
WASP: A Native ASP Solver
Based on Constraint Learning�

Mario Alviano, Carmine Dodaro, Wolfgang Faber,
Nicola Leone, and Francesco Ricca

Department of Mathematics and Computer Science,
University of Calabria, 87036 Rende, Italy

{alviano,dodaro,faber,leone,ricca}@mat.unical.it

Abstract. This paper introduces WASP, an ASP solver handling disjunctive logic
programs under the stable model semantics. WASP implements techniques orig-
inally introduced for SAT solving that have been extended to cope with ASP
programs. Among them are restarts, conflict-driven constraint learning and back-
jumping. Moreover, WASP combines these SAT-based techniques with optimiza-
tion methods that have been specifically designed for ASP computation, such
as source pointers enhancing unfounded-sets computation, forward and back-
ward inference operators based on atom support, and techniques for stable model
checking. Concerning the branching heuristics, WASP adopts the BerkMin crite-
rion hybridized with look-ahead techniques. The paper also reports on the results
of experiments, in which WASP has been run on the system track of the third
ASP Competition.

1 Introduction

Answer Set Programming (ASP) [1] is a declarative programming paradigm which has
been proposed in the area of non-monotonic reasoning and logic programming. The
idea of ASP is to represent a given computational problem by a logic program whose
answer sets correspond to solutions, and then use a solver to find them.

The ASP language considered here allows disjunction in rule heads and nonmono-
tonic negation in rule bodies. These features make ASP very expressive; all problems in
the second level of the polynomial hierarchy are indeed expressible in ASP [2]. There-
fore, ASP is strictly more expressive than SAT (unless P = NP). Despite the intrinsic
complexity of the evaluation of ASP, after twenty years of research many efficient ASP
systems have been developed. (e.g. [3–5]).The availability of robust implementations
made ASP a powerful tool for developing advanced applications in the areas of Arti-
ficial Intelligence, Information Integration, and Knowledge Management; for example,
ASP has been used in industrial applications [6], and for team-building [7], semantic-
based information extraction [8], and e-tourism [9]. These applications of ASP have
confirmed the viability of the use of ASP. Nonetheless, the interest in developing more

� This research has been partly supported by project PIA KnowRex POR FESR 2007- 2013
BURC n. 49 s.s. n. 1 16/12/2010, by MIUR project FRAME PON01 02477/4, and by the
European Commission, European Social Fund and Regione Calabria.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 54–66, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

WASP: A Native ASP Solver Based on Constraint Learning 55

effective and faster systems is still a crucial and challenging research topic, as witnessed
by the results of the ASP Competition series (see e.g. [10]).

This paper provides a contribution in the aforementioned context. In particular, we
present a new ASP solver for propositional programs called WASP. The new system
is inspired by several techniques that were originally introduced for SAT solving, like
the Davis-Putnam-Logemann-Loveland (DPLL) backtracking search algorithm [11],
clause learning [12], backjumping [13], restarts [14], and conflict-driven heuristics [15]
in the style of BerkMin [16]. The mentioned SAT-solving methods have been adapted
and combined with state-of-the-art pruning techniques adopted by modern native dis-
junctive ASP systems [3–5]. In particular, the role of Boolean Constraint Propagation
in SAT-solvers (based only on unit propagation inference rule) is taken by a procedure
combining several of inference rules. Those rules combine an extension of the well-
founded operator for disjunctive programs with a number of techniques based on ASP
program properties (see, e.g., [17]). In particular, WASP implements techniques specifi-
cally designed for ASP computation, such as source pointers [18] enhanced unfounded-
set computation, native forward and backward inference operators based on atom
support [17]. Moreover, WASP uses a branching heuristics based on a mixed approach
between BerkMin-like heuristics and look-ahead which takes into account minimality
of answer sets, a requirement not present in SAT solving. Finally, stable model check-
ing, which is a co-NP-complete problem for disjunctive logic programs, is implemented
relying on the rewriting method of [19] and by calling MiniSAT [20].

In the following, after briefly introducing ASP, we describe the new system WASP,
whose source available at http://www.mat.unical.it/ricca/wasp. We start
from the solving strategy and present the design choices regarding propagation, con-
straint learning, restarts, and the heuristics. We also report on an experiment in which
we have run WASP on all instances used in the third ASP Competition [10]. In particu-
lar, we compare our system with all participants and analyze in detail the impact of our
design choices. Finally, we discuss related work and draw the conclusion.

