters) are indicated using typewriter font
(e. g., Σ := {a,b,c...}).

For an alphabet Σ := {a1, a2, ..., an} and a word u ∈ Σ∗, the Parikh vector,
written P(u), is the vector (|u|a1 , |u|a2 , ..., |u|an). The result of dividing the
Parikh vector by the greatest common divisor of its components is called the
basic Parikh vector. A word u is primitive if it is not a repetition of a shorter
word (i. e., u = vn implies n = 1). Otherwise it is imprimitive. A word u ∈ Σ∗

is ratio-imprimitive if there exist words v, w ∈ Σ+ such that u = vw and u, v
share the same basic Parikh vector. Otherwise, it is ratio-primitive.

A morphism h : A∗ → B∗ is a mapping which is compatible with concatena-
tion (meaning h(uv) = h(u) · h(v) for any words u, v ∈ A∗). Thus, although a
morphism maps words in A∗ to words in B∗, it is fully defined once it is specified
for each individual symbol in A. The composition of two morphisms g : A∗ → B∗

and h : B∗ → C∗ is the morphism g ◦ h : A∗ → C∗, given by g ◦ h(x) = g(h(x))
for every x ∈ A.

Periodicity Forcing Words 109

A morphism g : A∗ → B∗ is periodic if there exists a word w ∈ B∗ such that
for every x ∈ A, g(x) ∈ {w}∗. Given another morphism h : A∗ → B∗, g and h
are said to be distinct if there exists an x ∈ A such that g(x)
= h(x). If, for some
word α ∈ A+, g(α) = h(α), then g and h are said to agree on α. A renaming of
a word u ∈ {a1, a2, ..., an}+ is the word σ(u) where σ : {a1, a2, ... , an}∗ → {b1,
b2, ... , bn}∗ is a morphism given by σ(ai) = bi, and where b1, b2, ..., bn are
distinct letters. If {a1, a2, ... an} ∩ {b1, b2, ... , bn} = ∅, then the renaming is
said to be strict. On the other hand, if ai ∈ {b1, b2, ..., bn} for 1 ≤ i ≤ n, then
σ(u) is a permutation of u. For sets Δ and V ⊂ Δ, the morphism πV : Δ∗ → V ∗,
given by πV (x) = x if x ∈ V and πV (x) = ε otherwise, is called a projection.

A set of patterns is periodicity forcing if, whenever two morphisms agree on
every pattern in the set, they are periodic. A set of patterns T is said to be a
test set of another set of patterns S if any two morphisms which agree on every
pattern in T also agree on every pattern in S. Note that this means any test set
of a periodicity forcing set must also be periodicity forcing.

A morphism σ is said to be ambiguous with respect to a pattern α if there
exists another morphism τ such that σ(α) = τ(α) and σ, τ are distinct. It is
convenient to refer to the following set: DPCP := {α ∈ N+ | there exists a
non-periodic morphism σ and an arbitrary morphism τ such that σ(α) = τ(α)}.
Note that this implies the complement DPCP¬ is exactly the set of periodicity
forcing words.

For a set of unknowns Δ, a word equation is an equation α = β for some
words α, β ∈ Δ+. It is non-trivial if α
= β. For a given alphabet Σ, solutions
to the word equation are morphisms σ : Δ∗ → Σ∗ such that σ(α) and σ(β) are
equal. Unless otherwise specified, Δ is usually a set of variables, while Σ is a set
of letters. As a result, word equations equate patterns, and their solutions map
to terminal words (words which are not patterns). The following is a well known
and important result on word equations.

Lemma 1 (Lothaire [8]). Non-trivial word equations in two unknowns have
only periodic solutions.

One consequence of Lemma 1 which provides a particularly useful tool is that
if two words u and v commute (i.e., uv = vu), then u and v (and therefore also
uv) share a primitive root. Similarly, an arbitrarily large set of words {u1, u2,
..., un} is said to commute if u1, u2, ..., un all share the same primitive root.

In our investigation into the use of morphisms to generate periodicity forcing
words in [3], we provide the following criterion.

Lemma 2 ([3]). Let Δ1, Δ2 be sets of variables. Let ϕ : Δ1
∗ → Δ2

∗ be a
morphism such that for every x ∈ Δ2, there exists a y ∈ Δ1 such that x ∈
var(ϕ(y)), and

(i) for every non-periodic morphism σ : Δ2
∗ → {a, b}∗, σ◦ϕ is non-periodic, and

(ii) for all distinct morphisms σ, τ : Δ2
∗ → {a, b}∗, where at least one is non-

periodic, σ ◦ ϕ and τ ◦ ϕ are distinct.

Then for any α /∈ DPCP with var(α) = Δ1, ϕ(α) /∈ DPCP.

110 J.D. Day, D. Reidenbach, and J.C. Schneider

Characterisations of morphisms which satisfy conditions (i) and (ii) of
Lemma 2 are given in the following propositions respectively.

Proposition 3 ([3]). Let Δ1 and Δ2 be sets of variables, let ϕ : Δ1
∗ → Δ2

∗

be a morphism, and let βi := ϕ(i) for every i ∈ Δ1. The morphism ϕ satisfies
Condition (i) of Lemma 2 if and only if, for every non-periodic morphism σ :
Δ2

∗ → {a, b}∗,

(i) there are at least two patterns βi such that σ(βi)
= ε, and
(ii) there do not exist k1, k2, ..., kn ∈ N such that

σ(γ1)
k1 = σ(γ2)

k2 = · · · = σ(γn)
kn (1)

where {γ1, γ2, ..., γn} is the set of all patterns βi such that σ(βi)
= ε.

Proposition 4 ([3]). Let Δ1, Δ2 be sets of variables, and let ϕ : Δ1
∗ → Δ2

∗

be a morphism. For every i ∈ Δ1, let βi := ϕ(i). The morphism ϕ satis-
fies Condition (ii) of Lemma 2 if and only if {β1, β2, . . . , βn} is a periodicity
forcing set.

3 A ‘Prime’ Generating Subset of DPCP¬

In this section, the structure of the set DPCP¬, with respect to morphisms, is
investigated. Specifically, DPCP¬ is partitioned according to whether, for a given
pattern α, there exists a morphism ϕ, and a second pattern β /∈ DPCP, such that
α = ϕ(β).1 This condition is clearly trivial if β is permitted to be a renaming of
α, so only morphisms which alter the structure of β are considered. Furthermore,
the Dual PCP is trivial for unary alphabets, so only patterns α and β over non-
unary alphabets are considered. This partition allows DPCP¬ to be represented
as chains of patterns. It can be inferred directly from the constructions given
in [3] that every periodicity forcing word is a pre-image of another, meaning
these chains are infinite in one direction. In Proposition 9 below, it is shown
that there exist patterns for which there does not exist a non-trivial pre-image
in DPCP¬ and therefore that some chains terminate. More generally, it can be
shown that DPCP¬ is spanned by one-sided infinite chains of this type, and thus
that there exists a (strict) subset of DPCP¬ from which all periodicity forcing
words can be generated using the morphisms characterised in [3].

The proofs rely on a lower bound on the size of periodicity forcing words
(relative to the number of variables), achieved by developing a strong sufficient
condition for a pattern to be contained in DPCP. To do this, morphisms of the
following form are considered.

σ(x) :=

{
apy baqy if x = y, and

arx otherwise,

1 It is worth noting that a characterisation of such morphisms ϕ is given in [3]
(Theorem 14).

Periodicity Forcing Words 111

for some fixed variable y, where px, qy, ry are numbers depending on the variables
x and y respectively. Clearly two morphisms σ1 and σ2 of this type agree on a
pattern α if and only if the number of occurrences of a coincide between each
occurrence of b. Thus the agreement of the two morphisms can be determined by
solving a system of linear Diophantine equations. In the case that n < | var(α)|,
it is possible to show that such a system always permits a non-trivial solution –
meaning the two morphisms are distinct. Furthermore, it is clear that they are
non-periodic, so it is possible to conclude the following.

Proposition 5. Let α be a pattern, and let n := | var(α)|. Suppose that |α|x < n
for some x ∈ var(α). Then α ∈ DPCP.

It follows that, for a periodicity forcing word with n letters, each letter must
occur at least n times, implying the next corollary which provides a lower bound
on the length of the shortest periodicity forcing word with n letters.

Corollary 6. Let α /∈ DPCP, and let n := | var(α)|. Then |α| ≥ n2.

Since periodicity forcing words can be obtained as concatenations of words
in a particular type of periodicity forcing set (see Sect. 5), it is possible to infer
a corresponding upper bound from results in [6]. The authors provide a concise
test set (containing at most 5n words, each of length n) for the set Sn consisting
of all permutations of the word x1 ·x2 · · ·xn. Although it is stated in [6] that Sn

itself is not periodicity forcing, it can be verified using results from [6] and [1]
that the augmented set Sn

′ := Sn ∪ {x1 · x1 · x2 · x2 · · ·xn · xn} is. Given a test
set Tn for Sn, a test set for Sn

′ is clearly Tn ∪ {x1 · x1 · x2 · x2 · · ·xn · xn}. Thus
there exists a test set for Sn

′ containing at most 5n words of length n and one
word of length 2n. The periodicity forcing word resulting from concatenating
these words is at most 5n2 + 2n letters long.

Proposition 7. Let αn be a shortest pattern not in DPCP such that | var(α)| =
n. Then n2 ≤ |α| ≤ 5n2 + 2n.

The above bounds not only demonstrate the growth of periodicity forcing
words with respect to alphabet size, but also provide an indication of how re-
strictive the set DPCP¬ is. Furthermore, the lower bound is particularly useful
when considering the following.

Definition 8. Let α /∈ DPCP be a pattern with | var(α)| ≥ 2. Then α is said to
be a prime element of DPCP¬ (or simply prime) if for every pattern β /∈ DPCP
with | var(β)| > 1, and every morphism ϕ : var(β)∗ → var(α)∗, ϕ(β) = α implies
ϕ is a renaming morphism.

Showing that a pattern satisfies Definition 8 is a highly non-trivial task, since
all morphisms must be accounted for with respect to every pattern β /∈ DPCP.
However, due to Proposition 5, it is possible to provide an example. Specifically,
it is possible to conclude that 1 ·2 ·1 ·1 ·2 is a prime element of DPCP¬, since any
pre-image β must contain a variable x such that |β|x ≤ 2. By Proposition 5, this

112 J.D. Day, D. Reidenbach, and J.C. Schneider

excludes the possibility that | var(β)| ≥ 3, and reduces the candidates for β to
a finite number of patterns which may be checked individually with little effort.
This demonstrates that it is possible to produce chains of periodicity forcing
words which terminate in exactly one direction (i.e., they are not bi-infinite).

Proposition 9. Prime elements of DPCP¬ exist.

It is possible to generalise the reasoning behind Proposition 9, and show that
each periodicity forcing word is either prime, or may be obtained from a prime
periodicity forcing word using morphisms. This results in a structure comprised
of one-sided infinite chains which spans exactly the set DPCP¬.

Theorem 10. Let S be the set of all prime elements of DPCP¬. Let α /∈ DPCP
with | var(α)| ≥ 2. Then either α ∈ S, or there exists β ∈ S and a non-trivial
morphism ϕ such that ϕ(β) = α.

Thus, there exists a non-trivial subset of DPCP¬ whose elements, when com-
bined with the morphisms characterised in [3], generate the set DPCP¬. More-
over, it is not difficult to see that the conditions for satisfying Definition 8 are
very restrictive, and therefore one can expect such a subset to be much smaller
than the original set.

4 Patterns in DPCP¬ with Arbitrary Factors

One particular consequence of the research on periodicity forcing words in [3] is
that there exist periodicity forcing sets which include any given pattern α – it
is sufficient to simply include a pattern β /∈ DPCP where var(β) = var(α). By
constructing these sets such that they satisfy the conditions for Proposition 3,
it is possible to provide a morphism ϕ which satisfies Lemma 2 such that ϕ(α)
contains an arbitrary given factor β for some α /∈ DPCP. Thus a level of gen-
erality previously not achieved is reached: that there exist periodicity forcing
words with arbitrary factors. It is worth noting that due to the properties of
morphisms, the construction may be altered with little effort to guarantee that
β appears as a prefix or suffix.

Proposition 3 is addressed in the following proposition, which demonstrates
that the conditions may always be satisfied. The task is somewhat simplified by
using patterns with the same Parikh vector, since any morphism σ either maps
all, or none of them to the empty word. The result is also relevant to Theorem 19,
confirming that such a construction always exists.

Proposition 11. Let α0 be a pattern, and let n := �log2(| var(α0)|)�. There
exist patterns α1, α2, ..., αn with P(α0) = P(α1) = · · · = P(αn) such that for
any k0, k1, ..., kn ∈ N, the system of word equations

α0
k0 = α1

k1 = · · · = αn
kn

has only periodic solutions.

Periodicity Forcing Words 113

It is now possible to show that there exists a pattern not in DPCP which has
an arbitrary pattern β as a factor. This is achieved as follows. Let β1 be a pattern
not in DPCP such that var(β1) = var(β). In accordance with Proposition 11,
construct the patterns β2, ... , βn, and consider the morphism ϕ : {1, 2, ... ,
n + 1}∗ → var(β)∗ given by ϕ(i) := βi for 1 ≤ i ≤ n, and ϕ(n + 1) = β.
Since β1 /∈ DPCP, and var(β1) = var(βi) = var(β) for 1 ≤ i ≤ n, the set
{ϕ(x) | 1 ≤ x ≤ n + 1} is periodicity forcing, so by Proposition 4, ϕ satisfies
Condition (ii) of Lemma 2. By construction, ϕ also satisfies Condition (i). Let
α /∈ DPCP be a pattern such that var(α) = {1, 2, ... n + 1}. By Lemma 2,
ϕ(α) /∈ DPCP. It is clear that β appears as a factor of ϕ(α). It is therefore
possible to formulate the following theorem.

Theorem 12. For any pattern β ∈ N+, there exists a pattern α /∈ DPCP such
that β is a factor of α.

Example 13 demonstrates how such a morphism may be constructed. Note
that the patterns β2, ... βn are constructed around β, rather than β1. This is
simply to keep example more compact, and it is not difficult to see why the
correctness is unaffected. In a similar way, the patterns can be ‘swapped’ around
to guarantee that β appears as a prefix or suffix of ϕ(α).

Example 13. Let β := 1 · 1 · 2 · 3, let β2 := 2 · 3 · 1 · 1, and let β3 := 3 · 1 · 1 · 2. Let
β1 := 1·2·1·1·2·1·3·1·1·3·2·1·1·2·1·1·2·1·1·2·1·2·1·1·2·1·3·1·1·3·2·1·1·2·1. By [3]
(Proposition 32), β1 /∈ DPCP. Thus, by Proposition 4, the morphism ϕ : {1, 2,
3, 4}∗ → {1, 2, 3}∗ given by ϕ(i) := βi for 1 ≤ i ≤ 3 and ϕ(4) := β satisfies
Condition (ii) of Lemma 2.

Condition (i) is now considered. Let σ : {1, 2, 3}∗ → {a,b}∗ be a non-periodic
morphism. Note that, since var(β) = var(β1) = var(β2) = var(β3), σ(γ)
= ε for
every γ ∈ {β, β1, β2, β3}. Let k1, k2, k3, k4 ∈ N and consider the equation

σ(β1)
k1 = σ(β2)

k2 = σ(β3)
k3 = σ(β)k4 . (2)

Clearly, this is only satisfied if

σ(2 · 3 · 1 · 1)k2 = σ(3 · 1 · 1 · 2)k3 = σ(1 · 1 · 2 · 3)k4 ,

and therefore

σ(1 · 1 · 2 · 3) = σ(2 · 3 · 1 · 1) = σ(3 · 1 · 1 · 2).

Assume that (2), and therefore the subsequent systems of equations, are satisfied.
This implies that

σ(311)σ(2) = σ(2)σ(311)

= σ(11)σ(23) = σ(23)σ(11)

= σ(112)σ(3) = σ(3)σ(112)

and therefore by Lemma 1 σ(1), σ(2), σ(3) share a primitive root. Thus σ is
periodic. This is a contradiction; there does not exist a non-periodic morphism

114 J.D. Day, D. Reidenbach, and J.C. Schneider

σ such that (2) is satisfied. By Proposition 3, ϕ therefore satisfies Condition (i)
of Lemma 2. Thus, for any pattern α /∈ DPCP with var(α) = {1, 2, 3, 4},
ϕ(α) /∈ DPCP, and β is a factor of ϕ(α).

5 An Alternative Means of Finding Patterns Not in
DPCP

While Theorem 10 provides motivation for the further study of morphisms in the
context of DPCP¬, it also demonstrates the need to identify periodicity forcing
words by other means. In [1], Culik II and Karhumäki show that this may be
done using periodicity forcing sets. Indeed, patterns not in DPCP are essentially
periodicity forcing sets with a cardinality of 1. However, it is generally easier
to construct periodicity forcing sets with higher cardinalities, as more patterns
results in a more restricted class of (pairs of) morphisms which agree on every
pattern. This is precisely the reason why the morphisms approach is useful (see
Proposition 4).

It follows from the properties of morphisms that the agreement of two mor-
phisms on a ratio-imprimitive pattern can be reduced to the agreement of those
morphisms on a set of two (or more) smaller patterns. The following lemma
establishes this relationship formally, providing a characterisation of when a
ratio-imprimitive pattern is in DPCP.

Lemma 14. Let α = β1 · β2 · ... · βn be a pattern such that β1, β2, ..., βn share
a basic Parikh vector. Then α /∈ DPCP if and only if {β1, β2, ..., βn} is a
periodicity forcing set.

For patterns with a higher element of ratio-imprimitivity (i. e., those which
have many different prefixes with the same basic Parikh vector as the whole
pattern), larger values of n can be taken. This results in a larger potential sim-
plification gained by applying Lemma 14. While this does restrict the range of
patterns to which this approach may be applied, it is worth noting that any
concatenation of all the patterns β1, β2, ..., βn is also not be in DPCP. This
means that relatively rich classes of patterns can be established with any single
set of factors. Expressing the same result using morphisms demonstrates more
clearly this trade-off. The following proposition gives a criterion for a morphism
ϕ : Δ1

∗ → Δ2
∗ which maps any pattern α with var(α) = Δ1 to a pattern not in

DPCP.

Proposition 15. Let Δ1, Δ2 be sets of variables, and let ϕ : Δ1
∗ → Δ2

∗ be
a morphism. For every i ∈ Δ1, let βi := ϕ(i). If {βi | i ∈ Δ1} is a periodicity
forcing set, and β1, β2, ... βn share the same basic Parikh vector, then ϕ(α) /∈
DPCP for any pattern α satisfying var(α) = Δ1.

While the set of patterns to which morphisms satisfying Proposition 15 can be
applied is much larger than for morphisms satisfying Lemma 2, the images are
more restricted. The result is a contrasting class of examples of patterns not in

Periodicity Forcing Words 115

DPCP. The characterisation given in Lemma 14 shows that periodicity forcing
sets of patterns with the same basic Parikh vectors are very closely related to
sets of ratio-imprimitive patterns not in DPCP. Indeed, every ratio-imprimitive
pattern not in DPCP can be decomposed into a unique periodicity forcing set of
ratio-primitive patterns with the same basic Parikh vectors, and for every such
set, there exists a unique corresponding set of ratio-imprimitive patterns not in
DPCP, obtained by concatenating every pattern in the set at least once.

It is therefore appropriate to simply investigate periodicity forcing sets of
ratio-primitive patterns with equal basic Parikh vectors, since such sets auto-
matically yield sets of patterns not in DPCP. While it is not difficult to construct
periodicity forcing sets for any set of variables, generating sets of patterns with
equal basic Parikh vectors present more of a challenge. Similarly to the mor-
phisms approach studied in [3] and Sect. 3, the following techniques produce
periodicity forcing words by building on the existing knowledge in the two vari-
able case. Strong sufficient conditions are known for a set of patterns over two
variables to be periodicity forcing (see Holub [5]), so they are generally not dif-
ficult to produce. Lemma 16 provides a conveniently concise example to use as
a starting point.

Lemma 16 (Culik II, Karhumäki [1]). The set {1 ·2, 1 ·1 ·2 ·2} is periodicity
forcing.

The advantage of starting with a smaller periodicity forcing set is that strict
conditions can already be imposed on factors of the larger patterns. It is not
difficult to see that for any periodicity forcing set Π := {β1, β2, ... , βn}, and
any morphism ϕ : (var(β1) ∪ · · · ∪ var(βn))

∗ → N∗, the set ϕ(Π) := {ϕ(β1),
ϕ(β2), ... , ϕ(βn)} is periodicity forcing with respect to each factor ϕ(x), where
x ∈ var(β1) ∪ var(β2) ∪ · · · ∪ var(βn). Specifically, for each pair of morphisms σ,
τ which agree on ϕ(Π), at least one of the following cases needs to be satisfied:

(i) There exists a primitive word w such that, for every x ∈ var(β1)∪var(β2)∪
· · · ∪ var(βn), σ(ϕ(x)) ∈ {w}∗ and τ(ϕ(x)) ∈ {w}∗.

(ii) For every x ∈ var(β1) ∪ var(β2) ∪ · · · ∪ var(βn), σ(ϕ(x)) = τ(ϕ(x)).

This can be verified by contradiction: assuming that neither condition holds, the
morphisms σ ◦ϕ and τ ◦ϕ are evidence that {β1, β2, ... βn} is not a periodicity
forcing set. It can therefore be more efficient to generate new periodicity forcing
sets from existing ones, by substituting individual variables for patterns as this
considerably restricts the morphisms σ, τ which need to be accounted for.

The first case is, generally speaking, the more difficult – and is addressed in the
following two lemmas, which provide a tool for exploiting the ‘partial’ periodicity
of two morphisms, and extending it to guarantee their total periodicity. This is
achieved by introducing patterns which are formed by ‘splitting’ a pattern which
has a periodicity constraint on it.

Lemma 17. Let w, u, v be words, and let k1, k2, k3, k4 ∈ N0 with k2 ≥ 1. If

wk1 · u · wk2 · v · wk3 = wk4

then u, v, and w commute.

116 J.D. Day, D. Reidenbach, and J.C. Schneider

Lemma 18. Let w be a primitive word, and let u, u′, v, v′ be non-empty words
such that u ·v = u′ ·v′ = w. Then for any k1, k2, k3, k4 ∈ N0 and any q1, q2 ∈ N,
the equation

wk1 · u · wq1 · v · wk2 = wk3 · u′ · wq2 · v′ · wk4 (3)

only has solutions if k1 = k3, k2 = k4, q1 = q2, u = u′ and v = v′.

It is now easier to formulate methods for generating larger periodicity sets
from smaller ones, allowing for the preservation of the property of having pat-
terns with the same basic Parikh vector. The following method relies on ‘split-
ting’ one variable y into two (so each occurrence of y becomes, e. g., y1y2) in
each pattern. New patterns are then introduced to ‘force’ the periodicity of y1
and y2. Although the theorem appears very technical, it is relatively simple to
apply, as example 20 shows.

Theorem 19. Let Δ := {x1, x2, ..., xn} be a set of variables, and let y /∈
Δ be a variable. Let Π := {α1, α2, ..., αm} be a periodicity forcing set such
that

⋃m
i=1 var(αm) = Δ. Let ϕ : Δ∗ → (Δ ∪ {y})∗ be the morphism given by

ϕ(xn) := xn · y and ϕ(xi) := xi for 1 ≤ i < n. Let t ∈ N, and for 1 ≤ i ≤ t, let
βi := xn · γi · y for some pattern γi. Let βt+1 = x1 · x1 · x2 · x2 · · ·xn · xn · y · y. If
(i) γ1, γ2, ..., γt are patterns such that var(γ1) = var(γ2) = · · · = var(γt) =

Δ\{xn},
(ii) for any k1, k2, ..., kq ∈ N, the series of word equations γ1

k1 = γ2
k2 = · · · =

γt
kt has only periodic solutions,

then the set {ϕ(α1), ϕ(α2), ..., ϕ(αm), β1, β2, ..., βt+1} is periodicity forcing.

Example 20. Let Π := {1 · 2, 1 · 1 · 2 · 2}. It is established in Lemma 16 that Π is
a periodicity forcing set. Let ϕ : {1, 2}∗ → {1, 2, 3}∗ be the morphism given by
ϕ(1) := 1 and ϕ(2) := 2 ·3. Consider the set Π ′ := {ϕ(1 ·2), ϕ(1 ·1 ·2 ·2), β1, β2}
where β1 := 2 · 1 · 3 and β2 := 1 · 1 · 2 · 2 · 3 · 3. It follows from the fact that Π is a
periodicity forcing set that, for any two morphisms σ, τ : {1, 2, 3}∗ → {a,b}∗,
if σ and τ agree on every pattern in Π ′, then

(1) σ(1), τ(1), σ(2 · 3), τ(2 · 3) commute, or
(2) σ(1) = τ(1) and σ(2 · 3) = τ(2 · 3).
Assume the first case is true. It follows from Lemmas 17 and 18 that if σ and
τ agree on 2 · 1 · 3, they must be periodic. Assume that the second case is true.
Then if σ and τ agree on 1 · 1 · 2 · 2 · 3 · 3, they must agree on 2 · 2 · 3 · 3. They
also agree on 2 · 3, and {2 · 3, 2 · 2 · 3 · 3} is a periodicity forcing set. Thus if σ
and τ are distinct, they must be periodic over {2, 3}. Furthermore, if they agree
on 2 · 1 · 3, then since σ(1) = τ(1) = u for some word u ∈ {a,b}∗,

σ(2) · u · σ(3) = τ(2) · u · τ(3).

If σ and τ are periodic over {2, 3}, there exist k1, k2, k3, k4 ∈ N0 and a primitive
word w ∈ {a,b}∗ such that σ(2) = wk1 , σ(3) = wk2 , τ(2) = wk3 and τ(3) = wk4 .
Thus

wk1 · u · wk2 = wk3 · u · wk4

Periodicity Forcing Words 117

which is a non-trivial equation in two unknowns unless k1 = k3 and k2 = k4,
in which case σ and τ are not distinct. Therefore by Lemma 1, u ∈ {w}∗.
Consequently, if two distinct morphisms agree on every pattern in Π ′, they are
periodic, so Π ′ is a periodicity forcing set.

An alternative to splitting variables in the patterns of a periodicity forcing set
is to generate a set of patterns obtained by inserting a new variable repeatedly
into occurrences of a single pattern not in DPCP. It is relatively simple to
establish a set of patterns with the same basic Parikh vectors in this way. The
next results demonstrate how it can be shown that such a set is also periodicity
forcing. The following definition is given to provide a notation for inserting a
new variable x at a specified place in a pattern α.

Definition 21. Let α be a pattern and let x ∈ var(α) be a variable. Let prex(α)
be the prefix of α up to, and including the first occurrence of x. Let sufx(α) be
the suffix of α starting after (not including) the first occurrence of x.

Note that prex(α) · sufx(α) = α, so the pattern prex(α) · y · sufx(α) is the
pattern obtained by inserting the variable y into the pattern α directly after
the first occurrence of x. Again, knowledge of existing periodicity forcing sets
is used to impose the required conditions. For clarity, a specific example (from
Lemma 16) is used; however, any periodicity forcing set of patterns with two
variables would be suitable.

Theorem 22. Let α /∈ DPCP and let x /∈ var(α). Then the set Π := {x · α,
x · x · α · α} ∪ {prey(α) · x · sufy(α) | y ∈ var(α)} is periodicity forcing.

It is clear that the patterns generated in the style of Theorem 22 have the
pattern αk as a sub-pattern, where k := | var(α)| + 3. Thus there exists a non-
trivial morphism ϕ and a pattern β /∈ DPCP such that ϕ(β) = αk.

Proposition 23. Let α = βk for some pattern β and number k ≥ | var(α)|+ 3.
Then α is not a prime element of DPCP¬.

This is an interesting result since the properties associated with the Dual PCP
are, due to the nature of morphisms, generally consistent for powers of the same
word. It can also be interpreted that, as a result, the majority of periodicity
forcing words are not prime.

6 Conclusion

Section 3 introduces a prime subset of DPCP¬, allowing the set to be described as
chains of morphic images. It is shown that this subset is non-empty, and thus that
DPCP¬ can be exactly generated by the set of prime periodicity forcing words.
In Section 4, a construction is given for periodicity forcing words containing any
given factor/prefix/suffix. This not only produces a rich class of new examples,
but demonstrates a previously unknown level of generality within the seemingly

118 J.D. Day, D. Reidenbach, and J.C. Schneider

very restrictive set. Motivated by the study of the prime periodicity forcing
words introduced earlier, Section 5 examines alternative methods for generating
periodicity forcing words. The results give examples of periodicity forcing words
which contrast those known so far, and provide further insights into the prime
words considered earlier in the paper. As a by-product of results from this paper
and existing literature, tight bounds on the length of the shortest periodicity
forcing word over a given alphabet can be given.

Acknowledgements. The authors wish to thank the anonymous referees
for their helpful remarks and suggestions which have provided a useful
additional reference and a construction which has produced a stronger form
of Proposition 7.

References

1. Culik II, K., Karhumäki, J.: On the equality sets for homomorphisms on
free monoids with two generators. Theoretical Informatics and Applications
(RAIRO) 14, 349–369 (1980)

2. Czeizler, E., Holub, S., Karhumäki, J., Laine, M.: Intricacies of simple word equa-
tions: An example. International Journal of Foundations of Computer Science 18,
1167–1175 (2007)

3. Day, J.D., Reidenbach, D., Schneider, J.C.: On the Dual Post Correspondence
problem. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 167–
178. Springer, Heidelberg (2013)

4. Hadravova, J., Holub, S.: Large simple binary equality words. International Journal
of Foundations of Computer Science 23, 1385–1403 (2012)

5. Holub, S.: Binary equality sets are generated by two words. Journal of Algebra 259,
1–42 (2003)

6. Holub, S., Kortelainen, J.: Linear size test sets for certain commutative languages.
Theoretical Informatics and Applications (RAIRO) 35, 453–475 (2001)

7. Karhumäki, J., Petre, E.: On some special equations on words. Technical Report
584, Turku Centre for Computer Science, TUCS (2003)

8. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)
9. Makanin, G.S.: The problem of solvability of equations in a free semi-group. Soviet

Mathematics Doklady 18, 330–334 (1977)
10. Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of the American

Mathematical Society 52, 264–268 (1946)

Balancedness of Arnoux-Rauzy and Brun Words

Vincent Delecroix1, Tomáš Hejda2,3, and Wolfgang Steiner3

1 Institut de Mathématiques de Jussieu, CNRS UMR 7586,
Université Paris Diderot – Paris 7, Case 7012, 75205 Paris Cedex 13, France

delecroix@math.jussieu.fr
2 Department of Mathematics and Doppler Institute, FNSPE,

Czech Technical University in Prague, Czech Republic
tohecz@gmail.com

3 LIAFA, CNRS UMR 7089, Université Paris Diderot – Paris 7,
Case 7014, 75205 Paris Cedex 13, France
steiner@liafa.univ-paris-diderot.fr

Abstract. We study balancedness properties of words given by the
Arnoux-Rauzy and Brun multi-dimensional continued fraction algorithms.
We show that almost all Brun words on 3 letters and Arnoux-Rauzy
words over arbitrary alphabets are finitely balanced; in particular, bound-
edness of the strong partial quotients implies balancedness. On the other
hand, we provide examples of unbalanced Brun words on 3 letters.

1 Introduction

It is well known that Sturmian words are exactly the 1-balanced aperiodic words
on 2 letters. Standard Sturmian words can be characterized in the following way:
Each standard Sturmian word ω ∈ {1, 2}N is the image of a standard Sturmian
word by the substitution α1 : 1 �→ 1, 2 �→ 12, or α2 : 1 �→ 21, 2 �→ 2; it has thus
an ‘S-adic representation’ ω = αa1

1 αa2
2 αa3

1 αa4
2 · · · (with S = {α1, α2}). Moreover,

[0; a1, a2, . . .] is the continued fraction expansion of f2/f1, where fi denotes the
frequency of the letter i in ω; e.g., the Fibonacci word is ω = α1α2α1α2 · · · , with
[0; 1, 1, . . .] being the golden mean. For details, we refer to [17, Chapter 2] and
[15, Chapter 6]. Since each Sturmian word has the same language as a standard
Sturmian word, it is sufficient to study the standard ones for all properties that
depend only on the language, such as balancedness.

Many different generalizations of Sturmian words to larger alphabets can be
found in the literature; see e.g. [5]. We are interested in words that are provided
by multi-dimensional continued fraction algorithms and the corresponding sub-
stitutions; see [6]. Since 1-balancedness is a strong restriction [16,19], we are
interested in finite balancedness of words given by the Arnoux-Rauzy and Brun
continued fraction algorithms; see Sections 2 and 3 for precise definitions.

The prototype of an Arnoux-Rauzy word is the Tribonacci word, which is 2-
balanced [18]. However, we know from [13] that there are Arnoux-Rauzy words
(on 3 letters) that are not finitely balanced; see also [12]. In [7], it was shown
that Arnoux-Rauzy words are finitely balanced if the ‘weak partial quotients’ are

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 119–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

120 V. Delecroix, T. Hejda, and W. Steiner

bounded, and that a large class of Arnoux-Rauzy words are 2-balanced. Here, we
show that the set of finitely balanced Arnoux-Rauzy words has full measure (with
respect to a suitably chosen measure on Arnoux-Rauzy words), and contains the
words with bounded ‘strong partial quotients’ (in arbitrary dimension). Note
however that, for d ≥ 3, Arnoux-Rauzy words are defined only for a set of slopes
of zero Lebesgue measure that form the the so-called Rauzy gasket [3].

The Brun algorithm has the advantage over Arnoux-Rauzy that it is defined
for all directions in Rd

+. To our knowledge, the balancedness of words associated
to the Brun algorithm has not been studied yet. We show that almost all Brun
words on 3 letters are finitely balanced; in particular, this holds for words with
bounded ‘strong partial quotients’. We also exhibit Brun words (on 3 letters)
that are not finitely balanced. Note that, for fixed points of substitutions, an
exact criterion for balancedness is provided by [1].

2 Notation

Let A = {1, 2, . . . , d} be a finite alphabet and A∗ be the free monoid over A
(with the concatenation as product). Let |w| be the length of a word w ∈ A∗

and |w|j the number of occurrences of the letter j ∈ A in w. A pair of words
u, v ∈ A∗ with |u| = |v|, is C-balanced if

−C ≤ |u|j − |v|j ≤ C for all j ∈ A.

A factor of an infinite word ω = (ωn)n∈N ∈ AN is a finite word of the form
ω[k,�) = ωkωk+1 · · · ω�−1. An infinite word ω is C-balanced if each pair of factors
u, v of ω with |u| = |v| is C-balanced; ω is finitely balanced if it is C-balanced
for some C ∈ N. The balance of an infinite word ω is the smallest number B(ω)
such that ω is B(ω)-balanced, with B(ω) = ∞ if ω is not finitely balanced.

The frequency fi of a letter i ∈ A in ω = (ωn)n∈N ∈ AN is limn→∞ |ω[0,n)|i/n,
if the limit exists. It is easy to see that the frequency of each letter exists when
ω is finitely balanced (see [10]).

A substitution σ over A is an endomorphism of A∗. Its incidence matrix is
the square matrix Mσ = (|σ(j)|i)i,j∈A ∈ Nd×d (with N = {0, 1, 2, . . .}). The map

� : A∗ → Nd, w �→ t(|w|1, |w|2, . . . , |w|d)

is called the abelianization map. Note that �(σ(w)) = Mσ�(w) for all w ∈ A∗.
Let (σn)n∈N be a sequence of substitutions over the alphabet A. To keep

notation concise, we set Mn = Mσn for n ∈ N and denote products of con-
secutive substitutions and their incidence matrices by σ[k,�) = σkσk+1 · · · σ�−1
and M[k,�) = MkMk+1 · · · M�−1 respectively. A word ω ∈ AN is a limit word of
(σn)n∈N if there is a sequence (ω(n))n∈N with

ω(0) = ω, ω(n) = σn

(
ω(n+1)) for all n ∈ N,

where the substitutions σn are extended naturally to infinite words. The word ω
is called an S-adic word with directive sequence (σn)n∈N and S = {σn : n ∈ N}.

Balancedness of Arnoux-Rauzy and Brun Words 121

Given a directive sequence (σn)n∈N, we can define different generalizations
of partial quotients. The sequence of weak partial quotients is the sequence of
positive integers (an)n∈N such that σ0σ1 · · · = σa0

A0
σa1

A1
· · · , with An =

∑n−1
k=0 ak

and σAn = · · · = σAn+1−1 �= σAn+1 for all n ∈ N. The notion of strong partial
quotients refers to the time we need to reach a positive (or at least primitive)
matrix in the product of incidence matrices. A good precise definition of them
probably depends on S and the intended use, but properties like being bounded
should hold simultaneously for all suitable definitions. In this paper, we say that
the strong partial quotients are bounded by h if M[n,n+h) is primitive for all n ∈ N.

3 Arnoux-Rauzy and Brun Words

We are interested in this paper in two S-adic systems that arise naturally from
multi-dimensional continued fraction algorithms. The set of Arnoux-Rauzy
substitutions over d letters is SAR = {αi : i ∈ A} with

αi : i �→ i, j �→ ij for j ∈ A \ {i}.

For each directive sequence (σn)n∈N = (αin)n∈N ∈ SN

AR, the words σ[0,n)(in) are
nested prefixes of the limit word ω. If the directive sequence contains infinitely
many occurrences of each substitution αi, i ∈ A, the unique limit word ω is
called a standard Arnoux-Rauzy word. Any word that has the same language
(and thus the same balancedness properties) as a standard Arnoux-Rauzy word
is called Arnoux-Rauzy word. The Tribonacci word is the Arnoux-Rauzy word
on 3-letters with periodic directive sequence α1α2α3α1α2α3 · · · ; it satisfies

ω = 121312112131212131211213121312112131212131211213121121 · · ·
and is known to be 2-balanced [18].

A set of Brun substitutions was defined in [9] to provide a connection between
stepped planes and the Brun algorithm. Here, we consider the set of substitutions
SBr = {βij : i ∈ A, j ∈ A \ {i}} over d letters, with

βij : j �→ ij, k �→ k for k ∈ A \ {j},

that corresponds to the additive version of this algorithm. An SBr-adic word is
called a Brun word if its directive sequence (σn)n∈N satisfies

σnσn+1 ∈ {βijβij : i ∈ A, j ∈ A \ {i}}
∪ {βijβjk : i ∈ A, j ∈ A \ {i}, k ∈ A \ {j}} for all n ∈ N (1)

and for each i ∈ A there is j ∈ A such that βij occurs infinitely often in (σn)n∈N.
E.g., the Brun word with periodic directive sequence β12β23β31β12β23β31 · · · is

ω = 1231121231231123112123112123123112123123112311212312 · · · .

Recall that the Brun algorithm [11] subtracts at each step the second largest
coordinate from the largest coordinate. It is given by the transformations

Tij : Dij → Rd
+, f �→ M−1

βij
f/‖M−1

βij
f‖1,

122 V. Delecroix, T. Hejda, and W. Steiner

where Dij ⊂ Rd
+ is the set of vectors f = t(f1, . . . , fd) such that fi ≥ fj are

the two largest components of f ; here, R+ = [0, ∞). A sequence (i0, j0)(i1, j1)
(i2, j2) · · · is a Brun representation of f ∈ Rd

+ if

Tik−1jk−1 · · · Ti1j1 Ti0j0 (f) ∈ Dikjk
for all k ∈ N.

Given a Brun word ω with directive sequence βi0j0 βi1j1 βi2j2 · · · , we get that
(i0, j0)(i1, j1)(i2, j2) · · · is a Brun representation of the vector of frequencies of ω.

In the Arnoux-Rauzy algorithm, all but one coordinates are subtracted from
the largest coordinate, which is assumed to be larger than the sum of the other
coordinates. Here, we have transformations Ti : Di → Rd

+ with Di ⊂ Rd
+ being

the set of vectors f = t(f1, . . . , fd) such that fi ≥ ∑
j∈A\{i} fj.

The following two lemmas translate the fact that these two algorithms con-
verge and show that the frequency vector f = f(ω) of the limit word of a directive
sequence (σn)n∈N is given by the limit cone

R+ f =
⋂

n∈N

M[0,n) R
d
+. (2)

Moreover, because of the relation with the continued fraction algorithms, two
distinct standard Arnoux-Rauzy words and two distinct standard Brun words
respectively have different frequency vectors.

Lemma 1. Each Brun word on 3 letters has letter frequencies.

Proof. Let (σn)n∈N ∈ SN

Br be a directive sequence of a Brun word on 3 letters,
Mn the associated incidence matrices, and f ∈ ⋂

n∈N
M[0,n) Rd

+. From [4], we
know that there is a sequence of matrices (M̃n)n∈N such that ‖t(M̃[0,n))‖∞ ≤ 1,

t(M̃[0,n)) x = t(M[0,n)) x for all x ∈ f⊥, n ∈ N, (3)

where f⊥ denotes the hyperplane orthogonal to f ; see also Section 6.
For each v ∈ f⊥ with ‖v‖∞ = 1, we have∣∣∣∣

〈
v,

M[0,n) ei

‖M[0,n) ei‖1

〉∣∣∣∣ =
∣∣∣∣
〈

t(M̃[0,n)) v,
ei

‖M[0,n) ei‖1

〉∣∣∣∣ ≤ 1
‖M[0,n) ei‖1

for each unit vector ei, i ∈ A. Since mini∈A ‖M[0,n) ei‖1 → ∞ for each directive
sequence of a Brun word, the cone M[0,n) R

d
+ tends to the line R+ f , i.e., (2) holds.

From (2), it is standard to prove that f is the frequency vector of ω; see [8]. ��

The proof of Lemma 1 could be adapted to Arnoux-Rauzy words because the
incidence matrix of an Arnoux-Rauzy substitution is similar to a matrix given
by the fully subtractive algorithm, which was studied in [4]. However, we prefer
using the results of [4] in a different way in the proof of the following lemma.

Lemma 2. Each Arnoux-Rauzy word (on d ≥ 2 letters) has letter frequencies.

Balancedness of Arnoux-Rauzy and Brun Words 123

Proof. Let (σn)n∈N = (αin)n∈N be the directive sequence of an Arnoux-Rauzy
word and f ∈ ⋂n∈N

M[0,n) Rd
+ with ‖f‖1 = 1. We know from the results on the

fully subtractive algorithm in [4] that there is a sequence of matrices (M̃n)n∈N

such that ‖M̃[0,n)‖∞ ≤ 1 and

M̃[0,n) x = M[0,n) x for all x ∈ (M[0,n))−11⊥, n ∈ N, (4)

where 1 = t(1, . . . , 1); see also Section 5.
Denote by πn be the projection along (M[0,n))−1f onto (M[0,n))−11⊥. Then

‖π0 M[0,n) �(in)‖∞ = ‖M[0,n) πn �(in)‖∞ = ‖M̃[0,n) πn �(in)‖∞ ≤ ‖πn �(in)‖∞.

Since (M[0,n))−1f ∈ Mn Rd
+, the in-th coordinate of (M[0,n))−1f is larger than or

equal to (the sum of) the other coordinates, thus ‖πn �(in)‖∞ ≤ ‖�(in)‖∞ = 1.
Following Dumont and Thomas [14], each prefix ω[0,k) of ω can be written as

ω[0,k) = σ[0,m−1)(pm−1) σ[0,m−2)(pm−2) · · · σ[0,1)(p1) p0,

with a sequence of words (pn)0≤n<m defined in the following way. Let m =
m(k) ∈ N be minimal such that |σ[0,m)(im)| > k. Then there is a unique prefix
pm−1 of σm−1(im) such that

|σ[0,m−1)(pm−1)| ≤ k < |σ[0,m−1)(pm−1am−1)|,
with am−1 ∈ A being the letter following pm−1 in σm−1(im). Inductively, we
obtain for 0 ≤ n < m unique pn ∈ A∗ and an ∈ A such that

|σ[0,n)(pn)| ≤ k −
m−1∑

j=n+1
|σ[0,j)(pj)| < |σ[0,n)(pnan)|

and pnan is a prefix of |σn(an+1)|, with am = im. We thus have

�(ω[0,k)) =
m−1∑
n=0

�
(
σ[0,n)(pn)

)
=

m−1∑
n=0

π0 M[0,n) �(pn).

By the definition of the Arnoux-Rauzy substitutions, pn is either empty or equal
to in, thus ∥∥π0 �(ω[0,k))

∥∥
∞ ≤

m−1∑
n=0

∥∥π0 M[0,n) �(in)
∥∥

∞ ≤ m.

Since m(k)/‖�(ω[0,k))‖∞ → 0 as k → ∞, the direction of �(ω[0,k)) converges to
that of f , thus f is the frequency vector of ω. ��

4 Discrepancy and Balancedness

Let ω be an infinite word with frequency vector f = t(f1, f2, . . . , fd), and denote
by π be the projection along f onto 1⊥. It is easily written down in coordinates:

π �(w) = t(|w|1 − |w| f1, |w|2 − |w| f2, . . . , |w|d − |w| fd).

124 V. Delecroix, T. Hejda, and W. Steiner

Note that the so called Rauzy fractal is the closure of {π �(ω[0,n)) : n ∈ N},
which is the projection of the vertices of the broken line associated with ω.

More generally, for a function φ : A → R, we consider the Birkhoff sums

Sn(φ, ω) = φ(ω0) + φ(ω1) + · · · + φ(ωn−1).

Remark that, if χi denotes the characteristic function of a letter i ∈ A, then
Sn(χi, ω) = |ω[0,n)|i, and the coordinates of π �(ω[0,n)) are Sn(χi − fi, ω). The
φ-discrepancy of ω is Δ(φ, ω) = supn∈N |Sn(φ, ω)|. We set

Δ(ω) = max
i∈A

Δ(χi − fi, ω) = sup
n∈N

‖π �(ω[0,n))‖∞,

and say that ω has finite discrepancy if Δ(ω) < ∞. The following result from [1,
Proposition 7 and Remark 8] establishes a link between balance and discrepancy.

Lemma 3. We have Δ(ω) ≤ B(ω) ≤ 4Δ(ω).

For many words, balancedness can be shown using the following proposition.

Proposition 1. Let ω be an Arnoux-Rauzy or Brun word with directive sequence
(σn)n∈N. For each sequence of matrices (M̃n)n∈N satisfying (3), we have

Δ(ω) ≤
∞∑

n=0

∥∥t(M̃[0,n))
∥∥

∞.

For each sequence of matrices (M̃n)n∈N satisfying (4), we have

Δ(ω) ≤
∞∑

n=0

∥∥M̃[0,n)
∥∥

∞.

Proof. The first statement follows from

Δ(χi − fi, ω) = sup
k∈N

∣∣〈ei − fi 1, �(ω[0,k))
〉∣∣ ≤

∞∑
n=0

∣∣〈ei − fi 1, M[0,n) �(in)
〉∣∣

=
∞∑

n=0

∣∣〈t(M̃[0,n)) (ei − fi 1), �(in)
〉∣∣ ≤

∞∑
n=0

∥∥t(M̃[0,n))
∥∥

∞,

where we have used the Dumont-Thomas representations in the first inequality
(see the proof of Lemma 2), the fact that ei−fi 1 ∈ f⊥ in the second equality and
‖ei − fi 1‖∞ ≤ 1 in the last inequality. The proof of the second statement runs
along the lines of the proof of Lemma 2, where we can replace αin by βinjn . ��

5 Contractivity of Arnoux-Rauzy Matrices

Now we study the contractivity of Arnoux-Rauzy matrices on certain hyper-
planes, quantifying the approach in [4]. For a directive sequence (σn)n∈N, let

v(n) = t
(
v

(n)
1 , v

(n)
2 , . . . , v

(n)
d

)
=

t(M[0,n)) 1
‖t(M[0,n)) 1‖1

(n ∈ N).

Balancedness of Arnoux-Rauzy and Brun Words 125

Lemma 4. Let ω be an Arnoux-Rauzy word with directive sequence (αin)n∈N.
Then ‖v(n)‖∞ < 1

d−1 for all n ∈ N. If moreover {in, in+1, . . . , in+h−1} = A,
h ∈ N, then ‖v(n+h)‖∞ < 2h−1

2h(d−1) .

Proof. First note that ‖v(0)‖∞ = 1
d . Assume now that ‖v(n)‖∞ < 1

d−1 , and
let w.l.o.g. in = 1. Then the simplex

{
x ∈ Rd : ‖x‖1 = 1, ‖x‖∞ ≤ 1

d−1
}

is
mapped by tMn (after normalizing) to the simplex spanned by t

(
0, 1

d−1 , . . . , 1
d−1

)
,

t
(1

2(d−1) , 1
2(d−1) , 1

d−1 , . . . , 1
d−1

)
, . . . , t

(1
2(d−1) , 1

d−1 , . . . , 1
d−1 , 1

2(d−1)
)
. This shows

that ‖v(n+1)‖∞ < 1
d−1 and that v

(n+1)
in

< 1
2(d−1) . Similar considerations show

that v
(n+h)
in

< 2h−1
2h(d−1) for all h ≥ 1. If {in, in+1, . . . , in+h−1} = A, then we obtain

that v
(n+h)
j < 2h−1

2h(d−1) for all j ∈ A. ��
Lemma 5. Let ω be an Arnoux-Rauzy word with directive sequence (αin)n∈N.
Then there is a sequence of matrices (M̃n)n∈N satisfying (4) with∥∥tM̃n ein

∥∥
1 = d − ‖v(n+1)‖−1

∞ < 1

and tM̃n ej = ej for all j ∈ A \ {in}, n ∈ N.

Proof. For each n ∈ N, let M̃n be the matrix with in-th row equal to t1 −
tv(n+1)

‖v(n+1)‖∞
and j-th row tej for all j ∈ A\{in}. Then

∥∥tM̃n ein

∥∥
1 = d−‖v(n+1)‖−1∞

and tM̃n ej = ej for all j ∈ A \ {in}, with ‖v(n+1)‖−1
∞ > d − 1 by Lemma 4.

Since adding a multiple of tv(n+1) to a row of Mn does not change Mn x
for x ∈ (v(n+1))⊥, we have M̃n x = Mn x for all x ∈ (v(n+1))⊥. Using that
Mn (v(n+1))⊥ = (v(n))⊥, we obtain inductively that (4) holds, which proves the
lemma. ��
Lemma 6. Let ω be an Arnoux-Rauzy word with directive sequence (αin)n∈N

and (M̃n)n∈N as in Lemma 5. If {ik, ik+1, . . . , i�−1} = A and there is h ∈ N
such that {in−h+1, in−h+2, . . . , in} = A for all n ∈ [k, �), then

∥∥M̃[k,�)
∥∥

∞ <
2h − d

2h − 1
.

Proof. Let j ∈ A and let m ∈ [k, �) be minimal such that im = j. Then

∥∥t(M̃[k,�)) ej

∥∥
1 ≤ ∥∥t(M̃[m+1,�))

∥∥
1

∥∥t(M̃[k,m+1)) ej

∥∥
1 ≤ ∥∥tM̃m ej

∥∥
1 <

2h − d

2h − 1
,

where we have used that, for all n ∈ [k, �) by Lemmas 4 and 5, ‖tM̃n‖ ≤ 1,
tM̃n ej = ej for all j ∈ A \ {in}, and ‖tM̃n ein‖1 < 2h−d

2h−1 . This shows that
‖M̃[k,�)‖∞ = ‖t(M̃[k,�))‖1 < 2h−d

2h−1 . ��
Theorem 1. Let h ∈ N. There is a constant C(h) such that each Arnoux-Rauzy
word with strong partial quotients bounded by h, i.e., with directive sequence
(αin)n∈N satisfying {in, . . . , in+h−1} = A for all n ∈ N, is C(h)-balanced.

126 V. Delecroix, T. Hejda, and W. Steiner

Proof. By Lemma 6, there is a sequence (M̃n)n∈N satisfying (4) such that
‖M̃[n,n+h)‖∞ < 2h−d

2h−1 for all n ≥ h − 1, thus ‖M̃[0,n)‖∞ = O((2h−d
2h−1

)n/h),
hence

∑∞
n=0 ‖M̃[0,n)‖∞ is bounded. Lemma 3 and Proposition 1 conclude the

proof. ��

6 Contractivity of 3-Dimensional Brun Matrices

For Brun words (over 3 letters), we follow a similar strategy as for Arnoux-Rauzy
words. For a Brun word ω with directive sequence (ψin,jn)n∈N, let (kn)n∈N be
the sequence of letters defined by {in, jn, kn} = A, and let

f (n) = t
(
f

(n)
1 , f

(n)
2 , . . . , f

(n)
d

)
=

(M[0,n))−1f
‖(M[0,n))−1f‖1

be the frequency vector of ω(n). Moreover, let (Fn)n∈N be the sequence of Fi-
bonacci numbers defined by F0 = 1, F1 = 2, Fn = Fn−1 + Fn−2 for all n ≥ 2.

