
Chapter 2
Regulation of Phenazine Biosynthesis

H. Sakhtah, A. Price-Whelan and L. E. P. Dietrich

Abstract Microbiologists have historically been struck by both the beautiful
pigmentation of phenazine-producing cultures and the high degree of variability in
phenazine production among isolates, conditions, and even repeat experiments.
Motivated by an interest in controlling phenazine biosynthesis, they have identified
many of the factors that affect the regulation of this process. Phenazine production
is controlled by complex regulatory networks. The variability of phenazine pro-
duction can be explained in part by the effects of environmental conditions on these
networks and by strain-specific differences in these networks. In this chapter, we
describe the components of a common regulatory cascade that is represented in
many phenazine-producing pseudomonads. Membrane sensor proteins and two
component sensors control the activity of downstream regulators such as quorum
sensing systems and RNA-binding proteins and small RNAs; these cytoplasmic
regulators then control the production of phenazine biosynthetic proteins.
We highlight examples from specific strains and cases where the mechanistic links
may vary among them. We also discuss environmental parameters that have been
shown to affect phenazine biosynthesis and compare their effects in different iso-
lates. Ongoing work will further elaborate the details of the environmental sensing
and regulatory responses that control production of these dramatically colored
compounds. New findings have the potential to support enhanced application of
phenazine-producing strains in agriculture, where they promote crop health, and the
treatment of infections in which phenazines contribute to bacterial pathogenicity.
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2.1 Introduction

The dramatic coloration of phenazine-producing bacterial cultures has attracted
researchers in many disciplines for over a century (Fordos 1859; Gessard 1894). It
may have contributed to the early recognition and classification of Pseudomonas
chlororaphis (Guignard and Sauvageau 1894), P. aeruginosa, and other bacteria
whose species epithets derive from their pigmentation (Schroeter 1872). Further-
more, it has inspired researchers to ask many different types of questions about the
biological relevance of phenazines, and a variety of physiological effects have
been demonstrated for these compounds in both the organisms that produce them
and the organisms exposed to them (see Chap. 3).

For microbiologists cultivating phenazine-producers, it is apparent that
phenazine biosynthesis can vary unpredictably among cultures, suggesting that it
is sensitive to subtle environmental variations (Fig. 2.1). Under many conditions,
the precise molecular cues that interact with regulatory proteins to control
phenazine biosynthetic gene expression are not known. However, downstream
mechanisms controlling their expression have been identified in several species,
and themes of phenazine regulation have emerged, including control by two
component systems, quorum sensing (QS), and small noncoding RNAs (sRNAs)
(Fig. 2.2). In this chapter, we will summarize the phylogenetic distribution of
phenazine biosynthetic clusters and cite examples from phenazine-producing
pseudomonads that illustrate specific regulatory mechanisms. In addition, we will
discuss some of the environmental signals that control phenazine production in
various isolates. We will focus on the regulation of phenazine biosynthesis in
members of the genus Pseudomonas, where the bulk of studies on this topic have
been conducted.

0% 5% Tryptone

Fig. 2.1 P. aeruginosa PA14
grown on an agar plate
containing a gradient of
tryptone

environmental 
cues

quorum sensingsmall RNAs

two-component
systems
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biosynthesis

Fig. 2.2 Conceptual
hierarchy of the phenazine
regulation network
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2.2 Phylogenetic Distribution and Mechanisms
of Phenazine Biosynthesis

Phenazine-producing organisms have been identified that belong to the bacterial
phyla Actinobacteria and Proteobacteria and the archaeal phylum Euryarcheota
(Mavrodi et al. 2010). The gene cluster encoding biosynthetic enzymes for the
archaeal electron carrier methanophenazine, produced by Methanosarcina mazei,
and the conditions controlling its biosynthesis are unknown. In bacterial species for
which phenazine production has been observed, variation exists at the level of the
isolate, such that some strains within a species produce phenazines while others lack
the biosynthetic genes. Bacterial phenazine biosynthetic pathways identified to date
proceed via chorismate to the formation of the core phenazine structure and ulti-
mately, to production of the common phenazine precursor phenazine-1-carboxylic
acid (PCA) (Mentel et al. 2009; Seeger et al. 2011; see also Chap. 1 of this volume).
Whether and how PCA is modified to produce other phenazines varies among
organisms and depends to some extent on environmental conditions. A variety of
functional groups can be added to the core structure to produce phenazines in a range
of colors with diverse chemical properties (Turner and Messenger 1986; Laursen
and Nielsen 2004; Mavrodi et al. 2006; Pierson and Pierson 2010) (Table 2.1).
Many of the decorating enzymes responsible for PCA transformation have been
identified and characterized, and regulation of their activities determines the com-
plement of phenazines produced by a given strain under particular conditions.

The archetypical core phenazine operon is found in pseudomonads such as
P. chlororaphis, P. aeruginosa, Pseudomonas sp. CMR12a, and P. fluorescens
2-79 and contains seven genes; the operon structure is more variable in other
Proteobacteria and in Actinobacteria (Mavrodi et al. 2010). P. aeruginosa strains
appear to be unique among these organisms in that their genomes contain two
phenazine biosynthetic operons, which we will refer to as phz1 and phz2 and which
are nearly identical at the DNA level. Although the contributions of the core phz
operon products to phenazine biosynthesis are generally known, this is an area of
active research (see Chap. 1 of this volume). Genes for decorating enzymes can lie
adjacent to the core operon or elsewhere in the genome. In some cases, the
products of adjacent genes play roles in regulation of the core operon or phenazine
transport.