2 Preliminaries

Let A be a countable set of propositional atoms. A literal is either an atom (a positive
literal), or an atom preceded by the negation as failure symbol not (a negative literal).
A program is a finite set of rules of the following form:

p1 ∨ · · · ∨ pn :- q1, . . . , qj , not qj+1, . . . , not qm (1)

where p1, . . . , pn, q1, . . . , qm are atoms and n ≥ 0, m ≥ j ≥ 0. The disjunction
p1 ∨ · · · ∨ pn is called head, and the conjunction q1, . . . , qj , not qj+1, . . . , not qm is
referred to as body. For a rule r of the form (1), the following notation is also used: H(r)
denotes the set of head atoms; B(r) denotes the set of body literals; B+(r) and B−(r)
denote the set of atoms appearing in positive and negative body literals, respectively;
C(r) := H(r) ∪ B(r) is the nogood representation of r [4]. In the following a rule
r is said to be regular if |H(r)| ≥ 1, and a constraint if |H(r)| = 0. Moreover, the
complement of a literal � is denoted �, i.e., a = not a and not a = a for an atom a.
This notation extends to sets of literals, i.e., L := {� | � ∈ L} for a set of literals L.

http://www.mat.unical.it/ricca/wasp

56 M. Alviano et al.

An interpretation I is a set of literals, i.e., I ⊆ A ∪ A. Intuitively, literals in I are
true, literals whose complements are in I are false, and all other literals are undefined. I
is total if there are no undefined literals, and I is inconsistent if there is a ∈ A such that
{a, not a} ⊆ I . An interpretation I satisfies a rule r if C(r)∩ I �= ∅, while I violates r
if C(r) ⊆ I . A model of a program P is a total interpretation satisfying all rules of P .
The semantics of a program P is given by the set of its answer sets (or stable models)
[1], where a total interpretation M is an answer set (or stable model) for P if and only
if M is a subset-minimal model of the reduct PM obtained by deleting from P each
rule r such that B−(r) ∩ I �= ∅, and then by removing all the negative literals from the
remaining rules.

3 Answer Set Computation

In this section we review the algorithms and the heuristics implemented in WASP. For
reasons of presentation, we have considerably simplified the procedures in order to
focus on the main principles.

3.1 Main Algorithm

An answer set of a given propositional program P is computed in WASP by using Al-
gorithm 1, which is similar to the Davis-Putnam procedure in SAT solvers. The process
starts with an empty interpretation I in input. Function Propagate extends I with those
literals that can be deterministically inferred (line 2) and keeps track of the reasons of
each inference by building a representation of the so-called implication graph [15]. This
function is similar to unit propagation as employed by SAT solvers, but also uses the
peculiarities of ASP for making further inferences (e.g., it uses the knowledge that ev-
ery answer set is a minimal model). Propagate, described in more detail in Section 3.2,
returns false if an inconsistency (or conflict) is detected, true otherwise. If Propagate
returns true and I is total (line 3), CheckModel is invoked (line 4) to verify that I is
an answer set by using the techniques described in [19]. In particular, for non head-
cycles-free programs the check is co-NP-complete [21] and implemented by a call to
the SAT solver MiniSAT [20]. If the stability check succeeds, I is returned; otherwise,
I contains some unfounded sets which are analyzed by the procedure AnalyzeConflic-
tAndLearnConstraints (described later). Otherwise, if there are undefined literals in I , a
heuristic criterion is used to chose one, say �. Then computation proceeds with a recur-
sive call to ComputeAnswerSet on I ∪ {�} (lines 6–7). In case the recursive call returns
an answer set, the computation ends returning it (lines 8–9). Otherwise, the algorithm
unrolls choices until consistency of I is restored (backjumping; lines 10–11), and the
computation resumes by propagating the consequences of constraints learned by the
conflict analysis. Conflicts detected during propagation are analyzed by procedure An-
alyzeConflictAndLearnConstraints (line 12; described in Section 3.3).

This general procedure is usually complemented with some heuristic techniques that
control the number of learned constraints (which may be exponential in number), and
possibly restart the computation to explore different branches of the search tree. Our
restart policy is based on the sequence of thresholds introduced in [22], while our
learned constraint elimination policy is described in Section 3.4.

WASP: A Native ASP Solver Based on Constraint Learning 57

Algorithm 1. Compute Answer Set
Input : An interpretation I for a program P
Output: An answer set for P or Incoherent

1 begin
2 while Propagate(I) do
3 if I is total then
4 if CheckModel(I) then return I ;
5 break; // goto 12

6 � := ChooseUndefinedLiteral();
7 I ′ := ComputeAnswerSet(I ∪ {�});
8 if I ′ �= Incoherent then
9 return I ′;

10 if there are violated learned constraints then
11 return Incoherent ;

12 AnalyzeConflictAndLearnConstraints(I);
13 return Incoherent ;

3.2 Propagation

WASP implements a number of deterministic inference rules for pruning the search
space during answer set computation. These propagation rules are named unit, sup-
port, and well-founded. During the propagation of deterministic inferences, implication
relationships among literals are stored in the implication graph. Each node � in the im-
plication graph is labelled with a decision level representing the number of nested calls
to AnswerSetComputation at the point in which � has been derived. Note that the im-
plication graph contains at most one node for each atom unless a conflict is derived, in
which case for some atom a both a and its negation are in the graph. In the following,
we describe the propagation rules and how the implication graph is updated in WASP.