Lemma 7. Let ω be a Brun word over 3 letters with directive sequence
(βin,jn)n∈N. Then f

(n−h)
in

≥ 1
Fh+1+1 for all h ≤ n. If {in, in+1, . . . , in+h−1} = A

for all n ∈ N, then we have (f (n)
jn

− f
(n)
kn

)/f
(n)
in

≥ 1
Fh

for all n ∈ N.

Proof. Since f
(n)
in

≥ f
(n)
j for all j ∈ A, we have f

(n)
in

≥ 1/3, and it is easily
checked that the minimum for f

(n−h)
in

is attained when f (n) = (1/3, 1/3, 1/3)
and in−h · · · in−1 is an alternating sequence of jn and kn. In this case, we have
f

(n−h)
in

= 1, f
(n−h)
in−h

= Fh, and f
(n−h)
in−h+1

= Fh−1, thus f
(n−h)
in

= 1
Fh+1+1 .

Let now, w.l.o.g. in = 1, jn = 2, and assume that {1, 3} ⊂ {in+2, . . . , in+h}.
Then f (n+1) lies in the quadrangle with corners

(1
3 , 1

3 , 1
3
)
,
(

Fh

2(Fh+1) , Fh

2(Fh+1) , 1
Fh+1

)
,(1

Fh+1 , Fh−1
Fh+1 , 1

Fh+1
)
, and

(1
Fh+1 , Fh

2(Fh+1) , Fh

2(Fh+1)
)
. Therefore, f (n) lies in the

quadrangle with corners
(1

2 , 1
4 , 1

4
)
,
(2Fh

3Fh+2 , Fh

3Fh+2 , 2
3Fh+2

)
,
(1

2 , Fh−1
2Fh

, 1
2Fh

)
, and(

Fh+2
3Fh+2 , Fh

3Fh+2 , Fh

3Fh+2
)
. In particular, note that f

(n)
1 − f

(n)
2 ≥ 1

2Fh
.

Assume now that in−1 = 3. (The situation is similar if in−1, . . . , in−�+1 are
alternatingly 2 and 1, and in−� = 3.) Then (f (n−1)

1 − f
(n−1)
2)/f

(n−1)
1 is minimal

when f (n) =
(1

2 , Fh−1
2Fh

, 1
2Fh

)
, which implies that f (n−1) =

(1
3 , Fh−1

3Fh
, Fh+1

3Fh

)
, thus

(f (n−1)
1 −f

(n−1)
2)/f

(n−1)
1 ≥ 1

Fh
. A study of several cases shows that this is a lower

bound for (f (n)
jn

− f
(n)
kn

)/f
(n)
in

when {in, in+1, . . . , in+h−1} = A for all n ∈ N. ��
Lemma 8. Let ω be a Brun word with directive sequence (βin,jn)n∈N. Then there
is a sequence of matrices (M̃n)n∈N satisfying (3) with

∥∥M̃n ein

∥∥
1 = 1 − f

(n)
jn

− f
(n)
kn

f
(n)
in

≤ 1

and M̃n ej = ej for all j ∈ A \ {in}, n ∈ N.

Balancedness of Arnoux-Rauzy and Brun Words 127

Proof. For each n ∈ N, let M̃n be the matrix built from Mn by subtracting
f (n)/f

(n)
in

from the in-th column. Then

∥∥M̃n ein

∥∥
1 =

(
1 − f

(n)
in

f
(n)
in

)
+
(

1 − f
(n)
jn

f
(n)
in

)
+

f
(n)
kn

f
(n)
in

= 1 − f
(n)
jn

− f
(n)
kn

f
(n)
in

,

and tM̃n ej = ej for all j ∈ A \ {in}. Since adding a multiple of f (n) to a column
of Mn does not change tMn x for x ∈ (f (n))⊥, we have M̃n x = Mn x for all
x ∈ (f (n))⊥. Using that tMn (f (n))⊥ = (f (n+1))⊥, we obtain inductively that (3)
holds, which proves the lemma. ��
Theorem 2. Let h ∈ N. There is a constant C(h) such that each Brun word
over 3 letters with strong partial quotients bounded by h, i.e., with directive
sequence (βinjn)n∈N satisfying {in, . . . , in+h−1} = {1, 2, 3} for all n ∈ N, is
C(h)-balanced.

Proof. The proof runs along the same lines as that of Theorem 1. Here, Lemma 8
implies that

∥∥t(M̃[n,n+h))
∥∥

∞ ≤ 1
Fh

for all n ∈ N, similarly to Lemma 6, thus
‖t(M̃[0,n))‖∞ = O(F −n/h

h). Lemma 3 and Proposition 1 conclude the proof. ��

7 Balancedness of Almost All Words

We use here the results of [4] on Lyapunov exponents to prove that for almost
all directive sequences for Brun or Arnoux-Rauzy algorithms, the associated
infinite words have finite balances. Here, we define cylinders for both algorithms
as follows: given a finite word w, we denote by [w] the set of frequency vectors
for which the continued fraction expansion starts by w.

Theorem 3. Let μ be an ergodic invariant probability measure for the Arnoux-
Rauzy algorithm (on d letters) such that μ([w]) > 0 for the cylinder corresponding
to a word w0w1 · · · wn−1 ∈ A∗ with {w0, w1, . . . , wn−1} = A. Then, for μ-almost
every f in the Rauzy gasket, the Arnoux-Rauzy word ωAR(f) is finitely balanced.

Let μ be an ergodic invariant probability measure for the Brun algorithm
on 3 letters such that μ([w]) > 0 for the cylinder corresponding to a word
w = (i0, j0) · · · (in−1, jn−1) with {j0, j1, . . . , jn−1} = {1, 2, 3}. Then, for μ-almost
every f , the Brun word ωBr(f) is finitely balanced.

Proof. From [4], we know that the second Lyapunov exponent of the cocycle
M[0,n) is negative and hence ‖t(M[0,n)) v‖ decays exponentially fast for μ-almost
every f and all v ∈ f⊥. By Proposition 1, this implies that ωAR(f) and ωBr(f)
respectively are finitely balanced. ��

The Brun algorithm admits an invariant ergodic probability measure abso-
lutely continuous with respect to Lebesgue [2]. Therefore, we have the following
corollary of Theorem 3.

128 V. Delecroix, T. Hejda, and W. Steiner

Corollary 1. For Lebesgue almost all frequency vectors f ∈ R3, the Brun word
ωBr(f) is finitely balanced.

8 Imbalances in Brun Sequences

Similarly to the construction of unbalanced Arnoux-Rauzy words (over 3 letters)
in [13], we construct now unbalanced Brun words for d = 3. First, for any
sequence (σn)n∈N satisfying (1), define a sequence (σ̃n)n∈N as follows:

σ̃0 = ζ1 and σ̃n =

⎧⎪⎨
⎪⎩

ζ1 : 1 �→ 1, 2 �→ 2, 3 �→ 23, if σn−1σn = βijβij ,

ζ2 : 1 �→ 1, 2 �→ 3, 3 �→ 32, if σn−1σn = βijβji,

ζ3 : 1 �→ 2, 2 �→ 3, 3 �→ 31, if σn−1σn = βijβjk,

see Figure 1. If ω and ω̃ have the directive sequences (σn)n∈N and (σ̃n)n∈N

respectively, then ω and ω̃ differ only by a bijective letter-to-letter morphism,
which does not influence the balance properties. The proofs of the following
results will be given by the end of this section.

Proposition 2. Let C ∈ N and let

ω = ζC−1
1 ζ2ζ1ζ2

3 ζ1︸ ︷︷ ︸
=τC−1

ζC−2
1 ζ2ζ1ζ2

3 ζ1︸ ︷︷ ︸
=τC−2

· · · ζ1ζ2ζ1ζ2
3 ζ1︸ ︷︷ ︸

=τ1

ζ2ζ1ζ2
3 ζ1︸ ︷︷ ︸

=τ0

(ω′)

for some ω′ ∈ {1, 2, 3}N containing the letters 1 and 3. Then ω is not C-balanced.

Notice that the segment ζk
1 ζ2ζ1ζ2

3 ζ1 ζk−1
1 ζ2ζ1ζ2

3 ζ1 in (σ̃n)n∈N comes from the
segment βk

ijβ2
jiβikβ2

kj βk−1
kj β2

jkβkiβ
2
ij in (σn)n∈N. Therefore, there exist directive

sequences where each substitution βij occurs with gaps that are bounded
by 2C + 5.

The proposition shows that for any C there are uncountably many Brun words
that are not C-balanced. Moreover, there are also uncountably many Brun words
that are not finitely balanced.

β32

β23β21

β12

β13 β31

ζ2
ζ2

ζ2
ζ2

ζ2

ζ2

ζ3

ζ3

ζ3

ζ3

ζ3

ζ3

ζ1

ζ1

ζ1

ζ1

ζ1

ζ1

Fig. 1. Relation between the directive sequences of ω and ω̃. If we follow the directive
seqence of ω on the nodes, then we read the directive sequence of ω̃ on the edges.

Balancedness of Arnoux-Rauzy and Brun Words 129

Theorem 4. Let (ck)k∈N be a sequence of natural numbers such that

ck > 12
√

3 3N(c0)+N(c1)+···+N(ck−1)k for all k ∈ N,

with N(c) = c(c+1)/2+3c. Let ρc = τc−1τc−2 · · · τ1τ0, with τj as in Proposition 2.
Then the Brun word with directive sequence ρc0ρc1 · · · is not finitely balanced.

To prove these statements, we will use techniques that are typical for finding
imbalances in S-adic sequences. Let u, v ∈ A∗. Then we put Δu,v = �(u) − �(v).
For any substitution σ, we clearly have

Δσ(u),σ(v) = MσΔu,v, (5)

and consequently:

Lemma 9. Let σ be a substitution over the alphabet A such that the images of all
letters under σ start with the same letter a ∈ A. Let u, v be non-empty factors of
a word ω ∈ AN. Then σ(ω) contains factors u′, v′ with Δ′ = Δu′,v′ = MσΔ+p ea

for all p ∈ {0, ±1, ±2}.

Proof (of Proposition 2). Consider a pair of words u, v, with Δu,v = t(q + 1,
−q, −1). Then, using (5) and applying Lemma 9 with the substitution
ζ2

3 : 1 �→ 3, 2 �→ 31, 3 �→ 312, we obtain the following chain of Δ’s:⎛
⎝q + 1

−q
−1

⎞
⎠ ζ1−→

⎛
⎝ q + 1

−q − 1
−1

⎞
⎠ ζ2

3−−→
p=2

⎛
⎝−q − 2

−1
1

⎞
⎠ ζ2ζ1−−−→

⎛
⎝q − 2

1
1

⎞
⎠ ζq

1−→
⎛
⎝−(q + 2)

q + 1
1

⎞
⎠ ,

and by symmetry t(−q − 1, q, 1) τq−→ t(q − 2, −q − 1, −1).
ting from the pair of factors 1, 3 of ω′, we have the chain⎛

⎝ 1
0

−1

⎞
⎠ τ0−→

⎛
⎝−2

1
1

⎞
⎠ → · · · → ±

⎛
⎝ −C

C − 1
1

⎞
⎠ τC−1−−−→ ±

⎛
⎝C + 1

−C
−1

⎞
⎠ .

The last vector sums to zero, therefore it corresponds to factors u, v of ω such
that |u| = |v| and

∣∣|u|1 − |v|1
∣∣ = C + 1. ��

Lemma 10. Let ω be a Brun word and let C, N ∈ N be such that ω(N) is not(
12

√
3 3N C

)
-balanced. Then ω is not C-balanced.

Proof. We will only sketch the proof. According to Lemma 3, there is a prefix u
of ω(N) such that ‖πN x‖∞ > 1

4 12
√

3 3NC, where x = �(u) and πN is the
projection along the frequency vector f (N) of ω(N) onto 1⊥. Then the frequency
vector of ω is f = M[0,N) f (N), and M[0,N) x is the abelianization of a prefix of ω.

Let γ be the angle between the vectors f (N) and x. Then it can be verified that
applying Mn divides the angle between two non-negative vectors by at most 3,
thus the angle between f and x is at least γ/3N . Since the matrices Mn are of the

130 V. Delecroix, T. Hejda, and W. Steiner

form identity matrix + non-negative matrix, and the vector x is non-negative,
we get that ‖x‖2 ≥ ‖x(N)‖2. Therefore the (orthogonal) distance δ of the point x
from the line R f is at least 1/3N times the distance of x from R f (N), which is
at least 1√

3 ‖πN x‖2. Altogether, δ ≥ 1√
3·3N

‖πN x‖2 ≥ 1
3·3N ‖πN x‖∞ > 3C.

Finally, ‖π M[0,N) x‖∞ ≥ 1√
3 ‖π M[0,N) x‖2 ≥ 1

3 δ > C, which means according
to Lemma 3 that ω is not C-balanced. ��

Proof (of Theorem 4). The Brun word with directive sequence ρck
ρck+1ρck+1 · · ·

is not N(ck)-balanced according to Proposition 2. Lemma 10 therefore gives that
ω is not k-balanced. ��

Acknowledgements. The authors are very grateful to Valérie Berthé, Timo
Jolivet, and Sébastien Labbé for many fruitful discussions.

This work was supported by the Grant Agency of the Czech Technical Uni-
versity in Prague grant SGS11/162/OHK4/3T/14, Czech Science Foundation
grant 13-03538S, and the ANR/FWF project “FAN – Fractals and Numeration”
(ANR-12-IS01-0002, FWF grant I1136).

References

1. Adamczewski, B.: Balances for fixed points of primitive substitutions. Theoret.
Comput. Sci. 307(1), 47–75 (2003)

2. Arnoux, P., Nogueira, A.: Mesures de Gauss pour des algorithmes de fractions
continues multidimensionnelles. Ann. Sci. École Norm. Sup. (4) 26(6), 645–664
(1993)

3. Arnoux, P., Starosta, Š.: The Rauzy gasket. In: Barral, J., Seuret, S. (eds.) Further
Developments in Fractals and Related Fields. Trends in Mathematics. Springer
(2013)

4. Avila, A., Delecroix, V.: Pisot property for Brun and fully subtractive algorithm
(preprint, 2013)

5. Balková, L., Pelantová, E., Starosta, Š.: Sturmian jungle (or garden?) on multi-
literal alphabets. RAIRO – Theoretical Informatics and Applications 44, 443–470
(2010)

6. Berthé, V.: Multidimensional Euclidean algorithms, numeration and substitutions.
Integers 11B(A2), 1–34 (2011)

7. Berthé, V., Cassaigne, J., Steiner, W.: Balance properties of Arnoux-Rauzy words.
To appear in Internat. J. Algebra Comput. (2013)

8. Berthé, V., Delecroix, V.: Beyond substitutive dynamical systems: S-adic expan-
sions (preprint, 2013)

9. Berthé, V., Fernique, T.: Brun expansions of stepped surfaces. Discrete
Math. 311(7), 521–543 (2011)

10. Berthé, V., Tijdeman, R.: Balance properties of multi-dimensional words. Theoret.
Comput. Sci. 273(1-2), 197–224 (2002), WORDS (Rouen, 1999)

11. Brun, V.: Algorithmes euclidiens pour trois et quatre nombres. In: Treizième Con-
grès des Mathèmaticiens Scandinaves, Tenu à Helsinki, Août 18-23, pp. 45–64.
Mercators Tryckeri, Helsinki (1957, 1958)

Balancedness of Arnoux-Rauzy and Brun Words 131

12. Cassaigne, J., Ferenczi, S., Messaoudi, A.: Weak mixing and eigenvalues for Arnoux-
Rauzy sequences. Ann. Inst. Fourier (Grenoble) 58(6), 1983–2005 (2008)

13. Cassaigne, J., Ferenczi, S., Zamboni, L.Q.: Imbalances in Arnoux-Rauzy sequences.
Ann. Inst. Fourier (Grenoble) 50(4), 1265–1276 (2000)

14. Dumont, J.M., Thomas, A.: Systèmes de numération et fonctions fractales relatifs
aux substitutions. Theoret. Comput. Sci. 65(2), 153–169 (1989)

15. Fogg, N.P.: Substitutions in dynamics, arithmetics and combinatorics. Lecture
Notes in Mathematics, vol. 1794. Springer, Berlin (2002), Berthé, V., Ferenczi,
S., Mauduit, C., Siegel, A. (eds.)

16. Hubert, P.: Suites équilibrées. Theoret. Comput. Sci. 242(1-2), 91–108 (2000)
17. Lothaire, M.: Algebraic combinatorics on words. Encyclopedia of Mathematics and

its Applications, vol. 90. Cambridge University Press, Cambridge (2002)
18. Richomme, G., Saari, K., Zamboni, L.Q.: Balance and abelian complexity of the

Tribonacci word. Adv. in Appl. Math. 45(2), 212–231 (2010)
19. Vuillon, L.: Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10(suppl.) (2003)

Open and Closed Prefixes of Sturmian Words

Alessandro De Luca1 and Gabriele Fici2

1 DIETI, Università di Napoli Federico II, Italy
alessandro.deluca@unina.it

2 Dipartimento di Matematica e Informatica, Università di Palermo, Italy
gabriele.fici@unipa.it

Abstract. A word is closed if it contains a proper factor that occurs
both as a prefix and as a suffix but does not have internal occurrences,
otherwise it is open. We deal with the sequence of open and closed pre-
fixes of Sturmian words and prove that this sequence characterizes every
finite or infinite Sturmian word up to isomorphisms of the alphabet. We
then characterize the combinatorial structure of the sequence of open
and closed prefixes of standard Sturmian words. We prove that every
standard Sturmian word, after swapping its first letter, can be written
as an infinite product of squares of reversed standard words.

1 Introduction

In a recent paper with M. Bucci [1], the authors dealt with trapezoidal words,
also with respect to the property of being closed (also known as periodic-like [2])
or open. Factors of Sturmian words are the most notable example of trapezoidal
words, and in fact the last section of [1] showed the sequence of open and closed
prefixes of the Fibonacci word, a famous characteristic Sturmian word.

In this paper we build upon such results, investigating the sequence of open
and closed prefixes of Sturmian words in general, and in particular in the stan-
dard case. More precisely, we prove that the sequence oc(w) of open and closed
prefixes of a word w (i.e., the sequence whose n-th element is 1 if the prefix of
length n of w is closed, or 0 if it is open) characterizes every (finite or infinite)
Sturmian word, up to isomorphisms of the alphabet.

In [1], we investigated the structure of the sequence oc(F) of the Fibonacci
word. We proved that the lengths of the runs (maximal subsequences of consecu-
tive equal elements) in oc(F) form the doubled Fibonacci sequence. We prove in
this paper that this doubling property holds for every standard Sturmian word,
and describe the sequence oc(w) of a standard Sturmian word w in terms of the
semicentral prefixes of w, which are the prefixes of the form unxyun, where x, y
are letters and unxy is an element of the standard sequence of w. As a conse-
quence, we show that the word ba−1w, obtained from a standard Sturmian word
w starting with letter a by swapping its first letter, can be written as the infinite
product of the words (u−1

n un+1)
2, n ≥ 0. Since the words u−1

n un+1 are reversals
of standard words, this induces an infinite factorization of ba−1w in squares of
reversed standard words.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 132–142, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Open and Closed Prefixes of Sturmian Words 133

Finally, we show how the sequence of open and closed prefixes of a standard
Sturmian word of slope α is related to the continued fraction expansion of α.

2 Open and Closed Words

Let us begin with some notation and basic definitions; for those not included
below, we refer the reader to [1] and [3].

Let Σ = {a, b} be a 2-letter alphabet. Let Σ∗ and Σ̂∗ stand respectively for
the free monoid and the free group generated by Σ. Their elements are called
words overΣ. The length of a word w is denoted by |w|. The empty word, denoted

by ε, is the unique word of length zero and is the neutral element of Σ∗ and Σ̂∗.
A prefix (resp. a suffix) of a word w is any word u such that w = uz (resp. w =

zu) for some word z. A factor of w is a prefix of a suffix (or, equivalently, a suffix
of a prefix) of w. An occurrence of a factor u in w is a factorization w = vuz. An
occurrence of u is internal if both v and z are non-empty. The set of prefixes,
suffixes and factors of the word w are denoted by Pref(w), Suff(w) and Fact(w),
respectively. From the definitions, we have that ε is a prefix, a suffix and a factor
of any word. A border of a word w is any word in Pref(w) ∩ Suff(w) different
from w.

A factor v of a word w is left special in w (resp. right special in w) if av and
bv are factors of w (resp. va and vb are factors of w). A bispecial factor of w is
a factor that is both left and right special.

The word w̃ obtained by reading w from right to left is called the reversal (or
mirror image) of w. A palindrome is a word w such that w̃ = w. In particular,
the empty word is a palindrome.

We recall the definitions of open and closed word given in [4]:

Definition 1. A word w is closed if and only if it is empty or has a factor
v
= w occurring exactly twice in w, as a prefix and as a suffix of w (with no
internal occurrences). A word that is not closed is called open.

The word aba is closed, since its factor a appears only as a prefix and as a
suffix. The word abaa, on the contrary, is not closed. Note that for any letter
a ∈ Σ and for any n > 0, the word an is closed, an−1 being a factor occurring
only as a prefix and as a suffix in it (this includes the special case of single letters,
for which n = 1 and an−1 = ε).

More generally, any word that is a power of a shorter word is closed. Indeed,
suppose that w = vn for a non-empty v and n > 1. Without loss of generality,
we can suppose that v is not a power itself. If vn−1 has an internal occurrence
in w, then there exists a proper prefix u of v such that uv = vu, and it is a basic
result in Combinatorics on Words that two words commute if and only if they
are powers of a same shorter word, in contradiction with our hypothesis on v.

Remark 2. The notion of closed word is equivalent to that of periodic-like word
[2]. A word w is periodic-like if its longest repeated prefix is not right special.

134 A. De Luca and G. Fici

The notion of closed word is also closely related to the concept of complete
return to a factor, as considered in [5]. A complete return to the factor u in a
word w is any factor of w having exactly two occurrences of u, one as a prefix
and one as a suffix. Hence, w is closed if and only if it is a complete return to
one of its factors; such a factor is clearly both the longest repeated prefix and
the longest repeated suffix of w (i.e., the longest border of w).

Remark 3. Let w be a non-empty word over Σ. The following characterizations
of closed words follow easily from the definition:

1. the longest repeated prefix (resp. suffix) of w does not have internal occur-
rences in w, i.e., occurs in w only as a prefix and as a suffix;

2. the longest repeated prefix (resp. suffix) of w is not a right (resp. left) special
factor of w;

3. w has a border that does not have internal occurrences in w;
4. the longest border of w does not have internal occurrences in w.

Obviously, the negations of the previous properties characterizate open words.
In the rest of the paper we will use these characterizations freely and without
explicit mention to this remark.

We conclude this section with two lemmas on right extensions.

Lemma 4. Let w be a non-empty word over Σ. Then there exists at most one
letter x ∈ Σ such that wx is closed.

Proof. Suppose by contradiction that there exist a, b ∈ Σ such that both wa and
wb are closed. Let va and v′b be the longest borders of wa and wb, respectively.
Since va and v′b are prefixes of w, one has that one is a prefix of the other.
Suppose that va is shorter than v′b. But then va has an internal occurrence in
wa (that appearing as a prefix of the suffix v′) against the hypothesis that wa
is closed. ��

When w is closed, then exactly one such extension is closed. More precisely,
we have the following (see also [2, Prop. 4]):

Lemma 5. Let w be a closed word. Then wx, x ∈ Σ, is closed if and only if wx
has the same period of w.

Proof. Let w be a closed word and v its longest border; in particular, v is the
longest repeated prefix of w. Let x be the letter following the occurrence of v
as a prefix of w. Clearly, wx is has the same period as w, and it is closed as its
border vx cannot have internal occurrences. Conversely, if y
= x is a letter, then
wy has a different period and it is open as its longest repeated prefix v is right
special. ��

For more details on open and closed words and related results see [1,2,4,6,7].

Open and Closed Prefixes of Sturmian Words 135

3 Open and Closed Prefixes of Sturmian Words

Let Σω be the set of (right) infinite words over Σ, indexed by N0. An element
of Σω is a Sturmian word if it contains exactly n + 1 distinct factors of length
n, for every n ≥ 0. A famous example of Sturmian word is the Fibonacci word

F = abaababaabaababaababa · · ·

If w is a Sturmian word, then aw or bw is also a Sturmian word. A Sturmian
word w is standard (or characteristic) if aw and bw are both Sturmian words.
The Fibonacci word is an example of standard Sturmian word. In the next
section, we will deal specifically with standard Sturmian words. Here, we focus
on finite factors of Sturmian words, called finite Sturmian words. Actually, finite
Sturmian words are precisely the elements of Σ∗ verifying the following balance
property: for any u, v ∈ Fact(w) such that |u| = |v| one has ||u|a − |v|a| ≤ 1 (or,
equivalently, ||u|b − |v|b| ≤ 1).

We let St denote the set of finite Sturmian words. The language St is factorial
(i.e., if w = uv ∈ St, then u, v ∈ St) and extendible (i.e., for every w ∈ St there
exist letters x, y ∈ Σ such that xwy ∈ St).

We recall the following definitions given in [8].

Definition 6. A word w ∈ Σ∗ is a left special (resp. right special) Sturmian
word if aw, bw ∈ St (resp. if wa,wb ∈ St). A bispecial Sturmian word is a
Sturmian word that is both left special and right special.

For example, the word w = ab is a bispecial Sturmian word, since aw, bw,
wa and wb are all Sturmian. This example also shows that a bispecial Sturmian
word is not necessarily a bispecial factor of some Sturmian word (see [9] for more
details on bispecial Sturmian words).

Remark 7. It is known that if w is a left special Sturmian word, then w is a
prefix of a standard Sturmian word, and the left special factors of w are prefixes
of w. Symmetrically, if w is a right special Sturmian word, then the right special
factors of w are suffixes of w.

We now define the sequence of open and closed prefixes of a word.

Definition 8. Let w be a finite or infinite word over Σ. We define the sequence
oc(w) as the sequence whose n-th element is 1 if the prefix of length n of w is
closed, or 0 otherwise.

For example, if w = abaaab, then oc(w) = 101001.
In this section, we prove the following:

Theorem 9. Every (finite or infinite) Sturmian word w is uniquely determined,
up to isomorphisms of the alphabet Σ, by its sequence of open and closed prefixes
oc(w).

We need some intermediate lemmas.

136 A. De Luca and G. Fici

Lemma 10. Let w be a right special Sturmian word and u its longest repeated
prefix. Then u is a suffix of w.

Proof. If w is closed, the claim follows from the definition of closed word. If w
is open, then u is right special in w, and by Remark 7, u is a suffix of w. ��

Lemma 11. Let w be a right special Sturmian word. Then wa or wb is closed.

Proof. Let u be the longest repeated prefix of w and x the letter following the
occurrence of u as a prefix of w. By Lemma 10, u is a suffix of w. Clearly, the
longest repeated prefix of wx is ux, which is also a suffix of wx and cannot have
internal occurrences in wx otherwise the longest repeated prefix of w would not
be u. Therefore, wx is closed. ��

So, by Lemmas 4 and 11, if w is a right special Sturmian word, then one of
wa and wb is closed and the other is open. This implies that the sequence of
open and closed prefixes of a (finite or infinite) Sturmian word characterizes it
up to exchange of letters. The proof of Theorem 9 is therefore complete.

4 Standard Sturmian Words

In this section, we deal with the sequence of open and closed prefixes of standard
Sturmian words. In [1] a characterization of the sequence oc(F) of open and
closed prefixes of the Fibonacci word F was given.

Let us begin by recalling some definitions and basic results about standard
Sturmian words. For more details, the reader can see [10] or [3].

Let α be an irrational number such that 0 < α < 1, and let [0; d0 + 1, d1, . . .]
be the continued fraction expansion of α. The sequence of words defined by
s−1 = b, s0 = a and sn+1 = sdn

n sn−1 for n ≥ 0, converges to the infinite word
wα, called the standard Sturmian word of slope α. The sequence of words sn is
called the standard sequence of wα.

Note that wα starts with letter b if and only if α > 1/2, i.e., if and only
if d0 = 0. In this case, [0; d1 + 1, d2, . . .] is the continued fraction expansion of
1−α, and w1−α is the word obtained from wα by exchanging a’s and b’s. Hence,
without loss of generality, we will suppose in the rest of the paper that w starts
with letter a, i.e., that d0 > 0.

For every n ≥ −1, one has

sn = unxy, (1)

for x, y letters such that xy = ab if n is odd or ba if n is even. Indeed, the
sequence (un)n≥−1 can be defined by: u−1 = a−1, u0 = b−1, and, for every
n ≥ 1,

un+1 = (unxy)
dnun−1 , (2)

where x, y are as in (1).

Open and Closed Prefixes of Sturmian Words 137

Example 12. The Fibonacci word F is the standard Sturmian word of slope
(3−

√
5)/2, whose continued fraction expansion is [0; 2, 1, 1, 1, . . .], so that dn = 1

for every n ≥ 0. Therefore, the standard sequence of the Fibonacci word F is the
sequence defined by: f−1 = b, f0 = a, fn+1 = fnfn−1 for n ≥ 0. This sequence
is also called the sequence of Fibonacci finite words.

Definition 13. A standard word is a finite word belonging to some standard
sequence. A central word is a word u ∈ Σ∗ such that uxy is a standard word, for
letters x, y ∈ Σ.

It is known that every central word is a palindrome. Actually, central words
play a central role in the combinatorics of Sturmian words and have several
combinatorial characterizations (see [10] for a survey). For example, a word over
Σ is central if and only if it is a palindromic bispecial Sturmian word.

Remark 14. Let (sn)n≥−1 be a standard sequence. It follows by the definition
that for every k ≥ 0 and n ≥ −1, the word skn+1sn is a standard word. In
particular, for every n ≥ −1, the word sn+1sn = un+1yxunxy is a standard
word. Therefore, for every n ≥ −1, we have that

unxyun+1 = un+1yxun (3)

is a central word.

The following lemma is a well known result (cf. [11]).

Lemma 15. Let w be a standard Sturmian word and (sn)n≥−1 its standard
sequence. Then:

1. A standard word v is a prefix of w if and only if v = sknsn−1, for some n ≥ 0
and k ≤ dn.

2. A central word u is a prefix of w if and only if u = (unxy)
kun−1, for some

n ≥ 0, 0 < k ≤ dn, and distinct letters x, y ∈ Σ such that xy = ab if n is
odd or ba if n is even.

Note that (unxy)
dn+1un−1 is a central prefix of w, but this does not contradict

the previous lemma since, by (2), (unxy)
dn+1un−1 = un+1yxun.

Recall that a semicentral word (see [1]) is a word in which the longest repeated
prefix, the longest repeated suffix, the longest left special factor and the longest
right special factor all coincide. It is known that a word v is semicentral if and
only if v = uxyu for a central word u and distinct letters x, y ∈ Σ. Moreover,
xuy is a factor of uxyu and thus semicentral words are open, while central words
are closed.

Proposition 16. The semicentral prefixes of w are precisely the words of the
form unxyun, n ≥ 1, where x, y and un are as in (1).

Proof. Since un is a central word, the word unxyun is a semicentral word by
definition, and it is a prefix of unxyun+1 = un+1yxun, which in turn is a prefix
of w by Lemma 15.

138 A. De Luca and G. Fici

Conversely, assume that w has a prefix of the form uξηu for a central word u
and distinct letters ξ, η ∈ Σ. From Lemma 15 and (1), we have that

uξηu = (unxy)
kun−1 · ξη · (unxy)

kun−1,

for some n ≥ 1, k ≤ dn, and distinct letters x, y ∈ Σ such that xy = ab if n is
odd or ba if n is even. In particular, this implies that ξη = yx.

If k = dn, then u = un+1yxun+1, and we are done. So, suppose by contra-
diction that k < dn. Now, on the one hand we have that (unxy)

k+1un−1yx is a
prefix of w by Lemma 15, and so (unxy)

k+1un−1 is followed by yx as a prefix of
w; on the other hand we have

uξηu = (unxy)
kun−1 · yx · (unxy)

kun−1

= (unxy)
k · un−1yxunxy · (unxy)

k−1un−1

= (unxy)
k · unxyun−1xy · (unxy)

k−1un−1

= (unxy)
k+1 · un−1xy · (unxy)

k−1un−1,

so that (unxy)
k+1un−1 is followed by xy as a prefix of w, a contradiction. ��

The next theorem shows the behavior of the runs of open and closed prefixes
in w by determining the structure of the last elements of the runs.

Theorem 17. Let vx, x ∈ Σ, be a prefix of w. Then:

1. v is open and vx is closed if and only if there exists n ≥ 1 such that v =
unxyun;

2. v is closed and vx is open if and only if there exists n ≥ 0 such that v =
unxyun+1 = un+1yxun.

Proof. 1. If v = unxyun+1 = un+1yxun, then v is semicentral and therefore
open. The word vx is closed since its longest repeated prefix unx occurs only as
a prefix and as a suffix in it.

Conversely, let vx be a closed prefix of w such that v is open, and let ux be
the longest repeated suffix of vx. Since vx is closed, ux does not have internal
occurrences in vx. Since u is the longest repeated prefix of v (suppose the longest
repeated prefix of v is a z longer than u, then vx, which is a prefix of z, would
be repeated in v and hence in vx, contradiction) and v is open, u must have
an internal occurrence in v followed by a letter y
= x. Symmetrically, if ξ is
the letter preceding the occurrence of u as a suffix of v, since u is the longest
repeated suffix of v one has that u has an internal occurrence in v preceded
by a letter η
= ξ. Thus u is left and right special in w. Moreover, u is the
longest special factor in v. Indeed, if u′ is a left special factor of v, then u
must be a prefix of u′. But ux cannot appear in v since vx is closed, and if uy
was a left special factor of v, it would be a prefix of v. Symmetrically, u is the
longest right special factor in v. Thus v is semicentral, and the claim follows from
Proposition 16.

2. If v = unxyun+1 = un+1yxun, then v is a central word and therefore
it is closed. Its longest repeated prefix is un+1. The longest repeated prefix of

Open and Closed Prefixes of Sturmian Words 139

vx is either ad0−1 (if n = 0) or unx (if n > 0); in both cases, it has an internal
occurrence as a prefix of the suffix un+1x. Therefore, vx is open.

Conversely, suppose that vx is any open prefix of w such that v is closed. If
vx = ad0b, then v = u0xyu1 = u1yxu0 and we are done. Otherwise, by 1), there
exists n ≥ 1 such that |unξyun| < |v| < |un+1yξun+1|, where {ξ, y} = {a, b}. We
know that unξyun+1 is closed and unξyun+1ξ is open; it follows v = unξyun+1 =
unxyun+1, as otherwise there should be in w a semicentral prefix strictly between
unxyun and un+1yxun+1. ��

Note that, for every n ≥ 1, one has:

un+1yxun+1 = un+1yxun(u
−1
n un+1)

= unxyun+1(u
−1
n un+1)

= unxyun(u
−1
n un+1)

2.

Therefore, starting from an (open) semi-central prefix unxyun, one has a run of
closed prefixes, up to the prefix unxyun+1 = un+1yxun = unxyun(u

−1
n un+1), fol-

lowed by a run of the same length of open prefixes, up to the prefix un+1yxun+1 =
un+1yxun(u

−1
n un+1) = unxyun(u

−1
n un+1)

2. See Table 1 for an illustration.
In Table 2, we show the first elements of the sequence oc(w) for a standard

Sturmian word w = aabaabaaabaabaa · · · of slope α = [0; 3, 2, 1, . . .], i.e., with
d0 = d1 = 2 and d2 = 1. One can notice that the runs of closed prefixes are
followed by runs of the same length of open prefixes.

The words u−1
n un+1 are reversals of standard words, for every n ≥ 1. Indeed,

let rn = s̃n for every n ≥ −1, so that r−1 = b, r0 = a, and rn+1 = rn−1r
dn
n for

n ≥ 0. Since by (1) sn = unxy and sn+1 = un+1yx, one has rn = yxun and
rn+1 = xyun+1, and therefore, by (3),

unrn+1 = un+1rn. (4)

Table 1. The structure of the prefixes of a standard Sturmian word w =
aabaabaaabaabaa · · · with respect to the un prefixes. Here d0 = d1 = 2 and d2 = 1.

prefix of w open/closed example

unxyun open aaba
unxyunx closed aabaa
unxyunxy closed aabaab
.
unxyun+1 = un+1yxun closed aabaabaa
un+1yxuny open aabaabaaa
un+1yxunyx open aabaabaaab
.
un+1yxun+1 open aabaabaaabaa
un+1yxun+1y closed aabaabaaabaab

140 A. De Luca and G. Fici

Table 2. The sequence oc(w) of open and closed prefixes for the word w =
aabaabaaabaabaa · · ·

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

w a a b a a b a a a b a a b a a

oc(w) 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1

Multiplying (4) on the left by u−1
n and on the right by r−1

n , one obtains

rn+1r
−1
n = u−1

n un+1. (5)

Since rn+1 = rn−1r
dn
n , one has that rn+1r

−1
n = rn−1r

dn−1
n , and therefore rn+1r

−1
n

is the reversal of a standard word. By (5), u−1
n un+1 is the reversal of a standard

word.
Now, note that for n = 0, one has u0xyu1 = u1yxu0 = ad0 and (u−1

0 u1) =
bad0−1. Thus, we have the following:

Theorem 18. Let w be the standard Sturmian word of slope α, with 0 < α <
1/2, and let [0; d0+1, d1, . . .], with d0 > 0, be the continued fraction expansion of
α. The word ba−1w obtained from w by swapping the first letter can be written
as an infinite product of squares of reversed standard words in the following way:

ba−1w =
∏
n≥0

(u−1
n un+1)

2,

where (un)n≥−1 is the sequence defined in (1).
In other words, one can write

w = ad0bad0−1
∏
n≥1

(u−1
n un+1)

2.

Example 19. Take the Fibonacci word. Then, u1 = ε, u2 = a, u3 = aba, u4 =
abaaba, u5 = abaababaaba, etc. So, u−1

1 u2 = a, u−1
2 u3 = ba, u−1

3 u4 = aba,
u−1
4 u5 = baaba, etc. Indeed, u−1

n un+1 is the reversal of the Fibonacci finite word
fn−1. By Theorem 18, we have:

F = ab
∏
n≥1

(u−1
n un+1)

2

= ab
∏
n≥0

(f̃n)
2

= ab · (a · a)(ba · ba)(aba · aba)(baaba · baaba) · · ·

i.e., F can be obtained by concatenating ab and the squares of the reversals of
the Fibonacci finite words fn starting from n = 0.

Open and Closed Prefixes of Sturmian Words 141

Note that F can also be obtained by concatenating the reversals of the
Fibonacci finite words fn starting from n = 0:

F =
∏
n≥0

f̃n

= a · ba · aba · baaba · ababaaba · · ·

and also by concatenating ab and the Fibonacci finite words fn starting from
n = 0:

F = ab
∏
n≥0

fn

= ab · a · ab · aba · abaab · abaababa · · ·

One can also characterize the sequence of open and closed prefixes of a stan-
dard Sturmian word w in terms of the directive sequence of w.

Recall that the continuants of an integer sequence (an)n≥0 are defined as
K [] = 1, K [a0] = a0, and, for every n ≥ 1,

K [a0, . . . , an] = anK [a0, . . . , an−1] +K [a0, . . . , an−2] .

Continuants are related to continued fractions, as the n-th convergent of
[a0; a1, a2, . . .] is equal to K [a0, . . . , an] /K [a1, . . . , an].

Let w be a standard Sturmian word and (sn)n≥−1 its standard sequence. Since
|s−1| = |s0| = 1 and, for every n ≥ 1, |sn+1| = dn|sn|+ |sn−1|, then one has, by
definition, that for every n ≥ 0

|sn| = K [1, d0, . . . , dn−1] .

For more details on the relationships between continuants and Sturmian words
see [12].

By Theorems 17 and 18, all prefixes up to ad0 are closed; then all prefixes from
ad0b till ad0bad0−1 are open, then closed up to ad0bad0−1 · u−1

1 u2, open again up
to ad0bad0−1 · (u−1

1 u2)
2, and so on. Thus, the lengths of the successive runs of

closed and open prefixes are: d0, d0, |u2|− |u1|, |u2|− |u1|, |u3|− |u2|, |u3|− |u2|,
etc. Since d0 = K [1, d0 − 1] and, for every n ≥ 1,

|un+1| − |un| = |sn+1| − |sn| = (dn − 1)|sn|+ |sn−1|
= K [1, d0, . . . , dn−1, dn − 1] ,

we have the following:

Corollary 20. Let w and α be as in the previous theorem and let, for every
n ≥ 0, kn = K [1, d0, . . . , dn−1, dn − 1]. Then

oc(w) =
∏
n≥0

1kn0kn .

142 A. De Luca and G. Fici

Acknowledgments. We thank an anonymous referee for helpful comments
that led us to add the formula in Corollary 20 to this final version. We also
acknowledge the support of the PRIN 2010/2011 project “Automi e Linguaggi
Formali: Aspetti Matematici e Applicativi” of the Italian Ministry of Education
(MIUR).

References

1. Bucci, M., De Luca, A., Fici, G.: Enumeration and Structure of Trapezoidal Words.
Theoretical Computer Science 468, 12–22 (2013)

2. Carpi, A., de Luca, A.: Periodic-like words, periodicity and boxes. Acta Informat-
ica 37, 597–618 (2001)

3. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications. Cambridge Univ. Press, New York (2002)

4. Fici, G.: A Classification of Trapezoidal Words. In: 8th International Conference
on Words, WORDS 2011. Electronic Proceedings in Theoretical Computer Science,
vol. 63, pp. 129–137 (2011)

5. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. European
J. Combin. 30, 510–531 (2009)

6. Bucci, M., de Luca, A., De Luca, A.: Rich and Periodic-Like Words. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 145–155. Springer, Heidelberg
(2009)

7. Fici, G., Lipták, Z.: Words with the Smallest Number of Closed Factors. In: 14th
Mons Days of Theoretical Computer Science (2012)

8. de Luca, A., Mignosi, F.: Some combinatorial properties of Sturmian words. The-
oret. Comput. Sci. 136, 361–385 (1994)

9. Fici, G.: A Characterization of Bispecial Sturmian Words. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 383–394. Springer,
Heidelberg (2012)

10. Berstel, J.: Sturmian and episturmian words. In: Bozapalidis, S., Rahonis, G. (eds.)
CAI 2007. LNCS, vol. 4728, pp. 23–47. Springer, Heidelberg (2007)

11. Fischler, S.: Palindromic prefixes and episturmian words. J. Combin. Theory Ser.
A 113, 1281–1304 (2006)

12. de Luca, A.: Some extremal properties of the Fibonacci word. Internat. J. Algebra
Comput. (to appear)

Finitely Generated Ideal Languages

and Synchronizing Automata

Vladimir V. Gusev, Marina I. Maslennikova, and Elena V. Pribavkina

Ural Federal University, Ekaterinburg, Russia
{vl.gusev,maslennikova.marina}@gmail.com,

elena.pribavkina@usu.ru

Abstract. We study representations of ideal languages by means of
strongly connected synchronizing automata. For every finitely generated
ideal language L we construct such an automaton with at most 2n states,
where n is the maximal length of words in L. Our constructions are based
on the De Bruijn graph.

Keywords: ideal language, synchronizing automaton, synchronizing
word, reset complexity.

1 Introduction

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA for short), where
Q is the state set, Σ stands for the input alphabet, and δ : Q × Σ → Q is the
transition function defining an action of the letters in Σ on Q. When δ is clear
from the context, we will write q . w instead of δ(q, w) for q ∈ Q and w ∈ Σ∗.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗

which leaves the automaton in unique state no matter at which state in Q it is
applied: q . w = q′ . w for all q, q′ ∈ Q. Any wordw with such property is said to be
synchronizing (or reset) word for the DFA A . For the last 50 years synchronizing
automata received a great deal of attention. For a brief introduction to the theory
of synchronizing automata we refer the reader to the recent surveys [9, 10].

In the present paper we focus on language theoretic aspects of the theory of
synchronizing automata. We denote by Syn(A) the language of synchronizing
words for a given automaton A . It is well known that Syn(A) is regular [10].
Furthermore, it is an ideal in Σ∗, i.e. Syn(A) = Σ∗ Syn(A)Σ∗. In what follows
we will assume considered ideal languages to be regular. On the other hand, every
ideal language L serves as the language of synchronizing words for some automa-
ton. For instance, the minimal automaton recognizing L is synchronized exactly
by L [4]. Thus, synchronizing automata can be considered as a special represen-
tation of an ideal language. Effectiveness of such representation was addressed
in [4]. The reset complexity rc(L) of an ideal language L is the minimal possible
number of states in a synchronizing automaton A such that Syn(A) = L. Ev-
ery such automaton A is called minimal synchronizing automaton (for brevity,
MSA). Let sc(L) be the number of states in the minimal automaton recognizing

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 143–153, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

144 V.V. Gusev, M.I. Maslennikova, and E.V. Pribavkina

L. Then for every ideal language L we have rc(L) ≤ sc(L). Moreover, there
are languages Ln for every n ≥ 3 such that rc(Ln) = n and sc(Ln) = 2n − n,
see [4]. Thus, representation of an ideal language by means of a synchronizing
automaton can be exponentially more succinct than “traditional” representa-
tion via minimal automaton. However, no reasonable algorithm is known for
computing an MSA of a given language. One of the obstacles is that an MSA is
not uniquely defined. For instance, there is a language with at least two differ-
ent MSA’s: one of them is strongly connected, another one has a sink state [4].
Therefore, some refinement of the notion of MSA seems to be necessary. Another
important observation is the following: minimal synchronizing automata for the
aforementioned languages Ln are strongly connected. Thus, one may expect that
there is always a strongly connected MSA for an ideal language. In the present
paper we show that it is not the case. Moreover, the smallest strongly connected
automaton with a language L as the language of synchronizing words may be
exponentially larger than a minimal synchronizing automaton of L.

Another source of motivation for studying representations of ideal languages
by means of synchronizing automata comes from the famous Černý conjecture.
In 1964 Černý conjectured that every synchronizing automaton with n states
possesses a synchronizing word of length at most (n − 1)2. Despite intensive
efforts of researchers this conjecture still remains open. We can restate the Černý
conjecture in terms of reset complexity as follows: if � is the minimal length
of words in an ideal language L then rc(L) ≥

√
� + 1. Thus, we hope that

deeper understanding of reset complexity will bring us new ideas to resolve
this long standing conjecture. It is well known that the Černý conjecture holds
true whenever it holds true for strongly connected automata. In this regard an
interesting related question was posed in [2]: does every ideal language serve as
the language of synchronizing words for some strongly connected automaton? For
instance, if the answer is negative then there is a way to simplify formal language
statement of the Černý conjecture. Unfortunately, it is not the case. Recently
Reiss and Rodaro [8] for every ideal language L (over an alphabet with at least
two letters) presented a strongly connected automaton A such that Syn(A) =
L. Their proof is non-trivial and technical. In the present paper we give simple
constructive proof of the fact that every finitely generated ideal language L, i.e.
L = Σ∗SΣ∗ for some finite set S, serves as the language of synchronizing words
for some strongly connected automaton. (The study of synchronizing automata
whose language of synchronizing words is a finitely generated ideal was initiated
in papers [6, 7].) Our constructions reveal interesting connections with classical
objects from combinatorics on words.

2 Algorithms and Automata Constructions

Let Σ be a finite alphabet with |Σ| > 1. Let L be a finitely generated ideal
language over Σ, i.e. L = Σ∗SΣ∗, where S is a finite set of words. In this
section we construct a strongly connected synchronizing automaton for which
L = Σ∗SΣ∗.

Finitely Generated Ideal Languages and Synchronizing Automata 145

First recall some standard definitions and fix notation. A word u is a factor
(prefix, suffix) of a word w, if w = xuy (w = uy, w = xu respectively) for some
x, y ∈ Σ∗. By Fact(w) we denote the set of all factors of w. The ith letter of the
word w is denoted by w[i]. The factor w[i]w[i + 1] · · ·w[j] is denoted by w[i..j].
By Σn (Σ≤n, Σ≥n) we denote the set of all words over Σ of length n (at most
n, at least n respectively).

Note, that if a word s ∈ S is a factor of some other word t ∈ S, then the word
t may be deleted from the set S without affecting the ideal language, generated
by S. Thus, we may assume, that the set S is anti-factorial, i.e. no word in S is
a factor of another word in S.

2.1 Ideal Language Generated by Σn

Theorem 1. Let Σ = {a, b}. There is unique up to isomorphism strongly con-
nected synchronizing automaton B such that Syn(B) = Σ≥n.

Proof. Consider De Bruijn graph for the words of length n. Recall that the
vertices of this graph are the words of length n, and there is a directed edge
from the vertex u to the vertex v, if u = xs and v = sy for some s ∈ Σn−1,
x, y ∈ Σ. By labeling each edge e = (u, v) by the last letter of v we obtain De
Bruijn automaton. Its state set is Q = Σn, and transition function is defined in
the following way: xs . y = sy for s ∈ Σn−1, x, y ∈ Σ. De Bruijn automaton is
known to be strongly connected. Thus it remains to verify that Syn(B) = Σ≥n.
It is easy to see that for an arbitrary word u of length at most n we have
Q .u = Σn−|u|u. Hence for any word w of length n we have |Q .w| = 1, and for
any word u of length less than n we have |Q .u| > 1. So, Syn(B) = Σ≥n.

Let C = 〈Q,Σ, δ〉 be a strongly connected synchronizing DFA such that
Syn(C) = Σ≥n. Let us prove that |Q| ≤ 2n. Strong connectivity implies Q . a ∪
Q . b = Q. By induction it is easy to see that Q =

⋃
|w|=k Q .w. In particular, we

have Q =
⋃

|w|=nQ .w. Thus, |Q| = |
⋃

|w|=nQ .w| ≤
∑

|w|=n |Q .w| = 2n. The
last equality follows from the fact that every word of length n synchronizes C , so
each Q .w is a singleton. For the converse inequality 2n ≤ |Q| consider the DFA
Ca, obtained from C by removing all transitions corresponding to the action of
b in C . The word an synchronizes C , so Ca contains no cycles but unique loop.
So the automaton Ca has a tree-like structure as it is shown on Fig.1. Denote
by s the state of C such that s . a = s. The state s is called root of the tree, and
the states p1, p2, . . . , pk having no incoming transitions labeled by a are called
leaves of the tree. The height h(pi) of a vertex pi is the length of the path from
pi to the root s. The height of the tree h(Ca) is the maximal height of its leaves.
We have h(Ca) = n. Indeed, if h(Ca) = h < n, then we would have Q .ah = {s},
meaning that ah ∈ Syn(C), which is impossible.

Consider the set of leaves H = Q \ Q . a = {p1, p2, ..., pk}. Since the DFA C
is strongly connected, for each state p
 in H there exists a state q
 such that
q
 . b = p
. Thus H ⊆ Q . b. We show that H is exactly Q . b, meaning that
Q .a ∩ Q . b = ∅. Take a leaf of height n. Without loss of generality suppose
it is p1. Let q1 be such that q1 . b = p1. The word ban−1 is synchronizing, so

146 V.V. Gusev, M.I. Maslennikova, and E.V. Pribavkina

p1 p2 p3 pk...

s

q

a

a a a a

a a
a

a
a

a

Fig. 1. The action of a in C

Q . ban−1 = {q} for some q ∈ Q. We have q1 . ba
n−1 = q, and q . a = s (see

Fig.1). Suppose there is p ∈ Q . a∩Q . b. Then there is a state q such that q . b = p.
Since p is not a leaf, we have h(p) < n. Then q . ban−1 = p . an−1 = s
= q. A
contradiction. Hence H = Q . b. Furthermore, the height of any leaf of Ca is
exactly n. To see this assume that there exists a state pm such that h(pm) < n,
i.e. pm . a
 = s, for some � < n. Then the word ban−1 is not synchronizing. Indeed,
take a state qm such that qm . b = pm. We have qm . ban−1 = pm . an−1 = s
= q.

