
Detecting Laser Fault Injection
for Smart Cards Using Security Automata

Guillaume Bouffard, Bhagyalekshmy N. Thampi, and Jean-Louis Lanet

Smart Secure Devices (SSD) Team – University of Limoges
123 Avenue Albert Thomas, 87060 Limoges CEDEX, France

{guillaume.bouffard,bhagyalekshmy.narayanan-thampi}@xlim.fr,
jean-louis.lanet@unilim.fr

Abstract. Security and interoperability issues are increasing in smart
card domain and it is important to analyze these issues carefully and
implement appropriate countermeasures to mitigate them. Security is-
sues involve attacks on smart cards which can lead to their abnormal
behavior. Fault attacks are the most important among them and they
can affect the program execution, smart card memory, etc. Detecting
these abnormalities requires some redundancies, either by another code
execution or by an equivalent representation. In this paper, we propose
an automatic method to provide this redundancy using a security au-
tomaton as the main detection mechanism. This can enforce some trace
properties on a smart card application, by using the combination of a
static analysis and a dynamic monitoring. The security officer specifies
the fragments of the code that must be protected against fault attacks
and a program transformer produces an equivalent program that mesh a
security automaton into the code according to the security requirements.

Keywords: Fault attacks, Trust, Smart Card, Security Automata,
Countermeasure.

1 Introduction

Smart card is a small embedded chip/device which is commonly used in our day
to day life for serving various purposes in banking, electronic passports, health
insurance card, pay TV, SIM card, etc. It has efficient computing capabilities
and security features for ensuring secure data transaction and storage. Many
hardware and software attacks are performed to gain access to the assets stored
inside a smart card. Since it contains sensitive information, it must be protected
against attacks. The laser faults are the most difficult among them to be handled.

Fault Injection (FI) attacks can cause the perturbation of the chip registers
(e.g., the program counter, the stack pointer, etc.), or the writable memory (vari-
ables and code modifications). If these perturbations are not detected in advance,
an attacker can get illegal access to the data or services. Some redundancy is
necessary to recognize the deviant behavior which can be provided by a security
automaton and a reference monitor. This technique has emerged as a powerful

Sabu M. Thampi et al. (Eds.): SSCC 2013, CCIS 377, pp. 18–29, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Detecting Laser Fault Injection for Smart Cards Using Security Automata 19

and flexible method for enforcing security policies over untrusted code. The pro-
cess verifies the dynamic security checks or a call to the security functions into
the untrusted code by monitoring the evolution of a state machine.

In our work, we propose to implement the transition functions of such a state
machine natively in the Java Card Virtual Machine (JCVM). For interoperability
reasons, we implement a less efficient API to replace the transition functions and
a static analyzer to verify the coherence of the security property.

This paper is organized as follows: section two describes the FI attacks on
smart cards and their effects on program execution. The known detection mech-
anisms and their comparison are discussed in the third section. Section four
presents our contributions and countermeasures. Final section gives the conclu-
sions of our work.

2 Related Works

Aktug [1] defined a formal language for security policy specifications ConSpec,
to prove statically that a monitor can be inlined into the program byte code,
by adding first-order logic annotations. A weakest precondition computation
was used here which works as same as the annotation propagation algorithm
employed in [14] to produce a fully annotated, verifiable program for the Java
Card. This allows the use of JML verification tools, to check the actual policy
adherence. Such a static approach cannot be adopted here due to the dynamic
nature of the attack.

As far as we know, the only application of the security automaton for smart
card was presented in [13] where the concept of policy automaton which com-
bines defeasible logic with the state machine. It represents complex policies as
combinations of basic policies. A tool has been implemented for performing pol-
icy automaton analysis and checking policy conflicts and a code generator is
used to implement the transition functions that creates a Java Card applet. It
was concerned mainly to enforce invariants in the application.

3 Faults on Smart Cards

In general, a fault is an event that changes the behavior of a system such that the
system no longer provides the expected service. It may not be only an internal
event in the system but also, a change in the environment that causes a bit flip
in the memory. However the fault (when activated), is the primary reason for
the changes in the system that leads to an error which in turn causes a failure of
the complete system. In order to avoid such a failure, faults have to be detected
as early as possible and some actions must be carried out to correct or stop the
service. Thus, it is necessary to analyze the errors generated by these faults more
precisely. In the current smart card domain, fault attacks are the most difficult
attacks to be tackled.

