
Exploiting Functional Models to Assess

the Security Aspect in Embedded System Design

Ingo Stierand1 and Sunil Malipatlolla2

1 Carl von Ossietzky Universität Oldenburg,
26111 Oldenburg, Germany

stierand@informatik.uni-oldenburg.de
2 OFFIS - Institute for Information Technology,

26121 Oldenburg, Germany
sunil.malipatlolla@offis.de

Abstract. Conventionally, automotive embedded systems are assessed
for evaluating various different aspects such as safety, functionality, and
real-time. However, the inclusion of security aspect, which indeed is be-
coming increasingly important in modern day cars, has a significant im-
pact on the above aspects, especially on functionality and real-time. This
impact would be clearly visible in the functional model of the embed-
ded system because including security features modifies the data flow in
the system. Thus, the goal of this contribution is to assess and evaluate
the security aspect in such systems by exploiting their functional mod-
els. Such an assessment further results in establishing a possible relation
between real-time formal analysis and the existing security theory. For
this, a formal approach well-known from real-time embedded domain is
utilized in here.

Keywords: Real-Time, Embedded System, Formalization, Security
Protocols, Validation.

1 Introduction

With an increased inclusion of electronics in automotive systems, they are be-
coming more and more vulnerable to attacks such as manipulation of data pack-
ets and malicious system updates. Thus, ensuring the security of such systems
is a crucial task, particularly in safety relevant systems, where unintended mod-
ifications can lead to malfunctioning of a system. To achieve this, good methods
are required to evaluate the security of a system. On the other hand, such an
evaluation should not be isolated but must be done in an integrated manner.
This means, though the system is initially modeled for functional and real-time
aspect evaluation, a possible direction for evaluating the security aspect must
further be given utilizing the same model.

In the above context, an automotive embedded sub-system, as depicted in
Figure 1, is considered as the target system here. The system comprises of a
sensor, an actuator, an Electronic Control Unit (ECU) with a processor and a

Sabu M. Thampi et al. (Eds.): SSCC 2013, CCIS 377, pp. 90–97, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Exploiting Functional Models to Assess the Security Aspect 91

������ �	
��
��


��

��	���
�
������

���	�����

���
��

���
��
���

��	
���


�	��	

�������
�
������

��
�

Fig. 1. An Example Embedded Sub-System with an ECU

security module, and an update server. It is a real-time system which has to
satisfy its real-time properties, such as meeting deadlines, in addition to guaran-
teeing the functional correctness. The system realizes a simple real-time control
application, where sensor data are processed by the control application in order
to operate the plant due to an actuator. Though the concrete control application
is not of interest in here, it might represent the engine control of a car or a driver
assistant system such as an Automatic Breaking System (ABS).

In specific, Figure 1 depicts the functional model i.e., the control functionality
performed by the App task and the update functionality executed by the Upd

task. Encrypted data coming from the Sensor is decrypted through SecSrv

utilizing the Dec function before feeding it to the task App. After performing
the control operation, the output is again encrypted through SecSrv utilizing
Enc block before forwarding it to the Actuator. Similarly, the update data from
the Update Server is authenticated through SecSrv utilizing Auth block before
loading into the system.

It can be seen that including the security module has a deep impact on the
functional model of the system and thus the data flow in it. For example, due to
the addition of authentication block for securing the system against malicious
updates from the update server modifies the path of the data flow in the system.
This is clearly visible in Figure 1, i.e., without an authentication block the data
from the update server would have been directly loaded into the system by the
Upd task instead of traversing through the tasks Upd, SecSrv, and the Auth

block. Further, such a modification in the data flow due to the inclusion of
security module has an impact on the real-time aspect of the system, as shown
in our previous work [12].

On the other hand, such a functional model provides the capability for the
system designer to model the possible attack points in its data flow path as
detailed below. For example, an attacker may try to intercept the data from the



92 I. Stierand and S. Malipatlolla

Sensor and clone it later if it is not encrypted or he may deceive the system for
being the UpdateServer to load malicious update data into the system. Given
this, the possible attack points are the communication channels between Sensor

and ECU, and UpdateServer and ECU, respectively. Thus, the goal of this
contribution is to assess the security aspect of such a system by exploiting its
functional model and the corresponding data flow. For this, a formal approach,
which is well-known for modeling the real-time systems, is utilized in here [3].

The rest of the paper is organized as follows. Section 2 gives a brief description
of the existing work in the literature. Section 3 illustrates the proposed approach
for assessing the security aspect utilizing the system functional model. We show
that our functional models can be used as the input for security analysis, while
ensuring that the semantics of both models are preserved. Section 4 sketches
further steps towards integration by showing how the functional model can be
exploited for confining the target security model. Section 5 concludes the paper
and gives some hints on future work.

