
Program Updating by Incremental
and Answer Subsumption Tabling

Ari Saptawijaya� and Luı́s Moniz Pereira

Centro de Inteligência Artificial (CENTRIA), Departamento de Informática
Faculdade de Ciências e Tecnologia, Univ. Nova de Lisboa, 2829-516 Caparica, Portugal

ar.saptawijaya@campus.fct.unl.pt, lmp@fct.unl.pt

Abstract. We propose a novel conceptual approach to program updates imple-
mentation that exploits two features of tabling in logic programming (in XSB
Prolog): incremental and answer subsumption tabling. Our approach, EVOLP/R,
is based on the constructs of Evolving Logic Programs (EVOLP), but simpli-
fies it at first by restricting updates to fluents only. Rule updates are nevertheless
achieved via the mechanism of rule name fluents, placed in rules’ bodies, permit-
ting to turn rules on or off, through assertions or retractions of their corresponding
unique name fluents. Incremental tabling of fluents allows to automatically main-
tain – at engine level – the consistency of program states. Answer subsumption of
fluents addresses the frame problem – at engine level – by automatically keeping
track of their latest assertion or retraction. The implementation is detailed here to
the extent that it may be exported to other logic programming tabling systems.

Keywords: logic program updates, incremental tabling, answer subsumption
tabling.

1 Introduction

In this paper we explore the use of state-of-the-art logic programming implementation
techniques to exploit their use in addressing a classical non-monotonic reasoning prob-
lem, that of logic program updates, with incidence on representing change, i.e. internal
or self and external or world changes. Our approach, EVOLP/R, follows the paradigm
of Evolving Logic Programs (EVOLP) [1], by adapting its syntax and semantics, but
simplifies it at first by restricting updates to fluents only. This restriction nevertheless
permits rule updates to take place, as long as we know the rules beforehand, i.e. ones not
constructed, learnt, or externally given. To update the program with such known-from-
the-start rules, special fluents that serve as names of rules and identify rules uniquely
are introduced. Such a rule name fluent is placed in the body of a rule to turn the rule
on and off (cf. [2]), this being achieved by asserting or retracting the rule name fluent.

We foster a novel implementation technique to program updates by exploiting Pro-
log tabling mechanisms, notably two features of XSB Prolog: incremental and answer
subsumption tabling. Incremental tabling of fluents allows to automatically maintain
the consistency of program states, analogously to assumption based truth-maintenance

� Affiliated with Fakultas Ilmu Komputer at Universitas Indonesia, Depok, Indonesia.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 479–484, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

480 A. Saptawijaya and L.M. Pereira

system, due to assertion and retraction of fluents. On the other hand, answer subsump-
tion of fluents allows to address the frame problem by automatically keeping track of
their latest assertion or retraction, whether obtained as updated facts or concluded by
rules. The employment of these tabling features has profound consequences in model-
ing agents. It permits separating higher-level declarative representation and reasoning,
as a mechanism pertinent to agents, from a world’s inbuilt reactive laws of operation.
The latter, being of no operational concern to the problem representation level, are rel-
egated to engine-level enacted tabling features. EVOLP/R is realized using a program
transformation plus a library of system predicates. The transformation adds some ex-
tra information, e.g. timestamps, for internal processing. Rule name fluents are system
generated and also added in the transform. System predicates are defined to operate on
the transform by combining the usage of incremental and answer subsumption tabling.

We describe the constructs of EVOLP/R (Section 2), detail the implementation tech-
nique (Section 3), and discuss related work along with concluding remarks (Section 4).

2 The EVOLP/R Language

For convenience, we represent EVOLP/R programs as propositional Horn theories, by
simply adapting EVOLP definitions [1]. Let K be an arbitrary set of propositional vari-
ables. We denote K̃ as the extension ofK, and is defined as K̃ = {A : A ∈ K} ∪ {∼A :
A ∈ K}. Atoms A ∈ K and ∼A are called positive fluents and negative fluents, respec-
tively. As in EVOLP, program updates are enacted by having the reserved predicate
assert/1 in the head of a rule. We define now the EVOLP/R language and program.