2.3 Mechanisms and Conditions Controlling Phenazine
Biosynthesis in Pseudomonads

Researchers in disparate subdisciplines of microbiology have long been interested
in elucidating the mechanisms that control phenazine biosynthesis. Phenazine
production is critical for the biocontrol properties of certain agriculturally
important root-colonizing pseudomonads that protect food crops from attack by
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pathogenic fungi (Chin-A-Woeng et al. 2003; Haas and Défago 2005; Mavrodi
et al. 2006; Mavrodi et al. 2012). In the clinical setting, phenazine production
contributes to virulence during acute and chronic P. aeruginosa infections (Lau

Table 2.1 Phenazine derivatives produced by Pseudomonas spp. and other bacteria
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In bacteria where the phenazine biosynthetic pathway has been examined, phenazine-1-car-
boxylic acid is the precursor for all the other phenazine derivatives. The carboxyl group can be
replaced or removed, and a wide variety of functional groups can be added at different positions
on the phenazine core structure. For more comprehensive collections of identified phenazines,
see (Turner and Messenger 1986, Laursen and Nielsen 2004, Mavrodi et al. 2006)
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et al. 2004; Caldwell et al. 2009; Hunter et al. 2012). Regulation of phenazine
biosynthesis has therefore been studied in diverse Pseudomonas isolates. Although
the precise linkages between regulatory mechanisms may vary among species and
even strains, general mechanisms and their overall hierarchy are often shared. We
will highlight these commonalities and focus on specific systems that exemplify
general principles. Figure 2.3 summarizes the main regulatory systems and
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molecules that ultimately control phenazine production: two component systems,
QS, sRNAs and environmental cues. These mechanisms and cues can act indi-
rectly by influencing activities far upstream of phenazine biosynthetic gene
expression or RNA translation, or they can directly control these processes.
Additional details regarding the complex relationships between and within these
regulatory systems can be found in recent reviews that summarize the literature
(Mavrodi et al. 2006; Williams and Camara 2009; Pierson and Pierson 2010;
Sonnleitner and Haas 2011; Balasubramanian et al. 2013).

2.3.1 Two Component Systems

In both biocontrol and pathogenic pseudomonads, two component systems were
among the first regulatory mechanisms identified that play critical roles in phen-
azine regulation (Reimmann et al. 1997; Chancey et al. 1999; van den Broek et al.
2003; De Maeyer et al. 2011). They lie conceptually at the top of signaling
hierarchies because they have the potential to directly sense environmental cues
and then modulate the activities of downstream regulatory mechanisms or directly
control gene expression (Fig. 2.4). Such systems typically consist of a membrane-
bound sensor protein and a cytoplasmic regulatory protein. The phosphorylation
status of the sensor protein is altered through binding of a small molecule or other
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environmental cue that triggers conformational changes and affects activity. The
phosphate group is then transferred to and activates the response regulator protein
(Bourret and Silversmith 2010).

GacS/GacA, which is required for wild-type phenazine production in many
isolates, is the best-characterized two component system controlling this process
(Heeb and Haas 2001; Haas and Defago 2005). In phenazine-producing species, it
occupies a position between environmental cues and downstream, intracellular
regulatory mechanisms such as those dependent on sRNAs. In describing this
system and others below, we will include references to the regulatory cascade in
P. fluorescens strains that do not produce phenazines in cases where it is possible
that the same cascade operates and affects phz gene expression in P. fluorescens
2-79. In addition, we note here that we use ORF numbers from P. aeruginosa
PAO1 (starting with ‘‘PA’’) for some of the proteins described below.

The cue that activates GacS has not been identified, but additional membrane
proteins that control GacS activity in some isolates are known. These include RetS
and LadS, hybrid sensor kinases that contain the unusual arrangement of
periplasmic sensor domains linked to cytoplasmic histidine kinase and response
regulator receiver domains (Goodman et al. 2004; Ventre et al. 2006). In strains of
P. fluorescens and P. aeruginosa, RetS interacts with GacS and inhibits the
phosphorelay (Goodman et al. 2009; Workentine et al. 2009; Vincent et al. 2010).
A physical interaction between LadS and GacS is also predicted, however, this
hybrid sensor potentiates phosphotransfer from GacS to GacA (Workentine et al.
2009). Although the GacS/GacA system does not directly control expression of
phz genes, it does modulate the activities of sRNA- and QS-dependent regulatory
mechanisms, which can then directly interact with phz gene promoters or tran-
scripts (Fig. 2.4). These systems are discussed in further detail below.

