
Towards Reactive Multi-Context Systems

Gerhard Brewka

Leipzig University, Informatics Institute, Postfach 100920, 04009 Leipzig, Germany
brewka@informatik.uni-leipzig.de

Abstract. Among the challenges faced by the area of knowledge representation
(KR) are the following ones: firstly, knowledge represented in different knowl-
edge representation languages needs to be integrated, and secondly, certain appli-
cations have specific needs not typically fulfilled by standard KR systems. What
we have in mind here are applications where reasoners, rather than being called
by the user in order to answer some specific query, run online and have to deal
with a continuous stream of information. In this paper we argue that multi-context
systems (MCS) are adequate tools for both challenges. The original MCS ap-
proach was introduced to handle the integration problem in a principled way. A
later extension to so-called managed MCS appears to provide relevant function-
ality for the second challenge. In this paper we review both MCS and managed
MCS and discuss how the latter approach needs to be further developed for online
applications.

1 Introduction

Research in knowledge representation (KR) and, more generally, information technol-
ogy faces at least the following two problems:

1. A large variety of formats and languages for representing knowledge has been pro-
duced. A wealth of tools and formalisms is now available, including rather basic
ones like databases or the more recent triple-stores, and more expressive ones like
ontology languages (e.g., description logics), temporal and modal logics, nonmono-
tonic logics, or logic programs under answer set semantics, to name just a few.
This diversity of formalisms poses some important challenges. There are many
situations where the integration of the knowledge represented in such diverse for-
malisms is crucial. But how can this be achieved in a principled way?

2. Most of the tools providing reasoning services for KR languages were developed
for offline usage: given a knowledge base (KB) computation is one-shot, triggered
by a user, through a specific query or a request to compute, say, an answer set. This
is the right thing for specific types of applications, for instance expert systems, con-
figuration or planning problems where a specific answer to a problem instance is
needed at a particular point in time. However, there are different kinds of appli-
cations where a reasoning system is continuously online and observes a particular
system, informing the user in case something unforeseen/uninteded happens. This
different usage of KR systems again poses important challenges.

Let’s illustrate these problems with two examples. For the first problem, assume your
home town’s hospital has

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 G. Brewka

– a patient database (e.g. an Oracle database),
– a disease ontology (written in a particular description logic),
– an ontology of the human body (using OWL),
– an expert system describing the effects of different medications (using a nonmono-

tonic reasoning formalism, say disjunctive logic programming).

Needless to say that it is in the patients’ best interest to integrate all available knowl-
edge. But how? Translating everything into a single all-purpose formalism is certainly
not a solution. First of all, no standardized, universal knowledge representation lan-
guage exists, and there are very good reasons for this (e.g. specific modeling needs or
complexity considerations). Secondly, even if there were such a language, most prob-
ably remodeling the information would be too cumbersome and costly. What seems
to be needed is a principled way of integrating knowledge expressed in different for-
mats/languages/logics.

For the second problem consider an assisted living scenario where people in need
of support live in an apartment which is equipped with various sensors, e.g. smoke
detectors, cameras, and body sensors measuring relevant body functions (e.g. pulse,
blood pressure). A reasoning system continuously receives sensor information. The task
is to detect emergencies (health problems, forgotten medication, overheating stove,...)
and cause adequate reactions (e.g. turning off the electricity, calling the ambulance,
ringing an alarm). Apparently the system is not explicitly called by a user to become
active. It rather is continuously online and must be able to process a continuous stream
of information rather than a fixed KB.

This shift in view clearly has an impact on KR formalisms. Most importantly, since
the system is permanently online, the available information continuously grows. This
obviously cannot go on forever as the KB needs to be kept in a manageable size. We
thus need principled ways of forgetting/disregarding information. In the literature one
often finds sliding window techniques where information is kept for a specific, prede-
fined period of time and forgotten if it falls out of this time window. We believe this
approach is far too inflexible. What is needed is a dynamic, situation dependent way
of determining whether information needs to be kept or can be given up. Ideally we
would like our online KR system to guarantee specific response times; although it may
be very difficult to come up with such guarantees, it is certainly necessary to find means
to identify and focus on relevant parts of the available information. Moreover, although
the definition of the semantics of the underlying KR formalism certainly remains essen-
tial, we also need to impose procedural aspects reflecting the necessary modifications
of the KB. This leads to a new, additional focus on runs of the system, rather than single
evaluations.