Unit Propagation. An undefined literal � is inferred by unit propagation if there is a
rule r that can be satisfied only by �, i.e., r is such that � ∈ C(r) and C(r) \ {�} ⊆ I .
In the implication graph we add node �, and arc (�′, �) for each literal �′ ∈ C(r) \ {�}.

Support Propagation. Answer sets are supported models, i.e., for each atom a in an
answer set there is a (supporting) rule r such that a ∈ H(r), B(r) ⊆ I and H(r)∩ I =
{a}. Support is on the basis of two propagation rules named forward and backward.

Forward propagation derives as false all atoms for which there are no candidate sup-
porting rules. More formally, literal not a is derived if for each rule r having a in the
head I∩C(r)\{not a} �= ∅ holds. In the implication graph, a node not a is introduced,
and for each rule r having a in the head an arc (�, not a), where � ∈ C(r) \ {not a},
is added. Within WASP, literal � is the first literal that satisfied r in chronological order
of derivation, which is called first satisfier of r in the following.

Backward propagation occurs when for a true atom there is only one candidate sup-
porting rule. More in detail, if there are an atom a ∈ I and a rule r such that a ∈ H(r)
and for each other rule r′ having a in the head I ∩ C(r′) \ {not a} �= ∅ holds, then all
literals in C(r) \ I are inferred. Concerning the implication graph, we add node � and

58 M. Alviano et al.

arc (a, �) for each � ∈ C(r) \ I . Moreover, for each � ∈ C(r) \ I and r′ having a in the
head and different from r, we add an arc (�′, �), where �′ is the first satisfier of r′.

Well-Founded Propagation. Self-supporting truth is not admitted in answer sets.
According to this property, a set X of atoms is unfounded if for each r such that H(r)∩
X �= ∅ at least one of the following conditions is satisfied: (i) B(r) ∩ I �= ∅; (ii)
B+(r) ∩X �= ∅; (iii) I ∩H(r) \X �= ∅. Intuitively, atoms in X can have support only
by themselves, and can thus be derived false.

To compute unfounded sets we adopted source pointers [18]. Roughly, for each atom
we set a rule r as its candidate supporting rule, referred to as its source pointer. Source
pointers are constrained to not introduce self-supporting atoms, and are updated during
the computation. Atoms without source pointers form an unfounded set and are thus
derived false. Concerning the implication graph, for each atom a ∈ X , node not a is
added. Moreover, for each a ∈ X and for each rule r having a in the head and first
satisfier � of r (� /∈ X), arc (�, not a) is added. Note that since � /∈ X the implication
graph is acyclic.

3.3 Constraint Learning

Constraint learning acquires information from conflicts in order to avoid exploring the
same search branch several times. In WASP there are two causes of conflicts: failed
propagation and stability check failures.

Learning from Propagation. In this case, our learning schema is based on the concept
of the first Unique Implication Point (UIP) [15]. A node n in the implication graph is a
UIP for a decision level d if all paths from the literal chosen at the level d to the conflict
literals pass through n. We calculate UIPs only for the decision level of conflicts, and
more precisely the one closest to the conflict, which is called the first UIP. Our learning
schema is as follows: Let u be the first UIP. Let L be the set of literals different form
u occurring in a path from u to the conflict literals. The learned constraint comprises u
and each literal � such that the decision level of � is lower than the one of u and there is
an arc (�, �′) in the implication graph for some �′ ∈ L.

Learning from Model Check Failure. Answer set candidates are checked for stabil-
ity by function CheckModel in Algorithm 1. If a model M is not stable, an unfounded
set X ⊆ M is computed. X represents the reason for the stability check failure. Thus,
we learn a constraint c containing all atoms from X and first satisfiers of possible sup-
porting rules for atoms in X . More formally, a literal � is in B(c) if either � ∈ X or � is
the first satisfier of some rule r s.t. H(r) ∩X �= ∅ and B+(r) ∩X = ∅.

3.4 Heuristics

A crucial role is played by the heuristic criteria used for both selecting branching literals
and removing learned constraints.