20 G. Bouffard, B.N. Thampi, and J.-L. Lanet

3.1 Fault Attacks

Smart card is a portable device which requires a smart card reader (provides
external power and clock sources) to operate it. The reader can be replaced
with specific equipment to perform the attacks. With short variations of the
power supply it is possible to induce errors into the internal operations of the
smart card. These perturbations are called spike attacks, which may induce
errors in the program execution. Latter aims at confusing the program counter
which can cause the improper working of conditional checks, decrease in loop
counters and the execution of the arbitrary instructions. The reader like MP300
can also be used to provide glitch attack. A glitch [3,7,12] incorporates short
deviations beyond the required tolerance from a standard signal bounds. They
can be defined by a range of different parameters and can be used to inject
memory faults as well as faulty execution behavior. Hence, the possible effects
are same as in the spike attacks. If the chip is unpacked, such that the silicon
layer is visible, it is possible to use a laser to induce perturbation in the memory
cells [8]. These memory cells have been found to be sensitive to light. Due to
photoelectric effect, modern lasers can be focused on relatively small regions of
a chip, so that FI can be targeted well [4].

To prevent the occurrence of FI attacks, it is necessary to know its effects
on the smart card. FI models have been already discussed in details in [6,20].
A widely accepted model corresponds to an attack that changes one byte at a
precised and synchronized time [19]. An attack using the precise bit error model
had been described in [18] which is not realistic on current smart cards due to the
implementation of hardware security on memory (error correction and detection
code or memory encryption) of modern components.

In real time, an attacker physically injects energy into a memory cell to switch
its state. Thus up to the underlying technology, the memory will physically takes
the value 0x00 or 0xFF. If memory is encrypted, the physical value becomes a
random value1.

3.2 Effects of Fault Attacks on the Program Execution

In this work, only a single fault will be considered. The proposed mechanism
supports dual faults if the automaton is protected by some checksum method.
An attacker can break the confidentiality and/or the integrity mechanisms incor-
porated in the card. The code integrity of the program ensures that the original
installed code is the same as that executed by the card. The attacker can modify
the value returned by a function to allow the execution of sensitive code with-
out authorization. He can also generate a faulty condition to jump to a specific
statement, avoid a given method invocation or ignore a condition loop.

The data of a program are also a sensitive asset to be protected. With a single
fault, an attacker can permanently or temporarily modify sensitive information.
1 More precisely, a value which depends on the data, the address, and an encryption

key.

Detecting Laser Fault Injection for Smart Cards Using Security Automata 21

In particular, it can affect the variables used in any evaluation instruction like
never start a loop, ignore initialization and so on. The smart card should ensure
the confidentiality of the assets. The attacker may modify the data to be copied,
from the application byte array or to the I/O smart card buffer by modifying the
address of the buffer. Another way to obtain the asset is to change the number
of bytes to be send in the buffer. This overflow provides information of data that
follow the bytes sent from the application.

3.3 Fault Detection Mechanisms

The mechanisms for fault injection detection can be classified in to three coun-
termeasure approaches: static, dynamic and mixed.

Static Countermeasure Approach. Static countermeasures ensure that each
test is done correctly and/or the program Control Flow Graph (CFG) remains
unchanged as described by the developer.

To verify if a test i.e., (a sensitive condition if) is done correctly, the usage
of a redundancy if-then-else statement should improve the statement branching
security. Indeed, if a fault is injected during an if condition, an attacker can
execute a specific statement without a check. In real time, a second-order FI is
difficult with a short delay between two injections. A second-order if statement
is used to verify the requirements needed to access a critical operation to prevent
the faulty execution of an if-then-else statement. An example of this kind of
implementation is listed in the Listing 1.1 Second-order if statement.