We believe nonmonotonic multi-context systems (MCS) [1] are promising tools for
addressing both problems. The original MCS framework was explicitly developed to
handle problem 1, the integration of diverse KR formalisms. In Sect. 2 we recall the
basic ideas underlying this approach. In a nutshell, an MCS consists of reasoning units
- called contexts for historical reasons [8] - where each unit can be connected with
other units via so-called bridge rules. The collection of bridge rules associated with a
context specifies additional beliefs the context is willing to accept depending on what
is believed by connected contexts. The contexts themselves can be viewed as parts of

Towards Reactive Multi-Context Systems 3

an agent’s knowledge connected to other parts, but they can also be viewed as single
agents willing to listen to and incorporate information from other agents.

The original framework was aimed at modelling the flow of information among con-
texts, consequently the addition of information to a context was the only possible op-
eration. Of course, it is easy to imagine other operations one may want to perform, for
instance revisions which keep the underlying KB consistent instead of simple additions.
To capture arbitrary operations MCS were later generalized to so called managed MCS
(mMCS) [3], a general and flexible framework that we will briefly discuss in Sect. 3.
The possibility to have arbitrary operators is what, as we believe, makes mMCS suitable
tools for the kind of online applications we discussed earlier. Sect. 4 describes some of
the necessary steps that need to be done. In particular, what is required is an instan-
tiation of the general mMCS framework with operations suitable to model focussing
and forgetting. The systems we have in mind are reactive in the sense that they modify
themselves to keep system performance up and in response to potential emergencies.

In cases where knowledge integration is not an issue (that is, where a single context
is sufficient) and where moreover the underlying KR formalism is rule based the separa-
tion between context knowledge base and bridge rules may become obsolete. We briefly
illustrate this in Sect. 5 using ASP as the underlying formalism. Sect. 6 concludes and
points to open research questions.

2 Nonmonotonic Multi-Context Systems

The basic idea underlying MCS is to leave the diverse formalisms and knowledge bases
untouched, and to equip each context with a collection of so-called bridge rules in order
to model the necessary information flow among contexts.

Bridge rules are similar to logic programming rules (including default negation),
with an important difference: they allow to access other contexts in their bodies. Using
bridge rules has several advantages: the specification of the information flow is fully
declarative; moreover, information - rather than simply being passed on as is - can be
modified in various ways:

– we may translate a piece of information into the language/format of another context,
– we may pass on an abstraction of the original information, leaving out unnecessary

details,
– we may select or hide information,
– we may add conclusions to a context based on the absence of information in another

one,
– we may use simple encodings of preferences among parent contexts,
– we can even encode voting rules, say based on majorities etc.

The semantics of MCS is defined in terms of equilibria: a belief state assigns a belief
set to each context Ci. Intuitively, a belief state is an equilibrium whenever the belief
set selected for each Ci is acceptable for Ci’s knowledge base augmented by the heads
of Ci’s applicable bridge rules.

The history of MCS started in Trento. Advancing work in [7,9], the Trento School
developed monotonic heterogeneous multi-context systems [8] with the aim to integrate

4 G. Brewka

different inference systems. Here reasoning within as well as across contexts is mono-
tonic. The first, still somewhat limited attempts to include nonmonotonic reasoning
were done in [10] and [4]. To allow for reasoning based on the absence of informa-
tion from a context, in both papers default negation is allowed in the rules. In this way
contextual and default reasoning are combined.

The nonmonotonic MCS of [1] substantially generalized these approaches, by ac-
commodating heterogeneous and both monotonic and nonmonotonic contexts. They
are thus capable of integrating “typical” monotonic logics like description logics or
temporal logics, and nonmonotonic formalisms like Reiter’s default logic, answer set
programs, circumscription, defeasible logic, or theories in autoepistemic logic. The cur-
rently most general MCS variant, the so-called managed MCS (mMCS) [3] allow for
arbitrary user-defined operations on the context knowledge bases, not just augmenta-
tions. They will be discussed in the next section.

