
Pedro Cabalar
Tran Cao Son (Eds.)

 123

LN
AI

 8
14

8

12th International Conference, LPNMR 2013
Corunna, Spain, September 2013
Proceedings

Logic Programming
and Nonmonotonic
Reasoning

Lecture Notes in Artificial Intelligence 8148

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Pedro Cabalar Tran Cao Son (Eds.)

Logic Programming
and Nonmonotonic
Reasoning

12th International Conference, LPNMR 2013
Corunna, Spain, September 15-19, 2013
Proceedings

13

Volume Editors

Pedro Cabalar
University of Corunna
Department of Computer Science
Campus de Elviña s/n
15071 Corunna, Spain
E-mail: pedro.cabalar@udc.es

Tran Cao Son
New Mexico State University
Department of Computer Science
1290 Frenger Mall, SH 123
P.O. Box 30001, MSC CS
Las Cruces, NM 88003, USA
E-mail: tson@cs.nmsu.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40563-1 e-ISBN 978-3-642-40564-8
DOI 10.1007/978-3-642-40564-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946023

CR Subject Classification (1998): I.2.3, I.2.4, F.1.1, F.4.1, D.1.6, G.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 12th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR 2013) held
during September 15–19, 2013, in Corunna.

LPNMR is a forum for exchanging ideas on declarative logic programming,
nonmonotonic reasoning, and knowledge representation. The aim of the con-
ference is to facilitate interaction between researchers interested in the design
and implementation of logic-based programming languages and database sys-
tems, and researchers who work in the areas of knowledge representation and
nonmonotonic reasoning. LPNMR strives to encompass theoretical and experi-
mental studies that have led or will lead to the construction of practical systems
for declarative programming and knowledge representation.

LPNMR 2013 was the 12th event in the series of international conferences on
Logic Programming and Nonmonotonic Reasoning. Past editions were held in
Washington, D.C., USA (1991), Lisbon, Portugal (1993), Lexington, Kentucky,
USA (1995), Dagstuhl, Germany (1997), El Paso, Texas, USA (1999), Vienna,
Austria (2001), Fort Lauderdale, Florida, USA (2004), Diamante, Italy (2005),
Tempe, Arizona, USA (2007), Potsdam, Germany (2009) and Vancouver, Canada
(2011).

LPNMR 2013 received 91 submissions in three categories (technical papers,
applications, and system descriptions) and two different formats (long and short
papers). Each submission was reviewed by at least three Program Committee
members. The final list of 53 accepted papers consists of 33 technical papers
(22 long, 11 short), 12 applications (nine long, three short), and eight system
descriptions (three long, five short).

The conference program featured the presentations of all accepted papers plus
three invited talks by Gerhard Brewka, Robert Kowalski, and James Delgrande
whose corresponding abstracts are included in these proceedings (as an extended
abstract in the first two cases, and as an appendix to this preface in the third
case).

The conference also hosted four workshops and the award ceremony of the
Fourth ASP Competition, held and organized prior to the conference by Mario
Alviano, Francesco Calimeri, Guenther Charwat, Minh Dao-Tran, Carmine Do-
daro, Giovambattista Ianni, Thomas Krennwallner, Martin Kronegger, Johannes
Oetsch, Andreas Pfandler, Joerg Puehrer, Christoph Redl, Francesco Ricca, Pa-
trik Schneider, Martin Schwengerer, Lara Katharina Spendier, Johannes Peter
Wallner, and Guohui Xiao at the University of Calabria, Italy, and the Insti-
tutes of Information Systems and of Computer Language at Vienna University
of Technology, Austria.

We would like to thank the members of the Program Committee and the
additional reviewers for their efforts to produce fair and thorough evaluations of

VI Preface

the submitted papers, the Workshop Chair Marcello Balduccini, the local Orga-
nizing Committee, especially Felicidad Aguado, Mart́ın Diéguez, Javier Parapar,
Gilberto Pérez, Concepción Vidal, and of course the authors of the scientific pa-
pers. Furthermore we are grateful to the sponsors for their generous support: Ar-
tificial Intelligence Journal, the Assocation of Logic Programming (ALP), Red
IEMath-Galicia, the CITIC Research Center, the Spanish Association for Artifi-
cial Intelligence (AEPIA), the European Regional Development Fund (European
Commission), the University of Corunna, and New Mexico State University at
Las Cruces. Last, but not least, we thank the people of EasyChair for providing
resources and a marvelous conference management system.

September 2013 Pedro Cabalar
Tran Cao Son

Organization

Program Committee

Jose Julio Alferes Universidade Nova de Lisboa, Portugal
Chitta Baral Arizona State University, USA
Leopoldo Bertossi Carleton University, Canada
Gerhard Brewka Leipzig University, Germany
Pedro Cabalar University of Corunna, Spain
Stefania Costantini Università di L’Aquila, Italy
Marina De Vos University of Bath, UK
James Delgrande Simon Fraser University, Canada
Marc Denecker K.U.Leuven, Belgium
Yannis Dimopoulos University of Cyprus
Juergen Dix TU Clausthal, Germany
Agostino Dovier Università di Udine, Italy
Thomas Eiter Vienna University of Technology, Austria
Esra Erdem Sabanci University, Turkey
Wolfgang Faber University of Calabria, Italy
Michael Fink Vienna University of Technology, Austria
Andrea Formisano Università di Perugia, Italy
Martin Gebser University of Potsdam, Germany
Michael Gelfond Texas Tech University, USA
Giovambattista Ianni University of Calabria, Italy
Tomi Janhunen Aalto University, Finland
Antonis Kakas University of Cyprus
Joohyung Lee Arizona State University, USA
Vladimir Lifschitz University of Texas, USA
Fangzhen Lin HKUST, SAR China
Jorge Lobo Universitat Pompeu Fabra, Spain
Robert Mercer The University of Western Ontario, Canada
Alessandra Mileo University of Milano-Bicocca, Italy
Mauricio Osorio UDLA, Mexico
Ramon Otero University of Corunna, USA
David Pearce Universidad Politécnica de Madrid, Spain
Axel Polleres Siemens AG Österreich / DERI, National

University of Ireland, Galway

VIII Organization

Enrico Pontelli New Mexico State University, USA
Alessandro Provetti University of Messina, Italy
Chiaki Sakama Wakayama University, Japan
Torsten Schaub University of Potsdam, Germany
John Schlipf University of Cincinnati, USA
Tran Cao Son New Mexico State University, USA
Terrance Swift Universidade Nova de Lisboa, Portugal
Eugenia Ternovska Simon Fraser University, Canada
Hans Tompits Vienna University of Technology, Austria
Mirek Truszczynski University of Kentucky, USA
Agust́ın Valverde Universidad de Málaga, Spain
Kewen Wang Griffith University, Australia
Yisong Wang Guizhou University, China
Stefan Woltran Vienna University of Technology, Austria
Jia-Huai You University of Alberta, Canada
Yan Zhang University of Western Sydney, Australia
Yi Zhou University of Western Sydney, Australia

Additional Reviewers

Acosta-Guadarrama, Juan C.
Alviano, Mario
Berger, Gerald
Bliem, Bernhard
Bogaerts, Bart
Bozzano, Marco
Bulling, Nils
Calimeri, Francesco
Campeotto, Federico
Charwat, Guenther
Chen, Yin
De Cat, Broes
Devriendt, Jo
Ding, Ning
Dvorak, Wolfgang
Ensan, Alireza
Falkner, Andreas
Fichte, Johannes
Harrison, Amelia
Heljanko, Keijo
Hogan, Aidan
Hutter, Frank
Inclezan, Daniela
Inoue, Katsumi
Jansen, Joachim

Ji, Jianmin
Jost, Holger
Kaminski, Roland
Karimi, Arash
Kaufmann, Benjamin
Krennwallner, Thomas
König, Arne
Leite, Joao
Liu, Guohua
Michael, Loizos
Miculan, Marino
Mu, Kedian
Navarro Perez, Juan Antonio
Nieves, Juan Carlos
Obermeier, Philipp
Oetsch, Johannes
Oikarinen, Emilia
Ojeda-Aciego, Manuel
Perri, Simona
Pieris, Andreas
Popovici, Matei
Pührer, Jörg
Quintarelli, Elisa
Redl, Christoph
Ricca, Francesco

Organization IX

Romero, Javier
Sabuncu, Orkunt
Scalabrin, Simone
Schiele, Gregor
Schneider, Marius
Schüller, Peter
Stepanova, Daria
Tari, Luis
Tasharrofi, Shahab
Van Hertum, Pieter
Vennekens, Joost

Viegas Damásio, Carlos
Wallner, Johannes P.
Weinzierl, Antonius
Xiao, Guohui
Yang, Bo
Yang, Fangkai
Zhang, Heng
Zhang, Yingqian
Zhang, Yuanlin
Zhang, Zhiqiang
Zhuang, Zhiqiang

X Organization

Sponsors

Managing Change in Answer Set Programs:

A Logical Approach

— Invited Talk —

James Delgrande
Simon Fraser University, Burnaby, B.C., Canada

jim@cs.sfu.ca

Abstract

Answer set programming (ASP) is an appealing, declarative approach for repre-
senting problems in knowledge representation and reasoning. While answer sets
have a conceptually simple syntactic characterization, ASP has been shown to
be applicable to a wide range of practical problems, and efficient implementa-
tions are now available. However, as is the case with any body of knowledge,
a logic program is not a static object in general, but rather it will evolve and
be subject to change. Such change may come about as a result of adding to
(or removing from) the program, importing the contents of one program into
another, merging programs, or in some other fashion modifying the knowledge
in the program. In classical logic, the problem of handling such change has been
thoroughly investigated. The seminal AGM approach provides a general and
widely accepted framework for this purpose. While this approach focusses on
revision and contraction, related work, such as merging, has stayed close to the
AGM paradigm.

Until recently, the study of change in ASP has been addressed at the level
of the program, focussing on the revision (and update) of logic programs. In
revision, for example, a typical approach is to begin with a sequence of answer
set programs, and determine answer sets based on a priority ordering among the
programs or among rules in the programs. An advantage of such approaches is
that they are readily implementable. On the other hand, the underlying non-
monotonicity of logic programs makes it difficult to study formal properties of
an approach.

Recently a more logical view of ASP has emerged. Central to this view is the
(monotonic) concept of SE-models, which underlies the answer-set semantics of
logic programs. In characterizing an AS program by its set of SE models, one can
deal with a program at an abstract, syntax-independent level. I suggest that this
is an appropriate level for dealing with change in logic programs, complement-
ing earlier syntax-dependent approaches. To this end, I review such work dealing
with change in logic programs, begining with the much simpler, but nonethe-
less relevant, case of Horn theories. From this, I touch on work concerning AS
revision, with respect to both specific approaches and logical characterisations.

XII J. Delgrande

This leads naturally to approaches for merging logic programs. While logic pro-
gram contraction has not been addressed, I discuss what can be regarded as an
extreme case of contraction, that of forgetting. I finish with some thoughts on
open problems and issues, and future directions. The overall conclusion is that
classical belief change is readily applicable to ASP, via its model theoretic basis.

Table of Contents

Towards Reactive Multi-Context Systems . 1
Gerhard Brewka

Logic Programming in the 1970s . 11
Robert Kowalski

Integrating Temporal Extensions of Answer Set Programming 23
Felicidad Aguado, Gilberto Pérez, and Concepción Vidal

Forgetting under the Well-Founded Semantics . 36
José Júlio Alferes, Matthias Knorr, and Kewen Wang

The Fourth Answer Set Programming Competition:
Preliminary Report . 42

Mario Alviano, Francesco Calimeri, Günther Charwat,
Minh Dao-Tran, Carmine Dodaro, Giovambattista Ianni,
Thomas Krennwallner, Martin Kronegger, Johannes Oetsch,
Andreas Pfandler, Jörg Pührer, Christoph Redl, Francesco Ricca,
Patrik Schneider, Martin Schwengerer, Lara Katharina Spendier,
Johannes Peter Wallner, and Guohui Xiao

WASP: A Native ASP Solver Based on Constraint Learning 54
Mario Alviano, Carmine Dodaro, Wolfgang Faber,
Nicola Leone, and Francesco Ricca

The Complexity Boundary of Answer Set Programming with
Generalized Atoms under the FLP Semantics . 67

Mario Alviano and Wolfgang Faber

ARVis: Visualizing Relations between Answer Sets 73
Thomas Ambroz, Günther Charwat, Andreas Jusits,
Johannes Peter Wallner, and Stefan Woltran

Symbolic System Synthesis Using Answer Set Programming 79
Benjamin Andres, Martin Gebser, Torsten Schaub,
Christian Haubelt, Felix Reimann, and Michael Glaß

Accurate Computation of Sensitizable Paths Using Answer Set
Programming . 92

Benjamin Andres, Matthias Sauer, Martin Gebser, Tobias Schubert,
Bernd Becker, and Torsten Schaub

XIV Table of Contents

Hex Semantics via Approximation Fixpoint Theory 102
Christian Antić, Thomas Eiter, and Michael Fink

Encoding Higher Level Extensions of Petri Nets in Answer Set
Programming . 116

Saadat Anwar, Chitta Baral, and Katsumi Inoue

Cplus2ASP: Computing Action Language C+ in Answer Set
Programming . 122

Joseph Babb and Joohyung Lee

Towards Answer Set Programming with Sorts . 135
Evgenii Balai, Michael Gelfond, and Yuanlin Zhang

Prolog and ASP Inference under One Roof . 148
Marcello Balduccini, Yuliya Lierler, and Peter Schüller

Event-Object Reasoning with Curated Knowledge Bases:
Deriving Missing Information . 161

Chitta Baral and Nguyen H. Vo

Towards Query Answering in Relational Multi-Context Systems 168
Rosamaria Barilaro, Michael Fink, Francesco Ricca, and
Giorgio Terracina

Spectra in Abstract Argumentation: An Analysis of Minimal Change . . . 174
Ringo Baumann and Gerhard Brewka

Normalizing Cardinality Rules Using Merging and Sorting
Constructions . 187

Jori Bomanson and Tomi Janhunen

Experience Based Nonmonotonic Reasoning . 200
Daniel Borchmann

An ASP Application in Integrative Biology: Identification of Functional
Gene Units . 206

Philippe Bordron, Damien Eveillard, Alejandro Maass,
Anne Siegel, and Sven Thiele

Evaluating Answer Set Clause Learning for General Game Playing 219
Timothy Cerexhe, Orkunt Sabuncu, and Michael Thielscher

VCWC: A Versioning Competition Workflow Compiler 233
Günther Charwat, Giovambattista Ianni, Thomas Krennwallner,
Martin Kronegger, Andreas Pfandler, Christoph Redl,
Martin Schwengerer, Lara Katharina Spendier,
Johannes Peter Wallner, and Guohui Xiao

Table of Contents XV

A Sequential Model for Reasoning about Bargaining in Logic
Programs . 239

Wu Chen, Dongmo Zhang, and Maonian Wu

Extending the Metabolic Network of Ectocarpus Siliculosus Using
Answer Set Programming . 245

Guillaume Collet, Damien Eveillard, Martin Gebser,
Sylvain Prigent, Torsten Schaub, Anne Siegel, and
Sven Thiele

Negation as a Resource: A Novel View on Answer Set Semantics 257
Stefania Costantini and Andrea Formisano

AGM-Style Belief Revision of Logic Programs under Answer Set
Semantics . 264

James Delgrande, Pavlos Peppas, and Stefan Woltran

Efficient Approximation of Well-Founded Justification and
Well-Founded Domination . 277

Christian Drescher and Toby Walsh

Approximate Epistemic Planning with Postdiction as Answer-Set
Programming . 290

Manfred Eppe, Mehul Bhatt, and Frank Dylla

Combining Equilibrium Logic and Dynamic Logic . 304
Luis Fariñas del Cerro, Andreas Herzig, and Ezgi Iraz Su

ActHEX: Implementing HEX Programs with Action Atoms 317
Michael Fink, Stefano Germano, Giovambattista Ianni,
Christoph Redl, and Peter Schüller

Debugging Answer-Set Programs with Ouroboros – Extending the
SeaLion Plugin . 323

Melanie Frühstück, Jörg Pührer, and Gerhard Friedrich

Game Semantics for Non-monotonic Intensional Logic Programming 329
Chrysida Galanaki, Christos Nomikos, and Panos Rondogiannis

Matchmaking with Answer Set Programming . 342
Martin Gebser, Thomas Glase, Orkunt Sabuncu, and Torsten Schaub

Ricochet Robots: A Transverse ASP Benchmark . 348
Martin Gebser, Holger Jost, Roland Kaminski, Philipp Obermeier,
Orkunt Sabuncu, Torsten Schaub, and Marius Schneider

Decidability and Implementation of Parametrized Logic Programs 361
Ricardo Gonçalves and José Júlio Alferes

XVI Table of Contents

Non-monotonic Temporal Goals . 374
Ricardo Gonçalves, Matthias Knorr, João Leite, and Martin Slota

On Equivalent Transformations of Infinitary Formulas under the Stable
Model Semantics (Preliminary Report) . 387

Amelia Harrison, Vladimir Lifschitz, and Miroslaw Truszczynski

An Application of ASP to the Field of Second Language Acquisition 395
Daniela Inclezan

Turner’s Logic of Universal Causation, Propositional Logic, and Logic
Programming . 401

Jianmin Ji and Fangzhen Lin

Concrete Results on Abstract Rules . 414
Markus Krötzsch, Despoina Magka, and Ian Horrocks

Linear Logic Programming for Narrative Generation 427
Chris Martens, Anne-Gwenn Bosser, João F. Ferreira, and
Marc Cavazza

Implementing Informal Semantics of ASP . 433
Artur Mikitiuk and Miroslaw Truszczynski

Implementing Belief Change in the Situation Calculus and an
Application . 439

Maurice Pagnucco, David Rajaratnam, Hannes Strass, and
Michael Thielscher

Debugging Non-ground ASP Programs with Choice Rules, Cardinality
and Weight Constraints . 452

Axel Polleres, Melanie Frühstück, Gottfried Schenner, and
Gerhard Friedrich

Conflict-Based Program Rewriting for Solving Configuration
Problems . 465

Anna Ryabokon, Gerhard Friedrich, and Andreas A. Falkner

Program Updating by Incremental and Answer Subsumption Tabling . . . 479
Ari Saptawijaya and Lúıs Moniz Pereira

Characterization Theorems for Revision of Logic Programs 485
Nicolas Schwind and Katsumi Inoue

Flexible Combinatory Categorial Grammar Parsing Using the CYK
Algorithm and Answer Set Programming . 499

Peter Schüller

Early Recovery in Logic Program Updates . 512
Martin Slota, Martin Baláž, and João Leite

Table of Contents XVII

Preference Handling for Belief-Based Rational Decisions 518
Samy Sá and João Alcântara

Logic-Based Techniques for Data Cleaning: An Application to the
Italian National Healthcare System . 524

Giorgio Terracina, Alessandra Martello, and Nicola Leone

Justifications for Logic Programming . 530
Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou

Belief Change in Nonmonotonic Multi-Context Systems 543
Yisong Wang, Zhiqiang Zhuang, and Kewen Wang

On Optimal Solutions of Answer Set Optimization Problems 556
Ying Zhu and Miroslaw Truszczynski

Author Index . 569

Towards Reactive Multi-Context Systems

Gerhard Brewka

Leipzig University, Informatics Institute, Postfach 100920, 04009 Leipzig, Germany
brewka@informatik.uni-leipzig.de

Abstract. Among the challenges faced by the area of knowledge representation
(KR) are the following ones: firstly, knowledge represented in different knowl-
edge representation languages needs to be integrated, and secondly, certain appli-
cations have specific needs not typically fulfilled by standard KR systems. What
we have in mind here are applications where reasoners, rather than being called
by the user in order to answer some specific query, run online and have to deal
with a continuous stream of information. In this paper we argue that multi-context
systems (MCS) are adequate tools for both challenges. The original MCS ap-
proach was introduced to handle the integration problem in a principled way. A
later extension to so-called managed MCS appears to provide relevant function-
ality for the second challenge. In this paper we review both MCS and managed
MCS and discuss how the latter approach needs to be further developed for online
applications.

1 Introduction

Research in knowledge representation (KR) and, more generally, information technol-
ogy faces at least the following two problems:

1. A large variety of formats and languages for representing knowledge has been pro-
duced. A wealth of tools and formalisms is now available, including rather basic
ones like databases or the more recent triple-stores, and more expressive ones like
ontology languages (e.g., description logics), temporal and modal logics, nonmono-
tonic logics, or logic programs under answer set semantics, to name just a few.
This diversity of formalisms poses some important challenges. There are many
situations where the integration of the knowledge represented in such diverse for-
malisms is crucial. But how can this be achieved in a principled way?

2. Most of the tools providing reasoning services for KR languages were developed
for offline usage: given a knowledge base (KB) computation is one-shot, triggered
by a user, through a specific query or a request to compute, say, an answer set. This
is the right thing for specific types of applications, for instance expert systems, con-
figuration or planning problems where a specific answer to a problem instance is
needed at a particular point in time. However, there are different kinds of appli-
cations where a reasoning system is continuously online and observes a particular
system, informing the user in case something unforeseen/uninteded happens. This
different usage of KR systems again poses important challenges.

Let’s illustrate these problems with two examples. For the first problem, assume your
home town’s hospital has

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 G. Brewka

– a patient database (e.g. an Oracle database),
– a disease ontology (written in a particular description logic),
– an ontology of the human body (using OWL),
– an expert system describing the effects of different medications (using a nonmono-

tonic reasoning formalism, say disjunctive logic programming).

Needless to say that it is in the patients’ best interest to integrate all available knowl-
edge. But how? Translating everything into a single all-purpose formalism is certainly
not a solution. First of all, no standardized, universal knowledge representation lan-
guage exists, and there are very good reasons for this (e.g. specific modeling needs or
complexity considerations). Secondly, even if there were such a language, most prob-
ably remodeling the information would be too cumbersome and costly. What seems
to be needed is a principled way of integrating knowledge expressed in different for-
mats/languages/logics.

For the second problem consider an assisted living scenario where people in need
of support live in an apartment which is equipped with various sensors, e.g. smoke
detectors, cameras, and body sensors measuring relevant body functions (e.g. pulse,
blood pressure). A reasoning system continuously receives sensor information. The task
is to detect emergencies (health problems, forgotten medication, overheating stove,...)
and cause adequate reactions (e.g. turning off the electricity, calling the ambulance,
ringing an alarm). Apparently the system is not explicitly called by a user to become
active. It rather is continuously online and must be able to process a continuous stream
of information rather than a fixed KB.

This shift in view clearly has an impact on KR formalisms. Most importantly, since
the system is permanently online, the available information continuously grows. This
obviously cannot go on forever as the KB needs to be kept in a manageable size. We
thus need principled ways of forgetting/disregarding information. In the literature one
often finds sliding window techniques where information is kept for a specific, prede-
fined period of time and forgotten if it falls out of this time window. We believe this
approach is far too inflexible. What is needed is a dynamic, situation dependent way
of determining whether information needs to be kept or can be given up. Ideally we
would like our online KR system to guarantee specific response times; although it may
be very difficult to come up with such guarantees, it is certainly necessary to find means
to identify and focus on relevant parts of the available information. Moreover, although
the definition of the semantics of the underlying KR formalism certainly remains essen-
tial, we also need to impose procedural aspects reflecting the necessary modifications
of the KB. This leads to a new, additional focus on runs of the system, rather than single
evaluations.

We believe nonmonotonic multi-context systems (MCS) [1] are promising tools for
addressing both problems. The original MCS framework was explicitly developed to
handle problem 1, the integration of diverse KR formalisms. In Sect. 2 we recall the
basic ideas underlying this approach. In a nutshell, an MCS consists of reasoning units
- called contexts for historical reasons [8] - where each unit can be connected with
other units via so-called bridge rules. The collection of bridge rules associated with a
context specifies additional beliefs the context is willing to accept depending on what
is believed by connected contexts. The contexts themselves can be viewed as parts of

Towards Reactive Multi-Context Systems 3

an agent’s knowledge connected to other parts, but they can also be viewed as single
agents willing to listen to and incorporate information from other agents.

The original framework was aimed at modelling the flow of information among con-
texts, consequently the addition of information to a context was the only possible op-
eration. Of course, it is easy to imagine other operations one may want to perform, for
instance revisions which keep the underlying KB consistent instead of simple additions.
To capture arbitrary operations MCS were later generalized to so called managed MCS
(mMCS) [3], a general and flexible framework that we will briefly discuss in Sect. 3.
The possibility to have arbitrary operators is what, as we believe, makes mMCS suitable
tools for the kind of online applications we discussed earlier. Sect. 4 describes some of
the necessary steps that need to be done. In particular, what is required is an instan-
tiation of the general mMCS framework with operations suitable to model focussing
and forgetting. The systems we have in mind are reactive in the sense that they modify
themselves to keep system performance up and in response to potential emergencies.

In cases where knowledge integration is not an issue (that is, where a single context
is sufficient) and where moreover the underlying KR formalism is rule based the separa-
tion between context knowledge base and bridge rules may become obsolete. We briefly
illustrate this in Sect. 5 using ASP as the underlying formalism. Sect. 6 concludes and
points to open research questions.

2 Nonmonotonic Multi-Context Systems

The basic idea underlying MCS is to leave the diverse formalisms and knowledge bases
untouched, and to equip each context with a collection of so-called bridge rules in order
to model the necessary information flow among contexts.

Bridge rules are similar to logic programming rules (including default negation),
with an important difference: they allow to access other contexts in their bodies. Using
bridge rules has several advantages: the specification of the information flow is fully
declarative; moreover, information - rather than simply being passed on as is - can be
modified in various ways:

– we may translate a piece of information into the language/format of another context,
– we may pass on an abstraction of the original information, leaving out unnecessary

details,
– we may select or hide information,
– we may add conclusions to a context based on the absence of information in another

one,
– we may use simple encodings of preferences among parent contexts,
– we can even encode voting rules, say based on majorities etc.

The semantics of MCS is defined in terms of equilibria: a belief state assigns a belief
set to each context Ci. Intuitively, a belief state is an equilibrium whenever the belief
set selected for each Ci is acceptable for Ci’s knowledge base augmented by the heads
of Ci’s applicable bridge rules.

The history of MCS started in Trento. Advancing work in [7,9], the Trento School
developed monotonic heterogeneous multi-context systems [8] with the aim to integrate

4 G. Brewka

different inference systems. Here reasoning within as well as across contexts is mono-
tonic. The first, still somewhat limited attempts to include nonmonotonic reasoning
were done in [10] and [4]. To allow for reasoning based on the absence of informa-
tion from a context, in both papers default negation is allowed in the rules. In this way
contextual and default reasoning are combined.

The nonmonotonic MCS of [1] substantially generalized these approaches, by ac-
commodating heterogeneous and both monotonic and nonmonotonic contexts. They
are thus capable of integrating “typical” monotonic logics like description logics or
temporal logics, and nonmonotonic formalisms like Reiter’s default logic, answer set
programs, circumscription, defeasible logic, or theories in autoepistemic logic. The cur-
rently most general MCS variant, the so-called managed MCS (mMCS) [3] allow for
arbitrary user-defined operations on the context knowledge bases, not just augmenta-
tions. They will be discussed in the next section.

Here is a more formal description of multi-context systems as defined in [1]. MCS
build on an abstract notion of a logic L as a triple (KBL,BSL,ACCL), where KBL

is the set of admissible knowledge bases (KBs) of L, which are sets of KB-elements
(“formulas”); BSL is the set of possible belief sets, whose elements are beliefs; and
ACCL : KBL → 2BSL is a function describing the semantics of L by assigning to
each knowledge-base a set of acceptable belief sets.

A multi-context system (MCS) M = (C1, . . . , Cn) is a collection of contexts Ci =
(Li, kbi, bri) where Li is a logic, kbi ∈ KBLi is a knowledge base and bri is a set of
bridge rules of the form:

s←(c1: p1), . . . , (cj : pj), not(cj+1: pj+1), . . . , not(cm: pm). (1)

such that kb ∪ {s} is an element of KBLi , c� ∈{1, . . . , n}, and p� is element of some
belief set of BS c� , for all 1 ≤ � ≤ m. For a bridge rule r, we denote by hd(r) the
formula s while body(r) denotes the set {(c�1 : p�1) | 1 ≤ �1 ≤ j} ∪ {not(c�2 : p�2) |
j < �2 ≤ m}.

A belief state S = (S1, . . . , Sn) for M consists of belief sets Si ∈ BS i, 1 ≤ i ≤ n.
A bridge rule r of form (1) is applicable wrt. S, denoted by S |= body(r), iff p� ∈ Sc�

for 1 ≤ � ≤ j and p� /∈ Sc� for j < � ≤ m. We use appi(S) = {hd(r) | r ∈ bri ∧S |=
body(r)} to denote the heads of all applicable bridge rules of context Ci wrt. S.

The semantics of an MCS M is then defined in terms of equilibria, where an equi-
librium is a belief state (S1, . . . , Sn) such that Si ∈ ACC i(kbi ∪ appi(S)), 1 ≤ i ≤ n.

3 Managed MCS: Beyond Information Flow

Although nonmonotonic MCS are, as we believe, an excellent starting point to address
the problems discussed above, the way they integrate knowledge is still somewhat lim-
ited: if a bridge rule for a context is applicable, then the rule head is simply added to the
context’s knowledge base (KB). Although this covers the flow of information, it does
not capture other operations one may want to perform on context KBs. For instance,
rather than simply adding a formula φ, we may want to delete some information, or
to revise the KB with φ to avoid inconsistency in the context’s belief set. We are thus

Towards Reactive Multi-Context Systems 5

interested in generalizations of the MCS approach where specific predefined operations
on knowledge bases can be performed.

A first step into this direction are argumentation context systems (ACS) [2]. They
specialize MCS in one respect, and are more general in another. First of all, in contrast to
nonmonotonic MCS they are homogeneous in the sense that all reasoning components
in an ACS are of the same type, namely Dung-style argumentation frameworks [5]. The
latter are widely used as abstract models of argumentation. However, ACS go beyond
MCS in two important aspects:

1. The influence of an ACS module M1 on another module M2 can be much stronger
than in an MCS. M1 may not only provide information for M2 and thus augment
the latter, it may directly affect M2’s KB and reasoning mode: M1 may invalidate
arguments or attack relationships in M2’s argumentation framework, and even de-
termine the semantics to be used by M2.

2. A major focus in ACS is on inconsistency handling. Modules are equipped with ad-
ditional components called mediators. The main role of the mediator is to take care
of inconsistencies in the information provided by connected modules. It collects the
information coming in from connected modules and turns it into a consistent up-
date specification for its module, using a pre-specified consistency handling method
which may be based on preference information about other modules.

Managed MCS (mMCS) push the idea of mediators even further. They allow additional
operations on knowledge bases to be freely defined; this is akin to management func-
tionality of database systems. We thus call the additional component context manager.
In a nutshell (and somewhat simplifying) the features of mMCS are as follows:

– Each logic comes with a set of operations O.
– An operational statement is an operation applied to a formula (e.g. insert(p),

delete(p), revise(p), ...).
– Bridge rules are as before, except for the heads which now are operational state-

ments.
– A management function: mng : 2Opst × KB → 2KB, produces a collection of

KBs out of set of operational statements and a KB.
– A managed context consists of a logic, a KB, a set of bridge rules (as before),

together with the new part, a management function.
– An mMCS is just a collection of managed contexts.

Regarding the semantics, a belief state S = (S1, . . . Sn) contains - as before - a belief
set for each context. To be an equilibrium S has to satisfy the following condition:
the belief set chosen for each context must be acceptable for one of the KBs obtained
by applying the management function to the heads of applicable bridge rules and the
context’s KB. More formally, for all contexts Ci = (Li, kbi, bri,mngi): let Si be the
belief set chosen for Ci, and let Opi be the heads of bridge rules in bri applicable in S.
Then S is an equilibrium iff, for 1 ≤ i ≤ n,

Si ∈ ACCi(kb
′) for some kb′ ∈ mngi(Opi, kbi).

Management functions allow us to model all sorts of modifications of a context’s knowl-
edge base and thus make mMCS a powerful tool for describing the influence contexts

6 G. Brewka

can have on each other. Of course, the framework is very general and needs to be in-
stantiated adequately for particular problems. As a short illustrative example let us con-
sider an instantiation we call revision-based MCS. The main goal here is to keep each
context’s KB consistent when information is added, that is, we want to guarantee con-
sistency of belief sets in equilibria.

Assume the KB’s logic has a single operation inc (include). For a formula p, inc(p)
intuitively says: incorporate p consistently into your KB. Two things can go wrong: the
formulas to be included in a particular situation

1. may be inconsistent with each other, or
2. may be inconsistent with the context KB.

For 1 we introduce preferences among bridge rules. More precisely, we represent a
total preorder on bridge rules by using indexed operations inc1, inc2, . . . where a lower
index represents higher priority. Given a collection of indexed inclusion operations we
can now identify preferred sets of formulas as follows: we pick a maxi-consistent subset
of inc1-formulas (i.e. formulas appearing as arguments of inc1), extend the set maxi-
consistently with inc2-formulas etc.

For 2 we assume a consistency preserving base revision operator

rev : KB ×KB → 2KB

that is, rev(kb1, kb2) may potentially produce alternative outcomes of the revision,
however each outcome is consistent whenever kb2 is. We can now define the man-
agement function as follows: for

Op = {inc1(p1,1), . . . , inc1(p1,m), . . . , inck(pk,1), . . . , inck(pk,n)}

let:

kb′ ∈ mng(Op, kb) iff kb′ ∈ rev(kb, F) for some preferred set F of Op.

Each belief set in each equilibrium now is apparently consistent.
Here is a specific example. Let C be a context based on propositional logic, its KB

is
{July→ ¬Rain,Rain→ Umbrella, July}.

C has 2 parent contexts; C1 believes Rain, C2 believes ¬Rain. C1 more reliable wrt.
the weather. C thus has the following bridge rules:1

{inc1([¬]Rain)← 1:[¬]Rain; inc2([¬]Rain)← 2:[¬]Rain}.

As C1 is preferred to C2 the single preferred set is {Rain}.
To fully specify the management function we still need to define the revision opera-

tor. We do this as follows: K ′ ∈ rev(K,F) iff K ′ = M∪F for some maximal M ⊆ K
consistent with F . Now we obtain the following two acceptable belief sets for C:

Th({Rain, July→ ¬Rain,Rain→ Umbrella})
Th({Rain, July, Rain→ Umbrella}).

1 We use square brackets in the rules to represent optional parts; each rule with [¬] thus actually
represents 2 rules.

Towards Reactive Multi-Context Systems 7

4 Reactive MCS: A Sketch

In this section we discuss some of the issues that need to be addressed for applications
like the assisted living scenario we described in the introduction. We believe managed
MCS are an excellent starting point for the following reasons:

– they offer means to integrate sensor information from different sources, handling
inconsistencies if needed,

– the management function provides capabilities to modify KBs which appear essen-
tial to keep the sizes of knowledge bases manageable.

Nevertheless, the general managed MCS framework obviously needs to be further mod-
ified, respectively instantiated, to become reactive. What we aim for is a specialization
of the (potentially generalized) managed MCS framework suitable for online applica-
tions. Here we identify some of the relevant changes.

First of all, it is useful to introduce different types of contexts:

– observer contexts which are “connected to the real world via sensors; these contexts
keep track of (time-stamped) sensor readings,

– analyzer contexts which reason about the current situation and in particular de-
tect emergencies; they obtain relevant information from sensing contexts via bridge
rules and generate alarms if needed,

– control contexts which make sure the system focuses on the right issues; this in-
cludes dynamically setting adequate time windows for information, increasing the
frequency of sensor readings if relevant/dangerous things happen, making sure out-
dated/irrelevant information is deleted/disregarded to keep the system performance
up.

Next, the management function needs to be instantiated adequately for purposes of
focusing and forgetting:

– a language of adequate operations for focusing and forgetting needs to be defined,
– ideally the performed operations may also depend on the actual system

performance,
– it would be highly useful if the management function were able to restrict recom-

putations to specific, relevant contexts.

Finally, we anticipate that preferences will play an essential role:

– for inconsistency handling among different sensor readings,
– to handle more important emergencies with high priority,
– to mediate between what’s in the current focus and the goal not to overlook impor-

tant events.

We thus will need to equip MCS with expressive and flexible preference handling
capabilities.

As pointed out earlier, in online applications the major object of interest is the system
behaviour over time. For this reason we next define runs of reactive MCS, an essential
basic notion:

8 G. Brewka

Definition 1. Let M be a managed MCS with contexts C0, . . . , Cn (C0, . . . , Ck are
observer contexts). Let Obs = (Obs0, Obs1, . . .) be a sequence of observations, that is,
for j ≥ 0, Obsj = (Obsji)i≤k , where Obsji is the new (sensor) information for context
i at step j. A run R of M induced by Obs is a sequence

R = Kb0, Eq0,Kb1, Eq1, . . .

where

– Kb0 = (Kb0i)i≤n is the collection of initial knowledge bases, Eq0 an equilibrium
of Kb0,

– for j ≥ 1 and i ≤ n, Kbji is the knowledge base of context Ci produced be the con-
text’s management function for the computation of Eqj−1, and Kbj = (Kbji)i≤n,

– for j ≥ 1, Eqj is an equilibrium for the knowledge bases

(Kbj0 ∪Obsj0, . . . ,Kbjk ∪Obsjk,Kbjk+1, . . . ,Kbjn).

5 Reactive ASP: A Bottom Up Approach

In the last section we sketched some of the issues that need to be addressed in order
to turn MCS into a reactive formalism suitable for online applications. The basic idea
was to handle reactivity by adequate operations in bridge rules. We now consider cases
where the integration of information from different sources is not an issue and where
we work with a single context. The separation between context and bridge rules is still
relevant as the bridge rules (which now should better be called operational rules as they
do no longer bridge different contexts) implement the focusing and forgetting strategies
of the context.

However, if the single context we work with is itself rule based, then strictly speaking
the separation of bridge/operational rules from the rest of the program becomes obso-
lete. We may as well use operational rules within the formalism itself. For instance,
assume we use logic programs under answer set semantics.2 Some of the rules in the
program may have operational statements in their heads which simply are interpreted
as operations to be performed on the program itself. Again, this allows us to represent
the strategy for maintaining the knowledge base manageable declaratively. When the
program is run, the strategy is realized by a self-modification of the program.

This is reflected in the following notion of a run of a reactive answer set program
(RASP) P , that is an ASP program which has some rules with operational statements
in the heads. Intuitively, the behaviour of RASP P is characterized as follows:

1. P computes an answer set S0, during the computation the current information is
frozen until the computation is finished,

2. the set of operations to be performed is read off the answer set S0 and P is modified
accordingly, at the same time observations made since the last computation started
are added,

2 For some important steps towards stream reasoning with answer set programming see also the
work of Torsten Schaub’s group, e.g [6].

Towards Reactive Multi-Context Systems 9

3. the modified program computes a new answer set, and so on.

This is captured in the following definition of a run:

Definition 2. A run of a reactive answer set program P induced by a sequence of sets
of observations (Obs0, Obs1, . . .) is a sequence (S0, S1, . . .) of answer sets satisfying
the following conditions:

1. S0 is an answer set of P0 = P .
2. For i ≥ 0, Si+1 is an answer set of Pi+1 = Modi(Pi) ∪Obsi, where Modi(Pi) is

the result of modifying Pi according to the operational statements contained in Si.

This definition implies new information obtained while the last answer set was com-
puted is always included in the new. modified program. In certain situations, for instance
if parts of the new knowledge are outside the current focus, it may even be useful to dis-
regard pieces of the new information entirely. Formally this can be captured by letting
Pi+1 = Modi(Pi ∪Obsi) in item 2 of the definition above.

6 Discussion and Future Work

In this paper we discussed some of the issues that need to be addressed if KR wants to
meet the challenges of certain types of applications where continuous online reasoning
is required. We sketched a top down approach, instantiating the managed MCS ap-
proach accordingly. We also briefly described a bottom up approach based on a related
extension of the ASP framework.

We obviously left many questions open. The major open issue is the specification
of a suitable language for the operational statements which are relevant for forgetting
and focusing. The operations should allow to set the window size for specific sen-
sor/information types dynamically, keeping relevant information available. They also
should make it possible to specify the system’s focus depending on events pointing to
potential problems/emergencies. Focusing may lead to more regular checks for specific
information, whereas other information may be looked at only from time to time.

Of course, focusing bears the danger that new problems may be overlooked. Ideally,
we would like to have a guarantee that every potential emergency is checked on a reg-
ular basis, even if it is not in the current focus. In addition, it would be very useful to
take information about the current system performance into account to determine what
information to keep and what to give up. This would lead to a notion of resource-aware
computation where part of the sensor information made available in each step of a run
reveals how the system currently is performing.

The notions of a run we defined both for managed MCS and for reactive ASP is
built on a credulous view: in each step a single equilibrium, respectively answer set,
is computed and taken as the starting point for the next step. There may be scenar-
ios where a skeptical approach built on what is believed in all (or in some preferred)
equilibria/answer sets is more adequate. It may even be useful to switch between the
credulous and skeptical approach dynamically.

Finally, if memory is not an issue (but computation time is) then rather than delet-
ing irrelevant information one could as well keep it but put it aside for a certain time.

10 G. Brewka

The available information would thus be divided in a part to be forgotten, a part to be
kept but disregarded for the time being, and a part currently in the focus of attention.

In conclusion, a lot remains to be done in KR to fully solve the challenges of integra-
tion and online reasoning. Nevertheless, we believe promising ideas are already around
and addressing the open problems will definitely be worth it.

Acknowledgements. Some of the ideas presented here are based on discussions with
Torsten Schaub and Stefan Ellmauthaler. The presented work was partly funded by
Deutsche Forschungsgemeinschaft, grant number FOR 1513.

References

1. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proc. AAAI 2007, pp. 385–390. AAAI Press (2007)

2. Brewka, G., Eiter, T.: Argumentation context systems: A framework for abstract group ar-
gumentation. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
44–57. Springer, Heidelberg (2009)

3. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Proc.
IJCAI 2011, pp. 786–791 (2011)

4. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: Proc. IJCAI 2007,
pp. 268–273 (2007)

5. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

6. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream rea-
soning with answer set programming: Preliminary report. In: Proc. KR 2012, pp. 613–617
(2012)

7. Giunchiglia, F.: Contextual reasoning. Epistemologia XVI, 345–364 (1993)
8. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do without

modal logics. Artif. Intell. 65(1), 29–70 (1994)
9. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1029–1035 (1987)

10. Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: Proc. IJCAI 2005
(2005)

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 11–22, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Logic Programming in the 1970s

Robert Kowalski

Imperial College London
rak@doc.ic.ac.uk

Abstract. Logic programming emerged in the 1970s from debates concerning
procedural versus declarative representations of knowledge in artificial intelli-
gence. In those days, declarative representations were associated mainly with
bottom-up proof procedures, such as hyper-resolution. The development of log-
ic programming showed that procedural representations could be obtained by
applying top-down proof procedures, such as linear resolution, to declarative
representations in logical form.

In recent years, logic programming has become more purely declarative,
with the development of answer set programming, tabling and the revival of da-
talog. These recent developments invite comparison with earlier attempts to re-
concile procedural and declarative representations of knowledge, and raise the
question whether anything has been lost.

Keywords: logic programming, Prolog.

1 What is Logic Programming?

Logic programming can be viewed as the use of logic to perform computation, build-
ing upon and extending one of the simplest logics imaginable, namely the logic of
Horn clauses. A Horn clause is a sentence that can be written in the logical form:

A0 ← A1 ∧ ... ∧ An where n ≥ 0.

where each Ai is an atomic formula of the form p(t1,...tm), where p is a predicate sym-
bol, the ti are terms, and all variables are universally quantified.

Horn clauses are theoretically sufficient for programming and databases. But for
non-monotonic reasoning, they need to be extended to clauses of the form:

A0 ← A1 ∧ ... ∧ An ∧ not B1 ∧ ... ∧ not Bm where n ≥ 0 and m ≥ 0

where each Ai and Bi is an atomic formula. Sets of clauses in this form are called nor-
mal logic programs, or just logic programs.

In this paper, which is a shorter version of a longer history to be included in [36], I
present a personal view of the early history of logic programming. It focuses on logi-
cal, rather than on technological issues, and assumes that the reader is already familiar
with the basics of logic programming. Other histories that give other perspectives
include [4, 7, 10, 11, 17, 23].

12 R. Kowalski

2 The Prehistory of Logic Programming

Horn clauses are a special case of the clausal form of first-order logic, and the earliest
implementations of Horn clause programming used the resolution rule of inference
[31] developed by (John) Alan Robinson.

2.1 Resolution

The invention of resolution revolutionized the field of automated theorem-proving,
and inspired other applications of logic in artificial intelligence. One of the most suc-
cessful of these applications was the question-answering system QA3 [14], developed
by Cordell Green. Green also showed that resolution could be used to automatically
generate a program in LISP, from a specification of its input-output relation written in
the clausal form of logic.

Green seems to have anticipated the possibility of dispensing with LISP and using
only the logical specification of the desired input-output relation, writing [14]:

“The theorem prover may be considered an “interpreter” for a high-level asser-
tional or declarative language - logic. As is the case with most high-level pro-
gramming languages the user may be somewhat distant from the efficiency of
“logic” programs unless he knows something about the strategies of the system.”

However, he does not seem to have pursued these ideas much further. Moreover,
there was an additional problem, namely that the resolution strategies of that time
behaved unintuitively and were very redundant and inefficient. For example, given a
clause of the form L1 ∨ ... ∨ Ln, and n clauses of the form ¬ Li ∨ Ci, resolution would
derive the same clause C1 ∨ ... ∨ Cn redundantly in n! different ways.

2.2 Procedural Representations of Knowledge

Green’s ideas were attacked from MIT, where researchers were advocating procedural
representations of knowledge. Terry Winograd’s PhD thesis [38] gave the most com-
pelling and most influential voice to this opposition. Winograd argued [38, page 232]:

“Our heads don’t contain neat sets of logical axioms from which we can deduce
everything through a “proof procedure”. Instead we have a large set of heuristics
and procedures for solving problems at different levels of generality.”

Winograd’s procedural alternative to logic was based on Carl Hewitt’s language
PLANNER [16]. Winograd describes PLANNER in the following terms [38,
page 238]:

“The language is designed so that if we want, we can write theorems in a form
which is almost identical to the predicate calculus, so we have the benefits of a
uniform system. On the other hand, we have the capability to add as much subject-
dependent knowledge as we want, telling theorems about other theorems and
proof procedures. The system has an automatic goal-tree backup system, so that

 Logic Programming in the 1970s 13

even when we are specifying a particular order in which to do things, we may not
know how the system will go about doing them. It will be able to follow our sug-
gestions and try many different theorems to establish a goal, backing up and trying
another automatically if one of them leads to a failure ….”

In contrast [38, page 215]:

“A uniform proof procedure gropes its way through the collection of theorems and
assertions, according to some general procedure which does not depend on the
subject matter. It tries to combine facts which might be relevant, working from the
bottom-up.”

Winograd’s PhD thesis presented a natural language understanding system that was a
great advance at the time, and its advocacy of PLANNER was enormously influential.

2.3 Improved Resolution Proof Procedures

At the time that QA3 and PLANNER were being developed, resolution was not very
well understood. Perhaps the best known refinement was Robinson’s hyper-resolution
[32], which, in the case of ground Horn clauses, derives D0 from the input clause:

D0 ← B1 ∧ ... ∧ Bm

and from the input or derived atoms, B1, ..., Bm. The problem with hyper-resolution, as
Winograd observed in the passage quoted above, is that it uniformly derives new
clauses from the input clauses without paying attention to the problem to be solved.
 Linear resolution, discovered independently by Loveland [26], Luckham [28] and
Zamov and Sharonov [39], addresses the problem of relevance by focusing on a top
clause C0, which could represent an initial goal:

Let S be a set of clauses. A linear derivation of a clause Cn from a top clause C0 ∈
S is a sequence of clauses C0, ..., Cn such that every clause Ci+1 is a resolvent of Ci
with some input clause in S or with some ancestor clause Cj where j < i. (It was
later realised that ancestor resolution is unnecessary if S is a set of Horn clauses.)

In retrospect, the relationship with PLANNER is obvious. If the top clause C0
represents an initial goal, then the tree of all linear derivations is a kind of goal tree,
and generating the tree top-down is a form of goal-reduction. The tree can be explored
using different search strategies. Depth-first search, in particular, can be informed by
PLANNER-like strategies that both specify “a particular order in which to do things”,
but also “back up” automatically in the case of failure.

But the relationship with PLANNER was still obscure, due to the n! redundant
ways of resolving upon n literals in the clauses Ci. This redundancy was recognized
and solved independently at about the same time by Loveland [27], Reiter [30], and
Kowalski and Kuehner [24]. The obvious solution was simply to select a single order
for resolving upon the literals in the clauses Ci.

14 R. Kowalski

3 The Procedural Interpretation of Horn Clauses

The procedural interpretation of Horn clauses came about during my collaboration
with Alain Colmerauer in the summer of 1972 in Marseille. Colmerauer was develop-
ing natural language question-answering systems, and I was developing resolution
theorem-provers, and attempting to reconcile them with PLANNER-like procedural
representations of knowledge.

3.1 The Relationship with Formal Grammars

Colmerauer knew everything there was to know about formal grammars and their
application to programming language compilers. During 1967–1970, he created the
Q-System [5] at the University of Montreal, which was later used from 1982 to 2001
to translate English weather forecasts into French for Environment Canada. Since
1970, he had been in Marseille, building up a team working on natural language
question-answering, investigating SL-resolution [24] for the question-answering
component.

My first visit to Marseille was in the summer of 1971, when we investigated the
representation of grammars in logical form. We discovered that forward reasoning
with hyper-resolution performed bottom-up parsing, while backward reasoning with
SL-resolution performed top-down parsing. However, we did not yet see how to
represent more general PLANNER-like procedures in logical form.

3.2 Horn Clauses and SLD-Resolution

It was during my second visit to Marseille in April and May of 1972 that the idea of
using SL-resolution to execute Horn clause programs emerged. By the end of the
summer, Colmerauer’s group had developed the first version of Prolog, and used it to
implement a natural language question-answering system [6]. I reported an abstract of
my own findings at the MFCS conference in Poland in August 1972 [20].

The first Prolog system was an implementation of SL-resolution for the full claus-
al form of first-order logic, including ancestor resolution. But the idea that Horn
clauses were an interesting case was already in the air. Donald Kuehner, in particular,
had already been working on bi-directional strategies for Horn clauses [25]. However,
the first explicit presentation of the procedural interpretation of Horn clauses appeared
in [21]. The abstract begins:

“The interpretation of predicate logic as a programming language is based upon
the interpretation of implications B if A1 and and An as procedure declara-
tions, where B is the procedure name and A1 and and An is the set of procedure
calls constituting the procedure body…”

The theorem-prover described in [21] is a variant of SL-resolution without ancestor
resolution, to which Maarten van Emden later attached the name SLD-resolution,
standing for “selected linear resolution with definite clauses”. In fact, SLD-resolution
is more general than SL-resolution restricted to Horn clauses, because in SL-resolution

 Logic Programming in the 1970s 15

atoms (or subgoals) must be resolved upon last-in-first-out, but in SLD-resolution
atoms can be resolved upon in any order.

As in the case of linear resolution more generally, the space of all SLD-derivations
with a given top clause has the structure of a goal tree, which can be explored using
different search strategies. From a logical point of view, it is desirable that the search
strategy be complete, so that the proof procedure is guaranteed to find a solution if
there is one in the search space. Complete search strategies include breadth-first
search and various kinds of best-first and heuristic search. Depth-first search is in-
complete in the general case, but it takes up much less space than the alternatives.
Moreover, it is complete if the search space is finite, or if there is only one infinite
branch that is explored after all of the others.

The different options for selecting atoms to resolve upon and for searching the
space of SLD-derivations were left open in [21], but were pinned down in the Mar-
seille Prolog interpreter. In Prolog, subgoals are selected last-in-first-out in the order
in which the subgoals are written, and branches of the search space are explored
depth-first in the order in which the clauses are written. By choosing the order in
which subgoals and clauses are written, a Prolog programmer can exercise a signifi-
cant amount of control over the efficiency of a program.

3.3 Logic + Control

In those days, there was a wide-spread belief that logic alone is inadequate for prob-
lem-solving, and that some way of controlling the problem solver is needed for effi-
ciency. PLANNER combined logic and control in a procedural representation, but in
a way that made it difficult to identify the logical component. Logic programs ex-
ecuted with SLD-resolution also combine logic and control, but in a way that makes it
possible to read the same program both logically and procedurally. I later expressed
this as an equation A = L + C (Algorithm = Logic + Control) [22].

The most straight-forward implication of the equation is that, given a fixed logical
representation L, different algorithms can be obtained by applying different control
strategies, i.e. A1 = L + C1 and A2 = L + C2. Pat Hayes [15], in particular, argued that
the logic and control components should be expressed in separate languages, with the
logic component L providing a pure, declarative specification of the problem, and the
control component C supplying the problem solving strategies needed for an efficient
algorithm A. Moreover, he argued against the idea, expressed by the equations A1 =
L1 + C and A2 = L2 + C, of using a fixed control strategy C, as in Prolog, and formu-
lating the logic Li of the problem to obtain a desired algorithm Ai.

The idea of expressing logic and control in different languages has been a recurrent
theme in automated theorem-proving, but has had less influence in the field of logic
programming. However, Hayes may have anticipated some of the problems that arise
when Prolog does not provide sufficiently powerful control to allow a high level re-
presentation of the problem to be solved. Here is a simple example, written in Prolog
notation:

 likes(bob, X) :- likes(X, logic).
 likes(bob, logic).
 :- likes(bob, X).

16 R. Kowalski

Prolog fails to find the solution X = bob, because it explores the infinite branch gen-
erated by repeatedly using the first clause, without getting a chance to explore the
branch generated by the second clause.

These days, SLD-resolution extended with tabling [8, 33, 34] avoids many infinite
loops, like the one in this example.

4 The Semantics of Horn Clause Programs

The earliest influences on the development of logic programming had come primarily
from automated theorem-proving and artificial intelligence. But researchers in Edin-
burgh, where I was working at the time, also had strong interests in the theory of
computation, and there was a lot of excitement about Dana Scott’s recent fixed point
semantics for programming languages [35]. Maarten van Emden suggested that we
investigate the application of Scott’s ideas to Horn clause programs and that we com-
pare the fixed point semantics with the logical semantics.

4.1 What Is the Meaning of a Program?

But first we needed to establish a common ground for the comparison. If we regard
computer programs as computing input-output relations, then we can identify the
“meaning” (or denotation) of a logic program P with the set of all ground atoms A
that can be derived from P, which is expressed by:

P ├ A

Here ├ can represent any derivability relation. Viewed in programming terms, this is
analogous to the operational semantics of a programming language.

But viewed in logical terms, this is a proof-theoretic definition, which is not a se-
mantics at all. In logical terms, it is more natural to understand the semantics of P as
given by the set of all ground atoms A that are logically implied by P, written:

P ╞ A

The operational and model-theoretic semantics are equivalent for any sound and com-
plete notion of derivation.

SL-resolution is sound and complete for arbitrary clauses. So it is sound and com-
plete for Horn clauses in particular. Moreover, ancestor resolution is impossible for
Horn clauses. So SL-resolution without ancestor resolution is sound and complete for
Horn clause programs. This includes the proof procedure with fixed ordering of sub-
goals used in Prolog. The completeness of SLD-resolution, with its more dynamic and
more liberal selection function, was proved by Robert Hill [18].

Hyper-resolution is also sound and complete for arbitrary clauses, and therefore for
Horn clauses as well. Moreover, as we soon discovered, it is equivalent to the con-
struction of the fixed point semantics.

 Logic Programming in the 1970s 17

4.2 Fixed Point Semantics

In Dana Scott’s fixed point semantics, the denotation of a recursive function is given
by its input-output relation. The denotation is constructed by approximation, starting
with the empty relation, repeatedly plugging the current approximation of the denota-
tion into the definition of the function, transforming the approximation into a better
one, until the complete denotation is obtained in the limit, as the least fixed point.

 Applying the same approach to a Horn clause program P, the fixed point seman-
tics uses a similar transformation TP, called the immediate consequence operator, to
map a set I of ground atoms representing an approximation of the input-output rela-
tions of P into a better and more complete approximation TP(I). The resulting set TP(I)
is equivalent to the set of all ground atoms that can be derived by applying one step of
hyper-resolution to the clauses in ground(P) ∪ I.

Not only does every Horn clause program P have a fixed point I such that TP(I) =
I, but it has a least fixed point, lfp(TP), which is the denotation of P according to the
fixed point semantics. The least fixed point is also the smallest set of ground atoms I
closed under TP, i.e. the smallest set I such that TP(I) ⊆ I. This alternative characteri-
sation provides a link with the minimal model semantics, as we will see below.

The least fixed point can be constructed, as in Scott’s semantics, by starting with
the empty set {} and repeatedly applying TP:

If TP
0 = {} and TP

i+1 = TP(TP
i), then lfp(TP) = ∪0≤i TP

i.

The result of the construction is equivalent to the set of all ground atoms that can be
derived by applying any number of steps of hyper-resolution to the clauses in
ground(P).

The equality lfp(TP) = ∪0≤i TP
i is usually proved in fixed point theory by appealing

to the Tarski-Knaster theorem. However, in [12], we showed that it follows from the
completeness of hyper-resolution and the relationship between least fixed points and
minimal models. Here is a sketch of the argument:

A ∈ lfp(TP) iff A ∈ min(P) i.e. least fixed points and minimal models coincide.
A ∈ min(P) iff P ╞ A i.e. truth in the minimal model and in all models coincide.
P ╞ A iff A ∈ ∪0≤i TP

i i.e. hyper-resolution is complete.

4.3 Minimal Model Semantics

The minimal model semantics was inspired by the fixed point semantics, but was
based on the notion of Herbrand interpretation, which plays a central role in resolu-
tion theory.

The key idea of Herbrand interpretations is to identify an interpretation of a set of
sentences with the set of all ground atomic sentences that are true in the interpretation.
The most important property of Herbrand interpretations is that, in first-order logic, a
set of sentences has a model if and only if it has a Herbrand model. This property is a
form of the Skolem-Löwenheim-Herbrand theorem.

18 R. Kowalski

Thus the model-theoretic denotation of a Horn clause program:

M(P) = {A | A is a ground atom and P ╞ A}

is actually a Herbrand interpretation of P in its own right. Moreover, it is easy to show
that it is the smallest Herbrand model of P i.e. M(P) = min(P). Therefore:

A ∈ min(P) iff P ╞ A.

It is also easy to show that the Herbrand models of P coincide with the Herbrand in-
terpretations that are closed under the immediate consequent operator, i.e.:

I is a Herbrand model of P iff TP(I) ⊆ I.

This is because the immediate consequence operator TP mimics, not only the defini-
tion of hyper-resolution, but also the definition of truth: A set of Horn clauses P is
true in a Herbrand interpretation I if and only if, for every clause A0 ← A1 ∧ ... ∧ An
in ground(P), whenever A1 , ... , An are true in I then A0 is true in I.

It follows that the least fixed point and the minimal model are the same:

lfp(TP) = min(P).

5 Negation as Failure

The practical value of extending Horn clause programs to normal logic programs with
negative conditions was recognized from the earliest days of logic programming, as
was the obvious way to reason with them - by negation as failure (abbreviated as
NAF): to prove not B, show that all attempts to prove B fail. Intuitively, NAF is justi-
fied by the assumption that the program contains a complete definition of its predi-
cates. Keith Clark’s 1978 paper [2] was the first formal investigation of the semantics
of negation as failure.

5.1 The Clark Completion

Clark’s solution was to interpret logic programs as a short hand for definitions in if-
and-only-if form. In the non-ground case, the logic program needs to be augmented
with an equality theory, which mimics the unification algorithm, and which
essentially specifies that ground terms are equal if and only if they are syntactically
identical. Together with the equality theory, the if-and-only-if form of a normal logic
program P is called the completion of P, written comp(P).

Although NAF is sound with respect to the completion semantics, it is not com-
plete. For example, if P is the program:

 p ← q
 p ← ¬ q
 q ← q

then comp(P) implies p, but NAF goes into an infinite loop, failing to show q. With a
different semantics, the infinite failure could be interpreted as meaning that not q is

 Logic Programming in the 1970s 19

true, and therefore p is true. The completion semantics does not recognise such infi-
nite failure, because proofs in classical logic are finite. For this reason, the completion
semantics is sometimes referred to as the semantics of negation as finite failure.

Clark did not investigate the relationship between the completion semantics and
the various alternative semantics of Horn clauses. Probably the first such investigation
was by Apt and van Emden [1], who showed that if P is a Horn clause program then:

I is a Herbrand model of comp(P) iff TP(I) = I.

5.2 The Analogy with Arithmetic

Clark’s 1978 paper was not the first to propose the completion semantics for logic
programs. His 1977 paper with Tarnlund [3] proposed using the completion aug-
mented with induction to prove program properties, by analogy with the use of Peano
axioms to prove theorems of arithmetic.

 Consider, for example, the Horn clause definition of append(X, Y, Z), which holds
when the list Z is the concatenation of the list X followed by the list Y:

append(nil, X, X)
append(cons(U, X), Y, cons(U, Z)) ← append(X, Y, Z)

This is analogous to the definition of plus(X, Y, Z), which holds when X + Y = Z:

plus(0, X, X)
plus(s(X), Y, s(Z)) ← plus(X, Y, Z)

These definitions alone are adequate for computing their denotations. More generally,
they are adequate for solving any goal clause, which is an existentially quantified
conjunction of atoms. However, they need to be augmented with their completions
and induction axioms to prove such properties as the fact that append is functional:

 U = V ← append(X, Y, U) ∧ append(X, Y, V)

Because many such program properties can be expressed in logic programming form,
it can be hard to decide whether a clause should be treated as an operational part of a
logic program, or as an emergent property of the program. As Nicolas and Gallaire
observed [29], a similar problem arises with deductive databases: It can be hard to
decide whether a rule should be treated as part of the database, or as an integrity con-
straint that should be true of the database.

This distinction between clauses that are needed operationally, to define and com-
pute relations, and clauses that are emergent properties is essential for practical appli-
cations. Without this distinction, it is easy to write programs that unnecessarily and
redundantly mix operational rules and emergent properties. For example, adding to
the logic program that defines append additional clauses that state the property that
append is associative would make the program impossibly inefficient.

Arguably, the analogy with arithmetic helps to clarify the relationship between the
different semantics of logic programs: It suggests that the completion of a logic pro-
gram augmented with induction schemas is like the Peano axioms for arithmetic, and
the minimal model is like the standard model of arithmetic. The fact that both notions

20 R. Kowalski

of arithmetic have a place in mathematics suggests that both kinds of “semantics”
have a place in logic programming.

Interestingly, the analogy also works in the other direction. The fact that minimal
models are the denotations of logic programs shows that the standard model of arith-
metic has a syntactic core, which consists of the Horn clauses that define addition and
multiplication. Martin Davis [9] makes a similar point, but his core is essentially the
completion of the Horn clauses without induction axioms. Arguably, the syntactic
core of the standard model arithmetic explains how we can understand what it means
for a sentence to be true, even if it cannot be proved.

6 Where Did We Go from Here?

This brief history covers some of the highlights of the development of logic pro-
gramming from around 1968 to 1978, and it is biased by my own personal reflections.
Nonetheless, it suggests a number of questions that may be relevant today:

• In the 1980s, the minimal model semantics of Horn clauses was extended signifi-
cantly to deal with negation in normal logic programs. As a consequence, the
original view in logic programming of computation as deduction has been chal-
lenged by an alternative view of computation as model generation. But the model
generation view blurs the distinction between clauses that are needed operationally
to generate models and clauses that are emergent properties that are true in those
models. Would it be useful to pay greater attention to this distinction?

• With the development of answer set programming, tabling and datalog, logic pro-
gramming has become more declarative. But imperative programming languages
continue to dominate the world of practical computing. Can logic programming do
more to reconcile and combine declarative and procedural representations in the
future?

• In the late 1970s, as evidenced by the logic and databases workshop organized by
Gallaire, Minker and Nicolas [13] in Toulouse, logic programming began to show
promise as a general-purpose formalism for combining programming and databas-
es. But in the 1980s, logic programming split into a variety of dialects specialized
for different classes of applications.
 The recent revival of datalog [19] suggests that the old promise that logic
programming might be able to unify different areas of computing may have new
prospects. However, the query evaluation strategies associated datalog are mainly
bottom-up with magic set transformations used to simulate top-down execution.
Are the bottom-up execution methods of datalog really necessary? Or might top-
down execution with tabling [37] provide an alternative and perhaps more general
approach?

Acknowledgements. Many thanks to Maarten van Emden for helpful comments on
the longer version of this paper.

 Logic Programming in the 1970s 21

References

1. Apt, K.R., van Emden, M.: Contributions to the Theory of Declarative Knowledge.
JACM 29(3), 841–862 (1982)

2. Clark, K.L.: Negation by Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases,
pp. 293–322. Plenum Press (1978)

3. Clark, K.L., Tärnlund, S.-A.: A First-order Theory of Data and Programs. In: Proceedings
of the IFIP Congress 1977, pp. 939–944 (1977)

4. Cohen, J.: A View of the Origins and Development of Prolog. CACM 31, 26–36 (1988)
5. Colmerauer, A.: Les Systèmes Q ou un Formalisme pour Analyser et Synthétiser des

Phrases sur Ordinateur. Mimeo, Montréal (1969)
6. Colmerauer, A., Kanoui, H., Pasero, R., Roussel, P.: Un Systeme de Communication

Homme-Machine en Francais. Research report, Groupe d’Intelligence Artificielle, Univer-
site d’Aix-Marseille II, Luminy (1973)

7. Colmerauer, A., Roussel, P.: The Birth of Prolog. In: Bergin, T.J., Gibson, R.G. (eds.) His-
tory of Programming Languages, pp. 331–367. ACM Press and Addison Wesley (1996)

8. Chen, W., Warren, D.: Tabled Evaluation with Delaying for General Logic Programs.
JACM 43, 20–74 (1996)

9. Davis, M.: The Mathematics of Non-monotonic Reasoning. Artificial Intelligence 13(1),
73–80 (1980)

10. Elcock, E.W.: Absys: The First Logic Programming Language—a Retrospective and a
Commentary. Journal of Logic Programming 9(1), 1–17 (1990)

11. van Emden, M.: The Early Days of Logic Programming: A Personal Perspective. The As-
sociation of Logic Programming Newsletter 19(3) (2006), http://
www.cs.kuleuven.ac.be/~dtai/projects/ALP/newsletter/aug06/

12. van Emden, M., Kowalski, R.A.: The Semantics of Predicate Logic as a Programming
Language. JACM 23(4), 733–742 (1976)

13. Gallaire, H., Minker, J.: Logic and Data Bases. Plenum Press, New York (1978)
14. Green, C.: Application of Theorem Proving to Problem Solving. In: Walker, D.E., Norton,

L.M. (eds.) Proceedings of the 1st International Joint Conference on Artificial Intelligence,
pp. 219–239. Morgan Kaufmann (1969)

15. Hayes, P.J.: Computation and Deduction. In: Proceedings of the Second MFCS Sympo-
sium, Czechoslovak Academy of Sciences, pp. 105–118 (1973)

16. Hewitt, C.: Procedural Embedding of Knowledge In Planner. In: Proceedings of the 2nd
International Joint Conference on Artificial Intelligence. Morgan Kaufmann (1971)

17. Hewitt, C.: Middle History of Logic Programming: Resolution, Planner, Edinburgh LCF,
Prolog, Simula, and the Japanese Fifth Generation Project. arXiv preprint arXiv:0904.3036
(2009)

18. Hill, R.: LUSH Resolution and its Completeness. DCL Memo 78. School of Artificial In-
telligence, University of Edinburgh (1974)

19. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and Emerging Applications: an Interactive
Tutorial. In: Proceedings of the 2011 ACM SIGMOD International Conference on Man-
agement of Data, pp. 1213–1216 (2011)

20. Kowalski, R.A.: The Predicate Calculus as a Programming Language (abstract). In: Pro-
cedings of the First MFCS Symposium, Jablonna, Poland (1972)

21. Kowalski, R.A.: Predicate Logic as a Programming Language. DCL Memo 70, School of
Artificial Intelligence, Univ. of Edinburgh (1973); Proceedings of IFIP, pp. 569–574.
North-Holland, Amsterdam (1974)

22. Kowalski, R.A.: Algorithm = Logic+ Control. CACM 22(7), 424–436 (1979)

22 R. Kowalski

23. Kowalski, R.A.: The Early History of Logic Programming. CACM 31, 38–43 (1988)
24. Kowalski, R.A., Kuehner, D.: Linear Resolution with Selection Function. Artificial Intelli-

gence Journal 2, 227–260 (1971)
25. Kuehner, D.: Bi-directional Search with Horn Clauses. Edinburgh University (1969)
26. Loveland, D.W.: A Linear Format for Resolution. In: Symposium on Automatic Demon-

stration, pp. 147–162. Springer, Heidelberg (1970)
27. Loveland, D.W.: A Unifying View of Some Linear Herbrand Procedures. JACM 19(2),

366–384 (1972)
28. Luckham, D.: Refinement Theorems in Resolution Theory. In: Symposium on Automatic

Demonstration, pp. 163–190. Springer, Heidelberg (1970)
29. Nicolas, J.M., Gallaire, H.: Database: Theory vs. Interpretation. In: Gallaire, H., Minker, J.

(eds.) Logic and Databases. Plenum, New York (1978)
30. Reiter, R.: Two Results on Ordering for Resolution with Merging and Linear Format.

JACM 18(4), 630–646 (1971)
31. Robinson, J.A.: Machine-Oriented Logic Based on the Resolution Principle. JACM 12(1),

23–41 (1965)
32. Robinson, J.: Automatic Deduction with Hyper-resolution. International J. Computer

Math. 1(3), 227–234 (1965)
33. Sagonas, K., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database Engine. In:

Proceedings of the ACM SIGMOD International Conference on the Management of Data,
pp. 442–453 (1994)

34. Tamaki, H., Sato, T.: OLD Resolution with Tabulation. In: Shapiro, E. (ed.) ICLP 1986.
LNCS, vol. 225, pp. 84–98. Springer, Heidelberg (1986)

35. Scott, D.: Outline of a Mathematical Theory of Computation. In: Proc. of the Fourth An-
nual Princeton Conference on Information Sciences and Systems, pp. 169–176 (1970)

36. Siekmann, J., Woods, J.: History of Computational Logic in the Twentieth Century. El-
sevier (to appear)

37. Tekle, K.T., Liu, Y.A.: More Efficient Datalog Queries: Subsumptive Tabling beats Magic
Sets. In: Proceedings of the 2011 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 661–672 (2011)

38. Winograd, T.: Procedures as a Representation for Data in a Computer Program for Under-
standing Natural Language. MIT AI TR-235 (1971) Also: Understanding Natural Lan-
guage. Academic Press, New York (1972)

39. Zamov, N.K., Sharonov, V.I.: On a Class of Strategies for the Resolution Method. Zapiski
Nauchnykh Seminarov POMI 16, 54–64 (1969)

Integrating Temporal Extensions
of Answer Set Programming�

Felicidad Aguado, Gilberto Pérez, and Concepción Vidal

Department of Computer Science
University of Corunna, Spain

{aguado,gilberto.pvega,concepcion.vidalm}@udc.es

Abstract. In this paper we study the relation between the two main extensions
of Answer Set Programming with temporal modal operators: Temporal Equilib-
rium Logic (TEL) and Temporal Answer Sets (TAS). On the one hand, TEL is a
complete non-monotonic logic that results from the combination of Linear-time
Temporal Logic (LTL) with Equilibrium Logic. On the other hand, TAS is based
on a richer modal approach, Dynamic LTL (DLTL), whereas its non-monotonic
part relies on a reduct-based definition for a particular limited syntax. To inte-
grate both approaches, we propose a Dynamic Linear-time extension of Equilib-
rium Logic (DTEL) that allows accommodating both TEL and TAS as particular
cases. With respect to TEL, DTEL incorporates more expressiveness thanks to
the addition of dynamic logic operators, whereas with respect to TAS, DTEL
provides a complete non-monotonic semantics applicable to arbitrary theories. In
the paper, we identify cases in which both formalisms coincide and explain how
this relation can be exploited for adapting existing TEL and TAS computation
methods to the general case of DTEL.

1 Introduction

Among the frequent applications of Answer Set Programming (ASP) [1], it is quite
usual to find temporal scenarios and reasoning problems dealing with discrete time.
Although approaches that combine modal or temporal logic with logic programming
are not new [2,3,4,5,6] and even a definition of “temporal answer set” dates back to [7],
in the recent years there has been a renewed interest in the topic with a more specific
focus on the combination of logic programs under the stable models semantics [8] with
some kind of modal temporal logic. Two main approaches have been recently adopted:
Temporal Equilibrium Logic (TEL) [9,10] and Temporal Answer Sets (TAS) [11,12].
The two formalisms share some similarities: in both cases, logic programs are extended
with modal temporal operators for expressing properties about linear time. In the case
of TEL, this is done by combining Equilibrium Logic [13] (the best-known logical
characterisation of ASP) with Linear-time Temporal Logic [14,15] (LTL) one of the
simplest and most widely studied modal temporal logics. As a result, TEL constitutes a

� The authors would like to thank Pedro Cabalar and Martı́n Diéguez for their suggestions and
comments about the contents of this paper. This research was partially supported by Spanish
MEC project TIN2009-14562-C05-04.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 23–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

24 F. Aguado, G. Pérez, and C. Vidal

full non-monotonic temporal logic defined for arbitrary temporal theories in the syntax
of LTL. On the other hand, TAS relies on a richer modal approach, Dynamic Linear-time
Temporal Logic [16] (DLTL), which allows modalities on programs formed with regular
expressions, including LTL operators as a smaller fragment1. However, the definition
of TAS uses a syntactic transformation (analogous to Gelfond & Lifschitz’s program
reduct [8]) that is only defined for theories with a rather restricted syntax.

A first natural question is whether it is possible to get the advantages from both
approaches: the richer temporal semantics provided by DLTL together with a com-
plete logical characterisation applicable to arbitrary DLTL theories. A second important
question is whether TEL and TAS can be formally related, especially if we consider the
syntactic fragment in which both are defined: TAS-like logic programs limited to LTL
operators. In this paper we provide a positive answer to both questions proposing a Dy-
namic Linear-time extension of Equilibrium Logic (DTEL) that allows accommodating
both TEL and TAS as particular cases. In the paper, we identify cases in which both for-
malisms coincide and explain how this relation can be exploited for adapting existing
TEL and TAS computation methods to the general case of DTEL.

The rest of the paper is organised as follows. Section 2 defines the new extension and
introduces some basic properties. In the next two sections we explain how to respec-
tively embed TEL and TAS in our new proposal. Section 5 presents a variation of the
automata-based method from [17] that allows computing DTEL models of an arbitrary
DLTL theory. Finally, Section 6 concludes the paper.

2 Dynamic Temporal Equilibrium Logic

In this section we will define the proposed extension we will call Dynamic Linear-Time
Temporal Equilibrium Logic (DTEL for short). As happens with Equilibrium Logic
and with TEL, DTEL is a non-monotonic formalism whose definition consists of two
parts: a monotonic basis and a models selection criterion. The monotonic basis is a
temporal extension of the intermediate logic of Here-and-There [18] (HT). We call this
monotonic logic DLTLHT. As a running example, we will use the well-known Yale
Shooting scenario from [19] where, in order to kill a turkey, we must shoot a gun that
must be previously loaded.

Let the alphabet Σ be a non-empty finite set of actions. We denote as Σ∗ and Σω

to respectively stand for the finite and the non-finite words that can be formed with Σ.

We also define Σ∞ def
= Σ∗ ∪Σω. For any σ ∈ Σω, we denote by pref(σ) the set of its

finite prefixes (including the empty word ε).
The set of programs (regular expressions) generated by Σ is denoted by Prg(Σ)

and its syntax is given by the grammar:

π :: = a |π0 + π1 |π0;π1 |π∗

with a ∈ Σ and π, π0, π1 ∈ Prg(Σ). By abuse of notation, we will sometimes identify
a finite prefix τ = σ1 . . . σn as the program σ1; . . . ;σn. For example, in the case of the

1 According to [16], DLTL is strictly more expressive than LTL, as it covers full Monadic Sec-
ond Order Logic for a linear order, something in which LTL is well-known to fail.

Integrating Temporal Extensions of Answer Set Programming 25

Yale Shooting scenario for the set of actions Σ = {load, shoot, wait} we could write a
program like π = (load; shoot)∗ representing repetitions of the sequence load; shoot.

The mapping || · || : Prg(Σ)→ 2Σ
∗

associates to each program a set of finite words
(regular set) as follows:

||a|| def
= {a}

||π0 + π1|| def= ||π0|| ∪ ||π1||
||π0;π1|| def

= {τ0τ1 | τ0 ∈ ||π0|| and τ1 ∈ ||π1||}
||π∗|| def

=
⋃

i∈ω ||πi||

where

||π0|| def
= {ε}

||πi+1|| def= {τ0τ1 | τ0 ∈ ||π|| and τ1 ∈ ||πi||} for every i ∈ ω.

Let P = {p1, p2, . . .} be a countable set of atomic propositions. We denote the set

of simple literals as LitS
def
= {p,∼p ; p ∈ P}. The syntax of DLTLHT coincides with

DLTL plus the addition of the strong negation operator ‘∼.’ A well-formed formula F
is defined as follows:

F :: = ⊥ | p | ∼F |F1 ∨ F2 |F1 ∧ F2 |F1 → F2 |F1 Uπ F2 |F1Rπ F2

where p is an atom and F, F1, F2 are well-formed formulas. The expression ¬F stands
for F → ⊥, constant corresponds to ¬⊥ whereas F1 ↔ F2 is an abbreviation for
(F1 → F2)∧ (F2 → F1) as usual. We include the following axiom schemata for strong
negation:

• ∼(α→ β)↔ α∧ ∼β
• ∼(α ∨ β)↔∼α∧ ∼β
• ∼(α ∧ β) ↔∼α∨ ∼β
• ∼∼α ↔ α

• ∼ ¬α ↔ α

• (for atomic α) ∼α → ¬α
• ∼(αUπ β)↔∼αRπ ∼β
• ∼(αRπ β)↔∼αUπ ∼β

These axiom schemata are a direct adaptation of Vorob’ev axiomatisation of strong
negation [20,21], with the only addition of the interaction between ‘∼’ and the temporal
operators. It is not difficult to see that, by exhaustively applying these equivalences from
left to right, we can always rewrite a formula into an equivalent one in strong negation
normal form (SNNF), that is, guaranteeing that the operator ‘∼’ only affects to atoms
in P .

Given an infinite word σ ∈ Σω, we define a valuation function V as a mapping
V : pref(σ) → 2LitS assigning a set of literals to each finite prefix of σ. A valuation
function V is consistent if, for any τ ∈ pref(σ), V (τ) does not contain a pair of
opposite literals of the form p and ∼p simultaneously. Given two valuation functions
V1, V2 (wrt σ), we write V1 ≤ V2 when V1(τ) ⊆ V2(τ) for every τ ∈ pref(σ). As
usual, if V1 ≤ V2 but V1 �= V2, we just write V1 < V2.

26 F. Aguado, G. Pérez, and C. Vidal

Definition 1 (Temporal Interpretation). A (temporal) interpretation of DLTLHT is a
tuple M = (σ, Vh, Vt) where σ ∈ Σω and Vh, Vt are two valuation functions for σ
such that Vt is consistent and Vh ≤ Vt. We say that the interpretation M is total when
Vh = Vt. �

Given a formulaα, a prefix τ ∈ pref(σ) and a temporal interpretationM = (σ, Vh, Vt),
we define the satisfaction relation M, τ |= α inductively as follows:

– M, τ |= p iff p ∈ Vh(τ)

– M, τ |=∼p iff ∼p ∈ Vh(τ)

– M, τ |= α ∨ β iff M, τ |= α or M, τ |= β

– M, τ |= α ∧ β iff M, τ |= α and M, τ |= β
– M, τ |= α→ β iff for every w ∈ {h, t},

(σ, Vw , Vt), τ �|= α or (σ, Vw , Vt), τ |= β

– M, τ |= αUπ β iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ pref(σ) andM, ττ ′ |= β,
and for every τ ′′ such that ε ≤ τ ′′ < τ ′, we have M, ττ ′′ |= α.

– M, τ |= αRπ β iff for every τ ′ ∈ ||π|| such that ττ ′ ∈ pref(σ), it is the case that
M, ττ ′ |= β or there exists τ ′′ such that ε ≤ τ ′′ < τ ′ and M, ττ ′′ |= α.

The meaning of αUπ β is similar to the behaviour of “until” in LTL: in principle, we
maintain α until a stopping condition β. The difference here is that this behaviour must
be satisfied on some trajectory τ ′ according to π, τ ′ ∈ ||π||.
Other usual temporal modalities can be defined as derived operators:

〈π〉α def
= Uπα

[π]α
def
= ⊥ Rπα

©α
def
=

∨
a∈Σ 〈a〉α

αU β
def
= αUΣ∗

β

αRβ
def
= αRΣ∗

β

�α
def
= [Σ∗]α (≡ ⊥R α)

♦α def
= 〈Σ∗〉α (≡ U α)

For instance, if M = (σ, Vh, Vt) is an interpretation and τ ∈ pref(σ), then M, τ |=
〈π〉α iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ pref(σ) and M, ττ ′ |= α. Analogously,
M, τ |= [π]α iff for every τ ′ ∈ ||π|| such that ττ ′ ∈ pref(σ), then M, ττ ′ |= α.

Back to our running example, and assuming that we have fluents {loaded, alive},
the following formulas could be used to capture the whole system behaviour

F∨ ∼ F (1)

� (©F ← F ∧ ¬© ∼ F) (2)

� (© ∼ F ←∼ F ∧ ¬© F) (3)

� [load] loaded (4)

� ([shoot] ∼ loaded← loaded) (5)

� ([shoot](∼ alive ∨ ¬ ∼ alive)← loaded) (6)

where (2) and (3) represent the inertia for all fluent F in {loaded, alive}, and (6) as
assuming that the shoot can fail in killing the turkey.

Integrating Temporal Extensions of Answer Set Programming 27

To illustrate the behaviour of modalities with compound regular expressions consider
the formulas:

[(load; shoot)∗] ∼ loaded (7)

〈(load; shoot)∗〉 ∼ alive (8)

The first formula, (7) would intuitively mean that the gun will be unloaded after
any repetition of the sequence of actions load; shoot a finite number n ≥ 0 of times,
whereas (8) would mean instead that the turkey will be dead after some repetition of the
same sequence of actions (remember that we may fail the shoot). It is perhaps impor-
tant to note that, as modalities deal with a single linear future, (7) becomes a kind of
conditional formula: if the sequence (load; shoot)∗ is not in our current trajectory, (7)
is trivially true. Contrarily, (8) will force a trajectory (load; shoot)∗ from the current
situation ending with ∼ alive.

Given a formula α and an interpretation M = (σ, Vh, Vt), we say that M is a model
of α denoted as M |= α, iff M, ε |= α.

Lemma 1. For any formula α, any interpretation M = (σ, Vh, Vt) and any τ ∈
pref(σ), the following two conditions hold:

1. If (σ, Vh, Vt), τ |= α, then (σ, Vt, Vt), τ |= α
2. (σ, Vh, Vt), τ |= ¬α iff (σ, Vt, Vt), τ �|= α �

The following are DLTLHT valid equivalences:

– ¬(αUπ β)↔ ¬αRπ ¬β
– ¬ 〈π〉α↔ [π]¬α

– ¬(αRπ β)↔ ¬αUπ ¬β
– ¬[π]α ↔ 〈π〉 ¬α

Definition 2 (DTEL Model). A total temporal interpretation M = (σ, Vt, Vt) is said
to be a temporal equilibrium model (DTEL-model for short) of a formula α in DLTLHT
if M |= α and there is no H < T such that (σ, Vh, Vt) |= α.

Example 1. Suppose we have a computer that, from time to time, sends a request signal
to a server. After a request r the computer stays pending p (during several possible
waiting actions w) until it receives a server answer a. �

This behaviour could be captured by the following DTEL theory:

� [r]p (9)

� [a] ∼p (10)

∼p (11)

� (©p← p ∧ ¬© ∼p) (12)

� (© ∼p←∼p ∧ ¬© p) (13)

� ([a]⊥ ←∼p) (14)

� ([r]⊥ ← p) (15)

28 F. Aguado, G. Pérez, and C. Vidal

Effect axioms (9) and (10) respectively represent that a request sets p to true whereas
an answer sets it back to false. (11) guarantees that p is initially false. Formulas (12),
(13) represent the inertia law for fluent p. (14) says that an answer a cannot occur when
not pending∼p and a request r cannot occur when pending p.

Suppose that we get several possible runs from this theory but we want to distinguish
between those where the last request is eventually answered or not. We use atom lost
to flag this situation and include a formula as follows:

lost← ♦(p ∧�[a]⊥) (16)

That is, there is a future point in which the computer is pending and from that point on
is no answer. If we denote by Γ the theory formed by (9)-(16), the temporal equilibrium
models of Γ are captured by the Büchi automaton2 shown in Figure 1. As we can see,
from the initial state init we can move to the left “sub-automaton” where infinite
words are accepted when each request is followed by an answer, or move to the right
“sub-automaton” where lost becomes true and a request can be unanswered forever.

init
∼p

p

∼p

pp

∼p

{r, lost}

{a}{r}

{w}

{w}

{w, lost}

{r}

{a}{r}

{w}

{w}

{w}

{w}

{w}

Fig. 1. Büchi automaton for example theory Γ

3 Embedding TEL

Syntactically, TEL is identical to LTL which, in turn, coincides with the DLTL fragment
where program modalities do not contain a program π superscript (formally, this means
fixing π = Σ∗). In other words, a well-formed formula in TEL follows the syntax:

F :: = ⊥ | p | ∼F |F1 ∨ F2 |F1 ∧ F2 |F1 → F2 |F1 U F2 |F1RF2

2 A Büchi automaton is a special kind of automaton that accepts an infinite word when its path
visits an accepting state an infinite number of times. In the figure, for readability sake, when a
literal is included in all outgoing arcs from a state, we show it inside the state.

Integrating Temporal Extensions of Answer Set Programming 29

We keep the same derived operators so that, for instance ♦F ≡ UF and so on. We
also assume the inclusion of Vorob’ev axioms, so that we may assume that ∼ is only
applied on atoms.

An LTL-interpretation is a sequence of consistent sets of literals T = {Ti}i≥0. Given
two LTL-interpretations H = {Hi}i≥0 and T = {Ti}i≥0, we write H ⊆ T when
Hi ⊆ Ti for all i ≥ 0. An LTLHT-interpretation is a pair 〈H,T〉 of LTL-interpretations
such that H ⊆ T. The satisfaction relation in LTLHT is defined as follows. Given
M = 〈H,T〉

– M, i |= L iff L ∈ Hi for any literal L

– ∧, ∨, ⊥ as always
– M, i |= α→ β iff for every X ∈ {H,T},

X ∈ {H,T}, 〈X,T〉, i �|= α or 〈X,T〉, i |= β

– M, i |= αU β iff there exists some j ≥ i such that M, j |= β, and for every k such
that i ≤ k < j, we have M, k |= α.

– M, i |= αRβ iff for every j ≥ i it is the case that M, j |= β or there exists k such
that i ≤ k < j and M, k |= α.

Example 2. The unique temporal equilibrium model {T,T} of �(¬p→©p) is T2i =
∅ and T2i+1 = {p} for any i ≥ 0. On the other hand, the theory Γ consiting of the
formulas:

� (¬©p→ p) (17)

� (©p→ p) (18)

has no temporal equilibrium models. The only total model 〈T,T〉 of Γ has the form
Ti = {p} for any i ≥ 0. However, it is easy to see that the interpretation 〈H,T〉 with
Hi = ∅ for all i ≥ 0 is also a THT model, whereas H < T.

Theorem 1. Let α be a formula in LTL syntax. Then the LTLHT models of α are in a
one-to-one correspondence to (an equivalence class of) the DLTLHT models of α. �

Informally speaking, when restricted to LTL syntax, any DLTLHT model (σ, Vh, Vt)
can be seen as an LTLHT model where we disregard each prefix τ ∈ pref(σ) in favour
of a simple integer index i = length(τ). Since for defining temporal equilibrium mod-
els in both logics, we impose an analogous models minimisation, we conclude:

Corollary 1. Let α be a formula in LTL syntax. Then the TEL models of α are in a
one-to-one correspondence to (an equivalence class of) the DTEL models of α. �

4 Embedding TAS

We recall here some of the contents of [11]. If a ∈ Σ and l ∈ LitS is any simple literal,
then ©l and [a]l are called temporal fluent literals (LitT). We further define the set

Lit
def
= LitS ∪LitT ∪{⊥}. An extended fluent literal is defined as either t or not t with

t ∈ Lit.

30 F. Aguado, G. Pérez, and C. Vidal

A domain description D over Σ is a tuple D = (Π, C) where C is a set of DLTL
formulas called constraints, and Π is a set of rules of the forms:

Init t0 ← t1, . . . , tm, not tm+1, . . . , not tn (19)

t0 ← t1, . . . , tm, not tm+1, . . . , not tn (20)

with the following restrictions:

1. If t0 ∈ LitS , then all ti ∈ LitS for i = 1, . . . , n.
2. If t0 =©l, all the temporal literals in the rule are of the form©l′

3. If t0 = [a]l, all the temporal literals in the rule are of the form [a]l′

As said before, given τ = σ1 . . . σk , the expression [τ]α stands for [σ1; . . . ;σk]α.
When k = 0, [τ]α just amounts to α. A (partial) temporal interpretation is a pair (σ, S)
with σ ∈ Σω and S a set of temporal expressions of the form [τ]l, with τ ∈ pref(σ)
and l ∈ LitS , not containing any pair [τ]p and [τ] ∼p for any p ∈ P . Moreover, when
[τ]p ∈ S iff [τ] ∼p �∈ S, then (σ, S) is a total temporal interpretation.

The satisfiability of an extended literal t ∈ Lit with respect to an interpretation
(σ, S) and a prefix τ ∈ pref(σ) is defined as follows, depending on the case:

– (σ, S), τ |= and (σ, S), τ �|= ⊥
– (σ, S), τ |= l iff [τ]l ∈ S
– (σ, S), τ |=©l iff [τ ; a]l ∈ S where a is such that τa ∈ pref(σ)
– (σ, S), τ |= [a]l iff either τa �∈ pref(σ) or [τ ; a]l ∈ S

for any a ∈ Σ and l ∈ LitS . The satisfaction of a rule with respect to (σ, S) is as
follows:

– (σ, S) |= (19) when: if (σ, S), ε |= ti for all i = 1, . . . ,m and (σ, S), ε �|= ti for all
i = m+ 1, . . . , n then (σ, S), ε |= l0.

– (σ, S) |= (20) when: if for any τ ∈ pref(σ) such that (σ, S), τ |= ti for all
i = 1, . . . ,m and (σ, S), τ �|= ti for all i = m+ 1, . . . , n then (σ, S), τ |= l0.

In order to define the notion of temporal answer set, [11] began considering positive
programs, that is, those without default negation, i.e., m = n in (19) and (20).

Definition 3 (Temporal Answer Set). (σ, S) is a temporal answer set of Π if S is
minimal (with respect to the set inclusion relation) among the S′ such that (σ, S′) is a
partial interpretation satisfying the rules of Π . �
For the general case where default negation is allowed, [11] introduced a new kind of
rules:

[τ] (t0 ← t1, . . . , tm) where τ ∈ pref(σ) (21)

so that (σ, S) |= (21) if, whenever (σ, S), τ |= ti for i = 1, . . . ,m we have (σ, S), τ |=
t0. The reduct Π(σ,S)

τ of Π relative to (σ, S) and to the prefix τ ∈ pref(σ) is the set of
all rules like (21) such that there exists a rule in Π like (20) satisfying that:

(σ, S), τ �|= tj for j = m+ 1, . . . , n.

The program reduct is defined as Π(σ,S) def
=

⋃
τ∈pref(σ)

Π(σ,S)
τ .

Integrating Temporal Extensions of Answer Set Programming 31

Definition 4 (Temporal answer set). (σ, S) is a temporal answer set of Π if (σ, S) is
minimal among the S′ such that (σ, S′) is a partial interpretation satisfying the rules of
Π(σ,S). �

Given any partial temporal interpretation (σ, S), we denote by VS : pref(σ) → 2LitS

the valuation function defined by

VS(τ)
def
= {l ∈ LitS ; [σ1; . . . ;σk]l ∈ S}

for every τ = σ1 . . . σk ∈ pref(σ). Conversely, given any valuation function V , we
can also define

SV
def
=

⋃
τ∈pref(σ)

{[τ]l ; l ∈ V (τ)}.

establishing a one-to-one correspondence where SVS = S and VSV = V .

Definition 5 (Extension). (σ, S) is an extension of a domain description D = (Π, C)
if (σ, S) is a temporal answer set such that (σ, VS , VS) satisfies any formula of C. �

For embedding TAS in DLTLHT, we have to take into account that the formulas of
C are also formulas of DLTLHT and translate the rules of Π into formulas in DLTLHT.
For any rule r, we define the formula r̃ as:

r̃
def
= t1 ∧ . . . ∧ tm ∧ ¬tm+1 ∧ . . . ∧ ¬tn → t0 (22)

r̃
def
= � (t1 ∧ . . . ∧ tm ∧ ¬tm+1 ∧ . . . ∧ ¬tn → t0) (23)

for r of the forms (19) and (20), respectively. Note that for positive programs, m = n
and the empty conjunction of negated ti amounts to .

Theorem 2. Take D = (Π, C) a domain description and (σ, S) a temporal interpreta-
tion. If we denote by Π̃ = {r̃ | r ∈ Π}, the following assertions are equivalent:

1. (σ, S) is a temporal answer set of Π

2. (σ, VS , VS) is a temporal equilibrium model of Π̃ �

Corollary 2 (Main result). Take D = (Π, C) a domain description and (σ, S) a tem-
poral interpretation. The following assertions are equivalent:

1. (σ, S) is an extension of D

2. (σ, VS , VS) is a temporal equilibrium model of Π̃ ∪ {¬¬α | α ∈ C} �

Proof. It follows from the previous result and the fact that, for any S′ ⊆ S, τ ∈
pref(σ) and α ∈ C, the following can be easily checked:

(σ, VS′ , VS), τ |= ¬¬α iff (σ, VS , VS), τ |= α. �

32 F. Aguado, G. Pérez, and C. Vidal

5 Computation of Temporal Equilibrium Models

While Theorem 1 proves that DTEL is a proper extension of TEL, Corollary 2 guar-
antees that the semantics assigned to TAS programs also coincides with temporal an-
swer sets. Several interesting results follow from this. First, it is obvious that, when
we consider the syntactic intersection between TEL and TAS (i.e., TAS programs that
exclusively use LTL operators) we have obtained that both semantics are equivalent. In
this way, tools for computing temporal equilibrium models [22,23] can be used as tools
for TAS in this syntactic fragment. Second, DTEL can be used as a common logical
framework that subsumes both TEL and TAS into a more expressive formalism without
syntactic limitations. Furthermore, given its close relation to TEL, it is possible to adapt
some of the methods already available for the latter. In particular, in [17] it was shown
how TEL models of an LTL formula α could be computed by performing the following
operations:

1. Build automaton A1 capturing the total LTLHT-models 〈T,T〉 of α. As any total
model 〈T,T〉 corresponds to an LTL model T, this step is simply done by applying
a standard algorithm for automata construction in LTL [24] (see [17] for further
details).

2. Build an automaton A2 capturing non-total LTLHT-models of α. This time, an
encoding of LTLHT into LTL is previously done by translatingα into a new formula
α′ that uses additional auxiliary atoms. Then,A2 is built from α′ using again [24].

3. Filter auxiliary atoms in A2 to get A3. This automaton captures those T that are
total, but not in equilibrium, that is, there is some H < T with 〈H,T〉 |= Γ .

4. Get an automaton from the intersection of A1 with the negation of A3 leading to
total models that are in equilibrium.

Steps 3 and 4 in this method are actually independent on the modal extension we
consider, as they actually perform transformations on Büchi automata. Thus, in order
to apply this method for DTEL, the following changes in steps 1 and 2 are required.
First, we replace in both steps the automata construction method for LTL from [24] by
the methods described in [16] or [25] for the case of DLTL. Second, it only remains
to obtain a translation for step 2 adapted to the DLTLHT case. In other words, for
any formula α, obtain α′ with an extended signature such that DLTL models for α′

correspond to non-total DLTLHT models of α. Using this, we can assert that the results
of [17] can be generalized to DLTLHT in a straightforward manner.

We describe next this translation and its correctness in a formal way. Suppose α is a
DLTLHT formula over the finite signatureP . The DLTL formulaα′ will be built over an
extended signatureP ′ = LitS ∪{l′ | l ∈ LitS}. This means that negative literals of the
form ∼p are actually considered3 as atoms “∼p”. To put an example, given P = {p}
we would get the four atoms P ′ = {p, (∼ p), p′, (∼ p)′}. Intuitively, primed literals
will represent truth at Vh whereas unprimed ones correspond to Vt. In this way, we
can establish a correspondence between DLTLHT and DLTL interpretations as follows.
Given a temporal interpretation M = (σ, Vh, Vt) for signature P we define the DLTL
interpretation H ′ = (σ, U) for signature P ′ such that for any τ ∈ pref(σ):

3 Note that the strong negation operator was not originally allowed in DLTL [16].

Integrating Temporal Extensions of Answer Set Programming 33

U(τ) = Vt(τ) ∪ {l′ | l ∈ Vh(τ)}.

In that case, we write H ′ ≈M .

Lemma 2. The following one-to-one correspondence can be established:

(I) For every DLTLHT interpretation M = (σ, Vh, Vt) over signature P , there is a
unique DLTL model H ′ such that H ′ ≈M .

(II) For every DLTL model H ′ = (σ, U) such that H ′, ε |= G where G is the formula
defined by:

G def
=

∧
p∈P

�(p∧ ∼p→ ⊥) ∧
∧

l∈LitS

�(l′ → l)

there is a unique DLTLHT model M = (σ, Vh, Vt) such that H ′ ≈M . �

Intuitively, G guarantees that H ′ corresponds to a well-formed DLTLHT interpreta-
tion: the expressions �(p∧ ∼p → ⊥) in G require consistency regarding strong nega-
tion (that is, we cannot have p and ∼p simultaneously) whereas implications �(l′ → l)
are used to guarantee that H ⊆ T. In order to complete this model-theoretical corre-
spondence, let us define t as the following translation between formulae:

– t(⊥) def
= ⊥, t(l)

def
= l′ for any l ∈ LitS

– t(α⊕ β)
def
= t(α) ⊕ t(β) with ⊕ ∈ {∧,∨,Uπ,Rπ}

– t(α→ β)
def
= (α→ β) ∧ (t(α)→ t(β)).

The following result can be easily proved by structural induction.

Lemma 3. Let α be a DLTLHT formula built over the literals in LitS and let M =
(σ, Vh, Vt) and H ′ = (σ, U) be temporal interpretations such that H ′ ≈ M . For any
i ≥ 0, we have H ′, i |= t(β) iff M, i |= β for every subformula β of α. �

If A1 is the Büchi automaton obtained by following a similar construction to [16],
the language L(A1) accepted by A1 can be viewed as the set of total DLTLHT models
of α.

Consider now the following formula obtained from α:

α′ def
= G ∧ t(α) ∧

∨
l∈LitS

♦ (l ∧ ¬l′)

α′ characterises the non-total DLTLHT models of the formula α. While G ∧ t(α)
alone would charaterise all DLTLHT models, the disjunction of expressions ♦(l ∧ ¬l′)
guarantees that, at some time point, Hi is a strict subset of Ti, Hi ⊂ Ti. In other
words, for any H ′ = (σ, U) such that H ′ ≈ M with M = (σ, Vh, Vt), we have that
H ′, ε |=

∨
l∈LitS

♦ (l ∧ ¬l′) if, and only if, there exists l ∈ LitS with l ∈ Vt(τ)\Vh(τ)
for some τ ∈ pref(σ).

Lemma 4. The set of DLTL models for the formula α′ corresponds to the set of non-
total DLTLHT models for the temporal formula α. �

34 F. Aguado, G. Pérez, and C. Vidal

Let us denote by Σ′ the alphabet Σ′ = 2P
′

and let h : Σ′ → Σ be a map (renaming)
between the two finite alphabets such that h(A) = A∩LitS . The map h can be naturally
extended as an homomorphism between finite words, infinite words and as a map be-
tween languages. Similary, given a Büchi automatonA2 = (Σ′, Q,Q0, δ, F), we write

h(A2) to denote the Büchi automaton (Σ,Q,Q0, δ
′, F) such that if q

A−→ q′ ∈ δ′
def⇔

there is B ∈ Σ′ satisfying that q
B−→ q′ ∈ δ and h(B) = A. Obviously, L(h(A2)) =

h(L(A2)).

Proposition 1. α has a DTEL model iff L(A1) ∩ (Σω \ L(h(A2))) �= ∅. �

In consequence, the set of DTEL models for a given α forms an ω-regular language.

Proposition 2. For each DLTLHT formula α, one can effectively build a Büchi automa-
ton that accepts exactly the DTEL models for α. �

6 Conclusions

In this paper we have introduced a new temporal extension of Answer Set Programming,
called Dynamic Linear-time Temporal Equilibrium Logic (DTEL) that covers the two
existing temporal modal extensions as particular cases: Temporal Equilibrium Logic
(TEL) and Temporal Answer Sets (TAS). This provides a common, more expressive
logical framework that allows for studying the formal relations between TEL and TAS
and, at the same time, opens the possibility of adapting existing computation methods
for the general case.

For future work we plan to use DTEL as a logical framework to determine when the-
ories in TAS can be reduced to TEL allowing the possible addition of auxiliary atoms.
We also plan to implement the automata-based method for DTEL described in this pa-
per as an additional option of the tool ABSTEM [23] that currently covers the case of
TEL.

References

1. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communica-
tions of the ACM 54, 92–103 (2011)

2. del Cerro, L.F.: MOLOG: A system that extends Prolog with modal logic. New Generation
Computing 4, 35–50 (1986)

3. Gabbay, D.: Modal and temporal logic programming. In: Galton, A. (ed.) Temporal Logics
and their Applications, pp. 197–237. Academic Press (1987)

4. Abadi, M., Manna, Z.: Temporal logic programming. Journal of Symbolic Computation 8,
277–295 (1989)

5. Baudinet, M.: A simple proof of the completeness of temporal logic programming. In: del
Cerro, L.F., Penttonen, M. (eds.) Intensional Logics for Programming, pp. 51–83. Clarendon
Press, Oxford (1992)

6. Baldoni, M., Giordano, L., Martelli, A.: A framework for a modal logic programming. In:
Porc. of the Joint International Conference and Symposium on Logic Programming, pp. 52–
66 (1996)

Integrating Temporal Extensions of Answer Set Programming 35

7. Cabalar, P.: Temporal answer sets. In: Proc. of the 1999 Joint Conference on Declarative
Programming, APPIA-GULP-PRODE 1999, pp. 351–366 (1999)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R.A., Bowen, K.A. (eds.) Logic Programming: Proc. of the Fifth International Conference
and Symposium, vol. 2, pp. 1070–1080. MIT Press, Cambridge (1988)

9. Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: A first approach. In: Moreno Dı́az,
R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 241–
248. Springer, Heidelberg (2007)

10. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a
survey. Journal of Applied Non-Classical Logics (to appear, 2013)

11. Giordano, L., Martelli, A., Dupré, D.T.: Reasoning about actions with temporal answer sets.
TPLP 13, 201–225 (2013)

12. Giordano, L., Martelli, A., Dupré, D.T.: Verification of action theories in ASP: A complete
bounded model checking approach. In: Lisi, F.A. (ed.) Proceedings of the 9th Italian Con-
vention on Computational Logic, CILC 2012. CEUR Workshop Proceedings, vol. 857, pp.
176–190. CEUR-WS.org (2012)

13. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J.,
Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS (LNAI), vol. 1216, pp.
57–70. Springer, Heidelberg (1997)

14. Kamp, J.A.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California
at Los Angeles (1968)

15. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer (1991)

16. Henriksen, J.G., Thiagarajan, P.S.: Dynamic linear time temporal logic. Annals of Pure and
Applied Logic 96, 187–207 (1999)

17. Cabalar, P., Demri, S.: Automata-based computation of temporal equilibrium models. In:
Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 57–72. Springer, Heidelberg (2012)

18. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 42–56
(1930)

19. Hanks, S., McDermott, D.: Nonmonotonic logic and temporal projection. Artificial Intelli-
gence 33, 379–412 (1987)

20. Vorob’ev, N.N.: A constructive propositional calculus with strong negation. Doklady
Akademii Nauk SSR 85, 465–468 (1952) (in Russian)

21. Vorob’ev, N.N.: The problem of deducibility in constructive propositional calculus with
strong negation. Doklady Akademii Nauk SSR 85, 689–692 (1952) (in Russian)

22. Cabalar, P., Diéguez, M.: STeLP – A tool for temporal answer set programming. In: Del-
grande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 370–375. Springer, Hei-
delberg (2011)

23. Cabalar, P., Diéguez, M.: ABSTEM – an automata-based solver for temporal equilibrium mod-
els (unpublished draft, 2013)

24. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115, 1–37 (1994)

25. Giordano, L., Martelli, A.: Tableau-based automata construction for dynamic linear time
temporal logic. Annals of Mathematics and Artificial Intelligence 46, 289–315 (2006)

Forgetting under the Well-Founded Semantics

José Júlio Alferes1, Matthias Knorr1, and Kewen Wang2

1 CENTRIA & Departamento de Informática, Faculdade Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

2 School of Information and Communication Technology, Griffith University,
Brisbane QLD 4111, Australia

Abstract. In this paper, we develop a notion of forgetting for normal
logic programs under the well-founded semantics. We show that a num-
ber of desirable properties are satisfied by our approach. Three different
algorithms are presented that maintain the computational complexity of
the well-founded semantics, while partly keeping its syntactical structure.

1 Introduction

Forgetting has drawn considerable attention in knowledge representation and
reasoning. This is witnessed by the fact that forgetting has been introduced
in many monotonic and nonmonotonic logics [1,5,9,10,11,12,16,18,19], and in
particular, in logic programming [6,15,17].

A potential drawback, common to all these three approaches, is the computa-
tional (data) complexity of the answer set semantics, which is coNP, while the
other common semantics for logic programs, the well-founded semantics (WFS),
is in P, which may be preferable in applications with huge amounts of data. How-
ever, to the best of our knowledge, forgetting under the well-founded semantics
has not been considered so far. Therefore, in this paper, we develop a notion of
forgetting for normal logic programs under the well-founded semantics. We show
that forgetting under the well-founded semantics satisfies the properties in [6]. In
particular, our approach approximates semantic forgetting of [6] for normal logic
programs under answer set semantics as well as forgetting in classical logic, in
the sense that whatever is derivable from a logic program under the well-founded
semantics after applying our notion of forgetting, is also derivable in each an-
swer set and classical model after applying semantic and classical forgetting to
the logic program and its classical representation, respectively. We also present
three different algorithms that maintain the favorable computational complexity
of the well-founded semantics when compared to computing answer sets.

2 Preliminaries

A normal logic program P , or simply logic program, is a finite set of rules r
of the form h ← a1, . . . , an, not b1, . . . , not bm where h, ai, and bj , with 1 ≤
i ≤ n and 1 ≤ j ≤ m, are all propositional atoms over a given alphabet Σ.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 36–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Forgetting under the Well-Founded Semantics 37

Given a rule r, we distinguish the head of r as head(r) = h, and the body of r,
body(r) = body+(r) ∪ not body−(r), where body+(r) = {a1, . . . , an}, body−(r) =
{b1, . . . , bm} and, for a set S of atoms, not S = {not q | q ∈ S}. Rule r is positive
if body−(r) = ∅, negative if body+(r) = ∅, and a fact if body(r) = ∅.

Given a logic program P , BP is the set of all atoms appearing in P , and
LitP = BP ∪ notBP . Also, heads(P) denotes the set {p | p = head(r) ∧ r ∈ P}.

A three-valued interpretation I = I+ ∪ not I− with I+, I− ⊆ BP and I+ ∩
I− = ∅. Informally, I+ and I− contain the atoms that are true and false in I,
respectively. Any atom appearing neither in I+ nor in I− is undefined.

We recall the definition of the well-founded semantics based on the alternating
fixpoint [7]. Given a logic program P and S ⊆ BP , we define ΓP (S) = least(PS)
where PS = {head(r) ← body+(r) | r ∈ P, body−(r) ∩ S = ∅} and least(PS) is
the least model of the positive logic program PS . The square of ΓP , Γ

2
P , is a

monotonic operator and thus has both a least fixpoint, lfp(Γ 2
P), and a greatest

fixpoint gfp(Γ 2
P). We obtain the well-founded model WFM (P) of a normal logic

program P as WFM (P) = lfp(Γ 2
P) ∪ not (BP \ gfp(Γ 2

P)).
Two programs P and P ′ are equivalent (under WFS), denoted by P ≡wf P ′,

iff WFM (P) = WFM (P ′). Finally, the inference relation under the WFS is
defined for any literal q ∈ Lit(P) as follows: P |=wf q iff q ∈WFM (P).

3 Forgetting under the Well-Founded Semantics

When defining forgetting of an atom p in a given logic program P , we want to
obtain a new logic program P ′ such that it does not contain any occurrence of
p or its default negation not p. Additionally, we want to ensure that only the
derivation for p (and not p) is affected, keeping P ′ and P equivalent w.r.t. all
derivable literals excluding p (and not p). We want to achieve this based on the
semantics rather than the syntax and ground it in forgetting in classical logic.

So, we semantically define the result of forgetting under the WFS by determin-
ing the well-founded model, and then providing a logic program that excludes p
syntactically, and whose well-founded model excludes (only) p semantically.

Definition 1. Let P be a logic program and p an atom. The result of forgetting
about p in P , denoted forget(P, p), is a logic program P ′ such that the following
two conditions are satisfied:

(1) BP ′ ⊆ BP \ {p}, i.e., p does not occur in P ′, and
(2) WFM (P ′) = WFM (P) \ ({p} ∪ {not p})

This definition obviously does not introduce new symbols (cf. (F2) in [6]). In
the rest of this section, we assume P , P ′ logic programs and p an atom, and
show a number of desirable properties. The first one corresponds to (F3) in [6].

Proposition 2. For any l ∈ Lit \({p}∪{not p}), forget(P, p) |=wf l iff P |=wf l.

Our definition of forgetting also implies that there are syntactically different
logic programs that correspond to forget(P, p). However, as we show next, all

38 J.J. Alferes, M. Knorr, and K. Wang

Algorithm forget1(P, p)

Input: Normal logic program P and an atom p in P .

Output: A normal logic program P ′ representing forget(P, p).

Method:

Step 1. Compute the well-founded model WFM (P) of P .
Step 2. Let M be the three-valued interpretation obtained from WFM (P) by
removing p and not p. Construct a new logic program with BP ′ = BP \ {p}
whose well-founded model is exactly M :
P ′ = {a ← . | a ∈ M+} ∪ {a ← not a. | a ∈ BP ′ \ (M+ ∪M−)}.
Step 3. Output P ′ as forget(P, p).

Fig. 1. Algorithm forget1(P, p)

results of forgetting about p in P are equivalent w.r.t. the well-founded semantics.
So, we simply use forget(P, p) as a generic notation representing any syntactic
variant of all semantically equivalent results of forgetting about p in P .

Proposition 3. If P ′ and P ′′ are two results of forget(P, p), then P ′ ≡wf P ′′.

Forgetting also preserves equivalence on ≡wf (cf. (F4) in [6]).

Proposition 4. If P ≡wf P ′, then forget(P, p) ≡wf forget(P ′, p).

However, our definition of forgetting preserves neither strong nor uniform
equivalence. Intuitively, the reason is that Def. 1 only specifies the change on
the semantics but not the precise syntactic form of the resulting program.

We may also generalize the definition of forgetting to a set of atoms S in the
obvious way and show that the elements of the set can be forgotten one-by-one.

Proposition 5. Let P be a logic program and S = {q1, . . . , qn} a set of atoms.
Then forget(P, S) ≡wf forget(forget(P, q1), . . . , qn).

We show that our notion of forgetting is faithful w.r.t. semantic forgetting in
ASP [6] as follows, which also links to classical forgetting (cf. (F1) in [6]).

Theorem 6. Let P be a logic program and p, q atoms.

1. If q ∈WFM (forget(P, p)), then q ∈M for all M ∈ AS(forgetASP (P, p)).
2. If not q ∈WFM (forget(P, p)), then q �∈M for all M ∈ AS(forgetASP (P, p)).

4 Computation of Forgetting

4.1 Näıve Semantics-Based Algorithm

Def. 1 naturally leads to an algorithm for computing the result of forgetting
about p in a given logic program P : compute the well-founded model M of P
and construct a logic program from scratch corresponding toWFM (forget(P, p)).
This idea is captured in Algorithm forget1(P, p) shown in Fig. 1.

Forgetting under the Well-Founded Semantics 39

Algorithm forget2(P, p)

Input: Normal logic program P and an atom p in P .

Output: A normal logic program P ′ representing forget(P, p).

Method:

Step 1. Query for the truth value of p in WFM (P) of P (e.g., using XSB).
Step 2. Remove all rules whose head is p. Moreover, given the obtained truth
value of p in WFM (P), execute one of the three cases:

t: Remove all rules that contain not p in the body, and remove p from all the
remaining rule bodies.

u: Substitute p and not p in each body of a rule r in P by not head(r).
f : Remove all rules that contain p in the body, and remove not p from all the

remaining rule bodies.

Step 3. Output the result P ′ as forget(P, p).

Fig. 2. Algorithm forget2(P, p)

4.2 Query-Based Algorithm

Algorithm forget1(P, p) has two shortcomings. First, the syntactical structure of
the original logic program is completely lost, which is not desirable if the rules
are subject to later update or change: the author would be forced to begin from
scratch, since the originally intended connections in the rules were lost in the
process. Second, the computation is not particularly efficient, e.g., if we consider
a huge number of rules from which we want to forget one atom p only.

In the following, we tackle the shortcomings of forget1(P, p) based on the fact
that the WFS is relevant, in the sense that it allows us to query for one atom in
a top-down manner without having to compute the entire model.1 This means
that we only consider a limited number of rules in which the query/goal or one of
its subsequent subgoals appear. Once the truth value of p is determined, we only
make minimal changes to accommodate the forgetting of p: if p is true (resp.
false), then body atoms (resp. entire rules) are removed appropriately; if p is
undefined, then all occurrences of p (and not p) are substituted by the default
negation of the rule head, thus ensuring that the rule head will be undefined,
unless it is true because of another rule in P whose body is true in WFM (P).
The resulting algorithm forget2(P, p) is shown in Fig. 2.

4.3 Forgetting as Program Transformations

What if we could actually avoid computing the well-founded-model at all? We
investigate how to compute forget(P, p) using syntactic program transformations
instead, thereby handling (F5) and completing the match to the criteria in [6].

1 See, e.g., XSB (http://xsb.sourceforge.net) for an implementation.

http://xsb.sourceforge.net

40 J.J. Alferes, M. Knorr, and K. Wang

Algorithm forget3(P, p)

Input: Normal logic program P and an atom p in P .

Output: A normal logic program P ′ representing forget(P, p).

Method:

Step 1. Compute P̂ by exhaustively applying the transformation rules in �→X

to P .
Step 2. If neither p ← . ∈ P̂ nor p �∈ heads(P̂), then substitute p and not p in
each body of a rule r in P̂ by not head(r). After that, remove all rules whose
head is p.
Step 3. Output the result P ′ as forget(P, p).

Fig. 3. Algorithm forget3(P, p)

The basic idea builds on a set of program transformations �→X [3], which is
a refinement of [2] for the WFS, avoiding the potential exponential size of the
resulting program in [2] yielding the program remainder P̂ . It is shown in [3]
that �→X is always terminating and confluent and that the remainder resulting
from applying these syntactic transformations to P relates to the well-founded
model WFM (P) in the following way: p ∈ WFM (P) iff p ← . ∈ P̂ and not p ∈
WFM (P) iff p �∈ heads(P̂). We can use this to create the algorithm forget3(P, p)
shown in Fig. 3 which syntactically computes the result of forget(P, p).

Theorem 7. Given logic program P and atom p, forgetx(P, p), 1 ≤ x ≤ 3,
computes a correct result of forget(P, p), terminates, and computing P ′ is in P.

5 Conclusions

We have developed a notion of semantic forgetting under the well-founded se-
mantics and presented three different algorithms for computing the result of such
forgetting, and in each case the computational complexity is in P.

In terms of future work, we intend to pursue different lines of investigation.
First, we may consider a notion of forgetting that also preserves strong equiv-
alence for different programs, similar to [15] for the answer set semantics, pos-
sibly based on HT2 [4] or adapting work on updates using SE-models [13,14].
An important issue then is whether the result is again expressible as a normal
logic program. Second, since forgetting has been considered for description log-
ics (DLs), we may also consider forgetting in formalisms that combine DLs and
non-monotonic logic programming rules under WFS, such as [8].

Acknowledgments. J. Alferes and M. Knorr were partially supported by FCT
(Fundação para aCiência e aTecnologia) under project “ERRO–EfficientReason-
ing with Rules and Ontologies” (PTDC/EIA-CCO/121823/2010), and M. Knorr
also by FCTGrant SFRH/BPD/86970/2012.K.Wangwas partially supported by
Australian Research Council under grants DP110101042 and DP1093652.

Forgetting under the Well-Founded Semantics 41

References

1. Antoniou, G., Eiter, T., Wang, K.: Forgetting for defeasible logic. In: Bjørner,
N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 77–91. Springer,
Heidelberg (2012)

2. Brass, S., Dix, J.: Semantics of disjunctive logic programs based on partial evalu-
ation. J. Log. Program. 38(3), 167–312 (1999)

3. Brass, S., Dix, J., Freitag, B., Zukowski, U.: Transformation-based bottom-up com-
putation of the well-founded model. TPLP 1(5), 497–538 (2001)

4. Cabalar, P., Odintsov, S.P., Pearce, D.: Logical foundations of well-founded se-
mantics. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 25–35. AAAI
Press (2006)

5. van Ditmarsch, H.P., Herzig, A., Lang, J., Marquis, P.: Introspective forgetting.
In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 18–29.
Springer, Heidelberg (2008)

6. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. In-
tell. 172(14), 1644–1672 (2008)

7. Gelder, A.V.: The alternating fixpoint of logic programs with negation. J. Comput.
Syst. Sci. 47(1), 185–221 (1993)

8. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9-10), 1528–1554 (2011)

9. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artif. Intell. 174(15), 1093–
1141 (2010)

10. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: Formula-variable
independence and forgetting. J. Artif. Intell. Res. (JAIR) 18, 391–443 (2003)

11. Lin, F., Reiter, R.: Forget it! In: Proceedings of the AAAI Fall Symposium on
Relevance, pp. 154–159 (1994)

12. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Walsh, T. (ed.) IJCAI, pp. 989–995. IJCAI/AAAI
(2011)

13. Slota, M., Leite, J.: On semantic update operators for answer-set programs. In:
Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelli-
gence and Applications, vol. 215, pp. 957–962. IOS Press (2010)

14. Slota, M., Leite, J.: Robust equivalence models for semantic updates of answer-set
programs. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) KR, pp. 158–168. AAAI
Press (2012)

15. Wang, Y., Zhang, Y., Zhou, Y., Zhang, M.: Forgetting in logic programs under
strong equivalence. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) KR, pp. 643–
647. AAAI Press (2012)

16. Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in
DL-Lite. Ann. Math. Artif. Intell. 58(1-2), 117–151 (2010)

17. Zhang, Y., Foo, N.Y., Wang, K.: Solving logic program conflict through strong
and weak forgettings. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 627–634.
Professional Book Center (2005)

18. Zhang, Y., Zhou, Y.: Knowledge forgetting: Properties and applications. Artif.
Intell. 173(16-17), 1525–1537 (2009)

19. Zhou, Y., Zhang, Y.: Bounded forgetting. In: Burgard, W., Roth, D. (eds.) AAAI,
pp. 280–285. AAAI Press (2011)

The Fourth Answer Set Programming Competition:
Preliminary Report�

Mario Alviano1, Francesco Calimeri1, Günther Charwat2, Minh Dao-Tran2,
Carmine Dodaro1, Giovambattista Ianni1, Thomas Krennwallner2,

Martin Kronegger2, Johannes Oetsch2, Andreas Pfandler2, Jörg Pührer2,
Christoph Redl2, Francesco Ricca1, Patrik Schneider2, Martin Schwengerer2,

Lara Katharina Spendier3, Johannes Peter Wallner2, and Guohui Xiao2

1 Dipartimento di Matematica e Informatica, Università della Calabria, Italy
2 Institute of Information Systems, Vienna University of Technology, Austria
3 Institute of Computer Languages, Vienna University of Technology, Austria

Abstract. Answer Set Programming is a well-established paradigm of declara-
tive programming in close relationship with other declarative formalisms such as
SAT Modulo Theories, Constraint Handling Rules, PDDL and many others. Since
its first informal editions, ASP systems are compared in the nowadays customary
ASP Competition. The fourth ASP Competition, held in 2012/2013, is the sequel
to previous editions and it was jointly organized by University of Calabria (Italy)
and the Vienna University of Technology (Austria). Participants competed on a
selected collection of benchmark problems, taken from a variety of research areas
and real world applications. The Competition featured two tracks: the Model&
Solve Track, held on an open problem encoding, on an open language basis, and
open to any kind of system based on a declarative specification paradigm; and the
System Track, held on the basis of fixed, public problem encodings, written in a
standard ASP language.

1 Introduction

Answer Set Programming is a declarative approach to knowledge representation and
programming proposed in the area of nonmonotonic reasoning and logic program-
ming [9, 11, 23–25, 35, 36, 43, 46]. Among the advantages of ASP are its declarative
nature combined with a comparatively high expressive power [19, 42]. After pioneering
work [10, 42, 49, 50], several systems supporting ASP and its variants are born from
the initial offspring [2, 3, 16, 18, 31, 33, 37, 39–42, 44, 45, 47, 49, 52].

Since the first informal editions (Dagstuhl 2002 and 2005), ASP systems are com-
pared in the nowadays customary ASP Competition series [20, 16, 34], which reached
now its fourth official edition. The Fourth ASP Competition featured two tracks: the
Model& Solve Track, held on an open problem encoding, open language basis, and

� This research is supported by the Austrian Science Fund (FWF) projects P20841 and P24090.
Carmine Dodaro is partly supported by the European Commission, European Social Fund and
Regione Calabria.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 42–53, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Fourth Answer Set Programming Competition: Preliminary Report 43

System
S[T]

EP

IPi

WP
i or

INCONSISTENT

(a) System Track

System
S[T, P]IPi

WP
i or

INCONSISTENT

(b) Model& Solve Track

Fig. 1. Competition Setting

open to any system based on a declarative specification paradigm; and the System
Track, held on the basis of fixed problem encodings, written in a standard ASP
language.

In this paper we illustrate the overall setting of the fourth ASP Competition, its par-
ticipants and the benchmark suite. A more detailed report, including a complete descrip-
tion of the entire Competition, outcomes of non-participant systems, and comparisons
with other state-of-the-art systems is under preparation. The competition had 23 partic-
ipants which were evaluated on a suite of 27 benchmark domains, for each of which
about 30 instances were selected, for a total of about 50’000 separate benchmark runs.
Results of the competition were disclosed during the LPNMR 2013 conference.

The remainder of this paper is structured as follows. In Section 2 we illustrate the
competition format, especially discussing updates which were introduced with respect
to the previous editions. In section 3 we illustrate the new standard language ASP-
Core-2. Section 4 illustrates the benchmark problems used in this edition and Section 5
presents the participants to the Competition.

2 Format of the Fourth ASP Competition

We illustrate here the settings of the competition focusing on changes introduced with
respect to the Third Competition’s edition.

Competition format. The 4th ASP Competition retains the distinction between Model&
Solve and System Track. Both tracks run on a selected suite of benchmark domains,
which were chosen during an open Call for Problems stage.

The System Track was conceived with the aim of (i) fostering the standardization
of the ASP input language, and (ii) let the competitors compare each other in fixed,
predefined conditions, excluding e.g., domain-tailored evaluation heuristics and custom
problem encodings. The System Track is run as follows (Figure 1-a): for each problem
P a corresponding, fixed, declarative specification EP of P , and a number of instances
IP1 , . . . , IPn , are given. Each participant system S[T], for T a participating team, is fed
with all the couples 〈EP , IPi 〉, and challenged to produce a witness solution to 〈EP , IPi 〉
(denoted by WP

i) or to report that no witness exist, within a predefined amount of
allowed time. A score is awarded to each S[T] per each benchmark, as detailed later in
this Section. Importantly, problem encodings were fixed for all participants: specialized
solutions on a per-problem basis were not allowed, and problems were specified in the
recently-released ASP-Core-2 language. This setting has been introduced in order to
give a fair, objective measure of what one can expect when switching from a system to

44 M. Alviano et al.

another, while keeping all other conditions fixed, such as the problem encoding and the
default solver settings and heuristics.

Differently from the System Track, the Model& Solve Track has been instead left
open to any (bundle of) solver systems loosely based on a declarative specification
language. Thus no constraints were set on the declarative language used for encod-
ing solutions to be solved by participants’ systems. Indeed, the spirit of this Track is
to (i) encourage the development of new expressive declarative constructs and/or new
modeling paradigms; (ii) to foster the exchange of ideas between communities in close
relationships with ASP; (iii) and, to stimulate the development of new ad-hoc solv-
ing methods, refined problem specifications and solving heuristics, on a per benchmark
domain basis.

In more detail, each participant team T was allowed to present a version S[T, P]
of their system(s) possibly customized for each problem domain P in terms of solving
heuristics and declarative problem specification. Each system S[T, P], for T a partici-
pating team, is challenged to solve some instances of problem P . S[T, P] is expected
to produce, within a predefined amount of allowed time, a witness solution for each
instance in input (or to report that no witness exists). For both tracks, a total score is
awarded to each team T summing up the scores obtained by each S[T, P] (or by S[T])
on each benchmark, as detailed below.

Scoring system. The competition scoring system was inherited from the third edition
of the competition and improved in some specific aspects. In detail, each participant is
awarded of a score per each benchmarkP proportional to: a) the percentage of instances
solved within time (Ssolve(P)); b) the evaluation time (Stime(P)); and c) the quality of
the computed solution in case of optimization problems (Sopt(P)).1

Comparing the scoring system with the one of the former edition, some adjustments
were introduced to the logarithmic time scoring quota Stime, which has been redefined
as follows:

Stime(P) =
100− α

Nγ

N∑
i=1

(
1−

(
log(max(1, ti) + s)

log(tout + s)

))
where P is the problem domain at hand; tout is the maximum allowed time; ti the time
spent by system S while solving instance i (ti is assumed to be lesser or equal to tout); s
is a factor which mildens the logarithmic behavior of Stime; γ is a normalization factor
(having an effect detailed below); and α is a percentage factor balancing the impact of
Stime(P) w.r.t. the Ssolve(P) quota. Indeed, Ssolve(P) assigns a score that is linearly
proportional to the percentage of solved instances for P as follows:

Ssolve(P) = α
NP

N

where NP is the number of instances of problem P solved by S within the timeout.
As in the third edition of the Competition, Stime(P) is specified in order to take into

account the “perceived” performance of a system according to a logarithmic scoring.

1 Solution quality is intended in terms of normalized percent distance from the optimal solution.

The Fourth Answer Set Programming Competition: Preliminary Report 45

Moreover, the parameters of Stime(P) were set in order to obtain a reasonable behavior
that is expected to be stable w.r.t. minor fluctuations in measured execution times. In
particular, we set for this edition of the competition s = 10 (it was previously set to
1) to avoid excessive differences in scoring when solving time was below 10 seconds;
also, the correction max(1, ti) prevents any score difference at all when ti is below 1
second. In this way there is basically no difference in assigned score when execution
times are very low and close to the order of magnitude of measurement errors. As in
the previous competition, α was set to 0.5, so that the time and the instance quota are
evenly balanced; finally, γ was chosen in such a way that the time score quota awarded
for solving a single instance i within the timeout (i.e., 0 ≤ ti ≤ tout) is normalized in
the range [0, (100− α)/N], thus we set

γ = 1− log(1 + s)

log(tout + s)

Other improvements were made w.r.t. the scoring system employed in the 3rd edition,
e.g., with the introduction of a formal averaging policy for coping with multiple runs of
the benchmark suite and other minor refinements. The scoring system of the 4th ASP
Competition is extensively described in [5].

Instance selection process. Concerning instance selection, we introduced in this edi-
tion an new method for the random selection of instances, by taking into account that
(i) the selection process should depend on a unique, not controllable by the organizer,
random seed value; (ii) instances should be roughly ordered by some difficulty crite-
rion provided by domain maintainers; (iii) hash values of instance files, and the fixed
ordering of instances should be known before the Competition run; (iv) the random
sequence used for selection should be unique and applied systematically to each bench-
mark domain, i.e. it must be impossible in practice, for organizers, to possibly forge the
selection of instances in one domain without altering, out of control, the selection of
instances in the other domains. (v) the selection method should approximately select a
set of instances with a good balance between “hard” and “easy” instances.

The above considerations led us to adopt a variant of the statistical systematic sam-
pling technique for the instance selection process. In detail, let S be the a random seed
value chosen from an objective random source, and R be the number of instances per
benchmark to be selected. Let D a benchmark domain,LD its list of available instances,
made available from benchmark domain maintainers roughly sorted by difficulty level,
with |LD| = ND. We denote as LD[i] the i-th instance. over the whole family LD,
as follows: let Start, Perturb1, . . . ,PerturbR be values systematically generated from S
where Start ranges from 0 to 1 and each Perturbi ranges from −1.5 to 1.5. Then, we
set Step = ND

R and StartD = Step ∗ Start. Then we select, for all i (1 ≤ i ≤ R), all the
instances

LD

[
round(max(0,min(ND, StartD + i ∗ Step + Perturbi)))

]
Here round(n) is n rounded to the nearest integer. When Step > Perturbi+1 −Perturbi

for some i, we conventionally selected LD[h + 1] as the (i + 1)-th instance, for h the
index of the i-th instance.

46 M. Alviano et al.

Software and Hardware settings. The Competition has been run using the purposely de-
veloped VCWC environment (Versioning Competition Workflow Compiler) [17]. This
tool takes as input the participating solvers and dedicated benchmark sets and generates
a workflow description for executing all necessary (sub-)tasks for generating the final
solver rankings and statistics. As jobs may fail during the execution, VCWC supports
a gradual refinement of the competition workflow and allows to add or update solvers,
instances, benchmarks, or further runs after the machinery has been brought up. Gener-
ated jobs where scheduled on the Competition hardware using the HTCondor [51] high
throughput computing platform.

Concerning hardware, the competition has been run on several Ubuntu Server 12.04
LTS x86-64 machines featuring two AMD Opteron Magny-Cours 6176 SE CPUs (total
of 24 cores) running at 2.3 GHz with 128GiB of physical RAM. To accommodate multi-
core evaluations, runs were classified into sequential and parallel. Sequential runs have
been evaluated in a single-core Linux control group, while parallel runs were limited to
a six-core control group; all of the six cores form one NUMA node to prevent memory
access overhead to remote NUMA nodes. For both kind of runs only memory with the
lowest distance to the corresponding NUMA node has been used. The memory reserved
to each control group was constrained to 6 GiB (1 GiB = 1 gibibyte = 230 bytes),
while the total CPU time available was 600 seconds. Competitors were instructed about
how to reproduce the software environment, in order to properly prepare and test their
systems.

Reproducibility of the results. The committee did not disclose any submitted material
until the end of the Competition; nonetheless, willingly participants were allowed to
share their own work at any moment. In order to guarantee transparency and repro-
ducibility of the Competition results, all participants were asked to agree that any kind
of submitted material (system binaries, scripts, problems encodings, etc.) was to be
made public after the Competition.

3 Competition Language Overview

Since the first Edition of the competition, standardization has always been one of the
main goals of the ASP Competition Series. The efforts to find a common language
basis, started with the LPNMR 2004 language draft [6], and prosecuted with the ASP-
Core [15] standard adopted in 3rd edition of the Competition. ASP-Core was published
along with the ASP-RfC proposal, which preceded the work of the ASP Standardiza-
tion Working Group, that produced the ASP-Core-2 standard, adopted for the System
Track in the 4th edition of the Competition. The ideas that guided the work are in the
trail of the latest version of the standard: to safeguard the original A-Prolog language
[36]; to include, as extensions, a number of features both desirable and mature; and,
eventually, to have a language with non-ambiguous semantics over which widespread
consensus has been reached. The basis of ASP-Core-2 is hence a rule language allowing
disjunctive heads and strong and negation-as-failure (NAF) negation, with no need for
domain predicates. Arithmetic and Herbrand-interpreted functional terms are explicitly
allowed, as well as aggregate literals and queries; choice atoms and weak constraints
complete the list of new features.

The Fourth Answer Set Programming Competition: Preliminary Report 47

The semantics of non-ground ASP-Core-2 programs extends the traditional notion
of Herbrand interpretation. Concerning the semantics of propositional programs, it is
based on [36], extended to aggregates according to [26]; choice atoms [49] are treated in
terms of a proper translation. To promote declarative programming as well as practical
system implementations, a number of restrictions are imposed. For instance, semantics
is restricted to programs containing non-recursive aggregates; reasonable restrictions
are applied for ensuring that function symbols, integers and arithmetic built-in predi-
cates are finitely handled.

The ASP-Core-2 specification is rich in new features and is partially backward-
compatible with older common input formats. Participants were thus allowed to join
the System Track using slightly syntactically different problem encodings. Each state-
ment of alternative problem encodings was kept in strict one-to-one correspondence
with the reference ASP-Core-2 encoding.

The work on standardization is beyond the scope of the 4th ASP Competition, and
new features (such as maximize/minimize statements for optimization, and more) have
lately been incorporated into the standard. The detailed ASP-Core-2 language specifi-
cation used for this Competition can be found at [12], while the ongoing standardization
activity can be followed at [13].

4 Benchmark Suite

The benchmark suite has been constructed during a Call for problems stage, after which
26 benchmark domains were selected, 13 of which were confirmed from the previous
edition. The whole collection was suitable for a proper ASP-Core-2 [12] specification.
All 26 problems appeared in the System Track, while the Model& Solve Track featured
only 15 domains. The complete list of benchmarks, whose details are available at [4], is
reported in Table 1. Concerning legacy benchmark domains, problem maintainers were
asked to produce refined specifications and/or better instances sets whenever necessary.
The presence of a star (*) in the fourth column means that the corresponding problem
was changed in its specifications w.r.t. its third Competition version. The selection cri-
teria for problems aimed to collect a number of domains as balanced as possible in
terms of (i) academic vs applicative provenance, (ii) computational complexity, type of
domain and type of reasoning task, and (iii) research group provenance.

Problems belonged to a variety of areas, like general artificial intelligence, databases,
formal logics, graph theory, planning, natural sciences and scheduling; in addition, the
benchmark suite included a synthetic domain and some combinatorial and puzzle prob-
lems. Concerning the type of reasoning task to be executed in each domain, we kept the
categorization in term of of Search, Query and Optimization problems2.

Problems were further classified according to their computational complexity in the
categories P (polynomially solvable), NP (NP-Hard), Beyond-NP (more than NP-
Hard). Apart from this categorization, we classified in the Opt category (optimization
problems) all the problems in which the minimization/maximization of a numerical
goal function could be identified. The first three categories approximately reflect the

2 The reader is referred to [14] for details concerning the three categories.

48 M. Alviano et al.

Table 1. 4th ASP Competition – Benchmark List

ID Problem Name Category Domain 2011 M&S Track

N01 Permutation Pattern Matching NP Combinatorial NO YES

N02 Valves Location Opt Combinatorial NO YES

N04 Connected Maximum-density Still Life Opt AI NO YES

N05 Graceful Graphs NP Graph NO YES

N06 Bottle Filling NP Combinatorial NO YES

N07 Nomystery NP Planning NO YES

N08 Sokoban NP Planning YES∗ YES

N09 Ricochet Robot NP Puzzle NO YES

O10 Crossing Minimization Opt Graph YES YES

O11 Reachability P Graph YES∗ YES

O12 Strategic Companies ΣP
2 AI YES∗ YES

O13 Solitaire NP Puzzle YES YES

O14 Weighted Sequence NP Database YES YES

O15 Stable Marriage P∗ Graph YES YES

O16 Incremental Scheduling NP Scheduling YES YES

N17 Qualitative Spatial Temporal Reasoning NP Formal logic NO NO

N18 Chemical Classification P∗ Natural Sciences NO NO

N19 Abstract Dialectical Frameworks Well-founded Model Opt Formal logic NO NO

N20 Visit-all NP Planning NO NO

N21 Complex Optimization of Answer Sets ΣP
2 Synthetic NO NO

N22 Knight Tour with Holes NP Puzzle YES∗ NO

O23 Maximal Clique Opt Graph YES NO

O24 Labyrinth NP Puzzle YES NO

O25 Minimal Diagnosis ΣP
2 Diagnosis YES NO

O26 Hanoi Tower NP AI YES NO

O27 Graph Colouring NP Graph YES NO

data complexity [48] of the underlying decisional problem, with some exception. In
particular, STABLE MARRIAGE [27, 38], for which polynomial algorithms are known,
has been re-proposed in the System Track with a natural declarative encoding which
makes usage of the Guess & Check paradigm; also, the CHEMICAL CLASSIFICATION

benchmark featured sets of Horn rules as input instances, thus, strictly speaking, it is
to be considered a NP problem under combined complexity. It is worth noting that the
computational complexity of a problem has also impact on features of solvers which
were put under testing. Polynomial problems are mostly, but not exclusively, useful for
testing grounding modules, while the role of model generator modules is more promi-
nent when benchmarking is done in domains in the NP category.

The Fourth Answer Set Programming Competition: Preliminary Report 49

5 Participants

In this Section we briefly present all participants; we refer the reader to the official
Competition website [14] for further details.

System Track Participants. The System Track of the Competition featured 16 systems;
these can be roughly grouped into two main classes: (i) “native” systems, which exploit
techniques purposely conceived/adapted for dealing with logic programs under the sta-
ble models semantics, and (ii) “translation-based” systems, which (roughly), at some
stage of the evaluation process, produce an intermediate specification in a different for-
malism; such specification is then fed to an external solver. The first category includes
clasp – and variants thereof – and DLV+wasp, while the second counts IDP3 (which is
FO(.)-based), LP2BV-1 and LP2BV-2 (relying on SMT solvers), LP2MIP and LP2MIP-MT

(relying on integer programming tools), and LPD2SAT, LP2SAT-MT and LP2SOLRED-MT

(relying on SAT solvers). Interestingly, several parallel (multi-threaded) solutions are
officially present in this edition of the Competition; such systems are denoted by means
of the “-mt” suffix.

• The group from University of Potsdam presented a number of solvers. clasp [33]
is an answer set solver for (extended) normal logic programs featuring state-of-
the-art techniques from the area of Boolean constraint solving. claspfolio [29]
chooses the best suited configuration of clasp to process the given input pro-
gram, according to machine-learning techniques. claspD-2 [31] is an extension
of clasp that allows for solving disjunctive logic programs using a new approach
to disjunctive ASP solving that aims at an equitable interplay between “generat-
ing” and “testing” solver units, and claspD-2 is a version supporting the ASP-
Core-2 standard [12]. Multi-threaded versions clasp-mt [30], claspfolio-mt
and claspD-2-mt were also present.

• The research group from Aalto University presented different solvers, all of them
working by means of translations. With LP2BV-1 and LP2BV-2 [47], a given ASP
program is grounded by Gringo, simplified by Smodels, normalized by getting rid
of extended rule types (e.g., choice rules), translated to bit vectors and finally solved
by BOOLECTOR for LP2BV-1 and Z3 for LP2BV-1. LP2SAT, LP2SAT-MT [39] and
LP2SOLRED-MT [39, 52] work similarly, but rely on translations to SAT rather than
bit vectors; PRECOSAT, PLINGELING and GLUCORED work under the hood for
LP2SAT, LP2SAT-MT, and LP2SOLRED-MT, respectively. LP2MIP [45] and LP2MIP-MT,
finally, translate to mixed integer programs, which are processed by CPLEX.

• The team from KU Leuven presented IDP3, using FO(ID,Agg) + Lua as input lan-
guage [53]. Model generation/optimization was achieved by lifted unit propagation
+ grounding with bounds (possibly using XSB for evaluating definitions) and ap-
plying MiniSat(ID) as search algorithm.

• wasp+DLV. wasp [2] is a native ASP solver built upon a number of techniques orig-
inally introduced in SAT, which were extended and properly combined with tech-
niques specifically defined for solving disjunctive ASP programs. Among them are
restarts, constraints learning and backjumping. Grounding is carried out by an en-
hanced version of the DLV grounder able to cope with the ASP-Core-2 features.
Team members were affiliated to the University of Calabria.

50 M. Alviano et al.

Model& Solve Track Participants. Seven teams participated to the Model& Solve
Track, each presenting a custom approach, often explicitly differentiated depending on
the domain problem at hand: short descriptions follow.

• B-Prolog [54] provides several tools for tackling combinatorial optimization prob-
lems, including tabling for dynamic programming problems, CLP(FD) for CSPs,
and a compiler that translates CSPs into SAT.

• Enfragmo [1] is a grounding-based solver. From a given input (expressed in multi-
sorted first order logic extended with arithmetic and aggregate operators) a propo-
sitional CNF formula is produced, representing the solutions to the instance, which
is processed by a SAT solver.