The two component system CzcS/CzcR was recently implicated in regulation of
phz gene expression in P. aeruginosa PAO1 (Dieppois et al. 2012). CzcS/CzcR is
activated by zinc, cadmium, and cobalt and induces expression of an efflux pump
that confers resistance to these metals. Dieppois et al. (2012) observed that mutants
lacking functional CzcS/CzcR overproduce the phenazine pyocyanin (5-N-methyl-
1-hydroxyphenazine, PYO), despite the fact that this two component system
positively regulates QS. Chromatin immunoprecipitation assays suggest that CzcR
binds to the phz1 promoter when the system is activated by zinc. In this way, CzcR
could inhibit phz1 expression directly, negating the positive control of this operon
by QS. This mechanism would constitute an unusual example of a direct link
between a two component system and transcriptional control of phz genes.

Several other two component systems have been shown to affect phenazine
production in various isolates, and evidence reported thus far indicates that this
regulation is mediated via additional proteins and mechanisms. The RpeB/RpeA
system positively regulates phenazine production in P. chlororaphis 30-84, and
homologues to this system are present in other biocontrol strains but not in
P. aeruginosa (Wang et al. 2012a). Proteins identified that positively regulate, or
would be expected to regulate, phenazine production or phz genes in P. aeruginosa
include the sensor/regulator pair BfiS/BfiR (acting via an indirect effect on levels
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of the sRNA RsmZ) (Petrova and Sauer 2010); the sensor/regulator pair CbrA/
CbrB, which induces the expression of sRNA CrcZ in response to nonpreferred
carbon sources (Sonnleitner et al. 2009); the sensor PA2573, which affects PYO
production through an unknown regulator (McLaughlin et al. 2012); and the
individual sensors PA1611, PA1976, and PA2824, which can all control the
activation state of the response regulator HptB (Hsu et al. 2008). HptB would be
expected to affect phenazine production indirectly through a complex regulatory
cascade that ultimately controls expression of the sRNA RsmY. The positions of
RsmZ and RsmY in the regulatory network controlling phenazine production are
discussed further below.

2.3.2 Quorum Sensing

Phenazine production in liquid batch cultures typically occurs after the period of
most rapid growth, and phenazines accumulate in the culture in stationary phase.
This is in part due to the regulation of phz gene expression by QS. In QS, bacteria
excrete small molecule or peptide signals into the environment which can then
affect gene expression in the producer. Their regulatory effects become apparent
after they have reached a minimum concentration, often after a decrease in culture
growth rate. Molecules with diverse structures have been implicated in this
behavior, but acyl homoserine lactones (AHLs) and quinolone derivatives in
particular are most relevant for phz gene expression.

Systems that support AHL-dependent QS control of phz gene expression con-
tain homologues of LuxR, a DNA binding sensory protein whose activity is
controlled by AHL, and, typically, homologues of LuxI, an AHL synthase. These
proteins were first identified in the recently reclassified luminescent bacterium
Aliivibrio fischeri (Meighen 1991) and their homologues have since been char-
acterized in a broad diversity of species. LuxR homologues vary in their specificity
for AHL derivatives, with some proteins requiring a single signal for activation
and others responding to several variations on a core structure. In P. chlororaphis
strains 30-84 and PCL1391, P. fluorescens 2-79, and Pseudomonas sp. CMR12a,
the LuxR/I homologues PhzR and PhzI are encoded by ORFs that lie adjacent to
the phenazine biosynthetic genes but are each individually transcribed (Pierson
et al. 1994; Wood and Pierson 1996; Chin-A-Woeng et al. 2001; Khan et al. 2005;
De Maeyer et al. 2011). The PhzR/I systems in these strains produce and are
controlled by N-(3-hydroxy-hexanoyl)-HSL (3–OH–C6–HSL). Although addi-
tional LuxR/I type systems in some of these strains produce and respond to other
AHLs, 3–OH–C6–HSL is the main such signal relevant for phz gene regulation
(Khan et al. 2007). The promoter regions of the phz operons in the root-colonizing
strains that have phzR and phzI contain canonical binding sites for LuxR-type
regulators; these are near-perfect inverted repeats that can be referred to as lux, las/
rhl, or phz boxes (Egland and Greenberg 1999; Chin-A-Woeng et al. 2001; Khan
et al. 2005).
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The P. aeruginosa genome encodes at least three LuxR homologues called
LasR, RhlR, and QscR. The cognate AHL synthases for LasR and RhlR produce
N-(3-oxododecanoyl) homoserine lactone (3–O–C12–HSL) and N-butanoyl-L-
homoserine lactone (C4–HSL), respectively (Pearson et al. 1994; Pearson et al.
1995). Interestingly, QscR has no obvious cognate AHL synthase, but it responds
most effectively to 3–O–C12–HSL (Lee et al. 2006). Whether these LuxR homo-
logues activate or repress gene expression depends on the location of the binding
site relative to the transcription start site of the target gene. In contrast to the QS
circuits in root-colonizing pseudomonads that control phenazine production, which
are not known to regulate loci other than the phz operons, the AHL-controlled
regulatory networks in P. aeruginosa affect expression of countless targets
(Whiteley et al. 1999; Wagner et al. 2003).