2 Related Work

Real-time task networks are well-established formalisms at the considered phase
of system design, where the system functionality is mapped to a particular hard-
ware architecture, including scheduling policies provided by the operating sys-
tem(s). The relation between real-time systems and data flow models have been
intensively studied over the last decade [2,10]. On the other hand, various se-
curity models are based on the data flow paradigm, such as the one from [13],
which is mainly considered in this work. To the best of our knowledge, similar
considerations for exploiting real-time formalisms in the security domain are yet
to be made.

The authors Yip et al. in [15] proposed a new language run-time, referred to
as RESIN, that helps to prevent security vulnerabilities, by allowing program-
mers to specify application-level data flow assertions. For this, it utilizes the
mechanisms of policy objects associated with data, data tracking as data flows
through an application, and filter objects that define data flow boundaries and
control data movement. Though the goal of this work is to protect the software
applications such as PHP and python against the existing vulnerabilities, our
goal is to assess the security aspect based on data flow model in an embedded
system.

The work in [6] proposes a generic framework for evaluating whether given
information flows can cause security issues. The objective of the approach is to
ensure that data objects do not leave the security class they are assigned to,
or transitions into another class that is allowed by the information flow (→)
operator. The approach defines flows based on sequences of functions on the
data objects. There also exist various well-established formalisms such as CSP
[11] and Petri nets [5] that have been exploited for security analysis.

However, unlike the formalism utilized in here, none of the above approaches
were originally developed for an architectural design.



Exploiting Functional Models to Assess the Security Aspect 93

3 Approach

3.1 Functional Real-Time Model

Real-time scheduling analysis [14] is an important building block in design pro-
cesses for safety relevant systems. While early design phases consider the target
hardware in a rather abstract way, if any, real-time scheduling analysis considers
applications when they are deployed onto hardware with processors, buses and
other components. Maybe the most popular formalisms to model real-time sys-
tems are so-called task networks, where tasks represent the individual software
elements of the system. The tasks are connected in a graph structure, where the
connections between tasks denote execution precedences. Typically, a real-time
model also consists of a simple notion of hardware architectures, representing
processing elements and buses in the case of distributed architectures. The tasks
are allocated to the respective processing elements, representing their execution
on the architecture elements.

In the following we introduce a particular class of task network models that
allows to characterize individual data flows in the systems. The formalism ac-
tually is a simplified version of the one discussed in [3]. Each task is equipped
with a set of input and output ports. The data flowing into and out of a task
is modeled by a set of events that may occur at the respective ports. Tasks are
connected by channels. A channel characterizes the flow of events between the
individual tasks.

Definition 1. A task network is a tuple N = (Σ,P,E, T, C) where:

– Σ is a set of events,
– P is a set of ports,
– E : Σ → P induces for each port p ∈ P a set Σ(p) ⊆ Σ of events,
– T is a set of software tasks, where t ∈ T is a tuple (Pi, ψ, Po):

• Pi, Po ⊆ P are the input and output ports of t,
• ψ :

⋃
p∈Pi

Σ(p) → Σ is the execution function of the task. We require
that ψ(σ) ∈ ⋃

p∈Po
Σ(p).

– C ⊆ P × P is a set of channels. �
Note that the definition omits timing annotations, with which a task network

can be checked whether it satisfies given timing requirements, as for example
discussed in previous work [12].

The execution function ψ of a task defines the reaction of the task with respect
to its activation by an incoming data object on its input port(s). Together with
our notion of connectivity by channels, the formalism allows to model a wide
range of (deterministic) data flows in a system. This is depicted for example in
Figure 2, which illustrates the update service scenario of our initial system model
(c.f. Figure 1) in more detail. It is assumed that the update service receives two
different kinds of data packets, namely p and p′. A p packet denotes a packet
with a valid authentication, while p′ denotes a packet that has been modified by
an attacker. The execution function ψUpd (depicted below task Upd) defines that



94 I. Stierand and S. Malipatlolla

Fig. 2. Task Network for Update Service

such packets are simply forwarded to the security service task SecSrv. The same
forwarding takes place at task SecSrv. The authentication function, i.e., Auth,
of the security module is assumed to return whether incoming packets are valid
or not. This behavior is modeled by the execution function ψAuth that returns a
y (yes) packet when the function has been called with a p packet, and n (no)
otherwise. The answer is in advance relayed back to the update service function.

3.2 Towards Integration into Security Theory

Conventionally, a secure system is designed as follows: A set of security re-
quirements is specified along with an attacker model with its capabilities before
deploying the security protocols to achieve security. A rich set of theories exists
for the verification of security protocols [4]. For example, based on a notion of
protocols defining message transfers, term rewriting, and deduction rules; one
can specify the abilities of an attacker and formally verify in advance whether
the security protocol is vulnerable for the specified attacks [8,9].