Definition 1. Let K̃ be the extension of a setK of propositional variables. The EVOLP/R
language L is defined inductively as follows:

1. All propositional atoms in K̃ are propositional atoms in L.
2. If A is a propositional atom in L, then assert(A) is a propositional atom in L.
3. If A is a propositional atom in L, then ∼assert(A) is a propositional atom in L.
4. If A0 is a propositional atom in L and A1, . . . , An, with n ≥ 0, are literals in L

(i.e. a propositional atom A, or its default negation not A), then A0 ← A1, . . . , An

is a rule in L.
5. Nothing else is a propositional atom in L.

An EVOLP/R program over a language L is a (possibly infinite) set of rules in L.

We extend the notion of positive and negative fluents in K̃ to propositional atoms
A and ∼A in L, respectively. They are said to be complement each other. When it is
clear from the context, we refer both of them as fluents. Retraction of fluent A (or ∼A),
making it false, is achieved by asserting its complement ∼A (or A, respectively). I.e.,
no reserved predicate for retraction is needed. Non-monotonicity of a fluent can thus be
admitted by asserting its complement, so as to let the latter supervene the former. Ob-
serve that the syntax permits embedded assertions of literals, e.g. assert(assert(a)),
∼assert(assert(a)); the latter being the complement of the former.

By Definition 1, EVOLP/R programs are not generalized logic programs (like in
EVOLP), but they nevertheless permit negative fluents in the rules’ heads. Indeed, one

Program Updating by Incremental and Answer Subsumption Tabling 481

may view negative fluents as explicit negations, and due to the coherence principle [3],
that explicit negation entails default negation, negative fluents obey the principle. There-
fore, the two forms of rules’ heads, i.e. assert(not A) in EVOLP and assert(∼A)
in EVOLP/R, can be treated equivalently. This justification allows the semantics of
EVOLP/R to be safely based on that of EVOLP, as long as the paraconsistency of simul-
taneously having A and ∼A is duly detected and handled, say with integrity constraints
or preferences. Note that EVOLP/R restricts updates to fluents only. Nevertheless, rule
updates (like in EVOLP) can be achieved, via the mechanism of rule name fluents,
placed in rules’ bodies, allowing to turn rules on or off, through assertions or retrac-
tions of their corresponding unique name fluents.

Like EVOLP, besides the self-evolution of a program, EVOLP/R also allows influ-
ence from the outside, either as an observation of fluents that are perceived at some
state, or assertion orders of fluents on the evolving program. Different from EVOLP,
the outside influence in EVOLP/R, referred as external updates, persist by inertia as
long as they do not conflict with the more recent values for them. Nevertheless, we may
easily define external updates that do not persist by inertia, called events in EVOLP, by
defining for every atomic event E the rule: assert(∼E)← E, i.e. if event E is imposed
at some state i, then it is no longer assumed from the next state, i.e. (i + 1), onwards.
In other words, E holds at state i only.

3 Implementing EVOLP/R in Tabled Logic Programming

Tabling in logic programming affords reuse of solutions, rather than recomputing them,
by maintaining subgoals and their answers (obtained in query evaluation) in a table.
In implementing EVOLP/R, we exploit in combination two features of tabling in XSB
Prolog [4]: (1) Incremental tabling, which ensures the consistency of answers in tables
with all dynamic facts and rules upon which the tables depend, and (2) Answer sub-
sumption, which allows tables to retain only answers that subsume others with respect
to some partial order relation. The reader is referred to [5] for the definitions, options,
examples and details of both features.

The EVOLP/R implementation consists of a compiled program transformation plus
a library of system predicates. The transformation adds information to program clauses:
(1) Timestamp includes two extra arguments of fluents, i.e. holds time (the time when a
fluent is true) and query time (the time when it is queried), (2) Rule name as a special
fluent $rule(p/n, idi), which identifies rule of predicate p with arity n by its unique
name identity idi, and is introduced in its body, for checking that the rule still holds.