Although their genomes share high sequence similarity, the P. aeruginosa
strains PAO1, PA14, and M18 exhibit strain-dependent differences with respect to
QS-dependent regulation of phz gene expression, and in many cases the mecha-
nisms underlying these activities have not been thoroughly characterized. Often,
the PCA derivative PYO is used as an indicator molecule in studies evaluating
phenazine production because it is easier to detect than the other P. aeruginosa
phenazines. In PAO1 and PA14, Las- and Rhl-defective mutant strains lose the
ability to produce PYO, while in M18, the Las and Rhl systems are apparently
negative regulators of phenazine production. Recently, Wurtzel et al. (2012) used
gel mobility shift assays to confirm the presence of a LasR/RhlR binding site in the
promoter region of phz1 in PA14. This binding site also influences expression of
phzM, which encodes an enzyme that catalyzes the first step in the transformation
of PCA to PYO, and is divergently transcribed from the phz1 operon. No las/rhl
box has been identified in the promoter region of phz2, although interestingly, the
gene encoding QscR lies adjacent to this operon. QscR is a negative regulator of
phz1 and phz2 expression and appears to act through repression of lasI (Chugani
et al. 2001; Ledgham et al. 2003).

Many additional regulators have been identified that affect QS, thereby altering
phenazine production; in some cases they may affect phenazine production both
indirectly through QS and through direct regulation of phz gene expression
(Beatson et al. 2002; Juhas et al. 2004; Xu et al. 2005; Liang et al. 2009; Rampioni
et al. 2009; Siehnel et al. 2010). An important class of regulators that can influence
transcription are sigma factors, which associate with RNA polymerase and control
preferences for specific promoters. The sigma factors rS (RpoS) and r54 (RpoN)
both affect QS-dependent regulation. In P. aeruginosa, rS participates in mutual
regulation with AHL-dependent QS, in which rS stimulates a moderate induction
of lasR and rhlR, and these QS systems subtly induce rpoS (Schuster et al. 2004).
Despite this, P. aeruginosa PAO1 rpoS mutants overproduce PYO, suggesting that
rS also acts independently of AHL to modulate phenazine biosynthesis (Suh et al.
1999). In P. chlororaphis 30-84, rS is positively regulated by the GacS/GacA two
component system and activates phenazine inducing protein (Pip). Pip positively
regulates the PhzR/I QS system, which ultimately upregulates the P. chlororaphis
phenazine operon, making rS a positive regulator of phenazine production in this
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strain (Girard et al. 2006a). Although the downstream effects of rS on phenazine
production differ in P. aeruginosa and P. chlororaphis, the regulator PsrA posi-
tively controls rS activity in both strains (Kojic and Venturi 2001; Girard et al.
2006b). Conflicting results have been reported regarding the effects of r54 on the
Rhl QS system in P. aeruginosa (Heurlier et al. 2003; Thompson et al. 2003).
PA14 mutants lacking functional r54 produce less PYO (Hendrickson et al. 2001);
this may be because the expression of the CrcZ sRNA (discussed below) is r54-
dependent (Abdou et al. 2011).

One important target of the AHL-controlled regulatory network in P. aeru-
ginosa is the operon pqsABCDE. This locus is required for the production of
another class of chemical signaling molecules called quinolones, and together, the
AHL and quinolone signaling pathways form the core of the P. aeruginosa QS
signaling cascade (Pesci et al. 1999). pqsA-D encode biosynthetic enzymes that are
required for production of 2-heptyl-4-quinolone (HHQ). PqsH, encoded elsewhere
in the genome, is a monooxygenase that converts HHQ to Pseudomonas Quino-
lone Signal (PQS) (Deziel et al. 2004). Both HHQ and PQS activate the tran-
scriptional regulator PqsR (also known as MvfR), but PQS does so with greater
efficiency (Xiao et al. 2006; Diggle et al. 2007). PqsR itself activates expression of
pqsABCDE; therefore, HHQ/PQS and PqsR participate in an autoregulatory
positive feedback loop in which the quinolones potentiate their own production
(Fig. 2.5).

pqsE encodes a putative metallo-b-hydrolase of unknown function (Yu et al.
2009) that appears to be ‘‘caught’’ in the positive feedback loop controlling HHQ
production: it is induced as a result of this mechanism but is not required for HHQ
synthesis. Nevertheless, PqsE is required for phenazine production in P. aeru-
ginosa PAO1 and PA14 (Gallagher et al. 2002; Recinos et al. 2012). Constitutive
expression of PqsE in a pqsA mutant background is sufficient to promote phena-
zine production (Farrow et al. 2008), suggesting that, in the context of phz operon
expression, the positive feedback loop that promotes HHQ production serves the
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the two phz operons in the presence and absence of oxygen
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sole purpose of tangentially upregulating pqsE (Williams and Camara 2009). The
mechanism whereby PqsE promotes phz operon expression remains completely
undefined, as PqsE itself does not contain a DNA binding domain. PqsE may be
involved in the transformation of an unknown signal (Yu et al. 2009). We
hypothesize that this signal controls the activity of an unidentified regulator of phz
gene expression.