Various well-established formalisms have been exploited for security analysis
(such as CSP [11] and Petri nets [5]). As none of them was originally developed
for architectural design, they have little relevance in actual system design for
this design phase. Hence, our aim is to exploit real-time task networks, which is
a well-established formalism that considers applications when they are deployed
to a hardware architecture, for security analysis.

In order to model system functionality correctly, this clearly must involve
the applied security protocols, as they might have a significant impact on the
functionality and timing of the system. The proposed real-time model and its
extensions [3] can be embedded in a natural way into security theories. This
indeed could be done by relating our formalism to a respective CSP program [7]
and then to apply security analysis as for example shown in [11]. For the present
work however, we directly relate our formalism to the well-established Strand
Space formalism developed in [13].

The Strand Space model exploits a basic notion of messages and message
sequences:

Definition 2 ([13]). A signed term is a pair 〈d, a〉 with a ∈ A, and d ∈ {+,−}.
We will write a signed term as +a or −a. (±A)∗ is the set of



Exploiting Functional Models to Assess the Security Aspect 95

finite sequences of signed terms. We will denote a typical element of (±A)∗

by 〈〈d1, a1〉, . . . , 〈dn, an〉〉. �

Furthermore, the formalism defines a notion of protocols that are based on
strands, which are essentially elements of (±A)∗:

Definition 3 ([13]). A Strand Space is a set S with a trace mapping tr : S →
(±A)∗. �

Given a task network N , it is easy to see how this relates to the above definitions.
Considering the elements in the set Σ as messages that are transmitted between
the protocol agents, provides us with the ground set of a Strand Space model:
A = Σ. Whether a message is received (denoted by −) or sent (denoted by +)
can be obtained from the fact whether the message is observed at an input port
or an output port respectively:

d(a) =

{
− if ∃t = (Pi, ψ, Po) ∈ T : E(a) ∈ Pi

+ if ∃t = (Pi, ψ, Po) ∈ T : E(a) ∈ Po

The translation gives rise to the integration of various important aspects of
a system design. While the task network model is exploited for functional and
real-time analysis, the translation allows the combination with security analysis.
Based on the set (±A)∗ obtained by the translation, the security engineer is able
to define the respective strands and bundles which form the basis (together with
an understanding of the attacker capabilities) for the subsequent analysis. The
main advantage of this integration is that all participants of the design have a
common understanding of the design semantics.

The relation between the task network model and security formalisms as
shown above is however, only a small part of what is needed in order to perform
security analysis. In the following we concentrate on the notion of protocols,
which is a crucial ingredient for security protocol analysis.

As said before, the Strand Space formalism defines the protocol sessions
under consideration by finite sequences over messages, i.e., the elements of
tr(S). The causal and dependency relations, denoted by”→” and ”⇒” respec-
tively, are essential for the formalism. They are also crucial for defining se-
mantics of sending and receiving messages in a task network. Suppose a trace
〈〈d1,m1〉, . . . , 〈dn,mn〉〉 ∈ (±A)∗. The reception of messagemi at the input port
of a task, which corresponds to 〈−,mi〉 in the trace, and the corresponding mes-
sage sent by another task (which relates to 〈+,mi〉) are causal related, i.e. we
have the relation 〈+,mi〉 → 〈−,mi〉 in the corresponding Strand Space model.
Additionally, the execution function of a task gives rise to the ”⇒” relation of
the corresponding Strand Space model. Given an actor (task) t = (Pi, ψ, Po),
the dependency (⇒) relation of the strand is defined as:

〈−,mi〉 ⇒ 〈+,mi+1〉 ⇐⇒ E(mi) ∈ Pi ∧ E(mi+1) ∈ Po ∧mi+1 = ψ(mi)



96 I. Stierand and S. Malipatlolla

4 Protocols and Verification

The relation proposed above is indeed only an initial step towards a more deeper
integration of formal and security analyses. Nothing has been said for example
about the capabilities of the intruder. More important, whether this would be
possible without modifications of the underlying model in any case remains an
open question. Explicit modeling of an intruder is not a well-established design
step in current design processes for embedded systems.

It also remains open how the strand spaces for the security analysis of a
given system are obtained. They essentially define the domain for the particular
analysis. In the following we sketch the general approach for obtaining strand
spaces from functional models.

Embedded systems are typically static systems. Dynamic behavior such as
the addition of new functionality at run-time is rather uncommon. This is also
reflected when using security protocols. We expect to see in a typical embedded
system design only a fixed set of possibly available protocol behaviors. This fact
can be exploited for deriving the parts of a security protocol actually used in a
design in order to confine security analysis, and it should be possible to derive
the relevant protocol behavior.