• EZCSP [7, 8] freely combines different ASP (such as Gringo/clasp, Clingo,
Clingcon, possibly extended for supporting non-Herbrand functions) and CP (such
as B-Prolog) solvers to be selected according to the features of the target domain.

• IDP3 [53] is the same system participating in the System Track, with proper custom
options depending on the benchmark problem; IDP2 [53] consists of the grounder
GidL and the search algorithm MiniSat(ID).

• inca [21, 22] implements Constraint Answer Set Programming (CASP) via Lazy
Nogood Generation (LNG) and a selection of translation techniques. It integrates
Gringo (for grounding CASP specifications), clasp, and a small collection of
constraint propagators enhanced with LNG capacities [22].

• The team of Potassco [32] used Gringo 3, clasp 2, and iClingo 3 (an incremen-
tal ASP system [28] implemented on top of Clingo, featuring a combined grounder
and solver that keep previous states while increasing an incremental parameter,
trying to avoid re-producing already computed knowledge). Search settings were
manually chosen (w.r.t. few instances) per problem class.

Acknowledgments. All of us feel honored of the appointment of TU Vienna and Uni-
versity of Calabria as host institutions: we want to thank all the members of the Database
and Artificial Intelligence Group, the Knowledge-based Systems Group, and the The-
ory and Logic Group of Vienna University of Technology (TU Vienna), as well as the
Computer Science Group at the Department of Mathematics and Computer Science of
University of Calabria (Unical) for their invaluable collaboration, which made this event
possible. A special thanks goes to all the members of the ASP Standardization Working
Group and to all the members of the scientific community which authored, reviewed
and helped in setting up all problem domains; and, of course, to the participating teams,
whose feedback, once again, significantly helped at improving competition rules and
benchmark specifications. We also want to acknowledge Thomas Eiter as Head of the
Institute for Information Systems of the Vienna University of Technology, and Nicola
Leone as the Director of the Department of Mathematics and Computer Science of Uni-
versity of Calabria, which provided us with human and technical resources. Eventually,
we want to give a special thank to Pedro Cabalar and Tran Cao Son for their support as
LPNMR-2013 conference chairs and proceedings editors.

The Fourth Answer Set Programming Competition: Preliminary Report 51

References

1. Aavani, A., Wu, X(N.), Tasharrofi, S., Ternovska, E., Mitchell, D.: Enfragmo: A system
for modelling and solving search problems with logic. In: Bjørner, N., Voronkov, A. (eds.)
LPAR-18 2012. LNCS, vol. 7180, pp. 15–22. Springer, Heidelberg (2012)

2. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP solver based
on constraint learning. In: Cabalar, P., Corunna, Son, T.C. (eds.) LPNMR 2013. LNCS,
vol. 8148, pp. 55–67. Springer, Heidelberg (2013)

3. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ Approach to
Answer Set Solving. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI),
vol. 3835, pp. 95–109. Springer, Heidelberg (2005)

4. 4th ASP Competition Organizing Committee, T.: Official Problem Suite (2013),
https://www.mat.unical.it/aspcomp2013/OfficialProblemSuite

5. 4th ASP Competition Organizing Committee, T.: Rules and Scoring (2013),
https://www.mat.unical.it/aspcomp2013/ParticipationRules

6. Core language for ASP solver competitions, minutes of the steering committee meeting at
LPNMR 2004 (2004),
https://www.mat.unical.it/aspcomp2011/files/Corelang2004.pdf

7. Balduccini, M.: Representing Constraint Satisfaction Problems in Answer Set Programming.
In: ICLP 2009 Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP 2009) (July 2009)

8. Balduccini, M.: An Answer Set Solver for non-Herbrand Programs: Progress Report. In:
Costa, V.S., Dovier, A. (eds.) Technical Communications of the 28th International Confer-
ence on Logic Programming (ICLP 2012). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
(2012)

9. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

10. Bell, C., Nerode, A., Ng, R.T., Subrahmanian, V.: Mixed Integer Programming Methods for
Computing Nonmonotonic Deductive Databases. Journal of the ACM 41, 1178–1215 (1994)

11. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Enhancing asp by functions: Decidable classes
and implementation techniques. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)

12. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: ASP-Core-2: 4th ASP Competition Official Input Language Format
(2013),
http://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf

13. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: ASP Standardization Activity (2013),
http://www.mat.unical.it/aspcomp2013/ASPStandardization/

14. Calimeri, F., Ianni, G., Krenwallner, T., Ricca, F.: The 4th ASP Competition Organizing
Committee: The Fourth Answer Set Programming Competition homepage (2013),
http://www.mat.unical.it/aspcomp2013/

15. Calimeri, F., Ianni, G., Ricca, F.: Third ASP Competition, File and language formats (2011),
http://www.mat.unical.it/aspcomp2011/
files/LanguageSpecifications.pdf

16. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming competition. The-
ory and Practice of Logic Programming FirstView, 1–19 (2012),
http://dx.doi.org/10.1017/S1471068412000105

https://www.mat.unical.it/aspcomp2013/OfficialProblemSuite
https://www.mat.unical.it/aspcomp2013/ParticipationRules
https://www.mat.unical.it/aspcomp2011/files/Corelang2004.pdf
http://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf
http://www.mat.unical.it/aspcomp2013/ASPStandardization/
http://www.mat.unical.it/aspcomp2013/
http://www.mat.unical.it/aspcomp2011/files/LanguageSpecifications.pdf
http://www.mat.unical.it/aspcomp2011/files/LanguageSpecifications.pdf
http://dx.doi.org/10.1017/S1471068412000105

52 M. Alviano et al.

17. Charwat, G., Ianni, G., Krennwallner, T., Kronegger, M., Pfandler, A., Redl, C., Schwen-
gerer, M., Spendier, L., Wallner, J.P., Xiao, G.: VCWC: A versioning competition workflow
compiler. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 233–
238. Springer, Heidelberg (2013), http://www.kr.tuwien.ac.at/
staff/tkren/pub/2013/lpnmr2013-vcwc.pdf

18. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: Answer set programming with lazy
grounding. Fundamenta Informaticae 96(3), 297–322 (2009)

19. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys 33(3), 374–425 (2001)

20. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The Second An-
swer Set Programming Competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

21. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. Theory
and Practice of Logic Programming 10(4-6), 465–480 (2010)

22. Drescher, C., Walsh, T.: Answer set solving with lazy nogood generation. In: Dovier, A.,
Costa, V.S. (eds.) ICLP (Technical Communications). LIPIcs, vol. 17, pp. 188–200. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

23. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV Sys-
tem. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 79–103. Kluwer Academic
Publishers (2000)

24. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database
Systems 22(3), 364–418 (1997)

25. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In: Tessaris, S.,
Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.)
Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009)

26. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in an-
swer set programming. Artificial Intelligence 175(1), 278–298 (2011)

27. Falkner, A., Haselböck, A., Schenner, G.: Modeling Technical Product Configuration Prob-
lems. In: Proceedings of ECAI 2010 Workshop on Configuration, Lisbon, Portugal, pp. 40–
46 (2010)

28. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

29. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.: A portfolio
solver for answer set programming: Preliminary report. In: Delgrande, J.P., Faber, W. (eds.)
LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer, Heidelberg (2011)

30. Gebser, M., Kaufmann, B., Schaub, T.: Multi-threaded ASP solving with clasp. Theory and
Practice of Logic Programming 12(4-5), 525–545 (2012)

31. Gebser, M., Kaufmann, B., Schaub, T.: Advanced conflict-driven disjunctive answer set solv-
ing. In: Rossi, F. (ed.) Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence (IJCAI 2013). IJCAI/AAAI (to appear, 2013)

32. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.:
Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24(2), 107–124
(2011)

33. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187-188, 52–89 (2012)

34. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

35. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog
perspective. Artificial Intelligence 138(1-2), 3–38 (2002)

http://www.kr.tuwien.ac.at/staff/tkren/pub/2013/lpnmr2013-vcwc.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2013/lpnmr2013-vcwc.pdf

The Fourth Answer Set Programming Competition: Preliminary Report 53

36. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

37. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

38. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms. MIT
Press, Cambridge (1989)

39. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to
propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 111–130. Springer,
Heidelberg (2011)

40. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-
junctions in Stable Model Semantics. ACM Transactions on Computational Logic 7(1), 1–37
(2006)

41. Lefèvre, C., Nicolas, P.: The first version of a new ASP solver: ASPeRiX. In: Erdem, E.,
Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 522–527. Springer, Heidelberg
(2009)

42. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

43. Lifschitz, V.: Answer Set Planning. In: Schreye, D.D. (ed.) Proceedings of the 16th Inter-
national Conference on Logic Programming (ICLP 1999), pp. 23–37. The MIT Press, Las
Cruces (1999)

44. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
Artificial Intelligence 157(1-2), 115–137 (2004)

45. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming.
In: 13th International Conference on Principles of Knowledge Representation and Reasoning
(KR 2012), pp. 32–42 (2012)

46. Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming
Paradigm. In: Apt, K.R., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.) The Logic
Programming Paradigm – A 25-Year Perspective, pp. 375–398. Springer (1999)

47. Nguyen, M., Janhunen, T., Niemelä, I.: Translating answer-set programs into bit-vector logic.
CoRR abs/1108.5837 (2011)

48. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
49. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-

tics. Artificial Intelligence 138, 181–234 (2002)
50. Subrahmanian, V., Nau, D., Vago, C.: WFS + Branch and Bound = Stable Models. IEEE

Transactions on Knowledge and Data Engineering 7(3), 362–377 (1995)
51. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor expe-

rience. Concurrency and Computation: Practice and Experience 17(2-4), 323–356 (2005)
52. Wieringa, S., Heljanko, K.: Concurrent clause strengthening. In: Järvisalo, M., Van Gelder,

A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 116–132. Springer, Heidelberg (2013)
53. Wittocx, J., Mariën, M., Denecker, M.: The IDP system: a model expansion system for an

extension of classical logic. In: Denecker, M. (ed.) International Workshop on Logic and
Search (Lash), pp. 153–165 (2008)

54. Zhou, N.F.: The language features and architecture of B-Prolog. Theory and Practice of
Logic Programming 12(1-2), 189–218 (2012)

WASP: A Native ASP Solver
Based on Constraint Learning�

Mario Alviano, Carmine Dodaro, Wolfgang Faber,
Nicola Leone, and Francesco Ricca

Department of Mathematics and Computer Science,
University of Calabria, 87036 Rende, Italy

{alviano,dodaro,faber,leone,ricca}@mat.unical.it

Abstract. This paper introduces WASP, an ASP solver handling disjunctive logic
programs under the stable model semantics. WASP implements techniques orig-
inally introduced for SAT solving that have been extended to cope with ASP
programs. Among them are restarts, conflict-driven constraint learning and back-
jumping. Moreover, WASP combines these SAT-based techniques with optimiza-
tion methods that have been specifically designed for ASP computation, such
as source pointers enhancing unfounded-sets computation, forward and back-
ward inference operators based on atom support, and techniques for stable model
checking. Concerning the branching heuristics, WASP adopts the BerkMin crite-
rion hybridized with look-ahead techniques. The paper also reports on the results
of experiments, in which WASP has been run on the system track of the third
ASP Competition.

1 Introduction

Answer Set Programming (ASP) [1] is a declarative programming paradigm which has
been proposed in the area of non-monotonic reasoning and logic programming. The
idea of ASP is to represent a given computational problem by a logic program whose
answer sets correspond to solutions, and then use a solver to find them.

The ASP language considered here allows disjunction in rule heads and nonmono-
tonic negation in rule bodies. These features make ASP very expressive; all problems in
the second level of the polynomial hierarchy are indeed expressible in ASP [2]. There-
fore, ASP is strictly more expressive than SAT (unless P = NP). Despite the intrinsic
complexity of the evaluation of ASP, after twenty years of research many efficient ASP
systems have been developed. (e.g. [3–5]).The availability of robust implementations
made ASP a powerful tool for developing advanced applications in the areas of Arti-
ficial Intelligence, Information Integration, and Knowledge Management; for example,
ASP has been used in industrial applications [6], and for team-building [7], semantic-
based information extraction [8], and e-tourism [9]. These applications of ASP have
confirmed the viability of the use of ASP. Nonetheless, the interest in developing more

� This research has been partly supported by project PIA KnowRex POR FESR 2007- 2013
BURC n. 49 s.s. n. 1 16/12/2010, by MIUR project FRAME PON01 02477/4, and by the
European Commission, European Social Fund and Regione Calabria.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 54–66, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

WASP: A Native ASP Solver Based on Constraint Learning 55

effective and faster systems is still a crucial and challenging research topic, as witnessed
by the results of the ASP Competition series (see e.g. [10]).

This paper provides a contribution in the aforementioned context. In particular, we
present a new ASP solver for propositional programs called WASP. The new system
is inspired by several techniques that were originally introduced for SAT solving, like
the Davis-Putnam-Logemann-Loveland (DPLL) backtracking search algorithm [11],
clause learning [12], backjumping [13], restarts [14], and conflict-driven heuristics [15]
in the style of BerkMin [16]. The mentioned SAT-solving methods have been adapted
and combined with state-of-the-art pruning techniques adopted by modern native dis-
junctive ASP systems [3–5]. In particular, the role of Boolean Constraint Propagation
in SAT-solvers (based only on unit propagation inference rule) is taken by a procedure
combining several of inference rules. Those rules combine an extension of the well-
founded operator for disjunctive programs with a number of techniques based on ASP
program properties (see, e.g., [17]). In particular, WASP implements techniques specifi-
cally designed for ASP computation, such as source pointers [18] enhanced unfounded-
set computation, native forward and backward inference operators based on atom
support [17]. Moreover, WASP uses a branching heuristics based on a mixed approach
between BerkMin-like heuristics and look-ahead which takes into account minimality
of answer sets, a requirement not present in SAT solving. Finally, stable model check-
ing, which is a co-NP-complete problem for disjunctive logic programs, is implemented
relying on the rewriting method of [19] and by calling MiniSAT [20].

In the following, after briefly introducing ASP, we describe the new system WASP,
whose source available at http://www.mat.unical.it/ricca/wasp. We start
from the solving strategy and present the design choices regarding propagation, con-
straint learning, restarts, and the heuristics. We also report on an experiment in which
we have run WASP on all instances used in the third ASP Competition [10]. In particu-
lar, we compare our system with all participants and analyze in detail the impact of our
design choices. Finally, we discuss related work and draw the conclusion.

2 Preliminaries

Let A be a countable set of propositional atoms. A literal is either an atom (a positive
literal), or an atom preceded by the negation as failure symbol not (a negative literal).
A program is a finite set of rules of the following form:

p1 ∨ · · · ∨ pn :- q1, . . . , qj , not qj+1, . . . , not qm (1)

where p1, . . . , pn, q1, . . . , qm are atoms and n ≥ 0, m ≥ j ≥ 0. The disjunction
p1 ∨ · · · ∨ pn is called head, and the conjunction q1, . . . , qj , not qj+1, . . . , not qm is
referred to as body. For a rule r of the form (1), the following notation is also used: H(r)
denotes the set of head atoms; B(r) denotes the set of body literals; B+(r) and B−(r)
denote the set of atoms appearing in positive and negative body literals, respectively;
C(r) := H(r) ∪ B(r) is the nogood representation of r [4]. In the following a rule
r is said to be regular if |H(r)| ≥ 1, and a constraint if |H(r)| = 0. Moreover, the
complement of a literal � is denoted �, i.e., a = not a and not a = a for an atom a.
This notation extends to sets of literals, i.e., L := {� | � ∈ L} for a set of literals L.

http://www.mat.unical.it/ricca/wasp

56 M. Alviano et al.

An interpretation I is a set of literals, i.e., I ⊆ A ∪ A. Intuitively, literals in I are
true, literals whose complements are in I are false, and all other literals are undefined. I
is total if there are no undefined literals, and I is inconsistent if there is a ∈ A such that
{a, not a} ⊆ I . An interpretation I satisfies a rule r if C(r)∩ I �= ∅, while I violates r
if C(r) ⊆ I . A model of a program P is a total interpretation satisfying all rules of P .
The semantics of a program P is given by the set of its answer sets (or stable models)
[1], where a total interpretation M is an answer set (or stable model) for P if and only
if M is a subset-minimal model of the reduct PM obtained by deleting from P each
rule r such that B−(r) ∩ I �= ∅, and then by removing all the negative literals from the
remaining rules.

3 Answer Set Computation

In this section we review the algorithms and the heuristics implemented in WASP. For
reasons of presentation, we have considerably simplified the procedures in order to
focus on the main principles.

3.1 Main Algorithm

An answer set of a given propositional program P is computed in WASP by using Al-
gorithm 1, which is similar to the Davis-Putnam procedure in SAT solvers. The process
starts with an empty interpretation I in input. Function Propagate extends I with those
literals that can be deterministically inferred (line 2) and keeps track of the reasons of
each inference by building a representation of the so-called implication graph [15]. This
function is similar to unit propagation as employed by SAT solvers, but also uses the
peculiarities of ASP for making further inferences (e.g., it uses the knowledge that ev-
ery answer set is a minimal model). Propagate, described in more detail in Section 3.2,
returns false if an inconsistency (or conflict) is detected, true otherwise. If Propagate
returns true and I is total (line 3), CheckModel is invoked (line 4) to verify that I is
an answer set by using the techniques described in [19]. In particular, for non head-
cycles-free programs the check is co-NP-complete [21] and implemented by a call to
the SAT solver MiniSAT [20]. If the stability check succeeds, I is returned; otherwise,
I contains some unfounded sets which are analyzed by the procedure AnalyzeConflic-
tAndLearnConstraints (described later). Otherwise, if there are undefined literals in I , a
heuristic criterion is used to chose one, say �. Then computation proceeds with a recur-
sive call to ComputeAnswerSet on I ∪ {�} (lines 6–7). In case the recursive call returns
an answer set, the computation ends returning it (lines 8–9). Otherwise, the algorithm
unrolls choices until consistency of I is restored (backjumping; lines 10–11), and the
computation resumes by propagating the consequences of constraints learned by the
conflict analysis. Conflicts detected during propagation are analyzed by procedure An-
alyzeConflictAndLearnConstraints (line 12; described in Section 3.3).

This general procedure is usually complemented with some heuristic techniques that
control the number of learned constraints (which may be exponential in number), and
possibly restart the computation to explore different branches of the search tree. Our
restart policy is based on the sequence of thresholds introduced in [22], while our
learned constraint elimination policy is described in Section 3.4.

WASP: A Native ASP Solver Based on Constraint Learning 57

Algorithm 1. Compute Answer Set
Input : An interpretation I for a program P

Output: An answer set for P or Incoherent
1 begin
2 while Propagate(I) do
3 if I is total then
4 if CheckModel(I) then return I ;
5 break; // goto 12

6 � := ChooseUndefinedLiteral();
7 I ′ := ComputeAnswerSet(I ∪ {�});
8 if I ′ �= Incoherent then
9 return I ′;

10 if there are violated learned constraints then
11 return Incoherent ;

12 AnalyzeConflictAndLearnConstraints(I);
13 return Incoherent ;

3.2 Propagation

WASP implements a number of deterministic inference rules for pruning the search
space during answer set computation. These propagation rules are named unit, sup-
port, and well-founded. During the propagation of deterministic inferences, implication
relationships among literals are stored in the implication graph. Each node � in the im-
plication graph is labelled with a decision level representing the number of nested calls
to AnswerSetComputation at the point in which � has been derived. Note that the im-
plication graph contains at most one node for each atom unless a conflict is derived, in
which case for some atom a both a and its negation are in the graph. In the following,
we describe the propagation rules and how the implication graph is updated in WASP.

Unit Propagation. An undefined literal � is inferred by unit propagation if there is a
rule r that can be satisfied only by �, i.e., r is such that � ∈ C(r) and C(r) \ {�} ⊆ I .
In the implication graph we add node �, and arc (�′, �) for each literal �′ ∈ C(r) \ {�}.
Support Propagation. Answer sets are supported models, i.e., for each atom a in an
answer set there is a (supporting) rule r such that a ∈ H(r), B(r) ⊆ I and H(r)∩ I =
{a}. Support is on the basis of two propagation rules named forward and backward.

Forward propagation derives as false all atoms for which there are no candidate sup-
porting rules. More formally, literal not a is derived if for each rule r having a in the
head I∩C(r)\{not a} �= ∅ holds. In the implication graph, a node not a is introduced,
and for each rule r having a in the head an arc (�, not a), where � ∈ C(r) \ {not a},
is added. Within WASP, literal � is the first literal that satisfied r in chronological order
of derivation, which is called first satisfier of r in the following.

Backward propagation occurs when for a true atom there is only one candidate sup-
porting rule. More in detail, if there are an atom a ∈ I and a rule r such that a ∈ H(r)
and for each other rule r′ having a in the head I ∩ C(r′) \ {not a} �= ∅ holds, then all
literals in C(r) \ I are inferred. Concerning the implication graph, we add node � and

58 M. Alviano et al.

arc (a, �) for each � ∈ C(r) \ I . Moreover, for each � ∈ C(r) \ I and r′ having a in the
head and different from r, we add an arc (�′, �), where �′ is the first satisfier of r′.

Well-Founded Propagation. Self-supporting truth is not admitted in answer sets.
According to this property, a set X of atoms is unfounded if for each r such that H(r)∩
X �= ∅ at least one of the following conditions is satisfied: (i) B(r) ∩ I �= ∅; (ii)
B+(r) ∩X �= ∅; (iii) I ∩H(r) \X �= ∅. Intuitively, atoms in X can have support only
by themselves, and can thus be derived false.

To compute unfounded sets we adopted source pointers [18]. Roughly, for each atom
we set a rule r as its candidate supporting rule, referred to as its source pointer. Source
pointers are constrained to not introduce self-supporting atoms, and are updated during
the computation. Atoms without source pointers form an unfounded set and are thus
derived false. Concerning the implication graph, for each atom a ∈ X , node not a is
added. Moreover, for each a ∈ X and for each rule r having a in the head and first
satisfier � of r (� /∈ X), arc (�, not a) is added. Note that since � /∈ X the implication
graph is acyclic.

3.3 Constraint Learning

Constraint learning acquires information from conflicts in order to avoid exploring the
same search branch several times. In WASP there are two causes of conflicts: failed
propagation and stability check failures.

Learning from Propagation. In this case, our learning schema is based on the concept
of the first Unique Implication Point (UIP) [15]. A node n in the implication graph is a
UIP for a decision level d if all paths from the literal chosen at the level d to the conflict
literals pass through n. We calculate UIPs only for the decision level of conflicts, and
more precisely the one closest to the conflict, which is called the first UIP. Our learning
schema is as follows: Let u be the first UIP. Let L be the set of literals different form
u occurring in a path from u to the conflict literals. The learned constraint comprises u
and each literal � such that the decision level of � is lower than the one of u and there is
an arc (�, �′) in the implication graph for some �′ ∈ L.

Learning from Model Check Failure. Answer set candidates are checked for stabil-
ity by function CheckModel in Algorithm 1. If a model M is not stable, an unfounded
set X ⊆ M is computed. X represents the reason for the stability check failure. Thus,
we learn a constraint c containing all atoms from X and first satisfiers of possible sup-
porting rules for atoms in X . More formally, a literal � is in B(c) if either � ∈ X or � is
the first satisfier of some rule r s.t. H(r) ∩X �= ∅ and B+(r) ∩X = ∅.

3.4 Heuristics

A crucial role is played by the heuristic criteria used for both selecting branching literals
and removing learned constraints.

Branching Heuristic. Concerning the branching heuristics, implemented by function
ChooseUndefinedLiteral in Algorithm 1, we adopt a mixed approach between look-
back and look-ahead techniques. The idea is to record statistics on atoms involved in

WASP: A Native ASP Solver Based on Constraint Learning 59

Function ChooseUndefinedLiteral
Output: A branching literal

1 begin
2 if there is no learned constraint then
3 a := MostOccurrentAtom();
4 return MostOccurrentPolarity(a);

5 if there is an undefined learned constraint then
6 c := MostRecentUndefinedLearnedConstraint() ;
7 Candidates := AtomsWithHighestCV(c);
8 if |Candidates| = 1 then
9 return HighestGCVPolarity(Candidates);

10 a := AtomCancellingMoreRules(Candidates);
11 return PolarityCancellingMoreRules(a);

12 a := AtomWithHighestCV();
13 return LookAhead(a) ;

constraint learning so to prefer those involved in most recent conflicts (look-back), and
in some case the branching literal is chosen by estimating the effects of its propagation
(look-ahead). More in detail, WASP implements a variant of the criterion used in the
BerkMin SAT solver [23]. In this technique each literal � is associated with counters
cv(�) and gcv(�), initially set to zero. When a new constraint is learned, counters for
all literals occurring in the constraint are increased by one. Moreover, counters are
also updated during the computation of the first UIP: If a literal � is traversed in the
implication graph, the associated counters are increased by one, and counters cv(·) are
divided by 4 every 100 conflicts. Thus, literals that are often involved in conflicts will
have larger values of cv(·) and gcv(·), where counters cv(·) give more importance to
literals involved in recent conflicts.

The branching criterion is reported in function ChooseUndefinedLiteral. Initially,
there is no learned constraint (line 2), and the algorithm selects the atom, say a, oc-
curring most frequently in rules. Then, the most occurrent literal of a and not a is
returned. After learning some constraints, two possible scenarios may happen. If there
are undefined learned constraints (line 5), the one that was learned more recently, say
c, is considered, and the atoms having the highest value of cv(·) are candidate choices.
If there is only one candidate, say a, then the literal between a and not a having the
maximum value of gcv(·) is returned. (If gcv(a) = gcv(not a) then not a is returned.)
If there are several candidates, an ASP specific criterion is used for estimating the effect
of the candidates on the number of potentially supporting rules. In particular, let a be an
atom occurring most often in unsatisfied regular rules. The heuristic chooses the literal
between a and not a that satisfies the largest number of rules.

The second scenario happens when all learned constraints are satisfied. In this case
one atom, say a, having the highest value of cv(·) is selected, and a look-ahead pro-
cedure is called to determine the most promising polarity (lines 12–13). Actually, a
look-ahead step is performed by propagating both a and not a, and the impact of the
two assumptions on answer set computation is estimated by summing up the number

60 M. Alviano et al.

of inferred atoms and the number of rules that have been satisfied. The literal hav-
ing greater impact is chosen, and in case of a tie the negative literal is preferred. It is
important to note that if one of the two propagations fails, the conflict is analyzed as
described in Section 3.3, and a constraint is learned and propagated. Possibly, after the
propagation, a new branching literal is selected applying the above criterion.

Deletion of Constraints. The number of learned constraints can grow exponentially,
and this may cause a performance degradation. A heuristic is employed for deleting
some of them, typically the ones that are not involved often in the more recent conflicts.
To this end, learned constraints are associated with activity counters as implemented
in the SAT solver MiniSAT [20]. The activity counters measure the number of times
a constraint was involved in the derivation of a conflict. Once the number of learned
constraints is greater than one third of the size (in number of rules) of the original pro-
gram, constraint deletion is performed as follows: First, all constraints having an activity
counter smaller than a threshold are removed (as in MiniSAT) if they are unlocked. A
constraint c is unlocked if C(c)\I �= ∅ (roughly, c is undefined and not directly involved
in propagations). If this cancellation step removes less than half of the constraints, an
additional deletion step is performed. In particular, unlocked constraints having activity
less than the average are removed possibly until the number of constraints halves. Note
that the second cancellation step is done differently in MiniSAT; our policy seems to be
effective in practice for ASP.

4 Experiments

In this section we report the results of an experiment assessing the performance of
WASP. In particular, we first compare WASP with all participants of the System Track
of the 3rd ASP Competition. Then, we analyze in detail the behavior of WASP in spe-
cific domains that help to understand strengths and weaknesses of our solver. The exper-
iments were run on the very same benchmarks, hardware and execution platform used
in the 3rd ASP Competition [10]. In particular, we used a four core Intel Xeon CPU
X3430 2.4 GHz, with 4 GB of physical RAM and PAE enabled, running Linux Debian
Lenny (32bit). As in the competition settings, WASP was benchmarked with just one
of the four processors enabled, and time and memory limits set to 600 seconds and 3
GiB (1 GiB = 230 bytes), respectively. Execution times and memory consumptions were
measured by the same programs and scripts employed in the competition. In particular,
we used the Benchmark Tool Run (http://fmv.jku.at/run/).

We have run WASP on the official instances of the System Track of the 3rd ASP
Competition [10]. In this paper we consider only problems featuring unstratified or dis-
junctive encodings, thus avoiding instances that are already solved by the grounders.
More in detail, we consider all problems in the NP and Beyond-NP categories, and the
polynomial problems Stable Marriage and Partners Unit Polynomial. The competition
suite included planning domains, temporal and spatial scheduling problems, combina-
torial puzzles, graph problems, and a number of real-world domains in which ASP was
applied. (See [10] for an exhaustive description of the benchmarks.)

WASP was coupled with a custom version of the DLV grounder properly adapted to
work with our solver. We report the results in Table 1 together with the official results

http://fmv.jku.at/run/

WASP: A Native ASP Solver Based on Constraint Learning 61

Table 1. Scores on the 3rd ASP Competition benchmark

Cumulative P NP Bnd-NP

System Total P NP BNP St
ab

le
M

ar
ri

ag
e

Pa
rt

ne
rU

ni
ts

P
ol

yn
om

ia
l

S
ok

ob
an

D
ec

is
io

n
K

ni
gh

tT
ou

r
D

is
ju

nc
tiv

eS
ch

ed
ul

in
g

Pa
ck

in
gP

ro
bl

em
L

ab
yr

in
th

M
C

S
Q

ue
ry

in
g

N
um

be
rl

in
k

H
an

oi
To

w
er

G
ra

ph
C

ol
ou

ri
ng

S
ol

it
ai

re
W

ei
gh

t-
A

ss
ig

nm
en

tT
re

e

M
az

eG
en

er
at

io
n

S
tr

at
eg

ic
C

om
pa

ni
es

M
in

im
al

D
ia

gn
os

is

claspd Score 668 13 552 103 0 13 68 68 30 0 65 75 69 31 19 11 20 96 12 91
Inst 425 10 355 60 0 10 45 40 25 0 45 50 40 25 10 10 15 50 10 50

Time 243 3 197 43 0 3 23 28 5 0 20 25 29 6 9 1 5 46 2 41

wasp Score 663 46 553 64 40 6 32 68 34 0 64 73 59 36 15 37 54 81 0 64
Inst 465 40 380 45 35 5 25 40 25 0 45 50 35 30 10 25 45 50 0 45

Time 198 6 173 19 5 1 7 28 9 0 19 23 24 6 5 12 9 31 0 19

claspfolio Score 627 18 609 - 5 13 66 65 37 0 63 75 64 47 55 21 21 95 - -
Inst 400 15 385 - 5 10 45 35 25 0 40 50 35 35 40 15 15 50 - -

Time 227 3 224 - 0 3 21 30 12 0 23 25 29 12 15 6 6 45 - -

clasp Score 617 20 597 - 6 14 78 63 38 0 78 75 65 39 23 21 21 96 - -
Inst 385 15 370 - 5 10 50 35 25 0 50 50 35 30 15 15 15 50 - -

Time 232 5 227 - 1 4 28 28 13 0 28 25 30 9 8 6 6 46 - -

idp Score 597 0 597 - 0 0 64 74 38 0 52 75 70 65 18 38 8 95 - -
Inst 370 0 370 - 0 0 45 45 25 0 30 50 40 45 10 25 5 50 - -

Time 227 0 227 - 0 0 19 29 13 0 22 25 30 20 8 13 3 45 - -

cmodels Score 582 0 510 72 0 0 67 56 21 0 62 75 30 51 29 18 6 95 0 72
Inst 380 0 335 45 0 0 45 30 20 0 45 50 20 35 20 15 5 50 0 45

Time 202 0 175 27 0 0 22 26 1 0 17 25 10 16 9 3 1 45 0 27

lp2diffz3 Score 394 0 394 - 0 0 42 55 0 0 0 70 45 47 27 25 0 83 - -
Inst 270 0 270 - 0 0 30 35 0 0 0 50 30 35 20 20 0 50 - -

Time 124 0 124 - 0 0 12 20 0 0 0 20 15 12 7 5 0 33 - -

sup Score 357 11 346 - 0 11 52 40 37 0 58 72 0 31 16 15 25 0 - -
Inst 250 10 240 - 0 10 35 25 25 0 40 50 0 25 10 10 20 0 - -

Time 107 1 106 - 0 1 17 15 12 0 18 22 0 6 6 5 5 0 - -

lp2sat2gmsat Score 321 11 310 - 0 11 36 10 32 0 46 71 22 47 17 29 0 0 - -
Inst 235 10 225 - 0 10 30 5 25 0 35 50 15 35 10 20 0 0 - -

Time 86 1 85 - 0 1 6 5 7 0 11 21 7 12 7 9 0 0 - -

lp2sat2msat Score 307 5 302 - 0 5 39 0 32 0 52 71 15 47 17 29 0 0 - -
Inst 225 5 220 - 0 5 30 0 25 0 40 50 10 35 10 20 0 0 - -

Time 82 0 82 - 0 0 9 0 7 0 12 21 5 12 7 9 0 0 - -

lp2sat2lmsat Score 301 0 301 - 0 0 35 0 32 0 53 71 17 47 17 29 0 0 - -
Inst 220 0 220 - 0 0 30 0 25 0 40 50 10 35 10 20 0 0 - -

Time 81 0 81 - 0 0 5 0 7 0 13 21 7 12 7 9 0 0 - -

smodels Score 269 0 269 - 0 0 0 55 36 0 9 53 27 0 0 0 0 89 - -
Inst 165 0 165 - 0 0 0 30 25 0 5 35 20 0 0 0 0 50 - -

Time 104 0 104 - 0 0 0 25 11 0 4 18 7 0 0 0 0 39 - -

62 M. Alviano et al.

of all participants of the competition. The results are expressed in terms of scores com-
puted with the same methods adopted in the competition. Roughly, the instance score
can be obtained multiplying by 5 the number of solved instances within the timeout,
whereas the time score is computed according to a logarithmic function of the execution
times (details can be found in http://www.mat.unical.it/aspcomp2011/
files/scoringdetails.pdf). The first column contains the total scores, fol-
lowed by columns containing data aggregated first by benchmark class, and then by
problem name. For each solver we report total score, instance score and time score in
separate rows. A dash in the table indicates that the corresponding solver cannot han-
dle the corresponding instances of a specific class/problem. We observe that the only
solvers able to deal with Beyond-NP problems are claspD, Cmodels and WASP.

As a general comment, by looking at Table 1 we can say that WASP is comparable in
performance with the best solvers in the group, and scored just 5 points less than claspD.
WASP solved more instances in overall, obtaining 40 points more than claspD for the
instance score. However, WASP performs worse than the five best solvers in terms of
raw speed, and in particular its time score is 45 points less than claspD. If we analyze
the results by problem class, we observe that WASP is the best solver in the P category,
and it is comparable to claspD but follows claspfolio, clasp and idp in NP. In Beyond-
NP, where claspD is the best solver, WASP solves the same instances as Cmodels but it
is slower than this latter. These results already outline some advantages and weaknesses
of our implementation. In particular, a weakness of WASP, also affecting claspD when
compared with clasp, is that handling unrestricted disjunction can cause a reduction in
performance in the NP category, which is however compensated in the total score by the
additional points earned in the Beyond-NP category. In this category WASP performs
similar to Cmodels, which can be justified by the similar learning strategy in case of
model checking failures that the two solvers adopt. Nonetheless, both the efficiency of
implementation and the interplay between the main algorithm and model checker has to
be significantly improved to fill the gap with claspD. The strength of WASP in P can be
explained as a combination of two factors. First, WASP uses the DLV grounder, which
in some cases produces a smaller program than Gringo. The second factor is that WASP
often requires less memory than the best five alternative solvers. This behavior makes
a sensitive difference in this category, where the instances of Stable Marriage are large
in size. We will analyze the issue of memory usage in more detail later, but it is worth
mentioning that WASP runs out of memory only 23 times in total, which is less than
any of the five best systems. In fact, according to the data reported on the Web site of
the Competition, claspD, clasp, claspfolio, idp, and Cmodels ran out of memory 63, 61,
56, 63, and 74 times, respectively.

Analyzing the results in more detail, there are some specific benchmark problems
where the differences among WASP and the five best participants in the competition
are significant. In these cases, the differing behaviors can be explained by different
choices made during design and implementation of solvers. Analyzing Table 1 from
left to right, the first of these problems is StableMarriage, which belongs to the P cat-
egory. As previously pointed out, in this category the combination of DLV (grounder)
and WASP needs less memory, which explains the result. Then there is SokobanDeci-
sion, in which WASP performed worse than several other solvers. To understand the

http://www.mat.unical.it/aspcomp2011/files/scoringdetails.pdf
http://www.mat.unical.it/aspcomp2011/files/scoringdetails.pdf

WASP: A Native ASP Solver Based on Constraint Learning 63

WASP
claspD

0

200

400

600

800

1000

0 5 10 15 20 25 30 35

M
em

or
y

us
ag

e
in

 M
B

Execution time in seconds

(a) WeigthAssignmentTree - instance n. 45

WASP
claspD

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600

M
em

or
y

us
ag

e
in

 M
B

Execution time in seconds

(b) StableMarriage - instance n.12

WASP
claspD

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

M
em

or
y

us
ag

e
in

 M
B

Execution time in seconds

(c) KnigthTour - instance n. 7

WASP
claspD

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300

M
em

or
y

us
ag

e
in

 M
B

Execution time in seconds

(d) PartnersUnitPolinomial - instance n. 206

Fig. 1. Memory usage in WASP and claspD

reason, we ran some additional experiments (not report due to space constraints), from
which we observed that both (i) the default heuristic of WASP is not suitable for this
problem; and (ii) profiling revealed that the implementation of well-founded propaga-
tion in WASP causes considerable overhead. Concerning (i), we verified that selecting
a different criterion (e.g., standard BerkMin) can sensibly improve performance. Even-
tually, WASP solves more instances of Weight-Assignment Tree than any alternative.
Here WASP, featuring a native implementation of support propagations, is advantaged
over other solvers, like clasp(D), Cmodels and idp, which apply Clark’s completion.
This is a rewriting technique that adds additional symbols and auxiliary rules to encode
the support requirement. It is known from the literature that adding these additional
symbols can lead to better performance [24], nonetheless, in this case they seem to
cause higher memory usage and slower propagation.

Some additional observations can be made by studying in more detail memory usage
of WASP and claspD. To this end we report in Figure 1 four plots depicting the mem-
ory consumption during the solvers’ execution. In particular, Figure 1(a) reports the
result for an instance of WeightAssignmentTree, a problem in the NP category whose
encoding is unstratified. In this case WASP performs better than claspD both in mem-
ory and time. We observed that the output of DLV is five times smaller than the output
of Gringo, which can justify the memory required by claspD up to 18 seconds. At that
point of execution, claspD doubles its memory consumption, which could be a side
effect of Clark’s completion. Figure 1(b) shows the result for an instance of Stable-
Marriage that neither WASP nor claspD solve in the allotted time. StableMarriage is a
problem in the P category and its encoding is unstratified. Also in this case we observe

64 M. Alviano et al.

that WASP is less memory demanding than claspD. Figure 1(c) depicts the results for
an instance of KnightTour, a problem in the NP category whose encoding is recursive.
In this case claspD requires half of the memory consumed by WASP, which is an in-
sight that our current implementation of the well-founded propagation is not optimal in
terms of memory consumption. Nonetheless, WASP is faster than claspD for the tested
instance. Finally, Figure 1(d) reports the result for PartnersUnitPolinomial, a problem
in the P category whose encoding is recursive. In this case claspD performs better than
WASP both in memory and size, which is partially due to DLV. In fact, even if DLV
and Gringo output programs of the same size for the tested instance, DLV terminated in
150 seconds, while Gringo just requires 50 seconds. Again, we note that WASP requires
more than two times the memory used by claspD in this unstratified encoding.

5 Related Work

WASP is inspired by several techniques that were originally introduced for SAT solv-
ing, like the DPLL backtracking search algorithm [11], clause learning [12], backjump-
ing [13], restarts [14], and conflict-driven heuristics [15] in the style of BerkMin [16].
Actually, some of the techniques adopted in WASP, including backjumping and look-
back heuristics, were first introduced for Constraint Satisfaction, and then successfully
applied to SAT and QBF solving. Some of these techniques were already adapted in
modern non-disjunctive ASP solvers like Smodelscc [25], clasp [4], Smodels [18], and
solvers supporting disjunction like Cmodels3 [5], and DLV [26].

More in detail, WASP differs from non-native solvers like Cmodels3 [5] that are
based on a rewriting into a propositional formula and an external SAT solver. Nonethe-
less, our learning strategy for stability check failures is similar to that of Cmodels3.
Concerning native solvers, WASP implements native support propagation rules and
model checking techniques similar to DLV [3]. However, we implement look-back
techniques borrowed from CP and SAT which are not present in DLV. In fact, DLV im-
plements a systematic backtracking without learning and adopts look-ahead heuristics.
We also mention an extension of DLV [26] that implements backjumping and look-
back heuristics, which however does not include clause learning, restarts, and does not
use an implication graph for determining the reasons of the conflicts. WASP uses an
implication graph which is similar to the one implemented in Smodelscc [25]. Nonethe-
less, there is an important difference between these two implication graphs. In fact, the
first one is guaranteed to be acyclic while the latter might be cyclic due to the well
founded propagation.

Our solver is more similar to clasp and its extension to disjunctive programs claspD.
In fact, source pointers, backjumping, learning, restarts, and look-back heuristics are
also used by clasp(D). There are nonetheless several differences with WASP. The first
difference is that clasp(D) use Clark’s completion for modeling support, while WASP
features a native implementation of support propagation (which caused major perfor-
mance differences in our experiments). Also, minimality is handled by learning no-
goods (called loop formulas) in clasp(D). It turns out that clasp(D) almost relies on unit
propagation and thus uses an implication graph that is more similar to SAT solvers.
Furthermore, there are differences concerning the restart policy, constraint deletion and

WASP: A Native ASP Solver Based on Constraint Learning 65

branching heuristics. WASP adopts as default a policy based on the sequence of thresh-
olds introduced in [22], whereas clasp(D) employs by default a different policy based
on geometric series. Concerning deletion of learned constraints, WASP adopts a cri-
terion inspired by MiniSAT. In clasp(D) a more involved criterion is adopted, where
constraints are cancelled when the size of the program grows up to a crescent threshold
depending on the number of restarts. Nonetheless, the program can grow in clasp(D)
up to three times the size of the original input, while WASP limits the growth of the
program to one third. Clasp(D) and WASP adopt a branching heuristics based on Berk-
Min [16] with differences in the intermediate steps of the selection procedure. WASP
extends the original BerkMin heuristics by using a look-ahead technique in place of the
“two” function calculating the number of binary clauses in the neighborhood of a literal
�. Moreover, WASP introduces an additional criterion based on supportedness of answer
sets for selecting among heuristically-equivalent candidate literals of the last undefined
learned constraint. Clasp(D) instead uses as intermediate step a variant of the MOMS
criterion. MOMS estimates the effect of the candidate literals in short clauses and is
convenient for clasp(D) because Clark’s completion produces many binary constraints.

6 Conclusion

In this paper we presented a new native ASP solver for propositional programs called
WASP. WASP builds upon a number of techniques originally introduced in the neigh-
boring fields of CP and SAT, which are extended and properly combined with tech-
niques specifically defined for solving disjunctive ASP programs. The performance of
WASP was assessed and compared with alternative implementations by running the
System Track of the 3rd ASP Competition. Our analysis shows that WASP is efficient
and can compete with the state-of-the-art solvers on this benchmark. The effects of a
native implementation of support propagations in a learning-based ASP solver is also
discussed, showing that this design choice pays off in terms of memory usage and time
performance in specific benchmark domains. The experiments also outline some spe-
cific weakness of the implementation (e.g., in Beyond NP domains), which will be
subject of future work. It is worth pointing out that the implementation of WASP is still
in an initial phase, yet the results obtained up to now are encouraging.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database
Systems 22, 364–418 (1997)

3. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The disjunctive dat-
alog system DLV. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2010.
LNCS, vol. 6702, pp. 282–301. Springer, Heidelberg (2011)

4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In: Twentieth International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 386–
392. Morgan Kaufmann Publishers (2007)

5. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight
Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp.
346–350. Springer, Heidelberg (2003)

66 M. Alviano et al.

6. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV applications for knowledge manage-
ment. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 591–597.
Springer, Heidelberg (2009)

7. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building
with answer set programming in the gioia-tauro seaport. Theory and Practice of Logic Pro-
gramming 12, 361–381 (2012)

8. Manna, M., Oro, E., Ruffolo, M., Alviano, M., Leone, N.: The HiLeX system for semantic
information extraction. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) TLDKS V. LNCS,
vol. 7100, pp. 91–125. Springer, Heidelberg (2012)

9. Ricca, F., Alviano, M., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone,
N.: A Logic-Based System for e-Tourism. Fundamenta Informaticae 105, 35–55 (2010)

10. Calimeri, F., et al.: The Third Answer Set Programming Competition: Preliminary Report of
the System Competition Track. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS,
vol. 6645, pp. 388–403. Springer, Heidelberg (2011)

11. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Com-
munications of the ACM 5, 394–397 (1962)

12. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient Conflict Driven Learning
in Boolean Satisfiability Solver. In: Proceedings of ICCAD 2001, pp. 279–285 (2001)

13. Gaschnig, J.: Performance measurement and analysis of certain search algorithms. PhD the-
sis, Carnegie Mellon University, Pittsburgh, PA, USA (1979) TR CMU-CS-79-124

14. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting Combinatorial Search Through Random-
ization. In: Proceedings of AAAI/IAAI 1998, pp. 431–437. AAAI Press (1998)

15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: Proceedings of DAC 2001, pp. 530–535. ACM (2001)

16. Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust Sat-Solver. In: Design, Automation
and Test in Europe Conference and Exposition, DATE 2002, Paris, France, pp. 142–149.
IEEE Computer Society (2002)

17. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In: Gel-
fond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 177–191.
Springer, Heidelberg (1999)

18. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligence 138, 181–234 (2002)

19. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. Artificial Intelligence 15, 177–212 (2003)

20. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

21. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs. An-
nals of Mathematics and Artificial Intelligence 12, 53–87 (1994)

22. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. Inf. Process.
Lett. 47, 173–180 (1993)

23. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. Discrete Appl. Math. 155,
1549–1561 (2007)

24. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg
(2006)

25. Ward, J., Schlipf, J.: Answer Set Programming with Clause Learning. In: Lifschitz, V.,
Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 302–313. Springer, Hei-
delberg (2003)

26. Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Program-
ming. AI Communications 19, 155–172 (2006)

The Complexity Boundary of Answer Set Programming
with Generalized Atoms under the FLP Semantics

Mario Alviano and Wolfgang Faber

Department of Mathematics
University of Calabria

87030 Rende (CS), Italy
{alviano,faber}@mat.unical.it

Abstract. In recent years, Answer Set Programming (ASP), logic programming
under the stable model or answer set semantics, has seen several extensions by
generalizing the notion of an atom in these programs: be it aggregate atoms, HEX
atoms, generalized quantifiers, or abstract constraints, the idea is to have more
complicated satisfaction patterns in the lattice of Herbrand interpretations than
traditional, simple atoms. In this paper we refer to any of these constructs as
generalized atoms. It is known that programs with generalized atoms that have
monotonic or antimonotonic satisfaction patterns do not increase complexity with
respect to programs with simple atoms (if satisfaction of the generalized atoms
can be decided in polynomial time) under most semantics. It is also known that
generalized atoms that are nonmonotonic (being neither monotonic nor antimono-
tonic) can, but need not, increase the complexity by one level in the polynomial
hierarchy if non-disjunctive programs under the FLP semantics are considered.
In this paper we provide the precise boundary of this complexity gap: programs
with convex generalized atom never increase complexity, while allowing a single
non-convex generalized atom (under reasonable conditions) always does. We also
discuss several implications of this result in practice.

1 Introduction

Various extensions of the basic Answer Set Programming language have been proposed
by allowing more general atoms in rule bodies, for example aggregate atoms, HEX
atoms, dl-atoms, generalized quantifiers, or abstract constraints. The FLP semantics de-
fined in [5] provides a semantics to all of these extensions, as it treats all body elements
in the same way (and it coincides with the traditional ASP semantics when no general-
ized atoms are present). The complexity analyses reported in [5] show that in programs
with single simple atom rule heads, the main complexity tasks do not increase when the
generalized atoms present are monotonic or antimonotonic (coNP -complete for cau-
tious reasoning), but there is an increase in complexity otherwise (ΠP

2 -complete for
cautious reasoning). These complexity results hold under the assumptions of dealing
with propositional programs and that determining the satisfaction of a generalized atom
in an interpretation can be done in polynomial time. Also throughout this paper, we will
work under these assumptions.

However, there are several examples of generalized atoms that are nonmonotonic
(neither monotonic nor antimonotonic), for which reasoning is still in coNP . Examples

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 67–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

68 M. Alviano and W. Faber

for such easy nonmonotonic generalized atoms are count aggregates with an equality
guard, cardinality constraints with upper and lower bounds, or weight constraints with
non-negative weights and upper and lower guards. All of these have the property of be-
ing convex, which can be thought of as a conjunction of monotonic and antimonotonic.
Convex generalized atoms have been studied in [7], and it is implicit in there, and in
general not hard to see that there is no increase in complexity in the presence of atoms
of this kind.

In this paper, we show that convex generalized atoms are indeed the only ones for
which cautious reasoning under the FLP semantics remains in coNP . Our main result
is that when a language allows any kind of non-convex generalized atom, ΠP

2 -hardness
of cautious reasoning can be established. We just require two basic properties of gener-
alized atoms: they should be closed under renaming of atoms, and only a subset of all
available (simple) atoms should be relevant for the satisfaction of a single generalized
atom (this subset is the domain of the generalized atom). All types of generalized atoms
that we are aware of meet these assumptions. Essentially, the first requirement means
that it is possible to rename the simple atoms in the representation of a generalized
atom while retaining its semantic properties, while the second means that modifying
truth values of simple atoms that are irrelevant to the general atom does not alter its
semantic behavior.

Our result has several implications that are discussed in more detail in section 4. The
main ones concern implementation and rewriting issues, but also simpler identification
of the complexity of ASP extensions. In the following, we will present a simple lan-
guage for our study in section 2; essentially, we view a rule body as a single “structure”
that takes the role of a generalized atom (sufficiently detailed and expressive, since
the FLP semantics treats rule bodies monolithically anyway and because convexity is
closed under conjunction). In section 3 we present our main theorem and its proof, and
in section 4 we wrap up.

2 Syntax and Semantics

Let U be a fixed, countable set of propositional atoms. An interpretation I is a subset of
U . A structure S on U is a mapping of interpretations into Boolean truth values. Each
structure S has an associated domain DS ⊂ U , indicating those atoms that are relevant
to the structure. A general rule r is of the following form:

H(r)← B(r) (1)

where H(r) is a propositional atom in U referred as the head of r, and B(r) is a struc-
ture on U called the body of r. No particular assumption is made on the syntax of B(r),
in the case of normal propositional logic programs these structures are conjunctions of
literals. We assume that structures are closed under propositional variants, that is, for
any structure S, also Sσ is a structure for any bijection σ : U → U , the associated
domain is DSσ = {σ(a) | a ∈ DS}.

A general program P is a set of general rules. By datalogS we refer to the class of
programs that may contain only the following rule bodies: structures corresponding to
conjunctions of atoms, S, or any of its variants Sσ.

The Complexity Boundary of Answer Set Programming 69

Let I ⊆ U be an interpretation. I is a model for a structure S, denoted I |= S, if S
maps I to true. Otherwise, if S maps I to false, I is not a model of S, denoted I �|= S.
We require that atoms outside the domain of S are irrelevant for modelhood, that is, for
any interpretation I and X ⊆ U \DS it holds that I |= S if and only if I ∪ X |= S.
Moreover, for any bijection σ : U → U , let Iσ = {σ(a) | a ∈ I}, and we require that
Iσ |= Sσ if and only if I |= S. I is a model of a rule r of the form (1), denoted I |= r,
if H(r) ∈ I whenever I |= B(r). I is a model of a program P , denoted I |= P , if
I |= r for every rule r ∈ P .

The FLP reduct P I of a program P with respect to I is defined as the set {r | r ∈
P ∧ I |= B(r)}. I is a stable model of P if I |= P I and for each J ⊂ I it holds that
J �|= P I . A propositional atom a is a cautious consequence of a program P , denoted
P |=c a, if a belongs to all stable models of P .

Structures can be characterized in terms of monotonicity as follows: Let S be a struc-
ture. S is monotonic if for all pairs X,Y of interpretations such that X ⊂ Y , X |= S
implies Y |= S. S is antimonotonic if for all pairs Y, Z of interpretations such that
Y ⊂ Z , Z |= S implies Y |= S. S is convex if for all triples X,Y, Z of interpretations
such that X ⊂ Y ⊂ Z , X |= S and Z |= S implies Y |= S.

3 Main Complexity Result

It is known that cautious reasoning over answer set programs with generalized atoms
under FLP semantics is ΠP

2 -complete in general. It is also known that the complexity
drops to coNP if structures in body rules are constrained to be convex. This appears
to be “folklore” knowledge and can be argued to follow from results in [7]. An easy
way to see membership in coNP is that all convex structures can be decomposed into a
conjunction of a monotonic and an antimonotonic structure, for which membership in
coNP has been shown in [5].

We will therefore focus on showing that convex structures define the precise bound-
ary between the first and the second level of the polynomial hierarchy. In fact, we prove
that any extension of datalog by at least one non-convex structure and its variants raises
the complexity of cautious reasoning to the second level of the polynomial hierarchy.

The hardness proof is similar to the reduction from 2QBF to disjunctive logic pro-
grams as presented in [2]. This reduction was adapted to nondisjunctive programs with
nonmonotonic aggregates in [5], and a similar adaption to weight constraints was pre-
sented independently in [6]. The fundamental tool in these adaptations in terms of struc-
tures is the availability of structures S1, S2 that allow for encoding “need to have either
atom xT or xF , or both of them, but the latter only upon forcing the truth of both atoms.”
S1, S2 have domains DS1 = DS2 = {xT , xF } and the following satisfaction patterns:

∅ |= S1 {xT } |= S1 {xF } �|= S1 {xT , xF } |= S1

∅ |= S2 {xT } �|= S2 {xF } |= S2 {xT , xF } |= S2

A program that meets the specification is P = {xT ← S1, x
F ← S2}. Indeed, ∅ is

not an answer set of P as P ∅ = P and ∅ �|= P (so also any extension of P can never
have an answer set containing neither xT nor xF). Both {xT } and {xF } are answer sets
of P , because the reducts cancel one appropriate rule. {xT , xF } is not an answer set of

70 M. Alviano and W. Faber

P because of minimality (P {xT ,xF } = P and {xT , xF } |= P , but also {xT } |= P and
{xF } |= P), but can become an answer set in an extension of P that forces the truth of
both xT and xF .

A crucial observation is that S1 and S2 are not just nonmonotonic, but also non-
convex. The main idea of our new proof is that any non-convex structure S that is
closed under propositional variants can take over the role of both S1 and S2. For such
an S, we will create appropriate variants SσT and SσF that use indexed copies of xT

and xF in order to obtain the required multitudes of elements:

{a1, . . . , ap} |= S {xT
1 , . . . , x

T
p } |= SσT {xF

1 , . . . , x
F
p } |= SσF

{a1, . . . , ap, . . . , aq} �|= S {xT
1 , . . . , x

T
q } �|= SσT {xF

1 , . . . , x
F
q } �|= SσF

{a1, . . . , ap, . . . , aq, . . . ar} |= S {xT
1 , . . . , x

T
r } |= SσT {xF

1 , . . . , x
F
r } |= SσF

We can then create a program P ′ acting like P by using xT
q , xF

q , SσF and SσT in
place of xT , xF , S1 and S2, respectively. In addition, we need some auxiliary rules
for the following purposes: to force xT

1 , . . . , x
T
p , x

F
1 , . . . , x

F
p to hold always; to require

the same truth value for xT
p+1, . . . , x

T
q and similar for xF

p+1, . . . , x
F
q ; to force truth of

xT
p+1, . . . , x

T
r whenever any of xT

q+1, . . . , x
T
r is true and to force truth of xF

p+1, . . . , x
F
r

whenever any of xF
q+1, . . . , x

F
r is true. The resulting program can then give rise to an-

swer sets containing either xT
q or xF

q , or both xT
q , x

F
q when they are forced in an exten-

sion of the program. In particular, the answer sets of P ′ are the following: {xT
1 , . . . , x

T
q ,

xF
1 , . . . , x

F
p }, corresponding to {xT }; and {xT

1 , . . . , x
T
p , x

F
1 , . . . , x

F
q }, corresponding to

{xF }. Model {xT
1 , . . . , x

T
r , x

F
1 , . . . , x

F
r } instead is not an answer set of P ′ because of

minimality, but it can be turned into an answer set by extending the program suitably.
In the proof, we need to make the assumption that all symbols xT

i and xF
j are outside

the domain DS , which is not problematic if U is sufficiently large.

Theorem 1. Let S be any non-convex structure on a set {a1, . . . , as}. Cautious rea-
soning over datalogS is ΠP

2 -hard.

Proof. Deciding validity of a QBF Ψ = ∀x1 · · · ∀xm∃y1 · · · ∃yn E, where E is in
3CNF, is a well-known ΠP

2 -hard problem. Formula Ψ is equivalent to ¬Ψ ′, where
Ψ ′ = ∃x1 · · · ∃xm∀y1 · · · ∀yn E′, and E′ is a 3DNF equivalent to ¬E and obtained
by applying De Morgan’s laws. To prove the claim we construct a datalogS program
PΨ such that PΨ |=c w (w a fresh atom) if and only if Ψ is valid, i.e., iff Ψ ′ is invalid.

Since S is a non-convex structure by assumption, there are interpretations A,B,C
such that A ⊂ B ⊂ C, A |= S and C |= S but B �|= S. Without loss of generality, let
A = {a1, . . . , ap}, B = {a1, . . . , aq} and C = {a1, . . . , ar}, for 0 ≤ p < q < r ≤ s.
Let E′ = (l1,1 ∧ l1,2 ∧ l1,3) ∨ · · · ∨ (lk,1 ∧ lk,2 ∧ lk,3), for some k ≥ 1.

Program PΨ ′ is reported in Fig. 1, where σT
i (aj) = xT

i,j and σF
i (aj) = xF

i,j for all
i = 1, . . . ,m and j = 1, . . . , q; θTi (aj) = yTi,j and θFi (aj) = yFi,j for all i = 1, . . . , n

and j = 1, . . . , q; μ(xi) = xT
i,r and μ(¬ xi) = xF

i,r for all i = 1, . . . ,m; μ(yi) = yTi,r
and μ(¬ yi) = yFi,r for all i = 1, . . . , n.

Rules (2)–(9) represent one copy of the program P ′ discussed earlier for each of
the xi and yj (i = 1, . . . ,m; j = 1, . . . , n), and so force each answer set of PΨ to
contain at least one of xT

i,q , xF
i,q , and yTj,q , yFj,q , respectively, encoding an assignment

The Complexity Boundary of Answer Set Programming 71

xT
i,j ← xF

i,j ← i ∈ {1, . . . ,m}, j ∈ {1, . . . , p} (2)
xT
i,j ← xT

i,k xF
i,j ← xF

i,k i ∈ {1, . . . ,m}, j, k ∈ {p+ 1, . . . , q} (3)
xT
i,j ← xT

i,k xF
i,j ← xF

i,k i ∈ {1, . . . ,m}, j ∈ {p + 1, . . . , r}, k ∈ {q + 1, . . . , r} (4)

xT
i,q ← SσF

i xF
i,q ← SσT

i i ∈ {1, . . . ,m} (5)
yT
i,j ← yF

i,j ← i ∈ {1, . . . , n}, j ∈ {1, . . . , p} (6)
yT
i,j ← yT

i,k yF
i,j ← yF

i,k i ∈ {1, . . . , n}, j, k ∈ {p+ 1, . . . , q} (7)
yT
i,j ← yT

i,k yF
i,j ← yF

i,k i ∈ {1, . . . , n}, j ∈ {p+ 1, . . . , r}, k ∈ {q + 1, . . . , r} (8)
yT
i,q ← SθFi yF

i,q ← SθTi i ∈ {1, . . . , n} (9)

yT
i,j ← sat yF

i,j ← sat i ∈ {1, . . . , n}, j ∈ {p+ 1, . . . , r} (10)
sat ← μ(li,1),μ(li,2), μ(li,3) i ∈ {1, . . . , k} (11)
aj ← j ∈ {1, . . . , p} (12)
aj ← ak j, k ∈ {p+ 1, . . . , q} (13)
aj ← sat j ∈ {p+ 1, . . . , q} (14)
w ← S (15)

Fig. 1. Program PΨ ′

of the propositional variables in Ψ ′. Rules (10) are used to simulate universality of
the y variables, as described later. Having an assignment, rules (11) derive sat if the
assignment satisfies some disjunct of E′ (and hence also E′ itself). Finally, rules (12)–
(15) derive w if sat is false.

We first show that Ψ not valid implies PΨ �|=c w. If Ψ is not valid, Ψ ′ is valid. Hence,
there is an assignment ν for x1, . . . , xm such that no extension to y1, . . . , yn satisfies
E, i.e., all these extensions satisfy E′. Consider the following model of PΨ :

M = {xT
i,j | ν(xi) = 1, i = 1, . . . ,m, j = p+ 1, . . . , q}

∪ {xF
i,j | ν(xi) = 0, i = 1, . . . ,m, j = p+ 1, . . . , q}

∪ {xT
i,j , x

F
i,j | i = 1, . . . ,m, j = 1, . . . , p}

∪ {yTi,j, yFi,j | i = 1, . . . , n, j = 1, . . . , r}
∪ {aj | j = 1, . . . , q} ∪ {sat}

We claim that M is a stable model of PΨ . Consider I ⊆ M such that I |= PM
Ψ . I

contains all x atoms in M due to rules (2)–(5). I also contains an assignment for the
y variables because of rules (6)–(9). Since any assignment for the ys satisfies at least a
disjunct of E′, from rules (11) we derive sat ∈ I . Hence, rules (10) force all y atoms
to belong to I , and thus I = M holds, which proves that M is a stable model of PΨ .

Now we show that PΨ �|=c w implies that Ψ is not valid. To this end, let M be a stable
model of PΨ such that w /∈M . Hence, by rule (15) we have that M �|= S. Since A ⊆M
because of rules (12), in order to have M �|= S, atoms in B have to belong to M . These
atoms can be supported only by rules (13)–(14), from which sat ∈ M follows. From
sat ∈ M and rules (10), we have yTi,q, y

F
i,q ∈ M for all i = 1, . . . , n. And M contains

either xT
i,q or xF

i,q for i = 1, . . . ,m because of rules (2)–(5). Suppose by contradiction
that Ψ is valid. Thus, for all assignments of x1, . . . , xm, there is an assignment for
y1, . . . , yn such that E is true, i.e., E′ is false. Let ν be an assignment satisfying E and
such that ν(xi) = 1 if xT

i,q ∈ M and ν(xi) = 0 if xF
i,q ∈ M for all i = 1, . . . ,m.

72 M. Alviano and W. Faber

Consider I = M \{sat}\{yTi,j, yFi,j | i = 1, . . . , n, j = q+1, . . . , r}\{yTi,j | ν(yi) =
0, i = 1, . . . , n, j = p+1, . . . , q}\{yFi,j | ν(yi) = 1, i = 1, . . . , n, j = p+1, . . . , q}.
Since ν satisfies E, ν does not satisfy E′, i.e., no disjunct of E′ is satisfied by ν. Hence,
all rules (11) are satisfied, and thus I |= PM

Ψ , contradicting the assumption that M is a
stable model of PΨ , and so Ψ is not valid. ��

4 Discussion

Our results have several consequences. First of all, from our proof it is easy to see that
convex generalized atoms also form the complexity boundary for deciding whether a
program has an answer set (in this case the boundary is between NP and ΣP

2) and for
checking whether an interpretation is an answer set of a program (from P to coNP).
It also means that for programs containing only convex structures, techniques as those
presented in [1] can be used for computing answer sets, while the presence of any
non-convex structure requires more complex techniques such as those presented in [4].
There are several examples for convex structures that are easy to identify syntactically:
count aggregates with equality guards, sum aggregates with positive summands and
equality guards, dl-atoms that do not involve∩− and rely on a tractable Description Logic
[3]. However many others are in general not convex, for example sum aggregates that
involve both positive and negative summands, times aggregates that involve the factor
0, average aggregates, dl-atoms with∩−, and so on. It is still possible to find special cases
of such structures that are convex, but that requires deeper analyses.

The results also immediately imply impossibility results for rewritability: unless the
polynomial hierarchy collapses to its first level, it is not possible to rewrite a program
with non-convex structures into one containing only convex structures (for example, a
program not containing any generalized atoms), unless disjunction or similar constructs
are allowed in rule heads.

The results obtained in this work apply only to the FLP semantics. Whether the
results carry over in any way to other semantics is unclear and left to future work.

References

1. Alviano, M., Calimeri, F., Faber, W., Leone, N., Perri, S.: Unfounded Sets and Well-Founded
Semantics of Answer Set Programs with Aggregates. JAIR 42, 487–527 (2011)

2. Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propo-
sitional Case. AMAI 15(3/4), 289–323 (1995)

3. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set pro-
gramming with description logics for the semantic web. Artif. Intell. 172(12-13), 1495–1539
(2008)

4. Faber, W.: Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates. In:
Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662,
pp. 40–52. Springer, Heidelberg (2005)

5. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. AI 175(1), 278–298 (2011), special Issue: John McCarthy’s Legacy

6. Ferraris, P.: Answer Sets for Propositional Theories. In: Baral, C., Greco, G., Leone, N., Ter-
racina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg
(2005)

7. Liu, L., Truszczyński, M.: Properties and applications of programs with monotone and convex
constraints. JAIR 27, 299–334 (2006)

ARVis: Visualizing Relations

between Answer Sets�

Thomas Ambroz, Günther Charwat, Andreas Jusits,
Johannes Peter Wallner, and Stefan Woltran

Vienna University of Technology, Institute of Information Systems, Austria

Abstract. Answer set programming (ASP) is nowadays one of the most
popular modeling languages in the areas of Knowledge Representation
and Artificial Intelligence. Hereby one represents the problem at hand
in such a way that each model of the ASP program corresponds to one
solution of the original problem. In recent years, several tools which
support the user in developing ASP applications have been introduced.
However, explicit treatment of one of the main aspects of ASP, multiple
solutions, has received less attention within these tools. In this work,
we present a novel system to visualize relations between answer sets of
a given program. The core idea of the system is that the user specifies
the concept of a relation by an ASP program itself. This yields a highly
flexible system that suggests potential applications beyond development
environments, e.g., applications in the field of abduction, which we will
discuss in a case study.

Keywords: Answer set programming, Systems, Abduction.

1 Introduction

Answer set programming [1] (ASP, for short) is a declarative problem solving
paradigm, rooted in logic programming and non-monotonic reasoning. The main
idea of ASP is to represent the problem at hand in such a way that the models of
the ASP program characterize the solutions of the original problem. Due to con-
tinuous refinements over the last decade state-of-the-art answer set solvers [7,12]
nowadays support a rich language and are capable of solving hard problems ef-
ficiently. This made ASP one of today’s most popular modeling languages in
Knowledge Representation and Reasoning (KRR).

As a next step to promote ASP, tools for user support are required, in par-
ticular systems featuring useful graphical user interfaces (GUIs). Recent devel-
opment in this direction includes the following systems: ASPViz [3] visualizes
the answer sets of a given program based on a second program that contains the
visualization information specified via predefined predicates. IDPDraw1 works

� Supported by the Austrian Science Fund (FWF) under grant P25607, and by the
Vienna University of Technology special fund “Innovative Projekte” (9006.09/008).

1 https://dtai.cs.kuleuven.be/krr/software/visualisation

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 73–78, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

https://dtai.cs.kuleuven.be/krr/software/visualisation

74 T. Ambroz et al.

in a similar fashion, but additionally supports explicit time point information in
order to represent the result in different states. Kara [11], part of the SeaLion
development environment [13] for ASP, supports, in contrast to ASPViz and
IDPDraw, modifiable visualizations such that the underlying answer sets can be
manipulated. ASPIDE [5] includes many tools for ASP development (e.g. auto-
completion, code-templates, debugging, profiling and more) as well as a visual
editor that allows to “draw” logic programs. The visualization aspects of these
tools focus on the representation of single answer sets.

To the best of our knowledge there does not exist a tool yet that is capable
of visualizing relations between answer sets, thus taking care of one of the main
features of ASP, the possibility to deliver multiple solutions. Visualizing the rela-
tions is of importance in many aspects. Relations can express a certain preference
criterion over the solutions. In some domains it is, for example, relevant to com-
pare (parts of) solutions w.r.t. to subset inclusion or cardinality. Furthermore,
it might be useful to visualize the results of problems that build upon a graph
structure. Regarding debugging of ASP programs, visualizing relations between
answer sets that are “close” to each other can help in finding problems in the
developed program, e.g., in case too many answer sets are computed.

In this work we present a new tool, ARVis which we believe appropriately
closes this gap. The main purpose of ARVis is to visualize answer sets and their
relations by means of a directed graph. Nodes represent answer sets of the pro-
gram at hand, whereas edges represent relations. The relations themselves are
specified in ASP via a second program, thereby giving the user high flexibility.
The graph representation allows the user to visually compare answer sets and
study their structure. Thereby, bugs, preferences or graph structures in gen-
eral can be recognized much easier than by analyzing the output of the ASP
solver directly. Obviously, ARVis is not primarily tailored to performance since
a potential exponential number of answer sets from the first program has to be
processed by the second program. But this is not only a drawback. It also allows
to implement problems via ASP which are too hard to be solved via a single
call. Logic-based abduction is such a problem domain, which we use as a case
study to illustrate the functioning of ARVis. The system is available at

http://www.dbai.tuwien.ac.at/research/project/arvis/

2 Answer Set Relationship Visualizer

In a nutshell, the “Answer Set Relationship Visualizer” ARVis is intended for
the visualization of answer sets and their relations by means of a directed graph.
Each node in the graph represents an answer set and a directed edge between
two nodes denotes a relation. In general, the answer sets of a first user-specified
ASP encoding are passed to a second user-specified encoding which defines the
relations between them. ARVis provides an interface for analysis of the resulting
graph(s), thereby easing the study of relations between answer sets. In particular
the structured and concise representation allows to quickly receive an impression
on the problem at hand.

http://www.dbai.tuwien.ac.at/research/project/arvis/

ARVis: Visualizing Relations between Answer Sets 75

ASP Solver
ASP Program 1

Instance
Answer Sets
(Nodes)

Flattening

Facts
(Flattened Nodes)

ASP Solver
Answer Sets
(Relations)

ASP Program 2
Relation Models

Generator

Relation Models

Answer Sets
(Nodes)

Graph Visualization

d e

cb

a

Fig. 1. ARVis: System Architecture

In Fig. 1 an overview of the concept underlying ARVis is given. A problem
specified in ASP Program 1 and an Instance are given as input to an ASP solver.
Each answer set computed by the solver is represented as a node in the graph
visualization. Furthermore, the answer sets are flattened, i.e., an id (unique per
answer set) is added to the atoms of each answer set. This set of facts, together
with ASP Program 2 (specifying the relations between the answer sets) are again
passed to an ASP solver. The answer sets of this call are given to the relations
models generator. It is responsible for either generating one graph per answer
set or combining all relations into a single graph model. Furthermore, it handles
the selection of edge predicates (e.g. for defining normal and highlighted edge
predicates of the resulting graph). Finally, the models are handed over to the
graph visualization for detailed analysis.

ARVis follows a 5-step approach which is implemented as a GUI wizard that
guides the user through the visualization process. Fig. 2 shows the steps from
a user perspective. Step (1) and (3) correspond to the input specification as
discussed in the previous paragraph. Additionally the user may filter for the
desired or necessary predicates contained in the answer sets of the first call (step
2) in order to reduce the amount of data that is flattened. Furthermore, binary
predicates that represent (highlighted) edges can be selected in step (4). Finally,
the graph is visualized based on the relationship models (step 5). The user may
arrange nodes manually or call the built-in algorithms that lay out the graph
based on the Kamada-Kawai (KK) layout [9] (minimizes the “tension” between
adjacent nodes) or the Fruchterman-Reingold (FR) layout [6] (aims at “nice”
graphs with uniform edge lengths). In case the relations models generator is
configured to return one graph model per answer set of the second program
the user can select the different graphs and (visually) compare them. Any node
in the graph can be selected in order to inspect the answer set underlying it.
Finally, the graph can be exported as image and all data (answer sets of the two
program calls) can be saved for further post-processing with other tools.

76 T. Ambroz et al.

Step 1
Specify:

ASP Program 1
Instance

Step 2
Specify:

Relevant Predicates

Step 3
Specify:

ASP Program 2

Step 4
Specify:

Edge Predicates

Step 5
Graph

User actions

Format graph Select model

Inspect AS Export graph/data

ASP Solver Flattening

ASP Solver

Models

Fig. 2. ARVis: User Perspective

ARVis is implemented in Java and internally uses the graph library Jung2. Our
tool is capable of handling hundreds of nodes and edges in each graph. ARVis
currently supports the ASP solvers DLV [12] and clingo [7], i.e. any user-specified
configuration that complies with the solver output format of clasp.

3 Case Study: Abduction

Abduction is a famous non-monotonic reasoning formalism in AI [4] to provide
possible explanations for observed behavior. Its propositional variant is very
intuitively defined and is composed of manifestations, which one wants to have
explained by a subset of a set of hypotheses. Such a set of hypotheses, augmented
with a background theory, is a solution to the given abduction problem if (1)
it entails the manifestations and (2) is consistent. All of the components of an
abduction instance are written as propositional logic formulae. Naturally there
may be different solutions to explain a particular manifestation. Such solutions
can be ordered according to a preference relation. For instance, we can prefer a
solution to another if the set of hypotheses of the first is a subset of the other.
Another variant is to relate solutions w.r.t. their cardinality, i.e. one explains the
manifestation using fewer hypotheses. One can refine these relations by adding
priorities to hypotheses, s.t. it is checked in descending order of priority if one so-
lution is preferred to another w.r.t. the corresponding subsets of the hypotheses.
Similarly, one can attach penalties to hypotheses to indicate, e.g., costs. Thus,
overall we considered five types of preferences, namely preference w.r.t. subset
and cardinality relations with or without priorization and lastly penalization.

Using ARVis we can now investigate preferences between multiple solutions
of an abduction instance by creating a graph where the nodes represent the
solutions and the directed edges the preference relation. For this we specify the
following two programs (available at the system page) for the ARVis workflow:

– ASP Program 1 : Derives all solutions of the given abduction instance.
– ASP Program 2 : Relates the solutions with the different preferences.

2 http://jung.sourceforge.net/

http://jung.sourceforge.net/

ARVis: Visualizing Relations between Answer Sets 77

Fig. 3. Example: Visualization of an Abduction Problem

The first program guesses a candidate solution from the set of hypotheses and
checks if it entails the manifestations and is consistent w.r.t. the background
theory. This can be achieved with the help of the saturation technique. The sec-
ond program then receives the solutions in form of ASP facts and derives the
preference relation. Each answer set of the second program represents a distinct
preference relation, where we can additionally derive for each type of prefer-
ence also the transitive closure. Note that for some of the preference relations
considered here it is not possible to compactly encode the problem of finding
minimal solutions w.r.t. to the preference relation within one ASP program, due
to the corresponding complexity results [4]. Here, our approach of utilizing two
ASP programs is not only beneficial for visualization purposes but also allows
to handle problems even beyond the second level of the polynomial hierarchy.

Let us outline a part of the second ASP program, which receives the answer
sets of the first program (they express solutions via the sol/1 predicate) in
flattened form as facts as(i, sol, s), where i stands for an answer set identifier.
Preference w.r.t. subset inclusion, for instance, is now achieved by simply com-
paring answer sets w.r.t. the sol/1 predicate. The edge relation is represented
by the prefer/2 predicate and is derived in this case as follows.

notcontained(X,Y)← as(Y, sol, S), not as(X, sol, S), as(X, sol,).
prefer(X,Y)← notcontained(X,Y), not notcontained(Y,X).

Fig. 3 shows an example visualization for the abduction problem. Here every
node represents a solution to the problem, i.e., a set of hypotheses explaining a
manifestation. The edges represent preferences between the solutions. Each of
the models on the left encode a different preference relation. On the right the
answer sets underlying the selected (i.e. highlighted) vertices are shown. The
contents of the answer sets are restricted to the filtered predicates. In this case
the selected nodes, labeled with “2” and “7”, represent subset-minimal solutions.

78 T. Ambroz et al.

4 Conclusion

In this paper we have presented ARVis, a tool for visualizing relations between
answer sets. Compared to general visualization tools and libraries for graphs our
system combines the computational power of ASP systems with visualization
aspects. Moreover, thanks to the declarative nature of the ASP encodings we
believe that ARVis is quite flexible and easy to use in many domains. Applica-
tion areas for ARVis are, for instance, KRR problems where relating multiple
solutions is a common task. We applied ARVis and exemplified its workflow in a
case study for abduction, where we visualize solutions as vertices and preferences
over them via edges. Further potential application domains are planning [8],
where one may analyze and compare plans with ARVis, and knowledge base re-
vision [10], where the selection of models according to a certain distance measure
can be visualized by ARVis. ARVis is however by no means restricted to treat
preference or distance relations. In [2] the system has been used for visualization
of conflicts between arguments in the domain of argumentation theory.

References

1. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

2. Charwat, G., Wallner, J.P., Woltran, S.: Utilizing ASP for generating and visual-
izing argumentation frameworks. In: ASPOCP 2012, pp. 51–65 (2012)

3. Cliffe, O., De Vos, M., Brain, M., Padget, J.: ASPVIZ: Declarative visualisation
and animation using answer set programming. In: Garcia de la Banda, M., Pontelli,
E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 724–728. Springer, Heidelberg (2008)

4. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1),
3–42 (1995)

5. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: Integrated development environment
for answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011.
LNCS, vol. 6645, pp. 317–330. Springer, Heidelberg (2011)

6. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw., Pract. Exper. 21(11), 1129–1164 (1991)

7. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 105–
124 (2011)

8. Hendler, J.A., Tate, A., Drummond, M.: AI planning: Systems and techniques. AI
Magazine 11(2), 61–77 (1990)

9. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(1), 7–15 (1989)

10. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artif. Intell. 52(3), 263–294 (1991)

11. Kloimüllner, C., Oetsch, J., Pührer, J., Tompits, H.: Kara: A system for visualising
and visual editing of interpretations for answer-set programs. In: WLP 2011 (2011)

12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

13. Oetsch, J., Pührer, J., Tompits, H.: The SeaLion has landed: An IDE for answer-set
programming – Preliminary report. In: WLP 2011 (2011)

Symbolic System Synthesis Using
Answer Set Programming

Benjamin Andres1, Martin Gebser1, Torsten Schaub1,
Christian Haubelt2, Felix Reimann3, and Michael Glaß3

1 Institute for Computer Science,
University of Potsdam, Germany

{bandres,gebser,torsten}@cs.uni-potsdam.de
2 Institute of Applied Microelectronics and Computer Engineering

University of Rostock, Germany
christian.haubelt@uni-rostock.de

3 Chair for Hardware/Software Co-Design
University of Erlangen-Nuremberg, Germany
{felix.reimann,glass}@cs.fau.de

Abstract. Recently, Boolean Satisfiability (SAT) solving has been proposed to
tackle the increasing complexity in high-level system design. Working well for
system specifications with a limited amount of routing options, they tend to fail
for densely connected computing platforms. This paper proposes an automated
system design approach employing Answer Set Programming (ASP). ASP pro-
vides a stringent semantics, allowing for an efficient representation of routing
options. An automotive case-study illustrates that the proposed ASP-based sys-
tem design approach is competitive for sparsely connected computing platforms,
while it outperforms SAT-based approaches for dense Networks-on-Chip by an
order of magnitude.

1 Introduction

Embedded computing systems surround us in our daily life. They are application-
specific computing systems embedded into a technical context. Examples of embedded
computing systems are automotive, train, and avionic control systems, smart phones,
medical devices, home and industrial automation systems, etc. In contrast to general
purpose computing systems, embedded computing systems are not only optimized for
performance; they additionally have to satisfy power, area, reliability, real-time con-
straints, to name just a few. As a consequence, the computing platform is adapted to the
given application. At the system-level, however, resulting embedded computing plat-
forms are still as complex as heterogeneous multi-processor systems, i.e., several dif-
ferent processing cores are interconnected and the memory subsystem is optimized for
the application as well. Finally, the application has to be mapped optimally onto the re-
sulting computing platform. In summary, embedded computing system design includes
many interdependent design decisions.

The increasing complexity of interdependent decisions in embedded computing sys-
tems design demands for compact design space representations and highly efficient

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 79–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

80 B. Andres et al.

automatic decision engines, resulting in automatic system synthesis approaches. Espe-
cially, formal methods have shown to be useful in past. (Pseudo-)Boolean Satisfiability
(PB/SAT; [2]) solving has been successfully applied in the past to such problems. In
particular, explicit modeling of routing decisions in PB formulas has recently enhanced
the range of applicability of PB/SAT solvers in synthesizing networked embedded sys-
tems [10].

PB/SAT-based approaches to system synthesis work well in the presence of system
specifications offering a limited amount of routing options. Such system specifications
can be found, e.g., in the automotive or bus-based Multi-Processor System-on-Chip
(MPSoC) domain. However, there is a trend towards densely connected networks also
in the embedded systems domain. In fact, future MPSoCs are expected to be composed
of several hundred processors connected by Networks-on-Chip (NoC) [4]. Hence, sys-
tem synthesis approaches will face vast design spaces for densely connected networks,
resulting in prohibitively long solving times when using PB/SAT-based approaches.

In this paper, we investigate system synthesis scenarios relying on reachability for
message routing. We propose a formal approach employing Answer Set Programming
(ASP; [1]), a solving paradigm stemming from the area of Knowledge Representation.
In contrast to PB/SAT, ASP provides a rich modeling language as well as a more strin-
gent semantics, which allows for succinct design space representations. In particular,
ASP supports expressing reachability directly in the modeling language. As a result,
much smaller problem descriptions lead to significant reductions in solving time for
densely connected networks.

In what follows, we assume some familiarity with ASP, its semantics as well as its
basic language constructs. A comprehensive treatment of ASP can be found in [1,7].
Our encodings are written in the input language of gringo 3 [6].

After surveying related work, Section 3 introduces the system synthesis setting stud-
ied in the sequel. Section 4 provides dedicated ASP formulations of system synthesis.
The experiments in Section 5 illustrate the effectiveness of our ASP-based approach.
Section 6 concludes the paper.

2 Related Work

Symbolic system synthesis approaches based on Integer Linear Programming (ILP) can
be found in the area of hardware/software partitioning (cf. [13]). Such approaches were
often limited to the classical bipartitioning problem, i.e., the target platform is composed
of a CPU and an FPGA. An extension towards multiple resources and a simple single-
hop communication mapping can be found in [3]. In the same work, SAT is reduced to
the problem of computing feasible allocations and bindings in platform-based system
synthesis approaches, thereby showing that system synthesis is NP-complete. In turn,
[8] shows how to reduce the system synthesis problem to SAT in polynomial time;
this allows for symbolic SAT-based system synthesis. An analogous approach based on
binary decision diagrams is presented in [12]. Since the space requirements of binary
decision diagrams may grow exponentially, it could only be applied to small systems.
In [11], a first approach to integrate linear constraint checking into SAT-based system
synthesis is reported, leading to a PB problem encoding. All aforementioned approaches

Symbolic System Synthesis Using Answer Set Programming 81

still use simple single-hop communication as underlying model. However, single-hop
communication models are no longer appropriate when designing complex multi-core
systems.

In [10], the authors show how to perform symbolic system synthesis including multi-
hop communication routing with PB solving techniques. This work is closely related to
ours, and we use it as a starting point for the work at hand. We show that the PB-based
approach published in [10] does not scale well for system specifications permitting
many routing options. By reformulating the PB representation in ASP and exploiting
semantic features in expressing reachability, symbolic system synthesis can be applied
to more complex system specifications based on densely connected communication net-
works.

The potential of ASP for system synthesis was already discovered in [9], where it
was shown to outperform an ILP-based approach by several orders of magnitude. In
contrast to our work, the system synthesis problem considered in [9] does not involve
multi-hop communication routing. Moreover, contrary to the genuine ASP encoding(s)
developed in Section 4, the one in [9] was derived from an ILP specification without
making use of any elaborate ASP features.

3 Symbolic System Synthesis

System synthesis comprises several design phases: the allocation of a computing plat-
form, the binding of tasks onto allocated resources, and the scheduling of tasks for re-
solving resource conflicts. Each phase, viz., allocation, binding, and scheduling, can be
performed either statically or dynamically. We here assume that allocation and binding
are accomplished statically, whereas scheduling is realized dynamically. Accordingly,
we concentrate on allocation and binding in the sequel.

In order to automate the synthesis of a system implementing an application, the ap-
plication is modeled by a task graph (T,ET). Its vertices T represent tasks and are
bipartitioned into process tasks P and communication tasks C, that is, T = P ∪ C and
P ∩ C = ∅. The directed edges ET ⊆ (P × C) ∪ (C × P) model data and control
dependencies between tasks, where every communication task has exactly one prede-
cessor and an arbitrary (positive) number of successors, thus assuming single-source
multicast communication.

An exemplary task graph is shown in the upper part of Figure 1. The leftmost task
ps reads data from a sensor and sends it to a master task pm via communication task
c1. The master task then schedules the workload and passes data via communication
task c2 on to the worker tasks p1 and p2. Both workers send their results back to the
master via communication tasks c3 and c4. Finally, the master uses the combined result
to control an actuator task pa via communication task c5.

An architecture template, representing all possible instances of a computing plat-
form, is modeled by a platform graph (R,ER). Its vertices R represent resources like
processors, buses, memories, etc., and the directed edges ER ⊆ R×R model commu-
nication connections between them. The lower part of Figure 1 shows a platform graph
containing six computational and two communication resources along with 18 connec-
tions. Any subgraph of a platform graph constitutes a computing platform instance.

82 B. Andres et al.

ps c1 pm

c2c3 c4

p1 p2

c5 pa

rcpu1rcpu2 rcpu3

rbus1 rbus2

rsen2rsen1 ract1

Fig. 1. A system model consisting of a task graph, a platform graph and mapping options

Given a task graph (T,ET) and a platform graph (R,ER), mapping options of tasks
t ∈ T are determined by Rt ⊆ R, providing resources on which t can be implemented.
Assuming that communication tasks can be routed via every resource, the mapping
options of process tasks are indicated by dashed arrows in Figure 1, while the (unre-
stricted) options of communication tasks are not displayed explicitly.

Following [10], the system synthesis problem can be defined as follows. For (T,ET)
and (R,ER) as above, select an allocation A ⊆ R of resources and a binding b : T →
2R such that the following conditions are fulfilled:

– b(t) ⊆ Rt for each task t ∈ T ,
– |b(p)| = 1 for each process task p ∈ P , and
– for each (p, c) ∈ (P × C) ∩ ET , there is an arborescence (b(c), E) with root
r ∈ b(p) such that E ⊆ ER and {r̂ | (c, p̂) ∈ ET , r̂ ∈ b(p̂)} ⊆ b(c).

These conditions require that each process task is mapped to exactly one resource and
that each communication task can be routed (acyclicly) from the sender to resources of
its targets.

Figure 2 shows a feasible implementation for the example in Figure 1, consisting of
the resource allocation A = {rsen1, rbus1, rbus2, rcpu1, rcpu2, rcpu3, ract1} along with
the following mapping b:

b(ps) = {rsen1} b(c1) = {rsen1, rbus1, rcpu1}
b(pm) = {rcpu1} b(c2) = {rcpu1, rbus1, rcpu2, rbus2, rcpu3}
b(p1) = {rcpu2} b(c3) = {rcpu2, rbus2, rcpu1}
b(p2) = {rcpu3} b(c4) = {rcpu3, rbus2, rcpu1}
b(pa) = {ract1} b(c5) = {rcpu1, rbus1, ract1}

For clarity communication task mappings are omitted in Figure 2. Instead, the routing
of c2 is shown. Leading from the resource rcpu1 of the master task pm over rbus1, rcpu2,
and rbus2 to rcpu3, thus visiting the resources rcpu2 and rcpu3 of the workers p1 and p2.

Symbolic System Synthesis Using Answer Set Programming 83

ps c1 pm

c2c3 c4

p1 p2

c5 pa

rcpu1rcpu2 rcpu3

rbus1 rbus2

rsen1 ract1

c2

Fig. 2. A feasible implementation of the example system model. Only the routing of c2 is shown.

PB/SAT-based approaches express system synthesis in terms of (Pseudo-)Boolean
formulas. In particular, the PB encoding in [10] relies on the following kinds of Boolean
variables:

– a variable r for each resource r ∈ R, indicating whether r is allocated (r = 1) or
not (r = 0),

– a variable tr for each task t ∈ T and each of its mapping options r ∈ Rt, indicating
whether t is bound onto r, and

– variables cr,i for each communication task c ∈ C, its routing options r ∈ Rc, and
i ∈ {0, . . . , n} for some integer n, indicating whether c is routed over r at step i.

The following constraints on such variables were used in [10]:
∑

r∈Rp
pr = 1, ∀p ∈ P (A)

∑
r∈Rc

cr,0 = 1, ∀c ∈ C (B)

pr − cr,0 = 0, ∀c ∈ C, p ∈ {p̂ | (p̂, c) ∈ ET }, r ∈ Rp ∩Rc (C)

cr − pr ≥ 0, ∀p ∈ P, c ∈ {ĉ | (ĉ, p) ∈ ET }, r ∈ Rp ∩Rc (D)
∑n

i=0 cr,i ≤ 1, ∀c ∈ C, r ∈ Rc (E)
∑n

i=0 cr,i − cr ≥ 0, ∀c ∈ C, r ∈ Rc (F)

cr − cr,i ≥ 0, ∀c ∈ C, r ∈ Rc, i ∈ {0, . . . , n} (G)

−cr,i +
∑

r̂∈Rc,(r̂,r)∈ER
cr̂,i−1 ≥ 0, (H)

∀c ∈ C, r ∈ Rc, i ∈ {1, . . . , n}
r− pr ≥ 0, ∀p ∈ P, r ∈ Rp (I)

r− cr ≥ 0, ∀c ∈ C, r ∈ Rc (J)

−r+
∑

p∈P,r∈Rp
pr +

∑
c∈C,r∈Rc

cr ≥ 0, ∀r ∈ R (K)

In words, (A) requires each process task to be mapped to exactly one resource. Jointly,
(B) and (C) imply that each communication task has exactly one root matching the re-
source of its sending task. In addition, (D) makes sure that the resources of all targets

84 B. Andres et al.

cpu

router

p1 p2c

Fig. 3. A possible mapping of two communicating processes to resources connected via a 4x4
mesh network

are among those of a communication task. For excluding cyclic routing, (E) asserts
that the step at which a resource is visited upon performing a communication task is
unique. By means of (F) and (G), the resources visited at particular steps (i.e., cr,i = 1
for some i ∈ {0, . . . , n}) are synchronized with the ones assigned (i.e., cr = 1) to a
communication task. The requirement that resources visited at successive steps must be
connected in the underlying platform graph is expressed by (H). Finally, (I), (J), and (K)
extract allocated resources r, indicated by r = 1, from process and communication
tasks such that pr = 1 or cr = 1, respectively.

As detailed in [10], a Boolean variable assignment satisfying (A)–(K) provides a
feasible implementation via resources r such that r = 1, where each process task p is
bound onto the resource r given by pr = 1 and communication tasks c are routed via
resources r according to steps i such that cr,i = 1.

The described approach to system synthesis works well for sparsely connected net-
works, inducing a limited amount of routing options. However, the representation of
routing options, governed by (H), scales proportionally to |ER| ∗ |R|, given that re-
sources may be pairwisely connected and each resource may be visited in the worst
case. As a consequence, for densely connected networks, the size required for a step-
based representation of routing options can be prohibitively large. For example, let us
consider possible routes from (the resource of) a sender p1 to p2 available in the 4x4
mesh network shown in Figure 3. The longest of these routes passes all 16 routers
and potentially visit any of them at each of the 15 intermediate steps. This yields
16∗15 = 240 instances of (H) per communication task to represent the message ex-
change between routers. On the other hand, for inductively verifying whether a message
reaches its target(s), it is sufficient to consider individual routing hops without relying
on an explicit order given by steps. The latter strategy scales linearly to |ER|, thus
avoiding a significant blow-up in space. As the semantics of ASP inherently supports
efficient representations of inductive concepts like reachability, the potential space sav-
ings motivate our desire to switch from the PB-based approach in [10] to using ASP
instead.

Symbolic System Synthesis Using Answer Set Programming 85

4 ASP-Based System Synthesis

As common in ASP, we represent the system synthesis problem by facts describing a
problem instance along with a generic encoding. To this end, we define the ASP instance
for a task graph (P ∪ C,ET) and a platform graph (R,ER) along with the underlying
mapping and routing options, (Rp)p∈P and (Rc)c∈C , as follows:

{pt(p). | p ∈ P} ∪
{send(p, c). | (p, c) ∈ ET , p ∈ P, c ∈ C} ∪
{read(p, c). | (c, p) ∈ ET , p ∈ P, c ∈ C} ∪
{pr(p, r). | p ∈ P, r ∈ Rp} ∪
{cr(c, r). | c ∈ C, r ∈ Rc} ∪

{edge(r, s). | (r, s) ∈ ER} ∪
{s(i). | i ∈ {1, . . . , n}}

(1)

While the first six sets capture primary constituents of a problem instance, the in-
troduction of atoms s(i) for 1 ≤ i ≤ n is needed to account for the PB formulation
in [10] in a faithful way.

Two alternative ASP encodings of system synthesis are shown in Figure 4(a) and 4(b).
Essentially, they reformulate the constraints (A)–(K) from Section 3 in the input lan-
guage of ASP to make sure that every answer set corresponds to a feasible system
implementation. To this end, the rule in Line 2 of each encoding specifies that every
processing task provided in an instance must be mapped to exactly one of its associated
options. Observe that the mapping of processing tasks p to resources r is represented
by atoms map(p, r) in an answer set. This provides the basis for further specifying com-
munication routings.

Despite of syntactic differences, the step-oriented encoding ASP(S) in Figure 4(a)
stays close to the original PB formulation of constraints, given in (A)–(K). In partic-
ular, it uses atoms reached(c, r, i) to express that some message of communication
task c is routed over resource r at step i. Note that the omission of lower and upper
bounds for the cardinality constraint in the rule form Line 8 means that there is no
restriction on the number of atoms constructed by applying the rule. The (trivially sat-
isfied) cardinality constraint is still important because, it allow us to successively con-
struct reached(c, r, i). Given such atoms, instantiations of the rule in Line 12 (where
“ ” stands for an unreused anonymous variable) further provide us with projections
reached(c, r). These are used in the integrity constraints in Line 14 and 16, excluding
cases where a communication task is routed over the same resource at more than one
step or does not reach some of its targets, respectively. Finally, projections via the rules
in Line 19 and 20 provide the collection of resources allocated in an admissible system
layout, similar to the (redundant) variables r in (I)–(K).

While the step-oriented encoding ASP(S) aims at being close to the constraints in
(A)–(K), the encoding in Figure 4(b), denoted by ASP(R), utilizes ASP’s “built-in”
support of recursion to implement routing without step counting. To still guarantee an
acyclic routing of communication tasks, the idea of ASP(R) is to (recursively) construct
non-branching routes from resources of communication targets back to the resource of
a sending task, where the construction stops. This recursive approach connects each en-
countered target resource to exactly one predecessor, where the only exception is due to

86 B. Andres et al.

1 % map each process task to a resource (A)
2 1 { map(P,R) : pr(P,R) } 1 :- pt(P).

4 % step zero of communication task (B,C)
5 reached(C,R,0) :- send(P,C), map(P,R), cr(C,R).
6 % forward steps of communication task (H)
7 { reached(C,S,I+1) : cr(C,S) : edge(R,S) }
8 :- reached(C,R,I), s(I+1).

10 % resources of communication task (F,G)
11 reached(C,R) :- reached(C,R,_).
12 % reach each resource at most once (E)
13 :- reached(C,R), 2 { reached(C,R,_) }.
14 % reach communication target resources (D)
15 :- read(P,C), map(P,R), not reached(C,R).

17 % allocated resources (I,J,K)
18 allocated(R) :- map(_,R).
19 allocated(R) :- reached(_,R).

(a) Step-oriented encoding ASP(S).

1 % map each process task to a resource (A)
2 1 { map(P,R) : pr(P,R) } 1 :- pt(P).

4 % root resource of communication task (B,C)
5 root(C,R) :- send(P,C), map(P,R).
6 % resources of communication task per target
7 sink(C,R,P) :- read(P,C), map(P,R), cr(C,R).
8 sink(C,R,P) :- sink(C,S,P), reached(C,R,S).
9 % reach communication root resource (D)

10 :- read(P,C), root(C,R), not sink(C,R,P).

12 % resources of communication task (F,G)
13 reached(C,R) :- sink(C,R,_).
14 % backward hops of communication task (E,H)
15 1 { reached(C,R,S) : cr(C,R) : edge(R,S) } 1
16 :- reached(C,S), not root(C,S).

18 % allocated resources (I,J,K)
19 allocated(R) :- map(_,R).
20 allocated(R) :- reached(_,R).

(b) Recursive encoding ASP(R).

Fig. 4. Two alternative ASP encodings of system synthesis

Symbolic System Synthesis Using Answer Set Programming 87

the sender of a communication task, whose resource, specified by an atom root(c, r),
is not connected back. Finally, the integrity constraint in Line 10 requires that each tar-
get of a communication task is located on a route starting at the sender’s resource. Note
that the target-driven routing approach implemented in ASP(R) intrinsically omits re-
dundant message hops (not leading to communication targets). The same strategy could
also be applied in step counting by modifying the constraints in (A)–(K) as well as our
previous encoding ASP(S) accordingly. In view of this, the varied encoding idea is not
the real achievement of ASP(R), while abolishing one problem dimension by disusing
explicit step counters is.

5 Experiments

For evaluating our approach, we conducted systematic experiments contrasting our two
ASP encodings, ASP(S) and ASP(R), in terms of design space representation size and
solving time. In addition, we compare our methods to the original (sophisticated) PB-
based synthesis tool from [10], which like ASP(S) uses steps to express routing. To
this end, we consider both a real-world example consisting of a sparsely connected
industrial system model as well as series of crafted mesh network system models of
varying sizes.

The real-world example models an automotive subsystem including four applica-
tions of different criticality and characteristic, amongst others a multimedia/infotain-
ment control and brake-by-wire. Overall, the applications involve 45 process tasks,
communicating via 41 messages. The target platform offers 15 Electronic Control Units
(ECUs), 9 sensors, and 5 actuators to execute the process tasks. For communication,
up to three field buses (CAN or FlexRay), connected by a central gateway, are avail-
able. In addition, sensors and actuators are connected to ECUs via LIN buses. The case
study, in particular when applying further design constraints, e.g., regarding bus load,
can be viewed as a complex specification that tends to max out common synthesis ap-
proaches solely based on (greedy) heuristics. However, the PB-based approach solves
this problem efficiently, particularly due to the communication topology including a
central gateway, resulting in a modest amount of routing options.

We ran the real-world example with the three approaches illustrated in Figure 5, all
of which start from a common Java class specifying a system model (like the one shown
in Figure 1). With the PB-based approach, the Java specification is directly converted
into a PB instance (in OPB format) by the PB generator used also in [10]. Unlike this,
with our two ASP-based approaches, the generation of facts describing a problem in-
stance merely requires a syntactic conversion from the Java specification to the format
in (1), from where the ASP grounder gringo (version 3.0.3) instantiates either of our
encodings, ASP(S) or ASP(R), wrt the generated facts. With all three approaches, the
generation phase results in standardized text formats, processable by the combined PB
and ASP solver clasp (version 2.0.3; [5]). Let us note that ASP instance generation,
including the conversion to facts and instantiation, runs quickly (only a few seconds on
the largest of our benchmarks); on the other hand, PB instance generation can take sig-
nificant time (up to five hours on the largest benchmarks we tried), which is because the
PB generator performs nontrivial simplifications and, in contrast to ASP grounders, is

88 B. Andres et al.

Fig. 5. Workflows of symbolic system synthesis approaches

not optimized towards low-level performance. After instance generation, accomplished
offline, we measured (sequential) runtimes of clasp on a Linux machine equipped with
3.4GHz Intel Xeon CPUs and 32GB RAM. The search strategies of clasp were config-
ured via command-line switches --heuristic=vsids and --save-progress,
which in preliminary experiments turned out to be helpful for solving both PB and ASP
instances. Then, the real-world example could be solved by clasp in less than a second
for all three instance kinds, PB, ASP(S), and ASP(R). As mentioned above, this can be
explained by the centralized communication topology in the example, so that routing
options are rather limited.

In order to compare the three approaches also on densely connected networks, we
generated series of synthesis problems wrt mesh network structures, scaling mesh size
and number of process tasks. In these problems, each task can be bound onto a number
of processors proportional to mesh size and communicates to one other process task;
task mapping options and communication targets were selected randomly. In order to
compensate for randomness in problem generation, we report averages over 16 distinct
instances per mesh size and task number. Also note that all generated instances are
satisfiable. In view of longer runtimes than before, we restricted single runs of clasp on
a PB, ASP(S), or ASP(R) instance to 300 seconds time. Noise effects are excluded by
taking the mean runtime over three (reproducible) runs of clasp per instance.

Figure 6 displays average numbers of constraints, as reported by clasp, and average
runtimes of clasp, with timeouts taken as 300 seconds, over mesh networks of quadratic
sizes (2x2, 3x3, . . .) and increasing task numbers (10, 20, . . .), both given along the x-
axes; standard deviations are shown as vertical bars through measurements. The average
numbers of constraints reported in the left chart provide an indication of problem repre-
sentation size incurred by PB, ASP(S), and ASP(R). We observe regular scalings here,
and ASP(S) is clearly the most space-consuming approach. In fact, the direct PB repre-
sentation saves about half of the constraints of ASP(S) by virtue of the PB generator’s
simplifications. However, for larger mesh sizes, the recursive formulation of reacha-
bility in ASP(R) yields much more succinct problem representations than ASP(S) and
PB, inducing almost one order of magnitude fewer constraints than the latter. Com-
pared to this, the observation that the PB-based approach requires fewer constraints for

Symbolic System Synthesis Using Answer Set Programming 89

�����

������

�������

������

������

	
	
�� �� �� ���

�
�
�� �� �� ���

�
�
�� �� �� ���

�� �� �� ���

��
��

��
��

��
�

��������

����������������

������
���� �

�!

�����

����

��

���

����

���
�� �� �� ���

	�	
�� �� �� ���

���
�� �� �� ���

�

�� �� �� ���

��
�
��

��
�

��
��
�

��

������

����������������

������
������

�!

Fig. 6. Average numbers of constraints and runtimes in seconds for mesh networks of varying
sizes and task numbers

the smallest instances (with average runtimes in split seconds) is negligible. The cor-
responding average runtimes in the right chart tightly correlate to representation sizes.
While ASP(S) can still cope with small instances, it is drastically worse than PB and
ASP(R) from mesh size 4x4 on, and it times out on all instances of size 5x5 with 50
or more tasks. However, as the average runtimes of PB and ASP(R) (the latter again by
about one order of magnitude smaller than the former) show, even the larger instances
are manageable by means of preprocessing (PB) or avoiding step counting (ASP(R)).

For investigating the further scaling behavior, we applied ASP(R) to larger meshes,
using fixed ratios between the number of tasks and available CPUs as shown in Figure 7.
(We here omit ASP(S) and PB in view of poor solving performance or long instance
generation time, respectively.) While 6x6 mesh networks could easily be solved within
seconds, we encountered first timeouts (6 out of 16) on instances of size 7x7 along with
245 process tasks (five per CPU). However, some instances (14 or 3, respectively, out of
16) of size 8x8 could still be solved within the time limit of 300 seconds when given one

90 B. Andres et al.

�����

����

��

���

����

��� ��� ��� ��� ��� ��� ���

	

��
�

��
��

��
��
��

��

��������

����	��	
������������

�����"�#�$�%�&
�����"��#�$�%�&
�����"��#�$�%�&

Fig. 7. Average runtimes in seconds for mesh networks of scaled up sizes

or three tasks per CPU, i.e., 64 or 192 tasks in total. Since the problem representation
size (cf. numbers of constraints) is linear in the input for ASP(R), the timeouts on
large instances are explained by increasing variance of solving performance in view of
randomness in problem generation. Regarding the robustness of solving, we conjecture
that it can be improved by including domain knowledge in ASP encodings, somewhat
similar to simplifications performed by the PB generator, yet specified declaratively by
rules rather than implemented by special-purpose procedural components.

6 Conclusion

We proposed a novel approach to system synthesis using ASP. While our naive step-
oriented ASP encoding cannot compete with the sophisticated PB/SAT-based approach
in [10], the succinct ASP formulation of reachability, as required in multi-hop rout-
ing, outperforms previous approaches when applied to densely connected (mesh) net-
works, providing vast routing options. Such performance gains are made possible by
considerably smaller design space representations and accordingly reduced search ef-
forts. Given that ASP solvers like clasp also support optimization, the presented ASP
approach could be extended to linear and, with some adaptions, even be utilized for
non-linear optimization, as previously performed in design space exploration via evo-
lutionary algorithms [11]. At user level, the declarative first-order modeling language
of ASP facilitates prototyping as well as adjustment of ASP solutions for new or var-
ied application scenarios, making it a worthwhile alternative to purely propositional
formalisms.

Acknowledgments. This work was partially funded by DFG grant SCHA 550/8-3 and
SCHA 550/9-1.

Symbolic System Synthesis Using Answer Set Programming 91

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

3. Blickle, T., Teich, J., Thiele, L.: System-level synthesis using Evolutionary Algorithms. J.
Design Automation for Embedded Systems 3(1), 23–58 (1998)

4. Borkar, S.: Thousand core chips: a technology perspective. In: Proc. of DAC 2007, pp. 746–
749 (2007)

5. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The Potsdam answer set solving collection. AI Communications 24(2), 105–124
(2011)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Pub-
lishers (2012)

8. Haubelt, C., Teich, J., Feldmann, R., Monien, B.: SAT-Based Techniques in System Design.
In: Proc. of DATE 2003, pp. 1168–1169 (2003)

9. Ishebabi, H., Mahr, P., Bobda, C., Gebser, M., Schaub, T.: Answer set vs integer linear pro-
gramming for automatic synthesis of multiprocessor systems from real-time parallel pro-
grams. Journal of Reconfigurable Computing, Article ID 863630 (2009)

10. Lukasiewycz, M., et al.: Combined System Synthesis and Communication Architecture Ex-
ploration for MPSoCs. In: Proc. of DATE 2009, pp. 472–477. IEEE Computer Society (2009)

11. Lukasiewycz, M., et al.: Efficient symbolic multi-objective design space exploration. In:
Proc. of ASP-DAC 2008, pp. 691–696 (2008)

12. Neema, S.: System Level Synthesis of Adaptive Computing Systems. PhD thesis, Vanderbilt
University, Nashville, Tennessee (May 2001)

13. Niemann, R., Marwedel, P.: An Algorithm for Hardware/Software Partitioning Using Mixed
Integer Linear Programming. Design Automation for Embedded Systems 2(2), 165–193
(1997)

Accurate Computation of Sensitizable Paths
Using Answer Set Programming�

Benjamin Andres1, Matthias Sauer2, Martin Gebser1, Tobias Schubert2,
Bernd Becker2, and Torsten Schaub1

1 University of Potsdam
August-Bebel-Strasse 89
14482 Potsdam, Germany

{bandres,gebser,torsten}@cs.uni-potsdam.de
2 Albert-Ludwigs-University Freiburg

Georges-Köhler-Allee 051
79110 Freiburg, Germany

{sauerm,schubert,becker}@informatik.uni-freiburg.de

Abstract. Precise knowledge of the longest sensitizable paths in a circuit is cru-
cial for various tasks in computer-aided design, including timing analysis, per-
formance optimization, delay testing, and speed binning. As delays in today’s
nanoscale technologies are increasingly affected by statistical parameter vari-
ations, there is significant interest in obtaining sets of paths that are within a
length range. For instance, such path sets can be used in the emerging areas of
Post-silicon validation and characterization and Adaptive Test. We present an
ASP-based method for computing well-defined sets of sensitizable paths within
a length range. Unlike previous approaches, the method is accurate and does not
rely on a priori relaxations. Experimental results demonstrate the applicability
and scalability of our method.

1 Introduction

Precise knowledge of the longest sensitizable paths in a circuit is crucial for various
tasks in computer-aided design, including timing analysis, performance optimization,
delay testing, and speed binning. However, the delays of individual gates in today’s
nanoscale technologies are increasingly affected by statistical parameter variations [1].
As a consequence, the longest paths in a circuit depend on the random distribution
of circuit features [12] and are thus subject to change in different circuit instances.
For this reason, there is significant interest in obtaining sets of paths that are within
a length range, in contrast to only the longest nominal path as in classical small delay
testing [13]. Among other applications, such path sets can be used in the emerging areas
of Post-silicon validation and characterization [8] and Adaptive Test [14].

Comprehensive test suites are generated and used in the circuit characterization or
yield-ramp-up phase. The inputs to be employed in actual volume manufacturing test
are chosen based on their observed effectiveness in detecting defects, In general the

� This work was published as a poster paper in [3].

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 92–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Accurate Computation of Sensitizable Paths Using Answer Set Programming 93

quality of a delay test tends to increase with the delay of the actually tested path. How-
ever, a pair t1 of test inputs may be more effective than a pair t2, even though t1 sensi-
tizes a shorter path than t2. Modeling inaccuracy is one of the reasons leading to such
mismatches. For instance, while the sum of gate delays along the path sensitized by t1
may be smaller than the sum for t2, the pair t1 could induce crosstalk or IR-drop, in-
creasing the signal propagation delay along the path. These effects are generally difficult
to model during timing analysis, and also affected by process variations. High-quality
Automatic Test Pattern Generation (ATPG) methods should be able to control the path
length and generate a large number of alternative test pairs that sensitize different paths
of predefined length, to be applicable for adaptive test.

While structural paths can be easily extracted from a circuit architecture, many struc-
tural paths are not sensitizable and therefore present false paths [7]. The usage of such
false paths leads to overly pessimistic and inaccurate results. Therefore, determination
of path sensitization is required for high-quality results, although it constitutes a chal-
lenging task that requires complex path propagation and sensitization rules.

In order to reduce the algorithmic overhead, various methods for the computation of
sensitizable paths make use of relaxations [11], making trade-offs between complex-
ity and accuracy. Methods based on the sensitization of structural paths [15,6] restrict
the number of paths they consider for accelerating the computation and to limit mem-
ory usage. Due to these restrictions, however, they may miss long paths. Recent meth-
ods [17,16] based on Boolean Satisfiability (SAT; [5]) have shown good performance
results but are limited in the precision of the encoded delay values. As their scaling
critically depends on delay resolution, such methods are hardly applicable when high
accuracy is required.

We present an exact method for obtaining longest sensitizable paths, using Answer
Set Programming (ASP; [4]) to encode the problem. ASP has become a popular ap-
proach to declarative problem solving in the field of Knowledge Representation and
Reasoning (KRR). Unlike SAT, ASP provides a rich modeling language as well as a
stringent semantics, which allows for succinct representations of encodings.

In what follows, we assume some familiarity with ASP, its semantics as well as its
basic language constructs. A comprehensive treatment of ASP can be found in [4,10].
Our encodings are written in the input language of gringo 3 [9].

The remainder of the paper is structured as follows. Section 2 provides our
ASP encoding of sensitizable paths. Experimental results are presented in Section 3.
Section 4 concludes the paper.

2 ASP Encoding

The general setting of longest sensitizable path calculation for a Boolean circuit and a
test gate g is displayed in Figure 1. Observe that gates in the input cone A1 influence g,
while those in the output cone A2 depend on g. Furthermore, the additional gates in A3

have an impact on gates in A2. Then, a (longest) sensitizable path including the test
gate g is determined by two truth assignments (modelling two time frames) to the pri-
mary input gates in A1 ∪ A3 such that the truth values of g and one output gate in A2

get flipped over the two time frames.

94 B. Andres et al.

������� ������

��
��

	�

�
��
� �

�

��
��

	�

�

��
 �
�
�

�	���

��

��

Fig. 1. Input/Output cones for longest sensitizable path calculation

As common in ASP, we represent the problem of calculating a longest sensitizable
path by facts describing a problem instance along with a generic encoding. First, a
Boolean circuit and gate delays are described by facts of the following form:

in(g). for each primary input gate g.
nand(g). for each non-input gate g.
out(g). for each output gate g.
test(g). for the test gate g.
wire(g1,g2,r,f). for a connection from g1 to g2.

Facts of the first three forms provide constants g standing for input, non-input, and out-
put gates, respectively, of a circuit, where we assume either in(g) or nand(g) to
hold for each gate g. A fact of the fourth form specifies the test gate g in the circuit.
Finally, the inputs g1 of a gate g2 are given by facts of the fifth form, where the inte-
gers r and f provide the delays of a rising or falling edge at g2, respectively. W.l.o.g.,
we here limit the attention to NAND non-input gates; further Boolean functions could
be handled by extending the encoding in Figure 2. We also assume that output gates do
not serve as inputs to other gates.

Our generic encoding of longest sensitizable paths is shown in Figure 2. Given that
gate delays are only required for path length maximization, but not for the actual path
calculation, the rule in Line 1 projects instances of wire(G1,G2,R,F) (given by
facts) to connected gates G1 and G2. Then, starting from the test gate in the circuit,
the rules in Line 3 to 6 inductively determine all gates of the input and output cone,
respectively (cf. A1 and A2 in Figure 1). The union of the input and output cone is
represented by the instances of inocone(G) derived by the rules in Line 8 and 9. In
Line 10 and 11, such instances are taken as starting points to inductively determine the
set of all relevant gates (A1 ∪ A2 ∪ A3 in Figure 1), given by the derived instances of
allcone(G). Note that the rules in Line 1–11 are deterministic, yielding a unique
least model relative to facts.

The calculation of a path through the test gate g is implemented by the rules in
Line 13 and 14. It starts in Line 13 by choosing exactly one output gate from the out-
put cone, represented by an instance of path(G). In Line 14, the path is continued
backwards including exactly one predecessor gate for every non-input gate already on

Accurate Computation of Sensitizable Paths Using Answer Set Programming 95

1 wire (G1 , G2) :− wire (G1 , G2 , R , F) .

3 i n p c o n e (G2) :− t e s t (G2) .
4 i n p c o n e (G1) :− i n p c o n e (G2) , wi re (G1 , G2) .
5 o u t c o n e (G1) :− t e s t (G1) .
6 o u t c o n e (G2) :− o u t c o n e (G1) , wi re (G1 , G2) .

8 i n o c o n e (G2) :− i n p c o n e (G2) .
9 i n o c o n e (G2) :− o u t c o n e (G2) .

10 a l l c o n e (G2) :− i n o c o n e (G2) .
11 a l l c o n e (G1) :− a l l c o n e (G2) , wi re (G1 , G2) .

13 1 { p a t h (G2) : o u t c o n e (G2) : o u t (G2) } 1 .
14 1 { p a t h (G1) : i n o c o n e (G1) : wi re (G1 , G2) } 1 :− p a t h (G2) , n o t i n (G2) .

16 { one (G1) } :− a l l c o n e (G1) , i n (G1) .
17 one (G2) :− a l l c o n e (G2) , nand (G2) , wi re (G1 , G2) , n o t one (G1) .
18 { two (G1) } :− a l l c o n e (G1) , i n (G1) .
19 two (G2) :− a l l c o n e (G2) , nand (G2) , wi re (G1 , G2) , n o t two (G1) .

21 f l i p p e d (G) :− i n o c o n e (G) , one (G) , n o t two (G) .
22 f l i p p e d (G) :− i n o c o n e (G) , two (G) , n o t one (G) .
23 :− p a t h (G) , n o t f l i p p e d (G) .

25 d e l a y (G2 ,M) :− p a t h (G1) , p a t h (G2) , wi re (G1 , G2) ,
26 M = #min [wi re (G1 , G2 , R , F) = R , wi re (G1 , G2 , R , F) = F] .
27 add (G2 , R−F) :− p a t h (G1) , p a t h (G2) , wi re (G1 , G2 , R , F) , R > F , two (G2) .
28 add (G2 , F−R) :− p a t h (G1) , p a t h (G2) , wi re (G1 , G2 , R , F) , R < F , one (G2) .

30 # maximize [d e l a y (G2 ,M) = M, add (G2 ,N) = N] .

Fig. 2. ASP encoding for calculating longest sensitizable paths in a circuit

the path. Since any path from gates in the input cone to those in the output cone must
include g, the restriction of path elements to their union (instances of inocone(G))
makes sure that path(g) holds. Also note that, although path calculation is logically
encoded backwards, ASP solving engines are not obliged to proceed in any such order
upon searching for answer sets.

The truth assignments needed for checking whether a path at hand is sensitizable are
generated by the rules in Line 16 to 19. To this end, for each relevant input gate g1
of the circuit (allcone(g1) and in(g1) hold), choice rules allow for guessing
two truth values. In fact, the atoms one(g1) and two(g1) express whether g1 is
true in the first and the second time frame, respectively. Given the values guessed for
input gates, NAND gates g2 are evaluated accordingly, and the outcomes are likewise
represented by one(g2) and two(g2). For gates g in the input or output cone, which
can possibly belong to a calculated path, the rules in Line 21 and 22 check whether their
truth values are sensitizable; if so, it is indicated by derivingflipped(g). Finally, the
integrity constraint in Line 23 stipulates that each gate on the calculated path must be
flipped, thus denying truth assignments whose transition does not propagate along the
whole path.

96 B. Andres et al.

Fig. 3. Workflow of the experiments

In order to calculate the longest sensitizable paths, the rule in Line 25–26 derives a
delay incurred whenever two gates g1 and g2 are connected along a path. This delay,
given by the minimum of r and f in wire(g1,g2,r,f) (specified by a fact), can
be obtained conveniently via gringo’s #min aggregate [9]. Furthermore, if r and f
diverge, an additional delay r−f is incurred in case that r>f and g2 is flipped to
true (Line 27), or f−r when g2 is flipped to false and r<f (Line 28). Note that
considering only one(g2) or two(g2), respectively, is sufficient here because the
integrity constraint in Line 23 checks that the truth value of g2 is indeed flipped. While
(additional) delays derived via the rules in Line 27 and 28 depend on a path and truth
assignments, the basic delay in Line 25–26 is obtained as soon as connected gates g1
and g2 are on a path. Since it does not consider truth assignments, the rule in Line 25–
26 relies on fewer vagrant prerequisites and is thus “easier to apply” upon searching for
answer sets. The main objective of calculating longest sensitizable paths is expressed by
the #maximize statement in Line 30, which instructs ASP solving engines to compute
answer sets such that the sum of associated gate delays is as large as possible.

3 Experimental Results

We evaluate our method on ISCAS85 and the combinatorial cores of ISCAS89 bench-
mark circuits, given as gate-level net lists. Path lengths are based on a pin-to-pin delay
model with support for different rising-falling delays. The individual delay values have
been derived from the Nangate 45nm Open Cell Library [2]. Below, we report sequen-
tial runtimes of the ASP solver clasp (version 2.0.4) on a Linux machine equipped with
3.07GHz Intel i7 CPUs and 16GB RAM.

Figure 3 shows the workflow for testing a circuit. At the start, the ASP instance de-
scribing the circuit and our generic encoding (cf. Figure 2) are grounded by gringo.
Different from the modeling in Section 2, here, we do not specify a test gate within
the ASP instance for g, but rather add a corresponding fact after grounding. To obtain
a grounding amenable to arbitrary test gates, instead of facts, we used choice rules for
a priori leaving a gate to test open. Given that sensitizable paths are computed in a
loop over all gates to be analyzed, the reuse of the same grounding saves some over-
head by not rerunning gringo for each test gate. However, note that such preprocessing
“optimization” has no influence on the runtimes of clasp and thus does not affect solv-
ing time measurements. The grounding augmented with a test gate g serves as input for

Accurate Computation of Sensitizable Paths Using Answer Set Programming 97

clasp, which in its first run performs optimization to identify a longest sensitizable path
with maximum delay dg . With dg at hand, we further proceed to computing all paths
with a delay equal or greater than r = 0.95 ∗ dg . This is accomplished by reinvoking
clasp with the command-line parameters --opt-all=r and --project to enumer-
ate all sensitizable paths within the range [r, dg]. While the first parameter informs clasp
about the quality threshold r for sensitizable paths to enumerate, the second is used to
omit repetitions of the same path with different truth assignments. As a consequence,
clasp enumerates distinct sensitizable paths, whose delay is at least r, without repeti-
tions. An overlaying python program reuses the information of dg and paths found in
previous iterations to decide whether subsequent gates need to be analysed and ensures
that clasp does not need to calculate the same paths for different gates.

Table 1 displays the runtimes of our method using a length-preserving mapping
(avoiding rounding errors) of real-valued gate delays to integers. “Circuit” and “Gates”
indicate a particular benchmark circuit along with its number of gates to be tested. The
next three columns give statistics for the search for longest sensitizable paths, display-
ing the average runtime per solver call, the sum of runtimes for all gates in seconds and
the number of solver calls needed to calculate dg for all gates. The three columns be-
low “Path set” provide statistics for the enumeration of distinct sensitizable paths with
length at least r. Here, we show the average runtime for enumerating 1000 paths, the
sum of runtimes for all gates, and finally the total number of different paths found. The
columns below “Total” summarize both computation phases of clasp, optimization and
enumeration. The first column present the total number clasp was called. Finally, the
last two columns provide the total solving time of clasp for both computation passes
and the total runtime needed for the benchmark. Please note, that the smallest resolu-
tion for measuring the solving time of clasp is 0.01s. Thus, solving time results for
circuits with less than 0.01s per gate may be inacurate up to the number of solver calls
times 0.01s.

As can be seen in Table 1, the scaling of our method is primarily dominated by the
number of gates in circuits. Over all circuits, the average runtime for processing one
test gate is rather low and often within fractions of a second. In addition, our method
allows for enumerating the complete set of sensitizable paths within a given range in a
single solver call, thus avoiding any expenses due to rerunning our solver. This allows
us to enumerate thousands of sensitizable paths and test pattern pairs sensitizing them
very efficiently. In fact, the overhead of path set computation compared to optimiza-
tion in the first phase is relatively small, even for complex circuits. E.g., for the c3540
circuit, 2.26 seconds are on average required for optimization, and 10.42 seconds on
average per 1000 enumerated paths. The rather large discrepancy between solving and
total runtime for large, computational easy circuits, e.g. cs13207, is explained by the
fact that clasp currently needs to read the grounded file from the disc for every call.
To overcome this bottleneck we hope to utilize iclingo, an incremental ASP system
implemented on top of gringo and clasp, in future work as soon as iclingo supports
#maximize statements. This would allow us to analyze all gates of a circuit within a
single solver call, thus drastically reducing the disc access. In addition, the iclingo could
reuse information gained from previously processed gates for solving successive gates,
efficiently.

98 B. Andres et al.

Table 1. Application using exact delay values

Circuit Gates Longest path (dg) Path set (95%) Total

Time in s Time in s Calls Time in s Time in s Paths Solver Solving Time Total time
per call per 1000 paths calls in s in s

c0017 6 < 0.01 < 0.01 3 < 0.01 < 0.01 8 7 < 0.01 0.05
c0095 27 < 0.01 < 0.01 7 < 0.01 < 0.01 90 22 < 0.01 0.23
c0432 160 0.05 2.46 53 0.24 4.67 19356 112 7.13 11.67
c0499 202 0.01 0.64 64 0.49 0.94 1928 160 1.58 5.54
c0880 383 < 0.01 0.33 82 0.21 0.77 3617 212 1.10 7.78
c1355 546 0.29 18.87 64 1.36 32.54 23936 160 51.41 63.60
c1908 880 0.25 34.37 137 2.00 64.33 32174 378 98.70 131.22
c2670 1269 0.01 5.30 440 1.41 8.05 5700 1023 13.35 101.79
c3540 1669 2.26 544.32 241 10.42 1125.60 107994 697 1669.92 1799.69
c5315 2307 0.05 25.43 485 2.02 39.65 19603 1206 65.08 266.83
c7552 3513 0.04 24.59 576 1.97 40.77 20745 1622 65.36 444.07
cs00027 10 < 0.01 < 0.01 3 < 0.01 < 0.01 11 7 < 0.01 0.03
cs00208 104 < 0.01 < 0.01 33 < 0.01 < 0.01 97 98 < 0.01 0.62
cs00298 119 < 0.01 < 0.01 48 < 0.01 < 0.01 137 126 < 0.01 1.09
cs00344 160 < 0.01 < 0.01 45 < 0.01 < 0.01 169 125 < 0.01 1.14
cs00349 161 < 0.01 < 0.01 47 < 0.01 < 0.01 170 127 < 0.01 1.93
cs00382 158 < 0.01 < 0.01 48 < 0.01 < 0.01 169 144 < 0.01 2.03
cs00386 159 < 0.01 < 0.01 30 < 0.01 < 0.01 124 142 < 0.01 2.08
cs00400 162 < 0.01 < 0.01 49 < 0.01 < 0.01 184 149 < 0.01 2.15
cs00420 218 < 0.01 0.01 66 < 0.01 < 0.01 305 205 0.01 3.19
cs00444 181 < 0.01 < 0.01 49 < 0.01 < 0.01 210 162 < 0.01 2.45
cs00510 211 < 0.01 < 0.01 58 < 0.01 < 0.01 230 161 < 0.01 2.06
cs00526 194 < 0.01 < 0.01 74 < 0.01 < 0.01 247 190 < 0.01 2.17
cs00641 379 < 0.01 0.01 68 0.06 0.02 326 236 0.03 5.74
cs00713 393 < 0.01 0.01 84 0.06 0.02 309 276 0.03 5.20
cs00820 289 < 0.01 0.02 71 < 0.01 < 0.01 361 273 0.02 5.36
cs00832 287 < 0.01 0.02 73 < 0.01 < 0.01 372 269 0.02 5.02
cs00838 446 < 0.01 0.05 140 0.18 0.15 853 444 0.20 12.31
cs00953 418 < 0.01 0.01 111 0.03 0.01 342 354 0.02 7.48
cs01196 530 < 0.01 0.39 145 0.62 0.34 550 417 0.73 14.90
cs01238 509 < 0.01 0.54 144 0.72 0.42 586 400 0.96 13.39
cs01423 657 < 0.01 1.51 184 0.87 1.94 2236 529 3.45 25.05
cs01488 653 < 0.01 0.02 155 0.02 0.01 517 676 0.03 22.10
cs01494 647 < 0.01 0.02 157 0.02 0.01 521 654 0.03 21.69
cs05378 2779 < 0.01 0.65 506 0.32 1.71 5334 1759 2.36 320.37
cs09234 5597 < 0.01 6.82 795 0.69 13.54 19703 3483 20.36 1091.54
cs13207 8027 0.02 27.15 1332 2.97 53.41 18011 5864 80.56 2833.38
cs15850 9786 0.66 973.07 1480 9.56 3172.45 331964 6322 4145.52 9825.64
cs35932 16353 < 0.01 0.06 5321 0.41 5.9 14321 13463 5.96 16437.94
cs38584 19407 < 0.01 33.23 7266 2.35 65.18 27722 20227 98.41 42700.61

Accurate Computation of Sensitizable Paths Using Answer Set Programming 99

��� ��� ��� ���� ����

��

���

����

����

����

����

	���

	���

���

��

��

���

���

���

���

	��

	��

��

������������ ��������������� ������������

��������	
� �����

Fig. 4. Comparison with PHAETON [17] using ISCAS85 circuits

In order to demonstrate the scaling of our approach wrt delay accuracy, we also used
different mappings of real-valued delays to integers, and corresponding runtime results
for the ISCAS85 benchmark set as shown in Table 2. In addition to the exact mode
used in the previous experiment, we employed a rounding method to five delay values,
shown in the columns labeled with “5”. Likewise, we applied rounding to 1000 delay
values. As before, we report average runtimes per call in seconds for the two phases of
optimizing sensitizable path length and of performing enumeration. Considering the re-
sults, we observe that runtimes of clasp are almost uninfluenced by the precision of gate
delays. This is explained by the fact that weights used in #minimize or #maximize

statements do influence the space of answer sets wrt to which optimization and enumer-
ation are applied. In the ISCAS89 benchmark set the solving time per call was almost
universally less than 0.01s.

Table 2. Delay accuracy comparison

Circuit Time (dg) per call Time (95%) per call

5 1000 exact 5 1000 exact

c0017 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
c0095 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
c0432 0.04 0.05 0.05 0.07 0.08 0.08
c0499 0.01 0.01 0.01 0.01 0.01 0.01
c0880 < 0.01 0.01 < 0.01 0.01 0.01 0.01
c1355 0.13 0.22 0.29 0.15 0.21 0.34
c1908 0.20 0.31 0.25 0.20 0.47 0.27
c2670 0.01 0.01 0.01 0.01 0.02 0.01
c3540 2.24 2.55 2.26 2.50 2.63 2.47
c5315 0.04 0.06 0.05 0.04 0.08 0.05
c7552 0.04 0.05 0.04 0.04 0.07 0.04

100 B. Andres et al.

We compared our method with an SAT-based approach called “PHAETON“ pro-
posed in [17]. The results are shown in Figure 4. The Figure shows the runtime needed
by PHAETON to compute 1000 paths for ISCAS85 benchmark circuits with differ-
ent levels of accuracy indicated by the number of delay steps k. In order to compare
the results of the proposed method with PHAETON, the runtime is given as percent
on the primary x-axis, with 100% being our method. The secondary x-axis gives the
discretization error of PHAETON. As can be seen, for low accuracy levels which re-
sult in an average discretization error of around 5%, PHAETON scales better than our
optimal approach. However, for increased accuracy levels, the proposed method out-
performs PHAETON and is therefore better suited for precise computation of longest
sensitizable paths.

4 Conclusions

We presented a method for the accurate computation of sensitizable paths based on a
flexible and compact encoding in ASP. Unlike previous methods, our approach does not
rely on a priori relaxations and is therefore exact. We demonstrated the applicability
and scalability of our method by extensive experiments on ISCAS85 and ISCAS89
benchmark circuits.

Future work includes further efforts to optimize the ASP encoding by incorporating
additional rules, with the goal of reducing the search space and helping clasp to discard
unsatisfactory sensitizable paths faster. Another way to improve runtime is to specialize
clasp’s search strategy to the problem of calculating (longest) sensitizable paths.

Acknowledgments. Parts of this work are supported by the German Research Founda-
tion under grant GRK 1103, SCHA 550/8-3 and SCHA 550/9-1.

References

1. International Technology Roadmap For Semiconductors, http://www.itrs.net
2. Nangate 45nm open cell library, http://www.nangate.com
3. Andres, B., Sauer, M., Gebser, M., Schubert, T., Becker, B., Schaub, T.: Accurate computa-

tion of longest sensitizable paths using answer set programming. In: Drechsler, R., Fey, G.
(eds.) Sechste GMM/GI/ITG-Fachtagung für Zuverlässigkeit und Entwurf, ZuE 2012 (2012)

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

6. Chung, J., Xiong, J., Zolotov, V., Abraham, J.: Testability driven statistical path selection.
In: 2011 48th ACM/EDAC/IEEE Design Automation Conference, DAC, pp. 417–422 (June
2011)

7. Coudert, O.: An efficient algorithm to verify generalized false paths. In: 2010 47th
ACM/IEEE Design Automation Conference, DAC, pp. 188–193 (June 2010)

8. Das, P., Gupta, S.K.: On generating vectors for accurate post-silicon delay characterization.
In: 2011 20th Asian Test Symposium, ATS, pp. 251–260 (November 2011)

http://www.itrs.net
http://www.nangate.com

Accurate Computation of Sensitizable Paths Using Answer Set Programming 101

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo,
http://potassco.sourceforge.net

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Pub-
lishers (2012)

11. Jiang, J., Sauer, M., Czutro, A., Becker, B., Polian, I.: On the optimality of k longest path
generation algorithm under memory constraints. In: Design, Automation and Test in Europe,
DATE (2012)

12. Killpack, K., Kashyap, C., Chiprout, E.: Silicon speedpath measurement and feedback into
eda flows. In: 44th ACM/IEEE Design Automation Conference, DAC 2007, pp. 390–395
(June 2007)

13. Kumar, M.M.V., Tragoudas, S.: High-quality transition fault ATPG for small delay defects.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 26(5),
983–989 (2007)

14. Maxwell, P.: Adaptive test directions. In: 2010 15th IEEE European Test Symposium, ETS,
pp. 12–16 (May 2010)

15. Qiu, W., Walker, D.M.H.: An efficient algorithm for finding the k longest testable paths
through each gate in a combinational circuit. In: Proceedings of the International Test Con-
ference, ITC 2003, September 30-October 2, vol. 1, pp. 592–601 (2003)

16. Sauer, M., Czutro, A., Schubert, T., Hillebrecht, S., Polian, I., Becker, B.: SAT-based analysis
of sensitisable paths. In: 2011 IEEE 14th International Symposium on Design and Diagnos-
tics of Electronic Circuits Systems, DDECS, pp. 93–98 (April 2011)

17. Sauer, M., Jiang, J., Czutro, A., Polian, I., Becker, B.: Efficient SAT-based search for longest
sensitisable paths. In: 2011 20th Asian Test Symposium, ATS, pp. 108–113 (November 2011)

http://potassco.sourceforge.net

HEX Semantics via Approximation Fixpoint Theory�

Christian Antić, Thomas Eiter, and Michael Fink

Institute of Information Systems, Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria

{antic,eiter,fink}@kr.tuwien.ac.at

Abstract. Approximation Fixpoint Theory (AFT) is an algebraic framework for
studying fixpoints of possibly nonmonotone lattice operators, and thus extends
the fixpoint theory of Tarski and Knaster. In this paper, we uniformly define
2-, and 3-valued (ultimate) answer-set semantics, and well-founded semantics
of disjunction-free HEX programs by applying AFT. In the case of disjunctive
HEX programs, AFT is not directly applicable. However, we provide a defini-
tion of 2-valued (ultimate) answer-set semantics based on non-deterministic ap-
proximations and show that answer sets are minimal, supported, and derivable in
terms of bottom-up computations. Finally, we extensively compare our semantics
to closely related semantics, including constructive dl-program semantics. Since
HEX programs are a generic formalism, our results are applicable to a wide range
of formalisms.

1 Introduction

HEX programs [10] enrich disjunctive logic programs under the answer-set semantics
[12] (ASP programs) by external atoms for software interoperability. As the latter can
represent arbitrary computable Boolean functions, HEX programs constitute a powerful
extension of ordinary logic programs that has been exploited in a range of applications.1

Furthermore, they are closely related to other extensions of ASP programs, such as dl-
programs (considered below), modular logic programs, or multi-context systems with
ASP components (see [8]). The semantics of HEX programs has been defined in terms
of FLP-answer sets, which adhere to minimal models or, even more restricting, to mod-
els free of unfoundedness. However, FLP-answer sets of HEX programs may permit
circular justifications (cf. [18]), and concepts such as well-founded semantics (which is
based on unfounded sets) [21] may be cumbersome to define.

Approximation Fixpoint Theory (AFT) [5,7] is an abstract algebraic framework for
studying fixpoints of (monotone or nonmonotone) lattice operators in terms of (mono-
tone) approximations. In this sense, AFT extends the well-known Tarski-Knaster fix-
point theory to arbitrary lattice operators, with applications in logic programming and
non-monotonic reasoning [5,6,7,4,16]; in particular, the major semantics of normal
logic programs [5] and of default and autoepistemic logic [6] can be elegantly char-
acterized within the framework of AFT; whole families of 2- and 3-valued semantics

� This work was supported by the Austrian Science Fund (FWF) grant P24090.
1 http://www.kr.tuwien.ac.at/research/systems/dlvhex/
applications.html.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 102–115, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.kr.tuwien.ac.at/research/systems/dlvhex/applications.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/applications.html

HEX Semantics via Approximation Fixpoint Theory 103

can be obtained, where the underlying fixpoint iteration incorporates a notion of found-
edness.

This suggests to use AFT for giving semantics to HEX programs targeted for found-
edness, by defining suitable operators in such a way that existing semantics for HEX

programs can be reconstructed or refined, in the sense that a subset of the respective an-
swer sets are selected (sound “approximation”). The benefit is twofold: by coinciding
semantics, we get operable fixpoint constructions, and by refined semantics, we obtain
a sound approximation that is constructive. Furthermore, related semantics emanate in
a systematic fashion rather than adhoc, and their relationships are understood at an ab-
stract level and need not be established on an individual basis. Finally, semantics of
related formalisms like those mentioned above might be defined in a similar way.

Motivated by this, we consider 2- and 3-valued semantics of HEX programs (the
latter has not been considered so far), and provide respective notions of answer sets
using AFT. In this way, we reobtain and refine existing semantics of HEX programs
and dl-programs. We also consider disjunctive HEX programs (for which AFT is not
directly applicable) and define 2-valued answer semantics following a method in [15].

The main contributions of this paper can be summarized as follows:

(1) We define the full class of 3-valued semantics [12,17,21] of normal (i.e.,
disjunction-free) HEX programs [10] in a uniform way by applying the AFT frame-
work [5,7] (cf. Section 3). In particular, this class contains 2-, and 3-valued answer-set
semantics [12,17], and well-founded semantics [21]. Moreover, we define ultimate ver-
sions which are the most precise approximation semantics with respect to AFT [7].
(2) We exhaustively compare our semantics with the FLP semantics in [10]. They
coincide on monotone normal HEX programs, but diverge for arbitrary normal HEX

programs: due to constructiveness, each 2-valued AFT answer set is an FLP-answer
set but not vice versa (cf. Theorem 2). Also, each 2-valued answer set is well-supported
[18] which is key to characterize relevant models (cf. Section 5), and thus free of circular
justifications. Moreover, our 2-valued and Shen’s strongly well-supported answer-set
semantics coincide [18] (cf. Theorem 8). However, our AFT approach is more general.
(3) Combining ideas from AFT, logic programs with aggregates [15], and disjunctive
logic programming [13], we introduce 2-valued (ultimate) answer sets for disjunctive
HEX programs along the lines of [15]. To this end, we translate some of the concepts
of AFT to non-deterministic operators and use the notion of computation [14] to iterate
them bottom up; we show that all (ultimate) answer sets are derivable by computations.
Furthermore, (ultimate) answer sets are supported models and each 2-valued answer set
is an FLP-answer set but not vice vera.
(4) We exploit the results for description logic (dl-)programs [9], which can be viewed
as special HEX programs whose external atoms amount to so-called dl-atoms repre-
senting queries to a description logic ontology. Initially, a strong and weak answer set
semantics of dl-programs was defined and later a well-founded semantics for monotone
dl-programs [9]; our results generalize it a fortiori to arbitrary dl-programs. It turns out
that for monotone dl-programs, the semantics coincide for the Fitting approximation
ΦHEX
P ; however, for general dl-programs, the answer set semantics diverges.

The results of this paper provide further evidence that AFT is a valuable tool to define
and study semantics of LP extensions, with well-understood and desired properties.

104 C. Antić, T. Eiter, and M. Fink

For space reason, proofs are omitted; they are available in [1], which also provides a
more extensive discussion and contains additional results.

2 Preliminaries

2.1 HEX Programs

In this section, we recall HEX programs [10], where we restrict ourselves without loss
of generality to the ground (variable-free) case.

Syntax. Let Σ and Σ# be ranked alphabets of symbols and external symbols, respec-
tively. Elements from Σ# are superscripted with # (f#, g#, h# etc.). 2

In contrast to ordinary logic programs, HEX programs may contain besides (ordi-
nary) atoms of the form (p, c1, . . . , cn) ∈ Σn+1, n ≥ 0, written in familiar form
p(c1, . . . , cn), also so called external atoms. Formally, an ((m,n)-ary) external atom has
the form f# [i] (o) where f# ∈ Σ#, i = (i1 . . . im) ∈ Σm (=input), m ≥ 0, and
o = (o1 . . . on) ∈ Σn (=output), n ≥ 0. We often omit the arguments i and o from
notation and simply write f#. A HEX-atom is an atom or an external atom. A rule has
the form

a1 ∨ . . . ∨ ak ← b1, . . . , b�,∼ b�+1, . . . ,∼ bm, k ≥ 0,m ≥ � ≥ 0, (1)

where a1, . . . , ak are atoms and b1, . . . , bm are HEX-atoms. It will be convenient to
define, for a rule r, H(r) = a1 ∨ . . .∨ ak (head), B+(r) = {b1, . . . , b�}, B∼(r) = {∼
b�+1, . . . ,∼ bm}, and B(r) = B+(r) ∪B∼(r) (body). With a slight abuse of notation,
we will treat H(r) as the set {a1, . . . , ak}, i.e., we write, for instance, a ∈ H(r),
H(r)− {a} and so on. Finally, a HEX program P is a finite set of rules of form (1).

FLP Semantics. We denote the set of all atoms (resp., external atoms) occurring in
P by AtP (resp., At#P). Define the Herbrand base of P by HBP = AtP ∪ At#P .
A (2-valued) interpretation I of P is any subset of AtP ; for any p ∈ Σ, we denote
by pI = {c : p(c) ∈ I} its extension in I . The set of all interpretations of P is
IP = P(AtP). We associate with every f# ∈ Σ# a computable interpretation function
f : IP ×Σm+n

P → {t, f}.2
We define the entailment relation as follows: (i) For an atom a, I |= a if a ∈ I ,

(ii) for an external atom f# [i] (o), I |= f# [i] (o) if f (I, i,o) = t, (iii) for a rule r,
I |= B(r) if I |= b for every b ∈ B+(r) and I �|= b′ for every ∼ b′ ∈ B∼(r), (iv)
I |= r if whenever I |= B(r) then I |= a for some a ∈ H(r), and (v) I |= P if I |= r
for each r ∈ P , and in this case we say that I is a model of P .