Transformation. Example 1 illustrates the transformation technique and how the extra
information figures in the transform (predicates $rule and assert are written as $r
and as, respectively). In EVOLP/R, the initial timestamp is set at 1, when a program is
inserted. Fluent predicates can be defined as facts (extensional) or by rules (intensional).

Extensional fluent instances, like a, are translated into a rule which inertially con-
strains its validity from its holds time up to query time Q. In Example 1, a holds at the
initial time 1. This validity may become superseded by that of the fluent’s complement.
For rule regulated intensional fluent instances, like b and as(∼a), unique rule name
fluents are introduced and translated just like for extensional fluents (lines 2, 4, 6).

482 A. Saptawijaya and L.M. Pereira

Line 3 shows the translation of rule b← a. The extra arguments in its head are holds
time H of fluent b and the query time Q. Calls to the goals in the body are translated into
calls to the system predicate holds/3 (defined later). In the transform of b ← a (line
3), the first goal in its body verifies whether the unique rule name fluent $r(b/0, id1)
holds within query time Q, in which case its latest holds time (i.e. the latest time up
to Q this rule was turned on) Hr is returned. The next goal verifies whether a holds
at Q by returning its latest holds time Ha. The validity of b at Q, with its holds time
H (≤ Q), is thus obtained from the maximum of Hr and Ha (i.e. H is determined by
which inertial fluent in its body holds latest), via max/2 system predicate.

Rule as(∼a) ← b is transformed into two rules: the transform in line 5 is similar to
that of rule b← a, whereas the one in line 7 is derived as the effect of asserting ∼a. I.e.,
the validity of ∼a, being queried at time Q, depends on the latest time when its rule was
turned on (Hr in 1st goal in the body) and when as(∼a) took place (Has in 4th goal in
the body). The latter goal is considered at a query time Qas, where 1 ≤ Qas ≤ Q − 1
(generated recursively via gen/2 system predicate), i.e. existential Has is obtained by
querying at a time point Qas within Q − 1, just before ∼a is queried (at Q). The holds
time H (≤ Q) of ∼a is thus determined, via max/2, between Hr and Has + 1 (rather
than Has, because ∼a is actually asserted one time step from the time as(∼a) holds).

Example 1. Program: a. b← a. as(∼a)← b. transforms into:

1. a(1, Q) ← 1 ≤ Q.
2. $r(b/0, id1, 1, Q) ← 1 ≤ Q.
3. b(H,Q) ← holds($r(b/0, id1), Hr, Q), holds(a,Ha, Q),

max([Hr, Ha], H), H ≤ Q.
4. $r(as(∼a/0), id1, 1, Q)← 1 ≤ Q.
5. as(∼a,H,Q) ← holds($r(as(∼a/0), id1), Hr, Q), holds(b,Hb, Q),

max([Hr, Hb], H), H ≤ Q.
6. $r(∼a/0, id1, 1, Q) ← 1 ≤ Q.
7. ∼a(H,Q) ← holds($r(∼a/0, id1), Hr, Q), Q′ is Q− 1,

gen(Qas, Q
′), holds(as(∼a), Has, Qas),

H ′
a is Has + 1, max([Hr , H

′
a], H), H ≤ Q.

Since any fluents occurring in the program may be updated, all fluents and their
complements should be declared as dynamic and incremental (in order to benefit from
incremental tabling), e.g. :- dynamic a/2,‘∼a’/2 as incremental. Their
incremental assertions may influence program states, notably the latest time when they
are true, which is maintained in conjunction with answer subsumption tabling.