Here is a more formal description of multi-context systems as defined in [1]. MCS
build on an abstract notion of a logic L as a triple (KBL,BSL,ACCL), where KBL

is the set of admissible knowledge bases (KBs) of L, which are sets of KB-elements
(“formulas”); BSL is the set of possible belief sets, whose elements are beliefs; and
ACCL : KBL → 2BSL is a function describing the semantics of L by assigning to
each knowledge-base a set of acceptable belief sets.

A multi-context system (MCS) M = (C1, . . . , Cn) is a collection of contexts Ci =
(Li, kbi, bri) where Li is a logic, kbi ∈ KBLi is a knowledge base and bri is a set of
bridge rules of the form:

s←(c1: p1), . . . , (cj : pj), not(cj+1: pj+1), . . . , not(cm: pm). (1)

such that kb ∪ {s} is an element of KBLi , c� ∈{1, . . . , n}, and p� is element of some
belief set of BS c� , for all 1 ≤ � ≤ m. For a bridge rule r, we denote by hd(r) the
formula s while body(r) denotes the set {(c�1 : p�1) | 1 ≤ �1 ≤ j} ∪ {not(c�2 : p�2) |
j < �2 ≤ m}.

A belief state S = (S1, . . . , Sn) for M consists of belief sets Si ∈ BS i, 1 ≤ i ≤ n.
A bridge rule r of form (1) is applicable wrt. S, denoted by S |= body(r), iff p� ∈ Sc�

for 1 ≤ � ≤ j and p� /∈ Sc� for j < � ≤ m. We use appi(S) = {hd(r) | r ∈ bri ∧S |=
body(r)} to denote the heads of all applicable bridge rules of context Ci wrt. S.

The semantics of an MCS M is then defined in terms of equilibria, where an equi-
librium is a belief state (S1, . . . , Sn) such that Si ∈ ACC i(kbi ∪ appi(S)), 1 ≤ i ≤ n.

3 Managed MCS: Beyond Information Flow

Although nonmonotonic MCS are, as we believe, an excellent starting point to address
the problems discussed above, the way they integrate knowledge is still somewhat lim-
ited: if a bridge rule for a context is applicable, then the rule head is simply added to the
context’s knowledge base (KB). Although this covers the flow of information, it does
not capture other operations one may want to perform on context KBs. For instance,
rather than simply adding a formula φ, we may want to delete some information, or
to revise the KB with φ to avoid inconsistency in the context’s belief set. We are thus

Towards Reactive Multi-Context Systems 5

interested in generalizations of the MCS approach where specific predefined operations
on knowledge bases can be performed.

A first step into this direction are argumentation context systems (ACS) [2]. They
specialize MCS in one respect, and are more general in another. First of all, in contrast to
nonmonotonic MCS they are homogeneous in the sense that all reasoning components
in an ACS are of the same type, namely Dung-style argumentation frameworks [5]. The
latter are widely used as abstract models of argumentation. However, ACS go beyond
MCS in two important aspects:

1. The influence of an ACS module M1 on another module M2 can be much stronger
than in an MCS. M1 may not only provide information for M2 and thus augment
the latter, it may directly affect M2’s KB and reasoning mode: M1 may invalidate
arguments or attack relationships in M2’s argumentation framework, and even de-
termine the semantics to be used by M2.

2. A major focus in ACS is on inconsistency handling. Modules are equipped with ad-
ditional components called mediators. The main role of the mediator is to take care
of inconsistencies in the information provided by connected modules. It collects the
information coming in from connected modules and turns it into a consistent up-
date specification for its module, using a pre-specified consistency handling method
which may be based on preference information about other modules.

Managed MCS (mMCS) push the idea of mediators even further. They allow additional
operations on knowledge bases to be freely defined; this is akin to management func-
tionality of database systems. We thus call the additional component context manager.
In a nutshell (and somewhat simplifying) the features of mMCS are as follows:

– Each logic comes with a set of operations O.
– An operational statement is an operation applied to a formula (e.g. insert(p),

delete(p), revise(p), ...).
– Bridge rules are as before, except for the heads which now are operational state-

ments.
– A management function: mng : 2Opst × KB → 2KB, produces a collection of

KBs out of set of operational statements and a KB.
– A managed context consists of a logic, a KB, a set of bridge rules (as before),

together with the new part, a management function.
– An mMCS is just a collection of managed contexts.