Branching Heuristic. Concerning the branching heuristics, implemented by function
ChooseUndefinedLiteral in Algorithm 1, we adopt a mixed approach between look-
back and look-ahead techniques. The idea is to record statistics on atoms involved in

WASP: A Native ASP Solver Based on Constraint Learning 59

Function ChooseUndefinedLiteral
Output: A branching literal

1 begin
2 if there is no learned constraint then
3 a := MostOccurrentAtom();
4 return MostOccurrentPolarity(a);

5 if there is an undefined learned constraint then
6 c := MostRecentUndefinedLearnedConstraint() ;
7 Candidates := AtomsWithHighestCV(c);
8 if |Candidates| = 1 then
9 return HighestGCVPolarity(Candidates);

10 a := AtomCancellingMoreRules(Candidates);
11 return PolarityCancellingMoreRules(a);

12 a := AtomWithHighestCV();
13 return LookAhead(a) ;

constraint learning so to prefer those involved in most recent conflicts (look-back), and
in some case the branching literal is chosen by estimating the effects of its propagation
(look-ahead). More in detail, WASP implements a variant of the criterion used in the
BerkMin SAT solver [23]. In this technique each literal � is associated with counters
cv(�) and gcv(�), initially set to zero. When a new constraint is learned, counters for
all literals occurring in the constraint are increased by one. Moreover, counters are
also updated during the computation of the first UIP: If a literal � is traversed in the
implication graph, the associated counters are increased by one, and counters cv(·) are
divided by 4 every 100 conflicts. Thus, literals that are often involved in conflicts will
have larger values of cv(·) and gcv(·), where counters cv(·) give more importance to
literals involved in recent conflicts.

The branching criterion is reported in function ChooseUndefinedLiteral. Initially,
there is no learned constraint (line 2), and the algorithm selects the atom, say a, oc-
curring most frequently in rules. Then, the most occurrent literal of a and not a is
returned. After learning some constraints, two possible scenarios may happen. If there
are undefined learned constraints (line 5), the one that was learned more recently, say
c, is considered, and the atoms having the highest value of cv(·) are candidate choices.
If there is only one candidate, say a, then the literal between a and not a having the
maximum value of gcv(·) is returned. (If gcv(a) = gcv(not a) then not a is returned.)
If there are several candidates, an ASP specific criterion is used for estimating the effect
of the candidates on the number of potentially supporting rules. In particular, let a be an
atom occurring most often in unsatisfied regular rules. The heuristic chooses the literal
between a and not a that satisfies the largest number of rules.

The second scenario happens when all learned constraints are satisfied. In this case
one atom, say a, having the highest value of cv(·) is selected, and a look-ahead pro-
cedure is called to determine the most promising polarity (lines 12–13). Actually, a
look-ahead step is performed by propagating both a and not a, and the impact of the
two assumptions on answer set computation is estimated by summing up the number

60 M. Alviano et al.

of inferred atoms and the number of rules that have been satisfied. The literal hav-
ing greater impact is chosen, and in case of a tie the negative literal is preferred. It is
important to note that if one of the two propagations fails, the conflict is analyzed as
described in Section 3.3, and a constraint is learned and propagated. Possibly, after the
propagation, a new branching literal is selected applying the above criterion.

Deletion of Constraints. The number of learned constraints can grow exponentially,
and this may cause a performance degradation. A heuristic is employed for deleting
some of them, typically the ones that are not involved often in the more recent conflicts.
To this end, learned constraints are associated with activity counters as implemented
in the SAT solver MiniSAT [20]. The activity counters measure the number of times
a constraint was involved in the derivation of a conflict. Once the number of learned
constraints is greater than one third of the size (in number of rules) of the original pro-
gram, constraint deletion is performed as follows: First, all constraints having an activity
counter smaller than a threshold are removed (as in MiniSAT) if they are unlocked. A
constraint c is unlocked if C(c)\I �= ∅ (roughly, c is undefined and not directly involved
in propagations). If this cancellation step removes less than half of the constraints, an
additional deletion step is performed. In particular, unlocked constraints having activity
less than the average are removed possibly until the number of constraints halves. Note
that the second cancellation step is done differently in MiniSAT; our policy seems to be
effective in practice for ASP.

4 Experiments

In this section we report the results of an experiment assessing the performance of
WASP. In particular, we first compare WASP with all participants of the System Track
of the 3rd ASP Competition. Then, we analyze in detail the behavior of WASP in spe-
cific domains that help to understand strengths and weaknesses of our solver. The exper-
iments were run on the very same benchmarks, hardware and execution platform used
in the 3rd ASP Competition [10]. In particular, we used a four core Intel Xeon CPU
X3430 2.4 GHz, with 4 GB of physical RAM and PAE enabled, running Linux Debian
Lenny (32bit). As in the competition settings, WASP was benchmarked with just one
of the four processors enabled, and time and memory limits set to 600 seconds and 3
GiB (1 GiB = 230 bytes), respectively. Execution times and memory consumptions were
measured by the same programs and scripts employed in the competition. In particular,
we used the Benchmark Tool Run (http://fmv.jku.at/run/).