Until recently, studies examining the roles of quinolones in the regulation of
phz gene expression focused on aerobically grown, well-mixed planktonic cul-
tures. Under this condition, PQS is required for phz1 expression and phz1 is a
major contributor to phenazine biosynthesis. Our group has evaluated the relative
contributions of phz1 and phz2 to phenazine production in aerobic liquid cultures
and biofilms in P. aeruginosa PA14 (Recinos et al. 2012). We have reported that,
although phz1 is expressed at much higher levels than phz2 in P. aeruginosa PAO1
grown in aerobic liquid cultures (Whiteley et al. 1999; Chugani et al. 2001), in
strain PA14 both operons make significant contributions to phenazine production
when it is grown under the same conditions.

Interestingly, when P. aeruginosa PA14 is grown as a colony biofilm on agar
plates, phz2 alone is sufficient for wild-type phenazine production. Furthermore,
HHQ is sufficient to fully activate expression of phz2 in this context. The obser-
vation that HHQ rather than PQS is the major regulator of phz gene expression in
biofilms is intriguing when considered in the context of oxygen availability. The
conversion of HHQ to PQS is catalyzed by PqsH and requires molecular oxygen
(Schertzer et al. 2010). In biofilms, which become anoxic at depth due to limited
diffusion and oxygen consumption by cells closer to the surface (Dietrich et al.
2013), HHQ is likely produced in greater abundance than PQS. phz2 expression is
mediated through PqsE and downstream regulators that are apparently specific for
this operon. The mechanism whereby PqsE controls expression of phz1 and phz2,
and the mechanisms that confer differential, condition-dependent expression of
phz1 and phz2 are currently under investigation but likely include AHL-dependent
regulation (Farrow et al. 2008).

2.3.3 Post-transcriptional Regulation

Several regulatory mechanisms have been identified that control, or would be
expected to control, pseudomonad phenazine production post-transcriptionally
(Fig. 2.6). These mechanisms are diverse and include mRNA binding by proteins
and mRNA base pairing with 50-leader RNA sequences, both of which can affect
translation (Sonnleitner and Haas 2011). Additional sRNAs can further modulate
the binding of such proteins and cis-acting regulatory RNAs to mRNA. Expression
of these protein and RNA regulators is often controlled by two component systems
or QS. They can indirectly control phz gene expression by modulating earlier steps
in the regulatory cascade, or directly control translation of phz mRNAs. Extensive
characterization of post-transcriptional regulators has been conducted in
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P. aeruginosa phenazine-producing strains, but also in P. fluorescens strains that
do not contain phz operons. Our discussion includes references to these P. fluo-
rescens strains as their post-transcriptional regulatory mechanisms may be relevant
for the regulation of phenazine production in P. fluorescens 2-79.

The proteins RsmA and RsmE modulate secondary metabolism, QS-dependent
activities and phenazine production in diverse pseudomonads. Both proteins are
found in P. fluorescens and P. chlororaphis, while only RsmA is found in
P. aeruginosa (Blumer et al. 1999; Reimmann et al. 2005). In P. fluorescens,
RsmA and RsmE have been shown to interact with and inhibit the translation of
target mRNAs that contain unpaired ANGGA motifs near the ribosomal binding
site; by stabilizing a stem loop that contains the ANGGA motif, RsmA/E prevents
the ribosome from binding (Lapouge et al. 2007). In P. aeruginosa strains, RsmA
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expression increases with cell density and regulates the LasR/I and RhlR/I QS
circuits in a post-transcriptional manner (Pessi et al. 2001). It is thought that RsmA
binds to lasR and rhlR mRNAs, inhibiting their translation. Though RsmA and
RsmE have not been studied in the phenazine-producer P. fluorescens 2-79
(containing the LuxR/I homologues PhzR/I), they may have a similar effect on QS
in this strain.

As RsmA is a negative regulator of lasR and rhlR mRNAs, one would predict
that mutations in rsmA would lead to phenazine overproduction (Reimmann et al.
2005). Burrowes et al. (2006) found, however, that the phenotype of an rsmA
mutant was condition-dependent: the mutant showed decreased PYO production in
LB but increased PYO production in a defined medium containing glycerol and
alanine (Burrowes et al. 2006). Furthermore, differing phenazine production
phenotypes in rsmA mutants in strains PAO1 and M18 may indicate that tem-
perature is an additional environmental parameter that affects this regulatory
cascade. In M18, which is typically grown at 28 �C, RsmA is a positive regulator
of phenazine production (Zhang et al. 2005). Interestingly, RsmA consensus
sequences are present near the ribosomal binding sites of the phzA1 and phzA2
promoters, raising the possibility of direct control of the phenazine biosynthetic
operons by RsmA. Preliminary evidence suggests that RsmA and RsmE also
regulate expression of the phz operon in P. chlororaphis, although whether this
occurs via direct interaction with phz operon mRNA, through regulation of the
PhzR/I QS system, or both has not been reported (Wang et al. 2012a).