Regarding the semantics, a belief state S = (S1, . . . Sn) contains - as before - a belief
set for each context. To be an equilibrium S has to satisfy the following condition:
the belief set chosen for each context must be acceptable for one of the KBs obtained
by applying the management function to the heads of applicable bridge rules and the
context’s KB. More formally, for all contexts Ci = (Li, kbi, bri,mngi): let Si be the
belief set chosen for Ci, and let Opi be the heads of bridge rules in bri applicable in S.
Then S is an equilibrium iff, for 1 ≤ i ≤ n,

Si ∈ ACCi(kb
′) for some kb′ ∈ mngi(Opi, kbi).

Management functions allow us to model all sorts of modifications of a context’s knowl-
edge base and thus make mMCS a powerful tool for describing the influence contexts

6 G. Brewka

can have on each other. Of course, the framework is very general and needs to be in-
stantiated adequately for particular problems. As a short illustrative example let us con-
sider an instantiation we call revision-based MCS. The main goal here is to keep each
context’s KB consistent when information is added, that is, we want to guarantee con-
sistency of belief sets in equilibria.

Assume the KB’s logic has a single operation inc (include). For a formula p, inc(p)
intuitively says: incorporate p consistently into your KB. Two things can go wrong: the
formulas to be included in a particular situation

1. may be inconsistent with each other, or
2. may be inconsistent with the context KB.

For 1 we introduce preferences among bridge rules. More precisely, we represent a
total preorder on bridge rules by using indexed operations inc1, inc2, . . . where a lower
index represents higher priority. Given a collection of indexed inclusion operations we
can now identify preferred sets of formulas as follows: we pick a maxi-consistent subset
of inc1-formulas (i.e. formulas appearing as arguments of inc1), extend the set maxi-
consistently with inc2-formulas etc.

For 2 we assume a consistency preserving base revision operator

rev : KB ×KB → 2KB

that is, rev(kb1, kb2) may potentially produce alternative outcomes of the revision,
however each outcome is consistent whenever kb2 is. We can now define the man-
agement function as follows: for

Op = {inc1(p1,1), . . . , inc1(p1,m), . . . , inck(pk,1), . . . , inck(pk,n)}
let:

kb′ ∈ mng(Op, kb) iff kb′ ∈ rev(kb, F) for some preferred set F of Op.

Each belief set in each equilibrium now is apparently consistent.
Here is a specific example. Let C be a context based on propositional logic, its KB

is
{July→ ¬Rain,Rain→ Umbrella, July}.

C has 2 parent contexts; C1 believes Rain, C2 believes ¬Rain. C1 more reliable wrt.
the weather. C thus has the following bridge rules:1

{inc1([¬]Rain)← 1:[¬]Rain; inc2([¬]Rain)← 2:[¬]Rain}.
As C1 is preferred to C2 the single preferred set is {Rain}.

To fully specify the management function we still need to define the revision opera-
tor. We do this as follows: K ′ ∈ rev(K,F) iff K ′ = M∪F for some maximal M ⊆ K
consistent with F . Now we obtain the following two acceptable belief sets for C:

Th({Rain, July→ ¬Rain,Rain→ Umbrella})
Th({Rain, July, Rain→ Umbrella}).

1 We use square brackets in the rules to represent optional parts; each rule with [¬] thus actually
represents 2 rules.

Towards Reactive Multi-Context Systems 7

4 Reactive MCS: A Sketch

In this section we discuss some of the issues that need to be addressed for applications
like the assisted living scenario we described in the introduction. We believe managed
MCS are an excellent starting point for the following reasons:

– they offer means to integrate sensor information from different sources, handling
inconsistencies if needed,

– the management function provides capabilities to modify KBs which appear essen-
tial to keep the sizes of knowledge bases manageable.