System Predicates. We first introduce predicate fluent/3, i.e. given query time Qt,
fluent(F,Ht,Qt) looks for (dynamic) definitions of fluent F , and returns the one with
the latest holds time Ht. It makes good combined use of tabling features: (1) Since
fluent/3 aims at returning only the latest holds time of F , fluent/3 can be tabled
using answer subsumption on its second argument; and (2) Predicate fluent/3 depends
on dynamic fluent definitions of F , and this dependency indicates that fluent/3 can be
tabled incrementally, to avoid abolishing the table each time a Prolog assertion is made
and then recomputing from scratch. Consequently, predicate fluent/3 is declared as
:- table fluent(,po(’>’/2),) as incremental. It is defined as:

Program Updating by Incremental and Answer Subsumption Tabling 483

fluent(F,Ht,Qt)← extend(F, [Ht,Qt], F ′), call(F ′).

where extend(F,Args, F ′) extends the arguments of fluent F with those in list Args
to obtain F ′. Since fluent/3 enjoys incremental and answer subsumption tabling, it
cannot also be dynamic [5]; the latter being delegated to F ′.

Example 1 describes how predicate holds(F,Ht,Qt) should be interpreted, i.e. it
verifies whether fluent F is true in a given query time Qt, in which case its latest holds
time Ht is returned. It suggests that holds/3 can be defined using fluent/3, which
provides such latest holds time. But additionally, holds/3 has to make sure its fluent
complement ∼F does not hold after Ht, in which case F will fail to hold. I.e.,

holds(F,Ht,Qt)← compl(F, F ′), f luent(F,Ht,Qt), f luent(F ′, Ht′, Qt),
(Ht �= 0→ Ht ≥ Ht′ ; fail).

where compl(F, F ′) obtains the fluent complement F ′ from F . The last goal in the
body, i.e. (Ht �= 0 → Ht ≥ Ht′ ; fail), specifies the condition for F to successfully
hold. Observe that this condition requires every fluent and its complement to be defined
at time 0 (zero), i.e. they are set to true in that special (vacuum) moment in time. This
aims to prevent holds/3 to fail prematurely in calls to fluent/3, which may happen
when a fluent or its complement is not defined yet. The condition reads quite straight-
forward, where only positive timestamps are countenanced, i.e. Ht �= 0 (as they reflect
actual time after 0 when a fluent is true): F holds lastly at Ht with respect to query
time Qt only if Ht is at least the same as the latest holds time Ht′ of ∼F . Note that the
condition also implicitly covers the case when ∼F is never asserted (i.e. Ht′ = 0). It
also allows paraconsistency (in case Ht = Ht′), to be dealt by the user as desired.

Example 2. Recall Example 1, which is loaded initially at time 1. It is easy to ver-
ify that query holds(a,H, 1) succeeds with H = 1, whereas holds(a,H, 2) fails, but
holds(∼a,H, 2) succeeds with H = 2; the latter two persist by inertia. Suppose at time
3, an external update {a,∼$r(b/0, id1)} is given. Now, holds(a,H, 3) no longer fails,
but succeeds with H = 3, because fluent(a,H, 3) succeeds, now with H = 3 (instead
of with H = 1), thanks to incremental tabling (triggered by the external update a) and
answer subsumption, whereas fluent(∼a,H ′, 3) succeeds with H ′ = 2, and H ≥ H ′.
Moreover, due to the external update ∼$r(b/0, id1), rule b ← a is turned off at time
3; consequently holds(b,H, 3) fails (so do holds(as(∼a), H, 3) and holds(∼a,H, 4)).
Thus, a continues to hold at time 4, i.e holds(a,H, 4) succeeds with H = 3, onwards.

4 Concluding Remarks

We have proposed EVOLP/R as a simplified EVOLP, by restricting updates to fluents
only, for the moment. Rule updates can nevertheless be enacted by introducing a unique
rule name fluent to each rule, placed in its body, functioning as a switch to turn the rule
on and off. We also showed how incremental tabling is useful to facilitate fluent updates
incrementally in dynamic environments and evolving systems (in line with the goals of
introducing incremental tabling [6]), and in conjunction with answer subsumption, to
avoid recursing through the frame axiom but instead allow direct access to the latest
time when a fluent is true.