Consider an arbitrary state p ∈ Q .a. Let δ−1(p, u) = {p′ ∈ Q | p′ . u = p}.
We prove that |δ−1(p, a)| ≥ 2 for each p ∈ Q .a. For the root s we have {s, q} ⊆
δ−1(s, a), thus, |δ−1(s, a)| ≥ 2. Let p be an arbitrary state in Q .a. Then p is
not a leaf. Strong connectivity of C implies that there exists a state p and a
word w ∈ Σn with w[n] = a such that p . w = p. Since w is synchronizing,
we have Q .w = {p}. Consider the word w[1..n − 1] that does not synchronize
C . Then |Q .w[1..n − 1]| ≥ 2. However, (Q .w[1..n − 1]) . w[n] = p. And we
obtain the inequality |δ−1(p, a)| ≥ 2. Denote H0 = {q} and construct sets Hi =
δ−1(Hi−1, a) for 1 ≤ i ≤ n− 1. We have |Hi| ≥ 2i for all 1 ≤ i ≤ n− 1. Then C
possesses at least 1 + 1 + 2 + 4 + ...+ 2n−1 = 2n states.

Thus we have |Q| = 2n. Moreover, Q = ∪|w|=nQ .w. It means that with each
state q of Q we can associate the word w of length n such that Q .w = {q}. It
is clear that it gives us the desired isomorphism between C and B. ��

Remark 1. In case Σ = {a, b}∪Δ, where Δ
= ∅, we consider De Bruijn automa-
ton constructed for the binary alphabet {a, b} and put the action of each letter
in Δ to be the same as the action of the letter a. It is clear that the language of
synchronizing words of the modified De Bruijn automaton coincides with Σ≥n.

The Theorem implies that the minimal DFA recognizing an ideal language L can
be exponentially smaller than a strongly connected MSA B with Syn(B) = L.

Finitely Generated Ideal Languages and Synchronizing Automata 147

2.2 Ideal Language Generated by a Set of Words of Fixed Length

Theorem 2. Let U � Σn. There is a strongly connected synchronizing automa-
ton BU with 2n states such that Syn(BU) = Σ∗UΣ∗.

Proof. We modify the De Bruijn automaton B from the section 2.1 to obtain
the desired automaton BU . First of all it is convenient to view the states of the
automaton B not as the words of length n, but as pairs (x, u), where x ∈ Σ and
u ∈ Σn−1. Then by the definition of the transitions in B we have

(x, u)
y−→ (z, v)⇔ uy = zv (1)

For a word uy which is not in U , we modify the corresponding transition given
by (1) in the following way. If uy /∈ U ∪ {an, bn} we put

(x, u)
y−→ (x, v), (2)

where v is defined by (1).
If uy = an /∈ U (uy = bn /∈ U respectively) we put

(a, an−1)
a−→ (b, an−1), ((b, bn−1)

b−→ (a, bn−1) respectively). (3)

The other transitions remain unchanged. The obtained automaton is denoted
by BU . The examples of the automaton B and the corresponding modified
automaton BU for U = {aaa, abb, bab} are shown on Fig.2 and Fig.3 respectively.
We prove that the automaton BU satisfies the statement of the proposition. First
we show that BU is strongly connected. For this purpose we prove that all the
states are reachable from the state (a, an−1), and the state (a, an−1) is reachable
from all states.

(a, aa)

(a, ab)

(a, ba)

(a, bb)

(b, aa)

(b, ab)

(b, ba)

(b, bb)

a

b

b a

b

a

b

a

b
a

b

a

b

a

a

b

Fig. 2. De Bruijn automaton for n = 3

148 V.V. Gusev, M.I. Maslennikova, and E.V. Pribavkina

(a, aa)

(a, ab)

(a, ba)

(a, bb)

(b, aa)

(b, ab)

(b, ba)

(b, bb)

a
b a

b

a

b

a

b

a

bb

a

b

a

a

b

Fig. 3. Automaton BU for U = {aaa, abb, bab}

First we show that a state (a, u) is reachable from (a, an−1) for any u ∈ Σn−1.
If u = an−1, the claim obviously holds. Hence we may assume u = akbû, where
k ≥ 0, û ∈ Σn−k−2. By the definition of transitions in BU we have

(a, an−1)
b−→ (a, an−2b)

û[1]−−→ (a, an−3bû[1])
û[2]−−→ · · · û[n−k−3]−−−−−−→

(a, ak+1bû[1..n− k − 3])
û[n−k−2]−−−−−−→ (a, akbû[1..n− k − 2]) = (a, u).

Symmetrically any state (b, u) is reachable from the state (b, bn−1). The latter
state is reachable from (a, bn−1). Thus the state (b, u) is reachable also from
(a, an−1):

(a, an−1) � (a, bn−1)
b−→ (b, bn−1) � (b, u).

Now we show that the state (a, an−1) is reachable from any other state. Apply
the word an−1 to an arbitrary state (x, u). By the definition of transitions we
have (x, u) . an−1 ∈ {(a, an−1), (b, an−1)}. If (x, u) . an−1 = (a, an−1) we are done.
If (x, u) . an−1 = (b, an−1), then we apply once more the letter a and obtain
(x, u) . an = (a, an−1).

Thus the constructed automaton BU is strongly connected. Next we show
that Syn(BU) = Σ∗UΣ∗. It is easy to see that for any word u ∈ Σn−1 we have
Q .u ⊆ {(a, u), (b, u)}, and Q .u ∩ Q . v = ∅ for u, v ∈ Σn−1 such that u
= v.
Thus Q ⊇

⋃
|u|=n−1

Q .u. Next we check that Q =
⋃

|u|=n−1

Q .u. Indeed, if an ∈ U

we have (a, an−1)
u−→ (a, u) for all u ∈ Σn−1. If an
∈ U take any word u ∈ Σn−1.

If u = an−1 then u maps the state (a, an−1) or the state (b, an−1) to (a, u).
Let us assume now that u = akbû. If k is even (odd, respectively) then u maps
(a, an−1) ((b, an−1), respectively) to (a, u). So any state (a, u) belongs to the
set

⋃
|u|=n−1

Q .u. Symmetrically any state (b, u) belongs to the latter set. Hence

Finitely Generated Ideal Languages and Synchronizing Automata 149

Q =
⋃

|u|=n−1

Q .u. Since |Q| = 2n, if there is a synchronizing word u of length

n− 1, we would have 2n = |Q| = |
⋃

|u|=n−1

Q . u| < 2n, which is a contradiction.

Thus, none of the words of length n− 1 is synchronizing. Consider an arbitrary
word w of length n and factorize it as w = uy with u ∈ Σn−1 and y ∈ Σ. We
have Q . u = {(a, u), (b, u)}. If w ∈ U , then the corresponding transitions from
the states (a, u) and (b, u) were not changed, and we have Q .uy = {(z, v)},
where uy = zv, so w is synchronizing. If w /∈ U , then Q .uy = {(a, v), (b, v)}, so
w /∈ Syn(BU). ��

2.3 Ideal Languages Generated by a Finite Set of Words

Theorem 3. Let S be finite and anti-factorial set of words in Σ+. There is a
strongly connected synchronizing automaton CS such that Syn(CS) = Σ∗SΣ∗.
This automaton has at most 2n states, where n = max {|s| | s ∈ S}.

Proof. Let T = {w ∈ Σn | ∃s ∈ S, s ∈ Fact(w)}. First we construct the au-
tomaton BT as described in the previous proposition. In that proposition the
states of BT were viewed as pairs (x, u) with x ∈ Σ, u ∈ Σn−1. Here it will be
convenient to view the states as the words xu of length n (as it was in the initial
De Bruijn automaton). Note, that since S is anti-factorial, every state in T can
be uniquely factorized as usv such that s ∈ S, u, v ∈ Σ∗ and sv does not contain
factors in S except s. In what follows we will use this unique representation
without stating it explicitly.

Next we define an equivalence relation $ on the set of states of this automaton
(i.e. on words of length n) in the following way. Let w,w′ ∈ T . We have w $ w′

iff w = usv and w′ = u′sv, where s ∈ S, u, u′, v ∈ Σ∗. On the set Σn \ T the
relation $ is defined trivially, i.e. for w,w′ ∈ Σn \ T we have w $ w′ iff w = w′.
It is easy to see that $ is indeed an equivalence relation on Σn. In fact, $ is
a congruence on the set of states of the automaton BT . Let us check that for
any x ∈ Σ and any w,w′ ∈ Σn w $ w′ implies w . x $ w′ . x. If w,w′ ∈ Σn \ T ,
then w = w′ and we are done. If w,w′ ∈ T , then w = usv, w′ = u′sv. If
u = u′ = ε, then w = w′, and there is nothing to prove. So we may assume,
that u, u′
= ε. Then usv . x = tsvx and u′sv . x = t′svx for some t, t′ ∈ Σ∗.
Since the obtained two words have the same suffixes, containing a word in S,
they are equivalent. So we can consider the factor automaton BT / $, whose
states are the equivalence classes of $, and the transition function is induced
from the initial automaton. Let us denote by [sv] the equivalence class of a word
usv ∈ T , and by [u] the equivalence class of a word u /∈ T . We claim, that
CS = BT / $. In other words, the constructed automaton is strongly connected,
and Syn(BT / $) = Σ∗SΣ∗. The first property holds trivially, since a factor
automaton of a strongly connected automaton is strongly connected.

For any w ∈ Σ∗ and s ∈ S previously in BT we had w . s = us, where
u ∈ Σ∗. Since S is anti-factorial, in BT / $ we have [w] . s = [s], so any s ∈ S is
synchronizing for the automaton BT / $. Now let t be a synchronizing word, so
there is a state [w] such that for any state [w′] we have [w′] . t = [w]. If [w] is a

150 V.V. Gusev, M.I. Maslennikova, and E.V. Pribavkina

aaa aab

aba

abb

baa bab

bba

bbb

a
b

a

b

b

a

a
b

a

bb

a

b

aa b

[aa]

[aab]

[aba]

[abb]

[bab]

[bba]

[bbb]

a

b
a

b

b

a

a

bb

a

b

a

a

b

Fig. 4. Automata BT and BT / � for T = {aaa, aab, baa, aba}

one-element class, then the word t was synchronizing for the initial automaton
BT , so t contains some word in S as a factor, i.e. t ∈ Σ∗SΣ∗. Consider the
case when [w] is a class consisting of elements u1sv, u2sv, . . . , uksv, k > 1. Note
that in this case ui
= ε for each i = 1, . . . , k. This means that t = usv for some
u ∈ Σ∗, thus, also in this case t ∈ Σ∗SΣ∗. ��

Let us complete this section with an example. Take S = {a2, aba} and Σ =
{a, b}. Let us construct the corresponding set T = {a3, a2b, ba2, aba}. We next
build the DFA BT . The resulting automaton is shown on the left side of Fig.4.

By the definition of $ the class [aa] includes states aaa and baa. The other
classes are one-element classess. The resulting automaton BT / $ is shown on
the right side of Fig.4

2.4 Ideal Languages Generated by Two Words

Let S = {u, v} ⊆ Σ+ and let |u| = n, |v| = m. Again we suppose that S is
anti-factorial. In most cases we can construct a strongly connected automaton
Du,v which has n+m states such that Syn(Du,v) = Σ∗(u+v)Σ∗, thus improving
the construction from the previous section. For simplicity we state and prove our
result only for the case of a binary alphabet, although the same argument works
in general.

Let Σ = {a, b}. We assume that u ∈ Σn \ {abn−1, an−1b, ban−1, bn−1a}, and
v ∈ Σm \{abm−1, am−1b, bam−1, bm−1a}. Such a restriction follows from the fact
that the minimal automaton of the language Σ∗wΣ∗ after deleting its sink state
is strongly connected if and only if w /∈ {abn−1, an−1b, ban−1, bn−1a}. This fact
was proved in [3]. We use it as the basis for the construction of the required au-
tomaton Du,v. Nevertheless in some cases the proposed construction still works.
For instance, the construction gives rise to a strongly connected automaton in
case u = an and v = bam−1, where m ≤ n.

Finitely Generated Ideal Languages and Synchronizing Automata 151

Theorem 4. Let Σ = {a, b}, and let u ∈ Σn\{abn−1, an−1b, ban−1, bn−1a}, v ∈
Σm\{abm−1, am−1b, bam−1, bm−1a}. There is a strongly connected synchronizing
automaton Du,v having n+m states such that Syn(Du,v) = Σ∗(u+ v)Σ∗.

Proof. In order to obtain Du,v we combine the minimal automata for the lan-
guages Σ∗uΣ∗ and Σ∗vΣ∗. For a letter x ∈ {a, b} by x we denote its comple-
mentary letter, i.e. a = b, and b = a. Recall the construction of the minimal
automaton recognizing the language Σ∗wΣ∗, where w ∈ Σ+. It is well-known
that this automaton has |w|+1 states. We enumerate the states of this automa-
ton by the prefixes of the word w so that the state w[1..i] maps to the state
w[1..i + 1] under the action of the letter w[i + 1] for all i, 0 ≤ i < k. The other
letter w[i + 1] sends the state w[1..i] to state p such that p is the maximal prefix
of w that appears in w[1..i + 1] as a suffix. The state w is the sink state of the
automaton. The initial state is ε and the unique final state is w, see Fig.5 (the
transitions labeled by complementary letters w[i] are not shown).

ε w[1] w[1..2] w...

a, bb

w[1] w[2] w[n]w[3]

Fig. 5. The minimal DFA Aw

Construct minimal automata Au and Av. Denote by A ′
u the automaton ob-

tained from Au by deleting the sink state and the transition from u[1..n − 1]
labeled by u[n]. Denote by A ′

v the corresponding automaton for v. Define the
action of letters u[n] and v[m] on states u[1..n − 1] and v[1..m − 1] as follows.
Denote by p the state in A ′

u corresponding to the maximal prefix of u that
appears in v as a suffix. Denote by s the state in A ′

v corresponding to the max-
imal prefix of v that appears in u as a suffix. We put u[1..n− 1] . u[n] = s and
v[1..m − 1] . v[m] = p. Denote the resulting automaton by Du,v and prove that
it satisfies the desired properties. Figures 6,7,8 illustrate the construction for
u = abaab and v = babab.

ε a ab aba abaa abaab
a b a a b

b a a, b

b

a

b

Fig. 6. The minimal DFA recognizing Σ∗abaabΣ∗

The following claim is rather easy to see. The explicit proof can be found in [3].

Claim. If w ∈ Σn \ {an−1b, abn−1, bn−1a, ban−1}, then the automaton A ′
w is

strongly connected.

152 V.V. Gusev, M.I. Maslennikova, and E.V. Pribavkina

ε b ba bab baba babab
b a b a b

a b a, b

a

b

a

Fig. 7. The minimal DFA recognizing Σ∗bababΣ∗

ε b ba bab baba
b a b a

a b

a

b

a

ε a ab aba abaa
a b a a

b a

b

a

b

b
b

Fig. 8. The DFA Du,v

By the Claim automata A ′
u and A ′

v are strongly connected. By the definition
of the action of letters u[n] and v[m] on states u[1..n − 1] and v[1..m − 1], the
resulting automaton Du,v is also strongly connected.

Now we are going to verify that u, v ∈ Syn(Du,v). The state set of Du,v is the
union of the state set of A ′

u (denoted by Qu), and the state set of A ′
v (denoted by

Qv). To avoid confusion when necessary we will use the upper indices u and v for
the states in Qu and Qv respectively. Let w be an arbitrary word. We claim that
εu . w = r, where r is the maximal prefix of u that is a suffix of w or the maximal
prefix of v which is a suffix of w. Let us consider the path from εu to r. As long
as we do not use modified transitions, i.e. the ones that lead from Qu to Qv or
vice versa, the claim holds true by the definition of A ′

u and A ′
v . Suppose now

that the path contains a transition u[1..n − 1]
u[n]−−→ s and εu . w′ = u[1..n− 1],

where w′ is a prefix of w. Let s′ be the maximal prefix of the word v which is a
suffix of w′u[n]. Note that w′u[n] has u as a suffix. Therefore |s′| < |u|, otherwise
u is a factor of v. Since |s′| < |u| we have s′ = s. Similar reasoning applies in

case of transition v[1..m − 1]
v[m]−−−→ p. Therefore, the claim holds true. It is not

hard to see that also εv . w = r′, where r′ is the maximal prefix of either u or v
which is a suffix of w.

Now we are ready to show that u is a synchronizing word for Du,v. By the
definition of Du,v we have εu . u = s. Let us consider an arbitrary state t ∈ Qu.

Finitely Generated Ideal Languages and Synchronizing Automata 153

Let εu . tu = r. Note that the maximal prefix of the word u which is a suffix of tu
is equal to u. Then by the claim r is a prefix of v. Since u is not a factor of v we
have |r| < |u|. Thus, r = s due to maximality. Since εu . t = t we have t . u = s.
Thus, Qu . u = {s}. Arguing in the same way for the state εv we get Qv . u = {s}.
So, u is synchronizing. Analogously, one can show that v is synchronizing.

To complete the proof it remains to verify that each word from the set
Syn(Du,v) contains u or v as a factor. Take w ∈ Syn(Du,v) and a state r ∈ Qu.
If r . w ∈ Qu, then w maps all states in the component Qv into the same state.
In particular, εv . w ∈ Qu. Thus v appears in w as a factor. Analogously if
r . w ∈ Qv, the word u appears as a factor in w. So we have proved that
Syn(Du,v) = Σ∗(u+ v)Σ∗. ��

Acknowledgement. The authors acknowledge support from the Presidential
Programm for young researchers, grant MK-266.2012.1, and from the Russian
Foundation for Basic research, grant 13-01-00852.

References

1. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Mat.-Fyz. Cas. Slovensk. Akad. Vied. 14, 208–216 (1964)

2. Gusev, V.V., Maslennikova, M.I., Pribavkina, E.V.: Principal ideal languages and
synchronizing automata. In: Halava, V., Karhumäki, J., Matiyasevich, Y. (eds.)
Proc. of the Second Russian Finnish Symposium on Discrete Mathematics. TUCS
Lecture Notes, pp. 79–84 (2012)

3. Gusev, V.V., Maslennikova, M.I., Pribavkina, E.V.: Principal Ideal languages and
synchronizing automata (April 2013), http://arxiv.org/abs/1304.3307

4. Maslennikova, M.I.: Reset Complexity of Ideal Languages. In: Bieliková, M.,
Friedrich, G., Gottlob, G., Katzenbeisser, S., Špánek, R., Turán, G. (eds.) Proc. Int.
Conf. SOFSEM 2012, vol. II, pp. 33–44. Institute of Computer Science Academy
of Sciences of the Czech Republic (2012)

5. Perrin, D.: Finite automata. In: van Leewen, J. (ed.) Handbook of Theoretical
Computer Science, pp. 1–57. Elsevier, B. (1990)

6. Pribavkina, E., Rodaro, E.: Synchronizing automata with finitely many minimal
synchronizing words. Inf. and Comput. 209(3), 568–579 (2011)

7. Pribavkina, E.V., Rodaro, E.: Recognizing synchronizing automata with finitely
many minimal synchronizing words is PSPACE-complete. In: Löwe, B., Normann,
D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 230–238. Springer,
Heidelberg (2011)

8. Reis, R., Rodaro, E.: Regular Ideal Languages and Synchronizing Automata. In:
Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079,
pp. 205–216. Springer, Heidelberg (2013)

9. Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

10. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

http://arxiv.org/abs/1304.3307

A Note on Square-Free Shuffles of Words

Tero Harju

Department of Mathematics
University of Turku, Finland

harju@utu.fi

Abstract. We consider shuffles of words. It is first shown that there are
infinite square-free words w over a four-letter alphabet such that w is
a perfect shuffle of two square-free words u and v. Then we show that
there exists an infinite square-free word u on three letters such that u
can be shuffled with itself to produce another infinite square-free word.
The proof of the latter result is constructive on finite factors, and it relies
on a computer program for checking square-freeness of longer words.

1 Introduction

The operation of shuffle and the study of repetition in words are both pop-
ular items in combinatorics on words. These topics where combined, e.g., by
Prodinger and Urbanek [10] in 1979 while they considered squares in shuffles of
two words; see also Currie and Rampersad [5] and Rampersad [11].

Recently shuffling of words were considered by Charlier et al. [3] in the case
of self-shuffling, i.e., where shuffling is applied to an infinite word w with itself
to obtain the original word w. In [3] a short and elegant proof is given for the
fact that the Fibonacci word can be self-shuffled, and a longer and more difficult
proof is provided for the self-shuffling property of the Thue-Morse.

In this paper we consider finite and infinite square-free ternary words w that
can be obtained by shuffling a word u by itself: (u, u) �→ w. Here we do not
consider self-shuffling since we do allow the words u and w to be different. We
show that there exists an infinite square-free word u on three letters such that
u can be shuffled with itself to produce infinite square-free word.

2 Preliminaries

Let
Σn = {0, 1, . . . , n− 1}

be a fixed alphabet of n letters. We mostly need the alphabets Σn for
2, 3 and 4.

In general, let u0 and u1 be two words over an arbitrary alphabet Σ and let
β ∈ Σ∗

2 be a binary word of length |u0| + |u1|, called a conducting sequence,
such that the number of letters i ∈ Σ2 in β is equal to the length |ui|. While
forming the shuffle of u0 and u1, at step i the sequence β will choose the first

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 154–160, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Note on Square-Free Shuffles of Words 155

unused letter from u0 if β(i) = 0 and from u1 if β(i) = 1. In other words, we
let w = β[u0, u1] be the shuffled word of (u0, u1) conducted by β: The ith letter
w(i) of w becomes defined by

w(i) = uβ(i)(j) where j = |{k | β(k) = β(i) for k = 1, 2, . . . , i}| .

The length of w is |β|. The shuffled word of a single word u conducted by a
sequence β with itself is denoted simply by β[u].

The above definitions can be extended to infinite words u, v ∈ ΣN in a natural
way. In this case, β[u, v] ∈ ΣN is an infinite word obtained by shuffling u and v
conducted by the sequence β ∈ ΣN

2 , where one requires that β contains infinitely
many occurrences of both 0 and 1. Again, if u is an infinite word, then β[u]
denotes β[u, u].

A finite or infinite word w over Σ is square-free if it does not contain any
factors u2 = uu for nonempty words u. Axel Thue showed a hundred years ago
that there are infinite square-free words over ternary alphabets. One example,
see Lothaire [9] or Hall [7], is obtained by iterating the Hall morphism

τ(0) = 012, τ(1) = 02, τ(2) = 1

starting from the word 0. The iteration gives a square-free word

t = 012021012102012021020121012 · · · . (1)

3 Perfect Shuffles

Given two words u and v of the same length n their perfect shuffle is β[u, v]
where β = (01)n. Clearly every word w ∈ Σ∗

n is obtained as the perfect shuffle
β[u, v] unique words u, v ∈ Σ∗

n, and every infinite word is a perfect shuffle of two
infinite words.

Example 1. For all square-free ternary words u, v ∈ Σ∗
3 of length ≥ 3, their per-

fect shuffle β[u, v] is not square-free. Indeed, let without restriction u = 01a3 · · ·
and v = b1b2b3 · · · , and thus β[u, v] = 0b11b2a3b3 · · · . To avoid squares in u, v
and in β[u, v], we must have b1 = 2 and then b2 = 0, and so a3 = 2. Finally,
b3 = 1, and β[u, v] starts with the square 021021; a contradiction. ��

On the other hand, for four letters we have

Theorem 1. There exist infinite square-free words w = β[u, v] ∈ ΣN
4 obtained

as a perfect shuffle of two square-free words u and v.

Proof. Dean [6] showed that there are infinite square-free words u ∈ ΣN
4 over

the four letter alphabet that are reduced in the free group of two generators, i.e.,
u avoids the four factors 02, 20, 13 and 31 (where 0 and 2 are inverses of each
other, and 1 and 3 are inverses of each other). Given such a word u, let u′ be its
dual word obtained by interchanging 0 and 2, and interchanging 1 and 3 in all
positions. For instance, if u = 010301210 then u′ = 232123032.

156 T. Harju

We claim that for any reduced square-free word u, the perfect shuffle w =
β[u, u′] is also square-free. Indeed, let u = a1a2 · · · an and u′ = b1b2 · · · bn, where
ai and bi are inverses of each other. Suppose that w contains a square vv.

Suppose first that |v| is even. If v begins with ai, v = akbk · · · ambm =
am+1bm+1 · · · a2m−k+1b2m−k+1, then clearly (akak+1 · · · am)2 would be a square
in u. Similarly, if v = bkak+1 · · · bmam+1 = bm+1am+1 · · · b2m−k+1a2m−k+1, then
(bkbk+1 · · · bm)2 would be a square in u′; a contradiction.

Assume thus that |v| is odd. If v = akbk · · · am = bmam+1 · · ·arbr, then ak =
bm is the inverse of bk, and bk = am+1. But am is the inverse of bm, and hence
am = bk = am+1 leads to a contradiction, since amam+1 is a factor of u, and u
was supposed to be square-free. The other case where |v| is odd and begins with
a bk is similar. ��

4 Shuffling a Single Square-Free Word

In this section we study the words β[u] that are obtained by shuffling a single
word, and the conducting sequence β can be arbitrary binary word.

Example 2. A shuffled word w = β[u] can be obtained in more than one way
from a single word u using different conducting sequences. To see this, let, e.g.,
u = 012102010212 and choose

β1 =000000000001111111101111

β2 =000000110100100111101111 .

Then β1[u] = 012102010210121020120212 = β2[u]. ��

After some preliminaries and examples around the problem we shall prove the
following theorem.

Theorem 2. There exists an infinite square-free word u on three letters and a
conducting sequence β ∈ ΣN

2 such that β[u] is square-free.

A morphism h : Σ∗ → Δ∗ is said to be uniform if, for all a, b ∈ Σ, |h(a)| =
|h(b)|. Also, a morphism h is square-free, if it preserves square-freeness of words,
i.e., if v ∈ Σ∗ is square-free, then so is the image h(v) ∈ Δ∗.

The following result is due to Crochemore [4] improving a result of Bean et
al. [1]; see also Berstel [2].

Theorem 3. A morphism h : Σ∗ → Δ∗ is square-free if it preserves square-
freeness of words of length

max

(
3,

⌈
M − 3

m
+ 1

⌉)
,

where M = max(|h(a)| : a ∈ Σ) and m = min(|h(a)| : a ∈ Σ).
In particular, a uniform morphism h : Σ∗ → Δ∗ is square-free if it preserves

square-freeness of words of length 3.

A Note on Square-Free Shuffles of Words 157

Example 3. The shuffled word β[u] can be square-free even if u is not so. For
instance, if u = (012)2 then the following shuffled words are square-free:

β0[u] =012010212012, where β0 = 000001011111

β1[u] =010201210212, where β1 = 001001101011

β2[u] =010210120212, where β2 = 001010011011 . ��

Proof of Theorem 2. We observe first that if β1 and β2 are conducting sequences
with β1 finite in length and containing equally many 0’s and 1’s, then

β1β2[u] = β1[u1]β2[u2] where u = u1u2 such that 2 · |u1| = |β1|. (2)

The words to be shuffled will be the images of the uniform morphism ρ : Σ∗
4 → Σ∗

3

that is defined by

ρ(0) =010210120212

ρ(1) =012101202102

ρ(2) =012102010212

ρ(3) =012102120102 .

The images ρ(i) are of length 12 and they are all square-free, but the morphism ρ
is not square-free. Indeed, the images of the words 12, 20 and 30 contain squares.
For instance, ρ(20) = 01210 · (201021)2 · 0120212. For this reason, we need a
morphism α that will fix this problem. It will be defined below.

Each of the words ρ(i), for i = 0, 1, 2, 3, can be shuffled to obtain a square-free
word σ(i) = βi[ρ(i)] as seen in Table 1.

Next, let the uniform morphism α : Σ∗
3 → Σ∗

4 be defined by

α(0) =1013

α(1) =1023

α(2) =1032 .

Notice that, for any word w ∈ Σ∗
3 , the image α(w) avoids the ‘forbidden’ words

12, 20 or 30 as a factor. Also, the word 10 occurs in α(w) only as a prefix of
each α(a) for a ∈ Σ3. It is then easy to prove, and it also follows by applying
Theorem 3, that the morphism α is square-free.

Table 1. Square-free words σ(i) = βi[ρ(i)] of length 24. The column on the right shows
the conducting sequences.

σ(0) = 010210120102120210120212, β0 = 000000001100001111111111
σ(1) = 012101202101210201202102, β1 = 000000000011110011111111
σ(2) = 012102010210121020120212, β2 = 000000110100100111101111
σ(3) = 012102120102101202120102, β3 = 000000001101001011111111 .

158 T. Harju

Finally, we combine the above morphisms to obtain B,S : Σ∗
3 → Σ∗

3 by letting

B(i) = ρα(i)

S(i) = σα(i)

for i = 1, 2, 3. The images of the words B(i) are:

B(0) =012101202102010210120212012101202102012102120102

B(1) =012101202102010210120212012102010212012102120102

B(2) =012101202102010210120212012102120102012102010212 .

The lengths of these words are 48. The images of the shuffled words are of
length 96:

S(0) =01210120210121020120210201021012010212021012021201210

·1202101210201202102012102120102101202120102
S(1) =01210120210121020120210201021012010212021012021201210

·2010210121020120212012102120102101202120102
S(2) =01210120210121020120210201021012010212021012021201210

·2120102101202120102012102010210121020120212 .

Now, Theorem 3 and a computer check verify that the morphisms B and S are
square-free. Hence if w = i1i2 · · · is an infinite square-free ternary word in ΣN

3 ,
then both B(w) and S(w) are square-free. By the constructions of B and S, we
have

S(i) = σα(i) = βα(i)[ρα(i)] = βα(i)[B(i)] for each i ∈ Σ3 . (3)

Then
S(w) = S(i1)S(i2) · · · = βα(i1)[B(i1)]βα(i2)[B(i2)] · · · ,

and inductively using (2), we find that β = βα(i1)βα(i2) · · · is a conducting
sequence such that S(w) = β[B(w)]. This proves Theorem 2. ��

We also observe that the words B(0), B(1) and B(2) have equally many, 16,
of the letters, and therefore these words are Abelian equivalent.

Corollary 1. There exist infinite square-free ternary words that are Abelian
periodic.

A simpler solution to Corollary 1 was given in [8], where an infinite square-free
ternary word was constructed that has Abelian period equal to three.

5 Open Questions

Problem 1. Which square-free words u can be shuffled to obtain a square-free
word w = β[u]?

A Note on Square-Free Shuffles of Words 159

Problem 2. Which words u can be shuffled to a unique square-free word β[u]?

Problem 3. Which words w can be obtained in more than one way from a single
word u using different conducting sequences?

Example 4. The same square-free word can be shuffled to produce different
square-free words; see Table 2. As one can see there u = 01021201 gives rise
to three square-free words βi(u), but, e.g., u = 01201021 gives rise to a single
one. The rest of the square-free words of length eight with prefix 01 do not shuffle
to any square-free word. ��

Example 5. Square-free words w that are shuffles of w = β[u] of square-free u
seem to be relatively few compared to the number of all square-free words. Also,
the number of different square-free words u for which there exists β such that
β[u] is square-free is much lower. Table 3 gives values for small lengths of w. ��

The converse of Problem 1 reads as follows.

Problem 4. Which square-free words w are shuffles of square-free words: w =
β[u]?

Problem 5. For each n ≥ 3, does there exist a square-free word u of length n
such that β[u] is square-free for some β?

The next question involves self-shuffling.

Problem 6. Does there exist an infinite square-free word w such that w = β[w]
for some infinite β?

Note that the Hall word t is an infinite Lyndon word, and thus, by [3] it is
not self shuffled.

Table 2. Square-free words u with a prefix 01 of length 8 having a square-free shuffle
β[u]. (Missing items for u mean that they are the same as in the above line).

Word u Shuffled β[u] Conducting β

01021201 0102120102012101 0000001111011011
0102120102101201 0000001111100111
0102101201021201 0000011000111111

01201021 0102101201020121 0010100111001011
01202101 0120210120102101 0000001110011111

0120102101202101 0001100000111111
0102012101202101 0010010000111111

01202102 0102120210201202 0010110001101011
01202120 0120210201202120 0000001001111111
01210120 0121012010210120 0000000110111111
01210201 0121020102101201 0000001101110111

0120102012101201 0001000011110111
0120102101210201 0001000100111111

160 T. Harju

Table 3. The table gives the numbers of ternary square-free w = β[u] of length L
where u is square-free of length L/2. The column for u gives the number of different
square-free words of length L/2 that can be shuffled to obtain a square-free word of
length L.

L square-free β[u] u L square-free β[u] u

4 18 0 0 6 42 0 0
8 78 12 6 10 144 30 12
12 264 24 18 14 456 42 30
16 798 78 42 18 1392 138 36
20 2388 228 54 22 4146 396 138
24 7032 588 168 26 11892 1008 234

Example 6. According to [3], no infinite aperiodic Lyndon word can be self shuf-
fled. Finite square-free Lyndon words can be shuffled to obtain other square-free
Lyndon words. For this, consider u = 01202102. It can be shuffled to obtain w=
0102120210201202 by using the conducting sequence β=0010111110010100.
Note, however, that w < u in the lexicographic ordering. ��

References

1. Bean, D.R., Ehrenfeucht, A., McNulty, G.F.: Avoidable patterns in strings of sym-
bols. Pacific J. Math. 85(2), 261–294 (1979)

2. Berstel, J.: Some recent results on squarefree words. In: Fontet, M., Mehlhorn, K.
(eds.) STACS 1984. LNCS, vol. 166, pp. 14–25. Springer, Heidelberg (1984)

3. Charlier, É., Kamae, T., Puzynina, S., Zamboni, L.Q.: Self-shuffling words.
arXiv:1302.3844 (2013)

4. Crochemore, M.: Sharp characterizations of squarefree morphisms. Theoret. Com-
put. Sci. 18(2), 221–226 (1982)

5. Currie, J., Rampersad, N.: Cubefree words with many squares. DMTCS 12(3),
29–34 (2010)

6. Dean, R.A.: A sequence without repeats on x, x−1, y, y−1. Amer. Math. Monthly 72,
383–385 (1965)

7. Hall Jr., M.: Generators and relations in groups—The Burnside problem. In: Lec-
tures on Modern Mathematics, vol. II, pp. 42–92. Wiley, New York (1964)

8. Harju, T.: Square-free words obtained from prefixes by permutations. Theoret.
Comput. Sci. 429, 128–133 (2012)

9. Lothaire, M.: Combinatorics on words. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge (1997)

10. Prodinger, P., Urbanek, F.J.: Infinite 0-1-sequences without long adjacent identical
blocks. Discrete Math. 28, 277–289 (1979)

11. Rampersad, N.: Infinite sequences and pattern avoidance. Master’s thesis, Univer-
sity of Waterloo (2003)

Strongly k-Abelian Repetitions�

Mari Huova and Aleksi Saarela

Department of Mathematics and Statistics & TUCS
University of Turku, Finland
{mahuov,amsaar}@utu.fi

Abstract. We consider with a new point of view the notion of nth
powers in connection with the k-abelian equivalence of words. For a
fixed natural number k, words u and v are k-abelian equivalent if ev-
ery factor of length at most k occurs in u as many times as in v. The
usual abelian equivalence coincides with 1-abelian equivalence. Usually
k-abelian squares are defined as words w for which there exist non-empty
k-abelian equivalent words u and v such that w = uv. The new way to
consider k-abelian nth powers is to say that a word is strongly k-abelian
nth power if it is k-abelian equivalent to an nth power. We prove that
strongly k-abelian nth powers are not avoidable on any alphabet for any
numbers k and n. In the abelian case this is easy, but for k > 1 the proof
is not trivial.

Keywords: k-abelian equivalence, nth powers, avoidability.

1 Introduction

In combinatorics on words the theory of avoidability is one of the oldest and
most studied topics. Axel Thue, who proved at the beginning of 20th century
the existence of an infinite binary cube-free word and an infinite square-free
ternary word, can be referred to as the initiator of this area[12,13]. Corresponding
avoidability questions for abelian equality, the commutative variant of equality
where only the number of each letter counts and not their order, have been
studied since late 1960s. Dekking [3] has proved that the optimal value for the
size of the alphabet where abelian cubes are avoidable is three. The problem of
the minimal size of the alphabet in which abelian squares can be avoided was
an open question for a long time until the optimal value, four, was found by
Keränen [8].

Lately, new variants of the avoidability problems have been introduced by
defining repetitions via k-abelian equivalence, see e.q. [4]. This new equivalence
relation, where k ≥ 1 is a natural number, lies properly in between equality and
abelian equality. The obvious modifications of the above Thue’s problems ask
for what are the smallest alphabets where k-abelian squares and cubes can be
avoided. It is known that for k ≥ 3 k-abelian cubes can be avoided over a binary
alphabet [10]. In a case of square-freeness it is known that 2-abelian squares

� Supported by the Academy of Finland under grant 257857.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 161–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

162 M. Huova and A. Saarela

can not be avoided over a ternary alphabet but for large enough values of k
avoidability is achieved [4,6]. In [5] it is shown that k-abelian square-free word
cannot be obtained by iterating a single prefix preserving morphism.

In this note we consider abelian and k-abelian avoidability with a new per-
spective. We say that a word w is a strongly abelian nth power if it is abelian
equivalent to a word which is a usual nth power, i.e., concatenation of n equiva-
lent words. Now if an abelian equivalence class contains a word which is a usual
nth power then all the words in this equivalence class are strongly abelian nth
powers. So we consider the word more like a representative of its equivalence
class than a single word. Corresponding notion of a strongly k-abelian nth power
can be introduced similarly. We prove that every infinite word contains strongly
k-abelian nth powers for all values of k and n.

2 Preliminaries

For the basic terminology of words as well as avoidability we refer to [9] and [2].
Here we define only our basic notions for this note.

Definition 1. Let k ≥ 1 be a natural number. We say that words u and v in
Σ+ are k-abelian equivalent, in symbols u ∼k v, if

1. prefk−1 (u) = prefk−1 (v) and sufk−1 (u) = sufk−1 (v), and
2. for all w ∈ Σk, the number of occurrences of w in u and v coincide, i.e.
|u|w = |v|w.

3. Different words of length at most k are not k-abelian equivalent.

The k-abelian equivalence is like a sharpening of abelian equivalence and for
the value k = 1 these define the same equivalence relation. For more about
this notion, see [7]. In fact, k-abelian equivalence is a congruence of words,
i.e. an equivalence relation R such that uvRu′v′ whenever uRu′ and vRv′. We
are interested in the products of words which are k-abelian equivalent but we
will first define squares for all congruences R. Higher powers can be defined
analogously.

If u, v are congruent words, then their product uv is an R-square. This def-
inition has been used in the study of abelian and k-abelian repetition-freeness.
In this article, however, we concentrate on another definition:

Definition 2. A word w is a strongly R-square if it is congruent to a square of
some non-empty word v, i.e. wRvv.

For example, aabb is not an abelian square because aa and bb are not abelian
equivalent, but it is a strongly abelian square because it is abelian equivalent
to (ab)2.

Square-freeness in partially commutative monoids was studied by Carpi and
De Luca in [1]. Their approach to square-freeness is similar but not identical to
the one in this paper. Another interesting related concept is that of approximate

Strongly k-Abelian Repetitions 163

squares, which can be defined as words of the form uv, where the Hamming
distance of u and v is “small enough” (this definition is analogous to the definition
of R-squares), or equivalently as words w such that the Hamming distance of w
and some square is “small enough” (this definition is analogous to the definition
of strongly R-squares). The avoidability of approximate squares has been studied
by Ochem, Rampersad and Shallit [11].

Lemma 3. A word is a strongly R-square if and only if it is congruent to an
R-square.

Proof. The “only if” direction is clear. If w is congruent to an R-square, say
wRuv and uRv, then wRuu, because uRv implies uvRuu (here the assumption
that R is not just an equivalence relation but a congruence is used). ��

It could be said that strongly R-squares take the concept of squares farther
away from words and closer to the monoid defined by R.

Let us now state the definitions of strongly abelian and k-abelian nth powers
for any n ≥ 1.

Definition 4. A word w is a strongly abelian nth power if it is abelian equivalent
to a word which is an nth power.

Definition 5. A word w is a strongly k-abelian nth power if it is k-abelian
equivalent to a word which is an nth power.

The basic problem we are considering is avoidability of strongly abelian and
strongly k-abelian nth powers. We prove that, for all k and n, they are unavoid-
able on all finite alphabets.

3 Unavoidability of Strongly Abelian and k-Abelian
n-Powers

First we show that in abelian case it is easy to see that there does not ex-
ist infinite word which would avoid a strongly abelian nth power. Recall that
two words are abelian equivalent if and only if they have the same Parikh vec-
tors. Parikh vector p is a function from the set of words over m-letter alphabet
{a1, a2, . . . , am} to the set ofm-dimensional vectors over natural numbers, where
p(w) = (|w|a1 , |w|a2 , . . . , |w|am).

Theorem 6. Let Σ be an alphabet and let n ≥ 2. Every infinite word w ∈ Σω

contains a non-empty factor that is abelian equivalent to an nth power.

Proof. A word is abelian equivalent to an nth power if and only if its Parikh
vector is zero modulo n. The number of different Parikh vectors modulo n is
finite, so w has two prefixes u and uv such that their Parikh vectors are the
same modulo n. Then the Parikh vector of v is zero modulo n, so v is abelian
equivalent to an nth power. ��

164 M. Huova and A. Saarela

Theorem 6 can be generalized for k-abelian equivalence, but this is not trivial.
One important difference between abelian and k-abelian equivalence is that if
a vector with non-negative elements is given, then a word having that Parikh
vector can be constructed, but if for every t ∈ Σk a non-negative number nt

is given, then there need not exist a word u such that |u|t = nt for all t (see
Example 10).

Perhaps the biggest difficulty in generalizing Theorem 6 lies in finding an
analogous version of the fact that a word is abelian equivalent to an nth power
if and only if its Parikh vector is zero modulo n. On the one direction we have:

Lemma 7. If a word v of length at least k− 1 is k-abelian equivalent to an nth
power, then

|v|t + |sufk−1(v)prefk−1(v)|t ≡ 0 (mod n) (1)

for all t ∈ Σk.

Proof. Let v be k-abelian equivalent to un. Then

|v|t + |sufk−1(v)prefk−1(v)|t = |vprefk−1(v)|t
=|unprefk−1(v)|t = |unprefk−1(u

n)|t = n|uprefk−1(u
n)|t ≡ 0 (mod n)

for all t ∈ Σk. ��

The converse does not hold. For example, v = babbbbab satisfies (1) for n = 2
and k = 3 but it is not 3-abelian equivalent to any square. However, the converse
does hold if |v|t is either large enough or zero for every t. This is formulated
precisely in Lemma 11. To prove this we need the following definitions and
Lemma 8. These were used in [7] to estimate the number of k-abelian equivalence
classes.

Let s1, s2 ∈ Σk−1 and let

S(s1, s2, n) = Σn ∩ s1Σ
∗ ∩Σ∗s2

be the set of words of length n that start with s1 and end with s2. For every
word u ∈ S(s1, s2, n) we can define a function

fu : Σk → {0, . . . , n− k + 1}, fu(t) = |u|t.

If u, v ∈ S(s1, s2, n), then u ∼k v if and only if fu = fv.
If a function f : Σk → N0 is given, then a directed multigraph Gf can be

defined as follows:

– The set of vertices is Σk−1.
– If t = s1a = bs2, where a, b ∈ Σ, then there are f(t) edges from s1 to s2.

If f = fu, then this multigraph is related to the Rauzy graph of u.
As stated above, the following lemma was proved in [7]. The proof is simple,

so it is repeated here for completeness. Here deg− denotes the indegree and deg+

the outdegree of a vertex in Gf .

Strongly k-Abelian Repetitions 165

Lemma 8. For a function f : Σk → N0 and words s1, s2 ∈ Σk−1, the following
are equivalent:

(i) there is a number n and a word u ∈ S(s1, s2, n) such that f = fu,
(ii) there is an Eulerian path from s1 to s2 in Gf ,
(iii) the underlying graph of Gf is connected, except possibly for some isolated

vertices, and deg−(s) = deg+(s) for every vertex s, except that if s1
= s2,
then deg−(s1) = deg+(s1)− 1 and deg−(s2) = deg+(s2) + 1,

(iv) the underlying graph of Gf is connected, except possibly for some isolated
vertices, and ∑

a∈Σ

f(as) =
∑
a∈Σ

f(sa) + cs

for all s ∈ Σk−1, where

cs =

⎧⎪⎨⎪⎩
−1, if s = s1
= s2,

1, if s = s2
= s1,

0, otherwise.

Proof. (i) ⇔ (ii): u = a1 . . . an ∈ S(s1, s2, n) and f = fu if and only if

s1 = a1 . . . ak−1 → a2 . . . ak → · · · → an−k+2 . . . an = s2

is an Eulerian path in Gf .
(ii) ⇔ (iii): This is well known.
(iii) ⇔ (iv): (iv) is just a reformulation of (iii) in terms of the function f . ��

Example 9. Let k = 3 and consider the word u = aaabaab. The multigraph
Gfu is

ab

��
aa

�� ��

��
ba��

The word u corresponds to the Eulerian path

aa→ aa→ ab→ ba→ aa→ ab.

There is also another Eulerian path from aa to ab:

aa→ ab→ ba→ aa→ aa→ ab.

This corresponds to the word aabaaab, which is 3-abelian equivalent to u.

Example 10. We consider some functions f : {a, b}2 → N0.
If f(aa) = f(bb) = 1 and f(t) = 0 otherwise, then the underlying graph of Gf

is not connected, so there does not exist a word u such that f = fu.
If f(ab) = 2 and f(t) = 0 otherwise, then the indegree of a in Gf is zero but

the outdegree is two, so there does not exist a word u such that f = fu.

166 M. Huova and A. Saarela

Lemma 11. If

|v|t + |sufk−1(v)prefk−1(v)|t ≡ 0 (mod n) (2)

and either |v|t > (n − 1)(k − 1) or |v|t = 0 for all t ∈ Σk, then v is k-abelian
equivalent to an nth power.

Proof. Let s1 = prefk−1(v) and s2 = sufk−1(v). By Lemma 8,∑
a∈Σ

fv(as) =
∑
a∈Σ

fv(sa)+cs and
∑
a∈Σ

fs2s1(as) =
∑
a∈Σ

fs2s1(sa)−cs (3)

for all s ∈ Σk−1, where

cs =

⎧⎪⎨⎪⎩
−1, if s = s1
= s2,

1, if s = s2
= s1,

0, otherwise.

By (2), a function f : Σk → N0 can be defined by

f(t) =
fv(t)− (n− 1)fs2s1(t)

n
.

By (3), ∑
a∈Σ

f(as) =
∑
a∈Σ

f(sa) + cs

for all s ∈ Σk−1. If fv(t) > 0, then

fv(t) = |v|t > (n− 1)(k − 1) ≥ (n− 1)fs2s1(t)

and thus f(t) > 0. This means that since the underlying graph of Gfv is con-
nected, also the underlying graph of Gf must be connected. By Lemma 8, there
is a word u ∈ S(s1, s2, |u|) such that f = fu. Then un begins with s1 and ends
with s2 and

|un|t = n|u|t + (n− 1)|s2s1|t = nf(t) + (n− 1)fs2s1(t) = fv(t) = |v|t

for all t ∈ Σk, so un is k-abelian equivalent to v. ��

Now we are ready to express the main result of strongly k-abelian avoidability.

Theorem 12. Let Σ be an alphabet and let k, n ≥ 2. Every infinite word w ∈
Σω contains a non-empty factor that is k-abelian equivalent to an nth power.

Proof. For a prefix u of w, consider the pair (fu mod n, sufk−1(u)). The number
of different pairs is finite, so w has infinitely many prefixes u1, u2, . . . such that
their pairs are the same. Let i be such that no factor of length k appearing only
finitely many times in w appears after ui. Let j > i be such that if uj = uiv,

Strongly k-Abelian Repetitions 167

then every other factor of length k appears at least (n − 1)(k − 1) times in v.
Then

|v|t + |sufk−1(v)prefk−1(v)|t = |sufk−1(v)v|t = |sufk−1(ui)v|t
=|uiv|t − |ui|t = fuj (t)− fui(t) ≡ 0 (mod n)

for all t ∈ Σk. Thus v satisfies the conditions of Lemma 11 and v is k-abelian
equivalent to an nth power. ��

4 Further Questions

Some further questions that might be asked on strongly k-abelian powers are:

– How many k-abelian equivalence classes of words of length l contain an nth
power?

– How many words there are in those equivalence classes, i.e. how many words
of length l are strongly k-abelian nth powers?

– What is the length of the longest word avoiding strongly k-abelian nth
powers?

– How many words avoid strongly k-abelian nth powers?

The answers depend on k, n, l and the size of the alphabet. The analysis of these
questions is outside the scope of this extended abstract, but a few remarks can
be made.

First, it is easy to prove that two squares uu and vv are k-abelian equivalent if
and only if u and v are. Thus the number of k-abelian equivalence classes of words
of length 2l containing a square is the number of k-abelian equivalence classes
of words of length l. This number has been estimated in [7] and is polynomial
with respect to l.

Second, some of the equivalence classes contain exponentially many words. For
example, a word on the alphabet {a, b} is 2-abelian equivalent to (am(ab)m)2 if
and only if it has the same length, begins with a, ends with b, contains no two
consecutive b’s and contains 2m b’s. The number of such words is exponential
with respect to m.

Example 13. In {a, b}12 there are

– 64 squares,
– 168 2-abelian squares,
– 924 abelian squares,
– 1024 strongly 2-abelian squares,
– 2048 strongly abelian squares,
– 4096 words.

Those 1024 strongly 2-abelian squares belong to 32 different equivalence classes
and strongly abelian squares belong to 7 different equivalence classes. Repre-
sentatives for each of these seven classes over a binary alphabet are as follows:
a12, a10b2, a8b4, a6b6, a4b8, a2b10, b12.

168 M. Huova and A. Saarela

5 Conclusion

We have shown that for k, n ≥ 2 every infinite word contains a non-empty
factor which is strongly abelian nth power as well as a non-empty factor which
is strongly k-abelian nth power. As is known, usual abelian nth powers can be
avoided depending on the value of n and the size of the alphabet. Corresponding
results are also known for k-abelian powers. Other questions arising from the
notion of strongly k-abelian equivalence are, for example, counting the number
of words of length l that contain strongly k-abelian nth powers, or counting the
number of strongly k-abelian nth powers of length l.

References

1. Carpi, A., De Luca, A.: Square-free words on partially commutative free monoids.
Information Processing Letters 22(3), 125–131 (1986)

2. Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, vol. 1, pp. 329–438. Springer, Heidelberg
(1997)

3. Dekking, F.M.: Strongly non-repetitive sequences and progression-free sets. J.
Combin. Theory Ser. A 27(2), 181–185 (1979)

4. Huova, M., Karhumäki, J., Saarela, A., Saari, K.: Local squares, periodicity and
finite automata. In: Calude, C.S., Rozenberg, G., Salomaa, A. (eds.) Rainbow of
Computer Science. LNCS, vol. 6570, pp. 90–101. Springer, Heidelberg (2011)

5. Huova, M., Karhumäki, J.: On the unavoidability of k-abelian squares in pure
morphic words. Journal of Integer Sequences 16, article 13.2.9 (2013)

6. Huova, M.: Existence of an infinite ternary 64-abelian square-free word. Special
Issue of the Journal RAIRO - Theoretical Informatics and Applications dedicated
to “Journees Montoises d’Informatique Theorique 2012” (submitted)

7. Karhumäki, J., Saarela, A., Zamboni, L.: On a generalization of Abelian
equivalence and complexity of infinite words (submitted), arXiv preprint at
http://arxiv.org/abs/1301.5104

8. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)

9. Lothaire, M.: Combinatorics on words. Addison-Wesley, Reading (1983)
10. Mercaş, R., Saarela, A.: 3-abelian cubes are avoidable on binary alphabets. In:

Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 374–383. Springer,
Heidelberg (2013)

11. Ochem, P., Rampersad, N., Shallit, J.: Avoiding approximate squares. International
Journal of Foundations of Computer Science 19(3), 633–648 (2008)

12. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906)

13. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912)

http://arxiv.org/abs/1301.5104

Similarity Relations and Repetition-Freeness

Tomi Kärki1,2

1 Department of Teacher Education
University of Turku, PO Box 175, 26101 Rauma, Finland

2 Department of Mathematics,
University of Turku, 20014 Turku, Finland

Abstract. A similarity relation is a relation on words of equal length
induced by a symmetric and reflexive relation on letters. The aim of
this article is to give an overview of the results concerning repetition-
freeness in connection with similarity relations. We consider so called
chain relations, cyclic relations and partial words, which can be seen
as a special case of similarity relations. As a new result, we prove that
local 3+-repetitions can be avoided in binary partial words and the local
avoidability index of R̊-cubes is five, where R̊ is a relation such that the
graph of the relation is a cycle.