Nevertheless, the general managed MCS framework obviously needs to be further mod-
ified, respectively instantiated, to become reactive. What we aim for is a specialization
of the (potentially generalized) managed MCS framework suitable for online applica-
tions. Here we identify some of the relevant changes.

First of all, it is useful to introduce different types of contexts:

– observer contexts which are “connected to the real world via sensors; these contexts
keep track of (time-stamped) sensor readings,

– analyzer contexts which reason about the current situation and in particular de-
tect emergencies; they obtain relevant information from sensing contexts via bridge
rules and generate alarms if needed,

– control contexts which make sure the system focuses on the right issues; this in-
cludes dynamically setting adequate time windows for information, increasing the
frequency of sensor readings if relevant/dangerous things happen, making sure out-
dated/irrelevant information is deleted/disregarded to keep the system performance
up.

Next, the management function needs to be instantiated adequately for purposes of
focusing and forgetting:

– a language of adequate operations for focusing and forgetting needs to be defined,
– ideally the performed operations may also depend on the actual system

performance,
– it would be highly useful if the management function were able to restrict recom-

putations to specific, relevant contexts.

Finally, we anticipate that preferences will play an essential role:

– for inconsistency handling among different sensor readings,
– to handle more important emergencies with high priority,
– to mediate between what’s in the current focus and the goal not to overlook impor-

tant events.

We thus will need to equip MCS with expressive and flexible preference handling
capabilities.

As pointed out earlier, in online applications the major object of interest is the system
behaviour over time. For this reason we next define runs of reactive MCS, an essential
basic notion:

8 G. Brewka

Definition 1. Let M be a managed MCS with contexts C0, . . . , Cn (C0, . . . , Ck are
observer contexts). Let Obs = (Obs0, Obs1, . . .) be a sequence of observations, that is,
for j ≥ 0, Obsj = (Obsji)i≤k , where Obsji is the new (sensor) information for context
i at step j. A run R of M induced by Obs is a sequence

R = Kb0, Eq0,Kb1, Eq1, . . .

where

– Kb0 = (Kb0i)i≤n is the collection of initial knowledge bases, Eq0 an equilibrium
of Kb0,

– for j ≥ 1 and i ≤ n, Kbji is the knowledge base of context Ci produced be the con-
text’s management function for the computation of Eqj−1, and Kbj = (Kbji)i≤n,

– for j ≥ 1, Eqj is an equilibrium for the knowledge bases

(Kbj0 ∪Obsj0, . . . ,Kbjk ∪Obsjk,Kbjk+1, . . . ,Kbjn).

5 Reactive ASP: A Bottom Up Approach

In the last section we sketched some of the issues that need to be addressed in order
to turn MCS into a reactive formalism suitable for online applications. The basic idea
was to handle reactivity by adequate operations in bridge rules. We now consider cases
where the integration of information from different sources is not an issue and where
we work with a single context. The separation between context and bridge rules is still
relevant as the bridge rules (which now should better be called operational rules as they
do no longer bridge different contexts) implement the focusing and forgetting strategies
of the context.

However, if the single context we work with is itself rule based, then strictly speaking
the separation of bridge/operational rules from the rest of the program becomes obso-
lete. We may as well use operational rules within the formalism itself. For instance,
assume we use logic programs under answer set semantics.2 Some of the rules in the
program may have operational statements in their heads which simply are interpreted
as operations to be performed on the program itself. Again, this allows us to represent
the strategy for maintaining the knowledge base manageable declaratively. When the
program is run, the strategy is realized by a self-modification of the program.

This is reflected in the following notion of a run of a reactive answer set program
(RASP) P , that is an ASP program which has some rules with operational statements
in the heads. Intuitively, the behaviour of RASP P is characterized as follows:

1. P computes an answer set S0, during the computation the current information is
frozen until the computation is finished,

2. the set of operations to be performed is read off the answer set S0 and P is modified
accordingly, at the same time observations made since the last computation started
are added,

2 For some important steps towards stream reasoning with answer set programming see also the
work of Torsten Schaub’s group, e.g [6].

Towards Reactive Multi-Context Systems 9

3. the modified program computes a new answer set, and so on.