We have run WASP on the official instances of the System Track of the 3rd ASP
Competition [10]. In this paper we consider only problems featuring unstratified or dis-
junctive encodings, thus avoiding instances that are already solved by the grounders.
More in detail, we consider all problems in the NP and Beyond-NP categories, and the
polynomial problems Stable Marriage and Partners Unit Polynomial. The competition
suite included planning domains, temporal and spatial scheduling problems, combina-
torial puzzles, graph problems, and a number of real-world domains in which ASP was
applied. (See [10] for an exhaustive description of the benchmarks.)

WASP was coupled with a custom version of the DLV grounder properly adapted to
work with our solver. We report the results in Table 1 together with the official results

http://fmv.jku.at/run/

WASP: A Native ASP Solver Based on Constraint Learning 61

Table 1. Scores on the 3rd ASP Competition benchmark

Cumulative P NP Bnd-NP

System Total P NP BNP St
ab

le
M

ar
ri

ag
e

Pa
rt

ne
rU

ni
ts

P
ol

yn
om

ia
l

S
ok

ob
an

D
ec

is
io

n
K

ni
gh

tT
ou

r
D

is
ju

nc
tiv

eS
ch

ed
ul

in
g

Pa
ck

in
gP

ro
bl

em
L

ab
yr

in
th

M
C

S
Q

ue
ry

in
g

N
um

be
rl

in
k

H
an

oi
To

w
er

G
ra

ph
C

ol
ou

ri
ng

S
ol

it
ai

re
W

ei
gh

t-
A

ss
ig

nm
en

tT
re

e

M
az

eG
en

er
at

io
n

S
tr

at
eg

ic
C

om
pa

ni
es

M
in

im
al

D
ia

gn
os

is

claspd Score 668 13 552 103 0 13 68 68 30 0 65 75 69 31 19 11 20 96 12 91
Inst 425 10 355 60 0 10 45 40 25 0 45 50 40 25 10 10 15 50 10 50

Time 243 3 197 43 0 3 23 28 5 0 20 25 29 6 9 1 5 46 2 41

wasp Score 663 46 553 64 40 6 32 68 34 0 64 73 59 36 15 37 54 81 0 64
Inst 465 40 380 45 35 5 25 40 25 0 45 50 35 30 10 25 45 50 0 45

Time 198 6 173 19 5 1 7 28 9 0 19 23 24 6 5 12 9 31 0 19

claspfolio Score 627 18 609 - 5 13 66 65 37 0 63 75 64 47 55 21 21 95 - -
Inst 400 15 385 - 5 10 45 35 25 0 40 50 35 35 40 15 15 50 - -

Time 227 3 224 - 0 3 21 30 12 0 23 25 29 12 15 6 6 45 - -

clasp Score 617 20 597 - 6 14 78 63 38 0 78 75 65 39 23 21 21 96 - -
Inst 385 15 370 - 5 10 50 35 25 0 50 50 35 30 15 15 15 50 - -

Time 232 5 227 - 1 4 28 28 13 0 28 25 30 9 8 6 6 46 - -

idp Score 597 0 597 - 0 0 64 74 38 0 52 75 70 65 18 38 8 95 - -
Inst 370 0 370 - 0 0 45 45 25 0 30 50 40 45 10 25 5 50 - -

Time 227 0 227 - 0 0 19 29 13 0 22 25 30 20 8 13 3 45 - -

cmodels Score 582 0 510 72 0 0 67 56 21 0 62 75 30 51 29 18 6 95 0 72
Inst 380 0 335 45 0 0 45 30 20 0 45 50 20 35 20 15 5 50 0 45

Time 202 0 175 27 0 0 22 26 1 0 17 25 10 16 9 3 1 45 0 27

lp2diffz3 Score 394 0 394 - 0 0 42 55 0 0 0 70 45 47 27 25 0 83 - -
Inst 270 0 270 - 0 0 30 35 0 0 0 50 30 35 20 20 0 50 - -

Time 124 0 124 - 0 0 12 20 0 0 0 20 15 12 7 5 0 33 - -

sup Score 357 11 346 - 0 11 52 40 37 0 58 72 0 31 16 15 25 0 - -
Inst 250 10 240 - 0 10 35 25 25 0 40 50 0 25 10 10 20 0 - -

Time 107 1 106 - 0 1 17 15 12 0 18 22 0 6 6 5 5 0 - -

lp2sat2gmsat Score 321 11 310 - 0 11 36 10 32 0 46 71 22 47 17 29 0 0 - -
Inst 235 10 225 - 0 10 30 5 25 0 35 50 15 35 10 20 0 0 - -

Time 86 1 85 - 0 1 6 5 7 0 11 21 7 12 7 9 0 0 - -

lp2sat2msat Score 307 5 302 - 0 5 39 0 32 0 52 71 15 47 17 29 0 0 - -
Inst 225 5 220 - 0 5 30 0 25 0 40 50 10 35 10 20 0 0 - -