Define the FLP-reduct of P relative to I [11] by fP I = {r ∈ P : I |= B(r)} . We
say that I is an FLP-answer set [10] of P if I is a minimal model of fP I .

Example 1. Let P =
{
q(a); p(a)← p⊆#q, q(a)

}
, where p⊆#q is infix notation for

⊆#[p, q], and let I = {p(a), q(a)}. We interpret ⊆# as set inclusion and define ⊆
(I, p, q) = t if pI ⊆ qI where pI = qI = {a}. Since fP I = P and I is a minimal
model of P , I is an FLP-answer set of P .

2 [10] uses #g and f#g in place of g# and g, respectively, and calls symbols constants.

HEX Semantics via Approximation Fixpoint Theory 105

2.2 Approximation Fixpoint Theory

In this section, we briefly summarize essential notions and results given in [5,7].
In the sequel, we let (L,≤) denote a complete lattice. We call every (x1, x2) ∈ L2

fulfilling x1 ≤ x2 consistent and denote by Lc the set of all such pairs.
Define the precision ordering on Lc by (x1, x2) ≤p (y1, y2) if x1 ≤ y1 and y2 ≤ x2,

i.e. intuitively, (y1, y2) is a “tighter” interval inside (x1, x2). We identify every x ∈ L
with (x, x) ∈ Lc and call such pairs exact; note that they are the maximal elements
w.r.t. ≤p. For z ∈ L and (x1, x2) ∈ Lc, we thus have (x1, x2) ≤p z iff x1 ≤ z ≤ x2,
and call (x1, x2) an approximation of z. As distinct exact pairs have no upper bound,
(Lc,≤p) is not a lattice but a chain-complete poset.

An operator on L is any function O : L → L; it is monotone, if for every x, y ∈ L
such that x ≤ y, O(x) ≤ O(y). An element x ∈ L is a pre-fixpoint of O, if O(x) ≤ x,
and a fixpoint of O, if O(x) = x. If existent, we denote the least fixpoint of O by lfp(O).

We now define approximations of O which will play a central role throughout the
rest of the paper. We say that an operatorA : Lc → Lc is an approximation of O, if (i)
A(x, x) = O(x) for each x ∈ L, and (ii)A is monotone with respect to ≤p. Intuitively,
A is a monotone extension of O to Lc. Clearly, A and O have the same fixpoints in L.
Moreover,A has a least fixpoint k(A), called the A-Kripke-Kleene fixpoint.

For every x, y ∈ L, define the interval between x and y by [x, y] = {z ∈ L : x ≤
z ≤ y}. Given an element (x1, x2) ∈ Lc, we define the projection of (x1, x2) to the
i-th coordinate, 1 ≤ i ≤ 2, by (x1, x2)i = xi. We call an element (x1, x2) ∈ Lc A-
reliable, if (x1, x2) ≤p A(x1, x2), and in this case the restriction of A(. , x2)1 (resp.,
A(x1, .)2) to [⊥, x2] (resp., [x1,]) is a monotone operator on the complete lattice
([⊥, x2],≤) (resp., ([x1,],≤)). Therefore, A(. , x2)1 (resp., A(x1, .)2) has a least
fixpoint in ([⊥, x2],≤) (resp., ([x1,],≤)).

Let (x1, x2) be A-reliable. Define the A-stable revision operator by A↓↑(x1, x2) =
(A↓(x2),A↑(x1)), where A↓(x2) = lfp(A(. , x2)1) and A↑(x1) = lfp(A(x1, .)2).
Roughly,A↓(x2) underestimates every (minimal) fixpoint of O, whereas A↑(x1) is an
upper bound as tight as possible to the minimal fixpoints of O. The stable revision
operator A↓↑ has fixpoints and a least fixpoint on the chain-complete poset (LA

pr,≤p)

of the so called A-prudent pairs LA
pr = {(x1, x2) ∈ Lc | x1 ≤ A↓(x2)}. We thus

define the A-well-founded fixpoint by w(A) = lfp(A↓↑). Furthermore, we call every
A-reliable fixpoint (x1, x2) of A↓↑ an A-stable fixpoint, and if in addition A is an
approximation of O and x1 = x2 an A-stable fixpoint of O (note that x1 is then a
fixpoint of O).

Proposition 1 ([7]). For every x ∈ L, x is an A-stable fixpoint of O iff x is a fixpoint
of O andA↓(x) = x.

In [7] the authors show that there exists a most precise approximationO, called the
ultimate approximation of O, which can be algebraically characterized in terms of O.
Let for C ∈ {

∧
,
∨
} denote C O([x1, x2]) = C {O(x) | x1 ≤ x ≤ x2}.

Theorem 1 ([7]). The ultimate approximation of O is given, for every (x1, x2) ∈ Lc,
by O(x1, x2) = (

∧
O([x1, x2]),

∨
O([x1, x2])).

We summarize some basic facts about the ultimate approximation and its relationship
to every other approximation of O.

106 C. Antić, T. Eiter, and M. Fink

∅

I = T HEX
P (I)

AtP

ΦHEX
P (. , I)1

I1

I2

I3

Ij

(∅, AtP) k
(
ΦHEX

P

)

w
(
ΦHEX

P

)

...

Fig. 1. Illustration of the relations between the ΦHEX
P -Kripke-Kleene-, the ΦHEX

P -well-founded,
and the 2-valued ΦHEX

P -answer-set semantics. On the left side: (i) the Kripe-Kleene fixpoint
k
(
ΦHEX

P

)
is the least fixpoint of ΦHEX

P ; (ii) the well-founded fixpoint (least 3-valued stable fix-

point) w
(
ΦHEX

P

)
is the least fixpoint of Φ

HEX,↓↑
P . On the right side: monotone iteration of the

2-valued ΦHEX
P -stable model I . If we replace ΦHEX

P by T HEX
P , we obtain the more precise ultimate

semantics.

Proposition 2 ([7]). For every approximationA of O:

1. k(A) ≤p w(O) and w(A) ≤p w(O).
2. If k(A) (resp., w(A)) is exact, then k(A) = k(O) (resp., w(A) = w(O)) and it is

the unique ultimate stable fixpoint of O.
3. Every A-stable fixpoint of O is an ultimate stable fixpoint of O and for every ulti-

mate fixpoint x of O, w(O) ≤p x.

3 Fixpoint Semantics for Normal HEX Programs

In this section, we uniformly extend the 2- and 3-valued answer-set semantics [12,17]
and the well-founded semantics [21] of ordinary logic program to the class of normal
(i.e., disjunction-free) HEX programs by applying AFT (for a summary, see Figure 1).

In the sequel, let P be a normal HEX program. We can straightforwardly extend
the well-known van Emden-Kowalski operator TP to T HEX

P . A (consistent) 3-valued
interpretation is a pair (I1, I2) such that I1 ⊆ I2; by IcP we denote the set of all such
pairs. The precision ordering ⊆p on IcP is given by (J1, J2) ⊆p (I1, I2) if J1 ⊆ I1 and
I2 ⊆ J2 (cf. Section 2.2). The intuitive meaning is that every a ∈ I1 (resp., a �∈ I2) is
true (resp., false), whereas every a ∈ I2 − I1 is undefined.

Definition 1. We identify each (I1, I2) ∈ IcP with the 3-valued evaluation (I1, I2) :
HBP → {t, f ,u} defined by:

1. For every a ∈ AtP , (I1, I2)(a) = t if a ∈ I1, (I1, I2)(a) = f if a �∈ I2, and
(I1, I2)(a) = u if a ∈ I2 − I1.

2. For every f# ∈ At#P , (I1, I2)(f#) = t (resp., (I1, I2)(f#) = f) if J |= f# (resp.,
J �|= f#) for every J ∈ [I1, I2], and (I1, I2)(f

#) = u otherwise.

HEX Semantics via Approximation Fixpoint Theory 107

We then directly obtain the following two approximations ΦHEX
P and T HEX

P of T HEX
P :

(i) The extended Fitting approximation ΦHEX
P as an extension of the traditional Fitting

operatorΦP , i.e.,ΦP (I1, I2)= (I ′1, I
′
2) where I ′1 = {H(r) : r ∈ P : (I1, I2)(B(r))= t}

and I ′2 = {H(r) : r ∈ P : (I1, I2)(B(r)) ∈ {t,u}} (given the usual extension of 3-
valued interpretation to conjunctions of literals—denoted as sets B(r) here); and (ii) the
ultimate approximation T HEX

P , which is the most precise approximation of T HEX
P and al-

gebraically definable by (cf. Theorem 1) T HEX
P (I1, I2) =

(⋂
T HEX
P ([I1, I2]) ,

⋃
T HEX
P

([I1, I2])) .
The approximations ΦHEX

P and T HEX
P give rise to the ΦHEX

P -Kripke-Kleene semantics
and the ultimate Kripke-Kleene semantics, respectively (cf. Section 2.2).

3.1 Answer-Set Semantics

Recall that given an ordinary normal program P , its 3-valued answer sets are charac-
terized by the fixpoints of the stable revision operator Φ↓↑

P of the Fitting approximation
ΦP . Moreover, the 2-valued answer sets of P are the fixpoints of Φ↓

P (cf. [5]).3

Likewise, in this section, we extend these definitions to normal HEX programs. In
the sequel, letAHEX

P ∈
{
ΦHEX
P , T HEX

P

}
. By instantiating the definition in Section 2.2, we

define the stable revision operator of AHEX
P , for every AHEX

P -reliable (I1, I2) ∈ IcP , by
AHEX,↓↑

P (I1, I2) = (AHEX,↓
P (I2),AHEX,↑

P (I1)), where AHEX,↓
P (I2) = lfp(AHEX

P (. , I2)1)

and AHEX,↑
P (I1) = lfp(AHEX

P (I1, .)2).

Definition 2 (Answer-Set Semantics). Let (I1, I2) ∈ IcP be AHEX
P -reliable, respec-

tively let I ∈ IP . We say that

1. (I1, I2) is a 3-valued ΦHEX
P -answer set (resp., 3-valued ultimate answer set) of P , if

(I1, I2) is a fixpoint of ΦHEX,↓↑
P (resp., T HEX,↓↑

P).
2. I is a 2-valued ΦHEX

P -answer set (resp., 2-valued ultimate answer set) of P , if I is a
fixpoint of T HEX

P and ΦHEX,↓
P (I) = I (resp., T HEX,↓

P (I) = I).

Example 2 (Example 1 cont’d). We claim that I = {p(a), q(a)} is a 2-valued ΦHEX
P -

answer set (and, therefore, an ultimate answer set) of P . First, observe that T HEX
P (I) =

I . Second, since ΦHEX
P (∅, I)1 = {q(a)}, ΦHEX

P ({q(a)}, I)1 = I , and ΦHEX
P (I, I)1 = I ,

we have ΦHEX,↓
P (I) = I . Hence, I is a 2-valued ΦHEX

P -answer set.

The next Theorem and Example 3 summarize some basic relationships between the
standard FLP semantics and the 2-valued ΦHEX

P -answer-set semantics.

Theorem 2. Let P be a normal HEX program.

1. If P is monotone (i.e., contains only monotone external atoms4) and negation-free,
then I ∈ IP is an ΦHEX

P -answer set iff I is an FLP-answer set of P .
2. If I ∈ IP is an ΦHEX

P -answer set, then I is an FLP-answer set of P .

However, the next example shows that the converse of condition (2) fails in general.

3 Note that Φ↓
P (I) = lfp(TP I) where P I is the Gelfond-Lifschitz reduct [12].

4 We say that an external atom f# [i] (o) is monotone, if for every J, J ′ ∈ IP such that J ⊆ J ′,
f (J, i,o) ≤ f(J ′, i,o), where f < t.

108 C. Antić, T. Eiter, and M. Fink

Example 3. Let P =
{
a← f#[a, b]; b← g#[a, b]

}
where f and g are always true

except for f({a}, a, b) = f and g({b}, a, b) = f . It is easy to verify that I = {a, b} is a
minimal model of fP I = P and, hence, an FLP-answer set of P . In contrast, we have
T HEX,↓
P (I) = ∅. Consequently, by Proposition 1, I is not an ultimate answer set of P

and, hence, by Proposition 2, not an ΦHEX
P -answer set.

Intuitively, the divergence of the 2-valued answer-set semantics based on AFT and
the FLP semantics is due to the “non-constructiveness” of the FLP semantics. The in-
tuition behind “constructiveness” is formalized by Fages’ well-supportedness (adapted
to HEX by Shen [18]). Indeed, Theorems 2 and 8 characterize our (2-valued) ΦHEX

P -
answer-set semantics as the strict well-supported subclass of the FLP semantics (cf. the
discussion in Section 5). While incomparability of ultimate and FLP semantics already
follows from the ordinary case [7].

3.2 Well-Founded Semantics

Well-founded semantics play an important role in logic programming and database the-
ory. However, for (normal) HEX programs, to the best of our knowledge, there exist
no well-founded semantics up so far. In this section, we define well-founded semantics
of normal HEX programs as a special case of 3-valued ΦHEX

P -answer-set semantics, by
instantiating the constructions of AFT given in Section 2.2.

Recall from Section 2.2 that every stable revision operator has fixpoints and a least
fixpoint. This leads to the following definition.

Definition 3 (Well-Founded Semantics). Define the AHEX
P -well-founded model by

w
(
AHEX

P

)
= lfp(AHEX,↓↑

P). We call the T HEX
P -well-founded model w

(
T HEX
P

)
the ul-

timate well-founded model of P .

Example 4. Reconsider the normal HEX program P of Example 3 where we have seen
that I = {a, b} is an FLP-answer set but not an ultimate answer set of P . Since
T HEX,↓↑
P (∅, {a, b}) = (∅, {a, b}), w

(
T HEX
P

)
= (∅, {a, b}) = w

(
ΦHEX
P

)
, i.e., a and b

are both undefined in the (ultimate) well-founded model.

We can compute w
(
AHEX

P

)
by iteratingAHEX,↓↑

P , starting at (∅, AtP), until a fixpoint
is reached. The AHEX

P -well-founded model is the least 3-valued AHEX
P -answer set and

approximates every other 3-valued AHEX
P -answer set, i.e., w

(
AHEX

P

)
⊆p (I1, I2) for

every AHEX
P -answer set (I1, I2) ∈ IcP . In particular, w

(
AHEX

P

)
approximates every 2-

valuedAHEX
P -answer set; this relation also holds with respect to the FLP semantics.

Theorem 3. For each FLP-answer set I ∈ IP of P , w
(
AHEX

P

)
⊆p I .

Example 5 (Example 4 cont’d). Observe that w
(
T HEX
P

)
= (∅, {a, b}) ⊆p I , and that

I = {a, b} is an FLP-answer set of the normal HEX program P of Example 3.

4 Fixpoint Semantics for Disjunctive HEX Programs

In this section, we extend the 2-valued answer-set semantics [12] to the class of dis-
junctive HEX programs. For such programs, T HEX

P is no longer a lattice operator; thus

HEX Semantics via Approximation Fixpoint Theory 109

AFT—which studies fixpoints of lattice operators—is not applicable. However, by com-
bining ideas from disjunctive logic programming and AFT, Pelov and Truszczyński [15]
extended parts of the AFT to the case of non-deterministic operators.

In the sequel, let P be a disjunctive HEX program. First, we define the non-
deterministic immediate consequence operator NHEX

P . To this end, we recall the Smyth
ordering [19] on P(IP), in which J K if for every K ∈ K some J ∈ J exists
such that J ⊆ K . Note that is reflexive and transitive, but not anti-symmetric; thus,
P(IP) endowed with is not a poset. However, if we consider only the anti-chains in
P(IP) (i.e., only those J where each J ∈ J is minimal w.r.t.⊆), denoted Pmin(IP),
then (Pmin(IP),) is a poset with least element {∅} (cf. [13]). Denote for any set
D of disjunctions over AtP (i.e., subset of the disjunctive Herbrand base DHBP of P
[13]) by MM (D) the set of the minimal models of D.

Definition 4. By the non-deterministic van Emden-Kowalski operator of P we refer to
the operator NHEX

P : IP → Pmin(IP) where NHEX
P (I) = MM

(
I ∪ T HEX

P (I)
)
.

Intuitively,NHEX
P (I) = J consists of all interpretations J ∈ J representing minimal

possible outcomes of P after one step of rule applications; moreover, when applying
NHEX

P to I we assume each a ∈ I to be true.
We call I ∈ IP a fixpoint of NHEX

P , if I ∈ NHEX
P (I), and pre-fixpoint of NHEX

P , if
NHEX

P (I) {I}. We denote the set of all minimal fixpoints of NHEX
P by mfp(NHEX

P).

Proposition 3. For every I ∈ IP , I is a minimal model of P iff I ∈ mfp(NHEX
P).

4.1 Non-deterministic Approximations and Computations

We can consider NHEX
P as an “extension” of T HEX

P to the class of disjunctive HEX pro-
grams. However, an important property of T HEX

P which NHEX
P does not enjoy is iterabil-

ity. In this section, we define non-deterministic approximations [15] of NHEX
P and show

how to “iterate” them in terms of computations [14].

Definition 5. Define, for each (I1, I2) ∈ IcP , (i) the non-deterministic Fitting approxi-
mation of NHEX

P by FHEX
P (I1, I2) = MM

(
I1 ∪ ΦHEX

P (I1, I2)1
)
, and (ii) the non-

deterministic ultimate approximation byN HEX
P (I1, I2) = MM

(
I1 ∪ T HEX

P (I1, I2)1
)
.

In the sequel, let AHEX
P ∈ {FHEX

P ,N HEX
P }. The next result shows that FHEX

P (resp.,
N HEX

P) similarly relates to NHEX
P as ΦHEX

P (resp., T HEX
P) relates to T HEX

P .

Proposition 4. Let P be a HEX program. Then,

1. AHEX
P (I, I) = NHEX

P (I), for every I ∈ IP ;
2. (J1, J2) ⊆p (I1, I2) implies AHEX

P (J1, J2) AHEX
P (I1, I2), for every pair (J1, J2)

and (I1, I2) from IcP .

Like [15], we use computations [14] to formalize the iterated approximation of NHEX
P .

Definition 6. Let I ∈ IP . An AHEX
P -I-computation (in the sense of [14]) is a sequence

JI,↑ = (Ji)i≥0, Ji ∈ IP , such that J0 = ∅ and, for every n ≥ 0,
1. Jn ⊆ Jn+1 ⊆ I , and 2. Jn+1 ∈ AHEX

P (Jn, I).
We call JI,∞ =

⋃
i≥0 Ji the result of the computation JI,↑. Furthermore, J ⊆ I is

AHEX
P -I-derivable, if some computation JI,↑ with result JI,∞ = J exists.

110 C. Antić, T. Eiter, and M. Fink

Example 6. Let P = {a ∨ b; c ← a,∼ b}. We show that I = {a, c} is FHEX
P -I-

derivable. Let J0 = ∅. We computeFHEX
P (J0, I) = MM ({a∨b}) = {{a}, {b}}, and let

J1 = {a}. For the next iteration, we computeFHEX
P (J1, I) = MM ({a, a∨b, c}) = {I},

and consider J2 = I . Finally, since we have FHEX
P (J2, I) = {I}, we set Jn = I for

every n ≥ 2, and obtain a FHEX
P -I-computation JI,↑ with result JI,∞ = I , which

shows that I is FHEX
P -I-derivable.

4.2 Answer-Set Semantics

We now carry the concepts of Section 3.1 over to disjunctive HEX programs and the
corresponding non-deterministic operators as follows: (i) instead of considering T HEX

P ,
we consider the non-deterministic van Emden-Kowalski operator NHEX

P as an appro-
priate one-step consequence operator; (ii) instead of iterating AHEX

P (. , I)1 to the least
fixpoint AHEX,↓

P (I), we “iterate” AHEX
P (. , I) in terms of AHEX

P -I-computations to the
minimal fixpointsAHEX,↓

P (I); (iii) since disjunctive rules are non-deterministic, we con-
sider minimal instead of least models, and minimal instead of least fixpoints. With these
intuitions in place, we now define (2-valued) answer-set semantics (cf. [15]).

Definition 7 (Answer-Set Semantics). We say that I ∈ IP is an AHEX
P -answer set,

if I ∈ AHEX,↓
P (I) = mfp

(
AHEX

P (. , I)
)
; it is an ultimate answer set of P , if I is an

N HEX
P -answer set of P .

Example 7. Let P = {p(a) ∨ q(a); ← ∼ p⊆#q}, and let I = {q(a)}. First, we
computeFHEX

P (∅, I) = {{p(a)}, I}which shows that ∅ is not a fixpoint of FHEX
P (. , I);

second, we compute FHEX
P (I, I) = {I}, that is, I is a minimal fixpoint of FHEX

P (. , I)
and thus an FHEX

P -answer set. Since I ′ = {p(a)} violates the constraint and is thus not
an FHEX

P -answer set, I is the only FHEX
P -answer set.

The next result summarizes some basic relationships between the non-deterministic
ultimate and Fitting approximation, e.g., that, as in the normal case, the ultimate ap-
proximationN HEX

P is “more precise” than the Fitting approximationFHEX
P .

Proposition 5. Let P be a HEX program. Then,

1. FHEX
P (I1, I2) N HEX

P (I1, I2), for every (I1, I2) ∈ IcP .
2. If I ∈ IP is an FHEX

P -answer set, then I is an ultimate answer set of P .

A basic requirement for semantics of logic programs is supportedness; in the dis-
junctive case, we say that an interpretation I is supported , if for every atom a ∈ I there
exists some rule r ∈ P such that I |= B(r), a ∈ H(r), and I �|= H(r)− {a}.

Theorem 4. Let I ∈ IP . If I is an AHEX
P -answer set, then I is supported.

Next, we relate our fixpoint-based answer set semantics to the “standard” FLP se-
mantics. Theorem 2 established that all 2-valued ΦHEX

P -answer sets of a normal HEX

program are FLP-answer sets. An analogous result holds for disjunctive HEX programs.

Theorem 5. Let I ∈ IP . If I is an FHEX
P -answer set, then I is an FLP-answer set of P .

HEX Semantics via Approximation Fixpoint Theory 111

However, the converse of Theorem 5 does not hold in general (cf. Example 3).
Note thatAHEX

P -answer sets as in Definition 7 are non-constructive. However, we can
construct everyAHEX

P -answer set bottom-up and identify it with an additional test.

Theorem 6. Let I ∈ IP . Then, I is an AHEX
P -answer set iff I is AHEX

P -I-derivable and
no J ⊂ I exists such that J ∈ AHEX

P (J, I).

Example 8. In Example 6, we have seen that the FHEX
P -answer set I = {a, c} of P =

{a ∨ b; c ← a,∼ b} is FHEX
P -I-derivable, and in Example 7 that the FHEX

P -answer set
I = {q(a)} of P = {p(a) ∨ q(a); ← ∼ p⊆#q} is FHEX

P -I-derivable. On the other
hand, I = {p(a), q(a)} is FHEX

P -I-derivable w.r.t. P = {p(a)∨ q(a); p(a)← p⊆#q},
while J = {p(a)} ∈ FHEX

P (J, I); thus I is not an FHEX
P -answer set of P .

5 Related Work

Approximation Fixpoint Theory. AFT [5,7] builds on Fitting’s seminal work on
bilattices and fixpoint semantics of logic programs. In [5], the framework was intro-
duced upon (symmetric) approximations of A operating on the bilattice L2; in logic
programming, L2 corresponds to the set I2P of all 4-valued interpretations (I1, I2) of
P . However, as pointed out in [7], under the usual interpretations of logic programs only
the consistent (i.e., 3-valued) fragment IcP of I2P has an intuitive meaning. Therefore,
[7] advanced AFT for consistent approximations, i.e., the 3-valued case also adopted
here.

As demonstrated also by our work, a strength of AFT is its flexibility regarding
language extensions. Recall from Section 3 that to extend the semantics from ordi-
nary normal programs to normal HEX programs, we just had to extend the 3-valued
interpretation to the new language construct (i.e., external atoms). A principled way to
cope with language extensions under 4-valued interpretations was recently mentioned
in [4]; it hinges on 4-valued immediate consequence operators satisfying certain prop-
erties (≤p-monotonicity and symmetry). It is possible to generalize Definition 1 to this
setting.

Pelov and Truszczyński’s Computations [15]. We used non-deterministic opera-
tors to define 2-valued (ultimate) answer sets of disjunctive HEX programs, motivated
by [15]. However, our approach is not entirely identical to [15]; we elaborate here on
differences.

As aggregates can be simulated by external atoms (cf. Section 3.1 in [10]), we trans-
late the definitions in [15] to the language of HEX programs and define, for a disjunctive
HEX program P , NSel

P (I) = Sel
(
T HEX
P (I)

)
where Sel : P(DHBP) → P(IP) is a

selection function. As we only used the selection function MM in this paper, we focus
on NMM

P in the sequel.
Pelov and Truszczyński [15] proposed the notion of computation [14] as an appro-

priate formalization of the process of “iterating” NMM
P . In Section 4, we successfully

applied it to non-deterministic (ultimate) approximations, and proved in Theorem 6 that
(ultimate) answer sets are derivable. The following example shows that the definition
of NMM

P as such is not compatible with the notion of computation.

112 C. Antić, T. Eiter, and M. Fink

Example 9 ([15], Example 3). Let P = {a ∨ b ∨ c; a ← b; b ← c; c ← a}. Observe
that I = {a, b, c} is the only model of P . By applying NMM

P to J0 = ∅, we obtain
NMM

P (J0) = {{a}, {b}, {c}}. However, since NMM
P ({a}) = {{c}}, NMM

P ({b}) =
{{a}}, and NMM

P ({c}) = {{b}}, there is no computation J↑ with result J∞ = I . On
the other hand, it is easy to see that I is AHEX

P -I-derivable.

Description Logic Programs [9]. Description logic programs5 (dl-programs) [9] are
precursors of HEX programs [10] that allow dl-atoms (i.e., bi-directional links between
a logic program and a description logic ontology) in rule bodies. As shown in [10], we
can simulate every dl-programKB by a normal HEX program P = PKB , which allows
us to compare the semantics defined in Section 3 with the strong and weak answer-set
semantics and the well-founded semantics defined in [9].

Let KB be a dl-program and P be the respective normal HEX program; let At#,m
P

be a (fixed) set of all external atoms a ∈ At#P known to be monotone, and let At#,?
P =

At#P −At#,m
P . Then the strong Gelfond-Lifschitz reduct [9] of P relative to I ∈ IP is

sP I =
{
H(r)← B+(r) −At#,?

P : r ∈ P : I |= B+(r) ∩ At#,?
P , I |= B∼(r)

}
.

Note that sP I is a negation-free monotone normal HEX program, which implies that
T HEX
sP I has a least fixpoint; we call I a strong answer set [9] of P , if I = lfp(T HEX

sP I).
The next example shows that neither the strong nor the weak answer-set semantics

coincides with the (ultimate) answer sets of P .

Example 10. Let P = {p(a)←∼ (not p(a))
#} where I |= (not p(a))

if I �|= p(a).6

We show that I = {p(a)} is a strong answer set of P . As I |=∼ (not p(a))
#, sP I

consists of the fact p(a). Hence, I is the least fixpoint of T HEX
sP I and thus a strong answer

set of P . On the other hand T HEX,↓
P (I) = ∅, which shows that I is not an ultimate

answer set of P and hence not an ΦHEX
P -answer set (cf. Proposition 2). As every strong

answer set of P is also a weak answer set [9], the same holds for the weak answer set
semantics.

However, the next result shows that for monotone dl-programs, the semantics in this
paper coincide with the semantics given in [9]; note that well-founded semantics was
defined in [9] under restriction to monotone dl-programs using unfounded sets.

Theorem 7. Let KB be a monotone dl-program and let P = PKB.

1. For each I ∈ IP , I is a strong answer set of P iff I is a 2-valued ΦHEX
P -answer set.

2. For each (I1, I2) ∈ IcP , (I1, I2) is the well-founded model of P as defined in [9] iff
(I1, I2) is the ΦHEX

P -well-founded model.

Shen’s Strongly Well-Supported Semantics [18]. Shen [18] defined (weakly and
strongly) well-supported semantics for dl-programs. As the latter can be simulated by
normal HEX programs, we rephrase Shen’s definition in the HEX-setting.

5 http://sourceforge.net/projects/dlvhex/files/dlvhex-dlplugin/
6 For readers familiar with dl-programs, note that P amounts to the dl-program KB =
(∅, {p(a) ← ∼DL[S −∩ p;¬S](a)}) where DL[S −∩ p;¬S](a) is a dl-atom, S is a concept,
and −∩ is the constraint update operator (cf. [9]).

http://sourceforge.net/projects/dlvhex/files/dlvhex-dlplugin/

HEX Semantics via Approximation Fixpoint Theory 113

Given a normal HEX program P and (I1, I2) ∈ IcP , Shen’s notion “I1 up to I2 satis-
fies literal �” is equivalent to our 3-valued evaluation function, in symbols (I1, I2)(�) =
t. We thus can characterize Shen’s fixpoint operator SHEX

P [18, Definition 5] as follows.

Proposition 6. For each (I1, I2) ∈ IcP , SHEX
P (I1, I2) = ΦHEX

P (I1, I2)1.

Finally, call I an strongly well-supported answer set [18] of P , if I = lfp(
SHEX
P (. , I)

)
. The following result is an immediate consequence of Proposition 6.

Theorem 8. Let I ∈ IP . Then, I is a strongly well-supported answer set of P iff I is a
2-valued ΦHEX

P -answer set.

The equivalences above show that Shen’s (strongly) well-supported answer-set se-
mantics is naturally captured within the more general framework of AFT. However the
use of AFT allowed us to obtain in addition the whole class of 3-valued (ultimate)
answer-set semantics (which contain the well-founded semantics), in a more general
(and perhaps more elegant) approach than the one in [18].

6 Discussion and Conclusion

The goal of this paper was to extend the well-founded-, and the (3-valued) answer-set
semantics to the class of HEX programs [10] by applying AFT [5,7], and to compare
them with the “standard” FLP semantics. This was in particular relevant, because HEX

programs constitute a powerful extension of ordinary disjunctive programs, and are able
to represent various other formalisms (e.g., dl-programs; see [10]).

As a result of our investigation, we obtained constructive and uniform semantics
for a general class of logic programs with nice properties. More precisely, for
normal HEX programs, our 2-valued answer-sets based on AFT turned out to be
well-supported, which is regarded as a positive feature. Moreover, Shen’s strongly
well-supported answer set semantics (formulated for dl-programs) coincides with the 2-
valued ΦHEX

P -answer set semantics. Furthermore, to the best of our knowledge, the well-
founded semantics for normal HEX programs has not been defined before; it coincides
on positive programs representing dl-programs with the well-founded semantics in [9],
and thus generalizes it a fortiori to arbitrary dl-programs. Finally, our 2-valued (ulti-
mate) answer-set semantics of disjunctive HEX programs turned out to be bottom-up
computable.

Regarding complexity, assume that checking I |= f# is feasible in polynomial time.
Then, generalizing ordinary normal logic programs to normal HEX programs does not
increase the worst-case complexity of ultimate semantics [7]. Different to the ordi-
nary case, however, computing well-founded and answer set semantics is not easier
than ultimate approximation. More specifically, as deciding 3-valued entailment as in
Definition 1 is coNP-hard, we obtain that deciding (in the ground case)
– consequence under the (ultimate) well-founded model is ΔP

2 -complete;
– brave consequence is ΣP

2 -complete for 3-valued (ultimate) answer sets; and
– existence of a 2-valued (ultimate) answer-set is ΣP

2 -complete.

114 C. Antić, T. Eiter, and M. Fink

Note that for disjunctive HEX programs, despite nondeterministic computations, decid-
ing brave consequence for ultimate answer sets remains ΣP

2 -complete.

Open issues. Some open issues remain. First, in the case of infinite HEX programs, the
operators defined in this paper all require an infinite guess, which makes the notion of
computation (see Section 4) infeasible. A possible way to tackle this problem consists
of three steps: (i) define a HEX program P to be ω-evaluable, if there exists an ω-
Turing machine [3] M that accepts the answer sets of P ; (ii) simulate M by a positive
disjunctive HEX program PM ; and (iii) iterate the monotone operator NHEX

PM
in terms

of computations as in Definition 6. For example, normal positive HEX programs with
finitary external atoms are ω-evaluable, and more generally HEX programs in which
atoms depend only on finitely many other atoms [2]; it remains to find further relevant
classes of ω-evaluable infinitary HEX programs.

Second, in the definition of ΦHEX
P (and, consequently, FHEX

P) the definition of the
3-valued entailment relation plays a crucial role. In a naive realization, evaluating
(I1, I2)(f

#) is exponential, which possibly can be avoided given further knowledge
on f (e.g., monotonicity) or relevant interpretations J ∈ [I1, I2] in the context of the
program P . Developing respective pruning conditions is interesting and important from
a practical perspective. Alternatively, one can imagine to define 3-valued entailment on
a substructure of [I1, I2], obeying suitable conditions.

Finally, Truszczyński [20] has extended AFT to algebraically capture the notions of
strong and uniform equivalence; it is interesting to apply these results to the class of
HEX programs by using the results obtained in this paper.

References

1. Antić, C.: Uniform approximation-theoretic semantics for logic programs with external
atoms. Master’s thesis, TU Vienna (2012),
http://www.ub.tuwien.ac.at/dipl/2012/AC07814506.pdf

2. Baselice, S., Bonatti, P.A., Criscuolo, G.: On finitely recursive programs. TPLP 9(2), 213–
238 (2009)

3. Cohen, R.S., Gold, A.Y.: ω-computations on Turing machines. TCS 6, 1–23 (1978)
4. Denecker, M., Bruynooghe, M., Vennekens, J.: Approximation fixpoint theory and the se-

mantics of logic and answers set programs. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D.
(eds.) Correct Reasoning. LNCS, vol. 7265, pp. 178–194. Springer, Heidelberg (2012)

5. Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-founded
fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.) Logic-Based Ar-
tificial Intelligence, pp. 127–144. Kluwer (2000)

6. Denecker, M., Marek, V., Truszczyński, M.: Uniform semantic treatment of default and au-
toepistemic logics. Artificial Intelligence, 79–122 (2003)

7. Denecker, M., Marek, V., Truszczyński, M.: Ultimate approximation and its application in
nonmonotonic knowledge representation systems. Inf. Comp. 192(1), 84–121 (2004)

8. Eiter, T., Brewka, G., Dao-Tran, M., Fink, M., Ianni, G., Krennwallner, T.: Combining non-
monotonic knowledge bases with external sources. In: Ghilardi, S., Sebastiani, R. (eds.) Fro-
CoS 2009. LNCS, vol. 5749, pp. 18–42. Springer, Heidelberg (2009)

9. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for description
logic programs in the semantic web. ACM TOCL 12(2), 11:1–11:41 (2011)

http://www.ub.tuwien.ac.at/dipl/2012/AC07814506.pdf

HEX Semantics via Approximation Fixpoint Theory 115

10. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer-set programming. In: Proc. IJCAI 2005, pp. 90–96
(2005)

11. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Seman-
tics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 200–212. Springer, Heidelberg (2004)

12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365–385 (1991)

13. Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjunctive Logic Programming. MIT
Press (1992)

14. Marek, V.W., Niemelä, I., Truszczyński, M.: Logic programs with monotone cardinality
atoms. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp.
154–166. Springer, Heidelberg (2003)

15. Pelov, N., Truszczyński, M.: Semantics of disjunctive programs with monotone aggreggates
- an operator-based approach. In: Proc. NMR 2004, pp. 327–334 (2004)

16. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic pro-
grams with aggregates. Theory and Practice of Logic Programming 7(3), 301–353 (2007)

17. Przymusinski, T.: Well-founded semantics coincides with the three-valued stable semantics.
Fundamenta Informaticae 13(4), 445–463 (1990)

18. Shen, Y.D.: Well-supported semantics for description logic programs. In: Proc. IJCAI 2011,
pp. 1081–1086. AAAI Press (2011)

19. Smyth, M.B.: Power domains. Journal of Computer and System Sciences 16, 23–36 (1978)
20. Truszczyński, M.: Strong and uniform equivalence of nonmonotonic theories – an algebraic

approach. Annals of Mathematics and Artificial Intelligence 48(3-4), 245–265 (2006)
21. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-

grams. Journal of the ACM 38(3), 619–649 (1991)

Encoding Higher Level Extensions

of Petri Nets in Answer Set Programming

Saadat Anwar1, Chitta Baral1, and Katsumi Inoue2

1 SCIDSE, Arizona State University, 699 S Mill Ave, Tempe, AZ 85281, USA
2 Principles of Informatics Research Div., National Institute of Informatics, Japan

Abstract. Answering realistic questions about biological systems and
pathways similar to text book questions used for testing students’ un-
derstanding of such systems is one of our long term research goals. Often
these questions require simulation based reasoning. In this paper, we
show how higher level extensions of Petri Nets, such as colored tokens
can be encoded in Answer Set Programming, thereby providing the right
formalisms to model and reason about such questions with relative ease.
Our approach can be adapted to other domains.

1 Introduction

One of our long term research objectives is to develop a system that can answer
questions similar to the ones given in the biological texts, used to test the under-
standing of the students. In order to answer such questions, we have to model
pathways, add interventions / extensions to them based on the question, simu-
late them, and reason with the simulation results. We found Petri Nets to be a
suitable formalism for modeling biological pathways, as their graphical represen-
tation is very close to the biological pathways, and since they can be extended
with necessary assumptions and interventions about questions as shown in our
prequel paper [1]. We noticed that certain aspects of biological pathways, such
as multiple locations with distinct substances, cannot be succinctly represented
in a regular Petri Net model. So, here we use Petri Nets with colored tokens.

Fig. 1 shows a Petri Net model of the Electron Transport Chain as given in [2].
Places represent locations, transitions represent processes, t1−t4 represent multi-
protein complexes, and token color represents substance type. Without colored
tokens, this model would become large and cumbersome.

Existing Petri Net modeling and simulation systems either have limited adapt-
ability outside their domain, or limited ease of extension1. Also, most systems
do not explore all possible state evolutions, allow different firing semantics, or
guide search through way-points of partial state. We found ease of encoding,
extendibility, and reasoning capabilities in Answer Set Programming (ASP).

Previous work on Petri Net to ASP translation is limited to specific classes of
Petri Nets. Thus, our main contributions are: ASP encoding of Petri Nets with
colored tokens; showing how additional extensions can be encoded via small

1 See full paper for details at: http://arxiv.org/abs/1306.3548

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 116–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Encoding of Higher Level Extensions of Petri Nets in ASP 117

mm

t1

nadh/2
h/2

t3h/2 t4

h/6

is o2/1

q e/2

cytc e/2

nadp/2

h/2

e/2
h/2

e/2

h/2
h2o/1

t10

nadh/2
h/6

t12
o2/1

Fig. 1. Petri Net with colored tokens. Colors = {e, h, h2o, nadh, nadp, o2}. Circles rep-
resent places, and rectangles represent transitions. Arc weights such as “nadh/2, h/2”
specify the multiset of tokens consumed or produced by execution of their respective
transitions, e.g. “nadh/2, h/2” means 2 tokens of color nadh and 2 tokens of h. Similar
notation is used to specify marking on places, when not present, the place is assumed
to be empty of tokens.

changes (incl. firing semantics, priority/timed transitions); and showing how our
encoding and ASP reasoning can be used to answer biological pathway questions.

2 Fundamentals

For Answer Set Programming (ASP) syntax used in this paper, refer to [3].
A multiset A over a domain set D is a pair 〈D,m〉, where m : D → N

is a function giving the multiplicity of d ∈ D in A. Given two multsets A =
〈D,mA〉, B = 〈D,mB〉, A ! B if ∀d ∈ D : mA(d) ! mB(d), where ! ∈ {<,>
,≤,≥,=}, and A �= B if ∃d ∈ D : mA(d) �= mB(d). Multiset sum/difference
is defined in the usual way. d ∈ A represents mA(d) > 0; A = ∅ represents
∀d ∈ D,m(d) = 0; We use d/n ∈ A to represent that d appears n-times in A,
and drop A when clear from context. See standard texts on multisets for details.

A basic Petri Net [4] is a bipartite graph of finite set of place nodes P =
{p1, . . . , pn}, and transition nodes T = {t1, . . . , tm} connected through directed
arcs E = E+ ∪E−, where E− ⊆ P × T and E+ ⊆ T × P . A Petri Net’s state is
given by the number of tokens on each place node, collectively called its marking
M = (M(p1), . . . ,M(pn)),M(pi) ∈ N. Arc weights W : E → N \ {0} specify
the number of tokens consumed (through E−) or produced (through E+) due
to firing of the transition at the head or tail of the arc. Modeling capability of
basic Petri Nets is enhanced by adding reset, inhibit and read arcs. A reset
arcs R : T → 2P removes all tokens from its input place. An inhibitor arc
I : T → 2P prevents its transition from firing if its source contains tokens. A
read arc Q ⊆ P × T , QW : Q → N \ {0} prevents its target transition from
firing until its source has at least the tokens specified by the arc weight.

Higher level Petri Nets extend the notion of tokens to typed (or colored)
tokens. A Petri Net with Colored Tokens (with reset, inhibit and read arcs)
is a tuple PNC = (P, T,E,C,W,R, I,Q,QW), where P, T,E,R, I,Q are the
same as for basic Petri Nets and its extensions, C = {c1, . . . , cl} is a finite set
of colors, and arc weights W : E → 〈C,m〉, QW : Q → 〈C,m〉 are specified as
multi-sets of colored tokens over color set C. State (or marking) of place nodes
M(pi) = 〈C,m〉 is specified as a multiset of colored tokens over set C.

118 S. Anwar, C. Baral, and K. Inoue

The initial marking (M0) is the initial token assignment of place nodes.
Marking at time-step k is written as Mk. The pre-set (or input-set) of tran-
sition t is •t = {p ∈ P |(p, t) ∈ E−}, while its post-set (or output-set) is
t• = {p ∈ P |(t, p) ∈ E+}. A transition t is enabled with respect to marking
Mk, enabledMk

(t), if each of its input places p has at least W (p, t) 2 colored-
tokens, each of its inhibiting places pi ∈ I(t) have zero tokens and each of its
read places pq : (pq, t) ∈ Q have at least QW (pq, t) colored-tokens. A firing
set is a set Tk = {tk1 , . . . , tkn} ⊆ T of enabled transitions that fire simul-
taneously and do not conflict. Execution of a firing set Tk on a marking Mk

computes a new marking Mk+1 by removing tokens consumed by t ∈ Tk from
t’s input places and adding tokens produced by t ∈ Tk to t’s output places.
A set of enabled transitions is in conflict with respect to Mk if firing them
will consume more than available tokens at an input place 3. An execution
sequence X = M0, T0,M1, . . . , Tk,Mk+1 is the simulation of a firing sequence
σ = T1, . . . , Tk, Ti ⊆ T is a firing set. It is the transitive closure of executions,
where subsequent markings become the initial marking for the next transition
set. Thus firing of T0 at M0 produces M1, which becomes initial marking for T1.

3 Translating Petri Nets with Colored Tokens to ASP

In this section we present an ASP encoding of a Petri Net with colored tokens
PNC (incl. execution behavior), with initial markingM0 and a simulation length
k. This work is an extension of our work or regular Peri Nets in [1].

f1: Facts place(pi) where pi ∈ P is a place.
f2: Facts trans(tj) where tj ∈ T is a transition.
f3: Facts col(ck) where ck ∈ C is a color.
f4: Rules ptarc(pi, tj , nc, c, tsk) :- time(tsk). for each (pi, tj) ∈ E−, c ∈ C, nc =

mW (pi,tj)(c) : nc > 0.

f5: Rules tparc(ti, pj , nc, c, tsk) :- time(tsk). for each (ti, pj) ∈ E+ , c ∈ C, nc =
mW (ti,pj)(c) : nc > 0.

f6: Rules ptarc(pi, tj , nc, c, tsk) :- holds(pi, nc, c, tsk), num(nc), nc>0, time(tsk).

for each (pi, tj) : pi ∈ R(tj), c ∈ C, nc = mMk(pi)(c).
f7: Rules iptarc(pi, tj , 1, c, tsk) :- time(tsk). for each (pi, tj) : pi ∈ I(tj), c ∈ C.
f8: Rules tptarc(pi, tj , nc, c, tsk) :- time(tsk). for each (pi, tj) ∈ Q, c ∈ C, nc =

mQW (pi,tj)(c) : nc > 0.
i1: Facts holds(pi, nc, c, 0). for each place pi ∈ P, c ∈ C, nc = mM0(pi)(c).
f9: Facts time(tsi) where 0 ≤ tsi ≤ k are the discrete simulation time steps.
f10: Facts num(n) where 0 ≤ n ≤ ntok are token quantities 4

e1: notenabled(T,TS) :- ptarc(P,T, N,C,TS), holds(P,Q,C,TS), place(P),

trans(T), time(TS), num(N), num(Q), col(C), Q<N.
e2: notenabled(T,TS) :- iptarc(P,T,N,C,TS), holds(P,Q,C,TS), place(P),

trans(T), time(TS), num(N), num(Q), col(C), Q>=N.

2 We are using W (p, t), QW (p, t) to mean W (〈p, t〉),QW (〈p, t〉) for simplicity.
3 Our reset arc has modified semantics, which puts token consumption through it in
contention with other arcs, but allows us to model elimination of all quantity of a
substance as soon as it is produced.

4 The token count predicate num’s limit can be arbitrarily selected to be higher than
expected token count. It is there for efficient ASP grounding.

Encoding of Higher Level Extensions of Petri Nets in ASP 119

e3: notenabled(T,TS) :- tptarc(P,T,N,C,TS), holds(P,Q,C,TS), place(P),

trans(T), time(TS), num(N), num(Q), col(C), Q<N.
e4: enabled(T,TS) :- trans(T), time(TS), not notenabled(T,TS).

a1: {fires(T,TS)} :- enabled(T,TS), trans(T), time(TS).
r1: add(P,Q,T,C,TS) :- fires(T,TS), tparc(T,P,Q,C,TS), time(TS).

r2: del(P,Q,T,C,TS) :- fires(T,TS), ptarc(P,T,Q,C,TS), time(TS).
r3: tot incr(P,QQ,C,TS) :- col(C), QQ = #sum[add(P,Q,T,C,TS) = Q : num(Q) :

trans(T)], time(TS), num(QQ), place(P).
r4: tot decr(P,QQ,C,TS) :- col(C), QQ = #sum[del(P,Q,T,C,TS) = Q : num(Q) :

trans(T)], time(TS), num(QQ), place(P).

r5: holds(P,Q,C,TS+1):-place(P),num(Q;Q1;Q2;Q3),time(TS),time(TS+1),col(C),
holds(P,Q1,C,TS),tot incr(P,Q2,C,TS),tot decr(P,Q3,C,TS),Q=Q1+Q2-Q3.

a2: consumesmore(P,TS) :- holds(P,Q,C,TS), tot decr(P,Q1,C,TS), Q1 > Q.
a3: consumesmore :- consumesmore(P,TS).

a4: :- consumesmore.

Proposition 1. Let PNC be a Petri Net with colored tokens, reset, inhibit, read
arcs, and M0 be its initial marking. Let Π3(PNC ,M0, k) be the ASP encoding
of PNC and M0 over a simulation of length k as defined in Section 3. Then
X3 = M0, T0,M1, . . . , Tk is an execution sequence of PNC (with respect to M0)
iff there is an answer-set A of Π3(PNC ,M0, k) such that: {fires(t, j) : t ∈
Tj, 0 ≤ j ≤ k} = {fires(t, ts) : fires(t, ts) ∈ A} and {holds(p, q, c, j) : p ∈
P, c/q ∈Mj(p), 0 ≤ j ≤ k} = {holds(p, q, c, ts) : holds(p, q, c, ts) ∈ A}

The Petri Net in Fig. 1 with an initial marking of zero tokens is encoded as:5:

time(0..2). num(0..30). place(mm;is;q;cytc). trans(t1;t3;t4;t10;t12).

col(nadh;h;e;nadp;h2o;o2). holds(mm,0,nadh,0). holds(mm,0,h,0).

tparc(t12,is,1,o2,TS):-time(TS). tparc(t10,mm,6,h,TS):-time(TS).

tparc(t10,mm,2,nadh,TS):-time(TS). ptarc(mm,t1,2,nadh,TS):-time(TS).

We get hundreds of answer-sets, for example6:

fires(t10;t12,0) holds(is,1,o2,1) holds(mm,6,h,1) holds(mm,2,nadh,1)

fires(t1;t10;t12,1) holds(is,2,h,2) holds(is,2,o2,2) holds(mm,10,h,2)

holds(mm,2,nadh,2) holds(mm,2,nadp,2) holds(q,2,e,2) fires(t1;t3;t10;t12,2)

4 Extensions

The above code implements a set firing semantics, which can produce a large
number of answer-sets7. In biological domain, it is often preferable to simulate
the maximum parallel activity at each step. We accomplish this by enforcing the
maximal firing set semantics [1] using the following additional rules:

a5: could not have(T,TS):-enabled(T,TS),not fires(T,TS), ptarc(S,T,Q,C,TS),

holds(S,QQ,C,TS), tot decr(S,QQQ,C,TS), Q > QQ - QQQ.
a6: :-not could not have(T,TS),time(TS),enabled(T,TS),not fires(T,TS),

trans(T).

5 We show only a few of the tparc/5, ptarc/5, holds/4 for illustration.
6 Only> 0 tokens shown; fires(t1;...;tm,ts) ≡ fires(t1,ts),...,fires(tm,ts).
7 A subset of a firing set can also be fired as a firing set by itself.

120 S. Anwar, C. Baral, and K. Inoue

mm

t1

nadh/2
h/2

t3

h/2

t4

h/6

is
o2/1

q tq

[2]

e/2

cytc tcytc

[2]

e/2

q' e/2

cytc'

e/2nadp/2

h/2

e/2
h/2

e/2

h/2
h2o/1

t10

nadh/2
h/6

t12
o2/1

e/2

e/2

Fig. 2. Extended Petri Net model from Fig. 1 with new timed transitions tq, tcytc,
modeling decreased fluidity of q and cytc. Both tq, tcytc have a duration of 2 each
(shown as (“[2]”)), others have duration of 1 (assumed).

With maximal firing set, the number of answer-sets reduce to 1.
Other firing semantics can be implemented with similar ease. Let us look at

how various Petri Net extensions can be encoded by making small code changes.
Priority transitions favor high priority transitions over lower priority ones,

modeling dominant vs. secondary processes. We add the rules f11, a7, a8 to
encode transition priority 8 and replace a1, a5, a6 with a9, a10, a11 respectively:

f11: Facts transpr(ti,pri) where pri is t
′
is priority.

a7: notprenabled(T,TS):-enabled(T;TT,TS),transpr(T,P),transpr(TT,PP),PP<P.

a8: prenabled(T,TS) :- enabled(T,TS), not notprenabled(T,TS).

a9: {fires(T,TS)} :- prenabled(T,TS), trans(T), time(TS).

a10: could not have(T,TS) :- prenabled(TS,TS), not fires(T,TS),

ptarc(S,T,Q,C,TS), holds(S,QQ,C,TS), tot decr(S,QQQ,C,TS), Q>QQ-QQQ.

a11: :- prenabled(tr,TS), not fires(tr,TS), time(TS).

Timed transitions model the execution time variation of processes. Output
from such transitions is produced at the end of their execution duration. We
replace f5 with f12, r1 with r6, and add e5 for non-reentrant transitions:

f12: Rules tparc(ti, pj , nc, c, tsk, D(ti)):-time(tsk). for each (ti, pj) ∈ E+, c ∈ C,
nc = mW (ti,pj)(c) : nc > 0.

r6: add(P,Q,T,C,TSS) :- fires(T,TS),time(TS;TSS),tparc(T,P,Q,C,TS,D),

TSS=TS+D-1.

e5: notenabled(T,TS1):-fires(T,TS0),num(N),TS1>TS0,tparc(T,P,N,C,TS0,D),

col(C), time(TS0), time(TS1), TS1<(TS0+D).

5 Example Use of Our Encoding and Reasoning Abilities

We illustrate the usefulness of our encoding by applying it to the following
simulation based reasoning question9 from [2]: “Membranes must be fluid to
function properly. How would decreased fluidity of the membrane affect the
efficiency of the electron transport chain?”

To answer this question, first we build a Petri Net model (see Fig. 1) of the
Electron Transport Chain based on [2, Figure 9.15]. We model change in fluidity
as an intervention to the Petri Net model. Thus, we add time delay transitions

8 Higher priority numbers signify lower priority
9 As it appeared in https://sites.google.com/site/2nddeepkrchallenge/

Encoding of Higher Level Extensions of Petri Nets in ASP 121

tq, tcytc (with duration 2) to the capture increased time in shuttling electrons
(e) from t1 to t3 and t3 to t4, with the notion that lower fluidity equals more
transport time. The extended model is shown in Fig. 2. We encode both models
in ASP based on Sections 3 and 4 and simulate them for a fixed number of time
steps (ts) using maximal firing set semantics. We compute the chain’s efficiency
by computing h/ts, where h is the H+ ions moved across the membrane (to is).
A plot of H+ ions moved across membrane is shown in Fig. 3. We find that the
chain’s efficiency decreased from 4.5 to 3 (for reentrant and 2.5 for non-reentrant
transitions) due to decreased fluidity, meaning that decreased membrane fluidity
leads to lower transport chain efficiency.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8

H
+

 q
ua

nt
ity

time step

normal fluidity
lower fluidity (dur=2); reentrant

lower fluidity (dur=2); non-reentrant

Fig. 3. H+ production in the is over time
for the normal fluidity, lower fluidity (reen-
trant), and lower fluidity (non-reentrant
transitions).

ASP’s enumeration of the entire
simulation evolution allows us to per-
form additional reasoning not directly
possible with Petri Nets. For exam-
ple, partial state or firing sequence
can be encoded (as ASP constraints)
as way-points to guide the simula-
tion, such as to enumerate answer-sets
where a transition t fires when one
of its upstream source products S is
found to be depleted. The answer-sets
are then used to identify another up-
stream substance responsible for t’s
firing, by generalization. Our encod-
ing allows various Petri Net dynamic
and structural properties to be easily
analyzed, as described in our previous work [1].

Conclusion: In this paper we presented the suitability of using Petri Nets
with colored tokens for modeling biological pathways. We showed how such Petri
Nets can be intuitively encoded in ASP, simulated, and reasoned with, in order
to answer real world questions posed in the biological texts. We showed how our
initial encoding can be minimally modified to include extensions. Our encoding
has a low specification-implementation gap, it allows enumeration of all possible
state evolutions, the ability to guide the search using way-points, and a strong
reasoning ability. We showcased the usefulness of our encoding by an example.

References

1. Anwar, S., Baral, C., Inoue, K.: Encoding petri nets in answer set programming
for simulation based reasoning (2013), http://arxiv.org/abs/1306.3542

2. Reece, J., Cain, M., Urry, L., Minorsky, P., Wasserman, S.: Campbell Biology.
Pearson Benjamin Cummings (2010)

3. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Com. 24(2), 105–124
(2011)

4. Peterson, J., et al.: A note on colored petri nets. Information Processing Let-
ters 11(1), 40–43 (1980)

http://arxiv.org/abs/1306.3542

Cplus2ASP: Computing Action Language C+
in Answer Set Programming

Joseph Babb and Joohyung Lee

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, USA
{Joseph.Babb,joolee}@asu.edu

Abstract. We present Version 2 of system Cplus2ASP, which imple-
ments the definite fragment of action language C+. Its input language is
fully compatible with the language of the Causal Calculator Version 2,
but the new system is significantly faster thanks to modern answer set
solving techniques. The translation implemented in the system is a com-
position of several recent theoretical results. The system orchestrates a
tool chain, consisting of f2lp, clingo, iclingo, and as2transition.
Under the incremental execution mode, the system translates a C+ de-
scription into the input language of iclingo, exploiting its incremental
grounding mechanism. The correctness of this execution is justified by
the module theorem extended to programs with nested expressions. In
addition, the input language of the system has many useful features, such
as external atoms by means of Lua calls and the user interactive mode.
The system supports extensible multi-modal translations for other action
languages, such as B and BC, as well.

1 Introduction

Action language C+ is a high level language for nonmonotonic causal theories,
which allows us to describe transition systems succinctly [1]. The definite frag-
ment of C+ is expressive enough to represent various properties of actions, and
was implemented in Version 2 of the Causal Calculator (CCalc)1. The sys-
tem translates an action description in C+ into formulas in propositional logic
and calls SAT solvers to compute the models. Though CCalc is not a highly
optimized system, it has been used to solve several challenging commonsense
reasoning problems, including problems of nontrivial size [2], to provide a group
of robots with high-level reasoning [3], to give executable specifications of norm-
governed computational societies [4,5], and to automate the analyses of business
processes under authorization constraints [6].

An alternative way to compute the definite fragment of Boolean-valued C+ is
to translate it into answer set programs as studied in [7,8]. The system reported
in [9] and system coala [10] are implementations of this method and accept the
definite fragment of C, a predecessor of language C+. In particular, coala was

1 http://www.cs.utexas.edu/users/tag/cc

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 122–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.utexas.edu/users/tag/cc

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 123

shown to be effective for several benchmark problems due to efficiency of ASP
solvers.

However, the input language of coala is missing several important features
of C+, such as multi-valued fluents, defined fluents, additive fluents, defeasible
causal laws, and syntactically complex formulas. Also, it does not support many
useful language constructs allowed in the input language of CCalc, such as
user-defined macros, implicit declarations of sorts, and external atoms.

The design aim of system Cplus2ASP [11] is to utilize the efficient ASP
solving techniques as in coala while supporting the full features of the input
language of CCalc. Its design utilizes a standard library with meta-level sorts
and meta-level variables, which yields a simple modular and extensible method
to represent CCalc input programs in ASP. However, the first version of the
system was a prototype implementation for a proof of concept.

This paper presents Version 2 of Cplus2ASP, which is significantly enhanced
in several ways.

– Its input language is fully compatible with the language of CCalc incorpo-
rating the features that were missing in Cplus2ASP v1.

– The system supports extensible multi-modal translations for different action
languages. Currently, in addition to C+, the system supports language B [12],
and a recently proposed language BC [13]. Language BC combines features
of languages B and C, and allows Prolog-style recursive definitions, which
are not allowed in C+.

– The system provides two execution modes: the command line mode and the
interactive mode. The interactive mode gives a user-friendly interface for
running various commands.

– In CCalc, external atoms are useful for some deterministic computation
which is difficult to express directly in C+. For example, they were utilized
in [3] for a loose integration of task planning and motion planning. The new
version of Cplus2ASP supports this feature by utilizing Lua calls available
in the language of gringo.

– The new system provides an incremental computation of action descriptions,
which often saves a significant amount of time. Since the translation of action
descriptions into answer set programs may contain complex formulas, the
justification of this computation uses the module theorem from [14], which
extends the module theorem from [15] to first-order formulas under the stable
model semantics [16].

In [11], the translation of a definite C+ description into the input language
of ASP solvers was explained in multiple steps. A C+ description is first turned
into a multi-valued causal theory, and then to a Boolean-valued causal theory
by the method described in [17]. The resulting theory is further turned into
logic programs with nested expressions by the translation in [8], and then the
translation in [18] is applied to turn it into the input language of gringo.

In Section 2, we explain the translation in a simpler way by avoiding refer-
ence to causal theories but instead by using a recent proposal of multi-valued

124 J. Babb and J. Lee

propositional formulas under the stable model semantics [19]. A C+ description
is turned into multi-valued formulas under the stable model semantics, which is
further turned into propositional formulas under the stable model semantics [20].
The result is further turned into the input language of gringo by the translation
described in [18]. Section 3 introduces system Cplus2ASP v2 and the features
of its input language, and Section 4 compares the system with other similar sys-
tems. Our experiments show that the new system is significantly faster than the
others.

2 From C+ to ASP

2.1 Review: Multi-valued Propositional Formulas

A (multi-valued propositional) signature is a set σ of symbols called constants,
along with a nonempty finite set Dom(c) of symbols, disjoint from σ, assigned
to each constant c. Dom(c) is called the domain of c. A Boolean constant is
one whose domain is the set {true, false}. An atom of a signature σ is an
expression of the form c=v (“the value of c is v”) where c ∈ σ and v ∈ Dom(c).
A (multi-valued propositional) formula of σ is a propositional combination of
atoms. We often write G← F , in a rule form as in logic programs, to denote the
implication F → G. A finite set of formulas is identified with the conjunction of
the formulas in the set.

A (multi-valued propositional) interpretation of σ is a function that maps
every element of σ to an element in its domain. An interpretation I satisfies
an atom c=v, (symbolically, I |= c=v) if I(c) = v. The satisfaction relation is
extended from atoms to arbitrary formulas according to the usual truth tables
for the propositional connectives. I is a model of a formula if I satisfies it. We
often write an interpretation I with the set of atoms c=v such that I(c) = v.

The stable models of a multi-valued propositional formula can be defined
in terms of a reduct [19]. Let F be a multi-valued propositional formula of
signature σ, and let I be a multi-valued propositional interpretation of σ. The
reduct F I of a multi-valued propositional formula F relative to a multi-valued
propositional interpretation I is the formula obtained from F by replacing each
maximal subformula that is not satisfied by I with ⊥. I is a (multi-valued) stable
model of F if I is the unique multi-valued interpretation of σ that satisfies F I .

Example 1. Assume σ = {c}, and Dom(c) = {1, 2, 3}. Each of the three inter-
pretations is a model of c=1 ← c=1, but none of them is stable because each
reduct has no unique model. Formula c= 1 ← ¬¬(c= 1) has the same models
as c=1← c=1, but it has one stable model, {c=1}: the reduct of the formula
relative to this interpretation is c= 1 ← ¬⊥, and {c= 1} is its unique model.
Similarly, one can check that (c=1 ← ¬¬(c=1)) ∧ (c=2) has only one stable
model {c=2}, which illustrates nonmonotonicity of the semantics.

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 125

2.2 C+ as Multi-valued Propositional Formulas under SM

Begin with a multi-valued signature partitioned into fluent constants and action
constants. The fluent constants are assumed to be further partitioned into simple
and statically determined fluent constants.

A fluent formula is a formula such that all constants occurring in it are flu-
ent constants. An action formula is a formula that contains at least one action
constant and no fluent constants.

A static law is an expression of the form

caused F if G (1)

where F and G are fluent formulas. An action dynamic law is an expression
of the form (1) in which F is an action formula and G is a formula. A fluent
dynamic law is an expression of the form

caused F if G after H (2)

where F and G are fluent formulas and H is a formula, provided that F does
not contain statically determined constants. A causal law is a static law, or an
action dynamic law, or a fluent dynamic law. An action description is a finite
set of causal laws.

An action description is called definite if F in every causal law (1) and (2) is
either an atom or ⊥.

For any definite action description D and any nonnegative integer m, the
multi-valued propositional theory cplus2mvpf (D,m) (“C+ to multi-valued propo-
sitional formulas”) is defined as follows.2 The signature of cplus2mvpf (D,m)
consists of the pairs i :c such that

– i ∈ {0, . . . ,m} and c is a fluent constant of D, or
– i ∈ {0, . . . ,m− 1} and c is an action constant of D.

The domain of i :c is the same as the domain of c. Recall that by i :F we denote the
result of inserting i : in front of every occurrence of every constant in a formula F ,
and similarly for a set of formulas. The rules of cplus2mvpf (D,m) are:

i :F ← ¬¬(i :G) (3)

for every static law (1) in D and every i ∈ {0, . . . ,m}, and for every action
dynamic law (1) in D and every i ∈ {0, . . . ,m− 1};

i :F ← ¬¬(i :G) ∧ (i−1:H) (4)

for every fluent dynamic law (2) in D and every i ∈ {1, . . . ,m};

0 :c=v ← ¬¬(0 :c=v) (5)

for every simple fluent constant c and every v ∈ Dom(c).

2 The translation can be applied to non-definite C+ descriptions as well, but then the
semantics does not agree with C+.

126 J. Babb and J. Lee

Note how the definition of cplus2mvpf (D,m) treats simple fluent constants
and statically determined fluent constants in different ways: rules (5) are included
only when c is simple.

The translation of BC into multi-valued propositional formulas is similar. Due
to lack of space, we refer the reader to [13, Section 9].

2.3 Translating Multi-valued Propositional Formulas to
Propositional Formulas under SM

Note that even when we restrict attention to Boolean constants only, the stable
model semantics for multi-valued propositional formulas does not coincide with
the stable model semantics for propositional formulas. Syntactically, they are
different (one uses expressions of the form c = true and c = false; the other
uses propositional atoms). Semantically, the former relies on the uniqueness of
(Boolean)-functions, while the latter relies on the minimization on propositional
atoms. Nonetheless there is a simple reduction from the former to the latter.

Begin with a multi-valued propositional signature σ. By σprop we denote the
signature consisting of Boolean constants c(v) for all constants c in σ and all
v ∈ Dom(c). For any multi-valued propositional formula F of σ, by F prop we
denote the propositional formula that is obtained from F by replacing each oc-
currence of a multi-valued atom c=v with c(v). For any constant c with Dom(c),
by UEC (c) we denote the existence and uniqueness constraints for c:

⊥ ← (c(v) ∧ c(v′))

for all v, v′ ∈ Dom(c) such that v �= v′, and

⊥ ← ¬
∨

v∈Dom(c)

c(v) .

By UEC σ we denote the conjunction of UEC (c) for all c ∈ σ.
For any interpretation I of σ, by Iprop we denote the interpretation of σprop

that is obtained from I by defining Iprop |= c(v) iff I |= c=v.
There is a one-to-one correspondence between the stable models of F and the

stable models of F prop. The following theorem is a special case of Corollary 1
from [19].

Theorem 1. Let F be a multi-valued propositional formula of a signature σ
such that, for every constant c in σ, Dom(c) has at least two elements. (I) An
interpretation I of σ is a multi-valued stable model of F iff Iprop is a propositional
stable model of F prop∧UEC σ. (II) An interpretation J of σprop is a propositional
stable model of F prop ∧ UEC σ iff J = Iprop for some multi-valued stable model
I of F .

2.4 Incremental Computation of C+
In answer set planning [21], the length of a plan needs to be specified. When the
length is not known in advance, a plan can be found by iteratively increasing the

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 127

possible plan length. Cplus2ASP Version 1 calls clingo for each such iteration,
resulting in redundant computations each time.

Instead, by default, Cplus2ASP v2 uses iclingo, which accepts incremen-
tal logic programs. Gebser et al. [22] define an incremental logic program to be
a triple 〈B,P [t], Q[t]〉, where B is a disjunctive logic program, and P [t], Q[t]
are incrementally parameterized disjunctive logic programs. Informally, B is the
base program component, which describes static knowledge; P [t] is the cumu-
lative program component, which contains information regarding every step t
that should be accumulated during execution; Q[t] is the volatile query program
component, containing constraints or information regarding the final step. Con-
ceptually, system iclingo computes B ∪P [1]∪ · · · ∪P [k]∪Q[k] by increasing k
one by one, but avoids reproducing ground rules in each step. Also, previously
learned heuristics, conflicts, or loops are reused without having to recompute
them. This method turns out to be quite effective. The correctness of this com-
putation assumes that 〈B,P [t], Q[t]〉 is acyclic [14].

Below we show that the translation from C+ described previously can be
modified to yield an incremental logic program, which is always acyclic, and
thus can be computed by iclingo.

For any C+ description D and any formula F (t) (called a query) of the same
signature as cplus2mvpf (D, t), where t is a parameter denoting a nonnegative
integer, we define the corresponding incremental logic program 〈B,P [t], Q[t]〉 as
follows:

– B consists of
• 0:UEC (f) for every fluent constant f ;
• 0:c(v)← ¬¬(0 :c(v)) for every simple fluent c and every v ∈ Dom(c);
• 0:F prop ← ¬¬(0 :Gprop) for every static law (1) in D.

– P [t] (t ≥ 1) consists of
• t :UEC (f) for every fluent constant f ;
• (t−1):UEC (a) for every action constant a;
• t :F prop ← ¬¬(t :Gprop) for every static law (1) in D;
• (t−1):F prop ← ¬¬((t−1):Gprop) for every action dynamic law (1) in D;
• t :F prop ← ¬¬(t :Gprop)∧((t−1):Hprop) for every fluent dynamic law (2)
in D.

– Q[t] is ⊥ ← ¬(F [t])prop.

Upon receiving this input and a range of nonnegative integers [min . . .max],
iclingo will find an answer set of the module Rk with k = min,min + 1, . . .
until it finds an answer set, or k = max, whichever comes first. In [14], module
Rk is defined from 〈B,P [t], Q[t]〉 as follows.

P0 = FM (B, ∅),
Pi = Pi−1 � FM (P [i],Out(Pi−1)), (1 ≤ i ≤ k)

Rk = Pk � FM (Q[k],Out(Pk)) .

(Due to lack of space, we refer the reader to [14] for the notations.)
The following theorem states the correctness of incremental execution in

Cplus2ASP.

128 J. Babb and J. Lee

Theorem 2. For any definite C+ description D, any non-negative integer k,
and any formula F (k) of the same signature as cplus2mvpf (D, k), an interpre-
tation I is a multi-valued stable model of cplus2mvpf (D, k) ∪ {⊥ ← ¬F (k)} iff
Iprop is a stable model of Rk. Conversely, an interpretation J is a stable model
of Rk iff J = Iprop for some multi-valued stable model of cplus2mvpf(D, k) ∪
{⊥ ← ¬F (k)}.

Proof. (Sketch) We can check that 〈B,P [t], Q[t]〉 obtained from the C+ de-
scription and a query as above is acyclic according to Definition 12 from [14].
Then the claim follows from Proposition 5 from [14].

The translation of BC into an incremental logic program is similar.

3 System Cplus2ASP v2

System Cplus2ASP v2 is a re-engineering of the prototypical Cplus2ASP v1
system [11] and is available under Version 3 of the GNU Public License. Like its
predecessor, Cplus2ASP v2 uses a highly modular architecture that is designed
to take advantage of the existing tools, including system f2lp [18] and highly-
optimized ASP grounders and solvers in addition to a number of packaged sub-
components. Figure 1 shows a high-level conceptualization of the interaction of
the sub-components in the Cplus2ASP v2 architecture.

For a description of the input language ofCplus2ASP, we refer the reader to the
Cplus2ASP homepage at http://reasoning.eas.asu.edu/cplus2asp
or CCalc 2 homepage at http://www.cs.utexas.edu/˜tag/ccalc/. A
typical run of Cplus2ASP involves the user interacting with the interactive
bridge, a tightly-coupled shell-like interface for Cplus2ASP, in order to con-
figure the Cplus2ASP run. Cplus2ASP.bin, a translator sub-component, is
then called to compile a CCalc 2 input program into a logic program contain-
ing complex formulas. Following this, system f2lp further turns the program
into the input language of gringo. The result of this compilation is given to

Fig. 1. Cplus2ASP v2 System Architecture

http://reasoning.eas.asu.edu/cplus2asp
http://www.cs.utexas.edu/~tag/ccalc/

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 129

clingo, or a similar answer set solver, and one or more answer sets are calcu-
lated. Finally, as2transition is invoked in order to format the answer sets into
a readable format.

Cplus2ASP accepts a CCalc 2 style syntax of language BC as well, for
which the user can select a different language mode for running. In addition,
Cplus2ASP is able to provide two target translations, a static translation to
traditional ASP, and an incremental variant, as described in section 2.4.

3.1 Running Modes of System Cplus2ASP v2

In this section we briefly review the usage of Cplus2ASP v2. For more complete
documentation and information on obtaining and installing Cplus2ASP v2, we
invite the reader to visit the Cplus2ASP homepage.

Cplus2ASP v2 currently offers two distinct user-interaction methods:
command-line and interactive shell. A brief introduction to both modes is
provided below.

Using the Command-Line Mode. The command-line mode is designed pri-
marily for interacting with a script or a seasoned Cplus2ASP user who is famil-
iar with the options available to them. The command-line mode is the default
user-interaction mode when a query is provided while calling Cplus2ASP.

For instance, to run a query labeled “simple” on a C+ description stored in
file bw-test, one can run the command:

cplus2asp bw-test query=simple

In order to run the command under the BC semantics, the flag --language=bc
should be asserted in the command line call.3

If more solutions are desired, the number of solutions can be appended to
the end of the command-line. As an example, appending 4 to the end of the
command will return up to four solutions, while appending all or 0 will return
all solutions.

The system provides the following options to write the output of a toolchain
component into a file. Below [PROGRAM] may be one of pre-processor,
grounder, solver, or post-processor.

--[PROGRAM]-output=[FILE] Writes the output of the toolchain compo-
nent [PROGRAM] to a persistent output file [FILE].

--to-[PROGRAM] Executes the program toolchain up to and including
[PROGRAM]. Similarly, --from-[PROGRAM] selects a program to initiate
execution with and continue from.

As an example, if the user wants to run the toolchain up to the preprocessor
and store the results for use later, he could use the command

3 The bw-test example program, along with other examples, can be found from the
Cplus2ASP homepage.

130 J. Babb and J. Lee

cplus2asp bw-test --to-pre-processor > bw-test.lp.

Later, he could then run the command

cplus2asp bw-test.lp --from-grounder query=simple

to continue execution.

Using the Interactive Mode. The user-interactive mode provides a shell-like
interface which allows the user to perform many of the configurations available
from the command line. In general, the user-interactive mode is entered any
time the user fails to provide all necessary information within the command-line
arguments. As such, the easiest way to enter the user-interactive mode is to
neglect to specify a query on the command-line. As an example, the command

cplus2asp bw-test

will enter the user-interactive mode.
While in the user-interactive mode, the following commands, among others,

are available to the user:

help Displays the list of available commands.
config Reveals the currently selected running options.
queries Displays the list of available queries to run.
minstep=[#] Overrides the minimum step to solve for the next query selected.
maxstep=[#] Overrides the maximum step to solve for the next query selected.
sol=[#] Selects the number of solutions to display.
query=[QUERY] Runs the selected query and returns the results.
exit Exits the program.

Following successful execution of a query, the system will return to the inter-
active prompt and the process can be repeated. For more information on using
Cplus2ASP v2, we invite the reader to explore the documentation available
at http://reasoning.eas.asu.edu/cplus2asp or within the help usage
message available by executing cplus2asp --help.

3.2 Lua in System Cplus2ASP v2

System Cplus2ASP v2 allows for embedding external Lua function calls in
the system, which are evaluated at grounding time. These Lua calls allow the
user a great deal of flexibility when designing a program and can be used for
complex computation that is not easily expressible in logic programs. A Lua
function must be encapsulated in #begin lua ...#end lua. tags, and, can
optionally be included in a separate file ending in .lua. Lua calls occurring
within the Cplus2ASP program are restricted to occurring within the where
clause 4 of each rule and must be prefaced with an @ sign.

For example, one can say that moving a block does not always work.5

4 The condition in the where clause is evaluated at grounding time.
5 Note that this is decided at grounding time so this is not truly random.

http://reasoning.eas.asu.edu/cplus2asp

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 131

move(B,L) causes loc(B)=L where @roll(1,2).

with Lua function defined as

#begin_lua
math.randomseed(os.time())
function roll(a,n)--returns 1 with probability a/n

if(math.random(n) <= a) then return 1
else return 0
end

end
#end_lua.

A more complete description of the system’s Lua functionality and additional
examples of its use are available from the Cplus2ASP homepage.

4 Experiments

In order to compare the performance of the Cplus2ASP v2 system with its
predecessors, we used large variants of several widely known domains 6 and com-
pared the performance of Cplus2ASP’s running modes with the performance
of CCalc v2, Cplus2ASP v1, and the incremental and static running modes
of coala (where applicable). All experiments were performed on an Intel Core
2 Duo 3.00 GHZ CPU with 4 GB RAM running Ubuntu 11.10. The CCalc v2
tests used relsat 2.0 as a SAT solver while Cplus2ASP v1, v2, and coala
tests used the same version of clingo, v3.0.5.

The domains tested include a large variant of the Traffic World [2], which
models the behavior of cars on a road; a variant of the Blocks World where
actions have costs [23]; the Spacecraft Integer [23], which models a spacecraft’s
movement with multiple independent jets; the Towers of Hanoi; and the Fer-
ryman domain, which involves moving a number of wolves and sheep across a
river without allowing the sheep to be eaten. The Towers of Hanoi and Ferry-
man descriptions are from examples packaged with coala v1.0.1. In order to
run on other systems, we manually turned them into the syntax of CCalc input
language.

Table 1 compares the results of the test benchmarks for each of the available
configurations. Each measured time includes translation, grounding, and solv-
ing for all possible maximum steps between 0 and the horizon (#), as well as
the number of atoms and rules produced below each timing. In all test cases
Cplus2ASP’s incremental running mode showed a significant performance ad-
vantage compared to the other systems, performing roughly 3 times faster than
coala’s incremental mode and an order of magnitude faster than its predecessor
Cplus2ASP v1. coala’s incremental running mode comes in the second place
in all but one benchmark. Cplus2ASP v2’s static mode tended to outperform
its predecessor on the more computation-heavy domains with additive fluents,

6 All benchmark programs are available from the Cplus2ASP homepage.

132 J. Babb and J. Lee

Table 1. Benchmarking Results

Domain steps CCalc 2 Cplus2ASP v1
coala Cplus2ASP v2

static incr. static incr.

traffic
11

878.59 s + 1 s
a

95.43 s + 25.95 s
–b –

82.16 s 14.2 s
(altmerge)

– –
+ 26.57 s + 2.6 s

[531552 / 3671940] [2722247 / 3341068] [2262231 / 2766459]

bw-cost
8

131.1 s + 5 s 76.16 s + 0.4 s
– –

17.09 s 3.47 s
(15)c + 3.16 s + 0.16 s

[149032 / 624439] [123517 / 260282] [43052 / 526923]
bw-cost

9
52 s + 987 s 271 s + 9.17 s

– –
63.26 s 13.45 s

(20) + 66.58 s + 2.24 s
[374785 / 1584778] [279869 / 626496] [102426 / 1745166]

spacecraft
3

173.62 s + 0 s 16.07 s + 2.65 s
– –

5.57 s 2.33 s

(15/8)d + 0.06 s + 0.01 s
[128262 / 622158] [146056 / 146056] [132918 / 253514]

spacecraft
4 timeout

208.2 s + 480.24 s
– –

67.55 s 17.46 s
(25/10) + 3.42 s + 0.35 s

[760673 / 1653650] [732860 / 1427771]

hanoi
64

14 s + 1983 s 38.9 s + 137.27 s
1039.15 s 1.4 s 547.9 s 0.76 s

(6/3) e + 507.12 s + 51.13 s + 47.53 s + 3.5 s
[13710 / 221895] [37297 / 298047] [13798 / 410559] [10086 / 202694]

towers
33 timeout

31.19 s + 102.69 s
304.02 s 1.51 s 102.81 s 1.04 s

(8/4) + 3017.87 s + 470.23 s + 89.36 s + 14.8 s
[35041 / 433660] [12922 / 655436] [9074 / 324668]

ferryman
16

39.45 s + 0 s 8.27 s + 2.98 s
40.85 s 0.87 s 21.59 s 0.66 s

(10/4) f + 8.71 s + 1.85 s + 2.37 s + 0.25 s
[55905 / 308909] [14122 / 120693] [4973 / 358772] [12721 / 112912]

ferryman
26

1004.26 s + 0 s 85.21 s + 39.54 s
793.13 s 6.13 s 318.4 s 4.18 s

(15/4) + 169.18 s + 14.73 s + 34.4 s + 2.97 s
[256590 / 1452554] [42687 / 539513] [15718 / 2275992] [39536 / 515167]

a preprocessing time + solving time [# atoms / # rules]
b The input language is not expressive enough to represent the domain.
c maximum cost
d domain size (15× 15× 15) / goal position (8× 8× 8)
e # disks / # pegs
f # animals / boat capacity

but was subsequently outmatched in the others. Finally, CCalc 2 and coala’s
static mode came in last (with CCalc performing slightly worse in most cases).

Figure 2 shows a more detailed analysis of the execution of the first 100 steps
of solving an extreme variant of the ferryman domain consisting of 120 of each
animal by graphing the time spent (in seconds) on each step by each configura-
tion. While the static configurations were required to completely re-ground and
re-solve the translated answer set program for each maximum step, resulting in
an ever-growing amount of work to be performed at each step, Cplus2ASP v2’s
incremental running mode is able to avoid this by only grounding the new cu-
mulative (P [t]) and volatile (Q[t]) components and leveraging heuristics learned
from previous iterations. This results in far less time being required for checking
each increment.

Although coala’s incremental mode uses the same reasoning engine iclingo
as Cplus2ASP v2’s incremental mode, system Cplus2ASP sees a significant
overall speed-up over coala. This is related to a significant reduction in the
number of atoms and rules produced during grounding, which also accounts for
far fewer conflicts and restarts during solving in all test cases.

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 133

Fig. 2. Ferryman 120/4 Long Horizon Analysis

5 Conclusion

A distinct advantage that Cplus2ASP v2 has over its prototypical predeces-
sor is that it was re-engineered in order to allow for far greater flexibility and
extensibility via a multi-modal execution model. This makes it suitable for use
as a base-platform for future input language implementations, input language
extensions, or target languages/platforms.

The advances in ASP solving techniques account for the efficiency of system
Cplus2ASP. We expect that the significant speed-up of the system demon-
strated by Cplus2ASP v2, as well as the enhanced expressivity of the input
language, will contribute to widening application of action languages in various
domains.

Acknowledgements. We are grateful to Michael Bartholomew and the anony-
mous referees for their useful comments. This work was partially supported by
the National Science Foundation under Grant IIS-0916116 and by the South
Korea IT R&D program MKE/KIAT 2010-TD-300404-001.

References

1. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artificial Intelligence 153(1-2), 49–104 (2004)

2. Akman, V., Erdoğan, S., Lee, J., Lifschitz, V., Turner, H.: Representing the Zoo
World and the Traffic World in the language of the Causal Calculator. Artificial
Intelligence 153(1-2), 105–140 (2004)

3. Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E., Patoglu, V.: Bridg-
ing the gap between high-level reasoning and low-level control. In: Erdem, E., Lin,
F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 342–354. Springer, Hei-
delberg (2009)

4. Artikis, A., Sergot, M., Pitt, J.: Specifying norm-governed computational societies.
ACM Transactions on Computational Logic 9(1) (2009)

5. Desai, N., Chopra, A.K., Singh, M.P.: Representing and reasoning about commit-
ments in business processes. In: AAAI, pp. 1328–1333 (2007)

134 J. Babb and J. Lee

6. Armando, A., Giunchiglia, E., Ponta, S.E.: Formal specification and automatic
analysis of business processes under authorization constraints: An action-based
approach. In: Fischer-Hübner, S., Lambrinoudakis, C., Pernul, G. (eds.) TrustBus
2009. LNCS, vol. 5695, pp. 63–72. Springer, Heidelberg (2009)

7. McCain, N.: Causality in Commonsense Reasoning about Actions. PhD thesis,
University of Texas at Austin (1997)

8. Ferraris, P., Lee, J., Lierler, Y., Lifschitz, V., Yang, F.: Representing first-order
causal theories by logic programs. TPLP 12(3), 383–412 (2012)

9. Doğandağ, S., Alpaslan, F.N., Akman, V.: Using stable model semantics (SMOD-
ELS) in the Causal Calculator (CCALC). In: Proceedings 10th Turkish Symposium
on Artificial Intelligence and Neural Networks, pp. 312–321 (2001)

10. Gebser, M., Grote, T., Schaub, T.: Coala: A compiler from action languages to
ASP. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 360–
364. Springer, Heidelberg (2010)

11. Casolary, M., Lee, J.: Representing the language of the causal calculator in answer
set programming. In: ICLP (Technical Communications), pp. 51–61 (2011)

12. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial
Intelligence 3, 195–210 (1998)

13. Lee, J., Lifschitz, V., Yang, F.: Action language BC: Preliminary report. In: Proc.
IJCAI 2013 (to appear, 2013)

14. Babb, J., Lee, J.: Module theorem for the general theory of stable models.
TPLP 12(4-5), 719–735 (2012)

15. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of
disjunctive stable models. Journal of Artificial Intelligence Research 35, 813–857
(2009)

16. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence 175, 236–263 (2011)

17. Lee, J.: Automated Reasoning about Actions. PhD thesis, University of Texas at
Austin (2005)

18. Lee, J., Palla, R.: System f2lp – computing answer sets of first-order formulas. In:
Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 515–521.
Springer, Heidelberg (2009)

19. Bartholomew, M., Lee, J.: Stable models of formulas with intensional functions. In:
Proceedings of International Conference on Principles of Knowledge Representation
and Reasoning, KR, pp. 2–12 (2012)

20. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005)

21. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelli-
gence 138, 39–54 (2002)

22. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 54–66.
Springer, Heidelberg (2011)

23. Lee, J., Lifschitz, V.: Describing additive fluents in action language C+. In: Pro-
ceedings of International Joint Conference on Artificial Intelligence, IJCAI, pp.
1079–1084 (2003)

Towards Answer Set Programming with Sorts

Evgenii Balai, Michael Gelfond, and Yuanlin Zhang

Texas Tech University, USA
{evgenii.balai,michael.gelfond,y.zhang}@ttu.edu

Abstract. Existing ASP languages lack support for conveniently specifying
objects, their sorts and the sorts of the parameters of relations in an applica-
tion domain. However, such support may allow a programmer to better struc-
ture the program, to automatically determine some syntax and semantic errors
and to avoid thinking about safety of ASP rules — non-declarative conditions on
rules required by existing ASP systems. In this paper, we define the syntax and
semantics of a knowledge representation language SPARC which offers explicit
constructs to specify objects, relations, and their sorts. The language expands CR-
Prolog — an extension of ASP by consistency restoring rules. We introduce an
implementation of SPARC based on its translation to DLV with weak constraints.
A syntax checking algorithm helps to avoid errors related to misspellings as well
as simple type errors. Another type checking algorithm flags program rules which,
due to type conflicts, have no ground instantiations.

1 Introduction

A good knowledge representation methodology should allow one to:

– Identify and describe sorts (types, kinds, categories) of objects populating a given
domain.

– Identify and classify these objects.
– Identify and precisely define objects properties and relationships between them.

ASP[1] based knowledge representation languages have powerful means for describ-
ing these properties and relationships but lack the means for conveniently specifying
objects and their sorts as well as sorts of parameters of the domain relations. There
were some attempts to remedy the problem. The #domain statements of lparse [2] — a
popular grounder used for a number of ASP systems — define sorts for variables. Even
though this device is convenient for simple programs it causes substantial difficulties for
medium and large programs. It is especially difficult to put together pieces of programs
written at different time and/or by different people. The same variable may be declared
as ranging over different sorts by different #domain statements used in different parts
of a program. So the process of merging these parts requires renaming of variables.
This concern was addressed by Balduccini whose system, RSig[3] , provided an ASP
programmer with means for specifying sorts of parameters of the language predicates.
RSig is a simple (but very useful) extension of ASP which does not require any shift
in perspective and involves only minor changes in existing programs. In this work we
further develop the idea of RSIG by introducing a knowledge representation language

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 135–147, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

136 E. Balai, M. Gelfond, and Y. Zhang

SPARC . In addition to allowing the specification of program relations and their param-
eters SPARC provides a programmer with means for defining objects of the program
domain and their sorts. This allows better separation of concerns. A programmer is en-
couraged to write rules which express general properties of the domain and do not nec-
essarily refer to particular domain objects. Such rules can be used in conjunction with
different collections of objects and/or different placement of objects into sorts. A simple
syntax checking algorithm helps a programmer to avoid errors related to misspelling as
well as simple type errors. (Despite their simplicity such errors are sometimes not easy
to identify.) Explicit declaration of sorts allows a programmer to avoid thinking about
safety conditions in program rules — a feature especially important when SPARC is
used to teach declarative programming. Finally a type checking algorithm locating rules
of the program which, because of the type restrictions on variables, do not have any
ground instantiations is useful for determining more subtle potential problems. The
paper defines the syntax and semantics of a version of SPARC defined on top of CR-
Prolog — an ASP based language with consistency-restoring rules [4]. It also describes
the corresponding syntax and type checking algorithms, and an algorithm for comput-
ing answer sets of a SPARC program based on reduction of such a program to DLV [5]
— a language of disjunctive logic programs with weak constraints [6]. The preliminary
description of the language and the latter algorithm has been presented in [7] in 2012.
The new version of the language however is quite different from that presented in this
workshop. The most important improvement is the completely new definition of sorts
and domain objects of a program. An implementation of the SPARC system can be
found at [8]. The paper is organized as follows. In the next section we define syntax and
semantics of SPARC . We then present syntax and type checking algorithms in Sections
3 and 4, and an algorithm for computing answer sets of a SPARC program in Section 5.
Most of the paper can be understood by anyone familiar with logic programming under
the answer set semantics. However, full understanding of Section 5 requires knowledge
of CR-Prolog.

2 Syntax and Semantics of SPARC
SPARC vocabulary consists of variables, sort names, symbolic names, natural num-
bers, equality (=) and inequality (!=) defined on arbitrary terms, order relations (<,≤)
on numbers and on symbolic names (ordering of symbolic names is lexicographic), and
standard arithmetic functions. Variables and symbolic names are identifiers which start
with capital and lower-case letters respectively; sort name is a symbolic name preceded
by #. The vocabulary is used to define SPARC terms which are divided into arithmetic
and symbolic. An arithmetic term is defined as usual. A symbolic term is a symbolic
name, or a variable, or a string of the form f(t1, . . . , tn) where f is a symbolic name
and t1, . . . , tn are arithmetic or symbolic terms. A term f(t1, . . . , tn) is referred to as
a record with the record name f (of arity n). A term is called ground if it contains
no variables and no arithmetic operations. A set expression of SPARC is either a sort
name,a collection of ground terms {t1, . . . , tn}, or has the form (A!B) where A and
B are set expressions and ! is a set theoretic operation +, − or ×. Parentheses can be
omitted and standard preference is used to determine the order of operations. We also

Towards Answer Set Programming with Sorts 137

need two special sorts dom and nat which belong to every program of SPARC: the
former consists of all ground terms from the signature of the program, and the sort nat
of natural numbers between 0 and maxint.

Now we are ready to define the syntax of SPARC . A SPARC program is constructed
from four consecutive parts:

The first part, called directives consists of a (possibly empty) collection of statements
of the form
#const <identifier> = <natural number>.
#maxint = <natural number>.
The second part of the program consists of the keyword sorts followed by a list of sort
definitions — statement of the form (1) – (5) below. It is used to define

– objects of the program’s domain (often referred to as domain elements) and
– sort names and their assignments to non-empty sets of domain elements.

The list consists of statements of the form
sort name = sort expression
where sort expressions are expressions appearing on the right-hand side of statements
(1) – (5) below. Each such expression, E, defines a collection D(E) of ground terms
which is assigned to the sort sort name. In addition, if {t1, . . . , tn} occurs in the sort
expression on the right then every ti together with its subterms is added to the set, dom,
of domain elements of the program.
Statement

sort name = set expr (1)

defines a sort, sort name using the set expression on the right. For example the sort
definition consisting of statements

#blocks = {b1,b2}
#locations = #blocks + {table}

defines the program domain consisting of elements {b1, b2, table}; sort #blocks is
mapped into {b1, b2}; and sort #locations mapped into {b1, b2, table}. The sort
definition

#names = {name(bob,smith), name{mary,smith}}

defines the set names consisting of the two records on the right and expands the set of
domain elements by these records and their subterms bob, mary, and smith.

Statement of the form
sort name = [n1..n2] (2)

where n1 and n2 are natural numbers and n1 ≤ n2 defines the sort {n : n1 ≤ n ≤ n2}.

Similarly if id1 and id2 are identifiers then the statement

sort name = [id1..id2] (3)

defines the sort {id : |id1| ≤ |id| ≤ |id2| and id1 ≤ id ≤ id2} where ≤l is the
lexicographic ordering on identifiers.

138 E. Balai, M. Gelfond, and Y. Zhang

The next statement has the form

sort name = f(s1(var1), ..., sn(varn)) : cond (4)

where f is a new symbolic name, s1, . . . , sn are previously defined sorts and cond
has the form X " Y , where X,Y ∈ {var1, . . . varn} and " ∈ {<,≤,=, �=} , or
C1 • C2, where C1 and C2 are conditions and • ∈ {∨,∧}. Both, the variables and
the condition, can be omitted. The new sort is assigned a collection of records of the
form f(t1, . . . , tn) where t1, . . . , tn are elements of sorts s1, . . . , sn satisfying condi-
tion cond. For instance, a statement

#actions = put(#blocks,#locations).

defines a new sort, actions, consisting of records of the form put(b, l) where b is a
block and l is a location. Note that, according to this definition, a record put(b1, b1) is
an action. Sometimes it is convenient to exclude this possibility. This can be achieved
by the following alternative definition of actions:

#actions = put(#blocks(X),#locations(Y)) : X != Y.

Now a record put(b, l) belongs to the sort actions if b is a block, l is a location, and b
and l are different. The statement

sort name = [b expr][b expr] . . . [b expr] (5)

defines concatenation of basic sorts, i.e., sorts consisting of identifiers and natural num-
bers; b expr is the name of a basic sort or a list t1, . . . , tn of natural numbers and
symbolic names or expressions of the form n1..n2 and id1..id2 where n1, n2 are natu-
ral numbers and id1, id2 are symbolic names. These sort definitions are useful when we
want to define large basic sorts, e.g. a sort of blocks b1, . . . , b100 can be defined as:

#blocks = [b][1..100]
Definition 1 (Sorts Definitions)
The list of sort definitions of a program is a sequence of statements of the form (1)–(5)
such that no sort name occurs on the left-hand side of a statement more than once and no
sort name occurs on the right-hand side of a statement if it was not previously defined.

The collection of sorts of a program consists of sorts defined by sort definitions of the
program and sorts dom and nat.

Definition 2 (Domain Elements)
A ground term t of SPARC is an element of the program’s domain if
1. t is a natural number belonging to sort nat or
2. t is defined by a sort definition of the form (2)-(5) or
3. there is a sort definition containing an occurrence of {.., t, ..} or
4. t is a subterm of a term satisfying one of the above properties.

In the first two cases t belongs to at least one sort defined by the corresponding sort
definition. The domain element defined by one of the last two clauses of the definition
may or may not have such a sort. In this case it belongs to sort dom of the program.

We say that a record name is defined by a program Π if it occurs in one of the
elements of Π’s domain.

Towards Answer Set Programming with Sorts 139

The third part of the program defines predicate symbols and sorts of their parameters.
It starts with a keyword predicates and is followed by statements of the form

pred(sort name, . . . , sort name)

where pred is a new identifier and sort names are sort names defined by the sort
definitions. The statement defines predicate symbol pred and specifies its arity and the
sorts of its parameters.

The first three sections of a SPARC program Π uniquely define the program’s signa-
ture. To define rules of Π we need the following definitions:

Definition 3 (Program Term)
A SPARC term t is called a term of SPARC program Π if every ground subterm
of t is an element of the program’s domain and every record name occurring in t is
defined by Π .

Let p(s1, . . . , sn) be a predicate declaration of Π . By Σ(p) we denote the sequence
(s1, . . . , sn). If p is a sort name, Σ(p) is p.

Definition 4 (Program Atom)
A string p(t1, . . . , tn), where p is a predicate symbol or sort of Π and t1, . . . , tn are
Π’s terms, is an atom of Π if:

– Let Σ(p) be (s1, s2, . . . , sn)
– for each i ∈ {1..n}:

• if ti is a ground symbolic term then ti belongs to si,
• if ti is an arithmetic term without variables, si must contain the value of ti

(denoted by val(ti)),
• if ti is an arithmetic term with variables and at least one arithmetic operation,
si must contain at least one number.

An atom A of Π or its negation ¬A are called literals of Π .

Example 1 (Program Π0)
To see some examples consider a program Π0 containing the following:

#const n = 1.
sorts
#s1 = {f(b)}.
#s2 = [0..n].
predicates
p(#s1,#s2).

It is easy to see that {b, f(b)} where b ∈ dom and f(b) ∈ #s1 are non-numerical
ground terms of Π0; p(X,X) is an atom of Π0, while p(X, f(b)),p(X, a) and p(0, X)
are not.

Definition 5 (Program Rules)
A rule of a SPARC program Π is a regular ASP rule

l0 ∨ . . . ∨ lm ← lm+1, . . . , lk, not lk+1 . . . not ln (6)

140 E. Balai, M. Gelfond, and Y. Zhang

or a CR-Prolog rule

l0
+← l1, . . . , lk, not lk+1 . . . not ln (7)

where l’s are literals of Π and l0 is not formed by a sort name. We say that a rule is
ground if it is constructed from ground literals.

The fourth part of a SPARC program starts with the keyword rules and is followed
by a finite collection of rules of Π . This completes our definition of syntax of SPARC
programs. In what follows sort definitions, predicate declarations and program rules of
Π will be denoted by S(Π), P(Π), andR(Π) respectively.

To define the semantics of SPARC program Π we will define its answer sets. If
the rules of Π are ground then answer sets of Π are answer sets of the collection of
its ground rules. To define answer sets of a program Π with variables we need some
terminology. A ground instance of a rule r of Π is a ground rule of Π which is the result
of replacing variables of r by properly-sorted elements of the Π’s domain; ground(r)
is the collection of all such instantiations; ground(Π) is the union of ground(r) for all
rules of Π .

Definition 6 (Answer Sets)
Answer sets of a SPARC program Π are answer sets of an unsorted logic program
ground(Π).

Example 2 (Program Π0 (continued))
Let us now complete our program Π0 by adding to it the rules:

p(f(b),0).
p(X,X).
p(f(b),Y+1) :- p(f(b),Y).

ground(Π0) consists of ground rules

p(f(b),0).
p(f(b),1) :- p(f(b),0).

Note that there is no subsitution of X in p(X,X) which respects the sorts of p. Hence,
the rule p(X,X) has no ground instantiations; {p(f(b), 0), p(f(b), 1)} is the only an-
swer set of ground(Π0) and hence of Π0. Notice that according to this definition we
cannot expand Π0 by the statement

p(X,f(b)).

since, according to our sort and predicate declarations, it would not be a rule of the
resulting program.

2.1 Discussion

Notice that the above definition of ground(Π) involves a non-obvious choice. We do
not require the set ground(r) to be non-empty. The alternative would be to prohibit
such rules. Under this alternative definition Π0 would not be a program of SPARC .
(Note that Π0∪{p(X, a)} is not a program under any of these definitions). Our choice is

Towards Answer Set Programming with Sorts 141

based on the methodology for writing SPARC programs which attempts to make them
elaboration tolerant. We assume that normally programmers will be fully aware of sort,
function, and predicate symbols of the program’s signature but not necessarily about
actual content of the sorts. As an example one may think about a programmer represent-
ing “blocks world” domain. He may structure the world in terms of sorts steps, blocks,
locations, actions and fluents, and predicate symbols holds(fluents, steps) and
occurs(actions, steps), and write causal laws representing the domain, e.g.
holds(on(B,L), I + 1)← occurs(put(B,L), I). Later he may define the sorts of the
program including that of actions. Suppose this is done using the first definition of
actions from page 4. If the programmer later wants to use this knowledge for planning
he may decide to exclude generating an action put(B,B) by a constraint

← occurs(put(B,B), I).

After further consideration the definition of actions can be changed to the second ver-
sion, which would leave our constraint without ground instantiations. Should this result
in error? Our answer is “no”. The rule will simply automatically disappear during the
grounding process. We will however have an option of warning the programmer about
such an event (see section 4).

3 Checking the Program Syntax

In this section we define a syntax checking algorithm for SPARC programs. Given
program Π , the syntax check of directives and predicate declarations of Π is straight-
forward. Checking correctness of sort expressions involves checking their syntax, in-
cluding non-emptiness of the sorts which can be done by a simple recursive algorithm.
In the process we also mark all sorts which contain at least one number and create the
list of names of all the program records. The rule part of the program is syntactically
correct iff each of its rules is correct, i.e. if each rule is properly constructed from pro-
gram atoms. The main work is performed by functions IsAtom(A,Π) and IsTerm(T,Π)
which return true iff A and T are atom and term of Π respectively. Another impor-
tant function, ReduceTerm uses sort definitions of Π , a ground term t and a sort s to
construct a formula which evaluates to true iff t ∈ s. To be more precise we need the
following definitions:

Definition 7 (Formula)

– T ∈ D, where T is a variable, a ground term or an arithmetic term, and D is a set
of ground terms, is a formula,

– t1 " t2, where t1 and t2 are terms and " ∈ {=, �=,≺,$}, is a formula, and
– if A and B are formulas then (A ∧ B), (A ∨ B), and ¬A are formulas.

Formula F is called ground if it does not contain variables.

Relation ≺ is defined on arbitrary terms; X ≺ Y iff X and Y are both symbolic names
or both integers and X < Y . Otherwise X ≺ Y is false. Similarly for $.

Definition 8 (Satisfiability). A formula F is satisfied by a substitution θ of variables
of F by ground SPARC terms if the result, F(θ), of this substitution is true.

142 E. Balai, M. Gelfond, and Y. Zhang

Now we are ready to describe IsAtom and IsT erm:

Algorithm 1. IsAtom

Input: a string of the form p(t1, . . . , tn), where t1, . . . , tn are SPARC terms,
and a SPARC program Π .

Output: true if p(t1, . . . , tn) is an atom of Π and false otherwise.
1 if p is not a sort or a predicate name of Π then
2 return false

3 Let Σ(p) be (s1, s2, . . . , sn)
4 for each ti of p(t1, . . . , tn) do
5 if ti is a ground term and ReduceT erm(ti, si, Π) is false then
6 return false

7 if ti is an arithmetic term without variables and
ReduceT erm(val(ti), si, Π) is false then

8 return false

9 if ti is an arithmetic term with variables and at least one arithmetic
operation and si does not contain a number then

10 return false

11 if ti is not a ground term and IsT erm(ti, Π) is false then
12 return false

13 return true

Algorithm 2. IsTerm
Input: a SPARC term t and a program Π .
Output: true if t is a term of Π and false otherwise.

1 if there exists a record name in t that is not defined by Π then
2 return false

3 for each maximum ground subterm u of t do
4 if u is a natural number such that u > #maxint then
5 return false

6 if u is a symbolic term not occurring in the sort definitions of Π then
7 if there is no sort s such that ReduceT erm(u, s,Π) is true then
8 return false

9 return true

The only thing left is to define function ReduceT erm(t, s,Π) mentioned above.
Note that for our purpose it is sufficient to define it for a ground term t only. But we
introduce a more general algorithm which allows t to be non-ground. This will be useful
in the next section.

Towards Answer Set Programming with Sorts 143

Algorithm 3. ReduceTerm
Input: a term t and a sort expression E of a SPARC program Π .
Output: a formula C which is satisfiable if and only if there exists a substitution

θ, such that tθ ∈ D(E).
1 if E is a sort name defined by a statement E = E1 then
2 C := ReduceT erm(t, E1, Π)

3 else if E is of the form E1 ! E2, where ! ∈ {+,−, ∗} then
4 C := (ReduceT erm(t, E1, Π))% (ReduceT erm(t, E2, Π)), where A%B

is A ∨B,A ∧ ¬B, or A ∧B when ! is +,−, or ∗ respectively

5 else if E is of the form f(s1[X1], . . . , sn[Xn]) : cond(X1, . . . , Xn)
6 where the condition cond(X1, . . . , Xn) is optional then
7 if t is not a variable and is not formed by a record name f then
8 return false

9 Let X ′
1, . . .X

′
n be new variables

10 if t is of the form f(t1, . . . tn) then
11 C := (X ′

1 = t1) ∧ · · · ∧ (X ′
n = tn))

12 else if t is a variable then
13 C := (t = f(X ′

1, . . . X
′
n))

14 if condition cond(X1, . . . , Xn) is present in E then
15 C := C ∧ cond′(X ′

1, . . . , X
′
n) where cond′(X ′

1, . . . , X
′
n) is obtained

from cond(X1, . . . , Xn) by replacing Xi with X ′
i and <,≤ with ≺,$

respectively.

16 C := C ∧ (ReduceT erm(X ′
1, s1, Π)) ∧ . . . ∧ (ReduceT erm(X ′

n, sn, Π))

17 else
18 if t is not ground term of the form f(t1, . . . tn) then
19 C = ∨{(t1 = t′1) ∧ . . . ∧ (tn = t′n)|f(t′1, . . . , t′n) ∈ D(E)}a

20 else
21 C = t ∈ D(E)

22 return C

aempty disjunction is interpreted as false

Note that the algorithm ReduceT erm comes to line 17 when expression E is of the
form {t1, . . . , tn} or is defined by statements of the form 2,3 or 5. In this case the corre-
sponding D(E) is computed explicitly. The correctness of ReduceT erm algorithm is
guaranteed by the following claim:

Claim. Given a SPARC term t, a sort expression E of a program Π and a substitution
θ, θ is a solution of the formula ReduceT erm(t, E,Π) if and only if tθ ∈ D(E).

144 E. Balai, M. Gelfond, and Y. Zhang

Example 3 (Tracing the Algorithm)
Now let us trace our syntax checker on a rule p(f(b),Y+1) :- p(f(b),Y) of
program Π0 from Examples 1 and 2. To check the rule’s syntax we use IsAtom to
establish that p(f(b), Y + 1) and p(f(b), Y) are atoms of Π0. IsAtom(p(f(b), Y +
1), Π0) calls ReduceT erm(f(b), s1, Π0) which returns true (see line 21). After that
we have the following two calls: IsT erm(Y + 1, Π0) and ReduceT erm(1, s2, Π0).
The latter, and hence the former, return true. Hence, the head of our rule is an atom of
Π0. Similarly for the body. Therefore, the rule p(f(b),Y+1) :- p(f(b),Y) is
indeed a rule of Π0.

Now let Π1 = Π0 ∪ {p(X, f(b)).}. This time IsAtom(p(X, f(b)), Π1) will return
false, because f(b) is a ground term which is not an element of corresponding sort s2
(therefore, ReduceT erm(f(b), s2, Π1) returns false).

4 Empty Rule Checking

In this section we introduce an algorithm, IsEmptyRule, which checks if a rule r of
Π is empty, i.e. has no ground instantiations. This is done by applying a standard con-
straint satisfaction algorithm to a constraint formula over finite domains[9] produced by
function ReduceRule.

Algorithm 4. IsEmptyRule
Input: rule r of a program Π .
Output: true if r is a non-empty rule of Π and false otherwise.

1 C = ReduceRule(r,Π)
2 return satisfiable(C)

Algorithm 5. ReduceRule
Input: a rule r and a SPARC program Π .
Output: a formula C, which is satisfiable if and only if r is not empty rule of Π .

1 C := true

2 for each ti of each atom p(t1, . . . , tn) occurring in r do
3 Let (s1, . . . , sn) be Σ(p)
4 C := C ∧ReduceT erm(ti, si, Π)

5 return C

In ReduceRule, we extract constraints, using ReduceT erm, for every term of every
atom of r and connect them by conjunctions. The function ReduceT erm takes a term
t and a sort expression E of a program Π and returns a formula which is satisfiable if
and only if there is an instance of t which belongs to D(E).

Claim. Given a SPARC program Π and a program rule r of Π , IsEmptyRule(Π, r)
returns true if and only if r is not empty.

Example 4 (Empty rule)
Consider the rule p(X,X) of program Π0. ReduceRule(r,Π0) returns formula X ∈
{f(b)}∧X ∈ {1, 2}which is clearly unsatisfiable. Therefore, the rule is an empty rule.

Towards Answer Set Programming with Sorts 145

5 Computing Answer Sets of a SPARC Program

Answer sets of a SPARC program Πsparc will be computed by translating the program
into a program in the language of DLV with weak constraints. First we need some
notation: every cr-rule r of Πsparc will be assigned a unique number i. An expression
rn(i,X1, ..., Xn) where X1, ..., Xn is the list of distinct variables occurring in r will
be referred to as the name of r. For instance, if rule p(X,Y)← q(Z,X, Y) is assigned
number 1 then its name is rn(1, X, Y, Z). We also need the following definition:

Definition 9 (DLV counterparts of SPARC programs). A DLV program Πdlv is a
counterpart of a SPARC program Πsparc if

– the signature of Πdlv is an extension of the signature of Πsparc, and
– the answer sets of Πsparc and Πdlv coincide on literals from the language of

Πsparc.

The translation is performed by Algorithm 6. The basic idea is to explicitly add the
necessary sorts in the bodies of the DLV rules (which will eliminate possible problems
with the safety of variables) and to replace cr-rules by a collection of weak constraints.
The latter requires introduction of some new predicate symbols which explains the first
requirement in definition 9.

Algorithm 6. Translate
Input: a SPARC program Πsparc

Output: a DLV counterpart Πdlv of Πsparc.
1 Set variable Πdlv to directives of Πsparc

2 Let appl/1 be a new predicate not occurring in Πsparc

3 for each rule r in Πsparc do
4 S := {s(t) | there exists p(t1, ..., tn), occurring in r, such that
5 p(s1, . . . , sn) ∈ P(Πsparc); for some i, t = ti, s = si; and t is ground}
6 for each distinct sort name s occurring in S do
7 Πdlv := Πdlv ∪ {s(t).|t ∈ D(s)}
8 Let rule r′ be the result of adding all elements of S to the body of r
9 if r′ is a regular rule then

10 Add r′ to Πdlv

11 if r′ is a cr-rule of the form q
+← body then

12 Add to Πdlv the following rules
appl(rn(i,X1, ..., Xn))∨ ¬appl(rn(i,X1, ..., Xn)) :- body.
:∼ appl(rn(i,X1, ..., Xn)), body.
q :- appl(rn(i,X1, ..., Xn)), body.

13 where rn(i,X1, ..., Xn) is the name of r

The intuitive idea behind the rules added to Πdlv for a cr-rule at line 12 is the follow-
ing: appl(rn(i, X1, ..., Xn)) holds if the cr-rule r is used to obtain an answer set of
the SPARC program; the first of the added rules says that r is either used or not used;

146 E. Balai, M. Gelfond, and Y. Zhang

the second rule, a weak constraint, guarantees that r is not used if possible, and the last
rule allows the use of r when necessary. The correctness of the algorithm is guaranteed
by the following theorem whose complete proof can be found in our technical report
[10].

Theorem 1. A DLV program Pdlv obtained from a SPARC program Psparc by the
algorithm Translate is a DLV counterpart of Psparc.

The translation can be used to compute answer set of SPARC program Πsparc by using
the DLV solver to compute answer sets ofΠsparc’s DLV counterpart and removing from
them all auxiliary literals introduced in Translate.

Example 5 (Computing answer sets of a SPARC program)
To illustrate the translation and the computation of an answer set of a SPARC program,
consider the input program Π1 obtained from Π0 by changing the type of one of its
rules to consistency restoring:

#const n = 1.
sorts
#s1 = f(b).
#s2 = [0..n].
predicates
p(#s1,#s2).
rules
p(f(b),0).
:- not p(f(b),1).
p(X,X).
p(f(b),Y+1) :+ p(f(b),Y).

After the execution of the loop at line 3 of algorithm Translate, the first three
regular program rules will be translated into

p(f(b),0).
:- not p(f(b),1).
p(X,X):-s1(X),s2(X).
s2(0). s2(1). s1(f(b)).

Assuming the only cr-rule is numbered by 0, it is translated as1:

appl(rn(0, Y))| -appl(rn(0, Y)):-p(f(b),Y),s2(Y),s2(Y+1).
:∼ appl(rn(0, Y)),p(f(b),Y),s2(Y),s2(Y+1).
p(f(b),Y+1):-appl(rn(0, Y)),p(f(b),Y),s2(Y),s2(Y+1).

Given the program resulted from Translate, DLV solver returns an answer set

{s2(0), s2(1), s1(f(b)), p(f(b), 0), appl(rn(0, 0)), p(f(b), 1)}.

After dropping appl(rn(0, 0)), s2(0), s2(1), s1(f(b)) from this answer set, we obtain
an answer set {p(f(b), 0), p(f(b), 1)} for the original program.

1 The actual output result of the implemented version may be different because of variable
renaming, change of the order of rules and shifting arithmetic terms.

Towards Answer Set Programming with Sorts 147

6 Conclusion

As ASP has been employed to solve more and more problems, we believe constructs
are needed to improve the productivity of ASP programmers. Particularly, constructs are
needed to allow a programmer to better structure the program, to automatically deter-
mine some syntax and semantic errors and to avoid thinking about safety of ASP rules
— non-declarative conditions on rules required by existing ASP systems. We define the
syntax and semantics of a knowledge representation language SPARC which offers
explicit constructs to specify objects, relations, and their sorts. The new language ex-
pands CR-Prolog — an extension of ASP by consistency restoring rules. We introduce
an implementation of SPARC based on its translation to DLV with weak constraints.
A simple syntax checking algorithm helps a programmer to avoid errors related to mis-
spelling the names of objects and predicates as well as simple type errors. Another type
checking algorithm flags program rules which, due to type conflicts, have no ground
instantiations. We hope that the sort related algorithms presented in this paper will be
eventually used to make SPARC a front-end for other ASP based systems (including
CR-Prolog system CR-models [11]).

Acknowledgements. This work was partially supported by NSF grant IIS-1018031.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceed-
ings of ICLP 1988, pp. 1070–1080 (1988)

2. Syrjänen, T.: Lparse 1.0 user’s manual (2000)
3. Balduccini, M.: Modules and signature declarations for a-prolog: Progress report. In: Soft-

ware Engineering for Answer Set Programming Workshop, SEA 2007 (2007)
4. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: Inter-

national Symposium on Logical Formalization of Commonsense Reasoning. AAAI 2003
Spring Symposium Series vol. 102. The AAAI Press (2003)

5. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic (TOCL) 7(3), 499–562 (2006)

6. Buccafurri, F., Leone, N., Rullo, P.: Strong and weak constraints in disjunctive datalog. In:
Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 2–17. Springer,
Heidelberg (1997)

7. Balai, E., Gelfond, M., Zhang, Y.: SPARC – sorted ASP with consistency restoring rules. In:
Answer Set Programming and Other Computing Paradigms (2012)

8. SPARC system,
http://www.depts.ttu.edu/cs/research/krlab/#software

9. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
10. Balai, E., Gelfond, M., Zhang, Y.: SPARC – sorted ASP with consistency restoring rules.

Technical Report, Texas Tech University, USA (2012),
http://www.depts.ttu.edu/cs/research/krlab/#papers

11. Balduccini, M.: CR-MODELS: An Inference Engine for CR-Prolog. In: Baral, C., Brewka, G.,
Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 18–30. Springer, Heidelberg
(2007)

http://www.depts.ttu.edu/cs/research/krlab/#software
http://www.depts.ttu.edu/cs/research/krlab/#papers

Prolog and ASP Inference under One Roof

Marcello Balduccini1, Yuliya Lierler2, and Peter Schüller3

1 Eastman Kodak Company, USA
marcello.balduccini@gmail.com
2 University of Nebraska at Omaha, USA

ylierler@unomaha.edu
3 Sabancı University, Turkey

peterschueller@sabanciuniv.edu

Abstract. Answer set programming (ASP) is a declarative programming
paradigm stemming from logic programming that has been successfully applied
in various domains. Despite amazing advancements in ASP solving, many ap-
plications still pose a challenge that is commonly referred to as grounding bot-
tleneck. Devising, implementing, and evaluating a method that alleviates this
problem for certain application domains is the focus of this paper. The proposed
method is based on combining backtracking-based search algorithms employed
in answer set solvers with SLDNF resolution from PROLOG. Using PROLOG in-
ference on non-ground portions of a given program, both grounding time and the
size of the ground program can be substantially reduced.

Keywords: Answer Set Programming, Prolog, Grounding Bottleneck.

1 Introduction

Answer set programming (ASP) [4] is a declarative programming paradigm stemming
from a knowledge representation and reasoning formalism based on the answer set se-
mantics of logic programs. It can be used whenever we want to solve a search problem
where the goal is to find solutions among a finite, but potentially very large, number of
possibilities. ASP has been successfully applied in different areas of knowledge repre-
sentation and computer science, including Space Shuttle control [25] and Linux pack-
age configuration [13]. Most modern answer set solving tools encapsulate two systems:
a grounder, such as LPARSE or GRINGO, and an answer set solver, such as CMODELS

or CLASP. A grounder is a software system that takes a logic program with variables
as an input and produces an equivalent program without variables – a ground program.
An answer set solver is then invoked on a ground program to generate its answer sets.
Answer set solvers typically rely on the enhancements of the Davis-Putnam-Logemann-
Loveland procedure [6] – classic backtracking-based search algorithm. Despite amazing
advancements in solving technology, many applications still pose a challenge. Ground-
ing bottleneck refers to situations where grounding results in programs that are too large
for the solving tools to handle effectively. Alleviating grounding bottleneck is the main
focus of this work. We describe, implement, and evaluate an approach for combining
backtracking-based search algorithms of answer set solvers with SLDNF resolution

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 148–160, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Prolog and ASP Inference under One Roof 149

from PROLOG. As a result, the newly implemented approach makes it possible to avoid
the grounding of portions of a program by delegating the processing of those parts to a
PROLOG system.

The grounding bottleneck has been recognized as a serious issue in recent years.
Constraint answer set programming (CASP) [18] is one of the directions of research that
has been largely motivated by an attempt to solve the problem. It integrates answer set
programming with constraint (logic) programming, which allows applying constraint
processing techniques for effective reasoning over non-boolean constructs. CASP in-
troduces a notion of constraint atoms that trigger additional processing by constraint
programming tools and at the same time may reduce the size of the grounding. Mel-
larkod et al. [22] developed one of the earliest CASP languages called AC. They also
introduced an algorithm for a special class of programs in that language. The primary
focus of the work on AC was integrating efficient constraint processing capabilities into
answer set solving methods. Yet, [22] touched on another crucial aspect of the inte-
gration of ASP and CLP: integrating ASP backtracking search with PROLOG SLDNF
resolution. In the present paper we resume and expand the investigation on this topic,
focusing on a special case of AC programs that consist of “standard” (non-constraint)
answer set programs.

More on Related Work. Works by Alviano and Faber [1], de Cat et al. [5], Eiter et
al. [8,7] are other interesting attempts to alleviate grounding issues. Alviano and Faber
propose a magic sets-based program rewriting method as a query optimization tech-
nique in ASP. This method helps an answer set solver prune the search space by dis-
regarding parts of the program irrelevant to a given query. The goal is achieved by
rewriting an original program (if a class of a program permits) in a form that guides
the computation by the ASP grounder and solver by taking advantage of information
provided by the query. The approach attempts to “mimic” PROLOG-like behavior us-
ing ASP technology. The approach advocated here is orthogonal. We propose to take
advantage of the PROLOG engine itself when possible. Techniques in the spirit of incre-
mental answer set programming [12] were developed by de Cat et al. [5] and employ a
“grounding as needed” approach in solving. The DLVHEX solver [8,7] also provides a
possibility for grounding as needed: it uses special Splitting Sets to process parts of a
program in a sequence, so that the grounding of the current part depends on the answer
sets of the previous parts.

Paper Structure. We start the presentation by a review of preliminary concepts as well
as a special case of AC programs that are at the center of attention in this work. We
then introduce a variant of the AC algorithm and describe its implementation within the
CASP solver EZCSP [3]. We conclude with a discussion on an experimental analysis
that we conducted to assess the introduced technique.

2 Hybrid Programs

A logic program is a finite set of rules of the form

a0 ← a1, . . . ,al ,not al+1, . . . ,not am, not not am+1, . . . , not not an, (1)

where a0 is ⊥ or an atom, and each ai (1 ≤ i ≤ n) is an atom. Atoms may be non-
ground. We call a rule a constraint, if a0 = ⊥. This is a special case of programs with

150 M. Balduccini, Y. Lierler, and P. Schüller

nested expressions [21]. We assume that the reader is familiar with the definition of an
answer set of such programs and refer to the paper by Lifschitz et al. ([21]) for details.
According to [11], a choice rule {a} of the LPARSE1 language [23] can be seen as an
abbreviation for a rule a ← not not a. We adopt this abbreviation in the rest of the
paper.

The expression a0 is the head of rule (1). If B denotes the body of (1), the right hand
side of the arrow, we write Bpos for the elements occurring in the positive part of the
body, i.e., Bpos = {a1, . . . ,al}.

To process a logic program, or in other words, to find answer sets of a program or
establish some properties about its answer sets, such software systems as answer set
solvers and sometimes PROLOG interpreters are used. A sample logic program is:

down(T)← not on.
down(0). down(1). . . . down(3600).
okTime(T)← not down(T).
⊥← occurs(a,5000), not okTime(5000).
occurs(a,5000).
{on}.

(2)

This program has a unique answer set

{occurs(a,5000), okTime(5000), on, down(0), . . . ,down(3600)}. (3)

Note that neither answer set solvers nor PROLOG systems can handle such a pro-
gram. First, program (2) contains a constraint and a choice rule, which makes PROLOG

systems inapplicable. Second, (2) contains a rule

okTime(T)← not down(T),

which violates the common safety condition imposed by ASP grounders. A safe rule
is such that each variable occurring in its head or its negative part of the body appears
in the positive part of the body. Nevertheless, the first three lines of (2) form a logic
program that may be processed by PROLOG systems, whereas the last three lines form
a program that is acceptable by an answer set solver. In a sense, program (2) is a “hy-
brid” program that borrows acceptable features from two worlds of logic programming:
“classic” PROLOG programming and answer set programming. In this paper we present
an algorithm (a family of algorithms) that takes advantage of two inference technolo-
gies that are usually used disjointly in logic programming, in PROLOG systems and
in answer set solvers. As a result programs such as (2) can be processed by a solver
supporting such an algorithm. We implement a variant of this algorithm in the solver
EZCSP2 [3].

In order to treat parts of a program differently (using PROLOG inference in one case,
and answer set solver inference in another) we identify a group of program predicates
that we use to guide the splitting of the program into two disjoint parts. To make it
precise we introduce the following notation.

1 http://www.tcs.hut.fi/Software/smodels/
2 http://marcy.cjb.net/ezcsp/

http://www.tcs.hut.fi/Software/smodels/
http://marcy.cjb.net/ezcsp/

Prolog and ASP Inference under One Roof 151

For a program Π and a set p of predicate symbols, the part of Π that consists of
all the rules whose heads are atoms formed using predicate symbols from p is denoted
by Πp. By Π−

p we denote Π \Πp. For example, let Π stand for (2) and let p1 be the set
of predicate symbols

{okTime, down}. (4)

Then, Πp1 is:
down(T)← not on.
down(0). . . . down(3600).
okTime(T)← not down(T),

(5)

whereas
⊥← occurs(a,5000), not okTime(5000)
occurs(a,5000).
{on}.

(6)

is Π−
p1

. For a program Π , by ground(Π) we denote the set of all ground instances of
all rules in Π . We say that Π is semi-ground w.r.t. a set p of predicate symbols if Π−

p
is a ground program (i.e., contains no variables) and Πp is such that all of its non-
ground atoms are formed from predicate symbols in p. For example, program (2) is
semi-ground w.r.t. predicate symbols (4).

For any atom p(t), by p(t)0 we denote its predicate symbol p. For any program Π ,
the predicate dependency graph of Π is the directed graph that

– has all predicates occurring in Π as its vertexes, and
– for each rule (1) in Π has an edge from a0

0 to a0
i where 1≤ i≤ l.

We say that a program Π is splittable w.r.t. predicate symbols p if each strongly
connected component of the predicate dependency graph of Π is either a subset of p or
a disjoint set from p. Program (2) is splittable w.r.t. predicate symbols (4).

The hybrid algorithm that we propose in this note is applicable to splittable programs.
To present this algorithm we introduce several concepts.

Given a program Π and a set p of predicate symbols, a set X of atoms is a p-input
answer set (or an input answer set w.r.t. p) of Π if X is an answer set of Π ∪X−p where
by X−p we denote the set of atoms in X whose predicate symbols are different from
those occurring in p. 3 For instance, let X be a set {a(1),b(1)} of atoms and let p be a
set {a} of predicates, then X−p is {b(1)}. The set X is a p-input answer set of a program
a(1)← b(1). On the other hand, it is not an input answer set for the same program with
respect to a set {a,b}.

By At(Π) we denote the set of all atoms occurring in a program Π .

Proposition 1. For a program Π and a set p of predicate symbols, if Π is splittable
then a set of atoms A over At(ground(Π)) is an answer set of Π iff A is an input answer
set of Πp w.r.t. p and A is an input answer set of Π−

p w.r.t. predicate symbols in Π−
p

different from p.

3 Intuitively set p denotes a set of intentional predicates [10]. The concept of p-input answer
sets is closely related to “p-stable models” in [9].

152 M. Balduccini, Y. Lierler, and P. Schüller

This proposition outlines the basis for our approach. Given a semi-ground and split-
table program Π wrt predicate symbols p, we would like to use a PROLOG system for
inference over Πp and an answer set solver for inference over Π−

p . Note that Πp may
contain rules that are not ground whereas Π−

p is a propositional program so that any an-
swer set solver is applicable to it. Recall that PROLOG is designed to effectively process
non-ground programs whereas answer set solvers (without grounders) are able to deal
only with propositional programs.

3 Review: Abstract Answer Set Solver

Most state-of-the-art answer set solvers are based on algorithms closely related to the
DPLL procedure [6]. Nieuwenhuis et al. described DPLL by means of a transition system
that can be viewed as an abstract framework underlying DPLL computation [24]. Our
goal is to design a similar framework for describing an algorithm suitable for processing
semi-ground splittable programs – QUERY+ASP. As a step in this direction we introduce
the graph ASΠ that extends the DPLL graph by Nieuwenhuis et al. so that the result can
be used to specify an algorithm for finding answer sets of a program.

We frequently identify the body of (1) with the conjunction of its elements (in which
not is replaced with the classical negation connective ¬):

a1∧·· ·∧al ∧¬al+1∧·· ·∧¬am∧¬¬am+1∧·· ·∧¬¬an.

Similarly, we often interpret a rule (1) as a clause

a0∨¬a1∨·· ·∨¬al ∨al+1∨·· ·∨am∨¬am+1∨·· ·∨¬an (7)

(in the case when a0 = ⊥ in (1) a0 is absent in (7)). Given a program Π , we write Π cl

for the set of clauses (7) corresponding to all rules in Π .
For a set σ of atoms, a record relative to σ is an ordered set M of literals over σ ,

some possibly annotated by Δ , which marks them as decision literals. A state relative
to σ is a record relative to σ possibly preceding symbol ⊥. For instance, some states
relative to a singleton set {a} of atoms are

/0, a, ¬a, aΔ , a ¬a, ⊥, a⊥, ¬a⊥, aΔ⊥, a ¬a⊥.

We say that a state is inconsistent if either ⊥ or two complementary literals occur in
it. For example, states a ¬a and a⊥ are inconsistent. Given a state M, we frequently ig-
nore both annotations and order of elements and consider M as a set of literals possibly
including the symbol ⊥.

If neither a literal l nor its complement occur in M, then l is unassigned by M.
If C is a disjunction (conjunction) of literals then by C we understand the conjunction

(disjunction) of the complements of the literals occurring in C. In some situations, we
will identify disjunctions and conjunctions of literals with the sets of these literals.

By Bodies(Π ,a) we denote the set of the bodies of all rules of a ground program Π
with the head a. A set U of atoms occurring in a ground program Π is unfounded [26,16]
on a consistent set M of literals with respect to Π if for every a ∈ U and every

Prolog and ASP Inference under One Roof 153

B ∈ Bodies(Π ,a), M |= B (where B is identified with the conjunction of its elements),
or U ∩Bpos �= /0.

Each ground program Π determines its Answer-Set graph ASΠ . The set of nodes of
ASΠ consists of the states relative to the set of atoms occurring in Π . The edges of the
graph ASΠ are specified by the transition rules

Unit Propagate: M =⇒ M l if C∨ l ∈Π cl and C ⊆M

Decide: M =⇒ M lΔ if l is unassigned by M

Fail: M =⇒ ⊥ if

{
M is inconsistent and different from ⊥, and
M contains no decision literals

Backtrack: P lΔ Q =⇒ P l if

{
P lΔ Q is inconsistent, and
Q contains no decision literals

Unfounded: M =⇒M ¬a if a ∈U for a set U unfounded on M wrt Π .

A node is terminal in a graph if no edge leaves this node.
For a set M of literals, by pos(M) and neg(M) we denote the set of positive and

negative literals in M respectively. For instance, pos({a,¬b}) = {a} and neg
({a,¬b}) = {b}.

The graph ASΠ can be used for deciding whether a ground program Π has an answer
set by constructing a path from /0 to a terminal node. The following proposition serves
as a proof of correctness and termination for any procedure that is captured by ASΠ .

Proposition 2. For any ground program Π ,

(a) graph ASΠ is finite and acyclic,
(b) for any terminal state M of ASΠ other than ⊥, pos(M) is an answer set of Π ,
(c) state ⊥ is reachable from /0 in ASΠ if and only if Π has no answer sets.

Let Π be a program (6). The following is a path in ASΠ , with every edge annotated
by the name of a transition rule that justifies the presence of this edge in the graph:

/0
Unit Propagate

=⇒
occurs(a,5000)

Unit Propagate
=⇒

occurs(a,5000) okTime(5000)
Unfounded
=⇒

occurs(a,5000) okTime(5000) ¬okTime(5000)
Fail
=⇒

⊥

Since the last state in the path is terminal and⊥, Proposition 3 asserts that this program
has no answer sets.

The graph ASΠ is inspired by the graph SMΠ introduced by Lierler [17] for specify-
ing answer set solver SMODELS [23]. The graph SMΠ extends ASΠ by two additional
transition rules (in other words, inference rules or propagators): All Rules Canceled and
Backchain True. Lierler and Truszczynski [20] developed a similar framework to model

154 M. Balduccini, Y. Lierler, and P. Schüller

such modern answer set solvers as CMODELS [15], SUP [17], and CLASP [14]. For the
simplicity of this presentation, we settle on the ASΠ formalism as a choice for depicting
an answer set solver. Nevertheless, the procedure described in this paper for combining
the inference mechanisms of answer set solving and of PROLOG is not limited to answer
set solvers whose algorithm is captured by the ASΠ graph. For example, the procedure
can be easily adopted by more sophisticated solvers implementing learning, such as
CMODELS or CLASP.

4 Abstract QUERY+ASP

Query, Extensions, and Consequences. For a program Π and a set p of predicate
symbols, by Atp(Π) we denote a set of atoms occurring in Π whose predicate symbols
are in p. By At−p (Π), we denote a set of atoms in Π whose predicates symbols are
not in p.

For a semi-ground program Π w.r.t. a set p of predicate symbols, a (complete)
query Q is a (complete) consistent set of literals over At−p (Πp)∪Atp(Π−

p). For a query
Q of Π , a complete query E is a satisfying extension of Q w.r.t. Π if Q⊆ E and there is
an input answer set A of Πp w.r.t. predicates p such that pos(E)⊆ A and neg(E)∩A= /0.

We say that literal l is a consequence of Π and Q if for every satisfying extension E
of Q w.r.t. Π , l ∈ E . By Cons(Π ,Q), we denote the set of all consequences of Π and
Q. If there are no satisfying extensions of Q w.r.t. Π we identify Cons(Π ,Q) with the
singleton {⊥}.

Let Π be (2) and Q be {on}. The set {on,okTime(5000)} forms a satisfying ex-
tension of Q w.r.t. Π . Furthermore, this is the only satisfying extension of Q w.r.t. Π .
Consequently, it forms Cons(Π ,Q). On the other hand, there are no satisfying exten-
sions for a query Q = {¬on, okTime(5000)} so that {⊥} corresponds to Cons(Π ,Q).

The graph QASΠ ,p. For a program Π and a set p of predicate symbols, by Π c we
denote a set of choice rules {a} for each atom a in Atp(Π−

p). For instance, let Π be (2)
then Π c consists of a choice rule

{okTime(5000)} (8)

Let Π be a logic program and p a set of predicate symbols. The nodes of the graph
QASΠ ,p are the states relative to the set of atoms occurring in Π−

p .
The edges of the graph QASΠ ,p include the transition rules of ASΠ−

p ∪Π c . Note how
these transition rules take into consideration not only a part of program meant to be
processed by an answer set solver Π−

p but also its extension with choice rules for atoms
whose predicate symbols are in p. For instance, let Π be program (2) and let p1 be set
of predicate symbols (4). The program Π−

p1
∪Π c contains the rules of (6) extended with

choice rule (8).
Another transition rule that concludes the definition of the graph QASΠ ,p is called

Query Propagate. To present this rule we introduce the notion of a query. For a state M
of QASΠ ,p, by query(M) we denote the largest subset of M over At−p (Πp)∪Atp(Π−

p).
Let Π be (2) and M be a state occurs(a,5000) okTime(5000) ¬onΔ , then query(M) is
{okTime(5000),¬on}.

Prolog and ASP Inference under One Roof 155

The transition rule Query Propagate follows

Query Propagate: M =⇒ M l if l ∈Cons(Π ,query(M)).

The graph QASΠ ,p can be used for deciding whether a splittable semi-ground pro-
gram Π w.r.t. predicate symbols p has an answer set by constructing a path from /0 to a
terminal node:

Proposition 3. For any splittable semi-ground program Π w.r.t. predicate symbols p,

(a) graph QASΠ ,p is finite and acyclic,
(b) for any terminal state M of QASΠ ,p other than ⊥, pos(M) is a set of all Π−

p atoms
in some answer set of Π ,

(c) state ⊥ is reachable from /0 in QASΠ ,p if and only if Π has no answer sets.

Proposition 3 shows that algorithms, which find a path in the graph QASΠ ,p from /0 to a
terminal node, can be regarded as solvers for splittable semi-ground programs. We call
the class of algorithms captured by the graph QUERY+ASP. Let Π be a program (2). The
following is a path in QASΠ ,p, with every edge annotated by the name of a transition
rule that justifies the presence of this edge in the graph:

/0
Unit Propagate

=⇒
occurs(a,5000)

Unit Propagate
=⇒

occurs(a,5000) okTime(5000)
Decide
=⇒

occurs(a,5000) okTime(5000) ¬onΔ Query Propagate
=⇒

occurs(a,5000) okTime(5000) ¬onΔ ⊥ Backtrack
=⇒

occurs(a,5000) okTime(5000) on

Since the last state in the path is terminal, Proposition 3 asserts that

{occurs(a,5000), okTime(5000), on}

is a set of all Π−
p atoms in some answer set of Π . Indeed, recall answer set (3).

We note that the QASΠ ,p graph can be seen as a special case of the graph ACΠ
introduced in [18] for a more sophisticated class of programs called AC programs.

5 The “blackbox” QUERY+ASP Algorithm

We can view a path in the graph QASΠ ,p as a description of a process of search for a
set of atoms in some answer set of splittable semi-ground program Π by applying the
graph’s transition rules. Therefore, we can characterize an algorithm of a solver that
utilizes the transition rules of QASΠ ,p by describing a strategy for choosing a path in
this graph. A strategy can be based, in particular, on assigning priorities to transition
rules of QASΠ ,p, so that a solver never follows a transition due to a rule in a state if a
rule with higher priority is applicable.

156 M. Balduccini, Y. Lierler, and P. Schüller

The priorities

Backtrack,Fail,Unit Propagate,Unfounded,Decide >> Query Propagate.

describe a “blackbox” architecture of a QUERY+ASP system that operates as follows:
first, it uses an answer set solver on Π−

p ∪Π c to find an answer set; then it invokes
a procedure to verify whether the Query Propagate transition is available; if no such
transition is available then the answer set found represents a terminal state of QASΠ ,p;
otherwise, the answer set solver is instructed to look for another answer set and the
process is repeated.

PROLOG for Implementing Query Propagate. PROLOG systems can be used to im-
plement the Query Propagate transition rule for programs satisfying some additional
syntactic constraints. We now discuss one class of such programs.

Let Π be a splittable program w.r.t. predicate symbols p. We say that such a pro-
gram is PROLOG-friendly if Πp is in PROLOG syntax (i.e., contains no rules with nested
negation) and acyclic [2, Definition 1.4, Corollary 4.3].4 Recall that an acyclic program
(i) has a unique answer set, and (ii) any PROLOG system terminates on it. Thus a PRO-
LOG system can be used to implement the Query Propagate transition rule in a situation
in which query(M) assigns all atoms in At−p (Πp). Indeed, PROLOG can be invoked on
(i) a program that consists of Πp, and atoms (given as facts) occurring positively in
query(M) whose predicate symbols are not in p; (ii) a query formed by the literals in
query(M) whose predicate symbols are in p.

We refer to the variant of QUERY+ASP that implements the “blackbox” approach and
uses PROLOG for Query Propagate as PROLOG+ASP. It is a direction of future research
to find other means for implementing more general settings of QUERY+ASP.

PROLOG+ASP implementation in EZCSP: We expect the reader to be familiar with the
syntax of the EZCSP language [3] and with the main principles behind this CASP solver.
The EZCSP language has been extended to allow a program Π to contain a declaration,
P(Π), of the form

#begin de f ined. Ω #end de f ined.

where Ω is an acyclic PROLOG program, which intuitively corresponds to Πp. All atoms
whose predicate symbols are intended to occur in Πp but not in p must be prefixed by
“prolog ” (to notify EZCSP that these atoms are relevant to forming a PROLOG pro-
gram while implementing Query Propagate). All atoms whose predicate symbol is in
p are specified as arguments of the special unary relation “required” of the language of
EZCSP. For instances, logic program (2) in the modified language of EZCSP is:

#begin de f ined.
down(T)← not prolog on.
down(0). down(1). . . . down(3600).
okTime(T)← not down(T).
#end de f ined.
required(okTime(5000))← occurs(a,5000).
occurs(a,5000)← .
{prolog on}.

4 More general “PROLOG-friendly” syntactic conditions on programs are possible.

Prolog and ASP Inference under One Roof 157

The EZCSP algorithm is extended so that, given an EZCSP program Π , it starts by
invoking the answer set solver to compute an answer set A of Π \P(Π). The PRO-
LOG interpreter is then used to determine if the query formed by the atoms of the
form required(·) from answer set A holds for the program consisting of Ω and of the
“prolog ”-prefixed atoms from A. If the PROLOG interpreter answers positively, then A
is returned. Otherwise, the algorithm iterates, instructing the answer set solver to find
another answer set.

6 Experimental Domains and Results

In this work we designed an experimental domain called Emergency Exit to evaluate the
implementation of the PROLOG+ASP procedure in EZCSP. Emergency Exit is a planning
problem involving a robot on a grid. Some grid cells are occupied by obstacles and
cannot be traversed. One unoccupied cell is selected as a goal cell, and another one as
an emergency exit. At every time step, the robot can move along the x or y axis by one
cell, as long as the destination cell is unoccupied. The goal of the robot is to reach the
goal cell from its initial location in such a way that: (i) doing so takes at most n steps,
and (ii) the emergency exit is reachable within k steps from any cell traversed by the

 0

 5

 10

 15

 20

 25

 30

Ti
m

e
(s

ec
)

Grounding

Search

Prolog

51-21-5011-206-101-50

EE EE+
Ground Search Memory Ground Search Prolog Prolog Memory

Group # Instances sec sec MB sec sec sec # calls MB
0 11 5.7 3.7 619 0.0 0.6 0.0 0.0 15

1-5 7 5.9 4.0 619 0.0 1.0 1.9 0.4 149
6-10 9 5.8 4.0 620 0.0 1.2 4.3 1.8 150

11-20 13 5.6 4.0 619 0.0 2.0 10.8 5.8 149
21-50 28 5.9 4.1 619 0.0 3.0 18.0 10.1 150

51- 23 5.7 4.0 592 0.0 4.5 23.6 24.3 144
total 91 5.8 4.0 612 0.0 2.6 13.6 10.3 132

Fig. 1. Emergency Exit benchmark results. Instances are grouped by the number of paths from
start to goal location. We compare ASP (left stacks) with ASP+Prolog (right stacks) and display
the time spent for grounding (dark red), solving (white), and Prolog (light blue) in each stack.
Section EE in the table shows memory usage, grounding and search time with an encoding in
ASP, while EE+ shows results for PROLOG+ASP and additionally shows the number of calls to
PROLOG and the time spent in PROLOG execution.

158 M. Balduccini, Y. Lierler, and P. Schüller

robot. We also consider a simpler variant in our analysis that we call Path Finding. In
this problem the task is to find a path that satisfies the requirement (i). It is easy to see
that any solution to the Emergency Exit problem is also a solution to the Path Finding
problem but not the other way around.

For our experiments we randomly generated 91 instances with a 100×100 grid, n =
10, k = 194, cells (1,6), (6,1), and (100,100)marked as a goal, start, and an emergency
exit respectively. The instances vary in how obstacles are distributed on a grid: in each
case there are between 12 and 25 occupied cells in the part of the grid between (1,1)
and (10,10). This randomly varies the number of possible paths from start to goal of
length n. Moreover, we selected k = 194 and located the emergency exit at (100,100)
to ensure that reaching the exit would be possible only for certain paths from start
to goal.

In the following presentation, by PF we denote an ASP encoding of Path Finding; by
EE we denote an ASP encoding of Emergency Exit. We constructed EE by extending
PF with an encoding of the reachability requirement (ii). Finally, we constructed variant
EE+ of EE in such a way that: (1) the PF component is processed by the answer set
solver of PROLOG+ASP, whereas (2) EE+ \ PF is processed by the PROLOG interpreter
used in the implementation of PROLOG+ASP in EZCSP.