Listing 1.1. Second-order if statement

// cond i t i on i s a boo lean
i f (cond i t i on) {

i f (cond i t i on) {
// C r i t i c a l opera t i on

} else {/∗ Attack d e t e c t e d ! ∗/
}

} else {
i f (! cond i t i on) {

// Access not a l l owed
} else {/∗ Attack d e t e c t e d ! ∗/ }}

Listing 1.2. Step counter

short step_counter =0;
i f (step_counter==0) {

// C r i t i c a l opera t i on 1
step_counter++;

} else {/∗ Attack d e t e c t e d ! ∗/
}

/∗ . . . ∗/
i f (step_counter==1) {

// C r i t i c a l opera t i on 2
step_counter++;

} else {/∗ Attack d e t e c t e d ! ∗/}

The problem with a second-order if condition is that the program CFG is
not guaranteed. To ensure it, the developer can implement a step counter as
described in the Listing 1.2. With this method, each node of the CFG, defined
by the developer is verified during the runtime. If a node is executed with a step
counter set with a wrong value, an incorrect behavior is detected.

22 G. Bouffard, B.N. Thampi, and J.-L. Lanet

Dynamic Countermeasure Approach. The smart card can implement coun-
termeasures on dynamic elements (stack, heap, etc.) and thereby ensure integrity
to prevent the modification of them. A checksum can be used to verify the ma-
nipulated value for each operation. Another low cost countermeasure approach,
to protect stack element against FI attack was explained by Dubreuil et al. in [9].
Their countermeasure implements the principle of a dual stack where each value
is pushed from the bottom and growing up into the element stack. In contrary,
each reference is pushed from the top and growing down. This countermeasure
protects smart card against type confusion attack.

As described before, a program’s code is also an asset to be protected. In
order to ensure the code confidentiality, the memory may be encrypted. For
using a more affordable countermeasure, Barbu explained [4], a solution where
the code is scrambled. Unfortunately, a brute force attack can bypass a scrambled
memory. Razafindralambo et al. proposed in [16] a randomized scrambling which
improves the code confidentiality.

Enabling all countermeasures during the whole program execution is not nec-
essary and also it is more costlier for the card. Hence, to reduce the imple-
mentation cost of the countermeasure, Barbu et al. [5] described user-enabled
countermeasure(s) where the developer can decide to enable a specific counter-
measure for a code fragment.

Recently, Farissi et al, presented [10] an approach based on artificial intel-
ligence and in particular neural networks. This mechanism is included in the
JCVM. After a learning step, this mechanism can dynamically detect abnormal
behavior of each smart card’s program.

Mixed Countermeasure Approach. Unlike previous approaches, mixed
methods use off-card operations where some computations are done for em-
bedded runtime checks. This way offers a low cost because costly operations are
realized outside the card.

To ensure the code integrity, Prevost et al. patented [15] a method where for
each basic blocks of a program, a hash value is computed. The program is sent
to the card with each basic block’s hash. During the execution, the smart card
verifies this value for each executed basic block and if a hashsum is wrong, an
abnormal behavior is detected.

Sere [2], described three countermeasures, based on bit field, basic block and
path check, to protect smart card against FI attacks. These countermeasures
require off-card operations done during the compilation step to compute enough
information to be provided to the smart card through a custom component. The
smart card dynamically checks the correctness of the current CFG. Since there
are off-card operations, this countermeasure has a low footprint in the smart
card’s runtime environment.

4 Security Automata and Execution Monitor
Detecting a deviant behavior is considered as a safety property, i.e. properties
that state nothing bad happens. A safety property can be characterized by a set of

Detecting Laser Fault Injection for Smart Cards Using Security Automata 23

disallowed finite execution based on regular expression. The authorized execution
flow is a particular safety property which means that, the static control flow
must match exactly the runtime execution flow without attacks. For preventing
such attacks, we define several partial traces of events as the only authorized
behaviors. A key point is that this property can be encoded by a finite state
automaton, while the language recognized will be the set of all authorized partial
traces of events.

4.1 Principle

In [17], Schneider defined a security automaton, based on Büchi automaton as
a triple (Q, q0, δ) where Q is a set of states, q0 is the initial state and δ a
transition function δ: (Q × I) → 2Q. The set S is the input symbols, i.e. the
set of security relevant actions. The security automaton processes a sequence of
input symbols s1, s2, . . . and the sequence of symbols is read as one input at
a time. For each action, the state is evaluated by starting from the initial state
s0. As each si is read, the security automaton changes Q’ in ∪q∈Q′δ(si, q). If the
security automaton can perform a transition according to the action, then the
program is allowed to perform that action, otherwise the program is terminated.
Such a mechanism can enforce a safety property as in the case for checking the
correctness of the execution flow.