Time 82 0 82 - 0 0 9 0 7 0 12 21 5 12 7 9 0 0 - -

lp2sat2lmsat Score 301 0 301 - 0 0 35 0 32 0 53 71 17 47 17 29 0 0 - -
Inst 220 0 220 - 0 0 30 0 25 0 40 50 10 35 10 20 0 0 - -

Time 81 0 81 - 0 0 5 0 7 0 13 21 7 12 7 9 0 0 - -

smodels Score 269 0 269 - 0 0 0 55 36 0 9 53 27 0 0 0 0 89 - -
Inst 165 0 165 - 0 0 0 30 25 0 5 35 20 0 0 0 0 50 - -

Time 104 0 104 - 0 0 0 25 11 0 4 18 7 0 0 0 0 39 - -

62 M. Alviano et al.

of all participants of the competition. The results are expressed in terms of scores com-
puted with the same methods adopted in the competition. Roughly, the instance score
can be obtained multiplying by 5 the number of solved instances within the timeout,
whereas the time score is computed according to a logarithmic function of the execution
times (details can be found in http://www.mat.unical.it/aspcomp2011/
files/scoringdetails.pdf). The first column contains the total scores, fol-
lowed by columns containing data aggregated first by benchmark class, and then by
problem name. For each solver we report total score, instance score and time score in
separate rows. A dash in the table indicates that the corresponding solver cannot han-
dle the corresponding instances of a specific class/problem. We observe that the only
solvers able to deal with Beyond-NP problems are claspD, Cmodels and WASP.

As a general comment, by looking at Table 1 we can say that WASP is comparable in
performance with the best solvers in the group, and scored just 5 points less than claspD.
WASP solved more instances in overall, obtaining 40 points more than claspD for the
instance score. However, WASP performs worse than the five best solvers in terms of
raw speed, and in particular its time score is 45 points less than claspD. If we analyze
the results by problem class, we observe that WASP is the best solver in the P category,
and it is comparable to claspD but follows claspfolio, clasp and idp in NP. In Beyond-
NP, where claspD is the best solver, WASP solves the same instances as Cmodels but it
is slower than this latter. These results already outline some advantages and weaknesses
of our implementation. In particular, a weakness of WASP, also affecting claspD when
compared with clasp, is that handling unrestricted disjunction can cause a reduction in
performance in the NP category, which is however compensated in the total score by the
additional points earned in the Beyond-NP category. In this category WASP performs
similar to Cmodels, which can be justified by the similar learning strategy in case of
model checking failures that the two solvers adopt. Nonetheless, both the efficiency of
implementation and the interplay between the main algorithm and model checker has to
be significantly improved to fill the gap with claspD. The strength of WASP in P can be
explained as a combination of two factors. First, WASP uses the DLV grounder, which
in some cases produces a smaller program than Gringo. The second factor is that WASP
often requires less memory than the best five alternative solvers. This behavior makes
a sensitive difference in this category, where the instances of Stable Marriage are large
in size. We will analyze the issue of memory usage in more detail later, but it is worth
mentioning that WASP runs out of memory only 23 times in total, which is less than
any of the five best systems. In fact, according to the data reported on the Web site of
the Competition, claspD, clasp, claspfolio, idp, and Cmodels ran out of memory 63, 61,
56, 63, and 74 times, respectively.

Analyzing the results in more detail, there are some specific benchmark problems
where the differences among WASP and the five best participants in the competition
are significant. In these cases, the differing behaviors can be explained by different
choices made during design and implementation of solvers. Analyzing Table 1 from
left to right, the first of these problems is StableMarriage, which belongs to the P cat-
egory. As previously pointed out, in this category the combination of DLV (grounder)
and WASP needs less memory, which explains the result. Then there is SokobanDeci-
sion, in which WASP performed worse than several other solvers. To understand the

http://www.mat.unical.it/aspcomp2011/files/scoringdetails.pdf
http://www.mat.unical.it/aspcomp2011/files/scoringdetails.pdf

WASP: A Native ASP Solver Based on Constraint Learning 63

WASP
claspD

0

200

400

600

800

1000

0 5 10 15 20 25 30 35

M
em

or
y

us
ag

e
in

 M
B

Execution time in seconds

(a) WeigthAssignmentTree - instance n. 45

WASP
claspD

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600

M
em

or
y

us
ag

e
in

 M
B

Execution time in seconds

(b) StableMarriage - instance n.12

WASP
claspD

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

M
em

or
y

us
ag

e
in

 M
B

Execution time in seconds

(c) KnigthTour - instance n. 7

WASP
claspD

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300

M
em

or
y

us
ag

e
in

 M
B

Execution time in seconds

(d) PartnersUnitPolinomial - instance n. 206

Fig. 1. Memory usage in WASP and claspD

reason, we ran some additional experiments (not report due to space constraints), from
which we observed that both (i) the default heuristic of WASP is not suitable for this
problem; and (ii) profiling revealed that the implementation of well-founded propaga-
tion in WASP causes considerable overhead. Concerning (i), we verified that selecting
a different criterion (e.g., standard BerkMin) can sensibly improve performance. Even-
tually, WASP solves more instances of Weight-Assignment Tree than any alternative.
Here WASP, featuring a native implementation of support propagations, is advantaged
over other solvers, like clasp(D), Cmodels and idp, which apply Clark’s completion.
This is a rewriting technique that adds additional symbols and auxiliary rules to encode
the support requirement. It is known from the literature that adding these additional
symbols can lead to better performance [24], nonetheless, in this case they seem to
cause higher memory usage and slower propagation.