The experiments were run on a Linux server with 32 2.4GHz Intel R© E5-2665 CPU
cores and 64GB memory. Every run used a single core only. As grounder we used
GRINGO 3.0.5. To evaluate PROLOG+ASP on EE+ we used EZCSP 1.6.20b57 with
CMODELS 3.85 (running MINISAT v 1.12b) and BPROLOG 7.8 as backends. As a refer-
ence we also present the performance of CMODELS 3.85 (running MINISAT v 1.12b) on
EE. The supporting files can be found at http://www.mbalduccini.tk/ezcsp/lpnmr2013/.

Figure 1 shows the experimental results. We group the instances according to how
many answer sets are found by PF. This number serves as an upper bound to the number
of invocations of the PROLOG interpreter needed in the PROLOG+ASP algorithm to find
a solution or establish the unsatisfiability of a problem in the EE+ encoding. For each
instance group, the histogram reports the grounding time at the bottom, followed by the
search time, followed by the PROLOG execution time; the left stacks (with dark red) are
for EE, the right stacks (with light blue) for EE+.

First, we observe that EE performs nearly the same for all instance groups, including
the ratio between grounding (dark red) and solver (white) effort. The grounding size for
EE is on average 47MB (not shown in the figure).

EE+ performs quite differently. The number of invocations of the PROLOG inter-
preter by the algorithm greatly affects the efficiency. Groups of instances with up to
10 plans in PF can be computed more efficiently with EE+, exhibiting a difference in
order(s) of magnitude. In the instances that require more iterations, the time spent in
the PROLOG interpreter dominates the overall time for solving. As PROLOG is never
called in group 0, it has particular low memory usage for EE+. The time required for
grounding EE+ is nearly zero, and the average size of grounding is 0.3MB, which is
much lower than for EE. Overall, we observe that for instances where only few or no
plans from start to goal exist, EE+ is significantly faster than EE.

Prolog and ASP Inference under One Roof 159

7 Conclusions

In this paper we described a method for alleviating the grounding bottleneck by combin-
ing backtracking-based search algorithms employed in answer set solvers with SLDNF
resolution from PROLOG. By means of experimental evaluations, we have demonstrated
that, for problems where constraints have large groundings, using PROLOG as an infer-
ence engine over these constraints may save grounding time and memory and may lead
to significant gains in the performance. However this is only true when the part of a
program evaluated by an answer set solver of PROLOG+ASP is such that it produces
only few candidates that have to be verified against the constraints evaluated by PRO-
LOG. This conclusion aligns well with an observation reported in [19], where a study
was conducted, comparing the solving technology of answer set solvers and of con-
straint answer set solvers. As in PROLOG+ASP, the answer set solving component of
a constraint answer set solver has access only to a portion of all the constraints of the
problem. The other constraints are processed separately by a constraint solver. Such
separation of concerns may be very fruitful in solving the grounding bottleneck, yet it
has to be used with care in order not to undermine the advanced technology of answer
set solvers.

Acknowledgments. We are grateful to Yuanlin Zhang, Michael Gelfond, Vladimir
Lifschitz, and Mirosław Truszczyński for useful discussions related to the topic of this
work. Peter Schüller is supported by TUBITAK 2216 Research Fellowship.

References

1. Alviano, M., Faber, W.: Dynamic magic sets and super-coherent answer set programs. AI
Commun. 24(2), 125–145 (2011)

2. Apt, K., Bezem, M.: Acyclic programs. New Generation Computing 9, 335–363 (1991)
3. Balduccini, M.: Representing constraint satisfaction problems in answer set programming.

In: Workshop on Answer Set Programming and Other Computing Paradigms, ASPOCP
(2009)

4. Brewka, G., Niemelä, I., Truszczyński, M.: Answer set programming at a glance. Communi-
cations of the ACM 54(12), 92–103 (2011)

5. de Cat, B., Denecker, M., Stuckey, P.J.: Lazy model expansion by incremental grounding. In:
Technical Communications of the International Conference on Logic Programming, ICLP,
pp. 201–211 (2012)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM 5(7), 394–397 (1962)

7. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Schüller, P.: Pushing efficient evaluation of
HEX programs by modular decomposition. In: Delgrande, J.P., Faber, W. (eds.) LPNMR
2011. LNCS, vol. 6645, pp. 93–106. Springer, Heidelberg (2011)

8. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: dlvhex: A Prover for Semantic-Web Reason-
ing under the Answer-Set Semantics. In: Workshop on Applications of Logic Programming
in the Semantic Web and Semantic Web Services, ALPSWS, pp. 33–39. CEUR WS (2006)

9. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelli-
gence 175, 236–263 (2011)

160 M. Balduccini, Y. Lierler, and P. Schüller

10. Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general theory of
stable models. In: International Joint Conference on Artificial Intelligence, IJCAI, pp. 797–
803 (2009)

11. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of
Logic Programming 5, 45–74 (2005)

12. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

13. Gebser, M., Kaminski, R., Schaub, T.: aspcud: A linux package configuration tool based on
answer set programming. In: International Workshop on Logics for Component Configura-
tion, LoCoCo (2011)

14. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In: International Joint Conference on Artificial Intelligence, IJCAI, pp. 386–392. MIT Press
(2007)

15. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36, 345–377 (2006)

16. Lee, J.: A model-theoretic counterpart of loop formulas. In: International Joint Conference
on Artificial Intelligence, IJCAI, pp. 503–508. Professional Book Center (2005)

17. Lierler, Y.: Abstract answer set solvers. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP
2008. LNCS, vol. 5366, pp. 377–391. Springer, Heidelberg (2008)

18. Lierler, Y.: On the relation of constraint answer set programming languages and algorithms.
In: AAAI Conference on Artificial Intelligence, AAAI. MIT Press (2012)

19. Lierler, Y., Smith, S., Truszczynski, M., Westlund, A.: Weighted-sequence problem: ASP vs
CASP and declarative vs problem-oriented solving. In: Russo, C., Zhou, N.-F. (eds.) PADL
2012. LNCS, vol. 7149, pp. 63–77. Springer, Heidelberg (2012)

20. Lierler, Y., Truszczyński, M.: Transition systems for model generators — a unifying ap-
proach. In: Theory and Practice of Logic Programming, International Conference on Logic
Programming (ICLP) Special Issue 11(4-5) (2011)

21. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Math-
ematics and Artificial Intelligence 25, 369–389 (1999)

22. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint
logic programming. Annals of Mathematics and Artificial Intelligence (2008)

23. Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight con-
straints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521. Kluwer (2000)

24. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the
ACM 53(6), 937–977 (2006)

25. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog decision
support system for the Space Shuttle. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS,
vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

26. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
Journal of ACM 38(3), 620–650 (1991)

Event-Object Reasoning with Curated

Knowledge Bases: Deriving Missing Information

Chitta Baral and Nguyen H. Vo

School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, Tempe, Arizona, USA

Abstract. The broader goal of our research is to formulate answers
to why and how questions with respect to knowledge bases, such as
AURA. One issue we face when reasoning with many available knowledge
bases is that at times needed information is missing. Examples of this
include partially missing information about next sub-event, first sub-
event, last sub-event, result of an event, input to an event, destination of
an event, and raw material involved in an event. In many cases one can
recover part of the missing knowledge through reasoning. In this paper
we give a formal definition about how such missing information can be
recovered and then give an ASP implementation of it. We then discuss
the implication of this with respect to answering why and how questions.

1 Introduction

Our work in this paper is part of two related long terms goals: answering “How”,
“Why” and “What-if” questions and reasoning with the growing body of avail-
able knowledge bases1, some of which are crowd-sourced. Although answering
those questions are important, so far little research has been done on them. Our
starting point to address them has been to formulate answers to such questions
with respect to abstract knowledge structures obtained from knowledge bases. In
particular, in the recent past we considered Event Description Graphs (EDGs) [1]
to formulate answers to some “How” and “Why” questions with respect to the
Biology knowledge base AURA [2].

Going from the abstract structures to reasoning with real knowledge bases
(KBs) we noticed that the KBs often have missing pieces of information, such
as properties of an instance (of a class) or relations between two instances. For
example, AURA does not encode that Eukaryotic translation is the next event
of Synthesis of RNA in eukaryote; this may be because the two subevents of
“Protein synthesis” were encoded independently. The missing pieces make the
KB and the Description Graphs constructed from it fragmented and as a result
answers obtained with respect to them are not intuitive. Moreover, the KBs
like AURA often have two or more names that refer to the same entity. To
get intuitive answers they need to be resolved and merged into a single entity.

1 See for example, http://linkeddata.org/

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 161–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://linkeddata.org/

162 C. Baral and N.H. Vo

Such finding of non-identical duplicates in the KB and merging them into one
is referred in the literature as entity resolution [3].

In this short paper, we introduce knowledge description graphs (KDGs) as
structures obtained from frame based KBs such as AURA. We formulate notions
of reasoning with respect to these graphs to obtain certain missing information,
present our approach of entity resolution, and use it in recovering additional
missing information. After giving an Answer Set Programming (ASP) encoding
of our formulation, we conclude with a discussion on the use of the above in
answering “why” and “how” questions.

2 Background: Frame-Based Knowledge Bases; ASP

The KB we used in this work is based on AURA [2] and was described in de-
tails in [4]. AURA is a frame-based KB manually curated by biology experts; it
contains a large amount of frames describing biological entities and events (or
processes). The basic class in our KB is Thing, which has two children classes:
Entity and Event. Entity is the ancestor of all classes of biological entities; Event,
of biological events.

Our KB is a set of facts of the form “has(A, slot name, B)” where A and B
are either classes or instances (of classes), slot name is the name of the relation
between A and B such as instance of, raw material or results. The statement
“eukaryotic translation is based on mRNA” is represented in our KB as follows.

has(e_transl4 ,instance_of ,event). has(mrna6 , instance_of , mrna).
has(e_transl4 ,instance_of ,eukaryotic_translation). has(e_transl4 ,base ,mrna6).

For the declarative implementation of our formulations, we use ASP [5]. That
allows us to use our earlier work [4] on using ASP to reason with frame-based
knowledge bases. ASP’s strong theoretical foundation [6] and its default negation
and recursion are useful in our encoding and in proving results about them.

3 Knowledge Description Graphs

A Knowledge Description Graph (KDG) is a structure to represent the
facts about instances and classes of events, entities and relationships between
them. A KDG is a slight generalization of EDGs in [1] and is constructed from
knowledge bases such as AURA. Formal definition of the KDGs is given in the
following.

Definition 1. A KDG is a directed graph with: (i) three types of nodes: event
nodes, entity nodes, and class nodes; and (ii) five types of directed edges: compo-
sitional edges, class edges, ordering edges, locational edges and participant edges.
A KDG has the property that there are no directed cycles within any combination
of compositional, locational and participant edges.

Event-Object Reasoning with Curated Knowledge Bases 163

Fig. 1. Types of edges in KDGs

Fig.1 shows the types of edges in a
KDG and the corresponding sources
and destinations of the edges. For ex-
ample, compositional edges are from
events to events or from entity to en-
tity. We used the slot names in KM
[7] and AURA as a guide to catego-
rize the types of edges. Since KDGs
can be huge, we usually work on its
smaller subgraphs that are rooted at an entity or an event. The KDG rooted
at Z, denoted as KDG(Z), contains all the accessible nodes from Z (through
any edge except ordering) and all the edges between them. Fig. 2 shows the
KDG(Eukaryote) where every other nodes can be reached from Eukaryote with-
out going through dashed lines (ordering edges).

Fig. 2. A KDG rooted at the entity Eukaryote. Event, entity, and class nodes are
respectively depicted by rectangles, ovals and hexagons. Compositional edges are rep-
resented by solid-line arrows; ordering edges by dashed-line arrows; participant edges
by lines with a black-square pointed to the entity node; class edges by diamond head
arrows and locational edges by lines with a circle pointed to the event node.

4 Reasoning about Missing Info. in KDGs

Two types of Events. In our KB there are two types of events: transport
events and operational events. In a transport event, the locations where it hap-
pens is changed while the input entity and the output entity are the same. We
differentiate two types of events by their ancestor classes: transport events are
descendants of the classes move through, move into and move out of ; all other
events are operational events.

Input, Output, Input Location, Output Location. We created IO prop-
erties of an event based on its specific relations. For examples, input/ output/
input-location/ output-location of a transport event is respectively from object/
object/ {base, origin}/ destination, while those of an operational event is from
{object, base, material}/ result/ site/ destination. We can also obtain missing

164 C. Baral and N.H. Vo

IO properties of an event from its subevents. For instance, an input of E’s first
subevent is also an input of E. Similarly, an output of an event can be obtained
from its last subevent.

Example: photosynthesis has two subevents: light reaction and calvin cycle, the
next event of light reaction. Sunlight is the raw-material of the light reaction, sugar
is the result of calvin cycle. Thus, sunlight is the input of light reaction as well as
photosynthesis ; sugar is the output of both calvin cycle and photosynthesis.

Similarly, the output location of an operational event is often not defined in
the KB but we can use input location as its default value. Using this rule, we
can obtain the output locations of three events in Fig. 2: Synthesis of RNA in
eukaryote, Eukaryotic translation, and Eukaryotic transcription.

Main Class of an Instance. In our KB, one instance can belong to many
classes. For example, dna strand19497 - the input of Eukaryotic transcription -
is an instance of dna strand, dna sequence, nucleic acid and polymer2. However,
to reason about the equality between instances, we need the “main” class(es),
which is the most specific class(es) of that instance. We define a main class of E
as the minimal element in the set of E’s classes w.r.t to subclass ordering. The
main classes of dna strand19497, according this definition, are dna strand and
dna sequence; the other classes of dna strand19497 are ancestors of those two.

5 Entity Resolution and Finding the Possible Next
Events

In the KBs such as AURA, especially the ones that are developed using crowd-
sourcing, the curation was done in many sessions and probably by many people.
The results are, in many cases, (i) two different instance names were used when
they are probably the same instance; and (ii) parts of some biological process
were encoded as independent events. For example: the input of Eukaryotic trans-
lation (Fig.2) is mrna4642 whereas the output of Move out is mrna22911 while
they should be the same; Synthesis of RNA in eukaryote and Eukaryotic trans-
lation should be subevents of “Synthesis of protein in eukaryote” but they are
encoded as two separate events. To solve problem (i), we define a match relation.
Generally speaking, instance A can match with instance B if A can be safely
used in a context where a term of B is expected.

Definition 2. Let A and B be two instances in KDG(Z). Let ClassA and
ClassB be main classes of A and B respectively.

1. A matches with B with high confidence3 if one of the following is true (a) A
and B are the same instance; (b)A is cloned from B (Shortcut in AURA to
specify that A has all the properties of B); or (c) ClassA is an ancestor of
ClassB

2 For the sake of simplicity, in the previous figures and descriptions, we usually ref-
erenced the entities and events by their “main” class(es) and not by the instances’
names although our KB and our implementation works on instances’ names.

3 Confidence levels are for greater flexibility in future works.

Event-Object Reasoning with Curated Knowledge Bases 165

2. A matches with B with medium confidence if A and B are both cloned from
an instance C.

3. A matches with B with low confidence if ClassA = ClassB (A and B are
instances of the same main class).

4. A matches with B with confidence min(Conf1, Conf2) if (a) A matches with
C with confidence Conf1; and (b) C matches with B with confidence Conf2.

5. Otherwise, A does not match with B.

Using Def.2, we can match mrna4642 with mrna22911 because both have
main class mrna, but we can not match an instance of cytoplasm to an instance
of cytosol. However when we say Event A occurs in cytosol, we can understand
that Event A occurs in cytoplasm. To overcome this shortcoming, we define the
relation Spatially match similar to Def.2, except that A can spatially match to
B if B is inside A or is a part of A.

Entity resolution can be used in finding the possible next event(s) of a given
event. Our approach is that E′ is E’s next event if E’s output matches E′’s
input and E’s output location matches E′’s input location. This assumption not
only holds in all three consequent events in Fig.2 (i.e. Eukaryotic transcription,
RNA processing and Move out) but also suggests that Eukaryotic translation
can be the next event of either Synthesis of RNA in eukaryote or Move out.
Moreover, we can select the correct event (Synthesis of RNA in eukaryote) with
an additional constraint to prefer the super class if both A and A’s super class
are candidates.

6 ASP Encodings

In this section, we give a glimpse of ASP encoding of the formulations in previous
section. See [8] for more details.

Inputs and Outputs of Events. t e(E) or o e(E) is used to indicate a trans-
port event or an operational event, respectively. event(X) indicates that X is an
event. We denote the input/output/input location/output location of an event
by input, output, input loc and output loc respectively. Rules i1-i5 get the IOs of
operational events. IOs of transport events are encoded similarly (rules i6-i10).
Rule i11 gets the input of an event from its first subevent. Other rules are en-
coded in a similar way (rules i13-i24). Rule i25 gets the default output location
of an event.

ev1: predicates(t_event , move_through; move_into; move_out_of).
ev2: t_e(E) :- has(E, instance_of , Transport_class), predicates(t_event ,

Transport_class), event(E).
ev3: o_e(E) :- event(E), not t_event(E).
i1:input(E,A):-has(E,object ,A),o_e(E). i2:input(E,A):-has(E,base ,A),o_e(E).
i3:input(E,A):-has(E,raw_material ,A),o_e(E).
i4:output(E,A):-has(E,result ,A),o_e(E).i5:input_loc(E,A):-has(E,site ,A),o_e(E).
i11: has(E, input , A) :- has(SE, input , A), has(E, first_subevent , SE).
i25: has(E, output_location , A) :- not has(E, output_location , A2), has(E,

input_location , A), entity(A2), event(E), A2 != A.

Entity Resolution. ClassA is a main class of instance A if ClassA is one of
A’s classes and we do not have not main class(A,ClassA). We use predicate

166 C. Baral and N.H. Vo

match with(A,B,Confidence) to represent match with relation (Def. 2) from
instance A to B; Confidence can be either low, medium or high. Rule ma1
encodes the sub-case 2.1.a. The last rule is for Def. 2.4, matching A to B transi-
tively through C. lowest confidence(Conf1, Conf2, Conf) means Conf is the
lowest confidence in Conf1 and Conf2 (Rules lc1-lc7). Rules for other cases are
skipped (ma2-ma5); locational instance matching is encoded in a similar way
(rules sma1-sma4).

m1: not_main_class(A, ClassB) :- has(A, instance_of , ClassA), has(A,
instance_of , ClassB), has(ClassA , ancestorclass , ClassB).

m2: main_class(A, ClassA) :- has_class(A, ClassA), not not_main_class(A,
ClassA).

ma1: match_with(A,B,high):-main_class(A,ClassA),main_class(B,ClassB), A==B.
ma6: match_with(A,B,Conf) :- match_with(A,C,Conf1), match_with(C,B,Conf2),

A!=B, A!=C, B!=C, lowest_confidence(Conf1 ,Conf2 ,Conf).

7 Conclusion and Discussion

In this short paper, we gave a glimpse of several formulations regarding missing
knowledge about events and related ASP implementation. One of our formula-
tions was about entity resolution where we resolve multiple entities that may
have different names but may refer to the same entity. Our method is different
from other methods in the literature [3]. Since each entity resolution method
heavily relies on the properties of the database it is working on, and no other
system we know of is about AURA or similar event centered knowledge bases
we were unable to directly compare our method with the others.

Our approach to use rules (albeit ASP rules) to derive missing information
is analogous to use of rules in data cleaning and in improving data quality [9].
However those works do not focus on issues that we discussed in this paper.

Thus, by being able to obtain missing information and enriching the original
KDGs one can obtain more accurate and intuitive answers to the various ‘why”
and “how” questions such as: “How does X occur?”, “How does X produce
Y?”, “How are X and Y related?”, “Why X is important to Y?”, “How does X
participate in process Y?”, “How does X do Y?”, “Why does X produce Y?”
and others. The answer of each question is a subgraph of KDG. For example, the
answer of the first question contains only KDG(X) and all the nodes connected
to/from X through ordering edges.

References

1. Baral, C., Vo, N.H., Liang, S.: Answering why and how questions with respect to
a frame-based knowledge base: a preliminary report. In: Technical Communications
of the 28th International Conference on Logic Programming, ICLP 2012, vol. 17,
pp. 26–36 (2012)

2. Chaudhri, V.K., Clark, P.E., Mishra, S., Pacheco, J., Spaulding, A., Tien, J.: AURA:
capturing knowledge and answering questions on science textbooks. Technical re-
port, SRI International (2009)

Event-Object Reasoning with Curated Knowledge Bases 167

3. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDDExplorations Newslet-
ter 7(2), 3–12 (2005)

4. Baral, C., Liang, S.: From knowledge represented in frame-based languages to declar-
ative representation and reasoning via ASP. In: 13th International Conference on
Principles of Knowledge Representation and Reasoning (2012)

5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Logic Programming: Proc. of the Fifth Int’l Conf.
and Symp., pp. 1070–1080. MIT Press (1988)

6. Baral, C.: Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press (2003)

7. Clark, P., Porter, B., Works, B.: KM: The knowledge machine 2.0: Users manual.
Citeseer (2004)

8. Baral, C., Vo, N.H.: Event-object reasoning with curated knowledge bases: Deriving
missing information (June 2013), http://arxiv.org/abs/1306.4411

9. Herzog, T.N., Scheuren, F.J., Winkler, W.E.: Data quality and record linkage tech-
niques. Springer (2007)

http://arxiv.org/abs/1306.4411

Towards Query Answering
in Relational Multi-Context Systems�

Rosamaria Barilaro1, Michael Fink2, Francesco Ricca1, and Giorgio Terracina1

1 Dipartimento di Matematica e Informatica, Università della Calabria, Italy
2 Institute of Information Systems, Vienna University of Technology, Austria

Abstract. We report on preliminary research towards native algorithms for query
answering over relational nonmonotonic Multi-Context Systems (MCS), i.e., al-
gorithms that do not rely on computing equilibria. Inspired by techniques for
query answering in distributed answer set programming, we identify MCS set-
tings where a generalized query answering algorithm is effective and efficient;
confirmed by a preliminary evaluation on a real world application.

1 Introduction

Nonmonotonic Multi-Context Systems (MCS) [2] are a powerful framework for inter-
linking knowledge of different contexts by so-called bridge rules. Contexts may be rep-
resented in heterogeneous knowledge representation formalisms and can be distributed
over a network. Recent research outcomes provide effective (distributed) algorithms
for implementing the well-established model-based semantics expressed in terms of
so-called equilibria. However, these algorithms turned out to be inefficient to serve as
a basis for query answering, in particular in the practically relevant case of relational
MCS [4] (due to the presence of bridge rules having variables, which in principle can
succinctly represent the exchange of large amounts of data).

Addressing the problem, here we consider query answering as the primary task and
aim at developing a native query answering algorithm that does not hinge on equilib-
rium computation. We take inspiration from corresponding techniques in distributed
Answer Set Programming (ASP) [1], which are based on both unfolding and weighted
hyper-tree decomposition techniques [5]. The idea of unfolding is to express a query
directly in terms of the data involved in the query, whereas the goal of hypertree de-
composition methods is to compute a decomposition of the original query organized as
a join-tree, that can be evaluated efficiently following a bottom up strategy. Aiming at
adapting these methods to MCS, our contributions are briefly summarized as follows:
(i) We formally define the problem and characterize a class of MCS that can be adapted.
(ii) We propose an algorithm lifting the approach of [1] to query answering in MCS.
(iii) We report on a preliminary experiment performed on real-world data, considering
an MCS modeling a biomedical domain [3] by means of ASP contexts. A comparison
with a naı̈ve centralized implementation confirms viability of our approach.

We conclude with some pointers to interesting issues raised for further research.
� This research has been partially supported by the Austrian Science Fund (FWF) grant P24090,

the Vienna Science and Technology Fund (WWTF) grant ICT 08-020, the Calabrian Region
under project PIA KnowRex POR FESR 2007- 2013 BURC n. 49 s.s. n. 1 16/12/2010, and
Italian Ministry for University and Research (MIUR) under project FRAME PON01 02477/4.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 168–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Query Answering in Relational Multi-Context Systems 169

2 Preliminaries

Relational MCS [4] generalize nonmonotonic MCS [2], as briefly (and, due to space
constraints, to some extent informally) follows. MCS represent contextual knowledge
by an abstract notion of a so-called logic L that is defined in terms of a signature ΣL,
a set of well-formed knowledge bases KBL, a set of possible belief sets BSL, and a
function ACCL : KBL → 2BSL (intuitively representing the semantics of L) that
assigns each knowledge-base a set of acceptable sets of beliefs.

While (relational) logics serve the purpose of representing contextual knowledge in
terms of knowledge bases, so called bridge rules model their interlinking. Intuitively,
a relational logic L (sometimes simply called ‘logic’ subsequently) additionally allows
for relational elements in KBL and BSL (cf. [4] for details). Given a set of relational
logics {L1, . . . , Ln}, let V be a countable set of distinct variable names. We say that
a (non-ground) relational element of Li is of the form p(t1, . . . , tk), where tj is a term
over ΣLi and V . Then, a relational bridge rule is of the form

(k: s)← (c1: p1), . . . , (cj : pj), not(cj+1: pj+1), . . . , not(cm: pm), (1)

where 1 ≤ k ≤ n, and s is an ordinary or relational knowledge base element of Lk,
as well as 1 ≤ c� ≤ n, and p� is either an ordinary or relational belief of L�, for
1 ≤ � ≤ m. The head belief s is denoted by hd(r), while head(r) = (k: s). More-
over, pos(r)= {(c�1 : p�1) | 1 ≤ �1 ≤ j}, neg(r)= {(c�2 : p�2) | j < �2 ≤ m}, and
body(r)= pos(r)∪ {not(c�2 : p�2) | j < �2 ≤ m}.

A relational MCS consists of a set of contexts each composed of a knowledge base
of an associated relational logic and a set of relational bridge rules. More precisely:

Definition 1 (Relational MCS). A relational MCS M = (C1, . . . , Cn) is a collection
of contexts Ci = (Li, kbi, bri, Di), where Li is a relational logic, kbi is a knowledge
base, bri is a set of relational bridge rules, and Di is a collection of import domains
Di,�, 1 ≤ � ≤ n, such that Di,� is a subset of the universe of ΣLi .

We assume that Di,� = DA
� , i.e., the active domain of object constants appearing in

kb� or in hd(r), for some r ∈ br� such that hd(r) is relational. We use brM to denote⋃n
i=1 bri. The import neighborhood of a context Ck is the set In(k)= {ci | (ci : pi) ∈

pos(r) ∪ neg(r), r ∈ brk}. The import closure of Ck is IC (k)=
⋃

j≥0 IC
j(k), where

IC 0(k)= In(k), and IC j+1(k) =
⋃

i∈IC j(k) In(i). The dependency graph of an MCS
M is the digraph G = ({C1, · · · , Cn},→), where Ci → Cj iff j ∈ In(i).

The semantics of a relational MCS is defined by grounding bridge rules. The ground-
ing of a relational belief p of L� is wrt. DA

� and denoted by grd(p). The set of ground
instances grd(r) of a relational bridge rule r ∈ bri is restricted by admissible sub-
stitutions of the variables in r, i.e., such that constants replacing variable X are in the
intersection of the domains associated with the relational beliefs of all occurrences of X
in r (cf. also [4]). The grounding of a relational MCS M , denoted by grd(M), consists
of the collection of contexts obtained by replacing bri with grd(bri) =

⋃
r∈bri

grd(r).
A belief state S = (S1, . . . , Sn) is given by Si ∈ BS i. A ground bridge rule r of the

form (1) is applicable wrt. S, denoted by S |= body(r), iff p� ∈ Sc� for 1 ≤ � ≤ j and
p� /∈ Sc� for j ≤ � ≤ m. By appi(S) we denote the set {hd(r) | r ∈ grd(bri)∧S |= r};
and S = (S1, . . . , Sn) is an equilibrium of MCS M iff Si ∈ ACC i(kbi ∪ appi(S)).

170 R. Barilaro et al.

3 Query Answering for MCS

While equilibria provide a declarative model-based semantics for MCS, and thus also a
basis for answering queries over MCS, computing equilibria and answering queries on
top is for many practical settings not a viable solution. We subsequently consider query
answering for relational MCS as a primary task.

We consider conjunctive queries QC�
(t) posed to a query context C� of the form:

q(t)← (c1: p1), . . . , (cj : pj), not(cj+1: pj+1), . . . , not(cm: pm),

where q is a query predicate, t = (t1, . . . , tk) is a k-tuple of terms over ΣL�
and V ,

and every pi, 1 ≤ i ≤ m, is an ordinary or relational belief of Lci . We also restrict
to queries compliant with the topology, i.e., contexts in the body are from the import
closure of C�; formally, (ci: pi) ∈ pos(QC�

(t)) ∪ neg(QC�
(t)) implies ci ∈ IC (�).

As usual, query answers are defined in terms of substitutions to the variables in t
(if any) that make the query true. More specifically, given a belief state S we write
S |= QC�

(t) if there exists qg ∈ grd(QC�
(t)) such that qg is applicable wrt. S.

Definition 2. Given a relational MCS M and a conjunctive query QC�
(t), a k-tuple of

ground terms t′ = (t′1, . . . , t
′
k) is called a) a (possible) query answer to QC�

(t), b) a
certain query answer to QC�

(t), if

(i) θt = t′ for some admissible substitution θ, and
(ii) S |= θQC�

(t) holds a) for some, b) for all, equilibria S of M .

The set Ans(M,QC�
(t)) (resp. Cert(M,QC�

(t))) denotes all (certain) query answers.

Towards computing certain answers a first assumption is consistency: an MCS is
known to have equilibria. This can often be guaranteed without computing or knowing
equilibria (e.g., for totally coherent, acyclic MCS) and yields an important relevance
property. For consistent MCS, answers can equivalently be obtained considering the
restriction of M to contexts in the import closure IC (�) of C� (denoted by M |IC (�)).

Theorem 1 (Relevance). Let M be a consistent MCS. Then, Ans(M,QC�
(t)) =

Ans(M |IC (�), QC�
(t)) and Cert(M,QC�

(t)) = Cert(M |IC (�), QC�
(t)), for every

QC�
(t) compliant with the topology.

Another natural restriction that often applies concerns system topology. We say that
a relational MCS M is hierarchical if its dependency graph is acyclic, i.e. it is a forest.
In LP terms they are characterized by stratified and non-recursive bridge rules.

In many relevant scenarios also non-determinism is confined to particular contexts
that import deterministic information and provide reasoning capabilities on top. Corre-
spondingly, given a hierarchical MCS M and a (query) context C�, we say that M is
query-deterministic for C� if ACCLj is deterministic for every j ∈ IC (�) such that
j �= �. That is, |ACCLj(kb)| ≤ 1 holds for all kb ∈ KBLj and every context Cj �= C�

in the import closure of C�. Thus, non-determinism is confined to the query context:

Proposition 1. Let M be a hierarchical and consistent MCS that is query-deterministic
for C�. If i �= �, then S1

i = S2
i , for any two equilibria S1 and S2 of M |IC (�).

Therefore, if C� is also deterministic, then M |IC (�) has a single equilibrium and all
respective query answers are certain.

Towards Query Answering in Relational Multi-Context Systems 171

Procedure EvaluateMCSQuery(Query q, Context c, MCS M , Semantics S)
Output: Set of k-tuple of ground terms Res

1 begin
2 Neighbor := {q} ∪

⋃
ci∈In(c) brci ; Ext Know := ∅;

3 foreach BridgeRule br ∈ Neighbor do
4 Unfold := BridgeUnfold(br,M);
5 foreach Query ubr ∈ Unfold do
6 foreach (co : po) ∈ pos(ubr) ∪ neg(ubr) s.t. co is opaque do
7 Ext Know := Ext Know ∪ EvaluateMCSQuery(qo(t) ← (co : po(t)),c,M);

8 Ext Know := Ext Know ∪ HT Evaluation(hd(br),c, Unfold);

9 Res := evaluate(q,c,Ext Know ,S);

4 Computing Query Answers

Query answering over an MCS exhibiting the conditions outlined in the previous section
can be carried out by procedure EvaluateMCSQuery, which takes as input an MCS M
and a query q posed to context c. Moreover, it is parameterized depending on whether
we are interested in possible or certain answers (i.e., parameter S can be either “Cer-
tain” or “Possible”). The first step identifies the bridge rules of import neighbors of
c. All ground instances of corresponding relational elements present in the (unique)
equilibrium of M |IC (c) are collected in the set Ext Know. To compute it, each bridge
rule in Neighbor is first unfolded by a call to function BridgeUnfold; this step pro-
duces a union of queries (stored in Unfold) whose evaluation is done by applying
(HT Evaluation that is) an adaptation of the distributed query evaluation algorithm pro-
posed in [1] to MCS queries as briefly outlined next. The unfolding is carried out by an
adaptation to bridge rules of the usual unfolding strategy for Datalog programs. Specif-
ically, each bridge rule is considered a separate query, and the unfolding is carried out
by the following head-to-body dependencies among the set of bridge rules of the MCS:
whenever possible, elements are recursively substituted in the body rule by their ‘def-
inition’, as specified within the MCS. We say that a context c is opaque if for c an
unfolding procedure is not defined. Intuitively, if a context is opaque, it is not possible
to ‘look inside’, i.e., access the definition of its elements (either by the way the logic
is defined or by privacy issues), and consequently, it is not possible to unfold through
it. Given pair (c : e) occurring in a query, we say that e is not unfoldable if either (i)
(c : e) appears in the negative part of the query, or (ii) (c : e) is the head of more than
one bridge rule in the MCS, or (iii) its context c is opaque. If condition (i) or (ii) is
satisfied, then the element (c : e) is left unchanged in the query, but the algorithm tries
to recursively unfold the defining bridge rules in the MCS, i.e., those with head (c : e).
If condition (iii) holds, then (c : e) is interpreted as a query that must be posed to con-
text c, managed by a recursive call to procedure EvaluateMCSQuery. Finally, function
ContextUnfold applies a context-specific unfolding procedure inside contexts that are
not opaque, returning a set of queries. It is thus applicable to context logics admitting
unfolding procedures for query answering (e.g., this holds for ASP, DL-Lite, Datalog,
etc.). The effect of unfolding is twofold: (i) it restricts the computation to data relevant
for answering the query by considering chains of dependencies among bridge rules; and
(ii) it rearranges original queries into an equivalent set of queries with longer bodies,

172 R. Barilaro et al.

Function BridgeUnfold(BridgeRule br, MCS M)
Output: Set of Bridge rules Unfold

1 begin
2 Unfold := ∅;
3 foreach (c : p) ∈ pos(br) ∪ neg(br) do
4 if p is unfoldable then
5 Let rp ∈ brM s.t. head(rp) = (c : p);
6 br := Replace(br, (c : p), body(rp)) ;

7 if c is not opaque then
8 foreach r ∈ brM s.t. (c : p) ∈ head(r) do
9 R := ContextUnfold(r, c);

10 Unfold := Unfold ∪
⋃

r′∈R BridgeUnfold(r′ ,M);

11 Unfold := Unfold ∪ br;

that thus are more suitable to be analyzed by the subsequent hyper-tree decomposition.
Indeed, function HT Evaluation first applies a weighted hyper-tree decomposition [5]
to queries in Unfold, and then evaluates them bottom-up according to the body-to-head
dependencies. In the mentioned decomposition technique, a query q is associated with
a hyper-graph H where hyper-edges represent joins between variables. A hyper-tree
decomposition of H decomposes q in sub-queries efficiently bottom-up evaluable. In
our setting, body atoms are relational elements defined in some context, and a query has
to be executed at a context to compute its ground instances. Moreover, contexts may be
distributed on different machines over a network, implying data transfer over the net-
work. Therefore, we a apply a lifting of the hyper-tree weighting function defined in [1]
with its execution plan optimization that also evaluates costs in a distributed setting. Fi-
nally, once the external knowledge is available at the query context c, function evaluate
computes the possible/certain answers to q in context c.

Proposition 2. Given a relational MCS M and a conjunctive query QC�
(t) posed to

contextC�, then bothAns(M,QC�
(t))=EvaluateMCSQuery(QC�

(t),C�,M ,Possible)
and Cert(M,QC�

(t))=EvaluateMCSQuery(QC�
(t),C�,M ,Certain) hold.

5 Proof-of-Concept Prototype and Preliminary Evaluation

We developed a proof-of-concept implementation of the approach described in Sec-
tion 4. Our current implementation restricts to MCSs whose context logics are defined
by logic programs under ASP semantics (which are not opaque). Ground relational kb
and belief set elements are assumed to reside in DBMSs, locally for each context; they
can be possibly accessed by other contexts through ODBC connections. In this set-
ting the implementation of function HT Evaluation is a straight adaptation of the sys-
tem [1], having DLVDB as the underlying engine for logic program evaluation. Dealing
with ASP contexts allowed to additionally exploit involved optimizations in realizing
ContextUnfold for query evaluation. Indeed, our implementation also pushes down,
whenever possible, constants present in the query through the unfolding process. This
significantly reduces data transfers among contexts. We assessed our approach running
a preliminary experiment on the real world application presented in [3]. The applica-
tion domain involves biomedical knowledge resources about genes, drugs and diseases,

Towards Query Answering in Relational Multi-Context Systems 173

Table 1. Experimental results

Query Our Approach Naı̈ve Approach Involved Contexts Involved Resulting
(sec) (sec) Tuples Tuples

q1 38,5 534,3 PHARMGKB,CTD 399.713 41
q2 61,1 607,4 PHARMGKB,CTD,SIDER 400.207 535
q3 38,9 572,1 PHARMGKB,CTD,BIOGRID 431.528 1
q4 381,0 1.847,6 PHARMGKB,CTD 1.375.819 33
q5 36,9 345,4 PHARMGKB,CTD,DRUGBANK 261.315 1.726
q6 145,7 1.836,3 PHARMGKB,CTD,DRUGBANK,BIOGRID 1.380.398 11

from PHARMGKB, DRUGBANK, BIOGRID, CTD, and SIDER online databases. This
scenario has been modeled as an MCS taking each source of knowledge as a context;
like in reality, we distributed these contexts, and the corresponding data, on different
servers connected by standard Ethernet. Several bridge rules properly represent inter-
connections (relations in [3]) and we considered six (deterministic) queries from [3].1

Given a query q posed to a context c, we executed and compared two algorithms (cf.
Table 1): procedure EvaluateMCSQuery and a naı̈ve algorithm, which is a “plain” ex-
ecution of DLVDB that first transfers to c all the data accessed by its bridge rules, and
then locally evaluates q on c. Table 1 shows the promising results obtained. Observe
that the number of tuples in the result of the queries considered is much smaller than
the involved tuples; this is mainly due to selections present in most queries; these are
pushed down to the original data by unfolding.

6 Conclusion

We provided stepping stones towards effective query answering in nonmonotonic MCS,
together with experimental confirmation on a real-world application. This opens several
interesting issues for future research (partly ongoing), such as generalizing the tech-
nique, specifically hyper-tree decomposition, to broader settings, considering language
extensions (aggregates), or incorporating sensitivity to privacy issues (beyond import
neighborhood). A detailed complexity analysis including data complexity, as well as
studying semantic properties (e.g., query containment) are interesting topics in theory.

References

1. Barilaro, R., Ricca, F., Terracina, G.: Optimizing the distributed evaluation of stratified pro-
grams via structural analysis. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS,
vol. 6645, pp. 217–222. Springer, Heidelberg (2011)

2. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
AAAI, pp. 385–390. AAAI Press (2007)

3. Erdem, E., Erdem, Y., Erdogan, H., Öztok, U.: Finding answers and generating explanations
for complex biomedical queries. In: Burgard, W., Roth, D. (eds.) AAAI. AAAI Press (2011)

4. Fink, M., Ghionna, L., Weinzierl, A.: Relational information exchange and aggregation in
multi-context systems. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645,
pp. 120–133. Springer, Heidelberg (2011)

5. Scarcello, F., Greco, G., Leone, N.: Weighted hypertree decompositions and optimal query
plans. Journal of Computer and System Sciences 73(3), 475–506 (2007)

1 Note that q1-q6 in our paper correspond to Q6, Q7, Q1, Q8, Q9 and Q2 in [3]; nonetheless, all
queries from [3] could be handled within our framework applyng minor syntactic adaptations.

Spectra in Abstract Argumentation:
An Analysis of Minimal Change

Ringo Baumann and Gerhard Brewka

University of Leipzig, Informatics Institute, Germany
{baumann,brewka}@informatik.uni-leipzig.de

Abstract. In this paper we present various new results related to the dynamics of
abstract argumentation. Baumann [1] studied the effort needed to enforce a set of
arguments E, measured in terms of the minimal number of modifications needed
to turn an argumentation framework (AF) A into a framework A∗ such that A∗

has an extension containing E. This value, called the characteristic, depends on
the chosen semantics and the type of admitted modifications. Here we study the
inverse problem (called the spectrum problem): given a collection of semantics
and a modification type, what are the corresponding tuples of characteristics one
may obtain for an arbitrary argumentation framework A and set of arguments
E? The set of all these tuples is called the spectrum. We define various proper-
ties of spectra and show that the investigation of spectra reveals interesting and
surprising insights into the relationship among several semantics.

1 Introduction

Argumentation is the interdisciplinary study of how conclusions can be reached through
the construction and evaluation of arguments, that is, structures describing a proposition
together with the reasons for accepting it. The field has received growing interest within
Artificial Intelligence over the last decades. It covers aspects of knowledge representa-
tion and multi-agent systems, but also touches on various philosophical questions (for a
very good overview see [2]). Dung’s abstract argumentation frameworks (AFs) [3] play
a dominant role in the field. In AFs arguments and attacks among them are treated as
abstract entities. The focus is on conflict resolution and argument acceptability. Vari-
ous semantics for AFs have been defined, each of them specifying acceptable sets of
arguments, so-called extensions, in a particular way.

More recently several problems regarding dynamic aspects of abstract argumentation
have been addressed in the literature [4–8, 1]. One problem which is relevant to the work
presented here concerns the acceptability of certain arguments and is called enforcing
problem [6]. This is, in brief, the question whether it is possible, given a specific set of
allowed operations, to modify a given AF such that a desired set of arguments E is con-
tained in an extension of the modified AF. Several necessary and sufficient conditions
under which enforcements are possible were identified.

In addition to clarifying the possibility of enforcing certain arguments, a natural fur-
ther question in this context is concerned with the effort needed for the enforcements.
This more general problem of minimal change [1] can be formulated as follows: what is
the minimal number of modifications (additions or removals of attacks) needed to reach

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 174–186, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Spectra in Abstract Argumentation: An Analysis of Minimal Change 175

an enforcement of E? This value, called characteristic in [1], depends on the underlying
semantics σ and type of allowed modifications Φ. Quite surprisingly, it was shown that,
in case of certain semantics and modification types, there are local criteria to determine
the minimal number, although infinitely many possibilities to modify a given AF exist.

In this paper we study a further, closely related question in this context which has
some similarity with the famous Spektralproblem1 in model theory [9]. Given a certain
semantics σ and a modification type Φ, we study whether there is, for a given natural
number n, an AF A and a set of arguments E such that n is the (σ,Φ)-characteristic
of E w.r.t. A. In other words, we want to determine the set of all natural numbers
which may occur as (σ,Φ)-characteristics, the so-called (σ,Φ)-spectrum. This yields
interesting insights into particular semantics. To mention one result, we will show that
in case of semi-stable semantics and the addition of weak arguments (arguments which
do not attack previous arguments) not each natural number may arise as the minimal
effort needed to enforce a certain set D. In particular, the characteristic cannot be 1.

What makes our study even more interesting, as we believe, is the fact that it pro-
vides useful and at times surprising new insights into the interrelationships among the
studied semantics. To this end, we perform our analysis in parallel for a whole group
of semantics which we consider as some of the most important semantics for Dung
frameworks. Rather than sets of values, spectra thus become sets of tuples of values.
Appropriate properties of the spectra - which we will define in Sect. 3 - will help us to
identify such relationships.

The rest of the paper is organized as follows. Sect. 2 reviews the necessary back-
ground. Sect. 3 introduces the notion of a spectrum and presents our results for the
stable/semi-stable/preferred spectra under various types of modifications. In Sect. 4 we
discuss related work and conclude.

2 Background

An argumentation framework F is a pair (A,R), where A is a non-empty finite set
whose elements are called arguments and R ⊆ A×A a binary relation, called the attack
relation. The set of all AFs is denoted by A . If (a, b) ∈ R holds we say that a attacks
b, or b is defeated by a in F . An argument a ∈ A is defended by a set A′ ⊆ A in F if
for each b ∈ A with (b, a) ∈ R, b is defeated by some a′ ∈ A′ in F . Furthermore, we
say that a set A′ ⊆ A is conflict-free in F if there are no arguments a, b ∈ A′ such that a
attacks b. The set of all conflict-free sets of an AF F is denoted by cf(F). For an AF
F = (B,S) we use A(F) to refer to B and R(F) to refer to S. Finally, we introduce
the union of two AFs as usual, namely F ∪ G = (A(F) ∪A(G),R(F) ∪R(G)).

Semantics determine acceptable sets of arguments for a given AF F , so-called exten-
sions. The set of all extensions of F under semantics σ is denoted by Eσ(F). For two
semantics σ, τ we use σ ⊆ τ to indicate that for any F ∈ A , Eσ(F) ⊆ Eτ (F). Due to
the limited space we consider stable (st), preferred (pr) and semi-stable (ss) semantics
only [3, 10].

1 Roughly speaking, Scholz investigated the possible sizes finite models of a first-order sentence
may have.

176 R. Baumann and G. Brewka

Definition 1 (Semantics). Given an AF F = (A,R) and E ⊆ A. E is a

1. stable extension (E ∈ Est(F)) iff
E ∈ cf(F) and each a ∈ A/E is defeated by some e ∈ E,

2. admissible set (E ∈ Ead(F)) iff
E ∈ cf(F) and each e ∈ E is defended by E in F ,

3. preferred extension (E ∈ Epr(F)) iff
E ∈ Ead(F) and for each E′ ∈ Ead(F), E /⊂ E′ and

4. semi-stable extension (E ∈ Ess(F)) iff
E ∈ Ead(F) and for each E′ ∈ Ead(F), R+F(E) /⊂ R+

F
(E′) where R+

F
(E) =

E ∪ {b ∣ (a, b) ∈ R,a ∈ E}.

It is well known that st ⊆ ss ⊆ pr. Furthermore, there exist sufficient conditions for the
agreement of the considered semantics. In particular, st = ss if st ≠ ∅ [10] and st = pr
if the considered AFs are SCC-symmetric and self-loop-free (compare [11]).

Expansions were introduced by [6]. They will be our object of investigation since
they represent reasonable types of dynamic argumentation scenarios.

Definition 2 (Expansions). An AF F∗ is an expansion of AF F = (A,R) (for short,
F ⪯E F∗) iff F∗ = (A ∪ A∗,R ∪R∗) where A∗ ∩ A = R∗ ∩R = ∅. An expansion is
called

1. normal (F ⪯N F∗) iff ∀ab ((a, b) ∈ R∗ → a ∈ A∗ ∨ b ∈ A∗),
2. strong (F ⪯S F∗) iff A ⪯N A∗ and ∀ab ((a, b) ∈ R∗ → ¬(a ∈ A ∧ b ∈ A∗)),
3. weak (F ⪯W F∗) iff A ⪯N A∗ and ∀ab ((a, b) ∈ R∗ → ¬(a ∈ A∗ ∧ b ∈ A)).

For short, normal expansions add new arguments and possibly new attacks which
involve at least one of the fresh arguments. Strong (weak) expansions are normal and
only add strong (weak) arguments, i.e. the added arguments never are attacked by (at-
tack) former arguments. For the purpose of illustration we present the following simple
example.

Example 1. The AF F = ({a, b},{(a, b)}) is the initial framework. Arbitrary, normal,
weak and strong expansions of F are given by FE , FN , FW or FS , respectively.

aFE ∶ b

c d

aFN ∶ b

c d

aFW ∶ b

c d

aFS ∶ b

c d

Fig. 1. Notions of Expansions

As usual F ≺X F∗ for X ∈ {E,N,S,W} stands for F ⪯X F∗ and F ≠ F∗. To
simplify notation we will later on often use X to refer to ⪯X . Whenever infix notation
is used we stick to ⪯X , though.

The minimal change problem [1] is the problem of determining the minimal effort
needed to transform a given argumentation framework, using a particular type of mod-
ifications, into a framework that possesses an extension containing a specific set of
arguments E. The effort is characterized by the (σ,Φ)-characteristic:

Spectra in Abstract Argumentation: An Analysis of Minimal Change 177

Definition 3 (Characteristic). Given a semantics σ, a binary relation Φ ⊆ A ×A and
an AF F . The (σ,Φ)-characteristic of a set C ⊆ A(F) is a natural number or infinity
defined by the following function

NFσ,Φ ∶ ℘(A(F)) → N∞

C ↦

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, ∃C′ ∶ C ⊆ C′ and C′ ∈ Eσ(F)

k, k =min{d(F ,G) ∣ (F ,G) ∈ Φ,NGσ,Φ(C) = 0}

∞, otherwise.

Here we define d(F ,G) as the number of added or removed attacks needed to transform
F to G. This means d(F ,G) = ∣R(F)Δ R(G)∣ where Δ is the symmetric difference.

3 The Spectrum Problem

Given a semantics and a type of allowed modifications, the characteristic provides in-
formation about the effort needed to enforce a set of arguments C starting from an AF
F . Here we study the inverse problem, that is, given a particular characteristic, is there
an AF F and a set of arguments C which possess this characteristic. More generally,
we will consider n-tuples of semantics and modification types and ask whether some F
and C possess a given n-tuple of characteristics simultaneously. A tuple of characteris-
tics satisfying this condition is called a fibre. A fibre is said to be finite if all entries are
natural numbers. The set of all fibres provides important insights on how close or far
apart the characteristics of a set C may be. That’s why this set is called the spectrum.
Here is the formal definition.

Definition 4. Given n semantics σ1,...,σn and n binary relations Φ1, ..., Φn ⊆ A ×

A . The (σ1, Φ1, ..., σn, Φn)-spectrum is a set of n-tuples (so-called fibres) defined as
follows:

S
(σi,Φi)

n
i=1

={(k1, ..., kn) ∣ ∃F ∈ A ∃C ⊆ A(F) ∶NFσi,Φi
(C)=ki for all i ∈ {1, ..., n}}.

For convenience, if Φ1 = ... = Φn we simply write (σ1, ..., σn, Φ)-spectrum or
S
(σ1,...,σn,Φ). These are exactly the types of spectra which we will consider in this

paper. Furthermore, we will restrict ourselves to stable (st), semi-stable (ss) and pre-
ferred (pr) semantics, arguably the most important semantics for Dung frameworks.
The relations we study will be normal, strong, weak and arbitrary expansions.

We first introduce some basic properties spectra may possess.

Definition 5. A spectrum S
(σi,Φi)

n
i=1

is

1. m.d.s. iff any finite fibre (k1, ..., kn) ∈ S
(σi,Φi)

n
i=1

is a monotonic decreasing se-
quence,

2. m.d.s.-complete iff S
(σi,Φi)

n
i=1

is m.d.s. and {(k1, ..., kn) ∈ N
n ∣ k1 ≥ ... ≥ kn} ⊆

S
(σi,Φi)

n
i=1

,
3. coherent iff there is no fibre (k1, ..., kn) ∈ S(σi,Φi)

n
i=1

, s.t. ki = ∞ and kj ≠ ∞ for
some indices 1 ≤ i, j ≤ n and

4. positive iff any fibre (k1, ..., kn) ∈ S(σi,Φi)
n
i=1

is finite.

178 R. Baumann and G. Brewka

These properties are interesting for the following reasons: if a spectrum for semantics
σ1, . . . , σn is m.d.s., then we know that whenever enforcing is possible for all of them it
is at least as difficult using σi as it is using σj given that i < j. If it is m.d.s.-complete we
know in addition that it can in fact be arbitrarily more difficult. Coherence means that
whether some C is enforceable or not does not depend on the choice of the considered
semantics. Positive means each set C can actually be enforced.

A few relationships among these properties are clear by definition. First, an m.d.s.-
complete spectrum is m.d.s. and second, a positive spectrum is coherent. Further inter-
pretations of the introduced properties are given in the following subsections.

3.1 The (st, ss,pr,Φ)-Spectrum (Φ ∈ {E,N,S})

In this subsection we will characterize the (st, ss, pr)-spectra w.r.t. strong, normal and
arbitrary expansions. In [1, Corrolary 3] it was shown that the stable (semi-stable) char-
acteristic exceeds the semi-stable (preferred) characteristic w.r.t. any binary relation
over the set of all finite AFs. Consequently, the considered spectra are m.d.s.

Quite surprisingly, the following proposition shows that the mentioned spectra are
even m.d.s.-complete, i.e. the stable (semi-stable) characteristic may take values which
exceed the semi-stable (preferred) characteristic by any natural number. In a sense this
result is negative as it tells us that information about the characteristic of one semantics
does not help in determining the characteristic of the other semantics: even if we know
that the characteristic w.r.t. preferred semantics for a certain set D is, say, 1 (i.e., only 1
additional attack is needed), there is no possibility to give an upper bound of the charac-
teristic w.r.t. semi-stable or stable semantics. The result underlines the independence of
the considered semantics w.r.t. the minimal change problem. It indicates that the choice
of the considered semantics may influence the characteristic dramatically, even though
the considered semantics possess many similarities.

Proposition 1. For any Φ ∈ {E,N,S}, S
(st,ss,pr,Φ) is m.d.s.-complete.

Proof. Let Φ ∈ {E,N,S} and k, l,m ∈ N, s.t. k ≥ l ≥ m. Hence, we may assume
that l = m + n and k = m + n + o for some n, o ∈ N. If we may construct AFs F and
corresponding sets C ⊆ A(F), s.t. NFst,Φ(C) = m + n + o, NFss,Φ(C) = m + n and
NFpr,Φ(C) =m, then (k, l,m) ∈ S

(st,ss,pr,Φ) follows. Thus, S
(st,ss,pr,Φ) is shown to be

m.d.s.-complete. We define the AF Fm,n,o = (Am,n,o,Rm,n,o) where

Am,n,o = {a} ∪ {bj ∣ 1 ≤ j ≤m} ∪ {cj, dj , ej ∣ 1 ≤ j ≤ n} ∪ {fj ∣ 1 ≤ j ≤ o} and

Rm,n,o = {(bj, a), (bj , bj) ∣ 1 ≤ j ≤m} ∪ {(cj, dj), (dj , cj), (ej , ej) ∣ 1 ≤ j ≤ n} ∪
{(dj , ei) ∣ 1 ≤ j, i ≤ n} ∪ {(dj, bi) ∣ 1 ≤ j ≤ n,1 ≤ i ≤m} ∪

{(dj , di) ∣ j ≠ i,1 ≤ j, i ≤ n} ∪ {(fj, fj) ∣ 1 ≤ j ≤ o} ∪
{(dj , fi) ∣ 1 ≤ j ≤ n,1 ≤ i ≤ o}.

Note that if a subindex equals zero, then there are no corresponding arguments and
attacks. For the sake of clarity we present here an instantiation of the presented scheme,
namely F3,2,4.

Spectra in Abstract Argumentation: An Analysis of Minimal Change 179

a

c2

c1

d1

d2

b1 b2 b3

f1 f2 f3 f4

e2

e1

Fig. 2. The AF F3,2,4

The grey highlighted arguments belong to the set C2 = {a, c1, c2} which is an in-
stantiation of the scheme Cn = {a} ∪ {cj ∣ 1 ≤ j ≤ n}. We claim that NFm,n,o

st,Φ (Cn) =

m + n + o, NFm,n,o

ss,Φ (Cn) = m + n and N
Fm,n,o

pr,Φ (Cn) = m. By construction Cn is
conflict-free in Fm,n,o. Furthermore, Cn does not have proper conflict-free supersets

(*). Applying the characterization theorems of [1] (Theorem 9, Def. 8) NFm,n,o

pr,Φ (Cn) =

V
Fm,n,o

ad,S (Cn) = ∣R−
Fm,n,o

(Cn)/R
+

Fm,n,o
(Cn)∣ = ∣{bj ∣ 1 ≤ j ≤m}∣ = m because these

arguments are not counterattacked by Cn. In case of stable semantics NFm,n,o

st,Φ (Cn) =

V
Fm,n,o

st,S (Cn) = ∣A(Fm,n,o)/R
+

Fm,n,o
(Cn)∣ = ∣{bj ∣ 1 ≤ j ≤m} ∪ {ej ∣ 1 ≤ j ≤ n}∪

{fj ∣ 1 ≤ j ≤ o}∣ =m + n + o since exactly these arguments are not attacked by Cn.

To see that NFm,n,o

ss,Φ (Cn) = m + n is much more difficult. At first we will show that

N
Fm,n,o

ss,E (Cn) ≥m+n and finally,NFm,n,o

ss,S (Cn) ≤m+n. Consequently,NFm,n,o

ss,Φ (Cn)=

m + n for any Φ ∈ {E,N,S} is proven (Corollary 4 [1]). Consider the n conflict-free
sets S1

n, ..., S
n
n where Sj

n = {a} ∪ {ci ∣ 1 ≤ i ≤ n}/{cj} ∪ {dj}. We observe that
Cn /⊆ Sj

n for n ≥ 1 and furthermore, R+
Fm,n,o

(Cn) ⊂ R+
Fm,n,o

(Sj
n) = Am,n,o. As-

sume now N
Fm,n,o

ss,E (Cn) = l′ < m + n. Hence, there is an AF G, s.t. d(Fm,n,o,G) = l′,
Fm,n,o ⪯ G and furthermore, there is a conflict-free superset C′n of Cn with the property
C′n ∈ Ess(G). In consideration of (*) we deduce that C′n = Cn ∪G where G is a set of
fresh arguments. Since any semi-stable extension is admissible we conclude that each
bj has to be attacked by C′n. This means at least m additional attacks of G are required
for this task.

Let us consider now the remaining l′′ < n = ∣{Sj
n ∣ 1 ≤ j ≤ n}∣ new attacks. The set

Sj
n that we look for satisfies the following conditions: 1. for any g ∈ G, (dj , g), (g, dj) ∉

R(G), 2. (dj , dj) ∉ R(G), 3. for any i ≠ j, (ci, dj), (dj , ci) ∉ R(G) as well as
(a, dj), (dj , a) ∉ R(G) and 4. for any g ∈ A(G)/{A(Fm,n,o) ∪G}, (cj , g), (g, dj) ∉
R(G). Since any new attack may eliminate at most one potential candidate we deduce
that there is indeed such a Sj

n satisfying 1. - 4. We will show now that Sj
n ∪G ∈ Ead(G)

180 R. Baumann and G. Brewka

and R+
G
(Cn ∪G) ⊂ R+

G
(Sj

n ∪G) contradicting C′n ∈ Ess(G). Let us consider the range
R+
G
(Cn ∪ G). Obviously, there is an index i, s.t. ei ∉ R+

G
(Cn ∪ G) since l′′ < n

was assumed. Note that ei ∈ R+
G
(Sj

n ∪ G) by construction of Fm,n,o and Sj
n. Fur-

thermore, in consideration of the first part of condition 4. (cj does not “reach” further
arguments) we immediately conclude that R+

G
(Cn ∪ G) ⊆ R+

G
(Sj

n ∪ G). Altogether,
R+
G
(Cn ∪G) ⊂ R+

G
(Sj

n ∪G) has to hold. Furthermore, Sj
n ∪G is conflict-free in G for

two reasons, first Sj
n satisfies conditions 1. - 3. and second, Cn ∪ G is assumed to be

admissible and in particular, conflict-free in G. Assume now that Sj
n∪G ∉ Ead(G). This

means, there is argument g ∈ A(G) which attacks Sj
n∪G without being counterattacked.

Since conflict-freeness is already shown and AFm,n,o ⊆ R+
G
(Sj

n ∪G) obviously holds,
we deduce g ∈ A(G)/{Am,n,o ∪ G}. In consideration of the second part of condition
4. ((g, dj) ∉ R(G)) it follows that g attacks some ci with i ≠ j or an argument g′ ∈ G.
Since Cn ∪G is assumed to be admissible in G there is an argument c′ ∈ Cn ∪G, s.t.
(c′, g) ∈ R(G). If c′ ∈ G, then obviously c′ ∈ Sj

n ∪G. If c′ ∈ Cn, then c′ ∈ Sj
n ∪G be-

cause the second part of condition 4. ((cj, g) ∉ R(G)) guarantees cj ≠ c′. This means,

under the assumption N
Fm,n,o

ss,E (Cn) = l′ < m + n we derived a contradiction, namely

C′n ∈ Ess(G) ∧C′n ∉ Ess(G). Hence, NFm,n,o

ss,E (Cn) ≥m + n is shown.

Let us prove now that NFm,n,o

ss,S (Cn) ≤m +n. Consider therefore a fresh argument c
and the AF Gm,n = (Am,n,o∪{c},Rm,n,o∪{(c, bj) ∣ 1 ≤ j ≤m}∪{(c, dj) ∣ 1 ≤ j ≤ n}).
One can easily verify that Cn ∪ {c} ∈ Ess(Gm,n) and furthermore, F ⪯S Gm,n. Since

d(Fm,n,o,Gm,n) =m+n we conclude NFm,n,o

ss,S (Cn) ≤m+n. Finally, NFm,n,o

ss,Φ (Cn) =

m + n for any Φ ∈ {E,N,S} is proven.

The following proposition shows that the spectrum S
(st,ss,pr,Φ) is coherent, i.e. any

fibre either possesses finite values or all values equal infinity. This means, under the
considered semantics it is impossible that a set C may be enforced w.r.t. a semantics σ
and simultaneously, C is not enforceable w.r.t. another semantics τ . Furthermore, we
show that the considered spectra are not positive, i.e. there are unenforcable sets.

Proposition 2. For any Φ ∈ {E,N,S}, S
(st,ss,pr,Φ) is coherent but not positive.

Proof. Given Φ ∈ {E,N,S}. First, we will prove the coherence of S
(st,ss,pr,Φ). Since

S
(st,ss,pr,Φ) is already shown to be m.d.s.-complete it suffices to prove that for any

fibre (k, l,m) ∈ S
(st,ss,pr,Φ), if m < ∞, then l < ∞ and if l < ∞, then k < ∞. Let

m < ∞. Hence there is an AF F and a set C ⊆ A(F), s.t. NFpr,Φ(C) = m. This means,
C has to be conflict-free in F . Applying Corollary 7 in [1] we deduce l = NFss,S(C) ≤

∣A(F)/C ∣ < ∞. Since NFss,S(C) ≥ NFss,N(C) ≥ NFss,E(C) (compare Corollary 4 [1])
holds we are done. In the same way one may show that l < ∞ implies k < ∞.

To prove that S
(st,ss,pr,Φ) is not positive it suffices to construct a non-finite fibre.

Consider thereforeF = ({a},{(a, a)}) andC = {a}. Since C does not possess conflict-
free supersets we deduce NFad,Φ(C) = ∞ (compare Theorem 9, Def. 6 [1]). Further-
more, by Prop. 5 [1] we get (∞,∞,∞) ∈ S

(st,ss,prΦ) concluding the proof.

The following Theorem summarizes the earlier results. Note that the listed proper-
ties fully characterize the considered spectra. This means, it is decidable whether an
arbitrary fibre belongs to the considered spectra.

Spectra in Abstract Argumentation: An Analysis of Minimal Change 181

Theorem 1. For any Φ ∈ {E,N,S}, S
(st,ss,pr,Φ) is coherent, m.d.s.-complete but not

positive.

3.2 Properties of the (st, ss,pr,W)-Spectrum

The following example taken from [1] shows some first and notable differences between
the coinciding spectra w.r.t. normal, strong and arbitrary expansions and the spectrum
w.r.t. weak expansions considered in this section.

F ∶ a1 a2 a3 G ∶ a1 a2 a3b

Fig. 3. Non-coherence of the Weak Spectrum

The AFs above exemplify that the (st, ss, pr,W)-spectrum is not coherent since
NFst,W ({a1}) = ∞ (unenforceable) and NFpr,W ({a1}) = 0 (already accepted). Further-
more, 1 ≤ NFss,W ({a1}) ≤ 2 because {a1} and all its proper supersets are not semi-
stable in F but {a1} is semi-stable in G.

Unfortunately, (up to now) there are no characterization theorems for semi-stable
semantics. Nevertheless, with the help of the following impossibility result it is shown
that NFss,W ({a1}) = 2 holds. This means, if a desired set of arguments D is not already
contained in a semi-stable extension of the initial framework, then the minimal effort
needed to enforce D is at least 2 in case of weak expansions.

Proposition 3. (n,1,m) ∉ S
(st,ss,pr,W) for each n,m ∈ N∞.

Proof. Since n,m are assumed to be arbitrary natural numbers or ∞ it suffices to prove
that (1) ∉ S

(ss,W). Assume (1) ∈ S
(ss,W), i.e. there is an AF F and a set C with

the property NFss,W (C) = 1. This means there is an AF G, s.t. F ⪯W G, d(F ,G) = 1
and a set C′ ⊇ C with C′ ∈ Ess(G). W.l.o.g. C′ = D ∪ E where C ⊆ D ⊆ A(F)
and E ⊆ A(G)/A(F). Since every semi-stable extension is admissible we deduce D ∈

Ead(F). Furthermore, NFss,⪯W (C) = 1 ≠ 0 implies there is an admissible set D′ in
F , s.t.R+

F
(D) ⊂ R+

F
(D′) (*). We will show now that D ∪ E ∉ Ess(G) by proof by

cases. Let (d, e) be the new attack. Note that e ∈ A(G)/A(F) is implied since F ⪯W G

is assumed. Furthermore, d ∈D and e ∈ E is impossible since D ∪E ∈ cf(G).
1stcase: Let d ∈ D/D′ and e ∉ E. We observe R+

G
(D ∪ E) = R+

F
(D) ∪ E ∪ {e}.

Furthermore, E only contains isolated arguments in G and hence, D′ ∪ E ∈ Ead(G).
Because of (*) and d ∈D/D′ we conclude e is defended by D′ in G. Thus, D′∪E∪{e} ∈
Ead(G) and obviously, R+

G
(D′ ∪ E ∪ {e}) = R+

F
(D′) ∪ E ∪ {e}. In consideration of

(*) it follows that R+
F
(D) ∪ E ∪ {e} = R+

G
(D ∪ E) ⊂ R+

G
(D′ ∪ E ∪ {e}) and hence,

D ∪E ∉ Ess(G) is shown.
2ndcase: Let d ∈ D∩D′ and e ∉ E. Consequently, D′∪E ∈ Ead(G) and furthermore,

R+
G
(D ∪E) = R+

F
(D) ∪E ∪ {e} ⊂(∗) R+

F
(D′) ∪E ∪ {e} = R+

G
(D′ ∪E) contradicting

D ∪E ∈ Ess(G).

182 R. Baumann and G. Brewka

3rdcase: Let d ∈ D′/D and e ∉ E. Again, D′ ∪E ∈ Ead(G) holds and furthermore,
R+
G
(D ∪E) = R+

F
(D) ∪E ⊂(∗) R+

F
(D′) ∪E ∪ {e} = R+

G
(D′ ∪E) in contradiction to

D ∪E ∈ Ess(G).
4thcase: Let d ∈ D′/D and e ∈ E. Hence, D′ ∪ (E/{e}) ∈ Ead(G). Furthermore,

R+
G
(D∪E) = R+

F
(D)∪E ⊂(∗) R+

F
(D′)∪(E/{e})∪{e} = R+

F
(D)∪E = R+

G
(D′∪E).

Consequently, D ∪E ∉ Ess(G) is shown.
5thcase: Let d ∈ A(F)/(D′ ∪D) and e ∈ E. Thus, D has to counterattack d in F

since D ∪E is assumed to be admissible in G. Let d′ ∈ D be the counterattacker of d.
If d′ ∈D′ we conclude D′ ∪E ∈ Ead(G). If not, it follows the existence of an argument
d′′ ∈ D′, s.t. (d′′, d) ∈ R(F) since (*) is assumed. Again, we get D′ ∪E ∈ Ead(G). In
both cases, R+

G
(D ∪E) = R+

F
(D) ∪E ⊂(∗) R+

F
(D′) ∪E = R+

G
(D′ ∪E) contradicting

D ∪E ∈ Ess(G).
6thcase: Let d ∈ A(F)/(D′ ∪D) and e ∉ E. Consequently, D′ ∪ E ∈ Ead(G) and

thus, R+
G
(D ∪E) = R+

F
(D) ∪E ⊂(∗) R+

F
(D′) ∪E = R+

G
(D′ ∪E) in contradiction to

D ∪E ∈ Ess(G).
7thcase: Let d, e ∈ A(G)/A(F). Since d(F ,G) = 1 it follows that e ∉ E. Con-

sequently, D′ ∪ E ∈ Ead(G) and furthermore, R+
G
(D ∪ E) = R+

F
(D) ∪ R+

G
(E) ⊂(∗)

R+
F
(D′) ∪R+

G
(E) = R+

G
(D′ ∪E) contradicting D ∪E ∈ Ess(G).

The proposition above and its usage for the illustrated problem, namely determining
the characteristic in a certain argumentation scenario, underline that the investigation
of spectra reveals important insights into the minimal change problem. The following
impossibility result reveals a further surprising interrelation between the considered
semantics, namely that for any F and any set of arguments E it is impossible that
E is already contained in a preferred extension yet unenforceable using semi-stable
semantics.

Proposition 4. (∞,∞,0) ∉ S
(st,ss,pr,W).

Proof. We will show the stronger result, namely (∞,0) ∉ S
(ss,pr,W). Assume (∞,0) ∈

S
(ss,pr,W), i.e. there is an AF F and a set C with the property NFpr,⪯W (C) = 0 and

NFss,⪯W (C) = ∞. This means, there exists a set C′ ⊇ C with C′ ∈ Epr(F). Since all
considered AFs are assumed to be finite we deduce C′ = {c′1, ..., c

′

n} for some n ∈ N.
Let D = {d1, ..., dn} be a set of fresh arguments and consider G = (A(F) ∪D,R(F) ∪
{(di, di), (c

′

i, di) ∣ 1 ≤ i ≤ n}). Obviously, d(F,G) = 2n and F ⪯W G. Furthermore,
the range of C′ in G includes the set D and obviously, no proper subset of C′ possess
this property too. Consequently, there is no C′′ ∈ Ead(G), s.t. R+

G
(C′) ⊂ R+

G
(C′′)

because C′ is also preferred in G. Hence, C′ ∈ Ess(G) contradicting the assumption.

In the light of Prop. 4 the corresponding question about the fibres (∞,∞,∞), (∞,0,0)
and (0,0,0) arises. The following proposition gives the (positive) answer:

Proposition 5. {(∞,∞,∞), (∞,0,0), (0,0,0)} ⊆ S
(st,ss,pr,W).

Proof. Consider the AFs F1 = ({a},{(a, a)}), F2 = ({a, b},{(b, b)}) and F3 =

({a},∅). In consideration of Theorem 6 and Definition 7 [1] one may easily verify
that the set {a} possesses the claimed fibres w.r.t. the AFs F1, F2 and F3.

Spectra in Abstract Argumentation: An Analysis of Minimal Change 183

We have already shown that the minimal effort w.r.t. semi-stable semantics and weak
expansions needed to enforce a desired set C cannot be 1. This raises the question about
other natural numbers lying between 2 and ∞. The following proposition proves that
there are infinitely many numbers n between 2 and ∞, s.t. (∞, n,0) is a fibre of the
(st, ss, pr,W)-spectrum.

Proposition 6. For any natural number n ∈ N there exists k ∈ N, such that n ≤ k ≤ 2n
and (∞, k,0) ∈ S

(st,ss,pr,W).

Proof. We define the AF F∞,n,0 = (A∞,n,0,R∞,n,0) where

A∞,n,0 = {cj , dj , ej ∣ 1 ≤ j ≤ n} and

R∞,n,0 = {(cj, dj), (dj , cj), (dj , ej)(ej, ej) ∣ 1 ≤ j ≤ n} ∪ {(di, ej) ∣ 1 ≤ i, j ≤ n}.

For the sake of clarity we present here an instantiation of the presented scheme,
namely F∞,3,0.

c3

c2

c1

d3

d2

d1

e3

e2

e1

Fig. 4. The AF F∞,3,0

The grey highlighted arguments belong to the set C3 = {c1, c2, c3} which is an in-
stantiation of the scheme Cn = {cj ∣ 1 ≤ j ≤ n} (Dn, En are defined analogously). We

claim that NF∞,n,0

st,⪯W
(Cn) = ∞ and N

F
∞,n,0

pr,⪯W (Cn) = 0. We observe that no superset of
Cn is stable in F∞,n,0 and furthermore, Cn itself is preferred in F∞,n,0. Consequently
(Theorem 6, Def. 7), the characteristics of Cn in case of stable and preferred semantics
hold as claimed.

Consider now the semi-stable semantics. At first we will show that NF∞,n,0

ss,⪯W (Cn) ≥

n. (proof by contradiction) Assume NF∞,n,0

ss,⪯W (Cn) = n′ < n. This means, there is an AF
G, s.t. d(F∞,n,0,G) = n′, F∞,n,0 ⪯W G and furthermore, there is a superset C′n of Cn,
s.t. C′n ∈ Ess(G). We deduce that C′n = Cn∪G where G is a set of fresh arguments since
we consider weak expansions and furthermore, Cn does not possess proper supersets
which are conflict-free in F∞,n,0.

Since n′ < n is assumed it follows that there has to be an index j, s.t. cj ∈ Cn

does not possesses attacks to arguments in A(G)/A∞,n,0 (1) and dj ∈ Dn does not
possesses attacks to arguments in G (2). Consider Sj

n = {ci ∣ 1 ≤ i ≤ n}/{cj} ∪ {dj}.
Obviously, R+

F
∞,n,0

(Cn) ⊂ R+
F
∞,n,0

(Sj
n) = A∞,n,0 (3). We will show now that Sj

n ∪G

184 R. Baumann and G. Brewka

is admissible in G and it possesses a strictly greater range than C′n in G. Since we
assumedC′n ∈ Ess(G), (2) and we are considering weak expansions the conflict-freeness
of Sj

n∪G in G is implied. Furthermore, admissibility of Sj
n∪G in G holds because Sj

n is
admissible in F∞,n,0 and all potential attackers of arguments in G are counterattacked
by at least one argument in Sj

n ∪ G (dj counterattacks any ei, any di where i ≠ j
is counterattacked by ci, an attacker g′ ∈ A(G)/{A∞,n,0 ∪ G} is counterattacked by
some g ∈ G or some ci ∈ Sj

n because of the admissibility of C′n and property (1)).
Finally, R+

G
(Cn ∪G) ⊂ R+

G
(Sj

n ∪G) has to hold because of properties (1) and (3). This
contradicts the assumption that Cn ∪G is semi-stable in G.

Let us prove now that NF∞,n,0

ss,⪯S (Cn) ≤ 2n. Let C′n = {c′1, ..., c
′

n} a set of fresh argu-
ments and consider G = (A∞,n,0 ∪C′n,R∞,n,0 ∪ {(c

′

i, c
′

i), (ci, c
′

i) ∣ 1 ≤ i ≤ n}). Obvi-
ously, d(F∞,n,0,G) = 2n and F∞,n,0 ⪯W G. One can easily verify that Cn ∈ Ess(G).

Finally, NF∞,n,0

ss,⪯W (Cn) ≤ 2n is shown.

It is an open question whether each number greater than 1 can appear as the charac-
teristic of semi-stable semantics in a fibre, i.e. whether {(∞, k,0) ∣ 2 ≤ k < ∞} ⊆

S
(st,ss,pr,W). We would like to recall that it is already shown that in case of stable and

preferred semantics, either a desired set C is already contained in an extension or C
is not enforceable [1]. Consequently, an affirmative answer of the open question would
imply a complete characterization of the (st, ss, pr,W)-spectrum.

3.3 A Note on the (st, ss,pr,U)-Spectrum

We use U to denote the universal relation among argumentation frameworks. In other
words, we allow for arbitrary modifications including deletions of attacks and argu-
ments. What consequences does this have for the corresponding spectrum? In contrast
to the other considered spectra the (st, ss, pr,U)-spectrum is the first one proven to be
positive. This means there are no cases where the enforcing of a certain set D is impos-
sible. Furthermore, the (st, ss, pr,U)-spectrum is m.d.s. in analogy to the spectra w.r.t.
arbitrary, normal and strong expansions.

Proposition 7. The spectrum S
(st,ss,pr,U) is positive and m.d.s.

Proof. Both properties follow immediately by applying Proposition 11 (positive) and
Corollary 3 (m.d.s.) in [1]

A detailed analysis of the (st, ss, pr,U)-spectrum is part of future work. Due to the
multitude of possibilities to modify a certain argumentation scenario if arbitrary mod-
ifications are allowed it is a hard task to show further properties. We want to mention
that we conjecture that the considered spectrum is m.d.s.-complete (but were unable to
find a proof so far).

4 Related Work and Conclusions

In this paper we presented various new results regarding the minimal change problem
for Dung’s abstract AFs. We introduced the so-called spectra which describe, for a col-
lection of chosen semantics, the range of possible minimal efforts needed to enforce a

Spectra in Abstract Argumentation: An Analysis of Minimal Change 185

set of arguments. We focused on stable, semi-stable and preferred semantics and were
able to fully characterize the spectra for strong, normal and arbitrary expansions. This
analysis revealed the surprising result that, although the three semantics are closely re-
lated, it may be arbitrarily more difficult to enforce arguments using stable rather than
semi-stable semantics, and also using semi-stable rather than preferred semantics. The
analysis of the spectrum for weak expansions turned out to be more difficult. Neverthe-
less, we were able to prove several useful (im)possibility results.

The presented work continues existing research on the dynamics of abstract argu-
mentation. The paper [4] defines general principles (postulates) individual approaches
may satisfy. The principles are illustrated for the special case of the grounded exten-
sion. Principles for the multiple extension case are left to further research. The authors
of [5] focus on a particular type of change, namely the addition of a single new argument
which interacts with previous arguments. They study the impact of such additions on the
outcome of the argumentation framework, more particularly on the set of its extensions.
The closely related paper [7] contains a theoretical study of the impact the removal of a
single argument may have on the set of extensions of an argumentation framework. The
article [8] develops a general method for handling updates of AFs based on a division.
In a nutshell, the updated AF is divided into three parts: an unaffected, an affected, and
a conditioning part. The status of arguments in the unaffected sub-framework remains
unchanged, while the status of the affected arguments is computed in a special AF com-
posed of an affected part and a conditioning part. It is shown that for specific semantics
the extensions of the updated framework can be computed by combining the obtained
results.

Booth and colleagues [12] investigated several quantitative distance measures for ar-
gumentation. In contrast to our work where the focus is on distances among different
argumentation frameworks, the distance in that paper measures how far apart two la-
bellings representing two complete extensions of the same argumentation framework
are. This has applications in argument-based belief revision (e.g. if an agent is forced to
switch to another extension and tries to identify the one closest to his original extension)
and in judgement aggregation. Although the goals of this work are different from ours,
it remains to be seen whether results from that work can be reused for our purposes.

Baroni et al. [13] introduce so-called input/output argumentation frameworks, an ap-
proach to characterize the behavior of an argumentation framework as sort of a black
box with a well-defined external interface. The paper defines the notion of semantics
decomposability and analyzes complete, stable, grounded and preferred semantics in
this regard. It turns out that, under grounded, complete, stable and credulous preferred
semantics, input/output argumentation frameworks with the same behavior can be ex-
changed without affecting the results of the evaluation of other interacting arguments.
Since replaceability is one of the main motivations for studying equivalence notions,
we plan to explore connections between equivalence and decomposability in the near
future.

To the best of our knowledge the kind of questions analyzed in this paper have not
been addressed before in argumentation. The analysis of spectra opens a number of new
research directions which we want to pursue in the future. As just mentioned, the full
characterization of the weak expansion spectrum is still open. Secondly, it would be

186 R. Baumann and G. Brewka

useful to include further semantics (like grounded or ideal [3, 14]) in the analysis of
spectra. Finally, it would be interesting to consider also a stronger form of enforcement
where the enforced set of arguments has to be contained in all extensions rather than in
some extension. We also might want to enforce a set of arguments C and at the same
time exclude another, disjoint set D, that is, we might be interested in modifications
leading to an AF possessing an extension E such that C ⊆ E and E ∩D = ∅.

References

1. Baumann, R.: What does it take to enforce an argument? Minimal change in abstract argu-
mentation. In: ECAI, pp. 127–132 (2012)

2. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial Intel-
ligence 171(10-15), 619–641 (2007)

3. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357
(1995)

4. Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single extensions:
Abstraction principles and the grounded extension. In: Sossai, C., Chemello, G. (eds.) EC-
SQARU 2009. LNCS (LNAI), vol. 5590, pp. 107–118. Springer, Heidelberg (2009)

5. Cayrol, C., Dupin de Saint-Cyr, F., Lagasquie-Schiex, M.C.: Change in abstract argumenta-
tion frameworks: adding an argument. Journal of Artificial Intelligence Research 38, 49–84
(2010)

6. Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and monotonic-
ity results. In: Proc. COMMA 2010, pp. 75–86. IOS Press (2010)

7. Bisquert, P., Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Change in argumen-
tation systems: Exploring the interest of removing an argument. In: Benferhat, S., Grant, J.
(eds.) SUM 2011. LNCS, vol. 6929, pp. 275–288. Springer, Heidelberg (2011)

8. Liao, B., Jin, L., Koons, R.C.: Dynamics of argumentation systems: A division-based
method. Artificial Intelligence 175(11), 1790–1814 (2011)

9. Scholz, H.: Ein ungelöstes Problem in der symbolischen Logik. Journal of Symbolic
Logic 17, 160 (1952)

10. Caminada, M.W.: Semi-stable semantics. In: Dunne, P.E., Bench-Capon, T.J. (eds.) Compu-
tational Models of Argument. Frontiers in AI and Applications, vol. 144, pp. 121–130. IOS
Press (2006)

11. Baroni, P., Giacomin, M.: Characterizing defeat graphs where argumentation semantics
agree. In: Simari, G., Torroni, P. (eds.) 1st International Workshop on Argumentation and
Non-Monotonic Reasoning, pp. 33–48 (2007)

12. Booth, R., Caminada, M., Podlaszewski, M., Rahwan, I.: Quantifying disagreement in
argument-based reasoning. In: Proc. AAMAS 2012, pp. 493–500 (2012)

13. Baroni, P., Boella, G., Cerutti, F., Giacomin, M., van der Torre, L.W.N., Villata, S.: On in-
put/output argumentation frameworks. In: COMMA, pp. 358–365 (2012)

14. Dung, P., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based, admissi-
ble argumentation. Artificial Intelligence 170(2), 114–159 (2006)

Normalizing Cardinality Rules
Using Merging and Sorting Constructions�

Jori Bomanson and Tomi Janhunen

Helsinki Institute for Information Technology HIIT
Department of Information and Computer Science

Aalto University, FI-00076 AALTO, Finland
{Jori.Bomanson,Tomi.Janhunen}@aalto.fi

Abstract. Answer-set programs become more expressive if extended by cardi-
nality rules. Certain implementation techniques, however, presume the translation
of such rules back into normal rules. This has been previously realized using a
BDD-based transformation which may produce a quadratic number of rules in the
worst case. In this paper, we present two further constructions which are based on
Boolean circuits for merging and sorting and which have been considered, e.g.,
in the context of the propositional satisfiability (SAT) problem and its extensions.
Such circuits can be used to express cardinality constraints in a more compact
way. Thus, in order to normalize cardinality rules, we first develop an ASP en-
coding of a sorting circuit, on top of which the second translation, one encoding
a selection circuit, is devised. Because sorting is more general than cardinality
checking, we also present ways to prune the resulting sorting and selection pro-
grams. The experimental part illustrates the compactness of the new normaliza-
tions and points out cases where computational performance is improved.

1 Introduction

Answer-set programming (ASP) [4] is a declarative programming paradigm whose syn-
tax is based on different kinds of rules. The semantics of programs is based on stable
models [9], also known as answer sets, which are typically in a tight correspondence
with the solutions of a problem being solved by the programmer. The extended rule
types, such as choice, cardinality, and weight rules [15], enable more compact encod-
ings in contrast with normal rules which form the basic syntax for ASP. Answer sets are
typically computed using answer set solvers such as CLASP [8] which natively supports
extended rule types in its data structures. However, there are alternative approaches to
compute answer sets, e.g., by translating rules into propositional clauses so that an-
swer sets are captured with satisfying assignments [10,11,14]. Then satisfiability (SAT)
solvers can be used for actual computations. Since clauses stand for simple disjunctive
conditions, it is difficult to support extended rule types in such transformations directly.
One viable approach is to translate such extensions back to normal rules before clausi-
fication. Cardinality rules are also selectively rewritten by native ASP solvers for better

� The support from the Finnish Centre of Excellence in Computational Inference Research
(COIN) funded by the Academy of Finland (under grant #251170) is gratefully acknowledged.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 187–199, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

188 J. Bomanson and T. Janhunen

performance. In this paper, we call such translation steps normalization and concentrate
on the normalization of cardinality rules frequently arising in applications.

The body of a cardinality rule involves a bound k ≥ 0 and a list of n literals out of
which at least k ought to be satisfied.1 The normalization of this condition is non-trivial
except in certain corner cases such as k ≤ 1 or k ≥ n− 1. If no new atoms are allowed,
a straightforward rewriting yields

(
n
k

)
normal rules which becomes infeasible already

for relatively small values of n and in particular when k is close to n/2. However, by
introducing auxiliary atoms, the cardinality condition in question can be expressed us-
ing a polynomial number of rules. For instance, the translation based on binary decision
diagrams (BDDs) [7] yields of the order of k × (n − k) normal rules [11]. Again, the
worst case behavior of this translation is observed when k and, thus also n− k, is close
to n/2 and the number of normal rules is quadratic in k. In certain application domains,
cardinality constraints with thousands of literals are possible which implies that nor-
malization using the BDD scheme would yield millions of rules. The sizes of ground
programs used at ASP competitions suggest that such high numbers of rules are hard
to deal with efficiently. These observations motivate the main goal of this work, i.e., to
find more compact ways to represent cardinality rules in terms of normal rules.

Cardinality constraints have also appeared in other forms such as pseudo-Boolean
constraints which are typically implemented via translations into SAT [2] or its
extensions. The complexities of transformations into pure clauses vary from linear to
exponential (see, e.g., [1] for an account). However, as regards exploiting these transfor-
mations in the context of ASP, it is highly beneficial if the logical function involved is
is monotone, i.e., increasing the number of 1’s in input can only increase the number of
1’s in output. Then, it is easier to establish substitution properties under stable model se-
mantics. These considerations suggested us to follow the approach of Asín et al. [1] who
deploy merging and sorting circuits as a basis of yet another translation. The translation
implements Batcher’s odd-even merge sort [3] for Boolean values v1, . . . , vn which are
sorted by merging the respective odd and even subsequences v1, v3, . . . and v2, v4, . . .
first sorted recursively. One may implement a cardinality check k ≤ |S| for an arbitrary
subset S of some base set B = {b1, . . . , bn} of interest by sorting the values of mem-
bership tests b1 ∈ S, . . . , bn ∈ S and by inspecting the kth value in the result. Asín
et al. [1] call such circuits cardinality networks and show that the number of clauses
required to represent them is proportional to n × (log k)2. Since cardinality networks
are solely based on logical and/or operations, they are inherently monotonic—paving
the way for exploiting cardinality networks and their main components, viz. merging
and sorting circuits, in normalization.

The rest of this paper is organized in the following way. First, Section 2 defines the
syntax and semantics of cardinality constraint programs. The basic primitives employed
in the normalization of cardinality rules, namely merging and sorting programs, are
then introduced in Section 3. Actual normalizations, as to be explained in Section 4, are
based on sorting programs and their refinement, viz. selection programs. Depending on
the bound used in the cardinality rule, only possibly small portions of such programs are
needed in practice. We discuss a technique to produce such restricted programs as part
of the new normalization procedure proposed in this paper. In Section 5, we present the

1 Analogous upper bounds can be expressed using lower bounds.

Normalizing Cardinality Rules Using Merging and Sorting Constructions 189

correctness arguments for the normalization step. We use the concept of visible strong
equivalence [12] to establish that the rule being normalized can be replaced by the
respective normal rules in any reasonable context. Section 6 is devoted to experimental
evaluation where we compare the new method with the one based on BDDs. To this
end, we are interested in both the length of normalizations and the execution time of a
state-of-the-art ASP solver CLASP. The paper is concluded in Section 7.

2 Preliminaries

In this section, we briefly review the main syntactic fragments of ASP which are inter-
esting for the purposes of this paper, viz. normal logic programs (NLPs) and cardinality
constraint programs (CCPs). For the sake of simplicity, we will restrict the presenta-
tion to the propositional case although first-order language elements are typically used
in ASP. NLPs are finite sets of rules of the form (1) where a, ai’s, bj’s, and ck’s are
propositional atoms (or atoms for short) and not denotes default negation. Intuitively,
the head atom a can be derived whenever the body of the rule is satisfied, i.e., when the
positive body conditions b1, . . . , bn are derivable by the other rules in the program but
none of the negative body conditions c1, . . . , cm are. A cardinality rule (2) is similar but
its body is satisfied whenever the number of satisfied body conditions is at least k. CCPs
are finite sets of normal and/or cardinality rules. In general, a program P is positive, if
all of its rules are negation-free, i.e., satisfy m = 0 in (1) and (2) below.

a← b1, . . . , bn, not c1, . . . , not cm. (1)

a← k ≤ {b1, . . . , bn, not c1, . . . , not cm}. (2)

To define the semantics of programs introduced above, we write At(P) for the signature
of a program P , i.e., a finite set of atoms to which all atoms occurring in P belong to.
A positive literal, i.e., an atom a ∈ At(P), is true in an interpretation I ⊆ At(P) of
P , if a ∈ I , and false otherwise (a ∈ At(P) \ I). The body of (1) is satisfied in I , if
{b1, . . . , bn} ⊆ I and {c1, . . . , cm}∩ I = ∅. Quite similarly, the body of (2) is satisfied
in I iff k ≤ |{b1, . . . , bn} ∩ I| + |{c1, . . . , cm} \ I|. A rule (1), or alternatively (2),
is satisfied in I iff the head a is satisfied by I , i.e., a ∈ I , whenever its body is. An
interpretation I ⊆ At(P) is called a (classical) model of P , denoted I |= P , iff I |= r
for every rule r ∈ P . Moreover, a model M |= P is ⊆-minimal iff there is no M ′ |= P
such that M ′ ⊂ M . A positive program P is guaranteed to have a unique minimal
model which coincides with the least model of P [9], hereafter denoted by LM(P).

The semantics of negative literals of the form ’not ci’ is set by first evaluating their
occurrences in rule bodies. Given a program P and an interpretation M ⊆ At(P), the
reduct of P with respect to M , denoted by PM , contains (i) a rule a ← b1, . . . , bn
for each rule (1) of P such that {c1, . . . , cm} ∩M = ∅ [9] and (ii) a rule a ← k′ ≤
{b1, . . . , bn} for each rule (2) of P where the new lower bound k′ = max(0, k −
|{c1, . . . , cm} \ M |) [15]. The outcome PM is always a positive program. Thus an
interpretation M ⊆ At(P) of a program P is defined as a stable model of P iff M =
LM(PM) [9,15]. The number of stable models, also known as answer sets, can vary in
general and we let SM(P) stand for the set of stable models of a program P .

190 J. Bomanson and T. Janhunen

Example 1. Consider a CCP P consisting of the rules a ← 1 ≤ {b, not c}; b ←
1 ≤ {a, not c}; and c ← 1 ≤ {nota, not b}. Given M1 = {c}, the reduct PM1 =
{a← 1 ≤ {b}; b← 1 ≤ {a}; c← 0 ≤ {}} so that LM(PM1) = {c} = M1. Thus M1

is stable. The other stable model M2 = {a, b} of P is easy to verify from the reduct
PM2 = {a← 0 ≤ {b}; b← 0 ≤ {a}; c← 1 ≤ {}}. It can be similarly checked that no
other interpretation M ⊆ At(P) is stable, so that SM(P) = {{a, b}, {c}}. �

3 Basic Building Blocks: Mergers and Sorters

Merge sort is a well-known sorting algorithm which splits a sequence of numbers re-
cursively into shorter subsequences and then merges them back together into longer
sorted sequences until a fully sorted sequence results. This algorithmic idea lends itself
to logical circuits, the main difference being that the goal is to sort sequences consisting
of Boolean values 0 and 1 only. Odd-even mergers introduced by Batcher [3] enable the
construction of more complex merging and sorting circuits as illustrated in Figure 1.
The merger on the left side selects the odd and even subsequences 1011 and 1010 of its
input sequence 11001110 and merges them together using two smaller mergers (one for
the odd subsequence and the other for the even) and a balanced merger which combines
the two merged subsequences 1110 and 1100 into a final result 11111000.

The idea behind the recursive design is as follows. The mergers for odd and even
subsequences produce output sequences which are balanced: the numbers of 1’s differ
at most by two and never to the advantage of the even merger. Such sequences are then
easy to merge with the aforementioned balanced merger. The resulting merger forms a
building block of sorting circuits, e.g., the merger on the left side of Figure 1 is part of
the sorter on the right, which first sorts the input halves 1010 and 0111 into 1100 and
1110, before merging them into 11111000. The circuits demonstrated above have been
previously applied when expressing cardinality constraints with propositional clauses
[1]. In what follows, we describe merging and sorting circuits in terms of normal rules
of the form (1) only. A merging program is a NLP, produced by the function Merger to
be defined below, having two sequences 〈l1, . . . ,ln〉 and 〈l′1, . . . ,l′m〉 of input literals and a
sequence 〈s1, . . . ,sn+m〉 of output atoms. Moreover, two further sequences of auxiliary
atoms 〈d1, . . . ,dnd

〉 and 〈e1, . . . ,ene〉 where nd =
⌈
n
2

⌉
+

⌈
m
2

⌉
and ne =

⌊
n
2

⌋
+

⌊
m
2

⌋
are

used to represent intermediate merging results. Any recursive invocations of Merger
will introduce such atoms, too.

Definition 1. Given the sequences of input literals 〈l1, . . . ,ln〉, 〈l′1, . . . ,l′m〉, and the se-
quence of output atoms 〈s1, . . . ,sn+m〉 the functionMerger produces a merging program
whose base cases, for n ≤ 1,m ≤ 1, 1 ≤ n+m, are defined by

Merger1,0(〈l1〉, 〈 〉, 〈s1〉) = { s1 ← l1 } ,
Merger0,1(〈 〉, 〈l′1〉, 〈s1〉) = { s1 ← l′1 } ,

Merger1,1(〈l1〉, 〈l′1〉, 〈s1, s2〉) = { s1 ← l1; s1 ← l′1; s2 ← l1, l
′
1 }

(3)

Normalizing Cardinality Rules Using Merging and Sorting Constructions 191

and whose recursive case, for n+m > 2, is

Mergern,m(〈l1, . . . ,ln〉, 〈l′1, . . . ,l′m〉, 〈s1, . . . ,sn+m〉) =
Merger'n2(,'m2((〈l1, l3, . . . ,l2'n2(−1〉, 〈l

′
1, l

′
3, . . . ,l′

2'm2(−1
〉, 〈d1, . . . ,dnd

〉) ∪

Merger)n2*,)m2*(〈l2, l4, . . . ,l2)n2*〉, 〈l
′
2, l

′
4, . . . ,l′

2)m2*〉, 〈e1, . . . ,ene〉) ∪

BalancedMergernd,ne
(〈d1, . . . ,dnd

〉, 〈e1, . . . ,ene〉, 〈s1, . . . ,sn+m〉)

(4)

where nd =
⌈
n
2

⌉
+

⌈
m
2

⌉
and ne =

⌊
n
2

⌋
+

⌊
m
2

⌋
as above and BalancedMerger is defined by

BalancedMergernd,ne
(〈d1, . . . ,dnd

〉, 〈e1, . . . ,ene〉, 〈s1, . . . ,sn+m〉) =

{s1 ← d1} ∪
min {nd−1,ne}⋃

i=1

Merger1,1(〈di+1〉, 〈ei〉, 〈s2i, s2i+1〉) ∪

{sn+m ← ene | nd = ne} ∪ {sn+m ← dnd
| nd = ne + 2} .

(5)

The base case n = m = 1 of Definition 1 describes the central primitive of merging
(sorted sequences) and sorting Boolean values: the first value denoted by s1 is defined
as the disjunction of l1 and l′1 whereas the second value denoted by s2 is defined as their
conjunction. Besides the simple “copying” operations involved in (3) and (5), the entire
merging program is an amalgamation of instances of this basic primitive.

Example 2. Given two sequences 〈l1, l2〉 and 〈l3, l4〉 of input literals and a sequence
〈s1, s2, s3, s4〉 of output atoms, let us expandMerger2,2 according to (4) in Definition 1.
The resulting merging program effectively encodes two small mergers for the odd and
even subsequences of the input and a balanced merger to combine their output:

s1 ← d1. s2 ← d2. s2 ← e1. s3 ← d2, e1. s4 ← e2.
d1 ← l1. d1 ← l3. e1 ← l2. e1 ← l4.
d2 ← l1, l3. e2 ← l2, l4.

In the above, the symbols l1, . . . , l4 are still metavariables over literals. In practice, they
would be replaced by concrete literals such as a, b, c, and ’not d’. �

Definition 2. Given a set {l1, . . . ,ln+m} of input literals and a sequence 〈s1, . . . ,sn+m〉
of output atoms, the function Sorter produces a sorting program whose base cases, for
1 ≤ n+m ≤ 2, are defined by

Sorter1({l1}, 〈s1〉) = Merger1,0(〈l1〉, 〈 〉, 〈s1〉) ,
Sorter2({l1, l2}, 〈s1, s2〉) = Merger1,1(〈l1〉, 〈l2〉, 〈s1, s2〉) ,

(6)

and whose recursive case, for n+m > 2, is defined by

Sortern+m({l1, . . . ,ln+m}, 〈s1, . . . ,sn+m〉) =
Sortern({l1, . . . ,ln}, 〈p1, . . . ,pn〉) ∪
Sorterm({ln+1, . . . ,ln+m}, 〈q1, . . . ,qm〉) ∪
Mergern,m(〈p1, . . . ,pn〉, 〈q1, . . . ,qm〉, 〈s1, . . . ,sn+m〉)

(7)

where 〈p1, . . . ,pn〉 and 〈q1, . . . ,qm〉 are sequences of auxiliary atoms.

192 J. Bomanson and T. Janhunen

BalancedMerger4,4

Merger4,4

1 1 1 1 1 0 0 0

1 1 0 0 1 1 1 0

Merger2,2 Merger2,2

BalancedMerger2,2 BalancedMerger2,2

Merger1,1 Merger1,1 Merger1,1 Merger1,1

Sorter8

Merger4,4

Sorter2 Sorter2 Sorter2

1 1 1 1 1 0 0 0

1 0 1 0 0 1 1 1

Sorter4 Sorter4

Merger2,2 Merger2,2

Sorter2

Fig. 1. A merger of size 8 and a sorter of size 8

Example 3. The smallest nontrivial sorting program with n = m = 1 is Sorter2 which
by (6) expands into a merging program Merger1,1 having rules s1 ← l1; s1 ← l1; and
s2 ← l1, l2. But as discussed above, these suffice to sort sequences of length two. �

4 Normalization of Cardinality Rules

Our next objective is to exploit sorting programs from Section 3 in the normalization
of cardinality rules. The key building block is a sorting program corresponding to the
body of (2). This program is augmented by a rule a← sk that checks whether at least k
literals in the body are satisfied and makes the head a of (2) true accordingly.

Definition 3. Given a CCP P , the merge sort normalization MSN(P) of P contains
each normal rule of P as is and for each cardinality rule of P , the rule a← sk together
with the sorting program Sortern+m({b1, . . . ,bn, not c1, . . . ,not cm}, 〈s1, . . . ,sn+m〉).

This definition specifies the outcome when the cardinality rules of a CCP P are sub-
stituted by the corresponding sorting programs. Each step in this process is supposed to
preserve the meaning of the program subject to normalization under certain practically
feasible conditions to be detailed in Section 5. The idea is that the portion of the pro-
gram that stays unaltered in each step serves as a context in which both the rule being
normalized and the respective normalization have exactly the same meaning.

Example 4. The programs Merger2,2 and Sorter2 from Examples 2 and 3 provide us
with the subprograms required in the construction of Sorter4. Figure 2 illustrates such
a sorter which, as described above, can be used to normalize any 4-literal cardinality
rule (2) when augmented by an appropriate rule a← sk for the bound k. �

Normalizing Cardinality Rules Using Merging and Sorting Constructions 193

s1 ← d1.

s2 ← d2. s2 ← e1. s4 ← e2.

s3 ← d2, e1.

d1 ← p1. d1 ← q1.

d2 ← p1, q1.

e1 ← p2. e1 ← q2.

e2 ← p2, q2.

q1 ← l3. q1 ← l4.

q2 ← l3, l4.

p1 ← l1. p1 ← l2.

p2 ← l1, l2.

s1 s2 s3 s4

d1 d2 e1 e2

p1 p2 q1 q2

l1 l2 l3 l4

Merger2,2

Merger1,1

Merger1,1

Sorter4

BalancedMerger2,2

Merger1,1

Merger1,1

Fig. 2. The program Sorter4({l1, l2, l3, l4}, 〈s1, s2, s3, s4〉) for encoding a 4-literal cardinality
constraint. The rules and auxiliary atoms in gray are irrelevant to the output atom s3 of interest.

Given the above scheme for normalizing cardinality rules, one may observe that
substantial portions of the respective sorting programs might not be needed in practice.
Indeed, only the value of sk is of interest and thus, in a sense, a sorting program repre-
sents a set of cardinality rules—one for each possible body literal count. In the sequel,
we explore two ways to take advantage of this fact. First, we will describe selection
programs which essentially encode cardinality networks [1] whose layout is illustrated
in Figure 3. Second, we will introduce symbolic evaluation strategies which are able to
determine on the fly which parts of sorting
and selection programs are relevant when
normalizing a particular cardinality rule.
These effects will be studied experimen-
tally in Section 6. Sorting can be replaced
by selection for the purpose of cardinal-
ity checking with respect to a bound k:
it is sufficient to determine the k highest
values of membership tests to make a de-
cision. So let k denote the number of re-
quested values. Moreover, given a set L of
n ≥ k input literals, let F1�· · ·�Fm par-
tition L into m subsets such that 'k/2(≤
ni ≤ k where ni = |Fi| holds for each
subset Fi of input literals i = 1, . . . ,m.

Merger4,4

Merger4,4

1 1 1 0

0 0 1 0 0 0 0 1 0 1 0 0

Sorter4 Sorter4 Sorter4

Selecter4,12

Fig. 3. A selecter that determines the highest
four Boolean values of 12 inputs.

194 J. Bomanson and T. Janhunen

Definition 4. Given a set L of input literals, its partitioning F1 � · · · �Fm into m sub-
sets, and the sequence 〈sm,1, . . . ,sm,k〉 of output atoms, the function Selecter produces,
for m ≥ 2, the selection program defined by Selecterk,n(L, 〈sm,1, . . . ,sm,k〉) =

m⋃
i=1

Sorterni(Fi, 〈hi,1, . . . ,hi,ni〉) ∪

Mergern1,n2
(〈h1,1, . . . ,h1,n1〉, 〈h2,1, . . . ,h2,n2〉, 〈s2,1, . . . ,s2,n1+n2〉) ∪

m⋃
i=3

Mergerk,ni
(〈si−1,1, . . . ,si−1,k〉, 〈hi,1, . . . ,hi,ni〉, 〈si,1, . . . ,si,k+ni〉)

(8)

where for each 1 ≤ i ≤ m, the sequence 〈hi,1, . . . ,hi,ni〉 formalizes the result of sorting
Fi and the sequence 〈si,1, . . . ,si,t〉 captures an intermediate stage of sorting.

It is worth pointing out that for each intermediate stage 1 ≤ i ≤ m, the values of
si,t’s with t > k can be discarded since they cannot affect the highest k values. Next,
we state an analog of Definition 3 in the case of selection programs.

Definition 5. Given a CCP P , the selection normalization SelN(P) of P contains each
normal rule of P as is and for each cardinality rule of P , the rule a ← sk and the
selection program Selecterk,n+m({b1, . . . ,bn, not c1, . . . ,not cm}, 〈s1, . . . ,sk〉).

As discussed in the context of Figure 2 it is possible to prune sorting programs when
only one output atom is of interest. Similar needs arise because the numbers of inputs
are typically powers of two for balanced merging and sorting designs whereas cardinal-
ity rules (2) can have any dimensions in general. We have considered two strategies to
deal with varying dimensions and potential unnecessary structure incurred. The first is
based on partial evaluation in a bottom-up fashion. For instance, unused inputs can be
assigned to 0 and the rest of the circuit can be symbolically evaluated to remove unnec-
essary structure. The second strategy is to proceed top-down and propagate special flags
to distinguish which parts of the circuit are really needed and for which rules have to be
generated. Due to space limitations, we have to skip a detailed discussion of how such
recursive propagation takes place in practice. Nevertheless, the experimental results of
Section 6 shed some light on the positive effects of such techniques.

5 Correctness Considerations

Our next objective is to establish that normalization preserves the semantics of cardi-
nality rules (2) in a setting where a rule r is substituted by its normalizing program
MSN(r) or SelN(r) as introduced in Section 4. To this end, we need an appropriate
notion of equivalence to address such rule substitutions. Strong equivalence [13] was
proposed exactly for this purpose, but it does not support auxiliary atoms which were
numerously used when describing circuits in Section 3. To circumvent this, we resort to
a recent generalization, viz. visible strong equivalence [12], which supports both sub-
stitutions and auxiliary atoms and has connections to the relativized variants of [16].

In what follows, the idea is to hide auxiliary atoms when it comes to comparing pro-
grams on the basis of their answer sets. Thus, for any program P , the signature At(P)

Normalizing Cardinality Rules Using Merging and Sorting Constructions 195

is partitioned to its visible part Atv(P) and hidden part Ath(P). When comparing two
programs P and Q of interest, we insist on Atv(P) = Atv(Q) whereas Ath(P) and
Ath(Q) may freely differ. As regards potential contexts R of P and Q, we say that
P and R mutually respect each other’s hidden atoms if At(P) ∩ Ath(R) = ∅ and
Ath(R) ∩ At(P) = ∅, and analogously for Q and R. Such restriction, however, does
not apply to P and Q which means that the hidden atoms of P and Q may overlap.

Definition 6 (Visible Strong Equivalence [12]). Two programs P and Q are visibly
strongly equivalent, denoted by P ≡vs Q, iff Atv(P) = Atv(Q) and SM(P ∪ R) =v

SM(Q ∪R) for any context R that mutually respects the hidden atoms of P and Q.

In the above, the relation =v insists on a strict one-to-one correspondence of models
(induced by a bijection f) so that visible projections of models are preserved under f .
In analogy to [13,16], there is a model-theoretic characterization of ≡vs [12]. Given
an interpretation I ⊆ At(P), define the visible and hidden projections of I by Iv =
I ∩ Atv(P) and Ih = I ∩ Ath(P), respectively. A model M |= P is Ath(P)-minimal
iff for no N |= P , Nv = Mv and Nh ⊂Mh, i.e., hidden atoms are false by default.

Definition 7 ([12]). A VSE-model of a program P is a pair 〈X,Y 〉 of interpretations
where X ⊆ Y ⊆ At(P) and both X and Y are Ath(P)-minimal models of P Y .

The set of VSE-models of P is denoted by VSE(P). The intuition of a VSE-model
〈X,Y 〉 is that Y represents a consistent context for P against which the rules of P are
reduced (to form P Y) and X captures a potential closure of PY . In this setting, visible
atoms are treated classically whereas hidden ones are false by default so that Xv = Yv

implies X = Y . In order to compare sets S of VSE-models associated with different
programs, we define their second projections by setting [S]2 = {Y | 〈X,Y 〉 ∈ S}.

Definition 8 ([12]). Given programs P and Q such that Atv(P) = Atv(Q), the re-
spective sets VSE(P) and VSE(Q) visibly match, denoted VSE(P)

v
= VSE(Q), if

and only if [VSE(P)]2 =v [VSE(Q)]2 via a bijection f and for each Y ∈ [VSE(P)]2,
{Xv | 〈X,Y 〉 ∈ VSE(P)} = {Xv | 〈X, f(Y)〉 ∈ VSE(Q)}.

Proposition 1 (Characterization of Visible Strong Equivalence [12]). For programs
P and Q with Atv(P) = Atv(Q), VSE(P)

v
= VSE(Q) implies P ≡vs Q.

The converse of Proposition 1 is not applicable due to restricted syntax used in this
paper. However, the characterization of≡vs in Proposition 1 allows one to skip arbitrary
context programs when showing P and Q visibly strongly equivalent (cf. Definition 6).
This will be our strategy in what follows. First, we illustrate VSE-models with an ex-
ample and then we provide more general arguments for the soundness of normalization.

Example 5. Let P = {a← 3 ≤ {b1, b2, b3, not c}} be a cardinality constraint program
and Q its sorter-based normalization confining to the selected rules of Figure 2 (with
literals l1, . . . , l4 having been replaced by b1, b2, b3, and not c, respectively):

a← s3. s3 ← d2, e1.
d2 ← p1, q1. e1 ← p2. e1 ← q2.
p1 ← b1. p1 ← b2. q1 ← b3. q1 ← not c.
p2 ← b1, b2. q2 ← b3, not c.

196 J. Bomanson and T. Janhunen

Note that P could be normalized without auxiliary atoms by a ← b1, b2, b3; a ←
b2, b3, not c; a ← b1, b3, not c; and a ← b1, b2, not c but this scheme would be
quadratic for k = n+m − 1 in (2) in general. Now, given Y = {a, b2, b3}, we obtain
PY = {a← 2 ≤ {b1, b2, b3}} and based on these, there are ordinary SE-models of P
such as 〈X,Y 〉 with X = {b2} and 〈Y, Y 〉. In total, there are 198 SE-models for P .2

For Q with Atv(Q) = {a, b1, b2, b3, c}, the Ath(Q)-minimal model related with Y is
Y ′ = {a, b2, b3, p1, q1, q2, d2, e1, s3}. Hence the reduct QY ′

is obtained from the rules
listed above by removing the occurrences of ’not c’ satisfied by Y ′. Then 〈Y ′, Y ′〉 is
the VSE-model of Q corresponding to 〈Y, Y 〉: Y = Y ′ ∩At(P). For X , the respective
Ath(Q)-minimal model of QY ′

is X ′ = {b2, p1, q1, d2} so that X = X ′∩At(P). It can
be verified (using automated tools as above) that there are 198 VSE-models of Q which
are related by a bijection f(〈X ′, Y ′〉) = 〈X ′ ∩At(P), Y ′ ∩ At(P)〉 from VSE(Q) to
VSE(P) = SE(P). Thus VSE(P)

v
= VSE(Q) and P ≡vs Q by Proposition 1. �

Proposition 2. For a cardinality rule r of the form (2) and its sorting-based normal-
izations, VSE({r}) v

= VSE(MSN({r})) and VSE({r}) v
= VSE(SelN({r})).

Proof. Let r be of the form (2) and define B = {b1, . . . , bn} and C = {c1, . . . , cm}.
All atoms in At(r) = {a} ∪ B ∪ C are assumed to be visible. Moreover, let P =
MSN({r}) such that Atv(P) = Atv(r) = At(r), i.e., all auxiliary atoms introduced
in the normalization of r are hidden. Let us then consider any 〈X,Y 〉 ∈ VSE({r})
which implies that Y |= r and X |= rY for X ⊆ Y ⊆ At(r). Thus k ≤ |B ∩ Y | +
|C \ Y | implies a ∈ Y . The reduct rY is a positive rule a ← k′ ≤ {b1, . . . , bn}
where k′ = max(0, k − |C \ Y |) so that k′ ≤ |X ∩ B| implies a ∈ X . Let l =
|B ∩ Y |+ |C \ Y | and define an interpretation Y ′ = Y ∪H where H is picked so that
Y ′ satisfies Sortern+m({b1, . . . ,bn, not c1, . . . ,not cm}, 〈s1, . . . ,sn+m〉) minimally with
respect to Ath(P). Given the structure of the sorting program, hidden atoms occur only
positively. This makes H unique. Then suppose that a ← sk is not satisfied by Y ′. It
follows that a �∈ Y ′ and sk ∈ Y ′, i.e., a �∈ Y and sk ∈ H . The rules of the sorting
program and the minimal interpretation under H guarantee that l ≥ k. But then Y �|= r,
a contradiction. Hence Y ′ |= P . Taking the reduct P Y ′

will fix the values of negative
literals not c1, . . . , not cm subject to Y ′ and Y . Thus X ′ = X ∪H ′ can be analogously
defined so that H ′ ⊆ H , X ′ ⊆ Y ′, and X ′ |= PY ′

. It follows that 〈X ′, Y ′〉 is a
VSE-model of P and it is a unique extension of 〈X,Y 〉 since H and H ′ are unique.

Then let 〈X ′, Y ′〉 be a VSE-model of P and define 〈X,Y 〉 as its projection over
At(r) = {a} ∪ B ∪ C. Assuming that Y �|= r implies that a �∈ Y and l ≥ k for
l = |B ∩ Y | + |C \ Y |. Since Y ′ |= P , we have that sk ∈ Y ′ and a ∈ Y ′ as a ← sk
is in P . Thus a ∈ Y , a contradiction. It can be similarly argued that X ′ |= PY ′

implies
X |= a← k′ ≤ {b1, . . . , bn}, i.e., X |= rY . Thus 〈X,Y 〉 is an SE-model of {r}.

It follows that SE({r}) v
= VSE(P). The proof for SelN(r) is similar, except that the

sorting program is replaced by a selection program (cf. Definition 5). ��
The following theorem is obtained as a corollary of Propositions 1 and 2. A sim-

ple inductive argument on the number of rule substitutions can be used to show that
P ≡vs MSN(P) and P ≡vs SelN(P) hold for a CCP P in general. Thus MSN(P) and
SelN(P) can be used to substitute P in contexts which respect their hidden atoms.

2 These were computed using tools CLASSIC (option flag -s for strong equivalence) and CLASP.

Normalizing Cardinality Rules Using Merging and Sorting Constructions 197

1000

1000

1000

1000 1000 1000

5000

5000

50
00

5000 5000

10000

10
00

0
10000

10000

15
00

0

15
00

0

15000

15000

20
00

0

20
00

0

20000

25
00

0

25
00

0

25000

30
00

0

30000

35
00

0

35000

40000

number of body atoms

bo
un

d

50 100 150 200 250 300

50

100

150

200

250

300

1000

1000

1000

1000 1000 1000

5000

50
00

5000

5000

10
00

0

10000

number of body atoms

bo
un

d

50 100 150 200 250 300

50

100

150

200

250

300

Fig. 4. Level curves describing the resulting number of rules when normalizing cardinality rules
using BDDs [7] and selection programs, respectively

Theorem 1. For a cardinality rule r of the form (2) and its sorting-based normaliza-
tions, {r} ≡vs MSN({r}) and {r} ≡vs SelN({r}).

6 Experiments

In this section we compare normalization schemes based on simplified sorting pro-
grams, simplified selection programs, and BDDs [7] with each other. An overview of
the sizes of resulting normal programs is illustrated in Figure 4. The size of a transla-
tion is measured here as the number of created normal rules. Sorting programs are not
shown because their sizes closely matched those of selection. To recap previous results,
in [1] it was proven that sorting networks and cardinality networks grow in size propor-
tional to n× (log n)2 and n × (log k)2, respectively. Since the numbers of clauses are
linearly related to the numbers of normal rules in sorting and selection programs, these
bounds carry over into normalizations devised in this paper. The contrast with respect to
these bounds and our experimental results speaks to the effect of the employed symbol-
ical evaluation strategy. Furthermore, it is evident that the described normalizations fare
well when k approaches its extreme values 1 and n. In contrast, when k is close to n/2,
neither the symbolic evaluation strategy nor the use of selection programs essentially
limit the number of produced rules—thus forming the worst case for normalization.

To explore the effects of normalization on solver performance we tried out all three
normalization strategies on the NP-complete problem instances of the second answer set
programming competition [6] (ASPCOMP-2). Each instance was solved with CLASP,
once natively without normalization, and once with each normalization strategy im-
plemented in the tool LP2NORMAL2.3 The number of problem instances of each NP-
complete problem encoding that were solved within 10 minutes and 2.79 GB of memory,
matching those used in the competition, are displayed in Table 1. The results indicate
that the methods differ only slightly on these problem instances, although the differences

3 Our tools are available at http://research.ics.aalto.fi/software/asp/

http://research.ics.aalto.fi/software/asp/

198 J. Bomanson and T. Janhunen

Table 1. Numbers of solved ASPCOMP-2 benchmark problems by CLASP (v. 2.1.3) natively and
after normalizations based on BDDs, sorting programs, and selection programs

Benchmark #Inst Native BDD Sorting Selection
GraphColouring 29 9 8 8 10
WireRouting 23 22 21 23 22
Solitaire 27 19 18 19 20
Labyrinth 29 28 26 27 27
WeightBoundedDominatingSet 29 26 25 29 28
ConnectedDominatingSet 21 20 21 21 21
Other ASPCOMP-2 Problems 358 346 346 346 346
SAT 352 346 354 354
UNSAT 118 119 119 120
Summary 516 470 465 473 474

25 30 35 40
10

0

10
2

10
4

10
6

number of restaurants

so
lv

in
g

tim
e

in
 s

ec
on

ds

Native
BDD
Sorting
Selection

Fig. 5. Performance of CLASP (v. 2.1.3)
on new unsatisfiable Fastfood instances

0

0

0

0 0
1

1

1

1024

number of body atoms

bo
un

d

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 6. Performance of CLASP in verify-
ing strong visible equivalence (log scale)

are in favor of the new normalizations. The Fastfood benchmark of ASPCOMP-2 was
further studied using new unsatisfiable problem instances. Each instance contained one
cardinality rule of length equal to the number of restaurants in the instance and another
that was longer by one. The dimensions were picked so that the bounds of these rules
were as close as possible to half of the number of restaurants. The time taken by CLASP

to solve these instances without and with different normalization schemes is displayed
in Figure 5. The results indicate that any form of normalization is beneficial and, in par-
ticular, the one based on BDDs. Moreover, we have carried out automated equivalence
checks, as a form of quality control, to ensure the correctness of normalizations pro-
duced by LP2NORMAL2 throughout its development process. These verification steps
were implemented with the tools CLASSIC, LPEQ, and CLASP. Figure 6 plots with log-
arithmic level curves the time in seconds taken to prove that a cardinality rule (2) with
(n = m) is visibly strongly equivalent with its sorter-based normalization.

7 Conclusions

In this paper, we propose two new techniques to normalize cardinality rules frequently
arising in ASP applications. In these approaches, two different Boolean circuits that es-

Normalizing Cardinality Rules Using Merging and Sorting Constructions 199

sentially provide a mechanism to sort a sequence of Boolean values are described using
normal rules. Such programs encode a cardinality check for bound k, if the kth value
in the output is tested additionally. Our experiments indicate that sorting programs lead
to a more compact scheme for normalization. Moreover, such normalizations tend to
enable faster computation from time to time. We anticipate that this is due to both more
concise representation and better propagation properties of sorting networks (cf. [1]).

As regards future work, there is an interesting variant, viz. pairwise cardinality net-
works [5], that are similar to cardinality networks [1]. In the pairwise networks, splitting
is done before sorting which could lead to performance differences worth experiment-
ing. In addition, weight rules [15] form an important generalization of cardinality rules.
Given the translation of [7] based on adder networks, it is clear that cardinality rules
provide a potential intermediate representation when normalizing such rules.

References

1. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a
theoretical and empirical study. Constraints 16(2), 195–221 (2011)

2. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo Boolean constraints to SAT.
JSAT 2(1-4), 191–200 (2006)

3. Batcher, K.: Sorting networks and their applications. In: AFIPS Spring Joint Computer Con-
ference, pp. 307–314. ACM (1968)

4. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communica-
tions of the ACM 54(12), 92–103 (2011)

5. Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M., Voronkov, A.
(eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 154–172. Springer, Heidelberg (2010)

6. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set
programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

7. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation 2(1-4), 1–26 (2006)

8. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187, 52–89 (2012)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceed-
ings of ICLP 1988, pp. 1070–1080 (1988)

10. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

11. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to
propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 111–130. Springer,
Heidelberg (2011)

12. Janhunen, T., Niemelä, I.: Applying visible strong equivalence in answer-set program trans-
formations. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS,
vol. 7265, pp. 363–379. Springer, Heidelberg (2012)

13. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2(4), 526–541 (2001)

14. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1-2), 115–137 (2004)

15. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

16. Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-
set programming. Theory and Practice of Logic Programming 8(2), 217–234 (2008)

Experience Based Nonmonotonic Reasoning

Daniel Borchmann

TU Dresden

Abstract. Within everyday reasoning we often use argumentation pat-
terns that employ the rather vague notion of something being normally
true. This form of reasoning is usually captured using Reiter’s Default
Logic. However, in Default Logic one has to make explicit the rules which
are to be used for reasoning and which are supposed to be normally true.
This is a bit contrary to the everyday situation where people use expe-
rience to decide what normally follows from particular observations and
what not, not using any kind of logical rules at all. To formalize this
kind of reasoning we propose an approach which is based on prior expe-
riences, using the fact that something follows normally if this is the case
for “almost all” of the available experience.

1 Introduction

When we say that “the tram normally is on time,” we do so because in most
of our previous experiences this has been the case. Of course, when stating this
fact, we very well accept the possibility that due to some road accident our tram
may not come at all. Even if such a road accident occurs, we may still be of the
opinion that the trams are normally on time, because road accidents are “not
normal.”

This kind of reasoning, which employs the very vague notion of “normality,”
is rather common to us, and several attempts have been made to formalize this
kind of reasoning or embed it into a formal framework. Two of the most common
attempts are McCarthy’s Circumscription [3] and Reiter’s Default Logic [4]. The
former tries to restrict the usual model semantics of first order logic (or propo-
sitional logic) to models which are “as normal as possible” by minimizing the
amount of abnormality they have. The latter approach adds justifications for
inferences rules that model normality: a rule is normally applicable, but not if
the justification is not valid.

These two approaches have in common that they both start with knowledge,
expressed using logical formulas, that is assumed to be “normally true”, and
try to infer new knowledge based on this. However, this is not the case in the
situation where we wait for our tram: we do not employ rules like “when there is
no construction work nearby, then my tram is usually on time” or similar things.

In fact, what we usually do is that we compare our current situation to pre-
vious experiences and see what happened in these situations. If we find some
occurrence often enough, then we conclude that it “normally occurs” in “situa-
tions like this” and say that it should “normally occur now” as well. This form of

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 200–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Experience Based Nonmonotonic Reasoning 201

reasoning does not involve any kind of prior knowledge, but just makes use of pre-
vious observations and a certain kind of heuristic which decides when something
happened “often enough.”

However, note that we can use this comparison with previous situations to
generate non-monotonic rules. Indeed, when we are waiting for the tram, and no
construction work is nearby, then we could conclude from previous experiences
that the tram should be on time. So we can extract this rule “no construction
work nearby implies tram on time” from our experiences. Such rules could then
be used for further reasoning.

The purpose of this work is twofold. First and foremost, we set out to formalize
the notion of normal reasoning based on prior experiences as discussed above.
To this end, we shall make use of the theory of formal concept analysis as a
framework to model experiences. Furthermore, we shall make use of the notion
of confidence, as it is employed in data mining [1], as a method to formalize the
fact that some observation occurred “often enough.”

Secondly, we want to foster the discussion of this approach in the non-
monotonic reasoning community, and want to ask whether there are close
connections to existing approaches.

2 Formal Concept Analysis

For our considerations we require very little from the theory of formal concept
analysis [2]. More precisely, we shall introduce the notions of a formal context
and contextual derivation.

A formal context is a triple K � �G,M, I�, where G,M are sets and I � G�M .
A popular interpretation of formal contexts is that we think of the set G as of
a set of objects, and of the set M as of a set of attributes. Then an object g � G
has and attribute m �M if and only if �g,m� � I.

Let A � G be a set of objects. We can ask for the set of common attributes
of the set A, i. e. for the set

A� � �m �M � 	g � A : �g,m� � I
.

Likewise, for a set B � M of attributes, we can ask for the set of satisfying
objects, i. e. for

B� � � g � G � 	m � B : �g,m� � I
.

The mappings ���� are called the derivation operators of K, and the sets A� and
B� are called the derivations of A and B in K, respectively. A set B � M of
attributes is called an intent of K if and only if B � B�.

In formal context, one can ask questions like the following: is it true that
every object that has all attributes from A has also all attributes from B? To
formalize this notion, we introduce the concept of implications as pairs �A,B�
of sets A,B � M . To make our intention clearer, we shall often write A � B
instead of �A,B�. The set of all implications on a set M is denoted by Imp�M�.
The implication A� B then holds in K if and only if A� � B�.

202 D. Borchmann

3 Nonmonotonic Reasoning in Formal Contexts

We shall now make use of the notion of formal context to model non-monotonic
reasoning based on prior experiences. For this, let us fix a set M of relevant
attributes. Then we shall understand an experience as a subset N � M . Intu-
itively, such an experience N consists exactly of all attributes we have observed
within this experience. We then collect all such experiences in a formal context
K � �G,M, I�, i. e. for each g � G, the set g� is an experience.

Example 1. Suppose (again) we are waiting for our tram at a tram station. It
is a sunny day, and we suspect nothing bad. In particular, we do not expect
our tram to be late. However, out of the sudden we hear some sirens, which
may be due to some road accident that occurred nearby. Because of this extra
information, we are not that sure anymore if our tram will arrive at all!

A formal context Ktram which collects a set of such prior experiences (together
with the information whether the tram arrived or not) could be given by

sunny sirens tram on time
Day 1 � �
Day 2 �
Day 3 � �
Day 4 � � �
Day 5 � �
Day 6 � �

In other words, on day 1, it was sunny and the tram was on time, and on day 5,
it was sunny, but there were sirens, and the tram was not on time.

The goal is now to draw conclusions from such a formal context K � �G,M, I�
of experiences. Roughly, we suppose that we are given an observation P � M .
We then ask for some m � M whether in “almost all” experiences where P
occurred, m occurred as well.

We now formalize this notion of saying that a set Q � M of attributes “nor-
mally follows” from our observation P . For this, we shall introduce the notion
of confidence confK�A � B� for implications �A � B� � Imp�M� in the formal
context K as

confK�A� B� �

�
1 A� �
��A�B���

�A�� otherwise.

In other words, the confidence of the implication A � B is the relative amount
of objects in K satisfying all attributes in A which also satisfy all attributes in B.

Using the notion of confidence, we say, for some fixed c � �0, 1�, that P
normally (with threshold c) implies Q in K if and only if

confK�P � Q� � c.

Example 2. Let us consider Example 1 again, and let us choose c � 0.8. Then
on sunny days our tram is normally on time, because

Experience Based Nonmonotonic Reasoning 203

confKtram�� sunny
 � � tram on time
� �
4

5
.

However, if we add the extra information that we heard some sirens, then it is
not true that our tram will be normally on time, even if it is a sunny day, since

confKtram �� sunny, sirens
 � � tram on time
� �
1

2
.

From this example, we already see that this kind of inference is non-monotonic.
More precisely, it may happen for some sets P,Q �M and p �M that

confK�P � Q� � c

confK�P � � p
 � Q� � c.

Furthermore, it is worthwhile to note that the notion of “normally implies” is
not transitive in the usual sense.

Example 3. Let us consider the formal context

a b d

1 �
2 � �
3 � � �
4 � �
5 �

and choose c � 2
3 . Then � a
 normally implies � b
, and � b
 normally implies � d
,

but � a
 does not normally imply � d
. Even � a, b
 does not normally imply � d
.

On the other hand, it is easy to see that

confK�A � C� � confK�A � B� � confK�B � C�

for A � B � C �M .

4 Non-monotonic Rules

Our approach described so far can be used to define a certain kind of non-
monotonic rules. More precisely, let us call an implication A � B a non-
monotonic rule, and let us say that this rule is valid in K with threshold c
if and only if confK�A � B� � c. Those rules capture all the knowledge we get
from non-monotonic reasoning in the formal context K using the threshold c.
The semantics of these rules is obviously model-based.

Let us denote with R�K, c� the set of all rules of K using c as threshold. As
these rules enjoy a model-based semantics, we can defined the corresponding
entailment operator ��c by

L ��c �A� B� �� �	K : L � R�K, c� �� �A� B� � R�K, c��,

where the formal contexts all have the same set M of attributes.

204 D. Borchmann

It is quite easy to see that we do not need all such rules to still be able to do
all the reasoning. If we have rules A� B and A� B �C which are both valid
in K using c, then the latter suffices.

We denote maximal such sets with a special name. Let P �M . We call Q an
c-extension of P in K if and only if Q is �-maximal with respect to

R�K, c� ��c �P � Q�.

It thus suffices to know all the rules

�P � Q � Q is a c-extension of P in K
.

It is also easy to see that for rules P � Q whose confidence is not 1 in K, it
is enough for the sets P and Q to be intents (note that extensions are always
intents). In other words, the set

�P � P � � P �M
 �

�P � Q � Q c-extension of P, confK�P � Q� � 1 and P,Q � Int�K�
.

is complete for R�K, c�. Of course, instead of �P � P � � P �M
, we could
choose any base of Th�K�.

Note that every set P has a c-extension, since confK�P � P � � 1 and
confK�� � �� is antitone in its second argument. More precisely, we have the
following characterization of c-extensions.

Proposition 1. Let K � �G,M, I� be a finite and non-empty formal context,
and let c � �0, 1�. Let P � M . Then a set Q is an c-extension of P in K if and
only if Q is maximal with respect to confK�P � Q� � c.

But note that in contrast to the case c � 1, a set P can have multiple c-
extensions if c � 1.

Example 4. Let us consider the formal context

m n

1 �
2 � �
3 � �
4 � �
5 �

and choose c � 4�5. Then the set P � has two c-extensions, namely �m

and �n
.

It is quite easy to see that this example can be generalized to work for every
value c � �0, 1� and for every number of c-extensions.

Also note that in contrast to the classical case, c-extensions are not closed
under normal entailment.

Experience Based Nonmonotonic Reasoning 205

Example 5. Consider the formal context from Example 4 again, and let c � 3�4.
Then the c-extensions of are �m
, �n
, but both sets on their part have the
set �m,n
 as c-extension.

5 Conclusions and Future Research

We have presented a formalization of evidence based non-monotonic reasoning
based on formal concept analysis. To this end, we have used formal contexts
to model the set of experiences a person has. Using the notion of confidence,
we were able to give a precise formulation of what it means that in “almost all”
experiences obtained so far a certain conclusion was correct. Based on this, we
have shown that this form of inference indeed yields a non-monotonic formalism.

Albeit the author is quite sure that this approach of combining formal concept
analysis and non-monotonic reasoning is original, he is aware of the fact that the
general idea underlying this approach is not new. It is thus one of the major next
steps in investigating this approach to find connections to existing frameworks
for non-monotonic reasoning. Moreover, our formalization yields a connection
between formal concept analysis and non-monotonic reasoning. Thus, if we can
find that our idea is similar to existing ones, it might be the case that methods
from formal concept analysis could be helpful in solving tasks in these existing
approaches. Conversely, it is possible that ideas and results from non-monotonic
reasoning could be applied to issues of formal concept analysis.

Moreover, as we have already indicated in our considerations above, our for-
malization could yield a method which allows for the extraction of non-monotonic
rules which could be used by other formalisms like default logic. In particular,
we have given a first “base” of non-monotonic rules of a formal context, which
however might be too large to be practically relevant. A smaller base, maybe
comparable to the canonical base [2] known in formal concept analysis, maybe
of practical interest.

Acknowledgments. The author wants to thank both Bernhard Ganter and
Gerd Brewka for their encouraging discussions on this topic.

References

[1] Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of
Items in Large Databases. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 207–216 (1993)

[2] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

[3] McCarthy, J.: Circumscription–A form of non-monotonic reasoning. Artificial Intel-
ligence 13, 1–2 (1980); Special Issue on Non-Monotonic Logic, 27–39

[4] Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 1–2 (1980); Spe-
cial Issue on Non-Monotonic Logic, 81–132

An ASP Application in Integrative Biology:

Identification of Functional Gene Units

Philippe Bordron1,2, Damien Eveillard4, Alejandro Maass2,3,
Anne Siegel6,5, and Sven Thiele1,5,6

1 Inria-Ciric, Rosario Norte 555, Of. 703, Santiago, Chile
2 Center of Mathematical Modeling and Center for Genome Regulqtion,

Universidad de Chile, Av. Blanco Encalada 2120, Santiago, Chile
3 Department of Mathematical Engineering, Universidad de Chile, Av. Blanco

Encalada 2120, Santiago, Chile
4 ComBi, lina, Université de Nantes, cnrs umr 6241, 2 rue de la Houssinière, 44300

Nantes, France
5 Inria, Centre Rennes-Bretagne-Atlantique, Projet Dyliss, Campus de Beaulieu,

35042 Rennes cedex, France
6 Cnrs, umr 6074 irisa, Campus de Beaulieu, 35042 Rennes, France

Abstract. Integrating heterogeneous knowledge is necessary to eluci-
date the regulations in biological systems. In particular, such an inte-
gration is widely used to identify functional units, that are sets of genes
that can be triggered by the same external stimuli, as biological stresses,
and that are linked to similar responses of the system. Although several
models and algorithms shown great success for detecting functional units
on well-known biological species, they fail in identifying them when ap-
plied to more exotic species, such as extremophiles, that are by nature
unrefined. Indeed, approved methods on unrefined models suffer from an
explosion in the number of solutions for functional units, that are merely
combinatorial variations of the same set of genes. This paper overcomes
this crucial limitation by introducing the concept of “genome segments”.
As a natural extension of recent studies, we rely on the declarative model-
ing power of answer set programming (ASP) to encode the identification
of shortest genome segments (SGS). This study shows, via experimental
evidences, that SGS is a new model of functional units with a predic-
tive power that is comparable to existing methods. We also demonstrate
that, contrary to existing methods, SGS are stable in (i) computational
time and (ii) ability to predict functional units when one deteriorates the
biological knowledge, which simulates cases that occur for exotic species.

1 Introduction

In biological systems one distinguishes several layers of information. One of them
represents the set of (bio)chemical reactions that occur within the system. These
reactions are called metabolic reactions and form chains of metabolic path-
ways (i.e. products of reactions are substrates of other reactions) of the whole
metabolism. The metabolism is roughly controlled by genes. Indeed, a major

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 206–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An ASP Application in Integrative Biology: Identification 207

part of these reactions is catalyzed by enzymes that are encoded by genes. Thus,
understanding the link between gene regulation and metabolism is of great inter-
est in biological research. However, despite the interest and efforts, identifying
these links remains a difficult task. Recent biological evidence shows that mi-
crobial genes present a specific organization. They are grouped together on the
DNA strand when they are functionally related [1]. These groups of genes, so
called functional units, became the main target of functional biology.

Following this topological assumption several bioinformatics approaches
have been proposed to explain functional units [2,3]. All rely on genome scale
models integrating genomic information (in particular, genes organization) with
metabolic networks. Among these techniques in [4] is proved that shortest paths
– namely, wrr-paths – in the so called integrated model correspond to functional
gene units (i.e. called metabolic operons in the biological literature). Although
shortest wrr-paths show its efficiency to recover functional units when computed
in well-curated bacteria like Escherichia coli, one observes an explosion in the
number of solutions when considering more exotic or less characterized bacteria.
This explosion is somehow artifactual, since many wrr-paths in these species are
merely combinatorial variations of the same set of genes and can be biologically
merged into a single functional gene unit.

In this paper, we propose a modification of the concept of wrr-path in order
to overcome the weakness due to the aforementioned combinatorial explosion in
wrr-path computation in bad characterized bacteria. We present the concept of
genome segments which is computable in reasonable time allowing the identifi-
cation of meaningful functional units on this class of bacteria. Genome segments
and wrr-paths are related, they are obtained within the same integrated frame-
work but minimizing different metrics.

To compute functional gene units we formulate the shortest genome segment
(SGS) problem by means of Answer Set Programming (ASP) [5] instead of a ded-
icated algorithm on a graph. This allows a flexible encoding that can be easily
adjusted to test different metrics while still being computational efficient. ASP
is a declarative problem solving paradigm from the field of logic programming
and knowledge representation, that offers a rich modeling language [6] along
with highly efficient inference engines [7] based on Boolean constraint solving
technology. In the fields of integrative biology ASP applications include the re-
construction of metabolic networks [8], modeling the dynamics of regulatory
networks [9], inferring functional dependencies from time-series data [10], and
integrating gene expression with pathway information [11].

Finally, we solve the SGS problem on a concrete biological system by taking
advantage of ASP’s optimization techniques for finding minimal solutions [6,12].
Via further experimental validation, we pinpoint that SGS are a suitable model
of functional units with an accurate predictive power. We also demonstrate that
the identification of SGS is stable in both computational time and the ability to
predict functional units when one deteriorates the biological knowledge, which
simulates cases that occur in more exotic species.

208 P. Bordron et al.

2 An Integrated Model: Identifying Functional Gene
Units

Metabolic Compounds and Reactions. The metabolism of a given bac-
terial system is defined by the set C of biological compounds and the set R of
metabolic reactions that take place in the system. Each reaction r in R describes
the transformation of compounds in C into others, also in C. Consequently, a
metabolic compound can be consumed or produced by a metabolic reaction. The
compound takes the role of a substrate or a product of the reaction. We define
the maps consume : R→ P(C) and produce : R→ P(C) (where P(C) contains
subsets of C) to describe the set of substrates and the set of products of a given
reaction respectively. The fact that the products of one reaction can be used as
substrates by other reactions allows to connect reactions into complex chemical
pathways. All possible reactions are usually represented as a metabolic network,
which is a graph representation of the metabolism. We use the reaction graph
representation (R,E) where vertices in R correspond to the set of possible reac-
tions and edges are E = {(x, y) |x, y ∈ R, produce(x)∩ consume(y) �= ∅, x �= y}.

Genes, Enzymes, Translation and Catalysis of Reactions. Bacterial
genomes are often constituted by only one circular chromosome. Formally, such
a genome can be represented as an ordered sequence G of genes g1, . . . , gn where
n is the number of genes in G. The successor and predecessor of a gene g ∈ G is
naturally defined when looking the genome as a circular word. We denote by G
the set of distinct genes that appear in G.

When genes in G are transcribed and then translated, some proteins catalyz-
ing specific metabolic reactions are produced. The proteins having a catalytic
function are called enzymes. Each reaction in R can be catalyzed by one or many
enzymes. We define then the map catalyze : G → P(R) to describe the set of
reactions that a gene can catalyze via the associated enzyme.

The Integrated Gene-reaction Graph. A model that put together all pre-
viously described heterogeneous biological knowledge into a weighted directed
graph representation is the integrated gene-reaction graph [4]. For a genome G, a
set of reactionsR and a metric between genes w : G×G �→ R+, we define the inte-
grated graph (V,A) where V = {(g, r)|g ∈ G, r ∈ R, r ∈ catalyze(g)} is the set of
vertices and A = {((g, r), (g′, r′))|(g, r), (g′, r′) ∈ V, produce(r) ∩ consume(r′) �=
∅, r �= r′} are the edges. Each edge a = ((g, r), (g′, r′)) of A is weighted by
w(g, g′). The sum of weights along a path is the path weight. Note that this
graph uses the reaction graph as a support which is enriched with genomic in-
formation. Using this integrated model allows us to investigate gene regulatory
behavior based on the topology of the underlying metabolic reaction network.

Identifying Functional Gene Units. A concept that is used to identify func-
tional gene units is called without reaction repetition path (wrr-path) in the

An ASP Application in Integrative Biology: Identification 209

integrated gene-reaction graph. Given two reactions r and r′ in R. A path
p = v1 . . . vl in (V,A) is a wrr-path from r to r′ if v1 = (g1, r), vl = (gl, r

′)
and for all two vertices vi = (gi, ri), vj = (gj , rj) in p with 1 ≤ i < j ≤ l it
holds ri �= rj . We observe that several wrr-paths can have the same weight. The
set of genes that are involved in a wrr-paths can be interpreted as a hint of a
functional gene unit. Figure 1(a) illustrates wrr-paths.

55

3

3
1 2

14

3

0

0

(a) wrr-paths (b) genome segments

Fig. 1. Difference between wrr-paths and genome segments. On both figures flat arrows
represent genes on the genome, and the graph under the genome is the integrated gene-
reaction graph. In (a), the shortest wrr-path from r1 to r4 is α, and the two second
shortest paths are β or β′. In addition, we project in the obvious way those paths on
the genome. In (b), the shortest genome segment from r1 to r4 is α, whereas the second
best is the segment β. The projection of these segments in the integrated gene-reaction
graph is depicted.

It has been shown in the well studied organism Escherichia coli that the con-
cept of wrr-path is highly useful to determine functional metabolic-gene units [4].
Indeed, besides the fact that this concept was not designed to find operons, the
resulting gene units matched up to 45% with known operons which is consid-
ered to be a top range technique for identifying operons [13]. Moreover, in [4],
only the information of Escherichia coli is required, whereas dedicated predic-
tors rely on organisms comparison or/and learning methods [13]. In the case of
exotic organisms, the use of information about other organisms may be hurtful.

While computing shortest (in relation to the weight) wrr-paths in a well stud-
ied organism like E. coli is not problematic, it has certain shortcomings when
applied to less refined models. We observed that in unrefined models the number
of equally short wrr-paths increases. This is mostly due to the fact that usually
gene annotations are less specific. One gene is then often mapped to a multitude
of metabolic reactions and the direction of most reactions is unknown and is set
to be reversible by default. Thus, the integrated gene-reaction graph of a less
well defined model contains naturally more wrr-paths. Most of these paths in-
volve the same genes and therefore belong to the same gene units. These equally
short paths are merely combinatoric variants of few gene-reaction pairs. The
huge number of alternative paths makes its computation unfeasible on poorly
defined models.