The property we want to implement is a redundancy of the control flow. In
the first approach, the automaton that verifies the control flow could be inferred
using an interprocedural CFG analysis. In a such a way, the initial state q0 is
represented by any method’s entry point. S is made of all the byte codes that
generate a modification of the control flow along with an abstract instruction
join representing any other instructions pointed by a label. By definition, a basic
block ends with a control flow instruction and starts either by a first instruction
after control flow instructions or by an instruction preceding a label. When
interpreting a byte code, the state machine checks if the transition generates an
authorized partial trace. If not, it takes an appropriate countermeasure.

The transition functions are executed during byte code interpretation which
follows the isolation principle of Schneider. Using a JCVM, it becomes obvious
that the control of the security automaton will remain under the control of
the runtime and the program cannot interfere with automaton’s transitions.
Thus, there is no possibility for an attacker to corrupt the automaton because
of the Java sandbox model. Of course, the attacker can corrupt the automaton
using the same means as he corrupted the execution flow. By hypothesis, we do
not consider actually the double FI possibility for the attacker. If needed, it is
possible to protect the automaton with an integrity check verified before each
access to the automaton.

4.2 Implementation in a Java Card Virtual Machine

The control of the transition functions is quite obvious. Once the automaton
array has been built during the linking process, each Java frame is improved with

24 G. Bouffard, B.N. Thampi, and J.-L. Lanet

the value of the current state qi. In the case of a multithreaded virtual machine,
each thread manages the state of the current method security automaton in its
own Java frame for each method.

Listing 1.3. Transition function for the IFLE byte code (next instruction)

1 in t16 BC_ifle (void) {
2 i f (SM[frame−>cur rentStat e] [INS] != ∗vm_pc)
3 return ACTION_BLOCK;
4 vm_sp−−;
5 i f (vm_sp [0] . i <= 0) return BC_goto () ;
6 i f (SM[frame−>cur r en tS tat e] [NEXT] != s t a t e (vm_pc))
7 return ACTION_BLOCK;
8 vm_pc += 2 ;
9 frame−>cur rentStat e = SM[frame−>cur rentStat e] [NEXT] ;

10 return ACTION_NONE; }

The automaton is stored as an array with several columns like the next state, the
destination state and the instruction that generates the end of the basic blocks. In
the Listing 1.3, the test (in line 2) verifies that the currently executed byte code
is the one stored in the method area. According to the fault model, a transient
fault should have been generated during the instruction decoding phase. If it does
not match, the JCVM stops the execution (line 3). If the evaluation condition is
true, it jumps to the destination (line 5). Else, it checks if the next Java program
pointer is a valid state for the current state of the automaton. If it is allowed,
the automaton changes its state.

Listing 1.4. Transition function for the IFLE byte code (target jump)

1 in t16 BC_goto (void) {
2 vm_pc = vm_pc − 1 + GET_PC16 ;
3 i f (SM[frame−>cur r en tS tat e] [DEST] != s t a t e (vm_pc))
4 return ACTION_BLOCK;
5 frame−>cur rentStat e = SM[frame−>cur rentStat e] [DEST] ;
6 return ACTION_NONE; }

In Listing 1.4, the last part of the IFLE byte code checks also if the destination
Java program counter matches with the next state and update the current state.

Listing 1.5. Decoding an instruction

1 while (t rue) { handler = bytecode_table [∗vm_pc] ;
2 vm_pc++; bc_action = handler () ;

In the decode phase of the instruction, the laser can hit the data bus while
transferring the needed information from the memory. In this JCVM decode
phase (Listing 1.5), the address of the byte code function is obtained in line 1.
At that time, either the vm_pc or the handler can be corrupted. Thus, the byte
code being executed is not the one stored in the memory. Therefore, we need to
check the execution instruction is the same as that of the stored one.

Detecting Laser Fault Injection for Smart Cards Using Security Automata 25

The security automaton is build during the linking process of the Java Card
applet. During the linking step, the method is processed byte code by byte code
linearly, allowing to build the automaton array. Each state si corresponds to
vm_pc start and vm_pc end; the function state(vm_pc) returns an index of the
array corresponding to the state that includes the vm_pc.