Some additional observations can be made by studying in more detail memory usage
of WASP and claspD. To this end we report in Figure 1 four plots depicting the mem-
ory consumption during the solvers’ execution. In particular, Figure 1(a) reports the
result for an instance of WeightAssignmentTree, a problem in the NP category whose
encoding is unstratified. In this case WASP performs better than claspD both in mem-
ory and time. We observed that the output of DLV is five times smaller than the output
of Gringo, which can justify the memory required by claspD up to 18 seconds. At that
point of execution, claspD doubles its memory consumption, which could be a side
effect of Clark’s completion. Figure 1(b) shows the result for an instance of Stable-
Marriage that neither WASP nor claspD solve in the allotted time. StableMarriage is a
problem in the P category and its encoding is unstratified. Also in this case we observe

64 M. Alviano et al.

that WASP is less memory demanding than claspD. Figure 1(c) depicts the results for
an instance of KnightTour, a problem in the NP category whose encoding is recursive.
In this case claspD requires half of the memory consumed by WASP, which is an in-
sight that our current implementation of the well-founded propagation is not optimal in
terms of memory consumption. Nonetheless, WASP is faster than claspD for the tested
instance. Finally, Figure 1(d) reports the result for PartnersUnitPolinomial, a problem
in the P category whose encoding is recursive. In this case claspD performs better than
WASP both in memory and size, which is partially due to DLV. In fact, even if DLV
and Gringo output programs of the same size for the tested instance, DLV terminated in
150 seconds, while Gringo just requires 50 seconds. Again, we note that WASP requires
more than two times the memory used by claspD in this unstratified encoding.

5 Related Work

WASP is inspired by several techniques that were originally introduced for SAT solv-
ing, like the DPLL backtracking search algorithm [11], clause learning [12], backjump-
ing [13], restarts [14], and conflict-driven heuristics [15] in the style of BerkMin [16].
Actually, some of the techniques adopted in WASP, including backjumping and look-
back heuristics, were first introduced for Constraint Satisfaction, and then successfully
applied to SAT and QBF solving. Some of these techniques were already adapted in
modern non-disjunctive ASP solvers like Smodelscc [25], clasp [4], Smodels [18], and
solvers supporting disjunction like Cmodels3 [5], and DLV [26].

More in detail, WASP differs from non-native solvers like Cmodels3 [5] that are
based on a rewriting into a propositional formula and an external SAT solver. Nonethe-
less, our learning strategy for stability check failures is similar to that of Cmodels3.
Concerning native solvers, WASP implements native support propagation rules and
model checking techniques similar to DLV [3]. However, we implement look-back
techniques borrowed from CP and SAT which are not present in DLV. In fact, DLV im-
plements a systematic backtracking without learning and adopts look-ahead heuristics.
We also mention an extension of DLV [26] that implements backjumping and look-
back heuristics, which however does not include clause learning, restarts, and does not
use an implication graph for determining the reasons of the conflicts. WASP uses an
implication graph which is similar to the one implemented in Smodelscc [25]. Nonethe-
less, there is an important difference between these two implication graphs. In fact, the
first one is guaranteed to be acyclic while the latter might be cyclic due to the well
founded propagation.

Our solver is more similar to clasp and its extension to disjunctive programs claspD.
In fact, source pointers, backjumping, learning, restarts, and look-back heuristics are
also used by clasp(D). There are nonetheless several differences with WASP. The first
difference is that clasp(D) use Clark’s completion for modeling support, while WASP
features a native implementation of support propagation (which caused major perfor-
mance differences in our experiments). Also, minimality is handled by learning no-
goods (called loop formulas) in clasp(D). It turns out that clasp(D) almost relies on unit
propagation and thus uses an implication graph that is more similar to SAT solvers.
Furthermore, there are differences concerning the restart policy, constraint deletion and