210 P. Bordron et al.

3 Genome Segments, an Alternative Approach to
Identify Functional Gene Units

We present an alternative approach to identify functional gene units based on
gene organization instead of wrr-paths. This allows us to avoid the huge com-
binatorial problem described above when considering integrated gene-reaction
graphs.

Definition 1 (Genome segment). Given a circular sequence of genes G =
g1 . . . gn, we define a genome segment of G as a sequence σ = gi . . . gj, where
1 ≤ i ≤ j ≤ n, or a sequence σ = gi . . . gng1 . . . gj, where 0 ≤ j ≤ i ≤ n.

Definition 2 (Induced subgraph). Let G be a circular sequence of genes and
(R,E) the reaction graph associated to such sequence. Given a genome seg-
ment σ of G, the induced subgraph is (Rσ, Eσ) where Rσ = {r ∈ R | ∃ g ∈
σ, r ∈ catalyze(g)} and Eσ = {(r, r′) ∈ E | ∃ g, g′ ∈ σ, r ∈ catalyze(g), r′ ∈
catalyze(g′)}.

The induced subgraph reflects the regulatory influence of the genes in the
segment, their corresponding enzymes products and the catalyzed reactions re-
lation of these enzymes. Figure 1(b) illustrates genome segments and the induced
subgraphs.

To each wrr-path in an integrated gene-reaction graph one associates the
shortest genome segment containing the genes in the path. Thus, two wrr-paths
involving the same set of genes are associated to the same genome segment but
they may have different weights. In unrefined models, one observes that the
number of wrr-paths is huge and that a genome segment can be associated to a
big amount of wrr-paths.

Thus, to reduce complexity and in analogy to the wrr-paths problem, where
one searches the shortest wrr-paths in terms of their weight, we define the Short-
est Genome Segment (SGS) problem as follows.

Definition 3 (Shortest Genome Segment Problem). The SGS problem
receives the following data: a genome sequence G, a reaction graph (R,E), a
map catalyze : G→ P(R) and two reactions r, r′ ∈ R.

A solution to a SGS problem is the shortest genome segment σ of G such that
the induced subgraph (Rσ, Eσ) contains a path from r to r′.

A solution to the SGS problem points to a set of genes that take an active part
in the metabolic regulation and form an active gene unit.

Definition 4 (Active gene units). Let segment σ be a solution to the SGS
problem with data (G, (R,E), catalyze, r, r′). A gene g is part of an active gene
unit AU(σ) if and only if g ∈ σ and there exists a path p in (Rσ, Eσ) from r to
r′ such that reactions catalyzed by g, catalyze(g), intersect the path p.

These active gene units can be biologically interpreted as functional gene units.
To explore the space of further suboptimal genome segments, we adjust the

SGS problem by adding constraints on the minimal length of a segment.

An ASP Application in Integrative Biology: Identification 211

Definition 5 (SGS problem with minimal length). An SGS problem with
minimal length needs the following input data: a genome sequence G, a reaction
graph (R,E), a map catalyze : G → P(R), two reactions r, r′ ∈ R, and a
minimal length min.

A solution to a SGS problem with minimal length is the shortest genome
segment σ of G with length l ≥ min, such that the induced subgraph (Rσ, Eσ)
contains a path from r to r′ and there exists no segment σ′ of length l′ < min
with AU(σ) ⊆ AU(σ′).

Observe that the original SGS problem is a special case of this problem where
min = 1. It is clear that when min is too large this problem has no solution. On
the other hand condition AU(σ) ⊆ AU(σ′) looks to avoid artificial extension of
segments with no active genes.

In our application, the identification of functional gene units in exotic or-
ganisms, we are especially interested in computing optimal solutions as well as
solutions that are close to the optimum. Therefore, we need to solve the following
sub-tasks:

– Problem 1. Compute the minimal length l of a segment σ with l ≥ min,
such that the induced subgraph contains a path from r to r′ and there exists
no segment σ′ of length l′ < l with AU(σ) ⊆ AU(σ′).

– Problem 2. Enumerate all segments σ of a given length l such that the
induced subgraph contains a path from r to r′ and there exists no segment
σ′ of length l′ < l with AU(σ) ⊆ AU(σ′).

In the following, we will show on a real world application that genome seg-
ments are a good alternative for the computation of functional gene units.

4 ASP Encoding

We now present our ASP encoding of the SGS problem as defined in Section 3.
Additionally the encoding will use an upper bound max representing our knowl-
edge on the maximal length of a genome segment. In some cases can be the
length of the genome but typically it is no longer than a few hundreds.

Therefore, an instance of the SGS problem consists of seven components, the
sequence of genes G, the reaction graph (R,E), the function catalyze which
maps genes to metabolic reactions, metabolic reactions s and e, which represent
the start and end of the desired pathway, a lower bound min on the length of
the desired genome segment, as well as an upper bound max on the length of
the desired genome segment. For our ASP solution, we represent such a prob-
lem instance as a set of ground logic facts F(G, (R,E), catalyze, s, e,min,max)
defined as follows:

F(G, (R,E), catalyze, s, e,min,max) ={edge(u, v) | (u, v) ∈ E}
∪{gene(g) | g ∈ G}
∪{cat(g, r) | g ∈ G, r ∈ R, r ∈ catalyze(g)}
∪{start(s), end(e)}
∪{const min, max}.

(1)

212 P. Bordron et al.

Such a problem instance can then be combined with the logic program in
Listing 1.1 to solve the SGS problem.

Listing 1.1. sgs.lp: ASP encoding of shortest genome segments.

1 sgene (G) :- start (R),cat(G,R).

2 egene (G) :- end(R),cat (G,R).

3

4 pse (F,L) :- gene(F;L), F<L,

5 (L-F)+1 <= max , (L-F)+1 >= min ,

6 sgene (S), F > S-max , L < S+max ,

7 S >=F, S <= L,

8 egene (E), F > E-max , L < E+max ,

9 E >=F, E <= L.

10

11 1{ se(F,L) : pse(F,L) }1.

12

13 on_segment (G) :- se(F,L), gene(G), G>=F, G<=L.

14

15 aedge (X,Y) :- edge(X,Y), cat (G1 ,X), cat(G2,Y),

16 on_segment (G1;G2).

17

18 from_start (X) :- start (X), on_segment (G), cat(G,X).

19 from_start (Y) :- from_start (X), aedge (X,Y).

20 :- not from_start (X), end (X).

21

22 to_end (Y) :- end(Y), on_segment (G), cat(G,Y).

23 to_end (X) :- to_end (Y), aedge(X,Y), cat(G,X).

24

25 aunit (G) :- on_segment (G), cat(G,X), from_start (X),to_end (X).

26 :- se(F,L), not aunit(F).

27 :- se(F,L), not aunit(L).

28

29 length ((L-F)+1) :- F<=L, se(F,L).

30

31 :- length (X), X < min.

32

33 #minimize [length (L) = L].

This logic program represents a simplified ASP formulation of the SGS prob-
lem. We remark that the rules in lines (4-9, 13 and 29) are only handling the
case of linear genomes. For the sake of simplicity we omit here the definitions
for the circular genome case. The complete encoding is available in the source
code7.

Starting with the rules in lines (1 and 2) the logic program defines the set of
genes that are associated to the start and end reactions via the cat predicate.
As there can exist more than one gene catalyzing a reaction, there is a set of
genes corresponding to them. Each of the genes denoted by the predicate sgene
can catalyze the start reaction, while the predicate egene denotes genes which
can catalyze the end reaction respectively. Note that start and end genes do not
necessarily correspond to the beginning and end of a desired genome segment.
These genes can occur everywhere and in any order in a genome segment.

An ASP Application in Integrative Biology: Identification 213

The rule in lines (4-9) defines the search space of possible genome segments.
A possible genome segment is denoted by the predicate pse with two arguments,
the first gene F and the last gene L of the segment. The length of the segment
is determined by the formula L − F + 1 and only segments with min ≤ length
≤ max are considered. Furthermore, a segment must contain at least one start
gene and one end gene respectively. Therefore, it must hold that there exist
a start gene S and an end gene E such that F ≤ S ≤ L and F ≤ E ≤ L
respectively.

Among the possible segments exactly one segment can be chosen. This choice
is expressed by the rule in line (11). The genes that lie on the chosen segment
are defined by the rule in line (13). These genes induce a set of edges in the
reaction graph, the induced subgraph, connecting reactions that are catalyzed by
genes on the segment. The set of active edges is defined by the rule in lines (15
and 16). An edge (X,Y) is active if X and Y are both catalyzed by genes on
the segment.

Given the set of active edges one can test whether there exists a path from
the start reaction to the end reaction. The rules in lines (18 and 19) define what
is reachable from the start reactions and the integrity constraint in line (20)
discards solutions where the end reaction is not reachable. The rules in lines (22
and 23) define nodes that lie on a path of active edges to the end reaction.

The genes that catalyze reactions on a pathway from start to end reaction
form the active gene unit. They are defined by the rules in line (25). The integrity
constraints in lines (26 and 27) discard segments that merely extend shorter
segments without extending the active gene unit. A segment is not considered
a solution if the first or the last gene is not part of the active gene unit. These
integrity constraints are especially important if we look for shortest segments
which are bigger than a given size min. Without these constraints every solution
that is smaller or equal than min could easily be extended to a solution of size
min+ 1 by simply prolonging a shorter solution.

Line (29) defines the length of the segment. The integrity constraint in
line (36) discards segments whose lengths are shorter than the required
minimum min.

So far the rules in lines (1 to 31) define all segments that catalyze a reaction
pathway from start to end reaction. To solve the corresponding SGS optimiza-
tion problem, line (33) declares the objective function via an optimize statement.
Preferred solutions are those that minimize the length of the segment.

5 Enumerating Shortest Genome Segments

We provide an application that computes optimal and sub optimal solutions
close to the optimum. More precisely, we enumerate all solutions σ of a SGS
problem with minimal length from 1 to n until we have at least k distinct active
gene units AU(σ) or there exist no further solutions.

The intuition is that these active gene units correspond to functional gene
units like metabolic operons or regulons. They allow us to investigate the rela-
tionship between metabolic pathways and gene localization.

214 P. Bordron et al.

To compute these segments we developed the Python program shogen1. It
depends on the PyASP2 library for calling the ASP solvers gringo and clasp

and for passing them logic program encoding and problem instances.
shogen takes as input the genome, the metabolic reaction network and infor-

mation of the catalytic function of the genes. Further, a list of queries start and
end reactions for which we want to find functional gene units. In a pre-processing
step shogen filters queries that do not have a path in the metabolic reaction net-
work. For the remaining queries shogen computes the shortest genome segments
and their active gene units.

The computation is performed in a multi-step process. In a first step, clasp
is used to solve Problem 1, computing the minimum length of a segment that
can catalyze the desired metabolic pathway. Once the optimal length is known,
clasp is used with the option --opt-all to solve Problem 2, enumerating all
solutions that satisfy this optimality criterium. These steps are repeated until at
least k segments are computed or no more solutions can be found. The minimum
length of a segment is increased whenever all solutions of a given length are
computed. The maximum length is fixed and part of the logic problem instance.

The following pseudo-code describes the algorithm.

Algorithm 1. compute the shortest genome segments

Input: A SGS problem instance as facts instance.lp and a parameter k
Segments← ∅;
min← 1;
while |Segments| < k do

opt← gringo instance.lp sgs.lp --const min=min | clasp;
Σmin ← gringo instance.lp sgs.lp --const min=min | clasp

--opt-all=opt;
Segments← Segments∪Σmin;
min← opt+1;

end
return Segments

6 Experiments and Results

The functional gene units produced by using the notions of shortest genome
segments and shortest wrr-paths were compared. We consider an operational
criterium, that is, the computational time needed to obtain them, and also the
biological relevance of the results. The benchmark was conduced on the widely
studied and well known Escherichia coli bacteria. In order to simulate more
exotic or less studied organisms, with unrefined models, we create a set of dete-
riorated models of E. coli.

1 https://pypi.python.org/pypi/shogen
2 http://pypi.python.org/pypi/pyasp

An ASP Application in Integrative Biology: Identification 215

Simulating Exotic Organisms. Although modern genome sequencing tech-
niques allow us to obtain genome data even for little genomes and exotic or-
ganisms, the main problem lies in the reconstruction of the metabolic networks
for these organisms. While it is often possible to determine the reactions that
occur in the metabolic network, a lot of complicated and costly experiments
are needed to determine their direction. Thus, the direction of those reactions
remains often unknown. E. coli is regarded as the best studied organism today
and its metabolic network is the most refined existing one. Therefore, we us it
as the reference to obtain deteriorated models containing less information about
irreversible reactions. Given the set Ri of irreversible reactions known in E. coli,
we created deteriorated models by taking subsets Rd of Ri and transforming
them to reversible reactions. In this way we created models with different dete-

rioration ratios |Rd|
|Ri| ranging from 0 to 1. These deteriorated E. coli models aim

to simulate the unrefined models of exotic species.

Benchmark and Experimentations. The knowledge about E. coli was taken
from the Ecocyc database (version 16.1). Its genome is composed of one circular
chromosome of 4498 genes and its metabolism consists of 2070 distinct reactions
separated into 816 reversible and 1254 irreversible ones. We generated four dete-
riorated models for each of the following deterioration ratios: 0.05, 0.1, 0.2, 0.4,
0.6 and 0.8. We also generated the model with a deterioration ratio of 1.

We confronted each model with a set of queries, a couple of start and end
reactions, for which we computed the optimal solutions and the next four levels of
suboptimal solutions for the shortest wrr-paths problem and the shortest genome
segments problem. We call such solutions a 5-SIP and 5-SGS respectively. The
selection of 5 is motivated by computations in [4].

The computations were done on a MacBook Pro 9,2 equipped with an Intel
Core i7-3520M processor and 8 Gb of RAM. This computer was running un-
der Mac OS X 10.7.5. The dedicated program sipper3 for computing shortest
wrr-paths uses the Java SE Runtime Environment build 1.7.0 13-b20, and the
ASP solution for computing shortest genome segments uses the PyASP library
including the grounder gringo in version 3.0.4 and the ASP solver clasp version
2.1.1. Both programs were configured to use only one core. Each computation
was repeated twice with a timeout of 24 hours.

Computation Time. Figure 2(a) shows the computation times for the 5-SIP
and 5-SGS. When no deterioration is applied, the computation of 5-SIP is faster
than the one of 5-SGS. The computation times of both 5-SIP and 5-SGS in-
crease with the deterioration ratio, but the time to compute 5-SIP increases
exponentially while the one for 5-SGS increases in a more linear way. For a de-
terioration ratio over 0.4, the computation of 5-SIP takes more time than the
computation of 5-SGS. Moreover, increasing the deterioration ratio even further,
the computation of 5-SIP quickly reaches the 24 hours timeout limit.

3 https://sipper.googlecode.com/

216 P. Bordron et al.

(a) Computation time

(b) Operonic relevance

(c) Operonic justification

Fig. 2. Results of the computation of 5-SGS and 5-SIP on E. coli. The subfigure (a)
indicates the computation times according to the deterioration ratio whereas the sub-
figures (b) and (c) present respectively the operonic relevance and the operonic justi-
fication of the sets of gene units.

Biological Relevance. We evaluated the biological relevance of the predicted
functional gene units by comparing them against the known metabolic operons
in E. coli, which are functional units playing a role on both genome regula-
tion and metabolic network studies. We used the set of 278 manually-curated
metabolic operons reported in the Ecocyc database version 16.1. We computed
the similarity between each predicted gene unit and each operon using the Jac-
card measure. As biologists have interest in groups of genes, we do not consider
gene units of one gene. A predicted gene unit is said to be similar to an operon
when the Jaccard measure between them is greater than or equal to 0.6. We
computed then (1) the operonic relevance and (2) the operonic justification for
the set of 5-SGS and the set of 5-SIP. The operonic relevance of the predicted
gene units is the proportion of units that are similar to at least one operon. The
operonic justification for predicted gene units is the proportion of operons that
is similar to at least one predicted gene unit.

Figures 2(b) and 2(c) show the results for operonic relevance and operonic
justification, respectively. In both experiments, the deterioration of information
leads to predicting gene units with more genes. Thus, we can observe a small
decrease of the number of identified operons and a decrease of the operonic
justification. Observe also that for 5-SIP a bigger proportion of the predicted
gene units is similar to operons and allows to explain a bigger part of the operon
than 5-SGS.

7 Discussion

This study demonstrates the biological interest of using SGS as an alternative
to shortest wrr-paths, by showing similar capabilities in the identification of

An ASP Application in Integrative Biology: Identification 217

confirmed functional gene units. Both concepts were compared using different
levels of deteriorated biological knowledge. While using the concept of SGS pro-
duced only slightly lower prediction scores for metabolic operons than wrr-paths,
it allowed to get meaningful predictions even on unrefined networks with a high
deterioration ratio. Therefore, SGS can be considered as an efficient computable
alternative to predict functional gene units even on unrefined models.

Beyond the biological evidences for the quality of predictions with SGS, the
major outcome of this study remains the efficiency results. Indeed, although
wrr-paths is an interesting concept to study organisms for which the biological
knowledge is globally complete, this technique drastically fails when applied
to incomplete ones, as observed when one studies exotic species. Although the
dedicated algorithm to compute the shortest wrr-paths has a better performance
on the well refined E. coli models, this study emphasizes that the computational
time of shortest wrr-paths increases exponentially when the biological knowledge
is degraded. This is mainly due to the fact that for one set of genes many equally
short wrr-paths can exist, differing only in the order of the involved genes (i.e.
a permutation of genes).

SGS does not regard these different permutations. Therefore, the computation
times for SGS remain relatively stable, but they are comparatively higher than
the dedicated algorithm on the well refined model. This overall high runtime
can be explained by the fact the each query represents a separate instance of the
ASP problem. Therefore, the times for the problem generation and initialization
of data structures, which must be done only once in the dedicated algorithm,
is roughly multiplied by the number of queries. A further improvement of the
ASP solution could be reached if one can reuse data structures on all problem
instances.

Our results confirmed the interest of integrated models and SGS for inves-
tigating functional units of exotic species, and the interest of using ASP for
deciphering these biological units. From a methodological point of view, ASP al-
lows us to quickly test biological assumptions. In particular, the expressiveness
of ASP presents a clear advantage for exploring several hypothesis on biological
systems. As a biological perspective, further studies will focus on the exten-
sion of the SGS framework to the identification of new functional units. We
exploit the flexibility of declarative programming with ASP to create models
using more constraint metabolic behavior [8], to explore different metrics based
on transcriptomic correlation data instead of a genomic distance, and to identify
graph-based units such as CCC (Common Connected Component) [2] or regu-
lons [3], describing co-regulated operons. Therefore, we rely on the versatility
of the ASP language and the solving capabilities of ASP solvers to integrate
large-scale heterogeneous biological knowledge into computational models.

Acknowledgments. This work was supported by ANR Biotempo (ANR-10-
BLANC-0218), Basal-CMM, Fondap-CRG 15090007, INRIA-UChile Integrative-
BioChile Associate Team and CIRIC INRIA-Chile.

218 P. Bordron et al.

References

1. Rocha, E.P.C.: The organization of the bacterial genome. Annual Review of Ge-
netics 42, 211–233 (2008)

2. Boyer, F., Morgat, A., Labarre, L., Pothier, J., Viari, A.: Syntons, metabolons
and interactons: an exact graph-theoretical approach for exploring neighbourhood
between genomic and functional data. Bioinformatics 21, 4209–4215 (2005)

3. Zhang, H.H., Yin, Y.Y., Olman, V.V., Xu, Y.Y.: Genomic arrangement of regulons
in bacterial genomes. PLoS ONE 7, e29496–e29496 (2011)

4. Bordron, P., Eveillard, D., Rusu, I.: Integrated analysis of the gene neighbouring
impact on bacterial metabolic networks. IET Systems Biology 5, 261–268 (2011)

5. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
A user’s guide to gringo, clasp, clingo, and iclingo (2010),
http://potassco.sourceforge.net

7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: Veloso, M. (ed.) Proceedings of the Twentieth International Joint Con-
ference on Artificial Intelligence, IJCAI 2007, pp. 386–392. AAAI Press/The MIT
Press (2007)

8. Schaub, T., Thiele, S.: Metabolic network expansion with answer set programming.
In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 312–326.
Springer, Heidelberg (2009)

9. Fayruzov, T., Cock, M.D., Cornelis, C., Vermeir, D.: Modeling protein interaction
networks with answer set programming. In: IEEE Int. Conf. on Bioinformatics and
Biomedicine, BIBM 2009, pp. 99–104 (2009)

10. Durzinsky, M., Marwan, W., Ostrowski, M., Schaub, T., Wagler, A.: Automatic
network reconstruction using ASP. Theory and Practice of Logic Programming 11,
749–766 (2011)

11. Papatheodorou, I., Ziehm, M., Wieser, D., Alic, N., Partridge, L., Thornton, J.M.:
Using answer set programming to integrate rna expression with signalling pathway
information to infer how mutations affect ageing. PLoS ONE 7, e50881 (2012)

12. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theory and Practice of Logic Programming 11, 821–839 (2011)

13. Brouwer, R.W.W., Kuipers, O.P., van Hijum, S.A.F.T.: The relative value of
operon predictions. Briefings in Bioinformatics 9, 367–375 (2008)

http://potassco.sourceforge.net

Evaluating Answer Set Clause Learning

for General Game Playing

Timothy Cerexhe1, Orkunt Sabuncu2, and Michael Thielscher1

1 University of New South Wales
{timothyc,mit}@cse.unsw.edu.au

2 Universität Potsdam
orkunt@cs.uni-potsdam.de

Abstract. In games with imperfect information, the ‘information set’ is
a collection of all possible game histories that are consistent with, or ex-
plain, a player’s observations. Current game playing systems rely on these
best guesses of the true, partially-observable game as the foundation of
their decision making, yet finding these information sets is expensive.

We apply reactive Answer Set Programming (ASP) to the problem of
sampling information sets in the field of General Game Playing. Further-
more, we use this domain as a test bed for evaluating the effectiveness
of oClingo, a reactive answer set solver, in avoiding redundant search by
keeping learnt clauses during incremental solving.

1 Introduction

General Game Playing (GGP) research seeks to design systems able to under-
stand the rules of new games and use such descriptions to play those games
effectively. These systems must reason their way from the unadorned rules to
a strategy capable of defeating adverse opponents under tight time constraints.
The recent extension to stochastic games with imperfect information makes this
process even harder by requiring players to also reason about knowledge and
plan under uncertainty.

In game theory, the information set for a specific player is a collection of
models (possible histories) of the current state of the game, that are each consis-
tent with all observations made so far, and by extension are indistinguishable for
that player [7]. Consider a simple game of ‘number guessing’ where a player must
guess a (random) hidden number by asking a series of ‘is the number < n?’ ques-
tions. Clearly the best strategy is a binary search—by partitioning the search
space in half each time we can be guaranteed a logarithmic worst-case. Further,
this discovery can be detected in a game-general way by explicitly maintain-
ing every model in the information set. This can be seen as the possible worlds
approach. However the size of a typical game is so enormous that maintaining
every world is impossible.

One response to the limits of a possible worlds approach is to accept a subset
of all worlds. Traditional perfect information tree search can then be employed;
this is an efficient (and sometimes admissible) substitute for genuinely reasoning
about imperfect information [5,10]. In this scenario, a model is ‘sampled’ from

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 219–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

220 T. Cerexhe, O. Sabuncu, and M. Thielscher

the full set, either by progressing (and pruning) all possible worlds up to a
fixed size [2], or by re-generating models from the rules. There is evidence that
this latter case can be a sufficient approximation in a competition setting [10].
However this generation is expensive.

With this motivation, we seek to expand the current bounds on information
set sampling in GGP through a conventional technology—Answer Set Program-
ming (ASP). Specifically, we will benchmark the set sampling problem on Clingo
and then compare against the newer oClingo to assess its claims of avoiding re-
dundant search via learnt clauses. We test this problem on three games that
have been unplayable at international GGP competitions.1

The rest of the paper is organised as follows: first, we formally introduce the
Game Description Language, the gringo syntax for a logic program, and the
oClingo extension. In section 4 we explain how to translate GDL to a logic
program. Next we describe our experimental setup and present our findings. We
conclude with a short discussion.

2 Game Description Language

The science of General Game Playing requires a formal language that allows an
arbitrary game to be specified by a complete set of rules. The declarative Game
Description Language (GDL) serves this purpose [4]. It uses a logic programming-
like syntax and is characterised by the special keywords listed in Table 1.

Table 1. GDL-II keywords

role(?r) ?r is a player
init(?f) ?f holds in the initial position
true(?f) ?f holds in the current position
legal(?r,?m) ?r can do ?m in the current position
does(?r,?m) player ?r does move ?m

next(?f) ?f holds in the next position
terminal the current position is terminal
goal(?r,?v) ?r gets payoff ?v

sees(?r,?p) ?r perceives ?p in the next position
random the random player (aka. Nature)

Originally designed for games with complete information [4], GDL has recently
been extended to GDL-II (for: GDL with incomplete/imperfect information) by
the last two keywords (sees, random) to describe arbitrary (finite) games with
randomised moves and imperfect information [13].

Example 1. The GDL-II rules in Fig. 1 formalise a simple game in which a
player, whose role name is “guesser”, must guess a randomly chosen number

1 1st Australian Open 2012, see https://wiki.cse.unsw.edu.au/ai2012/GGP

Evaluating Answer Set Clause Learning for General Game Playing 221

from 1 to 16. The player can ask a series of ‘is the number < n?’ questions before
announcing that it is ready to guess.

The intuition behind the rules is as follows.2 Line 1 introduces the players’
names. Lines 3–6 define some basic arithmetic relations as background knowl-
edge. Line 8 defines the two features that comprise the initial game state. The
possible moves are specified by the rules for legal: in the first round, the
random player chooses a number (lines 10–11); then the guesser can repeat-
edly ask “lessthan” questions (line 14) until it decides that it is ready to guess
(line 15), followed by making a guess (lines 16). The guesser’s only percepts are
true answers to its yes-no question (lines 18–21). The remaining rules specify
the state update (rules for next); the conditions for the game to end (rule for
terminal); and the payoff, which in case of the guesser depends on whether it
got the number right and how long it took (rules for goal).

GDL-II comes with some syntactic restrictions—for details we must refer to
[6,13] due to lack of space—that ensure that every valid game description has
a unique interpretation as a state transition system as follows. The players
in a game are determined by the derivable instances of role(?r). The initial
state is the set of derivable instances of init(?f). For any state S, the legal
moves of a player ?r are determined by the instances of legal(?r,?m) that
follow from the game rules augmented by an encoding of the facts in S using
the keyword true. Since game play is synchronous in the Game Description
Language,3 states are updated by joint moves (containing one move by each
player). The next position after joint move m is taken in state S is determined
by the instances of next(?f) that follow from the game rules augmented by
an encoding of m and S using the keywords does and true, respectively. The
percepts (aka. information) a player ?r gets as a result of joint move m being
taken in state S is likewise determined by the derivable instances of sees(?r,?p)
after encoding m and S using true and does. Finally, the rules for terminal
and goal determine whether a given state is terminal and what the players’
goal values are in this case.

On this basis, game play in GDL-II follows this protocol:

1. Starting with the initial state, which is completely known to all players, in
each state each player selects one of their legal moves. By definition random

must choose a legal move with uniform probability.
2. The next state is obtained by (synchronously) applying the joint move to

the current state. Each role receives their individual percepts resulting from
this update.

3. This continues until a terminal state is reached, and then the goal relation
determines the result for all players.

2 A word on the syntax: We use infix notation for GDL-II rules as we find this more
readable than the usual prefix notation.

3 Synchronous means that all players move simultaneously. Turn-taking games are
modelled by allowing players only one legal move without effect (such as noop) if it
is not their turn.

222 T. Cerexhe, O. Sabuncu, and M. Thielscher

1 role(guesser). role(random).
2

3 succ(0,1). succ(1,2). ... succ (15,16).
4 number (?n) <= succ(?m,?n).
5 less(?m,?n) <= succ(?m,?n).
6 less(?m,?n) <= succ(?m,?k), less(?k,?n).
7

8 init(step (0)). init(starttime).
9

10 legal(random ,choosenumber(?n)) <= number (?n), true(starttime).
11 legal(random ,noop) <= not true(starttime).
12

13 legal(guesser ,noop) <= true(starttime).
14 legal(guesser ,lessthan (?n)) <= number (?n), true(questiontime).
15 legal(guesser ,readytoguess) <= true(questiontime).
16 legal(guesser ,guess(?n)) <= number (?n), true(guesstime).
17

18 sees(guesser ,yes) <= does(guesser ,lessthan (?n)),
19 true(secretnumber(?m)), less(?m,?n).
20 sees(guesser , no) <= does(guesser ,lessthan (?n)),
21 true(secretnumber(?m)), not less(?m,?n).
22

23 next(secretnumber(?n)) <= does(random ,choosenumber(?n)).
24 next(secretnumber(?n)) <= true(secretnumber(?n)).
25

26 next(questiontime) <= true(starttime).
27 next(questiontime) <= true(questiontime), not does(guesser ,readytoguess).
28 next(guesstime) <= does(guesser ,readytoguess).
29 next(right) <= does(guesser ,guess(?n)), true(secretnumber(?n)).
30 next(end) <= does(guesser ,guess(?n)).
31 next(step(?n)) <= true(step(?m)), succ(?m,?n).
32

33 terminal <= true(end).
34 terminal <= true(step(16)).
35

36 goal(guesser ,100) <= true(right), true(step(?n)), less(?n,8).
37 goal(guesser , 90) <= true(right), true(step(?n)), less(?n,9).
38 ...
39 goal(guesser , 10) <= true(right), true(step(?n)), less(?n,16).
40 goal(guesser , 0) <= not true(right).
41 goal(random , 0).

Fig. 1. The GDL-II description of the Number Guessing game at the AI2012 GGP
Competition

3 Logic Programming, gringo, and reactive ASP

First we recapitulate standard logic programming and answer set programming
terminology. Rules are of the form hr ← a1, . . . , am, not am+1, . . . ,not an. where
each ai is an atom of the form p(t1, . . . , tk) and each ti is a term (constant,
variable, or function). The head hr of rule r is either an atom, a cardinality
constraint of the form l{h1, . . . , hk}u in which l, u are integers and h1, . . . , hk are
atoms, or the special symbol ⊥. If hr is a cardinality constraint, we call r a choice
rule, and an integrity constraint if hr = ⊥. We denote the atoms occurring in hr

by head(r), ie. head(r) = {hr} if hr is an atom, head(r) = {h1, . . . , hk} if hr =
l{h1, . . . , hk}u, and head(r) = ∅ if hr = ⊥. The atoms occurring positively and
negatively in the body are denoted by body(r)+ = {a1, . . . , am} and body(r)− =
{am+1, . . . , an}. A logic program R is a set of rules; atom(R) denotes the set

Evaluating Answer Set Clause Learning for General Game Playing 223

of atoms occurring in R. head(R) = ∪r∈Rhead(r) is the collection of all head
atoms. The ground program grd(R) is the set of all ground rules constructable
from rules r ∈ R by substituting every variable in r with some element of the
Herbrand Universe of R. For further details we recommend [1,11,3].

We now examine Incremental Logic Programs, an extension of logic program-
ming as described above. Incremental programs are constructed from modules,
which for the purposes of this paper are effectively subprograms. An
Incremental Logic Program (B,P [t], Q[t]) is composed of a base module B of
time-independent (‘rigid’) rules, and two parameterised modules: a ‘cumulative’
module P [t] (instantiated at each successive timestep t and which is accumu-
lated) and a ‘volatile’ module Q[t] (which is forgotten after each timestep; only
one instantiation exists at a time). This is further extended by oClingo to pro-
duce an Online Incremental Logic Program. These programs are accompanied by
an ‘online progression’—a sequence of input atoms for each timestep t. oClingo
programs rely on #external directives as domain predicates for grounding rules
that rely on these input atoms.

As a final note, a great strength of the Potassco suite of ASP solvers is that
clause learning is ‘baked in’.

4 Translation

An ASP system is a natural platform for the Game Description Language, due to
the finiteness guarantee, uninterpreted functions4, and the presence of negation-
as-failure. Indeed GDL is an extension of Datalog¬ with function symbols, so
a syntactic translation is fairly direct [12]. We will now briefly summarise this
process, which converts GDL rules to the gringo input language. After this, we
will present a modification that produces rules suitable for oClingo as well.

The key aspect of this translation is the ‘temporal extension’ of the GDL
features—GDL has implicit timepoints (initial, current, and next) which must
be made explicit for an ASP system. That is, init rules initialise fluents for time
zero. Rules for legal or the value of derived fluents are functions of the current
time (relative to a state). Fluent update needs to reference the fluent’s value
at the ‘next’ timepoint (relative to the current time). This extension is largely
achieved by wrapping fluents in binary holds(F,T) relations that tie the fluent
F to a given timepoint T . Fluent update is handled by rules for holds with a
timepoint one step ahead of the timepoints in the body (T + 1 vs T). Derived
fluents have the same timepoint in the head and the body.

As noted in the original translation paper [12], this method temporalises all
user (derived) rules, even if they are time-independent ‘rigids’. This introduces
a substantial increase in redundant grounding. As such, we will first formally
define the notion of a rigid rule in terms of the dependency graph of the GDL

4 That is, functions have no fixed interpretation and must be specified by other axioms.
ASP in contrast typically interprets + as addition (and similarly for other simple
arithmetic operators). This means no additional logic needs to be ported along with
the GDL when translating to ASP.

224 T. Cerexhe, O. Sabuncu, and M. Thielscher

rules. Then we present our augmented translation that ensures rigids are left
unadorned.

Definition 1. Construct the dependency graph D = (V,E) of a set of GDL
rules G as follows:

– The vertex set V contains all predicate symbols found in G.
– If predicate symbol a appears in the head of some rule r ∈ G and predicate

symbol b appears in the body of r, then D has an edge from b to a, ie.
(b, a) ∈ E.

With the dependency graph, we can now formally define the common notion
of rigid rules:

Definition 2. A rule h(a1,. . .,am) <= b1,. . .,bn is rigid wrt a set of GDL
rules G iff there is no path from h to true or does in the dependency graph for
G.

We now present the main translation:5

Definition 3. Let G be a set of GDL rules, then the temporal extension of G,
written ext(G), is the set of logic program clauses obtained from G as follows.
Each occurrence of:

– init(φ) is replaced by holds(φ,0).
– true(φ) is replaced by holds(φ, T), and each next(φ) by holds(φ, T +1).
– sees(R, φ) is replaced by sees(R, φ, T + 1).
– distinct(t1, t2) is replaced by not t1 = t2.
– p(t1, . . . , tn) where p is keyword does, legal, terminal, or goal is replaced

by p(t1, . . . , tn, T).
– p(t1, . . . , tn) where p is rigid (by Definition 2) is left unadorned.6

All other atoms p(t1, . . . , tn) are replaced by derived(p(t1, . . . , tn), T) (or by
derived(p(t1, . . . , tn), 0) if they are in the body of an init rule).

In order to produce a valid program, these rules must also be augmented with
information about the moves and percepts seen to date, constraints on move
selection, and a domain predicate for timepoint variables:

Definition 4. Given a set of GDL rules G, a role name N , a round number
R ≥ 1, the move history H of player N (a set of R does rules, one for each
timepoint) and a set of percepts P (of form observed(S, T) where S is a ground
percept and T ∈ [0, R) is the timepoint), construct a logic program L containing:

– the temporal extension of G (by Definition 3).
– a time domain predicate time(0..R-1). (or time(0). if R = 1).
– our move history H.

5 Due to space constraints we cannot present a full translation and instead refer to [12].
6 Note that this includes keyword role due to restrictions in the GDL specification [6].

Evaluating Answer Set Clause Learning for General Game Playing 225

– an action ‘generator’ (choice rule)
{ does(R,A,T) } :- role(R), time(T), legal(R,A,T).

– a unique action constraint
:- not 1 { does(R,A,T) : input(R,A) } 1, role(R), time(T).

– constraints to guarantee correct percepts are generated
:- sees(N,P,T+1), not observed(P,T+1), time(T). and
:- not sees(N,P,T+1), observed(P,T+1), time(T).

The logic program produced by Definition 4 is now sufficient to produce a
sample of the information set and is the basis for our experiments. Note that
we also intend to apply this program to GGP competitions where we only want
Clingo to report back the latest game state, ie. holds statements (since the
state, not the history, is the foundation for move selection). This can be achieved
with the directives #hide. #show holds/2. appended to the rules. Note that
our introduction of a derived keyword (not present in the original translation)
allows us to easily retrieve the complete state if this is preferred.

This translation scheme was conceived for standard ASP systems, but we also
wish to employ the newer, reactive oClingo—we want to measure the benefit of
an incremental logic program to this domain. This introduces two new subtleties:
first, the latest timepoint is t, so ‘next’ rules must occupy this time (ie t instead
of T +1), and ‘now’ rules must be t-1 (instead of T)—timepoints will need to be
shuffled. A further complexity is that oClingo—for reactive, incremental logic
programs—has a program that must adhere to module theory, and in particular
a firm modularity condition7.

We first present the alternate temporal extension for an oClingo-compatible
domain, and then the game-independent rules that tell oClingo what problem
to solve.

Definition 5. Let G be a set of GDL rules, then the reactive temporal extension
of G, written oExt(G), is the set of logic program clauses obtained from G as
follows. For each rule, adorn the head:

head replaced by time variable
in body

init(φ) holds(φ, 0) 0
next(φ) holds(φ, t) t− 1
legal(R,A) legal(R,A, t− 1) t− 1
sees(R,P) sees(R,P, t− 1) t− 1
terminal terminal(t) t
goal(R, V) goal(R, V, t) t
p(a1, . . . , an); p is not rigid derived(p(a1, . . . , an), t− 1) t− 1

otherwise the head is unmodified (it and its body are rigid)

Now update the atoms in the bodies with the appropriate time variable (as
determined by the head of the rule):

7 Due to space constraints we must defer this technical detail to [3].

226 T. Cerexhe, O. Sabuncu, and M. Thielscher

GDL time variable X (determined by head)

true(φ) holds(φ,X)

does(R,A) does(R,A,X)

distinct(t1, t2) not t1 = t2
p(a1, . . . , an); p is not rigid derived(p(a1, . . . , an), X)

otherwise the atom is unmodified (it is rigid)

Definition 6. Given a set of GDL rules G, a role name N , the move history H
of player N (a set of R does rules, one for each timepoint) and a set of percepts
P (of form observed(S, T) where S is a ground percept and T is the timepoint),
construct an reactive, incremental logic program L containing:

– the reactive temporal extension of G (by Definition 5). Note that the rigid
rules go in the base module, all other rules go in the cumulative section.

– domain predicates input(R,A) and percepts(P) for actions A and percepts
P .

– #external declarations: #external exec/2. #external observed/2.

– an action ‘generator’ (choice rule)
{ does(R,A,t-1) } :- role(R), legal(R,A,t-1).

– a combined uniqueness+liveness constraint
:- not 1 { does(R,A,t-1) : input(R,A) } 1, role(R).

– correct action constraint
:- not does(N,A,t-1), exec(A,t-1), input(N,A).

– constraints to guarantee correct percepts are generated
:- sees(N,P,t-1), not observed(P,t-1). and
:- not sees(N,P,t-1), observed(P,t-1), percepts(P).

And construct an online progression O, as a contiguous sequence of steps of the
form:

#step X.

exec(A,X-1).

observed(P,X-1).

#endstep.

For each round X ≥ 1. Note that each step will contain exactly one exec state-
ment (player N executed action A at time X − 1) and zero or more observed

statements for the percepts that resulted from that action (as per Definition 4).

These straight-forward procedures have two additional problems that we have
not yet discussed: domain predicates are not always present, and GDL permits
a large class of symbols for its identifiers8. Obviously the naming issue can be
addressed with a simple symbol table. The problem of domain predicates is start-
ing to be mitigated by a growing convention in the GGP community to supply

8 For example hyphens, which ASP systems tend to interpret as a subtraction operator
(or classical negation, based on context).

Evaluating Answer Set Clause Learning for General Game Playing 227

these domains with ‘input’ and ‘base’ keywords (for actions and fluents, respec-
tively). However no such keyword has been proposed for percepts. Finding the
minimal model of the negation-free program is a reasonably efficient method for
grounding these domains on the back-catalog of games without these predicates.
Alternatively, more efficient GDL-centric methods have been proposed [12,9],
though these are beyond the scope of this paper.

Regarding timepoints. You may note that the choice of actions (does) occurs at
time T in Clingo and time t − 1 in oClingo. Similarly percepts (sees) occur at
time T + 1 compared with t − 1 between the two versions. The reason for this
is historical: the constraints on oClingo are firm9, but the translation for Clingo
was done first (and follows the original translation from [12]). Other variations
are possible, however these translations are the ones we tested, and so these are
the ones we present.

5 Method

In order to reason about the rules of a game we must first convert them fromGDL
to an ASP encoding, as presented in Section 4. Next we generate a random play
through of the game for each role. This yields a collection of legal (reachable)
states, the joint moves that led to those points, and the percepts that each
role would see at each step. By replaying one set of moves and percepts for a
select player, Clingo (or oClingo) can recreate the state (or find equivalent states
subject to its imperfect information). That is, it can sample the information set.

In our experiments we generate 100 random plays for each game for each
role10. We then ask (o)Clingo to solve for a sample of the game’s information
set at each round. All times are averaged over three duplicate runs. Experiments
were performed on the UNSW cluster to satisfy the time and RAM constraints.
Note that individual runs used a single 2.20 GHz Opteron core, but were allo-
cated a complete node (48 processor cores) to eliminate interference from other
processes.

We explicitly point out here that our results only measure the time to achieve
the first model, since we did not have time to repeat our experiments for larger
sample sizes. However this is still a useful metric: a single model is enough to
start evaluating moves in a game player. Further, the process can be dynamically
improved as more models are reported (as in [10]). From this perspective, the
time-to-first model is the most useful measure of the value of our (ASP) set-
sampler, since this is the ‘dead time’ before the GGP system can start making
decisions.

We also ran oClingo with the --ilearnt=forget flag, which disables clause
learning between timesteps (ie. clauses learnt in timestep n are thrown away be-
fore timestep n+1 begins). Comparing oClingo’s performance with and without

9 Facts added ‘to the future’ are prone to either violating oClingo’s modularity con-
dition, or being ignored by the target module parameterisation.

10 This number was reduced for the larger games due to time constraints.

228 T. Cerexhe, O. Sabuncu, and M. Thielscher

this feature should demonstrate the value of Incremental Logic Programs for
this type of search problem, as well as validate claims regarding the effectiveness
of oClingo’s clause learning. Finally, by measuring precisely the effect of clause
learning between timesteps we can account for how significant its impact is,
while controlling for other (smaller) differences between the Clingo and oClingo
systems.

Due to the youth of GDL-II and the complexity of games it describes, there
is a distinct lack of rules that tax an ASP system under our use-case. Early
tests revealed that most games are slow to ground, but their game trees are
then fairly simple. For most rounds of most games, both Clingo and oClingo
consistently solved the search problem presented in fractions of a second. As
such our experiments focus on the role of grounding, and we have chosen three
of the hardest domains for the task. These games, taken from past international
competitions, are:

Blind Breakthrough. A two-player, zero-sum, turn-taking game played on a chess
board. Each player has two rows of pieces against their side, but all pieces are
pawns. The winner is the first player to reach the other side of the board (‘break
through’ the opponent’s ranks). The ‘blind’ aspect indicates that a player can-
not see the opponent’s pieces and is instead informed of the success/failure of
attempted moves and the existence of a capturing move. We vary the board size
between 6x6, 7x7, and 8x8 squares.

Battleships in Fog. Two navies (on separate, 4x4 grid oceans) can fire at their
opponent and are informed of hit/miss. In this variant, players may also sail their
single, two-by-one cell ship to an adjacent square, or perform a ‘noisy sensing’
action that returns three possible opponent locations (one correct, the other two
not).

Small Dominion. Players each have a small hand of cards (either money or land)
that is filled from a larger, face-down deck. Several low-value cards (eg. copper)
can be used to buy a single higher-value card (eg. silver). Doing so allows a
player to slowly increase the value of their hand and get more ‘victory points’
as a result. The game finishes when certain sets of cards are exhausted. These
rules yield an interesting alternate strategy where a player buys low-value cards
as quickly as possible in order to trigger an early game termination (before the
opponent has won by high-value cards).

6 Results

The first and most important observation is that these domains are hard be-
cause their search spaces are huge. But these are human-playable games, which
suggests some structure must exist on their game trees. This is reflected in our re-
sults: grounding remains the most significant factor in the time to find a model,
while actually ‘solving’ is lightning quick. An exception to this case is Blind

Evaluating Answer Set Clause Learning for General Game Playing 229

a. Grounding b. Preparing

c. Solving d. Total time

Fig. 2. Timing results for Clingo vs oClingo. Results are for Blind Breakthrough and
averaged across all board sizes. Error bars indicate a 95% confidence interval.

Breakthrough where solving time can be higher due to the myriad interleavings
of moves explaining the same observation.

The second observation is that grounding can be prohibitive in this space and
it is necessarily exacerbated by oClingo because it offers (potential) speedups
later in a game tree by doing extra work11 at each step. This was catastrophic for
the game of Small Dominion, where the dealer (random) chooses three—mostly
unused—random values in every round. Obviously this is a poor axiomatisation
from an ASP perspective (all these unused values must be ground before they can
be ignored), but this is the reality of the input GDL, where such encodings are
fine for Prolog-based systems. It should be noted that this ‘extra work’ is clearly

11 Eg. the grounding process needs to account for all the possible external inputs.
In contrast, Clingo needs to ground only the inputs it actually receives—a liberty
afforded to it since the ‘externals’ must be provided up-front with the program itself.

230 T. Cerexhe, O. Sabuncu, and M. Thielscher

a. Total time in Battleships in Fog b. Total time in Small Dominion

Fig. 3. Timing in Battleships and Small Dominion. Note that Clingo is dramatically
more effective in Small Dominion.

at fault, since straight Clingo was still competitive in this domain. This indicates
that there is a cross-over point: small domains are easy for both systems, oClingo
has a strong advantage for medium-size domains, but then falls behind as the
additional grounding increases and its rewards diminish. That is, after this point
oClingo is swamped by its own optimisation.

7 Conclusion

It is clear that oClingo’s ability to avoid redundant search and grounding offers
an impressive speed-up of over its predecessor Clingo. However this gain is tem-
pered by the size of the target domain; medium-size domains benefit most since
they are complex enough to utilise the learnt clauses, but not so large as to grind
to a halt whilest grounding. For the field of General Game Playing these fea-
tures literally increase the horizon of ‘solvable’ domains. Further, this is achieved
within the time constraints of a typical GGP competition—this system is ready
for competition play. oClingo is not a silver bullet though, and the largest games
are still well beyond the reach of game-general set sampling techniques.

Using an ASP system for a fixed-size sampling of a game’s information set is
not the only approach to the problem of imperfect-information game play; pos-
sible worlds systems store and incrementally update the complete information
set. As an efficiency-oriented optimisation, ‘particle filter’ systems [2] maintain
and progressively filter a large subset of the possible worlds—this helps miti-
gate the capacity demands of storing huge search spaces. Filtering has also been
augmented with backtracking in order to avoid pruning all the possible worlds
away [10]. This approach excels when successive information sets are local on the
game tree, but complex games bring out its exponential complexity. Yet complex
games are the interesting ones: games with high branching factors, long periods
without percepts, or multiple but very different12 explanations for the same ob-
servations. All of these properties are found in our harder test domains—Blind

12 ie. distant on the game tree

Evaluating Answer Set Clause Learning for General Game Playing 231

Breakthrough, Battleships in Fog, and Small Dominion—and demonstrate that
finding the information set under these constraints is fundamentally a search
problem, where an efficient, domain-independent system like an ASP solver is
well-suited. Of course other, more efficient methods are also possible when ad-
ditional assumptions can be made about the domain [8]. A full side-by-side
comparison of these methods remains as critical future work.

One notable shortcoming of our approach is the absence of model weights—
we find unique histories that describe the current state, but some states are
more likely than others. Essentially this means opponent modelling, which is
beyond the scope of this paper. Applying soft constraints or gringo’s #maximize
statements to this problem would also be valuable future work.

Acknowledgements. This research was supported under the Go8-DAAD
Australia-Germany Joint Research Cooperation scheme and DFG grant SCHA
550/9-1. The third author is the recipient of an ARC Future Fellowship
(FT0991348).

References

1. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, New York (2003)

2. Edelkamp, S., Federholzner, T., Kissmann, P.: Searching with partial belief states
in general games with incomplete information. In: Glimm, B., Krüger, A. (eds.) KI
2012. LNCS, vol. 7526, pp. 25–36. Springer, Heidelberg (2012)

3. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

4. Genesereth, M.R., Love, N., Pell, B.: General game playing: Overview of the AAAI
competition. AI Magazine 26(2), 62–72 (2005),
http://games.stanford.edu/competition/misc/aaai.pdf

5. Long, J.R., Sturtevant, N.R., Buro, M., Furtak, T.: Understanding the success of
perfect information monte carlo sampling in game tree search. In: Fox, M., Poole,
D. (eds.) AAAI. AAAI Press (2010)

6. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: Game description language specification. Tech. Rep. LG–2006–01, Stan-
ford Logic Group (2006)

7. Rasmusen, E.: Games and Information: an Introduction to Game Theory, 4th edn.
Blackwell Publishing (2007)

8. Richards, M., Amir, E.: Information set sampling for general imperfect information
positional games. In: Proc. IJCAI 2009 Workshop on GGP, GIGA 2009, pp. 59–66
(2009)

9. Saffidine, A., Cazenave, T.: A forward chaining based game description language
compiler. In: Proc. IJCAI 2011 Workshop on GGP, GIGA 2011 (July 2011)

10. Schofield, M., Cerexhe, T., Thielscher, M.: Hyperplay: A solution to general game
playing with imperfect information. In: Proc. AAAI, Toronto (July 2012)

http://games.stanford.edu/competition/misc/aaai.pdf

232 T. Cerexhe, O. Sabuncu, and M. Thielscher

11. Simons, P., Niemelá, I., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

12. Thielscher, M.: Answer set programming for single-player games in general game
playing. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 327–
341. Springer, Heidelberg (2009)

13. Thielscher, M.: A general game description language for incomplete information
games. In: Proc. AAAI, Atlanta, pp. 994–999 (July 2010)

VCWC: A Versioning Competition Workflow Compiler�

Günther Charwat1, Giovambattista Ianni2, Thomas Krennwallner1,
Martin Kronegger1, Andreas Pfandler1, Christoph Redl1, Martin Schwengerer1,

Lara Katharina Spendier1, Johannes Peter Wallner1, and Guohui Xiao1

1 Institute of Information Systems, Vienna University of Technology, 1040 Vienna, Austria
2 Dipartimento di Matematica e Informatica, Università della Calabria, 87036 Rende (CS), Italy

1 Introduction

System competitions evaluate solvers and compare state-of-the-art implementations on
benchmark sets in a dedicated and controlled computing environment, usually compris-
ing of multiple machines. Recent initiatives such as [6] aim at establishing best prac-
tices in computer science evaluations, especially identifying measures to be taken for
ensuring repeatability, excluding common pitfalls, and introducing appropriate tools.
For instance, Asparagus [1] focusses on maintaining benchmarks and instances thereof.
Other known tools such as Runlim (http://fmv.jku.at/runlim/) and Runsolver [12] help to
limit resources and measure CPU time and memory usage of solver runs. Other sys-
tems are tailored at specific needs of specific communities: the not publicly accessible
ASP Competition evaluation platform for the 3rd ASP Competition 2011 [4] imple-
ments a framework for running a ASP competition. Another more general platform is
StarExec [13], which aims at providing a generic framework for competition maintain-
ers. The last two systems are similar in spirit, but each have restrictions that reduce the
possibility of general usage: the StarExec platform does not provide support for generic
solver input and has no scripting support, while the ASP Competition evaluation plat-
form has no support for fault-tolerant execution of instance runs. Moreover, benchmark
statistics and ranking can only be computed after all solver runs for all benchmark in-
stances have been completed.

A robust job execution platform is a basic requirement for a competition. During
benchmark evaluation, several different kinds of failures may happen, mainly (a) pro-
gramming errors in the participant software; (b) software bugs in the solution verification
programs; or (c) hardware failures during a run, which may be local to a machine (e.g.,
harddisk or memory failure), or global (e.g., when the server room air condition fails).

Moreover, a competition platform must be flexible enough to allow for “late” or
updated benchmark and solver submissions. It is not uncommon that anomalies arise
during the execution, and changing the course of an evaluation after the platform has
started is cumbersome and requires manual effort for the competition maintainers.

A fault-tolerant design helps the competition maintainers to perform all steps and
minimizes the action required to come back to a safe state. To address these issues, we
introduce the Versioning Competition Workflow Compiler (VCWC) system. VCWC
uses a two-step approach: first, a workflow for a competition track is generated; a work-
flow is a dependency description of jobs that need to be executed in order to come to a

� This research is supported by the Austrian Science Fund (FWF) project P20841 and P24090.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 233–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://fmv.jku.at/runlim/

234 G. Charwat et al.

ranking of solvers that participate in a competition track. Then, a versatile job schedul-
ing system takes this workflow and executes it. Specifically, VCWC is based on (i) GNU
Make and GNU M4 for building the track execution workflow, (ii) the HTCondor [15]
high throughput computing platform, which provides flexible means to support the re-
quirements of running a competition, like automated job scheduling on a collection of
benchmark servers, and (iii) the Directed Acyclic Graph Manager (DAGMan) [5], a
meta-scheduler for HTCondor that maintains the dependencies between jobs and pro-
vides facilities for a reliable, fault-tolerant, and self-healing execution of benchmark-
ing workflows. VCWC is open source and implemented using standard UNIX tools,
thus it runs on every UNIX-like system that has support for those utilities. VCWC is
maintained at https://github.com/tkren/vcwc, and an extended version of this paper is
available at http://www.kr.tuwien.ac.at/staff/tkren/pub/2013/lpnmr2013-vcwc.pdf.

2 Modeling a Competition

In this section, we describe the basic building blocks of a solver competition. We assume
familiarity with the notion of (computational) problem, instance, and solution for a
problem; an overview is given, e.g., in [10].

A benchmark B is a set of instances I from a well-defined computational problem,
where all instances are represented in a standardized format (e.g., as logic programs or
as CNF clauses). A solver S is an implementation for an algorithm that computes the
solution for a given instance I from a benchmark B, where solutions are represented
in a standardized format. Given as set of benchmarks B and a set of solvers S, we de-
fine a track T as a subset of B × S that is both left-total and right-total, i.e., for each
B ∈ B there exists an S ∈ S such that (B,S) ∈ T , and for every S ∈ S there exists
a B ∈ B such that (B,S) ∈ T . Intuitively, (B,S) ∈ T means that solver S partic-
ipates in track T in solving benchmark B. Each track has an associated computation
environment env(T) with a fixed number of CPUs, memory size, and available disk
space. The set of all participating solvers to a track T is S(T) = {S | (S,B) ∈ T }
and the set of all benchmarks is B(T) = {B | (S,B) ∈ T }. Then, a competition is a
collection of tracks. A run R of solver S on instance I in track T is the evaluation of S
with instance I within the limits of the computation environment env(T). A run has an
associated solution sol(R) and performance measurements for evaluation metrics such
as runtime and memory usage. In a competition track, every instance is evaluated k > 1
times to eliminate outliers and to provide well-founded statistical results.

For example, in the ASP Competition series [3], a system track T forms a complete
bipartite graph (B ∪ S, T), i.e., every solver participates in solving all benchmarks. On
the other hand, the model & solve track does not have this restriction, a participant may
choose the benchmarks to solve. Furthermore, tracks are usually classified as sequential
or parallel, which means that their computation environment has exactly one CPU in
case of sequential tracks, or more than one CPU in case of parallel tracks.

Several tasks need to be performed in order to evaluate a solver’s performance rel-
ative to other solvers that participate in a certain track. The outcome of a competi-
tion is a ranking of the participating solvers, which should summarize the performance
of a solver S on benchmark B relative to the other solvers that participate in a track.

https://github.com/tkren/vcwc
http://www.kr.tuwien.ac.at/staff/tkren/pub/2013/lpnmr2013-vcwc.pdf

VCWC: A Versioning Competition Workflow Compiler 235

TR

BR1

ST 1
1

R1
1,1[1] R1

1,|B1|[k]

STn
1

Rn
1,1[1] Rn

1,|B1|[k]

BRm

ST 1
m

R1
m,1[1] R1

m,|Bm|[k]

STn
m

Rn
m,1[1] Rn

m,|Bm|[k]

r

. . .

.

.

Fig. 1. Competition workflow for a track with m benchmarks and n solvers

A solution verification ver (R) of run R is a mapping ver(R) ∈ {0, 1, 2} such that
ver(R) = 0 whenever sol(R) is not a solution for I , ver (R) = 1 for sol(R) being
a correct solution for I , and ver(R) = 2 otherwise. Note that ver(R) might imple-
ment an incomplete verification algorithm, as solution verification could be a computa-
tionally hard task. The solver summary statistics sumstat(S,B) computes for all runs
R1, R2, . . . of solver S on instances I from benchmark B the performance measure-
ments of those runs as summary statistics such as means, median, etc., for all instances
I ∈ B. Based on sumstat(S,B), the benchmark ranking bmrank(B) of a benchmark
B ranks each solver S ∈ S based on a predefined benchmark scoring function. Then,
the track ranking trackrank(T) generates a combined performance evaluation of a track
T based on scoring function for bmrank (B) for all benchmarks B ∈ B.

Modeling the Dependencies in a Competition. As described above, several steps
are necessary to generate the outcome trackrank(T) of a competition track T . When
combining all the tasks in a dependency graph, where nodes represent tasks and an
edges (u, v) represent a dependency between u and v such that u must be executed be-
fore v, we get a task model of the competition track, which, when executed in sequence,
computes all prerequisite information for each task properly and generates the desired
outcome. Such an acyclic dependency graph constitutes a track execution workflow
whose tasks can be possibly executed in parallel using proper job scheduling software.

Based on the competition tasks introduced before, we explicitly outline in Fig. 1 the
implicit dependencies of the tasks and show a competition workflow that can be used
to perform all necessary computational tasks in a competition. Let n = |S|, m = |B|,
and k be the number of runs per instance. Nodes Ru

v,w[i] stand for the tasks associated
with the i-th run, 1 ≤ i ≤ k, of solver Su on instance Iv of benchmark Bw. These
tasks are comprehensive of computing the solution and perform the respective veri-
fication. The nodes ST u

w represent the solver summary statistics task of solver Su in
benchmark Bw, i.e., ST u

w takes all runs executed and verified on Su that are associated
with instances from Bw and creates summary statistics. Then, nodes BRw represent
the benchmark ranking jobs that are connected to all ST u

w for 1 ≤ u ≤ n. The topmost

236 G. Charwat et al.

TR

BR1

ST 1
1

R1
1,1[1] R1

1,|B1|[k]

STn
1

Rn
1,1[1] Rn

1,|B1|[k]

BRm

ST 1
m

R1
m,1[1] R1

m,|Bm|[k]

STn
m

Rn
m,1[1] Rn

m,|Bm|[k]

r

. . .

.

.

Track Workflow

Run Profile

Run Profile

...

VCWC

S B

Track
Description

DAGMan

Meta-Scheduler

HTCondor

Job scheduling

· · ·

Instance
Run

Summary
Statistics

Benchmark
Ranking

Track
Ranking

Benchmark servers

Fig. 2. VCWC System Architecture (dashed lines: data flow, solid lines: call flow)

node TR is the track ranking task in a competition, while the lowest node r gives us the
computation root, a unique entry point in the workflow without associated task.

Workflow Versioning. A further benefit of modeling a competition track as a work-
flow is to have a graph-based representation of tasks that can be easily modified and
updated when basic constituents of a track change. To address the problem of late par-
ticipant submissions or fixing broken benchmark instances or benchmark verification
scripts after the competition start, we can introduce a workflow versioning mechanism
for incrementally changing the competition execution workflow. Without details, one
can add fresh participants, further benchmarks (or instances), or more runs. Additions
and removals do not have impact on previously stored executions of the workflow, and
statistics will be updated accordingly.

3 Implementation of the VCWC System

The system architecture of VCWC is shown in Fig. 2. The main components are (i) the
VCWC compiler, which generates a competition workflow description and profiles
for instance parameters; (ii) DAGMan (Directed Acyclic Graph Manager), a meta-
scheduler for managing dependencies between jobs built on top of (iii) HTCondor, a
job scheduler for building high-throughput computing environments.

VCWC expects two directories as input: a benchmarks directory with all possible
benchmarks B assigned to track T as subdirectories, and a dedicated participants
directory containing subdirectories for each possible benchmark of a track; participating
solvers S can then choose which benchmark they want to solve. VCWC further takes a
track description file as input that records various parameters of a track.

In practice, the VCWC tool consists of a wrapper shell script that invokes GNU Make
on a Makefile. First, this Makefile reads the track description, which references
the benchmarks and participants folders as input, and generates lists of bench-
mark instances and solvers. Based on this information, the Makefile instantiates rules
that tell GNU Make how to generate the DAGMan workflow.

For instance, a typical VCWC call generates as output

vcwc trackinfo-t03.mk
Welcome to vcwc 0.1

VCWC: A Versioning Competition Workflow Compiler 237

generating workflow for track t03 with following setup:
- benchmarks: b01 b02 b04 b05 b06 b07 b08 b09 b10 b11 b12 [...]
- participants: s40 s42 s44 s60 s62 s63
- benchmarks/participants: b18/s40 b18/s60 b18/s42 b18/s63 [...]
- runs: r000 r001 r002
- workflow version: 001
- timestamp: 2013-04-26 14:34:15+02:00
compiling 90 runs for S/t03/b01/s40/001
[...]
compiling 6 participants for B/t03/b01/001
[...]
linking 26 benchmarks for T/t03/001

This will generate a DAG workflow file and run profiles for each individual instance
run. The generated DAG workflow has always the same shape as Fig. 1. Each node in
this DAG encodes the job type, which is an instance run, a solver summary statistics, a
benchmark ranking, or the track ranking job. VCWC uses the GNU M4 macro process-
ing language to instantiate workflow templates and run profiles based on the names of
benchmarks, solvers, instances, and runs.

Generated workflows can be processed by DAGMan, which submits jobs to HTCon-
dor for execution in the network of benchmark servers. HTCondor is a high-troughput
computing framework for distributed computation of computationally intensive tasks.
Each task (job) that needs to be executed is first enqueued, and based on priority manage-
ment and job requirements (such as number of CPUs or memory) it is scheduled to run
on one of the target machines that are free for new jobs and fulfill all job requirements.
The HTCondor job queue is persistent and make administrator intervention unnecessary
in case of a reboot or system crash, as interrupted jobs are automatically rescheduled.
The correct topological order of job execution is ensured by DAGMan, which—based
on the generated workflow—dispatches, monitors, and keeps track of exit codes of jobs.
DAGMan requires human intervention only when no further job can be submitted ac-
cording to the current topological order, because of a previously failed dependency.

4 Discussion and Conclusions

VCWC has been developed as part of the ASP Competition 2013 evaluation software. A
lot of experience had been gained when running the former competition, and the design
of VCWC has profit from this. Special care has been given to have a versatile system
that allows to address the failure sources (a)–(c) described in Section 1. Even though
very unlikely, fatal hardware failures (c) do occur, in fact, during the execution of the
ASP Competition 2013, a broken valve actuator prevented to distribute chilled water
from the backup cooling system, thus excess heat continued to warm up the data center
to an ambient temperature of 45 degrees Celsius, and all server machines had to shut
down. After the cooling loop was working again, starting up the benchmark servers
automatically re-scheduled all unfinished jobs, and the track workflows continued to
run without administrative intervention.

VCWC can easily handle thousands of benchmark runs. With 23 participants among
two main tracks and 27 benchmark problems, VCWC has been put under intensive
testing: The system track workflow consists of over 18000 jobs, and the size of the
DAG file is about 3 MiB. It took about a minute to generate this file, mainly because a

238 G. Charwat et al.

lot of small intermediate files had to be written to the harddisk during the compilation.
While setting up the competition, the incremental versioning system allowed to make
fixes with no impact in the ongoing runs. We got further mileage out of using GNU
Make for the implementation of VCWC by using its parallel execution mechanism.
In this scenario, we could profit from an immediate 4-fold speedup for compiling the
workflows just by turning on parallel make execution on our benchmark servers with
two 12-core AMD Opteron Processor 6176 SE processors and 128GiB RAM.

In the ASP community, our VCWC platform follows chronologically and is inspired
by the Asparagus Web-based Benchmarking Environment [1] and the (not publicly ac-
cessible) 3rd ASP Competition evaluation platform [4]. An attempt at providing a gen-
eral purpose platform, serving multiple communities and generalizing specific needs
is the StarExec platform [13]. Similar efforts in the neighbor communities are the IPC
platform [7], the SMT-Exec platform [2] and the TPTP library and associated infras-
tructure [14]; the QBF-LIB library and evaluation platform [11], and last but not least
the SAT Competitions infrastructure [8]. Future versions of VCWC will provide support
for more fine-grained instance runs that allow to parametrize solver heuristics, advanced
early diagnostics, and database storage facilities.

References

1. Asparagus Web-based Benchmarking Environment, http://asparagus.cs.uni-potsdam.de/
2. Barrett, C., Deters, M., Moura, L., Oliveras, A., Stump, A.: 6 years of SMT-Comp. J. Auto.

Reasoning 50(3), 243–277 (2013)
3. Calimeri, F., Ianni, G., Krennwallner, T., Ricca, F.: The Answer Set Programming Competi-

tion. AI Mag. 33(4), 114–118 (2012)
4. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming competition. Theor.

Pract. Log. Prog., FirstView, 1–19 (2012), doi:10.1017/S1471068412000105
5. Couvares, P., Kosar, T., Roy, A., Weber, J., Wenger, K.: Workflow Management in Condor.

In: Workflows for e-Science, pp. 357–375. Springer (2007)
6. Collaboratory on Experimental Evaluation of Software and Systems in Computer Science

(2012), http://evaluate.inf.usi.ch/
7. The software of the seventh international planning competition (IPC) (2011),

http://www.plg.inf.uc3m.es/ipc2011-deterministic/FrontPage/Software
8. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The International SAT Solver Competi-

tions. AI Mag. 33(1), 89–92 (2012)
9. Klebanov, V., Beckert, B., Biere, A., Sutcliffe, G. (eds.): Proceedings 1st Int’l Workshop on

Comparative Empirical Evaluation of Reasoning Systems, vol. 873. CEUR-WS.org (2012)
10. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
11. Peschiera, C., Pulina, L., Tacchella, A.: Designing a solver competition: the QBFEVAL’10

case study. In: Workshop on Evaluation Methods for Solvers, and Quality Metrics for Solu-
tions (EMS+QMS) 2010. EPiC, vol. 6, pp. 19–32. EasyChair (2012)

12. Roussel, O.: Controlling a solver execution with the runsolver tool. J. Sat. 7, 139–144 (2011)
13. Stump, A., Sutcliffe, G., Tinelli, C.: Introducing StarExec: a cross-community infrastructure

for logic solving. In: Klebanov, et al. (eds.) [9], p. 2
14. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reason-

ing 43(4), 337–362 (2009)
15. Thain, D., Tannenbaum, T., Livny, M.: Distributed Computing in Practice: The Condor Ex-

perience. Concurrency Computat. Pract. Exper. 17(2-4), 323–356 (2005)

http://asparagus.cs.uni-potsdam.de/
http://evaluate.inf.usi.ch/
http://www.plg.inf.uc3m.es/ipc2011-deterministic/FrontPage/Software

A Sequential Model for Reasoning about Bargaining
in Logic Programs�

Wu Chen1, Dongmo Zhang2, and Maonian Wu3

1 College of Computer and Information Science, Southwest University, China
2 University of Western Sydney, Australia

3 Guizhou University, China

Abstract. This paper presents a sequential model of bargaining based on abduc-
tive reasoning in ASP. We assume that each agent is represented by a logic pro-
gram that encodes the background knowledge of the agent. Each agent has a set of
goals to achieve but these goals are normally unachievable without an agreement
from the other agent. We design an alternating-offers procedure that shows how
an agreement between two agents can be reached through a reasoning process
based on answer set programming and abduction. We prove that the procedure
converges to a Nash equilibrium if each player makes rational offer/counter-offer
at each round.

Keywords: bargaining theory, logic programming, sequential model.

1 Introduction

Bargaining has been a central research theme in economics for many decades and re-
cently becomes an attractive research topic in artificial intelligence mainly driven by the
advance of e-commence and multi-agent systems [1,2]. Different from other disciplines,
the research on bargaining in artificial intelligence focuses more on reasoning mecha-
nisms of bargaining process. A number of logical frameworks have been proposed in
the literature for modelling different aspects of bargaining reasoning [3,4,5].

There are two different models of bargaining - cooperative and non-cooperative-
that have been proposed in game theory. The cooperative model represents a bargain
problem as a one-shot game and specifies the properties of bargaining solutions in an
axiomatical system [1]. The noncooperative model of bargaining models a bargaining
process as a sequential procedure. To specify bargaining reasoning, both models have
been reformulated in logical frameworks. Zhang in [5] has proposed an axiomatic model
of bargaining based on propositional logic. Several other authors have also constructed a
range of different logic-based sequential models specifying bargaining reasoning, based
on either argumentation, propositional logic or logic programming [3,4,6]. However,
each of these models has limitation in either reasoning power or game-theoretic proper-
ties. The models that describe a bargaining situation in propositional formulas normally
treat a formula as a whole therefore either keep a whole formula or drop a formula

� This work is supported by the National Natural Science Foundation of China under grants
61003203 and 61262029.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 239–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

240 W. Chen, D. Zhang, and M. Wu

(logic is used for consistency maintenance only) [5,6]. The models based on argumen-
tation or logic programs allow break of a formula for bargaining reasoning but the pro-
cedures that have been proposed normally lack of game-theoretic properties, such as
convergency and pareto optimality [3,4]. This paper proposes a new sequential model
of bargaining that specifies procedures of bargaining reasoning in answer set program-
ming. We assume that each agent is represented by a logic program that encodes the
background knowledge the agent uses for its bargaining reasoning. Each agent has a
set of goals to achieve but these goals are normally unachievable without an agreement
from the other agents. We design an alternating-offers procedure that shows how an
agreement between two agents can be reached through a reasoning process based on
answer set programming and abduction. We prove that the procedure converges to a
Nash equilibrium if each player makes rational offer/counter-offer at each round.

The rest of the paper is organised as follows. Section 2 introduces our bargaining
model. Section 3 presents the framework of our sequential bargaining model. Section 4
provide a construction of the sequential bargaining procedure and proves its equilibrium
properties. The final section concludes the paper.

2 The Bargaining Model

In this section, we introduce a bargaining model in which each agent is equipped with a
logic program as its background knowledge for bargaining reasoning and a set of goals
to achieve. To make the framework simple we only consider the bargaining situations
in which there are only two players.

Assume that L is a propositional language with finite number of propositional sym-
bols (atoms). A literal can be either a positive atom, say a, or a negative atom, say ¬a. a
and ¬a are called complementary literals. A set of literals S is consistent if it contains
no complementary literals; otherwise it is inconsistent. A rule is a formula

L0 ← L1, ..., Lm, not Lm+1, ..., not Ln(0 ≤ m ≤ n), (1)

where each Li(0 ≤ i ≤ n) is a literal, not is negation as failure . We denote its
head, positive body and negative body by Head(r) = {L0}, Pos(r) = {L1, . . . , Lm}
and Neg(r) = {Lm+1, . . . , Ln} respectively. r is called a fact if Pos(r) = ∅ and
Neg(r) = ∅. r is a constraint if Head(r) = ∅.

An answer set program is a finite set of rules. For a given logic program Π , we
write Head(Π) =

⋃
r∈Π Head(r), Pos(Π) =

⋃
r∈Π Pos(r), A(Π) = Pos(Π) \

Head(Π) and Π ∪ X = Π ∪ {L ← |L ∈ X} where X is a set of literals. We use
AS(Π) to denote the set of consistent answer sets of a logic program Π .

In a bargaining situation, an agent might have a number of goals to achieve through
the bargaining process. The aim of the agent is to reach an agreement with the other
agent so that the other agent agrees the conditions that achieve his goals or some of his
goals. If an agent cannot achieve all his goals, the agent might have a preference over
these goals. A model of player includes an agent’s knowledge, bargaining goals and its
preference among these goals. The following definition gives such a model of players.

Definition 1. A two-player bargaining game is a tuple M = ((Π1, G1,≤1), (Π2, G2,
≤2)), where, for each i, Πi is a logic program, Gi is a set of goals, each goal consisting
of a set of literals, and ≤i is a total order over Gi.

A Sequential Model for Reasoning about Bargaining in Logic Programs 241

As a convention, we refer the opponent of player i as −i in the sequnt. Given a logic
program, a goal is achieved by the logic program if it is in an answer set of the program.
However, if it is not achieved, we may wonder what are the conditions that can make
the goal true. We call a set of conditions that achieves a goal under a logic program
a support. In setting of our bargaining model, the concept of supports is important
because if a condition that cannot be satisfied by one agent could be satisfied by another
agent; an agent may request another agent to satisfy a condition by offering a condition
the other agent is needed.

Definition 2. Given a logic program Π and a set X of literals, we say Δ ⊆ A(Π) is a
minimal support for achieving X from Π if it satisfies:

1. X ∩Δ = ∅.
2. There is an answer set S ∈ AS(Π ∪Δ) such that X ⊆ S.
3. There is no Δ′ ⊂ Δ such that Δ′ also satisfies Condition (1) and (2).

We use α(Π,X) to represent the set of all possible minimal supports with respect to Π
and X .

Given a bargaining game M , an offer of an agent is a pair (D,P), where D ⊆ Lit
and P ⊆ Lit. The set of all the possible offers is denoted by O. Intuitively, an offer
of a player represents the player’s demands from the bargaining and the conditions he
promises to the other player. D represents the current demands of the player and P
denotes the current promises of the player to the other player.

Definition 3. Let M = ((Π1, G1,≤1), (Π2, G2,≤2)) be a bargaining model. An offer
O = (D,P) achieves player i’s goal g ∈ Gi if

1. D ∈ α(Πi, g ∪ P);
2. There is no g′ ∈ Gi such that g′ satisfies condition (1) and g <i g

′.

For each player i, let Gi : O → Gi ∪ {∅} such that for any O ∈ O, Gi(O) = g if O
of player i achieves a goal g ∈ Gi; otherwise, Gi(O) = ∅.

For convenience, we assume that for each player i, ∅ �∈ Gi, that is, a goal cannot be
empty. In addition, we extend the ordering relation ≤i to Gi ∪ {∅} such that ∅ <i g for
all g ∈ Gi.

Definition 4. For each player i, define an order $i overO as follows:

O′ $i O
′′ iff Gi(O′) ≤i Gi(O′′)

We say that O′′ dominates O′ if O′ $i O
′′. Since ≤i is a total order over Gi ∪ {∅},

it is easy to see that $i is a total preorder overO.
A player not only has assess each offer he mades to see which goal he can achieve

if the offer is accepted but also has to assess the opponent’s offer to check if the offer
should be accepted. The way of assessing opponent’s offers is the following: A goal g of
player i is achievable with an offer O−i = (D−i, P−i) from the opponent of player i if
there is a counter-offer O = (D,P) to his opposite such that O achieves g meanwhile
P = D−i and P−i ⊆ D. We denote Ii(O) as the maximal goal of player i that is
achievable with the offer O from player−i.

242 W. Chen, D. Zhang, and M. Wu

3 Sequential Bargaining Procedures

We design a sequential bargaining procedure as follows. Two players i and −i take
actions only at times in the set T = {1, 2, · · ·}. In each round t ∈ T , one of the players,
say i, makes an offer (Dt, P t) (a member of O), where Dt contains all the items that
player i wants the player−i to accept and P t contains all the items that player i accepts
(initially is empty). Then the play passes to round t+ 1; in this round player−i makes
a counter-offer (Dt+1, P t+1). A player can terminate the procedure any time either set
Dt = P t−1 and P t = Dt−1, in which case an agreement is reached or say nothing, in
which case the game ends with a disagreement. The game continues whenever a player
makes a new offer and the play passes to the next round [1].

Following the standard game-theoretical definition of bargaining procedures [1], we
define a sequential bargaining procedure as follows. The extensive game of a sequential
bargaining is a tuple (N,H, P,$i) where

1). N = {1, 2} is the set of players.
2). H is the set of histories. Each h ∈ H is a sequence of offers that satisfies the

following properties:
2.1). The empty sequence ∅ is a member of H .
2.2). If (Ok)Kk=1 ∈ H and L < K , then (Ok)Lk=1 ∈ H .
A history (Ok)Kk=1 ∈ H is terminal if there is no OK+1 such that (Ok)K+1

k=1 ∈ H .
The set of terminal histories is denoted Z .

3). P is a function that assigns to each nonterminal history a number of N such that
P (h) = 1 if the length of h is an even number and P (h) = 2 if the length of h is an
odd number.

4).$i is a preference relation on Z such that for any two histories h = (Ok)Kk=1 ∈ Z

and h′ = (O′k)K
′

k=1 ∈ Z , h $i h
′ if and only if OK $i O

′K′
.

5). For any t1, t2 ∈ T , Ot2 = (Dt2 , ∅) and Ot1 = (Dt1 , ∅) are two offers of player
i(i = 1 or 2). If Gi(Ot2) <i Gi(Ot1), then t1 < t2. If t1 < t2, then Gi(Ot2) ≤i

Gi(Ot1).
6). For any Ok(k > 1), if Ok = (Dk, ∅) , then Ok−1 �= Ok+1.

Let A(h) = {O : (h,O) ∈ H}. We then can define strategies of a player.

Definition 5. A strategy, si, of player i ∈ N in the extensive game of sequential bar-
gaining is a function that assigns an offer in A(h) to each nonterminal history h ∈ H\Z
for which P (h) = i. A pair s = (s1, s2) of strategies is called a strategy profile if for
each i ∈ {1, 2}, si is a strategy of player i.

Definition 6. A pair of strategies (s1, s2) is a Nash equilibrium if, given s2, no strategy
of player 1 results in an outcome that player 1 prefers to the outcome generated by
(s1, s2), and, given s1, no strategy of player 2 results in an outcome that player 2
prefers to the outcome generated by (s1, s2).

Nash equilibrium is an important measurement to judge whether a bargaining procedure
is designed reasonable or not. The following section will introduce a concrete bargain-
ing procedure and prove that the procedure converges to a Nash equilibrium in finite
steps.

A Sequential Model for Reasoning about Bargaining in Logic Programs 243

4 Construction of Bargaining Procedure

We now give a concrete algorithm to model the bargaining procedure between two play-
ers i and −i using abductive reasoning. For convenience, we say g is the best goal of G
if g ∈ G and for any g′ ∈ G, g′ ≤ g, which is denotedB(G). We use Gt

i to represent the
set of goals of player i at the t round. Let M = ((Π1, G1,≤1), (Π2, G2,≤2)) be a bar-
gaining model. Assume that player−i puts forward the first offer O1

−i = (D1
−i, P

1
−i).

Algorithm 1. constructing bargaining procedure with abductive method
Input: Πi(i = 1, 2), Gi(i = 1, 2)
Output: O1 and O2

1 t := 1; G1
−i := G−i; G0

i := Gi;
2 H−i := Initialize(Π−i, G

1
−i); O

1
−i := H−i.top(); Hi := Initialize(Πi, G

0
i);

3 repeat
4 t := t+ 1;
5 Ot

i := CounterOffer(Ot−1
−i);

6 Oi := Ot
i ;

7 if Dt
i = P t−1

−i and Dt−1
−i = P t

i then
8 break;
9 end

10 if P t−1
−i = ∅ and P t

i = ∅ then
11 H−i := H−i \ {H−i. top()};
12 if H−i = ∅ then
13 Gt−1

−i := Gt−1
−i \ {B(Gt−1

−i)};
14 H−i := Initialize(Π−i, G

t−1
−i);

15 end
16 end
17 swap i and −i;
18 until Gt

i = ∅;

Procedure Initialize
Input: Π,G

Output: H
1 for Δ ∈ α(Π,B(G)) do
2 O := (Δ, ∅);
3 H. push(O,G);
4 end

Given M = ((Π1, G1,≤1), (Π2, G2,≤2)) be a sequential bargaining model. The
sequential bargaining procedure satisfies the following properties:

Proposition 1. 1. (Mutual commitment) For any t ∈ T ,P t
i ⊆ Dt−1

−i and P t−1
−i ⊆ Dt

i .
2. (Individual rationality) For any t ∈ T , if Ot

i = (Dt
i , P

t
i) is a counter-offer of

Ot−1
−i = (Dt−1

−i , P t−1
−i), then (P t−1

−i , Dt−1
−i) $i O

t
i .

3. (Satisfactorily) For any t ∈ T, if P t
i = Dt−1

−i and Dt
i = P t−1

−i , then Dt+1
−i = Dt−1

−i .
4. (Honest) (1)For any t1, t2 ∈ T , let Ot2 = (Dt2

i , ∅) and Ot1 = (Dt1
i , ∅). If

Gi(Ot2) <i Gi(Ot1), then t1 < t2. If t1 < t2, then Gi(Ot2) ≤i Gi(Ot1). (2)For
any t ∈ T (t > 1), if Ot−1

−i = (Dt−1
−i , ∅), then Ot

i �= Ot−2
i .

244 W. Chen, D. Zhang, and M. Wu

Procedure CounterOffer

Input: Ot−1
−i

Output: Ot
i

1 if Dt−1
−i �= P t−2

i then
2 if B(Gt−2

i) ≤i Ii(O
t−1
−i) then

3 foreach Δ ∈ α(Πi, Ii(O
t−1
−i) ∪Dt−1

−i) such that P t−1
−i ⊆ Δ do

4 Gt
i := Gt−2

i ∪ {Ii(O
t−1
−i)};

5 O′
i := (Δ,Dt−1

−i);
6 Hi. push(O

′
i, G

t
i);

7 end
8 end
9 else

10 if P t−1
−i �= Dt−2

i then
11 Hi := Hi \ {Hi. top()};
12 if Hi = ∅ then
13 Gt

i := Gt−2
i \ {B(Gt−2

i)};
14 Hi := Initialize(Πi, G

t
i);

15 end
16 end
17 end
18 Ot

i := Hi. top();

Theorem 1. Given any bargaining model, Algorithm 1 generates a strategy profile in
finite steps that is a Nash equilibrium under Definition 7.

5 Conclusion

We have proposed a sequential model of bargaining based on abductive reasoning in
ASP and devised a bargaining procedure to demonstrate how two agents reach an agree-
ment through abductive reasoning. We have shown that the sequential bargaining pro-
cedure converges a Nash equilibrium. We have also shown that the procedure satisfies
a number of desirable properties.

References

1. Osborne, M.J., Rubinstein, A.: Bargaining and Markets. Academic Press (1990)
2. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., Wooldridge, M.: Auto-

mated negotiation: prospects, methods and challenges. International Journal of Group Deci-
sion and Negotiation 10(2), 199–215 (2001)

3. Kraus, S., Sycara, K., Evenchik, A.: Reaching agreements through argumentation: a logical
model and implementation. Artificial Intelligence 104, 1–69 (1998)

4. Son, T.C., Sakama, C.: Negotiation using logic programming with consistency restoring rules.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI
2009, pp. 930–935. Morgan Kaufmann Publishers Inc. (2009)

5. Zhang, D.: A logic-based axiomatic model of bargaining. Artificial Intelligence 174, 1307–
1322 (2010)

6. Zhang, D., Zhang, Y.: An ordinal bargaining solution with fixed-point property. Journal of
Artificial Intelligence Research 33, 433–464 (2008)

Extending the Metabolic Network of
Ectocarpus Siliculosus Using Answer Set Programming

Guillaume Collet1,5, Damien Eveillard2, Martin Gebser3, Sylvain Prigent4,5,
Torsten Schaub3, Anne Siegel1,5, and Sven Thiele5,6,1

1 CNRS, UMR 6074 IRISA, Campus de Beaulieu, 35042 Rennes, France
2 Université de Nantes, UMR 6241 LINA, 2 rue de la Houssinière, 44300 Nantes, France

3 Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482, Deutschland
4 University of Rennes 1, UMR 6074 IRISA, Campus de Beaulieu, 35042 Rennes, France
5 INRIA, Centre Rennes-Bretagne-Atlantique, Projet Dyliss, Campus de Beaulieu, 35042

Rennes cedex, France
6 INRIA-CIRIC, Rosario Norte 555, Of. 703, Las Condes, Santiago de Chile, Chile

Abstract. Metabolic network reconstruction is of great biological relevance be-
cause it offers a way to investigate the metabolic behavior of organisms. However,
reconstruction remains a difficult task at both the biological and computational
level. Building on previous work establishing an ASP-based approach to this
problem, we present a report from the field resulting in the discovery of new bio-
logical knowledge. In fact, for the first time ever, we automatically reconstructed
a metabolic network for a macroalgae. We accomplished this by taking advantage
of ASP’s combined optimization and enumeration capacities. Both computational
tasks build on an improved ASP problem representation, incorporating the con-
cept of reversible reactions. Interestingly, optimization greatly benefits from the
usage of unsatisfiable cores available in the ASP solver unclasp. Applied to Ec-
tocarpus siliculosus, only the combination of unclasp and clasp allowed us to
obtain a metabolic network able to produce all recoverable metabolites among
the experimentally measured ones. Moreover, 70% of the identified reactions are
supported by an homologous enzyme in Ectocarpus siliculosus, confirming the
quality of the reconstructed network from a biological viewpoint.

1 Introduction

Systems biology is a field at the crossover of biology, computer science, and mathemat-
ics, which aims to elucidate the response of a living organism. Among all biological
processes occurring in a cell, metabolic networks are in charge of transforming input
nutrients into both energy and output nutrients necessary for the functioning of other
cells. From an industrial viewpoint, it is crucial to estimate and control the capability
of an organism to produce products of interest. Many computational and mathemati-
cal methods have been developed to model the response of such systems to external
perturbations, and applied to well-studied organisms [1–3].

In the last few years, sequencing technologies have drastically evolved, such that it
is now possible to sequence the genome of many less-studied organisms. As a natu-
ral follow-up, one needs to estimate the metabolic capability of an “exotic” organism

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 245–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

246 G. Collet et al.

on the basis of its genome, and then apply well-established control methods to the
network. The usual strategy consists in checking whether the genome contains known
enzymatic “bricks”, that is, genomic sequences that appropriately match with genomic
sequences of enzymes characterized in other model organisms, such as Escherichia coli
[4] or Arabidopsis thaliana [5], whose genomes and networks have been manually cu-
rated over several years [6]. The combination of metabolic reactions associated with the
identified enzymes provides a draft of the metabolic network for the studied organism.
The integration of the different heterogeneous bio chemical resources leads to incon-
sistencies and ambiguities in the draft network. Semantic web approaches solve these
inconsistencies and rank the retrieved information by exploiting existing ontologies [7].
Nonetheless, genomes are of low quality and the expert community on “exotic” organ-
isms is too small to provide a wide manual curation of this network. Concretely, au-
tomatic genome-scale reconstructed networks suffer from substantial incompleteness,
and many networks are only partially defined. To overcome this limitation, the next
step consists in filling the gaps of the draft network. To that end, we rely on reference
databases of metabolic reactions and check whether adding such reactions to the net-
work improves its ability to produce metabolite compounds of interest from the growth
media of the organism. Several approaches to automatically reconstruct the missing
parts of metabolic networks have been proposed. To restore a desired metabolic behav-
ior they propose reactions (picked from reaction databases) that can be added to the
network. The reactions are chosen to optimize either graph-based criteria [8] or a linear
score modeling the quantitative production of the system [9]. The main limitation of
all approaches is the increasing size of the search space, since reaction databases like
KEGG1 or MetaCyc2 have substantially grown with the availability of high-throughput
methods in molecular biology. Other studies propose to overcome this limitation by us-
ing sampling heuristics [10], but unfortunately they give little information on the size
of solution sets and the quality of the sampling methods.

In previous work [11], we reformulated the gap filling problem as a qualitative
combinatorial (optimization) problem, and modeled it using Answer Set Programming
(ASP) [12]. The basic idea is that reactions apply only if all their reactants are avail-
able, either as nutrients or provided by other metabolic reactions. Starting from given
nutrients, referred to as seeds, this allows for extending a metabolic network by suc-
cessively adding operable reactions and their products. The set of metabolites in the
resulting network is called the scope of the seeds and represents all metabolites that can
principally be synthesized from the seeds. In metabolic network completion, we query
a database of metabolic reactions looking for minimal sets of reactions that can restore
the observed bio-synthetic behavior.

As a follow-up to [11], we attempted to apply the same approach to reconstruct
the “exotic” metabolic network of Ectocarpus siliculosus, using the MetaCyc database.
This organism is a brown algae that belongs to the heterokonts, whose closest relative
(diatoms) exhibits a large phylogenetic distance to most other plant model species. Such
distinctions make a reconstruction of the metabolic network of Ectocarpus siliculosus
particularly challenging. In fact, we could not solve the reconstruction problem with the

1 http://www.genome.jp/kegg
2 http://metacyc.org

http://www.genome.jp/kegg
http://metacyc.org

Extending the Metabolic Network of Ectocarpus Siliculosus 247

original approach that hits its limits with large databases like MetaCyc, which doubled
in size over the last four years.

In this work, we push former limits by taking advantage of ASP’s combined opti-
mization and enumeration capacities. For one, we introduce an improved ASP problem
representation incorporating the concept of reversible reactions. For another, optimiza-
tion greatly benefits from the usage of unsatisfiable cores available in the ASP solver
unclasp [13]. Applied to Ectocarpus siliculosus, only the combination of unclasp and
clasp [14] allowed us to obtain a metabolic network able to produce all recoverable
metabolites among the experimentally measured ones. Moreover, 70% of the identified
reactions are supported by an homologous enzyme in Ectocarpus siliculosus, confirm-
ing the quality of the reconstructed network from a biological viewpoint.

In what follows, we assume some familiarity with ASP, its semantics as well as its
basic language constructs. In particular, our encodings are written in the input language
of gringo 3 [15]. Comprehensive treatments of ASP can be found in [12, 16].

2 Metabolic Network Completion

Metabolism is the sum of all chemical reactions occurring within an organism. As the
products of a reaction may be reused as reactants, reactions can be chained to complex
chemical pathways. Such complex pathways are described by a metabolic network.

A metabolic network is commonly represented as a directed bipartite graph G =
(R ∪M,E), where R and M are sets of nodes standing for reactions and metabolites,
respectively. When (m, r) ∈ E (or (r,m) ∈ E) for m ∈ M and r ∈ R, the metabolite
m is called a reactant (or product) of reaction r. More formally, for any r ∈ R, define
reac(r) = {m ∈M | (m, r) ∈ E} and prod(r) = {m ∈M | (r,m) ∈ E}.

The biological concept of the synthetic capabilities of a metabolism can be expressed
in terms of reachability. Given a metabolic network (R ∪M,E) and a set S ⊆ M of
seed metabolites, a reaction r ∈ R is reachable from S if all reactants in reac(r) are
reachable from S. Moreover, a metabolite m ∈ M is reachable from S if m ∈ S or if
m ∈ prod(r) for some reaction r ∈ R that is reachable from S. The scope of S, written
Σ(R∪M,E)(S), is the closure of metabolites reachable from S.

Given a metabolic network (R ∪ M,E), two sets S, T ⊆ M of seed and target
metabolites, and a reference network (R′ ∪M ′, E′), the metabolic network completion
problem is to find a set R′′ ⊆ R′ \R of reactions such that T ⊆ ΣG(S), where

G = ((R ∪R′′) ∪ (M ∪M ′′), E ∪E′′) ,

M ′′ = {m ∈M ′ | r ∈ R′′,m ∈ reac(r) ∪ prod(r)} , and

E′′ = E′ ∩ ((M ′′ ×R′′) ∪ (R′′ ×M ′′)) .

We call R′′ a completion of (R ∪M,E) from (R′ ∪M ′, E′) wrt (S, T).
For reconstructing Ectocarpus siliculosus, we are interested in cardinality-minimal

completions as well as necessary reactions belonging to every completion. Therefore,
we need to solve the following sub-tasks:

– Problem 1: Compute the minimum size (number of reactions) of a completion.
– Problem 2: Enumerate all cardinality-minimal completions.
– Problem 3: Compute the intersection of all cardinality-minimal completions.

248 G. Collet et al.

H2

O

H2O

rf

rb

Fig. 1. Example of the first method on H2 +O � H2O

As shown in [17, 18], the reconstruction of metabolic networks and related problems
are NP-hard.3 Problem variants (of higher computational complexity) rely on subset-
rather than cardinality-minimal completions. Further refinements may also optimize on
the distance between seeds and targets or minimize forbidden side products.

3 Reversible Reactions

Chemical reactions are in essence reversible. However, taking the metabolic context into
account (i.e. reactants and products) leads to considering some of them as irreversible
in view of energetic cost [19]. In the following, we describe two alternative methods to
capture reversible and irreversible reactions.

The first method represents a reversible reaction by two inverse reactions that are
separate nodes within the network. For example, given the metabolites H2, O, and
H2O and the reversible reaction r = H2 + O � H2O, we can construct the
metabolic network ({H2, O,H2O, rf , rb}, {(H2, rf), (O, rf), (rf , H2O), (H2O, rb),
(rb, H2), (rb, O)}), as illustrated in Figure 1. This method allows us to apply the frame-
work presented in [11]. Unfortunately, it also roughly doubles the number of reactions
that must be considered when looking for completions.

For an alternative method, let us represent a metabolic network as a graph G =
(Rrev ∪ Rirrev ∪M,E), where Rrev , Rirrev , and M are sets of nodes standing for re-
versible reactions, irreversible reactions, and metabolites, respectively. The difference
to our previous approach is that we distinguish between nodes for reversible and irre-
versible reactions. For any reaction r ∈ Rrev ∪Rirrev , the edges in E describe exactly
one direction, that is, (m, r) ∈ E (or (r,m) ∈ E) expresses that the metabolite m ∈M
is a reactant (or product) of r. Taking r to be reversible, the network ({H2, O,H2O, r},
{(H2, r), (O, r), (r,H2O)}) thus captures both reactions displayed in Figure 1.

Given a metabolic network (Rrev∪Rirrev ∪M,E) and a set S ⊆M of seed metabo-
lites, a reaction r ∈ Rrev ∪ Rirrev is reachable from S if all reactants in reac(r) are
reachable from S; when r ∈ Rrev is reversible, r is also reachable from S if all prod-
ucts in prod(r) are reachable from S. This reflects that, depending on the direction
in which a reversible reaction is applied, the roles of reactants and products may be
interchanged. Moreover, a metabolite m ∈ M is reachable from S if m ∈ S or if
m ∈ reac(r) ∪ prod(r) for some reaction r ∈ Rrev ∪Rirrev that is reachable from S.

3 That is, the underlying decision problems are NP-hard.

Extending the Metabolic Network of Ectocarpus Siliculosus 249

As in the previous section, the scope of S, written Σ(Rrev∪Rirrev∪M,E)(S), is the closure
of metabolites reachable from S.

Using this alternative representation, the metabolic network completion problem for
a network (Rrev ∪Rirrev ∪M,E), two sets S, T ⊆ M of seed and target metabolites,
and a reference network (R′

rev ∪R′
irrev∪M ′, E′) is to find a set R′′ ⊆ (R′

rev∪R′
irrev)\

(Rrev ∪Rirrev) of reactions such that T ⊆ ΣG(S), where

G = ((Rrev ∪Rirrev ∪R′′) ∪ (M ∪M ′′), E ∪ E′′) ,

M ′′ = {m ∈M ′ | r ∈ R′′,m ∈ reac(r) ∪ prod(r)} , and

E′′ = E′ ∩ ((M ′′ ×R′′) ∪ (R′′ ×M ′′)) .

We call R′′ a completion of (Rrev ∪Rirrev ∪M,E) from (R′
rev ∪R′

irrev ∪M ′, E′) wrt
(S, T).

Our ASP implementation addresses the alternative representation of reversible reac-
tions by additional facts and rules in comparison to the seminal encoding [11]. In par-
ticular, an instance of the network completion problem now contains additional facts
reversible(r) for reactions r ∈ Rrev ∪R′

rev , and our new encoding utilizes reversibility
information. For instance, the following rules define the scope of a network:

scope(M)← seed(M)
scope(M)← product(M,R), reaction(R), scope(M ′) : reactant(M ′, R)
scope(M)← reactant(M,R), reversible(R), scope(M ′) : product(M ′, R)

These rules illustrate the changes in our logic program.4 The first rule states that all
metabolites given as seeds are available in an organism, and the second rule derives the
products of a reaction whose reactants are available. Moreover, the third rule takes care
of interchanged roles of reactants and products in a reversible reaction, where reactants
can be derived from available products.

For instance, for implementing the example shown in Figure 1, one may consider the
metabolites H2 and O as seeds as well as H2O as target. The ground programs obtained
with the two alternative methods to represent reversible reactions are given in Listing 1
and 2. Both include similar rules to derive H2 and O as available in the scope. However,
the first program relies on two reactions, rf and rb, while the second program addresses
the inverse reaction rb via a rule for reversibility.

The outcomes of the program in Listing 1 are given by the sets {rf} and {rf , rb}
of reactions, the first of which is cardinality-minimal. This tells us that rf is necessary
to produce H2O from H2 and O. The unique outcome {r} of the program in Listing 2
likewise yields the necessity of applying r, where the actual direction of r needed to
produce H2O from H2 and O can be inferred easily.

4 Experiments

In order to successfully solve the three problems introduced above, we propose to di-
vide the metabolic network completion into two phases. In the first phase, we compute

4 The full encoding is available at http://pypi.python.org/pypi/meneco.

http://pypi.python.org/pypi/meneco

250 G. Collet et al.

Listing 1. Ground logic program instance without reversibility.

1 seed(H2). seed(O). target(H2O).
2

3 { reaction(rf) }. { reaction(rb) }.
4 reactant(H2,rf). reactant(O,rf). reactant(H2O,rb).
5 product(H2O,rf). product(H2,rb). product(O,rb).
6

7 scope(H2) :- seed(H2).
8 scope(O) :- seed(O).
9

10 scope(H2O) :- product(H2O,rf), reaction(rf), scope(H2), scope(O).
11

12 scope(H2) :- product(H2,rb), reaction(rb), scope(H2O).
13

14 scope(O) :- product(O,rb), reaction(rb), scope(H2O).
15

16 :- target(H2O), not scope(H2O).
17

18 #minimize{ reaction(rf), reaction(rb) }.

Listing 2. Ground logic program instance with reversibility.

1 seed(H2). seed(O). target(H2O).
2

3 { reaction(r) }. r e v e r s i b l e (r).
4 reactant(H2,r). reactant(O,r).
5 product(H2O,r).
6

7 scope(H2) :- seed(H2).
8 scope(O) :- seed(O).
9

10 scope(H2O) :- product(H2O,r), reaction(r), scope(H2), scope(O).
11

12 scope(H2) :- reactant(H2,r), r e v e r s i b l e (r), scope(H2O).
13

14 scope(O) :- reactant(O,r), r e v e r s i b l e (r), scope(H2O).
15

16 :- target(H2O), not scope(H2O).
17

18 #minimize{ reaction(r) }.

the minimum size of a network completion (Problem 1). To this end, ASP provides
powerful optimization techniques based on branch-and-bound algorithms. Albeit such
techniques can be highly effective, our application pinpoints their current limitations.
Hence, we take advantage of unclasp (version 0.1), whose usage of unsatisfiable cores
is inspired by respective approaches to Maximum Satisfiability (MaxSAT) [20]. In the
second phase, we rely on clasp (version 2.2.1) to enumerate all minimal completions
(Problem 2) or to compute the intersection of all minimal completions (Problem 3).
The experiments were run on a cluster of three machines equipped with 128 to 144 GB
RAM and totaling 48 cores, clocked from 2.39 to 2.66 GHz.

Extending the Metabolic Network of Ectocarpus Siliculosus 251

Table 1. Ranges of minimum size and number of cardinality-minimal completions for Meta-
Cyc subsets The time-outs of clasp are also reported with and without the reversibility encoding.

Number of reactions 5000 6000 7000 8000 9000 10000 Full

Minimum completion size [6,14] [7,22] [7,29] [9,29] [16,47] [33,50] 52
clasp time-outs

with reversibility 0 0 1 3 9 10 10
without reversibility 0 0 0 2 8 10 10

Minimal completions [4,32] [6,324] [6,1728] [16,3456] [80,1150] [180,22800] 2600

4.1 Reconstruction of the Metabolic Network of Ectocarpus siliculosus

As a first experiment, we complete a draft metabolic network of the brown algae Ecto-
carpus siliculosus [21] with reactions from MetaCyc. The draft network, produced by
merging expert annotations [22] with orthologs in Arabidopsis thaliana [23], contained
1210 reactions and 1454 metabolites. Moreover, we consider 44 metabolites as seeds,
provided by biological experts, and 51 metabolites, which have been experimentally
shown to be natural products of Ectocarpus siliculosus, as targets. We checked that the
draft network can only produce 23 of the 51 experimentally established targets, which
exhibits the insufficiency of the draft network to recover some of the main metabolic ca-
pabilities of the brown algae. This also shows that metabolic reconstruction via manual
methods is not sufficiently detailed for an “exotic” species like Ectocarpus siliculosus.

Applying unclasp and clasp as described above, we could solve Problem 1, 2, and 3
for the draft network. It turns out that at least 52 reactions from the MetaCyc database
are required to produce 48 metabolites among the 51 experimentally established tar-
gets (Problem 1). We checked that the three remaining targets are not producible via
reactions from MetaCyc. Moreover, enumeration led to 2600 cardinality-minimal com-
pletions (Problem 2), whose intersection consists of 45 reactions (Problem 3).

The union of all cardinality-minimal completions, 70 reactions, was then added to
the draft network to reconstruct the first metabolic network of Ectocarpus siliculosus. A
comparison of the resulting network, containing 1280 reactions and 1507 metabolites,
to sequence information showed that 70% of the reactions are relevant in the brown
algae. This suggests that reconstruction by means of ASP is biologically meaningful.

4.2 Study of Scalability

Given that the size of the reaction database constitutes a primary factor regarding the
performance of metabolic network reconstruction, we further investigated the scalabil-
ity of our approach and the benefit of introducing the new model for reversible reactions.

We thus applied our method to the completion of Ectocarpus siliculosus relying on
databases of different sizes. We created 10 different subsets of MetaCyc, each con-
taining 10000 randomly selected reactions. Starting from them, smaller subsets of size
9000, 8000, 7000, 6000, and 5000 were created by randomly and successively remov-
ing reactions, yielding 10 distinguished benchmarks for each size. Each subset includes
the same proportion of reversible reactions as the full MetaCyc database (≈ 42%).

252 G. Collet et al.

5000 6000 7000 8000 9000 10000 Full

Number of reactions

0.1

1

10

100

1000

10000

100000

Ti
m

e
in

 s
ec

on
ds

 (
lo

g)

CLASP
UNCLASP

With Reversibility
Without Reversibility

Fig. 2. Runtimes of clasp and unclasp for computing the minimum size of a completion
(Problem 1). The circles and squares provide the median runtimes of clasp and unclasp, re-
spectively. In addition, minimum and maximum runtimes are reported as vertical lines.

Table 1 summarizes the minimum network completion sizes, the time-outs of
clasp upon computing (or proving, respectively) minimum sizes, and the numbers of
cardinality-minimal completions for MetaCyc subsets of different sizes. Notably, the
minimum sizes of completions recovering producible targets remain relatively small
(≤ 50). The small sizes and apparent locality of network completions promote unclasp,
which turns out to be highly effective upon optimization in the first phase. As the cur-
rent functionalities of unclasp do not include enumeration or intersection computation,
the respective experiments are limited to clasp in the second phase.

Solving Problem 1. In order to determine the minimum sizes of network com-
pletions, we ran unclasp in its default configuration as well as clasp with the op-
tions --time-limit=86400 --restart-on-model --reset-restarts
--local-restarts --opt-heu --save-progress. The latter configure
clasp’s sign heuristic to falsify literals subject to minimization and also foster restarts
to avoid getting stuck in local minima. However, the runtimes plotted in Figure 2 stay
around one second with unclasp but grow exponentially with clasp. Moreover, the ex-
plicit representation of reversible reactions speeds up unclasp by factors from 2 to 11,
while it leads to more time-outs with clasp (cf. Table 1).

Solving Problem 2. For enumerating cardinality-minimal completions, we ran
clasp with the options --time-limit=86400 --configuration=handy
--opt-all=optimum, where the “handy” configuration is geared towards large

Extending the Metabolic Network of Ectocarpus Siliculosus 253

5000 6000 7000 8000 9000 10000 Full

Number of reactions

1

10

100

1000

10000

100000
Ti

m
e

in
 s

ec
on

ds
 (

lo
g)

1

10

100

1000

10000

100000

N
um

ber of solutions

Reversible

Unreversible

Number of solutions

Fig. 3. Runtimes of clasp for enumerating all cardinality-minimal completions (Problem 2).
The gray and white circles provide the median runtimes of clasp; dots indicate the median number
of cardinality-minimal completions. Minimum and maximum values are reported as vertical lines.

5000 6000 7000 8000 9000 10000 Full

Number of reactions

1

10

100

1000

10000

100000

Ti
m

e
in

 s
ec

on
ds

 (
lo

g)

1

10

100

1000

10000

100000

S
ize of intersection

Reversible

Unreversible

Size of intersection

Fig. 4. Runtimes of clasp for computing the intersection of all cardinality-minimal comple-
tions (Problem 3). The gray and white circles provide the median runtimes of clasp; dots indicate
the median intersection size. Minimum and maximum values are reported as vertical lines.

problems. The results plotted in Figure 3 show that the runtimes of clasp and the num-
bers of solutions tend to grow exponentially with the size of the reaction database. The
number of solutions, however, reaches a plateau from 9000 reactions on, thus exhibiting
a correlation with the minimum completion sizes given in Table 1.

254 G. Collet et al.

Solving Problem 3. Adding the option --enum-mode=cautious switches clasp
from enumeration to computing the intersection of cardinality-minimal completions.
The runtimes plotted in Figure 4 still parallel those for enumeration. Unlike this, the
intersection size grows much more moderately than the number of cardinality-minimal
completions, so that future advancements of ASP solving technology may shrink the
efforts of computing consequences below those of enumeration.

5 Conclusions

As a first conclusion, we note that unclasp enables the calculation of minimum comple-
tion size from an unabridged reaction database, which is necessary to accomplish the
metabolic reconstruction of an “exotic” organism like Ectocarpus siliculosus. While
clasp cannot solve this problem for the full MetaCyc database (in allotted time),
unclasp completes the same task in a few seconds. Moreover, Figure 2 shows that
unclasp remains almost unaffected by database growth. In fact, the usage of unsatis-
fiable cores allows for exploiting local problem structure to quickly converge to an
optimal solution. Therefore, it appears that unclasp is especially well-suited to solve
problems with plenty abducibles (>10000 reactions) but rather small optima (about 50
reactions).

As a second conclusion, integrating the reversibility concept into our ASP encoding
reduces the runtime of unclasp by up to one order of magnitude. Somewhat surpris-
ingly, clasp cannot benefit from the improved ASP encoding, even though reversibility
reduces the number of candidate reactions from MetaCyc by about one third.

As a third conclusion, only the combination of unclasp and clasp allowed us to
reconstruct the metabolic network of Ectocarpus siliculosus because the current func-
tionalities of unclasp do not include enumeration or intersection computation. Fortu-
nately, these two tasks can be accomplished by clasp when the minimum completion
size is known. While enumeration enables an exhaustive exploration of (cardinality-
minimal) completions, their intersection yields necessary reactions needed to produce
target metabolites. Such information is crucial for the biological post-validation of a
metabolic network without manual curation.

In summary, the combination of ASP modeling and solving capacities enabled the
successful automatic reconstruction of the first metabolic network of a macroalgae.
However, Figure 3 and 4 also indicate that the capabilities of clasp to compute all
cardinality-minimal completions or their intersection almost hit the limits in view of
the current size of the MetaCyc database. Anticipating its future extension, reconstruc-
tion tasks will be difficult to address without further advances in ASP solving. To this
end, the incorporation of domain knowledge and heuristics to guide the solving process
appear to be promising. As a direction for future work, we aim at the development of
dedicated heuristics and their employment in the recent ASP solver hclasp [24].

Acknowledgments. This work was supported by ANR Biotempo (ANR-10-BLANC-
0218), IDEALG (ANR-10-BTBR-04), and DFG (SCHA 550/10-1).

Extending the Metabolic Network of Ectocarpus Siliculosus 255

Reference

1. Barabási, A., Oltvai, Z.: Network biology: Understanding the cell’s functional organization.
Nature Reviews Genetics 5(2), 101–113 (2004)

2. Joyce, A., Palsson, B.: The model organism as a system: Integrating ’omics’ data sets. Nature
Reviews Molecular Cell Biology 7(3), 198–210 (2006)

3. Yamada, T., Bork, P.: Evolution of biomolecular networks: Lessons from metabolic and pro-
tein interactions. Nature Reviews Molecular Cell Biology 10(11), 791–803 (2009)

4. Orth, J., Conrad, T., Na, J., Lerman, J., Nam, H., Feist, A., Palsson, B.: A comprehensive
genome-scale reconstruction of Escherichia coli metabolism. Molecular Systems Biology 7,
Article 535 (2011)

5. de Oliveira Dal’Molin, C., Quek, L., Palfreyman, R., Brumbley, S., Nielsen, L.: AraGEM, a
genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physi-
ology 152(2), 579–589 (2009)

6. Zengler, K., Palsson, B.: A road map for the development of community systems (CoSy)
biology. Nature Reviews Microbiology 10(5), 366–372 (2012)

7. Swainston, N., Smallbone, K., Mendes, P., Kell, D., Paton, N.: The subliminal toolbox: au-
tomating steps in the reconstruction of metabolic networks. Journal of Integrative Bioinfor-
matics 8, Article 186 (2011)

8. Handorf, T., Ebenhöh, O., Heinrich, R.: Expanding metabolic networks: Scopes of com-
pounds, robustness, and evolution. Journal of Molecular Evolution 61(4), 498–512 (2005)

9. Satish Kumar, V., Dasika, M., Maranas, C.: Optimization based automated curation of
metabolic reconstructions. BMC Bioinformatics 8, Article 212 (2007)

10. Christian, N., May, P., Kempa, S., Handorf, T., Ebenhöh, O.: An integrative approach to-
wards completing genome-scale metabolic networks. Molecular BioSystems 5(12), 1889–
1903 (2009)

11. Schaub, T., Thiele, S.: Metabolic network expansion with answer set programming. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 312–326. Springer, Heidelberg
(2009)

12. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

13. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in
clasp. In: Dovier, A., Santos Costa, V. (eds.) Technical Communications of the Twenty-
Eighth International Conference on Logic Programming, ICLP 2012. Leibniz International
Proceedings in Informatics, vol. 17, pp. 212–221. Dagstuhl Publishing (2012)

14. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187-188, 52–89 (2012)

15. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo, http://potassco.sourceforge.net

16. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-
gan and Claypool Publishers (2012)

17. Nikoloski, Z., Grimbs, S., May, P., Selbig, J.: Metabolic networks are NP-hard to reconstruct.
Journal of Theoretical Biology 254(4), 807–816 (2008)

18. Nikoloski, Z., Grimbs, S., Selbig, J., Ebenhöh, O.: Hardness and approximability of the
inverse scope problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI),
vol. 5251, pp. 99–112. Springer, Heidelberg (2008)

19. Beard, D., Liang, S., Qian, H.: Energy balance for analysis of complex metabolic networks.
Biophysical Journal 83(1), 79–86 (2002)

20. Li, C., Manyà, F.: MaxSAT. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Hand-
book of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 613–
631. IOS Press (2009)

http://potassco.sourceforge.net

256 G. Collet et al.

21. Tonon, T., Eveillard, D., Prigent, S., Bourdon, J., Potin, P., Boyen, C., Siegel, A.: Toward sys-
tems biology in brown algae to explore acclimation and adaptation to the shore environment.
Omics: A Journal of Integrative Biology 15(12), 883–892 (2011)

22. Karp, P., Paley, S., Romero, P.: The Pathway Tools software. Bioinformatics 18(suppl. 1),
S225–S232 (2002)

23. Loira, N., Dulermo, T., Nicaud, J., Sherman, D.: A genome-scale metabolic model of the
lipid-accumulating yeast Yarrowia lipolytica. BMC Systems Biology 6, Article 35 (2012)

24. Gebser, M., Kaufmann, B., Otero, R., Romero, J., Schaub, T., Wanko, P.: Domain-specific
heuristics in answer set programming. In: des Jardins, M., Littman, M. (eds.) Proceedings
of the Twenty-Seventh National Conference on Artificial Intelligence, AAAI 2013. AAAI
Press (to appear, 2013)

Negation as a Resource: A Novel View
on Answer Set Semantics�

Stefania Costantini1 and Andrea Formisano2

1 DISIM, Università di L’Aquila, Italy
stefania.costantini@univaq.it

2 DMI, Università di Perugia, Italy
formis@dmi.unipg.it

Abstract. In recent work, we provided a formulation of ASP programs in terms
of linear logic theories. Based on this work, in this paper we propose and discuss
a modified Answer Set Semantics, “Resource-based Answer Set Semantics”.

Keywords: Answer Set Programming, Linear Logic, Default Negation.

1 Introduction

Answer Set Programming (ASP) is nowadays a well-established programming
paradigm, with applications in many areas. RASP [1, 2, 3] is a recent extension of ASP,
obtained by explicitly introducing the notion of resource. In [4], we proposed a compar-
ison between RASP (and ASP) and linear logic [5]. In defining the correspondence, we
introduced a RASP and linear-logic modeling of default negation as understood under
the answer set semantics.

In this paper, we show that understanding default negation as a resource may lead
to the definition of a generalization of the answers set semantics (for short AS, on
which ASP is based), with some potential advantages. We provide a model-theoretic
definition of the new semantics, that we call Resource-based Answer Set Semantics.
In the new setting, there are no inconsistent programs, and basic odd cycles (similarly
to basic even cycles in AS) are interpreted as exclusive disjunctions. Constraints must
then be represented explicitly (while in ASP they are “simulated” via unary odd cycles).
The “practical expressive power” in terms of knowledge representation is improved
(as we demonstrate by means of significant examples), though unfortunately also the
computational complexity increases.

2 Background on Linear Logic and ASP, and on Their Relationship

We refer the reader to the extensive existing literature about linear logic and ASP, that
we are not able to mention for lack of space. We also apologize for the short and in-
complete explanation, strictly limited to the features which are of interest here.

� Research partially funded by INdAM-GNCS-2013 project.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 257–263, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

258 S. Costantini and A. Formisano

Linear logic [5] can be considered as a resource sensitive refinement of classical
logic: intuitively speaking, in linear logic, two assumptions of a formula P are distin-
guished from a single assumption of it. Hence, in linear logic contraction and weakening
rules are not allowed: while a statement of the form P→ P∧P is valid in classical logic,
this is not the case in linear logic.

Linear logic makes a neat distinction between two forms of conjunction. The first
one intuitively means “I have both”. This is said multiplicative conjunction and is writ-
ten as ⊗. The other, the additive conjunction means “I have a choice” (and is written
as &). Dually, there are two disjunctions. The multiplicative one, written P � Q can be
read as “if not P, then Q”, and the additive disjunction P⊕Q, that intuitively stands for
the possibility of either P or Q, but we do not know which of the two. That is, it involves
“someone else’s choice”. Linear implication P —◦Q encodes a form of production pro-
cess: it can be read as “Q can be derived using P exactly once”. (Notice that, in such a
process P is “consumed”, so it cannot be used again.)

A formal proof system for linear logic can be formulated in terms of a Gentzen-style
sequent calculus. A full set of Gentzen-style sequent rules for linear logic can be found,
for instance, in [6].

In the answer set semantics (originally named “stable model semantics”), a (logic)
program Π (cf., [7]) is a collection of rules of the form H ← L1, . . . ,Ln. where H is an
atom, n � 0 and each literal Li is either an atom Ai or its default negation not Ai. Below
is the specification of the Answer Set Semantics, reported from [7].

Definition 1. Let I be a set of atoms and Π a program. A GL-transformation of Π
modulo I is a new program Π/I obtained from Π by performing the following two
reductions: (1) removing from Π all rules which contain a negative premise not A such
that A ∈ I; (2) removing from the remaining rules those negative premises not A such
that A �∈ I. Π/I is a positive logic program, with a unique Least Herbrand Model,
denoted as ΓΠ (I). I is an answer set of Π iff ΓΠ (I) = I.

Answer sets are minimal supported models, and non-empty answer sets form an anti-
chain with respect to set inclusion. It will be useful in what follows to report from [8] a
simple property of ΓΠ : If M is a minimal model of Π , then, ΓΠ (M) ⊆M.

In [4], we have shown that RASP (and ASP) can be defined as a (propositional)
fragment of linear logic by translating programs into a linear logic theory employing
as connectives tensor product ⊗ (to express concomitant use/production of different
resources), linear implication —◦ (to model production processes), and additive con-
junction & (to represent alternative/exclusive resource allocation). In well-known ter-
minology, we adopt formulas belonging to the so-called Horn-fragment of linear logic.
(We refer the reader to [4] for a detailed treatment.) Briefly, for a positive ASP program
Π , each atom q in the body of the j-th rule of a given program is renamed as q j, where
the q j’s are called the standardized-apart versions of q. Since the formalization passes
through RASP, which considers atoms as resources, each standardized-apart atom q j

will stand for q j:1 (In RASP terminology, a writing of the form q:a denotes an amount
a of the resource q.) The meaning is that, when using the body of a rule to derive the
head, one uses one unit of each atom (seen as a resource) in the body. An &-Horn impli-
cation deals with the fact that, in Π , the truth of an atom might be used to prove several
consequences (through different rules). To treat the case of full ASP, where occurrences

Negation as a Resource: A Novel View on Answer Set Semantics 259

of each negative literals, say not A, may appear in the body of the rules of Π , we im-
prove the transformation by making the assumption that not A is made available to every
rule that intends to adopt it, unless A itself is provable. In which case the assumption
becomes totally unavailable (as proving A consumes the full available quantity of the
“resource” not A).

It turns out that, if Π is an ASP program, and ΣΠ is the corresponding Linear Logic
RASP Theory, and M = {A1, . . . , An} is an answer set for Π , then A1⊗ . . .⊗An is a
maximal tensor conjunction provable from ΣΠ . The reverse result does not necessarily
hold: this is due (as discussed in [4]) to the lack of relevance of the answer set seman-
tics [9], but also to the locality of a proof-based system such as linear logic.

3 Negation as a Resource: A Novel View on Answer Set Semantics

It is interesting to notice that the linear logic formulation we mentioned in previous
section prevents contradictions. Consider for example the program Π1 = {p← not p.}.
It is transformed into:

not p11:1⊗not p12:1 —◦ p,
not p:1,
(not p:1 —◦not p11:1)&(not p:1 —◦not p12:1)

In the first rule, one occurrence of not p corresponds to the one originally present,
the other one has been added as for proving p it is necessary to “absorb” the whole
available quantity of not p. We can in fact verify that the singleton tensor conjunction
p is by no means provable: in fact, it would require two units of not p, while just one is
available. This does not lead to inconsistency, but simply to the impossibility to prove p.

Consider program Π = {a← not b. b← not c. c← not a.} which is an “odd cycle”
involving three atoms. In our formulation, ΣΠ is the following:
not a1:1⊗not b1:1 —◦a
not c2:1⊗not b2:1 —◦b
not a3:1⊗not c3:1 —◦c

not a:1
not b:1
not c:1

(not a:1 —◦not a1:1)&(not a:1 —◦not a3:1)
(not b:1 —◦not b1:1)&(not b:1 —◦not b2:1)
(not c:1 —◦not c2:1)&(not c:1 —◦not c3:1)

From this linear logic theory we can prove the three maximal tensor conjunctions,
namely, a, b and c. Assume, in fact, to try to prove a (the cases of b and c are of course
analogous). Proving a uses resources not a1:1 and not b1:1. Therefore, after proving a,
b cannot be proved because its own negation (i.e., not b2:1) is not available: in fact,
the &-Horn implication related to b generates (indifferently) only one of the two items,
and has already been requested to produce not b1:1 for proving a. In turn, c cannot
be proved because not a3:1 is not available, as the &-Horn implication related to a
generates (indifferently) only one of the two items, and has already been requested to
produce not a1:1 for proving a.

Thus, the 3-atoms odd cycles is interpreted as an exclusive disjunction, exactly like
the 2-atoms even cycle (such as {q ← not p. p ← not q.}) in AS. Therefore, in the
generate-and-test perspective which is at the basis of the ASP programming methodol-
ogy, our new view provides a new mean of easily generating the search space.

We call {a}, {b}, and {c} resource-based answer sets, for which we provide below a
logic programming characterization. The resource-based answers set for program {p←
not p.} is the empty set.

260 S. Costantini and A. Formisano

The ternary cycle has many well-known interpretations in terms of knowledge rep-
resentation, among which the following is an example:

{beach← not mountain. mountain← not travel. travel← not beach.}
In our approach we would have exactly one of (indifferently) beach, mountain, or travel.
Similarly for the program {work← not tired. tired← not sleep. sleep← not work.}.

There are other semantic approaches to managing odd cycles, such as for instance
[10, 11] and [12, 13], that can however be distinguished from the present one: in fact,
the former proposals basically choose (variants of) the classical models, and the latter
ones treat differently the unary and ternary cycles. Below we provide a variation of the
answer set semantics that defines resource-based answer sets.

Definition 2. Let Π be a program and let I be a Π -based minimal model, i.e. a minimal
model such that ∀A ∈ I, there exists a rule in Π with head A. M is a resource-based
answer set of Π iff M = ΓΠ (I), where I is a Π -based minimal model of Π .

It is clear that answer sets are among resource-based answer sets, and that there is
a resource-based answer set for each Π -based classical minimal model. Non-empty
resource-based answer sets still form an anti-chain w.r.t. set inclusion.

We call the new semantics RAS semantics (Resource-Based Answer Set semantics),
w.r.t. AS (Answer Set) semantics. Differently from answer sets, a (possibly empty)
resource-based answer set always exists. Complexity of RAS semantics is however
higher than complexity of AS semantics: in fact, [14] proves that deciding whether a set
of formulas is a minimal model of a propositional theory is co-NP-complete. Clearly,
checking whether a minimal model I is Π -based and computing ΓΠ (I) has polynomial
complexity. Then:

Proposition 1. Given program Π , deciding whether set of atom I is a resource-based
answer set of Π is co-NP-complete.

The result of [4] about the relation with linear logic extends to the new semantics.
It remains to be explained why the new definition models the intuition, and how it

applies to practical cases. In particular, given minimal model I of Π , it may be that
ΓΠ (I) ⊂ I, i.e., ΓΠ (I) is a proper subset of I and thus I is not an answer set, for only
one reason. For atom A to belong to a Π -based minimal model I, there exists some rule
in Π with head A. For A not to belong to ΓΠ (I), so that ΓΠ (I) ⊂ I, each of the rules
that could cause A to be in the model, must have been canceled by step (1) of ΓΠ (as it
includes a literal not B, for B ∈ I, in its body). Atoms belonging to ΓΠ (I) are therefore
those atoms in I that can be derived without such contradictions. As widely discussed
in [8, 15], contradictions only arise in program fragments corresponding to unbounded
odd cycles, i.e., odd cycles where no atom is bounded to be true/false (thus resolving the
contradiction) by links with other parts of the program. Starting from Π -based minimal
models however, ΓΠ (I) provides for these cycles the “exclusive or” interpretation that
we have proposed above.

In resource-based answer set semantics, there are no inconsistent programs.
Nevertheless, the new semantics is useful in knowledge representation not just to fix
inconsistencies: rather, it depicts a more general scenario in many reasonable examples.

Negation as a Resource: A Novel View on Answer Set Semantics 261

Consider for instance the variation of the above program (inspired to examples proposed
in [10, 11]):

beach← not mountain.
mountain← not travel.
travel← not beach,passport ok.

passport ok← not forgot renew.
forgot renew← not passport ok.

This program has answer set M1 = {forgot renew,mountain}, as passport ok be-
ing false forces travel to be false, which in turn makes mountain true. The answer
set semantics cannot cope with the case of the passport being ok, which is in fact
excluded as this option determines no answer set. Instead, in resource-based answer
set semantics we have, in addition to M1, three other answer sets stating that, if the
passport is ok, any choice is possible, namely we have M2 = {passport ok,mountain},
M3 = {passport ok,beach}, and M4 = {passport ok, travel}. We may notice that the
semantics is still a bit strong on this example on the side of the answer set, as one
would say that not having passport ok prevents traveling, but any other choice should
be possible, while instead the mountain choice is forced. A further generalization may
be the subject of future work.

In the new semantics, constraints cannot be modeled in terms of odd cycles. There-
fore, they have to be modeled explicitly. In particular, let us assume a constraint C to
be of the form← E1, . . . ,En. where the Eis are atoms. This is with no loss of generality,
as a constraint such as, for instance, ← A,not B. can be reformulated as the program
fragment← A,B′. B′ ← not B. Thus, an overall program ΠO can be seen as composed
of answer set program Π plus a set {C1, . . . ,Cv} of constraints, and, possibly, an auxil-
iary program ΠC , so that constraints can be defined on atoms belonging to either Π or
ΠC . We assume however that ΠC is stratified (i.e., it contains no cycles) and that atoms
of Π may occur in ΠC only in the body of rules (in the terminology of [8, 16], ΠC is a
top program of Π).

Consider for instance ΠO to be composed of the following Π :

{beach← not mountain. mountain← not travel. travel← not beach. hyperthyroidism.}
plus the following ΠC :

{unhealthy← beach, hyperthyroidism.}
plus the constraint← unhealthy.

The resulting theory will have resource-based answer sets {mountain,
hyperthyroidism}, and {travel, hyperthyroidism}, while {beach, hyperthyroidism,
unhealthy} is excluded by the constraint. We now proceed to the formal definition.

Definition 3. An Answer Set Theory T is a couple 〈ΠO ,Constr〉, with ΠO = Π ∪ΠC ,
where ΠC is a top program for Π , and where Constr is a set {C1, . . . ,Cv}, v ≥ 0, of
constraints.

Definition 4. Given Answer Set Theory T = 〈ΠO ,Constr〉, a resource-based Answer
Set M for Π fulfills the constraints in Constr iff the answer set program Π ′ is consistent
(in the sense of traditional answer set semantics), where Π ′ is obtained from ΠC by
adding all atoms in M as facts, and all constraints in Constr as rules.

262 S. Costantini and A. Formisano

Definition 5. A Resource-based Answer Set M of Answer Set Theory T =
〈ΠO ,Constr〉 is a resource-based answer set for Π that fulfills all constraints in Constr.

It is easy to see that, in order to check that resource-based Answer Set M for Π fulfills
the constraints, one can check consistency of Π ′ by: (i) computing (in polynomial time)
the unique answer set M′′ of the stratified program Π ′′ obtained from ΠC by adding all
atoms in M as facts, and then (ii) checking constraints on M′′ by pattern-matching.
Then, for constraints of the above simple form, we can conclude that deciding about the
existence of a resource-based answer set is a co-NP-complete problem.

4 Concluding Remarks

In this paper, we have proposed an extension of the answer set semantics where ternary
odd cycles are understood as exclusive disjunctions, similarly to binary even cycles.
Algorithms underlying answer set solvers do not seem to need substantial modifications
in order to cope with the new semantics, that thus might in principle be easily and
quickly implemented. In particular, solvers based on SAT appear to be good candidates
for extension to the new setting.

References

[1] Costantini, S., Formisano, A.: Answer set programming with resources. Journal of Logic
and Computation 20(2), 533–571 (2010)

[2] Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on re-
source consumption and production in ASP. Journal of Algorithms in Cognition, Informat-
ics and Logic 64(1), 3–15 (2009)

[3] Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP. Funda-
menta Informaticae 105(1-2), 1–33 (2010)

[4] Costantini, S., Formisano, A.: RASP and ASP as a fragment of linear logic. Journal of
Applied Non-Classical Logics (JANCL) (2013)

[5] Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
[6] Kanovich, M.I.: The complexity of Horn fragments of linear logic. Ann. Pure Appl.

Logic 69(2-3), 195–241 (1994)
[7] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowal-

ski, R., Bowen, K. (eds.) Proc. of the 5th Intl. Conference and Symposium on Logic Pro-
gramming, pp. 1070–1080. The MIT Press (1988)

[8] Costantini, S.: Contributions to the stable model semantics of logic programs with negation.
Theoretical Computer Science 149(2), 231–255 (1995)

[9] Dix, J.: A classification theory of semantics of normal logic programs, I and II. Fundam.
Inform. 22(3), 227–255, 257–288 (1995)

[10] Pereira, L.M., Pinto, A.M.: Revised stable models – A semantics for logic programs. In:
Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 29–42.
Springer, Heidelberg (2005)

[11] Pereira, L.M., Pinto, A.M.: Tight semantics for logic programs. In: Hermenegildo, M.V.,
Schaub, T. (eds.) Tech. Comm. of the 26th Intl. Conference on Logic Programming, ICLP
2010. LIPIcs, vol. 7, pp. 134–143 (2010)

Negation as a Resource: A Novel View on Answer Set Semantics 263

[12] Osorio, M., López, A.: Expressing the stable semantics in terms of the pstable semantics. In:
Proc. of the LoLaCOM 2006 Workshop. CEUR Workshop Proc., vol. 220, CEUR-WS.org
(2006)

[13] Osorio, M., Pérez, J.A.N., Ramı́rez, J.R.A., Macı́as, V.B.: Logics with common weak com-
pletions. J. Log. Comput. 16(6), 867–890 (2006)

[14] Cadoli, M.: The complexity of model checking for circumscriptive formulae. Inf. Process.
Lett. 44(3), 113–118 (1992)

[15] Costantini, S.: On the existence of stable models of non-stratified logic programs. Theory
and Practice of Logic Programming 6(1-2) (2006)

[16] Lifschitz, V., Turner, H.: Splitting a logic program. In: Proc. of the Intl. Conference on
Logic Programming, ICLP 1994, pp. 23–37 (1994)

AGM-Style Belief Revision of Logic Programs
under Answer Set Semantics�

James Delgrande1, Pavlos Peppas2, and Stefan Woltran3

1 School of Computing Science
Simon Fraser University

Burnaby, B.C.
Canada V5A 1S6

2 Dept of Business Administration
University of Patras

Patras 265 00, Greece
3 Institut für Informationssysteme

Technische Universität Wien
Favoritenstraße 9–11

A–1040 Vienna, Austria

Abstract. In the past few years, several approaches for revision (and update) of
logic programs have been studied. None of these however matched the generality
and elegance of the original AGM approach to revision in classical logic. One
particular obstacle is the underlying nonmonotonicity of the semantics of logic
programs. Recently however, specific revision operators based on the monotonic
concept of SE-models (which underlies the answer-set semantics of logic pro-
grams) have been proposed. Basing revision of logic programs on sets of SE-
models has the drawback that arbitrary sets of SE-models may not necessarily be
expressed via a logic program. This situation is similar to the emerging topic of
revision in fragments of classical logic. In this paper we show how nonetheless
classical AGM-style revision can be extended to various classes of logic pro-
grams using the concept of SE-models. That is, we rephrase the AGM postulates
in terms of logic programs, provide a semantic construction for revision opera-
tors, and then in a representation result show that these approaches coincide. This
work is interesting because, on the one hand it shows how the AGM approach can
be extended to a seemingly nonmonotonic framework, while on the other hand
the formal characterization may provide guiding principles for the development
of specific revision operators.

1 Introduction

Answer set programming [5] is an appealing approach for representing problems in
knowledge representation and reasoning. It has a conceptually simple theoretical foun-
dation, while at the same time being applicable to a wide range of practical problems.
As well, efficient ASP systems have become available. However, a logic program is not

� This work was partially supported by a Canadian NSERC Discovery Grant and by the Austrian
Science Fund (FWF) under grant P25521-N23.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 264–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

AGM-Style Belief Revision of Logic Programs under Answer Set Semantics 265

a static object in general, but rather it will evolve and be subject to change, whether
as a result of correcting information in the program, adding to the information already
present, or in some other fashion modifying the knowledge represented in the program.

In classical logic, the problem of handling knowledge in flux has been thoroughly
investigated (see [24] for an overview). The seminal AGM approach [1,17], provides
a general, elegant, and widely accepted framework for this purpose. Central to this ap-
proach are powerful representation theorems, which aim to characterize all rational op-
erators satisfying certain postulates. Its generality, emphasizing logical formalization,
syntax independence, and minimal change, has made this approach a standard for in-
vestigating problems concerned with revision or update of knowledge bases, regardless
of the underlying semantics (see, for instance, [16] for AGM-style revision in terms of
description logics).

Although there has been very active research in revision (and update) of logic pro-
grams [31,2,20,25,14], the generality of the original AGM approach has not been
matched yet in any of these approaches. One obstacle is the underlying nonmonotonic-
ity of the semantics of logic programs, which has led to the study of postulates different
from the ones in the AGM approach, see e.g. [14,23]. Recently however, specific revi-
sion operators based on the monotonic concept of SE-models [28] (which underlies the
answer-set semantics of logic programs [21]) have been proposed [12] together with
a suitable variant of the AGM postulates; see also [27] for a variant thereof. In recent
work [19], the notion of SE-models (and similar concepts) has been put in connection
to postulates for belief base change different from AGM.

However, representation theorems are still lacking. One problem is that arbitrary
sets of SE-models may not necessarily be expressed via a logic program. (While such
a requirement is crucial for a representation theorem, it is not problematic in classical
logic, at least in the finite case, since for any set of interpretations there is a set of for-
mulas having these interpretations as its models.) A similar challenge arises in another
emerging topic in the area of belief change, namely revision in fragments of classical
logic, see e.g. [10,7]. To be more specific, consider the problem of revision in the Horn
fragment of classical logic. Since the models of Horn formulas satisfy a certain closure
property, the result of a revision requires that this property is obtained in order to be
represented in the Horn fragment, too. For representation theorems, it turned out that
one needs to suitably integrate this property to the concept of faithful assignments [18]
and to add an additional postulate [10].

In this paper we show how classical AGM-style revision can be extended to vari-
ous classes of logic programs using the concept of SE-models. We give representation
theorems for the AGM-style postulates proposed in [12] by exploiting, first, the recent
techniques for Horn revision due to [10] and, second, the properties that program classes
enjoy in terms of SE-models [13]. This allows us to give representation theorems for
the important classes of disjunctive (generalized and ordinary), normal, positive, and
Horn logic programs. This work is interesting because, on the one hand it shows how
the AGM approach can be extended to a seemingly nonmonotonic framework, while
on the other hand the formal characterization may provide guiding principles for the
development of specific revision operators beyond the ones suggested in [12].

266 J. Delgrande, P. Peppas, and S. Woltran

The remainder of the paper is organized as follows. The next section reviews an-
swer set programming and belief revision, and surveys previous work in belief change
in logic programs. The following section examines the problems that arise in a direct
application of the AGM approach to answer set programming. Section 4 provides the
main formal results, comprising representation theorems for each of the major classes
of logic programs. The next section shows that the approach is compatible with iterated
revision, while the last section is a summary. Proofs of theorems are omitted due to
space considerations but are available on request.

2 Background and Formal Preliminaries

2.1 Answer Set Programming

Let A be a finite alphabet or set of propositional variables. A (generalised) logic pro-
gram (GLP) over an alphabetA is a finite set of rules of the form

a1; . . . ; am; ∼b1; . . . ;∼bn ← c1, . . . , cj , ∼d1, . . . ,∼dk (1)

where ap, bq, cr, ds ∈ A and p, q, r, s ≥ 0. Operators ‘;’ and ‘,’ express disjunctive and
conjunctive connectives. A (default) literal is an atom a or its (default) negation∼a. A
rule r as in (1) is a fact if m = 1 and n = j = k = 0, and an integrity constraint if
m = n = 0, yielding an empty disjunction denoted by ⊥. LP will denote the set of
generalised logic programs. Unless stated otherwise, logic program will refer to a GLP.

A rule r as in (1) is called disjunctive if n = 0; normal if m ≤ 1 and n = 0; or
positive if n = k = 0. A program is a disjunctive logic program (DLP) if it consists
of disjunctive rules only. A program is a normal logic program (NLP) if it consists of
normal rules only. For completeness, we also consider positive logic programs (PLP),
consisting of positive rules, and Horn logic programs (HLP), consisting of rules that
are both positive and normal.

We define H(r) = {a1, . . . , am,∼b1, . . . ,∼bn} as the head of r and B(r) =
{c1, . . . , cj ,∼d1, . . . ,∼dk} as the body of r. Given a set X of literals, X+ = {a ∈
A | a ∈ X}, X− = {a ∈ A | ∼a ∈ X}, and ∼X = {∼a | a ∈ X}. For simplicity, we
sometimes use a set-based notation, expressing a rule as in (1) as H(r)+;∼H(r)−←
B(r)+,∼B(r)−.

An interpretation is represented by the subset of atoms in A that are true in the
interpretation. A (classical) model of a program P is an interpretation in which all of
the rules in P are true according to the standard definition of truth in propositional
logic, and where default negation is treated as classical negation. Mod(P) denotes the
set of classical models of P . The reduct of a program P with respect to a set of atoms
Y , denoted P Y , is the set of rules:

{H(r)+← B(r)+ | r ∈ P, H(r)− ⊆ Y, B(r)− ∩ Y = ∅}.

Note that the reduct consists of negation-free rules only. An answer set Y of a pro-
gram P is a subset-minimal model of PY . The set of all answer sets of a program P is
denoted by AS (P). For example, the program P = {a←, c; d← a,∼b} has answer
sets AS(P) = {{a, c}, {a, d}}.

AGM-Style Belief Revision of Logic Programs under Answer Set Semantics 267

An SE interpretation [28] is a pair (X,Y) of interpretations such that X ⊆ Y ⊆ A.
The set of all SE interpretations (over A) is denoted by SE . For simplicity, we often
drop set-notation within SE interpretations and simply write, e.g., (a, ab) instead of
({a}, {a, b}). An SE interpretation is an SE model of a program P if Y |= P and
X |= PY . The set of all SE models of a program P is denoted by SE (P). Note that
Y is an answer set of P iff (Y, Y) ∈ SE (P) and for every X ⊂ Y , (X,Y) �∈ SE (P).
Also, we have (Y, Y) ∈ SE (P) iff Y ∈ Mod(P).

A program P is satisfiable just if SE (P) �= ∅. Two programs P and Q are strongly
equivalent, symbolically P ≡s Q, iff SE (P) = SE (Q). Alternatively, P ≡s Q holds
iff AS (P ∪ R) = AS(Q ∪ R), for every program R [21]. We write P |=s Q iff
SE (P) ⊆ SE (Q). This means that P is satisfiable iff P �|=s ⊥.

One feature of SE models is that they contain “more information” than answer sets,
which makes them an appealing candidate for problems where programs are examined
with respect to further extension (in fact, this is what strong equivalence is about). We
illustrate this issue with the following well-known example, involving programs

P = {p; q ←} and Q =

{
p← ∼q
q ← ∼p

}
.

Here, we have AS(P) = AS(Q) = {{p}, {q}}. However, the SE models (we list them
forA = {p, q}) differ:

SE (P)={(p, p), (q, q), (p, pq), (q, pq), (pq, pq)};
SE (Q)={(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, pq)}.

This is to be expected, since P and Q behave differently with respect to program ex-
tension, and thus are not strongly equivalent. Consider R = {p ← q, q ← p}. Then
AS(P ∪R) = {{p, q}}, while AS(Q ∪R) has no answer set.

Next, we recall several properties the set of SE-models satisfies for certain pro-
gram classes. These properties when suitably combined characterize a logic program
class C in a necessary (for any program P ∈ C, SE (P) satisfies certain properties)
and sufficient (for each S satisfying these properties, there exists a P ∈ C, such that
SE (P) = S) way; see [15,6] and the overview [13]. The properties we require are
as follows: A set S of SE interpretations is well-defined if, for each (X,Y) ∈ S,
also (Y, Y) ∈ S. A well-defined set S of SE interpretations is complete if, for each
(X,Y) ∈ S, also (X,Z) ∈ S, for any Y ⊆ Z with (Z,Z) ∈ S. A complete set S of
SE interpretations is closed under here-intersection if, for each (X,Z), (Y, Z) ∈ S also
(X∩Y, Z) ∈ S. A complete set S of SE interpretations is positive definable if, for each
(X,Y) ∈ S, also (X,X) ∈ S. Last, a positive definable set S of SE interpretations is
Horn definable iff (X1, Y1), (X2, Y2) ∈ S implies that (X1 ∩ X2, Y1 ∩ Y2) ∈ S. In-
tuitively, these properties capture inherent features that the reducts of program classes
enjoy. For instance, for any positive program and any interpretation Y , it holds that
PY = P , as mirrored by the concept of positive definable. We have the following
results, c.f. [13].

– For each GLP P , SE (P) is well defined.
– For each DLP P , SE (P) is complete.

268 J. Delgrande, P. Peppas, and S. Woltran

– For each NLP P , SE (P) is closed under here-intersection.
– For each PLP P , SE (P) is positive definable.
– For each HLP P , SE (P) is Horn definable.

Moreover, for a set S of SE interpretations:

– if S is well defined, there exists a GLP P such that SE (P) = S;
– if S is complete, there exists a DLP P such that SE (P) = S;
– if S is closed under here-intersection, there exists a NLP P such that SE (P) = S;
– if S is positive definable, there exists a PLP P such that SE (P) = S; and
– if S is Horn definable, there exists a HLP P such that SE (P) = S.