This is captured in the following definition of a run:

Definition 2. A run of a reactive answer set program P induced by a sequence of sets
of observations (Obs0, Obs1, . . .) is a sequence (S0, S1, . . .) of answer sets satisfying
the following conditions:

1. S0 is an answer set of P0 = P .
2. For i ≥ 0, Si+1 is an answer set of Pi+1 = Modi(Pi) ∪Obsi, where Modi(Pi) is

the result of modifying Pi according to the operational statements contained in Si.

This definition implies new information obtained while the last answer set was com-
puted is always included in the new. modified program. In certain situations, for instance
if parts of the new knowledge are outside the current focus, it may even be useful to dis-
regard pieces of the new information entirely. Formally this can be captured by letting
Pi+1 = Modi(Pi ∪Obsi) in item 2 of the definition above.

6 Discussion and Future Work

In this paper we discussed some of the issues that need to be addressed if KR wants to
meet the challenges of certain types of applications where continuous online reasoning
is required. We sketched a top down approach, instantiating the managed MCS ap-
proach accordingly. We also briefly described a bottom up approach based on a related
extension of the ASP framework.

We obviously left many questions open. The major open issue is the specification
of a suitable language for the operational statements which are relevant for forgetting
and focusing. The operations should allow to set the window size for specific sen-
sor/information types dynamically, keeping relevant information available. They also
should make it possible to specify the system’s focus depending on events pointing to
potential problems/emergencies. Focusing may lead to more regular checks for specific
information, whereas other information may be looked at only from time to time.

Of course, focusing bears the danger that new problems may be overlooked. Ideally,
we would like to have a guarantee that every potential emergency is checked on a reg-
ular basis, even if it is not in the current focus. In addition, it would be very useful to
take information about the current system performance into account to determine what
information to keep and what to give up. This would lead to a notion of resource-aware
computation where part of the sensor information made available in each step of a run
reveals how the system currently is performing.

The notions of a run we defined both for managed MCS and for reactive ASP is
built on a credulous view: in each step a single equilibrium, respectively answer set,
is computed and taken as the starting point for the next step. There may be scenar-
ios where a skeptical approach built on what is believed in all (or in some preferred)
equilibria/answer sets is more adequate. It may even be useful to switch between the
credulous and skeptical approach dynamically.

Finally, if memory is not an issue (but computation time is) then rather than delet-
ing irrelevant information one could as well keep it but put it aside for a certain time.

10 G. Brewka

The available information would thus be divided in a part to be forgotten, a part to be
kept but disregarded for the time being, and a part currently in the focus of attention.

In conclusion, a lot remains to be done in KR to fully solve the challenges of integra-
tion and online reasoning. Nevertheless, we believe promising ideas are already around
and addressing the open problems will definitely be worth it.

Acknowledgements. Some of the ideas presented here are based on discussions with
Torsten Schaub and Stefan Ellmauthaler. The presented work was partly funded by
Deutsche Forschungsgemeinschaft, grant number FOR 1513.

References

1. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proc. AAAI 2007, pp. 385–390. AAAI Press (2007)

2. Brewka, G., Eiter, T.: Argumentation context systems: A framework for abstract group ar-
gumentation. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
44–57. Springer, Heidelberg (2009)

3. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Proc.
IJCAI 2011, pp. 786–791 (2011)

4. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: Proc. IJCAI 2007,
pp. 268–273 (2007)

5. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

6. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream rea-
soning with answer set programming: Preliminary report. In: Proc. KR 2012, pp. 613–617
(2012)

7. Giunchiglia, F.: Contextual reasoning. Epistemologia XVI, 345–364 (1993)
8. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do without

modal logics. Artif. Intell. 65(1), 29–70 (1994)
9. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1029–1035 (1987)

10. Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: Proc. IJCAI 2005
(2005)

	Towards Reactive Multi-Context Systems
	1 Introduction
	2 Nonmonotonic Multi-Context Systems
	3 Managed MCS: Beyond Information Flow
	4 Reactive MCS: A Sketch
	5 Reactive ASP: A Bottom Up Approach
	6 Discussion and Future Work
	References