sRNAs containing the ANGGA motif can compete with target mRNAs for
binding sites on RsmA and RsmE, thereby controlling the extent to which these
proteins repress their targets. In P. aeruginosa, two of these sRNAs, called RsmY
(sometimes referred to as RsmB) and RsmZ, have been identified (Heurlier et al.
2004; Burrowes et al. 2005). P. fluorescens strains produce homologues of these
plus an additional sRNA called RsmX (Heeb et al. 2002; Valverde et al. 2003; Kay
et al. 2005). Evidence suggests that the genes encoding these sRNAs are directly
regulated by GacA. When phosphorylated GacA activates transcription of rsmX,
rsmY, and rsmZ, the sRNA products bind to and sequester the translational
repressors RsmA and RsmE, allowing expression of RsmA/E target genes
(Heurlier et al. 2004; Kay et al. 2006). In P. aeruginosa, additional regulators have
been reported to control expression of the RsmY and RsmZ sRNAs. HptB
indirectly represses RsmY expression through a complex regulatory cascade (Hsu
et al. 2008; Bordi et al. 2010). Furthermore, the BfiS/BfiR two component system
induces expression of RNaseG, which specifically degrades RsmZ (Petrova and
Sauer 2010). Levels of RsmA and RsmE are also regulated by complicated
networks involving two component sensors, sRNAs, and QS systems. These
mechanisms further contribute to the complexity of regulation of phz gene expres-
sion, but their ultimate effects on phenazine production have not been measured.

The two component system CbrA/CbrB controls expression of phzM via a
mechanism analogous to the network linking GacS/GacA to phz operon expres-
sion. When CbrB is activated, it induces expression of CrcZ, an sRNA that binds
to and sequesters the translational repressor Crc. The CrcZ and phzM transcripts
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both contain an A-rich motif that is recognized by Crc. CrcZ therefore limits the
ability of Crc to inhibit phzM translation, and a crc mutant overproduces PYO due
to increased PhzM levels (Huang et al. 2012).

In contrast to RsmX/Y/Z and CrcZ, which are controlled at the transcriptional
level by two component systems, the sRNAs Lrs1 and Lrs2 are regulated by QS
(Wurtzel et al. 2012). Using P. aeruginosa PA14 as a model strain, Wurtzel et al.
identified las boxes in the promoter regions of the lrs1 and lrs2 genes and confirmed
their regulation by LasR. In addition, they generated an lrs1 deletion mutant and
found that it was defective in PYO production. RNA-seq analysis revealed two major
differences in transcript levels between this mutant and the wild-type parent:
increased abundance of transcript from the antABC operon, and increased abundance
of the PrrF1 and PrrF2 sRNAs (discussed further below). The authors hypothesized
that the PYO production defect in the lrs1 mutant arose from increased flux through
an anthranilate-catechol conversation pathway (mediated by the products of the
antABC operon). Anthranilate and phenazines are produced by pathways that branch
from chorismate as a common precursor (Mentel et al. 2009). Notably, increased
conversion of anthranilate to catechol also diverts it away from the quinolone bio-
synthetic pathway. Given that quinolones regulate phz operon expression, indirect
Lrs1-dependent downregulation of anthranilate degradation may be important for
wild-type levels of quinolone, and therefore phenazine production.

The sRNAs PrrF1 and PrrF2 have been characterized in further detail in
P. aeruginosa PAO1. PrrF1 and PrrF2 are encoded by adjacent loci and repressed
by the iron-dependent regulator Fur when iron is abundant (Wilderman et al. 2004;
Oglesby et al. 2008). They are expressed during iron limitation and base-pair with
target mRNAs, preventing their translation. One such target is the transcript of
sodB, which encodes superoxide dismutase and is, for unknown reasons, required
for PYO production in P. aeruginosa PAO1 (Hassett et al. 1995). Also in this
strain, a prrF1/prrF2 mutant shows increased expression of the antABC operon, an
effect that seems to contradict the simultaneous upregulation of antABC and
prrF1/prrF2 transcripts in the lrs1 mutant of strain PA14 (Wurtzel et al. 2012).
This may represent a strain-dependent difference in this branch of the P. aeru-
ginosa sRNA-dependent regulatory network.

Expression of PhrS, an sRNA that positively controls translation of pqsR
mRNA, is also controlled by a regulator that responds to an environmental cue: the
oxygen-sensitive transcription factor ANR. In the absence of PhrS, pqsR mRNA
adopts an intramolecular secondary structure in which an upstream open reading
frame base-pairs with the pqsR transcript and inhibits translation. Under oxygen-
limited conditions, ANR is activated and induces expression of PhrS. PhrS com-
petes with the pqsR transcript for binding of its 50 untranslated region, and via this
anti-antisense mechanism, exposes the pqsR mRNA to allow for ribosome binding
and translation. This regulatory cascade was elucidated in P. aeruginosa PAO1,
where a PhrS-overexpressing strain shows increased PYO production due to ele-
vated PqsR levels and quinolone production (Sonnleitner et al. 2011).

Hfq, an abundant mRNA-binding protein found in diverse bacteria, also affects
phenazine production through post-transcriptional mechanisms. In P. aeruginosa
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M18, Hfq binds qscR and phzM mRNA transcripts via AU-rich sequences present
in their 50-leader sequences and inhibits their translation (Wang et al. 2012b). As
qscR is a negative regulator of the phz operons, and phzM is required for the
conversion of PCA to PYO, Hfq would be expected to enhance phenazine pro-
duction overall but limit PYO production. In mutants lacking functional Hfq,
Wang et al. observed increased PYO production and decreased PCA production,
consistent with decreased production of the PhzA-G biosynthetic enzymes, but
increased translation of phzM. Formation of the active, hexameric form of Hfq is
promoted by the RelA enzyme, a critical regulator of the stringent response to
amino acid starvation (Argaman et al. 2012). P. aeruginosa PAO1 relA mutants
also overproduce PYO, suggesting that Hfq may regulate translation of the phzM
transcript in this strain according to a mechanism similar to the one described for
M18 (Erickson et al. 2004).