1 Introduction

Combinatorics on words contains a huge variety of results on pattern avoidance
(see [8]), the case of repetition-freeness being one of the most important and
most deeply studied. Let |u| denote the length of the word u. For a rational
number k, a word w is a repetition of order k if w is a prefix of length k · |u| of
the infinite catenation uω = uuu · · · for some non-empty word u. Squares are
repetitions of order k = 2 and cubes are repetitions of order k = 3. A word w is
said to be k-free if it does not contain a repetition of order k, i.e., the word w
avoids such repetitions. Moreover, the word w is said to be k+-free if, it is k′-
free for any k′ > k, i.e., it avoids any repetition of order k′ greater than k. A
repetition of order k (resp. k+) is said to be n-avoidable, if there exists an infinite
k-free (resp. k+-free) word over an n-letter alphabet. The avoidability index of
a repetition is the smallest n such that the repetition is n-avoidable.

The most classical results of repetition freeness can be found in the seminal
papers of Thue [20,21]. At the beginning of the 20th century, Thue showed that
there exists an infinite word over a 3-letter alphabet which does not contain
any square. Moreover, he constructed an infinite binary word t which does not
contain any overlap uvuvu for a word v and a non-empty word u. This celebrated
word is nowadays called the Thue-Morse word, which has many surprising and
remarkable properties; see [1].

Many generalizations have been considered. For example, for an integer k ≥ 2,
an abelian repetition of order k is a nonempty word u1 · · ·uk such that all fac-
tors ui, 1 ≤ i ≤ k, are permutations of each other. The question of avoiding
abelian squares was raised by Erdös in 1961 [10]. Dekking showed in 1979 that

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 169–180, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

170 T. Kärki

abelian repetitions of order at least four are 2-avoidable and abelian cubes are
3-avoidable (but not 2-avoidable) [9]. Finally in 1992, Keränen showed that the
avoidablity index of abelian squares is four [16]. A more recent generalization
based on the Hamming distance was introduced by Krieger, Ochem, Rampersad
and Shallit in [17], where they considered c-approximate and α-similar squares.
A word uv with |u| = |v| is a c-approximate square, if u and v differ on at most
c positions, and an α-similar square if the ratio between the number of positions
u and v agree on and the length of u is at least α.

Abelian repetitions and approximate squares are repetitions where the con-
secutive factors are not equal but similar. Another generalization of repetition
of this kind has been studied in connection with partial words, i.e., words with
’do not know’-symbols % called holes. Partial words were invented by Berstel
and Boasson in 1999 [2] and the topic has been intensively studied in the recent
years; see [3]. A completion of a partial word is a full word where the holes
are replaced by other letters. Two partial words are compatible if they have a
common completion. For any integer k ≥ 2, a partial word is a repetition of
order k if it is of the form u1 · · ·uk where the words ui are pairwise compatible.
In other words, u1 · · ·uk can be transformed into a full word uk by a suitable
replacement of holes. Repetition freeness in partial words has been considered
in several articles (see e.g. [4,6,7,13,14,19]).

Repetitions in partial words are a special case of repetitions in connection with
similarity relations. The compatibility of the factors ui in a repetition u1 · · ·uk

in a partial word can be replaced by another similarity relation between the
factors. A similarity relation introduced by Halava, Harju and Kärki in [11] is a
relation on words of equal length induced by a reflexive and symmetric relation
on letters. For example, if s is related to f, then the words sun and fun are
considered similar. In addition to the compatibility relation R↑ of partial words,

repetition-freeness has also been consider in the case of cyclic relations R̊ and
chain relations R in [15], where the avoidability indices of squares and overlaps
were discovered.

In this article, we give an overview of the results concerning avoidability of
repetitions in connection with chain relations, cyclic relations and partial words.
There are two types of relational repetitions and therefore also two types of
relational avoidability indices, namely global and local. As a new result, we
consider the local avoidability indices of repetitions of order 3+. These repetitions
can be avoided in binary partial words. Moreover, it follows that in the case of
chain relations this avoidability index is three and in the case of cyclic relations
the index is four. Moreover, we show that local R̊-cubes are 5-avoidable but not
4-avoidable. A summary of the results is given in Table 1 at the end of this
article.

2 Similarity Relations

Let A be an alphabet. The set of all finite words A∗ is a free monoid under
the operation of concatenation. The set of non-empty finite words is denoted

Similarity Relations and Repetition-Freeness 171

by A+ and the set of all (right) infinite words is denoted by Aω. A binary
relation R on a set X is subset of the cartesian product X ×X . If two elements
x and y are related, i.e., (x, y) ∈ R, we may write xR y. The identity relation is
denoted by ι.

Definition 1. A relation R is called a similarity relation on words over A if it
is a submonoid of A∗×A∗ generated by a reflexive and symmetric relation RA ⊆
A×A on letters. The relation RA is called the generating relation of R. Words u
and v satisfying uRv are said to be similar or, more precisely, R-similar.

In other words, a similarity relation is a “letter-to-letter” compatibility re-
lation on words of equal length. Since a similarity relation R is induced by its
restriction RA on letters, it can be represented by listing all pairs {a, b} (a
= b)
such that aR b. We use the notation

R = 〈{r1, . . . , rn}〉,

where ri = (ai, bi) ∈ A×A for i = 1, 2, . . . , n, to denote that R is the similarity
relation generated by the symmetric closure of ιA ∪ {r1, . . . , rn}. Moreover, the
similarity relation R can be represented by a graph GR, where the set of vertices
is the alphabet A and there is an edge between two different letters a and b
if aR b.

As mentioned in the introduction, the compatibility relation of partial words
is one example of a similarity relation. A partial word over an alphabet A can
be represented as a word over the extended alphabet A� = A ∪ {%}, where %
does not belong to A. The letter % is a hole, i.e., a ’do not know’-symbol which
may correspond to any letter of the alphabet A. Two partial words u = u1 · · ·un

and v = v1 · · · vn, where ui, vi ∈ A for 1 ≤ i ≤ n, are said to be compatible
if ui = vi whenever both ui and vi are not holes. In this case, there exists a
full word over A which is a completion of both partial words u and v, i.e., it is
obtained from these partial words by replacing the holes with suitable letters.
Let us define

R↑ = 〈{(%, a) | a ∈ A}〉. (1)

The compatibility relation of partial words over A corresponds to the similarity
relation R↑ on the extended alphabet A� [11]. As an example, a graph of the
similarity relation R↑ on the alphabet {0, 1, 2, 3, 4, 5, %} is depicted in Figure 1.

Example 1. Consider partial words over the alphabet {a, b, c, %}. Let

u = u1 · · ·u5 = a%cb% and v = v1 · · · v5 = %bcb% .

These two partial words are compatible, since u3u4 = cb = v3v4 and in all other
positions there is a hole either in u or in v. Hence, the words u and v are R↑-
similar. Since the last letter of both u and v is a hole, these partial words have
three common completions: abcba, abcbb and abcbc. The word w = w1 · · ·w5 =
b%cba is not R↑-similar with u because (u1, w1) = (a, b)
∈ R↑. On the other
hand, we have v R↑ w.

172 T. Kärki

In this paper we consider also two other types of similarity relations which
both have a special and quite simple and natural structure. Without loss of
generality, we fix an n-letter alphabet to be An = {0, 1, . . . , n− 1}.

Definition 2. For n ≥ 2, the chain relation Rn is a similarity relation on A∗
n

defined by
Rn = 〈{(i, i+ 1) | i = 0, 1, . . . , n− 2}〉 (2)

and the cyclic relation R̊n is a similarity relation on A∗
n defined by

R̊n = 〈{(i, i+ 1) | i = 0, 1, . . . , n− 2} ∪ {(n− 1, 0)}〉. (3)

In other words, all consecutive integers are related in the chain relation and
in the cyclic relation also the largest integer is related to zero. For example, the
words 543210 and 432105 are R̊6-similar but not R6-similar, since the last letters
5 and 0 are not R6-compatible. The graphs of the similarity relations R6 and R̊6

are depicted in Figure 1. If the considered alphabet is clear from the context, we
may simply denote R and R̊.

GR6
:

0 1 2 3 4 5

GR̊6
:

0

1

2

3

4

5

GR↑ :

0

1

2

3

4

5

�

Fig. 1. The graphs GR6
and GR̊6

and GR↑ in A6 ∪ {�}

3 Relational Repetition-Freeness

Let us first defined what are relational repetitions in the context of similarity
relations. As in the repetitions of partial words, the consecutive factors of an
R-repetition are not necessarily equal but R-similar.

Definition 3. Let R be a similarity relation on A and let pref
(w) denote the
prefix of length � of a word w.

– A word w ∈ A+ is a global R-repetition of order k if it can be written in the
form u1 · · ·umu′ where the words ui are pairwise R-similar, u′ R pref |u′|(ui)
for every i = 1, 2, . . . ,m and k = |w|/|ui|.

– A word w ∈ A+ is a local R-repetition of order k if w = u1 · · ·umu′ where
uiRui+1 for i = 1, 2, . . . ,m− 1, u′R pref|u′|(um) and k = |w|/|ui|.

– A word w ∈ A+ is globally (resp. locally) (R, k)-free if it does not contain
any global (resp. local) R-repetitions of order k.

– A word w ∈ A+ is globally (resp. locally) (R, k+)-free if it does not contain
any global (resp. local) R-repetitions of order � > k.

Similarity Relations and Repetition-Freeness 173

The terminology in the definition above comes from the two different relational
periods introduced in [12]. A word w = w1 · · ·wn, wi ∈ A has a global R-period
p if i ≡ j (mod p) implies wi Rwj for every i, j ∈ {1, 2, . . . , n}. It has a local
R-period p if wi Rwi+p for i = 1, 2, . . . , n − p. Hence, a global (resp. local) R-
repetition u1 · · ·umu′ has a global (resp. local) R-period |ui|. Note that in the
literature of partial words the global period is sometimes called a strong period
and the local period is called a weak period. Therefore, instead of global and
local overlaps, the terms strong overlap and weak overlap have been used; see,
e.g., [5].

An R-repetition of order 2 is called an R-square. A local R-overlap is a word
of the form uu′vv′w, where uRv, u′ Rv′ and v Rw. In this case, there are two
R-similar overlapping words uu′v and vv′w and the word uu′vv′w has a local
R-period |uu′|. A global R-overlap is a local R-overlap uu′vv′w such that also
uRw. Hence, this word has a global R-period |uu′|. An R-overlap is called a
chain overlap and an R̊-overlap is called a cyclic overlap. An R-repetition of
order 3 is a called an R-cube.

Example 2. Let u1 = 002, u2 = 102 and u′ = 2. The word u = u1u2u
′ = 0021022

is a local R3-repetition of order 7
3 , since u1 R3 u2 and u′R3 pref1(u2) = 1.

However, u is not a global R3-repetition, since u′ = 2 and pref1(u1) = 0 are not
R3-similar. If the relation R3 is replaced by R̊3, all letters are related to each
other and u is a global and local R̊3-repetition of order 7

3 .

Avoidability of relational repetitions was consider in [15] mainly in the case
of chain relations and cyclic relations. Note that if the alphabet is large enough,
one can find three letters which are not R-similar or R̊-similar with each other.
Hence, writing any infinite square-free ternary word using these three letters,
one constructs an (R, 2)-free word or an (R̊, 2)-free word. In the case of partial
words this kind of “trivial” avoidability was prevented by considering partial
words which do contain holes, preferably, infinitely many holes [13,14], and even
words which stay repetition-free after an arbitrary insertion of holes were consid-
ered [4]. Similarly, the (R, k)-freeness and the (R̊, k)-freeness were studied in [15]
in infinite words where each letter of the alphabet occurs infinitely often.

Definition 4

– Let R be the chain relation R or the cyclic relation R̊. An R-repetition of or-
der k is globally (resp. locally) n-avoidable if there exists an infinite word w
over the alphabet An such that each letter of the alphabet An occurs infinitely
many times in w and w is globally (resp. locally) (Rn, k)-free.

– An R↑-repetition of order k is globally (resp. locally) n-avoidable if there
exists an infinite word w over the alphabet An ∪ {%} such that each letter of
the alphabet An ∪ {%} occurs infinitely many times in w and w is globally
(resp. locally) (R↑, k)-free.

Definition 5. Let R be the chain relation R, the cyclic relation R̊ or the
relation R↑.

174 T. Kärki

– The global avoidability index γ(R, k) is the minimal n (if it exists) such that
R-repetitions of order k are globally n-avoidable.

– The local avoidability index λ(R, k) is the minimal n (if it exists) such that
R-repetitions of order k are locally n-avoidable.

The indices γ(R, k+) and λ(R, k+) are defined as above by replacing k by k+.
Since a global R-repetition of order k is a local R-repetition of order k, any
locally (R, k)-free word is also globally (R, k)-free. Hence, we have

γ(R, k) ≤ λ(R, k) .

For k > 1, we have

λ(R, k) ≥ γ(R, k) ≥ 3, λ(R̊, k) ≥ γ(R̊, k) ≥ 4, λ(R↑, k) ≥ γ(R↑, k) ≥ 2, (4)

since in A2 all letters are R2-similar, in A3 all letters are R̊3-similar and in
A1 ∪ {%} all letters are R↑-similar.

Also, note that if R-repetitions of order k are n-avoidable for R = R, R = R̊
or R = R↑, then they are also (n+ 1)-avoidable. Namely, if an (R, k)-free word
contains infinitely many occurrences of each letter inAn, we may construct a new
infinite word by replacing, for example, every other occurrence of the letter n−1
by the new letter n. This new word contains infinitely many occurrences of each
letter in An+1 and the words is still (R, k)-free.

4 Square-Freeness and Overlap-Freeness

Squares cannot be avoided in partial words since every word containing holes
contains also at least one of the trivial squares a% or %a, where a is a letter.
Hence, the avoidability indices γ(R↑, 2) and λ(R↑, 2) do not exist. However,
we may avoid larger squares. Namely, over a three-letter alphabet there exist
uncountably many partial words with an infinite number of holes such that the
only square factors are the trivial ones [13]; see also [4].

Theorem 1. There exists uncountably many infinite words with an infinite
number of holes over a three-letter alphabet such that they do not contain any
squares other than the trivial ones.

Using the terminology of Blanchet-Sadri et al. [7], an occurrence of a pattern
is non-trivial if none of its variables is substituted by a hole. Otherwise, the
occurrence is trivial. Thus, trivial squares are trivial occurrences of the pattern
αα and, by the result mentioned above, the non-trivial avoidability index of
squares is 3. We may also consider partial words which stay k-free after replacing
arbitrary occurrences of letters by holes under the restriction that two holes must
always be separated by at least two letters. Blanchet-Sadri et al. constructed an
infinite word over an 8-letter alphabet that remains non-trivially square-free even
after this kind of insertion of holes, and they showed that the alphabet size eight
is optimal [4].

Similarity Relations and Repetition-Freeness 175

A partial word is an overlap if any of its completions is an overlap xyxyx.
These overlaps are globalR↑-repetitions and the overlap-freeness of partial words
means global (R↑, 2+)-freeness in our terminology. Halava et al. showed that an
infinite overlap-free binary partial word is either full or of the form %w or x%w,
where w is an infinite full word and x is a letter. There are infinitely many
overlap-free words of each type [14]; see also [4]. Hence, it is impossible to build
a globally (R↑, 2+)-free infinite binary partial word with infinitely many holes,
which implies

γ(R↑, 2+) > 2. (5)

However, there exist infinitely many binary partial words containing infinitely
many holes but no factor having a completion of the form xyxyx where the
length of x is at least 2; see [14].

On the other hand, Blanchet-Sadri et al. [4] have shown that there exist
infinitely many overlap-free partial words with infinitely many holes over a three-
letter alphabet. Indeed, this is a consequence of Theorem 1. Namely, a ternary
infinite word w with an infinite number of holes that does not contain any other
squares than the trivial ones cannot contain any factors which have a completion
xyxyx where |xy| ≥ 2. Moreover, if w contains a factor that has a completion
xxx where x is a letter, then the factor must be of the form x%x and there must
be a square x%xy in w. This is a contradiction. Hence, overlaps in partial words
are 3-avoidable and by (5) this gives us the following theorem.

Theorem 2. The global avoidability index of overlaps in partial words is

γ(R↑, 2+) = 3 .

The minimal alphabet size for avoiding overlaps after an arbitrary insertion
of holes under the restriction that two holes must always be separated by at
least two letters was proved to be five [5]. Moreover, Blanchet-Sadri et al. have
showed that the non-trivial avoidability index for all binary patterns is the same
as in the case of full words [7].

Since a partial word x%y where x and y are letters is a local R↑-cube, it is not
possible to avoid local cubes or local overlaps in partial words over any alphabet.
Hence, the avoidability index λ(R↑, 2+) does not exist.

The avoidability indices of squares and overlaps in the case of chain relations
and cyclic relations were solved in [15].

Theorem 3. Let R be a chain relation and R̊ be a cyclic relation. We have the
following avoidability indices:

γ(R, 2) = λ(R, 2) = 6, γ(R̊, 2) = λ(R̊, 2) = 7,

γ(R, 2+) = λ(R, 2+) = 4, γ(R̊, 2+) = λ(R̊, 2+) = 5.

In the proofs of the results above, repetition-free infinite words are often gener-
ated by iterating morphisms. A morphism ϕ : A∗ → A∗ is said to be prolongable
on a letter a if ϕ(a) = aw for some word w ∈ A+ such that ϕn(w) is non-empty

176 T. Kärki

for all integers n ≥ 1. By definition, ϕn(a) is a prefix of ϕn+1(a) for all inte-
gers n ≥ 0 and the sequence (ϕn(a))n≥0 converges to the unique infinite word
generated by ϕ,

ϕω(a) := lim
n→∞ϕn(a) = awϕ(w)ϕ2(w) · · · .

This infinite word is a fixed point of ϕ, i.e., ϕ(ϕω(a)) = ϕω(a).
In [15] the Leech word was modified in order to prove that there exists an

(R, 2)-free infinite word containing every letter of A6 infinitely many times. A
Leech word is a ternary infinite word

Λ := ϕω(a) = abcbacbcabcbabcacbacabcacbcabacbabcabacbca · · · ,

generated by iterating the morphism ϕ : {a, b, c}∗ → {a, b, c}∗ defined by a �→
abcbacbcabcba, b �→ bcacbacabcacb,c �→ cabacbabcabac. The words Λ is known
to be square-free [18]. In order to show that cyclic squares are 7-avoidable, the
square-free word μω(a) of Thue [20] was mapped in [15] with a 6-uniform mor-
phism ν : {a, b, c}∗ → A∗

7. The morphism μ : {a, b, c}∗ → {a, b, c}∗ is defined by
a �→ abc, b �→ ac, c �→ b.

The overlap-freeness results of [15] are based on the celebrated Thue-Morse
word t = τω(a), where τ : {a, b}∗ → {a, b}∗ is defined by a �→ ab, b �→ ba. In the
case of global and local (R, 2+)-freeness, the letter a is replaced by 0 and the
letter b is replaced by 3. Then, by arbitrarily replacing factors 303 by 313 and
factors 030 by 020, a locally R4 -overlap-free infinite word is constructed. The
construction of a locally R̊5 -overlap-free infinite word in [15] is quite involved.
The Thue-Morse word is used to recursively define an infinite word t̂ such that
the Thue-Morse word is divided into blocks of different size and these blocks
are mapped with ten different codings σi, i.e., letter-to-letter morphism. The
beginning of this word is

t̂ = σ0(ab)σ1(ba)σ2(baab)σ3(baababba)σ4(baababbaabbabaab) · · · .

5 Cube-Freeness and 3+-Freeness

The first results of repetition-freeness of partial words were proved by Manea
and Mercaş in 2007 [19]. In particular, they proved the following theorem.

Theorem 4. There exist infinitely many cube-free infinite partial words over a
binary alphabet containing an infinite number of holes.

Moreover, they proved that there exists an infinite word over a four-letter alpha-
bet such that the word stays cube-free after an arbitrary insertion of holes under
the restriction that two holes must always be separated by at least two letters.
Over a ternary alphabet, it is impossible to construct such infinite words.

In Theorem 4, the cube-freeness of partial words means the global (R↑, 3)-
freeness. As mentioned above, for any letters x and y, the word x%y is a local
R↑-cube and therefore the local avoidability index λ(R↑, 3) does not exist. As a
consequence of Theorem 4, we have the following result.

Similarity Relations and Repetition-Freeness 177

Theorem 5. For any k ≥ 3, we have

γ(R↑, k) = 2, γ(R, k) = 3 and γ(R̊, k) = 4 .

Proof. By (4) and Theorem 4, the global avoidability index of R↑-repetitions of
order k ≥ 3 is γ(R↑, k) = 2. Since in a chain relation R3 the letter 1 is related
to both 0 and 2, it corresponds to a hole in the alphabet {0, 2} ∪ {%}. Hence,
Theorem 4 says that cubes are globally avoidable in this alphabet and, by (4),
we have γ(R, k) = 3 for any k ≥ 3.

Next, let us consider the relation R̊4 . Let w be an infinite globally (R, 3)-free
word over the alphabet A3. Let ŵ be a word obtained from w by replacing every
other occurrence of 1 by 3. Assume that ŵ contains a global R̊-cube u. Since
both 3 and 1 are related to the letters 0 and 2, it means that by replacing the
occurrences of 3 in u again by 1, we obtain a factor which is a global R-cube
in w. This is a contradiction. Hence, every letter of A4 occurs in ŵ infinitely
many times and the word is globally (R̊, 3)-free. By (4), we conclude γ(R̊, k) = 4
for k ≥ 3.

Let us next consider local R-cubes and R̊-cubes.

Theorem 6. The local avoidability indices of chain cubes and cyclic cubes are

λ(R, 3) = 4 and λ(R̊, 3) = 5 .

Proof. As in the case of partial words, local R-cubes cannot be avoided in A3,
since for any letters x and y, the factor x1y is a local R-cube. Since local R-
overlaps are 4-avoidable by Theorem 3, we have λ(R, 3) = 4.

Next, assume that there exists a locally (R̊4, 3)-free word w containing in-
finitely many occurrences of each letter in A4. Let A = {0, 2} or B = {1, 3}.
The word w can be factored into blocks where each block contains only letters
in A or in B and the blocks are maximal in the sense that the neighbour blocks
have a different alphabet. By symmetry, we may assume that a block ends with
0 and the next block starts with 1. In order to avoid local R̊4-cubes, the letter
preceding 01 must be 2. Let 201z be a factor in w. It is straightforward to verify
that z begins with either 311 or 331.

We can also verify that a factor x ∈ B4 in w is always followed by either
1 or 3 in order to keep w globally R̊4-overlap-free. Without loss of generality,
we may assume that x begins with 1. There are five possibilities: w1 = 1131,
w2 = 1133, w3 = 1311, w4 = 1313 and w5 = 1331. By the symmetry of the
relation R̊4 , we may assume that the word wi is followed by 0. In order to
avoid local R̊-cubes, the word w1 must be followed by 0220. However, the letter
preceding w1 must be 3 and hence the factor 3w10220 = 311.310.220 is a local
R̊-cube. This is impossible. The word w20 ends with an R̊-cube 330 and the word
w30 ends with an R̊-cube 110. If the word w4 is followed by 0, then the words
w400, w402 and w403 are R̊-cubes and the word w401 ends with the local R̊-cube
301. In order to avoid local R̊-cubes, the word w5 must be followed by 022002
and preceded by 31. However, the word 31w5022002 = 3113.3102.2002 is a local
R̊-cube. Again, this is a contradiction.

178 T. Kärki

Hence, a factor x ∈ B4 in w is always followed by either 1 or 3 and in the word
z there are no occurrences of the letters 0 and 2. This is a contradiction. Thus,
local R̊-cubes are not 4-avoidable, and by Theorem 3, it follows that λ(R̊, 3) = 5.

Finally, we consider local repetitions of order k > 3.

Theorem 7. For k > 3, we have

λ(R↑, k) = 2, λ(R, k) = 3 and λ(R̊, k) = 4.

Proof. Let t be the Thue-Morse word τω(a). By construction, the word t consists
of blocks τ5(a) and τ5(b). Replace the blocks τ5(a) by the words

abbabaabbaaba%babaababbaabbabaab,

where one b in τ5(a) is replaced by a hole. Denote this new partial word by t̂.
We may easily verify by hand or with computer experiments that t̂ does not
contain any local R↑-repetitions u1u2u3u

′, where u1 R↑ u2 R↑ u3, |u1| ≤ 7 and
u′ R↑ pref |u′|(u3).

Next, assume that t̂ contains a local R↑-repetitions w = u1u2u3u
′ and p =

|u1| = |u2| = |u3| > 7. Then the word u1u2x, where x is the first letter of u3,
must contain at least one position i such that the letter in that position is a hole
and the letter in the position i− p or i+ p in the factor u1u2x is a. Otherwise,
we could replace all occurrences of holes in u1u2x by the original letter b and
obtain an overlap in t. This is a contradiction with the overlap-freeness of the
Thue-Morse word.

Without loss of generality, assume that in the position i+p there is wi+p = a.
First, let i ≥ 2. Since wi is a hole, the letter wi−1 = a by the construction
and, by compatibility, the letter wi+p−1 must be a. Note that wi+p−1 can-
not be a hole, since holes in t̂ are always followed by the letter b. Since the
Thue-Morse word can be decomposed into blocks ab and ba, we conclude that
wi+p−2wi+p−1wi+pwi+p+1 consists of two blocks ba.ab. Note again that after or
before aa there cannot be any holes. Since wi+2 = a and there are no holes
after the letter b, we must have wi+p+2 = a. Assume that wi+p+3 = %, which
implies that wi+p+4 = b. However, wi+4 = a and this is a contradiction with the
compatibility of wi+p+4 and wi+4. Hence, we have wi+p+3 = wi+3 = b. After
wi+p+3 = b there cannot be a hole. Thus, wi+p+4 = wi+4 = a. However, we ob-
tain wi+p · · ·wi+p+4 = ababa, which is a contradiction with the overlap-freeness
of the original word t.

Second, let i = 1. If wi+p−1 = a, then we get a contradiction as above. Hence,
assume that wi+p−1 = b. If wi+p+1wi+p+2 = %b, then the letter wi+p+2 is not
compatible with the letter wi+2 = a. Therefore, we must have wi+p+1 = wi+1 = b
and wi+p+2 = wi+2 = a, since no holes are possible after wi+p−1wi+pwi+p+1 =
bab. After wi+p−1 · · ·wi+p+2 = baba there cannot be a hole and we must have
wi+p+3 = wi+3 = b. Thus, we obtain an overlap wi+p−1 · · ·wi+p+3 = babab,
which is again a contradiction with the overlap-freeness of t.

Hence, the partial word t̂ does not contain any local repetitions of order k > 3
and we conclude that λ(R↑, 3+) = 2. As in the proof of Theorem 5, we notice

Similarity Relations and Repetition-Freeness 179

that in R3 the letter 1 corresponds to a hole. Hence, by replacing a with 0,
b with 2 and % with 1 in t̂, we obtain a locally (R, 3+)-free infinite word w.
Moreover, as in the proof of Theorem 5, we obtain a locally (R̊, 3+)-free word
from w by replacing every other occurrence of 1 with 3. Thus, by (4), we then
have λ(R, 3+) = 3 and λ(R̊, 3+) = 4.

6 Conclusions

We have considered global and local avoidability indices of partial words, chain
relations and cyclic relations. A summary of the results is given in Table 1.

Table 1. Avoidability indices of the relations R, R̊ and R↑

R R̊ R↑
γ λ γ λ γ λ

2 6 6 7 7 - -
2+ 4 4 5 5 3 -
3 3 4 4 5 2 -
3+ 3 3 4 4 2 2

References

1. Allouche, J.-P., Shallit, J.: The ubiquitous Prouhet-Thue-Morse sequence. In: Ding,
C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications: Pro-
ceedings of SETA 1998, pp. 1–16. Springer, London (1998)

2. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoret.
Comput. Sci. 218, 135–141 (1999)

3. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, Boca Raton (2007)

4. Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for
partial words. Theoret. Comput. Sci. 410(8-10), 793–800 (2009)

5. Blanchet-Sadri, F., Mercaş, R., Rashin, A., Willett, E.: An Answer to a Conjec-
ture on Overlaps in Partial Words Using Periodicity Algorithms. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 188–199.
Springer, Heidelberg (2009)

6. Blanchet-Sadri, F., Mercaş, R., Simmons, S., Weissenstein, E.: Avoidable Binary
Patterns in Partial Words. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.)
LATA 2010. LNCS, vol. 6031, pp. 106–117. Springer, Heidelberg (2010)

7. Blanchet-Sadri, F., Black, K., Zemke, A.: Unary Pattern Avoidance in Partial
Words Dense with Holes. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.)
LATA 2011. LNCS, vol. 6638, pp. 155–166. Springer, Heidelberg (2011)

8. Currie, J.D.: Pattern avoidance: themes and variations. Theoret. Comput.
Sci. 339(1), 7–18 (2005)

9. Dekking, F.M.: Strongly non-repetitive sequences and progression-free sets. Journal
of Combinatorial Theory, Series A 27(2), 181–185 (1979)

180 T. Kärki

10. Erdös, P.: Some unsolved problems. Magyar Tudományos Akadémia Matematikai
Kutató Intézete Közl. 6, 221–254 (1961)

11. Halava, V., Harju, T., Kärki, T.: Relational codes of words. Theoret. Comput.
Sci. 389(1-2), 237–249 (2007)

12. Halava, V., Harju, T., Kärki, T.: Interaction properties of relational periods. Dis-
crete Math. Theor. Comput. Sci. 10, 87–112 (2008)

13. Halava, V., Harju, T., Kärki, T.: Square-free partial words. Inform. Process.
Lett. 108, 290–292 (2008)

14. Halava, V., Harju, T., Kärki, T., Séébold, P.: Overlap-freeness in infinite partial
words. Theoret. Comput. Sci. 410, 943–948 (2009)

15. Kärki, T.: Repetition-freeness with cyclic relations and chain relations. Fund. In-
form. 116(1-4), 157–174 (2012)

16. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)

17. Krieger, D., Ochem, P., Rampersad, N., Shallit, J.: Avoiding approximate squares.
In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp.
278–289. Springer, Heidelberg (2007)

18. Leech, J.: A problem on strings of beads. Math. Gazette 41, 277–278 (1957)
19. Manea, F., Mercaş, R.: Freeness of partial words. Theoret. Comput. Sci. 389(1-2),

265–277 (2007)
20. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Skrifter I Mat.-Nat. Kl. 7,

1–22 (1906)
21. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske

Vid. Skrifter I Mat.-Nat. Kl. 1, 1–67 (1912)

On Quasiperiodic Morphisms

Florence Levé1 and Gwénaël Richomme2,3

1 Laboratoire MIS, 33 rue Saint Leu, 80039 Amiens Cedex 1 - France
2 LIRMM (CNRS, Univ. Montpellier 2) - UMR 5506 - CC 477,

161 rue Ada, 34095, Montpellier Cedex 5 - France
3 Univ. Paul-Valéry Montpellier 3, Dpt MIAp, Route de Mende,

34199 Montpellier Cedex 5, France

Abstract. Weakly and strongly quasiperiodic morphisms are tools in-
troduced to study quasiperiodic words. Formally they map respectively
at least one or any non-quasiperiodic word to a quasiperiodic word. Con-
sidering them both on finite and infinite words, we get four families of
morphisms between which we study relations. We provide algorithms to
decide whether a morphism is strongly quasiperiodic on finite words or
on infinite words.

1 Introduction

The notion of quasiperiodicity we consider in this paper is the one introduced in
the area of Text Algorithms by Apostolico and Ehrenfeucht [1] in the following
way: “a string w is quasiperiodic if there is a second string u
= w such that every
position of w falls within some occurrence of u in w”. In 2004, Marcus extended
this notion to right infinite words and he opened six questions [14]. Four of them
were answered in [9] (see also [15]). In particular, we proved the existence of a
Sturmian word which is not quasiperiodic.

In [10], we proved that a Sturmian word is not quasiperiodic if and only if
it is an infinite Lyndon word. The proof of this result was based on the S-
adicity of Sturmian words (Sturmian words form a family of non-periodic words
that can be infinitely decomposed over four basic morphisms – see [2] for more
properties on Sturmian words) and on a characterization of morphisms that
preserve Lyndon words [16]. In [10], we introduced strongly quasiperiodic mor-
phisms as those morphisms that map all infinite words to quasiperiodic ones, and
weakly quasiperiodic morphisms that map at least one non-quasiperiodic word
to a quasiperiodic one. We characterized Sturmian morphisms that are strongly
quasiperiodic and those that are not weakly quasiperiodic.

With Glen [5], the previous results were extended to the class of episturmian
words. All quasiperiodic episturmian words were characterized (unlike the Stur-
mian case, they do not correspond to infinite episturmian Lyndon words). Two
proofs were provided for this result. The first one used connections between
quasiperiodicity and return words, the second one used S-adic decompositions
of episturmian words, and a characterization of strongly quasiperiodic on infinite
words episturmian morphisms.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 181–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

182 F. Levé and G. Richomme

Observe that strongly and weakly quasiperiodic morphisms were considered
in the context of infinite words. In this paper we consider also these morphisms
with respect to finite words. After basic definitions (Sect. 2), in Sect. 3, we
study existing relations between the four so-defined families of morphisms. Al-
gorithms to check if a morphism is strongly quasiperiodic are provided in Sect. 4
and 5. In Sect. 6, we provide sufficient conditions for a morphism to be weakly
quasiperiodic on infinite words.

2 Quasiperiodic Words and Morphisms

We assume readers are familiar with combinatorics on words, morphisms and
automata (see for instance [12]). We let ε denote the empty word, |w| denote
the length of a word w, and |w|a denote the number of occurrences of a letter
a in w. Let us recall that, if some words w, u, p and s verify w = ups, then p
is called a prefix of w, s a suffix of w and u a factor of w. A factor, prefix or
suffix is said to be proper if it differs from the whole word. An internal factor of
a word is any occurrence of a factor except its prefixes and suffixes. For a word
u and an integer k, uk denotes the word obtained by concatenating k copies of
u and uω denotes the infinite periodic word obtained by concatenating infinitely
many copies of u.

Given a non-empty word q, q-quasiperiodic words (or strings) are defined in
the introduction. Equivalently a finite word w is q-quasiperiodic if w
= q and
there exist words p, s and u such that w = qu, q = ps, p
= ε, and su = q
or su is a q-quasiperiodic word. The word q is called a quasiperiod of w. It is
called the quasiperiod of w if w has no smaller quasiperiod. For instance, the
word w = ababaabababaabababa is aba-quasiperiodic and ababa-quasiperiodic.
The word aba is the quasiperiod of w.

A word w is said quasiperiodic if it is q-quasiperiodic for some word q. Oth-
erwise w is called superprimitive. The quasiperiod of any quasiperiodic word w
is superprimitive. The definition of quasiperiodicity extends naturally to infinite
words.

Let us recall that a morphism f is an application on words such that for
all words u and v, f(uv) = f(u)f(v). Such a morphism is defined by images
of letters. A well-known morphism is the Fibonacci morphism ϕ defined by
ϕ(a) = ab, ϕ(b) = a. In [9], we proved that the infinite Fibonacci word, the
fixed point of ϕ, has infinitely many quasiperiods that are superprimitive. The
first ones are aba, abaab, abaababaa.

Notice that from now on, we will only consider non-erasing morphisms (im-
ages of non-empty words differ from the empty word). As mentioned in the in-
troduction, strongly quasiperiodic on infinite words morphisms were introduced
as a tool to study quasiperiodicity of some infinite words. They are the mor-
phisms that map any infinite word to a quasiperiodic infinite word. Also we in-
troduced weakly quasiperiodic on finite words morphisms that map at least one
non-quasiperiodic infinite word to a quasiperiodic one. Examples are provided in
the next section. It is interesting to observe that a morphism that is not weakly

On Quasiperiodic Morphisms 183

quasiperiodic on infinite words could be called a quasiperiodic-free morphism as
it maps any non-quasiperiodic infinite word to another non-quasiperiodic word.
This allows to relate the current study to the stream of works around power-
free morphisms. In this context, it is natural to consider the previous notions
on finite words. Thus in this paper, we will also consider strongly quasiperiodic
on finite words morphisms that map any finite word to a quasiperiodic word,
and weakly quasiperiodic on finite words morphisms that map at least one finite
non-quasiperiodic word to a quasiperiodic word.

3 Relations

In this section, we show that the basic relations between the different families
of morphisms are the ones described in Fig. 1.

Strongly QP
on finite words

�����
���

���
���

����
���

���
���

�

Weakly QP
on finite words

Strongly QP
on infinite words

��
Weakly QP

on infinite words

Fig. 1. Basic relations

Let us first observe that it follows the definitions that any strongly quasiperi-
odic on finite (resp. infinite) words morphism is also a weakly quasiperiodic on
finite (resp. infinite) words morphism. The next result proves the last relation
of Fig. 1. Its proof uses Lemma 3.2.

Proposition 3.1. Any strongly quasiperiodic on finite words morphism is
strongly quasiperiodic on infinite words.

Lemma 3.2. Let f be a morphism. Assume the existence of two words u and
v and of an integer k such that |f(u)k| ≥ |f(v)|. If f(u) and f(ukvuk) are
quasiperiodic, then their quasiperiods are equal.

Proof. Let qu be the quasiperiod of f(u) and let q be the quasiperiod of the
word f(ukvuk).

184 F. Levé and G. Richomme

If |q| < |qu|, then q is a prefix and a suffix of qu and as f(u) is a factor of a
q-quasiperiodic word, it is also q-quasiperiodic (we have f(u)
= q for length rea-
son). This contradicts the fact that, by definition, qu is the smallest quasiperiod
of f(u).

So |qu| ≤ |q|. Assume |q| ≥ 2|f(uk)|. So by choice of k, |q| ≥ |f(uk)|+ |f(v)|.
This implies that the prefix occurrence of q in f(ukvuk) overlaps the suffix
occurrence. More precisely q = q1q2 = q2q3 with |q1q2| ≥ 2|f(uk)| and |q1| =
|q3| ≤ |f(uk)|: we have |q2| ≥ |q1|. By a classical result (see [11, Lem. 1.3.4]),
there exist words x and y with xy
= ε and an integer � such that q1 = xy,
q2 = (xy)
x and q3 = yx. For length reason, �
= 0 so that q is xyx-quasiperiodic.
This contradicts the fact that q is superprimitive.

Thus |q| < 2|f(uk)|. As q is both prefix and suffix-comparable with f(uk)
which is qu-quasiperiodic, as |qu| ≤ |q|, and as q is superprimitive, q = qu. ��

Proof of Proposition 3.1. Assume f is strongly quasiperiodic on finite words. Let
α be a letter and let qα be the quasiperiod of f(α). By Lemma 3.2, for any word
u, there exists an integer k such that f(αkuαk) is qα-quasiperiodic. This implies
that, for any word u, f(αu) is a prefix of a qα-quasiperiodic word. Equivalently,
for any infinite word w, f(αw) is a qα-quasiperiodic word. ��

Conversely to Proposition 3.1, it is easy to find an example showing the exis-
tence of a morphism that is strongly quasiperiodic on infinite words but not on
finite words. Just look at the morphism that maps a to aa and b to a, or at the
next example of a strongly quasiperiodic morphism on infinite words that is not
weakly quasiperiodic on finite words.

Example 3.3. Let f be the morphism defined on {a, b}∗ by

f(a) = abaababaababababaab
f(b) = abaabaabababababaab.

It is straigthforward that f(w) is aba-quasiperiodic for any infinite word w. Let
us prove that f is not weakly quasiperiodic on finite words. Assume by contradic-
tion the existence of a non-quasiperiodic word u such that f(u) is quasiperiodic.
Observe u
= a, u
= b and the quasiperiod of u ends with ab. An exhaustive verifi-
cation allows to see that no proper prefix of f(a) nor f(b) could be a quasiperiod
of f(u). Hence f(a) or f(b) is a prefix of the quasiperiod q of f(u). Observing
this implies |q| ≥ |f(a)| = |f(b)|, we deduce that f(a) or f(b) is a suffix of q. As
f(a) and f(b) are not internal factors of f(aa), f(ab), f(ba), f(bb), q = f(q′) for
some word q′. Moreover u is q′-quasiperiodic, a contradiction.

The next examples show that the other converses of the relations presented
in Fig. 1 are false.

Example 3.4. The morphism that maps a to aa and b to bb is weakly quasiperi-
odic on finite words (as f(a) is quasiperiodic), but we let readers verify that it is
not weakly quasiperiodic on infinite words. Thus f is not strongly quasiperiodic
on infinite words and, as a consequence of Proposition 3.1, it is not strongly
quasiperiodic on finite words.

On Quasiperiodic Morphisms 185

Example 3.5. The morphism f defined by f(a) = ba and f(b) = bba is weakly
quasiperiodic on infinite words since for all word w ∈ a{a, b}ω, f(w) is bab-
quasiperiodic. But f(baω) = bb(ab)ω is not quasiperiodic, and so f is not
strongly quasiperiodic on infinite words. By Proposition 3.1, f is not strongly
quasiperiodic on finite words.

4 Deciding Strong Quasiperiodicity on Finite Words

The next lemma which is a direct consequence of Lemma 3.2 is the key obser-
vation to decide whether a morphism is strongly quasiperiodic on finite words.

Lemma 4.1. If f is a strongly quasiperiodic on finite words morphism, then
for any word u and any letter α, the quasiperiod of f(u) is a factor of f(α3) of
length less than 2|f(α)|.

Proof. Assume f is strongly quasiperiodic on finite words. Let u be a word and
let qu be the quasiperiod of f(u). Let i be an integer such that |f(αi)| ≥ 2|qu|
(|f(α)|
= 0 as f(α) is quasiperiodic). Let k be an integer such that |f(uk)| ≥
|f(αi)|. By Lemma 3.2, the quasiperiod of f(ukαiuk) is qu. As |f(α)i| ≥ 2|qu|, qu
must be a factor of f(α)i. As qu is superprimitive, |qu| < 2|f(α)|. Consequently
qu is a factor of f(α)3. ��

Observe now that, given two words u and q, it follows the definition of
quasiperiodicity that the q-quasiperiodicity of f(u) implies that, for each non-
empty proper prefix π of f(u), π = xps with xp = ε, xp = q or xp is the longest
q-quasiperiodic prefix of π if |π| > |q|, and ps a prefix of q. Based on this re-
mark, we introduce an automaton that will allow to recognize words u such that
f(u) is q-quasiperiodic (or q or the empty word ε), for a given word q and a
given morphism f . Note that a quasiperiod may have several borders, that is,
proper suffixes that are prefixes. For instance, the word q = abacaba has ε, a
and aba as borders. Thus while processing the automaton, one cannot determine
with precision which will be the word p occurring in the previous observation
until the reading of the next letters. Therefore the constructed automaton will
just remind (instead of initial p) the longest suffix p of π such that ps is a
prefix of q.

Definition 4.2. Let f be a morphism over A∗ and q be a non-empty word. We
denote Aq(f), or simply Aq, the automaton (A,Q, i, F,Δ) where:

– the states, the elements of Q, are the pairs (p, s) such that ps is a proper
prefix of q;

– the initial state i is the pair (ε, ε);
– the final states, the elements of F , are the pairs of the form (p, ε), with p a

prefix of q;
– the transitions, the elements of Δ, are triples ((p1, s1), a, (p2, s2)) where

(p1, s1) ∈ Q, (p2, s2) ∈ Q and one of the two following situations holds:
1. If q does not occur in p1s1f(a) and |q| > |s1f(a)|, then

186 F. Levé and G. Richomme

• s1f(a) = s2,
• p2 is the longest suffix of p1 such that p2s1f(a) is a proper prefix of
q.

2. If q occurs in p1s1f(a)
• there exist a suffix x of p1 and a word y such that xs1f(a) = ys2
with y = q or y is q-quasiperiodic,

• p2 is the longest suffix of y such that p2s2 is a proper prefix of q.

The automaton defined in the previous definition is deterministic. It should
be emphasized that given a state (p, s) and a letter a, there may not exist a state
(p′, s′) such that a transition ((p, s), a, (p′, s′)) exists. We let readers verify the
next observation and its corollary.

Fact 4.3. Any state (p, s) in Aq is reached by reading a word u if and only if
there exist words π, p and s, such that f(u) = πps with πp = ε, πp = q or πp is
a q-quasiperiodic word, and, ps is the longest prefix of q that is a suffix of f(u).

Lemma 4.4. A word u is recognized by Aq if and only if f(u) = ε or f(u) = q
or f(u) is q-quasiperiodic.

Let us give some examples of automata following the previous definition.
Notice that we just construct the states that are accessible from (ε, ε).

Example 4.5. Let f be the morphism defined by f(a) = ab, f(b) = aba. The
automaton Aaba is the following one.

(ε, ab)

a

		�
��

���
��

�

b

�� (ε, ε)

��

a

�����������

b

		�
��

���
��

�
(a, b)

b

���
���

��
�

a
��

(a, ε)

a

��

��

b

��

Example 4.6. Let f be the morphism defined by f(a) = abaaba, f(b) = baabaaba.
Here follow automata Aaba and Abaaba.

�� (ε, ε)

��

a �� (a, ε)

��

a,b
�� �� (ε, ε)

��

b �� (ba, ε)

��

a,b
��

Example 4.7. Let f be the morphism defined by f(a) = aabaab, f(b) = aabaaaba
and f(c) = aabaababaabaa. Here follows automaton Aaabaa.

On Quasiperiodic Morphisms 187

(aa, b)

b

a
��

�� (ε, ε)

��

a

�����������

b

���
��

��
��

��

(a, aba)

a

��

��

b
��

Let Q(f) be the set of all words q such that, for all letters α in A, |q| ≤ 2|f(α)|
and q is a factor of f(α)3. Following Lemma 4.1, Q(f) is the set of all possible
quasiperiods of a word of the form f(u). Thus Lemma 4.4 implies the next
characterization of strongly quasiperiodic morphisms on finite words.

Proposition 4.8. A morphism f is strongly quasiperiodic on finite words if and
only if, for each letter α, the word f(α) is quasiperiodic, and

A∗ =
⋃

q∈Q(f)

L(Aq)

where L(Aq) is the language recognized by the automaton Aq.

As Q(f) is finite, and as it is decidable whether a finite word is quasiperi-
odic [1,3,7] (see also [6] for optimality of the complexity of these algorithms), we
can conclude:

Corollary 4.9. It is decidable whether a morphism is strongly quasiperiodic on
finite words.

To end this section, let us illustrate Proposition 4.8. If f is the morphism
considered in Example 4.6 (f(a) = abaaba, f(b) = baabaaba), as aba and baaba
belong to Q(f), as L(Aaba) = ε ∪ a{a, b}∗ and L(Abaaba) = ε ∪ b{a, b}∗, as f(a)
and f(b) are quasiperiodic, we can conclude by Proposition 4.8 that f is strongly
quasiperiodic on finite words.

Now consider the morphism defined by f(a) = ab, f(b) = aba. We have
Q(f) = {a, b, ab, ba, aba}. By Example 4.5, L(Aaba) = ε∪{a, b}∗b. We let readers
verify that L(Aa) = L(Ab) = L(Aba) = ∅ and L(Aab) = a∗. Thus f is not
strongly quasiperiodic. As the set L(Aaba) contains non-quasiperiodic words,
this morphism f is weakly quasiperiodic.

5 Deciding Strong Quasiperiodicity on Infinite Words

We now show how to adapt the ideas of the previous section to the study of
strongly quasiperiodic on infinite words morphisms. First we adapt Lemma 4.1.

188 F. Levé and G. Richomme

Lemma 5.1. If f is a strongly quasiperiodic on infinite words morphism, then
for any infinite word w and any letter α, the quasiperiod of f(w) is a factor of
f(α3) of length less than 2|f(α)| that is a factor of Q(f).

This result is a consequence of the next one whose proof is similar to the one
of Lemma 4.1 (without the need of Lemma 3.2).

Lemma 5.2. If f is a strongly quasiperiodic on infinite words morphism, then
for any word u and any letter α, the quasiperiod of f(uαω) is a factor of f(α3)
of length less than 2|f(α)|.
Proof of Lemma 5.1. Let f be a strongly quasiperiodic on infinite words mor-
phism. Let w be an infinite word and let α be a letter. With each prefix p
of w, by Lemma 5.2, one can associate a factor qp of f(α3) such that f(pαω)
is qp-quasiperiodic. As the set of factors of f(α3) is finite, there exists one,
say q, which is associated with an infinity of prefixes of w. This implies w is
q-quasiperiodic. ��

Now we adapt the automaton used in the previous section in order to have a
tool to determine if the image of an infinite word is q-quasiperiodic for a given
morphism and a given word q.

Definition 5.3. Let f be a morphism over A∗ and q be a non-empty word. Let
A′

q(f), or simply A′
q, denote the automaton (A,Q, i, F ′, Δ) where Q, i, Δ are

defined as in Definition 4.2, and F ′ = Q.

Lemma 5.4. An infinite word f(w) is q-quasiperiodic if and only if all its
prefixes are recognized by A′

q.

As a consequence of Lemmas 5.1 and 5.4, we get the next characterization of
strongly quasiperiodic morphisms on infinite words.

Proposition 5.5. A morphism f is strongly quasiperiodic on infinite words if
and only if

A∗ =
⋃

q∈Q(f)

L(A′
q)

where L(A′
q) is the language recognized by the automaton A′

q.

The proof of Proposition 5.5 is a consequence of the previous definition and
lemmas. To make all clearer, just observe that, if a word u is recognized by A′

q

then all its prefixes are also recognized.
As an example to illustrate Proposition 5.5, one can consider the morphism

f defined by f(a) = ab, f(b) = aba. Example 4.5 shows that A′
aba = {a, b}∗ and

so f is strongly quasiperiodic on infinite words.
In the same way, one can verify that the morphism f defined by f(a) = abaaba

and f(b) = aabaaba is strongly-quasiperiodic. More precisely, the image of any
infinite word beginning with a is abaa-quasiperiodic and the image of any word
beginning with b is aaba-quasiperiodic.

As a consequence of Proposition 5.5, we have the next result.

Corollary 5.6. It is decidable whether a morphism is strongly quasiperiodic on
infinite words.

On Quasiperiodic Morphisms 189

6 On Weakly Quasiperiodic Morphisms

We now consider the decidability of the questions: given a morphism f , is
f weakly quasiperiodic on finite words? Is it weakly quasiperiodic on infinite
words? Note that this is equivalent to asking for the decidability of the ques-
tion: given a morphism, are all images of non-quasiperiodic words also non-
quasiperiodic? We provide some partial answers.

Let us recall that a morphism f is said prefix (resp. suffix) if for all letters a
and b, f(a) is not a prefix (resp. a suffix) of f(b).

Lemma 6.1. Any non-prefix or non-suffix non-erasing morphism defined on an
alphabet of cardinality at least two is weakly quasiperiodic on finite and infinite
words.

Proof. If f(a) is a prefix of f(b) then, for all k ≥ 1, the finite word f(bka) is
f(ba)-quasiperiodic. The infinite word f(babω) is also f(ba)-quasiperiodic. The
morphism f is weakly quasiperiodic both on finite words and on infinite words.

If f(a) is a suffix of f(b) then, for all k ≥ 1, the finite word f(abk) is f(ab)-
quasiperiodic. The infinite word f(abω) is f(ab)-quasiperiodic (it is even peri-
odic). The morphism f is weakly quasiperiodic both on finite words and on
infinite words.

Corollary 6.2. Any non-injective non-erasing morphism defined on an alphabet
of cardinality at least two is weakly quasiperiodic on finite and infinite words.

Proof. If f is not injective, there exist two different words u and v such that
f(u) = f(v). If f(u) and f(v) are powers of same word then f is erasing: a
contradiction. Otherwise, we can assume that u and v begin with different letters.
Thus f is not prefix and so, by Lemma 6.1, it is weakly quasiperiodic on finite
and infinite words.

Proposition 6.3. Let f be a non-erasing morphism and let u be a primitive
word over {a, b}. If f(u) is not primitive then f is weakly quasiperiodic on finite
words. Moreover, if |u|a ≥ 1 and |u|b ≥ 1, then f is weakly quasiperiodic on
infinite words.

We first need an intermediate result.