Here, we presented the basic security automaton of the control flow redundancy
which needs to be improved. In section 3.3, we have seen the possibility to skip an
instruction or a call to a function. The granularity of the basic block is not enough
to handle this issue and checking each instruction is not realistic. So, we need to
find a trade off between the granularity and each instruction. We propose to insert
calls to an abstract functionsetState(), in some sensitive code fragments. Being a
control flow function, a call to a function will be directly included into the security
automaton. Even if the latter is empty a call to a function costs a lot due to the
built and the destruction of the frame. For that purpose, we developed a byte code
analyzer that emulates this call. It takes the input as binary file (the Cap file) and
extract all occurrences of the invokestatic instruction and replaces them by a
simple goto instruction to the next line. It has the same semantics, i.e. an entry in
the automaton array but it costs much less.

Listing 1.6. Inserting checks in a Java Card basic block

1 apdu . setIncomingAndReceive () ;
2 U t i l . arrayCopy (apduBuffer , (short) (ISO7816 .OFFSET_CDATA) , D,
3 (short) 0 , (short) 4) ;
4 s e t S t a t e () ;
5 i f (b == fa l se) ISOException . throwIt (error_date) ;
6 tempo = U t i l . getShort (A, (short) 0) ;
7 s e t S t a t e () ;
8 k = 1 ;
9 (short) ((tempo >> k) / NbAmounts [0])

10 s e t S t a t e () ;
11 funct ionR (A, key , D) ;
12 s e t S t a t e () ;

The code presented in Listing 1.6 is extracted from the Internet protocol
payment defined by Gemalto in [11]. We ensure that, the JCVM verifies if each
step has been correctly passed in line 4, 7, 10 and 12. This corresponds to what
is usually done in a Java Card secured development with step counters as shown
in the Listing 1.2. However, it is integrated in a more general framework to
automate the fault detection.

The Lightweight Version in the INOSSEM Project. The aim of the
project INOSSEM is to guarantee a security interoperability between several
smart card manufacturers. The security specification must be independent to
the design of the JCVM. For that purpose, it has been decided to design the
countermeasures as a Java API defining all the required services. The security
automaton is one of the INOSSEM classes. The main drawback of this approach

26 G. Bouffard, B.N. Thampi, and J.-L. Lanet

versus our native implementation is the cost of all the function calls. But on the
other hand, the code fragment protected with the security automaton can be
isolated from the rest of the application.

The call to the API methods that manages the transition functions of the
security automaton should be explicitly written by the developer. The developer
should only insert the call to the method setState() in his applet to have the
guarantee that the JCVM will verify the control flow of this code fragment. A
call to endStateMachine() checks the correct ending of the security automaton.
Being under the control of the Java Card runtime, the isolation principle is still
respected during the execution of the API.

The main difference is that the construction of the security automaton is
delegated to the developer. He has to examine all the authorized traces and
build the automaton. Exceptions that should occur during execution must also
be a part of the authorized traces. The developers know which parts of their
application is sensible and they focus on the protection of a particular code
fragment. This leads to a new issue, the coherence of the security policy defined
by the automaton.

Coherence of the Policy. If a developer specifies a security automaton that par-
tially represents the CFG, the automaton could consider some illegal transitions
while they are legal traces. In the example given in Fig. 1, we have the CFG at the
left side and the specification of the security automaton at the right side.

Fig. 1. Partial specification

The developer is only interested to protect some execution paths. He defines
the following state sequences {q0, q2, q4, q5} and {q0, q2, q6, q7}. If the sequence
{q0, q2, q3, q5} is executed, then in the state q2, the automaton has to process
a transition to the state q3. It terminates the execution of the target while the
execution path is valid. In fact, the security policy must be a subgraph of the
control flow and thus, an edge must be added to the security automaton between
the state q2 and q5. The verification of the coherence algorithm must check that
the security automaton is a subgraph of the CFG. If the security automaton
is a partial subgraph (i.e. every edges of the state of a CFG are not included),
then the missing edges must be added to it. A specific action is to be done while

Detecting Laser Fault Injection for Smart Cards Using Security Automata 27

Fig. 2. Complete specification

reaching the end of the security automaton. Thus, all the terminal states must
be added to the security automaton (q1, q8). The correct security automaton is
given in Fig 2.