2.3.4 Environmental Signals and Conditions Affecting phz
Gene Expression

Many studies characterizing the conditional dependence of phenazine production
have revealed environmental cues that affect the regulation of this process and, in
some cases, mechanisms linking the condition to the response. These studies have
evaluated the effects of environmental parameters such as temperature, pH,
salinity, and oxygen availability. They have also examined how phenazine pro-
duction is influenced by the availability of carbon and nitrogen sources, phosphate,
sulfate, iron, and magnesium. These environmental variables can affect phenazine
production by indirectly or directly altering expression of Phz proteins (for
example, through their effects on the production of signals upstream in the regu-
latory cascade (van Rij et al. 2004; Farrow and Pesci 2007)), or they can alter the
availability of substrates and thus, flux through the relevant metabolic pathways
that support phenazine biosynthesis.

The effect of temperature on phenazine production has been investigated in P.
chlororaphis PCL1391, P. fluorescens 2-79, and multiple strains of P. aeruginosa.
P. chlororaphis PCL1391 produces the PCA derivative phenazine-1-carboxamide
(PCN) at comparable levels when grown at temperatures ranging from 21 to
31 �C, but production is almost undetectable when it is grown at 16 �C (van Rij
et al. 2004). In P. fluorescens 2-79, PCA production was found to inversely cor-
relate with temperature in a survey of temperatures ranging from 25 to 37 �C
(Slininger and Shea-Wilbur 1995). In P. aeruginosa M18, transcription of phz1
and phz2 is elevated at 28 �C compared to 37 �C, and this correlates with a large
increase in PCA production (Huang et al. 2009). In P. aeruginosa PA14, PYO
production increases modestly when this strain is grown at 37 �C compared to
28 �C. Using RNA-seq, Wurtzel et al. (2012) found that the transcript abundances
of both phz1 and phz2 are elevated at the higher temperature, with a larger effect
on phz1 than phz2. These results also indicated the presence of a temperature-
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dependent transcriptional start site upstream of phzB1. The differential regulation
of phzA1 and phzB1 is interesting because these two genes encode highly similar
proteins that form heterodimers required for in vivo formation of the phenazine
core. Temperature-dependent differences in expression may have consequences for
PhzA/B dimerization (Ahuja et al. 2008).

Ambient oxygen levels also influence the production of different phenazine
derivatives. In P. aeruginosa, PCA can be biosynthesized anaerobically (Dietrich
et al. 2006; Mentel et al. 2009; Recinos et al. 2012). However, oxygen is required
for the conversion of 5-methylphenazine-1-carboxylic acid (the product of PhzM,
5-MCA) to PYO by the PhzS monooxygenase. Therefore, PYO production is
inhibited in the absence of oxygen. Interestingly, Holliman (1969) reported
increased production of the red phenazines aeruginosin A and B in low oxygen
conditions; inefficient conversion of 5-MCA to PYO may shunt the biosynthetic
pathway toward the production of these alternative phenazines when oxygen is
limited. An effect of oxygen limitation on phenazine biosynthesis has also been
observed in P. chlororaphis PCL1391, where growth in low oxygen conditions
leads to PCN overproduction (van Rij et al. 2004).

The effects of pH and salinity on phenazine production have been tested in
biocontrol strains, where optimization of soil conditions could facilitate the
application of such strains for crop growth promotion. P. chlororaphis PCL1391
produces PCN when grown at pH 7 or pH 8, but not at pH 6 (van Rij et al. 2004).
For P. fluorescens 2-79, however, PCA production was maximized at pH 7, par-
tially decreased but still substantial at pH 6, and abolished at pH 8 (Slininger and
Shea-Wilbur 1995). Increasing concentrations of salts decreased PCN production
in P. chlororaphis PCL1391, but this effect was specific to ionic solutes as xylose
did not affect PCN production when introduced at isoosmotic levels, and osmo-
protectants did not restore PCN production in a high-salt medium.

Variations in the availability of minerals and the compounds that provide the
major elements for biomass can have dramatic effects on phenazine biosynthesis.
In a survey of carbon sources for growth of P. chlororaphis PCL1391, van Rij
et al. (2004) found that glucose, glycerol, and L-pyroglutamic acid gave rise to the
highest levels of PCN production. The amount of PCN produced did not correlate
with growth rate, and the most stimulatory carbon sources were not the most
abundant organic compounds in the rhizosphere, where the organism is commonly
found. Glucose and glycerol have also been found to stimulate PCA production in
P. fluorescens 2-79. That glucose and glycerol promote the highest levels of
phenazine production is surprising because they are not preferred carbon sources
for pseudomonads; unlike E. coli, Pseudomonas species typically utilize organic
acids such as succinate before utilizing sugars (Behrends et al. 2009; Rojo 2010;
Valentini and Lapouge 2012).