Consequently, for a set of SE models S, we define t(S) to be a least (with respect to SE
models) logic program whose SE models contain S. Note that such a program is unique,
up to strong equivalence. We also overload notation and in the case that W is a set of
classical interpretations, we define t(W) to be a formula of propositional logic whose
models are exactly W . In both cases, since the alphabet is finite, t(·) is guaranteed to
exist.

2.2 Belief Revision

The best known work in belief revision is the AGM approach [1,17], in which standards
for belief revision and contraction functions are given. In belief revision, a formula is
added to a knowledge base such that the resulting knowledge base is consistent (un-
less the formula to be added is inconsistent). In the AGM approach it is assumed that
a knowledge base receives information concerning a static domain. Belief states are
modeled by logically closed sets of sentences, called belief sets. Thus, a belief set is a
set K of sentences which satisfies the constraint

if K logically entails β, then β ∈ K.

K can be seen as comprising a partial theory of the world. For belief set K and formula
α, K + α is the deductive closure of K ∪ {α}, called the expansion of K by α. K⊥ is
the inconsistent belief set (i.e., K⊥ is the set of all formulas).

Subsequently, Katsuno and Mendelzon [18] reformulated the AGM approach so that
a knowledge base was represented by a formula in some language L. The following
postulates comprise Katsuno and Mendelzon’s reformulation of the AGM revision pos-
tulates, where ∗ is a function from L × L to L:

(R1) ψ ∗ μ . μ.
(R2) If ψ ∧ μ is satisfiable, then ψ ∗ μ↔ ψ ∧ μ.
(R3) If μ is satisfiable, then ψ ∗ μ is also satisfiable.
(R4) If ψ1 ↔ ψ2 and μ1 ↔ μ2, then ψ1 ∗ μ1 ↔ ψ2 ∗ μ2.
(R5) (ψ ∗ μ) ∧ φ . ψ ∗ (μ ∧ φ).
(R6) If (ψ ∗ μ) ∧ φ is satisfiable, then ψ ∗ (μ ∧ φ) . (ψ ∗ μ) ∧ φ.

Katsuno and Mendelzon also show that a necessary and sufficient condition for con-
structing an AGM revision operator is that there is a function that associates a total
preorder on the set of interpretations with any formula ψ, as follows:

AGM-Style Belief Revision of Logic Programs under Answer Set Semantics 269

Definition 1. A faithful assignment is a function that maps each formula ψ to a total
preorder $ψ on the set of interpretationsM such that for any interpretations m1,m2:

1. If m1, m2 ∈ Mod(ψ) then m1 ≈ψ m2

2. If m1 ∈ Mod(ψ) and m2 �∈ Mod(ψ), then m1 ≺ψ m2.
3. If ψ ↔ μ then $ψ=$μ.

The resulting preorder is referred to as a faithful ranking associated with ψ. Intuitively,
m1 $ψ m2 if m1 is at least as plausible as m2 with respect to ψ. Katsuno and Mendel-
zon then provide the following representation result.

Theorem 1 ([18]). A revision operator * satisfies postulates (R1)–(R6) iff there exists
a faithful assignment that maps each formula ψ to a total preorder $ψ such that

ψ ∗ μ = t(min(Mod(μ),$ψ)).

Thus the revision of ψ by μ is characterized by those models of μ that are most plausible
according to the agent.

More recently there has been work in belief revision with respect to subsets of propo-
sitional logic. [10] extends the AGM approach to Horn clause knowledge bases while
[7] addresses revision in other syntactic restrictions of propositional logic.

2.3 Belief Change in Logic Programming

Most previous work on belief change for logic programs is referred to as update. Rep-
resentative work includes [31,2,20,14,26,30,11]. Strictly speaking, however, such ap-
proaches generally do not address “update,” at least insofar as the term is understood in
the belief revision community, but rather general change to a logic program.

A typical approach (e.g. [14], [30], and [11]) for such updates is to consider a se-
quence of logic programs P1, P2, . . . , Pn, where for Pi, Pj , and i > j, the intuition
is that Pi has higher priority or precedence over Pj . Given such a sequence, a set of
answer sets is determined that in some sense respects the ordering. This may be done
by translating the sequence into a single logic program that contains an encoding of
the priorities, or by treating the sequence as a prioritized logic program, or by some
other appropriate method. The net result, one way or another, is that one obtains a set
of answer sets from such a program sequence. In particular, one does not obtain a new
program expressed in the language of the original logic programs. Hence, these ap-
proaches fall outside the general AGM belief revision paradigm. Such approaches are
also clearly syntactic in nature, and fall into the belief base category, rather than the
belief set category.

Several principles have nonetheless been proposed for logic program update. In par-
ticular, [14] considers the question of what principles the update of logic programs
should satisfy. This is done by re-interpreting different AGM-style postulates for revis-
ing or updating classic knowledge bases, as well as introducing new principles. Among
the latter, we note the following:

Initialization ∅ ∗ P ≡ P .

270 J. Delgrande, P. Peppas, and S. Woltran

Idempotency (P ∗ P) ≡ P .
Tautology If Q is tautologous, then P ∗Q ≡ P .
Absorption If Q = R, then ((P ∗Q) ∗R) ≡ (P ∗Q).
Augmentation If Q ⊆ R, then ((P ∗Q) ∗R) ≡ (P ∗R).

It can be noted that if⊆ and≡ are interpreted in terms of strong equivalence, the first
four postulates are implied by the AGM postulates, while the last corresponds to the
first of the Darwiche and Pearl iteration postulates [8]. [23] also suggest the following
postulate, which is also implied by the AGM approach:

WIS If Q ≡s R, then (P ∗Q) ≡ (P ∗R).

Some work has focussed specifically on revision of logic programs. Early work in
this direction includes a series of investigations dealing with restoring consistency for
programs possessing no answer sets (e.g., [29]). Other work uses logic programs under
a variant of the stable semantics to specify database revision, i.e., the revision of knowl-
edge bases given as sets of atomic facts [22]. [12] addresses specific revision (and belief
merging) operators based on distances defined in terms of the SE models of the under-
lying programs. As well, [9] considers the extent to which logic programs per se, are
compatible with the AGM approach to revision.

3 Recasting Belief Revision in Terms of Answer Set Programs

The postulates and semantic construction of Section 2 are easily adapted to logic pro-
grams; for this, we draw on material from [12,10]. To begin, the expansion of logic
programs P and Q, P + Q, can be defined as a logic program R where SE (P) ∩
SE (Q) = SE (R). It can be observed that logic program expansion is unproblematic,
since for any programs P , Q of a particular class, SE (P)∩SE (Q) satisfies the seman-
tic conditions for that class; for example if SE (P) and SE (Q) are complete then so is
SE (P) ∩ SE (Q).

For the postulates, we have the following, expressed in terms of logic programs. An
(AGM logic program) revision function ∗ is a function from LP ×LP to LP satisfying
the following postulates.

(L0) P ∗Q is a GLP.
(L1) P ∗Q |=s Q.
(L2) If P +Q is satisfiable, then P +Q ≡s P ∗Q.
(L3) If Q is satisfiable, then P ∗Q is satisfiable.
(L4) If P1≡sP2 and Q1≡sQ2, then P1 ∗Q1≡sP2 ∗Q2.
(L5) (P ∗Q) +R |=s P ∗ (Q+R).
(L6) If (P ∗Q) + R is satisfiable, then P ∗ (Q+R) |=s (P ∗Q) +R.

For later reference we also give a postulate adapted from a similarly-named postulate
from Horn revision [10].

(Acyc) If, for 0 ≤ i < n, we have (P ∗Qi+1) +Qi is satisfiable and (P ∗Q0) +Qn

is satisfiable, then (P ∗Qn) +Q0 is satisfiable.

AGM-Style Belief Revision of Logic Programs under Answer Set Semantics 271

As well, faithful assignments can be defined for logic programs and SE models,
basically by changing notation:

Definition 2. A faithful assignment is a function that maps each logic program P to a
total preorder $P on SE such that for m1, m2 ∈ SE:

1. If m1, m2 ∈ SE (P) then m1 ≈P m2

2. If m1 ∈ SE (P) and m2 �∈ SE (P), then m1 ≺P m2.
3. If P ≡s Q then $P = $Q.

The resulting preorder is referred to as the faithful ranking associated with P . Finally,
one can define a function ∗ in terms of a faithful ranking by:

P ∗Q = t(min(SE (Q),$P)). (2)

The use of ∗ in (2) is suggestive; ideally one would next establish a correspondence
between functions that satisfy the postulates and those that can be specified via Defini-
tion 2. However, there are two difficulties that arise with the naı̈ve application of AGM
revision to logic programs:

1. Some postulates may not be satisfied in a faithful ranking.
2. Necessary logical consequences of (L*0)-(L*6) may not hold in some classes of

logic programs.

For the first problem, consider the following example involving normal logic pro-
grams:

P = {⊥ ← p, ⊥ ← q, ⊥ ← r.}
Q = {⊥ ← ∼p, ⊥ ← ∼q, ⊥ ← ∼r, r ← p, r ← q.}
R = {⊥ ← ∼p, ⊥ ← ∼q, ⊥ ← ∼r, r ← p, q, p← q, q ← p.}

We have the corresponding SE models:

SE(P) = {(∅, ∅)}
SE(Q) = {(pqr, pqr), (pr, pqr), (qr, pqr), (r, pqr), (∅, pqr)}
SE(R) = {(pqr, pqr), (r, pqr), (∅, pqr)}

Now consider the total preorder over these SE models:

(∅, ∅) < [(pqr, pqr), (pr, pqr), (qr, pqr)] < (∅, pqr) < (r, pqr) < 〈rest〉

It can be verified that SE ((P ∗Q)+R) = {(pqr, pqr), (r, pqr)} and SE (P ∗(Q+R)) =
{(pqr, prq)}. However, this violates (L5).

The second problem is analogous to one that cropped up in [10] with respect to Horn
theories: due to the inferential weakness of Horn theories, an operator that satisfied the
Horn revision postulates was not strong enough to guarantee the existence of a corre-
sponding faithful ranking; instead the postulate (Acyc) (which is redundant in classical
AGM revision) was required. Informally, the problem with respect to Horn theories was
that, for two Horn formulas φ and ψ, φ ∨ φ is generally not Horn.

272 J. Delgrande, P. Peppas, and S. Woltran

In terms of logic programs, one would require that, for programs P and Q, there is a
program with SE models given exactly by SE (P) ∪ SE (Q). This is the case for GLPs,
but not for any of the other classes of logic programs that we consider. Hence we obtain:

Theorem 2. For generalised logic programs, (Acyc) is a logical consequence of the
postulates (L*0) - (L*6).

This result does not obtain for other classes of logic programs, and so for these (Acyc)
is necessary.

4 Belief Revision of Answer Set Programs

To begin, we need to restrict candidate faithful rankings over SE models to just those
that are sensible with respect to a given class of logic programs. The next two definitions
serve to eliminate orderings which are incoherent with respect to a class of programs.

Definition 3. A set of SE models S is GLP (DLP, NLP, PLP, HLP) elementary iff there
exists a GLP (DLP, NLP, PLP, HLP) P such that S = SE (P).

Definition 4. A faithful ranking on SE models$P is GLP (DLP, NLP, PLP, HLP) com-
pliant iff for every GLP (DLP, NLP, PLP, HLP) Q, we have that min(SE (Q),$P) is
GLP (DLP, NLP, PLP, HLP) elementary.

We have the following conditions on faithful rankings that provide counterparts for
the notions of compliance, and that make it easier to work with a given ranking.

Definition 5. Let $ be a faithful ranking on SE and let X,Y, Z ⊆ A.
Then $ satisfies:
(G$) iff: if X ⊆ Y then (Y, Y) $ (X,Y).
(D$) iff: $ satisfies (G$) and

if X ⊆ Y ⊆ Z and (X,Y) ≈ (Z,Z) then (X,Z) $ (Z,Z).
(N$) iff: $ satisfies (D$) and

if X,Y ⊆ Z and (X,Z) ≈ (Y, Z) then (X ∩ Y, Z) $ (X,Z).
(P$) iff: $ satisfies (D$) and

if X ⊆ Y then (X,X) $ (X,Y).
(H$) iff: $ satisfies (P$) and

if X1 ⊆ Y1 and X2 ⊆ Y2 then (X1 ∩X1, Y1 ∩ Y2 $ (X1, Y1).

Theorem 3. Let $ be a faithful ranking on SE .

1. $ is GLP compliant iff $ satisfies (G$).
2. $ is DLP compliant iff $ satisfies (D$).
3. $ is NLP compliant iff $ satisfies (N$).
4. $ is PLP compliant iff $ satisfies (P$).
5. $ is HLP compliant iff $ satisfies (H$).

AGM-Style Belief Revision of Logic Programs under Answer Set Semantics 273

These notions of compliance on the one hand, and the postulate (Acyc) on the other,
prove to be sufficient to extend the AGM approach to capture revision in logic programs.
These results are described next.

The next two results (actually, two sets of results) constitute the two parts of a rep-
resentation theorem. For each, x is a class of logic programs, where x is one of GLP,
DLP, NLP, PLP, HLP, and (L0x) is postulate (L0) adjusted for class x. Then we have:

Theorem 4. Let P be a logic program of class x and$ an x-compliant faithful ranking
associated with P . Define an operator ∗ : LP×LP �→ LP by P∗Q = t(min(SE (Q),$
)). Then ∗ satisfies postulates (L0x) - (L6) and (Acyc).

Theorem 5. Let ∗ : LP × LP �→ LP be a function satisfying postulates (L0x) - (L6)
and (Acyc). Then for fixed program P of class x, there is a faithful ranking$ on SE such
that$ is x-compliant and for every program Q of class x, P ∗Q = t(min(SE (Q),$)).

Proof Outline. Let P be a logic program of type x. For any two SE models m1

and m2, t({m1,m2}) was defined to be a least (with respect to characterizing
SE models) logic program of type x containing m1 and m2. A binary relation
$′ over SE models is defined by: m1 $′ m2 iff m1 ∈ SE (P ∗ t({m1,m2})).
(Note that a point of difficulty, and in contrast with the corresponding Katsuno-
Mendelzon proof for AGM revision, is that it is possible to have both m1 �∈
SE (P ∗ t({m1,m2})) and m2 �∈ SE (P ∗ t({m1,m2})).)
The relation $′ is in general not transitive; its transitive closure $∗ is, of
course, transitive, and moreover for arbitrary logic program Q of type x, the
minimal Q SE models in $∗ are shown to be the same as the SE models of
P ∗ Q. Finally, $∗ is in general not total. The last step is to show that there is
a total preorder on SE models $ such that for any program Q of type x, the
minimal Q SE models in $∗ and $ coincide. �

5 Iteration and GLP Belief Revision

The results of the previous section show that the classical AGM postulates can be recast
in a logic programming framework. In this section we show that this is also the case
for the Darwiche and Pearl postulates for iterated revision [8]. For simplicity and space
reasons we just treat GLPs.

The four postulates for iterated revision proposed by Darwiche and Pearl, call them
the DP postulates, have been characterized by corresponding restrictions on faithful
rankings. We express these conditions in terms of logic programs. Let P be a logic
program and $ a faithful ranking with respect to P , and let us denote by $Q the total
preorder assigned to the logic program P ∗Q resulting from the revision of P by Q. To
save writing two sets of postulates, in the case of a logic program, SE (¬Q) is under-
stood to mean SE \ SE (Q). In [8] it was shown that the conditions (IL1) - (IL4) below
characterize (respectively) the four DP postulates (where, of course P and Q would be
formulas of propositional logic):

(IL1) If w,w′ ∈ SE (Q) then w ≺Q w′ iff w ≺ w′.

274 J. Delgrande, P. Peppas, and S. Woltran

(IL2) If w,w′ ∈ SE (¬Q) then w ≺Q w′ iff w ≺ w′.
(IL3) If w ∈ SE (Q) and w′ ∈ SE (¬Q) then w ≺ w′ entails w ≺Q w′.
(IL4) If w ∈ SE (Q) and w′ ∈ SE (¬Q) then w $ w′ entails w $Q w′.

The first two postulates assert that following revision by Q, (SE)-models of Q retain
their same relative ranking, as do non-models. The next two postulates assert roughly
that a non-(SE)-model of Q never becomes more plausible with respect to a model of
Q.

Thus to show that the DP postulates are consistent with (L0) - (L6) and (Acyc), it
suffices to prove the following result:

Theorem 6. Let P be a GLP, and $ a GLP compliant, faithful ranking with respect to
P . Moreover, let ∗ be the GLP revision function induced from $ via Definition 2. For
every GLP Q, there exists a GLP compliant, total preorder $Q, that is faithful with
respect to P ∗Q, and such that (IL1) - (IL4) are satisfied.

Proof. Let Q be any GLP. If Q is inconsistent, define $Q to be equal to $. Clearly,
in this case $Q satisfies (IL1) - (IL4). Moreover, since $ is GLP compliant, so is $Q.
Finally for faithfulness, since Q is inconsistent, by (L1), SE (P ∗Q) = ∅ and therefore
$Q is trivially faithful with respect to P ∗ Q. Hence the theorem is true when Q is
inconsistent.

Assume now that Q is consistent. We define $Q as follows:

w $Q w′ iff w ∈ min(SE (Q),$) or w $ w′ and w′ �∈ min(SE (Q),$). (3)

According to (3), to construct$Q, one starts with$ and simply places the minimalQ
SE models (with respect to $) at the beginning of the ranking; everything else remains
the same. This construction is not new. In the propositional setting it was proposed and
explored by Boutilier [3,4] in his treatment of iterated revision; it is known to satisfy
(IL1) - (IL4).

The ranking $Q is clearly faithful with respect to P ∗ Q. For GLP compliance, let
w be a SE model (X,Y) where X ⊂ Y , and let w′ be (Y, Y). Since (G$) entails
GLP compliance, it suffices to show that w′ $Q w. We distinguish two cases. First
assume that w′ ∈ min(SE (Q),$). Then w′ ∈ min(SE ,$Q), and therefore w′ $Q w
as desired. Second assume that w′ �∈ min(SE (Q),$). Since $ is GLP compliant, by
(G$) it follows that w′ $ w. Consequently, since w′ �∈ min(SE (Q),$), by (3) we
obtain w′ $Q w. �

6 Conclusion

In this paper we have shown how classical AGM-style revision may be expressed with
respect to the major classes of extended logic programs under the answer-set semantics.
That is, on the one hand we rephrased the AGM postulates in terms of logic programs
and on the other hand we provided a semantic construction for revision operators anal-
ogous to faithful rankings, but with respect to SE models. Except for generalised logic
programs, the postulate set had to be augmented by an “acyclicity” postulate; for the

AGM-Style Belief Revision of Logic Programs under Answer Set Semantics 275

ranking on SE models, rankings also have to satisfy a “compliance” condition, specific
to the class of logic programs being considered. Since both the new postulate and the
compliance conditions are redundant in belief revision with respect to classical logic (as
we have shown the additional postulate remains redundant for the most general class of
programs, GLPs), our approach in fact extends the AGM approach to logic programs.
Given these (postulational and semantic) characterizations, in a representation result
we then show that these characterizations capture the same set of revision functions for
each class of logic programs.

This work is interesting for several reasons. It shows how the AGM approach can
be extended to a seemingly nonmonotonic (and certainly nonclassical) framework. As
well, most previous work in logic program change was at the syntax level, in that the
results of belief change depended on how a program was expressed. In contract, the ap-
proach at hand deals with the semantic level, in which arbitrary syntactic commitments
don’t play a role. Presumably also, the formal characterization may provide guiding
principles for the development of specific revision operators.

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
functions for contraction and revision. Journal of Symbolic Logic 50(2), 510–530 (1985)

2. Alferes, J., Leite, J., Pereira, L., Przymusinska, H., Przymusinski, T.: Dynamic updates of
non-monotonic knowledge bases. Journal of Logic Programming 45(1-3), 43–70 (2000)

3. Boutilier, C.: Revision sequences and nested conditionals. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pp. 519–531 (1993)

4. Boutilier, C.: Iterated revision and minimal change of conditional beliefs. Journal of Logic
and Computation 25, 262–305 (1996)

5. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

6. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs.
Theory and Practice of Logic Programming 7(6), 745–759 (2007)

7. Creignou, N., Papini, O., Pichler, R., Woltran, S.: Belief revision within fragments of propo-
sitional logic. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proceedings of the Thirteenth
International Conference on the Principles of Knowledge Representation and Reasoning.
AAAI Press (2012)

8. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelligence 89,
1–29 (1997)

9. Delgrande, J.: A program-level approach to revising logic programs under the answer set
semantics. In: Theory and Practice of Logic Programming, 26th Int’l. Conference on Logic
Programming (ICLP 2010) Special Issue, vol. 10(4-6), pp. 681–696 (July 2010)

10. Delgrande, J., Peppas, P.: Revising Horn theories. In: Proceedings of the International Joint
Conference on Artificial Intelligence, Barcelona, Spain, pp. 839–844 (2011)

11. Delgrande, J.P., Schaub, T., Tompits, H.: A preference-based framework for updating logic
programs. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 71–83. Springer, Heidelberg (2007)

12. Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: A model-theoretic approach to belief
change in answer set programming. ACM Transactions on Computational Logic 14(2) (2013)

13. Eiter, T., Fink, M., Pührer, J., Tompits, H., Woltran, S.: Model-based recasting in answer-set
programming. Technical Report DBAI-TR-2013-83, Institute of Information Systems 184/2,
Vienna University of Technology, Austria (2013)

276 J. Delgrande, P. Peppas, and S. Woltran

14. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on
causal rejection. Theory and Practice of Logic Programming 2(6), 711–767 (2002)

15. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer set programming.
In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI
2005), pp. 97–102 (2005)

16. Flouris, G., Plexousakis, D., Antoniou, G.: On applying the AGM theory to DLs and OWL.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 216–231. Springer, Heidelberg (2005)

17. Gärdenfors, P.: Knowledge in Flux: Modelling the Dynamics of Epistemic States. The MIT
Press, Cambridge (1988)

18. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.
Artificial Intelligence 52(3), 263–294 (1991)

19. Krümpelmann, P., Kern-Isberner, G.: Belief base change operations for answer set program-
ming. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp.
294–306. Springer, Heidelberg (2012)

20. Leite, J.: Evolving Knowledge Bases: Specification and Semantics. IOS Press, Amsterdam
(2003)

21. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2(4), 526–541 (2001)

22. Marek, V.W., Truszczyński, M.: Revision programming. Theoretical Computer Science 190,
241–277 (1998)

23. Osorio, M., Cuevas, V.: Updates in answer set programming: An approach based on basic
structural properties. Theory and Practice of Logic Programming 7(4), 451–479 (2007)

24. Peppas, P.: Belief revision. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of
Knowledge Representation, pp. 317–359. Elsevier Science, San Diego (2008)

25. Sakama, C., Inoue, K.: Updating extended logic programs through abduction. In: Gelfond,
M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 147–161.
Springer, Heidelberg (1999)

26. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates.
Theory and Practice of Logic Programming 3(6), 671–713 (2003)

27. Slota, M., Leite, J.: Robust equivalence models for semantic updates of answer-set programs.
In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy,
June 10-14. AAAI Press (2012)

28. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory
and Practice of Logic Programming 3(4), 609–622 (2003)

29. Witteveen, C., van der Hoek, W., de Nivelle, H.: Revision of non-monotonic theories: Some
postulates and an application to logic programming. In: MacNish, C., Moniz Pereira, L.,
Pearce, D.J. (eds.) JELIA 1994. LNCS, vol. 838, pp. 137–151. Springer, Heidelberg (1994)

30. Zacarı́as, F., Osorio, M., Acosta Guadarrama, J.C., Dix, J.: Updates in Answer Set Program-
ming based on structural properties. In: McIlraith, S., Peppas, P., Thielscher, M. (eds.) Pro-
ceedings of the 7th International Symposium on Logical Formalizations of Commonsense
Reasoning, pp. 213–219. Fakultät für Informatik (May 2005) ISSN 1430-211X

31. Zhang, Y., Foo, N.Y.: Updating logic programs. In: Proceedings of the Thirteenth European
Conference on Artificial Intelligence (ECAI 1998), pp. 403–407 (1998)

Efficient Approximation of Well-Founded Justification
and Well-Founded Domination

Christian Drescher and Toby Walsh

NICTA and the University of New South Wales

Abstract. Many native ASP solvers exploit unfounded sets to compute conse-
quences of a logic program via some form of well-founded negation, but disregard
its contrapositive, well-founded justification (WFJ), due to computational cost.
However, we demonstrate that this can hinder propagation of many relevant con-
ditions such as reachability. In order to perform WFJ with low computational cost,
we devise a method that approximates its consequences by computing dominators
in a flowgraph, a problem for which linear-time algorithms exist. Furthermore, our
method allows for additional unfounded set inference, called well-founded dom-
ination (WFD). We show that the effect of WFJ and WFD can be simulated for
a important classes of logic programs that include reachability. Finally, we take
a stand for native ASP solvers and show that unfounded set inference cannot be
replaced by logic program transformations or translations into CNF-SAT.

1 Introduction

The task of ASP solving is naturally broken up into a combination of search and propa-
gation. The latter can be viewed in terms of inference operations like unit propagation on
the Clark’s completion [4] (UP) and unfounded set [22] computation. Unfounded sets
characterise atoms in a logic program that might circularly support themselves when
they have no external support and are thus not included in any answer set. While prop-
agating consequences from the completion is well studied and implemented[7,10,16],
the task of efficiently propagating all information provided by unfounded sets is not
yet solved [8]. Instead, native ASP solvers[7,14,20] apply unfounded set propagation
asymmetrically via some form of well-founded negation (WFN), e.g., forward loop (FL)
inference[8], to exclude atoms that have no external support. However, without their
contrapositives, well-founded justification (WFJ) or its restriction, backward loop (BL)
inference, as we shall see, propagation of many important conditions may be hindered.
An example is given through reachability, which is relevant to a range of real world
applications, and for which very natural and efficient ASP encodings exist.

In this paper, we address this deficiency. Our main contribution is a linear-time al-
gorithm that approximates the consequences of WFJ. The approach is based on a novel
graph-representation of logic programs, termed the support flowgraph. We show that the
problem of finding all dominators in such graph, for which efficient algorithms exist,
can be used to approximate WFJ and even simulate BL and WFJ for important classes of
logic programs. Our techniques give rise to new forms of ASP inference, well-founded
domination (WFD) and loop domination (LD). WFD and LD are the atom counterparts
of WFJ and BL, respectively, i.e., they include atoms into an answer set in order to

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 277–289, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 C. Drescher and T. Walsh

guarantee external support to already included atoms. Then, we analyse the ASP infer-
ence on reachability. Contrary to the intuition that ASP systems naturally and efficiently
handle reachability, we demonstrate that restricting inference to the combination of UP
and WFN can hinder its propagation. Additional information, however, can be drawn
from unfounded sets. We show that WFD and LD can lead to additional pruning, and
that applying UP, FL, BL, and LD on reachability prunes all possible values. Another
result shows the expressive power difference between ASP and CNF-SAT. We show
that UP hinders the propagation of reachability irrespective of how it is encoded, and
that simulating unfounded set inference via UP requires super-polynomial space.

2 Preliminaries

Given a set of atomic propositionsP , a (normal) logic programΠ is a finite set of rules r
of the form p0 ← p1, . . . , pm, not pm+1, . . . , not pn where pi∈P are atoms (0 ≤ i ≤
n) and not pj is the default negation of pj (m < j ≤ n). The atom head(r) = p0 is
referred to as the head of r and the set body(r) = {p1, . . . , pm, not pm+1, . . . , not pn}
as the body of r. Let body(r)+ = {p1, . . . , pm} and body(r)− = {pm+1, . . . , pn}.
We denote by atom(Π) the set of atoms occurring in Π , and by body(Π) the set of
bodies in Π . To access bodies sharing the same head p, define body(p) = {body(r) |
r∈Π, head(r) = p}. A set X⊆P is an answer set of a logic program Π if X is the
least model of the reduct {head(r)← body(r)+ |r∈Π, body(r)− ∩X = ∅}.

Answer sets can be characterised as assignments that assign true to an atom if and
only if it is included in the answer set. Extending assignments to bodies in a logic
program can greatly reduce proof complexity [8]. Hence, for a logic program Π , we
define an assignment A as a set of literals of the form Tx or Fx where x∈atom(Π)∪
body(Π). Intuitively, Tx expresses that x is assigned true and Fx that it is false in A.
The complement of a literal σ is denoted σ. Let AT = {x |Tx∈A} and AF = {x |
Fx∈A}. A is conflict-free if AT∩AF = ∅, and it is body-saturated if {β∈body(Π) |
(β+∩AF)∪(β−∩AT) �= ∅}⊆AF, i.e., all bodies containing an atom that is assigned
false must be false. Finally, A is total if atom(Π) ∪ body(Π) = AT ∪AF.

Following Lee [13], answer sets of a logic program are given through total, conflict-
free assignments that do not violate the conditions induced by the programs comple-
tion [4], and contain no non-empty unfounded set. We use the concept of nogoods for
representing the conditions from a program’s completion. Following [7], a nogood is
a set of literals δ = {σ1, . . . , σn}, and given a set of nogoodsΔ, a total and conflict-free
assignment A is a solution if δ �⊆ A for all δ ∈ Δ. In our setting, every
nogood is equivalent to a clause in CNF-SAT, e.g., the nogood δ = {σ1, . . . , σn}
represents the clause σ1 ∨ · · · ∨ σn, and vice versa, and a set of nogoods is equiva-
lent to a CNF-SAT formula. To reflect the conditions from a program’s completion, for
β = {a1, . . . , am, not am+1, . . . , not an}∈body(Π), define

Δβ =

{
{Ta1, . . . ,Tam,Fam+1, . . .Fan,Fβ},
{Fa1,Tβ}, . . . , {Fam,Tβ}, {Tam+1,Tβ}, . . . , {Tan,Tβ}

}
and for an atom p∈atom(Π) with body(p) = {β1, . . . , βk} define

Δp =
{
{Tβ1,Fp}, . . . , {Tβk,Fp}, {Fβ1, . . . ,Fβk,Tp}

}
.

Efficient Approximation of Well-Founded Justification and Well-Founded Domination 279

Intuitively, the nogoods in Δβ enforce the truth of body β if and only if all its members
are satisfied, and the nogoods in Δp enforce the truth of an atom p if and only if all at
least one of its bodies is satisfied. Let ΔΠ =

⋃
β∈body(Π)Δβ ∪

⋃
p∈atom(Π) Δp. The

solutions for ΔΠ correspond to the models of the completion of Π [7].
We now turn to unfounded sets. For a logic program Π and a set U ⊆ atom(Π),

the external support of U is defined as ESΠ(U) = {body(r) | r ∈ Π, head(r) ∈
U, body(r)+ ∩ U = ∅}. Given an assignment A, U is an unfounded set [10] of Π
w.r.t. A if ESΠ(U)⊆AF. We define A as unfounded-free if {p |U ⊆ atom(Π), p∈
U, ESΠ(U)\AF = ∅}⊆AF, i.e., all atoms from unfounded sets are false. Attention
is often restricted to unfounded sets that are subsets of strongly connected components
(i.e., loops) in the dependency graph of Π given through DG(Π) = (atom(Π) ∪
body(Π), {(body(r), head(r)) | r ∈ Π} ∪ {(p, body(r)) | r ∈ Π, p ∈ body(r)+}). A
non-empty set of atoms U ⊆ atom(Π) is a loop of Π if for any p, q ∈ U there is a
path from p to q in DG(Π) such that all atoms in the path belong to U [13]. We denote
by loop(Π) the set of all loops in Π , and define for β∈body(Π) the set scc(β) as being
composed of all atoms that belong to the same strongly connected component as β.

Next, we introduce to propagation in ASP, starting with unit propagation (UP). Given
an assignment A, for a nogood δ and σ ∈ δ, if δ\{σ} ⊆A and σ �∈ A then δ is unit
w.r.t. A and σ is unit-resulting, i.e., only unit-resulting literals can avert δ⊆A. UP is
the process of extending an assignment with unit-resulting literals. Formally, we define

UP (Π,A) =

{
A ∪ {σ} if σ is unit-resulting w.r.t. A for some δ∈ΔΠ ,

A otherwise.

There might be several choices for σ in general. Therefore, we often consider fixpoints.
The effects of UP are determined by the nogoods in ΔΠ , whose intuition was given ear-
lier in this section. In particular, fixpoint operation of UP achieves a body-saturated as-
signment. Note that the notion of unit nogoods is the nogood-equivalent of unit clauses
in CNF-SAT [17]. Hence, application of the unit clause rule (equivalently termed unit
propagation) on the CNF-SAT representation of ΔΠ simulates UP on ΔΠ .

An inference operation that aims at unfounded sets is well-founded negation (WFN).
WFN is the process of extending an assignment by assigning false to all atoms that are
included in an unfounded set. Formally, for sets of atoms Ω⊆2atom(Π) we define

WFN [Ω](Π,A) =

{
A ∪ {Fp} if U ∈Ω, p∈U, ESΠ(U)\AF = ∅,
A otherwise.

By construction, if Ω = 2atom(Π) then fixpoint operation of WFN [Ω](Π,A) achieves
an unfounded-free assignment. In practice, it is enough to consider only unfounded sets
that are loops, i.e., Ω = loop(Π), resulting in a restricted from of WFN referred to as
forward loop (FL). Fixpoint operation of FL and UP, however, simulates the effect of
WFN and UP [8]. FL can be implemented such that it takes O(|Π |) time (cf. [1]). The
contrapositive of WFN is well-founded justification (WFJ). It assigns true to the only
external support of a set of atoms that contains a true atom.

WFJ [Ω](Π,A) =

{
A ∪ {Tβ} if U ∈Ω, p∈U ∩AT, ESΠ(U)\AF = {β},
A otherwise.

280 C. Drescher and T. Walsh

Again, we consider the alternativesΩ = 2atom(Π) (WFJ) and Ω = loop(Π) (backward
loop; BL). In general, WFJ propagates more consequences than BL [8]. The time com-
plexity of WFJ is bounded byO(|Π |2), relatively high computational cost, as it amounts
to failed-literal-detection and WFN. Example 1 demonstrates the effect of WFJ.

Example 1. Consider the logic program Π given through the following set of rules.

a← not b c← d e← f c← a

b← not a d← c f ← e e← not a

Given the assignment A = {Tc}, applying UP to a fixpoint results in the (extended)
assignment {Tc,T{c},Td,T{d}}. WFN cannot propagate any additional information.
In particular, neither UP nor WFN infer Ta (which is in the only total assignment that
contains A and corresponds to an answer set of Π). However, WFJ yields T{a} since
ESΠ({c, d})\AF = {{a}}. In turn, repeated application of UP addsTa,F{not a} and
Fb to the assignment, and WFN yields Fe and Ff since ESΠ({e, f})\{{not a}} = ∅.
Now that we have established relevance of WFJ, we turn our attention to propagating
WFJ. Recall that propagating WFJ can have quadratic costs. In the next section, we will
introduce a method that approximates WFJ with only linear costs.

3 Dominators in the Support Flowgraph

We take a look at how support flows through a logic program, represented in a flowgraph.
In our context, a flowgraph is a directed graph with a specially designated source node.

Definition 1. Given a logic program Π and an assignment A. The support flowgraph
of Π w.r.t. A, denoted SFG(Π,A), is a directed graph defined as follows:
1. Create a node for each atom in atom(Π) and for each body in body(Π), labelled

with that atom or body, respectively.
2. The predecessors of an atom node p are all bodies in body(p)\AF. The predecessors

of a body node β are the set of atoms φ(β)\AF where

φ(β) =

{
β+ if scc(β) ∩ β+ = ∅
scc(β) ∩ β+ otherwise.

Observe that φ(β)⊆β+.
3. Add a special node as the predecessor for all body nodes that do not have a

predecessor, i.e., bodies from rules r ∈ Π such that φ(body(r)) = ∅.
Nodes corresponding to atoms are referred to as atom nodes, and nodes corresponding
to bodies are referred to as body nodes. We will also identify nodes with the atoms
and bodies labelling them. By construction, any predecessor of an atom is always a
body, and for every body either all predecessors are atoms it positively depends on
or the special node is the only predecessor. Note that SFG(Π,A) is a flowgraph
with source node. Its size is linear in the size of Π , and its construction can be made
incremental w.r.t. the assignment, i.e., edges are removed down any branch of the search
tree and re-inserted upon backtracking.

The intuition behind SFG(Π,A) is that (1) the node, representing syntactic truth,
provides support to every non-false body that has no positive dependency, (2) every

Efficient Approximation of Well-Founded Justification and Well-Founded Domination 281

body β potentially provides external support to all atoms that appear in the head of a
rule with body β, and in turn, (3) every non-false atom p can provide support to the
bodies that are positively dependent on p. The latter is determined by φ, according
which, bodies in a non-trivial strongly connected component can only receive support
from atoms that are in the same component. This design choice is motivated by the
desire to restrict the intake of support to atoms in strongly connected components of the
logic program.

It is easy to verify that if A is body-saturated then every body in body(Π)\AF

has a predecessor, and that by design, if A is unfounded-free then for every atom p∈
atom(Π)\AF there is a path from to p.

We use cuts of the support flowgraph to analyse the flow of support. For a directed
graph (V,E) a cut c = (S,W) is a partition of V into two disjoint subsets S and W .
For accessing the nodes in S that have an edge into W , define front(c) = {u ∈ S |
(u, v)∈E, v∈W}. Note that, in principle, edges from W to S are allowed. For nodes
in W that have an edge into S, define back(c) = {u∈W |(u, v)∈E, v∈S}.
Definition 2. Given a logic program Π and an assignment A. A cut c = (S,W)
of SFG(Π,A) is a support cut if∈S, front(c)⊆body(Π), and back(c)⊆body(Π).

In words, for any support cut c = (S,W), the condition front(c)⊆ body(Π) ensures
that whenever a body is in W then all its predecessors are in W , and back(c)⊆body(Π)
ensures that whenever an atom is in W then all its successors are in W .

Example 2. Consider the logic program Π given through the following set of rules:

{not c}

{not b}

b

c

{b, c}

{a}

a

cut c

cut c′

a← b, c b← a b← not c c← not b

Note that c = ({, c, {not b}, {not c}},
{a, b, {a}, {b, c}}) and c′=({, b, c, {b, c},
{not b}, {not c}}, {a, c, {a}}) both are
support cuts of SFG(Π, ∅). Verify
that ESΠ({a, b})= {{not c}}= front(c)
and that ESΠ({a, c}) = {{not b}} ⊆
front(c′) = {{not b}, {b, c}}.

Observe that front(c) represents external support of {a, b}, while front(c′) approxi-
mates (i.e., provides an upper bound of) the external support of {a, c}.
The following lemma guarantees that every support cut in SFG(Π,A) separates a set
of atoms from its external support.

Lemma 1. Given a logic program Π and a body-saturated assignment A. If c =
(S,W) is a support cut of SFG(Π,A) then ESΠ(W ∩ atom(Π))\AF⊆front(c).

Proof. Let c = (S,W) be a support cut of SFG(Π,A). Then, front(c) ⊆ body(Π)\
AF. By definition of a support cut, for all r ∈ Π such that body(r) �∈ AF, if head(r)∈
W \AF then either body(r)∈front(c) or body(r)∈W . Since A is body-saturated, if
body(r) ∈W then φ(body(r)) ⊆W ∩ atom(Π), and by definition of φ, body(r)+ ∩
W ∩ atom(Π) �= ∅. In conclusion, we get ESΠ(W ∩ atom(Π))\AF⊆front(c).

Hence, the set of bodies in front(c) provide an upper bound on the external support of
the atoms in W . However, we are more interested in finding support cuts that separate a

282 C. Drescher and T. Walsh

set of atoms from a single external support, i.e., ESΠ(W ∩ atom(Π))\AF = {β} for
some β ∈ body(Π). Following from the previous lemma, this single external support
is in a domination relationship with the set of atoms it supports. Formally, in a flow-
graph (V,E), a node u∈V dominates v if every path from the source node to v passes
through u. It is easy to verify that a node v∈S dominates all nodes in W if and only if
there is a cut c = (S,W) such that s∈S and front(c)⊆{v}.
Theorem 1. Given a logic program Π and a body-saturated, unfounded-free assign-
ment A. Let U ⊆ atom(Π) such that U ∩AT �= ∅, and β ∈ body(Π). If β dominates
all atoms in U in SFG(Π,A) then ESΠ(U)\AF = {β}.
The previous theorem grants the use of the domination relationship between bodies and
atoms to compute consequences from WFJ.

Example 3. Reconsider the logic program from Example 2. The body {not c} domi-
nates the atom a. Hence, if a is assigned true then WFJ will set {not c} to true.

A linear-time algorithm for finding all dominators in a flowgraph is provided in [9].
It can be made incremental, i.e., few dominators might be recomputed at any stage
during search, subject to removal and re-insertion of edges [21]. This puts our method
to approximate WFJ on the same level of computational cost as WFN, resulting in a
combined runtime complexity for unfounded set inference of O(|Π |).

The converse of Theorem 1 does not hold in general, but we can provide conditions
on logic programs for which our method is guaranteed to compute all consequences
from WFJ and BL, respectively.

Definition 3. A unary logic program is a logic program Π such that for every rule r∈
Π it holds that |body(r)+| ≤ 1. A component-unary logic program is a logic pro-
gram Π such that for every rule r ∈ Π it holds that |body(r)+ ∩ scc(body(r))| ≤ 1.

Observe that every unary logic program is a component-unary logic program, but that
component-unary logic programs are much more general. A relevant example from the
class of component-unary logic program is discussed in Section 5. In general, any logic
program can become (component-) unary as truth values are assigned during search. It
is also important to note that for logic programs that are not (component-) unary, our
method still simulates WFJ (BL) on the maximal (component-) unary sub-program.

For component-unary logic programs, the domination relationship between body-
and atom nodes in the support flowgraph captures BL.

Theorem 2. Given a component-unary logic program Π , and a body-saturated and
unfounded-free assignment A. Let L ∈ loop(Π) such that L ∩ AT �= ∅, and β ∈
body(Π). The body β dominates all atoms in L in SFG(Π,A) if and only if ESΠ(L)\
AF = {β}.
We can guarantee that our method simulates WFJ for unary logic programs.

Theorem 3. Given a unary logic program Π and a body-saturated, unfounded-free as-
signmentA. Let U⊆atom(Π) such that U∩AT �= ∅, and β∈body(Π). If β dominates
all atoms in U in SFG(Π,A) if and only if ESΠ(U)\AF = {β}.
So far, we have restricted our attention to body nodes that dominate a set of atom nodes.
In principle, however, any type of node can be a (strict) dominator. We will address
dominators that are atom nodes in the next section.

Efficient Approximation of Well-Founded Justification and Well-Founded Domination 283

4 Well-Founded Domination

We define an atom-equivalent of WFJ, that is, if a set of atoms U containing at-least
one true atom, then any atom that appears positively in all external support of U must
likewise be true.

WFD[Ω](Π,A) =

⎧⎪⎨⎪⎩
A ∪ {Tp} if U ∈Ω, q∈U ∩AT, and

ESΠ(U)\AF⊆{body(r) |r∈Π, p∈body(r)+},
A otherwise.

As before, we consider the two alternatives Ω = 2atom(Π) (well-founded domination,
WFD) and Ω = loop(Π) (loop domination, LD). We reuse the support flowgraph of
a logic program and define a new form of cut to approximate consequences of WFD,
following the strategy for approximating WFJ from the previous section.

Definition 4. Given a logic program Π and an assignment A. A cut c = (S,W)
of SFG(Π,A) is an atom cut if∈S, front(c)⊆atom(Π), and back(c)⊆body(Π).

The conditions front(c) ⊆ atom(Π) and back(c) ⊆ body(Π) for an atom cut c =
(S,W) ensure that every predecessor and successor of an atom in W is also in W .

Example 4. Consider the logic program Π given through the following set of rules:

{not d}

{not c}

c

b

d

{b, not c}

{b, not d}
a

cut c

a← b, not c a← b, not d b← not c

c← not d d← not c

Verify, c = ({, b, c, d, {not c}, {not d}},
{a, {b, not c}, {b, not d}}) is a support cut.

Observe that b appears positively in all external support of {a}, i.e., ESΠ({a}) =
{{b, not c}, {b, not d}}⊆{body(r) |r∈Π, front(c) ∈ body(r)+}.
The following lemma guarantees that every atom cut in SFG(Π,A) separates a set of
atoms U from the set of atoms that appear positively in the external support of U .

Lemma 2. Given a logic program Π and a body-saturated assignment A. If c =
(S,W) is an atom cut of SFG(Π,A) then ESΠ(W∩atom(Π))\AF⊆{body(r) |r∈
Π, front(c) ∩ body(r)+ �= ∅}.
Proof. Let c = (S,W) be an atom cut of SFG(Π,A). Let F = W ∩ {body(r) |
r ∈ Π, front(c) ∩ φ(body(r)) �= ∅}, the set of bodies in W that have a predecessor
in front(c). Construct a cut c′ = (S′,W ′) where S′ = S∪F and W ′ = W\F , i.e., all
bodies in F are shifted to S. Thus, for all β∈front(c′) it holds that front(c)∩β+ �= ∅.
Next, recall that in a support flowgraph, any predecessor of an atom node is always a
body, i.e., no other node has a predecessor in front(c). Hence, we get front(c′) ⊆
body(Π) and therefore, c′ is a support cut of SFG(Π,A). By Lemma 1, ESΠ(W ′ ∩
atom(Π))\AF ⊆ front(c′). By construction of c′ we have W ∩ atom(Π) = W ′ ∩
atom(Π), and conclude that front(c)∩ β+ �= ∅ for every β∈ESΠ(W ∩ atom(Π))\
AF.

Hence, the atoms in front(c) provide an upper bound on the atoms that appear posi-
tively in all external support of atoms in W . In order to guarantee that front(c) repre-
sents the intersection of all external support, we restrict our attention to atom cuts with
a single member in front(c), i.e., dominators. Then, we can approximate WFD.

284 C. Drescher and T. Walsh

Theorem 4. Given a logic program Π and a body-saturated assignment A. Let U ⊆
atom(Π) such that U ∩AT �= ∅, and p∈atom(Π)\U . If p dominates all atoms in U
in SFG(Π,A) then ESΠ(U)\AF⊆{body(r) |r ∈ Π, p∈body(r)+}.

Example 5. Reconsider the logic program from Example 4, where all external support
of {a} contains b, and b dominates a. If a is assigned true then WFD will set b to true.

Given a component-unary logic program, the following theorem guarantees that our
technique can be used to simulate LD.

Theorem 5. Given a component-unary logic program Π and a body-saturated assign-
ment A. Let L∈ loop(Π) such that L∩AT �= ∅, and p∈atom(Π)\L. The atom node p
dominates all atoms in L in SFG(Π,A) if and only if ESΠ(L)\AF⊆{body(r) | r∈
Π, p∈body(r)+}.

We can even simulate WFD if a unary logic program is given.

Theorem 6. Given a unary logic program Π and a body-saturated assignment A.
Let U ⊆ atom(Π) such that U ∩ AT �= ∅, and p ∈ atom(Π) \ U . The atom node p
dominates all atoms in U in SFG(Π,A) if and only if ESΠ(U)\AF⊆{body(r) |r∈
Π, p∈body(r)+}.

5 Propagating Reachability in ASP

We want to analyse the impact of propagating ASP inference on the conditions repre-
sented by a logic program. These conditions are best studied in terms of constraints over
finite domain variables (cf. CSP;[19]). Let V be a finite set of (domain) variables where
each variable v ∈ V has an associated finite domain dom(v). A constraint c is a k-ary
relation on the domains of k variables given by scope(c) ∈ V k. A (domain variable)
assignment is a function A that assigns to each variable a value from its domain. For
an assignment A, a constraint c is called domain consistent if when any v∈scope(c) is
assigned any value, there exist values in the domains of the variables in scope(c)\{v}
such that A(scope(c))∈ c, i.e., c is satisfied. We will consider variables that represent
a directed graph, called graph variables, and sets of nodes, called node set variables.
Following [6], the domain of a graph variable is given via graph inclusion. Graph inclu-
sion defines a partial ordering among graphs, e.g., given two graphs G = (V,E) and
G′ = (V ′, E′), G⊆G′ if V ⊆V ′ and E⊆E′. Then, the domain of a graph variable v
is defined as the lattice of graphs included between the greatest lower bound lb(v) and
the least upper bound ub(v) of the lattice. The domain of a node set variable is bounded
by the subsets of nodes in the graph, and we denote the greatest lower bound by lb(v)
and the least upper bound by ub(v). If for a domain variable v the associated domain is
a singleton, we say that v is fixed and simply write v instead of lb(v) or ub(v).

Reachability is a relevant condition in many ASP applications. Given a graph vari-
able G, and node set variables S and N , the constraint reachable(G,S,N) states that
N is the set of nodes reachable from some node in S, i.e., the subgraph induced by N is
connected. For encoding reachability into ASP we use atoms of the form edge(Y,X),
start(X), and reached(X) to capture the membership of edges in G, and nodes in S

Efficient Approximation of Well-Founded Justification and Well-Founded Domination 285

and N , respectively. Nodes in G are given implicitly through the edges in G. We denote
by REACH[G,S] the following rules:

∀ X∈ub(S) : reached(X)← start(X)

∀ (Y,X)∈ub(G) : reached(X)← reached(Y), edge(Y,X)

We assume that rules for edge(Y,X) and start(X) are provided elsewhere, as we re-
strict our attention to reachability. It is easy to verify that a node t ∈N if and only if
Treached(t) is in an assignment representing an answer set of the resulting program.
In the following, we study the impact of propagation on REACH[G,S] in terms of
consistency on reachability. We start with the special case where G and S are fixed.

Theorem 7. If G and S are fixed, then UP and FL on REACH[G,S] achieve domain
consistency on reachable(G,S,N).

Proof. Assume UP and FL reached the fixpoint A, and A is conflict-free. Let v ∈ G.
If Freached(v) �∈ A then ESREACH[G,S]({v})\AF �= ∅. Hence, either F{start(v)} �∈
A or F{reached(u), edge(u, v)} �∈ A for some (u, v) ∈ G, i.e., either v ∈ S or
v has a predecessor u that is reached. By successively applying the same argument, we
obtain loops, each of which concludes in a start node. Hence, there is an assignment
with v ∈ N satisfying the constraint. On the other hand, if Treached(v) �∈ A then
the nogood {Freached(v),T{start(v)}} ∈ Δreached(v) guarantees that v �∈ S. Simi-
larly, for every (u, v) ∈ G, the nogood {Freached(v),T{reached(u), edge(u, v)}} ∈
ΔREACH[G,S] guarantees that every predecessor u is disconnected. Moreover, the atoms
in each loop L starting from v are either disconnected, i.e., we have ESREACH[G,S](L)\
AF = ∅, or (since the graph is fixed) their subsets are guaranteed external support via
a path that does not go through v. Hence, there is an assignment with v �∈ N satisfying
the constraint. In conclusion, reachable(G,S,N) is domain consistent.

We now turn our attention to another special case of reachable(G,S,N), that is, the
value of N is fixed. Then, UP and WFN on REACH[G,S] can hinder propagation, in
general, and the construction of a counter example is easy. However, we can guarantee
that the addition of WFJ inference prunes all values.

Theorem 8. If N is fixed then UP and BL on REACH[G,S] achieve domain consis-
tency on reachable(G,S,N).

Proof. Assume UP and BL result in the fixpoint A, and A is conflict-free. Let (u, v)∈
ub(G). If Tedge(u, v) �∈A the nogood {T{reached(u), edge(u, v)},Freached(v)}∈
ΔREACH[G,S] guarantees that (u, v) does not connect a node that is reached with a
disconnected one. Hence, there is an assignment with (u, v) ∈ G satisfying the con-
straint. On the other hand, if Fedge(u, v) �∈ A then ESREACH[G,S]({v}) \ AF �=
{{reached(u), edge(u, v)}}, i.e., if v is reached then either v ∈ S or there is some
other edge that can connect a reached node to v. By successively applying the same
argument, we obtain loops, each of which concludes in a node from S. Hence, there is
an assignment with (u, v) �∈ G satisfying the constraint. The proof for any v ∈ ub(S)
follows similar arguments. We conclude that reachable(G,S,N) is domain consistent.

If the value of N is not fixed, however, domain consistency is not guaranteed. (Again,
the construction of a counter example is easy.) Additional pruning is required. We can
show that UP, FL, BL, LD, altogether propagate reachability efficiently.

286 C. Drescher and T. Walsh

Theorem 9. Propagating UP, FL, BL and LD on REACH[G,S] achieves domain con-
sistency on reachable(G,S,N).

Proof (Sketch). Assume UP, FL, BL and LD reached the fixpoint A, and A is conflict-
free. For any edge (u, v) ∈ ub(G), the proof follows the one for Theorem 8, i.e., UP
ensures that when assigning (u, v) ∈ G the edge does not connect a node that is reached
with a disconnected one, and BL guarantees that when assigning (u, v) �∈ G there is
some other way to connect to v if v ∈ N . Similarly, for any node v ∈ ub(S), UP
ensures that when assigning v ∈ S the node v is reached, and BL guarantees that when
assigning v �∈ S there is some path connecting a start node to v if v ∈ N . Moreover,
following the arguments in the proof of Theorem 7, FL removes nodes from ub(N)
that cannot be reached in any satisfying domain variable assignment, and for every
node v ∈ ub(N), if Treached(v) �∈ A then v �∈ lb(S) and every predecessor can
be disconnected. It remains to show that if Treached(v) �∈ A then the atoms in each
loop L starting from v can be disconnected or reached via some path that does not go
through v. This is guaranteed by LD, i.e., we have ESΠ(L)\AF �⊆ {body(r) | r ∈
Π, reached(v)∈ body(r)+}. Hence, there is an assignment with v �∈ N satisfying the
constraint. In conclusion, reachable(G,S,N) is domain consistent.

While previous theorems establish practical relevance of BL and LD, recall that, to our
knowledge, existing ASP solvers to not implement BL and LD. However, our efficient
approximations of WFJ and WFD can be used to simulate BL and LD, respectively,
since REACH[G,S] results in a component-unary logic program. If, in addition, the
value of G is fixed such that all atoms in REACH[G,S] of the form edge(Y,X) can be
dropped, resulting in a unary logic program, then our method even simulates WFJ and
WFD, respectively.

While propagating unfounded sets via FL, UP, and LD on REACH[G,S] prunes all
values, we can show that a similar result cannot be simulated by UP. In fact, we show
that there is no polynomial size logic program that encodes reachability such that UP
achieves domain consistency.

Theorem 10. There is no polynomial size logic programming encoding of reachability
such that UP achieves domain consistency.

The proof follows from the fact that there is no CNF-SAT encoding.

Proof. Bessiere et al. [2] showed that there is a polynomial size encoding of a constraint
into CNF-SAT such that applying unit propagation achieves domain consistency on
the constraint if and only if a domain consistency propagator for the constraint can be
computed by a polynomial size monotone circuit. Thus, if there exists a polynomial size
monotone circuit that computes reachability, we can construct a polynomial size CNF-
SAT encoding of reachability such that unit propagation achieves domain consistency.
But Karchmer and Wigderson showed that the smallest monotone Boolean circuit for
reachability is super-polynomial in the number of vertices in a graph [12]. Since UP on
a logic program can be simulated by unit-propagation on a polynomial size CNF-SAT
encoding of the program’s completion, the smallest encoding of reachability into a logic
program such that UP does not hinder propagation is also super-polynomial.

A consequence of previous theorems for SAT-based approaches to ASP solving is that
unfounded set inference cannot be simulated by UP using polynomial space. Hence,

Efficient Approximation of Well-Founded Justification and Well-Founded Domination 287

Table 1. Experimental Data

UP+FL UP+FL+BL
Benchmark Class #N #S Time #B #C #S Time #B #C
Connected Dominating Set 21 20 202 11320.9k 6339.2k 20 3342 6887.4k 3655.0k
Generalised Slitherlink 29 29 3 22.3k 4.7k 29 4 1.3k 0.4k
Graph Partitioning 13 13 147 3159.4k 2344.5k 13 785 1138.5k 810.2k
Hamiltonian Path 29 29 1 44.0k 17.9k 29 8 6.1k 2.9k
Maze Generation 29 26 53 3831.5k 1906.4k 20 1700 1425.8k 880.8k

native ASP solvers can compute more consequences from logic programs than SAT-
based solvers. This adds to the study of separating ASP and CNF-SAT in terms of
expressive power (see Section 7).

6 Experiments

Implementing Tarjan’s linear-time algorithm for finding all dominators in a flowgraph [9]
is a challenging engineering exercise as it relies on sophisticated data structures. Hence,
for practical reasons, we have integrated BL into the ASP solver clasp (2.1.1) via failed-
literal-detection and FL. This has high computational costs. To compare with the state-of-
the-art, i.e., using only UP and FL, we include the default setting of clasp in our analysis.
We conducted experiments on search problems that make use of reachability conditions.
Our benchmarks stem from the Second ASP Competition [5]. The following definitions
apply to Table 1 of results. UP+FL denotes clasp’s default setting, and UP+FL+BL de-
notes the setting that integrates BL. In each benchmark class, #N denotes the total number
of instances and #S denotes the number of instances for which the program terminated
within the allowed time. Time denotes the time taken to compute all instances in the class
that were solved in both settings. Similarly, #B denotes the total number of branches and
#C denotes the number of conflicts during search, aggregated over all instances in the
class that were solved in both settings. Experiments were run on a Linux PC, where each
run was limited to 1200s time on a single 2.00 GHz core.

From the results shown in Table 1, it can be concluded that information from BL
prunes search dramatically: The additional propagation in UP+FL+BL decreases the
number of branches and conflicts by roughly one order of magnitude in comparison
to UP+FL. On the other hand, high computational costs of propagating BL via failed-
literal-detection are clearly reflected in the run times of UP+FL+BL. These costs, how-
ever, can be drastically reduced by using Tarjan’s linear-time algorithm, and by making
the computation of dominators incremental. In conclusion, our experiments encourage
the implementation of our techniques.

7 Related Work

A straightforward way of computing answer sets of logic programs is a reduction to CNF-
SAT. This may require the introduction of additional atoms. As shown by Lifschitz and
Razborov [15], it is unlikely that, in general, a polynomial-size translation from ASP
to CNF-SAT would not require additional atoms. Evidence is provided by the encoding

288 C. Drescher and T. Walsh

of Lin and Zhao [16] that has exponential space complexity. Another result, shown by
Niemelä [18], is that ASP cannot be translated into CNF-SAT in a faithful and modular
way. Reductions based on level-mappings devised in [11] are non-modular but can be
computed systematically, using only sub-quadratic space. Our work adds a new result to
the study of translating ASP to CNF-SAT. As we have shown in Theorem 10, unfounded
set inference cannot be simulated by applying unit propagation on a polynomial-size
CNF-SAT encoding, irrespective of the addition of new atoms. To coin a term, reductions
from ASP to CNF-SAT cannot preserve inference, i.e., in general, every reduction hinders
the propagation of consequences from a logic program. Hence, an advantage of native
ASP solvers like clasp [7], dlv [14], and smodels [20] over SAT-based systems [10,11,16]
is that they can potentially propagate more consequences, e.g., using our techniques.

Formal means for analysing ASP computations in terms of inference were intro-
duced by Gebser and Schaub [8]. According which, smodels’ atmost and dlv’s greatest
unfounded set detection, both compute WFN and FL, respectively. Similarly, clasp’s
unfounded set check computes FL [1]. Gebser and Schaub also identified the backward
propagation operations for unfounded sets, i.e., WFJ and BL. A method that can be
used to propagate BL has been proposed by Chen, Ji and Lin [3], but it is inefficient
due to high computational costs. We have devised a linear-time approximation of WFJ
and shown under which conditions our method simulates WFJ and BL, respectively.
Moreover, we have put forward WFD and LD as new forms of inference that can draw
additional consequences from unfounded sets. Our approach uses a reduction to the
task of finding all dominators in the support flowgraph of a logic program, for which
efficient algorithms exist. For instance, Tarjan’s algorithm [9] runs in linear time, and
computing all dominators can be made incremental [21].

8 Conclusions

Our work is motivated by the desire to understand the effect of propagation in ASP
and the diverse modelling choices that arise from logic programming on the process
of solving a combinatorial problem. In this paper, we have established that unfounded
set inference cannot be simulated by UP on logic program transformations or transla-
tions into CNF-SAT. Evidence of practical relevance was given through the problem of
reachability. However, as we have seen, even some restricted variants of reachability
cannot be efficiently propagated by a combination of UP and WFN. This gap can be
closed with WFJ, but existing implementations are inefficient. Our main contribution
was a linear-time approximation of WFJ based on a reduction to finding all dominators
in a flowgraph representation of the logic program. This gave rise to novel forms of
inference, WFD and DL, which can be approximated using the same techniques. We
have outlined classes of logic programs for which our approximations simulate WFJ
and BL, and WFD and LD, respectively. This includes reachability. Our experimental
data encourages the integration of an incremental linear-time algorithm for finding all
dominators into an ASP system. Despite our best efforts, efficient algorithms for fully
propagating WFJ and WFD remain an open problem.

Acknowledgements. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

Efficient Approximation of Well-Founded Justification and Well-Founded Domination 289

References

1. Anger, C., Gebser, M., Schaub, T.: Approaching the core of unfounded sets. In: Proceedings
of NMR 2006, pp. 58–66 (2006)

2. Bessière, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and decomposi-
tions of global constraints. In: Proceedings of IJCAI 2009, pp. 412–418 (2009)

3. Chen, X., Ji, J., Lin, F.: Computing loops with at most one external support rule. ACM Trans.
Comput. Logic 14(1), 3:1–3:34 (2013)

4. Clark, K.: Negation as failure. In: Logic and Data Bases, pp. 293–322. Plenum Press (1978)
5. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set

programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

6. Dooms, G., Deville, Y., Dupont, P.E.: CP(Graph): Introducing a graph computation domain
in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 211–225.
Springer, Heidelberg (2005)

7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Proceedings of IJCAI 2007, pp. 386–392. AAAI Press/MIT Press (2007)

8. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11–25. Springer, Heidelberg (2006)

9. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited. In: Proceedings of SODA 2004,
pp. 869–878. SIAM (2004)

10. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

11. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to
propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 111–130. Springer,
Heidelberg (2011)

12. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic
depth. SIAM Journal on Discrete Mathematics 3(2), 255–265 (1990)

13. Lee, J.: A model-theoretic counterpart of loop formulas. In: Proceedings of IJCAI 2005, pp.
503–508. Professional Book Center (2005)

14. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv sys-
tem for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562
(2006)

15. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic 7(2), 261–268 (2006)

16. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. In:
Proceedings of AAAI 2002, pp. 112–118. AAAI Press/MIT Press (2002)

17. Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical
Computer Science 85, 112–133 (2005)

18. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

19. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier
(2006)

20. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

21. Sreedhar, V.C., Gao, G.R., Lee, Y.F.: Incremental computation of dominator trees. ACM
Trans. Program. Lang. Syst. 19(2), 239–252 (1997)

22. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. Journal of the ACM 38(3), 620–650 (1991)

Approximate Epistemic Planning with Postdiction
as Answer-Set Programming

Manfred Eppe, Mehul Bhatt, and Frank Dylla

University of Bremen, Germany
{meppe,bhatt,dylla}@informatik.uni-bremen.de

Abstract. We propose a history-based approximation of the Possible Worlds Se-
mantics (PWS) for reasoning about knowledge and action. A respective plan-
ning system is implemented by a transformation of the problem domain to an
Answer-Set Program. The novelty of our approach is elaboration tolerant support
for postdiction under the condition that the plan existence problem is still solvable
in NP, as compared to ΣP

2 for non-approximated PWS of Son and Baral [20].
We demonstrate our planner with standard problems and present its integration in
a cognitive robotics framework for high-level control in a smart home.

1 Introduction

Dealing with incomplete knowledge in the presence of abnormalities, unobservable pro-
cesses, and other real world considerations is a crucial requirement for real-world plan-
ning systems. Action-theoretic formalizations for handling incomplete knowledge can
be traced back to the Possible Worlds Semantics (PWS) of Moore [15]. Naive formal-
izations of the PWS result in search with complete knowledge in an exponential num-
ber of possible worlds. The planning complexity for each of these worlds again ranges
from polynomial to exponential time [1] (depending on different assumptions and re-
strictions). Baral et al. [2] show that in case of the action language Ak the planning
problem is ΣP

2 complete (under certain restrictions). This high complexity is a prob-
lem for the application of epistemic planning in real-world applications like cognitive
robotics or smart environments, where real-time response is needed. One approach to
reduce complexity is the approximation of PWS. Son and Baral [20] developed the 0-
approximation semantics for Akwhich results in an NP-complete solution for the plan
existence problem. However, the application of approximations does not support all
kinds of epistemic reasoning, like postdiction – a useful inference pattern of knowledge
acquisition, e.g., to perform failure diagnosis and abnormality detection. Abnormali-
ties are related to the qualification problem: it is not possible to model all conditions
under which an action is successful. A partial solution to this is execution monitoring
(e.g. [18]), i.e. action success is observed by means of specific sensors. If expected
effects are not achieved, one can postdict about an occurred abnormality.

In Section 3 we present the core contribution of this paper: a ‘history’ based approxi-
mation of the PWS — called h-approximation (HPX) — which supports postdiction.
Here, the notion of history is used in an epistemic sense of maintaining and refining
knowledge about the past by postdiction and commonsense law of inertia. For instance,
if an agent moves trough a door (say at t = 2) and later (at some t′ > 2) comes to
know that it is behind the door, then it can postdict that the door must have been open at

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 290–303, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Approximate Epistemic Planning with Postdiction as Answer-Set Programming 291

t = 2. Solving the plan-existence problem with h-approximation is in NP and finding
optimal plans is in ΔP

2 . Despite the low complexity of HPX compared to Ak
1 it is

more expressive in the sense that it allows to make propositions about the past. Hence,
the relation between HPX and Ak is not trivial and deserves a thorough investigation
which is provided in Section 4: We extend Ak and define a temporal query semantics
(Ak

TQS) which allows to express knowledge about the past. This allows us to show that
HPX is sound wrt. a temporal possible worlds formalization of action and knowledge.

A planning system for HPX is developed via its interpretation as an Answer Set
Program (ASP). The formalization supports both sequential and (with some restric-
tions) concurrent planning, and conditional plans are generated with off-the-shelf ASP
solvers. We provide a case study in a smart home as a proof of concept in Section 5.

2 Related Work

Approximations of the PWS have been proposed, primarily driven by the need to re-
duce the complexity of planning with incomplete knowledge vis-a-vis the tradeoff with
support for expressiveness and inference capabilities. For such approximations, we are
interested in: (i) the extent to which postdiction is supported; (ii) whether they are
guaranteed to be epistemically accurate, (iii) their tolerance to problem elaboration
[13] and (iv) their computational complexity. We identified that many approaches in-
deed support postdiction, but only in an ad-hoc manner: Domain-dependent postdiction
rules and knowledge-level effects of actions are implemented manually and depend on
correctness of the manual encoding. For this reason, epistemic accuracy is not guar-
anteed. Further, even if postdiction rules are implemented epistemically correct wrt. a
certain problem, then correctness of these rules may not hold anymore if the problem
is elaborated (see Example 1): Hence, ad-hoc formalization of postdiction rules is not
elaboration tolerant.

Epistemic Action Formalisms. Scherl and Levesque [19] provide an epistemic ex-
tension and a solution to the frame problem for the Situation Calculus (SC) , and Patkos
and Plexousakis [16] as well as Miller et al. [14] provide epistemic theories for the
Event Calculus. These approaches are all complete wrt. PWS and hence suffer from
a high computational complexity. Thielscher [21] describes how knowledge is repre-
sented in the Fluent Calculus (FC). The implementation in the FC-based framework
FLUX is not elaboration-tolerant as it requires manual encoding of knowledge-level
effects of actions. Liu and Levesque [11] use a progression operator to approximate
PWS. The result is a tractable treatment of the projection problem, but again postdic-
tion is not supported. The PKS planner [17] is able to deal with incomplete knowledge,
but postdiction is only supported in an ad-hoc manner. Vlaeminck et al. [24] propose a
first order logical framework to approximatePWS. The framework supports reasoning
about the past, allows for elaboration tolerant postdiction reasoning, and the projection
problem is solvable in polynomial time when using their approximation method. How-
ever, the authors do not provide a practical implementation and evaluation and they do
not formally relate their approach to other epistemic action languages. To the best of

1 Throughout the paper we usually refer to the full PWS semantics of Ak . Whenever referring
to the 0-approximation semantics this is explicitly stated.

292 M. Eppe, M. Bhatt, and F. Dylla

our knowledge, besides [24, 14] there exists no approach which employs a postdiction
mechanism that is based on explicit knowledge about the past.

There exist several PDDL-based planners that deal with incomplete knowledge.
These planners typically employ some form of PWS semantics and achieve high per-
formance via practical optimizations such as BDDs [3] or heuristics that build on a
relaxed version of the planning problem [8]. The way how states are modeled can also
heavily affect performance, as shown by To [22] with the minimal-DNF approach. With
HPX , we propose another alternative state representation which is based on explicit
knowledge about the past.

The A-Family of Languages. The action language A [7] is originally defined for
domains with complete knowledge. Later, epistemic extensions which consider incom-
plete knowledge and sensing were defined. Our work is strongly influenced by these ap-
proaches [12, 20, 23]: Lobo et al. [12] use epistemic logic programming and formu-
late a PWS based epistemic semantics. The original Ak semantics is based on PWS
and (under some restrictions) is sound and complete wrt. the approaches by Lobo et al.
[12] and Scherl and Levesque [19]. Tu et al. [23] introduce Ac

k and add Static Causal
Laws (SCL) to the 0-approximation semantics of Ak. They implement Ac

k in form of
the ASCP planning system which – like HPX – is based on ASP. The plan-existence
problem for Ac

k is still NP-complete [23]. The authors demonstrate that SCL can be
used for an ad-hoc implementation of postdiction. However, we provide the following
example to show that an ad-hoc realisation of postdiction is not elaboration tolerant:

Example 1. A robot can drive into a room through a door d. It will be in the room
if the door is open: causes(drived,in,{opend}). An auxiliary fluent did drived represents
that the action has been executed: causes(drived,did drived,∅); A manually encoded SCL
if(opend,{did drived,in}) postdicts that if the robot is in the destination room after driving
the door must be open. The robot has a location sensor to determine whether it arrived: de-
termines(sense in,in). Consider an empty initial state δinit = ∅, a door d = 1 and a sequence
α = [drive1; sense in]. Here Ac

k correctly generates a state δ′ ⊇ {open1} where the door is
open if the robot is in the room. Now consider an elaboration of the problem with two doors
(d ∈ {1, 2}) and a sequence α = [drive1; drive2; sense in]. By Definitions 4–8 and the closure
operator CLD in [23], Ac

k produces a state δ′′ ⊇ {open1, open2} where the agent knows that
door 1 is open, even though it may actually be closed: this is not sound wrt. PWS semantics.

Another issue is concurrent acting and sensing. Son and Baral [20] (p. 39) describe
a modified transition function for the 0-approximation to support this form of concur-
rency: they model sensing as determining the value of a fluent after the physical effects
are applied. However, this workaround does not support some trivial commonsense in-
ference patterns:

Example 2. Consider a variation of the Yale shooting scenario where an agent can sense
whether the gun was loaded when pulling the trigger because she hears the bang. Without know-
ing whether the gun was initially loaded, the agent should be able to immediately infer whether or
not the turkey is dead depending on the noise. This is not possible with the proposed workaround
because it models sensing as the acquisition of a fluent’s value after the execution of the sensing:
Here the gun is unloaded after executing the shooting, regardless of whether it was loaded be-
fore. HPX allows for such inference because here sensing yields knowledge about the value of
a fluent at the time sensing is executed.

Approximate Epistemic Planning with Postdiction as Answer-Set Programming 293

3 h-Approximation and Its Translation to ASP

The formalization is based on a foundational theory Γhapx and on a set of translation
rules T that are applied to a planning domainP .P is modelled using a PDDL like syntax
and consists of the language elements in (1a-1f) as follows: Value propositions (VP)
denote initial facts (1a); Oneof constraints (OC) denote exclusive-or knowledge (1b);
Goal propositions (G) denote goals2 (1c); Knowledge propositions (KP) denote sensing
(1d); Executability conditions (EXC) denote what an agent must know in order to execute
an action (1e); Effect propositions (EP) denote conditional action effects (1f).

(:init linit) (1a) (oneof loo1 . . . loon) (1b) (:goal type (and lg1 . . . lgn)) (1c)
(:action a

:observe f)
(1d) (:action a executable

(and lex1 . . . lexn))
(1e) (:action a :effect

when (and lc1 . . . lcn) le)
(1f)

Formally, a planning domain P is a tuple 〈I,A, G〉 where:

– I is a set of value propositions (1a) and oneof-constraints (1b)
– A is a set of actions. An action a is a tuple 〈EPa,KPa, EXCa〉 consisting of a set

of effect propositions EPa (1f), a set of knowledge propositions KPa (1d) and an
executability condition EXCa (1e).

– G is a set of goal propositions (1c).

An ASP translation of P , denoted by LP(P), consists of a domain-dependent theory
and a domain-independent theory:

– Domain-dependent theory (Γworld): It consists of a set of rules Γini representing
initial knowledge; Γact representing actions; and Γgoals representing goals.

– Domain-independent theory (Γhapx): This consists of a set of rules to handle inertia
(Γin); sensing (Γsen); concurrency (Γconc), plan verification (Γverify) as well as
plan-generation & optimization (Γplan).

The resulting Logic Program LP(P) is given as:

LP (P) = [Γin ∪ Γsen ∪ Γconc ∪ Γverify ∪ Γplan] ∪ [Γini ∪ Γact ∪ Γgoal] (2)

Notation. We use the variable symbols A for action, EP for effect proposition, KP for knowl-
edge proposition, T for time (or step), BR for branch, and F for fluent. L denotes fluent literals
of the form F or ¬F. L denotes the complement of L. For a predicate p(. . .,L,. . .) with a
literal argument, we denote strong negation “−” with the ¬ symbol as prefix to the fluent.
For instance, we denote -knows(F,T,T,BR) by knows(¬ F,T,T,BR). |L| is used to
“positify” a literal, i.e. |¬F| = F and |F| = F. Respective small letter symbols denote con-
stants. For example knows(l,t,t′,br) denotes that at step t′ in branch br it is known that
literal l holds at step t.

2 type is either weak or strong. A weak goal must be achieved in only one branch of the
conditional plan while a strong goal must be achieved in all branches (see e.g. [3]).

294 M. Eppe, M. Bhatt, and F. Dylla

3.1 Translation Rules: (P T1–T8�−→ Γworld)

The domain dependent theory Γworld is obtained by applying the set of translation rules
T = {T1, . . . ,T8} on a planning domain P .

Actions / Fluents Declarations (T1). For every fluent f or action a, LP(P) contains:
fluent(f). action(a). (T1)

Knowledge (I T2–T3�−→ Γini). Facts Γini for initial knowledge are obtained by applying
translation rules (T2-T3). For each value proposition (1a) we generate the fact:

knows(linit, 0, 0, 0). (T2)

For each oneof-constraint (1b) with the set of literals C = {loc1 . . . locn } we consider one
literal loci ∈ C. Let {l+i1 , . . . , l

+
im
} = C\loci be the subset of literals except loci . Then, for

each loci ∈ C we generate the LP rule:

knows(loci , 0, T, BR)← knows(l+i1 , 0, T, BR), . . . , knows(l+im , 0, T, BR). (T3a)

knows(l+i1 , 0, T, BR)← knows(loci , 0, T, BR). . . .

knows(l+im , 0, T, BR)← knows(loci , 0, T, BR).
(T3b)

(T3a) denotes that if all literals except one are known not to hold, then the remaining
one must hold. Rules (T3b) represent that if one literal is known to hold, then all others
do not hold. At this stage of our work we only support static causal laws (SCL) to
constrain the initial state, because this is the only state in which they do not interfere
with the postdiction rules.

Actions (A T4–T7�−→ Γact). The generation of rules representing actions covers exe-
cutability conditions, knowledge-level effects, and knowledge propositions.

Executability Conditions. These reflect what an agent must know to execute an action.
Let EXCa of the form (1e) be the executability condition of action a in P . Then LP(P)
contains the following constraints, where an atom occ(a,t,br) denotes the occurrence
of action a at step t in branch br:

← occ(a, T,BR), not knows(lex1 , T, T,BR). . . .

← occ(a, T,BR), not knows(lexn , T, T,BR).
(T4)

Effect Propositions. For every effect proposition ep ∈ EPa, of the form (when (and
fc
1 . . . fc

np ¬fc
np+1 . . .¬fc

nn) l
e), LP(P) contains (T5), where hasPC/2 (resp. hasNC/2)

represents postive (resp. negative) condition literals, hasEff/2 represents effect literals
and hasEP/2 assigns an effect proposition to an action:

hasEP (a, ep). hasEff(ep, le).

hasPC(ep, f c
1). . . . hasPC(ep, f c

np). . . .

hasNC(ep, f c
np+1). . . . hasNC(ep, f c

nn).

(T5)

Knowledge Level Effects of Non-Sensing Actions. (T6a-T6c)3

knows(le, T + 1, T1, BR) ←apply(ep,T,BR), T1 > T,

knows(lc1, T, T1, BR), . . . , knows(lcn, T, T1, BR).
(T6a)

3 The frame problem is handled by minimization in the stable model semantics (see e.g. [10]).

Approximate Epistemic Planning with Postdiction as Answer-Set Programming 295

knows(lci , T, T1, BR) ←apply(ep,T, BR),

knows(le, T + 1, T1, BR), knows(le, T, T1, BR).
(T6b)

knows(lc−i , T, T1, BR) ←apply(ep,T, BR), knows(le, T + 1, T1, BR),

knows(lc+i1 , T, T1, BR), . . . , knows(lc+in , T, T1, BR).
(T6c)

� Causation (T6a). If all condition literals lci of an EP (1f) are known to hold at t, and
if the action is applied at t, then at t′ > t, it is known that its effects hold at t + 1. The
atom apply(ep,t,br) represents that a with the EP ep happens at t in br.

� Positive postdiction (T6b). For each condition literal lci ∈ {lc1, . . . , lck} of an effect
proposition ep we add a rule (T6b) to the LP. This defines how knowledge about the
condition of an effect proposition is postdicted by knowing that the effect holds after the
action but did not hold before. For example, if at t′ in br it is known that the complement
l of an effect literal of an EP holds at some t < t′ (i.e., knows(l,t,t′,br)), and if the
EP is applied at t, and if it is known that the effect literal holds at t + 1 (knows(l,t+
1,t′,br)), then the EP must have set the effect. Therefore one can conclude that the
conditions {lc1, . . . , lck} of the EP must hold at t.

� Negative postdiction (T6c). For each potentially unknown condition literal lc−i ∈
{lc1, . . . , lcn} of an effect proposition ep we add one rule (T6c) to the program, where
{lc+i1 , . . . , lc+in } = {lc1, . . . , lcn}\lc−i are the condition literals that are known to hold.
This covers the case where we postdict that a condition must be false if the effect is
known not to hold after the action and all other conditions are known to hold. For
example, if at t′ it is known that the complement of an effect literal l holds at some t+1
with t+1 ≤ t′, and if the EP is applied at t, and if it is known that all condition literals
hold at t, except one literal lc−i for which it is unknown whether it holds. Then the
complement of lc−i must hold because otherwise the effect literal would hold at t+ 1.

Knowledge Propositions. We assign a KP (1d) to an action a using hasKP/2:

hasKP (a, f). (T7)

Goals (G T8�−→ Γgoal). For literals lsg1 , ..., lsgn in a strong goal proposition and
lwg
1 , ..., lwg

m in a weak goal proposition we write:

sGoal(T,BR)← knows(lsg1 , T, T,BR), ..., knows(lsgn , T, T,BR), s(T), br(BR).
(T8a)

wGoal(T,BR)← knows(lwg
1 , T, T,BR), ..., knows(lwg

m , T, T,BR), s(T), br(BR).
(T8b)

where an atom sGoal(t,br) (resp. wGoal(t,br)) represents that the strong (resp.
weak) goal is achieved at t in br.

3.2 Γhapx – Foundational Theory (F1–F5)

The foundational domain-independent HPX -theory is shown in Listing 1. It covers
concurrency, inertia, sensing, goals, plan-generation and plan optimization. Line 1 sets
the maximal plan length maxS and width maxBr.

296 M. Eppe, M. Bhatt, and F. Dylla

Listing 1. Domain independent theory (Γhapx)

1 s(0..maxS). ss(0..maxS-1). br(0..maxBr).
2 � Concurrency (Γconc)
3 apply(EP,T,BR) :- hasEP(A,EP), occ(A,T,BR).
4 contra(EP1,EP) :- hasPC(EP1,F),hasNC(EP,F).
5 :- 2{apply(EP,T,BR):hasEff(EP,F)},br(BR), s(T), fluent(F).
6 :- apply(EP,T,BR), hasEff(EP,F), apply(EP1,T,BR),

hasEff(EP1,¬F), EP != EP1, not contra(EP1,EP).
7 � Inertia (Γin)
8 initApp(F,T,BR) :- apply(EP,T,BR),hasEff(EP,F).
9 kNotInit(F,T,T1,BR) :- not initApp(F,T,BR),

uBr(T1,BR), s(T), fluent(F).
10 kNotInit(F,T,T1,BR) :- apply(EP,T,BR), hasPC(EP,F1),

hasEff(EP,F) ,knows(¬F1,T,T1,BR), T1>=T.
11 knows(F,T+1,T1,BR) :- knows(F,T,T1,BR), kNotTerm(F,T,T1,BR),

T<T1, s(T).
12 knows(F,T-1,T1,BR) :- knows(F,T,T1,BR),

kNotInit(F,T-1,T1,BR), T>0, T1>=T, s(T).
13 knows(L,T,T1+1,BR) :- knows(L,T,T1,BR),T1<maxS,s(T1).
14 � Sensing and Branching (Γsen)
15 uBr(0,0). uBr(T+1,BR) :- uBr(T,BR), s(T).
16 kw(F,T,T1,BR):- knows(F,T,T1,BR).
17 kw(F,T,T1,BR):- knows(¬F,T,T1,BR).
18 sOcc(T,BR) :- occ(A,T,BR), hasKP(A,_).
19 leq(BR,BR1) :- BR <= BR1, br(BR), br(BR1).
20 1{nextBr(T,BR,BR1): leq(BR,BR1)}1 :- sOcc(T,BR).
21 :- 2{nextBr(T,BR,BR1) :br(BR):s(T)},br(BR1).
22 uBr(T+1,BR) :- sRes(¬F,T,BR).
23 sRes(F,T,BR) :- occ(A,T,BR),hasKP(A,F),not knows(¬F,T,T,BR).
24 sRes(¬F,T,BR1) :- occ(A,T,BR),hasKP(A,F),not kw(F,T,T,BR),

nextBr(T,BR,BR1).
25 knows(L,T,T+1,BR) :- sRes(L,T,BR).
26 knows(F1,T,T1,BR1) :- sOcc(T1,BR), nextBr(T1,BR,BR1),

knows(F1,T,T1,BR), T1>=T.
27 apply(EP,T,BR1) :- sOcc(T1,BR), nextBr(T1,BR,BR1),

uBr(T1,BR), apply(EP,T,BR), T1>=T.
28 :-2{occ(A,T,BR):hasKP(A,_)}, br(BR), s(T).
29 � Plan verification (Γverify)
30 allWGsAchieved :- uBr(maxS,BR), wGoal(maxS,BR).
31 notAllSGAchieved :- uBr(maxS,BR), not sGoal(maxS,BR).
32 planFound :- allWGsAchieved, not notAllSGAchieved.
33 :- not planFound.
34 notGoal(T,BR) :- not wGoal(T,BR), uBr(T,BR).
35 notGoal(T,BR) :- not sGoal(T,BR), uBr(T,BR).
36 � Plan generation and optimization (Γplan)
37 1{occ(A,T,BR):a(A)}1 :- uBr(T,BR), notGoal(T,BR),

br(BR), ss(T). % Sequential planning
38 %1{occ(A,T,BR):a(A)} :- uBr(T,BR), notGoal(T,BR),

br(BR), ss(T). % Concurrent planning
39 #minimize {occ(_,_,_) @ 1} % Optimal planning

Approximate Epistemic Planning with Postdiction as Answer-Set Programming 297

F1. Concurrency (Γconc). Line 3 applies all effect propositions of an action a if that
action occurs. We need two restrictions regarding concurrency of non-sensing actions:
effect similarity and effect contradiction. Two effect propositions are similar if they
have the same effect literal. Two EPs are contradictory if they have complementary
effect literals and if their conditions do not contradict (l. 4). The cardinality constraint
l. 5 enforces that two similar EPs (with the same effect literal) do not apply concurrently,
whereas l. 6 restricts similarly for contradictory EPs.

F2. Inertia (Γin). Inertia is applied in both forward and backward direction sim-
ilar to [7]. To formalize this, we need a notion on knowing that a fluent is not initi-
ated (resp. terminated). This is expressed with the predicates kNotInit/kNotTerm.4

A fluent could be known to be not initiated for two reasons: (1) if no effect proposi-
tion with the respective effect fluent is applied, then this fluent can not be initiated.
initApp(f,t,br) (l. 8) represents that at t an EP with the effect fluent f is applied in
branch br. If initApp(f,t,br) does not hold then f is known not to be initiated at t
in br (l. 9).

(2) a fluent is known not to be initiated if an effect proposition with that fluent is
applied, but one of its conditions is known not to hold (l. 10). Note that this requires
the concurrency restriction (l. 5). Having defined kNotInit/4 and kNotTerm/4 we
can formulate forward inertia (l. 11) and backward inertia (l. 12). Two respective rules
for inertia of false fluents are not listed for brevity. We formulate forward propagation
of knowledge in l. 13. That is, if at t′ it is known that f was true at t, then this is also
known at t′ + 1.

F3. Sensing and Branching (Γsen). If sensing occurs, then each possible outcome
of the sensing uses one branch. uBr(t,br) denotes that branch br is used at step t.
Predicate kw/4 in ll. 16-17 is an abbreviation for knowing whether. We use sOcc(t,br)
to state that a sensing action occurred at t in br (l. 18). By leq(br,br′) the partial order
of branches is precomputed (l. 19); it is used in the choice rule l. 20 to “pick” a valid
child branch when sensing occurs. Two sensing actions are not allowed to pick the same
child branch (l. 21). Lines 23-24 assign the positive sensing result to the current branch
and the negative result to the child branch. Sensing results affect knowledge through
l. 25. Line 26 represents inheritance: Knowledge and application of EPs is transferred
from the original branch to the child branch (l. 27). Finally, in line l. 28, we make the
restriction that two sensing actions cannot occur concurrently.

F4. Plan Verification (Γverify). Lines 30-33 handle that weak goals must be
achieved in only one branch and strong goals in all branches. Information about nodes
where goals are not yet achieved (ll. 34-35) is used in the plan generation part for pruning.

F5. Plan Generation and Optimization (Γplan). Line 37 and l. 38 implement se-
quential and concurrent planning respectively. Optimal plans in terms of the number of
actions are generated with the optimization statement l. 39.

3.3 Plan Extraction from Stable Models

A conditional plan is determined by a set of occ/3, nextBr/3 and sRes/3 atoms.

4 For brevity Listing 1 does only contain rules for kNotInit; the rules for kNotTerm are
analogous resp. to ll. 8-10.

298 M. Eppe, M. Bhatt, and F. Dylla

Definition 1 (Planning as ASP Solving). Let S be a stable model for the logic program LP(P),
then p solves the planning problem P if p is exactly the subset containing all occ/3, nextBr/3
and sRes/3 atoms of S.

For example, consider the atoms occ(a0,t,br), sRes(f,t,br), sRes(¬f, t,br′),
nextBr(t,br,br′), occ(a1,t+1,br) and occ(a2,t+1,br′). With a syntax as in [23],
this is equivalent to the conditional plan a0;[if f then a1 else a2].

3.4 Complexity of h-Approximation

According to [23], we investigate the complexity for a limited number of sensing ac-
tions, and feasible plans. That is, plans with a length that is polynomial wrt. the size of
the input problem.

Theorem 1 ((Optimal) Plan Existence). The plan existence problem for the h-approximation
is in NP and finding an optimal plan is in ΔP

2 .

Proof Sketch: The result emerges directly from the complexity properties of ASP (e.g. [6]).

1. The translation of an input problem via (T1-T8) is polynomial.
2. Grounding the normal logic program is polynomial because the arity of predicates is fixed

and maxS and maxBr are bounded due the polynomial plan size.
3. Determining whether there exists a stable model for a normal logic program is NP-complete.
4. Finding an optimal stable model for a normal logic program is ΔP

2 -complete.

3.5 Translation Optimizations

Although optimization of HPX is not in the focus at this stage of our work we want
to note two obvious aspects: (1) By avoiding unnecessary action execution, e.g. open-
ing a door if it is already known to be open, search space is pruned significantly. (2)
Some domain specificities (e.g., connectivity of rooms) are considered as static rela-
tions. For these, we modify translation rules (T4) (executability conditions) and (T2)
(value propositions), such that knows/4 is replaced by holds/1.

4 A Temporal Query Semantics for Ak

HPX is not just an approximation toPWS as implemented inAk. It is more expressive
in the sense thatHPX allows for propositions about the past, e.g. “at step 5 it is known
that the door was open at step 3”. To find a notion of soundness of HPX with Ak

(and hence PWS-based approaches in general), we define a temporal query semantics
(Ak

TQS) that allows for reasoning about the past. The syntactical mapping betweenAk

andHPX is presented in the following table:
Ak HPX PDDL dialect

Value prop. initially(linit) (:init linit)

Effect prop. causes(a,le, {lc1 . . . lcn}) (:action a :effect when (and lc1 . . . lcn) le)

Executability executable(a, {lex1 , . . . , lexn }) (:action a :executable (and lex1 . . . lexn))

Sensing determines (a,{f ,¬f}) (:action a :observe f)

Approximate Epistemic Planning with Postdiction as Answer-Set Programming 299

An Ak domain description D can always be mapped to a correspondingHPX domain
specification due to the syntactical similarity. Note that for brevity we do not consider
executability conditions in this section. Their implementation and intention is very sim-
ilar in h-approximation and Ak. Further we restrict the Ak semantics to allow to sense
the value of only one single fluent with one action.
OriginalAk Semantics by Son and Baral [20]. Ak is based on a transition function
which maps an action and a so-called c-state to a c-state. A c-state δ is a tuple 〈u,Σ〉,
where u is a state (a set of fluents) and Σ is a k-state (a set of possible belief states). If a
fluent is contained in a state, then its value is true, and false otherwise. Informally, u
represents how the world is and Σ represents the agent’s belief. In this work we assume
grounded c-states for Ak, i.e. δ = 〈u,Σ〉 is grounded if u ∈ Σ. The transition function
for non-sensing actions and without considering executability is:

Φ(a, 〈u,Σ〉) =
〈
Res(a, u), {Res(a, s′)|s′ ∈ Σ}

〉
where (3)

Res(a, s) = s ∪E
+
a (s) \E−

a (s) where (4)
E

+
a (s) = {f | f is the effect literal of an EP and all condition literals hold in s}

E
−
a (s) = {¬f | ¬f is the effect literal of an EP and all condition literals hold in s}

Res reflects that if all conditions of an effect proposition hold, then the effect holds in
the result. The transition function for sensing actions is:

Φ(a, 〈u,Σ〉) = 〈u, {s|(s ∈ Σ) ∧ (f ∈ s ⇔ f ∈ u)}〉 (5)

For convenience we introduce the following notation for a k-state Σ:

Σ |= f iff ∀s ∈ Σ : f ∈ s and Σ |= ¬f iff ∀s ∈ Σ : f ∩ s = ∅ (6)

It reflects that a fluent is known to hold if it holds in all possible worlds s in Σ.

Temporal Query Semantics –Ak
TQS . Our approach is based on a re-evaluation step

with a similar intuition as the update operator “◦” in [24]: Let Σ0 = {s00, . . . , s
|Σ0|
0 }

be the set of all possible initial states of a (complete) initial c-state of an Ak domain
D. Whenever sensing happens, the transition function will remove some states from
the k-state, i.e. Φ([a1; . . . ; an], δ0) = 〈un, Σn〉, where Σn = {s0n, . . . , s

|Σn|
n } and

|Σ0| ≥ |Σn|. To reason about the past, we re-evaluate the transition. Here, we do
not consider the complete initial state, but only the subset Σn

0 of initial states which
“survived” the transition of a sequence of actions. If a fluent holds in all states of a
k-state Σn

t , where Σn
t is the result of applying t ≤ n actions on Σn

0 , then after the n-th
action, it is known that a fluent holds after the t-th action.

Definition 2. Let α = [a1; . . . ; an] be a sequence of actions and δ0 be a possible ini-
tial state, such that Φ([a1; . . . ; an], δ0) = δn = 〈un, Σn〉. We define Σn

0 as the set of
initial belief states in Σ0 which are valid after applying α: Σn

0 = {s0|s0 ∈ Σ0 ∧
Res(an, Res(an−1, . . . , Res(a1, s0) . . .)) ∈ Σn}.5 We say that

〈l, t〉 is known to hold after α on δ0

if Σn
t |= l where 〈ut, Σ

n
t 〉 = Φ([a1; . . . ; at], 〈u0, Σ

n
0 〉) and t ≤ n

Soundness wrt. Ak
TQS The following conjecture considers soundness for the pro-

jection problem for a sequence of actions:

5 Consider that according to (4) Res(a, s) = s if a is a sensing action.

300 M. Eppe, M. Bhatt, and F. Dylla

Conjecture 1. Let D be a domain specification and α = [a1; . . . ; an] be a sequence of ac-
tions. Let LP (D) = [Γin ∪ Γsen ∪ Γconc ∪ Γini ∪ Γact] be a HPX -logic program without
rules for plan generation (Γplan), plan verification (Γverify) and goal specification (Γgoal). Let
Γn
occ contain rules about action occurrence in valid branches, i.e. Γn

occ = {occ(a0, 0, BR) ←
uBr(0, BR)., . . . , occ(an, n, BR) ← uBr(n,BR).} Then for all fluents f and all steps t with
0 ≤ t ≤ n, there exists a branch br such that:

if knows(l,t,n,br) ∈ SM [LP (D) ∪ Γ
n
occ] then Σ

n
t |= l with t ≤ n. (7)

where SM [LP (D) ∪ Γn
occ] denotes the stable model of the logic program.

Considerations regarding correctness of the conjecture can be found in an extended
version of this paper [5].

5 Evaluation and Case-Study

In order to evaluate practicability of HPX we compare our implementation with the
ASCP planner by Tu et al. [23] and show an integration of our planning system in a
smart home assistance system.

Comparison with ASCP. We implemented three well known benchmark problems
for HPX and the 0-approximation based ASCP planner:6 Bomb in the toilet (e.g. [8];
n potential bombs need to be disarmed in a toilet), Rings (e.g. [3]; in n ringlike con-
nected rooms windows need to be closed/locked), and Sickness (e.g. [23]; one of n
diseases need identified with a paper color test). While HPX outperforms ASCP for
the Rings problem (e.g. ≈ 10s to 170s for 3 rooms), ASCP outperformsHPX for the
other domains (e.g. ≈ 280s to 140s for 8 bombs and ≈ 160s to 1360s for 8 diseases).
For the first problem, HPX benefits from static relations and for the latter two prob-
lems ASCP benefits from a simpler knowledge representation and the ability to sense
the paper’s color with a single action where HPX needs n− 1 actions. In both ASCP
and HPX grounding was very fast and the bottleneck was the actual solving of the
problems.

Application in a Smart Home. TheHPX planning system has been integrated within
a larger software framework for smart home control in the Bremen Ambient Assisted
Living Lab (BAALL) [9]. We present a use-case involving action planning in the pres-
ence of abnormalities for an robotic wheelchair: The smart home has (automatic) sliding
doors, and sometimes a box or a chair accidentally blocks the door such that it opens
only half way. In this case, the planning framework should be able to postdict such an
abnormality and to follow an alternative route. The scenario is illustrated in Fig. 1.

Consider the situation where a person instructs a command to the wheelchair (e.g.,
to reach location; [S0]). An optimal plan to achieve this goal is to pass D1. A more error
tolerant plan is: Open D1 and verify if the action succeeded by sensing the door status
[S1]; If the door is open, drive through the door and approach the user. Else there is
an abnormality: Open and pass D3 [S2]; drive through the bedroom [S3]; pass D4 and
D2 [S4]; and finally approach the sofa [S5].7 If it is behind the door then the door was
open. For this particular use-case, a sub-problem follows:

6 We used an Intel i5 (2GHz, 6Gb RAM) machine running clingo [6] with Windows 7. Tests
were performed for a fixed plan length and width.

7 Abnormalities are considered on the alternative route but skipped here for brevity.

Approximate Epistemic Planning with Postdiction as Answer-Set Programming 301

D3

D4

D1

D2

Corr. 1

Bed
room

Living room

Bath
room

X [S1]

Corr. 2

D3

D4

D1

D2

Corr. 1

Bed
room

Living room

Bath
room

X [S2] [S3]

Corr. 2

D3

D4

D1

D2

Corr. 1
Bed

room
Living room

Bath
room

Corr. 2

X

[S4][S5]

[S0] [S1] [S2] [S3] [S4] [S5]

Fig. 1. The wheelchair operating in the smart home BAALL

(:action open_door :effect when ¬ab_open open)
(:action drive :executable (and open ¬in_liv)

:effect in_liv)
(:action sense_open :observe open)
(:init ¬in_liv ¬open) (:goal weak in_liv)

The solution to this subproblem is depicted in Fig. 2 (see also state S1 in Fig. 1).
There is an autonomous robotic wheelchair outside the living room (¬in liv) and the
weak goal is that the robot is inside the living room. The robot can open the door
(open door) to the living room. Unfortunately, opening the door does not always
work, as the door may be jammed, i.e. there may be an abnormality. However, the
robot can perform sensing to verify whether the door is open (sense open). Figure
2 illustrates our postdiction mechanism. Initially (at t = 0 and br = 0) it is known
that the robot is in the corridor at step 0. The first action is opening the door, i.e. the
stable model contains the atom occ(open door,0,0). Inertia holds for ¬in liv, be-
cause nothing happened that could have initiated ¬in liv. The rules in ll. 8-9 trig-
ger kNotInit(in liv,0,0,0) and l. 13 triggers knows(¬in liv,0,1,0), such
that in turn the forward inertia rule (l. 11) causes atom knows(¬in liv,1,1,0)
to hold. Next, sensing happens, i.e. occ(sense open,1,0). According to the rule
in l. 23, the positive result is assigned to the original branch and sRes(open,1,0)
is produced. According to the rule in l. 24, the negative sensing result at step t
in branch br is assigned to some child branch br′ (denoted by nextBr(t,br,br′))
with br′ > br (l. 20). In the example we have: sRes(¬open,1,1), and due to
l. 25 we have knows(¬open,1,2,1). This result triggers postdiction rule (T6c)
and knowledge about an abnormality is produced: knows(ab open,0,2,1). Conse-
quently, the wheelchair has to follow another route to achieve the goal. For branch 0, we
have knows(open,1,2,0) after the sensing. This result triggers the postdiction rule
(T6b): Because knows(¬open,0,2,0) and knows(open,1,2,0) hold, one can post-
dict that there was no abnormality when open occurred: knows(¬ab open,0,2,0).
Finally, the robot can drive through the door: occ(drive,2,0) and the causa-
tion rule (T6a) triggers knowledge that the robot is in the living room at step 3:
knows(in liv,3,3,0).

302 M. Eppe, M. Bhatt, and F. Dylla

{}h:
k:

{(!in_liv,0),
 (!open ,0), ...}

t:0
br:0

{(open_door,0)}h:
k:

{(!in_liv,0), (!in_liv,1)
 (!open ,0), ...}

t:1
br:0

{(open_door,0), (sense_open,1)}h:

k:
{(!in_liv ,0), (!in_liv ,1), (!in_liv ,2)
 (!open ,0), (open ,1), (open ,2)
 (!ab_open,0), (!ab_open,1), (!ab_open,2),...}

t:2
br:0

sensing

postdiction
I

I
I

I

{(open_door,0), (sense_open,1)}h:

k:
{(!in_liv,0), (!in_liv,1), (!in_liv,2)
 (!open ,0), (!open ,1), (!open ,2)
 (ab_open,0), (ab_open,1), (ab_open,2),...}

t:2
br:1 I

I
I

I

{(open_door,0), (sense_open,1), (drive,2)}h:

k:
{(!in_liv ,0), (!in_liv ,1), (!in_liv ,2), (in_liv ,3)
 (!open ,0), (open ,1), (open ,2), (open ,3)
 (!ab_open,0), (!ab_open,1), (!ab_open,2), (!ab_open,3),...}

t:3
br:0

I
I

effect

I

sensing

postdiction

I I
Inertia

Fig. 2. Abnormality detection as postdiction with h-approximation

6 Conclusion

We developed an approximation of the possible worlds semantics with elaboration tol-
erant support for postdiction, and implemented a planning system by a translation of
the approximation to ASP. We show that the plan existence problem in our framework
can be solved in NP. We relate our approach to the PWS semantics of Ak by extend-
ing Ak semantics to allow for temporal queries. We show that HPX is sound wrt. this
semantics. Finally, we provide a proof of concept for our approach with the case study
in Section 5. An extended version of the Case Study will appear in [4]. Further testing
revealed the inferiority of the HPX implementation to dedicated PDDL planners like
CFF [8]. This result demands future research concerning the transfer of heuristics used
in PDDL-based planners to ASP.

References

[1] Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computational Intelli-
gence 11, 625–655 (1995)

[2] Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and approximate
planning in the presence of incompleteness. Artificial Intelligence 122 (2000)

[3] Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic planning
via symbolic model checking. Artificial Intelligence 147, 35–84 (2003)

[4] Eppe, M., Bhatt, M.: Narrative based Postdictive Reasoning for Cognitive Robotics. In: 11th
Int’l Symposium on Logical Formalizations of Commonsense Reasoning (2013)

[5] Eppe, M., Bhatt, M., Dylla, F.: h-approximation: History-Based Approximation to Possible
World Semantics as ASP. Technical report, arXiv:1304.4925v1 (2013)

[6] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-
gan and Claypool (2012)

[7] Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. The Journal
of Logic Programming 17, 301–321 (1993)

[8] Hoffmann, J., Brafman, R.I.: Contingent planning via heuristic forward search with implicit
belief states. In: ICAPS Proceedings (2005)

[9] Krieg-Brückner, B., Röfer, T., Shi, H., Gersdorf, B.: Mobility Assistance in the Bremen
Ambient Assisted Living Lab. Journal of GeroPsyc 23, 121–130 (2010)

[10] Lee, J., Palla, R.: Reformulating the situation calculus and the event calculus in the general
theory of stable models and in answer set programming. JAIR 43, 571–620 (2012)

[11] Liu, Y., Levesque, H.J.: Tractable reasoning with incomplete first-order knowledge in dy-
namic systems with context-dependent actions. In: IJCAI Proceedings (2005)

[12] Lobo, J., Mendez, G., Taylor, S.: Knowledge and the Action Description Language A. The-
ory and Practice of Logic Programming 1, 129–184 (2001)

Approximate Epistemic Planning with Postdiction as Answer-Set Programming 303

[13] McCarthy, J.: Elaboration tolerance. In: Commonsense Reasoning (1998)
[14] Miller, R., Morgenstern, L., Patkos, T.: Reasoning About Knowledge and Action in an Epis-

temic Event Calculus. In: 11th Int’l Symposium on Logical Formalizations of Common-
sense Reasoning (2013)

[15] Moore, R.: A formal theory of knowledge and action. In: Hobbs, J., Moore, R. (eds.) Formal
Theories of the Commonsense World, Ablex, Norwood, NJ, pp. 319–358 (1985)

[16] Patkos, T., Plexousakis, D.: Reasoning with Knowledge, Action and Time in Dynamic and
Uncertain Domains. In: IJCAI Proceedings, pp. 885–890 (2009)

[17] Petrick, R., Bacchus, F.: Extending the knowledge-based approach to planning with incom-
plete information and sensing. In: ICAPS Proceedings (2004)

[18] Pettersson, O.: Execution monitoring in robotics: A survey. Robotics and Autonomous Sys-
tems 53, 73–88 (2005)

[19] Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artificial Intelli-
gence 144, 1–39 (2003)

[20] Son, T.C., Baral, C.: Formalizing sensing actions - A transition function based approach.
Artificial Intelligence 125, 19–91 (2001)

[21] Thielscher, M.: Representing the knowledge of a robot. In: Proc. of KR (2000)
[22] To, S.T.: On the impact of belief state representation in planning under uncertainty. In:

IJCAI Proceedings (2011)
[23] Tu, P.H., Son, T.C., Baral, C.: Reasoning and planning with sensing actions, incomplete

information, and static causal laws using answer set programming. Theory and Practice of
Logic Programming 7, 377–450 (2007)

[24] Vlaeminck, H., Vennekens, J., Denecker, M.: A general representation and approximate
inference algorithm for sensing actions. In: Australasian Conference on AI (2012)

Combining Equilibrium Logic and Dynamic Logic

Luis Fariñas del Cerro, Andreas Herzig, and Ezgi Iraz Su�

University of Toulouse
IRIT, CNRS

http://www.irit.fr

Abstract. We extend the language of here-and-there logic by two kinds of atomic
programs allowing to minimally update the truth value of a propositional variable
here or there, if possible. These atomic programs are combined by the usual dy-
namic logic program connectives. We investigate the mathematical properties of
the resulting extension of equilibrium logic: we prove that the problem of logical
consequence in equilibrium models is EXPTIME complete by relating equilib-
rium logic to dynamic logic of propositional assignments.

Keywords: answer-set programming, here-and-there logic, equilibrium logic,
propositional dynamic logic, dynamic logic of propositional assignments.

1 Introduction

Answer Set Programming (ASP) is a successful approach in non-monotonic reasoning.
Its efficient implementations became a key technology for declarative problem solving
in the AI community [7,8]. In recent years many important results have been obtained
from a theoretical point of view, such as the definitions of new comprehensive semantics
as equilibrium semantics or the proof of important theorems as strong equivalence the-
orems [14]. These theoretical and practical results show that ASP is central to various
approaches in non-monotonic reasoning.

New applications in AI force us to extend the original language of ASP by some new
concepts capable of supporting, for example, the representations of modalities, actions,
ontologies or updates. Based on a tradition that was started by Alchourrón, Gärdenfors
and Makinson and also by Katsuno and Mendelzon [1,13], several researchers have pro-
posed to extend ASP by operations allowing to update or revise a given ASP program
through a new piece of information [3,17,15,16]. The resulting formalisms are quite
complex, and we think it is fair to say that it is difficult to grasp what the intuitions
should be like under these approaches.

We here propose a different, more modest approach, where the new piece of in-
formation is restricted to be atomic. It is based on the update of here-and-there (HT)
models. Such models are made up of two sets of propositional variables, H (‘here’) and
T (‘there’), such that H ⊆ T . We consider two kinds of basic update operations: to set a
propositional variable true either here or there according to its truth value in these sets;

� We would like to thank the three reviewers of LPNMR 2013 for their helpful comments. This
work was partially supported by the French-Spanish Laboratoire Européen Associé (LEA)
“French-Spanish Lab of Advanced Studies in Information Representation and Processing”.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 304–316, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Combining Equilibrium Logic and Dynamic Logic 305

similarly to set it false either here or there, again if possible. From these basic update
operations we allow to build update programs by means of the standard dynamic logic
program operators of sequential and nondeterministic composition, iteration, and test.
We call the result dynamic here-and-there logic (D-HT).

The notions of an equilibrium model and of logical consequence in equilibrium mod-
els can then be defined exactly as before. We show that the problem of satisfiability in
HT models and of consequence in equilibrium models are both EXPTIME complete.
In order to do so, we use dynamic logic of propositional assignments (DL-PA) that was
recently studied in [2]. We define a translation tr1 from the language of D-HT into the
language of DL-PA. Our main result says that a formulaϕ is an equilibrium consequence
of a formula χ if and only if the DL-PA formula

〈π1〉
(
tr1(χ) ∧ ∼〈π2〉tr1(χ) ⊃ tr1(ϕ)

)

is valid, where π1 and π2 are DL-PA programs whose length is polynomial in the length
of χ and ϕ. This allows to polynomially embed the problems of D-HT satisfiability and
consequence in equilibrium models into DL-PA, and so establishes that they are all in
EXPTIME. We moreover show that these upper bounds are tight.

The paper is organized as follows. In Section 2 we introduce dynamic here-and-there
logic (D-HT) and define consequence in its equilibrium models. In Section 3 we present
dynamic logic of propositional assignments (DL-PA) and establish its complexity. In
Section 4 we define translations relating the language of D-HT to the language of DL-PA
and vice versa. Section 5 concludes.

2 A Dynamic Extension of HT Logic and of Equilibrium Logic

In this section we propose a dynamic extension of the logic of here-and-there (HT),
named D-HT. By means of the standard definition of an equilibrium model, that ex-
tension also provides a definition of a non-monotonic consequence relation which is a
conservative extension of the standard equilibrium consequence relation.

To begin with, we fix a countable set of propositional variables (P) whose elements
are noted p, q, etc. The language is produced through adding dynamic modalities to the
language of HT. The semantics is based on HT models: an HT model is a couple (H, T)
such that H ⊆ T ⊆ P. The sets H and T are respectively called ‘here’ and ‘there’. The
constraint that H ⊆ T is the so-called heredity constraint of intuitionistic logic. Each
of them is a valuation, identified with a subset of P. We write HT for the set of all HT
models. So, HT = {(H, T) : H ⊆ T ⊆ P}.

2.1 The LanguageLD-HT

The languageLD-HT is defined by the following grammar:

ϕ� p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | [π]ϕ | 〈π〉ϕ
π� +p | −p | π; π | π ∪ π | π∗ | ϕ?

where p ranges over P.

306 L. Fariñas del Cerro, A. Herzig, and E.I. Su

We have only two atomic programs in the language, namely+p and−p. Each of them
minimally updates an HT model, if this is possible: in a sense, the former ‘upgrades the
truth of p’ while the latter ‘downgrades the truth of p’. More precisely, the program
+p makes p true there, but keeps its truth value same here if p is not included there.
However, if p exists there, but not here then it makes p true here while keeping its truth
value there; otherwise the program +p fails. On the other hand, the program −p sets p
false here as it keeps it there if p is contained here. Nevertheless, if p is only contained
there, but not here then the program −p excludes p there keeping its truth value same
here; or else the program fails.

The operators of sequential composition (“;”), nondeterministic composition (“∪”),
finite iteration (“(.)∗”, the so-called Kleene star), and test (“(.)?”) are familiar from
propositional dynamic logic (PDL).

An expression is a formula or a program.
The length of a formula ϕ, noted |ϕ|, is the number of symbols used to write down

ϕ, with the exception of [,], 〈, 〉, and parentheses. For example, |p ∧ (q ∨ r)| = 1 + 1 +
3 = 5. The length of a program π, noted |π|, is defined in the same way. For example,
|([+p]⊥? ;−p

)| = 4 + 1 + 2 = 7.
For a given formula ϕ, the set of variables occurring in ϕ is noted Pϕ. For example,

P[−p](q∨r) = {p, q, r}.
The static fragment of LD-HT is the fragment of LD-HT without dynamic operators

[π] and 〈π〉 for every π, noted LHT. This is nothing but the language of HT and of
equilibrium logic.

Negation of a formula ϕ, noted ¬ϕ, is defined as the abbreviation of ϕ→ ⊥. We also
use � as a shorthand for ⊥ → ⊥.

2.2 Dynamic Here-and-There Logic

We display below the interpretation of formulas and programs together at a time: the
interpretation ‖ϕ‖D-HT of a formula ϕ is a set of HT models, while the interpretation
‖π‖D-HT of a program π is a relation on the set of HT models,HT. Note that the interpre-
tation of the dynamic connectives differs from that of usual modal logics because there
is a single relation interpreting programs (that therefore does not vary with the models).
The definitions are in Table 1.

For instance, ‖¬p‖D-HT is the set of HT models (H, T) such that p � T (and therefore
p � H by the heredity constraint). Hence, ‖p ∨ ¬p‖D-HT is the set of HT models (H, T)
such that p ∈ H or p � T . ‖¬¬p‖D-HT is the set of HT models (H, T) such that p ∈ T .
Moreover, ‖〈+p〉�‖D-HT is the set of HT models (H, T) such that p � H: when p ∈ H
then p cannot be upgraded and the +p program is inexecutable. Finally, the models of
the following formula are all those HT-models (H, T) where T contains p and H does
not.

‖〈+p〉� ∧ 〈−p〉�‖D-HT = ‖¬¬p‖D-HT ∩ (HT \ ‖p‖D-HT
)

= {(H, T) : p � H and p ∈ T }

Combining Equilibrium Logic and Dynamic Logic 307

Table 1. Interpretation of the D-HT connectives

‖p‖D-HT = {(H,T) : p ∈ H}
‖⊥‖D-HT = ∅

‖ϕ ∧ ψ‖D-HT = ‖ϕ‖D-HT ∩ ‖ψ‖D-HT

‖ϕ ∨ ψ‖D-HT = ‖ϕ‖D-HT ∪ ‖ψ‖D-HT

‖ϕ→ ψ‖D-HT =
{
(H,T) : (H,T), (T,T) ∈ (HT \ ‖ϕ‖D-HT) ∪ ‖ψ‖D-HT

}

‖[π]ϕ‖D-HT =
{
(H,T) : (H1,T1) ∈ ‖ϕ‖D-HT for every

(
(H,T), (H1,T1)

) ∈ ‖π‖D-HT
}

‖〈π〉ϕ‖D-HT =
{
(H,T) : (H1,T1) ∈ ‖ϕ‖D-HT for some

(
(H,T), (H1,T1)

) ∈ ‖π‖D-HT
}

‖+p‖D-HT =
{(

(H1,T1), (H2,T2)
)

: H2 \ H1 = {p} and T2 = T1, or T2 \ T1 = {p} and H2 = H1
}

‖−p‖D-HT =
{(

(H1,T1), (H2,T2)
)

: H1 \ H2 = {p} and T2 = T1, or T1 \ T2 = {p} and H2 = H1
}

‖π1; π2‖D-HT = ‖π1‖D-HT ◦ ‖π2‖D-HT

‖π1∪π2‖D-HT = ‖π1‖D-HT ∪ ‖π2‖D-HT

‖π∗‖D-HT =
(‖π‖D-HT

)∗

‖ϕ?‖D-HT =
{(

(H,T), (H,T)
)

: (H,T) ∈ ‖ϕ‖D-HT
}

A formula ϕ is D-HT valid if and only if every HT model is also a model of ϕ, i.e.,
‖ϕ‖D-HT = HT. For example, neither 〈+p〉� nor 〈−p〉� is valid, but 〈+p ∪ −p〉� is.
Moreover, [+p][+p]p, [−p][−p]¬p, and [p? ∪ ¬p?](p ∨ ¬p) are all valid. Finally, the
following equivalences are valid:

[−p]⊥ ↔ ¬p

〈−p〉� ↔ ¬¬p

[+p]⊥ ↔ p

Therefore [−p]⊥, 〈−p〉� and [+p]⊥ can all be expressed in LHT . In contrast, 〈+p〉�
cannot because there is no formula in the static fragment LHT that conveys that p ∈
T \ H. So our extension of HT is more expressive than HT itself.

D-HT logic satisfies the heredity property of intuitionistic logic for atomic formulas:
if (H, T) is an HT model of p then (T, T) is also an HT model of p. It is trivially
satisfied because for every HT model (H, T), H ⊆ T . D-HT logic however fails to satisfy
that property for more complex formulas containing dynamic operators. To see this,
consider the HT model (∅, {p}) and the formula 〈+p〉�: (∅, {p}) is a model of 〈+p〉�,
while ({p}, {p}) is not.

Our logic D-HT is a particular intuitionistic modal logic. Such logics were studied
in the literature [6]. For such logics, duality of the modal operators fails: while [π]ϕ→
¬〈π〉¬ϕ is valid, the converse is invalid. For example, (∅, ∅) is an HT model of¬〈+p〉¬p,
but not of [+p]p.

It follows from the next proposition that we have a finite model property for D-HT:
if ϕ has an HT model then ϕ has an HT model (H, T) such that T is finite.

Proposition 1. Let ϕ be an LD-HT formula. Let P be a set of propositional variables
such that P∩ Pϕ = ∅, and let Q ⊆ P. Then, (H, T) ∈ ‖ϕ‖D-HT iff (H∪Q, T∪P) ∈ ‖ϕ‖D-HT.

308 L. Fariñas del Cerro, A. Herzig, and E.I. Su

2.3 Dynamic Equilibrium Logic

An equilibrium model of an LD-HT formula ϕ is a set of propositional variables T ⊆ P
such that:

1. (T, T) is an HT model of ϕ;
2. no (H, T) with H ⊂ T is an HT model of ϕ.

The valid formulas of D-HT all have exactly one equilibrium model, viz. the empty
set. There are formulas that have no equilibrium model, such as ¬¬p. The equilibrium
models of equivalent formulas p∨¬p and ¬¬p→ p are ∅ and {p}. The only equilibrium
model of ¬p → q is {q}, and of 〈+p〉(¬p → q) is ∅. {p} is the only equilibrium model
for both 〈−p〉(¬p→ q), and 〈+q;+q〉(p ∧ q). However, 〈−q〉(p ∧ q) has no equilibrium
model because 〈−q〉(p ∧ q) does not even have a D-HT model either.

Let χ and ϕ be LD-HT formulas. ϕ is a consequence of χ in equilibrium models,
written χ |≈ ϕ, if and only if for every equilibrium model T of χ, (T, T) is an HT model
of ϕ. For example, � |≈ ¬p, p ∨ q |≈ [¬p?]q, and p ∨ q |≈ [¬p?]〈+p;+p〉(p ∧ q).

In our dynamic language we can check not only problems of the form χ |≈ [π]ϕ,
but also problems of the form 〈π〉χ |≈ ϕ. The former expresses a hypothetical update
of χ: if χ is updated by π then ϕ follows. The latter may express an actual update of
χ, where the program π executes the update ‘the other way round’: it is the converse
of the original update program. For example, suppose we want to update χ = p∧q by
¬q. Updates by the latter formula can be implemented by the program −q;−q. Now the
converse execution of −q;−q is nothing but the execution of the program π = +q;+q.
Therefore, in order to know whether the update of p∧q by ¬q results in p∧¬q we have
to check whether 〈+q;+q〉(p∧ q) |≈ p∧¬q. The latter is indeed the case: we have seen
above that the only equilibrium model of 〈+q;+q〉(p∧ q) is {p}, and ({p}, {p}) is clearly
a D-HT model of p ∧ ¬q.

3 DL-PA: Dynamic Logic of Propositional Assignments

In this section we define syntax and semantics of dynamic logic of propositional as-
signments (DL-PA) and state complexity results. The star-free fragment of DL-PA was
introduced in [9], where it was shown that it embeds Coalition Logic of Propositional
Control [10,11,12]. The full logic with the Kleene star was further studied in [2]. In
addition to assignments of propositional variables to true or false, here we allow of
assignments to arbitrary formulas as well. We need this extension for the purpose of
copying the propositional variables of a valuation and similarly, after some changes to
be able to retrieve the initial truth values of that valuation. We will explain these no-
tions later in full detail. However, we keep on calling that logic DL-PA. This is in order
because it has the same expressivity and the same complexity as the logic DL-PA of [2].

3.1 Language

The language of DL-PA is defined by the following grammar:

Combining Equilibrium Logic and Dynamic Logic 309

π � p:=ϕ | π; π | π ∪ π | π∗ | ϕ?
ϕ� p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⊃ ϕ | 〈π〉ϕ

where p ranges over a fixed set of propositional variables P. So, an atomic program of
the language of DL-PA is a program of the form p:=ϕ. The program operators of se-
quential composition (“;”), nondeterministic composition (“∪”), finite iteration (“(.)∗”),
and test (“(.)?”) are familiar from Propositional Dynamic Logic (PDL).

The star-free fragment of DL-PA is the subset of the language made up of formulas
without the Kleene star “(.)∗”.

We abbreviate the other logical connectives in the usual way; for example, ∼ϕ is
defined as ϕ ⊃ ⊥. In particular, � is defined as ∼⊥ = ⊥⊃⊥. Moreover, [π]ϕ abbreviates
∼〈π〉∼ϕ. The program skip abbreviates �? (“nothing happens”). (Note that it could
also be defined by p:=p, for arbitrary p.) The language of DL-PA allows to express the
primitives of standard programming languages. For example, the loop “while ϕ do π”
can be expressed as the DL-PA program (ϕ?; π)∗;∼ϕ?.

3.2 Semantics

DL-PA programs are interpreted by means of a (unique) relation between valuations:
atomic programs p:=ϕ update valuations in the obvious way, and complex programs
are interpreted just as in PDL by mutual recursion. Table 2 gives the interpretation of
the DL-PA connectives.

Table 2. Interpretation of the DL-PA connectives

‖p:=ϕ‖DL-PA =
{(

V ,V ′
)

: if V ∈ ‖ϕ‖DL-PA then V ′ = V∪{p} and if V � ‖ϕ‖DL-PA then V ′ = V\{p}}
‖π; π′‖DL-PA = ‖π‖DL-PA ◦ ‖π′‖DL-PA

‖π∪π′‖DL-PA = ‖π‖DL-PA ∪ ‖π′‖DL-PA

‖π∗‖DL-PA =
(‖π‖D-HT

)∗

‖ϕ?‖DL-PA = {(V ,V) : V ∈ ‖ϕ‖DL-PA}

‖p‖DL-PA = {V : p ∈ V}
‖⊥‖DL-PA = ∅

‖ϕ∧ψ‖DL-PA = ‖ϕ‖DL-PA ∩ ‖ψ‖DL-PA

‖ϕ∨ψ‖DL-PA = ‖ϕ‖DL-PA ∪ ‖ψ‖DL-PA

‖ϕ⊃ψ‖DL-PA = (2P \ ‖ϕ‖DL-PA) ∪ ‖ψ‖DL-PA

‖〈π〉ϕ‖DL-PA =
{
V : there is V ′ such that

(
V ,V ′

) ∈ ‖π‖DL-PA and V ′ ∈ ‖ϕ‖DL-PA
}

A formula ϕ is DL-PA valid if ‖ϕ‖DL-PA = 2P, and it is DL-PA satisfiable if ‖ϕ‖DL-PA �
∅. For example, the formulas 〈p:=�〉�, 〈p:=�〉p and 〈p:=⊥〉∼p are all valid, as well as
ψ ∧ [ψ?]ϕ ⊃ ϕ and [p:=�∪ q:=�](p ∨ q). Moreover, if p does not occur in ϕ then both
ϕ ⊃ 〈p:=�〉ϕ and ϕ ⊃ 〈p:=⊥〉ϕ are valid. This is due to the following property that we
will use while translating dynamic equilibrium logic into DL-PA.

310 L. Fariñas del Cerro, A. Herzig, and E.I. Su

Proposition 2. Suppose Pϕ ∩ P = ∅, i.e., none of the variables of P occurs in ϕ. Then
V∪P ∈ ‖ϕ‖DL-PA iff V\P ∈ ‖ϕ‖DL-PA.

Contrarily to PDL, it is shown in [2] that the Kleene star operator can be eliminated
in DL-PA: for every DL-PA program π, there is an equivalent program π′ such that no
Kleene star occurs in π′. However, the elimination is not polynomial.

3.3 Complexity of the Full Language

It is proved in [2] that both model and satisfiability checking are EXPTIME complete
for the fragment of DL-PA including the conversion operator and restricting the formu-
las ϕ in atomic programs p:=ϕ to either � or ⊥. The lower bounds for both problems
clearly transfer.

The upper bound for the satisfiability problem is established in [2] by means of a
polynomial transformation into the satisfiability problem of PDL. An inspection of the
proof shows that it generalizes to arbitrary assignments. So, the satisfiability problem
of our DL-PA has the same complexity as that of PDL: it is EXPTIME complete.

The upper bound for the model checking problem can be established just as in [2] by
polynomially transforming it into the satisfiability problem: we use that V ∈ ‖ϕ‖DL-PA if
and only if the formula ϕ∧ (∧p∈V p

)∧ (∧p�V ∼p
)

is satisfiable. So, the model checking
problem of our DL-PA is EXPTIME complete, too.

3.4 Complexity of the Star-Free Fragment

The complexity of the decision problems for the star-free fragment of the language of
[2] is established in [9], where it is shown that it is PSPACE complete for both model
and satisfiability checking.

As to model checking, the lower bound clearly transfers to our star-free fragment.
Furthermore, the PSPACE model checking algorithm of [9] can be extended to our
more general star-free fragment without conversion and with general assignment p:=ϕ.

As to satisfiability checking, the lower bound of [9] transfers. The upper bound can
be proved in the same way as in [9]: given a formula ϕ, nondeterministically guess a
valuation V and model check whether V ∈ ‖ϕ‖DL-PA. Model checking being in PSPACE,
satisfiability checking must therefore be in NPSPACE, and NPSPACE is the same com-
plexity class as PSPACE due to Savitch’s theorem.

4 Relating D-HT and DL-PA

In this section we are going to translate D-HT and dynamic equilibrium logic into
DL-PA, and vice versa. The translation is polynomial and allows to check D-HT va-
lidity and consequence in equilibrium models. This establishes an EXPTIME upper
bound for the complexity of the latter problem. We also show that the upper bound is
tight.

We start by defining some DL-PA programs that will be the building blocks in em-
bedding some notions of D-HT into DL-PA. Some of these programs require to copy
propositional variables.

Combining Equilibrium Logic and Dynamic Logic 311

4.1 Copying Propositional Variables

The translation introduces fresh propositional variables that do not not exist in the for-
mula we translate. Precisely, this requires to suppose a new set of propositional vari-
ables: it is the union of the set of ‘original’ variables P = {p1, p2, . . .} and the set of
‘copies’ of these variables P′ = {p′1, p′2, . . .}, where P and P′ are disjoint. The function
(.)′ is a bijection between these two sets: for every subset Q ⊆ P of original variables,
the set Q′ = {p′ : p ∈ Q} ⊆ P′ is its image, and the other way around. We suppose that
(.)′ is an involution, i.e., it behaves as an identity when applied twice. Now, a DL-PA
valuation extends to the form of X ∪ Y′, where X ⊆ P and Y′ ⊆ P′. As a result, DL-PA
validity expands to the power set of P ∪ P′, i.e., 2P∪P′ . In our embedding, X will encode
the here-valuation and Y′ will encode the there-valuation. Note that in order to respect
the heredity constraint hidden in the structure of here-and there models, our translation
has to guarantee that X is a subset of Y.

4.2 Useful DL-PA Programs

Table 3 collects some DL-PA programs that are going to be convenient for our enter-
prise. In that table, {p1, . . . , pn} is some finite subset of P and each p′i is a copy of pi as
explained above. For n = 0 we stipulate that all these programs equal skip.

Table 3. Some useful DL-PA programs

mkFalse≥0({p1, . . . , pn}) = (p1:=⊥ ∪ skip); · · · ; (pn:=⊥ ∪ skip)
mkFalse>0({p1, . . . , pn}) = (p1:=⊥ ∪ · · · ∪ pn:=⊥); mkFalse≥0(P)

cp({p1, . . . , pn}) = p′1:=p1; · · · ; p′n:=pn

cpBack({p1 , . . . , pn}) = p1:=p′1; · · · ; pn:=p′n

Let P = {p1, . . . , pn}. The program mkFalse≥0(P) nondeterministically makes some
of the variables of P false, possibly none. The program mkFalse>0(P) nondeterminis-
tically makes false at least one of the variables of P, and possibly more. Its subprogram
p1:=⊥∪· · ·∪pn:=⊥makes exactly one of the variables in the valuation P false. The pro-
gram cp(P) assigns to each ‘fresh’ variable p′i the truth value of pi, while the program
cpBack(P) assigns to each variable pi the truth value of p′i . We shall use the former as a
way of storing the truth value of each variable of P before they undergo some changes.
That will allow later on to retrieve the original values of the variables in P by means of
the cpBack(P) program. Therefore the sequence cp(P); cpBack(P) leaves the variables
in P unchanged.

Observe that each program of Table 3 has length linear in the cardinality of P. Ob-
serve also that the programs mkFalse≥0(P) and mkFalse>0(P) are nondeterministic. In
contrast, the programs cp(P) and cpBack(P) are deterministic and always executable:
[cp(P)]ϕ and 〈cp(P)〉ϕ are equivalent, as well as [cpBack(P)]ϕ and 〈cpBack(P)〉ϕ.

312 L. Fariñas del Cerro, A. Herzig, and E.I. Su

Lemma 1 (Program Lemma). Let P ⊆ P be finite and non-empty. Then

‖mkFalse≥0(P)‖DL-PA = {(V1,V2
)

: V2 = V1 \ Q, for some Q ⊆ P}
‖mkFalse>0(P)‖DL-PA = {(V1,V2

)
: V2 = V1 \ Q, for some Q ⊆ P such that Q � ∅}

‖cp(P)‖DL-PA =
{(

X1∪Y′1, X2∪Y′2
)

: X2 = X1 and Y′2 = (X1 ∩ P)′ ∪ (Y′1 \ P′)
}

‖cpBack(P)‖DL-PA =
{(

X1∪Y′1, X2∪Y′2
)

: X2 = (Y′1 ∩ P′)′ ∪ (X1 \ P) and Y′2 = Y′1
}
.

It follows from the interpretations of cp(P) and mkFalse≥0(P) that

‖cp(P); mkFalse≥0(P)‖DL-PA =
{(

X1∪Y′1, X2∪Y′2
)

: X2 = X1 \ Q for some Q ⊆ P

and Y′2 = (X1 ∩ P)′ ∪ (Y′1 \ P′)
}
.

4.3 TranslatingLD-HT to LDL-PA

To start with we translate the formulas and programs of the language LD-HT into the
language LDL-PA. The translation is given in Table 4 in terms of a recursively de-
fined mapping tr1, where we have omitted the homomorphic cases such as tr1([π]ϕ) =
[tr1(π)]tr1(ϕ) and tr1(ϕ?) =

(
tr1(ϕ)

)
?.

Table 4. Translation from LD-HT into DL-PA

tr1(p) = p, for p ∈ P
tr1(ϕ→ ψ) = [skip ∪ cpBack(Pϕ→ψ)]

(
tr1(ϕ) ⊃ tr1(ψ)

)

tr1(+p) =
(∼p′? ; p′:=�) ∪ (∼p∧p′? ; p:=�)

tr1(−p) =
(
p? ; p:=⊥) ∪ (∼p∧p′? ; p′:=⊥)

Observe that tr1 is polynomial. For example,

tr1(�) = tr1(⊥→⊥) = [skip ∪ skip]�
tr1(p ∨ ¬p) = p ∨ [skip ∪ p:=p′]∼p

tr1(p→ q) = [skip ∪ (p:=p′ ; q:=q′)](p ⊃ q)

The first formula is equivalent to �. The second is equivalent to p ∨ (∼p ∧ ∼p′), i.e., to
p ∨ ∼p′. The third is equivalent to (p⊃q) ∧ (p′⊃q′).

Lemma 2 (Main Lemma). (H, T) ∈ ‖ϕ‖D-HT if and only if H ∪ T ′ ∈ ‖tr1(ϕ)‖DL-PA.

Proof is by induction on the length of expressions (formulas or programs): we show
that for every expression ξ,

– if ξ is a formula then (H, T) ∈ ‖ξ‖D-HT if and only if H∪T ′ ∈ ‖tr1(ξ)‖DL-PA, and
– if ξ is a program then(

(H1, T1), (H2, T2)
) ∈ ‖ξ‖D-HT if and only if

(
(H1∪T ′1), (H2∪T ′2)

) ∈ ‖tr1(ξ)‖DL-PA.

Combining Equilibrium Logic and Dynamic Logic 313

4.4 From D-HT to DL-PA

We now establish how tr1 can be used to prove that a given formula ϕ is D-HT satisfi-
able. To that end, we prefix the translation by the ‘cp(Pϕ)’ program that is followed by
the ‘mkFalse≥0(Pϕ)’ program. The ‘cp(Pϕ)’ program produces a ‘classical’ valuation
T∪T ′, for some subset T of P (as far as the variables of ϕ are concerned), and then
‘mkFalse≥0(Pϕ)’ program transforms the valuation T∪T ′ into a valuation H∪T ′ for
some H such that H⊆T .

Theorem 1. Let ϕ be an LD-HT formula. Then

– ϕ is D-HT satisfiable iff 〈cp(Pϕ)〉〈mkFalse≥0(Pϕ)〉tr1(ϕ) is DL-PA satisfiable, and
– ϕ is D-HT valid iff [cp(Pϕ)][mkFalse≥0(Pϕ)]tr1(ϕ) is DL-PA valid.

This is proved by the Main Lemma and the Program Lemma.
As a result of the theorem above, the formula [cp({p})][mkFalse≥0({p})]tr1(p ∨ ¬p)

should not be DL-PA valid since we know that p ∨ ¬p is not D-HT valid. We indeed
have the following sequence of equivalent formulas:

1. [cp({p})][mkFalse≥0({p})]tr1(p ∨ ¬p)
2. [p′:=p][p:=⊥ ∪ skip](p ∨ [skip ∪ p:=p′]∼p)
3. [p′:=p][p:=⊥ ∪ skip](p ∨ ∼p′)
4. [p′:=p]

(
[p:=⊥](p ∨ ∼p′) ∧ (p ∨ ∼p′)

)

5. [p′:=p]
(∼p′ ∧ (p ∨ ∼p′)

)

6. ∼p ∧ (p ∨ ∼p)
7. ∼p

The last is obviously not DL-PA valid, so the first line is not DL-PA valid either.

4.5 From Dynamic Equilibrium Logic to DL-PA

Having seen how D-HT can be embedded into DL-PA, we now turn to equilibrium logic.

Theorem 2. For everyLD-HT formula χ, T ⊆ P is an equilibrium model of χ if and only
if T∪T ′ is a DL-PA model of tr1(χ) ∧ ∼〈mkFalse>0(Pχ)〉tr1(χ).

Proof. T∪T ′ is a DL-PA model of tr1(χ) ∧ ∼〈mkFalse>0(Pχ)〉tr1(χ) if and only if

T∪T ′ is a DL-PA model of tr1(χ) (1)

and
T∪T ′ is a DL-PA model of ∼〈mkFalse>0(Pχ)〉tr1(χ) (2)

By the Main Lemma, (1) is the case if and only if (T, T) is a HT model of χ in D-HT. It
remains to prove that (2) is the case if and only if (H, T) is not a HT model of χ, for any
set H ⊂ T . We establish this by proving that the following statements are equivalent.

1. T ∪ T ′ is a DL-PA model of ∼〈mkFalse>0(Pχ)〉tr1(χ)
2. (T ∩ Pχ) ∪ T ′ is not a DL-PA model of 〈mkFalse>0(Pχ)〉tr1(χ) (Proposition 2)

314 L. Fariñas del Cerro, A. Herzig, and E.I. Su

3. H ∪ T ′ is not a DL-PA model of tr1(χ), for any H ⊂ T ∩ Pχ (Program Lemma 1)
4. H, T is not a HT model of χ, for any set H ⊂ T ∩ Pχ (Main Lemma 2)
5. H, T is not a HT model of χ, for any set H ⊂ T (Proposition 1).

q.e.d.

Theorem 3. Let χ and ϕ be LD-HT formulas. Then χ |≈ ϕ if and only if

〈cp(Pχ ∪ Pϕ)〉
((

tr1(χ) ∧ ∼〈mkFalse>0(Pχ)〉tr1(χ)
) ⊃ tr1(ϕ)

)

is DL-PA valid.

Theorem 3 provides a polynomial embedding of the consequence problem in our
dynamic equilibrium logic into DL-PA. Together with the EXPTIME upper bound for
the validity problem of DL-PA that we have established in Section 3.3, it follows that the
former problem is in EXPTIME. In the next section we establish that the upper bound
is tight.

4.6 From DL-PA to D-HT

We establish EXPTIME hardness of the D-HT satisfiability problem by means of a sim-
ple translation of the fragment of DL-PA whose atomic assignment programs are re-
stricted to p:=� and p:=⊥ and with the conversion operator: the result follows because
it is known that the satisfiability problem for that fragment is already EXPTIME hard
[2].

The translation is given in Table 5, where we have omitted the homomorphic cases.
In the last two lines, tr2(p:=�) makes p true both here and there, while tr2(p:=⊥) makes
p false both here and there. The translation is clearly polynomial.

Table 5. Translation from DL-PA with assignments only to � and ⊥ into LD-HT (main cases)

tr2(p) = p, for p ∈ P
tr2(ϕ ⊃ ψ) = tr2(ϕ)→ tr2(ψ)

tr2(p:=�) = p? ∪ (+p ;+p
)

tr2(p:=⊥) = ¬p? ∪ (−p ;−p
)

The next lemma is the analog of the Main Lemma adapted to tr2, and is used in the
proof of Theorem 4.

Lemma 3. Let ϕ be a DL-PA formula. Then,

V ∈ ‖ϕ‖DL-PA if and only if (V ,V) ∈ ‖tr2(ϕ)‖D-HT.

Now, we are ready to show how tr2 can be used to prove that a given formula ϕ is
DL-PA satisfiable.

Theorem 4. Let ϕ be a DL-PA formula. Then, ϕ is DL-PA satisfiable if and only if
tr2(ϕ) ∧∧p∈Pϕ (p∨¬p) is satisfiable in D-HT.

Combining Equilibrium Logic and Dynamic Logic 315

Since the satisfiability problem for the fragment of the language of DL-PA with as-
signments only to� and⊥ is EXPTIME hard [2], through the theorem above we deduce
that the D-HT validity problem is also EXPTIME hard; moreover, Theorem 1 tells us
that it is actually EXPTIME complete.

The complexity of the equilibrium consequence problem is at least that of the validity
problem in D-HT. Therefore, the consequence problem in dynamic equilibrium logic
is EXPTIME hard, too. Moreover, Theorem 3 tells us that it is actually EXPTIME
complete.

5 Conclusion

We have defined a simple logic D-HT of atomic change of equilibrium models and
have shown that it is strongly related to dynamic logic of propositional assignments
(DL-PA). This in particular allows to obtain EXPTIME complexity results both for the
D-HT satisfiability and for the consequence in its equilibrium models.

The present paper is part of a line of work aiming at reexamining the logical foun-
dations of equilibrium logic and ASP. In previous works we had analyzed equilibrium
logic by means of the concepts of contingency [4] and by means of modal operators
quantifying over here-and -there worlds in the definition of an equilibrium model [5].
The present paper adds an analysis of the dynamics by integrating operators of upgrad-
ing and downgrading propositional variables.

What about updates by complex programs? Actually we may implement such up-
dates by means of complex D-HT programs. For example, the D-HT program

(¬p ∨ q)? ∪ (−p;+q)

makes the implication p → q true, whatever the initial HT model is (although there
may be other minimal ways of achieving this). More generally, let us consider that an
abstract semantical update operation is a function f : HT −→ 2HT associating to every
HT model (H, T) the set of HT models f (H, T) resulting from the update. If the language
is finite then for every such f we can design a program π f such that ‖π f ‖D-HT = f , viz.
the graph of f . This makes use of the fact that in particular we can uniquely (up to
logical equivalence) characterize HT models by means of the corresponding formulas.
For example, the formula

(〈+p〉�∧〈−p〉�)∧(∧q�p ¬q
)

identifies the HT model (∅, {p}).
Note finally that we cannot express the HT model (∅, {p}) in the language LHT, where
there is no formula distinguishing that model from the model ({p}, {p}).

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. J. of Symbolic Logic 50, 510–530 (1985)

2. Balbiani, P., Herzig, A., Troquard, N.: Dynamic logic of propositional assignments: a well-
behaved variant of PDL. In: Kupferman, O. (ed.) Logic in Computer Science (LICS), New
Orleans, June 25-28. IEEE (2013), http://www.ieee.org/

3. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: Using methods of declarative logic program-
ming for intelligent information agents. TPLP 2(6), 645–709 (2002)

http://www.ieee.org/

316 L. Fariñas del Cerro, A. Herzig, and E.I. Su

4. Fariñas del Cerro, L., Herzig, A.: Contingency-based equilibrium logic. In: Delgrande, J.P.,
Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 223–228. Springer, Heidelberg (2011),
http://www.springerlink.com

5. Fariñas del Cerro, L., Herzig, A.: The modal logic of equilibrium models. In: Tinelli, C.,
Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 135–146. Springer,
Heidelberg (2011), http://www.springerlink.com

6. Fischer-Servi, G.: On modal logic with an intuitionistic base. Studia Logica 36(4), 141–149
(1976)

7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Veloso, M.M. (ed.) IJCAI, pp. 386–392 (2007)

8. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer, Heidelberg (2009)

9. Herzig, A., Lorini, E., Moisan, F., Troquard, N.: A dynamic logic of normative systems. In:
Walsh, T. (ed.) International Joint Conference on Artificial Intelligence (IJCAI), Barcelona,
pp. 228–233. IJCAI/AAAI (2011), Erratum at
http://www.irit.fr/˜Andreas.Herzig/P/Ijcai11.html

10. van der Hoek, W., Walther, D., Wooldridge, M.: On the logic of cooperation and the transfer
of control. J. of AI Research (JAIR) 37, 437–477 (2010)

11. van der Hoek, W., Wooldridge, M.: On the dynamics of delegation, cooperation and control:
a logical account. In: Proc. AAMAS 2005 (2005)

12. van der Hoek, W., Wooldridge, M.: On the logic of cooperation and propositional control.
Artif. Intell. 164(1-2), 81–119 (2005)

13. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and
revising it. In: Gärdenfors, P. (ed.) Belief Revision, pp. 183–203. Cambridge University Press
(1992); preliminary version in Allen, J.A., Fikes, R., and Sandewall, E. (eds.) Principles
of Knowledge Representation and Reasoning: Proc. 2nd Int. Conf., pp. 387–394. Morgan
Kaufmann Publishers (1991)

14. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2(4), 526–541 (2001)

15. Slota, M., Leite, J.: Robust equivalence models for semantic updates of answer-set programs.
In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) KR. AAAI Press (2012)

16. Slota, M., Leite, J.: A unifying perspective on knowledge updates. In: del Cerro, L.F., Herzig,
A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 372–384. Springer, Heidelberg
(2012)

17. Zhang, Y., Foo, N.Y.: A unified framework for representing logic program updates. In:
Veloso, M.M., Kambhampati, S. (eds.) AAAI, pp. 707–713. AAAI Press/The MIT Press
(2005)

http://www.springerlink.com
http://www.springerlink.com
http://www.irit.fr/~Andreas.Herzig/P/Ijcai11.html

ActHEX: Implementing HEX Programs
with Action Atoms�

Michael Fink1, Stefano Germano2, Giovambattista Ianni2,
Christoph Redl1, and Peter Schüller3

1 Institut für Informationssysteme, Technische Universität Wien
2 Dipartimento di Matematica e Informatica, Università della Calabria

3 Faculty of Engineering and Natural Sciences, Sabanci University

Abstract. acthex programs are a convenient tool for connecting stateful exter-
nal environments to logic programs. In the acthex framework, actual actions on
an external environment can be declaratively selected, rearranged, scheduled and
then executed depending on intelligence specified in an ASP-based language. We
report in this paper about recent improvements of the formal and of the opera-
tional acthex programming framework. Besides yielding a significant increase in
versatility of the framework, we also present illustrative application showcases
and a short evaluation thereof exhibiting computational acthex strengths.