Each basic block can be split into several states as shown in Listing 1.6. For
example, the state q4 can be made of the sequence {q′

4, q′′
4 , q′′′

4 , . . . }. In such a
case, the security automaton is no more a subgraph of the CFG. While adding
the edge for the closure, this sequence must be recognized as the state q4. It is
obvious to control the coherence for a simple automaton, like the one presented
here. For real life examples, we need a static analyzer to check the coherence
and build the automaton.

4.3 Static Analyzer and Code Meshing

Of course, this process is manageable automatically by a static analyzer be-
fore loading it into the card. The analyzer (SA) extracts the CFG (inter-class
and interprocedural analysis) of the program from the source code, defining all
the basic blocks. Then, it extracts the security automaton (call the API meth-
ods setState() and endStateAutomaton()) recognizing the state extension by
subsequences when these calls are included within a basic block. It checks by
comparing the security automaton and CFG if closure edges are missing and
proposes through a graphical interface to the user to add the missing edges.
The second step consists of initializing the state automaton object, defining all
the states as final static fields and calling all the missing methods of the API:
the endStateMachine() at the end of all the sink states.

Our prototype proposes also the possibility for the cards that do not imple-
ment the INOSSEM API to inline the security automaton into the application
code with the two transition functions as shown in the Listing 1.7. Due to the
fact that Java Card does not support multidimensional arrays, the security au-
tomaton must manage the index to simulate a matrix. The SA-Analyzer has
filled the securityAutomaton array either with an index or the value NO_STATE.
Then, if a NO_STATE is found for a transition, the method throws an exception.

The complexity of setState() is θ(1) while the complexity of
endStateMachine() is θ(n), n being the maximum neighbors for all the nodes
of the graph.

28 G. Bouffard, B.N. Thampi, and J.-L. Lanet

Listing 1.7. Inserting setState method
public void s e t S t a t e (short s t a t e) {

i f (securityAutomaton [(cu r r en tS tat e ∗NB_COL)+s t a t e] !=
NO_STATE)
cur ren tS tat e = securityAutomaton

[cu r r entStat e ∗NB_COL+s t a t e] ;
else { ISOException . throwIt (ISO7816 .SA_NO_SUCH_STATE) ; }

}
public void endStateMachine (short t e rmina lS tat e) {

// checks i f no successor
for (short i = 0 ; i < NB_COL; i++) {

i f (securityAutomaton [cu r r en tS tat e ∗NB_COL+i]
!= NO_STATE)

ISOException . throwIt (ISO7816 .SA_NO_SUCH_STATE) ;
} // then r e i n i t i a l i z e the s e c u r i t y automaton
cu r r entStat e = START_STATE_MACHINE; }

5 Conclusion
We have presented a general countermeasure in this paper, which can be applied to
smart cards in order to detect FI attacks. The main idea was to provide redundancy
of the control flow using a security automaton executed in the kernel mode. It al-
lows to dynamically check the behavior of the program. We automatically gener-
ated the automaton during the linking process of the applet and for adding specific
check points, we allow the developer to insert calls to a method setState(). For
efficiency, we removed this call from the binary file and we replaced it by a simple
goto which enforces the verification. In the second step, we applied this technique
without modifying the JCVM by executing the transition functions in an API. We
developed an analysis tool that checks the coherence of the security policy.

Of course, this technique is not limited to CFG properties but it can be used
for more general security policy if they can be expressed as safety properties.
In particular, it is interesting to check if some security commands have already
been done before executing sensitive operation. Some are memorized in secured
container (i.e. the PIN code field isValidated) but some of them use unpro-
tected fields and could be subjected to FI attacks. The difficulty is to find the
right trade off between a highly secured system with a poor performance or an
efficient system with less security.

Acknowledgments. This work is partly funded by the French project IN-
OSSEM (PIA-FSN2-Technologie de sécurité et résilience des réseaux).