Lemma 6.4. If f(aibj) is not primitive for some integers i ≥ 1, j ≥ 1, then
one of the words f(abω), f(abaω), f(baω), f(babω) is quasiperiodic.

Proof. Assume first i ≥ 2, j ≥ 2. By Lyndon-Schützenberger’s characterization
of solutions of the equation xiyj = zk when i ≥ 2, j ≥ 2, k ≥ 2 [13], we deduce
that f(a) and f(b) are powers of a same word: f(abω) is quasiperiodic, as any
image of a finite (of length at least 2) or of an infinite word.

Now consider case j = 1. Let u be the primitive word such thay f(aib) = uk

(k ≥ 2). If |f(a)i−1| ≥ |u|, the words f(a)i and uk share a common prefix of
length at least |f(a)|+|u|. By Fine and Wilf’s theorem [4], f(a) and u are powers

190 F. Levé and G. Richomme

of a same word. It follows that f(a) and f(b) are also powers of a same word.
We conclude as in case i, j ≥ 2.

Now consider the case |u| ≥ |f(a)i|. From f(a)if(b) = uk, we get u = f(a)ix,
f(b) = xuk−1 for some word x. Hence f(b) = x(f(a)ix)k−1 and the word f(babω)
is x(f(a)ix)-quasiperiodic.

It remains to consider the case |f(a)i−1| < |u| < |f(a)i|. In this case, for some
words x and y, u = f(a)i−1x, f(a) = xy and y is a prefix of u. In particular,
for some word z, f(a) = xy = yz. By a classical result in Combinatorics on
Words (see [11, Lem. 1.3.4]), x = αβ, y = (αβ)
α, z = βα: f(a) = (αβ)
+1α,
u = [(αβ)
+1α]i−1αβ. Now observe that yf(b) = uk−1 = [[(αβ)
+1α]i−1αβ]k−1.
When i ≥ 2, f(b) = βα[(αβ)
+1α]i−2αβ[[(αβ)
+1α]i−1αβ]k−2, and when i = 1,
f(b) = β(αβ)k−
−2 . In both cases, f(abaω) is αβα-quasiperiodic.

When i = 1, the non-primitivity of f(abj) is equivalent to the non-primitivity
of f(bja). Thus exchanging the roles of a and b, we end the proof of the
lemma. ��

Proof of Proposition 6.3. First if u contains only the letter a or only the letter
b, we have u = a or u = b and f is weakly quasiperiodic on finite words. Assume
from now on that |u|a ≥ 1 and |u|b ≥ 1. If |u|a = 1, then there exist integers
i, j such that u = biabj with i + j ≥ 1. As f(u) is not primitive, also f(abi+j)
is not primitive: f is weakly quasiperiodic on finite words. By Lemma 6.4, f is
also weakly quasiperiodic on infinite words. The result follows similarly when
|u|b = 1. Now consider the case |u|a ≥ 2 and |u|b ≥ 2. A seminal result by Lentin
and Schützenberger states that if f is a morphism defined on alphabet {a, b},
such that for a non-empty word u, f(u) is not primitive then there exists a word
v in a∗b ∩ ab∗ such that f(v) is not primitive [8, Th. 5]. We are back to the
previous cases. ��

The converse of Proposition 6.3 is false. Indeed as shown by the morphism f
defined by f(a) = ababa, f(b) = ab, a morphism can be weakly quasiperiodic
on finite words or on infinite words and be primitive preserving (the image of
any primitive word is primitive). Nevertheless observe that when we consider the
problem of deciding if a morphism is weakly quasiperiodic on infinite words, we
can assume that all images of letters are primitive. Indeed any morphism f such
that f(a) is a non-empty power of a for each letter a is not weakly quasiperiodic:
for any word (finite of length at least 2 or infinite) w, f(w) is quasiperiodic if and
only if w is quasiperiodic. In consequence, to determine whether a morphism f
is weakly quasiperiodic or not, one can substitute f by the morphism rf where
rf (a) is the primitive root of f(a). Note that images of letters by rf are primitive
words.

For all weakly quasiperiodic on infinite words morphisms met until now, there
exist non-empty words u and v such that the infinite word uvω is not quasiperi-
odic while f(uvω) is quasiperiodic. This situation also holds in the next lemma
(when w in the hypothesis is not quasiperiodic) whose proof is omitted. We
conjecture that this holds in all cases. Bounding the length of u and v could lead
to a procedure to check whether a morphism is weakly quasiperiodic on infinite
words.

On Quasiperiodic Morphisms 191

Lemma 6.5. Let f be a morphism, and let w be an infinite word such that
f(w) is q-quasiperiodic for some word q such that 2|q| ≤ |f(α)| for each letter
α. Then:

1. w = (a1 . . . ak)
ω with a1, . . . , ak pairwise different letters, or,

2. there exist words x, y, z and letters a and b such that |xyz|a = 0, |z|b = 0,
xay(bz)ω is not quasiperiodic and f(xay(bz)ω) is q-quasiperiodic. Moreover
in this case, we can find x, y and z such that any letter occurs at most once
in each of these words.

7 Conclusion

To conclude this paper on links between quasiperiodicity and morphisms, we
point out another question. Given a morphism f prolongable on a letter a, can
we decide whether the word fω(a) = limn→∞ fn(a) is quasiperiodic? We are
convinced that a better knowledge of weakly and strongly quasiperiodic on infi-
nite words morphisms could bring answers to the previous question. We suspect
in particular that if f is a strongly quasiperiodic on infinite words morphism
and if it is prolongable on a, then fω(a) is quasiperiodic. Conversely it should
be true that if fω(a) is quasiperiodic and f(a) is not a power of a then f is
weakly quasiperiodic on infinite words. The next result states partially that.

Proposition 7.1. Let f be a non-erasing morphism and a be a letter such that
fω(a) is a quasiperiodic infinite word but not a periodic word. If all letters are
growing with respect to f (limn→∞ |fn(a)| =∞), then f is weakly quasiperiodic
on infinite words.

Observe that the converse of the previous proposition does not hold. The mor-
phism f defined by f(a) = a, f(b) = ba does not generate an infinite quasiperi-
odic word (f does not generate its fixed point aω and baω is not quasiperiodic),
but it is weakly quasiperiodic on infinite words as f(abω) is aba-quasiperiodic.

It is an open problem to state Proposition 7.1 for arbitrary morphims gener-
ating a quasiperiodic infinite word.

The proof of Proposition 7.1 is a consequence of Lemma 6.5 and the following
one.

Lemma 7.2. Let f be a non-erasing morphism. If, for some integer k ≥ 1, the
morphism fk is weakly quasiperiodic, then f is weakly quasiperiodic.

Proof. Assume fk(w) is quasiperiodic for some integer k ≥ 1 and for some non-
quasiperiodic infinite word w. Let i be the smallest integer such that f i(w) is
quasiperiodic. Observe that i ≥ 1 and that f i−1(w) is not quasiperiodic. As
f i(w) = f(f i−1(w)), f is weakly quasiperiodic on infinite words. ��
Proof of Proposition 7.1. Let f be a morphism and let a be a letter such that
fω(a) is a quasiperiodic infinite word. Let q be the quasiperiod of fω(a). Assume
that all letters of f are growing. As all letters are growing with respect to f , for
some k ≥ 1, fk verifies the hypothesis of Lemma 6.5: fk is weakly quasiperiodic
on infinite words. By Lemma 7.2, f is also weakly quasiperiodic on infinite
words. ��

192 F. Levé and G. Richomme

References

1. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings.
Theoret. Comput. Sci. 119, 247–265 (1993)

2. Berstel, J., Séébold, P.: Sturmian words. In: Lothaire, M. (ed.) Algebraic Combi-
natorics on Words. Encyclopedia of Mathematics and its Applications, vol. 90, pp.
45–110. Cambridge University Press (2002)

3. Brodal, G.S., Pedersen, C.N.S.: Finding maximal quasiperiodicities in strings.
In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 397–411.
Springer, Heidelberg (2000)

4. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Amer.
Math. Soc. 16, 109–114 (1965)

5. Glen, A., Levé, F., Richomme, G.: Quasiperiodic and Lyndon episturmian words.
Theoret. Comput. Sci. 409(3), 578–600 (2008)

6. Groult, R., Richomme, G.: Optimality of some algorithms to detect quasiperiodic-
ities. Theoret. Comput. Sci. 411, 3110–3122 (2010)

7. Iliopoulos, C.S., Mouchard, L.: Quasiperiodicity: from detection to normal forms.
Journal of Automata, Languages and Combinatorics 4(3), 213–228 (1999)

8. Lentin, A., Schützenberger, M.P.: A combinatorial problem in the theory of free
monoids. In: Bose, R.C., Dowling, T.W. (eds.) Combinatorial Mathematics and its
Applications, pp. 128–144. Univ. North Carolina Press (1969)

9. Levé, F., Richomme, G.: Quasiperiodic infinite words: some answers. Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS 84, 128–238 (2004)

10. Levé, F., Richomme, G.: Quasiperiodic Sturmian words and morphisms. Theoret.
Comput. Sci. 372(1), 15–25 (2007)

11. Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and its Ap-
plications, vol. 17. Addison-Wesley (1983); Reprinted in the Cambridge Mathe-
matical Library. Cambridge University Press, UK (1997)

12. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications, vol. 90. Cambridge University Press (2002)

13. Lyndon, R.C., Schützenberger, M.-P.: The equation am = bncp in a free group.
Michigan Math. J. 9, 289–298 (1962)

14. Marcus, S.: Quasiperiodic infinite words. Bull. Eur. Assoc. Theor. Comput. Sci.
EATCS 82, 170–174 (2004)

15. Marcus, S., Monteil, T.: Quasiperiodic infinite words: multi-scale case and dynam-
ical properties. Technical Report arXiv:math/0603354, arxiv.org (2006)

16. Richomme, G.: Lyndon morphisms. Bull. Belg. Math. Soc. Simon Stevin 10(5),
761–786 (2003)

Enumerating Abelian Returns

to Prefixes of Sturmian Words

Zuzana Masáková and Edita Pelantová

Department of Mathematics FNSPE, Czech Technical University in Prague
Trojanova 13, 120 00 Praha 2, Czech Republic

{zuzana.masakova,edita.pelantova}@fjfi.cvut.cz

Abstract. We follow the works of Puzynina and Zamboni, and Rigo
et al. on abelian returns in Sturmian words. We determine the cardi-
nality of the set APRu of abelian returns of all prefixes of a Sturmian
word u in terms of the coefficients of the continued fraction of the slope,
dependingly on the intercept. We provide a simple algorithm for finding
the set APRu and we determine it for the characteristic Sturmian words.

Keywords: Abelian return word, Sturmian word, interval exchange.

1 Introduction

Although Sturmian sequences have been studied for more than 70 years, new
properties and characterizations still appear. Return words, introduced by
Durand [6], were used in 2001 for one of such equivalent definitions. Vuillon [17]
has shown that an infinite word is a Sturmian word if and only if each of its
factors has exactly two return words. In 2011, Puzynina and Zamboni [11] use
an abelian modification of the notion of return words for deriving yet another
equivalent characterization of Sturmian words. The adjective ‘abelian’ is used
when in a word w, we are interested only in the number of occurrences of a
letter a and not in the order of letters. Formally, two finite words w,w′ over an
alphabet A are abelian equivalent, denoted w ∼ab w′, if |w|a = |w′|a for every
a ∈ A, where |w|a stands for the number of occurrences of the letter a in the
word w. In order to define abelian return words to a factor w of length |w| = n
in an infinite word u = u0u1u2 · · · , denote by n1 < · · · < ni < ni+1 < · · ·
the consecutive occurrences of factors which are abelian equivalent to w, i.e.
uniuni+1 · · ·uni+n−1 ∼ab w, and ujuj+1 · · ·uj+n−1
∼ab w for ni < j < ni+1.
Then the factors v = uniuni+1 · · ·uni+1−1 are called abelian return words to w.
Given a factor w in u, the set of abelian return words of w in u is denoted
by ARw,u. The main result of Puzynina and Zamboni [11] is that an aperiodic
recurrent infinite word u is Sturmian if and only if every factor of u has two
or three abelian return words, i.e. #ARw,u ∈ {2, 3} for any factor w in u. If a
factor has three abelian return words R1, R2, R3, then for their length one has
|R1|+|R2| = |R3|, see [12]. We will show that in fact R3 = R1R2 (cf. Theorem 8).

Rigo et al. [14] have studied the set of abelian returns to all prefixes of a
Sturmian word u, denoted by APRu =

⋃{
ARw,u : w is a prefix of u

}
, and

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 193–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

194 Z. Masáková and E. Pelantová

showed that for a Sturmian word u with intercept ρ, the set APRu is finite if
and only if ρ
= 0. In Theorem 16 we determine the cardinality of the set APRu

dependingly on the intercept ρ and the continued fraction of the slope α. We
provide an algorithm for listing the elements of APRu explicitly. We provide
APRu for every characteristic Sturmian word (Proposition 18), extending thus
the result of Rigo et. al [14] who show that APRf = {0, 1, 01, 10, 001} for the
Fibonacci word f .

For our purposes, we present Sturmian words as codings of exchange T :
[0, 1) → [0, 1) of two intervals. The main tool for obtaining our results is the
study of itineraries under the first return map induced by T to a subinterval
I ⊂ [0, 1).

2 Some Facts about Sturmian Words

Sturmian words are usually defined as infinite aperiodic words having for every
n ∈ N exactly n+1 different factors of length n. For details about definition and
basic properties of Sturmian words see [9]. For our purposes, it is useful to con-
sider the equivalent characterization of Sturmian words as codings of exchange
of two intervals. For an α ∈ (0, 1) we consider the exchange T of two intervals
of length α and 1− α, namely T : [0, 1)→ [0, 1) given by the prescription,

T (x) =

{
x+ 1− α if x ∈ [0, α) =: J0 ,

x− α if x ∈ [α, 1) =: J1 .
(1)

If α is irrational, then the orbit of any given ρ ∈ [0, 1) is infinite, and the sequence
ρ, T (ρ), T 2(ρ), T 3(ρ), . . . can be coded by an infinite word uα,ρ = u0u1u2 · · ·
over the alphabet {0, 1} given naturally by

un =

{
0 if T n(ρ) ∈ J0 ,

1 if T n(ρ) ∈ J1 .

Such an infinite word is Sturmian with slope α and intercept ρ. It is well known
that any Sturmian word can be obtained by coding an orbit of a 2-interval
exchange for some irrational slope α and intercept ρ, or by a similar exchange
of intervals where the intervals J0, J1 are semi-open from the other side.

All Sturmian words uα,ρ of the same slope α have the same language L(α),
i.e. the same set of factors. Among Sturmian words with the same slope, one is
exceptional – the so-called characteristic word – namely the one with intercept
ρ = 1 − α. We denote uα,1−α = cα. Among the exceptional properties of cα is
that every prefix w of cα is a left-special factor, i.e. both 0w and 1w belong to
the language L(α).

For any factor w ∈ L(α), there is an interval Jw ⊂ [0, 1), the cylinder of w,
such that the prefix of length n of the infinite word uα,ρ is equal to w, taking
any intercept ρ ∈ Jw. The n+ 1 subintervals Jw for w ∈ L(α) ∩ {0, 1}n form a
partition of [0, 1) and their boundary points are determined by the n numbers
α, T−1(α), . . . , T−n+1(α).

Enumerating Abelian Returns to Prefixes of Sturmian Words 195

For every fixed n, the lengths of intervals Jw take at most 3 values, where
the longest is the sum of the two shorter ones. This is the statement of the so-
called three-gap theorem, which was independently proved by several authors,
for example [15,16]. The length of Jw corresponds to the frequency of the factor
w in uα,x, as mentioned in [5]. These lengths take values – here denoted by δk,s
– in a discrete set, which is described in terms of the continued fraction of the
parameter α = [0, a1, a2, a3, . . .]. For an overview about three gap theorem and
related results, see [2]. The values δk,s are important for our further considera-
tions, that is why we provide them here explicitly. Recall that the numerators
pk and the denominators qk of the convergents pk

qk
of α satisfy the recurrence

relation pk = akpk−1+pk−2, qk = akqk−1+qk−2, with initial values p0 = a0 = 0,
q0 = 1, and p−1 = 1, q−1 = 0, so that the recurrence holds for every k ≥ 1.
Denoting

δk,s :=
∣∣(s− 1)(pk − αqk) + pk−1 − αqk−1

∣∣ , for k ≥ 0, 1 ≤ s ≤ ak+1, (2)

one has δk,s < δk′,s′ ⇐⇒ ks �lex k
′s′.

It is known [10] that Sturmian words are balanced, which means that for every
pair of factors w,w′ of the same length |w| = |w′| one has

∣∣|w|0 − |w′|0
∣∣ ≤ 1.

This implies that for any n, the number |w|0 of letters 0 in a factor w of length
n can take only two values. In accordance with [14], we call the factors w with
higher number |w|0 light, and the other ones heavy.

It can be shown that the union of intervals Jw over all light factors w is again
an interval. The same is true for heavy factors. The statement of the following
lemma can be derived for example from the proof of Lemma 8 of [3] or the proof
of Theorem 8 of [14].

Lemma 1. A prefix of length n of the infinite word uα,ρ is light if and only if
ρ ∈
[
0, T−n+1(α)

)
. A prefix of length n of the infinite word uα,ρ is heavy if and

only if ρ ∈
[
T−n+1(α), 1

)
.

3 Abelian Returns of Sturmian Factors

The main tool for describing abelian return to prefixes of Sturmian words is
the study of return time to a subinterval I of [0, 1) under the transformation T
from (1).

Let T be an exchange of two intervals as in (1). To every subinterval I ⊂ [0, 1)
we can associate a mapping r : I → {1, 2, 3, . . .}, the so-called return time to I,
by setting

r(x) = min{n ∈ N, n ≥ 1 : T n(x) ∈ I} .

The prefix of length r(x) of the Sturmian word uα,x coding the orbit of the point
x is called an I-itinerary under T and denoted R(x).

With these notions we can formulate the connection between abelian returns
to a prefix of a word uα,ρ and the I-itineraries following from Lemma 1.

196 Z. Masáková and E. Pelantová

Lemma 2. Let w be a factor of a Sturmian word uα,ρ of length |w| = n for some
n ∈ N. Put I =

[
0, T−n+1(α)

)
if w is light and I =

[
T−n+1(α), 1

)
otherwise.

Then v is an abelian return to w if and only if v is an I-itinerary.

As a consequence we have the following description of the set APRuα,ρ .

Corollary 3. Let α, ρ ∈ [0, 1), α irrational. Let u be a Sturmian word with slope
α and intercept ρ. Then the set of abelian return words of prefixes of u satisfies

APRu = Rα
ρ ∪R′α

ρ ,

where

Rα
ρ =

⋃
ρ<β≤1

{
R : R is a [0, β)-itinerary

}
,

R′α
ρ =

⋃
0≤γ<ρ

{
R : R is a [γ, 1)-itinerary

}
.

Proof. Let w be a prefix of length n of the word u which is light. This means
that for its intercept ρ one has ρ ∈ Jw ⊂

[
0, T−n+1(α)

)
. According to Lemma 2,

if v is an abelian return to w, then it is an I-itinerary, where I =
[
0, T−n+1(α)

)
.

Thus v ∈ Rα
ρ . Similarly, if w is a heavy prefix of length n of the word u, we

derive that its abelian return words satisfy v ∈ R′α
ρ .

For the other inclusion, we will use the following claim which follows from the
properties of the transformation T , see [8].

Fact 1 Let α ∈ (0, 1) be irrational and let T be defined by (1). Denote Sβ =
{
R :

R is a [0, β)-itinerary
}
. Then for any β0 ∈ (0, 1) there exists a neighbourhood

Hβ0 such that Sβ0 ⊂ Sβ for any β ∈ Hβ0 .

Let ρ ≤ β0 < 1. If β0 = T−n+1(α) for some n, then the set Sβ0 of I-itineraries
for the interval I = [0, β0) =

[
0, T−n+1(α)

)
is, according to Lemma 2, formed

by abelian returns to the prefix of u of length n. If β0
= T−n+1(α) for all n ∈ N,
we use the fact that

{
T−n(α) : n ∈ N

}
is dense in [0, 1). By Fact 1, we find

β = T−n+1(α) sufficiently close to β0, so that Sβ0 ⊂ Sβ . Since Sβ ⊂ APRu, the
proof is established.

Remark 4. Note that Rα
ρ is the set of all abelian returns to all light prefixes of

the Sturmian word uα,ρ. Similarly, R′α
ρ is the set of all abelian returns to all

heavy prefixes of the Sturmian word uα,ρ.

4 First Return Map for Sturmian Systems

In the previous section we have explained that for determining the set APRu

for a given Sturmian word u, it is important to derive what are the I-itineraries
under the transformation (1), in particular, for intervals I of the type I = [0, β)
resp. I = [γ, 1). We provide such description in Theorem 8.

Enumerating Abelian Returns to Prefixes of Sturmian Words 197

First we recall the notion of k-interval exchange transformations. Let J0∪J1∪
· · · ∪ Jk−1 = [0, 1) be a partition of [0, 1) into intervals closed from the left and
open from the right. Let t0, t1, . . . , tk−1 be constants such that the mapping T
defined by T (x) = x+ tj for x ∈ Jj is a bijection T : [0, 1)→ [0, 1). For example,
the transformation (1) is an exchange of two intervals. Clearly, intervals T (J0),
T (J1), . . . , T (Jk−1) also form a partition of [0, 1). Their ordering in the interval
[0, 1) is usually specified by a permutation on {0, 1, . . . , k − 1}.

For a general exchange T : [0, 1)→ [0, 1) of k intervals it was proven in [8] that
the induced map (or first return map to I) TI : I → I given by TI(x) = T r(x)(x)
is an exchange of at most k + 2 intervals. For k = 3, this result can be stated in
a stronger form: If T is an exchange of three intervals with permutation (321),
then for any interval I, the induced map TI is either again an exchange of three
intervals with permutation (321), or exchange of two intervals, see Theorem 4.1
in [4]. In this paper, T is an exchange of two intervals. The following statement
about induced maps is a reformulation of Proposition 4.5. of [7].

Proposition 5. Let T : [0, 1)→ [0, 1) be given by (1). Let I = [c, c+ δ), where
0 ≤ c < c+ δ ≤ 1. Then the induced map TI is

– an exchange of two intervals, if δ = δk,s for some k ≥ 0, 1 ≤ s ≤ ak+1,
where δk,s is defined in (2);

– an exchange of three intervals with permutation (321), otherwise.

As it was already mentioned, the values δk,s represent lengths of cylinders Jw
of factors w of the Sturmian word. In particular, choosing I = Jw, the induced
map TI is an exchange of two intervals, and the return time r(x) therefore takes
two values for x ∈ I. The result of Vuillon [17] states a stronger fact, namely
that the I-itineraries R(x) take also only two values for x ∈ I, and these are the
classical return words to the factor w. If I ⊂ [0, 1) is chosen arbitrarily, the above
theorem implies that the return time r(x) for x ∈ I takes at most three values.
The I-itinerary R(x) can however take, in general, more than three values. For,
if R(x)
= R(y), but R(x) and R(y) are still abelian equivalent, then r(x) = r(y).

Example 6. Let α = 1
τ , where τ = 1

2 (1 +
√
5) is the golden ratio. In this case,

the transformation T : [0, 1)→ [0, 1) is of the form

T (x) =

{
x+ 1− 1

τ if x ∈ [0, 1
τ) ,

x− 1
τ if x ∈ [1τ , 1) .

Consider the interval I = [1
τ3 ,

1
τ + 1

τ4). Define

I1 = [1
τ3 ,

1
τ2), I2 = [1

τ2 ,
1
τ2 + 1

τ5), I3 = [1
τ2 + 1

τ5 ,
1
τ), I4 = [1τ ,

1
τ + 1

τ4) .

Let us list for every subinterval Ij the corresponding return time r(x), the
induced map TI(x), and the I-itinerary R(x), where x ∈ Ij :

198 Z. Masáková and E. Pelantová

x ∈ I1 r(x) = 1 TI(x) = x+ 1
τ2 R(x) = 0

x ∈ I2 r(x) = 3 TI(x) = x+ 1
τ4 R(x) = 010

x ∈ I3 r(x) = 2 TI(x) = x− 1
τ3 R(x) = 01

x ∈ I4 r(x) = 2 TI(x) = x− 1
τ3 R(x) = 10

We see that the induced map TI is an exchange of three intervals I1, I2, and I3∪I4
with permutation (321). However, the I-itineraries are four different words.

In the previous example we have seen that for a general subinterval I ⊂ [0, 1),
the set of I-itineraries may have four elements, and one can derive from [8]
that this is the maximal possible number, when inducing on a subinterval under
an exchange of two intervals. We will focus on the case when I has the form
I = [0, β) for some β < 1 and show that then

#Sβ = #{R : R is a [0, β)-itinerary} ≤ 3 .

Before that, we give example of a special case of the choice of I.

Example 7. Let I = [0, β) where α < β ≤ 1. For determining all I-itineraries,
denote by l the non-negative integer such that

1− (l + 1)α < β ≤ 1− lα .

The interval I splits into three subintervals,

I1 = [0, β + (l + 1)α− 1), I2 = [β + (l + 1)α− 1, α), I3 = [α, β),

for which the return time and the itinerary are constant, as seen in the table
below.

x ∈ I1 r(x) = l + 1 TI(x) = x+ 1− (l + 1)α R(x) = 01l

x ∈ I2 r(x) = l + 2 TI(x) = x+ 1− (l + 2)α R(x) = 01l+1

x ∈ I3 r(x) = 1 TI(x) = x− α R(x) = 1

When β = 1 − lα, the interval [β + (l + 1)α − 1, α) vanishes, and thus the
induced map TI is an exchange of two intervals. Otherwise, it is an exchange of
three intervals with permutation (321).

Theorem 8. Let T be an exchange of two intervals as in (1). Let 0 < β ≤ 1.
Then for the interval I = [0, β) there exist words R and R′, R ≺lex R

′, such that
the I-itinerary R(x) of every x ∈ I under T satisfies R(x) ∈ {R,R′, RR′}.

Proof. Consider first the case when α ∈ I = [0, β). The first return map to
I is given in Example 7 together with the I-itineraries R = 01l, R′ = 1, and
R′′ = RR′ = 01l+1. We can therefore restrict our considerations to an interval
I = [0, β) such that α /∈ I. Let K be an interval K ⊂ [0, 1). We distinguish three
types of events for K.

Enumerating Abelian Returns to Prefixes of Sturmian Words 199

Event a) for K occurs if α ∈ T k(K) for some k ≥ 1.
Event b) for K occurs if T l(K) ∩ I
= ∅ for some l ≥ 1, while T l(K)
⊂ I.
Event c) for K occurs if Tm(K) ⊂ I for some m ≥ 1.

Consider first K = I. Since the transformation T is minimal (only trivial
subsets A ⊂ [0, 1) satisfy T (A) ⊂ A), the first event which occurs for K is either
a) or b).

Case 1. Let the first event be a). Since the left end-point of K is 0 = T (α),
necessarily α = T−1(0) is an inner point of T k(K). Put I3 = T−k

(
T k(I)∩[α, 1)

)
.

Then T k+1(I3) ⊂ I = [0, β). Clearly, every x ∈ I3 satisfies r(x) = k+1 and R(x)
is constant on I3, denote R(x) = R′. Note that the last letter of R′ is 1 and thus
it is lexicographically greater than the I-itinerary R(x) of every x ∈ I \ I3.

Put now K = I \ I3. If for such K the first occurring event is c) then the I-
itinerary R(x) is constant on I \ I3, say R(x) = R. We obviously have R′ = w1,
R = w0v for some non-empty words w, v ∈ {0, 1}∗, and thus indeed R ≺lex R′.
The transformation TI induced by T on I is the exchange of two intervals I1 =
I \ I3 and I3.

Suppose, on the other hand, that the first occurring event for K = I \ I3
is not c). Then TI is necessarily an exchange of three intervals and the first
occurring event is b). For, if it were a), then TI is not an injective map, which
is a contradiction. Put I1 = T−l

(
T l(I \ I3) ∩ I

)
. For every x ∈ I1, we have

r(x) = l > k + 1, and R(x) = R is constant on I1.
Denote I2 = (I \ I1) \ I3. For every x ∈ I2, we have r(x) > l. As TI is an

exchange of three intervals, we must have r(x) constant on I2, equal to the sum
of return times for I3 and I1, namely r(x) = k + 1 + l. Necessarily K = I2
encounters first the event c) (T k+1+l(I2) ⊂ I), and thus also R(x) is constant
on I2, say R′′, and we know that it is of length k + l + 1.

Let us describe R′′. By construction, necessarily R is a prefix of R′′. Consider
the union I3 ∪ T l(I2). It is an interval, since the right end-point of I3 is β, and
by the definition of I1, the left end-point of T l(I2) is β. Set K = I3 ∪T l(I2). For
every point x in K, the smallest index j such that T j(x) ∈ I is j = k + 1. This
corresponds to the fact that the first event for K is c), T k+1(K) = T k+1(I3 ∪
T l(I2)) ⊂ I. We derive that the suffix of R′′ of length k + 1 is the same as the
I-itinerary of points in I3, namely R′. Thus, indeed, R′′ = RR′.

Case 2. Let the first event forK = I be b). Set I1 = T−l
(
T l(I)∩I

)
. Obviously,

the return time r(x) = l and the I-itinerary R(x) is constant on I1. Denote
R = R(x) for x ∈ I1. The I-itinerary of every x ∈ I \ I1 has R as a prefix. Thus
R is the smallest among I-itineraries on I.

From injectivity of TI , one derives that for K = I \I1, first event to occur is a)
for some k ≥ l. Set I3 = T−k

(
T k(I \ I1)∩ [α, 1)

)
. For every x ∈ I3, r(x) = k+1

and R(x) = R′ is constant on I3.
Put I2 = (I \ I1) \ I3. If I2 = ∅, then TI is the exchange of two intervals I1

and I3, and the proof is finished. If not, then the return time r(x) = k + l + 1
is constant on I2, and thus for K = I2 neither event a) nor event b) may occur
sooner than c). We have T k+l+1(I2) ⊂ I and the I-itinerary on I2 is also constant,
say R′′. Let us describe R′′. We already know that R is a prefix of R′′. Consider

200 Z. Masáková and E. Pelantová

the union I3 ∪ T l(I2). It is an interval, for which first occurs event c) with
T k+1

(
I3 ∪ T l(I2)

)
⊂ I. Thus R′ is a suffix of R′′.

Case 3. It may happen that for K = I event a) and event b) occur at the
same time, i.e. k = l. Then we set I1 = T−l

(
T l(I)∩ I

)
, I3 = T−k

(
T k(I)∩ [α, 1)

)
and I2 = (I \I1)\I3. Denoting the I-itinerary R(x) for x ∈ I1 by R(x) = R = w,
then R(x) = R′ = w1 for x ∈ I3, and R(x) = R′′ = ww1 for x ∈ I2.

Remark 9. So far, we have considered the transformation defined on intervals
closed from the left. In the statement of Theorem 8 we could write all intervals
closed from the right, the result would be the same.

With regard to Lemma 2 and Remark 9, Theorem 8 has the following
consequence.

Corollary 10. For every factor w of a Sturmian word u there exist factors
w1, w2 such that the set of abelian returns to the factor w satisfies ARw,u ∈
{w1, w2, w1w2}.

Proof. If w is a light factor of u, then the statement is contained in Theorem 8.
If w is heavy, then consider factor E(w) and the Sturmian word E(u) where
application of E means that we interchange 0 ↔ 1. Thus E(w) is a light factor
of E(u), for which the statement holds. Clearly, v is an abelian return to w in
u if and only if E(v) is an abelian return to E(w) in E(u).

Theorem 8 thus provides, as a consequence, an alternative proof of what has
appeared in [12], namely that if a given factor w of a Sturmian word u has three
abelian return words, then their lengths l1, l2, l3 satisfy l1 + l2 = l3.

For calculating the cardinality of APRu we need by Corollary 3 to determine
the cardinality of the sets Rα

ρ and R′α
ρ of abelian returns of all light and heavy

prefixes, respectively. In fact, it suffices to study abelian returns to light prefixes,
due to the symmetry mentioned in the proof of Corollary 10. The following
lemma is a consequence of the fact that u is a Sturmian word with slope α
and intercept ρ if and only if E(u) is a Sturmian word with slope 1 − α and
intercept 1− ρ.

Lemma 11. Let α, ρ ∈ (0, 1), α irrational. Then R′α
ρ = E

(
R1−α

1−ρ

)
, where E :

{0, 1}∗ → {0, 1}∗ is determined by E(a) = 1−a, for a ∈ {0, 1}, i.e. interchanging
0 and 1.

We use the notation (2) and Proposition 5.

Corollary 12. Let α, ρ ∈ (0, 1), where α = [0, a1, a2, a3, . . .] is irrational. Let
(k, s) ∈ N2, 1 ≤ s ≤ ak+1, be minimal in lexicographic order such that ρ ≥ δk,s.
Then

#Rα
ρ = 1 + a1 + a2 + · · ·+ ak + s .

Proof. Let δ̃ < δ be two consecutive values of the form δk,s. For the interval
I = [0, δ) we have two I-itineraries, i.e. Sδ = {R,R′}. According to Proposition 5

Enumerating Abelian Returns to Prefixes of Sturmian Words 201

and Theorem 8, for β satisfying δ̃ < β < δ, the set Sβ has three elements, by
Fact 1 not depending on β, i.e. Sβ = {R,R′, RR′}, when R ≺lex R′. Moreover,
Sδ̃ ⊂ {R,R′, RR′}. Since shortening of the interval I yields longer I-itineraries,
necessarily RR′ ∈ Sδ̃, i.e. Sδ̃ = {R,RR′} or Sδ̃ = {R′, RR′}. It follows that

every open interval (δ̃, δ) with ρ < δ contributes to Rα
ρ with one new itinerary.

One therefore has

#Rα
ρ = 2 +#{δ > ρ : δ = δi,j for some i ∈ N, 1 ≤ j ≤ ai+1} , (3)

where the summand 2 corresponds to the two itineraries 0 and 1 obtained for
the length 1 = δ0,1.

Remark 13. For any irrational α, if ρ = 0, then there are infinitely many values
δk,s > ρ. Therefore #Rα

0 = +∞ and hence by Corollary 3 also #APRu = +∞
for any Sturmian word u with zero intercept, as shown already in [14].

Let us calculate several initial values of the decreasing sequence (δk,s).

Example 14. Let μ = [0, a1, a2, a3, . . .], with a1 ≥ 2, and ν = [0, 1, b2, b3, . . .].
The sequence δk,s corresponding to μ has elements

δ0,1 = 1 > δ0,2 = 1− μ > δ0,3 = 1− 2μ > . . . >

> δ0,a1 = 1− (a1 − 1)μ > δ1,1 = μ > δ1,2 = (a1 + 1)μ− 1 > . . .
(4)

The sequence δk,s corresponding to ν has elements

δ0,1 = 1 > δ1,1 = ν > δ1,2 = 2ν − 1 > δ1,3 = 3ν − 2 > . . . >

δ1,b2 = b2ν − b2 + 1 > δ2,1 = 1− ν > . . .
(5)

Proposition 15. Let α, ρ ∈ (0, 1), α irrational, u = uα,ρ.

1. If max{α, 1− α} ≤ ρ < 1, then Rα
ρ = {0, 1, 01}.

2. If 0 < ρ ≤ min{α, 1− α}, then R′α
ρ = {0, 1, 10}.

3. For any ρ ∈ (0, 1), we have Rα
ρ ∩R′α

ρ = {0, 1}.
4. For any ρ ∈ (0, 1), we have {0, 1, 01, 10} ⊂ APRu.

Proof. In Example 14, consider μ = min{α, 1−α} and ν = 1−μ = max{α, 1−α}.
In both (4) and (5) we see that the second largest (after δ0,1) value of the de-
creasing sequence (δk,s), k ≥ 0, 1 ≤ s ≤ ak+1 is max{α, 1−α}. Relation (3) then
implies that #Rα

ρ = 3. In fact, as seen from Theorem 8, Rα
ρ = {0, 1, 01}. From

the proof of Corollary 12 it is obvious that {0, 1, 01} ⊂ Rα
ρ for any ρ ∈ (0, 1).

By symmetry, we can derive for 0 < ρ ≤ min{α, 1 − α} that R′α
ρ = {0, 1, 10},

cf. Lemma 11, and we have {0, 1, 10} ⊂ R′α
ρ for any ρ ∈ (0, 1). Combining the

above and using Corollary 3, we have statement 4 of the proposition.
In order to prove statement 3, realize how the I-itineraries of an interval of

the form I = [0, β) arise. Directly from the definition of the transformation (1),
we see that if β ≤ α, then for every x ∈ [0, β) the [0, β)-itinerary R(x) of x has
the prefix 0. If β > α, then the [0, β)-itinerary of x ∈ [α, β) is R(x) = 1; for
every x ∈ [0, α), the [0, β)-itinerary R(x) of x has the prefix 0. Thus the only
element of Rα

ρ not having prefix 0 is the word 1. Similarly, the only element of

R′α
ρ = E

(
R1−α

1−ρ

)
not having prefix 1 is the word 0. The statement follows.

202 Z. Masáková and E. Pelantová

For simplicity of notation, the following theorem is stated for Sturmian words
whose slope α satisfies α < 1

2 .

Theorem 16. Let α, ρ ∈ (0, 1), α = [0, a1, a2, . . .] irrational, a1 ≥ 2. Let u be
a Sturmian word with slope α and intercept ρ.

(i) Let ρ ∈ (α, 1− α). Then #APRu ∈ {a1 + 3, a1 + 4}.
(ii) Let ρ /∈ (α, 1−α). Let (k, s) ∈ N2, 1 ≤ s ≤ ak+1, be minimal in lexicographic

order such that min{ρ, 1− ρ} ≥ δk,s. Then #APRu = 2+ a1 + · · ·+ ak + s.

Proof. We will use the formula APRu = Rα
ρ ∪ E

(
R1−α

1−ρ

)
(as derived from

Corollary 3 combined with Lemma 11). Since α = [0, a1, a2, . . .], a1 ≥ 2, we
have 1− α = [0, 1, a1− 1, a2, a3, . . .]. Let us first prove statement (i). Substitut-
ing μ = α and ν = 1−α into the prescriptions (4) and (5) for the sequences δk,s
in Example 14, we see that they start with the same values

1 > 1− α > 1− 2α > · · · > 1− (a1 − 1)α > α > · · ·

In order to determine the cardinality of Rα
ρ by (3), we find an index i ∈

{2, . . . , a1} such that

1− iα ≤ ρ < 1− (i− 1)α . (6)

Then #Rα
ρ = 2 + i. Obviously, E

(
R1−α

1−ρ

)
has the same cardinality as R1−α

1−ρ ,
which is determined by finding an index l ∈ {2, . . . , a1} such that

1− lα ≤ 1− ρ < 1− (l − 1)α , (7)

whence #E
(
R1−α

1−ρ

)
= 2 + l.

Since the intersection of Rα
ρ and R′α

ρ = E
(
R1−α

1−ρ

)
contains by statement 3 of

Proposition 15 exactly two elements, we can conclude that #APRu = 2+ i+ l.
Let us find the relationship between i and l.

Inequality (7) can be rewritten as (l − 1)α < ρ ≤ lα. Using 1/(a1 + 1) < α <
1/a1 we verify that

(l − 1)α < 1− (a1 − l+ 1)α < lα .

We have to distinguish two cases.

a) If (l−1)α < ρ < 1−(a1−l+1)α, then i = a1−l+2, and thus #APRu = a1+4.
b) If 1 − (a1 − l + 1)α ≤ ρ ≤ lα, then i = a1 − l + 1, and consequently

#APRu = a1 + 3.

In order to show the second statement of the theorem, consider ρ /∈ (α, 1−α).
Let first ρ ≤ min{α, 1− α}. From Corollary 12, we derive #Rα

ρ = 1+ a1 + a2 +
· · · + ak + s, where k ≥ 0 and 1 ≤ s ≤ ak+1 are minimal integers such that
ρ = min{ρ, 1− ρ} ≥ δk,s. By statement 2 of Proposition 15, we have #R′α

ρ = 3.
Together with statement 3 of Proposition 15, we conclude that APRu = Rα

ρ ∪
R′α

ρ = 2 + a1 + a2 + · · ·+ ak + s. The proof for ρ ≥ max{α, 1− α} is similar.

Enumerating Abelian Returns to Prefixes of Sturmian Words 203

So far, we were interested only in the cardinality in the set APRu. However,
we can also provide an algorithm for explicit description of its elements. For
that, we need the following fact.

Proposition 17. Let J, I be intervals such that J ⊂ I ⊂ [0, 1). Let TI be an
exchange of two intervals and denote by P, P ′ the two I-itineraries under T .
Let also (TI)J be an exchange of two intervals and denote by Q,Q′ the two
J-itineraries under TI . Then TJ is an exchange of two intervals and the two
J-itineraries under T are constructed from Q,Q′ by applying the morphism

σ : {0, 1}∗ → {0, 1}∗ defined by σ(0) = P, σ(1) = P ′ . (8)

Explicit description of the set Rα
ρ is then given using the following algorithm

derived from Corollary 12 and its proof. If k0, s0 are minimal indices such that
δk0,s0 ≤ ρ, then the number of elements, say N , in Rα

ρ is equal to

N = 1 + a1 + a2 + · · ·+ ak0 + s0 . (9)

Input: α, ρ ∈ (0, 1), α irrational.

Output: Rα
ρ .

Step 1: Determine N according to (9).

Step 2: ε := α, R := 0, R′ := 1, R := {0, 1}.
Step 3: Repeat N − 1 times:
R := R∪ {RR′},
if ε > 1

2 then
R := R, R′ := RR′, ε := 2ε−1

ε ,

if ε < 1
2 then

if RR′ ≺lex R
′ then R := RR′, R′ := R′ else R := R′, R′ := RR′,

ε := ε
1−ε ,

Step 4: Rα
ρ := R.

Note that the parameter ε in the algorithm corresponds to the slope of the
induced transformation in each step, cf. Proposition 17.

Using the above algorithm, one can describe the set APRcα = Rα
1−α ∪R′α

1−α

of abelian return words to prefixes of a characteristic Sturmian word cα.

Proposition 18. Let α = [0, a1, a2, · · ·] be an irrational in (0, 1). For the char-
acteristic Sturmian word cα we have

APRcα =

{
{0, 01, 1, 10, 110, . . . , 1a10} if α < 1

2 ,

{1, 10, 0, 01, 001, . . . , 0a2+11} otherwise.

Applying Proposition 18 to the case α = 1
τ = [0, 1, 1, 1, . . .], we obtain that

the set of abelian returns to the prefixes of the Fibonacci word f = c1/τ is
APRf = {0, 1, 01, 10, 001}, as shown by a different technique (specific for the
Fibonacci word) in [14].

204 Z. Masáková and E. Pelantová

Acknowledgements. We wish to thank K. Břinda for numerical experiments
on the Fibonacci word. We acknowledge financial support by the Czech Science
Foundation grant 13-03538S.

References

1. Adamczewski, B.: Codages de rotations et phénomènes d’autosimilarité. J. Théor.
Nombres Bordeaux 14, 351–386 (2002)

2. Alessandri, P., Berthé, V.: Three distance theorems and combinatorics on words.
L’Enseignement Mathématique 44, 103–132 (1998)

3. Ambrož, P., Frid, A., Masáková, Z., Pelantová, E.: On the number of factors in
codings of three interval exchange. Discrete Math. Theor. Comput. Sci. 13, 51–66
(2011)

4. Baláži, P., Masáková, Z., Pelantová, E.: Characterization of Substitution Invariant
Words Coding Exchange of Three Intervals. INTEGERS: Electronic Journal of
Combinatorial Number Theory 8, A20 (2008)

5. Berthé, V.: Fréquences des facteurs des suites sturmiennes. Theoret. Comput.
Sci. 165, 295–309 (1996)

6. Durand, F.: A characterization of substitutive sequences using return words. Dis-
crete Mathematics 179, 89–101 (1998)

7. Guimond, L.S., Masáková, Z., Pelantová, E.: Combinatorial properties of infinite
words associated with cut-and-project sequences. J. Théor. Nombres Bordeaux 15,
697–725 (2003)

8. Keane, M.: Interval exchange transformations. Math. Z. 141, 25–31 (1975)
9. Lothaire, M.: Algebraic combinatorics on words. Encyclopedia of Mathematics and

its Applications, vol. 90. Cambridge University Press, Cambridge (2002)
10. Morse, M., Hedlund, G.: Symbolic dynamics II: Sturmian sequences. Amer. J.

Math. 61, 1–42 (1940)
11. Puzynina, S., Zamboni, L.: Abelian returns in Sturmian words. J. Comb. Theory,

Series A 120, 390–408 (2013)
12. Puzynina, S., Zamboni, L.: Abelian returns in Sturmian words. Presentation at 8th

International Conference WORDS, Prague (2011),
http://words2011.fjfi.cvut.cz/files/slides/2-8-Puzynina.pdf

13. Rampersad, N., Rigo, M., Salimov, P.: A note on abelian returns in rotation words
(2012) (preprint), http://hdl.handle.net/2268/135708

14. Rigo, M., Salimov, P., Vandomme, E.: Some properties of abelian return words.
Journal of Integer Sequences 16, A 13.2.5 (2013)

15. Slater, N.B.: Gaps and steps for the sequence nα mod 1. Math. Proc. Cambridge
Phil. Soc. 63, 1115–1123 (1967)

16. Sós, V.: On the distribution mod 1 of the sequence nα. Ann. Univ. Sci. Budapest.
Eötös Sect. Math. 1, 127–134 (1958)

17. Vuillon, L.: A characterisation of Sturmian words by return words. Europ. J. Com-
bin. 22, 263–275 (2001)

http://words2011.fjfi.cvut.cz/files/slides/2-8-Puzynina.pdf
http://hdl.handle.net/2268/135708

Regular Ideal Languages

and Synchronizing Automata�

Rogério Reis and Emanuele Rodaro��

Centro de Matemática, Universidade do Porto
R. Campo Alegre 687, 4169-007 Porto, Portugal
rvr@dcc.fc.up.pt, emanuele.rodaro@fc.up.pt

Abstract. We introduce the notion of reset left regular decomposition
of an ideal regular language and we prove that there is a one-to-one cor-
respondence between these decompositions and strongly connected syn-
chronizing automata. We show that each ideal regular language has at
least a reset left regular decomposition. As a consequence each ideal regu-
lar language is the set of synchronizing words of some strongly connected
synchronizing automaton. Furthermore, this one-to-one correspondence
allows us to formulate Černý’s conjecture in a pure language theoretic
framework.

1 Introduction

Since, in the context of this paper, we are not interested in automata as languages
recognizer but just on the action of its transition function δ on the set of statesQ,
let us consider a deterministic finite automaton (DFA) as a tuple A = 〈Q,Σ, δ〉,
where the initial and final states are deliberately omitted from the definition.
But, because in some point of this work we refer to an automaton as a language
recognizer, we also call a DFA a tuple B = 〈Q′, Σ′, δ′, q0, F 〉 and the language
recognized by B is the set L[B] = {u ∈ Σ∗ : δ′(q0, u) ∈ F}. A DFA A =
〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗ “sending” all
the states into a single one, i.e. δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any such
word is said to be synchronizing (or reset) for the DFA A . This notion has
been widely studied since the work of Černý in 1964 [11] and his well known
conjecture regarding the length of the shortest reset word. For more information
on synchronizing automata we refer the reader to the survey by Volkov [12].
In what follows, when there is no ambiguity on the choice of the action δ of
the automaton, we use the notation q · u instead of δ(q, u). We extend this
action to a subset H ⊆ Q in the obvious way H · u = {q · u : q ∈ H} with
the convention ∅ · u = ∅, and for a language L ⊆ Σ∗ we use the notation

� Work partialy supported by the European Regional Development Fund through
the programme COMPETE and by the Portuguese Government through the
FCT – Fundação para a Ciência e a Tecnologia under the project PEst-
C/MAT/UI0144/2011 and CANTE-PTDC/EIA-CCO/101904/2008.

�� Partialy supported by FCT project SFRH/BPD/65428/2009.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 205–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

206 R. Reis and E. Rodaro

H · L = {q · u : q ∈ H,u ∈ L}. We say that A is strongly connected whenever
for any q, q′ ∈ Q there is a word u ∈ Σ∗ such that q · u = q′. In the realm of
synchronizing automata this notion is crucial since it is well known that Černý’s
conjecture is true if and only if it is true for the class of strongly connected
synchronizing automata.

In this paper we study the relationship between ideal regular languages and
synchronizing automata. A language I ⊆ Σ∗ is called a two-sided ideal (or simply
an ideal) if Σ∗IΣ∗ ⊆ I. In this work we will consider only ideal languages which
are regular. Denote by IΣ the class of ideal languages on an alphabet Σ. For
a given synchronizing automaton A , Syn(A) denotes the language of all the
words synchronizing A . It is a well known fact that Syn(A) = Σ∗ Syn(A)Σ∗ is
a regular language which is also an ideal. This ideal is generated by the set of
minimal synchronizing words G = Syn(A)\(Σ+ Syn(A)∪Syn(A)Σ+). This set
can also be obtained considering the operators introduced in [6,8]. In case the set
of generators G is finite, I is called finitely generated ideal and the synchronizing
automata whose set of synchronizing words is finitely generated are called finitely
generated synchronizing automata (see [5,7,9]). It is observed in [3] that the
minimal deterministic automaton AI = 〈Q′, Σ, δ′, q0, {s}〉 recognizing an ideal
language I is synchronizing with a unique final state s which is fixed by all the
elements of Σ. We will refer to such state as the sink state for AI . Furthermore
Syn(AI) = I. Thus, each ideal language is endowed with at least a synchronizing
automaton having I as the set of reset words. Therefore, for each ideal I there is
a non-empty set SA(I) of all the synchronizing automata B with Syn(B) = I.
In [3] the author introduces the notion of reset complexity of an ideal I as the
number of states of the smallest automata in SA(I). In the same paper it is shown
that the reset complexity can be exponentially smaller than the state complexity
of the language. In [1] it is considered the special case of finitely generated
synchronizing automata with the set of the reset words which is a principal ideal
P = Σ∗wΣ∗ generated by a word w ∈ Σ∗, and it is presented an algorithm to
generate a strongly connected synchronizing automaton Bw with Syn(Bw) = P
with the same number of states of AP . Therefore, for an ideal language I the first
natural question that arises is wheather or not SA(I) always contains a strongly
connected automaton or not. In Section 3 we answer affirmatively to this question
for non-unary ideal languages. However, to study and characterize languages
which are the reset words of strongly connected synchronizing automata we need
to introduce the following provisional class of strongly connected ideal language:

Definition 1. An ideal language I is called strongly connected whenever I =
Syn(A) for some strongly connected synchronizing automaton A .

The paper is organized as follows. In Section 2 we introduce the notion of a (re-
set) left regular decomposition of an ideal, and we prove that strongly connected
ideal languages are exactly the ideals having a reset left regular decomposition.
We also exhibit a bijection that associates to each strongly connected ideal lan-
guage I a strongly connected synchronizing automaton A with Syn(A) = I.
In Section 3 we prove that each ideal language is a strongly connected ideal
language. Thus, we can introduce the concept of reset regular decomposition

Regular Ideal Languages and Synchronizing Automata 207

complexity of an ideal and give an equivalent formulation of Černý’s conjecture
using this notion. Finally we state some open problems and direction of future
research.

2 Strongly Connected Ideal Languages

We denote the class of strongly connected ideals on some finite alphabet Σ by
SCIΣ and the class of strongly connected synchronizing automata by SCSAΣ .
Here, we characterize the class SCIΣ using the concept of reset left regular
decomposition of an ideal I. For L ⊆ Σ∗ and u ∈ Σ∗, let Lu = {xu : x ∈ L},
uL = {ux : x ∈ L}. The reverse operator ·R is such that given a word u =
u1u2 . . . uk, u

R = uk . . . u2u1. This operator extends naturaly to languages.

Definition 2. A left regular decomposition is a collection {Ii}i∈F of disjoint left
ideals Ii of Σ

∗ for some finite set F such that:

i) For any a ∈ Σ and i ∈ F , there is a j ∈ F such that Iia ⊆ Ij.

The decomposition {Ii}i∈F is called a reset left regular decomposition if it also
satisfies the following extra condition:

ii) Let I =)i∈F Ii. For any u ∈ Σ∗ if there is an i ∈ F such that Iu ⊆ Ii, then
u ∈ I.