1 Introduction

The acthex formalism [1] generalizes HEX programs [4] introducing dedicated action
atoms in rule heads. Action atoms can actually operate on and change the state of an
environment, which can be roughly seen as an abstraction of realms outside the logic
program at hand. The acthex framework allows to conveniently design ASP-based ap-
plications by properly connecting logic-based decisions to actual effects thereof. We
recently advanced the acthex framework wrt. several respects:

– Framework improvements: external atom evaluation has been generalized to take
state into account, i.e., the realm of acthex programs has been extended to capture non-
deterministic actions and environments. Moreover, support for selecting a single model
and a unique corresponding execution schedule has been enhanced, and we developed
explicit means for controlling iterative evaluation of logic programs.
– System improvements: we provide a new architecture for the acthex framework effi-

ciently implemented as an extension to the dlvhex system1.
– Applications: we realized new applications and pursued a preliminary system eval-

uation exhibiting promising results. In terms of performance, our experiments indicate
that, compared to purely declarative approaches, finding problem solutions iteratively
may pay off when instances are large. In terms of ease of programming, our approach al-
lows to attach code in arbitrary programming languages to a logic-programming frame-
work. This is dual to other approaches to interoperability of ASP solvers like [5].
� This research has been partially supported by the Austrian Science Fund (FWF) grant P24090,

and the Vienna Science and Technology Fund (WWTF) grant ICT 08-020. Peter Schüller is
supported by the TUBITAK 2216 Research Fellowship.

1 Available at http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 317–322, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html

318 M. Fink et al.

2 Preliminaries

We assume familiarity with ASP and corresponding basic syntactic and semantic no-
tions (atoms, models, etc.). For space reasons, in the following, we also do not present
acthex syntax and semantics at full formal detail (for the latter cf. [1,4]).

acthex Syntax. In addition to constants (also used for predicate names) and variables,
acthex programs build on external predicate names (prefixed by &) and action predicate
names (prefixed by #). An external atom is of the form &g[Y1, . . . , Yn](X1, . . . , Xm),
where Y1, . . . , Yn and X1, . . . , Xm are lists of terms. An action atom is of the form
#g[Y1, . . . , Yn]{o, r}[w : l], where #g is an action predicate name, Y1, . . . , Yn is a list of
input terms of fixed length in(#g) = n. Moreover, attribute o ∈ {b, c, cp} is called the
action option that identifies an action as brave, cautious, or preferred cautious, while
optional integer attributes r, w, and l are called precedence, weight, and level of #g ,
respectively. A rule r is of the formα1∨. . .∨αk ← β1, . . . , βn, not βn+1, . . . , not βm,
where body elements β are (ordinary) atoms or external atoms, and head elements α
are (ordinary) atoms or action atoms. An acthex program is a finite set of rules.

Example 1. The acthex programP1 = {#robot [goto, charger]{b, 1}←&sensor [bat](low);
#robot [clean , kitchen]{c, 2}← night ; #robot [clean , bedroom]{c, 2}← day ;night ∨ day ←}
uses action atom #robot to control a robot, and an external atom &sensor to access sen-
sor data. Intuitively, precedence 1 of action atom #robot [goto, charger]{b, 1} should
make the robot recharging its battery, if necessary, before cleaning actions. ��

acthex Semantics. An acthex program P is evaluated wrt. a fixed state (snapshot) of
the external environment E using the following steps: (i) answer sets of P are deter-
mined wrt. E, and the set of best models is a subset of the answer sets determined by
an objective function; (ii) any (best) model originates a set of corresponding execution
schedules S, i.e., a sequence of actions to execute; (iii) executing the actions of (and
sequentially according to) a selected schedule S yields another (not necessarily differ-
ent) state E′ of the environment, called the observed execution outcome; finally (iv) the
process may be iterated starting at (i), by considering a snapshot E′′, which can be dif-
ferent from E′ due to exogenous actions (in so-called dynamic environments). Answer
Sets are defined similarly to HEX programs [4], i.e., using Herbrand interpretations, the
grounding of P wrt. the Herbrand universe, and the FLP reduct; ground action atoms
in rule heads are treated like ordinary atoms, see Section 3 for a generalized external
atom semantics including the environment E. We denote by AS(P,E) the collection
of all answer sets of P wrt. E. The set of best models of P , denoted BM(P,E), con-
tains those answer sets I ∈ AS(P,E) that minimize an objective function over weights
and levels of atoms in I (equivalent to the evaluation of weak constraints in [2]). An
action a = #g[y1, . . . , yn]{o, r}[w : l] with option o and precedence r is executable in
I wrt. P and E iff (i) a is brave and a ∈ I , or (ii) a is cautious and a ∈ B for every
B ∈ AS(P,E), or (iii) a is preferred cautious and a ∈ B for every B ∈ BM(P,E).
An execution schedule SI for a (best) model I is a sequence of all actions executable
in I , such that for all pairs of action atoms a, b ∈ I , if prec(a) < prec(b) then a
must precede b in SI , for prec(c) the precedence of an action atom c. Concerning the
effects of actually executing actions, as well as corresponding notions of execution

ActHEX: Implementing HEX Programs with Action Atoms 319

outcomes, we also refer to the next section where these notions are generalized com-
pared to definitions in [1].

Example 2. Considering the program of Example 1, if the robot has low battery, then
AS(P,E) = BM(P,E) contains two models:

I1 = {night , #robot [clean , kitchen]{c, 2}, #robot [goto, charger]{b, 1}}, and
I2 = {day , #robot [clean , bedroom]{c, 2}, #robot [goto, charger]{b, 1}}.

Both give rise to a single execution schedule SIi : first charge, then clean. ��

3 Conceptual Improvements to the acthex Framework

The effective implementation of acthex within the dlvhex software, as well as its initial
application and preliminary evaluation (cf. Sections 4 and 5), raised practical issues
calling for conceptual changes of the acthex framework. Compared to its definition
in [1], we incorporated the following improvements.

External Atom and Action Atom Semantics. We generalize external atom semantics
in order to take the environment into account as follows. With every external predi-
cate name &g we associate an (n+m+2)-ary Boolean function f&g , assigning each
tuple (E, I, y1, . . . , yn, x1, . . ., xm) either 0 or 1, where E is an environment state, I
an interpretation, and the other parameters are input and output constants of &g , re-
spectively. We say that an interpretation I relative to P is a model of a ground external
atom a = &g[y1, . . . , yn](x1, . . . , xm) wrt. environment E, denoted as I, E |= a, iff
f&g(E, I, y1 . . . , yn, x1, . . . , xm) = 1.

Given a model I , for each action predicate name #g the possible effects of executing a
ground action #g[y1, . . . , ym]{o, p}[w : l] on an environmentE wrt. I are defined by an
associated (m+2)-ary function f#g which returns a set of possible follow-up environ-
ment states: f#g(E, I, y1, . . . , ym) = E . Every E′ ∈ E thus represents a possible effect.
Considering a set of environments rather than a definite effect allows to model nonde-
terministic actions, and also nondeterministic and/or dynamic environments, where the
environment may change without action execution by means of exogenous events.

Model Selection and Execution Schedule Representation. In practice, one usually
wants to consider and execute a single execution schedule. This requires the choice
of a single best model and a unique corresponding execution schedule. The former
is modelled by a Best Model Selector function selectBM which intuitively decides
which model I from BM(P,E) to use. In our implementation, some simple selec-
tion functions (like lexicographic first) are built-in and can be configured. Alternatively,
selectBM can be provided in terms of user-defined C++ code. The set of all execution
schedules of I is given by ESP,E(I) ={

〈a1, . . . , an〉 | prec(ai)≤ prec(aj), for 1≤ i < j≤n, and {a1, . . . , an}=Ae

}
.

ESP,E(I) is in principle as large asO(|I|!), thus it is of course represented implicitly by
its execution schedule base ESBP,E(I), which is defined as a sequence of sets of actions
ESBP,E(I)=

{
〈A1, . . . , Am〉

}
where Ai⊆Ae, 1≤ i≤m, and prec(a)= prec(a′) for

all a, a′ ∈Ai, while prec(a)< prec(a′′) holds for all a∈Ai, a
′′ ∈Aj , 1≤ j≤m, i �= j.

Intuitively, actions in Ai have the same precedence, while the precedence of actions

320 M. Fink et al.

strictly increases along the sequence. Obviously, ESBP,E(I) has size O(|I|), and
ESP,E(I) can be recovered from it.

Execution Schedule Selection and Execution Outcomes. Given an execution sched-
ule base, again a particular (customizable) function buildES , called Execution Sched-
ule Builder, selects a single execution schedule 〈a1, . . . , an〉 ∈ ESP,E(I) for execu-
tion. It defines a strict order over potential schedules, possibly based on general criteria
on actions independent from the current execution base. Given an execution sched-
ule S= 〈a1, . . . , an〉 ∈ ESP,E(I), the set of possible execution outcomes of S in en-
vironment E wrt. I is defined as EX(S, I, E) = {En | E0 = E, and Ei+1 ∈
f#g(Ei, I, y1, . . . , ym)}, given that ai is of the form #g[y1, . . . , ym]{o, p}[w : l]. Intu-
itively the initial environment E0 = E is succeeded by a potential effect of executing
each action in S in the given order. Recall that nondeterministic functions f&g not only
capture nondeterministic actions but take into account nondeterministic and/or dynamic
environments. Eventually, given acthex program P , environmentE, execution schedule
builder buildES and best model selector selectBM , the observed outcome of executing
P on E is given by some En ∈ EX(S, I, E), where S= buildES (ESBP,E(I)) and
I = selectBM (BM(P,E)). Unless the environment is static and deterministic, from
a modeling perspective, the observed outcome represents a nondeterministic choice.
For instance, executing SI1 of Example 2 assuming a static and deterministic environ-
ment first yields {E1}= f#robot(E, I1, goto, charger), and then {E2}= f#robot(E1, I1,
clean , bedroom), where E2 is the observed execution outcome.

Evaluation Iteration. Another important implementation aspect is an efficient realiza-
tion of iterative acthex program evaluation. For this purpose we provide support on two
aspects. First, in order to capture systems with dynamic environments, the environment
state is sensed upon each iteration. This yields the environment E = E0 that is used
to evaluate external atoms and upon which the first scheduled action is executed. In
general, the environment E = E′

i for evaluation in iteration i + 1 can possibly differ
from the observed outcome Ei at iteration i. Second, iteration control is provided by
dedicated command line options, built-in constants, and specific action atoms. From
the command line, and with higher priority by setting built-in constants to true, one can
effect iterative evaluation in terms of fixed number of iterations, iteration until a pre-set
value of (total) execution time is elapsed (checked after each iteration), and iteration
ad infinitum. Special action atoms #acthexContinue and #acthexStop have highest
priority and provide a declarative means of controlling iteration.

4 System Architecture and Implementation

Figure 1 shows how acthex is implemented within the dlvhex [4] framework, how appli-
cations interface with acthex, and the stages of executing an acthex program.

A given acthex program P is first parsed using the dlvhex parser, the acthex-specific
parser, and the program rewriter modules. This yields a HEX program P ′ which con-
tains auxiliary atoms instead of actions. P and P ′ are such that the sets AS(P ′) and
AS(P,E) are in one-to-one correspondence. P ′ is evaluated using the computational
core of dlvhex wrt. custom external atoms of an acthex application, then the set of best
models BM(P,E) is computed. One best model I is selected using a Best Model

ActHEX: Implementing HEX Programs with Action Atoms 321

HEX Core

Enumeration Finished Callback

Best Model
Selector

Schedule
Builder

Custom
Actions

Environment
Interface

Custom
Environment

External Atom
Interface

Custom
External Atoms

Parser &
Rewriter

dl
vh

ex
ac

th
ex

A
pp

lic
at

io
n

iteration management execute actions in S on E build Schedule S from I

parse and rewrite evaluate HEX semantics compute+ select Best ModelsP P ′ AS(P ′)=

AS(P,E)
I ∈BM(P,E)

SE′
iterate

end

Fig. 1. Architecture of acthex and execution flow for program P on Environment E

Selector module, then an Execution Schedule Builder module creates a unique execu-
tion schedule S from actions in I . Both Best Model Selectors and Execution Schedule
Builders can be customized, as well as it is possible to program custom action pred-
icates each having its own customizable Environment interface. Moreover, the acthex
system features iterative evaluation of P ′. The iteration process can be controlled as
described in Section 3.

5 Application and Evaluation

acthex can be fruitfully used in a variety of contexts, especially when it is expected to
take actions which have impact on actual dynamic environments, and which require to
repeatedly take new decisions. In this respect, logic-based games are the ideal testbed:
we showcase here two pilot applications (addons) we developed using the acthex system.

Sudoku Addon. This addon allows to maintain a Sudoku table of arbitrary size and
to perform operations on it. Sudoku tables are seen as stored within the external envi-
ronment. The addon provides a single action predicate#sudoku [A,O1, O2, O3]{O,P}
[W : L], where A is an operation type and O1 ,O2 ,O3 are parameters, depending on
the operation type. Possible actions are the insertion of a number into a cell, exclusion
of a candidate number from the possible values of a cell, and printing the current table
in various formats. Other external predicates allow to query the content of the current ta-
ble. This addon permitted us to experiment with the incremental application of Sudoku
inference rules as described in [3]. Large Sudoku tables cannot be solved by pure guess
& check strategies: on the other hand, acthex allows to iterate over partially complete
tables, and to repeatedly apply a number of deterministic inference strategies depend-
ing on the current resolution progress. Our acthex-based iterative player allows to solve
Sudoku tables as large as 81 × 81, which are far out of the performance reach of an
ASP-based system using a pure guess & check strategy2.

2 Detailed results are available at
http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/SudokuAddon.html#sbench .

http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/SudokuAddon.html#sbench

322 M. Fink et al.

Reversi Addon. The Reversi addon allows for playing an online version of the popu-
lar board game Reversi. acthex allows to program Reversi heuristic rules using a logic
program and to perform actual actions depending on the move of choice. Here the
environment includes an external web gaming site3; we developed Javascript and Perl
scripts in order to access and perform actions on the site, and attached them to the ex-
ecution of the action atom #reversi [A,O1, O2]{O,P}[W : L], where A selects an
action type and O1 and O2 are parameters, depending on the action type. Possible
actions are: setting the game number, logging in, making a move, and waiting until
the opponent makes their move. Some external predicates are available for retrieving
the current status of the game and the corresponding board. The usage workflow of the
Reversi addon is straightforward: after initialization, each iteration extracts the current
board state from the Web by means of proper external atoms and performs reasoning
about the next move in a logic program, using commonly known heuristic rules for Re-
versi4. The chosen move triggers an action which is executed on the game web site. The
iteration progress is then suspended by means of a wait action, which will let a further
iteration start when the game opponent replies to the last move. The odering of actions
is controlled by the precedence feature of acthex, while the end of the game is detected
by means of an external atom, causing to end iteration when a game terminates.

6 Conclusion

In this work we have enriched the acthex semantics by new features and provided an
implementation on top of the dlvhex reasoner for HEX-programs. Moreover, an iteration
framework allows for repeating the evaluation of an acthex program and consequent
execution of actions. For evaluation, we applied our system to logic games (Sudoku
and Reversi) exhibiting scalability to larger instances and modeling strength. Further
work is planned, especially concerning evaluation efficiency. For instance, we are cur-
rently considering an incremental evaluation approach similar to iclingo [6], although
the latter serves a different purpose, since it does neither address action execution nor
maintain arbitrary state information, and hence is less expressive (e.g., for re-planning).

References
1. Basol, S., Erdem, O., Fink, M., Ianni, G.: HEX programs with action atoms. In: International

Conference on Logic Programming, Technical Communications, pp. 24–33 (2010)
2. Buccafurri, F., Leone, N., Rullo, P.: Strong and weak constraints in disjunctive datalog. In:

Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 2–17. Springer,
Heidelberg (1997)

3. Calimeri, F., Ianni, G., Perri, S., Zangari, J.: The eternal battle between determinism and
nondeterminism: preliminary studies in the sudoku domain. In: RCRA (submitted, 2013)

4. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer-Set Programming. In: IJCAI, pp. 90–96. Pro-
fessional Book Center (2005)

5. Febbraro, O., Leone, N., Grasso, G., Ricca, F.: Jasp: A framework for integrating answer set
programming with java. In: KR (2012)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

3 “Your Turn My Turn”, available at http://www.yourturnmyturn.com
4 See e.g. the Strategy guide for Reversi at http://www.samsoft.org.uk/reversi/strategy.htm

http://www.yourturnmyturn.com
http://www.samsoft.org.uk/reversi/strategy.htm

Debugging Answer-Set Programs

with Ouroboros – Extending the SeaLion Plugin�

Melanie Frühstück1, Jörg Pührer2, and Gerhard Friedrich3

1 Siemens AG Österreich, Corporate Technology, Vienna, Austria
melanie.fruehstueck@siemens.com

2 Technische Universität Wien,
Institut für Informationssysteme 184/3,

Favoritenstraße 9-11, A–1040 Vienna, Austria
puehrer@kr.tuwien.ac.at

3 Alpen-Adria Universität, Klagenfurt, Austria
Gerhard.Friedrich@ifit.uni-klu.ac.at

Abstract. In answer-set programming (ASP), there is a lack of debug-
ging tools that are capable of handling programs with variables. Hence,
we implemented a tool, called Ouroboros, for debugging non-ground
answer-set programs. The system builds on a previous approach based on
ASP meta-programming that has been recently extended to cover weight
constraints and choice rules. The main debugging question addressed is
“given a program P and an interpretation I , why is I not an answer
set of P”. Our tool gives answers in terms of two categories of expla-
nations: unsatisfied rules and unfounded loops. Ouroboros is a plugin of
the SeaLion integrated development environment for ASP that is built
on Eclipse. Thereby, Ouroboros complements and profits from SeaLion’s
Stepping plugin, that implements a different debugging approach for
ASP.

1 Introduction

Answer-set programming (ASP) is a well-known declarative problem-solving
paradigm [1]. While a great deal of work on ASP implementations has been put
into improving solver performance, comparably little effort has been spent on
tools that support the development of answer-set programs, in particular, there
is a lack of debugging systems for ASP. But, in recent years, methods for debug-
ging have been explored theoretically [2–6]. Brain and De Vos [2] discussed what
it means for answer-set programs to be incorrect and presented algorithms to
locate bugs. Syrjänen [3] proposed to debug contradictory programs by means
of ASP meta-programming. Gebser et al. [4] tried to find semantic errors of
answer-set programs. The question is why an expected interpretation is not an
answer set of a program (spock [7] implements this approach).

� This research has been funded by FFG FIT-IT (grant number 825071) within the
scope of the RECONCILE project and by the Austrian Science Fund (FWF P21698).

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 323–328, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

324 M. Frühstück, J. Pührer, and G. Friedrich

However, these approaches are only able to deal with propositional programs
which is clearly a limiting factor as far as practical applications are concerned.
Therefore, Oetsch et al. [8] developed a meta-program for debugging non-ground
programs in ASP. This approach is based on the meta-programming technique
of Gebser et al. [4] for propositional programs. Recently, their method has been
further extended to cover weight and cardinality constraints [9]. In this paper, we
describe the debugging system Ouroboros, which implements this approach and
explains why an expected interpretation is not an answer set of a given program.
The system gives answers in terms of two categories of explanations: unsatisfied
rules and unfounded loops. Intuitively, a rule is unsatisfied if its body is true but
all literals in its head are false. Moreover, an unfounded loop is a set of atoms
from the interpretation whose truth can only be derived from itself but is not
founded in facts. Thus, an unfounded loop is reminiscent of the Ouroboros, a
dragon biting its own tail, which our tool is named after. Ouroboros1 is a plugin
of SeaLion [10, 11], an integrated development environment (IDE) for ASP that
is based on the Eclipse platform and supports developing answer-set programs
using the Potassco and DLV solvers [12, 13]. Thereby, Ouroboros complements
the stepping-based debugging mechanism [14] integrated in SeaLion [11]. It allows
the user to interactively build up an interpretation by, stepwise, adding literals
derived by a rule whose body is satisfied by the interpretation obtained in the
previous step.

While, on the one hand, Ouroboros provides additional debugging functional-
ity for SeaLion, on the other hand, it also profits from the Stepping-plugin which
can help in building up the interpretation that is input to our approach. Another
possibility to create an interpretation is to use the Kara plugin of SeaLion [15].

2 Backend

As mentioned in the introduction, Ouroboros makes use of ASP meta-program-
ming to find explanations why a given interpretation I is not an answer set
of the program P under development. The internal data flow of Ouroboros is
depicted in Fig. 1. In a preprocessing step, all cardinality constraints of P are
translated into standard rules 2. Then, P and the expected interpretation I are
reified, i.e., P and I are brought onto a meta-level (i.e. a fact person(1)would be
presented by rule(r1). head(r1,r1h1). pred(r1h1,person). struct(r1h1,1,const,1).),
represented by facts, and joined with rules for identifying the targeted explana-
tions. Finally, the meta-program is fed to an ASP solver and the resulting answer
sets get interpreted.

3 Usage and Graphical User Interface

The Ouroboros plugin itself comprises two graphical components, the Debug
Configuration Tab Group for defining parameters for a debugging session and the

1 The plugin is open source and available from http://www.sealion.at
2 For a detailed description of these translations we refer the interested reader to a
companion paper [9].

http://www.sealion.at

Debugging Answer-Set Programs with Ouroboros 325

�

�

�����	�
���

������	�
�

���
����
�

��������������

��
�

�������

���

��	���

������

��
�

����
���������	�

����
���������	�

��������������

�����

Fig. 1. Data Flow in Ouroboros

Debugging Explanation View that provides the explanations found to the user.
In the following two subsections, both will be clarified by means of an example.
The example is based on the original house problem [16] that is an abstraction of
several configuration problems where entities may be contained in other entities
and some additional requirements are defined. We considered a simplification of
the modification of this problem [17, 18]. Given a set of cabinets, rooms, persons
and objects, the problem consists of assigning objects to cabinets, cabinets to
rooms and rooms to persons, such that following constraints hold: cabinets and
rooms can contain only a specific number of objects and cabinets, respectively;
objects belonging to different persons cannot be placed in the same cabinet;
cabinets of different persons cannot be placed in the same room. Fig. 2 depicts the
original program and the expected interpretation (in the interpretation view).

3.1 Debug Configurations

Debug configurations are similar to run configurations in Eclipse. They are used
to start an application in the debug mode. When clicking on Ouroboros in the
debug configurations, three tabs occur which the user can select, where one tab
is the Common Eclipse tab. Let us assume that a user, called Benia, wants
to debug the program given in Fig. 2. In the Input Program/Interpretation tab
Benia selects the program file and the expected interpretation file. When clicking
on the add button, a window occurs for selecting files from the Eclipse workspace.
The currently opened file in the editor is preselected. As Benia wants to check for
unsatisfied rules in the program, he selects the explanation type Unsatisfiability.

In the Solver tab, Benia chooses Gringo/clasp as solver configuration. If he
had checked for unfounded loops instead unsatisfied rules, the solver would have
to be able to deal with disjunctions as they are needed in the meta-program. In
that case one can set the first check mark on the bottom of the tab to filter for
solver configurations marked as claspD configurations. Using some other solver
that is able to deal with disjunctions, requires the second check mark to be set.

After all required attributes of the debug configuration are set, Benia can start
the debugging process. Now, all steps described in Fig. 1 are run through. When
the final answer set is computed, the explanation why the given interpretation
is not answer set of the given program is shown in the debugging explanation
view.

326 M. Frühstück, J. Pührer, and G. Friedrich

Fig. 2. The given program and the expected interpretation

3.2 Debugging Explanation View

The debugging explanation view consists of two columns. In the first column,
the explanation is shown. This is either the rule that is unsatisfied with re-
spect to the interpretation or an unfounded loop. In the second column the
meta-programming predicates are shown. This can be either guessRule/1 and
subst/2 (the former states about the unsatisfied rule and the latter about its
substitution) or inLoop/1 (all literals that form an unfounded loop). Even if the
output of the debugger concerns a translation rule of a cardinality constraint,
it is mapped back to the cardinality constraint itself. Additionally, all reasons
of why the given interpretation is not an answer set of the program are given.
In the case of Benia’s program, the explanation represents the last constraint
given in the program. In particular, the additional condition P1!=P2 is missing,
that means that the overall configuration does not allow a room belonging to
two different persons. Thus, one room can only belong to one person. When
Benia clicks on the explanation the corresponding rule is highlighted in the ed-
itor (see Fig. 3). If the explanation refers to a rule in a specific file, this file is
automatically opened.

3.3 Additional Features in the Interpretation View

In addition to the main two components described above, the context menu of the
interpretation view of SeaLion was extended. In general, the interpretation view
provides a tree structure of each answer set of the executed program (cf. Fig. 2).
In the context menu of the interpretation some new functionalities were added.
The entry Save as Facts makes it possible to save the selected interpretation
as facts. To do so, the user has to select a project in which the new file is
inserted. The predefined name of the new file can be adapted. After finishing this
process the file including the facts of the interpretation is opened in the editor.

Debugging Answer-Set Programs with Ouroboros 327

Fig. 3. Debugging Explanation View

Moreover, the user can select Detect Unsatisfied Rules if he or she wants to create
a new debug configuration where the input interpretation is the one on which
the context menu was opened and where the explanation type is automatically
set to unsatisfied rules. Detect Unsatisfied Rules for Launch lets the user first
select an existing debug launch configuration in which the interpretation file
is substituted with the interpretation selected. Again, the explanation type is
automatically set to unsatisfied rules. The entriesDetect Unfounded Loops as well
as Detect Unfounded Loops for Launch work analogously to the just described
functionalities, except that the explanation type is set to unfounded loops.

If these four functionalities are used, the user has to be aware of the fact that
the selected interpretations are just temporary files. That means, if the user
exits Eclipse the interpretation files will get lost. To make them persistent the
functionality Save as Facts can be used.

4 Conclusion

In this paper we described the debugging extension called Ouroboros in the
SeaLion plugin for Eclipse. It provides debugging support of Gringo programs
involving variables and cardinality constraints by explaining why a given inter-
pretation is not an answer set of a given program. We concisely presented the
the components and functionalities of the Ouroboros plugin and, by means of a
debugging example, showed how the user can kick off the debugging process.

328 M. Frühstück, J. Pührer, and G. Friedrich

References

1. Gelfond, M., Leone, N.: Logic programming and knowledge representation - The
A-Prolog perspective. Art. Intell. 138(1-2), 3–38 (2002)

2. Brain, M., De Vos, M.: Debugging logic programs under the answer set semantics.
In: 3rd International Workshop on Answer Set Programming (ASP 2005). CEUR
Workshop Proceedings, pp. 141–152 (2005)

3. Syrjänen, T.: Debugging inconsistent answer set programs. In: Proc. NMR 2006,
pp. 77–83 (2006)

4. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique
for debugging answer-set programs. In: Proc. AAAI 2008, pp. 448–453. AAAI Press
(2008)

5. Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: A theoretical framework for the
declarative debugging of datalog programs. In: Schewe, K.-D., Thalheim, B. (eds.)
SDKB 2008. LNCS, vol. 4925, pp. 143–159. Springer, Heidelberg (2008)

6. Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer
set semantics. TPLP 9(1), 1–56 (2009)

7. Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: spock: A debugging
support tool for logic programs under the answer-set semantics. In: Seipel, D.,
Hanus, M., Wolf, A. (eds.) INAP 2007. LNCS, vol. 5437, pp. 247–252. Springer,
Heidelberg (2009)

8. Oetsch, J., Pührer, J., Tompits, H.: Catching the Ouroboros: On debugging non-
ground answer-set programs. TPLP 10(4-6), 513–529 (2010)

9. Polleres, A., Frühstück, M., Schenner, G., Friedrich, G.: Debugging non-ground
ASP programs with choice rules, cardinality and weight constraints. In: Cabalar,
P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 452–464. Springer,
Heidelberg (2013)

10. Oetsch, J., Pührer, J., Tompits, H.: The SeaLion has landed: An IDE for answer-set
programming—Preliminary report. In: Proc. WLP 2011 (2011)

11. Busoniu, P., Oetsch, J., Pührer, J., Skočovský, P., Tompits, H.: SeaLion: An
Eclipse-based IDE for answer-set programming with advanced debugging support
(submitted draft, 2013)

12. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011)

13. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3), 499–562 (2006)

14. Oetsch, J., Pührer, J., Tompits, H.: Stepping through an answer-set program. In:
Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
134–147. Springer, Heidelberg (2011)

15. Kloimüllner, C., Oetsch, J., Pührer, J., Tompits, H.: Kara - A system for visualising
and visual editing of interpretations for answer-set programs. In: Proc. WLP 2011,
pp. 152–164 (2011)

16. Mayer, W., Bettex, M., Stumptner, M., Falkner, A.: On solving complex rack
configuration problems using CSP methods. In: Proc. IJCAI 2009 Workshop on
Configuration (2009)

17. Friedrich, G., Ryabokon, A., Falkner, A., Haselböck, A., Schenner, G., Schreiner,
H.: (re)configuration using answer set programming. In: Proc. IJCAI 2011 Work-
shop on Configuration, pp. 17–25 (2011)

18. Aschinger, M., Drescher, C., Vollmer, H.: LoCo—A logic for configuration prob-
lems. In: Proc. ECAI 2012, vol. 242, pp. 73–78 (2012)

Game Semantics for Non-monotonic Intensional

Logic Programming�

Chrysida Galanaki1, Christos Nomikos2, and Panos Rondogiannis1

1 Department of Informatics & Telecommunications, University of Athens, Greece
{chrysida,prondo}@di.uoa.gr

2 Department of Computer Science and Engineering, University of Ioannina, Greece
cnomikos@cs.uoi.gr

Abstract. Intensional logic programming is an extension of logic pro-
gramming based on intensional logic, which includes as special cases both
temporal and modal logic programming. In [OW92], M. Orgun and W.
W. Wadge provided a general framework for capturing the semantics of
intensional logic programming languages. One key property involved in
the construction of [OW92], is the monotonicity of intensional operators.
In this paper we consider intensional logic programming from a game-
theoretic perspective. In particular we define a two-person game and
we demonstrate that it is equivalent to the semantics of [OW92]. More
importantly, we demonstrate that the game is even applicable to inten-
sional languages with non-monotonic operators. In this way we provide
the first (to our knowledge) general semantic framework for capturing
the semantics of non-monotonic intensional logic programming.

1 Introduction

Intensional Logic is an extension of classical logic that was introduced by R. Mon-
tague [Mon74] in order to capture the semantics of natural languages. Roughly
speaking, intensional logic was proposed as a formal system for understanding
and reasoning about context-dependent properties of natural language expres-
sions. In its initial form, intensional logic was a higher-order one, equipped with
modal and temporal operators. Nowadays, however, the term “intensional log-
ics” can also be used more loosely in order to describe a large class of logics for
reasoning about context-dependent phenomena. In this sense, temporal logics
and modal logics can be viewed as special cases of intensional logic.

Based on this broad interpretation of the term, M. Orgun and W. W. Wadge
introduced in [OW92] the notion of intensional logic programming, which in-
cludes as special cases many non-classical extensions of logic programming (such
as temporal logic programming, modal logic programming, and so on). As pointed

� This research was supported by the project “Handling Uncertainty in Data Inten-
sive Applications”, co-financed by the European Union (European Social Fund) and
Greek national funds, through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF) - Research Pro-
gram: THALES, Investing in knowledge society through the European Social Fund.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 329–341, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

330 C. Galanaki, C. Nomikos, and P. Rondogiannis

out in [OW92], numerous logic programming languages that have been proposed
in the literature can be characterized as “intensional” (such as for example,
Chronolog [OW92], Tempura [Mos84], Molog [Far86], and so on). It was there-
fore natural to wonder whether there exists a common semantic framework for
handling all these systems in a uniform way. As it was demonstrated in [OW92],
if the intensional operators of the source intensional logic programming language
obey some simple semantic properties, then the programs of the language are
guaranteed to possess the minimum model property. However, all the operators
allowed in [OW92] are assumed to satisfy the monotonicity property (see Sec-
tion 2 for a formal definition of this notion), and this excludes many interesting
applications that involve non-monotonicity (which nowadays is a crucial concept
involved in knowledge representation and reasoning).

The purpose of this paper is to extend the framework of [OW92] to al-
low arbitrary (even non-monotonic) intensional operators in the bodies of pro-
gram clauses. Our construction is based on game semantics, an approach which
was initially proposed in [vE86] and has recently been revived and extended
in [CLN98, GRW08, Tsou11]. We start by constructing a simple two-person
game for the class of intensional logic programs considered in [OW92] and we
demonstrate that the outcome of the game coincides with the minimum model
semantics obtained in [OW92]. We thus provide an equivalent, purely game-
theoretic formulation to the approach of Orgun and Wadge. We then extend
the proposed game to handle intensional logic programs that even use non-
monotonic operators in the bodies of clauses. In this way we obtain the first (to
our knowledge) general semantic framework for non-monotonic intensional logic
programming. It should be noted that intensional logic programming, due to
its variety of operators, allows a much broader framework for non-monotonicity
than the one we are familiar with from classical logic programming (where the
main source of non-monotonicity is the operator of negation-as-failure).

2 Preliminaries

2.1 Intensional Logic Programming

For simplicity in our exposition, the programs of our language will be proposi-
tional and possibly infinite. This is a common assumption in logic programming
which will simplify our presentation. In essence, instead of studying finite first-
order programs, we examine the ground instantiations of these programs (which
in general are infinite propositional programs).

We assume the existence of an infinite set of intensional operators; programs of
our language will use operators of this set. We will use symbols such as �,©, and
so on, to denote arbitrary intensional operators. We assume that an intensional
atom consists of a unique intensional operator applied to a propositional atom.
This assumption does not incur any loss of generality, despite the fact that in
most intensional languages an intensional atom is a classical atom prefixed by a
finite sequence of intensional operators. For example, in Chronolog [OW92], there
exist only two intensional operators, namely first and next, and an intensional

Game Semantics for Non-monotonic Intensional Logic Programming 331

atom is a propositional atom prefixed by a finite sequence of these two operators.
In our setting, every finite sequence of operators corresponds to a single operator.
For example, given the Chronolog intensional atom next next A, we will assume
that next next is a single operator.

A central concept regarding intensional logic programming (and intensional
logic in general), is that of its underlying set of possible worlds, which is used
in order to give semantics to the intensional operators of the language. In the
rest of the paper we will use W to denote the set of possible worlds of our
language. Following [OW92], the meaning of an intensional operator � is a func-
tion in 2W → 2W . We will use ||�|| to denote the meaning of �. As discussed
in [OW92][page 422], this approach to the semantics of intensional operators is
equivalent to the so-called neighborhood semantics of Dana Scott [Sco70]. For-
mally, an intensional language is defined as follows:

Definition 1. An intensional language consists of an infinite set of proposi-
tional atoms, the set of usual logical connectives, a possibly infinite set of in-
tensional operators, a set W of possible worlds and a set of denotations, ie.,
functions 2W → 2W , one for each intensional operator. An intensional atom
is a formula �A where A is a propositional atom and � is an intensional op-
erator. An intensional clause is a clause of the form B0 ← B1, . . . , Bn, where
B0, B1, . . . , Bn are intensional or propositional atoms. An intensional (logic)
program is a (possibly infinite) set of intensional clauses.

The semantics of intensional logic programs is given using the notion of inten-
sional interpretation [OW92]. An intensional interpretation I maps each proposi-
tional atom to a subset of the set of possible worlds (intuitively, to those possible
worlds where this atom is true under I). Notice that, in Section 4 we will treat
subsets of W as functions from W to {0, 1}, i.e., we will identify a subset with
its characteristic function.

Definition 2. An intensional interpretation I of an intensional logic program
P is a function from the set of propositional atoms of P to 2W .

Definition 3. Let I be an intensional interpretation of a given program P .
Then, I can be extended as follows:

– I(�A) = ||�||(I(A))
– I(B1, . . . , Bn) =

⋂n
i=1 I(Bi).

We will say that I satisfies an intensional clause B0 ← B1, . . . , Bn if I(B0) ⊇
I(B1, . . . , Bn), and I is a model of P if I satisfies all intensional clauses of P .

We will be interested in intensional operators that possess certain properties that
intuitively ensure that the programs of our language are “well-behaved” from a
semantic point of view. We follow the terminology introduced in [OW92]:

Definition 4. Let � be an intensional operator. We say that ||�|| is:
– monotonic iff for all S1, S2 ∈ 2W , S1 ⊆ S2 implies ||�||(S1) ⊆ ||�||(S2).
– universal iff for some S ∈ 2W , ||�||(S) = W .

– conjunctive iff for all {Si}i∈I ∈ 22
W

, ||�||(
⋂

i∈I Si) =
⋂

i∈I ||�||(Si).

332 C. Galanaki, C. Nomikos, and P. Rondogiannis

The above notions can be used in order to state the following theorem (which is
a central result established in [OW92]):

Theorem 1. Let P be an intensional logic program such that the denotations of
all intensional operators in the heads of the clauses of P are universal, monotonic
and conjunctive, and the denotations of all intensional operators in the bodies of
the clauses are monotonic. Then, P has a minimum model MP .

Example 1. Consider the following Chronolog program:

first p←
next next p← p

The set of intensional operators of Chronolog consists of all finite sequences of the
operators first and next. The set of possible worlds W is equal to the set N of
natural numbers. Recall now (see [OW92]) that ||next||(S) = {t ∈ N | t+1 ∈ S},
||next next||(S) = {t ∈ N | t + 2 ∈ S} and ||first||(S) = {t ∈ N | 0 ∈ S}.
One can easily verify that the operators first and next next are universal,
monotonic and conjunctive and therefore the above theorem can be applied.
The minimum model of the above program is the interpretation that assigns to
p the set of even natural numbers. ��

As we discuss in Section 3, Theorem 1 can also be established in a purely game-
theoretic way. Moreover, in Section 4, an extension of this theorem will be ob-
tained for programs with non-monotonic operators in the bodies of clauses.

2.2 Infinite Games of Perfect Information

Infinite games of perfect information [GS53] are games between two players that
we will call Player I and Player II. In such games there does not exist any
“hidden information”: both players know all the moves that have been played
so far, and there are no simultaneous moves. The games are infinite in the sense
that they do not terminate at a finite stage and therefore in order to derive the
outcome of a play it may be necessary to examine an infinite sequence of moves.

In the following, sequences (finite or infinite in length) will usually be denoted
by s or x. A finite sequence of length k will be denoted by 〈s0, s1, . . . , sk−1〉 and
the empty sequence by 〈〉. Given a set X , an infinite tree on X is a set Tω ⊆ Xω

of infinite sequences1 of members of X .
During a play of a game, the two players exchange moves from a non-empty set

X , called the set of moves. Initially, Player I chooses some x0 ∈ X , then Player II
chooses x1 ∈ X , and so on. There also exists a set of rules specifying the possible
moves of the two players. The rules will usually be defined by putting down (non-
blocking) restrictions on the choice of xn that depend on the preceding moves

1 The definition of an infinite tree as a set of infinite sequences can be justified as
follows: the nodes of the tree are the initial segments of the infinite sequences and
the root of the tree is the empty sequence 〈〉. A consequence of this definition is that
an infinite tree does not contain terminal nodes (leaves), i.e., it is purely infinite.

Game Semantics for Non-monotonic Intensional Logic Programming 333

x0, . . . , xn−1. The rules of the game (see for example [Mos80]) implicitly define
an infinite tree Tω on X :

〈x0, x1, . . .〉 ∈ Tω ⇔ for each i ≥ 0, xi is allowed by the rules.

Additionally, we assume the existence of a set D, called the set of payoffs, which
consists of all possible outcomes of the game. Finally, we consider a function Φ,
called the payoff function, which calculates the outcome of a play of the game.
The above notions are formalized as follows:

Definition 5. An infinite game of perfect information is a quadruple Γ =
(X,Tω, D, Φ), where:

– X is a nonempty set, called the set of moves for Players I and II.
– Tω is an infinite tree on X (i.e., ⊆ Xω), usually implicitly specified by a set

of rules.
– D is a linearly ordered set called the set of rewards, with the property that

for all S ⊆ D, lub(S) and glb(S) belong to D.
– Φ : Tω → D, is the payoff function of the game.

Given a game Γ , a legal sequence of moves of the game is an initial segment
of an infinite path that starts at the root of the tree Tω of Γ . We define two sets
StratI(Γ) and StratII(Γ) which correspond to the set of strategies for Player I
and Player II respectively. A strategy σ ∈ StratI(Γ) assigns a move to each even
length legal sequence of moves; similarly for τ ∈ StratII(Γ) and odd length legal
sequences of moves.

Definition 6. Let Γ = (X,Tω, D, Φ) be a game. Let Tn be the set of initial
segments of elements of Tω that have length n. Then, a strategy for Player I
is a function σ : (

⋃
n<ω T2n) → X such that for every n < ω and for every

〈x0, . . . , x2n−1〉 ∈ T2n, 〈x0, . . . , x2n−1, σ(〈x0, . . . , x2n−1〉)〉 ∈ T2n+1. Similarly, a
strategy for Player II is a function τ : (

⋃
n<ω T2n+1)→ X such that for every n <

ω and for every 〈x0, . . . , x2n〉 ∈ T2n+1, 〈x0, . . . , x2n, τ(〈x0, . . . , x2n〉)〉 ∈ T2n+2.
We denote by StratI(Γ) and by StratII(Γ) the sets of strategies of Players I and
II respectively.

Two strategies, when played one against the other, define a play of the game:

Definition 7. Let Γ be a game and let σ ∈ StratI(Γ) and τ ∈ StratII(Γ). We
define the following sequence:

s0 = σ(〈〉)
s2i = σ(〈s0, s1, . . . , s2i−1〉), for all i ≥ 1

s2i+1 = τ(〈s0, s1, . . . , s2i〉), for all i ≥ 0.

The play of the game defined by the strategies σ and τ , which is denoted by
σ � τ , is the infinite sequence 〈s0, s1, s2, . . .〉. The si’s are the moves of the play.

334 C. Galanaki, C. Nomikos, and P. Rondogiannis

Until now we have focused on particular plays of a game. We would like to
have a notion that gives us the outcome of the whole game provided that Player
I tries his best to minimize the result while Player II tries his best to maximize
it. Moreover, we would like that during this process, each player can decide for
his best strategy, independently of the corresponding choice of the other player.
This idea is captured by determinacy:

Definition 8 (Determinacy). Let Γ = (X,T,D, Φ) be a game and let S =
StratI(Γ) and T = StratII(Γ). Then Γ is determined with value d ∈ D if:

lubτ∈T glbσ∈S Φ(σ � τ) = glbσ∈S lubτ∈T Φ(σ � τ) = d.

Determinacy is an important notion for game theory. For the games we are
considering here, determinacy can easily be established (see Section 4).

3 The Game for Monotonic Intensional Logic Programs

Consider an intensional logic program P that satisfies the requirements of Theo-
rem 1. Let C be a ground intensional or propositional atom and let w ∈ W . Let
MP be the minimum intensional model of P (recall Theorem 1). We introduce a
two-player game ΓP (C,w) which (as we are going to see) has the property that
w ∈ MP (C)(w) if and only if Player II has a winning strategy in ΓP (C,w). In
other words, the game will be shown to be equivalent to the minimum model
semantics introduced in [OW92].

During ΓP (C,w), Player I has the role of the Doubter and Player II the role
of the Believer. Intuitively, in this game Player I does not believe that program
P implies that the atom C is true under the possible world w; on the other
hand, Player II believes exactly the opposite. In the following, the moves of
the Believer (respectively the Doubter) will be followed by a + (respectively −)
superscript; this convention will help us distinguish between the two players and
avoid confusion (especially in the extended game of the next section).

The infinite tree Tω of the game ΓP (C,w) consists of all infinite sequences
〈x0, x1, . . . , xk, . . .〉, which satisfy the following restrictions (in which A denotes
a propositional atom, Bi denotes an intensional atom, u, v, z denote elements of
W and S denotes a subset of W) for each k ≥ 0:

R1: x0 = 〈C,w〉−.
R2: If xk = 〈�A, u〉−, then xk+1 = 〈A,S〉+, where u ∈ ||�||(S).
R3: If xk = 〈A,S〉+, then xk+1 = 〈A, v〉− where v ∈ S.
R4: If xk = 〈A, v〉−, then xk+1 = 〈C, z〉+ where C is a clause in P of the form

B0 ← B1, . . . , Bn, such that either (i) B0 = A and z = v or (ii) B0 = �A
and for every S satisfying z ∈ ||�||(S) it holds v ∈ S.

R5: If xk = 〈B0 ← B1, . . . , Bn, z〉+, then xk+1 = 〈Bj , z〉−, for some j with
1 ≤ j ≤ n.

R6: If after xk has been played, none of the above rules is applicable, then
xk+1 = 〈I’ve lost〉.

R7: If xk = 〈I’ve lost〉, then xk+1 = 〈I’ve won〉 (and vice-versa).

Game Semantics for Non-monotonic Intensional Logic Programming 335

Some explanations are in order. Suppose that C = �A (the explanation for
C = A is similar). Initially, Player I plays the move 〈�A,w〉−. The intuitive
explanation for this move is “I doubt that �A is true in world w”. Player II
believes the truth of �A in world w and for this reason he replies to the move of
Player I with a pair 〈A,S〉+, where w ∈ ||�||(S). The explanation for this move
is “I believe that �A is true in w; actually, I believe A is true in all the worlds
contained in S and this implies that �A is true in w”. Player I now responds
with a pair 〈A, v〉− where v ∈ S. The intuition now is: “I doubt that A is true
in the world v of S (and therefore I continue to believe that �A is not true in
w)”. Player II must now establish that A is true in v. One way to achieve this
is to use a clause with head A. A second (less direct) way is to prove that �A
holds at some world z with the property mentioned in Case (ii) of rule R4; this
property guarantees that if �A holds at z, then A holds at v. Therefore, Player
II provides a pair 〈C, z〉+, where C is a program clause with head A or �A. The
intuition is “Using this rule and the context z I can establish that A is true in
the world v”. Now Player I responds with a pair of the form 〈Bi, z〉−, where Bi

is one of the intensional atoms in the body of the rule that Player II has just
played. The intuition is “I doubt that Bi is true in world z”. The play of the
game then continues along the above lines.

Since we are dealing with infinite games, a play continues even if at some point
the play of the game has essentially ended in favor of one of the two players; this
is achieved using the two moves 〈I’ve won〉 and 〈I’ve lost〉. The player who has
won the play keeps on playing the move 〈I’ve won〉, while the other player the
move 〈I’ve lost〉. This way every play is infinite. A play that does not contain
〈I’ve won〉 and 〈I’ve lost〉 moves will be called a genuinely infinite play.

The set of rewards is D = {0, 1}. In other words, a play of the game can be
assigned the value 0 (this means that Player I has won the play) or the value 1
(Player II has won). Finally, the payoff function is defined as follows:

Φ(s) =

{
1, if Player II plays the 〈I’ve won〉 move in s
0, otherwise

According to the above definition, Player II wins if he plays the move 〈I’ve won〉;
on the other hand Player I wins if he plays the move 〈I’ve won〉 or s is a genuinely
infinite play. Notice that Player I has an important advantage: he wins if he
manages to make the play last for ever (with none of the players winning in a
finite number of moves). This completes the formal presentation of the game.

We can now illustrate the game with a simple example:
Example 2. Consider the program of Example 1 and in particular the game
ΓP (next p, 1). A possible play of the game proceeds as follows:

Player I Player II

〈next p, 1〉− 〈p, {2}〉+
〈p, 2〉− 〈next next p← p, 0〉+
〈p, 0〉− 〈first p←, 0〉+
〈I’ve lost〉 〈I’ve won〉
· · · · · ·

336 C. Galanaki, C. Nomikos, and P. Rondogiannis

It is easy to see that Player II actually follows a winning strategy in the above
play and therefore the value of the above game is 1.

Consider on the other hand the game ΓP (next p, 0):

Player I Player II

〈next p, 0〉− 〈p, {1, 2, 3}〉+
〈p, 1〉− 〈I’ve lost〉

〈I’ve won〉 〈I’ve lost〉
· · · · · ·

It can be easily verified that no-matter how Player II plays, Player I can win the
game ΓP (next p, 0). Therefore, the value of this game is 0. ��

It can be shown (see Theorem 3) that the game we have defined in this section
is determined. Given a program P , we can use the game in order to obtain an
intensional interpretation NP of P as follows:

Definition 9. Let P be an intensional logic program. We define the game inter-
pretation NP of P such that for every propositional atom A that appears in P
and for every w ∈W , w ∈ NP (A) if and only if the value of the game ΓP (A,w)
is equal to 1.

Recall now that by Theorem 1, every intensional logic program (that satisfies the
requirements of the theorem) has a unique minimum model MP . The following
theorem states that actually MP is identical to the game interpretation NP :

Theorem 2. Let P be an intensional logic program and assume that the de-
notations of all intensional operators in the heads of the clauses are universal,
monotonic and conjunctive, and the denotations of all intensional operators that
appear in the bodies of the clauses are monotonic. Then, the minimum inten-
sional model MP and the game interpretation NP of P coincide.

The above theorem is a consequence of Theorem 4 of the next section. Notice
that by Theorem 4, NP is a minimal model of P ; however, by Theorem 1, in
the special case of the programs considered in the above theorem, there exists a
minimum model. Obviously in this case the minimum model coincides with NP .

4 The Extended Game

The semantics for intensional logic programs developed in [OW92] as well as the
game we presented in the previous section, are restricted to programs that use
monotonic intensional operators. Non-monotonicity is a central issue in both
artificial intelligence and logic programming, and it goes without saying that
its study is worthwhile. In logic programming, non-monotonicity is due to the
presence of the negation-as-failure operator. However, in intensional logic pro-
gramming there exists a much broader notion of non-monotonicity. In particular,
every operator � : {0, 1}W → {0, 1}W that does not satisfy the monotonicity
property of Definition 4 can be characterized as non-monotonic. An obvious

Game Semantics for Non-monotonic Intensional Logic Programming 337

such case is the negation operator ¬ (mentioned in [OW92]) which for every S
returns the complement of S with respect to W (ie., ||¬||(S) = W−S). However,
there are numerous other interesting cases. For example, when the set of possible
worlds W is finite, then we could define the minority operator, denoted by 0:

|| 0 ||(S) =
{
W, if |S| < |W |

2
∅, otherwise

In the rest of this section we assume that the denotations of the operators that
appear in the bodies of clauses are arbitrary functions of the form � : {0, 1}W →
{0, 1}W . The key question that arises by allowing the use of arbitrary operators
in programs is how can the meaning of such programs be expressed. Our expe-
rience from non-monotonic logic programming is that two-valued classical logic
is not sufficient in order to properly assign a correct meaning to programs with
negation. We adopt exactly the same approach in our case, namely we interpret
our programs in a three-valued setting.

Our new truth domain consists of the three truth values {0, 12 , 1}. As a first
step we have to generalize the meaning of the two-valued intensional operators
to the three-valued domain. In other words, given an operator ||�|| : {0, 1}W →
{0, 1}W , we extend it to an operator ||�||∗ : {0, 12 , 1}W → {0, 12 , 1}W . Our ex-
tension has the property that when ||�||∗ is applied on a two-valued set, it will
give the same output as ||�|| (i.e., for every S ∈ {0, 1}W , ||�||∗(S) = ||�||(S)).
The two following definitions capture the desired extension:

Definition 10. Let T ∈ {0, 12 , 1}W and R ∈ {0, 1}W . We will say that R is a
two-valued extension of T if R ∈ {0, 1}W and for every w ∈ W either T (w) =
R(w) or T (w) = 1

2 .

Definition 11. Let ||�|| : {0, 1}W → {0, 1}W be an intensional operator. We
define the operator ||�||∗ : {0, 12 , 1}W → {0, 12 , 1}W as follows2:

||�||∗(T)(w)=
{
d, if ||�||(R)(w) = d for all two-valued extensions R of T
1
2 , otherwise

The operator ||�||∗ will be called the three-valued extension of ||�||.
Intensional interpretations can be extended to the three-valued setting:

Definition 12. A three-valued intensional interpretation I of an intensional logic
program P is a function from the set of propositional atoms of P to {0, 12 , 1}W .

We will simply use the term “intensional interpretation” when it is obvious
from context whether we are referring to a two-valued or a three-valued one.

Definition 13. Let I be a three-valued intensional interpretation of a given pro-
gram P and let w ∈W . Then, I can be extended as follows:

– I(�A)(w) = ||�||∗(I(A))(w)
– I(B1, . . . , Bn)(w) = min{I(B1)(w), . . . , I(Bn)(w)}.

2 Since ||�||∗ is a function in {0, 1
2
, 1}W → {0, 1

2
, 1}W , ||�||∗(T) returns an element of

{0, 1
2
, 1}W and therefore ||�||∗(T)(w) is simply an element of {0, 1

2
, 1}.

338 C. Galanaki, C. Nomikos, and P. Rondogiannis

We will say that I satisfies an intensional clause B0 ← B1, . . . , Bn of P if
for all w ∈ W , I(B0)(w) ≥ I(B1, . . . , Bn)(w) (where ≥ is the usual numerical
ordering). Moreover, I is a model of P if I satisfies all intensional clauses of P .

Definition 14. Let I, J be three-valued intensional interpretations of a given
program P . Then, I $ J if for every propositional atom A in P and every
w ∈W , it holds I(A)(w) ≤ J(A)(w).

Notice that in the following game, the two players only use the two-valued deno-
tations of intensional operators. However, since the outcome of their game may
be a tie, the game interpretation must be three-valued (and therefore the proofs
of the theorems involve three-valued denotations of intensional operators).

The infinite tree Tω of the game ΓP (C,w) consists of all the infinite sequences
〈x0, x1, . . . , xk, . . .〉 which satisfy the following restrictions (in which A denotes
a propositional atom, Bi denotes an intensional atom, u, v, z, y denote elements
of W and S, S′ denote subsets of W) for each k ≥ 0:

R1: x0 = 〈C,w〉−.
R2: If xk = 〈�A, u〉−, then xk+1 = 〈A,S〉+, where u ∈ ||�||(S).
R′

3: If xk = 〈A,S〉+ and xk−1 = 〈�A, u〉−, then either (i) xk+1 = 〈A, v〉−,
where v ∈ S, or (ii) xk+1 = 〈A,S, S′〉+, where S′ ⊃ S and u �∈ ||�||(S′). A
move of type (ii) will be called a role switch.

R′′
3: If xk = 〈A,S, S′〉+, then xk+1 = 〈A, y〉−, where y ∈ (S′ − S).

R4: If xk = 〈A, v〉−, then xk+1 = 〈C, z〉+, where C is a clause in P of the form
B0 ← B1, . . . , Bn, such that either (i) B0 = A and z = v, or (ii) B0 = �A
and for every S satisfying z ∈ ||�||(S) it holds v ∈ S.

R5: If xk = 〈B0 ← B1, . . . , Bn, z〉+, then xk+1 = 〈Bj , z〉−, for some j with
1 ≤ j ≤ n.

R6: If after the move xk none of the above rules applies, then xk+1 = 〈I’ve lost〉.
R7: If xk = 〈I’ve lost〉, then xk+1 = 〈I’ve won〉 (and vice-versa).

The explanations of the moves are similar to those of the game of Section 3.
The only differences are in rules R′

3 and R′′
3. When the game starts, Player I is

the Doubter and Player II is the Believer. However, as the game proceeds, the
two players may swap roles (ie., the current Believer may become a Doubter and
vice-versa). Suppose now that at some point of the game, the current Believer
replies to a move of the form 〈�A, u〉− of the Doubter by playing a move 〈A,S〉+,
where u ∈ ||�||(S). The Doubter can now respond in two different ways. His first
option is to play 〈A, v〉− where v ∈ S. The intuition is: “I doubt that A is true in
the world v of S (and therefore I continue to believe that �A is not true in u)”.
Alternatively, the Doubter can play 〈A,S, S′〉+ where S′ ⊃ S and u �∈ ||�||(S′).
The intuition here is “I believe that the set of worlds where A is true is S′ ⊃ S
and not S (as the Believer just claimed); since u �∈ ||�||(S′), I was right in my
belief that �A is not true in u”. This second type of move has made the player
that was a Doubter to become a Believer (he believes that the set of worlds

Game Semantics for Non-monotonic Intensional Logic Programming 339

where A is true coincides with S′) and his opponent to become a Doubter, and
so this move is called a role-switch. Finally, in move R′′

3, the new Doubter plays
〈A, y〉− where y ∈ (S′−S). The intuition is “I doubt that the set of worlds where
A is true coincides with S′; more specifically, I doubt that A is true in the world
y”. The rest of the moves are the same as in the game for monotonic programs.

The set of rewards is D = {0, 12 , 1} i.e., a play of the game can be assigned
the value 0 (Player I has won the play), value 1 (Player II has won), or the value
1
2 (the result is a tie). Finally, the payoff function is defined as follows:

Φ(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if Player II plays the 〈I’ve won〉 move in s or s is a genuinely

infinite play that contains an odd number of role-switches
0, if Player I plays the 〈I’ve won〉 move in s or s is a genuinely

infinite play that contains an even number of role-switches
1
2 , if s contains an infinite number of role-switches

According to the above definition, a player wins a play of the game if he manages
either to play the 〈I’ve won〉 move or to remain the doubter after a certain point
of the play; otherwise the result of the play is a tie. This completes the formal
presentation of the extended game.

The extended game just presented, generalizes the game of Section 3. This is
due to the fact that if the operators that appear in a program are all monotonic,
then only type (i) of the move that appears in rule R′

3 above is applicable: in
R′

3 it holds w ∈ ||�||(S) and since ||�|| is monotonic, for every S′ ⊇ S it will also
be the case that w ∈ ||�||(S′). Therefore, if the extended game is applied on a
program that contains only monotonic operators, then there are no role-switches
and the extended game degenerates to the simpler game of Section 3. We can
now illustrate the new game with a simple example.

Example 3. Consider the following intensional program:

p← 0p
q← s,r

%s←
2r←

Assume that W = {1, 2, 3}. Recall that 0 denotes the minority operator; more-
over, the denotations of the operators 2 and % are the following:

|| 2 ||(S) =
{
W, if {1, 2} ⊆ S
∅, otherwise

|| % ||(S) =
{
W, if {2, 3} ⊆ S
∅, otherwise

Consider the game ΓP (0q, 1). Intuitively, we expect this game to have value
1: since s is true in the worlds 2 and 3 and r is true in the worlds 1 and 2,
then s,r will definitely be true in the world 2. This implies that q is true in the
world 2 and since we have no other definite information regarding the truth of
q in other worlds, we can deduce that 0q is true (in any world). Player II has a
winning strategy, which is demonstrated in the following two sample plays:

340 C. Galanaki, C. Nomikos, and P. Rondogiannis

Player I Player II

〈0q, 1〉− 〈q, {2}〉+
〈q, 2〉− 〈q← s,r, 2〉+
〈s, 2〉− 〈%s←, 3〉+
〈I’ve lost〉 〈I’ve won〉
· · · · · ·

Player I Player II

〈0q, 1〉− 〈q, {2}〉+
〈q, {2}, {1, 2}〉+ 〈q, 1〉−
〈q← s,r, 1〉+ 〈s, 1〉−
〈I’ve lost〉 〈I’ve won〉
· · · · · ·

Consider now the game ΓP (0p, 1). Intuitively, we expect the value of this game
to be 1

2 due to the circularity of the first rule, which states that if p is true in a
minority of the worlds, then p must be true in every world. This is reminiscent
of the circularity of the rule p ← not p in classical logic programming (which
also leads to the value 1

2). A play of this game is the following:

Player I Player II

〈0p, 1〉− 〈p, ∅〉+
〈p, ∅, {1, 2, 3}〉+ 〈p, 2〉−
〈p← 0p, 2〉+ 〈0p, 2〉−
〈p, ∅〉+ 〈p, ∅, {1, 2, 3}〉+
〈p, 1〉− 〈p← 0p, 1〉+
〈0p, 1〉− · · ·

In this play, the two players change roles infinitely many times. None of the
players has a winning strategy; however both have strategies that may lead the
play to a tie. In each of these strategies, the reaction to a move 〈0p, u〉− is
〈p, ∅〉+, while the reaction to any other move may be any legal choice. ��
Regarding the determinacy of the proposed game, we have the following theorem:

Theorem 3. Let P be a program, C be a propositional or intensional atom and
w ∈W . Then, the game ΓP (C,w) is determined.

Proof. Following the same basic principles as the proof of the determinacy of
the negation game introduced in [GRW08]. ��

Given a program P , we can use the game described above in order to obtain an
intensional interpretation NP of P in the same way as we did in Definition 9.
Then, the following theorem can be established:

Theorem 4. Let P be a program and assume that the two-valued denotations of
all intensional operators in the heads of the clauses of P are universal, monotonic
and conjunctive while the two-valued denotations of intensional operators in the
bodies of clauses are arbitrary functions in {0, 1}W → {0, 1}W . Then, the game
interpretation NP of P is a minimal model of P with respect to $.
Notice that the fact that arbitrary operators are allowed in rule bodies, makes
the program to possibly posses many incomparable minimal models and the
game identifies a special one of them as the intended meaning of the program.
This is the main difference from the monotonic case (where the game identifies

Game Semantics for Non-monotonic Intensional Logic Programming 341

the unique minimum model). This state of affairs is similar to the situation in
classical logic programming with negation (where the well-founded model is a
specially chosen one among the minimal models of the program).

5 Conclusions

We have introduced the first (to our knowledge) general semantic framework for
non-monotonic intensional logic programming. The proposed game can be used
as a yardstick in order to develop alternative semantical approaches for non-
monotonic temporal and modal languages. It would be interesting to broaden
our understanding regarding the interplay between logic programming and game-
theory, since many recent results ([CLN98, GRW08, Tsou11, DeVos01]) and the
present work suggest that this is a fruitful avenue of research. For example, it
would be desirable to devise a game semantics for answer set programming.

References

[CLN98] Di Cosmo, R., Loddo, J.-V., Nicolet, S.: A Game Semantics Foundation for
Logic Programming. In: Palamidessi, C., Meinke, K., Glaser, H. (eds.) ALP
1998 and PLILP 1998. LNCS, vol. 1490, pp. 355–373. Springer, Heidelberg
(1998)

[Far86] Fariñas del Cerro, L.: MOLOG: A System that Extends PROLOG with
Modal Logic. New Generation Computing 4, 35–50 (1986)

[GRW08] Galanaki, C., Rondogiannis, P., Wadge, W.W.: An Infinite-Game Semantics
for Well-Founded Negation in Logic Programming. Annals of Pure and
Applied Logic 151(2-3), 70–88 (2008)

[GS53] Gale, D., Stewart, F.M.: Infinite Games with Perfect Information. Annals
of Mathematical Studies 28, 245–266 (1953)

[Mar75] Martin, D.A.: Borel Determinacy. Annals of Math. 102, 363–371 (1975)
[Mon74] Montague, R.: English as a Formal Language. In: Thomason, R.H. (ed.)

Formal Philosophy: Selected Papers of Richard Montague, pp. 108–221.
Yale University Press (1974)

[Mos80] Moschovakis, Y.N.: Descriptive Set Theory. North-Holland (1980)
[Mos84] Moszkowski, B.C.: Executing Temporal Logic Programs. In: Brookes, S.D.,

Winskel, G., Roscoe, A.W. (eds.) Seminar on Concurrency. LNCS, vol. 197,
pp. 111–130. Springer, Heidelberg (1985)

[OW92] Orgun, M.A.P., Wadge, W.W.: Towards a Unified Theory of Intensional
Logic Programming. Journal of Logic Programming 13(4), 413–440 (1992)

[RW05] Rondogiannis, P., Wadge, W.W.: Minimum Model Semantics for Logic
Programs with Negation-as-Failure. ACM Transactions on Computational
Logic 6(2), 441–467 (2005)

[Sco70] Scott, D.: Advice on Modal Logic. In: Lambert, K. (ed.) Philosophical
Problems in Logic, pp. 143–173. D. Reidel Publishing Company (1970)

[Tsou11] Tsouanas, T.: A Game Semantics Approach to Disjunctive Logic Programs.
In: GALOP Workshop, Saarbrücken, Germany (2011)

[vE86] van Emden, M.H.: Quantitative Deduction and its Fixpoint Theory. Journal
of Logic Programming 3(1), 37–53 (1986)

[DeVos01] De Vos, M.: Logic Programming, Decisions and Games. PhD thesis, Vrije
Universiteit Brussel (2001)

Matchmaking with Answer Set Programming

Martin Gebser1, Thomas Glase1,2, Orkunt Sabuncu1, and Torsten Schaub1

1 Universität Potsdam
2 piranha womex AG, Berlin

Abstract. Matchmaking is a form of scheduling that aims at bringing companies
or people together that share common interests, services, or products in order to
facilitate future business partnerships. We begin by furnishing a formal character-
ization of the corresponding multi-criteria optimization problem. We then address
this problem by Answer Set Programming in order to solve real-world matchmak-
ing instances, which were previously dealt with by special-purpose algorithms.

1 Introduction

Matchmaking is a form of scheduling that aims at bringing companies or people to-
gether that share common interests, services, or products in order to facilitate future
business partnerships. The matching process usually starts prior to the actual event and
is based on a simple search and offer principle. It involves a registration phase in which
matchmaking participants declare what they are looking for and what they have to offer.
Based on this information, a human matchmaker, equipped with experience in the com-
munity and the business, identifies promising matches and makes meeting proposals to
the participants, who can then either accept or decline proposed matches.

In this report from the field, we show how we solved the matchmaking problem for
several fairs by means of Answer Set Programming (ASP; [1]). The resulting system is
used by the company piranha womex AG1 for computing matchmaking schedules for
the world music exposition (WOMEX) and other fairs.

We begin by developing a formal characterization of the matchmaking problem in
Section 2. We then address this problem by ASP in Section 3. Section 4 provides an
empirical analysis showing that our ASP-based approach allows for solving real-world
matchmaking instances that were previously dealt with by special-purpose algorithms.

2 Matchmaking Scheduling

Matchmaking events bring companies or people sharing common interests, services, or
products together in order to facilitate future business partnerships. Such events usually
take place at occasions like technology, business, or music and entertainment fairs. A
match is a face-to-face meeting of two parties. While a party may be a representative
of a company, it may also be an individual like an artist or a producer. Given that an
individual can be regarded as a company with one representative, it is viable to view
matches as meetings between company representatives.

1 http://www.piranha.de

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 342–347, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.piranha.de

Matchmaking with Answer Set Programming 343

A matchmaking event starts with an initial phase in which interests and offers of
participants are analyzed for potential business partnerships. This phase results in a set
of matches recommended to participants, and all accepted recommendations constitute
the final set of matches to be scheduled. Scheduling each match for a time slot and a
location (e.g. a table) yields the matchmaking schedule of an event. In the following,
we formalize these intuitions by defining the matchmaking scheduling problem.

Definition 1. Let T be a linearly ordered set representing time slots. Locations and
companies are represented by sets L and C, respectively. A match is a set consisting of
two companies from C. Let M be the set of all matches to be scheduled and P be the
set of all persons. Each person p ∈ P works for a company w(p) ∈ C and has a time
preference ∅ ⊂ t(p) ⊆ T .

Matchmaking scheduling is the problem of finding a feasible and optimal schedule
S = 〈SC , SP〉, where SC (resp., SP) is a relation from M (resp., P) to T × L. A
schedule S is feasible if SC is a total function, i.e. each match is scheduled once, each
location hosts at most one match at a time, i.e.

∀t∀l∀m1∀m2 : SC(m1, (t, l)) ∧ SC(m2, (t, l))⇒ m1 = m2 , (1)

and for each company in a match, exactly one employee of the company is scheduled:

∀t∀l∀m∀c∃!p : SC(m, (t, l)) ∧ c ∈ m⇒ SP(p, (t, l)) ∧w(p) = c , (2)

∀t∀l∀p∃m : SP(p, (t, l))⇒ SC(m, (t, l)) ∧ w(p) ∈ m . (3)

A feasible schedule S is optimal if it is not dominated w.r.t. the following ranked
objectives, ordered by their precedence:

– The number of overlaps, where a person has more than one match at a time slot,
should be minimized:

min
∑

p∈P,t∈T,σ(p,t)>0

σ(p, t)− 1 , where σ(p, t) = |{l ∈ L | (p, (t, l)) ∈ SP}| . (O)

– The number of matches at unpreferred time slots of persons should be minimized:

min
∑

p∈P,t∈T\t(p)
|{l ∈ L | (p, (t, l)) ∈ SP}| . (P)

– The number of idle time slots between matches of companies should be minimized:

min
∑
c∈C

∣∣∣∣∣
{
t ∈ T

∣∣∣∣∣ (m1, (t1, l1)) ∈ SC , (m2, (t2, l2)) ∈ SC , t1 < t < t2,

c ∈ m1, c ∈ m2, {c ∈ m | (m, (t, l)) ∈ SC} = ∅

}∣∣∣∣∣ . (G)

– The number of location changes between consecutive matches of companies should
be minimized:

min
∑
c∈C

∣∣∣∣∣
{
t ∈ T

∣∣∣∣∣ (m1, (t, l1)) ∈ SC , (m2, (s(t), l2)) ∈ SC , l1 �= l2,

c ∈ m1, c ∈ m2, s(t) is the successor time slot of t

}∣∣∣∣∣ . (T)

344 M. Gebser et al.

– Used resources (time slots and locations) should be minimized:

min (|{t ∈ T | (m, (t, l)) ∈ SC}|+ |{l ∈ L | (m, (t, l)) ∈ SC}|) . (U)

Although a person cannot attend several matches at the same time, we do not impose
objective (O) as a hard constraint. The rationale of scheduling all matches and tolerating
conflicts is to maximize the chances of future business partnerships. In reality, conflicts
may be resolved a posteriori, for instance, by sending more personnel to an event.

Note that the above definition of particular objectives and their precedence reflects
practical needs of matchmaking events organized by piranha womex AG, and variants as
well as extensions (some of which are discussed in [2]) may be useful in other contexts.

3 Matchmaking Scheduling in ASP

In this section, we present our ASP encoding of matchmaking scheduling. A match-
making instance is given by facts as follows: time(t) and location(l) for each
time slot t ∈ T and location l ∈ L, respectively, works_for(p,c) for each w(p) = c,
time_pref(p,t) for each t ∈ t(p), and match(c1,c2) for each {c1, c2} ∈M .

Listing 1 shows our first-order encoding. Following the guess and check method-
ology of ASP, we first generate a schedule (predicate mm provides SC) that assigns at
most one match per time slot and location pair in Line 1. The upper bound of the choice
rule neatly encodes the feasibility constraint (1).2 Given that SC must be a total func-
tion, Line 3–4 force mm to be left-total (all matches have to be scheduled), and Line
6–9 require it to be functional (a match must not be scheduled at multiple time slots
or locations). Line 11–13 encode the feasibility constraints (2) and (3) by associating
exactly one employee per company involved in a scheduled match with the time slot
and location pair of the match (predicate mmperson provides SP).

Line 15–16 implement the overlap objective (O), where an atom overlap(p,t,n)

expresses that n > 0 for n = σ(p, t) − 1. The #minimize statement in Line 16
further asserts that the sum over all n in overlap(p,t,n) atoms of an answer set
ought to be minimal. The time preference objective (P) is encoded in Line 24–25,
where nonpref(p,t,l) indicates that person p has a match at an unpreferred time
slot t /∈ t(p), and the corresponding #minimize statement in Line 25 aims at a mini-
mal number of nonpref(p,t,l) atoms in an answer set. Similarly, the objectives (G),
(T), and (U) are encoded by the program parts in Line 27–30, 34–35, and 37–38, respec-
tively. Note that we rely on consecutive integers for representing the linearly ordered
set T of time slots. Thus, T+1 in Line 34 refers to the successor time slot s(T) of T men-
tioned in objective (T). Likewise, gringo’s built-in comparisons are used in Line 28–29
to check that a company is idle in-between two time slots T1 and T2. Regarding multi-
criteria optimization, levels provided in the encoding (level “@5” in Line 16 for the most
important criterion (O) and then gradually decreasing) represent the precedence of ob-
jectives. Moreover, Line 40 confines the visible output to instances of predicates mm and
mmperson, which together comprise a schedule S.

2 Although one may likewise generate a time slot and location pair per match, experiments with
such an alternative encoding led to performance degradations.

Matchmaking with Answer Set Programming 345

Listing 1. Matchmaking scheduling encoding

1 { mm(C1,C2,T,L) : match(C1,C2) } 1 :- time(T), location(L). % schedule matches

3 scheduled(C1,C2) :- mm(C1,C2,_,_). % all matches must
4 :- match(C1,C2), not scheduled(C1,C2). % be scheduled

6 match_at_loc(C1,C2,L) :- mm(C1,C2,_,L). % a match must be
7 match_at_time(C1,C2,T) :- mm(C1,C2,T,_). % scheduled once
8 :- match(C1,C2), not { match_at_loc(C1,C2,_) } 1.
9 :- match(C1,C2), not { match_at_time(C1,C2,_) } 1.

11 comp_at_pair(C,T,L) :- mm(C,_,T,L). % schedule persons
12 comp_at_pair(C,T,L) :- mm(_,C,T,L).
13 1 { mmperson(P,T,L) : works_for(P,C) } 1 :- comp_at_pair(C,T,L).

15 overlap(P,T,N-1) :- works_for(P,_), time(T), N = { mmperson(P,T,_) }, 1 < N.
16 #minimize[overlap(P,T,N) = N@5]. % overlap (O)

18 hasoverlap(C) :- overlap(P,_,_), works_for(P,C).
19 matchc(C,MC) :- MC = { match(C,_), match(_,C) }, company(C). % match count
20 peoplec(C,PC) :- PC = { works_for(_,C) }, company(C). % people count
21 timec(TC) :- TC = { time(_) }. % time count
22 :- matchc(C,MC), peoplec(C,PC), timec(TC), PC*TC < MC, not hasoverlap(C).

24 nonpref(P,T,L) :- mmperson(P,T,L), not time_pref(P,T).
25 #minimize{ nonpref(P,T,L)@4 }. % time pref. (P)

27 comp_at_time(C,T) :- comp_at_pair(C,T,_).
28 gap(C,T1,T2-T1-1) :- comp_at_time(C,T1), comp_at_time(C,T2), T1+1 < T2,
29 not comp_at_time(C,T) : time(T) : T1 < T : T < T2.
30 #minimize[gap(C,T,N) = N@3]. % gap (G)

32 :- timec(TC), gap(C,_,N), not { comp_at_time(C,_) } TC-N.

34 tablechange(C,T) :- comp_at_pair(C,T,L1), comp_at_pair(C,T+1,L2), L1 != L2.
35 #minimize{ tablechange(C,T)@2 }. % table change (T)

37 usedtime(T) :- comp_at_time(_,T). usedloc(L) :- match_at_loc(_,_,L).
38 #minimize{ usedtime(T)@1, usedloc(L)@1 }. % used res. (U)

40 #hide. #show mm/4. #show mmperson/3.

Additionally, in Line 18–22 and 32, we make some “redundant” domain knowledge
explicit, which is not necessary but may improve solving performance. The integrity
constraint in Line 22 states that it is impossible to schedule employees of an overbook-
ing company, which participates in more matches than the number of available time
slots multiplied by the man power of the company, without overlap. Furthermore, Line
32 expresses that the length of a gap (a sequence of idle time slots) together with a
company’s scheduled time slots cannot exceed the total number of available time slots.

4 Experiments

In our experiments, we ran gringo (3.0.5) for grounding and clasp (2.1.1) for solv-
ing. All experiments were performed on a 2.5GHz Intel Core Duo machine with 4GB
memory under MacOS X (10.7.5), imposing 3600 seconds as time limit. We configured
clasp to use the VSIDS decision heuristic (--heuristic=Vsids), which was the best
configuration we found so far. We also tried clasp options for dedicated multi-criteria
optimization [3], but we did not achieve performance improvements with them. More-
over, note that we are unaware of any other freely available matchmaking scheduling
system that would be directly comparable with our ASP-based approach.

346 M. Gebser et al.

Table 1. Benchmark results with gradually increasing hierarchy of objectives

clasp
Instance #m #t #l #c #p O P O P G O P G T O P G T U

2on2 2 2 2 3 3 ∗0 0 ∗0 0 0 ∗0 0 0 0 ∗0 0 0 0 3
3on2 3 2 2 3 3 ∗1 0 ∗1 0 0 ∗1 0 0 1 ∗1 0 0 1 4
39on14 39 14 20 15 15 ∗0 0 ∗0 0 0 0 0 22 23 0 0 16 36 31
180on4 180 4 80 100 100 36 0 88 0 69 84 0 43 134 90 0 52 119 80
ffm11li 13 10 26 9 9 ∗0 0 ∗0 0 0 ∗0 0 0 7 ∗0 0 0 7 9
ffm11cr 19 10 26 13 16 ∗1 0 ∗1 0 0 1 0 0 9 1 0 0 8 14
ffm11mu 24 11 26 14 16 ∗0 1 ∗0 1 0 0 1 0 14 0 1 0 14 11
wmx10 77 8 14 26 51 ∗0 0 ∗0 0 0 0 0 0 70 0 0 0 72 22
wmx11 69 8 14 26 26 13 3 15 4 1 15 4 13 83 15 5 12 69 22
wmx11e 59 8 14 26 26 0 6 0 6 1 0 6 2 64 0 6 2 70 22
wmx11m 82 8 14 26 26 22 12 22 11 16 22 14 28 89 22 13 20 87 22
wmx11p 69 8 14 26 52 7 32 0 23 25 8 33 34 63 6 29 19 73 22
wmx12 60 7 14 54 54 ∗1 0 ∗1 0 0 1 0 0 26 1 0 0 30 19
wmx12m 89 7 14 54 54 5 2 5 2 29 8 2 29 81 6 2 36 82 21
wmx12p 60 7 14 54 75 ∗0 0 ∗0 0 0 0 0 0 23 0 0 0 24 19

Table 1 displays benchmark results. The first two columns list instances and their
properties, where #m, #t, #l, #c, and #p are numbers of matches, time slots, locations,
companies, and persons, respectively. While the first four instances are crafted, the oth-
ers are real-world instances from Frankfurter Musikmesse 2011 and WOMEX 2010–
2012 as well as extended versions of them with additional matches or persons. The
columns O, P, G, T, and U show objective values for (O), (P), (G), (T), and (U), respec-
tively, w.r.t. the best answer set found by clasp within the allotted time. We started with
a relaxed problem using only (O) and (P) as objectives (results shown in the third col-
umn) and then gradually added more objectives in the order of precedence, leading to
the full problem with all objectives (results shown in the last column). Whenever clasp
proved a solution to be optimal, the corresponding entry starts with ∗. For instance,
the entry “∗1 0 0” for the ffm11cr instance indicates that a schedule with one over-
lap but no unpreferred time slots or gaps has been found and proven to be optimal by
clasp. Although more objectives add to the difficulty of multi-criteria optimization, the
gradual solutions for instances show only slight degradations. For example, objective
values for (P) on the wmx11m instance vary between 11 and 14, and the values are not
monotonically increasing with the number of objectives. According to piranha womex
AG, schedules computed with our ASP-based approach are satisfactory and on some
real-world instances even better than previous hand-made schedules.

5 Discussion

We presented an ASP-based approach to matchmaking scheduling, which is a highly
combinatorial multi-criteria optimization problem. Our approach allows for solving
real-world matchmaking instances that were previously dealt with by special-purpose

Matchmaking with Answer Set Programming 347

algorithms. The presented ASP methods are used by piranha womex AG for computing
matchmaking schedules for the world music exposition (WOMEX) and other fairs.

Although matchmaking scheduling can be regarded as a form of timetabling, to our
knowledge, it has not yet received much attention from the timetabling community.
Common search methods for timetabling include local search [4], constraint program-
ming [5], and satisfiability solving [6]. Moreover, an extension of disjunctive logic pro-
gramming by soft constraints was proposed for modeling school timetabling [7]. The
commercial matchmaking scheduling system b2match [8] supports only gap minimiza-
tion among the various objectives we considered.

Acknowledgments. This work was partially funded by DFG grant SCHA 550/9-1.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Glase, T.: Timetabling with answer set programming. Diploma thesis, Institute for Informatics,
University of Potsdam (2012)

3. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-criteria optimization in answer
set programming. In: ICLP 2011, pp. 1–10. Dagstuhl Publishing (2011)

4. Cambazard, H., Hebrard, E., O’Sullivan, B., Papadopoulos, A.: Local search and constraint
programming for the post enrolment-based course timetabling problem. Annals of Operations
Research 194(1), 111–135 (2012)

5. Baptiste, P., Pape, C., Nuijten, W.: Constraint-Based Scheduling. Springer (2001)
6. Achá, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT.

Annals of Operations Research (2012) (published online)
7. Faber, W., Leone, N., Pfeifer, G.: Representing school timetabling in a disjunctive logic pro-

gramming language. In: WLP 1998, pp. 43–52 (1998)
8. b2match, http://www.b2match.com/info/pages/scheduling/

http://www.b2match.com/info/pages/scheduling/

Ricochet Robots: A Transverse ASP Benchmark

Martin Gebser, Holger Jost, Roland Kaminski, Philipp Obermeier, Orkunt Sabuncu,
Torsten Schaub, and Marius Schneider

Universität Potsdam

Abstract. A distinguishing feature of Answer Set Programming is its versatility.
In addition to satisfiability testing, it offers various forms of model enumeration,
intersection or unioning, as well as optimization. Moreover, there is an increasing
interest in incremental and reactive solving due to their applicability to dynamic
domains. However, so far no comparative studies have been conducted, contrast-
ing the respective modeling capacities and their computational impact. To as-
sess the variety of different forms of ASP solving, we propose Alex Randolph’s
board game Ricochet Robots as a transverse benchmark problem that allows us
to compare various approaches in a uniform setting. To begin with, we consider
alternative ways of encoding ASP planning problems and discuss the underlying
modeling techniques. In turn, we conduct an empirical analysis contrasting tra-
ditional solving, optimization, incremental, and reactive approaches. In addition,
we study the impact of some boosting techniques in the realm of our case study.

1 Introduction

A distinguishing feature of Answer Set Programming (ASP; [1]) is its versatility. Its
modeling language and solving technology support various forms of (Boolean) con-
straint solving that are otherwise restricted to dedicated paradigms. For example, op-
timization is not supported by standard Satisfiability solvers, and one has to resort to
Maximum Satisfiability solvers to obtain this functionality (cf. [2]). Unlike this, ASP
solvers offer, in addition to satisfiability testing, various forms of model enumeration,
intersection or unioning, as well as (multi-criteria) optimization. Moreover, there is an
increasing interest in incremental and reactive solving due to their applicability to dy-
namic domains, such as assisted living and cognitive robotics. However, so far no com-
parative studies have been conducted, contrasting the respective modeling capacities
and their computational impact.

To assess the variety of different forms of ASP solving, we propose the popular board
game Ricochet Robots as a transverse benchmark problem that allows us to compare
various approaches in a uniform setting. Ricochet Robots is a board game for multiple
players designed by Alex Randolph.1 A board consists of 16×16 fields arranged in
a grid structure having barriers between various neighboring fields. Four differently
colored robots roam across the board along either horizontally or vertically accessible
fields, respectively. In principle, each robot can thus move in four directions. A robot
cannot stop its move until it hits either a barrier or another robot. Finally, the goal is to

1 http://en.wikipedia.org/wiki/Ricochet_Robot

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 348–360, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://en.wikipedia.org/wiki/Ricochet_Robot

Ricochet Robots: A Transverse ASP Benchmark 349

place a particular robot on a target location with a shortest sequence of moves. Often this
involves moving several robots to establish temporary barriers. For illustration, consider
the reduced board in Figure 1.2 The red robot can be moved onto the red icon in four
steps: down, right, up, and left. The game box offers 96 distinct boards, each of which
has sixteen (plus one special) target locations. The overall game is won by the player
who wins the majority of individual rounds. (Note that the skill of human players tends
to improve over the rounds because they gather knowledge about the board at hand.)
Ricochet Robots has been studied from the viewpoint of human problem solving [3]
and analyzed from a theoretical perspective [4,5,6]. Moreover, it has a large community
providing various resources on the web. Among them, there is a collection of fifty-six
extensions of the game.3

Alex Randolph’s Ricochet Robots represent a challenging planning problem involv-
ing several actors. As such, it allows us to elaborate upon various aspects of ASP. We
begin by addressing the corresponding decision problem of whether there is a plan of
length smaller or equal than a given horizon. Starting from a plain encoding following
traditional ASP planning (cf. [7]), we elaborate upon an alternative encoding featuring
several advanced modeling techniques. We further adapt encodings for applying opti-
mization, incremental, and reactive ASP solving techniques. While optimization allows
for computing a shortest plan smaller or equal than a given horizon, the incremental and
reactive variants do not impose such an upper bound. We use the devised encodings to
conduct a comparative empirical analysis addressing the following questions. How do
modeling techniques affect the grounding and solving performance of ASP systems?
Second, to what extent can algorithm configuration as well as multi-threaded solving
speed up the search for an arbitrary or a shortest plan, respectively? Furthermore, how
does (bounded) optimization with standard solving techniques compare to (unbounded)
optimization using incremental solving? Finally, does reactive ASP solving benefit from
proceeding over a series of rounds, rather than tackling them independently?

Last but not least, we provide the visualization tool robotviz that, given a stable
model, allows us to inspect the corresponding Ricochet Robots board on the screen and
to interactively trace a plan described by the stable model.

2 Encoding Ricochet Robots

In what follows, we present our fact format and two alternative encodings in the input
language of the ASP grounder gringo 3 [8,9].

2.1 Fact Format

For illustration, consider the reduced board of 8×8 fields in Figure 1 (corresponding to
a quarter of an authentic board). Its representation in terms of facts is given in Listing 1.
The board size is fixed via the constant dimension; its origin (1,1) is in the upper left cor-
ner. Barriers are indicated by atoms with predicate barrier/4. The first two arguments

2 The enclosed yellow robot is an artifact, given that we took a quarter of an authentic board.
3 http://www.boardgamegeek.com/boardgame/51/ricochet-robots

http://www.boardgamegeek.com/boardgame/51/ricochet-robots

350 M. Gebser et al.

Fig. 1. Visualization of solving through robotviz

Listing 1. Example problem instance (board8.lp)
#const dimension=8.

barrier(2,1,1,0). barrier(5,1,0,1).
barrier(2,3,1,0). barrier(2,2,0,1).
barrier(3,7,1,0). barrier(7,4,0,1).
barrier(4,2,1,0). barrier(1,6,0,1).
barrier(7,4,1,0). barrier(4,7,0,1).
barrier(7,8,1,0). barrier(8,7,0,1).

position(red,1,1). position(yellow,dimension,dimension).
position(blue,1,dimension). position(green,dimension,1).
robot(R) :- position(R,_,_). target(red,5,2).

give the field position and the last two the orientation of the barrier, which is either east
(1,0) or south (0,1). For instance, barrier(2,1,1,0) represents the vertical wall be-
tween the fields (2,1) and (3,1), and barrier(5,1,0,1) stands for the horizontal wall
separating (5,1) from (5,2). As specified by atoms with predicate position/3, the four
robots start from board corners. Since each robot has (exactly one) initial position, the
projection robot/1 captures available robots. Finally, target(red,5,2) expresses
that the goal is to move the red robot on the red icon, as displayed in Figure 1.

2.2 Plain Encoding

In Listing 2, we provide an encoding following common practice in ASP planning [7].
That is, sequences of actions are guessed via choice rules (in Line 10), and the respective
successor states are derived via direct effect and frame axioms (in Line 20–22).

In more detail, the first three lines in Listing 2 furnish domain definitions, fixing
the sequence of time steps (time/1),4 the coordinates of board fields (dim/1), and
two-dimensional representations of the four possible directions (dir/2). The constant
horizon, used to define time/1, is expected to be provided via gringo’s command line
option -c (e.g. ‘-c horizon=10’). Predicate stop/4, which is the symmetric version of

4 The initial time point 0 is handled explicitly.

Ricochet Robots: A Transverse ASP Benchmark 351

Listing 2. Plain encoding of ricocheting robots
1 time(1..horizon).
2 dim(1..dimension).
3 dir(-1,0;;1,0;;0,-1;;0,1).

5 stop(DX, DY,X, Y) :- barrier(X,Y,DX,DY).
6 stop(-DX,-DY,X+DX,Y+DY) :- stop(DX,DY,X,Y).

8 position(R,X,Y,0) :- position(R,X,Y).

10 1 { move(R,DX,DY,T) : robot(R) : dir(DX,DY) } 1 :- time(T).
11 move(R,T) :- move(R,_,_,T).

13 halt(DX,DY,X-DX,Y-DY,T) :- position(_,X,Y,T), dir(DX,DY), dim(X-DX;Y-DY),
14 not stop(-DX,-DY,X,Y), T < horizon.

16 goto(R,DX,DY,X, Y, T) :- position(R,X,Y,T), dir(DX,DY), T < horizon.
17 goto(R,DX,DY,X+DX,Y+DY,T) :- goto(R,DX,DY,X,Y,T), dim(X+DX;Y+DY),
18 not stop(DX,DY,X,Y), not halt(DX,DY,X,Y,T).

20 position(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),
21 not goto(R,DX,DY,X+DX,Y+DY,T-1).
22 position(R,X,Y,T) :- position(R,X,Y,T-1), time(T), not move(R,T).

24 :- target(R,X,Y), not position(R,X,Y,horizon).

Listing 3. Encoding part for optimization

24 goon(T) :- target(R,X,Y), T := 0..horizon, not position(R,X,Y,T).
25 :- goon(horizon).

27 :- move(R,DX,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).

29 #minimize{ goon(_) }.

barrier/4 from a problem instance, identifies all blocked field transitions. The initial
robot positions are fixed in Line 8.

At each time step, some robot is moved in a direction (cf. Line 10). Such a move can
be regarded as the composition of successive field transitions, captured by goto/6 (in
Line 16–18). To this end, predicate halt/5 provides temporary barriers due to robots’
positions before the move. To be more precise, a robot moving in direction (DX,DY)

must halt at field (X-DX,Y-DY)when some (other) robot is located at (X,Y), and an in-
stance of halt(DX,DY,X-DX,Y-DY,T) may provide information relevant to the move
at step T+1 if there is no barrier between (X-DX,Y-DY) and (X,Y). Given this, the
definition of goto/6 starts at a robot’s position (in Line 16) and continues in direction
(DX,DY) (in Line 17–18) unless a barrier, a robot, or the board’s border is encountered.
As this definition tolerates board traversals of length zero, goto/6 yields a successor
position for any move of a robot R in direction (DX,DY), so that the rule in Line 20–21
captures the effect of move(R,DX,DY,T). Moreover, the frame axiom in Line 22 pre-
serves the positions of unmoved robots, relying on the projection move/2 (cf. Line 11).

Finally, we stipulate in Line 24 that a robot R must be at its target position (X,Y)

at the last time point horizon. Adding directives ‘#hide. #show move/4.’ further
allows for projecting stable models onto the extension of the move/4 predicate.

The encoding in Listing 2 allows us to decide whether a plan of length horizon

exists. For computing a shortest plan, we have two options resting on extended ASP

352 M. Gebser et al.

systems. The first alternative is to augment our decision encoding with an optimization
directive. This can be accomplished by replacing the integrity constraint in Line 24 in
Listing 2 by the encoding part in Listing 3. The new rule in Line 24 indicates whether
some goal condition is (not) established at a time point, and compliance with target po-
sition(s) at the last time point horizon is checked by the integrity constraint in Line 25.
Once the goal is established, the additional integrity constraint in Line 27 ensures that
it remains satisfied by enforcing that the goal-achieving move is repeated at later steps
(without altering robots’ positions). Note that the #minimize directive in Line 29 aims
at few instances of goon/1, corresponding to an early establishment of the goal, while
further repetitions of the goal-achieving move are ignored. Our extended encoding al-
lows for computing a shortest plan of length bounded by horizon. If there is no such
plan, the problem can be posed again with an enlarged horizon.

For computing a shortest plan in an unbounded fashion, we can take advantage of
incremental ASP solving. This allows us to successively explore all bounds from 1
on until a plan is found. An incremental ASP encoding consists of three types of
rules: static, cumulative, and volatile ones. Static rules, indicated by #base, describe
step-independent knowledge. Rules that are accumulated over steps are declared with
#cumulative (along with a constant standing for the step number), whereas the ones
stated as #volatile are specific to each time step and discarded upon incrementing
the step counter.5 An incremental ASP encoding is obtained from the one in Listing 2 as
follows. First, delete Line 1 and all occurrences of time(T). Second, insert ‘#base.’
in Line 1, ‘#cumulative t.’ in Line 9, and ‘#volatile t.’ in Line 23. Third, re-
place all occurrences of variable T by the constant t or by t-1 in Line 13–18, respec-
tively. Finally, replace horizon in Line 24 by constant t. In doing so, we declare the
rules in Line 2–8 to be static, those in Line 10–22 to be cumulative, and Line 24 to be
volatile. Given this, an incremental ASP system first grounds the static part, and then it
successively grounds (replacing constant t by the current step number) and solves the
cumulative and volatile rules, incrementing the step counter until the first plan is found.

The incremental variant of Listing 2 can also be used in a reactive setting [12]. In
fact, the only change concerns the way we deal with consecutive target positions. For
this purpose, it is sufficient to replace the static target in each problem instance, for
example ‘target(red,5,2).’ in Listing 1, by the following choice rule:
1 { target(R,X,Y) : robot(R) : dim(X;Y) } 1.

This rule leaves the concrete target position open. Consecutive queries are then posed
to a reactive ASP system via a sequence of #volatile integrity constraints, like
‘:- not target(red,5,2).’ The volatile nature of each query guarantees that it
vanishes after it has been addressed. Note that, for the sake of comparability, we refrain
from modifying the initial robot positions. We discuss an experiment that simulates
“playing in rounds” in Section 3.

2.3 Advanced Encoding

Next, we present an advanced encoding that differs from the above in two salient ways.
Its basic ideas are to guess states rather than actions and to split robots’ positions into

5 For a detailed introduction to incremental ASP, the interested reader is referred to [10,11].

Ricochet Robots: A Transverse ASP Benchmark 353

Listing 4. Advanced encoding of ricocheting robots
1 time(1..horizon).
2 dim(1..dimension).
3 dir(-1,0;;1,0;;0,-1;;0,1). aux(-1;1).

5 stop(DX, 0,Y,X) :- barrier(X,Y,DX,0).
6 stop(0, DY,X,Y) :- barrier(X,Y,0,DY).
7 stop(-DX,-DY,F,L+DX+DY) :- stop(DX,DY,F,L).

9 spot(R, 1,X,0) :- position(R,X,_).
10 spot(R,-1,Y,0) :- position(R,_,Y).

12 same(R,A,RR,T) :- spot(R;RR,A,L,T), R != RR, T < horizon.

14 halt(R,DX,DY,L, T) :- spot(R,|DY|-|DX|,F,T), stop(DX,DY,F,L), T < horizon.
15 halt(R,DX,DY,L-DX-DY,T) :- same(R,|DY|-|DX|,RR,T), spot(RR,|DX|-|DY|,L,T),
16 dir(DX,DY), dim(L-DX-DY).

18 goto(R,DX,DY,L, T) :- spot(R,|DX|-|DY|,L,T), dir(DX,DY), T < horizon.
19 goto(R,DX,DY,L+DX+DY,T) :- goto(R,DX,DY,L,T), dim(L+DX+DY), not halt(R,DX,DY,L,T).

21 goto(R,|DX|-|DY|,L,T) :- goto(R,DX,DY,L,T).
22 halt(R,|DX|-|DY|,L,T) :- halt(R,DX,DY,L,T), dim(L-DX-DY).

24 1 { spot(R,A,L,T) : dim(L) } 1 :- robot(R), aux(A), time(T).
25 :- spot(R,A,L,T), time(T), not goto(R,A,L,T-1).

27 bump(R,A,L,T) :- spot(R,A,L,T), time(T), not spot(R,A,L,T-1).
28 bump(R,A,L,T) :- bump(R,A,L,T-1), time(T), not goon(T-1).
29 bump(R,A, T) :- bump(R,A,_,T).
30 :- bump(R,A,L,T), dim(L+D) : aux(D), not halt(R,A,L,T-1).
31 :- time(T), not #count{ bump(_,_,_,T) } 1.
32 :- time(T), not bump(R,A,T) : robot(R) : aux(A).
33 :- bump(R,A,T-1;T), goon(T-1).

35 goon(T) :- target(R,X,_), T := 0..horizon, not spot(R, 1,X,T).
36 goon(T) :- target(R,_,Y), T := 0..horizon, not spot(R,-1,Y,T).
37 :- goon(horizon).

39 move(R,DX,DY,T) :- bump(R,|DX|-|DY|,L,T), halt(R,DX,DY,L,T-1) : dim(L+1),
40 dir(DX,DY), 0 < DX+DY.
41 move(R,DX,DY,T) :- bump(R,|DX|-|DY|,T), not move(R,-DX,-DY,T),
42 dir(DX,DY), DX+DY < 0.

horizontal and vertical coordinates. The first idea is conceptually different from stan-
dard encodings in ASP planning, like the one above, and has the advantage that states
need not be constructed by effect and frame axioms. The second idea is well-known in
automated planning and leads to a significant reduction in the size of ground instantia-
tions. On the other hand, it makes the encoding more complex since robots’ positions
are not given directly anymore. Further modeling techniques are described on the fly.

Our advanced encoding is given in Listing 4. Apart from two auxiliary atoms,
aux(-1) and aux(1), to distinguish horizontal and vertical coordinates, Line 1–3 are
as in Listing 2. Moreover, the definition of stop/4 is analogous, except that its format is
lined up for one-dimensional movements. In particular, columns X and rows Y are trans-
posed in Line 5 to let stop(DX,DY,F,L) represent that (F,L+DX+DY) is inaccessible
from (F,L) (cf. Line 7), where F is a fixed row or column, respectively.

The one-dimensional layout is continued with predicate spot/4 in Line 9, 10, and 24,
where atoms spot(R,1,X,T) and spot(R,-1,Y,T) provide the column X and row Y

of robot R at time point T. Note that such coordinates are guessed, rather than derived
from moves, in Line 24. In order to compensate for the split positions, the rule in Line 12

354 M. Gebser et al.

defines same(R,A,RR,T) (for all but the last time point horizon) to express that dis-
tinct robots R and RR are in a common column (A = 1) or row (A = -1).

The one-dimensional counterparts halt/5 and goto/5 of corresponding predicates
in Listing 2 capture the effect of moving a robot R in direction (DX,DY) at step T+1,
possibly altering its column (|DX|-|DY| = 1) or row (|DX|-|DY| = -1). In fact, bar-
riers and other robots RR sharing the coordinate of R on the orthogonal axis |DY|-|DX|
block transitions in direction (DX,DY). This is captured by the definition of halt coor-
dinates for R in direction (DX,DY) in Line 14–16. In turn, starting from its coordinate L
on axis |DX|-|DY| (in Line 18), a robot R continues in direction (DX,DY) (in Line 19)
unless a halt coordinate or the board’s border is encountered.

Given halt/5 and goto/5, the rules in Line 21 and 22 provide the abstractions
halt/4 and goto/4, which summarize coordinates affected by horizontal or vertical
moves by collapsing directions (DX,DY) to |DX|-|DY|. As a minor optimization, we
drop coordinates at the board’s border in halt/4 because moves may always halt there.

With predicates providing properties of the predecessor state at hand, we can now
constrain successor states guessed in Line 24. First of all, the reachability of successor
coordinates along axes is checked by the integrity constraint in Line 25; that is, no robot
is allowed to cross barriers or other robots’ positions. A new coordinate L for a robot R
on axis A at time step T is indicated by deriving bump(R,A,L,T) in Line 27; such
atoms point to moves, and the integrity constraint in Line 31 restricts their number to
(at most) one per time step. Moreover, the integrity constraint in Line 30 checks that
halting at a new coordinate is admissible, which is trivially the case for coordinates
at the board’s border. The second possibility of deriving bump(R,A,L,T) in Line 28,
by which a goal-achieving move at T-1 is (necessarily) repeated at time step T, relies
on the absence of goon(T-1) (defined in Line 35–36) for indicating that some goal
condition is not yet established. Along with the integrity constraint in Line 31, the rule
in Line 28 suppresses any further move after establishing the goal, while still supplying
the projection bump/3 (cf. Line 29). The latter is investigated by the integrity constraint
in Line 32, stipulating some instance of bump/3 to hold at each time step.6 Finally, the
integrity constraint in Line 33 discards redundant successive moves of a robot R on the
same axis A at time steps T-1 and T unless the goal is established at T-1.

As in Listing 3, the integrity constraint in Line 37 checks compliance with target po-
sition(s) at the last time point horizon. Moreover, the definition of move/4 in Line 39–
42 provides the same format for moves as obtained with the plain encoding in Listing 2,
while not carrying relevant information regarding the existence of a plan. Furthermore,
note that our advanced encoding can be customized to compute shortest plans, either by
adding the #minimize directive in Line 29 in Listing 3 or by devising an incremental
ASP encoding according to the scheme described in Section 2.2.

2.4 Output Format and Visualization

The Ricochet Robots visualization tool robotviz allows for displaying the board with
barriers, robots, and targets as well as for animating robot moves in a stepwise fashion.
robotviz is written in C++ and uses clasp’s textual output as input. That is, stable models

6 W.l.o.g., we assume that the goal is not readily established at the initial time point 0.

Ricochet Robots: A Transverse ASP Benchmark 355

are simply piped into robotviz, where they are parsed with a simple string parser. The
first stable model is used for interactive visualization. Also, depending on the input,
only board and barriers can be displayed or additional robots and a series of moves. For
an impression, note that Figure 1 shows a snapshot of robotviz. It allows us to visually
observe that the yellow robot is trapped in its corner. In addition, the plan of moving the
red robot down, right, up, and left is displayed below the board in terms of a sequence
of arrows in moved robots’ colors, and the steps can further be traced via cursor keys.

The input format is designed for multiple encodings. For this, it is sufficient that cer-
tain key atoms belong to the solver’s output and are thus declared via appropriate #show
statements. Barriers are extracted from atoms with predicate barrier/4. Analogously,
the robots’ target and starting positions as well as their moves have to be provided for
the interactive step-by-step visualization. If the input lacks position/3 or move/4, only
the board is displayed. Finally, the atom dim(dimension) must be shown to indicate
the board size (otherwise it would not be visible in the solver output).

3 Experimental Case Studies

Our benchmark set is based on an authentic board designed by Alex Randolph of size
16×16. The initial robot positions are in the corners of the board, and the red robot
must reach some target position. Given this setting, we obtain a collection of 256 bench-
mark instances by considering all available fields as target positions. With very few ex-
ceptions, the resulting instances are satisfiable when given enough steps, where about
twelve steps are required on average. In the following, we first focus on a comparison of
encodings as well as solving strategies for decision and optimization tasks. Afterwards,
we extend the scope to incremental and reactive ASP systems. All our experiments
were run on a Linux machine equipped with two Quad-Core Xeon E5520 2.27GHz
processors and 24GB memory, limiting each run to 600 seconds wall-clock time.

3.1 Encodings and Configurations

In an ASP production mode, the most important factor is a scalable encoding. In fact,
our advanced encoding in Listing 4 has a clear edge on the plain one in Listing 2 as
regards grounding. This can roughly be quantified by a factor of five in terms of time
consumption and ground instantiation size. However, space savings due to split posi-
tions also incorporate some indirection in referring to the actual fields of robots. Hence,
it is interesting to compare search performance relative to encodings in solving decision
and optimization tasks. To this end, we fix the constant horizon to 20 steps, which (in
all but two cases) is sufficient to find plans for satisfiable instances.

In what follows, we investigate the impact of encodings and settings on solver per-
formance. To this end, we consider clasp (2.1.3) in its default configuration (including
--heuristic=berkmin) and the variant with --heuristic=vsids, both serving as
points of reference. We further contrast these two settings with the following ones:

1. the clasp configuration used for the ASP competition in 2013; originally obtained
by manual tuning and extensive experimentation; now available via the option
--configuration=handy in clasp (2.1.3),

356 M. Gebser et al.

Table 1. Solving decision and optimization problems with different encodings and clasp settings

Decision problem Optimization problem
Runtime Timeout PAR10 Runtime Timeout PAR10

plain

clasp w berkmin 144 25 671 334 99 2422
clasp w vsids 136 37 916 299 94 2281
clasp, manually configured 103 14 398 234 69 1689
clasp, automatically configured 150 28 741 259 84 2031
clasp, multi-threaded 62 4 146 173 50 1178

advanced

clasp w berkmin 207 63 1536 302 106 2537
clasp w vsids 140 48 1152 315 114 2720
clasp, manually configured 65 12 318 192 61 1478
clasp, automatically configured 44 9 234 136 35 874
clasp, multi-threaded 24 3 87 123 37 904

2. an automatically generated clasp configuration, obtained by means of the algorithm
configuration system smac (2.02.00; [13]), and

3. a multi-threaded clasp configuration using a portfolio of four competitively search-
ing threads (cf. [14]); originally obtained by manual tuning and extensive experi-
mentation; now available via the option --configuration=chatty.

Following common practice in automatic algorithm configuration, we selected the best
outcome from ten independent runs of smac on a training set of instances relying on a
different Ricochet Robots board than our benchmarks. Each smac run was allotted 100
hours for tuning 94 (discrete and continuous) parameters of clasp, using a cutoff of 600
seconds wall-clock time for clasp.

Table 1 provides average runtimes in seconds (accounting for timeouts by 600 sec-
onds), absolute numbers of timeouts, and average times in seconds while penalizing
timeouts by 6000 seconds (PAR10) over our 256 benchmark instances. We applied the
aforementioned clasp configurations to solve the decision problem of plan existence
as well as the optimization problem of shortest plan computation, relying on the plain
encoding in Listing 2 or the advanced encoding in Listing 4, respectively.

Interestingly, the reference configurations with berkmin or vsids, respectively, per-
form significantly better with the plain than the advanced encoding. Analyzing the
search statistics reported by clasp, on the one hand, we observed that the five times
smaller ground instantiation size with the advanced encoding brings about the same
amount of higher raw speed but, on the other hand, leads to roughly one order of mag-
nitude more conflicts upon search. The trade-off between compactness and search ef-
forts shifts towards the advanced encoding for the manually or automatically configured
clasp settings, although the plain encoding generally still yields fewer conflicts.7 Also

7 Ground instantiations induce about 800k constraints with the plain encoding and 140k con-
straints with the advanced encoding. The average number of conflicts reported by clasp in
its default configuration is 65k with the plain encoding and 510k with the advanced encod-
ing. The latter number reduces to 127k conflicts on average in smac’s configuration, while no
comparably substantial reductions are achieved with the plain encoding in any configuration.

Ricochet Robots: A Transverse ASP Benchmark 357

Table 2. Solving Ricochet Robots with different ASP systems

clasp w berkmin clasp w vsids
Runtime Timeout PAR10 Runtime Timeout PAR10

clasp (decision) 227 71 1725 86 27 655
clasp (optimization) 326 114 2731 224 77 1848
unclasp 574 245 5742 567 242 5671
iclingo 229 83 1980 186 66 1578
oclingo 216 80 1903 179 62 1487

note that automatic configuration via smac was accomplished relative to the advanced
encoding. Thus, it performs worse than the manually selected configuration with the
plain encoding. With the advanced encoding for which it has been tuned, smac’s con-
figuration turns out as the best in single-threaded settings. In fact, it even surpasses
multi-threaded settings regarding the number of timeouts in optimization, while the
parallelism brought by multi-threading exhibits significantly improved robustness oth-
erwise. The success of smac (with the advanced encoding) confirms analogous results in
ASP [15,16] and related areas [17,18], showing that the burden of solver configuration
can and should be taken off the user. Comparing decision and optimization problems,
Table 1 further yields consistent relative performances of configurations, suggesting
that underlying problem characteristics are quite similar in solving either kind of task.

3.2 ASP Solving Technologies

This section is dedicated to the empirical comparison of different ASP solving tech-
nologies. To this end, we concentrate on the advanced encoding given in Section 2.3.
As points of reference, we consider clasp (1.3.10) for solving decision and optimization
problems with a fixed horizon of 20 steps.8 Running this version (rather than 2.1.3) is
motivated by its usage in the ASP systems we compare: the clasp derivative unclasp
(0.1; [19]), pursuing an unsatisfiability-based approach to optimization; the incremen-
tal ASP system iclingo (3.0.5; [10,11]), performing iterative deepening by means of
stepwise grounding and solving; and the reactive ASP system oclingo (3.0.92; [12]),
extending iclingo with online capacities to solve sequences of queries. We benchmark
all ASP systems in two settings, performing search with clasp in its default configura-
tion (including --heuristic=berkmin) and the variant with --heuristic=vsids.

Table 2 shows experimental results, as before providing average runtimes, absolute
numbers of timeouts, and average times penalizing timeouts by 6000 seconds (PAR10).
Although unclasp’s approach to optimization can be highly effective (cf. [19]), it does
not work well for Ricochet Robots. In fact, unclasp aims at localizing substructures of
a problem responsible for penalties within a #minimize statement. For the one in List-
ing 3, this means that atoms with predicate goon/1, indicating that some goal condition
is not established at a time point, are gradually admitted to hold. Given that the estab-
lishment of goals, as for instance expressed by target(red,5,2), relies on the whole

8 Grounding times of gringo are negligible, i.e., less than 0.2 seconds for our 16×16 board.

358 M. Gebser et al.

trajectory from the initial time point 0, reasons for penalties can hardly be subdivided
into (independent) local substructures. The inherent causal connection between states
in a planning problem thus undermines unclasp’s approach to optimization.

The incremental ASP system iclingo computes shortest plans in an unbounded fash-
ion by gradually extending the horizon. To be more precise, starting at 1, iclingo
grounds and solves (the incremental variant of) Listing 4 step by step until the first sta-
ble model, corresponding to a shortest plan, is obtained. Accordingly, the performance
of clasp in optimization constitutes the reference for assessing iclingo, and the reduc-
tion of timeouts (31 with --heuristic=berkmin and 11 with --heuristic=vsids)
shows the success of iclingo’s incremental approach. For one, this relies on the fact that
stepwise grounding avoids the instantiation of rules for “unnecessary” time points. For
another, recorded conflict information may be passed along between successive solving
steps given that the solving component of iclingo remains in place until a plan is found.
That is, grounding as well as solving efforts spent on unsatisfiable (decision) problems
with too small horizons still contribute to and potentially foster progress in the sequel.

Going further beyond iclingo, the reactive ASP system oclingo maintains its solving
component for dealing with consecutive target positions. In this way, recorded con-
flict information can be shared among all benchmark instances, which enables oclingo
to exploit similarities in solving a series of planning problems. We thus obtain a re-
duction of timeouts in comparison to iclingo (3 with --heuristic=berkmin and 4
with --heuristic=vsids). However, note that oclingo does not decrease the plan-
ning horizon when a new target is entered since instantiations of rules for time points
remain in the system once they have been produced in view of a query. As a conse-
quence, a plan is not guaranteed to be shortest when its target position can be reached
without incrementing the step counter. We aim at overcoming this in the future by ex-
tending incremental and reactive ASP solving to optimization, via which shortest plans
could be addressed without withdrawing any formerly produced ground rules.

An alternative experiment performed with oclingo simulates “playing in rounds” by
taking robot positions after achieving a goal as initial positions for the next target. Using
the same sequence of targets as above, oclingo with --heuristic=vsids completed
250 instances in 26 seconds average runtime, thus exhibiting significant improvements
over the setting with fixed initial positions. This phenomenon is probably related to the
lexicographical order of our sequence of targets, and we aim at further experiments with
less regular target sequences in the near future.

4 Discussion

Alex Randolph’s board game Ricochet Robots offers a rich and versatile benchmark for
ASP. As it stands, it represents a simple multi-agent planning problem in which each
agent, i.e., robot, has limited sensing capacities (that is, only bumps are detected). This
setting leaves room for numerous interesting extensions. For example, we may con-
sider competing or collaborating robots, simultaneous moves, and conceive compelling
multi-agent scenarios. Also, the addition of resources like fuel or keys are conceptually
interesting extensions, not to mention the plenty variants of the board game available on
the web. Moreover, the potential of Ricochet Robots is even beyond ASP given that it

Ricochet Robots: A Transverse ASP Benchmark 359

can be modeled in many other paradigms, like action and planning languages, constraint
languages, or in terms of Satisfiability testing.

In this paper, we started by elaborating upon two alternative encodings, one follow-
ing traditional approaches to ASP planning and another centered around states rather
than actions. More disparate encodings will result from the ASP competition in 2013,
where Ricochet Robots is included in the modeling track. In addition, we provided the
graphical tool robotviz for visualizing boards as well as solutions to the Ricochet Robots
problem. The goal of this is to ease acquaintance with the game and to increase its at-
tractiveness, also in view of teaching ASP. The visualization tool robotviz along with
encodings and instances of Ricochet Robots are available at [20].

We illustrated the versatility of the benchmark by conducting two transverse empir-
ical case studies. The first one aimed at assessing the impact of modeling techniques
on the performance of ASP systems. This was flanked by an investigation of algorithm
configuration and multi-threading as means to speed-up search, which demonstrated the
capabilities of automatic solver configuration and parallelism. The second part of our
study contrasted distinct ASP solving technologies in a uniform setting. Here, incre-
mental and reactive ASP solving showed to be effective for computing shortest plans.
Given that the original Ricochet Robots game proceeds in rounds, continuing from the
final configuration of the previous round with a new target, automated support of such
application scenarios in the future promises a rich source of reactive ASP benchmarks.

Our case studies are of course not sufficient for general claims but show the prospect
of having a benchmark for evaluating different aspects in a uniform setting. This is cer-
tainly important in view of establishing a production mode for ASP when faced with
singular real-world applications. In fact, the development of a robust ASP-based so-
lution to an application problem must account for several interdependent factors and
eventually converge to an integrated approach dealing with them. For one, the problem
encoding predetermines the prospects of solving methods on problem instances, and
its conception thus deserves careful consideration. Second, the application task desig-
nates appropriate solving methods, where decision and optimization as well as bounded
and unbounded approaches can be distinguished. Finally, algorithm configuration and
parallelism are powerful means to improve the efficiency of a solving method.

Acknowledgments. This work was partially funded by DFG grant SCHA 550/9-1.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

3. Butko, N., Lehmann, K., Ramenzoni, V.: Ricochet Robots — a case study for human com-
plex problem solving. In: Proceedings of the Annual Santa Fe Institute Summer School on
Complex Systems, CSSS 2005 (2005)

4. Engels, B., Kamphans, T.: On the complexity of Randolph’s robot game. Research Report
005, Institut für Informatik, Universität Bonn (2005)

5. Engels, B., Kamphans, T.: Randolph’s robot game is NP-hard! Electronic Notes in Discrete
Mathematics 25, 49–53 (2006)

360 M. Gebser et al.

6. Engels, B., Kamphans, T.: Randolph’s robot game is NP-complete! In: Proceedings of the
Twenty-second European Workshop on Computational Geometry, EWCG 2006, pp. 157–
160 (2006)

7. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2),
39–54 (2002)

8. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. In: [21], pp.
345–351

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo,
http://potassco.sourceforge.net

10. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

11. Gebser, M., Kaufmann, R., Schaub, T.: Gearing up for effective ASP planning. In: Erdem,
E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 296–310.
Springer, Heidelberg (2012)

12. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. In: [21],
pp. 54–66

13. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: Coello Coello, C.A. (ed.) LION 2011. LNCS, vol. 6683, pp.
507–523. Springer, Heidelberg (2011)

14. Gebser, M., Kaufmann, B., Schaub, T.: Multi-threaded ASP solving with clasp. Theory and
Practice of Logic Programming 12(4-5), 525–545 (2012)

15. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M., Ziller, S.: A portfolio
solver for answer set programming: Preliminary report. In: [21], pp. 352–357

16. Silverthorn, B., Lierler, Y., Schneider, M.: Surviving solver sensitivity: An ASP practitioner’s
guide. In: [22], pp. 164–175

17. Hutter, F., Babić, D., Hoos, H., Hu, A.: Boosting verification by automatic tuning of decision
procedures. In: Proceedings of the Seventh Conference on Formal Methods in Computer-
Aided Design, FMCAD 2007, pp. 27–34. IEEE Computer Society Press (2007)

18. Vallati, M., Fawcett, C., Gerevini, A., Hoos, H., Saetti, A.: Generating fast domain-specific
planners by automatically configuring a generic parameterised planner. In: Proceedings of
the Twenty-First ICAPS Workshop on Planning and Learning, PAL 2011, pp. 21–27 (2011)

19. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in
clasp. In: [22], pp. 212–221

20. Potassco Labs, http://potassco.sourceforge.net/labs.html
21. Delgrande, J., Faber, W. (eds.): LPNMR 2011. LNCS, vol. 6645. Springer, Heidelberg (2011)
22. Dovier, A., Santos Costa, V. (eds.): Technical Communications of the Twenty-Eighth Inter-

national Conference on Logic Programming, ICLP 2012. Leibniz International Proceedings
in Informatics, vol. 17. Schloss Dagstuhl (2012)

http://potassco.sourceforge.net
http://potassco.sourceforge.net/labs.html

Decidability and Implementation

of Parametrized Logic Programs

Ricardo Gonçalves and José Júlio Alferes

CENTRIA - Departamento de Informática,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Abstract. Parametrized logic programs are very expressive logic pro-
grams that generalize normal logic programs under the stable model
semantics, by allowing complex formulas of a parameter logic to appear
in the body and head of rules. In this paper we study the decidability
of these rich programs and propose an implementation that combines,
in a modular way, a reasoner for the parameter logic with an answer set
solver.

1 Introduction

Parametrized logic programming [9] was introduced as an extension of answer
set programming [8] with the motivation of providing a meaning to theories
combining both logic programming connectives with other logical connectives,
and allowing complex formulas using these connectives to appear in the head and
body of a rule. The main idea is to fix a monotonic logic L, called the parameter
logic, and build up logic programs using formulas of L instead of just atoms.
The obtained parametrized logic programs have, therefore, the same structure
of normal logic programs, the only difference being the fact that atomic symbols
are replaced by formulas of L.

When applying this framework, the choice of the parameter logic depends on
the domain of the problem to be modeled. As examples, [9] shows how to obtain
the answer-set semantics of logic programs with explicit negation, a paraconsis-
tent version of it, and also the semantics of MKNF hybrid knowledge bases [15],
using an appropriate choice of the parameter logic. Moreover, [10] introduces
deontic logic programs using standard deontic logic [20] as the parameter logic.

Parametrized logic programming can be seen as a framework which allow us
to add non-monotonic rule based reasoning on top of an existing (monotonic)
language. This view is quite interesting, in particular in those cases where we
already have a monotonic logic to model a problem, but we are still lacking
some conditional or non-monotonic reasoning. In these situations, parametrized
logic programming offers a modular framework for adding such conditional and
non-monotonic reasoning, without having to give up on the monotonic logic at

� The first author was supported by FCT under the postdoctoral grant
SFRH/BPD/47245/2008. The work was partially supported by projects ERRO –
PTDC/EIA-CCO/121823/2010, and ASPEN – PTDC/EIA-CCO/110921/2009.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 361–373, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

362 R. Gonçalves and J.J. Alferes

hand. One interesting example is the case of MKNF hybrid knowledge bases,
where the existing monotonic logics are description logics.

However, in order to make parametrized logic programming usable in practice,
we need to prove that this rich combination does not compromise decidability in
the case of a decidable parameter logic. Moreover, given a decidable parameter
logic, for pragmatic reasons the implementation for a reasoner should make a
modular use of an existing reasoner for the parameter logic and an answer set
solver. This modularity is extremely important since it allows us to use the
large body of successful research done in the area of stable model semantics
implementation and answer set programming.

In this paper, after introducing the framework of parametrized logic pro-
grams (Section 2), we address the decidability of the stable model entailment
of parametrized logic programs and study the implementation of a reasoner for
parametrized logic programs, combining a reasoner for the parameter logic and
answer set solver in a modular way (Section 3). We also study some interesting
examples of parameter logics over a restricted language that have better com-
putational properties than the general case. We end with some conclusions and
draw some paths for future research (Section 4).

2 Parametrized Logic Programs

In this section we introduce the syntax and semantics of normal parametrized
logic programs [9].

2.1 Language

The syntax of a normal parametrized logic program has the same structure of
that of a normal logic program. The only difference is that the atomic symbols
of a normal parametrized logic program are replaced by formulas of a parameter
logic, which is restricted to be a monotonic logic. Let us start by introducing the
necessary concepts related with the notion of (monotonic) logic.

Definition 1. A (monotonic) logic is a pair L = 〈L,.L〉 where L is a set of
formulas and .L is a Tarskian consequence relation [21] over L, i.e., satisfying
the following conditions, for every T ∪ Φ ∪ {ϕ} ⊆ L,
Reflexivity: if ϕ ∈ T then T .L ϕ;
Cut: if T .L ϕ for all ϕ ∈ Φ, and Φ .L ψ then T .L ψ;
Weakening: if T .L ϕ and T ⊆ Φ then Φ .L ϕ.

When clear from the context we write . instead of .L. Let Th(L) be the set of
logical theories of L, i.e. the set of subsets of L closed under the relation .L. One
fundamental characteristic of the above definition is that, for every (monotonic)
logic L, the tuple 〈Th(L),⊆〉 is a complete lattice with smallest element the set
Theo = {ϕ ∈ L : ∅ . ϕ} of theorems of L and greatest element the set L of
all formulas of L. Given a subset A of L we denote by A�L the smallest logical
theory of L that contains A, and call it the logical theory generated by A in L.

Decidability and Implementation of Parametrized Logic Programs 363

In the following we consider fixed a (monotonic) logic L = 〈L,.L〉 and call
it the parameter logic. The formulas of L are dubbed (parametrized) atoms and
a (parametrized) literal is either a parametrized atom ϕ or its negation not ϕ,
where not denotes default negation. Default literals are those of the form not ϕ.

Definition 2. A normal L parametrized logic program is a set of rules

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm (1)

where ϕ, ψ1, . . . , ψn, δ1, . . . , δm ∈ L.
A definite L parametrized logic program is a set of rules without negations as

failure, i.e. of the form ϕ← ψ1, . . . , ψn where ϕ, ψ1, . . . , ψn ∈ L.

As usual, the symbol← represents rule implication, the symbol “,” represents
conjunction and the symbol not represents default negation. A rule as (1) has
the usual reading that ϕ should hold whenever ψ1, . . . , ψn hold and δ1, . . . , δm
are not known to hold. If n = 0 and m = 0 then we just write ϕ←.

Given a rule r of the form (1), we define head(r) = ϕ, body+(r) =
{ψ1, . . . , ψn}, body−(r) = {δ1, . . . , δm} and body(r) = body+(r) ∪ body−(r).
Given a parametrized logic program P we define form(P) to be the set of
all formulas of the parameter language L appearing in P , i.e., form(P) =⋃

r∈P({head(r)}∪body(r)). We also define the set head(P) = {head(r) : r ∈ P}.

2.2 Semantics

The semantics of parametrized logic programs is defined as a generalization of
the stable model semantics [8] of normal logic programs.

In the normal logic programs, an interpretation is just a set of atoms. In
a parametrized logic program, since we substitute atoms by formulas of a pa-
rameter logic, the first idea is to take sets of formulas of the parameter logic
as interpretations. The problem is that, contrary to the case of atoms, the
parametrized atoms are not independent of each other. This interdependence
is governed by the consequence relation of the parameter logic. For example, if
we take classical propositional logic (CPL) as the parameter logic, we have that
if the parametrized atom p∧ q is true then so are the parametrized atoms p and
q. If we take, for example, standard deontic logic SDL [20] as parameter, we have
that, since O(p∨ q),O(¬p) .SDL O(q), any SDL logical theory containing both
O(p ∨ q) and O(¬p) also contains O(q).

To account for this interdependence, we use logical theories (sets of formulas
closed under the consequence of the logic) as the generalization of interpretations,
thus capturing the above mentioned interdependence.

Definition 3. A (parametrized) interpretation is a logical theory of L.
Definition 4. An interpretation T satisfies a rule

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm

if ϕ ∈ T whenever ψi ∈ T for every i ∈ {1, . . . , n} and δj /∈ T for every
j ∈ {1, . . . ,m}.

364 R. Gonçalves and J.J. Alferes

An interpretation is a model of logic program P if it satisfies every rule of P .
We denote by ModL(P) the set of models of P .

The ordering over interpretations is the usual one: If T1 and T2 are two inter-
pretations then we say that T1 ≤ T2 if T1 ⊆ T2. Moreover, given such ordering,
minimal and least interpretations may be defined in the usual way.

As in the case of non parametrized programs, we start by assigning semantics
to definite parametrized programs. Recall that the stable model of a definite
logic program is its least model. In order to generalize this definition to the
parametrized case we need to establish that the least parametrized model exists
for every definite L parametrized logic program.

Theorem 1 ([9]). Every definite L parametrized logic program has a least
model, denoted by SL

P .

Note that this theorem holds for every choice of the parameter logic L.
The stable model semantics of a normal L parametrized logic programs is

defined using a Gelfond-Lifschitz like operator.

Definition 5. Let P be a normal L parametrized logic program and T an in-
terpretation. The GL-transformation of P modulo T is the program P

T obtained
from P by performing the following operations:

– remove from P all rules which contain a literal not ϕ such that T .L ϕ;
– remove from the remaining rules all default literals.

Since P
T is a definite L parametrized program, it has an unique least model J .

We define Γ (T) = J .

Stable models of a parametrized logic program are then defined as fixed points
of this Γ operator.

Definition 6. An interpretation T of an L parametrized logic program P is a
stable model of P iff Γ (T) = T . A formula ϕ is true under the stable model
semantics, denoted by P 	SM ϕ iff it belongs to all stable models of P. We denote
by SM(P) the set of all stable models of L.

2.3 Examples

Parametrized logic programs are very general and flexible, allowing not only to
capture well-known extensions of the stable model semantics of normal logic
programs, but also to extend them further. In [9] it is shown that normal logic
programs and extended logic programs correspond to an appropriate choice of
the parameter logic.

One interesting case that already goes beyond the usual extensions of normal
logic programs is to use a parameter logic over a full propositional language.
Note that this is different, and in fact orthogonal, to the so-called nested logic
programs [6]. Nested logic programs are propositional combinations of the logic
programming connectives. In the case of parametrized logic programs, proposi-
tional nesting only appears at the level of the atoms.

Decidability and Implementation of Parametrized Logic Programs 365

Example 1 (Propositional logic programs). Let us now consider a full proposi-
tional language L built over a set P of propositional symbols using the usual
connectives (¬,∨,∧,⇒). Many consequence relations can be defined over this
language. We present three interesting examples: classical logic, Belnap’s para-
consistent logic [2] and intuitionistic logic. Consider the following programs:

P1

{
p← ¬q
p← q

P2

{
p← ¬q ∨ q P3

⎧⎨⎩
q ←
(q ∨ s)⇒ p←
r ← p

P4

⎧⎪⎪⎨⎪⎪⎩
r ←
¬p←
(p ∨ q)← r
s← q

P5

{
p← not q, not ¬q

P6

{
p← not (q ∨ ¬q)

P7

{
p←
¬p←

Let L = 〈L,.CPL〉 be Classical Propositional Logic (CPL) over the language
L. Let us study in detail the semantics of P1. Note that every CPL logical theory
that does not contain neither p nor ¬p satisfies P1. In particular, the set Taut
of tautologies of CPL is a model of P1. So, S

CPL
P1

= Taut. This means that

p,¬p, q,¬q /∈ SCPL
P1

. We also have that SCPL
P2

= {p}�ails. So, in the case of P2

we have that p ∈ SCPL
P2

. Also, we have that r ∈ SCPL
P3

and s ∈ SCPL
P4

.
In the case of P5 its stable models are the CPL logical theories that contain

p and do not contain q nor ¬q. Therefore, we have that p ∈ SCPL
P5

. In the case of
P6, since (p∨¬p) ∈ T for every CPL logical theory T we can conclude that the
only stable model of P6 is the set Theo of theorems of CPL. Therefore p /∈ SCPL

P6
.

Regarding P7, it is clear that S
CPL
P7

equals the (inconsistent) set of all formulas.
Note that, like in answer-sets, stable models of parametrized programs can be
inconsistent, this being conceptually different from the case when there are no
answer-sets.

Consider now L = 〈L,.4〉 the 4-valued Belnap paraconsistent logic Four.
Consider the program P4. Contrarily to the case of CPL, in Four it is not the
case that ¬p, (p ∨ q) .4 q. Therefore we have that q, s /∈ SFour

P4
.

Let now L = 〈L,.IPL〉 be the Intuitionistic Propositional Logic IPL. It is
well-known that q∨¬q is not a theorem of IPL. Therefore, considering program
P2 we have SIPL

P2
= ∅�IPL . So, contrarily to the case of CPL, we have that

p /∈ SIPL
P2

. Using the same idea for program P6 we can conclude, contrarily to

the case of CPL, that p ∈ SIPL
P6

.

Another interesting class of logic that can be taken as parameter are modal
logics [5]. Modal logics are fundamental in many areas of Artificial Intelli-
gence. They are quite flexible, expressive, and quite often decidable. By using
parametrized logic programs with a modal logic as the parameter logic we are
thus adding a non-monotonic layer to an already expressive language.

Example 2 (Modal logic).
Consider modal logic language Lm built over a set P of propositional symbols

using the usual connectives ¬,∨,∧,⇒ and the modal operators �,♦. Let Lm =
〈Lm,.m〉 be a modal logic over the language Lm, where the consequence relation
is obtained from usual Kripke style semantics. Of course, the particular modal

366 R. Gonçalves and J.J. Alferes

logic we obtain depends on the restriction we impose in the Kripke models. Just
to mention a few interesting examples, Lm could be epistemic logic, usually an S5

modal logic, deontic logic, usually a KD modal logic and doxastic logic, usually
a KD45 modal logic. Our aim with this example is just to stress that we can
choose quite interesting and expressive logics as the parameter logic. Just to give
an example, in [10,11] a very rich non-monotonic framework for reasoning about
normative systems can be obtained by choosing modal logic KD, also known as
Standard Deontic Logic [20], as the parameter logic.

3 Decidability and Implementation

We have seen how general is the construction of logic programs using a parame-
ter logic. The question that naturally arises now is whether this combination of
a monotonic logic and a non-monotonic framework preserves decidability. More-
over, even if decidability is preserved, there is still the question of whether we
can use existing tools for the parameter logic together with an ASP solver to
implement a reasoning tool for the combination. In this section we address both
these issues. We first show that decidability is preserved if the parameter logic
is decidable and then we also show how to combine an existing reasoner for a
given parameter logic with an ASP solver.

We start with an interesting observation: even for logics over a propositional
logical language built from a finite number of propositional symbols, the number
of logical theories may be infinite. An immediate consequence is that the number
of possible stable models of a finite parametrized logic program can be infinite.
Interestingly, as we show below, decidability is not necessarily compromised.
The key idea is that, given a finite parametrized logic program P , we are able
to prove that only those logical theories generated by sets of formulas appearing
in P can be stable models of P , and these are in a finite number.

Theorem 2. Let P be a finite parametrized logic program. If T is a stable model
of P then there exists A ⊆ form(P) such that T = A�L .

Proof. Let T be a stable model of P . Consider the set A = T ∩ form(P), i.e.,
the restriction of T to the set of formulas appearing in P . Since T is a logical
theory of L, A ⊆ T and L is monotonic, we have that A�L ⊆ T �L = T . We aim
to prove that, in fact, A�L = T . Since A is the restriction of T to the formulas of
P we have that P

A�L = P
T . Then, we have that A�L is also a model of P

T . Since T

is a stable model of P it is the minimal model of P
T . Therefore, we can conclude

T ⊆ A�L , which then implies that T = A�L . ��

The above theorem has as immediate consequence the fact that every finite
parametrized logic program has a finite number of stable models.

Corollary 1. Let P be a finite parametrized logic program. Then, P has finitely
many stable models.

Decidability and Implementation of Parametrized Logic Programs 367

With this, we can now prove the decidability result.

Theorem 3. Let P be a finite parametrized logic program over a decidable pa-
rameter logic L and ϕ a formula of L (not necessarily in P). Then, it is decidable
the problem of checking if P 	SM ϕ is the case.

Proof. First of all, note that we are assuming that L is a decidable logic, i.e.,
the problem of checking Φ .L ϕ, for a finite set Φ of L formulas, is decidable.
Note also that the sets form(P) and its subset head(P) are finite.

Let us now introduce some necessary notation. Given a subset A of form(P)
we write C(A) to denote its closure under L consequence, i.e., C(A) = A�L ∩
form(P). Given a subset A of form(P), we can easily construct C(A) by check-
ing, for each ψ ∈ form(P) \A, if A .L ψ;

In Fig. 1 we sketch an algorithm showing the decidability of the problem
P 	SM ϕ. It is based on the Gelfond-Lifschitz transformation with the additional
use of an L oracle. The fundamental tool supporting the algorithm is the result
in Theorem 2, since it restricts severely the number of L theories we need to
check. To cut even more the number of theories to be checked we also use the
well-known result in the logic programming area: a stable model of a normal
logic program is always a subset of the set of heads of rules of the program. ��

input: finite PLP P and L formula ϕ

for each Φ ⊆ head(P) compute C(Φ)
if Φ = C(Φ) then

compute P
Φ

compute least(P
Φ
) restricted to form(P):

define A0 := C({ϕ : ϕ ← ∈ P})
compute Ai+1 := C({ϕ : ϕ ← ψ1, . . . , ψn ∈ P and {ψ1, . . . , ψn} ⊆ Ai})
until Ak = Ak+1 for some k

then set least(P
Φ
) := Ak;

if least(P
Φ
) = Φ / ∗ in this case Φ�L is a stable model of P ∗ /

check if Φ �L ϕ

if Φ �L ϕ for every Φ ⊆ head(P) such that Φ�L is a stable model of P ,

then P 	SM ϕ is the case.

Fig. 1. Decidability algorithm

The algorithm in the proof of Theorem 3 is interesting since it is a (basic) stable
model like algorithm which, when necessary, makes queries to an L-oracle. This
makes it modular with respect to the L-reasoner and it minimizes the calls to the
L-oracle. The algorithm has, nevertheless, a major drawback: it is not modular
from the point of view of calculating stable models, in the sense that we cannot
use existing ASP solvers to compute the stable models of a parametrized logic
program. This modularity is extremely important since it would allow us to use
the large body of successful research done in the area of stable model semantics

368 R. Gonçalves and J.J. Alferes

implementation and answer set programming. Our aim is precisely to propose an
implementation of a reasoner for parametrized logic programs which modularly
combines an ASP solver (such as Clasp [7]) with a reasoner for the parameter
logic (such as the KED SDL solver [1] in the case of Standard Deontic Logic [20],
or the HermiT [16] reasoner in the case SROIQ description logic [13]).

We start by proving a theorem that sets the ground for the construction of
the modular reasoner. Consider a given parametrized logic program P , and
construct the following normal logic program PN from P :

PN = P ∪ {ϕ← ψ1, . . . , ψn : {ψ1, . . . , ψn} ⊆ form(P),
ϕ ∈ form(P)\{ψ1,...,ψn},
{ψ1, . . . , ψn} .L ϕ}.

We call PN the normal logic program obtained from P , since the L formulas
appearing in it are to be considered as normal logic programs atoms. The key
idea underlying the construction of PN , in order to enforce the interdependency
between the L formulas (which in PN are just atoms), is to enrich P with rules
that represent the possible reasoning in L occurring with the formulas of P .

Since we are now considering usual normal logic programs, and to distinguish
between the set of stable model of a parametrized logic program P (which is
a subset of 2ThL) and the set of stable models of P viewed as a normal logic
program (which is a subset of 2form(P)), we denote the latter by AS(P). Note
that SM(P) and AS(P) can be very different since AS does not take into account
the interdependency between the (parametrized) atoms. As a simple example
let L be a normal modal logic. Consider P = {�p ←; �q ← �(p ∨ r)}. Then,
SM(P) = {{�p,�(p∨ r),�q}�L} but AS(P) = {{�p}}.

Theorem 4. Given a parametrized logic program P, we have that

SM(P) = {A�L : A ∈ AS(PN)}

Proof. Let us start with some notation and a general comment. We use PL to
denote the set of rules that are added to P in the definition of the program
PN , i.e., PN = P ∪ PL. Since the rules in PL represent sound consequences in
L, and since every logical theory of L is closed under L consequence, it follows
immediately that every L logical theory satisfies all the rules in PL.

We now prove the equality SM(P) = {A�L : A ∈ AS(PN)} by proving the
two inclusions. Let us start by proving the left to right inclusion. Let T be a
stable model of P . We aim to prove that there exists a stable model A of PN such
that T = A�L . Take A = T ∩ form(P). We first prove that A�L = T . Since L is
monotone, we have that A�L ⊆ T �L = T . To prove the reverse inclusion recall
that T is the minimal L logical theory that satisfies P

T . Since A = T ∩ form(P),
it immediately follows that A satisfies P

T . Therefore, A�L is an L logical theory

that satisfies P
T . Since T is the minimal one, we have that T ⊆ A�L .

Now that we have proved that A�L = T , we need to prove that A is a stable

model of PN . First of all, observe that PN

A = P
A∪PL = P

T ∪PL. LetB ⊆ form(P)
be a model of PN

A . Then, since B satisfies PL, B is closed under L consequence.

Decidability and Implementation of Parametrized Logic Programs 369

This in turn implies that B�L ∩ form(P) = B. Clearly B�L is a model of P
T ,

and, since T is the minimal L logical theory satisfying P
T , we can conclude that

T ⊆ B�L . But then A = T ∩ form(P) ⊆ B�L ∩ form(P) = B. Since this

inclusion is the case for every B model of PN

A , we can conclude that A is the

minimal model of PN

A , i.e., A is a stable model of PN .
We now prove the right to left inclusion. Let A ⊆ form(P) be a stable model

of PN . We aim to prove that A�L is a stable model of P . Since A is a stable model

of PN we have that A is the minimal model of PN

A = P
A∪PL. Since A is a model of

PL we have that A is closed under L consequence, i.e., A�L ∩form(P) = A. We
then have that P

A�L = P
A . Suppose there exists an L logical theory T such that

T ⊂ A�L and T satisfies P
A�L . In that case, T ∩form(P) ⊂ A�L ∩form(P) = A

and T ∩ form(P) satisfies P
A ∪ PL = PN

A . But this contradicts the fact that A

is the minimal model of PN

A . ��

There are some very important consequences of the above theorem. One
we already established in Theorem 2: the number of stable models of a finite
parametrized logic program is finite. The problem is that each of these stable
models is infinite. This is precisely where Theorem 4 gives its fundamental con-
tribution. It presents a finite representation of each of the stable models of P .

Our aim now is to compute the finite representations of the stable models of
P . The implicit algorithm in the construction of PN is quite basic. It just looks
at all possible relations between formulas of the parameter logic appearing in
the program. We now develop a more efficient implementation, assuming some
mild conditions about the parameter logic. These allow us to prune some search
paths in the construction of a normal logic program from P .

Let L = 〈L,.L〉 be a monotonic logic satisfying the following conditions.
The first condition, dubbed (Bot) is the existence of a bottom element in the
language, i.e., ⊥ ∈ L such that for any subset Φ ⊆ L we have that if Φ .L ⊥ then
Φ .L ϕ for every ϕ ∈ L. This condition allows to detect an inconsistent set of
formulas by checking if it entails ⊥. The second condition, dubbed (Prop), is that
L is built from a set of propositional symbols P and it satisfies: if propSymb(Φ)∩
propSymb(ϕ) = ∅ and �.L ϕ then Φ �.L ϕ. Intuitively this condition imposes that
if a non tautological formula does not have propositional symbols in common
with a set of formulas, then it should not be entailed by that set of formulas.

Note that these two conditions are quite mild, and they are satisfied by every
example of parameter logic we have shown above. For a parameter logic satisfy-
ing these conditions, we can sketch an algorithm, in Fig. 2, that, given a finite
parametrized logic program P , returns a normal logic program Palg. This algo-
rithm is an improvement of the one constructing PN , by pruning several search
paths using the conditions imposed on the parameter logic.