References

1. Aktug, I.: Algorithmic Verification Techniques for Mobile Code. Ph.D. thesis, KTH,
Theoretical Computer Science, TCS, qC 20100628 (2008)

2. Al Khary Sere, A.: Tissage de contremesures pour machines virtuelles embarquées.
Ph.D. thesis, Université de Limoges (2010)

Detecting Laser Fault Injection for Smart Cards Using Security Automata 29

3. Anderson, R., Kuhn, M.: Low Cost Attacks on Tamper Resistant Devices. In:
Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 125–136. Springer, Heidelberg (1998)

4. Barbu, G.: On the security of Java Card platforms against hardware attacks. Ph.D.
thesis,Grant-fundedPhDwithOberthurTechnologiesandTélécomParisTech(2012)

5. Barbu, G., Andouard, P., Giraud, C.: Dynamic Fault Injection Countermeasure
A New Conception of Java Card Security. In: Mangard, S. (ed.) CARDIS 2012.
LNCS, vol. 7771, pp. 16–30. Springer, Heidelberg (2013)

6. Blömer, J., Otto, M., Seifert, J.P.: A new CRT-RSA algorithm secure against
bellcore attacks. In: Computer and Communications Security, pp. 311–320 (2003)

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

8. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283–296. Springer, Heidelberg (2011)

9. Dubreuil, J., Bouffard, G., Lanet, J.L., Iguchy-Cartigny, J.: Type classification
against Fault Enabled Mutant in Java based Smart Card. In: ARES 2012, pp.
551–556. IEEE, Prague (2012)

10. Farissi, I.E., Azizi, M., Moussaoui, M., Lanet, J.L.: Neural network Vs Bayesian
network to detect javacard mutants. In: Colloque International sur la Sécurité des
Systèmes d’Information (CISSE), Kenitra Marocco (March 2013)

11. Girard, P., Villegas, K., Lanet, J.L., Plateaux, A.: A new payment protocol over
the Internet. In: CRiSIS 2010, pp. 1–6 (2010)

12. Joye, M., Quisquater, J.J., Bao, F., Deng, R.H.: RSA-type signatures in the pres-
ence of transient faults. In: Darnell, M.J. (ed.) Cryptography and Coding 1997.
LNCS, vol. 1355, pp. 155–160. Springer, Heidelberg (1997)

13. McDougall, M., Alur, R., Gunter, C.A.: A model-based approach to integrating
security policies for embedded devices. In: 4th ACM International Conference on
Embedded Software, EMSOFT 2004, pp. 211–219. ACM, New York (2004)

14. Pavlova, M., Barthe, G., Burdy, L., Huisman, M., Lanet, J.L.: Enforcing High-Level
Security Properties for Applets. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y.,
El Kalam, A.A. (eds.) Smart Card Research and Advanced Applications. IFIP,
vol. 153, pp. 1–16. Springer, Heidelberg (2004)

15. Prevost, S., Sachdeva, K.: Application code integrity check during virtual machine
runtime (August 2004)

16. Razafindralambo, T., Bouffard, G., Thampi, B.N., Lanet, J.-L.: A Dynamic Syntax
Interpretation for Java Based Smart Card to Mitigate Logical Attacks. In: Thampi,
S.M., Zomaya, A.Y., Strufe, T., Alcaraz Calero, J.M., Thomas, T. (eds.) SNDS
2012. CCIS, vol. 335, pp. 185–194. Springer, Heidelberg (2012)

17. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

18. Skorobogatov, S.P., Anderson, R.: Optical Fault Induction Attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 31–48. Springer,
Heidelberg (2003)

19. Vetillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In: Gollmann,
D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp.
133–147. Springer, Heidelberg (2010)

20. Wagner, D.: Cryptanalysis of a provably secure CRT-RSA algorithm. In: 11th ACM
Conference on Computer and Communications Security, pp. 92–97 (2004)

	Detecting Laser Fault Injection
for Smart Cards Using Security Automata
	1 Introduction
	2 Related Works
	3 Faults on Smart Cards
	3.1 Fault Attacks
	3.2 Effects of Fault Attacks on the Program Execution
	3.3 Fault Detection Mechanisms

	4 Security Automata and Execution Monitor
	4.1 Principle
	4.2 Implementation in a Java Card Virtual Machine
	4.3 Static Analyzer and Code Meshing

	5 Conclusion
	References