Note that if {Ii}i∈F is a reset left regular decomposition, then the condition
Iu ⊆ Ii implies u ∈ Ii. Since u ∈ I, then u ∈ Ij for some j ∈ F , hence Iu ⊆ Ij . If
j
= i we have both Iu ⊆ Ii and Iu ⊆ Ij and thus Ii ∩ Ij
= ∅, which is a contra-
diction. We say that an ideal I has a (reset) left regular decomposition if there
is a (reset) left regular decomposition {Ii}i∈F such that I =)i∈F Ii. The order
of {Ii}i∈F is |F |. The notion of right regular decomposition is symmetric: ex-
change left ideals with right ideals and Iia, Iu with aIi, uI, respectively. Denote
by RLDΣ (RRDΣ) the class of the reset left (right) regular decompositions.
Note that for a given left regular decomposition (reset left regular decomposi-
tion) {Ii}i∈F , then {IRi }i∈F is a right regular decomposition (reset right regular
decomposition). Thus ·R is a bijection between RLDΣ → RRDΣ . We have the
following characterization.

Theorem 3. An ideal language I is strongly connected if and only if it has a
reset left regular decomposition.

Proof. Let A = 〈Q,Σ, δ〉 be a strongly connected synchronizing automata with
Syn(A) = I. For each q ∈ Q, let:

Iq = {u ∈ I : Q · u = q}

We claim that {Iq}q∈Q is a reset left regular decomposition for I. It is obvious
that Iq are left ideals since for any u ∈ Iq and v ∈ Σ∗, we get Q·vu ⊆ Q·u = {q},
i.e. Q · vu = {q}. Let q, q′ ∈ Q with q
= q′ and assume Iq ∩ Iq′
= ∅ and let

208 R. Reis and E. Rodaro

u ∈ Iq ∩ Iq′ . By definition, we have q = Qu = q′, which is a contradiction. Hence
Iq ∩ Iq′ = ∅. Clearly)q∈QIq ⊆ I. Conversely if u ∈ I, since it is a reset word,
then Qu = q′ for some q′ ∈ Q, i.e. u ∈ Iq′ and so we have the decomposition
)q∈QIq = I. Moreover for any a ∈ Σ, if u ∈ Iq, then Q ·ua = q ·a, thus Iqa ⊆ Iq·a
and so condition i) of the Definition 2 is fulfilled. Thus it remains to prove that
condition ii) is also satisfied. Suppose that Iw ⊆ Iq for some q ∈ Q. Take any
q ∈ Q, we claim that qw = q and so w ∈ Syn(A) = I. Take any u′ ∈ I, thus
Q · u′ = q′ for some q′ ∈ Q. Since A is strongly connected, there is u′′ ∈ Σ∗

such that q′ · u′′ = q. Thus u = u′u′′ ∈ I satisfies Q · u = q. Since Iw ⊆ Iq we
get q = Q · (uw) = q · w, i.e. q · w = q.

Conversely suppose that I has a reset left regular decomposition {Ii}i∈F . We
associate a DFA A ({Ii}i∈F) = 〈{Ii}i∈F , Σ, η〉 in the following way. By condition
i) of Definition 2 for any Ii and a ∈ Σ there is a j ∈ F with Ii · a ⊆ Ij . Thus
we define η(Ii, a) = Ij . This function is well defined. Let j, k ∈ F with j
= i,
such that Ii · a ⊆ Ij , Ik, then Ii · a ⊆ Ij ∩ Ik, hence Ij ∩ Ik
= ∅, which is a
contradiction. Hence A ({Ii}i∈F) is a well defined DFA. It is straightforward
to check that η(Ii, u) = Ik for u ∈ Σ∗ if and only if Iiu ⊆ Ik. We prove that
A ({Ii}i∈F) is strongly connected. Indeed take any i, j ∈ F and let w ∈ Ij . Since
Ij is a left ideal, then Iiw ⊆ Ij . Hence Iiw ⊆ Ij implies η(Ii, w) = Ij and so
A ({Ii}i∈F) is strongly connected. We need to prove that I ⊆ Syn(A ({Ii}i∈F)).
Let u ∈ I, since {Ii}i∈F is a decomposition, u ∈ Ij for some j ∈ F . Since Ij is
a left ideal, we get Iiu ⊆ Ij for any i ∈ F . Hence η(Ii, u) = Ij for all i ∈ F , i.e.
u ∈ Syn(A ({Ii}i∈F)). Conversely, let u ∈ Syn(A ({Ii}i∈F)). By the definition
η(Ii, u) = Ij for some j ∈ F and for all i ∈ F . Therefore Iiu ⊆ Ij which implies
Iu ⊆ Ij and so by ii) of Definition 2 we get u ∈ I. ��

It is straightforward to check that the correspondence given in the proof of
Theorem 3 is a bijection between the classes RLDΣ and SCSAΣ . We state this
fact in the following theorem.

Theorem 4. The map A : RLDΣ → SCSAΣ defined by

A : {Ii}i∈F �→ A ({Ii}i∈F) = 〈{Ii}i∈F , Σ, η〉

with η(Ii, a) = Ij for a ∈ Σ if and only if Iia ⊆ Ij is a bijection with inverse
given by I : SCSAΣ → RLDΣ defined by

I : B = 〈Q,Σ, δ〉 �→ {Iq}q∈Q = {{u ∈ Σ∗ : δ(Q, u) = q}}q∈Q

The following corollary characterizes the case of ideals on a unary alphabet.

Corollary 1. Let I be an ideal over a unary alphabet Σ = {a}. Then I is
strongly connected if and only if I = Σ∗.

Proof. Since the alphabet is unary we have I = a∗ama∗ for some m ≥ 0.
Suppose that I is strongly connected, then by Theorem 3 there is a reset left
regular decomposition {Ii}i∈F of I. Assume am ∈ Ij for some j ∈ F . We
claim |F | = 1. Indeed, since Ij is a left ideal we have a∗am ⊆ Ij , hence

Regular Ideal Languages and Synchronizing Automata 209

I = a∗ama∗ = a∗am ⊆ Ij , i.e. I = Ij . Therefore, by Theorem 4 the only
strongly connected synchronizing automaton having I as set of reset words is
the automaton with one state and a loop labelled by a. Hence I = a∗. On the
other hand, if I = a∗ then I is the set of reset words of the synchronizing au-
tomaton with one state and a loop labelled by a, which is strongly connected,
i.e. I is strongly connected. ��

From this Corollary we can assume henceforth that the ideals considered are
taken over an non-unary alphabet Σ. Given a strongly connected ideal lan-
guage I with Syn(B) = I for some strongly connected synchronizing automaton
B = 〈Q,Σ, δ〉, there is an obvious way to calculate the associated reset left
regular decomposition I(B). It is well known that I is recognized by the power
automaton of B defined by P(B) = 〈2Q, Σ, δ,Q, {{q} : q ∈ Q}〉, where 2Q de-
notes the set of subsets of Q, the initial state is the set Q and the final set of
states is formed by all the singletons. Thus, for each q ∈ Q we can associate
the DFA P(B)q = 〈2Q, Σ, δ,Q, {q}〉 and so we can calculate the associated reset
left regular decomposition by I(B) = {L[P(B)q]}q∈Q. A first and quite natural
issue is to calculate the reset left regular decompositions of the reset words of the
Černý’s series Cn = 〈{1, . . . , n}, {a, b}, δn〉, where a acts like a ciclic permutation
δn(i, a) = i+ 1 for i = 1, . . . , n− 1 and δn(n, a) = 1, while b fixes all the states
except the last one: δn(i, b) = i for i = 1, . . . , n− 1 and δn(n, b) = 1 (see Fig. 1).

n− 1

n 1

2

· · ·

b a

a, b

b

a
b

aa

Fig. 1. The Černý’s automaton Cn

For example, in the case of C4 the associated reset left regular decomposition
is the one given by

L[P(C)1] = (((a∗b)(b+ ab+ a4)∗(a3b+ (a2b(b+ a2)∗ab)))((b + ab∗a3) +
+((ab∗ab)(b + a2)∗)ab))∗(ab∗a2b)(b+ ((ab∗ab∗)(a(a+ b))))∗

L[P(C)2] = L[P(C)1]ab∗

L[P(C)3] = L[P(C)1]ab∗ab∗

L[P(C)4] = L[P(C)1]ab∗ab∗a.

In general, for Cn it is not difficult to see that |δn({1, . . . , n}, ux)| = 1 and
|δn({1, . . . , n}, u)| > 1 for some word u ∈ {a, b}∗ and a letter x ∈ {a, b} if and
only if δn({1, . . . , n}, u) = {n, 1} and x = b. Thus, if |δn(Q,w)| = 1, then there

210 R. Reis and E. Rodaro

is a prefix w′b of w with δn(Q,w′) = {n, 1}. Therefore, it is straightforward to
check that in this case the decompositions are given by

L[P(C)1] = {w ∈ Σ∗ : δn({1, . . . , n}, w) = {1}}
L[P(C)
] = L[P(C)1](ab

∗)
−1 for � = 2, . . . , n− 1

L[P(C)n] = L[P(C)1](ab
∗)n−2a.

By Theorem 3 if I is strongly connected, we can associate the non-empty set
R(I) of all the reset left regular decompositions of I. We have the following
lemma.

Lemma 1. Let {Ii}i∈F be a reset left regular decompositions of I and let
{Jk}k∈H be a left regular decomposition of an ideal J . If I ⊆ J , then the non-
empty elements of {Ii ∩ Jk}i∈F,k∈H form a reset left regular decomposition of I.

Proof. Let T ⊆ F × H be the set of all the pairs of indices (i, j) for which
Ii ∩ Jj
= ∅ and rename the set {Ii ∩ Jk}(i,k)∈T by {Sj}j∈T . It is clear that
each Sj is a left ideal and Sj ∩ St = ∅ for j
= t. Furthermore)j∈TSj = I.
Condition i) is also verified. Take any Sj and suppose that Sj = Ii∩Jk for some
(i, k) ∈ T , and let a ∈ Σ. Then Iia ⊆ Is, Jka ⊆ Jt for some s ∈ F, t ∈ H .
Hence (Ii ∩ Jk)a = Iia ∩ Jka ⊆ Is ∩ Jt = Sh for some h ∈ T , i.e. Sja ⊆
Sh. Let us prove that reset condition ii) is also fulfilled. Assume Iu ⊆ St for
some t ∈ T and u ∈ Σ∗. Thus St = Ii ∩ Jk, for some i ∈ F, k ∈ H , hence
St ⊆ Ii which implies Iu ⊆ Ii. Hence u ∈ I since {Ii}i∈F is a reset left regular
decompositions of I. ��

Given I,J ∈ R(I) with I = {Ii}i∈F and J = {Jk}k∈H by Lemma 1 the
family I ∧J = {Ii ∩ Jk}i∈F,k∈H is still a reset left regular decomposition. Thus
we have the following immediate result.

Corollary 2. The family of the reset left regular decompositions of a strongly
connected ideal I is a ∧-semilattice.

Let ‖I‖ = min{|u| : u ∈ I}. It is a well known fact that Černý’s conjecture
holds if and only if it holds for strongly connected synchronizing automata. The
following proposition place Černý’s conjecture in a purely language theoretic
context.

Proposition 5. Černý’s conjecture is true for strongly connected synchronizing
automata if and only if for any strongly connected ideal I and any reset left
regular decomposition {Ii}i∈F of I we have:

|F | ≥
√
‖I‖+ 1

Proof. Suppose that Černý’s conjecture is true for strongly connected synchro-
nizing automata. Let I be a strongly connected ideal and let {Ii}i∈F be a reset
left regular decomposition of I. Let A({Ii}i∈F) be the standard synchronizing
automata associated to this decomposition as in Theorem 4. This automaton

Regular Ideal Languages and Synchronizing Automata 211

has |F | states, hence there is a synchronizing word u ∈ Syn(A({I}∈F)) = I
with |u| ≤ (|F | − 1)2. Thus |F | ≥

√
|u|+ 1 ≥

√
‖I‖+ 1.

Conversely, take any strongly connected synchronizing automata A =
〈Q,Σ, δ〉 with n states and let {Iq}q∈Q be the associated reset left regular decom-
position of I = Syn(A) as in Theorem 4. Since the order of this decomposition
is n, then n ≥

√
‖I‖ + 1. Thus we have that there is a u ∈ Syn(A) with

|u| ≤ (n− 1)2 and so Černý’s conjecture holds for A . ��

3 Ideal Languages Are Strongly Connected Ideal
Languages

The notion of strongly connected ideal languages (SCIΣ) has been introduced
in Section 2 to study the relationship between strongly connected synchronizing
automata and ideal languages. In this section we show that SCIΣ = IΣ . This
is done by showing that each ideal language I has at least a reset left regular
decomposition. Equivalently, by Theorem 4, I is the set of the reset words of some
strongly connected synchronizing automata with the same number of states as
the order of this decomposition. However, the construction presented in Theorem
6 provides a reset left regular decomposition for IR which is in general a double
exponential with respect to the state complexity of IR, and this bound does not
seem to be tight. Before we prove the main result of this section we introduce
some notions which are crucial for the sequel. Let C = 〈Q,Σ, δ〉 be an automaton
with n states and a sink state s. Note that for such an automaton |Q · u| = 1
if and only if Q · u = {s}. Fix a word u ∈ Σ∗ and a subset H ⊆ Q. Assume
u = u1 . . . ur for u1, . . . , ur ∈ Σ and r = |u|. For 0 ≤ i < j ≤ r we use the
standard notation u[i, j] to indicate the factor uiui+1 . . . uj if i > 0, otherwise
u[0, j] = u1 . . . uj with the convention that u[0, 0] = ε and u[i, i] = ui if i > 0.

We introduce a function which is fundamental in the sequel. Let m = n2+n
2 + 1

and let Zm be the ring of the integers modulo m. For an integer t ≥ 1, [2Q]t
denotes the set of subsets of Q of cardinality t. Let Tt = Zm([2Q]t)Σ) be the
free Zm-module on [2Q]t)Σ. Let H ∈ [2Q]t, a ∈ Σ and p ∈ Zm([2Q]t)Σ). We
denote by p(H), p(a) the coefficients in Zm of p with terms H , a, respectively.
Note that p can be decomposed as the sum of the two following terms

p〈Q〉 =
∑
H⊆Q

p(H)H, p〈Σ〉 =
∑
a∈Σ

p(a)a

Fix an element u ∈ Σ∗ with u = u1 . . . ur and H ⊆ Q with |H | > 1. Let j
be the biggest index 1 ≤ j ≤ r such that |H · u[1, j]| > 1 and if j < n, then
|H · u[1, j + 1]| = 1. The set S = H · u[1, j] is called the last set of (H,u). Let
i be the index 1 ≤ i ≤ r such that u[i, j] is the maximal factor of u with |S| =
|H · u[0, k]| for all i ≤ k ≤ j. The tail of (H,u) is the element of Zm([2Q]t)Σ)
with t = |S| ≥ 2 defined by

T (H,u) =

{∑j−1
k=i (H · u[0, k] + u[k + 1, k + 1]) , if u[0, j] = u∑j
k=i (H · u[0, k] + u[k + 1, k + 1]) , otherwise.

212 R. Reis and E. Rodaro

Consider the set T =)n
t=2Tt. For an element T ∈ Tt, the integer t ≥ 2 is called

the index of T and it is denoted by Ind(T). We give to T a structure of semigroup
by introducing an internal binary operation % defined in the following way. Let
T1 ∈ Ti, T2 ∈ Tj , then

T1 % T2 =

{
Tmin{i,j} if i
= j
T1 + T2 otherwise

Note that (T, %) has a graded structure with respect to the semilattice ([2, n],
min), i.e. Ti%Tj ⊆ Tmin{i,j}. Let u ∈ Σ∗, the tail map is the function τu : 2Q → T
defined by

τu(H) =

{
T (H,u) if |H | > 1
0n otherwise

where 0n is the zero of Tn. The following lemma is a direct consequence of the
definitions.

Lemma 2. With the above notation for any u, v ∈ Σ∗ we have:

τvu(T) = τv(T) % τu(T · v)

We denote by Hom(A,B) the set of the maps f : A → B. We have the
following lemma.

Lemma 3. Consider the map μ : Σ∗ → Hom(2Q,T) defined by μ(u) = τu, then
Ker(μ) is a left congruence on Σ∗.

We are now ready to prove the main theorem of this section.

Theorem 6. Let I ⊆ Σ∗ be an ideal language, then I is a strongly connected
ideal language.

Proof. Put J = IR. Let AJ = 〈Q,Σ, δ, q0, {s}〉 be the minimal DFA recognizing
J and let μ be the map of Lemma 3 defined with respect to AJ . We claim that
the equivalence classes of the relation ∼= (J × J) ∩ Ker(μ) form a reset right
regular decomposition of J . By the definition of the map μ, Ker(μ) has finite
index, thus ∼ has also finite index. Since J = Syn(AJ), for any H ⊆ Q and
u ∈ J we have H ·u = {s}. Hence it is straightforward to check that τu = τuv for
any v ∈ Σ∗. Therefore the ∼-classes are right ideals and form a finite partition
{Ji}i∈F of J . Furthermore, by Lemma 3, Ker(μ) is a left congruences of Σ∗,
and so, since J is an ideal, it is also a congruence on J , hence for any Ji and
a ∈ Σ, we get aJi ⊆ Jj for some j ∈ F . Thus condition i) of Definition 2 is
satisfied and so {Ji}i∈F is a right regular decomposition. We claim that also
condition ii) is satisfied. Assume, contrary to our claim, that there are i ∈ F
and v ∈ Σ∗ \ J such that vJ ⊆ Ji. Write H = Q · v. Since Syn(AJ) = J
we get |H | > 1. Thus let t = min{|H · r| : r ∈ Σ∗ and H · r
= {s}} and let
S ∈ {H · r : r ∈ Σ∗ and |H · r| = t}. Let x ∈ Σ∗ such that H · x = S and
let u = vx. Note that u ∈ Σ∗ \ J , uJ ⊆ Ji and Q · u = S with |S| = t. Since
Syn(AJ) = J and AJ is a synchronizing automaton with zero, then there is a

Regular Ideal Languages and Synchronizing Automata 213

synchronizing word w ∈ J with |w| < n2+n
2 + 1 where n = |Q| (see [10]). Let

T ′ be the last set of (S,w) and let w′ be the maximal prefix of w such that
S · w′ = T ′. Thus, there is a letter a ∈ Σ such that w′a is a prefix of w and
|T ′a| = 1. We consider two mutually exclusive cases.

i) Suppose |T ′ ·b| = 1 for any b ∈ Σ. It is not difficult to check that T (Q, uw) =
T (Q, uw′a). Since |Σ| > 1 consider a letter b ∈ Σ with b
= a. Since Q ·uw′ =
T ′ and |T ′ · b| = 1, we also have T (Q, uw′bw) = T (Q, uw′b). Since uJ ⊆ Ji
we have uw, uw′bw ∈ Ji (being w′bw ∈ J). Hence we get

T (Q, uw′a) = T (Q, uw) = T (Q, uw′bw) = T (Q, uw′b)

In particular we get T (Q, uw′a)〈Σ〉 = T (Q, uw′b)〈Σ〉, from which it follows
a = b, a contradiction.

ii) Thus, we can assume that there is a letter b ∈ Σ, such that |T ′ · b| > 1. Since
uw, uw′bw ∈ Ji (being w,w′bw ∈ J), we have T (Q, uw′bw) = T (Q, uw).
Hence, by Lemma 2 we have

T (Q, uw) = T (Q, uw′bw) = T (Q, uw′b) % T (T,w)

with T = T ′ · b. Since |T ′| = t is minimal and |T | > 1 we have |T | = |T ′| =
t, hence Ind(T (Q, uw′b)) = Ind(T (T,w)) = t. Therefore, by the previous
equality and the definition of % we get

T (Q, uw) = T (Q, uw′bw) = T (Q, uw′b) + T (T,w)

In particular we have

T (Q, uw)〈Q〉 = T (Q, uw′bw)〈Q〉 = T (Q, uw′b)〈Q〉+ T (T,w)〈Q〉 (1)

Furthermore, T ′ is the last set of (Q, uw′a) and uw′ is the maximal prefix
of uw′a such that T ′ = Q · uw′, since |T ′| = |T | we have that T is the last
set of (Q, uw′b) and uw′b is the maximal prefix of uw′b with T = Q · uw′b.
Thus, by the definition of tail we have T (Q, uw′a)〈Q〉 = T (Q, uw′b)〈Q〉. We
have already observed that T (Q, uw) = T (Q, uw′a), hence by (1)

T (T,w)〈Q〉 = 0 (2)

Let 0 = i1 < i2 < . . . < i
 ≤ |w| be the maximal set of indices such that
T = T · w[0, ij] for all 1 ≤ j ≤ �. Therefore, by the definition of tail and (2)
we have in particular

0 = T (T,w)(T) = � mod
n2 + n

2
+ 1

Since � ≥ 1 we have that � is a multiple of n2+n
2 + 1. However � ≤ |w| <

n2+n
2 + 1, which is a contradiction.

Therefore v ∈ J and this concludes the proof of the fact that {Ji}i∈F is a reset
right regular decomposition. Hence {JR

i }i∈F is a reset left regular decomposition
and so by Theorem 3 I is a strongly connected ideal language. ��

214 R. Reis and E. Rodaro

Corollary 3. Let I be an ideal language on Σ such that IR has state complexity
n. Then there is a strongly connected synchronizing automata B with N states
and Syn(B) = I such that:

N ≤ mk2n

(
n∑

t=2

m(nt)

)2n

where k = |Σ| and m =
(

n2+n
2 + 1

)
.

This corollary shows a double exponential upper bound for the number of
states of the associated strongly connected automaton with respect to the state
complexity of the reverse of the ideal language. It is unknown by the authors
whether this bound is tight or not. In [1], for instance, it is shown an algorithm
that given a principal ideal I = Σ∗wΣ∗ with |w| = n in inputs, it returns
a strongly connected synchronizing automaton with n + 1 states. Therefore in
this case the bound is linear with respect to the state complexity of IR. Even
more recently in this volume [2], it is proven that in case I is finitely generated
there is always a strongly connected synchronizing automaton with a number of
states upper bounded by 2‖I‖, and this bound is tight. Similarly to [3], where the
author has introduced the notion of reset complexity of an ideal I (indicated by
rc(I)) as the number of states of the smallest synchronizing automaton A with
Syn(A) = I, we can also give a similar notion in the realm of strongly connected
synchronizing automata/reset left regular decomposition. By Theorem 6 for any
ideal languages I, the set R(I) of all the reset left regular decompositions of I
is non-empty. Thus we can define the reset regular decomposition complexity of
I as the integer

rdc(I) = min{|F | : {Ii}i∈F ∈ R(I)}
By the correspondence introduced in Theorem 3, rdc(I) is also the number of
states of the smallest strongly connected synchronizing automaton with the set
of reset words equal to I. Furthermore rc(I) ≤ rdc(I) holds. The importance
of the index rdc(I) can be also understood by the following theorem where we
present a purely language theoretic restatement of Černý’s conjecture.

Theorem 7. Černý’s conjecture holds if and only if for any ideal language I we
have:

rdc(I) ≥
√
‖I‖+ 1

where ‖I‖ = min{|w| : w ∈ I}.
Proof. This a consequence of the fact that Černý’s conjecture holds if and only
if it holds for strongly connected automata and Proposition 5. ��

Note that using the well known upper bound (n3 − n)/6 (see [4]) for the
shortest reset word of a synchronizing automaton, we have the bound rdc(I) ≥
3
√
6‖I‖. In general, a natural issue would be the study of bounds for rdc(I)

depending on the state complexity of I or IR. As we have already observed,
Corollary 3 gives an upper bound to rdc(I) with respect to the state complexity
of IR which is not known to be tight.

Regular Ideal Languages and Synchronizing Automata 215

Open Problems

We list some open problems originated by the previous results. Fix an ideal
language I.

1. Give a tight upper bound of rdc(I) with respect to the state complexity of
IR or I.

2. In case I is finitely generated is true that rdc(I) ≥ ‖I‖+1? The same problem
in case I is a principal ideal language has been raised in [1]. This would give
a better bound for the shortest synchronizing word for the class of finitely
generated synchronizing automata with respect to the bound obtained in [9].

3. The proof of Theorem 6 uses the minimal DFA recognizing IR. Is there a
proof using another automaton associated to I?

4. Recall that R(I) is the set of all the reset left regular decompositions of I
and the order of a decomposition I ∈ R(I) is just the cardinality |I|. We
denote by Rk(I) the set of reset left regular decompositions of I of order
k ≥ 1.
A quite natural question is whether sup{k ≥ 1 : Rk(I)
= ∅} =∞ or not? In
particular, what is the case if we consider I in the class of finitely generated
ideals or in the even smaller class of principal ideals? This last case answers
to the question whether or not, given a principal ideal I, there can there can
be an arbitrarily large strongly connected DFA A with Syn(A) = I.

5. By Theorem 3, a naive way to calculate Rk(I) can be accomplished by
building all the strongly connected synchronizing automata with k states
and checking if their set of reset words coincides with I. Thus, it is natural
to ask whether there is a more “efficient” way to perform this task without
passing from the construction of all the automata with k states.

Acknowledgments. The authors thank E. Pribavkina for pointing out the
unary case alphabet in Corollary 1.

References

1. Gusev, V., Maslennikova, M., Pribavkina, E.: Principal ideal languages and syn-
chronizing automata. In: Halava, V., Karhumaki, J., Matiyasevich, Y. (eds.) Ru-
FiDimII. TUCS Lecture Notes, vol. 17 (2012)

2. Gusev, V.V., Maslennikova, M.I., Pribavkina, E.V.: Finitely generated ideal lan-
guages and synchronizing automata. In: Karhumäki, J., Lepistö, A., Zamboni, L.
(eds.) WORDS 2013. LNCS, vol. 8079, pp. 143–153. Springer, Heidelberg (2013)

3. Maslennikova, M.: Reset complexity of ideal languages. In: Bieliková, M., Friedrich,
G., Gottlob, G., Katzenbeisser, S., Špánek, R., Turán, G. (eds.) Proc. Int. Conf.
SOFSEM 2012, vol. II, pp. 33–44. Institute of Computer Science Academy of Sci-
ences of the Czech Republic (2012)

4. Pin, J.E.: On two combinatorial problems arising from automata theory. Ann.
Discrete Math. 17, 535–548 (1983)

216 R. Reis and E. Rodaro

5. Pribavkina, E.V., Rodaro, E.: Finitely generated synchronizing automata. In:
Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457,
pp. 672–683. Springer, Heidelberg (2009)

6. Pribavkina, E.V., Rodaro, E.: State complexity of prefix, suffix, bifix and infix
operators on regular languages. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT
2010. LNCS, vol. 6224, pp. 376–386. Springer, Heidelberg (2010)

7. Pribavkina, E.V., Rodaro, E.: Recognizing synchronizing automata with finitely
many minimal synchronizing words is PSPACE-complete. In: Löwe, B., Normann,
D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 230–238. Springer,
Heidelberg (2011)

8. Pribavkina, E.V., Rodaro, E.: State complexity of code operators. International
Journal of Foundations of Computer Science 22(07), 1669–1681 (2011)

9. Pribavkina, E.V., Rodaro, E.: Synchronizing automata with finitely many minimal
synchronizing words. Information and Computation 209(3), 568–579 (2011),
http://www.sciencedirect.com/science/article/pii/S0890540110002063

10. Rystsov, I.: Reset words for commutative and solvable automata. Theoretical Com-
puter Science 172(1-2), 273–279 (1997),
http://www.sciencedirect.com/science/article/pii/S0304397596001363

11. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Mat.-Fyz. Čas. Slovensk. Akad. Vied. 14, 208–216 (1964) (in slovak)

12. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

http://www.sciencedirect.com/science/article/pii/S0890540110002063
http://www.sciencedirect.com/science/article/pii/S0304397596001363

Another Generalization of Abelian Equivalence:

Binomial Complexity of Infinite Words

Michel Rigo1 and Pavel Salimov1,2,�

1 Dept of Math., University of Liège, Grande traverse 12 (B37),
B-4000 Liège, Belgium
M.Rigo@ulg.ac.be

2 Sobolev Institute of Math., 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia

Abstract. The binomial coefficient of two words u and v is the num-
ber of times v occurs as a subsequence of u. Based on this classical
notion, we introduce the m-binomial equivalence of two words refin-
ing the abelian equivalence. The m-binomial complexity of an infinite
word x maps an integer n to the number of m-binomial equivalence
classes of factors of length n occurring in x. We study the first proper-
ties of m-binomial equivalence. We compute the m-binomial complexity
of the Sturmian words and of the Thue–Morse word. We also mention the
possible avoidance of 2-binomial squares.

1 Introduction

In the literature, many measures of complexity of infinite words have been intro-
duced. One of the most studied is the factor complexity px counting the number
of distinct blocks of n consecutive letters occurring in an infinite word x ∈ AN.
In particular, Morse–Hedlund theorem gives a characterization of ultimately pe-
riodic words in terms of bounded factor complexity. Sturmian words have a
null topological entropy and are characterized by the relation px(n) = n + 1
for all n � 0. Abelian complexity counts the number of distinct Parikh vectors
for blocks of n consecutive letters occurring in an infinite word, i.e., factors of
length n are counted up to abelian equivalence. Already in 1961, Erdős opened
the way to a new research direction by raising the question of avoiding abelian
squares in arbitrarily long words [6]. Related to Van der Waerden theorem, we
can also mention the arithmetic complexity [1] mapping n � 0 to the number of
distinct subwords xixi+p · · ·xi+(n−1)p built from n letters arranged in arithmetic
progressions in the infinite word x, i � 0, p � 1. In the same direction, one can
also consider maximal pattern complexity [7].

As a generalization of abelian complexity, the k-abelian complexity was re-
cently introduced through a hierarchy of equivalence relations, the coarsest being
abelian equivalence and refining up to equality. We recall these notions.

� The second author is supported by the Russian President’s grant no. MK-4075.2012.1
and Russian Foundation for Basic Research grants no. 12-01-00089 and no. 11-01-
00997 and by a University of Liège post-doctoral grant.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 217–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

218 M. Rigo and P. Salimov

Let k ∈ N∪{+∞} and A be a finite alphabet. As usual, |u| denotes the length
of u and |u|x denotes the number of occurrences of the word x as a factor of
the word u. Karhumäki et al. [8] introduce the notion of k-abelian equivalence
of finite words as follows. Let u, v be two words over A. We write u ∼ab,k v if
and only if |u|x = |v|x for all words x of length |x| � k. In particular, u ∼ab,1 v
means that u and v are abelian equivalent, i.e., u is obtained by permuting the
letters in v.

The aim of this paper is to introduce and study the first properties of a
different family of equivalence relations over A∗, called k-binomial equivalence,
where the coarsest relation coincide with the abelian equivalence.

Let u = u0 · · ·un−1 be a word of length n over A. Let � � n. Let t : N → N
be an increasing map such that t(�− 1) < n. Then the word ut(0) · · ·ut(
−1) is a
subword of length � of u. Note that what we call subword is also called scattered
subword in the literature. The notion of binomial coefficient of two finite words u
and v is well-known,

(
u
v

)
is defined as the number of times v occurs as a subword

of u. In other words, the binomial coefficient of u and v is the number of times
v appears as a subsequence of u. Properties of these coefficients are presented
in the chapter of Lothaire’s book written by Sakarovitch and Simon [12, Section
6.3]. Let a, b ∈ A, u, v ∈ A∗ and p, q be integers. We set δa,b = 1 if a = b, and
δa,b = 0 otherwise. We just recall that(

ap

aq

)
=

(
p

q

)
,

(
u

ε

)
= 1, |u| < |v| ⇒

(
u

v

)
= 0,

(
ua

vb

)
=

(
u

vb

)
+ δa,b

(
u

v

)
and the last three relations completely determine the binomial coefficient

(
u
v

)
for

all u, v ∈ A∗.

Remark 1. Note that we have to make a distinction between subwords and fac-
tors. A factor is a particular subword made of consecutive letters. Factors of u
are denoted either by ui · · ·uj or u[i, j], 0 � i � j < |u|.

Definition 1. Let m ∈ N ∪ {+∞} and u, v be two words over A. We say that
u and v are m-binomially equivalent if(

u

x

)
=

(
v

x

)
, ∀x ∈ A�m.

Since the main relation studied in this paper is the m-binomial equivalence, we
simply write in that case: u ∼m v.

Since
(
u
a

)
= |u|a for all a ∈ A, it is clear that two words u and v are abelian

equivalent if and only if u ∼1 v. As for abelian equivalence, we have a family of
refined relations: for all u, v ∈ A∗, m � 0, u ∼m+1 v ⇒ u ∼m v.

Example 1. For instance, the four words ababbba, abbabab, baabbab and babaabb
are 2-binomially equivalent. For any w amongst these words, we have the fol-
lowing coefficients(

w

a

)
= 3,

(
w

b

)
= 4,

(
w

aa

)
= 3,

(
w

ab

)
= 7,

(
w

ba

)
= 5,

(
w

bb

)
= 6.

Another Generalization of Abelian Equivalence: Binomial Complexity 219

But one can check that they are not 3-binomially equivalent, as an example,(
ababbba

aab

)
= 3 but

(
abbabab

aab

)
= 4

indeed, for this last binomial coefficient, aab appears as subwords w0w3w4,
w0w3w6, w0w5w6 and w3w5w6. Considering again the first two words, we find
|ababbba|ab = 2 and |abbabab|ab = 3, showing that these two words are not 2-
abelian equivalent. Conversely, the words abbaba and ababba are 2-abelian equiv-
alent but are not 2-binomially equivalent:(

abbaba

ab

)
= 4 but

(
ababba

ab

)
= 5.

This paper is organized as follows. In the next section, we present some
straightforward properties of binomial coefficients and m-binomial equivalence.
In Section 3, we give upper bounds on the number of m-binomial equivalence
classes partitioning An. Section 3 ends with the introduction of the m-binomial

complexity b
(m)
x of an infinite word x. In Section 4, we prove that if x is a Stur-

mian word then, for any m � 2, b
(m)
x (n) = n + 1 for all n � 0. In Section 5

we consider the Thue–Morse word t and show that, for all m � 1, there exists

a constant Cm such that b
(m)
t (n) � Cm for all n � 0. For instance, binomial

coefficients of t were considered in [3]. Due to space limitations, we only give de-
tails for the cases m = 2, 3. In the last section, we evoke the problem of avoiding
2-binomial squares.

2 First Properties

We denote by B(m)(v) the equivalence class of words m-binomially equivalent to
v. Binomial coefficients have a nice behavior with respect to the concatenation
of words.

Proposition 1. Let p, s and e = e0e1 · · · en−1 be finite words. We have(
ps

e

)
=

n∑
i=0

(
p

e0e1 · · · ei−1

)(
s

eiei+1 · · · en−1

)
.

We can also mention some other basic facts on m-binomial equivalence.

Lemma 1. Let u, u′, v, v′ be finite words and m � 1.

– If u ∼m v, then u ∼
 v for all � � m.
– If u ∼m v and u′ ∼m v′, then uu′ ∼m vv′.

Proof. Simply note for the second point that, for all x = x0 · · ·x
−1 of length

� � m,
(
uu′
x

)
is equal to

∑
i=0

(
u

x[0, i− 1]

)(
u′

x[i, �− 1]

)
=

∑
i=0

(
v

x[0, i− 1]

)(
v′

x[i, �− 1]

)
=

(
vv′

x

)
.

220 M. Rigo and P. Salimov

Remark 2. Thanks to the above lemma, we can endow the quotient set A∗/∼m

with a monoid structure using an operation ◦ : A∗/ ∼m ×A∗/ ∼m→ A∗/ ∼m

defined by B(m)(p)◦B(m)(q) = B(m)(r) if the concatenation B(m)(p).B(m)(q) is
a subset of B(m)(r). In particular, one can take r = pq. If a word v is factorized
as v = pus, then the m-equivalence class B(m)(v) is completely determined by
p, s and B(m)(u).

3 On the Number of k-Binomial Equivalence Classes

For 2- and 3-abelian equivalence, the number of equivalence classes for words
of length n over a binary alphabet are respectively n2 − n + 2 and Θ(n4). In
general, for k-abelian equivalence, the number of equivalence classes for words of

length n over a �-letter alphabet is Θ(n(
−1)
k−1

) [8]. We consider similar results
for m-binomial equivalence (proofs can be found in [15]).

Lemma 2. Let u ∈ A∗, a ∈ A and � � 0. We have(
u

a

)
=

(
|u|a
�

)
and

∑
|v|=

(
u

v

)
=

(
|u|
�

)
.

Lemma 3. Let A be a binary alphabet, we have

#(An/∼2) =

n∑
j=0

((n− j)j + 1) =
n3 + 5n+ 6

6
.

Proposition 2. Let m � 2. Let A be a binary alphabet, we have

#(An/∼m) ∈ O(n2((m−1)2m+1)).

We denote by Facx(n) the set of factors of length n occurring in x.

Definition 2. Let m � 1. The m-binomial complexity of an infinite word x
counts the number of m-binomial equivalence classes of factors of length n oc-
curring in x,

b(m)
x : N→ N, n �→ #(Facx(n)/∼m).

Note that b
(1)
x corresponds to the usual abelian complexity denoted by ρabx .

If px denotes the usual factor complexity, then for all m � 1, we have

b(m)
x (n) � b(m+1)

x (n) and ρabx (n) � b(m)
x (n) � px(n). (1)

4 The m-Binomial Complexity of Sturmian Words

Recall that a Sturmian word x is a non-periodic word of minimal (factor) com-
plexity, that is, px(n) = n + 1 for all n � 0. The following characterization is
also useful.

Another Generalization of Abelian Equivalence: Binomial Complexity 221

Theorem 1. [13, Theorem 2.1.5] An infinite word x ∈ {0, 1}ω is Sturmian if
and only if it is aperiodic and balanced, i.e., for all factors u, v of the same length
occurring in x, we have ||u|1 − |v|1| � 1.

The aim of this section is to compute them-binomial complexity of a Sturmian
word as expressed by Theorem 2. We show that any two distinct factors of
length n occurring in a Sturmian words are never m-binomially equivalent. First
note that Sturmian words have a constant abelian complexity. Hence, if x is a

Sturmian word, then b
(1)
x (n) = 2 for all n � 1.

Theorem 2. Let m � 2. If x is a Sturmian word, then b
(m)
x (n) = n + 1 for

all n � 0.

Remark 3. If x is a right-infinite word such that b
(1)
x (n) = 2 for all n � 1, then

x is clearly balanced. If b
(2)
x (n) = n+1, for all n � 0, then the factor complexity

function px is unbounded and x is aperiodic. As a consequence of Theorem 2, an

infinite word x is Sturmian if and only if, for all n � 1 and all m � 2, b
(1)
x (n) = 2

and b
(m)
x (n) = n+ 1.

Before proceeding to the proof of Theorem 2, we first recall some well-known
fact about Sturmian words. One of the two symbols occurring in a Sturmian word
x over {0, 1} is always isolated, for instance, 1 is always followed by 0. In that
latter case, there exists a unique k � 1 such that each occurrence of 1 is always
followed by either 0k1 or 0k+11 and x is said to be of type 0. See for instance [14,
Chapter 6]. More precisely, we have the following remarkable fact showing that
the recoding of a Sturmian sequence corresponds to another Sturmian sequence.
Note that σ : Aω → Aω is the shift operator mapping (xn)n�0 to (xn+1)n�0.

Theorem 3. Let x ∈ {0, 1}ω be a Sturmian word of type 0. There exists a
unique integer k � 1 and a Sturmian word y ∈ {0, 1}ω such that x = σc(μ(y))
for some c � k + 1 and where the morphism μ : {0, 1}∗ → {0, 1}∗ is defined by
μ(0) = 0k1 and μ(1) = 0k+11.

Corollary 1. Let x ∈ {0, 1}ω be a Sturmian word of type 0. There exists a
unique integer k � 1 such that any factor occurring in x is of the form

0r10k+ε010k+ε11 · · · 0k+εn−110s (2)

where r, s � k + 1 and ε0ε1 · · · εn−1 ∈ {0, 1}∗ is a factor of the Sturmian word y
introduced in the above theorem.

Let ε = ε0 · · · εn−1 be a word over {0, 1}. For m � n− 1, we define

S(ε,m) :=
m∑
j=0

(n− j)εj and S(ε) := S(ε, n− 1). (3)

222 M. Rigo and P. Salimov

Remark 4. Let v = 0r10k+ε010k+ε11 · · · 0k+εn−110s of the form (2), we have(
v

01

)
= r(n+ 1) +

n−1∑
j=0

(k + εj)(n− j) = r(n + 1) + S(ε0 · · · εn−1) + k
n(n+ 1)

2
.

We need a technical lemma on the factors of a Sturmian word.

Lemma 4. Let n � 1. If u and v are two distinct factors of length n occurring
in a Sturmian word over {0, 1}, then S(u)
≡ S(v) (mod n+ 1).

Proof. Consider two distinct factors u, v of length n occurring in a Sturmian
word y. For m < n, we define Δ(m) := |u0u1 · · ·um|1 − |v0v1 · · · vm|1. Due to
Theorem 3, we have |Δ(m)| � 1. Note that, if there exists i such that Δ(i) = 1
then, for all j > i, we have Δ(j) � 0. Otherwise, we would have |v[i + 1, j]|1 −
|u[i+1, j]|1 > 1 contradicting the fact that y is balanced. Similarly, for all j < i,
we also have Δ(j) � 0.

Since u and v are distinct, replacing u with v if needed, we may assume
that there exists a minimal i ∈ {0, . . . , n − 1} such that Δ(i) = 1. From the
above discussion and the minimality of i, Δ(j) = 0 for j < i and Δ(j) ∈ {0, 1}
for j > i.

From (3), for any j < n, we have

Δ(j + 1) > Δ(j)⇒ S(u, j + 1)− S(v, j + 1) = S(u, j)− S(v, j) + (n− j)

Δ(j + 1) = Δ(j)⇒ S(u, j + 1)− S(v, j + 1) = S(u, j)− S(v, j)

Δ(j + 1) < Δ(j)⇒ S(u, j + 1)− S(v, j + 1) = S(u, j)− S(v, j)− (n− j).

In view of these observations, the knowledge of Δ(0), Δ(1), . . . permits to com-
pute (S(u, j) − S(v, j))0�j<n and we deduce that 0 < S(u) − S(v) < n + 1
concluding the proof.

Proof (Proof of Theorem 2). Let x be a Sturmian word of type 0 and m � 2.
From (1), we have, for all � � 0,

b(2)
x (�) � b(m)

x (�) � px(�) = �+ 1.

We just need to show that any two distinct factors of length � in x are not

2-binomially equivalent, i.e., � + 1 � b
(2)
x (�).

Proceed by contradiction. Assume that x contains two distinct factors u and
v that are 2-binomially equivalent. In particular,

(
u
00

)
=
(
v
00

)
and

(
u
11

)
=
(
v
11

)
.

Hence we get |u| = |v| and |u|1 = |v|1 = n. From Corollary 1, there exist k � 1
and a Sturmian word y such that

u = 0r10k+ε010k+ε11 · · · 0k+εn−110s, v = 0r
′
10k+ε′010k+ε′11 · · · 0k+ε′n−110s

′

where ε = ε0ε1 · · · εn−1 and ε′ = ε′0ε
′
1 · · · ε′n−1 are both factors of y.

Since u ∼2 v, it follows
(
u
01

)
=
(
v
01

)
. From Remark 4, we get

r(n+ 1) + S(ε) + k
n(n+ 1)

2
= r′(n+ 1) + S(ε′) + k

n(n+ 1)

2
.

Otherwise stated, we get S(ε)−S(ε′) = (r′−r)(n+1) contradicting the previous
lemma.

Another Generalization of Abelian Equivalence: Binomial Complexity 223

5 The Case of the Thue–Morse Word

The Thue–Morse word t = 01101001100101101001011001101001 · · · is the infi-
nite word limn→∞ ϕn(a) where ϕ : 0 �→ 01, 1 �→ 10. The factor complexity of
the Thue–Morse word is well-known [2,5]: pt(0) = 1, pt(1) = 2, pt(2) = 4 and

pt(n) =

{
4n− 2 · 2m − 4 if 2 · 2m < n � 3 · 2m
2n+ 4 · 2m − 2 if 3 · 2m < n � 4 · 2m

and the abelian complexity of t is obvious.

Lemma 5. We have b
(1)
t (2n) = 3 and b

(1)
t (2n+ 1) = 2 for all n � 1.

The main result of this section is the following one. It is quite in contrast
with the Sturmian case because here, the Thue–Morse word exhibits a bounded
m-binomial complexity.

Theorem 4. Let m � 2. There exists Cm > 0 such that the m-binomial
complexity of the Thue–Morse word satisfies b

(m)
t (n) � Cm for all n � 0.

For the sake of presentation, we first show that the 2-binomial complexity of
the Thue–Morse word is bounded by a constant.

Theorem 5. There exists C2 > 0 such that the 2-binomial complexity of the

Thue–Morse word satisfies b
(2)
t (n) � C2 for all n � 0.

Proof. Any factor v of t admits a factorization of the kind pϕ(u)s with p, s ∈
{0, 1, ε} and where u is a factor of t. Using Remark 2, it is therefore enough to
prove that, for all n,

#{B(2)(v) | ∃u ∈ Fact(n) : v = ϕ(u)} � 9. (4)

Recall from the proof of Lemma 3 that the 2-binomial equivalence class of a
word v of length 2n over a binary alphabet {0, 1} is completely determined by
its length, |v|0 and

(
v
01

)
, i.e.,

#{B(2)(v) | ∃u ∈ Fact(n) : v = ϕ(u)}

= #{(
(
v

0

)
,

(
v

1

)
,

(
v

00

)
,

(
v

01

)
,

(
v

10

)
,

(
v

11

)
) | ∃u ∈ Fact(n) : v = ϕ(u)}

= #{(|v|0,
(
v

01

)
) | ∃u ∈ Fact(n) : v = ϕ(u)}.

Fix n � 1. Consider an arbitrary factor u = u0 · · ·un−1 ∈ Fact(n) and the
corresponding factor v = ϕ(u) = v0 · · · v2n−1 of t of length 2n. From Lemma 5,
|v|0 takes at most three values (depending on n).

Let us compute the possible values taken by the coefficient
(
v
01

)
. Consider an

occurrence of 01 as a subword of v, i.e., a pair (i, j), i < j � n − 1, such that
vivj = 01. There are two possible cases:

224 M. Rigo and P. Salimov

– If i = 2m and j = 2m+1, for some m � 0, then um = 0 because v2mv2m+1 =
ϕ(um). There are |u|0 such occurrences.

– Otherwise, we have i ∈ {2m, 2m + 1}, j ∈ {2m′, 2m′ + 1} with m′ > m.
For all m (resp. m′), exactly one letter of the factor v2mv2m+1 = ϕ(um)
(resp. v2m′v2m′+1 = ϕ(u′

m)) is 0 and the other one is 1. Hence, for any
i ∈ {0, . . . , n−2}, j can take a value of the n−1−i values in {i+1, . . . , n−1}.

Summarizing these two cases, we have(
v

01

)
= |u|0 +

n−2∑
i=0

(n− 1− i) = |u|0 +
n(n− 1)

2
.

From Lemma 5, |u|0 takes at most three values (depending on n) and therefore
the same holds for

(
v
01

)
. Hence, the conclusion follows.

We now extend the proof of Theorem 5. The first part is to generalize (4).

Lemma 6. Let m, k � 1. Assume that there exists D such that, for all n,

#{B(m)(v) | ∃u ∈ Fact(n) : v = ϕk(u)} � D.

Then the m-binomial complexity of the Thue–Morse word b
(m)
t is bounded by a

constant.

Proof. Let � � 1. Let f be a factor of t of length �. This factor is of the form1

pvs where p (resp. s) is a proper suffix (resp. prefix) of some ϕk(a) (resp. ϕk(b))
where a, b are letters and v = ϕk(u) for some factor u of t of length n. In
particular, we have |p|, |q| � 2k − 1. Note that � is of the form n · 2k + r with
0 � r � 2(2k − 1). Hence, for a given f of length �, the corresponding integer n
can take at most 2 values which are ��/2k�−1 and ��/2k�. From the assumption,
we get

#{B(m)(v) | ∃u ∈ Fact(��/2k� − 1) ∪ Fact(��/2k�) : v = ϕk(u)} � 2D.

Finally, using Remark 2, we haveB(m)(f) = B(m)(p)◦B(m)(v)◦B(m)(s). Since
p and s have bounded length, B(m)(p) and B(m)(s) take a bounded number of

values. Moreover, B(m)(v) takes at most 2D values, hence b
(m)
t is bounded by

constant.

From now on, intervals [r, s] (resp. [r, s)) will be considered as intervals of
integers, i.e., one should understand [r, s] ∩ Z (resp. [r, s) ∩ Z).

Aside from the idea of dealing with words of a convenient form, the second key
idea of the proof of Theorem 5 is to split the set of occurrences of the subword
01 into two disjoint subsets facilitating the counting. We shall now generalize
this idea for m-binomial complexity but some terminology is required. Let v be
a word. A subset T = {t1 < t2 < . . . < tn} ⊆ [0, |v|) defines a subword denoted
by vT = vt1vt2 · · · vtn .
1 This is the idea of “de-substitution” where t is factorized into consecutive factors of
length 2k.

Another Generalization of Abelian Equivalence: Binomial Complexity 225

Definition 3. If α1, . . . , αm are non-empty and pairwise disjoint subsets of a
set X such that ∪iαi = X, then α = {α1, . . . , αm} is a partition of X. Any
partition α of a set X is a refinement of a partition β of X if every element
of α is a subset of some element of β. In that case, α is said to be finer than
β (equivalently β is coarser than α) and we write α , β. Since , is a partial
order, we define a chain as a subset of partitions β(1), β(2), . . . of X satisfying

β(1) , β(2) , · · · .

A k-partition α = {α1, . . . , αm} of the set [0,mk) is a partition into subsets
αi = [(i − 1)k, ik) of size k. In particular, a 2i-partition is a refinement of a
2j-partition of [0, 2k), i < j � k.

Definition 4. Let X be a set and T = {t1 < t2 < . . . < tn} be a subset of X. A
partition α = {α1, . . . , αm} of X induces a partition αT = {γ1, . . . , γr} of [1, n]
defined by

i, j ∈ γt ⇔ ∃s : ti, tj ∈ αs.

Note that for two partitions α, β of X, if α , β, then αT , βT .

Example 2. Take X = [0, 7] and T = {0, 2, 3, 5}. Consider the following two par-
titions of X : α = {{0, 1}, {2, 3, 4}, {5, 6, 7}} and β = {{0, 1, 2}, {3, 4, 5}, {6, 7}}.
We get αT = {{1}, {2, 3}, {4}} and βT = {{1, 2}, {3, 4}}.

Definition 5. Let T = {t1 < t2 < . . . < tn} and U = {u1 < u2 < . . . < un}
be subsets of X. These subsets are equidistributed with respect to a partition α
of X if αT = αU . These subsets are equidistributed with respect to a chain C
of partitions of X if αT = αU for all α ∈ C. We also say that the subsets are
C-equidistributed.

Example 3. Consider the chain C consisting of the 4-partition β = {[0, 3], [4, 7]}
and the 2-partition α = {[0, 1], [2, 3], [4, 5], [6, 7]} of the set [0, 7]. The subsets
T = {0, 5}, U = {1, 2} and V = {3, 4} are equidistributed with respect to the
2-partition (αT = αU = αV = {{1}, {2}}), but U is not C-equidistributed to T
(resp. V) because βT = βV = {{1}, {2}} and βU = {{1, 2}}.

Example 4. In the last part of the proof of Theorem 5, we have considered the
two possible cases for an occurrence of the subword 01 in v. If T = {i, j} is a
subset of [0, |v|) and α is the 2-partition of [0, |v|), then these cases correspond
exactly to the two possible values αT = {1, 2} or αT = {{1}, {2}}.

Let C be a chain β(1) , β(2) , · · · of partitions of X and T = {t1, . . . , tn} be a
subset of X . We use nested brackets to represent the induced chain β

(1)
T , β

(2)
T ,

· · · of partitions of [1, n]. The outer (resp. inner) brackets represent the coarsest
(resp. finest) partition of [1, n]. As an example [[t1t2]][[t3][t4]] represents the
partition {{1, 2}, {3}, {4}} and the coarser partition {{1, 2}, {3, 4}}. To get used
to these new definitions, we consider another particular statement. (A precise
and formal definition of the bracket notation is given in [15].)