Given that phenazine structures, and particularly that of PCN, contain multiple
nitrogen atoms, one would predict that the type of nitrogen source provided would
affect phenazine production. Generally, supplementation with amino acids stimu-
lates phenazine production, but the effects of individual amino acids and inorganic
nitrogen sources on phenazine production vary widely between species and
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conditions. Increasing levels of nitrogen provided as ammonium sulfate stimulated
PCN production in P. chlororaphis PCL1391, but did not stimulate PCA production
in P. fluorescens. Although glutamine is used to form the carboxamide functional
group in PCN, the addition of this amino acid to the medium did not stimulate PCN
production any more than other individual amino acids such as leucine. All aromatic
amino acids stimulate PCN production in P. chlororaphis PCL1391, whereas the
effects of phenylalanine, tryptophan, and tyrosine on PYO production in P. aeru-
ginosa appear to be strain- and condition-dependent (Burton et al. 1947, Palmer et al.
2007). The effect of tryptophan in particular is at least partially related to its ability to
serve as a precursor for quinolone biosynthesis (Farrow and Pesci 2007).

In both P. aeruginosa and P. chlororaphis PCL1391, PYO and PCN produc-
tion, respectively, are maximized when the medium contains an intermediate level
of phosphate; this is apparently not an artifact of effects on growth (Burton et al.
1947; van Rij et al. 2004). Iron and magnesium supplementation at micromolar
levels is required and optimal for growth and phenazine production by P. aeru-
ginosa and P. chlororaphis PCL1391. Because iron and magnesium are often
provided as sulfate salts, it can be difficult to decouple their effects from that of
varying the sulfur source. The importance of sulfate has been thoroughly evaluated
in P. chlororaphis PCL1391, however, where millimolar concentrations are
required for maximum production of PCN (van Rij et al. 2004).

2.4 Regulation of Phenazine Biosynthesis in Other Genera

In addition to the Pseudomonas species we have discussed, many diverse species
belonging to other genera also produce phenazines with highly derivatized
chemical structures (Table 2.1). Relatively little is known about the regulation of
phenazine biosynthesis in these species, but recent studies have identified regu-
lators that affect the process in strains of Burkholderia and Streptomyces (Ramos
et al. 2010; Saleh et al. 2012). In Burkholderia cenocepacia K56-2, wild-type
phenazine production requires a regulator called phenazine biosynthesis regulator
(Pbr), which is encoded by a gene that lies near phzF and phzD homologues on the
chromosome (Ramos et al. 2010). Pbr binds to the promoter region of the phzF-
phzD operon and is required for wild-type expression. In Streptomyces anulatus
9663, regulators of phz gene expression have been identified through character-
ization of a large gene cluster that includes all of the genes required for PCA
biosynthesis and genes required for transformation of PCA to the prenylated
phenazines endophenazines A and E (Saleh et al. 2012). One of these regulators,
encoded by the gene ppzV, is similar to a putative TetR-family regulator called
EpzV found in S. cinnamonensis, another phenazine-producer. Inactivating the
ppzV gene in a strain expressing the large phenazine biosynthetic cluster led to loss
of the ability to produce prenylated phenazines but an increase in the amount of
unprenylated phenazines, suggesting that the ppzV product regulates PCA deriv-
atization. The second regulator, encoded by ppzY, is similar to transcriptional
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regulators of the LysR family. Inactivation of ppzY led to a nearly complete defect
in all phenazine production, suggesting that the ppzY product is required for
expression of PCA biosynthetic genes in S. anulatus 9663.

2.5 Conclusion

Characterization of the regulation of phenazine biosynthesis in diverse Pseudo-
monas isolates has revealed common mechanisms and hierarchies. As more of the
mechanisms regulating phenazine biosynthesis in other genera are uncovered, it
will be interesting to compare them to the Pseudomonas paradigm and evaluate
their physiological relevance in these new contexts. The intricacy of the networks
controlling phenazine production in Pseudomonas is becoming clear at a time
when phenazines themselves are gaining recognition for their roles in bacterial
physiology, which include intercellular signaling and redox balancing. The mul-
tilayered cascades that modulate phenazine biosynthesis are consistent with their
new status as primary players in cellular metabolism and communication. Indi-
cations that not just the core genes for PCA synthesis, but also the genes for PCA
modification, are regulated at multiple levels may suggest that different phenazines
perform different physiological roles, consistent with their unique chemistries.

Although our understanding of the complicated networks controlling phenazine
production is still developing, a hint at this complexity has long been evident in the
variability of phenazine production that is apparent among species, isolates, and
even repeat cultivations of the same strain. Differences in phenazine production
among strains of the same species likely arise in part from subtle discrepancies in
regulatory networks and sensing mechanisms. On the other hand, differences
between repeat experiments imply that, although many of the conditions and
regulators that affect phenazine production have been identified, unrecognized
variables can still alter phenazine production in unpredictable ways. Elucidating
the parameters and mechanisms that affect this process has the potential to facil-
itate the use of beneficial phenazine-producing pseudomonads in agriculture,
support the development of therapeutics for patients suffering from P. aeruginosa
infections, and allow us to learn new techniques for controlling antibiotic pro-
duction in diverse species.
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