WASP: A Native ASP Solver Based on Constraint Learning 65

branching heuristics. WASP adopts as default a policy based on the sequence of thresh-
olds introduced in [22], whereas clasp(D) employs by default a different policy based
on geometric series. Concerning deletion of learned constraints, WASP adopts a cri-
terion inspired by MiniSAT. In clasp(D) a more involved criterion is adopted, where
constraints are cancelled when the size of the program grows up to a crescent threshold
depending on the number of restarts. Nonetheless, the program can grow in clasp(D)
up to three times the size of the original input, while WASP limits the growth of the
program to one third. Clasp(D) and WASP adopt a branching heuristics based on Berk-
Min [16] with differences in the intermediate steps of the selection procedure. WASP
extends the original BerkMin heuristics by using a look-ahead technique in place of the
“two” function calculating the number of binary clauses in the neighborhood of a literal
�. Moreover, WASP introduces an additional criterion based on supportedness of answer
sets for selecting among heuristically-equivalent candidate literals of the last undefined
learned constraint. Clasp(D) instead uses as intermediate step a variant of the MOMS
criterion. MOMS estimates the effect of the candidate literals in short clauses and is
convenient for clasp(D) because Clark’s completion produces many binary constraints.

6 Conclusion

In this paper we presented a new native ASP solver for propositional programs called
WASP. WASP builds upon a number of techniques originally introduced in the neigh-
boring fields of CP and SAT, which are extended and properly combined with tech-
niques specifically defined for solving disjunctive ASP programs. The performance of
WASP was assessed and compared with alternative implementations by running the
System Track of the 3rd ASP Competition. Our analysis shows that WASP is efficient
and can compete with the state-of-the-art solvers on this benchmark. The effects of a
native implementation of support propagations in a learning-based ASP solver is also
discussed, showing that this design choice pays off in terms of memory usage and time
performance in specific benchmark domains. The experiments also outline some spe-
cific weakness of the implementation (e.g., in Beyond NP domains), which will be
subject of future work. It is worth pointing out that the implementation of WASP is still
in an initial phase, yet the results obtained up to now are encouraging.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database
Systems 22, 364–418 (1997)

3. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The disjunctive dat-
alog system DLV. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2010.
LNCS, vol. 6702, pp. 282–301. Springer, Heidelberg (2011)

4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In: Twentieth International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 386–
392. Morgan Kaufmann Publishers (2007)

5. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight
Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp.
346–350. Springer, Heidelberg (2003)

66 M. Alviano et al.

6. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV applications for knowledge manage-
ment. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 591–597.
Springer, Heidelberg (2009)

7. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building
with answer set programming in the gioia-tauro seaport. Theory and Practice of Logic Pro-
gramming 12, 361–381 (2012)

8. Manna, M., Oro, E., Ruffolo, M., Alviano, M., Leone, N.: The HiLeX system for semantic
information extraction. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) TLDKS V. LNCS,
vol. 7100, pp. 91–125. Springer, Heidelberg (2012)

9. Ricca, F., Alviano, M., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone,
N.: A Logic-Based System for e-Tourism. Fundamenta Informaticae 105, 35–55 (2010)

10. Calimeri, F., et al.: The Third Answer Set Programming Competition: Preliminary Report of
the System Competition Track. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS,
vol. 6645, pp. 388–403. Springer, Heidelberg (2011)

11. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Com-
munications of the ACM 5, 394–397 (1962)

12. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient Conflict Driven Learning
in Boolean Satisfiability Solver. In: Proceedings of ICCAD 2001, pp. 279–285 (2001)

13. Gaschnig, J.: Performance measurement and analysis of certain search algorithms. PhD the-
sis, Carnegie Mellon University, Pittsburgh, PA, USA (1979) TR CMU-CS-79-124

14. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting Combinatorial Search Through Random-
ization. In: Proceedings of AAAI/IAAI 1998, pp. 431–437. AAAI Press (1998)

15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: Proceedings of DAC 2001, pp. 530–535. ACM (2001)

16. Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust Sat-Solver. In: Design, Automation
and Test in Europe Conference and Exposition, DATE 2002, Paris, France, pp. 142–149.
IEEE Computer Society (2002)

17. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In: Gel-
fond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 177–191.
Springer, Heidelberg (1999)

18. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligence 138, 181–234 (2002)

19. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. Artificial Intelligence 15, 177–212 (2003)

20. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

21. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs. An-
nals of Mathematics and Artificial Intelligence 12, 53–87 (1994)

22. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. Inf. Process.
Lett. 47, 173–180 (1993)

23. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. Discrete Appl. Math. 155,
1549–1561 (2007)

24. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg
(2006)

25. Ward, J., Schlipf, J.: Answer Set Programming with Clause Learning. In: Lifschitz, V.,
Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 302–313. Springer, Hei-
delberg (2003)

26. Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Program-
ming. AI Communications 19, 155–172 (2006)

	WASP: A Native ASP SolverBased on Constraint Learning
	1 Introduction
	2 Preliminaries
	3 Answer Set Computation
	3.1 Main Algorithm
	3.2 Propagation
	3.3 Constraint Learning
	3.4 Heuristics

	4 Experiments
	5 Related Work
	6 Conclusion
	References