226 M. Rigo and P. Salimov

Remark 5. Two subsets T and U of size n of X are equidistributed with respect
to a chain C of partitions of X if and only if they give rise to the same notation
of nested brackets. We call it the type of T with respect to C.

Example 5 (continuing Example 3). Consider the subsets R = {0, 1, 4, 7} and
S = {2, 3, 4, 6} of [0, 7]. We have αR = αS = {{1, 2}, {3}, {4}} and βR = βS =
{{1, 2}, {3, 4}}. Hence R and S are C-equidistributed and give both rise to the
notation [[t1t2]][[t3][t4]].

We prove the case of the 3-binomial complexity. The proof of the general case
has been treated in [15].

Theorem 6. There exists C3 > 0 such that the 3-binomial complexity of the

Thue–Morse word satisfies b
(3)
t (n) � C3 for all n � 0.

Proof. In view of Lemma 6, it is enough to show that there exists a constant D
such that, for all n, we have #{B(3)(v) | ∃u ∈ Fact(n) : v = ϕ2(u)} � D.

Let n � 1. Let v = ϕ2(u) with u ∈ Fact(n). In particular, |v| = 4n. Consider
the chain C consisting of the 2-partition and the 4-partition of [0, 4n). Any subset
T = {t1 < t2 < t3} of [0, 4n) is C-equidistributed to a subset of one the following
types:

– [t1][t2][t3], i.e., the union of the types [[t1]][[t2]][[t3]], [[t1][t2]][[t3]] and
[[t1]][[t2][t3]]: the 3 elements of T belong to pairwise distinct subsets of the
2-partition of [0, 4n)

– [[t1t2][t3]] or [[t1][t2t3]]: two elements belong to the same subset of the 2-
partition of [0, 4n) and the 3 elements of T belong to the same subset of the
4-partition of [0, 4n).

– [[t1t2]][[t3]] or [[t1]][[t2t3]]: two elements belong to the same subset of the
2-partition and to the same subset of the 4-partition of [0, 4n).

Let e = e0e1e2 be a word of length 3. We will count the number of occurrences
of the subword e = vt1vt2vt3 in v depending on the type of T = {t1, t2, t3} with
respect to C.

Assume that the type of T is [t1][t2][t3]. Each subset S of the 2-partition of
[0, 4n) corresponds to a factor vS = 01 or vS = 10 and v contains 2n such factors.
Hence the number of subwords e occurring in v for this type takes, for a given
n, a unique value which is

(
2n
3

)
.

Now assume that the type of T is [[t1t2][t3]] (similar arguments apply to
[[t1][t2t3]]). Each subset S of the 4-partition of [0, 4n) corresponds to a factor vS
which is either ϕ2(0) = 0110 or ϕ2(1) = 1001. Then the number of subwords e
occurring in v of this type is(

01

e0e1

)
︸ ︷︷ ︸
0 or 1

(
10

e2

)
︸ ︷︷ ︸

1

|u|0 +
(

10

e0e1

)
︸ ︷︷ ︸
0 or 1

(
01

e2

)
︸ ︷︷ ︸

1

|u|1 ∈ {0, |u|0, |u|1}.

Another Generalization of Abelian Equivalence: Binomial Complexity 227

Recall that, for a given n = |u|, the pair (|u|0, |u|1) can take at most three values
(see Lemma 5). The number of subwords e occurring in v of this type takes, for
a given n, takes at most 4 values2.

Now assume that the type of T is [[t1t2]][[t3]] (similar arguments apply to
[[t1]][[t2t3]]). Each subset S of the 4-partition of [0, 4n) is a union of two sets
S′, S′′ of the 2-partition of [0, 4n) and we have either vS′ = 01, vS′′ = 10 or
vS′ = 10, vS′′ = 01. They are n subsets of size 4 in the 4-partition of [0, 4n) and
we have to pick 2 of them. Hence, the number of subwords e occurring in v for
this type is

(

(
01

e0e1

)
+

(
10

e0e1

)
︸ ︷︷ ︸

0 or 1

)(

(
01

e2

)
+

(
10

e2

)
︸ ︷︷ ︸

2

)

(
n

2

)

and this quantity, for a given n, takes at most 2 values.
We have proved that, for all |e| = 3 and v = ϕ2(u) with u ∈ Fact(n),

(
v
e

)
takes at most 1 + 2 · 4 + 2 · 2 = 13 values (these values depend on n, but the
number of values is bounded without any dependence to n). Note that B(3)(v) is
determined from B(2)(v) and by the values of

(
v
e

)
for the words e of length 3. To

conclude the proof, note that #{B(2)(v) | ∃u ∈ Fact(n) : v = ϕ2(u)} is bounded
by #{B(2)(v) | ∃z ∈ Fact(2n) : v = ϕ(z)} � 9 using (4). Consequently, we have
shown that #{B(3)(v) | ∃u ∈ Fact(n) : v = ϕ2(u)} � 9 · 138 for all n � 1.

Remark 6. By computer experiments, b
(2)
t (n) is equal to 9 if n ≡ 0 (mod 4)

and to 8 otherwise, for 10 � n � 1000. Moreover, b
(3)
t (n) is equal to 21 if n ≡ 0

(mod 8) and to 20 otherwise, for 8 � n � 500.

6 A Glimpse at Avoidance

It is obvious that, over a 2-letter alphabet, any word of length � 4 contains a
square. On the other hand, there exist square-free infinite ternary words [12].
In the same way, over a 3-letter alphabet, any word of length � 8 contains an
abelian square, i.e., a word uu′ where u ∼1 u′. But, over a 4-letter alphabet,
abelian squares are avoidable, see for instance [10]. So a first natural question in
that direction is to determine, whether or not, over a 3-letter alphabet 2-binomial
squares can be avoided in arbitrarily long words. Naturally, a 2-binomial square
is a word of the form uu′ where u ∼2 u

′. Note that, for abelian equivalence, the
longest ternary word which is 2-abelian square-free has length 537 [9].

As an example, u = 121321231213123132123121312 is a word of length 27
without 2-binomial squares but this word cannot be extended without get-
ting a 2-binomial square. Indeed, u1 (resp. u3) ends with a square of length 8
(resp. 26)

Consider the 13-uniform morphism of Leech [11] which is well-known to be
square-free, g : a �→ abcbacbcabcba, b �→ bcacbacabcacb, c �→ cabacbabcabac.

2 A close inspection shows that if |u| = 2n, then |u|0, |u|1 ∈ {n − 1, n, n + 1}, if
|u| = 2n+ 1, then |u|0, |u|1 ∈ {n, n+ 1}.

228 M. Rigo and P. Salimov

In the submitted version of this paper, we conjectured that the infinite square-
free word gω(1) avoids 2-binomial squares. For instance, we can prove that

u ∼2 v ⇔ g(u) ∼2 g(v).

Nevertheless, M. Bennett has recently shown that the factor of length 508
occurring in position 845 is a 2-binomial square [4].

Acknowledgments. The idea of this binomial equivalence came after the meet-
ing “Representing streams” organized at the Lorentz center in December 2012
where Jean-Eric Pin presented a talk, Noncommutative extension of Mahlers the-
orem on interpolation series, involving binomial coefficients on words. Jean-Eric
Pin and the first author proposed independently to introduce this new relation.

References

1. Avgustinovich, S.V., Fon-Der-Flaass, D.G., Frid, A.E.: Arithmetical complexity of
infinite words. In: Ito, M., Imaoka, T. (eds.) Words, Languages & Combinatorics
III, pp. 51–62. World Scientific Publishing (2003)

2. Brlek, S.: Enumeration of factors in the Thue-Morse word. Discrete Appl. Math. 24,
83–96 (1989)

3. Berstel, J., Crochemore, M., Pin, J.-E.: Thue–Morse sequence and p-adic topology
for the free monoid. Disc. Math. 76, 89–94 (1989)

4. Currie, J.: Personal communication (June 3, 2013)
5. de Luca, A., Varricchio, S.: On the factors of the Thue-Morse word on three sym-

bols. Inform. Process. Lett. 27, 281–285 (1988)
6. Erdős, P.: Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6,

221–254 (1961)
7. Kamae, T., Zamboni, L.: Sequence entropy and the maximal pattern complexity

of infinite words. Ergodic Theory Dynam. Systems 22, 1191–1199 (2002)
8. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equiv-

alence and complexity of infinite words, arXiv:1301.5104
9. Huova, M., Karhumäki, J.: Observations and problems on k-abelian avoidability. In:

Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar
11081), pp. 2215–2219 (2011)

10. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)

11. Leech, J.: A problem on strings of beads. Math. Gazette 41, 277–278 (1957)
12. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library. Cam-

bridge University Press (1997)
13. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics

and its Applications, vol. 90. Cambridge University Press (2002)
14. Pytheas Fogg, N., Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.): Substitu-

tions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics,
vol. 1794. Springer, Berlin (2002)

15. Rigo, M., Salimov, P.: Another Generalization of Abelian Equivalence:
Binomial Complexity of Infinite Words (long version) (preprint, 2013),
http://hdl.handle.net/2268/149313

http://hdl.handle.net/2268/149313

Weakly Unambiguous Morphisms

with Respect to Sets of Patterns with Constants

Aleksi Saarela�

Department of Mathematics and Statistics
University of Turku, FI-20014 Turku, Finland

amsaar@utu.fi

Abstract. A non-erasing morphism is weakly unambiguous with re-
spect to a pattern if no other non-erasing morphism maps the pattern to
the same image. If the size of the target alphabet is at least three, then
the patterns for which there exists a length-increasing weakly unambigu-
ous morphism can be characterized using the concept of loyal neighbors
of variables. In this article this characterization is generalized for pat-
terns with constants. Two different generalizations are given for sets of
patterns.

1 Introduction

Many fundamental topics of combinatorics on words are defined in terms of
morphisms. One example is equality sets and the Post Correspondence Problem:
Given two morphisms f and g, does there exist a non-empty word w such that
f(w) = g(w). Another example is given by word equations: A solution of a word
equation u = v is a morphism h such that h(u) = h(v). For more on these and
several other topics related to morphisms, see [5]. Also the theory of codes is
concerned with morphisms [1], as is the theory of pattern languages [7].

This central role of morphisms in combinatorics on words means that it is
important to understand the behavior of morphisms. For example, this might
lead to the study of fixed points of morphisms, see e.g [6] and [11], or to the
concept of unambiguity of morphisms, which is the topic of this paper.

A morphism is said to be unambiguous with respect to a pattern (or a word)
if no other morphism maps the pattern to the same image. Unambiguity of
morphisms was introduced by Freydenberger, Reidenbach and Schneider [4]. Two
questions that have been studied in many papers [4,3,10,9] are:

– For which patterns does there exist an unambiguous morphism?
– For which patterns does there exist a non-erasing unambiguous morphism?

Unambiguity is closely related to pattern languages, see e.g [8].
Many variations of unambiguity of morphisms exist. For example, it is possible

to study unambiguity in the free semigroup, that is, assume that all morphism

� Supported by the Academy of Finland under grant 257857.

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 229–237, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

230 A. Saarela

are non-erasing. This leads to the definition of weakly unambiguous morphisms:
A non-erasing morphism is said to be weakly unambiguous with respect to a
pattern if no other non-erasing morphism maps the pattern to the same image.
Trivially, every 1-uniformmorphism is weakly unambiguous with respect to every
pattern, so the interesting question in this case is the following:

– For which patterns does there exist a non-erasing length-increasing weakly
unambiguous morphism?

This question was studied by Freydenberger, Nevisi and Reidenbach [2]. Ques-
tions on unambiguity of morphisms often lead to complicated technical consider-
ations, but the results on weakly unambiguous morphisms are relatively elegant.
If the target alphabet is unary, then the question is quite simple, although not
trivial. If the size of the target alphabet is at least three, then a characterization
can be obtained by using so called loyal neighbors of variables. The binary case
is complicated and only partial results are known.

In many questions about morphism, there can be constants (or terminal sym-
bols), i.e. letters which must be mapped to themselves. For example, constants
are often used in the theory of pattern languages. However, unambiguity has
mostly been studied from the point of view of constant-free patterns. In this
article weak unambiguity is studied for patterns with constants. We concentrate
on the case of target alphabets with at least three letters. If the definition of loyal
neighbors of variables is extended for patterns with constants in the right way,
then also the characterization from [2] can be extended quite straightforwardly.

As another generalization, weak unambiguity with respect to several patterns
is studied in this paper. If the patterns are constant-free, then a characteriza-
tion that is similar to the one in [2] can be found easily. However, if the two
generalizations are studied at the same time, that is there are many patterns
with constants, then the situation is more complicated. The same characteriza-
tion works only if the size of the target alphabet is at least two more than the
number of patterns.

There is also another way to generalize unambiguity for sets of patterns.
Instead of considering every pattern separately, they can be treated, in a sense,
as a single pattern. Weak unambiguity and loyal neighbors can then be defined
for sets of patterns and an analogous characterization can be proved.

Although this paper concentrates on weakly unambiguous morphisms, and
only on the case of ternary or larger alphabets, it seems likely that unambiguity
with respect to patterns with constants and with respect to multiple patterns
could be studied also more generally.

2 Patterns with Constants

Let Σ be an alphabet of constants and Ξ an alphabet of variables. A word
α ∈ (Ξ ∪ Σ)+ is called a pattern. If α ∈ Ξ∗, then α is constant-free. If Γ is the
set of those variables that appear in α, then α is a Γ -pattern.

The empty word is denoted by ε, the length of a word w by |w|, and the
number of occurrences of a letter a in w by |w|a.

Weakly Unambiguous Morphisms 231

A morphism is a mapping h : (Ξ ∪ Σ)∗ → Σ∗ such that h(αβ) = h(α)h(β)
for all α, β ∈ (Ξ ∪ Σ)∗ and h(a) = a for all a ∈ Σ. Thus all morphisms are
assumed to be constant-preserving. A morphism h is non-erasing if h(x)
= ε
for all x ∈ Ξ. A non-erasing morphism h is Γ -increasing if |h(x)| ≥ 2 for some
x ∈ Γ . Two morphisms h and g are Γ -equivalent if h(x) = g(x) for all x ∈ Γ .
This is denoted by h ∼Γ g, and non-equivalence is denoted by h �Γ g

Let α be a Γ -pattern. A non-erasing morphism h is weakly unambiguous with
respect to α if there is no non-erasing morphism g �Γ h such that h(α) = g(α).
It is easy to see that if h is not Γ -increasing, then h is weakly unambiguous with
respect to every Γ -pattern. Thus we study the following question: Given a Γ -
pattern α, does there exist a Γ -increasing morphism that is weakly unambiguous
with respect to α?

Example 1. Let Ξ = {x, y} and Σ = {a, b}. Consider the pattern xay. The
morphism defined by x �→ a, y �→ ba is weakly unambiguous with respect to
xay, because no other non-erasing morphism maps xay to aaba. The morphism
defined by x �→ a, y �→ ab is not weakly unambiguous with respect to xay,
because also the morphism defined by x �→ aa, y �→ b maps xay to aaab.

If the alphabet Σ is unary, say Σ = {a}, then the addition of constants in
patterns is not very interesting. Let α ∈ (Ξ ∪ {a})+ and let α′ be the pattern
obtained from α by removing every occurrence of a. For all morphisms h and
g, h(α) = g(α) if and only if h(α′) = g(α′). Thus h is weakly unambiguous
with respect to α if and only if it is weakly unambiguous with respect to the
constant-free pattern α′ and the result in [2] can be used directly.

If the alphabet Σ is binary, then only partial results are known on weak
unambiguity of morphisms with respect to constant-free patterns. In this article
we concentrate on the case where Σ has at least three letters, since this case is
well-understood for constant-free patterns.

Let α = a0a1 . . . anan+1, where a0 = an+1 = ε and a1, . . . , an ∈ Ξ ∪ Σ. The
set of left neighbors of x in α is

Lα(x) = {ai | 0 ≤ i ≤ n, ai+1 = x} ,

and the set of right neighbors of x in α is

Rα(x) = {ai | 1 ≤ i ≤ n+ 1, ai−1 = x} .

Both Lα(x) and Rα(x) are subsets of Ξ ∪Σ ∪ {ε}.
It was defined in [2] that if α is a constant-free pattern, then a variable x has

loyal neighbors in α if at least one of the following two conditions is satisfied:

ε /∈ Lα(x) and Rα(y) = {x} for all y ∈ Lα(x),

ε /∈ Rα(x) and Lα(y) = {x} for all y ∈ Rα(x).

This definition must be generalized for patterns with constants. This is done
by treating the constants in the same way as the beginning and end of the

232 A. Saarela

pattern (or in the same way as ε in Lα(x) and Rα(x)). So, given a pattern
α with constants, a variable x has loyal neighbors in α if at least one of the
following two conditions is satisfied:

Lα(x) ⊆ Ξ and Rα(y) = {x} for all y ∈ Lα(x), (1)

Rα(x) ⊆ Ξ and Lα(y) = {x} for all y ∈ Rα(x). (2)

Theorem 6 justifies that this is the right definition.

Example 2. Let Ξ = {x, y, z, t}, Σ = {a}, and α = xayzyt. The variable y has
loyal neighbors in α because Rα(y) = {z, t} and Lα(z) = Lα(t) = {y}. The other
variables do not have loyal neighbors in α:

– x does not, because ε ∈ Lα(x) and a ∈ Rα(x).
– z does not, because Lα(z) = {y} but Rα(y)
= {x}, and Rα(z) = {y} but

Lα(y)
= {x}.
– t does not, because Lα(t) = {y} but Rα(y)
= {t}, and ε ∈ Rα(t).

Next we will characterize, in the case #Σ ≥ 3, those Γ -patterns with respect
to which there exists a Γ -increasing weakly unambiguous morphism. There are
many similarities between the proofs here and the proofs in [2]. The proofs are
self-contained, so we do not need to refer to any previous results.

Lemma 3. Let u1, . . . , un, v1, . . . , vn ∈ Σ∗. If u1 . . . un is a factor of v1 . . . vn,
then either ui = vi for all i or ui is a proper factor of vi for some i.

Proof. Let v1 . . . vn = u0u1 . . . unun+1 and consider the numbers

ki = |v1 . . . vi| − |u0 . . . ui|

for i ∈ {0, . . . , n}.
If ki = 0 for all i, then ui = vi for all i.
If ki < 0 for some i, then let j be the largest index such that kj < 0. Because

kn ≥ 0, it must be j < n, and kj+1 ≥ 0. This means that uj+1 is a proper factor
of vj+1.

If ki > 0 for some i, then let j be the smallest index such that kj > 0.
Because k0 ≤ 0, it must be j > 0, and kj−1 ≤ 0. This means that uj is a proper
factor of vj . ��

Lemma 4. Let α be a Γ -pattern and h a non-erasing morphism. If there is
x ∈ Γ such that |h(x)| > 1 and x has loyal neighbors in α, then h is not weakly
unambiguous with respect to α.

Proof. Assume that (1) is satisfied for x (the case where (2) is satisfied is sym-
metric). It must be x /∈ Lα(x), because it is not possible that Rα(x) = {x}. Let
h(x) = au where a ∈ Σ and u ∈ Σ+. If g is the morphism defined by g(x) = u,
g(y) = h(y)a for all y ∈ Lα(x) and g(z) = h(z) for all z ∈ Ξ�Lα(x)� {x}, then
h(α) = g(α). ��

Weakly Unambiguous Morphisms 233

Lemma 5. Let α be a Γ -pattern and x a variable that does not have loyal neigh-
bors in α. Let a, b, c ∈ Σ be different letters such that Lα(x) ∩ Σ
= {a} and
Rα(x) ∩ Σ
= {b}. The morphism h defined by h(x) = ab and h(y) = c for all
y ∈ Ξ � {x} is weakly unambiguous with respect to α.

Proof. We assume that g �Γ h is a Γ -increasing morphism such that h(α) =
g(α) and derive a contradiction. Let α = a1 . . . an, where a1, . . . , an ∈ Ξ ∪ Σ.
Lemma 3 is used with g(a1), . . . , g(an) as u1, . . . , un and h(a1), . . . , h(an) as
v1, . . . , vn. Because g �Γ h, it follows from Lemma 3 that there is an i such that
g(ai) is a proper factor of h(ai). In particular, |h(ai)| > |g(ai)| ≥ 1, so ai = x.
Thus g(x) is a proper factor of h(x) = ab. By symmetry, it can be assumed that
g(x) = a. Then g(y) cannot contain a’s for any variable y ∈ Γ � {x}, because
otherwise g(α) would contain more a’s than h(α).

Let |α|x = k and
α = w0xw1x . . . wk−1xwk.

If j = |w0 . . . wi−1|a + i for some i ∈ {1, . . . , k}, then the jth a in h(α) = g(α)
is followed by b. Thus g(y) begins with b for all y ∈ Rα(x). This means that
ε, d /∈ Rα(x) for all d ∈ Σ � {b}. By the definition of b, Rα(x) ⊆ Ξ.

The number of b’s in h(α) is

|α|b + |α|x
and in g(α) it is at least

|α|b +
∑

y∈Rα(x)

|α|y.

These numbers should be the same, but because x does not have loyal
neighbors in α,

|α|x <
∑

y∈Rα(x)

|α|y.

This is a contradiction. ��
Theorem 6. Let #Σ ≥ 3 and let α be a Γ -pattern. There is a Γ -increasing
morphism h that is weakly unambiguous with respect to α if and only if at least
one variable does not have loyal neighbors in α.

Proof. Assume first that all variables have loyal neighbors in α and h is a Γ -
increasing morphism. Then some variable x satisfies the conditions of Lemma 4,
so h is not weakly unambiguous with respect to α.

Assume then that a variable x does not have loyal neighbors in α. Because
#Σ ≥ 3, the three letters of Lemma 5 exist, and there is a Γ -increasing morphism
that is weakly unambiguous with respect to α. ��

Theory of word equations was mentioned in the introduction as one area
where morphisms are important. Theorem 6 can be formulated in terms of word
equations, although this is probably just a curiosity.

Corollary 7. Let α ∈ (Ξ ∪Σ)+. There is a β ∈ Σ+ such that |β| > |α| and the
word equation α = β has a unique non-erasing solution if and only if at least
one variable does not have loyal neighbors in α.

234 A. Saarela

3 Many Patterns

Weak unambiguity can be generalized for sets of patterns in two ways. The
first way is to study the existence of morphisms that are weakly unambigu-
ous with respect to multiple patterns. The next theorem proves a result about
constant-free patterns.

Theorem 8. Let #Σ ≥ 3 and let αi be a constant-free Γi-pattern for each
i ∈ {1, . . . , n}. Let Γ =

⋂n
i=1 Γi. There is a Γ -increasing morphism h that is

weakly unambiguous with respect to every αi if and only if at least one variable
does not have loyal neighbors in any αi.

Proof. Assume first that for every variable x there is an index ix such that x has
loyal neighbors in αix . Assume also that h is a Γ -increasing morphism. There is
a variable x such that |h(x)| > 1. By Lemma 4, h is not weakly unambiguous
with respect to αix .

Assume then that a variable x does not have loyal neighbors in any αi. Because
the patterns are constant-free, any three letters a, b, c satisfy the conditions of
Lemma 5, and there is a Γ -increasing morphism that is weakly unambiguous
with respect to every αi. ��

To generalize Theorem 8 for patterns with constants, a larger alphabet Σ is
needed.

Theorem 9. Let #Σ ≥ n+2 and let αi be a Γi-pattern for each i ∈ {1, . . . , n}.
Let Γ =

⋂n
i=1 Γi. There is a Γ -increasing morphism h that is weakly unambigu-

ous with respect to every αi if and only if at least one variable does not have
loyal neighbors in any αi.

Proof. Assume first that for every variable x there is an index ix such that x has
loyal neighbors in αix . Assume also that h is a Γ -increasing morphism. There is
a variable x such that |h(x)| > 1. By Lemma 4, h is not weakly unambiguous
with respect to αix .

Assume then that a variable x does not have loyal neighbors in any αi. There
can be at most n letters a such that Lαi(x) ∩ Σ = {a} for some i, so there is
a letter a such that Lαi(x) ∩ Σ
= {a} for all i. There can be at most n letters
b such that Rαi(x) ∩ Σ = {b} for some i, so there is a letter b
= a such that
Rαi(x) ∩Σ
= {b} for all i. By Lemma 5, there is a Γ -increasing morphism that
is weakly unambiguous with respect to every αi. ��

The next example shows that the assumption #Σ ≥ n + 2 in Theorem 9
is necessary. Finding a characterization for smaller alphabets remains an open
question. It is of course possible that this question is very complicated, like in
the binary case for patterns with constants.

Example 10. Let Ξ = {x, y1, y2, z1, z2, t1, t2} and Σ = {a1, . . . , an, b}. Let a0 =
an and

αi = y1y2aixz1z2xai+1t1t2

Weakly Unambiguous Morphisms 235

for i ∈ {0, . . . , n − 1}. The variable x does not have loyal neighbors in any
αi, but there does not exist a Ξ-increasing morphism that would be weakly
unambiguous with respect to every αi. This can be seen as follows. If h would be
a Ξ-increasing morphism that is weakly unambiguous with respect to α0, then
|h(x)| > 1 by Lemma 4, because all variables except x have loyal neighbors in
α0. If h(x) starts with ai, say h(x) = aiu, and g is the morphism defined by
g(x) = u, g(y2) = h(y2)ai, g(z2) = h(z2)ai and g(s) = h(s) for other variables
s, then h(αi) = g(αi). Similarly, if h(x) ends with ai+1, then h is not weakly
unambiguous with respect to αi. The only possibility is that h(x) = bub. But if
g is the morphism defined by g(x) = b, g(z1) = ubh(z1), g(z2) = h(z2)bu and
g(s) = h(s) for other variables s, then h(α) = g(α).

4 Sets of Patterns

The second way to generalize weak unambiguity for sets of patterns is to use the
following definitions.

If A is a set of patterns and Γ is the set of those variables that appear in some
α ∈ A, then A is a Γ -set of patterns.

Let A be a Γ -set of patterns. A non-erasing morphism h is weakly unambiguous
with respect to A if there is no non-erasing morphism g �Γ h such that h(α) =
g(α) for every α ∈ A.

The set of left neighbors of x in A is

LA(x) =
⋃
α∈A

Lα(x)

and the set of right neighbors of x in A is

RA(x) =
⋃
α∈A

Rα(x)

A variable x has loyal neighbors in A if at least one of the following two
conditions is satisfied:

LA(x) ⊆ Ξ and RA(y) = {x} for all y ∈ LA(x), (3)

RA(x) ⊆ Ξ and LA(y) = {x} for all y ∈ RA(x). (4)

Lemmas 11 and 12 and Theorem 13 are simple modifications of Lemmas 4
and 5 and Theorem 6.

Lemma 11. Let A be a Γ -set of patterns and h a non-erasing morphism. If
there is x ∈ Γ such that |h(x)| > 1 and x has loyal neighbors in A, then h is not
weakly unambiguous with respect to A.

Proof. Assume that (3) is satisfied for x (the case where (4) is satisfied is sym-
metric). It must be x /∈ LA(x), because it is not possible that RA(x) = {x}. Let
h(x) = au where a ∈ Σ and u ∈ Σ+. If g is the morphism defined by g(x) = u,
g(y) = h(y)a for all y ∈ LA(x) and g(z) = h(z) for all z ∈ Ξ � LA(x) � {x},
then h(α) = g(α) for every α ∈ A. ��

236 A. Saarela

Lemma 12. Let A be a Γ -set of patterns and x a variable that does not have
loyal neighbors in A. Let a, b, c ∈ Σ be different letters such that LA(x)∩Σ
= {a}
and RA(x) ∩ Σ
= {b}. The morphism h defined by h(x) = ab and h(y) = c for
all y ∈ Ξ � {x} is weakly unambiguous with respect to A.

Proof. We assume that g �Γ h is a Γ -increasing morphism such that h(α) =
g(α) for all α ∈ A and derive a contradiction. There is a Γ1 ⊆ Γ and a Γ1-pattern
α1 ∈ A such that g �Γ1 h. Let α1 = a1 . . . an, where a1, . . . , an ∈ Ξ ∪Σ. Lemma
3 is used with g(a1), . . . , g(an) as u1, . . . , un and h(a1), . . . , h(an) as v1, . . . , vn.
Because g �Γ1 h, it follows from Lemma 3 that there is an i such that g(ai) is a
proper factor of h(ai). In particular, |h(ai)| > |g(ai)| ≥ 1, so ai = x. Thus g(x)
is a proper factor of h(x) = ab. By symmetry, it can be assumed that g(x) = a.
Then g(y) cannot contain a’s for any variable y ∈ Γ � {x}, because otherwise
g(α) would contain more a’s than h(α) for some α ∈ A.

Consider any α ∈ A. Let |α|x = k and

α = w0xw1x . . . wk−1xwk.

If j = |w0 . . . wi−1|a + i for some i ∈ {1, . . . , k}, then the jth a in h(α) = g(α)
is followed by b. Thus g(y) begins with b for all y ∈ Rα(x). This means that
ε, d /∈ Rα(x) for all d ∈ Σ � {b}. By the definition of b, RA(x) ⊆ Ξ.

The combined number of b’s in all words h(α) is∑
α∈A

(|α|b + |α|x)

and in all words g(α) it is at least∑
α∈A

(|α|b +
∑

y∈RA(x)

|α|y).

These numbers should be the same, but because x does not have loyal
neighbors in A, ∑

α∈A

|α|x <
∑
α∈A

∑
y∈Rα(x)

|α|y .

This is a contradiction. ��

Theorem 13. Let #Σ ≥ 3 and let A be a Γ -set of patterns. There is a Γ -
increasing morphism h that is weakly unambiguous with respect to A if and only
if at least one variable does not have loyal neighbors in A.

Proof. Assume first that all variables have loyal neighbors in A and h is a Γ -
increasing morphism. Then some variable x satisfies the conditions of Lemma
11, so h is not weakly unambiguous with respect to A.

Assume then that a variable x does not have loyal neighbors in A. Because
#Σ ≥ 3, the three letters of Lemma 12 exist, and there is a Γ -increasing mor-
phism that is weakly unambiguous with respect to A. ��

Weakly Unambiguous Morphisms 237

References

1. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press (2010)

2. Freydenberger, D., Nevisi, H., Reidenbach, D.: Weakly unambiguous morphisms.
Theoret. Comput. Sci. 448, 21–40 (2012)

3. Freydenberger, D., Reidenbach, D.: The unambiguity of segmented morphisms.
Discrete Appl. Math. 157(14), 3055–3068 (2009)

4. Freydenberger, D., Reidenbach, D., Schneider, J.: Unambiguous morphic images of
strings. Internat. J. Found. Comput. Sci. 17(3), 601–628 (2006)

5. Harju, T., Karhumäki, J.: Morphisms. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, vol. 1, pp. 439–510. Springer (1997)

6. Head, T.: Fixed languages and the adult languages of 0L schemes. Int. J. Comput.
Math. 10(2), 103–107 (1981)

7. Mateescu, A., Salomaa, A.: Aspects of classical language theory. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 175–251. Springer
(1997)

8. Reidenbach, D.: Discontinuities in pattern inference. Theoret. Comput. Sci. 397(1-
3), 166–193 (2008)

9. Reidenbach, D., Schneider, J.: Restricted ambiguity of erasing morphisms. Theoret.
Comput. Sci. 412(29), 3510–3523 (2011)

10. Schneider, J.: Unambiguous erasing morphisms in free monoids. RAIRO Inform.
Theor. Appl. 44(2), 193–208 (2010)

11. Shallit, J., Wang, M.W.: On two-sided infinite fixed points of morphisms. Theoret.
Comput. Sci. 270(1-2), 659–675 (2002)

On Infinite Words Determined by L Systems

Tim Smith

College of Computer and Information Science, Northeastern University
Boston, MA 02115, USA
smithtim@ccs.neu.edu

Abstract. A deterministic L system generates an infinite word α if each
word in its derivation sequence is a prefix of the next, yielding α as a
limit. We generalize this notion to arbitrary L systems via the concept
of prefix languages. A prefix language is a language L such that for all
x, y ∈ L, x is a prefix of y or y is a prefix of x. Every infinite prefix
language determines an infinite word. Where C is a class of L systems
(e.g. 0L, DT0L), we denote by ω(C) the class of infinite words determined
by the prefix languages in C. This allows us to speak of infinite 0L words,
infinite DT0L words, etc. We categorize the infinite words determined by
a variety of L systems, showing that the whole hierarchy collapses to just
three distinct classes of infinite words: ω(PD0L), ω(D0L), and ω(CD0L).

1 Introduction

L systems are parallel rewriting systems which were originally introduced to
model growth in simple multicellular organisms. With applications in biological
modelling, fractal generation, and artificial life, L systems have given rise to
a rich body of research [11,9]. L systems can be restricted and generalized in
various ways, yielding a hierarchy of language classes.

The simplest L systems are D0L systems (deterministic Lindenmayer systems
with 0 symbols of context), in which a morphism is successively applied to a
start string or “axiom”. The resulting sequence of words comprises the language
of the system. If the morphism is prolongable on the start string, then each word
in the derivation sequence will be a prefix of the next, yielding an infinite word
as a limit. An infinite word obtained in this way is called an infinite D0L word.

Two well-studied generalizations of D0L systems are 0L systems, which in-
troduce nondeterminism by changing the morphism to a finite substitution, and
DT0L systems, in which the morphism is replaced by a set of morphisms or
“tables”. In each case, there is no longer just one possible derivation sequence;
rather, there are many possible derivations, depending on which letter substitu-
tions or tables are chosen at each step. This raises the question of under what
conditions such a system can be said to determine an infinite word.

We answer this question with the concept of a prefix language. A prefix lan-
guage is a language L such that for all x, y ∈ L, x is a prefix of y or y is a prefix
of x. Every infinite prefix language determines an infinite word. Where C is a
class of L systems (e.g. 0L, DT0L), we denote by ω(C) the class of infinite words

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 238–249, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Infinite Words Determined by L Systems 239

determined by the prefix languages in C. This allows us to speak of infinite 0L
words, infinite DT0L words, etc.

With this notion in place, we categorize the infinite words determined by
a variety of L systems. We consider four production features (D,P,F,T) and
five filtering features (E,C,N,W,H). Each production feature may be present
or absent, and at most one filtering feature may be present, giving a total of
24 · 6 = 96 classes of L systems. We show that this whole hierarchy collapses to
just three classes of infinite words: ω(PD0L), ω(D0L), and ω(CD0L). Our results
appear in Figure 1.

The inclusions among these three classes are proper, giving ω(PD0L)⊂ ω(D0L)
⊂ ω(CD0L). The class ω(CD0L) contains exactly the morphic words, while
ω(D0L) properly contains the pure morphic words.

����

�����

��� �����

��������

���� ������

����������

����

��������

����

	����

	�����

�� 	���

���

	����

���� 	�����

�����

	������

����	����

�����

����

	���
����
����
���

�����
�����
�����
����

�����
	����
�����
�����
����

������
������
������
�����

���

	��
���
���
��

����
����
����
���

����
	���
����
����
���

�����
�����
�����
����

�����

	����
�����

�����
����

������

	�����
������

������
�����

	���

����
�����

���

����
�����
����

	����
�����
�����

����
	�����
������

������
�����

������

������

������
�����

�������

�������
������

�������

Fig. 1. Inclusion diagram showing classes of L systems colored by the infinite words
they determine. Green classes (diamonds) determine exactly ω(PD0L), blue classes
(rectangles) determine exactly ω(D0L), and yellow classes (ellipses) determine exactly
ω(CD0L). Inclusions and equalities are from [9].

240 T. Smith

Proof Techniques. We obtain our categorization results by showing that all
infinite languages in certain classes of L systems have infinite subsets in certain
smaller classes of L systems. This limits the infinite words of the larger class to
the infinite words of the smaller class. That every infinite T0L language has an
infinite D0L subset was shown in [12] using a pumping lemma for T0L languages.
With this result, we show that every infinite ET0L language has an infinite
CD0L subset, and we make further use of the pumping lemma to show that
every infinite PT0L language has an infinite PD0L subset. A separate argument
shows that every infinite ED0L (EPD0L) language has an infinite D0L (PD0L)
subset.

Related Work. Prefix languages were investigated by Book [3], who formu-
lated a “prefix property” intended to allow languages to “approximate” infinite
sequences, and showed that for certain classes of languages, if a language in the
class has the prefix property, then it is regular. Languages whose complement is
a prefix language, called “coprefix languages”, have also been studied [2].

The iterative processes underlying L systems have been investigated in con-
nection with infinite words. Pansiot [10] considered various classes of infinite
words obtained by iterated mappings. Culik & Karhumäki [5] considered itera-
tive devices generating infinite words. Culik & Salomaa [6] investigated infinite
words associated with D0L and DT0L systems; their notion of “strong uniform
convergence” is equivalent to our notion of a language “determining” an infinite
word.

Our results on infinite subsets can be restated in the framework of set im-
munity [13]. For a language class C, a language L is C-immune iff L is infinite
and no infinite subset of L is in C. For example, our result that every infinite
ET0L language has an infinite CD0L subset could be stated: no ET0L language
is CD0L-immune. In addition to categorizing the infinite words determined by
L systems, our results characterize the immunity relationships among these sys-
tems.

Outline of Paper. The paper is organized as follows. Section 2 gives prelim-
inary definitions and propositions. Section 3 gives results on infinite subsets of
certain classes of L systems. Section 4 categorizes the infinite words determined
by the hierarchy of L systems. Section 5 separates and characterizes the classes
ω(PD0L), ω(D0L), and ω(CD0L). Section 6 gives our conclusions.

2 Preliminaries

An alphabet A is a finite set of symbols. A string (or finite word) is an element
of A∗. We denote the empty string by λ. A language is a subset of A∗. An
infinite word (or stream) is an element of Aω . A (symbolic) sequence S is
an element of A∗ ∪ Aω. A prefix of S is a string x such that S = xS′ for some
sequence S′. A subword (or factor) of S is a string x such that S = wxS′ for

On Infinite Words Determined by L Systems 241

some string w and sequence S′. For a nonempty string x, xω denotes the infinite
word xxx · · · . Such a word is called purely periodic. An infinite word of the
form xyω, where x and y are strings and y
= λ, is called ultimately periodic.

A morphism on an alphabet A is a map h from A∗ to A∗ such that for
all x, y ∈ A∗, h(xy) = h(x)h(y). Notice that h(λ) = λ. The morphism h is
nonerasing if for all a ∈ A, h(a)
= λ. The morphism h is a coding if for all
a ∈ A, |h(a)| = 1. The morphism h is a weak coding if for all a ∈ A, |h(a)| ≤ 1.
The morphism h is an identity if for all a ∈ A, h(a) = a. For a language L, we
define h(L) = {h(x) | x ∈ L}. A string x ∈ A∗ is mortal (for h) if there is an
m ≥ 0 such that hm(x) = λ. The morphism h is prolongable on a symbol a if
h(a) = ax for some x ∈ A∗, and x is not mortal. In this case hω(a) denotes the
infinite word a x h(x) h2(x) · · · . An infinite word α is pure morphic if there
is a morphism h and symbol a such that h is prolongable on a and α = hω(a).
An infinite word α is morphic if there is a morphism h, coding e, and symbol
a such that h is prolongable on a and α = e(hω(a)). Every purely periodic word
is pure morphic, and every ultimately periodic word is morphic. For results on
morphic words, see [1].

A finite substitution on A is a map σ from A∗ to 2A
∗
such that (1) for all

x ∈ A∗, σ(x) is finite and nonempty, and (2) for all x, y ∈ A∗, σ(xy) = {x′y′ | x′

is in σ(x) and y′ is in σ(y)}. Notice that σ(λ) = {λ}. σ is nonerasing if for
all a ∈ A, σ(a)
- λ. For a language L, we define σ(L) = {x′ | x′ is in σ(x) for
some x ∈ L}.

2.1 Prefix Languages

A prefix language is a language L such that for all x, y ∈ L, x is a prefix
of y or y is a prefix of x. A language L determines an infinite word α iff L
is infinite and every x ∈ L is a prefix of α. For example, the infinite prefix
language {λ, ab, abab, ababab, . . . } determines the infinite word (ab)ω. The
following propositions are basic consequences of the definitions.

Proposition 1. A language determines at most one infinite word.

Proposition 2. A language L determines an infinite word iff L is an infinite
prefix language.

Notice that while a language determines at most one infinite word, an infinite
word may be determined by more than one language. In particular, we will make
use of the following fact.

Proposition 3. If a language L determines an infinite word α and L′ is an
infinite subset of L, then L′ determines α.

For a language class C, let ω(C) = {α | α is an infinite word and some L ∈ C
determines α}.

242 T. Smith

2.2 L Systems

Many classes of L systems appear in the literature. Following [9], we consider
four production features (D,P,F,T) and five filtering features (E,C,N,W,H). Each
production feature may be present or absent, and at most one filtering feature
may be present, for a total of 24 · 6 = 96 classes of L systems.

Feature Meaning Example
none A 0L system is a tuple G = (A, σ, w) where A is an

alphabet, σ is a finite substitution on A, and w is in
A∗. The language ofG is L(G) = {s ∈ σi(w) | i ≥ 0}.

D Deterministic A D0L system is a tuple G = (A, h,w) where A is
an alphabet, h is a morphism on A, and w is in A∗.
The language of G is L(G) = {hi(w) | i ≥ 0}.

P Propagating A PD0L system is a D0L system (A, h,w) such that
h is nonerasing.

F Finite axiom set A DF0L system is a tuple G = (A, h, F) where
A is an alphabet, h is a morphism on A, and F is
a finite set of strings in A∗. The language of G is
L(G) = {hi(f) | f ∈ F and i ≥ 0}.

T Tables A DT0L system is a tuple G = (A,H,w) where A
is an alphabet, H is a finite nonempty set of mor-
phisms on A (called “tables”), and w is in A∗. The
language of G is L(G) = {s | hi · · ·h1(w) = s for
some h1, . . . , hi ∈ H .

E Extended An ED0L system is a tuple G = (A, h,w,B) where
A and B are alphabets and B ⊆ A, h is a morphism
on A, and w is in A∗. The language of G is L(G) =
{s ∈ B∗ | hi(w) = s for some i ≥ 0}.

H Homomorphism An HD0L system is a tuple G = (A, h,w, g) such
that G′ = (A, h,w) is a D0L system and g is a mor-
phism on A. The language of G is L(G) = {g(s) | s
is in L(G′)}.

C Coding A CD0L system is an HD0L system (A, h,w, g) such
that g is a coding.

N Nonerasing An ND0L system is an HD0L system (A, h,w, g)
such that g is nonerasing.

W Weak coding A WD0L system is an HD0L system (A, h,w, g)
such that g is a weak coding.

These features combine to form complex L systems. For example, an EPD0L
system is an ED0L system (A, h,w,B) such that h is nonerasing. A T0L sys-
tem is a tuple G = (A, T,w) where A is an alphabet, T is a finite nonempty set
of finite substitutions on A (called “tables”), and w is in A∗. The language of
G is L(G) = {s | σi · · ·σ1(w) - s for some σ1, . . . , σi ∈ T }. If for all σ ∈ T , σ is
nonerasing, then G is a PT0L system. See [11] and [9] for more definitions.

On Infinite Words Determined by L Systems 243

We call an L system G infinite iff L(G) is infinite. When speaking of lan-
guage classes, we denote the class of D0L languages simply by D0L, and sim-
ilarly with other classes. An L system feature set is a subset of {D,P,F,T}
∪ {E,C,N,W,H} containing at most one of {E,C,N,W,H}. Let L (S) be the lan-
guage class of L systems with feature set S. For example, L ({C,D,T}) = CDT0L.
From the definitions of the features, we have the following inclusions.

Proposition 4 (Structural inclusions)
Let S be an L system feature set. Then:

– L (S ∪ {D}) ⊆ L (S),
– L (S ∪ {P}) ⊆ L (S),
– L (S) ⊆ L (S ∪ {F}), and
– L (S) ⊆ L (S ∪ {T}).

Let S be an L system feature set containing none of {E,C,N,W,H}. Then:

– L (S) ⊆ L (S ∪ {E}),
– L (S) ⊆ L (S ∪ {C}),
– L (S ∪ {C}) ⊆ L (S ∪ {N}) ⊆ L (S ∪ {H}), and
– L (S ∪ {C}) ⊆ L (S ∪ {W}) ⊆ L (S ∪ {H}).

Beyond these structural inclusions, many relationships are known among the
language classes; see [9]. In comparing L system classes, [9] considers two lan-
guages to be equal if they differ by the empty word only; otherwise, propagating
classes would be automatically different from nonpropagating ones. See Figure
1 for a depiction of the known inclusions and equalities.

3 Infinite Subsets of L Systems

In this section we show that all infinite languages in certain classes of L systems
have infinite subsets in certain smaller classes of L systems. This limits the
infinite words of the larger class to the infinite words of the smaller class. We
make use of a pumping lemma for T0L systems from [12]. A T0L system G =
(A, T,w) is pumpable iff there are a, b ∈ A such that (1) some s0 ∈ L(G)
contains a, and (2) for some composition t of tables from T , t(a) includes a
string s1 containing distinct occurrences of a and b and t(b) includes a string s2
containing b. The next two theorems appear in [12].

Theorem 5 (Smith). A T0L system is infinite iff it is pumpable.

Theorem 6 (Smith). Every infinite T0L language has an infinite D0L subset.

Theorem 7. Every infinite PT0L language has an infinite PD0L subset.

Proof. Take any infinite PT0L language L with PT0L system G = (A, T,w). By
Theorem 5, G is pumpable for some a, b ∈ A, s0, s1, s2 ∈ A∗, and composition
t of tables from T . Let h be a morphism on A such that h(a) = s1, h(b) = s2

244 T. Smith

unless a = b, and for every other c ∈ A, h(c) = s for some s ∈ t(c). Since t is
a composition of tables from T , t is nonerasing, hence h is nonerasing. Further,
for all i ≥ 0, hi(s0) is in ti(s0), so hi(s0) is in L. A simple induction shows that
for all i ≥ 0, hi(s0) contains a and at least i copies of b. Hence the language of
the PD0L system (A, h, s0) is an infinite subset of L. ��
Theorem 8. Let G = (A, h,w,B) be an infinite ED0L system. Then there are
a ≥ 0, b ≥ 1 such that the language of the D0L system (A, hb, ha(w)) is an
infinite subset of L(G).

Proof. Let alph(s) be the set of symbols which appear in the string s. Since
L(G) is infinite, there is an m ≥ 0 such that the sequence w, h(w), h2(w), . . . ,
hm(w) contains more than 2|B| strings in L(G). For every s ∈ L(G), alph(s) ⊆ B.
Hence there is a C ⊆ B and i, j such that 0 ≤ i < j ≤ m and alph(hi(w)) =
alph(hj(w)) = C. Then for any string s such that alph(s) = C, alph(hj−i(s)) =
C. Let a = i and b = j− i. Then for every n ≥ 0, alph(ha+bn(w)) = C. Hence for
every n ≥ 0, ha+bn(w) is in L(G). So take the D0L system G′ = (A, hb, ha(w)).
We have L(G′) ⊆ L(G). Suppose some string s occurs twice in the derivation
sequence of G′. Then s occurs twice in the derivation sequence of G, making
L(G) finite, a contradiction. So L(G′) is infinite. Therefore L(G′) is an infinite
subset of L(G). ��
Corollary 9. Every infinite ED0L language has an infinite D0L subset.

Corollary 10. Every infinite EPD0L language has an infinite PD0L subset.

Proof. Take any infinite EPD0L system G = (A, h,w,B). By Theorem 8, there
are a ≥ 0, b ≥ 1 such that the language of the D0L system G′ = (A, hb, ha(w)) is
an infinite subset of L(G). Since h is nonerasing, hb is nonerasing. Hence L(G′)
is an infinite PD0L subset of L(G). ��
Theorem 11. Every infinite ET0L language has an infinite CD0L subset.

Proof. Take any infinite ET0L language L. By Theorem 2.7 of [9], ET0L =
CT0L. Hence there is a coding e and T0L language L′ such that L = e(L′).
Since L is infinite, L′ is infinite. Then by Theorem 6, L′ has an infinite D0L
subset L′′. Since L′′ is infinite and e is a coding, e(L′′) is infinite. Since L′′ ⊆ L′,
e(L′′) ⊆ e(L′). Therefore e(L′′) is an infinite CD0L subset of L. ��
Theorem 12. Let S be an L system feature set not containing F. Then every
infinite L (S ∪ {F}) language has an infinite L (S) subset.

Proof. Take any infinite L system G with feature set S ∪ {F}. Since G has a
finite axiom set, L(G) is a finite union of L (S) languages. Then since L(G) is
infinite, one of these L (S) languages is infinite. Therefore L(G) has an infinite
L (S) subset. ��
Theorem 13. Let C and D be language classes such that every infinite language
in C has an infinite subset in D. Then ω(C) ⊆ ω(D).

Proof. Take any α ∈ ω(C). Some L ∈ C determines α. Then L is infinite, so L
has an infinite subset L′ in D. Then L′ determines α. So α is in ω(D). Hence
ω(C) ⊆ ω(D). ��

On Infinite Words Determined by L Systems 245

4 Categorizations

In this section we categorize the infinite words determined by each class of L
systems. We partition the 96 classes into three sets, called Set1, Set2, and Set3,
and show that for every C1 ∈ Set1, C2 ∈ Set2, and C3 ∈ Set3, ω(C1) = ω(PD0L),
ω(C2) = ω(D0L), and ω(C3) = ω(CD0L).

4.1 PD0L Classes

Let Set1 = {PD0L, PDF0L, P0L, PF0L, PDT0L, PDTF0L, PT0L, PTF0L,
EPD0L, EPDF0L}.
Theorem 14. For every C ∈ Set1, every infinite C language has an infinite
PD0L subset.

Proof. Take any C ∈ Set1. By structural inclusion, C ⊆ PTF0L or C ⊆ EPDF0L.
By Theorem 12, every infinite PTF0L language has an infinite PT0L subset. By
Theorem 7, every infinite PT0L language has an infinite PD0L subset. Hence
every infinite PTF0L language has an infinite PD0L subset. By Theorem 12,
every infinite EPDF0L language has an infinite EPD0L subset. By Corollary 10,
every infinite EPD0L language has an infinite PD0L subset. Hence every infinite
EPDF0L language has an infinite PD0L subset. Hence every infinite C language
has an infinite PD0L subset. ��
Theorem 15. For every C ∈ Set1, ω(C) = ω(PD0L).

Proof. Take any C ∈ Set1. By structural inclusion, PD0L ⊆ C. Hence ω(PD0L)
⊆ ω(C). By Theorem 14, every infinite C language has an infinite PD0L subset.
Then by Theorem 13, ω(C) ⊆ ω(PD0L). Therefore ω(C) = ω(PD0L). ��

4.2 D0L Classes

Let Set2 = {D0L, DF0L, 0L, F0L, DT0L, DTF0L, T0L, TF0L, ED0L, EDF0L}.
Theorem 16. For every C ∈ Set2, every infinite C language has an infinite
D0L subset.

Proof. Take any C ∈ Set2. By structural inclusion, C ⊆ TF0L or C ⊆ EDF0L.
By Theorem 12, every infinite TF0L language has an infinite T0L subset. By
Theorem 6, every infinite T0L language has an infinite D0L subset. Hence every
infinite TF0L language has an infinite D0L subset. By Theorem 12, every infinite
EDF0L language has an infinite ED0L subset. By Corollary 9, every infinite
ED0L language has an infinite D0L subset. Hence every infinite EDF0L language
has an infinite D0L subset. Hence every infinite C language has an infinite D0L
subset. ��
Theorem 17. For every C ∈ Set2, ω(C) = ω(D0L).

Proof. Take any C ∈ Set2. By structural inclusion, D0L ⊆ C. Hence ω(D0L)
⊆ ω(C). By Theorem 16, every infinite C language has an infinite D0L subset.
Then by Theorem 13, ω(C) ⊆ ω(D0L). Therefore ω(C) = ω(D0L). ��

246 T. Smith

4.3 CD0L Classes

Let Set3 = {CD0L, ND0L, WD0L, HD0L, CPD0L, NPD0L, WPD0L, HPD0L,
CDF0L, NDF0L, WDF0L, HDF0L, CPDF0L, NPDF0L, WPDF0L, HPDF0L,
E0L, C0L, N0L, W0L, H0L, EP0L, CP0L, NP0L, WP0L, HP0L, EF0L, CF0L,
NF0L, WF0L, HF0L, EPF0L, CPF0L, NPF0L, WPF0L, HPF0L, EDT0L,
CDT0L, NDT0L, WDT0L, HDT0L, EPDT0L, CPDT0L, NPDT0L, WPDT0L,
HPDT0L, EDTF0L, CDTF0L, NDTF0L, WDTF0L, HDTF0L, EPDTF0L,
CPDTF0L, NPDTF0L, WPDTF0L, HPDTF0L, ET0L, CT0L, NT0L, WT0L,
HT0L, EPT0L, CPT0L, NPT0L, WPT0L, HPT0L, ETF0L, CTF0L, NTF0L,
WTF0L, HTF0L, EPTF0L, CPTF0L, NPTF0L, WPTF0L, HPTF0L}.