The security module in Figure 1, for example, provides a large set of possible
protocol behaviors for authentication. In the depicted scenario however, only a
single protocol instance is used, which is based on authenticating each incoming
packet separately. This results in two possible protocol instances for the security
protocol employed in the update service as shown in Figure 2, consisting of either
the sequence SecSrv - p - Auth - y - SecSrv or SecSrv - p′ - Auth - n - SecSrv
between the SecSrv task (i.e., security service function) and the Auth block (i.e.,
authentication function).

The process of deriving the protocol behavior that is relevant for security
analysis can also be done by exploiting formal analysis. For example, work in
[3] proposes a translation scheme for our model into the formalism of timed
automata [1]. Based on available model-checking tools this paves the way to
obtain, for example, the relevant Strands for a given design model.

5 Conclusion

The goal of this contribution is to provide the basic notions for an integrated eval-
uation of the functional, real-time, and security aspect in the embedded system
design utilizing formal mechanisms. For this, a functional model representing an
example real-time system is considered as the target system and is modeled in
the task network formalism. Then a possible relation is drawn between this for-
malism and the existing security theory, i.e., Strand Space formalism. However,
drawing such a relation is only an initial step towards a more tighter integration
between them. At the end, the presented formal approach is analyzed with an
example to derive a protocol like behavior which is relevant for security analysis.



Exploiting Functional Models to Assess the Security Aspect 97

Acknowledgement. This work was supported by the Federal Ministry for
Education and Research (BMBF) Germany, under grant code 01IS110355M, in
project ”Automotive, Railway and Avionic Multicore System (ARAMiS)” The
responsibility for the content of this publication lies with the author.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Benveniste, A., Berry, G.: The Synchronous Approach to Reactive and Real-Time
Systems. Proceedings of the IEEE 79, 1270–1282 (1991)

3. Büker, M., Metzner, A., Stierand, I.: Testing real-time task networks with func-
tional extensions using model-checking. In: Proc. 14th IEEE International Confer-
ence on Emerging Technologies & Factory Automation, pp. 564–573. IEEE Press
(2009)

4. Cortier, V., Kremer, S. (eds.): Formal Models and Techniques for Analyzing Secu-
rity Protocols. IOS Press (2011)

5. Crazzolara, F., Winskel, G.: Petri nets in cryptographic protocols. In: Pro-
ceedings of the 15th International Parallel & Distributed Processing Sympo-
sium, IPDPS 2001, p. 149. IEEE Computer Society, Washington, DC (2001),
http://dl.acm.org/citation.cfm?id=645609.662336

6. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976)

7. Faber, J., Stierand, I.: From high-level verification to real-time scheduling: A
property-preserving integration. Reports of SFB/TR 14 AVACS 19, SFB/TR 14
AVACS (May 2007), iSSN: 1860-9821, http://www.avacs.org

8. Fröschle, S.: Adding branching to the strand space model. Electron. Notes Theor.
Comput. Sci. 242(1), 139–159 (2009)

9. Fröschle, S., Sommer, N.: Reasoning with Past to Prove PKCS#11 Keys
Secure. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561,
pp. 96–110. Springer, Heidelberg (2011)

10. Ghamarian, A.H., Geilen, M.C.W., Basten, T., Theelen, B.D., Mousavi, M.R.,
Stuijk, S.: Liveness and boundedness of synchronous data flow graphs. In: FMCAD
2006: Proceedings of the Formal Methods in Computer Aided Design, pp. 68–75.
IEEE Computer Society, Washington, DC (2006)

11. Lowe, G.: Analysing Security Protocols Using CSP. In: Cortier, Kremer (eds.) [4]
(2011)

12. Malipatlolla, S., Stierand, I.: Evaluating the Impact of Integrating a Security
Module on the Real-Time Properties of a System. In: Schirner, G., Götz, M.,
Rettberg, A., Zanella, M.C., Rammig, F.J. (eds.) IESS 2013. IFIP AICT, vol. 403,
pp. 343–352. Springer, Heidelberg (2013)

13. Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: why is a security
protocol correct? In: IEEE Symposium on Security and Privacy, pp. 160–171 (1998)

14. Tindell, K.W., Burns, A., Wellings, A.J.: Allocating hard real-time tasks: An NP-
Hard problem made easy. Real-Time Systems 4, 145–165 (1992)

15. Yip, A., Wang, X., Zeldovich, N., Kaashoek, M.F.: Improving application security
with data flow assertions. In: Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, pp. 291–304. ACM (2009)

http://dl.acm.org/citation.cfm?id=645609.662336
http://www.avacs.org

	Exploiting Functional Models to Assess
the Security Aspect in Embedded System Design
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Functional Real-Time Model
	3.2 Towards Integration into Security Theory

	4 Protocols and Verification
	5 Conclusion
	References