484 A. Saptawijaya and L.M. Pereira

As a distinct but somewhat similar and complementary approach, we should men-
tion the recent Logic-based Production System with abduction [7], and its successive
installments [8], aiming at defining a new encompassing logic-based framework for
computing, for knowledge representation and reasoning. It relies on the fundamental
role of state transition systems in computing, and involving fluent updates by destruc-
tive assignment. It is implemented in LPA Prolog [9], but no details are given about it.
In future, we intend to learn from their results and evolve EVOLP/R towards enabling
their higher level constructs and compare implementations. Their approach differs from
ours in that it defines a new language and an operational semantics, rather than taking
an existing one, and implements it on a commercial Prolog system with no underlying
tabling mechanisms.

It is our purpose to combine EVOLP/R with tabled abduction [10], so as to jointly
afford abduction and updating in one integrated XSB system by exploiting its tabling
features, and to apply the integrated system to abductive moral reasoning (cf. [11, 12]),
with updating and argumentation, as a sequel to our ongoing approach to this type of
non-monotonic reasoning.

Acknowledgements. We thank David S. Warren for elucidating features of tabling. AS
acknowledges the support of FCT/MEC Portugal, grant SFRH/BD/72795/2010.

References

1. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Flesca, S.,
Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–61.
Springer, Heidelberg (2002)

2. Poole, D.L.: A logical framework for default reasoning. Artificial Intelligence 36(1), 27–47
(1988)

3. Alferes, J.J., Pereira, L.M.: Reasoning with Logic Programming. LNCS (LNAI), vol. 1111.
Springer, Heidelberg (1996)

4. Swift, T., Warren, D.S.: XSB: Extending Prolog with tabled logic programming. Theory and
Practice of Logic Programming 12(1-2), 157–187 (2012)

5. Swift, T., Warren, D.S., Sagonas, K., Freire, J., Rao, P., Cui, B., Johnson, E., de Castro, L.,
Marques, R.F., Saha, D., Dawson, S., Kifer, M.: The XSB System Version 3.3.x Volume 1:
Programmer’s Manual (2012)

6. Saha, D.: Incremental Evaluation of Tabled Logic Programs. PhD thesis, SUNY Stony Brook
(2006)

7. Kowalski, R., Sadri, F.: Abductive logic programming agents with destructive databases.
Annals of Mathematics and Artificial Intelligence 62(1), 129–158 (2011)

8. Kowalski, R., Sadri, F.: Towards a logic-based unifying framework for computing (2013),
http://www.doc.ic.ac.uk/˜rak/papers/TUF.pdf

9. Logic Programming Associates Ltd.: LPA prolog, http://www.lpa.co.uk/
10. Saptawijaya, A., Pereira, L.M.: Tabled abduction in logic programs. Accepted as Technical

Communication at ICLP 2013 (2013), http://centria.di.fct.unl.pt/˜lmp/
publications/online-papers/tabdual lp.pdf

11. Pereira, L.M., Saptawijaya, A.: Modelling Morality with Prospective Logic. In: Anderson,
M., Anderson, S.L. (eds.) Machine Ethics, pp. 398–421. Cambridge U. P. (2011)

12. Han, T.A., Saptawijaya, A., Pereira, L.M.: Moral reasoning under uncertainty. In: Bjørner, N.,
Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 212–227. Springer, Heidelberg (2012)

http://www.doc.ic.ac.uk/~rak/papers/TUF.pdf
http://www.lpa.co.uk/
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/tabdual_lp.pdf
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/tabdual_lp.pdf

	Program Updating by Incrementaland Answer Subsumption Tabling
	1 Introduction
	2 The EVOLP/R Language
	3 Implementing EVOLP/R in Tabled Logic Programming
	4 Concluding Remarks
	References