Theorem 18. For every C ∈ Set3, every infinite C language has an infinite
CD0L subset.

Proof. Take any C ∈ Set3. By structural inclusion, C ⊆ ETF0L or C ⊆ HTF0L.
By Theorem 2.7 of [9], ETF0L = HTF0L = ET0L. So C ⊆ ET0L. By Theorem 11,
every infinite ET0L language has an infinite CD0L subset. Hence every infinite
C language has an infinite CD0L subset. ��

Theorem 19. For every C ∈ Set3, ω(C) = ω(CD0L).

Proof. Take any C ∈ Set3. By Theorem 18, every infinite C language has an
infinite CD0L subset. Then by Theorem 13, ω(C) ⊆ ω(CD0L).

Next, by structural inclusion, CPD0L ⊆ C or EP0L ⊆ C or EPDT0L ⊆ C.
By Theorem 2.4 of [9], EP0L = C0L, so CPD0L ⊆ EP0L. By Theorem 2.6 of
[9], CPDT0L ⊆ EPDT0L, so CPD0L ⊆ EPDT0L. Hence CPD0L ⊆ C. Now
by Theorem 2.3 of [9], CPDF0L = CDF0L. Hence CD0L ⊆ CPDF0L. Hence
ω(CD0L) ⊆ ω(CPDF0L). By Theorem 12, every infinite CPDF0L language has
an infinite CPD0L subset. Then by Theorem 13, ω(CPDF0L) ⊆ ω(CPD0L).
Hence ω(CD0L) ⊆ ω(CPD0L) ⊆ ω(C).

Therefore ω(C) = ω(CD0L). ��

5 ω(PD0L), ω(D0L), and ω(CD0L)

In this section, we separate the three classes of infinite words obtained in the pre-
vious section, giving ω(PD0L) ⊂ ω(D0L) ⊂ ω(CD0L). We observe that ω(D0L)
properly contains the pure morphic words and we show that ω(CD0L) contains
exactly the morphic words.

5.1 Separating the Classes

From Theorem 2.3 of [10], the infinite words generated by iterating nonerasing
morphisms are a proper subset of the pure morphic words, which in turn are a
proper subset of the morphic words. Our classes ω(PD0L), ω(D0L), and ω(CD0L)
are defined more generally using prefix languages, but similar arguments serve
to separate them.

On Infinite Words Determined by L Systems 247

Theorem 20. ω(PD0L) ⊂ ω(D0L).

Proof. By structural inclusion, ω(PD0L) ⊆ ω(D0L). To separate the two classes,
we use an infinite word from [4]. Let A = {0, 1, 2}. Let f be a morphism on
A such that f(0) = 01222, f(1) = 10222, and f(2) = λ. Let α = fω(0) =
01222102221022201222 . . . Then α is a pure morphic word, hence α is in ω(D0L).
In [4] it is shown that there is no nonerasing morphism g on A such that gω(0) =
α. We generalize this result to show that α is not in ω(PD0L). First, we show
that if g is a nonerasing morphism on A and g(α) = α, then g is an identity
morphism. We adapt the proof of Example 3 in [4].

Let τ be the Thue-Morse word τ = 01101001 . . . = uω(0), where u is a mor-
phism on {0, 1} such that u(0) = 01 and u(1) = 10. Let d be a morphism on
A such that d(0) = 0, d(1) = 1, and d(2) = λ. As observed by [4], d(α) = τ .
Notice that the only subwords of α in {0, 1}∗ are in {λ, 0, 1, 01, 10} and the only
subwords of α in {2}∗ are in {λ, 2, 22, 222}. Notice also that α does not contain
the subword 212.

Suppose g is a nonerasing morphism on A and g(α) = α. Suppose g(2) is
not in 2∗. Let s = d(g(2)). Then s is not empty. Since 222 is a subword of
α and g(α) = α, g(222) is a subword of α. Then since d(α) = τ , τ contains
d(g(222)) = sss, a contradiction, since τ is known to be cubefree. So g(2) is
in 2∗. Then since α contains g(222), and 2222 is not a subword of α, and g is
nonerasing, g(2) = 2.

Suppose g(0)
= 0. Then since α starts with 0, g(0) = 01x for some x ∈ A∗.
Since 1222 is a subword of α, g(1222) = g(1) 222 is a subword of α. Then since
2222 is not a subword of α, g(1) cannot end with 2. So g(1) = ya for some
y ∈ A∗ and a ∈ {0, 1}. Now since 10 is a subword of α, so is g(10) = ya01x. But
α contains no subword of the form a01, a contradiction. So g(0) = 0.

Suppose g(1)
= 1. Then since α begins with 012, g(1) = 12z for some z ∈ A∗.
Since 2221 is a subword of α, g(2221) = 22212z is a subword of α, a contradiction,
since α does not contain the subword 212. So g(1) = 1. Then g is an identity
morphism.

So suppose α is in ω(PD0L). Then there is a PD0L system G = (A, h,w) such
that L(G) determines α. Since h is nonerasing, h(α) is an infinite word. Suppose
h(α)
= α. Then there is a prefix p of α such that h(p) is not a prefix of α. Since
L(G) determines α, p is a prefix of some s in L(G). Then h(p) is a prefix of
h(s). But then since h(s) is in L(G), h(p) is a prefix of α, a contradiction. So
h(α) = α. Then from above, h is an identity morphism. But then h(w) = w, so
L(G) is finite, a contradiction. Therefore α is not in ω(PD0L). Hence ω(PD0L)
⊂ ω(D0L). ��

Theorem 21. ω(D0L) ⊂ ω(CD0L).

Proof. By structural inclusion, ω(D0L) ⊆ ω(CD0L). Let α = abbaω. Since α
is ultimately periodic, α is morphic, hence α is in ω(CD0L). Suppose α is in
ω(D0L). Then there is a D0L system G = (A, h,w) such that L(G) determines
α. Clearly h(a) cannot include b, and if h(a) = λ, L(G) is finite, a contradiction.
So since h(a) must be a prefix of α, h(a) = a. Then a h(b) h(b) is a prefix of α,

248 T. Smith

hence h(b) = λ or h(b) = b. But then L(G) is finite, a contradiction. So α is not
in ω(D0L). Hence ω(D0L) ⊂ ω(CD0L). ��

5.2 Characterizing the Words in Each Class

That ω(D0L) includes every pure morphic word is immediate from the definitions.
In [8], the infinite word aabω is given as an example of an infinite D0L word
which is not pure morphic. Hence ω(D0L) properly contains the pure morphic
words. Next, we show that ω(CD0L) contains exactly the morphic words. The
adherence of a language L, denoted Adherence(L), is the set {α | α is an infinite
word and for every prefix p of α, there is an s ∈ L such that p is a prefix of s}.

Lemma 22. Suppose L is in D0L and α is in Adherence(L). Then α is morphic.

Proof. From [7], either (1) α is ultimately periodic, or (2) α = w x h(x) h2(x) · · ·
for some morphism h and strings w, x such that h(w) = wx and x is not mortal.
If (1), α is morphic. If (2), α is an infinite D0L word, so by Proposition 10.2.2
of [8], α is morphic. ��

Theorem 23. α is in ω(CD0L) iff α is morphic.

Proof. That ω(CD0L) includes every morphic word is immediate from the defi-
nitions. So take any α ∈ ω(CD0L). Then there is a CD0L system G = (A, h,w, e)
such that L(G) determines α. Then L(G) is infinite. Hence the language L of the
D0L system (A, h,w) is infinite. As noted in [7], a language has empty adherence
iff the language is finite. Therefore there is an α′ ∈ Adherence(L). By Lemma
22, α′ is morphic. Now for any prefix p of α′, there is a string s in L with p
as a prefix. Then e(p) is a prefix of e(s). Then since e(s) is in L(G), e(p) is a
prefix of α. So for every prefix p of α′, e(p) is a prefix of α. Since e is a coding,
e(α′) is infinite. So e(α′) = α. Then because a coding of a morphic word is still
a morphic word, α is morphic. Hence α is in ω(CD0L) iff α is morphic. ��

6 Conclusion

In this paper we have categorized the infinite words determined by L systems,
showing that a variety of classes of L systems collapse to just three classes of
infinite words. To associate L systems with infinite words, we used the concept
of prefix languages. This concept can be applied not just to L systems, but to
arbitrary language classes, offering many opportunities for further research. That
is, where C is any language class, we denote by ω(C) the class of infinite words
determined by the prefix languages in C. Then for a given language class, we
can ask what class of infinite words it determines. From the other direction, for
a given infinite word, we can ask in what language classes it can be determined.
It is hoped that work in this area will help to build up a theory of the complexity
of infinite words with respect to what language classes can determine them.

On Infinite Words Determined by L Systems 249

Acknowledgments. I want to thank my advisor, Rajmohan Rajaraman, for
supporting this work, encouraging me, and offering many helpful comments and
suggestions.

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, New York (2003)

2. Berstel, J.: Properties of infinite words: Recent results. In: Monien, B., Cori, R.
(eds.) STACS 1989. LNCS, vol. 349, pp. 36–46. Springer, Heidelberg (1989)

3. Book, R.V.: On languages with a certain prefix property. Mathematical Systems
Theory 10, 229–237 (1977)

4. Cassaigne, J., Nicolas, F.: Quelques propriétés des mots substitutifs. Bulletin of
the Belgian Mathematical Society-Simon Stevin 10(5), 661–677 (2003)

5. Culik, K., Karhumäki, J.: Iterative devices generating infinite words. Int. J. Found.
Comput. Sci. 5(1), 69–97 (1994)

6. Culik, K., Salomaa, A.: On infinite words obtained by iterating morphisms. Theo-
retical Computer Science 19(1), 29–38 (1982)

7. Head, T.: Adherences of D0L languages. Theoretical Computer Science 31(1-2),
139–149 (1984)

8. Honkala, J.: The equality problem for purely substitutive words. In: Combinatorics,
Automata, and Number Theory, pp. 505–529. Cambridge University Press, Cam-
bridge (2010)

9. Kari, L., Rozenberg, G., Salomaa, A.: L systems. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 1, pp. 253–328. Springer-Verlag New
York, Inc., New York (1997)

10. Pansiot, J.J.: On various classes of infinite words obtained by iterated mappings.
In: Nivat, M., Perrin, D. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp.
188–197. Springer, Heidelberg (1985)

11. Rozenberg, G., Salomaa, A.: Mathematical Theory of L Systems. Academic Press,
Inc., Orlando (1980)

12. Smith, T.: Infiniteness and boundedness in 0L, DT0L, and T0L systems. In: Dediu,
A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 535–546.
Springer, Heidelberg (2013)

13. Yamakami, T., Suzuki, T.: Resource bounded immunity and simplicity. Theoretical
Computer Science 347(1-2), 90–129 (2005)

Sets Represented as the Length-n Factors

of a Word

Shuo Tan and Jeffrey Shallit

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
{s22tan,shallit}@uwaterloo.ca

Abstract. Let Σ denote a finite alphabet. We say that a subset of
Σn is representable if it occurs as the set of all length-n factors of a
finite word. In this paper we consider the following problems: how many
different subsets of Σn are representable? If a subset is representable,
how long a word do we need to represent it? How many such subsets are
represented by words of length t? For the first problem, we give upper
and lower bounds of the form α2n in the binary case, where α > 1 is a
real number. For the second problem, we give a weak upper bound and
some experimental data. For the third problem, we give a closed-form
formula in the case where n ≤ t < 2n.

1 Introduction

Let w, x, y, z be finite words. If w = xyz, we say that y is a factor of w. De Bruijn
proved [1] the existence of a set of binary words (bn)n≥1 with the property that
every binary word of length n appears as a factor of bn (and, in fact, appears
exactly once in bn). Here we are thinking of bn interpreted as a circular word.
For example, consider the case where n = 2, where we can take b2 = 0011.
Interpreted circularly, the factors of length 2 of b2 are 00, 01, 11, 10, and these
factors comprise all the binary words of length 2.

However, not every subset of {0, 1}n can be represented as the factors of some
finite word. For example, the set {00, 11} cannot equal the set of all factors of
any word w — interpreted in the ordinary sense or circularly — because the set
of factors of any w containing both letters must contain either 01 or 10.

This raises the natural question, how many different non-empty subsets S of
{0, 1}n can be represented as the factors of some word w? (Note that, unlike
[8], we do not insist that each element of S appear exactly once in w.) We give
upper and lower bounds for this quantity for circular words, both of the form
α2n for a real number α > 1. Our upper bound has α = 4

√
10

.
= 1.78 while our

lower bound has α =
√
2

.
= 1.41.

If the set of length-n factors of a word w (considered circularly) equals S, we
say that w witnesses S. We study the length of the shortest witness for subsets
of {0, 1}n, and give an upper bound.

Restriction on the length of a witness leads us to another interesting problem.
Let T (t, n) denote the number of subsets of {0, 1}n witnessed by some word of

J. Karhumäki, A. Lepistö, and L. Zamboni (Eds.): WORDS 2013, LNCS 8079, pp. 250–261, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Sets Represented as the Length-n Factors of a Word 251

length t ≥ n. Is there any characterization of T (t, n)? We focus on ordinary (non-
circular) words for this question and derive a closed-form formula for T (t, n) in
the case where n ≤ t < 2n.

Algorithmic versions of related problems have been widely studied in the
literature under the name “shortest common superstring” and “representing
word”. For example, Gallant, Maier, and Storer [4] proved that the following
decision problem is NP-complete:

Instance: A set S of words and an integer K.
Question: Is there a word w of length ≤ K containing each word in S (and
possibly others) as a factor?

Recently, Blanchet-Sadri and Simmons [5] studied the representability of sets
by finite partial words, which are sequences containing holes that match all
letters. They showed that whether a given set is represented by some partial word
of exactly h holes can be decided in polynomial time. However, the combinatorial
problems that we study in this paper seem to be new.

2 Preliminaries

Let Σ = {0, 1} denote the alphabet. Let Fn(w) denote the set of length-n factors
of an ordinary (non-circular) word w, and let Cn(w) denote the set of length-n
factors of w where w is interpreted circularly. For example, if w = 001, then
F2(w) = {00, 01}, while if w = 001 is interpreted circularly, then C2(w) =
{00, 01, 10}.

We say that a word w witnesses (resp., circularly witnesses) a subset S of
Σn if Fn(w) = S (resp., Cn(w) = S). A subset S of Σn is representable (resp.,
circularly representable) if there exists a non-empty word (resp., circular word)
that witnesses S. Let Rn denote the set of all non-empty representable sub-
sets of Σn, and let R̊n denote the set of all non-empty circularly representable
subsets of Σn.

Let sw(S) (resp., scw(S)) denote the length of the shortest non-circular wit-
ness (resp., circular witness) for S. Let μn (resp., νn) denote the maximum
length of the shortest non-circular (resp., circular) witness over all representable
subsets of Σn.

A de Bruijn word bn of order n over the alphabet Σ is a shortest circular
witness for the set Σn. It is known [1] that the length of a de Bruijn word of
order n over Σ is 2n.

For convenience, we let w[i] denote the i’th letter of w and w[i..j] denote the
factor of w with length j − i + 1 that starts with the i’th letter of w. Thus
w = w[1..n] where n = |w|.

3 Bounds on the Size of R̊n

In this section, we give lower and upper bounds on the size of R̊n, both of which
are of the form α2n . Our lower bound has α =

√
2 while our upper bound has

α = 4
√
10. Note that our lower bound also works for the size of Rn, since every

circularly representable subset is also representable.

252 S. Tan and J. Shallit

3.1 Lower Bound

Our argument for the lower bound derives from constructing a set of circularly
representable subsets.

Proposition 1. Let bn be any de Bruijn word of order n. Then |Cn+1(bn)| = 2n.

Proof. Every de Bruijn word of order n is of length 2n; thus there are 2n length-
(n + 1) factors of bn (considered circularly). These length-(n + 1) factors are
pairwise distinct, for if w ∈ Σn+1 appears more than once as a factor of bn, then
w[1..n] appears more than once as a factor of bn. However, every length-n factor
appears only once in bn, a contradiction. Hence |Cn+1(bn)| = 2n. ��

Lemma 2. Given a de Bruijn word bn, let Y denote the set Σn+1\Cn+1(bn).
For any y ∈ Y , the set {y} ∪ Cn+1(bn) is circularly witnessed by a word w for
which both the length-2n prefix and the length-2n suffix equal bn.

Proof. We construct such a witness for {y} ∪ Cn+1(bn).
Let w = bnbnbnbn. Let y1 = y[1..n] and y2 = y[2..n + 1]. Let i1 denote the

index of the first occurrence of y1 in w; namely, the index i1 is the minimal
integer such that y1 = w[i1..i1 + n − 1]. Let i2 denote the index of the last
occurrence of y2 in w; namely, the index i2 is the maximal integer such that
y2 = w[i2..i2 + n− 1].

We argue that the first occurrence of y1 does not overlap the last occurrence
of y2. We have i1 ≤ 2n, since every possible factor of length n appears in the
circular word bn. Similarly, we obtain i2 > 3 · 2n − n. Thus we have

i1 + n− 1− i2 < −2 · 2n + 2n− 1 < 0,

and hence the first occurrence of y1 does not overlap the last occurrence of y2.
Now consider the circular word

wy = bnbnw[1..i1 − 1]w[i1..i1 + n− 1]w[i2 + n− 1]w[i2 + n..2n+2]bnbn.

We argue that wy is a witness for {y}∪Cn+1(bn). For one direction, every element
of {y}∪Cn+1(bn) appears as a length-(n+1) factor of wy. This is a consequence
of the following two facts:

1. bnbn witnesses Cn+1(bn).
2. w[i1..i1 + n− 1]w[i2 + n− 1] = y[1..n]y[n+ 1] = y.

For the other direction, we can see that all factors of length n + 1 in wy are
elements of {y} ∪ Cn+1(bn) by inspection. Note that the length-2n prefix and
the length-2n suffix of wy both equal bn. Hence we conclude that there exists a
word for which the prefix and the suffix equal bn and this circular word circularly
witnesses {y} ∪ Cn+1(bn). ��

Example 3. Let n = 2. One of the de Bruijn words of order 2 is b2 = 0011. We
have C3(b2) = {001, 011, 110, 100}. Thus Y = {000, 010, 101, 111}. Let y = 010.

Sets Represented as the Length-n Factors of a Word 253

The following circular word demonstrates that the set {y} ∪ Cn+1(bn) is repre-
sentable:

w010 =(00110011︸ ︷︷ ︸
b2b2

)(0︸︷︷︸
w[1..i1−1]

)(01︸︷︷︸
w[i1..i1+n−1]=y1

)(0︸︷︷︸
w[i2+n−1]

)(011︸︷︷︸
w[i2+n..2n+2]

)(00110011︸ ︷︷ ︸
b2b2

).

Proposition 4. Given a de Bruijn word bn, let Y denote the set Σn+1\Cn+1

(bn). For any subset S ⊆ Y , the set S ∪ Cn+1(bn) is a circularly representable
subset of Σn+1.

Proof. We have proved this proposition for the case where |S| = 1 by Lemma 2.
Now we turn to the general case. Let S = {s1, s2, . . . , sm}. By Lemma 2, for
each 1 ≤ i ≤ m, there exists a circular word wi that witnesses {si} ∪ Cn+1(bn)
and both the prefix and the suffix of wi equal bn. We argue that the circular
word wS = w1w2 · · ·wm witnesses S ∪ Cn+1(bn).

First, for any 1 ≤ i ≤ m, si appears in wi and thus in wS . Moreover, every
element of Cn+1(bn) appears in the prefix of wS : bnbn. Thus, it suffices to show
that every length-(n+1) factor of wS is a member of S∪Cn+1(bn). This is shown
by the fact that for any 1 ≤ i < m, both the suffix of wi and the prefix of wi+1

equal bn, which implies that the concatenation of ti and ti+1 does not produce
any new factor of length n+ 1 in wS .

Thus, we conclude that for any subset S of Y , there exists a witness for the
set S ∪Cn+1(bn). ��

Corollary 5. A lower bound for the size of R̊n+1 is 22
n

=
√
2
2n+1

.

3.2 Upper Bound

An obvious upper bound for |R̊n| is 22
n

, since R̊n ⊆ 2Σ
n

, where |2Σn | = 22
n

. In
this section, we will show that a tighter upper bound is α2n , where α = 4

√
10.

Definition 6. Let S ⊆ Σn+1 and T ⊆ Σn. We say that S is incident on T if
there exists a circular word w such that w witnesses both S and T .

Example 7. For example, we fix n = 3. Let w = 0110. Then w is a witness for
the set S = {0110, 1100, 1001, 0011} ∈ R̊4 and T = {011, 110, 100, 001} ∈ R̊3. It
follows that S is incident on T . Note that w′ = 01100110 is also a witness for S,
and a witness for T as well.

In fact we can argue that if S is incident on T , then every word that witnesses
S also witnesses T .

Proposition 8. Every set S ∈ R̊n+1 is incident on exactly one set in R̊n.

Proof. Let

T = {t ∈ Σn : there exists w ∈ S such that t is a length-n prefix or suffix of w}.

254 S. Tan and J. Shallit

Then a word w which witnesses S also witnesses T . Thus S is incident on T .
Moreover, if S is incident on T and T ′, then every witness of S must also witness
T and T ′. Thus we have T = T ′. So we conclude that every set S ∈ R̊n+1 is
incident on exactly one set in R̊n. ��

Now we give a partition of R̊n+1. Let

R̊n+1[T] = {S ∈ R̊n+1 : S is incident on T }.

Proposition 8 implies that {R̊n+1[T]}T⊆Σn is a pairwise disjoint partition of the

set R̊n+1. Namely, (1) for every T1
= T2, we have R̊n+1[T1] ∩ R̊n+1[T2] = ∅ and
(2)
⋃

T∈R̊n
R̊n+1[T] = R̊n+1.

Thus we have |R̊n+1| =
∑

T⊆Σn |R̊n+1[T]|. So to give an upper bound for

|R̊n+1|, it suffices to give a upper bound for the size of R̊n+1[T].

Definition 9. Let x be a word of length n. We say that Px = {0x, 1x} is a pair
of order n w.r.t. x, that Sx = {0x, 1x, x0, x1} is a skeleton of order n w.r.t. x,
and Nx = {0x0, 0x1, 1x0, 1x1} is a net of order n w.r.t. x. We also say that a
set S contains Px (resp., Sx and Nx) if Px ⊆ S (resp., Sx ⊆ S and Nx ⊆ S).

For any T ⊆ Σn, let σ(T) denote the number of skeletons of order n − 1 in
T and let ρ(T) denote the number of pairs of order n − 1 in T . We have the
following proposition:

Proposition 10. For any T ⊆ Σn, we have |R̊n+1[T]| ≤ 7σ(T).

Before giving the proof for Proposition 10, we introduce another definition.

Definition 11. A set R is feasible for a set T ⊆ Σn if there exists S ∈ R̊n+1[T]
such that R ⊆ S.

We observe that Σn+1 =
⋃

x∈Σn−1 Nx and thus any subset S ⊆ Σn+1 is a
disjoint union of subsets of nets of order n−1. Formally, for any subset S ⊆ Σn+1,
we have S =

⋃
x∈Σn−1 Rx, where Rx ⊆ Nx.

Proof (of Proposition 10). Let Fx denote the set of feasible subsets (for T) of the
net Nx. If S ∈ Rn+1[T], then S is a disjoint union of feasible subsets (for T) of
nets. Thus we have |Rn+1[T]| ≤

∏
x∈Σn |Fx|. In order to prove this proposition,

it now suffices to show that for any x ∈ Σn−1, the following condition holds.

– if Sx ⊆ T , then |Fx| ≤ 7;
– otherwise |Fx| ≤ 1.

For any x ∈ Σn−1, we consider all the possible feasible subsets of Nx. Let F
denote any feasible subset of Nx.

– For the first case where Sx ⊆ T , we have the following properties:
1. Either 0x0 ∈ F or 0x1 ∈ F since 0x ∈ T ;
2. Either 1x0 ∈ F or 1x1 ∈ F since 1x ∈ T ;

Sets Represented as the Length-n Factors of a Word 255

3. Either 0x0 ∈ F or 1x0 ∈ F since x0 ∈ T ;
4. Either 0x1 ∈ F or 1x1 ∈ F since x1 ∈ T .
Hence we have at most 7 possible feasible subsets of Nx which are listed as
follows: {0x0, 1x1}, {0x0, 0x1,1x1}, {0x0, 1x0, 1x1}, {0x0, 0x1, 1x0, 1x1},
{0x0, 0x1, 1x0}, {0x1, 1x0}, {0x1, 1x0, 1x1}. Thus |Fx| ≤ 7.

– For the second case where Sx
⊆ T , we argue that |Fx| ≤ 1. Without loss of
generality, suppose 0x
∈ T . It follows that:
1. 0x0 and 0x1 cannot occur in F since 0x
∈ T ;
2. 1x0 ∈ F if and only if x0 ∈ T ;
3. 1x1 ∈ F if and only if x1 ∈ T ;
Hence, F is fixed. It follows that |Fx| ≤ 1.

By finishing the argument on the above two cases, we conclude that
|R̊n+1[T]| ≤ 7σ(T). ��

Now, we are close to the core part. Instead of computing the number of skele-
tons, which is quite complex, we consider the number of pairs.

Proposition 12. The size of the set |R̊n+1| is bounded by 102
n−1

.

Proof. Let Lk,i denote the number of subsets T ∈ R̊n, such that |T | = k and
ρ(T) = i. There are in total 2n−1 pairs in Σn, and we first choose i pairs from
them. Then, we choose the other k − 2i elements which do not form any pair
from the remaining 2n−2i elements (which forms 2n−1− i pairs); it is equivalent
to pick k− 2i pairs from the remaining 2n−1 − i pairs and randomly choose one
element from each selected pair. Thus, we have

Lk,i =

(
2n−1

i

)(
2n−1 − i

k − 2i

)
2k−2i.

Note that k ≥ 2i since a set of k elements can contain at most �k2 � pairs and
the term Lk,i vanishes when k − 2i > 2n−1 − i. Thus we have

|R̊n+1| =
∑

T⊆Σn

|R̊n+1[T]| ≤
2n∑
k=0

� k
2 �∑

i=0

Lk,i7
i.

The inequality holds since we count the number of pairs instead of the number of
skeletons and the number of pairs is always greater than or equal to the number
of skeletons. Then we can see that

|R̊n+1| ≤
2n∑
k=0

� k
2
�∑

i=0

(
2n−1

i

)(
2n−1 − i

k − 2i

)
2k−2i7i ≤

2n−1∑
i=0

(
2n−1

i

)
7i

2n∑
k=2i

(
2n−1 − i

k − 2i

)
2k−2i

by writing Lk,i in closed form. Note that

2n∑
k=2i

(
2n−1 − i

k − 2i

)
2k−2i =

2n−2i∑
k=0

(
2n−1 − i

k

)
2k =

2n−1−i∑
k=0

(
2n−1 − i

k

)
2k = 32

n−1−i.

256 S. Tan and J. Shallit

So we have

|R̊n+1| ≤
2n−1∑
i=0

(
2n−1

i

)
7i32

n−1−i = 102
n−1

.

��

Proposition 12 directly implies the upper bound we claimed in the beginning
of this section.

4 Shortest Witness

Recall that μn (resp., νn) is the maximum length of the shortest non-circular
witness (resp., circular witness) over all subsets of Σn. The quantities of μn and
νn are of interest since we can enumerate all sequences of length less than or
equal to μn (resp., νn) in order to list all the representable (resp., circularly
representable) subsets of Σn. In this section we obtain an upper bound on μn

and νn.
We need the following result of Hamidoune [7, Prop. 2.1].

Proposition 13. Let G = (V,E) be a directed graph on n vertices. If G is
strongly connected (that is, if there is a directed path from every vertex to ev-
ery vertex), then there is a Hamiltonian walk of length at most �(n + 1)2/4�.
Furthermore, this bound is best possible.

From this we immediately get

Proposition 14. An upper bound for μn and νn is 22n−2 + 2n−1.

5 Numerical Results

It is not feasible to enumerate every single word to verify whether a subset is
circularly representable (or non-circularly representable). For this reason, we
exploit ideas from graph theory.

Formally, we define Gn = (Vn, En), where

Vn = {(S, u, v) : S ⊆ Σn and u, v ∈ Σn} and

En = {((S, u, v), (S ∪ {x}, u, x)) : S ⊆ Σn, u, v, x ∈ Σn, and v[2..n] = x[1..n− 1]}.

We say that a node (S, u, v) is valid if S is witnessed by a non-circular word w
for which the length-n prefix is u and the length-n suffix is v.

We use a breadth-first search strategy to compute all the possible valid nodes
in Gn. Let I denote a subset of nodes {({u}, u, u) : u ∈ Σn} in Gn. Nodes in Gn

that are connected to any node in I can be proven valid by induction. Thus, a
breadth-first search begins with the subset I and enumerates all nodes that are
connected to nodes in I.

The relation between valid nodes in Gn and non-empty representable subsets
of Σn is that any subset S ⊆ Σn is representable if and only if there exist

Sets Represented as the Length-n Factors of a Word 257

u, v ∈ Σn such that (S, u, v) is valid. This relation can be proved by induction.
Similarly, any subset S ⊆ Σn is circularly representable if and only if there exists
u ∈ Σn such that (S, u, u) is valid and the minimum distance d between (S, u, u)
and nodes in I satisfies the inequality d ≥ n− 1.

With the above properties, we can enumerate all the possible non-empty rep-
resentable (or circularly representable) subsets of order n. Our results are shown
in the following table. The last two columns give words w of length νn (resp.,
μn) for which no shorter word witnesses Cn(w) (resp., Fn(w)).

n |R̊n| |Rn| νn μn longest circ. witness longest witness
1 3 3 2 2 01 01
2 6 14 4 5 0011 00110
3 27 121 9 10 000100111 0001011100
4 973 5921 24 24 000010001011100011101111 000010010101100101101111

5 2466131 20020315 82 77 — —

6 Fixed-Length Witnesses

We now turn to a related question. We fix a length n and we ask, how many dif-
ferent subsets of Σn can we obtain by taking the (ordinary, non-circular factors)
of a word of length t? We call this quantity T (t, n). As we will see, for t < 2n,
there is a relatively simple answer to this question.

In order to compute T (t, n), we consider the number of words that witness
the same subset of Σn. Suppose S ⊆ Σn. Let Ct(S) denote the number of words
of length t that witness S. Then we have

T (t, n) = 2t −
∑

S⊆Σn

Ct(S)>1

(Ct(S)− 1).

It suffices to characterize what subsets S satisfy Ct(S) > 1 and to determine
Ct(S).

For t < 2n, we have such a characterization by Theorem 15 below. Before
stating the theorem, we first introduce some notation.

Let w be a word. Let Pref(w) denote the set of prefixes of w. A period p
of w is a positive integer such that w can be factorized as w = sks′, with
|s| = p, s′ ∈ Pref(s), and k ≥ 1. Let π(w) denote the minimal period of w.

The root of a word w is the prefix of w with length π(w). Let r(w) denote the
root of w. Two words w and w′ are conjugate if there exist u, v ∈ Σ∗ such that
w = uv and w′ = vu; w and w′ are root-conjugate if their roots r(w) and r(w′)
are conjugate.

The following theorem is crucial for our work and of independent interest.

Theorem 15. Let t, n, k be such that t = n+k, n ≥ k+1, and k ≥ 0. Let w and
w′ be distinct words of length t over an arbitrary alphabet. Then Fn(w) = Fn(w

′)
iff π(w) = π(w′) ≤ k + 1 and w,w′ are root-conjugate.

258 S. Tan and J. Shallit

One direction is easy: if w and w′ are root-conjugate with period p ≤ k + 1,
then there are p places to begin, and considering consecutive factors of length
n+ p− 1 gives exactly p distinct length-n factors.

For the other direction, we need three lemmas.

Lemma 16. (Fine-Wilf theorem [3, Theorem 1]) Let w1, w2 be two words.
If w1 and w2 have a common prefix of length π(w1) + π(w2) − 1, then
r(w1) = r(w2).

Lemma 17. For any w ∈ Σ+, if there exists a factorization w = xyz such that
xy = yz and x, y, z ∈ Σ+, then w is periodic with π(w) ≤ |x|.

Proof. By the Lyndon-Schützenberger theorem [6, Lemma 2], there exist u ∈
Σ+, v ∈ Σ∗ and an integer e ≥ 0 such that x = uv, y = (uv)eu, z = vu. Thus
w = (uv)e+2u. Thus w is periodic with π(w) ≤ |x|. ��

Lemma 18. Let t, n, k be integers such that t = n + k, n ≥ k + 1, and k ≥ 0.
Let w be a word of length t with π(w) ≤ k + 1. If w′ is any word such that
Fn(w) = Fn(w

′), then w and w′ are root-conjugate.

Carpi and de Luca proved a stronger proposition [2, Proposition 6.2] which
directly implies this lemma. We first introduce some relevant notation from that
paper.

A factor s of a word w is said to be right-special in w if there exist two
distinct symbols a and b such that sa and sb are factors of w. Let Rw de-
note the minimal length m such that there exists no factor of length m that is
right-special. A factor s of a word w is said to be right-extendable (resp., left-
extendable) in w if there exists a symbol a such that sa is a factor of w (resp.,
as is a factor of w). Let Kw and Hw denote the length of the shortest factor
which is not right-extendable (resp., left-extendable). A word is semiperiodic if
Rw < Hw.

Proof (of Lemma 18). Carpi and de Luca proved [2, Lemma 3.2] that π(w) >
Rw. Also, we have Hw ≥ π(w) since the length-(π(w) − 1) prefix of w is left-
extendable. Thus w is semiperiodic. Moreover we have Fn(w) = Fn(w

′) where
n ≥ k + 1 ≥ π(w) ≥ 1 + Rw. Then we can apply [2, Proposition 6.2] to prove
this lemma. ��

Proof (of Theorem 15). We give a proof for Theorem 15 by induction on k.
The base case is when k = 0. In this case t = n and thus Fn(w) = {w}

and Fn(w
′) = {w′}. Thus w = w′, contradicting the fact that w and w′ are

distinct.
Now we deal with the induction step. We assume the result holds for k − 1

and we prove it for k. For convenience, we let pi(w) denote the length-i prefix
of the word w; let si(w) denote the length-i suffix of the word w.

We first consider the case where Hw < n. We have pn(w) ∈ Fn(w) = Fn(w
′).

If pn(w)
= pn(w
′), then there exists a ∈ Σ such that apn−1(w) ∈ Fn(w

′).

Sets Represented as the Length-n Factors of a Word 259

Thus we have apn−1(w) ∈ Fn(w) which leads to the contradiction that Hw ≥
|apn−1(w)| = n. Hence pn(w) = pn(w

′).
Now let s = w[2..t] and s′ = w′[2..t]. Clearly |s| = |s′| = t−1. The prefix pn(w)

appears only once as a factor of w, otherwise pn−1(w) is left-extendable in w
which contradicts the fact that Hw < n. Thus we have Fn(s) = Fn(w)\{pn(w)}.
Similarly we have Fn(s

′) = Fn(w
′)\{pn(w)}. Thus Fn(s) = Fn(s

′). Let k′ = k−1.
We have t − 1 = n + k − 1 = n + k′ and n ≥ k + 1 > k′ + 1. By induction, we
have either

Case 1: s = s′; or
Case 2: s and s′ are root-conjugate and π(s) = π(s′) = ρ, where ρ ≤ k′ +1 = k.

In Case 1, it follows that w = w′, contradicting the fact that w,w′ are distinct. In
Case 2, we prove that s = s′ by showing that their roots are identical. Suppose s
and s′ have a common prefix of length d. We have d ≥ n−1, since w and w′ have
a common prefix of length at least n. If d ≥ ρ, then the root of s is identical to the
root of s′. Otherwise, we have the chain of inequalities k ≥ ρ ≥ d+1 ≥ n ≥ k+1,
which is trivially a contradiction. Thus neither Case 1 nor Case 2 can occur and
we are done with the case where Hw < n.

Similarly we can prove the induction step when Kw < n. Thus it suffices to
consider the case where Hw ≥ n and Kw ≥ n. We first claim π(w) ≤ k + 1.
There are several cases to settle:

– The first case is when pn−1(w) = sn−1(w) and the occurrence of pn−1(w) and
sn−1(w) do not overlap; namely we have w = pn−1(w)Lpn−1(w), where L ∈
Σ∗. We have the inequality n+k = t = |w| = 2|pn−1(w)|+|L| = 2(n−1)+|L|.
Thus |L| = k+2−n. Hence π(w) ≤ |pn−1(w)L| = n− 1+ k+2−n = k+1.

– The second case is when pn−1(w) = sn−1(w) and these occurrences
overlap. Formally we put it as follows: there exist x, y, z ∈ Σ+, such that
pn−1(w) = xy = yz and w = xyz. It follows that π(w) ≤ |x| ≤ k + 1 by
Lemma 17.

– The last case is when pn−1(w)
= sn−1(w). Let ip denote the index of the last
occurrence of pn−1(w); namely ip = sup{i ≥ 1 : pn−1(w) = w[i..i + n− 2]}.
Note that ip exists since pn−1(w) is left-extendable and ip ≤ t − n + 2
since pn−1(w)
= sn−1(w). We argue that w1 = w[1..ip + n − 2] is periodic
with π(w1) ≤ ip − 1 ≤ k. If the first occurrence of pn−1(w) (the prefix of w)
overlaps the last occurrence of pn−1(w), then by Lemma 17, we see that w1 is
periodic with π(w1) ≤ ip−1 ≤ k. Otherwise, we have 2(n−1) ≤ |w1| ≤ t−1;
thus k = n − 1 and |w1| = 2(n − 1). Then we have w1 = pn−1(w)pn−1(w),
where w1 is periodic with π(w1) ≤ n − 1 = ip − 1 = k. For both cases, we
have w1 is periodic with π(w1) ≤ ip − 1 ≤ k.

Similarly we let iq denote the index of the first occurrence of sn−1(w) and
w2 = w[iq..t]. We have 1 < iq ≤ t − n + 2 and π(w2) ≤ t − n + 2 − iq. The
factors w1 and w2 overlap for at least |w1| + |w2| − t ≥ π(w1) + π(w2) − 1
symbols. Let D denote the overlap of w1 and w2. We have |D| ≥ π(w1) +

260 S. Tan and J. Shallit

π(w2) − 1. Also π(w1) is a period of D since |D| ≥ π(w1) and D can be
factorized as

D = dld′, where d is conjugate to the root of w1, d′ ∈ Pref(d), and l ≥ 1.

By Lemma 16, the overlapD has the same root as w2. Since root-conjugacy is
an equivalence relation, we have w1 and w2 are root-conjugate. Let l1 denote
the length of the root of w1. We argue that w is periodic with π(w) ≤ l1 ≤
k + 1 by the fact that l1 is also a period of w. It suffices to show that
w[l1 + i] = w[i] for 1 ≤ i ≤ t − l1. For the case where 1 ≤ i ≤ |w1| − l1,
we have w[i + l1] = w1[i + l1] = w1[i] = w[i]; for the other case where
|w1|−l1 < i ≤ t−l1, we have w[i+l1] = w2[i+l1−iq+1] = w2[i−iq+1] = w[i].
Thus, we see that w is periodic with π(w) ≤ k + 1.

Finally by Lemma 18, we get that w and w′ are root-conjugate and their
periods π(w) = π(w′) ≤ k+1. By all cases, we finish the induction and complete
the proof of Theorem 15. ��

The following corollary gives T (t, n) when t < 2n.

Corollary 19. For n ≤ t < 2n, we have T (t, n) = 2t −
t−n+1∑
k=1

k−1
k

∑
d|k

μ(kd)2
d,

where μ(·) is the Möbius function.

Proof. Let k = t − n. We have n ≥ t − n + 1 = k + 1. By Theorem 15, we
know that for any set S ⊆ Σn, Ct(S) > 1 if and only if there exists a word w
that witnesses S with π(w) ≤ k + 1. In this case we have Ct(S) = π(w); that
is, the set of words that witness S is the same as the set of the words that are
root-conjugate to w. Thus each S such that Ct(S) > 1 corresponds to a set of
root-conjugate words, which can be represented by their lexicographically least
roots (the Lyndon words).

Thus we have

T (t, n) = 2t −
∑

S⊆Σn

Ct(S)>1

(Ct(S)− 1) = 2t −
∑

w is a Lyndon word
π(w)≤k+1

(π(w) − 1)

= 2t −
k+1∑
i=1

(i− 1) · L(i),

where k = t − n and L(i) = 1
i

∑
d|i

μ(i
d)2

d is the number of Lyndon words of

length i. ��

Example 20. To finish this section, we give a table listing some numerical results
for T (t, n). The numbers in bold follow from Corollary 19, while the others were
computed by brute force.

Sets Represented as the Length-n Factors of a Word 261

�
��n
t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 4 7 11 12 12 12 12 12 12 12 12 12 12 12 12
3 8 15 27 48 72 94 100 103 101 103 101 103 101 103
4 16 31 59 114 216 391 677 1087 1621 2246 2928 3595 4235
5 32 63 123 242 474 933 1795 3421 6399 11682 20704 35914
6 64 127 251 498 986 1965 3899 7709 15171 29710 57726
7 128 255 507 1010 2010 4013 8001 15969 31789 63256
8 256 511 1019 2034 4058 8109 16193 32367 64671

7 Open Problems and Future Work

1. In Section 3, we gave lower and upper bounds on |R̊n|, both of the form α2n .

Does the limit lim
n→∞ |R̊n|

1
2n exist?

2. Find better bounds for μn and νn. For example, is μn ≤ (n−1)2n for n ≥ 2?
3. It is easy to see that Theorem 15 fails for n < k + 1. Indeed, it is possible

to have Fn(x) = Fn(y) in this case, and yet π(x)
= π(y). For example, take
n = k− 1 so that t = 2k− 1, and consider x = 0k10k−2 and y = 0k−110k−1.
Then Fn(x) = Fn(y) but π(x) = k + 1 and π(y) = k.
The remaining case is n = k, so that t = 2k. We conjecture that if x and y
are distinct binary words of length 2n with Fn(x) = Fn(y) then π(x) = π(y)
and furthermore x and y are root-conjugate. However, it is possible in this
case that π(x) > n + 1. Furthermore it seems that if π(x) > n + 1, then
x = uv01vu and y = uv10vRu (or vice versa) for some nonempty words u, v
where u is the longest palindromic prefix of uv and π(x) = t− |u|.

References

1. de Bruijn, N.G.: A combinatorial problem. Nederl. Akad. Wetensch., Proc. 49, 758–
764 (1946); Indagationes Math. 8, 461–467 (1946)

2. Carpi, A., de Luca, A.: Semiperiodic words and root-conjugacy. Theoret. Comput.
Sci. 292, 111–130 (2003)

3. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Amer.
Math. Soc. 16, 109–114 (1965)

4. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. J. Com-
put. System Sci. 20, 50–58 (1980)

5. Blanchet-Sadri, F., Simmons, S.: Deciding representability of sets of words of equal
length. Theoret. Comput. Sci. 475, 34–46 (2013)

6. Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group.
Michigan Math. J. 9, 289–298 (1962)

7. Hamidoune, Y.O.: Sur les sommets de demi-degré h d’un graphe fortement h-
connexe minimal. C. R. Acad. Sci. Paris Sér. A-B 286, A863–A865 (1978)

8. Moreno, E.: De Bruijn sequences and De Bruijn graphs for a general language. Info.
Proc. Letters 96, 214–219 (2005)

Author Index

Akiyama, Shigeki 34

Balková, Ľubomı́ra 46
Berthé, Valérie 58, 71
Bourdon, Jérémie 58
Bucci, Michelangelo 46

Cassaigne, Julien 1
Castiglione, Giusi 18
Choffrut, Christian 83
Currie, James D. 95

Day, Joel D. 107
Dekking, Michel 3
Delecroix, Vincent 119
De Luca, Alessandro 46, 132

Fici, Gabriele 132

Gusev, Vladimir V. 143

Halava, Vesa 4
Harju, Tero 154
Hejda, Tomáš 119
Huova, Mari 161

Jolivet, Timo 58

Kärki, Tomi 169

Labbé, Sebastien 71
Levé, Florence 181
Levitt, Gilbert 14

Marsault, Victor 34
Masáková, Zuzana 193
Maslennikova, Marina I. 143
Mercaş, Robert 83

Pelantová, Edita 193
Pribavkina, Elena V. 143
Puzynina, Svetlana 46

Rampersad, Narad 15, 95
Reidenbach, Daniel 107
Reis, Rogério 205
Richomme, Gwénaël 181
Rigo, Michel 217
Rodaro, Emanuele 205

Saarela, Aleksi 161, 229
Saari, Kalle 95
Sakarovitch, Jacques 34
Salimov, Pavel 217
Schneider, Johannes C. 107
Sciortino, Marinella 18
Shallit, Jeffrey 250
Siegel, Anne 58
Smith, Tim 238
Steiner, Wolfgang 119

Tan, Shuo 250

	Preface
	Organization
	Table of Contents
	Invited
	Which Arnoux-Rauzy Words Are 2-Balanced?
	References

	Dynamical Equivalence of Morphisms
	Deterministic Semi-Thue Systems and Variants of Post Correspondence Problem
	1 Introduction

	Subword Complexity in Free Groups
	Non-constructive Methods for Avoiding Repetitions in Words
	References

	Words, Trees and Automata Minimization
	1 Introduction
	2 Preliminaries
	3 From Words to Automata
	4 A Worst Case of Minimization
	4.1 Minimization by Equivalence of States
	4.2 Brzozowski’s Minimization Algorithm and Its Polynomial Variants

	5 Conclusions and Further work
	References

	Contributions
	Auto-similarity in Rational Base Number Systems
	1 Introduction
	2 Preliminaries and Notations
	2.1 Numbers and Words
	2.2 Automata and Transducers
	2.3 Rational Base Number System

	3 The Derived Transducer
	3.1 From $T_{p/q} to D_{p/q}$
	3.2 Correctness of $D_{p\q}$

	4 Span of a Node
	5 Conclusion
	References

	Infinite Words with Well Distributed Occurrences
	1 Motivation in Pseudorandom Number Generation
	2 Combinatorics on Words and the WDO Property
	3 SturmianWords
	4 Arnoux-Rauzy Words
	References

	Generating Discrete Planes with Substitutions
	1 Introduction
	1.1 Motivation and Applications
	1.2 Methods
	1.3 Related Works

	2 Preliminaries
	2.1 Discrete Planes and Substitutions
	2.2 The Brun Algorithm
	2.3 Coverings and Strong Coverings
	2.4 Minimal Annuli

	3 Generation Graphs
	4 The Annulus Property
	5 MainResults
	References

	Convergence and Factor Complexity for the Arnoux-Rauzy-Poincar´e Algorithm
	1 Introduction
	2 The Arnoux-Rauzy-Poincar´e Algorithm
	2.1 The Arnoux-Rauzy-Poincare ´S-Adic System

	3 Bispecial Factors under Arnoux-Rauzy and Poincare ´Substitutions
	3.1 Bispecial Factors and Extension Types
	3.2 Factor Complexity
	3.3 Synchronization Lemmas
	3.4 Antecedents and Images of Bispecial Words
	3.5 Life of a Bispecial Factor under Arnoux-Rauzy-Poincare ´Substitutions

	4 Proof of Theorem 1
	5 Concluding Remarks
	References

	The Lexicographic Cross-Section of the Plactic Monoid Is Regular
	1 Introduction
	2 Preliminaries
	2.1 Words
	2.2 The Plactic Monoid
	2.3 Young Tableaux
	2.4 Cross-Section

	3 Minimal Representatives
	3.1 A Combinatorial Property for Minimal Representatives
	3.2 Complexity Issues
	3.3 Application to the Cross-Section

	4 FinalRemarks
	4.1 Natural Binary Relations on the Plactic Monoid
	4.2 The Relation of Conjugacy

	References

	Suffix Conjugates for a Class of Morphic Subshifts
	1 Introduction
	2 Preliminaries and Generalities
	3 The Suffix Conjugate of the Fibonacci Subshift
	4 The Suffix Conjugate of the Thue-Morse Subshift
	References

	Periodicity Forcing Words
	1 Introduction
	2 Notation and Preliminary Results
	3 A ‘Prime’ Generating Subset of DPCP
	4 Patterns in DPCPwith Arbitrary Factors
	5 An Alternative Means of Finding Patterns Not in DPCP
	6 Conclusion
	References

	Balancedness of Arnoux-Rauzy and Brun Words
	1 Introduction
	2 Notation
	3 Arnoux-Rauzy and Brun Words
	4 Discrepancy and Balancedness
	5 Contractivity of Arnoux-Rauzy Matrices
	6 Contractivity of 3-Dimensional Brun Matrices
	7 Balancedness of Almost All Words
	8 Imbalances in Brun Sequences
	References

	Open and Closed Prefixes of Sturmian Words
	1 Introduction
	2 OpenandClosedWords
	3 Open and Closed Prefixes of Sturmian Words
	4 Standard Sturmian Words
	References

	Finitely Generated Ideal Languages and Synchronizing Automata
	1 Introduction
	2 Algorithms and Automata Constructions
	2.1 Ideal Language Generated by
	2.2 Ideal Language Generated by a Set of Words of Fixed Length
	2.3 Ideal Languages Generated by a Finite Set of Words
	2.4 Ideal Languages Generated by Two Words

	References

	A Note on Square-Free Shuffles of Words
	1 Introduction
	2 Preliminaries
	3 Perfect Shuffles
	4 Shuffling a Single Square-Free Word
	5 Open Questions
	References

	Strongly k-Abelian Repetitions
	1 Introduction
	2 Preliminaries
	3 Unavoidability of Strongly Abelian and k-Abelian n-Powers
	4 Further Questions
	5 Conclusion
	References

	Similarity Relations and Repetition-Freeness
	1 Introduction
	2 Similarity Relations
	3 Relational Repetition-Freeness
	4 Square-Freeness and Overlap-Freeness
	5 Cube-Freeness and 3+-Freeness
	6 Conclusions
	References

	On Quasiperiodic Morphisms
	1 Introduction
	2 Quasiperiodic Words and Morphisms
	3 Relations
	4 Deciding Strong Quasiperiodicity on Finite Words
	5 Deciding Strong Quasiperiodicity on Infinite Words
	6 On Weakly Quasiperiodic Morphisms
	7 Conclusion
	References

	Enumerating Abelian Returns to Prefixes of Sturmian Words
	1 Introduction
	2 Some Facts about Sturmian Words
	3 Abelian Returns of Sturmian Factors
	4 First Return Map for Sturmian Systems
	References

	Regular Ideal Languages and Synchronizing Automata
	1 Introduction
	2 Strongly Connected Ideal Languages
	3 Ideal Languages Are Strongly Connected Ideal Languages
	References

	Another Generalization of Abelian Equivalence: Binomial Complexity of Infinite Words
	1 Introduction
	2 First Properties
	3 Onthe Number of k-Binomial Equivalence Classes
	4 The m-Binomial Complexity of Sturmian Words
	5 The Case of the Thue–Morse Word
	6 A Glimpse at Avoidance
	References

	Weakly Unambiguous Morphisms with Respect to Sets of Patterns with Constants
	1 Introduction
	2 Patterns with Constants
	3 Many Patterns
	4 Sets of Patterns
	References

	On Infinite Words Determined by L Systems
	1 Introduction
	2 Preliminaries
	2.1 Prefix Languages

	3 Infinite Subsets of L Systems
	4 Categorizations
	4.1 PD0L Classes
	4.2 D0L Classes
	4.3 CD0L Classes

	5 ω(PD0L), ω(D0L), and ω(CD0L)
	5.1 Separating the Classes
	5.2 Characterizing the Words in Each Class

	6 Conclusion
	References

	Sets Represented as the Length-n Factors of a Word
	1 Introduction
	2 Preliminaries
	3 Bounds on the Size of R˚_n
	3.1 Lower Bound
	3.2 Upper Bound

	4 Shortest Witness
	5 Numerical Results
	6 Fixed-Length Witnesses
	7 Open Problems and Future Work
	References

	Author Index