We can then prove that the pruned paths do not affect the result of the
algorithm, i.e., the constructed program Palg has the same stable models as
PN . Given these improvements, the algorithm for constructing Palg does not,
in general, return exactly the normal logic program PN . In fact, one can readily
see that Palg ⊆ PN . As expected, we can, nevertheless, prove that the extra

370 R. Gonçalves and J.J. Alferes

input: finite parametrized logic program P
set i = 1; k = lenght(head(P)); P alg := P ∪ {ϕ ← : ϕ ∈ form(P) and �L ϕ}
while i ≤ k

for each subset A = {δ1, . . . , δi} of head(P) of size i

if A �L ⊥ then /* A is inconsistent */

for each ϕ ∈ form(P) \A
add ϕ ← δ1, . . . , δi to Palg unless

there is ϕ ← ψ1, . . . , ψn ∈ Palg with {ψ1, . . . , ψn} ⊆ A

else

for each ϕ ∈ form(P) \A such that propSymb(A)∩ propSymb(ϕ) �= ∅
if A �L ϕ then

add ϕ ← δ1, . . . , δi to Palg unless

there is ϕ ← ψ1, . . . , ψn ∈ Palg with {ψ1, . . . , ψn} ⊆ A

i=i+1

return Palg

Fig. 2. Construction of Palg

rules of PN are redundant, in the sense that the set of stable model of PN and
Palg is the same.

Proposition 1. Let L be a monotonic logic satisfying conditions (Bot) and
(Prop). Then, for any finite parametrized logic program P over L, we have that

AS(Palg) = AS(PN).

Proof. It follows immediately from the constructions of Palg and of PN that
Palg ⊆ PN . This implies that Mod(PN) ⊆ Mod(Palg). Moreover, given S a
subset of head(P), we can readily see that if a rule r = ϕ ← δ1, . . . , δn is such

that r ∈ PN

S but r /∈ Palg

S , then there exists r′ = ϕ ← ψ1, . . . , ψm ∈ Palg

S
such that {ψ1, . . . , ψm} ⊂ {δ1, . . . , δn}. From this observation it follows that

Mod(P
N

S) = Mod(P
alg

S). Therefore, S is a stable model of PN (minimal model

of PN

S) iff S is a stable model of Palg (minimal model of Palg

S).

The above proposition is important since it allows the algorithm of Palg

to actually construct a finite representation of the stable models of a finite
parametrized logic program P . This can be done by constructing the normal
logic program Palg from P and then calculating the stable models of Palg. The
latter can be done using any ASP solver. Note that, as we aimed, this construc-
tion uses in a modular way a reasoner for the parameter logic and reasoner for
the stable model semantics. The reasoner for the parameter logic is only used for
the construction of Palg. Then, an ASP solver can be used to obtain the stable
models of Palg, which are the finite representations of the stable models of P .

Regarding complexity, it should be clear that the use of parametrized logic
programs, with default negation, increases the complexity of the parameter L
alone. This comes from the fact that the stable model semantics, with default

Decidability and Implementation of Parametrized Logic Programs 371

negation, adds, as usual, one extra level of non-determinism. From the point of
view of logic programming there is also an exponential increasing in the com-
plexity. Recall that in the construction of both PN and Palg we need to query an
L-oracle an exponential number of times. Moreover, we then need to compute
the stable models of Palg which, in the extreme case, can have exponentially
more rules than the initial program P .

This extra complexity is not surprising given the expressivity of the
parametrized logic programs. Recall that a parametrized logic program can have
any complex parametrized formula in the head and body of its rules. In some par-
ticular applications, however, there is no need for this general expressivity, and
we can play the usual game between expressivity and complexity. We end this
section with an example showing that we can consider restricted classes of pa-
rameter logics that have a more amenable complexity. These restricted languages
may well have the necessary expressivity for modeling non-trivial scenarios.

An interesting example is the case of parametrized logic programs over a
modal language that only contains literals, the necessity modal operator applied
to literals and negations of the necessity operator applied to literals.

Note that we can capture the possibility operator ♦ since ♦� ≡m ¬��, where
� is the complementary literal of �, i.e., � = p if � = ¬p and � = ¬p if � = p. In
this restricted language the interaction between modal formulas is limited and,
depending on which modal logic axioms the particular logic satisfies, we can
construct the normal program Palg from P in a simple way.

Proposition 2. Let P be a finite parametrized logic program over a modal lan-
guage only with literals, necessity applied to literals and negations of necessity
applied to literals. Consider the following sets

PK ={ϕ← ⊥ : ϕ ∈ form(P)} ∪
{⊥ ← p,¬p : {p,¬p} ⊆ head(P)} ∪
{⊥ ← �p,�¬p : {�p,�¬p} ⊆ head(P)} ∪
{⊥ ← ��,¬�� : {��,¬��} ⊆ head(P)}.

PD ={¬�¬p← �p : �p ∈ head(P) and ¬�¬p ∈ form(P)} ∪
{¬�p← �¬p : �¬p ∈ head(P) and ¬�p ∈ form(P)}.

PT ={�← �� : �� ∈ head(P) and � ∈ form(P)}.

Then,

– if L is the modal logic K then Palg = P ∪ PK ;
– if L is the modal logic KD then Palg = P ∪ PK ∪ PD;
– if L is the modal logic KT then Palg = P ∪ PK ∪ PT ;
– if L is the modal logic KTD then Palg = P ∪ PK ∪ PT ∪ PD.

Proof. The result follows easily from the observation that, for this restricted
language, we have that Φ .K ϕ iff one of the following conditions holds: for
some propositional symbol p, {p,¬p} ⊆ Φ or {�p,�¬p} ⊆ Φ; or {��,¬��} ⊆ Φ

372 R. Gonçalves and J.J. Alferes

for some literal �. If we add to K the seriality axiom D then we can also entail
ϕ from a set Φ of formulas if �p ∈ Φ and ϕ = ¬�¬p, or when �¬p ∈ Φ and
ϕ = ¬�p. In the case of the addition of the transitivity axiom T we can also
conclude ϕ from a set Φ of formulas if �ϕ ∈ Φ.

The above proposition is important because it gives a way to construct Palg

using only syntactical checks, i.e., we do not need to use a modal logic oracle. This
is only possible because the interaction between modal formulas in this restricted
language is limited and can be clearly described using the above rules. The four
rules of PK are related to contradictions. The first one refers to the so-called
explosion principle: from a contradiction everything follows. The others express
how to detect an inconsistency. The rules of PD are related to the connection
between necessity and possibility: if something is necessary then it is possible,
which holds in a modal logic satisfying D. The need for the rules in PT comes
from the fact that a formula follows from its necessity in a modal logic satisfying
the reflexivity axiom T . For lack of space, we did not add several more examples
of modal logics to the above proposition. Just to give an example, in the case of
doxastic modal logic, which is usually assumed to be a KD45 modal logic, we
have that Palg = P ∪ PK ∪ PD.

Regarding complexity, it is interesting to note that the maximum number of
rules added to Palg is linear in the number of rules of P .

4 Conclusions and Future Work

In this paper we have proved decidability for parametrized logic programs, as-
suming the decidability of the parameter logic. We have provided an implemen-
tation that combines in modular way a reasoner for a decidable parameter logic
with an answer set solver. We have studied examples of modal logics in a re-
stricted language. For those, the construction of a normal logic program Palg

from a given parametrized logic program P does not need to use a modal logic
oracle, and, moreover, the number of rules added to P in order to obtain Palg

is at most linear in the number of rules of P .
Regarding future work, we want to implement the algorithms presented in this

paper in the case of interesting parameter logics. One such example is the case
of standard deontic logic, which would then allow us to construct a declarative
non-monotonic framework for specifying normative systems [3]. We also want
to study in more detail the natural connection between parametrized logic pro-
gramming and the general approach of multi-context systems [4], along the lines
of [12]. Another interesting topic is to investigate belief change in our setting,
which would be a challenging problem due to the known difficulties in combining
belief change of rules and belief change in classical logic [17], although recent
developments have shown a possible unifying view [18,19]. Finally, we would like
to study the well-founded semantics for parametrized logic programs along the
lines of what is done in [14] for hybrid MKNF.

Decidability and Implementation of Parametrized Logic Programs 373

References

1. Artosi, A., Cattabriga, P., Governatori, G.: Ked: A deontic theorem prover. In:
Workshop on Legal Application of Logic Programming, pp. 60–76. IDG (1994)

2. Belnap, N.: A useful four-valued logic. In: Epstein, G., Dunn, M. (eds.) Modern
Uses of Multiple-Valued Logic, pp. 7–37. Reidel Publishing Company (1977)

3. Boella, G., van der Torre, L., Verhagen, H.: Introduction to the special issue on
normative multiagent systems. JAAMAS 17(1), 1–10 (2008)

4. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: AAAI, pp. 385–390. AAAI Press (2007)

5. Chellas, B.: Modal Logic: An Introduction. Cambridge University Press (1980)
6. Ferraris, P.: Logic programs with propositional connectives and aggregates. ACM

Trans. Comput. Log. 12(4), 25 (2011)
7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Clasp: A conflict-driven

answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming, pp.
1070–1080. MIT Press (1988)

9. Gonçalves, R., Alferes, J.J.: Parametrized logic programming. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 182–194. Springer, Heidelberg
(2010)

10. Gonçalves, R., Alferes, J.J.: An embedding of input-output logic in deontic logic
programs. In: Ågotnes, T., Broersen, J., Elgesem, D. (eds.) DEON 2012. LNCS,
vol. 7393, pp. 61–75. Springer, Heidelberg (2012)

11. Gonçalves, R., Alferes, J.J.: Specifying and reasoning about normative systems
in deontic logic programming. In: van der Hoek, W., Padgham, L., Conitzer, V.,
Winikoff, M. (eds.) AAMAS, pp. 1423–1424. IFAAMAS (2012)

12. Homola, M., Knorr, M., Leite, J., Slota, M.: MKNF knowledge bases in multi-
context systems. In: Fisher, M., van der Torre, L., Dastani, M., Governatori,
G. (eds.) CLIMA XIII 2012. LNCS, vol. 7486, pp. 146–162. Springer, Heidelberg
(2012)

13. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR, pp.
57–67. AAAI Press (2006)

14. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9-10), 1528–1554 (2011)

15. Motik, B., Rosati, R.: Reconciling description logics and rules. JACM 57(5) (2010)
16. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Log-

ics. Journal of Artificial Intelligence Research 36, 165–228 (2009)
17. Slota, M., Leite, J.: On semantic update operators for answer-set programs. In:

Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelli-
gence and Applications, vol. 215, pp. 957–962. IOS Press (2010)

18. Slota, M., Leite, J.: A unifying perspective on knowledge updates. In: del Cerro,
L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 372–384.
Springer, Heidelberg (2012)

19. Slota, M., Leite, J.: The rise and fall of semantic rule updates based on SE-models.
Theory and Practice of Logic Programming (TPLP) (to appear, 2013)

20. von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)
21. Wójcicki, R.: Theory of Logical Calculi. Synthese Library. Kluwer (1988)

Non-monotonic Temporal Goals

Ricardo Gonçalves, Matthias Knorr, João Leite, and Martin Slota

CENTRIA, Universidade Nova de Lisboa, Portugal

Abstract. In this paper we introduce a logic programming based frame-
work which allows the representation of conditional non-monotonic tem-
poral beliefs and goals in a declarative way. We endow it with stable
model like semantics that allows us to deal with conflicting goals and
generate possible alternatives. We show that our framework satisfies
some usual properties on goals and that it allows imposing alternative
constraints on the interaction between beliefs and goals. We prove the
decidability of the usual reasoning tasks and show how they can be im-
plemented using an ASP solver and an LTL reasoner in a modular way,
thus taking advantage of existing LTL reasoners and ASP solvers.

1 Introduction

Mental attitudes such as beliefs, goals, and intentions are well-known to be
fundamental for representing autonomous rational agents [4,12,13,5]. Roughly,
beliefs represent the agent’s knowledge about the state of the world, goals rep-
resent states the agent aims at achieving, and intentions are the goals that the
agent commits to pursue. We focus on the representation and reasoning about
declarative beliefs and goals.

One fundamental ingredient when modeling goals is the notion of time. Goals
usually refer to some state of affairs that the agent aims to maintain or achieve
sometime in the future. For example, an agent might have the goal to maintain a
positive balance on her bank account during the entire month to avoid fines, or to
study before the next week’s exam. Temporal logic has been shown to be flexible
and expressive for representing different goal types [7,10,2], and several works in
the literature modeling mental attitudes of agents are based on (extensions of)
temporal logic. Namely, [5,10,16,2] are based on Linear Temporal Logic (LTL),
while [12] is based on Computational Tree Logic (CTL*).

Another fundamental ingredient is the possibility to model defeasible and
conflicting information. As argued in [2], it is quite common that goals have a
conditional form and admit exceptions, so the adoption of new beliefs or goals
may cause the retraction of some of the agent’s current goals. In particular, we
may encounter conflicting goals that cannot be pursued at the same time, in
which case we have to consider alternative sets of goals. For example, an agent
may want to go to Paris for the weekend, but also to London. These goals are
conflicting and cannot be achieved together.

Therefore, representation and reasoning about goals would greatly benefit
from an approach combining the temporal and non-monotonic aspects. However,

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 374–386, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Non-monotonic Temporal Goals 375

most of the work on beliefs and goal is monotonic [12,5,10,16], and therefore does
not allow us to represent defeasible beliefs and goals. The work in [15] introduces
a non-monotonic logic for conditional goals based on default logic, but it does
not consider temporal formulas. In [2], a non-monotonic extension of LTL is
defined that allows for expressing goals with exceptions, but it does not handle
conflicting goals nor does it consider beliefs, therefore not allowing us to model
the interaction between these and goals.

In this paper, we bridge the gap between temporal and non-monotonic goal
languages by introducing a general non-monotonic goal framework. The lan-
guage obtained is expressive enough to represent conditional beliefs and goals
over complex temporal formulas, and it also allows reasoning about conflicting
goals. The semantics defined in the spirit of stable models/answer set program-
ming (ASP) [8] not only endows it with a purely declarative semantics, but also
supports a novel perspective on dealing with alternative sets of goals in which
each stable model can be seen as a possible consistent set of goals that an agent
might adopt. Besides satisfying some usual properties on goals, our framework
is also general and flexible enough to represent different constraints on the in-
teraction between beliefs and goals in a simple way. We show decidability and
how to implement our framework using existing LTL and ASP solvers.

The paper is structured as follows. In Sect. 2, we introduce the basic language
for reasoning about beliefs and goals over a temporal logic. Then, in Sect. 3, we
define a non-monotonic framework for representing defeasible beliefs and goals,
along with its semantics, and prove some properties of our framework in Sect. 4.
We discuss decidability and implementation in Sect. 5, compare with related
work in Sect. 6, and conclude in Sect. 7.

2 Logic of Beliefs and Goals

In this section we introduce the language for representing beliefs and goals, which
is based on temporal logic. Temporal logic has been shown to be quite flexible
and expressive for representing different goal types [7,10,2]. Since our approach
is modular on the temporal component, and in order to ease the presentation,
we follow [5,10,16,2] and work in this paper with Linear Temporal Logic [11].

2.1 Linear Temporal Logic

Here, we introduce Linear Temporal Logic (LTL). The language of LTL, LLTL, is
built from a set of propositional symbols P using the usual classical connectives
t,∼,�,�,⇒, the unary temporal operator © (next) and the binary temporal
operator U (until). Other temporal operators can be defined by abbreviation:
♦ϕ := tUϕ (eventually), �ϕ := ∼♦∼ϕ (always), ϕBψ := ∼(∼ϕUψ) (before).

The semantics for LLTL is given as interpretation sequences of classical valua-
tions. Formally, an LTL interpretation is a sequence m = (mi)i∈N where mi ⊆ P
for each i ∈ N. The satisfaction of an LTL formula by an LTL interpretation
m = (mi)i∈N at a point i is defined inductively as follows:

376 R. Gonçalves et al.

– m, i
 t for every i ∈ N;

– m, i
 p if p ∈ mi, for p ∈ P ;
– m, i
 ∼ϕ if m, i � ϕ;

– m, i
 ϕ1 � ϕ2 if m, i
 ϕ1 and m, i
 ϕ2;

– m, i
 ϕ1 � ϕ2 if m, i
 ϕ1 or m, i
 ϕ2;

– m, i
 ϕ1⇒ ϕ2 if m, i � ϕ1 or m, i
 ϕ2;

– m, i
©ϕ if m, i+ 1
 ϕ;

– m, i
 ϕ1Uϕ2 if m, j
 ϕ2 for some j ≥ i and m, k
 ϕ1 for every i ≤ k < j.

We say that an LTL interpretationm is a model of an LTL formula ϕ, denoted
by m
LTL ϕ, if m, 0
 ϕ. This is the so-called anchored version of LTL. Given a
set Φ of LTL formulas, we denote byMod(Φ) the set of LTL models of all formulas
in Φ. An LTL formula ϕ is valid if m
LTL ϕ for every LTL interpretation m.
The consequence relation 	LTL is defined as usual, i.e., Φ 	LTL ϕ if, for every
interpretation m, m
 ϕ whenever m
 ψ for every ψ ∈ Φ. A set of LTL
formulas Φ is an LTL theory if, for every δ ∈ LLTL, if Φ 	 δ, then δ ∈ Φ. We
denote by ThLTL the set of all theories over the language LLTL. Given a set Φ
of LTL formulas, we denote by Φ�LTL the least LTL theory containing Φ, i.e.,
the deductive closure of Φ. As it is usual for monotonic logics [19], an important
property of ThLTL is the fact that 〈ThLTL,⊆〉 is a complete lattice, i.e., 〈ThLTL,⊆〉
is a partial order and for every A ⊆ ThLTL the set

⋂
T∈A T is again a theory over

LLTL.

2.2 Logic of Beliefs and Goals

We now define the language for specifying beliefs and goals. We start by defining
the syntax, which is built on top of the LTL language.

Definition 1. The language of beliefs and goals, denoted by LBG, is defined as:

δ := B(ϕ) | G(ϕ) | ¬δ | δ ∧ δ

where ϕ is an LTL formula. A formula of the form B(ϕ) is called a belief atom
and one of the form G(ϕ) is called a goal atom.

Note that the other usual classical connectives can be obtained as abbreviation
δ1 ∨ δ2 := ¬(¬δ1 ∧ ¬δ2) and δ1 → δ2 := ¬δ1 ∨ δ2. We denote by LB the set
of formulas of LBG that only contain the belief operator B, i.e., those formulas
which are built from belief atoms using the classical connectives. We call LB the
belief language and its elements the belief formulas. In the same way, we define
the goal language, LG, as the set of formulas of LBG that only contain the goal
operator G. Its elements are called goal formulas. Also note that, for simplicity,
we follow [7,10,15] and do not allow temporal operators outside the scope of a
belief or goal operator, nor nesting of belief and goal operators.

Non-monotonic Temporal Goals 377

Since the language LBG is built over belief and goal atoms, we define its
semantics based on an interpretation T = 〈Tb, Tg〉, i.e., a pair of LTL theories.
The first element of the pair is used to interpret belief atoms and the second
element to interpret goal atoms. An interpretation T = 〈Tb, Tg〉 is consistent if
both Tb and Tg are different from LLTL. We define the satisfaction of a formula
in LBG with respect to a pair 〈Tb, Tg〉 of LTL theories as follows:

〈Tb, Tg〉
 B(ϕ) if Tb 	LTL ϕ
〈Tb, Tg〉
 G(ϕ) if Tg 	LTL ϕ
〈Tb, Tg〉
 ¬δ if 〈Tb, Tg〉 � δ
〈Tb, Tg〉
 δ1 ∧ δ2 if 〈Tb, Tg〉
 δ1 and 〈Tb, Tg〉
 δ2

Note that we do not impose any constraints on the relation between the LTL
theories Tb and Tg, unlike [7,10] where Tg 	LTL Tb is assumed. Our aim here is
to be as general as possible, which is witnessed in Section 4 where we show that
our framework is flexible enough to impose such constraints in a simple way.

We can now define the consequence relation over the language LBG.

Definition 2. Given δ ∈ LBG and Γ ⊆ LBG, the consequence relation over
LBG is defined as Γ 	 δ iff, for interpretation 〈Tb, Tg〉, we have that 〈Tb, Tg〉
 δ
whenever 〈Tb, Tg〉
 ψ for every ψ ∈ Γ . We say that δ is valid if ∅ 	 δ.

3 Non-monotonic Belief and Goal Specification

In this section, we present a non-monotonic framework for specifying conditional
non-monotonic temporal beliefs and goals. The framework is based on logic pro-
grams built over the language LBG introduced in the previous section.

3.1 Belief and Goal Bases

Belief bases and goal bases represent the agent’s beliefs and goals respectively,
and are usually defined as sets of formulas from which we can deduce the beliefs
and goals of the agent. For example, in [10], sets of LTL formulas are used.

In this work we generalize this assumption by representing belief and goal
bases as sets of non-monotonic rules over LBG, similar to those in Logic Pro-
gramming, making it possible to represent conditional and defeasible goals.

A rule r is of the form

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm (1)

where the head of r, ϕ, and each element of its body, ψ1, . . . , ψn, δ1, . . . , δm,
is either a goal atom or a belief atom. Like in a logic programming rule, the
symbol ← represents rule implication, the symbol “,” represents conjunction
and the symbol not represents default negation. Thus, r represents that ϕ holds
whenever ψ1, . . . , ψn hold and δ1, . . . , δm are not known to hold. A rule is called
positive if it does not contain any occurrence of not, and fact if its body is empty.

378 R. Gonçalves et al.

A belief rule is a rule of the form (1) where the head ϕ and all elements of the
body are belief atoms. A goal rule is a rule of the form (1) where the head ϕ is
a goal atom. A belief base B is a set of belief rules and a goal base G is a set of
goal rules. A belief base (goal base) is called positive if all its rules are positive.

Definition 3. An agent configuration is a pair C = 〈B,G〉 where B is a belief
base and G is a goal base. An agent configuration C = 〈B,G〉 is said to be positive
if both the belief base B and the goal base G are positive.

Example 4. Consider the simple example about choosing a means of transport.

B(♦strike)← B(strikeInNews) (2)

G(♦work)← not G(♦beach) (3)

G(♦beach)← not G(♦work) (4)

G(♦bike)← G(♦beach) (5)

G(♦car)← G(♦work),B(♦strike) (6)

G(♦(train � bus))← G(♦work), not B(♦strike) (7)

G(ticket B (train � bus))← G(♦(train � bus)) (8)

G(money B ticket)← G(♦ticket) (9)

Informally, an agent believes that there will be a strike if she sees that in the
news (2). Rules (3) and (4) represent conflicting goals, i.e., either the agent has
the goal to go to the beach or the goal to go to work, not both. In the former case
the agent also has the goal to take the bike (5). In the latter case, depending on
whether the agent believes that there will be a strike or not, she has the goal to
to go by car (6) or the goal to go by train or by bus (7). Moreover, if the agent
has the goal to go by train or by bus, then she also has the goal to buy a ticket
before that (8). Finally, if the agent has the goal to buy a ticket, then she has
the goal to withdraw money first (9).

3.2 Semantics

The definition of a semantics for belief and goal bases is not straightforward due
to their complex language. Recall that belief and goal atoms in the rules may con-
tain arbitrary LTL formulas. Thus, unlike, e.g., first-order atoms, belief or goal
atoms may not be independent; for example, the goal atomsG(�(p∨q)), G(♦¬p)
and G(♦q) are not. To overcome this difficulty, our notion of interpretation ac-
counts for interdependence between such atoms: since {�(p ∨ q),♦¬p} 	LTL ♦q
and since any LTL theory is closed under logical consequence, any interpretation
〈Tb, Tg〉 satisfying both G(�(p ∨ q)) and G(♦¬p) must also satisfy G(♦q).

Satisfaction of rules in interpretations and the notion of model for agent con-
figurations can thus be defined in a standard way.

Definition 5. An interpretation T = 〈Tb, Tg〉 satisfies a rule of the form (1),
if T
 ϕ whenever T
 ψi for every i ∈ {1, . . . , n} and T � δj for every
j ∈ {1, . . . ,m}. An interpretation is a model of an agent configuration C = 〈B,G〉
if it satisfies every rule of B ∪ G. We denote by Mod(C) the set of models of C.

Non-monotonic Temporal Goals 379

The ordering over interpretations can easily be defined component-wise: given
two interpretations T = 〈Tb, Tg〉 and T ′ = 〈T ′

b, T
′
g〉 we write T ≤ T ′ if Tb ⊆ T ′

b and
Tg ⊆ T ′

g. Using this ordering, the notions of minimal and least interpretations
can be defined in the usual way.

We are particularly interested in such minimal interpretations and obtain
them in a way similar to the stable model semantics. For that purpose, we start
by considering positive agent configurations and adapt a well-known result from
logic programs saying that every positive agent configuration has a least model.

Theorem 6. Every positive agent configuration has a least model.

Based on the semantics for positive agent configurations, we now define the
stable model semantics of an agent configuration that can have default negation.

Definition 7. Let C = 〈B,G〉 be an agent configuration and T = 〈Tb, Tg〉 an
interpretation. The agent configuration C

T is obtained from C by:

– removing from B and G all rules which contain not ϕ such that T
 ϕ;
– removing not ϕ from the remaining rules of B and G.

Since C
T is a positive agent configuration, it has a unique least model T ′. We

define ΓC(T) = T ′.
An interpretation T = 〈Tb, Tg〉 is a stable model of an agent configuration

C = 〈B,G〉 if it is consistent and ΓC(T) = T . We denote by SM (C) the set of all
stable models of C.

Each stable model can be thought of as a possible consistent set of goals an
agent might adopt, which is why Tb and Tg are required to be consistent. Thus,
from the point of view of multi-agent systems, each such stable model represents
a possible consistent alternative that the agent can adopt as her set of intentions,
i.e., those goals that the agent commits to. We note that choosing a particular
set of intentions is out of the scope of this paper since, as common in agent
architectures, this is dealt with on a meta-level. Still, the following (well-known)
entailment relations can be defined.

Definition 8. Let C be an agent configuration. A formula δ is true under the
stable model semantics of C, denoted by C 	SM δ, if it is satisfied by every stable
model of C. A formula δ is true under the credulous stable model semantics of
C, denoted by C 	CSM δ, if it is satisfied by some stable model of C.

From the agent’s perspective, skeptical entailment 	SM represents the goals
which she will have independently of the particular set of goals she commits to,
while credulous entailment 	CSM can be used if an agent needs to know whether
it is possible that she might adopt that goal.

Example 9. Recall the agent configuration of Ex. 4. Rules (3) and (4) represent
the conflicting goals of going to the beach or going to work. This is captured in
the semantics by the existence of two stable models. The first one has as con-
sequences the goals G(♦beach) and G(♦bike). The second stable model entails

380 R. Gonçalves et al.

G(♦work), G(♦(train�bus)), G(ticket B (train�bus)) and G(money B ticket).
Note the fundamental role of complex temporal reasoning in the calculation
of the stable models. For example, in the case of the second stable model,
rule (9) only fires because G(♦ticket) follows from G(ticket B (train �bus)) and
G(♦(train � bus)) together, since {ticket B (train � bus),♦(train � bus)} 	LTL

♦ticket . Moreover, since the stable models are closed under consequence and
since {money B ticket ,♦ticket} 	LTL ♦money we have that the second stable
model also entails G(♦money).

Adding the fact B(strikeInNews)← to the agent configuration of Ex. 4 does
not affect the first stable model, but it affects the second. With this extra rule
the goals G(♦(train�bus)), G(ticket B (train�bus)) and G(money B ticket) no
longer follow from the second stable model, but now the goal G(♦car) follows.

4 Properties

We can find a number of properties in the literature that a logical language
modeling goals should exhibit. Some are more consensual than others, but that
is not the topic of this paper, we rather point to [18]. The aim of this section is to
show that some common properties of beliefs and goals hold in our framework
and that other approaches that impose additional conditions on the relation
between goals and beliefs can be covered.

A usual property of stable models is that they are minimal.

Proposition 10. Let C be an agent configuration. If T = 〈Tb, Tg〉 is a stable
model of C, then there is no stable model T ′ = 〈T ′

b, T
′
g〉 of C such that T ′ < T .

Modal logic has been used for modeling beliefs and goals of agents [12,5].
The belief operator is usually described using modal logic KD45 and the goal
operator using the modal logic KD. It is therefore natural to check if these
modal axioms hold in our logic. Note that even though we state the following
propositions for 	SM, all of them also hold for 	CSM.

Proposition 11. Let C = 〈B,G〉 be an agent configuration. The following holds
for all LTL formulas ϕ and ψ:

(Kb) C 	SM B(ϕ⇒ ψ)→ (B(ϕ)→ B(ψ));
(Kg) C 	SM G(ϕ⇒ ψ)→ (G(ϕ)→ G(ψ));
(Db) C 	SM B(ϕ)→ ¬B(∼ϕ);
(Dg) C 	SM G(ϕ)→ ¬G(∼ϕ).

The above proposition states that both the axioms K and D hold for both
the belief and the goal operator in every agent configuration. Note that we do
not consider the modal axioms 4 and 5, which are usually associated with the
belief operator. The reason is that these axioms involve formulas with nested
beliefs, and therefore cannot be represented in our language.

A property that appears for example in [12] is that beliefs and goals should
be closed under implication. Our framework satisfies this property.

Non-monotonic Temporal Goals 381

Proposition 12. Let C = 〈B,G〉 be an agent configuration. The following holds
for all LTL formulas ϕ and ψ:

– C 	SM (B(ϕ⇒ ψ) ∧B(ϕ))→ B(ψ);
– C 	SM (G(ϕ⇒ ψ) ∧G(ϕ))→ G(ψ);

Our notion of agent configuration does not have any built-in constraints on
the interaction between beliefs and goals, unlike [12,5]. Our language is designed
to be general, in the sense that we do not impose these restrictions, yet expressive
enough to allow the representation of such constraints if desired.

A constraint that [5,10] impose is the so-called realism constraint. Intuitively
this means that an agent should have as goals all her beliefs. Although [12] con-
siders this too restrictive, if we want to impose such a restriction in a given agent
configuration C = 〈B,G〉, we just need to add to G a rule G(ϕ)← B(ϕ) for every
LTL formula ϕ appearing in C . Let CReal be the resulting agent configuration.

A more or less opposite condition is that an agent should not have a goal
that she believes is already the case. In [18] this property is described as goals
should be unachieved (Un). If we want to impose this restriction in a given agent
configuration C = 〈B,G〉, we just need to substitute every rule G(ϕ)← body of G
by the rule G(ϕ)← body, not B(ϕ). Let CUn be the resulting agent configuration.

Another commonly considered constraint, described in [18] as goals should
be possible (Poss), is that an agent should not have a goal that he believes to
be impossible. This restriction can also be applied to an agent configuration
C = 〈B,G〉 by substituting every rule G(ϕ) ← body of G by the rule G(ϕ) ←
body, not B(∼ϕ). Denote by CPoss the resulting agent configuration.

The following proposition states that the above constructions imply that the
desired properties hold in the modified agent configuration.

Proposition 13. Let C = 〈B,G〉 be an agent configuration. For every LTL for-
mula ϕ, we have that

– CReal 	SM B(ϕ)→ G(ϕ).

If ϕ is an LTL formula such that headg(C) \ {ϕ} �LTL ϕ, then

– CUn 	SM G(ϕ)→ ¬B(ϕ);
– CPoss 	SM G(ϕ)→ ¬B(∼ϕ);

where headg(C) is the set of all LTL formulas occurring in rule heads in G.

The reason why the latter two conditions only hold for formulas ϕ such that
headg(C) \ {ϕ} �LTL ϕ, is that only for such formulas can we guarantee that the
rules with head G(ϕ) are the only responsible for G(ϕ) being a consequence of
C. Otherwise G(ϕ) could follow from another rule: consider for example C =
〈{B(p � q)←}, {G(p)←}〉. Then, both B(p � q) and G(p � q) follow from CUn.

382 R. Gonçalves et al.

5 Decidability and Implementation

In this section we discuss the decidability and implementation of the following
simple reasoning tasks:

– Given an agent configuration C, does the belief B(ϕ) follow from C?
– Given an agent configuration C, does the goal G(ϕ) follow from C?

To answer these queries, we need to compute the stable models of C and then
check if they all entail B(ϕ) and G(ϕ), respectively. First of all, we prove that
for a finite agent configuration, each of the above problems is decidable.

Note that, even if we restrict to a finite set of propositional symbols (for ex-
ample those that appear in a finite agent configuration), the number of LTL
logical theories over this language is infinite. An immediate consequence is that
the number of possible stable models of a finite agent configuration is poten-
tially infinite. Interestingly, as we show below, this is not the case and therefore
decidability is not compromised. The key idea is the fact that, given a finite
agent configuration C, we are able to prove that only those LTL logical theories
generated by sets of LTL formulas appearing in C can be part of a stable model
of C, and there is only a finite number of them. To make this precise consider the
following sets. Let formb(C) be the set of LTL formulas that occur in the agent
configuration C in the scope of the belief operator, and head b(C) ⊆ formb(C) the
subset of those that occur in the head of a rule. In the same way we can define
formg(C) to be the set of LTL formulas that occur in C in the scope of the goal
operator, and headg(C) ⊆ formg(C) the subset of those that occur in the head
of a rule. Of course, if C is finite then both formb(C) and formb(C) are finite.

Theorem 14. Let C = 〈B,G〉 be a finite agent configuration. If 〈Tb, Tg〉 is a
stable model of C, then there exists Ab ⊆ formb(C) and Ag ⊆ formg(C) such that

Tb = A�LTL

b and Tg = A�LTL
g .

An immediate consequence of the above theorem is that every finite agent
configuration has a finite number of stable models.

Corollary 15. Every finite agent configuration has finitely many stable models.

Our aim now is to define an algorithm that modularly combines an LTL
reasoner and an ASP solver to compute the answers to the above queries. Recall
that the validity problem in LTL is decidable [17]. The advantage of such modular
algorithm is that we can leverage existing LTL and ASP reasoners.

Consider a given finite agent configuration C = 〈B,G〉. We construct the nor-
mal logic program PC obtained from C in which belief and goal atoms containing
LTL formulas are encoded as normal logic program atoms:

PC = B ∪ G ∪ {B(ϕ)← B(ψ1), . . . ,B(ψn) : {ψ1, . . . , ψn} ⊆ head b(C),
ϕ ∈ formb(C) \ {ψ1, . . . , ψn}, {ψ1, . . . , ψn} 	LTL ϕ } ∪

∪ {G(ϕ)← G(ψ1), . . . ,G(ψn) : {ψ1, . . . , ψn} ⊆ headg(C),
ϕ ∈ formg(C) \ {ψ1, . . . , ψn}, {ψ1, . . . , ψn} 	LTL ϕ }

Non-monotonic Temporal Goals 383

To distinguish the set of stable models of an agent configuration C, which is
a set of pairs of LTL theories, from the set of stable models of PC, which is a
subset of the set of belief and goal atoms occurring in PC , we denote the later
by AS (PC), and by form(PC) the set of belief and goal atoms appearing in PC .

The key idea underlying the construction of PC is to enrich the original agent
configuration with rules that represent the possible interaction occurring be-
tween the formulas of the program in order to enforce the interdependency be-
tween temporal formulas appearing in the belief and goal atoms. Note that
for a given agent configuration C = 〈B,G〉, the sets SM (C) and AS(B ∪ G)
may not be related, since AS does not take into account the logical inter-
dependency between the formulas appearing in C. As a simple example con-
sider the agent configuration C = 〈∅, {G(�p) ←; G(q) ← G(♦p)}〉. Then,
SM (C) = {〈∅�LTL , {�p,♦p, q}�LTL〉} but AS (B ∪ G) = {{G(�p)}}. This is the
reason why we cannot use an ASP solver directly on the program B ∪ G.

In the case of PC , we have the following strong relation.

Theorem 16. Given a finite agent configuration C = 〈B,G〉, we have that

1. {Tb : 〈Tb, Tg〉 ∈ SM (C)} = {{ϕ : B(ϕ) ∈ A}�LTL : A ∈ AS(PC)}

2. {Tg : 〈Tb, Tg〉 ∈ SM (C)} = {{ϕ : G(ϕ) ∈ A}�LTL : A ∈ AS (PC)}

The above theorem presents a finite representation of the stable models of
an agent configuration: the stable models of the program PC . An immediate
consequence is that the problems of checking if a belief or a goal atom follows
from a finite agent configuration are both decidable.

Corollary 17. Let C be a finite agent configuration and ϕ an LTL formula (not
necessarily appearing in C). Then, the problems of checking if C 	SM B(ϕ) and
if C 	SM G(ϕ) are both decidable.

The decidability of entailment for belief and goal atoms can be extended for
complex formulas, since these depend only on the atoms appearing in it.

Corollary 18. Let C be a finite agent configuration and δ a complex belief or
goal formula (not necessarily in C). Then, the problem C 	SM δ is decidable.

6 Related Work

There are several approaches in the literature that use temporal logic to model
goals [5,12,16,7,10]. The work in [10] uses sets of LTL formulas to define both the
belief and the goal bases. These can be easily captured by our non-monotonic
framework, as we now show. Formally, in [10] a belief base is a set Σ ⊆ LLTL, a
goal base is a set Γ ⊆ LLTL, and a mental state is a pair m = 〈Σ,Γ 〉 such that
both Σ and Γ are consistent and Γ 	LTL Σ. The reason for the last condition is
to impose the realism principle mentioned in Section 4, i.e., that an agent should
have as goals all her beliefs. In fact, the formula G(ϕ) → B(ϕ) is valid in their

384 R. Gonçalves et al.

logic. Their language of beliefs and goals is the same as our language L and the
satisfaction of formulas of LBG by a mental state m is defined in a similar way
as we do for agent configurations. For a given mental state m = 〈Σ,Γ 〉 we can
consider the corresponding (positive) agent configuration Cm = 〈Bm,Gm〉 where
Bm = {B(ϕ)← : ϕ ∈ Σ} and Gm = {G(ϕ)← : ϕ ∈ Γ}. It is immediate to check
that the unique stable model of Cm is precisely 〈Σ�LTL , Γ�LTL〉, and therefore,
for every formula δ of LBG, we have that m
 δ iff Cm 	SM δ.

The work in [15] defines a framework for conditional goals using a translation
to default logic [14]. Although it does not consider temporal goals, it offers an
interesting non-monotonic framework for modeling goals. In what follows we
briefly sketch the relation between the work in [15] and ours. Let us start with
a very brief presentation of their framework. The language for beliefs and goals
is a restriction of our language LBG, in the sense that in the scope of a belief
or goal operator only propositional formulas without temporal operators are
allowed. Conditional goals are defined through goal inference rules, which are of
the form: β, κ+, κ−⇒ φ, where β, κ+ and κ− are sets of propositional formulas.
In such a goal inference rule, φ represents the goal that can be inferred if the
beliefs in β are true, the goals in κ+ are true and the goals in κ− are not known
to be true. A goal base is a set GI of goal inference rules. A belief base σ is
just a set of propositional formulas. For beliefs, the semantics is easily defined
by 〈σ,GI〉 	d B(ϕ) if σ 	 ϕ. The semantics of a goal base GI is defined by
translating it to a default theory t(GI). This is done by translating each goal
inference rule r = {β1, . . . , βk}, {α1, . . . , αn}+, {ϕ1, . . . , ϕm}− ⇒ ϕ in GI such
that σ 	 {β1, . . . , βk} to the default rule t(r) = α1�· · ·�αn :∼ϕ1, . . . ,∼ϕm, ϕ/ϕ.
The (credulous) entailment for goals is then defined as 〈σ,GI〉 	d G(ϕ) if there
exists an extension (in the sense of default logic) E of t(GI) such that E 	 ϕ.

Given a goal base GI and a belief base σ consider the agent configuration
〈Bσ,GGI〉 such that Bσ = {B(ϕ)← : ϕ ∈ σ} and GGI is obtained by considering,
for each rule r = {β1, . . . , βk}, {α1, . . . , αn}+, {ϕ1, . . . , ϕm}−⇒ϕ in GI, the rule
G(ϕ)← B(β1∧· · ·∧βk),G(α1∧· · ·∧αn), not G(ϕ1), . . . , not G(ϕm), notG(¬ϕ).
Note that we are just using a fragment of our language to embed both σ and
GI. In the case of beliefs, we just need to use facts, and in the case of goals,
we do not use temporal formulas nor default negated beliefs. We can then
prove that 〈σ,GI〉 	d B(ϕ) iff 〈Bσ,GGI〉 	CSM B(ϕ). Also 〈σ,GI〉 	d G(ϕ)
iff 〈Bσ,GGI〉 	CSM G(ϕ). Moreover, a similar result holds between the skeptical
entailment 	dd defined in [15] and our skeptical entailment 	SM. In the case of
skeptical entailment, the relation is even stronger since it holds for every formula
of LBG. The reason why the above proposition does not follow for any complex
formula of LBG is the fact that the entailment 	d of [15] is first defined for belief
and goal atoms, and only then extended to complex formulas. In this way, in
their framework we may have that 〈σ,GI〉 	d G(p)∧G(∼p), even for consistent
σ and GI, since this means that G(p) is true in one stable model and G(∼p) is
true in a different stable model. This is not the case in our framework. Although
this distinguishes our approach from that in [15], a more fundamental difference
is that they adopt a particular entailment over the possible extensions (in the

Non-monotonic Temporal Goals 385

sense of default logic), thus not making use the full richness of the set of stable
models. On the contrary, we argue that the set of stable models is fundamental
since it can be seen as the set of possible sets of goals an agent can commit to.

Let us now draw some comments on the work of [2]. There, a simple non-
monotonic version of temporal logic for specifying goals is defined. This is done by
extending the language of temporal logic with two operators to model weak and
strong exceptions. Although for lack of space we do not present here the details,
it can be shown that the non-monotonic extension N-LTL of LTL presented in [2]
can be embedded in our framework. This is not surprising since in our framework
the use of default negation allows to model exceptions in a very flexible way.

7 Conclusions and Future Work

In this paper, we have defined a non-monotonic framework for representing tem-
poral beliefs and goals, along with a stable models like semantics for this ex-
pressive language. We have argued that an ASP view of the stable models of an
agent configuration can bring a novel perspective on dealing with multiple possi-
ble sets of goals. We have proven that some usual properties of beliefs and goals
hold in our framework. Moreover, we have shown that the problem of checking
the entailment of a formula in a given finite agent configuration is decidable, and
we presented an implementation that makes a modular use of an LTL reasoner
and an ASP solver. In the end, we have briefly hinted on how existing work on
the representation of beliefs and goals can be embedded in our framework.

This work raises several interesting directions for future research. Since the
temporal operators can only appear in the scope of belief or goal operators,
our approach does not deal with the evolution of the belief and goal bases.
An interesting idea to cope with such evolution is to use some extension of
dynamic logic programs [1]. Also interesting is to study the connection between
our framework and the general approach of parametrized logic programming [9].

Additionally, our work could be integrated with existing agent programming
languages/architectures, e.g., 2APL [6] and Jason [3], thus increasing their ca-
pabilities to represent and reason about goals.

Finally, we also want to extend our work so that we can consider the currently
adopted intentions and how they can influence the stable models that encode the
new ones to be adopted. This is an interesting problem but rather complex since
we typically would like to keep as many of the current intentions as possible,
i.e., the problem might be solvable by treating current intentions as beliefs, but
it might require a measure of distance and seek for models that encode minimal
change between the current intentions and the goals in possible stable models.

Acknowledgments. We would like to thank the anonymous reviewers whose
comments helped to improve the paper.

Matthias Knorr, João Leite and Martin Slota were partially supported by
FCT under project “ERRO – Efficient Reasoning with Rules and Ontologies”
(PTDC/EIA-CCO/121823/2010). Ricardo Gonçalves was supported by FCT

386 R. Gonçalves et al.

grant SFRH/BPD/47245/2008 and Matthias Knorr was also partially supported
by FCT grant SFRH/BPD/86970/2012.

References

1. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for
semantics of dynamic logic programming. Studia Logica 79(1), 7–32 (2005)

2. Baral, C., Zhao, J.: Non-monotonic temporal logics for goal specification. In:
Veloso, M.M. (ed.) IJCAI, pp. 236–242 (2007)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. Wiley-Interscience (2007)

4. Bratman, M.: Intention, plans, and practical reason. Harvard University Press,
Cambridge (1987)

5. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. In-
tell. 42(2-3), 213–261 (1990)

6. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

7. Dastani, M., van Riemsdijk, M.B., Winikoff, M.: Rich goal types in agent pro-
gramming. In: Sonenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.) AAMAS, pp.
405–412. IFAAMAS (2011)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3-4), 365–385 (1991)

9. Gonçalves, R., Alferes, J.J.: Parametrized logic programming. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 182–194. Springer, Heidelberg
(2010)

10. Hindriks, K.V., van der Hoek, W., van Riemsdijk, M.B.: Agent programming with
temporally extended goals. In: Sierra, C., Castelfranchi, C., Decker, K.S., Sichman,
J.S. (eds.) AAMAS (1), pp. 137–144. IFAAMAS (2009)

11. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (Providence, R.I., 1977), pp. 46–57. IEEE Comput.
Sci., Long Beach (1977)

12. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Allen, J.F., Fikes, R., Sandewall, E. (eds.) KR, pp. 473–484. Morgan Kaufmann
(1991)

13. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Lesser, V.R.,
Gasser, L. (eds.) ICMAS, pp. 312–319. The MIT Press (1995)

14. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1-2), 81–132 (1980)
15. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Goals in conflict: semantic foun-

dations of goals in agent programming. Autonomous Agents and Multi-Agent Sys-
tems 18(3), 471–500 (2009)

16. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: a unifying
framework. In: Padgham, L., Parkes, D.C., Müller, J.P., Parsons, S. (eds.) AAMAS
(2), pp. 713–720. IFAAMAS (2008)

17. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

18. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural
goals in intelligent agent systems. In: Fensel, D., Giunchiglia, F., McGuinness, D.L.,
Williams, M.A. (eds.) KR, pp. 470–481. Morgan Kaufmann (2002)

19. Wójcicki, R.: Theory of Logical Calculi. Synthese Library. Kluwer Academic Pub-
lishers (1988)

On Equivalent Transformations of Infinitary

Formulas under the Stable Model Semantics

(Preliminary Report)

Amelia Harrison1, Vladimir Lifschitz1, and Miroslaw Truszczynski2

1 University of Texas, Austin, Texas, USA
{ameliaj,vl}@cs.utexas.edu

2 University of Kentucky, Lexington, Kentucky, USA
mirek@cs.uky.edu

Abstract. It has been known for a long time that intuitionistically
equivalent formulas have the same stable models. We extend this theorem
to propositional formulas with infinitely long conjunctions and disjunc-
tions and show how to apply this generalization to proving properties of
aggregates in answer set programming.

1 Introduction

This note is about the extension of the stable model semantics to infinitary
propositional formulas defined in [6]. One of the reasons why stable models of
infinitary formulas are important is that they are closely related to aggregates
in answer set programming (ASP). The semantics of aggregates proposed in [1,
Section 4.1] treats a ground aggregate as shorthand for a propositional formula.
An aggregate with variables has to be grounded before that semantics can be
applied to it. For instance, to explain the precise meaning of the expression
1{p(X)} (“there exists at least one object with the property p”) in the body of
an ASP rule we first rewrite it as

1{p(t1), . . . , p(tn)},

where t1, . . . , tn are all ground terms in the language of the program, and then
turn it into the propositional formula p(t1) ∨ · · · ∨ p(tn). But this description
of the meaning of 1{p(X)} implicitly assumes that the Herbrand universe of
the program is finite. If the program contains function symbols then an infinite
disjunction has to be used.1,2

1 There is nothing exotic or noncomputable about ASP programs containing both
aggregates and function symbols. For instance, the program

p(f(a))
q ← 1{p(X)}

has simple intuitive meaning, and its stable model {p(f(a)), q} can be computed by
existing solvers.

2 References to grounding in other theories of aggregates suffer from the same prob-
lem. For instance, the definition of a ground instance in Section 2.2 of the ASP Core

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 387–394, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

388 A. Harrison, V. Lifschitz, and M. Truszczynski

Our goal here is to develop methods for proving that pairs F , G of infinitary
formulas have the same stable models. From the results of [5] and [1] we know
that in the case of finite propositional formulas it is sufficient to check that the
equivalence F ↔ G is provable intuitionistically. Some extensions of intuitionistic
propositional logic, including the logic of here-and-there, can be used as well. In
this note we extend these results to deductive systems of infinitary propositional
logic.

This goal is closely related to the idea of strong equivalence [4]. The provability
of F ↔ G in the deductive systems of infinitary logic described below guarantees
not only that F and G have the same stable models, but also that for any set H
of infinitary formulas, H ∪ {F} and H ∪ {G} have the same stable models.

We review the stable model semantics of infinitary propositional formulas in
Section 2. An infinitary system of natural deduction, similar to propositional
intuitionistic logic, is defined in Section 3. Then we discuss the main theorem,
which relates this system to stable models (Section 4), and state a few other
useful facts (Section 5). In Section 6 this theory is applied to examples involving
aggregates.

2 Stable Models of Infinitary Propositional Formulas

The definitions of infinitary formulas and their stable models given below are
equivalent to the definitions proposed in [6].

Let σ be a propositional signature, that is, a set of propositional atoms. The
sets Fσ

0 , Fσ
1 , . . . are defined as follows:

– Fσ
0 = σ ∪ {⊥},

– Fσ
i+1 is obtained from Fσ

i by adding expressions H∧ and H∨ for all subsets
H of Fσ

i , and expressions F → G for all F,G ∈ Fσ
i .

The elements of
⋃∞

i=0 Fσ
i are called (infinitary) formulas over σ.

Negation and equivalence will be understood as abbreviations: ¬F stands for
F → ⊥, and F ↔ G stands for (F → G) ∧ (G→ F).

We will write {F,G}∧ as F∧G, and {F,G}∨ as F∨G. Thus finite propositional
formulas over σ can be viewed as a special case of infinitary formulas.

Subsets of a signature σ will be also called its interpretations. The satisfaction
relation between an interpretation I and a formula F is defined as follows:

– I �|= ⊥.
– For every p ∈ σ, I |= p if p ∈ I.
– I |= H∨ if there is a formula F ∈ H such that I |= F .
– I |= H∧ if for every formula F ∈ H, I |= F .
– I |= F → G if I �|= F or I |= G.

document (https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf,
Version 2.02) talks about replacing the expression {e1; . . . ; en} in a rule with a set
denoted by inst({e1; ...; en}). But that set can be infinite.

On Equivalent Transformations of Infinitary Formulas 389

We say that I satisfies a set H of formulas if I satisfies all elements of H.
The reduct F I of a formula F with respect to an interpretation I is defined

as follows:

– ⊥I = ⊥.
– For p ∈ σ, pI = ⊥ if I �|= p; otherwise pI = p.
– (H∧)I = {GI | G ∈ H}∧.
– (H∨)I = {GI | G ∈ H}∨.
– (G→ H)I = ⊥ if I �|= G→ H ; otherwise (G→ H)I = GI → HI .

The reduct HI of a set H of formulas is the set consisting of the reducts of
the elements of H. An interpretation I is a stable model of a set H of formulas
if it is minimal w.r.t. set inclusion among the interpretations satisfying HI ;
a stable model of a formula F is a stable model of singleton {F}. This is a
straightforward extension of the definition of a stable model due to Ferraris [1]
to infinitary formulas.

3 Basic Infinitary System of Natural Deduction

Inference rules of the deductive system described below are similar to the stan-
dard natural deduction rules of propositional logic (see, for instance, [3, Sec-
tion 1.2.1]). In this system, derivable objects are (infinitary) sequents—expressions
of the form Γ ⇒ F , where F is an infinitary formula, and Γ is a finite set of in-
finitary formulas (“F under assumptions Γ”). To simplify notation, we will write
Γ as a list. We will identify a sequent of the form ⇒ F with the formula F .

There is one axiom schema F ⇒ F . The inference rules are the introduction
and elimination rules for the propositional connectives

(∧I) Γ ⇒ H for all H ∈ H
Γ ⇒ H∧ (∧E) Γ ⇒ H∧

Γ ⇒ H (H ∈ H)

(∨I) Γ ⇒ H
Γ ⇒ H∨ (H ∈ H) (∨E)

Γ ⇒ H∨ Δ,H ⇒ F for all H ∈ H
Γ,Δ⇒ F

(→I)
Γ, F ⇒ G

Γ ⇒ F → G (→E) Γ ⇒ F Δ⇒ F → G
Γ,Δ⇒ G

and the contradiction and weakening rules

(C) Γ ⇒ ⊥
Γ ⇒ F (W) Γ ⇒ F

Γ,Δ⇒ F .

(Note that we did not include the law of the excluded middle in the set of axioms,
so that this deductive system is similar to intuitionistic, rather than classical,
propositional logic.)

The set of theorems of the basic system is the smallest set of sequents that
includes the axioms of the system and is closed under the application of its
inference rules. We say that formulas F and G are equivalent in the basic system
if F ↔ G is a theorem of the basic system. The reason why we are interested in

390 A. Harrison, V. Lifschitz, and M. Truszczynski

this relation is that formulas equivalent in the basic system have the same stable
models, as discussed in Section 4 below.

Example 1. Consider a formula of the form

F0 ∧ {Fi → Fi+1 | i ≥ 0}∧

or, in more compact notation,

F0 ∧
∧
i≥0

(Fi → Fi+1). (1)

Let us check that it is equivalent in the basic system to the formula
∧

i≥0 Fi.
The sequent

F0 ∧
∧
i≥0

(Fi → Fi+1)⇒ F0 ∧
∧
i≥0

(Fi → Fi+1)

belongs to the set of theorems of the basic system. Consequently so do the
sequents

F0 ∧
∧
i≥0

(Fi → Fi+1) ⇒ F0

and
F0 ∧

∧
i≥0

(Fi → Fi+1)⇒ Fj → Fj+1

for all j ≥ 0. Consequently the sequents

F0 ∧
∧
i≥0

(Fi → Fi+1)⇒ Fj

for all j ≥ 0 belong to the set of theorems as well (by induction on j). Conse-
quently so does the sequent

F0 ∧
∧
i≥0

(Fi → Fi+1) ⇒
∧
i≥0

Fi.

A similar argument (except that induction is not needed) shows that the sequent∧
i≥0

Fi ⇒ F0 ∧
∧
i≥0

(Fi → Fi+1)

is a theorem of the basic system also. Consequently so is the sequent

⇒ F0 ∧
∧
i≥0

(Fi → Fi+1) ↔
∧
i≥0

Fi.

This argument could be expressed more concisely, without explicit references
to the set of theorems of the basic system, as follows. Assume (1). Then F0 and,
for every i ≥ 0, Fi → Fi+1. Then, by induction, Fi for every i. And so forth.
This style of presentation is used in the next example.

On Equivalent Transformations of Infinitary Formulas 391

Example 2. Let {Fα}α∈A be a family of formulas from some Fσ
i , and let G be

a formula. We show that (∨
α∈A

Fα

)
→ G (2)

is equivalent in the basic system to the formula∧
α∈A

(Fα → G). (3)

Left-to-right: assume (2) and Fα. Then
∨

α∈A Fα, and consequently G. Thus
we established Fα → G under assumption (2) alone for every α, and conse-
quently established (3) under this assumption as well. Right-to-left: assume (3)
and

∨
α∈A Fα, and consider the cases corresponding to the disjunctive terms of

this disjunction. Assume Fα. From (3), Fα → G, and consequently G. Thus we
established G in each case, so that (2) follows from (3) alone.

4 Main Theorem

Main Theorem. For any set H of formulas,

(a) if a formula F is a theorem of the basic system then H ∪ {F} has the same
stable models as H;

(b) if F is equivalent to G in the basic system then H∪ {F} and H ∪ {G} have
the same stable models.

The proof of the main theorem relies on the following lemma: For any theo-
rem Γ ⇒ F of the basic system and any interpretation I, the sequent {GI | G ∈
Γ} ⇒ F I is a theorem of the basic system as well. To prove the lemma, we show
that the set of sequents Γ ⇒ F such that {GI | G ∈ Γ} ⇒ F I is a theorem of
the basic system includes the axioms of the basic system and is closed under its
inference rules.

The assertion of the theorem will remain true if we add an axiom schema
corresponding to an infinitary version of the weak law of the excluded middle
¬F ∨ ¬¬F : ∨

I⊆H

⎛⎝¬ ∨
F∈H\I

F ∧ ¬¬
∧
F∈I

F

⎞⎠ , (4)

where H is an arbitrary subset of one of the sets Fi.

5 Some Useful Properties of the Basic System

Let σ and σ′ be disjoint signatures. A substitution is an arbitrary function from σ′

to Fσ
i , where i is a nonnegative integer. For any substitution α and any formula F

over the signature σ ∪ σ′, Fα stands for the formula over σ formed as follows:

392 A. Harrison, V. Lifschitz, and M. Truszczynski

– If F ∈ σ or F = ⊥ then Fα = F .
– If F ∈ σ′ then Fα = α(F).
– If F is H∧ then Fα = {Gα|G ∈ H}∧.
– If F is H∨ then Fα = {Gα|G ∈ H}∨.
– If F is G→ H then Fα = Gα → Hα.

Formulas of the form Fα will be called instances of F .

Proposition 1. If F is a theorem of the basic system then every instance of F
is a theorem of the basic system also.

Corollary. If F is a finite formula provable in intuitionistic propositional logic
then every instance of F is a theorem of the basic system.

Proposition 2. If for every atom p, α(p) is equivalent to β(p) in the basic
system then Fα is equivalent to F β in the basic system.

6 Examples Involving Aggregates

As discussed in the introduction, infinitary formulas can be used to precisely de-
fine the semantics of aggregates in ASP when the Herbrand universe is infinite.
In this section, we give three examples demonstrating how the theory described
above can be applied to prove equivalences between programs involving aggre-
gates.

Example 3. Intuitively, the rule

q(X)← 1{p(X,Y)} (5)

has the same meaning as the rule

q(X)← p(X,Y). (6)

To make this claim precise, consider first the result of grounding rule (5) under
the assumption that the Herbrand universe C is finite. In accordance with stan-
dard practice in ASP, we treat variable X as global and Y as local. Then the
result of grounding (5) is the set of ground rules

q(a)← 1{p(a, b) | b ∈ C}

for all a ∈ C. In the spirit of the semantics for aggregates proposed in [1, Sec-
tion 4.1] these rules have the same meaning as the propositional formulas(∨

b∈C

p(a, b)

)
→ q(a). (7)

Likewise, rule (6) can be viewed as shorthand for the set of formulas

p(a, b)→ q(a) (8)

On Equivalent Transformations of Infinitary Formulas 393

for all a, b ∈ C. It easy to see that these sets of formulas are intuitionistically
equivalent.

How can we lift the assumption that the Herbrand universe is finite? We can
treat (7) as an infinitary formula, and show that the conjunction of formulas (7)
is equivalent to the conjunction of formulas (8) in the basic system. The fact
that the conjunction of formulas (8) for all b ∈ C is equivalent to (7) in the basic
system follows from Example 2 (Section 3).

Example 4. Intuitively,
q(X)← 2{p(X,Y)} (9)

has the same meaning as the rule

q(X)← p(X,Y 1), p(X,Y 2), Y 1 �= Y 2. (10)

To make this claim precise, consider the infinitary formulas corresponding to (9):⎛⎜⎝ ∨
b∈C

p(a, b) ∧
∧
b∈C

⎛⎜⎝p(a, b)→
∨
c∈C
c �=b

p(a, c)

⎞⎟⎠
⎞⎟⎠ → q(a) (11)

(a ∈ C); see [1, Section 4.1] for details on representing aggregates with proposi-
tional formulas. The formulas corresponding to (10) are

(p(a, b) ∧ p(a, c))→ q(a) (12)

(a, b, c ∈ C, b �= c). Using the propositions stated above, we can show that the
conjunction of formulas (11) is equivalent to the conjunction of formulas (12) in
the basic system.

Example 5. Intuitively, the cardinality constraint {p(X)}0 (“the set of true
atoms with form p(X) has cardinality at most 0”) has the same meaning as
the conditional literal ⊥ : p(X) (“for all X , p(X) is false”). If we represent this
conditional literal by the infinitary formula∧

a∈C

¬p(a) (13)

then this claim can be made precise by showing that (13) is equivalent to the
formula ∧

A⊆C
A�=∅

⎛⎝ ∧
a∈A

p(a)→
∨

a∈C\A
p(a)

⎞⎠ , (14)

which corresponds to {p(X)}0 in the sense of [1], in the extended system de-
scribed at the end of Section 4. It is easy to derive (14) from (13) in the basic
system. The derivation of (13) from (14) uses the following instance of axiom
schema (4): ∨

A⊆C

⎛⎝¬ ∨
a∈C\A

p(a) ∧ ¬¬
∧
a∈A

p(a)

⎞⎠ . (15)

394 A. Harrison, V. Lifschitz, and M. Truszczynski

7 Future Work

Two finite propositional formulas are strongly equivalent if and only if they are
equivalent in the logic of here-and-there [1, Proposition 2]. The results of this
note are similar to the if part of that theorem; we don’t know how to extend
the only if part to infinitary formulas. Axioms that are stronger than (4) are
apparently required (perhaps a generalization of the axiom F ∨ (F → G) ∨ ¬G
that is known to characterize the logic of here-and-there [2]). Identifying such
axioms is a topic for future work.

Acknowledgements. Thanks to Fangkai Yang for comments on a draft of this
note.

References

1. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005)

2. Hosoi, T.: The axiomatization of the intermediate propositional systems Sn of Gödel.
Journal of the Faculty of Science of the University of Tokyo 13, 183–187 (1966)

3. Lifschitz, V., Morgenstern, L., Plaisted, D.: Knowledge representation and classical
logic. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge
Representation, pp. 3–88. Elsevier (2008)

4. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 526–541 (2001)

5. Pearce, D.: A new logical characterization of stable models and answer sets. In: Dix,
J., Moniz Pereira, L., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216, pp.
57–70. Springer, Heidelberg (1997)

6. Truszczynski, M.: Connecting first-order ASP and the logic FO(ID) through reducts.
In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS,
vol. 7265, pp. 543–559. Springer, Heidelberg (2012)

An Application of ASP to the Field

of Second Language Acquisition

(Extended Abstract)

Daniela Inclezan

Miami University, Oxford OH 45056, USA
inclezd@MiamiOH.edu

Abstract. This paper explores the contributions of Answer Set Pro-
gramming (ASP) to the study of an established theory from the field
of Second Language Acquisition: Input Processing. The theory describes
default strategies that learners of a second language use in extracting
meaning out of a text, based on their knowledge of the second language
and their background knowledge about the world. We formalized this
theory in ASP, and as a result we were able to determine opportuni-
ties for refining its natural language description, as well as directions for
future theory development. We applied our model to automating the pre-
diction of how learners of English would interpret sentences containing
the passive voice. We present a system, PIas, that uses these predictions
to assist language instructors in designing teaching materials.

1 Introduction

This paper extends a relatively new line of research that explores the contribu-
tions of Answer Set Programming (ASP) [1–3] to the study and refinement of
qualitative scientific theories [4, 5]. As pointed out by Balduccini and Girotto
[4], qualitative theories tend to be formulated in natural language, often in the
form of defaults. Modeling these theories in a precise mathematical language
can assist scientists in analyzing their theories, or in designing experiments for
testing their predictions. It was shown that ASP is a suitable tool for this task
[4, 5], as it provides means for an elegant and accurate representation of defaults,
dynamic domains, and incomplete information, among others. In our work, we
explore the applicability of ASP to the formalization and analysis of a theory
from the field of Second Language Acquisition — a discipline that studies the
processes by which people learn a second language.

Our main goal is to illustrate different ways in which modeling the selected
theory in ASP can benefit the future development of this theory. In particular,
we focus on contributions to (1) the refinement of this theory; (2) the automated
testing of its statements; and (3) the development of practical applications for
language teaching and testing. A previous version of this work appears in [6].

The theory we consider is Input Processing [7, 8]. We chose it because it is an
established theory in the field of Second Language Acquisition, with important

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 395–400, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

396 D. Inclezan

consequences on foreign language education. Input Processing (IP) describes the
default strategies that second language learners use to get meaning out of text
written or spoken in the second language, during comprehension-focused tasks,
given the learners’ limitations in vocabulary, working memory, or internalized
knowledge of grammatical structures. As a result of applying these strategies,
even learners with limited grammatical expertise can often, but not always, inter-
pret input sentences correctly. Once grammatical information is internalized, the
default strategies are overridden by the always reliable grammatical knowledge.
Hence, it can be said that IP describes an example of nonmonotonic reasoning.

IP consists of two principles formulated as defaults and containing
sub-principles that represent refinements of, or exceptions to, these defaults.
IP predicts, for instance, that beginner learners of English reading the sentence
(S1) “The cat was bitten by the dog” would only be able to retrieve the meanings
of the words “cat”, “bitten”, and “dog”, and would end up with the sequence
of concepts CAT-BITE-DOG. Beginners would generally interpret this sequence
incorrectly as “The cat bit the dog” because of a hypothesized strategy of assign-
ing agent status to the first noun of a sentence. On the other hand, beginners
would correctly interpret the sentence (S2) “The shoe was bitten by the dog”
because agent status cannot be assigned to the first noun, as a shoe cannot bite.
Similarly, even beginners would interpret correctly (S3) “The man was bitten by
the dog” and (S4) “Holyfield was bitten by Tyson” because people are unlikely to
bite animals and it is known that Tyson bit Holyfield, respectively. In the case of
stories consisting of several sentences, the information extracted from previous
sentences conditions the interpretation of latter ones. The second sentence in the
paragraph: (S5) “The cat killed the dog.” (S6) “Then, the dog was pushed by the
cat.” would be interpreted correctly by beginners, as a dead dog cannot push.

ASP is a natural choice for modeling the IP theory, first of all because defaults
and their exceptions can be represented in ASP in an elegant and precise manner
[9]. Moreover, IP takes into consideration the learners’ knowledge about the
dynamics of the world (e.g., people know under what conditions an action can
be performed); in ASP, there is substantial research on how to represent actions
and dynamic domains in which change is caused by actions [10, 11].

2 An Analysis of IP Based on Its ASP Model

Logic Form Encoding of a Text. The IP theory assumes that a learner is
given a text (called input in the enunciation of IP) — a paragraph with one
or more sentences. Our logic form encoding, lp(X), of a text X uses relations:
word of sent(K,S,W) (the Kth word of sentence S is W) and sent of par(K,
P , S) (the Kth sentence of paragraph P is S).

Principle 1. Given a sentence and a learner’s knowledge of the second language,
Principle 1 of IP predicts a possibly partial mapping of words in this sentence
into cognitive concepts. Due to limitations in knowledge of the second language
or resources in working memory, learners will not map all words into concepts.
In our ASP formalization, which we do not present here, the output of Principle

ASP and Second Language Acquisition 397

1 is a collection of atoms of the type map(K, S, Ctg, C) – the Kth word of S,
belonging to the grammatical category Ctg, was mapped into concept C. By
modeling Principle 1, we determined that certain terms in its description (e.g.,
“sentence initial position”) require a more precise definition, and that a different
ordering of its sub-principles would facilitate a deeper understanding.

Principle 2. The second principle of IP describes the strategies that learners
employ to understand the meaning of a sentence. The input of Principle 2 is
the output of Principle 1 for a given sentence (i.e., a mapping of words into
concepts), together with the learner’s background knowledge about the world.
Its output is an event denoting the meaning extracted by the learner from that
sentence. This principle is listed in [8, 12] as:

2. The First Noun Principle (FNP): Learners tend to process the first noun or pronoun
they encounter in a sentence as the agent.

2a. The Lexical Semantics Principle: Learners may rely on lexical semantics,1 where
possible, instead of on word order to interpret sentences.

2b. The Event Probabilities Principle: Learners may rely on event probabilities, where
possible, instead of on word order to interpret sentences.

2c. The Contextual Constraint Principle: Learners may rely less on the First Noun
Principle if preceding context constrains the possible interpretation of a clause or
sentence.

2d. Prior Knowledge: Learners may rely on prior knowledge, where possible, to inter-
pret sentences.

2e. Grammatical Cues: Learners will adopt other processing strategies for grammatical
role assignment only after their developing system2 has incorporated other cues.

This principle assumes that learners possess some background knowledge
about the world and its dynamics, which we capture using the predicates: impos−
sible(Ev, I) (event Ev is physically impossible to occur at step I of some story);
unlikely(Ev, I) (event Ev is unlikely to occur at step I of some story); hpd(Ev)
(event Ev is known to have happened in reality). To model the background
knowledge base of a learner, we use known methodologies for representing dy-
namic domains in ASP [10, 11]. Atoms of the type impossible(Ev, I) are derived
from axioms specifying preconditions for the execution of actions (i.e., executabil-
ity conditions); unlikely(Ev, I) atoms are obtained from axioms encoding de-
fault statements and their exceptions [9]; hpd(Ev) atoms are simply stored as a
collection of facts.

When formalizing Principle 2, we assume that each sentence in the input
describes exactly one event, and that the N th sentence of a paragraph describes
the N th occurring event. By the direct (reverse) meaning of a sentence we mean
the action denoted by the verb of the sentence, and whose agent is the entity
denoted by the first (second) noun appearing in the sentence. For instance, the
direct meaning of (S1) “The cat was bitten by the dog” is the event of “the cat

1 Lexical semantics refers to the meaning of lexical items.
2 Developing system refers to the representation of grammatical knowledge in the mind
of the second language learner, at a certain point in time.

398 D. Inclezan

biting the dog,” while its reverse meaning is the event of “the dog biting the
cat.” We use the predicate dir rev m(Dir,Rev, S) to say that Dir is the direct
meaning and Rev is the reverse meaning of sentence S.

Principle 2, also called the First Noun Principle (FNP), is a default statement
and its sub-principles express exceptions to it. To encode Principle 2, we use a
relation extr m(Ev, S, fnp) saying that the learner extracted the meaning Ev
from sentence S by applying FNP:

extr m(Dir, S, fnp)← not extr m(Rev, S, fnp), dir rev m(Dir,Rev, S).

The rule says that learners applying the FNP will extract the direct meaning
from a sentence, unless they extract the reverse meaning. We represent Principle
2a, 2b, and 2d, respectively, using the axioms:

extr m(Rev, S, fnp)← impossible(Dir, I), not impossible(Rev, I),
dir rev m(Dir,Rev, S), sent of par(I, P, S).

extr m(Rev, S, fnp)← not impossible(Dir, I), unlikely(Dir, I), not hpd(Dir),
not impossible(Rev, I), not unlikely(Rev, I),
dir rev m(Dir,Rev, S), sent of par(I, P, S).

extr m(Rev, S, fnp)← hpd(Rev),
dir rev m(Dir,Rev, S), sent of par(I, P, S).

Principle 2e is encoded via the rules:

extr m(Ev, S) ← extr m(Ev, S, grm cues).
extr m(Ev, S) ← extr m(Ev, S, fnp), not extr m by(S, grm cues).
extr m by(S,X)← extr m(Ev, S,X).

where extr m(Ev, S) says that Ev is the meaning extracted from S; extr m(Ev,
S, grm cues) – the meaning Ev was extracted from S based on grammatical
cues (which vary for different grammatical forms); and extr m by(S,X) – the
meaning of S was extracted based on strategy X .

In our formalization of FNP, Principle 2c was embedded in the representa-
tion of Principles 2a, 2b, and 2d. The one thing left for contextual constraints
is to record the events corresponding to the meaning extracted from previous
sentences of the story, assuming the first time step of the story is 1.

occurs(Ev, I)← extr m(Ev, S), sent of par(I, P, S).

Principle 2c specifies that preceding sentences in a paragraph constrain the inter-
pretation of latter sentences, but does not mention a possible effect of succeeding
sentences on the re-interpretation of earlier sentences that were initially pro-
cessed incorrectly. This is an interesting direction of research to be addressed.

3 Automating the Predictions of IP

We used our model of the IP theory to generate automated predictions about how
sentences like the ones in Section 1 would be interpreted by learners of English.

ASP and Second Language Acquisition 399

We exemplify our predictions on Principle 2 and beginner learners that possess
limited grammatical knowledge in English. We created a logic program Π by
putting together a beginner’s knowledge of the second language, his background
knowledge about the world, and our formalization of IP. The answer set(s) of
the program Π ∪ lp(X) corresponds to predictions of the IP theory about how a
beginner learner would interpret text X. Table 3 shows the answer sets of our
program for the texts in Section 1. We use terms like ev(bite, cat, dog) to denote
events, in this case “a cat biting a dog”. Our automated predictions match the
ones in Section 1, which suggests that our model of IP is correct.

4 The System PIas

We created a system, PIas, designed to assist instructors in preparing materi-
als for the passive voice in English. PIas follows the guidelines of a successful
teaching method called Processing Instruction (PI) [12], developed based on the
principles of IP. For a sentence to be valuable in this approach, it must lead to
an incorrect interpretation when grammatical cues are not used but the FNP is.
S1 above is a valuable sentence; S2, S3, and S4 are not.

PIas has two functions. The first one is to specify whether sentences and
paragraphs created by instructors are valuable or not. This is relevant because
even instructors trained in PI happen to create bad materials. We define:

valuable(S)← extr m(Ev1, S, grm cues), extr m(Ev2, S, fnp), Ev1 �= Ev2.

We create a moduleM containing this definition and its extension to paragraphs.
PIas takes as an input a text X in natural language, encodes it in its logic form
lp(X), and computes the answer sets of a program consisting of Π , M, lp(X)
and the grammatical knowledge of an advanced learner. X is valuable if the
atom valuable(X) belongs to all answer sets of the resulting program.

The second function of PIas is to generate all valuable sentences given a
vocabulary and some simple grammar. This is important because PI requires to
expose learners to a large number of valuable sentences. We add to M rules for
sentence creation. For instance, one particular type of sentence is generated by:

word of sent(1, s(“The”, N1, “was”, V, “by”, “the”, N2), “the”)← g(N1, V,N2).

where g(N1, V,N2) is true if N1 and N2 are common nouns and V is a verb in
the past participle form (e.g., “bitten”).

Table 1. Automated Predictions for Principle 2 and Beginner Learners

X Answer Set of Π ∪ lp(X) contains

S1 extr m(ev(bite, cat, dog), s1), extr m by(s1, fnp)

S2 extr m(ev(bite, dog, shoe), s2), impossible(ev(bite, shoe, dog), 0)

S3 extr m(ev(bite, dog,man), s3), unlikely(ev(bite,man, dog), 0)

S4 extr m(ev(bite, tyson, holyfield), s4), hpd(ev(bite, tyson, holyfield))

S5 ∪ S6 extr m(ev(kill, cat, dog), s5), extr m(ev(push, cat, dog), s6)

400 D. Inclezan

5 Conclusions

This paper has shown three different directions in which modeling an important
theory from the field of Second Language Acquisition can contribute to the
development of this theory. First, we identified aspects in the text of the theory
description that need refinement, and opportunities for future research. Second,
we have shown how our ASP model can be used to automate predictions, which
can be beneficial in designing experiments for testing the theory and fine-tuning
its parameters. Third, we described a system, PIas, that assesses the quality
of materials created by language instructors and creates valuable materials. We
hope the application presented here, and its three main contributions, will help
promote ASP as a tool for the study of qualitative theories, in different fields.

Acknowledgments. I warmly thank Michael Gelfond, Marcello Balduccini,
and the anonymous reviewers for their valuable comments and suggestions.

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4), 365–386 (1991)

2. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. In: Proceedings of the Workshop on Computational Aspects of
Nonmonotonic Reasoning, pp. 72–79 (1998)

3. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic program-
ming paradigm. In: The Logic Programming Paradigm: A 25-Year Perspective, pp.
375–398. Springer, Berlin (1999)

4. Balduccini, M., Girotto, S.: Formalization of psychological knowledge in Answer Set
Programming and its application. Theory and Practice of Logic Programming 10(4-
6), 725–740 (2010)

5. Balduccini, M., Girotto, S.: ASP as a cognitive modeling tool: Short-term memory
and long-term memory. In: Balduccini, M., Son, T.C. (eds.) Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp.
377–397. Springer, Heidelberg (2011)

6. Inclezan, D.: Modeling a theory of Second Language Acquisition in ASP. In: Rosati,
R., Woltran, S. (eds.) Proceedings of the 14th International Workshop on Non-
Monotonic Reasoning, NMR (2012)

7. VanPatten, B.: Learners’ comprehension of clitic pronouns: More evidence for a
word order strategy. Hispanic Linguistics 1, 57–67 (1984)

8. VanPatten, B.: Input processing in second language acquisition. In: Processing
Instruction: Theory, Research, and Commentary, pp. 5–32. Lawrence Erlbaum As-
sociates, Mahwah (2004)

9. Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal
of Logic Programming 19(20), 73–148 (1994)

10. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial
Intelligence 3(16), 193–210 (1998)

11. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Theory and
Practice of Logic Programming 3(4-5), 425–461 (2003)

12. VanPatten, B.: Processing Instruction: An update. Language Learning 52(4), 755–
803 (2002)

Turner’s Logic of Universal Causation,

Propositional Logic, and Logic Programming

Jianmin Ji1 and Fangzhen Lin2

1 School of Computer Science and Technology
University of Science and Technology of China, Hefei, China

jianmin@ustc.edu.cn
2 Department of Computer Science and Engineering

The Hong Kong University of Science and Technology, Hong Kong
flin@cs.ust.hk

Abstract. Turner’s logic of universal causation is a general logic for
nonmonotonic reasoning. It has its origin in McCain and Turner’s causal
action theories which have been translated to propositional logic and
logic programming with nested expressions. In this paper, we propose to
do the same for Turner’s logic, and show thatTurner’s logic can actually
be mapped to McCain and Turner’s causal theories. These results can
be used to construct a system for reasoning in Turner’s logic.

1 Introduction

Turner’s logic of universal causation [17], called UCL, is a nonmonotonic modal
logic that generalizes McCain and Turner’s causal action theories [15]. The idea
is to use the modal operator C to specify the statement that a proposition is
“caused”. For instance, ψ ⊃ Cφ says that φ is caused whenever ψ obtains.

McCain and Turner’s causal action theories have been the basis for the se-
mantics of several expressive action languages, such as C and C+ [11,5]. They
have been translated to propositional logic and logic programming. Ferraris [2]
provided a translation from causal theories to disjunctive logic programs. Lee [9]
proposed a conversion from causal theories to propositional logic. In this paper,
we consider UCL, and show that UCL theories can be converted to propositional
theories. We also show that they can be converted to logic programs with nested
expressions in polynomial size with polynomial number of new variables. This
result improves and generalizes Turner’s linear and modular translation from a
fragment of UCL to disjunctive logic programs [17]. Furthermore we show that
both Ferraris and Lee’s translations are special cases of our translations, just as
McCain and Turner’s causal theories are special theories in UCL. Our motiva-
tion for this work is to use the translations to implement a system for computing
UCL theories via SAT solvers or ASP solvers, like the system CCalc1 for causal
theories.

1 http://www.cs.utexas.edu/~tag/ccalc/.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 401–413, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.utexas.edu/~ tag/ccalc/

402 J. Ji and F. Lin

This paper is organized as follows. Section 2 reviews UCL and logic program-
ming. Section 3 shows how Turner’s logic can be mapped to propositional logic.
Section 4 considers mapping UCL theories to logic programs with nested expres-
sions. Section 5 outlines how the translations here are related to Ferraris and
Lee’s translations. Finally, Section 6 concludes this paper.

2 Preliminaries

2.1 Propositional Languages

We assume a propositional language with two zero-place logical connectives
for tautology and ⊥ for contradiction. We denote by Atom the set of atoms,
the signature of our language, and Lit the set of literals: Lit = Atom ∪ {¬a |
a ∈ Atom}. A set I of literals is called complete if for each atom a, exactly one
of {a,¬a} is in I. Given a literal l, the complement of l, written l̄ below, is ¬a
if l is a and a if l is ¬a, where a is an atom. For a set L of literals, we let
L = { l̄ | l ∈ L }.

In this paper, we identify an interpretation with a complete set of literals. If
I is a complete set of literals, we use it as an interpretation when we say that
it is a model of a formula, and we use it as a set of literals when we say that it
entails a formula.

2.2 Turner’s Logic of Universal Causation

The language of Turner’s logic of universal causation (UCL) [17] is a modal
propositional language with a modal operatorC. UCL formulas are propositional
formulas with unary modal operator C. A UCL theory is a set of UCL formulas.

The semantics of UCL is defined through causally explained interpretations.
A UCL structure is a pair (I,S) such that I is an interpretation, and S is
a set of interpretations to which I belongs. The truth of a UCL sentence in
a UCL structure is defined by the standard recursions over the propositional
connectives, plus the following two conditions:

(I,S) |= a iff I |= a (for any atom a)

(I,S) |= Cφ iff for all I ′ ∈ S, (I ′,S) |= φ

Given a UCL theory T , we write (I,S) |= T to mean that (I,S) |= φ, for every
φ ∈ T . In this case, we say that (I,S) is a model of T . We also say that (I,S) is
an I-model of T , emphasizing the distinguished interpretation I.

Let T be a UCL theory. An interpretation I is causally explained by T
if (I, {I}) is the unique I-model of T .

Note that, if there is a nested occurrence of C, the C that occurs in the range
of another C can be equivalently2 removed [17]. In the paper, we only consider
UCL formulas with no nested occurrences ofC. A formula of the form Cφ, where
φ is a propositional formula, is called a C-atom. Then these UCL formulas are
constructed from C-atoms, propositional atoms and connectives.

2 In the sense that, two formulas have the same set of UCL models.

UCL, Propositional Logic and Logic Programming 403

2.3 Logic Programming

A nested expression is built from literals using the 0-place connectives and ⊥,
the unary connective “not” and the binary connective “,” and “;”.

A logic program with nested expressions is a finite set of rules of the form
F ← G, where F and G are nested expressions.

The answer set of a logic program with nested expressions is defined as in [12].
Given a nested expression F and a set S of literals, we define when S satisfies
F , written S |= F below, recursively as follows (l is a literal and G is a nested
expression):

– S |= l if l ∈ S,
– S |= and S �|= ⊥,
– S |= not F if S �|= F ,
– S |= F,G if S |= F and S |= G, and
– S |= F ;G if S |= F or S |= G.

S satisfies a rule F ← G if S |= F whenever S |= G. S satisfies a logic program
P , written S |= P , if S satisfies all rules in P .

The reduct PS of P related to S is the result of replacing every maximal
subexpression of P that has the form not F with ⊥ if S |= F , and with
otherwise.

Let P be a logic program without not, the answer set of P is any minimal
consistent subset S of Lit that satisfies P . We use ΓP (S) to denote the set
of answer sets of PS . Now a consistent set S of literals is an answer set of P
iff S ∈ ΓP (S).

Every logic program with nested expressions can be equivalently translated
to disjunctive logic programs with disjunctive rules of the form

l1 ∨ · · · ∨ lk ← lk+1, . . . , lt, not lt+1, . . . , not lm, not not lm+1, . . . , not not ln,

where n ≥ m ≥ t ≥ k ≥ 0 and l1, . . . , ln are propositional literals. A disjunctive
logic program can be computed by disjunctive ASP solvers such as claspD [1],
DLV [10], GNT [7] and cmodels [6].

3 From Turner’s Logic of Universal Causation to
Propositional Logic

Before presenting the translation, we provide some notations. Given a UCL
formula F , let AtomC(F) = {φ | Cφ is a C-atom occurring in F }. Given a
UCL theory T , we let AtomC(T) =

⋃
F∈T AtomC(F).

We use trp(F) to denote the propositional formula obtained from the UCL
formula F by replacing each occurrence of a C-atom Cφ by a new propositional
atom aφ w.r.t. φ.

Given two propositional formulas φ and ψ, we use φψ to denote the proposi-
tional formula obtained from φ by replacing each occurrence of an atom a with
a new atom aψ w.r.t. ψ.

404 J. Ji and F. Lin

The following proposition provides a specification of the propositional formula
whose models are related to models of a UCL theory.

Proposition 1. Let T be a UCL theory. A UCL structure (I,S) is a model of
T if and only if there exists a model I∗ of the propositional formula∧

F∈T

trp(F) ∧
∧

φ∈AtomC(T)

(aφ ⊃ φ)

∧
∧

ψ∈AtomC(T)

⎛⎝(¬aψ ∧ ψ) ⊃

⎛⎝ ∧
φ∈AtomC(T)

(aφ ⊃ φψ) ∧ ¬ψψ

⎞⎠⎞⎠ , (1)

such that I∗ ∩ Lit = I and for each φ ∈ AtomC(T), aφ ∈ I∗ iff S |= φ.

Proof. “⇒” (I,S) is a model of T , then I ∈ S. If S �|= ψ and I |= ψ, then there
exists another interpretation I ′ ∈ S such that I ′ |= ¬ψ. Thus, we can create an
interpretation I∗ such that

I∗ = I∪{aφ | φ ∈ AtomC(T) and S |= φ}∪{¬aφ | φ ∈ AtomC(T) and S �|= φ}

∪
⋃

ψ∈AtomC(T),S|=ψ

{lψ | l ∈ I} ∪
⋃

ψ∈AtomC(T),S�|=ψ,∃I′.I′∈S,I′|=¬ψ

{lψ | l ∈ I ′}.

Clearly, I∗ |= (1).
“⇐” I∗ |= T . Let I = I∗∩Lit andS = {I ′ | if I∗ |= aφ for some φ ∈ AtomC(T),

then I ′ |= φ}. Note that, I∗ |=
∧

φ∈AtomC(T)(aφ ⊃ φ), then I ∈ S. For each
φ ∈ AtomC(T), if I

∗ |= aφ, then S |= φ; from (1), if I∗ |= ¬aφ, then there exists
an interpretation I ′ such that I ′ |= ¬ψ and for each ψ ∈ AtomC(T), I

∗ |= aψ
implies I ′ |= ψ, thus I ′ ∈ S and S �|= φ. Clearly, (I,S) |= T .

Intuitively, the formula

∧
ψ∈AtomC(T)

⎛⎝(¬aψ ∧ ψ) ⊃

⎛⎝ ∧
φ∈AtomC(T)

(aφ ⊃ φψ) ∧ ¬ψψ

⎞⎠⎞⎠
specifies that for each UCL structure (I,S), if I |= ψ and S |= ¬Cψ, then there
exists an interpretation I ′ ∈ S such that I ′ |= ¬ψ.

In the following, we construct propositional formulas whose models are related
to causally explained interpretations. First, we consider how to specify the unique
model of a propositional formula.

Given a propositional formula φ and a nonempty consistent set K of literals,
we denote by φ|K→⊥ the result of replacing each occurrence of an atom a in φ
by ⊥ if a ∈ K and if ¬a ∈ K.

Lemma 1. Let φ be a propositional formula, K a nonempty consistent set of
literals, and an interpretation I ⊇ K. I �|=

∧
l∈K l ⊃ ¬φ|K→⊥ if and only if the

interpretation (I \K) ∪K |= φ.

UCL, Propositional Logic and Logic Programming 405

Proof. Let I ′ = (I \K) ∪K.
“⇒” I �|=

∧
l∈K l ⊃ ¬φ|K→⊥, then I |= φ|K→⊥. Note that, atoms occurring in

K do not occur in φ|K→⊥, then I ′ |= φ|K→⊥, furthermore, I ′ |= K, thus I ′ |= φ.
“⇐” I ′ |= φ and I ′ |= K, then I ′ |= φ|K→⊥, thus I |= φ|K→⊥. Note that

K ⊆ I, then I �|=
∧

l∈K l ⊃ ¬φ|K→⊥.

To avoid influence of auxiliary atoms, we introduce the notion of forgetting
provided by Lin and Reiter [14].

Definition 1. Let φ be a propositional formula and S a set of atoms. forget(φ;S)
is the formula inductively defined as follows:

– forget(φ; ∅) = φ,
– forget(φ; {a}) = φ|{a}→⊥ ∨ φ|{¬a}→⊥,
– forget(φ; {a} ∪ S) = forget(forget(φ;S), {a}).

Lemma 2 (Theorem 4 in [14]). Let φ be a propositional formula and S a
set of atoms. An interpretation I |= forget(φ;S) if and only if there exists an
interpretation I ′ |= φ such that I \ S ∪ S = I ′ \ S ∪ S.

Directly from Lemma 1 and 2, we have the following lemma.

Lemma 3. Let φ be a propositional formula, K a nonempty consistent set
of literals, S a set of atoms, and an interpretation I ⊇ K. I �|=

∧
l∈K l ⊃

¬forget(φ;S)|K→⊥ if and only if there exists an interpretation I ′ |= φ such that(
(I \ S ∪ S) \K

)
∪K = I ′ \ S ∪ S.

Given a propositional formula φ, we use φ̂ to denote the propositional formula
obtained from φ by replacing each occurrence of an atom a in φ by a new atom â.
For a set L of literals, we let L̂ = {l̂ | l ∈ L}. We use Lita to denote the set of
literals formed from new atoms of the form aφ and Atom∗ the set of atoms of
the form aψ w.r.t. ψ in (1).

Theorem 1. Let T be a UCL theory. An interpretation I is causally explained
by T if and only if there exists a model I∗ of the propositional formula

(1) ∧
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)

∧
∧

A⊆Lita
A is nonempty and consistent

(∧
la∈A

la ⊃ ¬ forget
(
(1);Atom∗)∣∣

A→⊥

)

∧
∧

K⊆Lit
K is nonempty and consistent

⎛⎝ ∧
l∈K

l̂ ⊃ ¬
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)
∣∣∣
K̂→⊥

⎞⎠ , (2)

such that I∗ ∩ Lit = I.

406 J. Ji and F. Lin

Proof. “⇒” I is causally explained by T , then (I, {I}) is the unique I-model of
T . We can create an interpretation I∗ such that

I∗ = I∪{aφ | φ ∈ AtomC(T) and I |= φ}∪{¬aφ | φ ∈ AtomC(T) and I �|= φ}

∪
⋃

ψ∈AtomC(T)

{lψ | l ∈ I} ∪ {l̂ | l ∈ I}.

From Proposition 1, I∗ |= (1) ∧
∧

φ∈AtomC(T)(aφ ⊃ φ̂).

If I∗ �|=
∧

la∈A la ⊃ ¬ forget
(
(1);Atom∗)∣∣

A→⊥ for some nonempty consistent
set A ⊆ Lita, similar to the proof of Lemma 3, then these exists another inter-
pretation I∗′ such that ((I∗ \Atom∗ ∪ Atom∗) \A) ∪A = I∗′ \Atom∗ ∪Atom∗

and I∗′ |= (1). From Proposition 1, there exists another set S ′ of interpretations
such that S ′ �= {I}, I ∈ S ′ and (I,S ′) is an I-model of T , which conflicts to the
condition that (I, {I}) is the unique I-model of T .

If I∗ �|=
∧

l∈K l̂ ⊃ ¬
∧

φ∈AtomC(T) (aφ ⊃ φ̂)
∣∣∣
K̂→⊥

for some nonempty consistent

set K ⊆ Lit, similar to the proof of Lemma 1, then there exists another interpre-

tation I∗′ such that I∗′ = (I∗ \ K̂) ∪ K̂ and I∗′ |= (1) ∧
∧

φ∈AtomC(T)(aφ ⊃ φ̂).

From Proposition 1, there exists another interpretation I ′ such that (I, {I, I ′}) |=
T , which conflicts to the condition that (I, {I}) is the unique I-model of T , thus
I∗ |= (2).

“⇐” I∗ |= (2). Let I = I∗ ∩ Lit, if there exists another UCL structure (I,S)
such that (I,S) |= T and S �= {I}, then there are two cases: 1. there exists
φ ∈ AtomC(T) such that I |= φ and S �|= φ; 2. for each φ ∈ AtomC(T), I |= φ if
and only if S |= φ.

For case 1, let A = {aφ | φ ∈ AtomC(T), I |= φ,S �|= φ}, then I∗ |=
∧

la∈A la
and I∗ |= forget

(
(1);Atom∗)∣∣

A→⊥, which conflicts to the condition that I∗ |=
(2), thus it is impossible.

For case 2, let I ′ ∈ S and I ′ �= I, then for each φ ∈ AtomC(T), I
∗ |= aφ

implies I ′ |= φ, thus there exists K = I \ I ′ such that I∗ |=
∧

l∈K l̂ and I∗ |=∧
φ∈AtomC(T) (aφ ⊃ φ̂)

∣∣∣
K̂→⊥

, which conflicts to the condition that I∗ |= (2). So I

is the only interpretation that satisfies {φ ∈ AtomC(T) | I∗ |= aφ}, then (I, {I})
is the unique I-model of T .

Note that, the size of formula (2) is exponential increased from T , as the
number of all possible nonempty consistent sets of literals is 3n, where n is the
number of atoms. In fact, we only need to consider a subset of these sets. Details
are proposed in Section 5.3.

As a simple example, given the UCL theory T = {C(p∨ q), Cp ⊃ Cq, Cq ⊃
Cp}, from the definition of (1), we obtain the following propositional formula:

ap∨q ∧ (ap ≡ aq) ∧ (p ∨ q) ∧ (ap ⊃ p) ∧ (aq ⊃ q)∧(
(¬ap ∧ p) ⊃ (¬p2 ∧ q2)

)
∧

(
(¬aq ∧ q) ⊃ (¬q3 ∧ p3)

)
(3)

UCL, Propositional Logic and Logic Programming 407

From the definition of (2), we obtain the following formula3

(3) ∧
(
ap∨q ⊃ (p̂ ∨ q̂)

)
∧ (ap ⊃ p̂) ∧ (aq ⊃ q̂)

∧
(
ap ⊃ ¬(¬aq)

)
∧

(
aq ⊃ ¬(¬ap)

)
∧

(
(ap ∧ aq) ⊃ ⊥

)
∧

(
¬ap ⊃ ¬(aq ∧ p ∧ q)

)
∧

(
¬aq ⊃ ¬(ap ∧ p ∧ q)

)
∧

(
¬ap ∧ ¬aq ⊃ ¬(p ∧ q)

)
∧

(
p̂ ⊃ ¬((ap∨q ⊃ q̂) ∧ ¬ap ∧ (aq ⊃ q̂))

)
∧

(
q̂ ⊃ ¬((ap∨q ⊃ p̂) ∧ (ap ⊃ p̂) ∧ ¬aq)

)
∧

(
¬p̂ ⊃ ¬(aq ⊃ q̂)

)
∧

(
¬q̂ ⊃ ¬(ap ⊃ p̂)

)
where p̂ and q̂ are new atoms. The formula implies that

ap∨q ∧ p̂ ∧ q̂ ∧ ap ∧ aq ∧ p ∧ q ∧ ((ap ∧ aq) ⊃ ⊥)

which is inconsistent. From Theorem 1, there does not exist an interpretation I
such that I is causally explained by the UCL theory T .

4 From Turner’s Logic of Universal Causation to Logic
Programming

Formula (2) in propositional logic is complex, as it needs to include constraints
to make it satisfied by a “unique model”. The problem becomes easier when
we consider logic programming. Based on the propositional formula (1), we can
translate a UCL theory T to a logic program with nested expressions.

Note that, every propositional formula φ can be equivalently translated to
CNF as

(l11 ∨ · · · ∨ l1n1) ∧ · · · ∧ (lm1 ∨ · · · ∨ lmnm), (4)

where l11, . . . , l
m
nm are literals.

For any propositional formula, we can convert it to the nested expression by
replacing each ∧ with a comma, each ∨ with a semicolon and ¬ with not.

Given a UCL theory T , we use trne(T) to denote the nested expression ob-
tained from (1). We use Atom′ to denote the set of atoms that occur in (1)
but not in Atom. Now we define trlp(T) to be the logic program containing
⊥ ← not trne(T), the following rules for each φ ∈ AtomC(T) whose CNF is in
the form of (4)

l11; . . . ; l
1
n1 ← not not aφ, (l̄

1
1;not l̄

1
1), . . . , (l̄

1
n1 ;not l̄1n1),

· · ·
lm1 ; . . . ; lmnm ← not not aφ, (l̄

m
1 ;not l̄m1), . . . , (l̄mnm ;not l̄mnm),

and

a′;¬a′ ← , (for each a′ ∈ Atom′).

3 The formula is simplified due to Theorem 5 in Section 5.3.

408 J. Ji and F. Lin

Lemma 4. Let T be a UCL theory and I and J two interpretations. (I, {I, J}) |=
T if and only if there exists a set S of literals occurring in trlp(T) such that
S |= (trlp(T))

S∪I and S ∩ Lit = I ∩ J .

Proof. “⇒” (I, {I, J}) |= T . Similar to the proof of Proposition 1, we can create
an interpretation I∗ such that I∗ ∩Lit = I and I∗ |= (1). Note that, (trlp(T))

I∗

contains rules of the form

l1; . . . ; ln ←
,

l ∈ {l1, . . . , ln}, l̄ ∈ I
l̄, (5)

where I∗ |= aφ for corresponding φ ∈ AtomC(T).
Note that, {I, J} |= φ, I |= l1∨· · ·∨ ln and J |= l1∨· · ·∨ ln. Consider the case,

for each literal l ∈ {l1, . . . , ln}, l̄ ∈ I implies l̄ ∈ I ∩ J , then there exists literal
l ∈ {l1, . . . , ln} and l ∈ J such that l ∈ I (if not, l̄ ∈ I which implies l̄ ∈ J), thus
(I ∩ J) |= (5).

We denote S = (I∗ \ I) ∪ (I ∩ J). Clearly, S |= (trlp(T))
S∪I .

“⇐” S |= (trlp(T))
S∪I and S ∩Lit = I ∩ J . (trlp(T))

S∪I contains rules of (5)
and S |= aφ for corresponding φ ∈ AtomC(T).

Note that I ∩ J |= (5), then I ∩ J |= l1 ∨ · · · ∨ ln whenever l̄ ∈ I ∩ J for
all l̄ ∈ I and l ∈ {l1, . . . , ln}. If J �|= l1 ∨ · · · ∨ ln, then there exists l̄ ∈ I and
l̄ /∈ I ∩ J , thus l̄ /∈ J and l ∈ J which conflicts to J �|= l1 ∨ · · · ∨ ln. So J |= φ,
from Proposition 1, (I, {I, J}) |= T .

Theorem 2. Let T be a UCL theory. An interpretation I is causally explained
by T if and only if there exists an answer set S of the logic program trlp(T)∪{⊥ ←
not a, not¬a | a ∈ Atom}, such that S ∩ Lit = I.

Proof. I is causally explained by T means that (I, {I}) is the unique I-model
of T . From Lemma 4, this is equivalent to the condition, for every set S of
literals occurring in trlp(T) and interpretation J such that S |= (trlp(T))

S∪I ,
S ∩ Lit = I ∩ J iff J = I. This means that there exists an answer set S of
trlp(T) ∪ {⊥ ← not a, not¬a | a ∈ Atom} such that S ∩ Lit = I.

5 Related Work

5.1 Turner’s Conversion from a Fragment of UCL to Disjunctive
Logic Programming

Turner [17] proposed a simple translation from a subset of UCL theories to
disjunctive logic programs [3] via disjunctive default logic [4].

Turner’s translation considers the UCL formula of the form

C(l1 ∧ · · · ∧ lk) ∧ lk+1 ∧ · · · ∧ lm ⊃ Clm+1 ∨ · · ·Cln, (6)

where l1, . . . , ln are literals.
A UCL formula of the form (6) is translated to the disjunctive rule

lm+1 ∨ · · · ∨ ln ← l1, . . . , lk, not l̄k+1, . . . , not l̄m.

UCL, Propositional Logic and Logic Programming 409

It has been proved that, given a set T of UCL formulas in the form (6), an
interpretation I is an answer set of the corresponding disjunctive logic program
if and only if I is causally explained by T .

When every formula in range of C is a literal, our translation seems more
complex than Turner’s translation. However, some steps in the translation can
also be simplified. Consider the following proposition proposed in [2].

Proposition 2 (Proposition 1 in [2]). For any literal l and any nested ex-
pression F , the one-rule logic program

l← F, (l̄;not l̄)

is strongly equivalent to l← F .

5.2 Ferraris’s Translation from Causal Theories to Logic Programs

Ferraris [2] proposed a translation from McCain and Turner’s causal theories [15]
to logic programs with nested expressions. As causal theories can be easily con-
verted into UCL, we show that Ferraris’s translation is a special case of our
translation proposed in Section 4. First, we briefly review causal theories and
Ferraris’s translation, then we consider the relation to our translation.

A causal theory according to McCain and Turner [15] is a set of causal laws
of the following form

ψ ⇒ φ, (7)

where φ and ψ are propositional formulas.
Ferraris’s translation converts the causal law

ψ ⇒ l1 ∨ · · · ∨ ln, (8)

to the rule

l1; . . . ; ln ← not not ψne, (l̄1;not l̄1), . . . , (l̄n;not l̄n),

where ψne stands for the nested expression of ψ. Theorem 1 in [2] proved that
models of a set of causal laws in the form (8) are identical to complete answer
sets of the corresponding logic programs.

According to Turner [17], a causal law of the form (7) can be translated to
his logic as

ψ ⊃ Cφ. (9)

Thus given our translation from Turner’s logic to logic programming, we have
a translation from McCain and Turner’s causal theory to logic programming as
well.

A UCL formula of the form (9) is called regular. A regular UCL theory is a
set of regular UCL formulas.

Note that, when T is a regular UCL theory, formula (1) in Proposition 1 can
be simplified to ∧

F∈T

trp(F) ∧
∧

φ∈AtomC(T)

(aφ ⊃ φ). (10)

410 J. Ji and F. Lin

Proposition 3. Let T be a regular UCL theory. A UCL structure (I,S) is a
model of T if and only if there exists a model I∗ of formula (10) such that
I∗ ∩ Lit = I and for each φ ∈ AtomC(T), aφ ∈ I∗ iff S |= φ.

Based on Proposition 3, the translation in Section 4 can also be simplified.
Given a regular UCL theory T , we use tr′ne(T) to denote the nested expression
obtained from (10). We define tr′lp(T) the same as trlp(T) except trne(T) is
replaced by tr′ne(T).

Theorem 3. Let T be a regular UCL theory. An interpretation I is causally
explained by T if and only if there exists an answer set S of the logic program
tr′lp(T) ∪ {⊥ ← not a, not¬a | a ∈ Atom}, such that S ∩ Lit = I.

It is easy to find out that, for regular UCL theory T , tr′lp(T) is equivalent to
the result of Ferraris’s translation.

Our translation in Section 4 can also be specified by Ferraris’s translation.
First, a UCL theory can be converted to a regular UCL theory.

Theorem 4. Let T be a UCL theory. An interpretation I is causally explained
by T if and only if I is causally explained by the regular UCL theory with following
formulas

(1),

aφ ⊃ Cφ, (for each φ ∈ AtomC(T))

a′ ⊃ Ca′, ¬a′ ⊃ C¬a′. (for each a′ ∈ Atom′)

Then we can use Ferraris’s translation turning the regular UCL theory in the
above theorem to a logic program with nested expressions.

5.3 Lee’s Translation from Causal Theories to Propositional
Theories with Loop Formulas

Lee [9] proposed a translation from McCain and Turner’s causal theories to
propositional theories with loop formulas. In this section, we show that we can
also define so called “loop formulas” for our translation in Section 3 and Lee’s
translation would be a special case.

Given a set Π of propositional clauses, i.e. disjunctions of literals, the depen-
dency graph of Π is the directed graph GΠ such that

– the vertices of GΠ are literals in Π , and
– for any two vertices l1, l2, there is an edge from l1 to l2 if there is a clause

C ∈ Π such that l1 and l2 are in C.

A nonempty consistent set L of literals is called a loop of Π if for any literals
l1 and l2 in L, there is a path from l1 to l2 in GΠ such that all the vertices
in the path are in L, i.e. the L-induced subgraph of GΠ is strongly connected.
Specially, the singleton set {l} for every literal l ∈ Lit is a loop. We use Loop(Π)
to denote the set of all loops of Π .

UCL, Propositional Logic and Logic Programming 411

The loop formula associated with a loop L under a set Π of propositional
clauses, denoted by LF (Π,L), is a sentence of the form:∧

l∈L

l ⊃ ¬
∧

C∈Π

C|L→⊥ .

We can simplify the translation from UCL to propositional logic by loops.

Proposition 4. Let Π be a set of propositional clauses,

∧
C∈Π

C ∧
∧

L∈Loop(Π)

LF (Π,L) ⊃
∧

C∈Π

C ∧
∧

K⊆Lit
K is nonempty
and consistent

(∧
l∈K

l ⊃ ¬
∧

C∈Π

C|K→⊥

)
.

Proof. Let L ∈ Loop(Π), K a nonempty consistent set of literals s.t. L ⊆ K,
and there does not exist an edge of GΠ from a literal in L to a literal in K \ L.

There does not exist an edge of GΠ from a literal in L to a literal in K \ L,
then there does not exist a clause C in Π of the form

l1 ∨ · · · ∨ ln

such that li ∈ L and lj ∈ K \ L for some 1 ≤ i, j ≤ n. Thus, if C ∈ Π and
C ∩ L �= ∅, then C ∩ (K \ L) = ∅.

For each clause C ∈ Π , as L ⊆ K, there are three different cases.
Case 1, L∩C = ∅. If L∩C �= ∅, thenK∩C �= ∅, thus ¬C|L→⊥ ≡ ¬C|K→⊥ ≡ ⊥.

If L ∩ C = ∅, then ¬C|L→⊥ ≡ ¬C, thus C ∧ LF ({C}, L) ⊃ C ∧ (
∧

l∈K l ⊃
¬C|K→⊥).

Case 2, L ∩ C �= ∅, L ∩ C = ∅, and K ∩ C = ∅. From the above condition,
C ∩ (K \ L) = ∅, then ¬C|L→⊥ ≡ ¬C|K→⊥.

Case 3, K∩C �= ∅. Then ¬C|K→⊥ ≡ ⊥, thus C∧LF ({C}, L) ⊃ C∧(
∧

l∈K l ⊃
¬C|K→⊥).

Based on the above results,

∧
C∈Π

C ∧ LF (Π,L) ⊃
∧

C∈Π

C ∧
(∧

l∈K

l ⊃ ¬
∧

C∈Π

C|K→⊥

)
.

In addition, for every nonempty consistent set K of literals, there always exists
a loop L ⊆ K such that there does not exist an edge of GΠ from a formula in L
to a formula in K \ L. So the proposition is proved.

Given a UCL theory T , with a slight abuse of notations, we use Loop(T) to the
set of loops of the set of clauses which are in CNF of φ ∈ AtomC(T). Similarly,
we use Loopa(T) to the set of loops of the set of clauses which are in CNF of (1).

Theorem 5. Let T be a UCL theory. An interpretation I is causally explained
by T if and only if there exists a model I∗ of the propositional formula

412 J. Ji and F. Lin

(1) ∧
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)

∧
∧

A⊆Lita, A∈Loopa(T)

(∧
la∈A

la ⊃ ¬ forget
(
(1);Atom∗)∣∣

A→⊥

)

∧
∧

L∈Loop(T)

⎛⎝ ∧
l∈L

l̂ ⊃ ¬
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)
∣∣∣
L̂→⊥

⎞⎠ , (11)

such that I∗ ∩ Lit = I.

Similar to the discussion in the previous section, when T is a regular UCL
theory, the above theorem can be simplified.

Theorem 6. Let T be a regular UCL theory. An interpretation I is causally
explained by T if and only if there exists a model I∗ of the propositional formula∧

F∈T

trp(F) ∧
∧

φ∈AtomC(T)

(aφ ⊃ φ) ∧
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)

∧
∧

L∈Loop(T)

⎛⎝ ∧
l∈L

l̂ ⊃ ¬
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)
∣∣∣
L̂→⊥

⎞⎠ , (12)

such that I∗ ∩ Lit = I.

When each formula in the range of C is a clause in the regular UCL theory T ,
comparing the above theorem with Theorem 1 in [9], it is easy to find out that
formula (12) corresponds to DR(T) ∪ CLC(T) in Lee’s Theorem.

6 Conclusion

We have provided translations from Turner’s logic of universal causation to
propositional logic and logic programming. These translations generalize the
respective translations by Ferraris and Lee for McCain and Turner’s causal the-
ories. Our next step is to use these results to implement Turner’s logic using
SAT and ASP solvers.

It is worth mentioning here that our results in this paper can also be used to
map Turner’s logic to fixed-point nonmonotonic logics such as default logic [16]
and Lin and Shoham’s logic of GK [13,8].

Acknowledgments. This work had been supported by the National Hi-Tech
Project of China under grant 2008AA01Z150, the Natural Science Foundation of
China under grant 60745002 and 61175057, the USTC Key Direction Project, the
Fundamental Research Funds for the Central Universities, the Youth Innovation
Fund of USTC, and HK RGC GRF 616909 . We thank the anonymous reviewers
for their valuable comments on an earlier version of the paper.

UCL, Propositional Logic and Logic Programming 413

References

1. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M.,
Schaub, T.: Conflict-Driven Disjunctive Answer Set Solving. In: Brewka, G., Lang,
J. (eds.) Proceedings of the 11th International Conference on Principles of Knowl-
edge Representation and Reasoning, KR 2008, pp. 422–432. AAAI Press, Menlo
Park (2008)

2. Ferraris, P.: A logic program characterization of causal theories. In: Proceedings of
the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, pp.
366–371 (2007)

3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

4. Gelfond, M., Lifschitz, V., Przymusińska, H., Truszczyński, M.: Disjunctive De-
faults. In: Allen, J.F., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
KR 1991, pp. 230–237. Morgan Kaufmann, San Fransisco (1991)

5. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artificial Intelligence 153(1-2), 49–104 (2004)

6. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer Set Programming Based on
Propositional Satisfiability. J. Autom. Reasoning 36(4), 345–377 (2006)

7. Janhunen, T., Niemelä, I.: GNT — A Solver for Disjunctive Logic Programs. In:
Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 331–
335. Springer, Heidelberg (2003)

8. Ji, J., Lin, F.: From Turner’s Logic of Universal Causation to the Logic of GK.
In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS,
vol. 7265, pp. 380–385. Springer, Heidelberg (2012)

9. Lee, J.: Nondefinite vs. definite causal theories. In: Lifschitz, V., Niemelä, I. (eds.)
LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 141–153. Springer, Heidelberg (2003)

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7(3), 499–562 (2006)

11. Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Program-
ming Paradigm: a 25-Year Perspective, pp. 357–373. Springer (1999)

12. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25(3-4), 369–389 (1999)

13. Lin, F., Shoham, Y.: A logic of knowledge and justified assumptions. Artificial
Intelligence 57(2-3), 271–289 (1992)

14. Lin, F., Reiter, R.: Forget it. In: Working Notes of AAAI Fall Symposium on
Relevance, pp. 154–159 (1994)

15. McCain, N., Turner, H.: Causal theories of action and change. In: Proceedings of
the 14th National Conference on Artificial Intelligence, AAAI 1997, pp. 460–465
(1997)

16. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
17. Turner, H.: Logic of universal causation. Artificial Intelligence 113(1), 87–123

(1999)

Concrete Results on Abstract Rules

Markus Krötzsch, Despoina Magka, and Ian Horrocks

Department of Computer Science, University of Oxford, UK

Abstract. There are many different notions of “rule” in the literature. A key
feature and main intuition of any such notion is that rules can be “applied” to
derive conclusions from certain premises. More formally, a rule is viewed as a
function that, when invoked on a set of known facts, can produce new facts. In
this paper, we show that this extreme simplification is still sufficient to obtain a
number of useful results in concrete cases. We define abstract rules as a certain
kind of functions, provide them with a semantics in terms of (abstract) stable
models, and explain how concrete normal logic programming rules can be viewed
as abstract rules in a variety of ways. We further analyse dependencies between
abstract rules to recognise classes of logic programs for which stable models are
guaranteed to be unique.

1 Introduction

A large variety of different types of “rules” are considered in logic programming,
knowledge representation, production rule systems, and databases. While many rules
have a common background in predicate logic, there are still important differences be-
tween, say, normal logic programs [13], existential rules [3], and database dependencies
[1]. It is, however, highly desirable to transfer concrete results and insights between
these domains.

This goal is best illustrated by considering a concrete example. In a recent publica-
tion, the authors analyse nonmonotonic existential rules under a stable model semantics
[14]. The work identifies syntactic conditions to guarantee finiteness and uniqueness of
stable models, and shows how this can be applied to improve the performance of rea-
soning over real-world data. To fully exploit these ideas, this approach can be further
extended in at least two ways: (1) other types of logic rules, e.g., normal logic programs,
could be considered; (2) extend the scope of the approach for relevant special forms of
programs, e.g., for equality and datatype reasoning.

In terms of (2), the authors already extended their results by considering integrity
constraints [14]. Unfortunately, even this relatively small change required laborious ex-
tensions of all previous correctness proofs. While the structure of arguments remains
similar, each individual step now needs to take constraints into account. Following this
pedestrian approach, repeated effort is required for each modification in the underlying
language. With the continued elaboration of rule-based languages, important ideas of-
ten remain confined to one sub-area and are rather reinvented than being transferred.
For instance, the notion of rule dependency that was extended to nonmonotonic exis-
tential rules in [14] has first been proposed for conceptual graph rules in 2004 [2] and
rediscovered for databases in 2008 [4].

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 414–426, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Concrete Results on Abstract Rules 415

To address this issue, we propose to take a more abstract view on “rules” that can be
instantiated in many different cases. Our main intuition is that many kinds of rules can
be “applied” in certain sense to derive conclusions from premises. We formalise this by
viewing a rule as a function that, when invoked on a set of known facts, can produce
new facts. This is a rather natural view on rules. Our main contribution is to show that
this extreme simplification is still sufficient to derive interesting results that are easy to
instantiate in concrete cases. Our contributions are organised as follows.

– We define abstract rules and provide them with a semantics in terms of abstract
stable models that agrees with the standard notion of stable model semantics in
concrete cases (Section 2).

– We present operations for constructing abstract rules (Section 3) and establish sev-
eral strong equivalence results to show that these operations preserve our semantics
(Section 4).

– We reformulate the condition of R-stratification from [14] for abstract rules (Sec-
tion 5) and show that this condition leads to a unique stable model even in the
abstract case (Section 6).

– We apply our results to equality reasoning in normal logic programs and propose a
new approach for stratifying programs with equality using constraints (Section 7).

Proofs that are not included here can be found in an accompanying report [10].

2 Abstract Rules and Models

We consider a countable set B of basic logical expressions, which we think of as facts
that might be true or false in a given situation; subsets F ⊆B will therefore be called sets
of (abstract) facts. B contains a distinguished element⊥, which denotes a contradiction.

Definition 1. An abstract rule r is a function r : 2B→ 2B with the following properties.

– r is extensive: r(F)⊇ F for every F ⊆ B
– r is compact (or finitary): for every F ⊆ B and f ∈ r(F), there are finite sets

B+,B− ⊆ B with B+ ⊆ F and B− ∩F = /0, such that f ∈ r(F ′) for every set F ′

with B+ ⊆ F ′ and B−∩F ′ = /0.

If f ∈ r(F), we say that r derives f from F. A pair of minimal sets 〈B+,B−〉 that wit-
nesses the compactness property for the derivation f ∈ r(F) is called an abstract body
of r with respect to f and F.

An abstract program is a countable set of abstract rules, denoted P, possibly with
subscripts or primes. Uncountable rule sets are not considered herein.

A rule is monotone if F1 ⊆ F2 implies r(F1) ⊆ r(F2) for all sets of facts F1,F2 ⊆ B,
but this is not required by our definition. For monotone rules, every derivation has a
body 〈B+,B−〉 with B− = /0, as one would expect.

Example 1. A propositional logic programming rule is an expression of form H ←
B1, . . . ,Bn,not Bn+1, . . . ,not Bm, where B1, . . . ,Bm and H are propositional letters. It
can be viewed as an abstract rule r: let B be the set of propositional letters and define
r(F) := F ∪{H} if B1, . . . ,Bn ∈ F and Bn+1, . . . ,Bm /∈ F , and r(F) := F otherwise. An
abstract body is given by the sets B+ = {B1, . . . ,Bn} and B− = {Bn+1, . . . ,Bm}.

416 M. Krötzsch, D. Magka, and I. Horrocks

Note that this approach does not define a one-to-one correspondence of concrete
rules and abstract rules. For example, the rules A← A or A← A,B both lead to the same
abstract rule with r(F)=F . Thus our abstraction cannot capture any logic programming
semantics where the presence of such rules is relevant.

Example 2. A normal logic programming rule is an expression of form H←B1, . . . ,Bn,
not Bn+1, . . . ,not Bm, where B1, . . . ,Bm and H are predicate-logic atoms over some log-
ical signature. It can be viewed as an abstract rule r: let B be the set of all ground atoms
over the signature (the so-called Herbrand base), let Gr be the set of all ground instanti-
ations of r, and define r(F) :=

⋃
rg∈Gr

rg(F), where rg(F) is defined as for propositional
rules in Example 1. An abstract body for a ground fact Hg is obtained as the abstract
body for any ground instance rg that can be used to derive Hg from F .

Example 2 illustrates that abstract bodies may not be unique, since several ground
instantiations of a logic programming rule may have the same head but different bodies.

Example 3. Consider the Herbrand base B = {n(a),n(s(a)),n(s(s(a))), . . .}, and let
B≥1 denote the set B\ {n(a)}. Consider the following functions:

r1(F) := F ∪{n(a)} if B≥1 ⊆ F ; r1(F) := F otherwise (1)

r2(F) := F ∪{n(a)} if B≥1 �⊆ F ; r2(F) := F otherwise (2)

r3(F) := F ∪{n(a)} if F is finite; r3(F) := F otherwise (3)

Each of these functions is extensive. Function r1 is not an abstract rule: it is monotone
but depends on an infinite set B≥1 of premises, hence is not compact. Function r2 is
an abstract rule: for any fact f ∈ B≥1 such that f /∈ F , the sets B+ = /0 and B− = { f}
form a body of the derivation n(a) ∈ r2(F). A concrete representation of this rule along
the lines of Example 2 is n(a)← not n(s(X)), although this may not be syntactically
allowed in all logic programming approaches, since X occurs in negated atoms only.
Function r3 is not an abstract rule: it is nonmonotonic but there is no finite negative
body B− for any derivation (for finite F , we would get B+ = /0 and B− = B\F).

We can define the consequence operator TP for abstract rules as usual.

Definition 2. For a set of rules P and a set of facts F, we define TP(F) :=
⋃

r∈P r(F).
Moreover, we set T 0

P (F) := F, T i+1
P (F) := TP(T i

P(F)), and T ∞
P (F) :=

⋃
i≥0 T i

P(F).

Since we do not assume rules to be monotone, different orders of rule applications
might lead to very different sets of derived sets of facts, and in particular T ∞

P (F) may
not capture the desired semantics of the program. The next definition describes types of
derived sets of facts that are more suitable for defining the semantics of abstract rules.

Definition 3. Consider an abstract program P and a set of facts F0. A set of facts F is
well-supported for P and F0 if there is a well-founded partial order ≺ on F such that,
for every fact f ∈ F \F0, there is a rule r f ∈ P with body 〈B+

f ,B
−
f 〉 for f and F, and

f ′ ≺ f for all f ′ ∈ B+
f . We assume that the choice of r f and 〈B+

f ,B
−
f 〉 is part of each

well-supported set (there might be other choices, leading to other well-supported sets).
A set of facts F is an abstract model for a set of rules P and a set of input facts F0

if ⊥ /∈ F, F0 ⊆ F, and r(F) ⊆ F for every rule r ∈ P. An abstract stable model is a
well-supported abstract model.

Concrete Results on Abstract Rules 417

For the case of normal logic programming rules, our definition of well-supported
model agrees with that of Fages [7]. Our terminology is justified by Fages’s result that
well-supported models are exactly the (classical) stable models [7, Theorem 2.1]. We
obtain the following theorem as a corollary.

Theorem 1. The abstract stable models of a normal logic program P, viewed as a set
of abstract rules as in Example 2, are exactly the classical stable models of P.

Like in the classical case, TP can be used to compute models, which, however, may
not be well-supported.

Proposition 1. T ∞
P (F) is an abstract model for P and F.

Proof. Suppose for a contradiction that the claim does not hold. Then there is a rule
r ∈ P and a fact f ∈ r(T ∞

P (F)) with f /∈ T ∞
P (F). By compactness, there is a finite set

F ′ ⊆ T ∞
P (F) such that f ∈ r(F ′′) for every F ′ ⊆ F ′′ ⊆ T ∞

P (F). By construction of T ∞
P (F),

there is some i such that F ′ ⊆ T i
P(F). But then f ∈ r(T i

P(F)) by compactness, and hence
f ∈ T i+1

P (F)⊆ T ∞
P (F)—a contradiction. ��

The well-founded order ≺ in Definition 3 leaves a lot of flexibility for establishing
that a set is well-supported. Due to compactness, however, it is generally enough to
order facts by a finite rank that can be expressed as a natural number.

Proposition 2. If F is well-supported for P and F0, then this is witnessed by an order
≺ such that 〈F,≺〉 has an order-preserving injection into the natural numbers 〈N,<〉.

Proof. Since F is well-supported, there is an order ≺0 as in Definition 3. For each fact
f ∈ F \F0, there is a rule r f ∈ P and a body 〈B+

f ,B
−
f 〉 as in Definition 3. The order ≺1

on F is the transitive closure of the set { f ′ ≺1 f | f ′ ∈ B+
f }. Clearly, ≺1 ⊆ ≺0, so ≺1

is well-founded. By definition, ≺1 can be used to show that F is well-supported, using
the same choice of rules r f and bodies B+

f as for ≺0.
We claim that for every fact f ∈ F , the set f↓ := { f ′ | f ′ ≺1 f} is finite (∗). Indeed,

by construction, f↓ = ⋃
f ′∈B+

f
f ′↓. The claim follows by well-founded induction: if f ′↓

is finite for all f ′ ≺1 f , then f ′↓ is finite for all f ′ ∈ B+
f , and thus f↓ is finite, too.

To construct a total well-founded order≺ as required in the claim, we re-order the el-
ements of F as a sequence. Since F is countable, there is an injective mapping ι : F →N

from F to natural numbers. We recursively construct a (possibly infinite) sequence
f1, f2, . . . of facts from F as follows. To select fi, consider the set of ≺1-minimal el-
ements Mi in the set F \{ f1, . . . , fi−1}. If Mi = /0 then there is no fi and the construction
terminates with a finite sequence. Otherwise, define fi ∈Mi to be the ι-smallest element
of Mi, i.e., ι(fi)≤ ι(f) for all f ∈Mi.

We claim that the constructed sequence S = { f1, f2, . . .} contains exactly the ele-
ments of F . For a contradiction, suppose that there is an element f ∈ F \ S. By (∗), the
set { f}∪ f↓ is finite. Consider the set M := { f}∪ f↓ \ S. By our assumptions, f ∈M,
so M is finite but not empty. Thus there is a ≺1-minimal element f ′ in M, which is also
a ≺1-minimal element of F \ S. As there are only finitely many elements in F that are
≺1-smaller than f ′, there is a finite index j such that f ′ is a ≺1-minimal element of

418 M. Krötzsch, D. Magka, and I. Horrocks

F \{ f1, . . . , f j}. There are at most ι(f ′)−1 many elements that can be added to S after
f j, before f ′ must also be added. Thus f ′ ∈ S, which contradicts our assumptions.

We define the order≺ on F by setting fi ≺ f j for all i < j. This makes ≺ a suborder
of 〈N,<〉, and thus well-founded. Moreover,≺1 ⊆ ≺, so ≺ can be used to show that F
is well-supported. ��

3 Constructing Abstract Rules

The examples given so far mainly show that abstract rules can capture normal logic pro-
grams. In this section, we show that they are significantly more general, even on a base
set of facts B that is the Herbrand base of a predicate logic signature. For this purpose,
we introduce various operations for constructing new abstract rules from existing ones,
and show that these operation preserve stable model semantics (Section 4). The basic
operations we consider are union, composition and saturation of rules.

Definition 4. Let P be a program. The union
⋃

P of P is defined by setting (
⋃

P)(F) :=⋃
r∈P r(F) if P �= /0. For P = /0, we define (

⋃
/0)(F) := F.

The intersection
⋂

P of P is defined as (
⋂

P)(F) :=
⋂

r∈P r(F) if P �= /0. For P = /0,
we define (

⋂
/0)(F) := B.

Example 4. The abstract rule induced by a normal logic programming rule as in Exam-
ple 2 is the infinite union of the abstract rules obtained from its ground instantiations.
Likewise, the one-step TP operator of Definition 2 is the abstract rule

⋃
P. Intersections

of rules are the abstract counterpart to conjunctions in rule bodies. For example, the in-
tersection of the rules q← p1 and q← p2,not p3 can be expressed as q← p1, p2,not p3.

Intersections of abstract rules do not always result in abstract rules. For example, the
function in (1), which is not compact, can be viewed as the intersection of the infinite
set of all rules n(a)← n(si(a)) with i ≥ 1. However, abstract rules are closed under
infinite unions and finite intersections, as shown next.

Theorem 2. The union
⋃

P of an abstract program P is an abstract rule. If P is finite,
then the intersection

⋂
P is also an abstract rule.

Proof. First consider
⋃

P. For all r ∈ P we find F ⊆ r(F) by extensiveness; hence
F ⊆⋃

r∈P r(F) =
⋃

P(F) and
⋃

P is extensive. If P = /0 then (
⋃

P)(F) = F , so for any
derivation f ∈ (

⋃
P)(F) the sets B+ = { f} and B− = /0 show compactness of (

⋃
P).

If P �= /0 then, for any fact f ∈ (
⋃

P)(F), there is a rule r ∈ P such that f ∈ r(F); this
implies the existence of suitable sets B+ and B− to show compactness of

⋃
P.

Now assume that P is finite and consider
⋂

P. Extensiveness of
⋂

P is again immedi-
ate from the extensiveness of rules in P. If P = /0 then (

⋂
P)(F) = B, so for any deriva-

tion f ∈ (
⋂

P)(F) the sets B+ = B− = /0 show compactness of (
⋂

P). If P �= /0 then, for
any fact f ∈ (

⋂
P)(F) and any rule ri ∈ P, we find sets B+ and B− by compactness of

the derivation f ∈ ri(F). Thus, the sets
⋃

ri∈P B+
i and

⋃
ri∈P B−i show compactness of

(
⋂

P). In particular, these sets are finite since P is. ��

Another interesting type of operations is based on functional composition.

Concrete Results on Abstract Rules 419

Definition 5. The composition r2 ◦ r1 of r1 and r2 is the function with (r2 ◦ r1)(F) :=
r2(r1(F)). The n-iteration rn of a rule r is the n-fold composition with itself, i.e., r0

is the identity function and ri+1 = r ◦ ri. The saturation r∞ of r is the union of all its
n-iterations, i.e., r∞ :=

⋃{ri | i≥ 0}.

Example 5. Iterations of the TP operator of Definition 2 are equivalent to iterations of
abstract rules: T i

P = (
⋃

P)i and T ∞
P = (

⋃
P)∞.

Example 6. In general, composition does not preserve compactness. Consider the rules
r1 : q← p(X) and r2 : r← not q over the infinite base B= {q,r, p(a), p(s(a)), . . .}. The
composition r2 ◦ r1 can be described as

(r2 ◦ r1)(F) = r1(F)∪
{
{r} if p(sn(a)) /∈ F for all n≥ 1
/0 otherwise.

Thus, for every choice of finite sets 〈B+,B−〉, there is a set F ′ with B+ ⊆ F ′ and B−∩
F ′ = /0 such that r /∈ (r2 ◦ r1)(F ′). The function r2 ◦ r1 is not compact.

Theorem 3. Let r1 and r2 be abstract rules. If r2 is monotone, then r2 ◦ r1, rn
2 for all

n≥ 0, and r∞
2 are abstract rules.

Proof. Consider r2 ◦ r1. Extensiveness of r1 and r2 yields F ⊆ r1(F) ⊆ r2(r1(F)) =
(r2 ◦ r1)(F). For compactness, consider some f ∈ (r2 ◦ r1)(F). By compactness of r2,
we find finite sets B+

2 and B−2 for deriving f from r1(F). Since r2 is monotone, we
can assume without loss of generality that B−2 = /0. As B+

2 is finite, it has the form
{ f1, . . . , fm}. For each fi ∈ B+

2 , there are sets B+
1i and B−1i that show compactness of the

derivation fi ∈ r1(F). The sets B+ =
⋃m

i=1 B+
1i and B− =

⋃m
i=1 B−1i show the compactness

of the derivation f ∈ (r2 ◦ r1)(F).
The claim for rn follows by induction: the result is clear for r0, and the induction step

follows from the result for composition. The claim for saturation follows by combining
the results for n-iteration and Theorem 2. ��

4 Strong Equivalence of Abstract Programs

Logic programs P1 and P2 are strongly equivalent if the programs P∪P1 and P∪P2 have
exactly the same stable models for any program P and set of facts F0 [12,16]. We apply
the same definition to abstract logic programs.

Theorem 4. Every abstract logic program P is strongly equivalent to {⋃P}.

Proof. To simplify the proof, we use the following auxiliary definition. An abstract
program P1 is subsumed by an abstract program P2, written P1 P2, if the following
holds: for every rule r1 ∈ P1 and derivation f ∈ r1(F) with a body 〈B+,B−〉, there is
a rule r2 ∈ P2 and derivation f ∈ r2(F) for which 〈B+,B−〉 is also a body. Clearly,
P {⋃P} and {⋃P} P.

To complete the proof, we show some general properties of subsumption. Consider
a set of facts F0 and abstract programs P1 and P2.

420 M. Krötzsch, D. Magka, and I. Horrocks

1. If P1 P2, then every well-supported set for P1,F0 is well-supported for P2,F0.
2. If P2 P1, then every model of P1,F0 is a model of P2,F0.
3. If P1 P2 and P2 P1, then P1 and P2 are strongly equivalent.

The overall claim thus is an immediate consequence of the last item.
Assume that P1 P2 and that F is well-supported for P1,F0 using the order≺. Then

for every f ∈ F there is a rule r1 ∈ P1 such that f ∈ r1(F) has a body 〈B+,B−〉 in F
with f ′ ≺ f for all f ′ ∈ B+. Since P1 P2, there is a rule r2 ∈ P2 with f ∈ r2(F) and the
same body.

Assume that P2 P1 and that F is a model for P1,F0. Suppose for a contradiction
that F is not a model of P2,F0. Then there is a rule r2 ∈ P2 and a fact f ∈ r2(F)\F. By
P2 P1, there is a rule r1 ∈ P1 with f ∈ r1(F). This contradicts the assumptions that F
is a model of P1,F0.

Assume that P1 P2 and P2 P1, and let P be an arbitrary abstract program. Clearly,
P∪P1 P∪P2 and P∪P2 P∪P1. Thus, by the first two properties, every stable model
of P∪P1 and F0 is also a stable model of P∪P2 and F0, and vice versa. ��

It is easy to see that intersection
⋂

P does not lead to strong equivalence. However,
we can establish relevant results for composition, iteration, and saturation. The proof
of the following result uses Proposition 2 to construct the well-founded order that is
needed to show that a model is stable.

Proposition 3. For monotone rules r1 and r2, {r1,r2} is strongly equivalent to {r2◦r1}.

Theorem 5. For a monotone rule r, all of the programs {r}, {rn} for n ≥ 2, and {r∞}
are pairwise strongly equivalent.

Proof. The strong equivalence of {r} and {rn} for any n ≥ 2 is shown by induction.
By Proposition 3, {rn+1} is strongly equivalent to {r,rn}. By induction {rn} is strongly
equivalent to {r}, so that {r,rn} is strongly equivalent to {r,r}= {r} as required.

For the limit {r∞}, note that {r∞}= ⋃{rn | n≥ 1} is strongly equivalent to {rn | n≥
1} by Theorem 4. The result follows as each {rn} is strongly equivalent to {r}. ��

5 Reliances and Stratifications

Stable models can not always be computed by applying rules in a bottom-up fashion.
Due to nonmonotonicity, a rule that was applicable initially may no longer be applicable
after further facts have been derived. Conversely, it can also happen that one rule is
applicable only after another rule has been applied. Both types of relationships between
rules are useful to gain insights about the stable models of a given program and to guide
the computation of stable models.

We are interested in two types of dependencies, which we call reliances to avoid
confusion with existing notions: negative reliance (the application of a rule may inhibit
the application of another rule) and positive reliance (the application of a rule may
enable the application of another rule). In both cases we ask whether this interaction of
rules can occur during a normal derivation, i.e., when considering some set of (already
derived) facts. We could just consider arbitrary sets of facts here, but we can obtain

Concrete Results on Abstract Rules 421

stronger results if we restrict attention to fact sets which can actually occur during the
derivation of a stable model. For the next definition, recall that the notation r f and
〈B+

f ,B
−
f 〉 was introduced for well-supported sets in Definition 3.

Definition 6. Given a rule r and finite sets B+ and B−, we say that f follows from
〈B+,B−〉 by r if f ∈ r(F) for every set F ⊆ B with B+ ⊆ F and B−∩F = /0.

Let D ⊆ 2B be a set of sets of facts that are admissible as input. A set F ⊆ B is
derivable from D and P if there is a set F0 ∈D such that F is well-supported for P and
F0, and for all f ∈ F \F0 we have: f ′ ∈ r(F ′) for all f ′ that follow from 〈B+

f ,B
−
f 〉 by r f .

Intuitively, derivable sets are well-supported sets that contain all the facts that must
certainly follow when from the rule applications that establish well-supportedness. The
use of D allows us to consider all sets of facts as admissible inputs (if D = 2B) or to
restrict attention to a single input F0 (if D = {F0}). A common restriction in Datalog
rules is that some “intensional” predicate symbols are not allowed in the input, while in
existential rules one does not allow function symbols in input facts, although (skolem)
functions may occur in derivations. When irrelevant or clear from the context, we speak
of derivable sets without mentioning D and P explicitly.

Definition 7. A rule r2 positively relies on a rule r1, written r1
+−→ r2, if there is a

derivable set of facts F with ⊥ /∈ F such that there is a fact f2 ∈ F with r f2 = r2, and a
fact f1 ∈ B+

f2
with r f1 = r1.

A rule r2 negatively relies on a rule r1, written r1
−−→ r2, if there is a derivable set of

facts F, a derivation f2 ∈ r2(F) with body 〈B+
2 ,B

−
2 〉, and a derivation f1 ∈ r1(F)∩B−2

with body 〈B+
1 ,B

−
1 〉, such that ⊥ does not follow from 〈B+

1 ,B
−
1 〉 by r1.

In both cases, ⊥ is taken into account to exclude situations where the application of
r1 leads to an inconsistency.

In practice, it may not always be possible to compute +−→ and −−→ exactly. For ex-
ample, it may be difficult to determine if a certain set is derivable (based on a given
choice of D). However, all of our results remain correct when working with larger rela-
tions instead of +−→ and −−→. Therefore, a practical algorithm may overestimate reliances
without putting correctness at risk.

Example 7. A very simple overestimation of reliances on normal logic programs is
related to the classical notion of stratification. Consider logic programming rules r1 and
r2. We write r1 �+ r2 if a predicate symbol that occurs in the head of r1 occurs in a
non-negated body atom of r2, and r1 �− r2 if a head predicate symbol of r1 occurs in a
negated body atom of r2. It is easy to see that +−→⊆�+ and −−→⊆�−.

Example 8. A more elaborate notion of reliance was recently developed for existential
rules by the authors [14]. Existential rules are first skolemised, which leads to normal
logic programs where each function symbol occurs in the head of exactly one rule and
in no rule bodies. Functions are not allowed in input fact sets either. In this special case,
one can find all positive and negative reliances by considering only sets of facts F that
contain no function symbols. It has been shown that, for programs that do not use ⊥,
checking r1

+−→ r2 is NP-complete, while r1
−−→ r2 can be checked in polynomial time

[14]. This is an exact computation of the relations of Definition 7 for this specific case,
not an overestimation.

422 M. Krötzsch, D. Magka, and I. Horrocks

Definition 8. Consider a program P and a (finite or countably infinite) sequence of
disjoint sets P = 〈P1,P2, . . .〉 with

⋃
Pi∈P Pi = P. P is an R-stratification of P if, for all

rules r1 ∈ Pi and r2 ∈ Pj,

– if r1
+−→ r2 then i≤ j;

– if r1
−−→ r2 then i < j.

If P has an R-stratification then it is called R-stratifiable.

It should be noted how reliances interact with unions of rules. Any R-stratification
of P∪{⋃P′} gives rise to an R-stratification of P∪P′, while the converse is not true
in general. This is analogous to the relationship of classical stratification (considering
normal rules as unions of their groundings as in Example 4) to local stratification (con-
sidering stratification on the infinitely many ground instances [15]). It also illustrates
that our approach can capture (and extend) both of these ideas.

6 Computing Stable Models of Stratified Rule Sets

We now show that R-stratified abstract programs have at most one stable model, which
can be obtained by deterministic computation. For programs that have a finite stratifi-
cation, this leads to a semi-decision procedure for entailment, provided that the given
abstract rules are computable functions.

Definition 9. Given a stratification P = 〈P1,P2, . . .〉 of P, we define

S0
P(F) := F, Si+1

P (F) := T ∞
Pi+1

(Si
P(F)), S∞

P (F) :=
⋃

Pi∈P

Si
P(F).

For the remainder of this section, let P denote an R-stratified program with R-
stratification P = 〈P1,P2, . . .〉, and let F denote an admissible set of facts, i.e., F ∈ D .
We use the abbreviations Pm

1 :=
⋃m

i=1 Pi, P0
1 := /0, and Si

P := Si
P(F). The main result that

we will show in this section is the following.

Theorem 6. If⊥ /∈ S∞
P then S∞

P is the unique stable model of P and F. Otherwise, P and
F do not have a stable model.

Lemma 1. For every Pj ∈ P and �≥ 0, if ⊥ /∈ T �
Pj
(S j−1

P) then T �
Pj
(S j−1

P) is derivable.

Proof. For any i ≥ 1 and k ≥ 0, we use the abbreviation T k
i := T k

Pi
(Si−1

P). We define a
well-founded partial order ≺ on S∞

P by setting f1 ≺ f2 for facts f1, f2 ∈ S∞
P iff there are

numbers i,k ≥ 0 such that f1 ∈ T k
i+1 and f2 /∈ T k

i+1.
We proceed by induction over the derivation steps, i.e., we assume that T k

i is deriv-
able for all i,k such that i < j, or i = j and k < �. Consider an arbitrary fact f ∈ T �

j . Let

Pi ∈ P and k ≥ 0 be such that f was first derived in T k
i . If k = 0, then i = 1 and f ∈ F

(since all facts in T 0
i for i > 0 do already occur in an earlier iteration T m

i−1 for some
m≥ 1); in this case, f clearly satisfies the conditions of derivability.

If k > 0, then there is a rule r ∈ Pi such that f ∈ r(T k−1
i). Let 〈B+,B−〉 be a body for

this derivation with respect to T k−1
i . We claim that 〈B+,B−〉 is also a body for f ∈ r(T �

j).

Concrete Results on Abstract Rules 423

Clearly, B+ ⊆ T k−1
i ⊆ T �

j , and thus f̂ ≺ f for every f̂ ∈ B+. Moreover, we show that

B−∩T �
j = /0. By definition, B−∩T k

i = /0. Now suppose for a contradiction that B−∩T �
j �=

/0. Then there is a rule r′ ∈ Pi′ and a number k′ such that B−∩ r′(T k′
i′) �= /0, where either

i < i′, or i = i′ and k≤ k′, and also i′ < j, or i′ = j and k′ < �. By induction hypothesis,
T k′

i′ is derivable. Since ⊥ /∈ T �
j , we also have ⊥ /∈ r′(T k′

i′). Hence r′ −−→ r; together with

i≤ i′ this contradicts the assumed stratification. Hence 〈B+,B−〉 is a body for f ∈ r(T �
j).

This establishes the conditions for well-supportedness of f . The remaining conditions
for derivability are immediate by construction, since r(T k−1

i)⊆ T �
j . ��

Lemma 2. Consider numbers i ≤ j with Pi,Pj ∈ P, and a rule r ∈ Pi. If ⊥ /∈ S j
P then

r(S j
P)⊆ S j

P.

Proof. By Proposition 1, r(Si
P)⊆ Si

P. Now consider j > i. Suppose for a contradiction
that r(Si

P) �⊆ S j
P. There is k > i and � ≥ 0 with T �

k := T �
Pk
(Sk−1

P) such that r(T �
k) ⊆ S j

P

and r(T �+1
k) �⊆ S j

P. Thus, there is a fact f ∈ r(T �+1
k) \ S j

P. Let 〈B+,B−〉 be a body for
this derivation.We have B+ �⊆ T �

k . Thus there is a fact f ′ ∈ B+ \ T �
k that is derived by

a rule r′ ∈ Pk from T �
k . By Lemma 1, T �+1

k is derivable, where r f ′ = r′. Since ⊥ /∈ S j
P

and T �+1
k ⊆ S j

P, also ⊥ /∈ T �+1
k . Hence r′ +−→ r. Together with i < j this contradicts the

assumed stratification. ��

Proposition 4. If ⊥ /∈ S∞
P then S∞

P is a stable model of P and F.

Proof. For every r ∈ P and every derivation f ∈ r(S∞
P), there is a body 〈B+,B−〉 by

compactness. Since B+ is finite, there is some n ≥ 0 such that B+ ⊆ Sn
P. By Lemma 2,

f ∈ Sn
P. Hence S∞

P is a model of P and F .
For every n ≥ 0, Sn

P is well-supported by Lemma 1. Let ≺n be an according well-
founded order that is a suborder of 〈N,<〉, which exists by Proposition 2. We construct
a suitable order ≺ to show well-supportedness of S∞

P as follows. For every n≥ 1, let Ln

be the set Sn
P \ Sn−1

P , ordered by the well-founded order ≺n (restricted from Sn
P to Ln).

We now define ≺ to be the transitive closure of the following set:

{ f1 ≺ f2 | f1, f2 ∈ Ln, f1 ≺n f2}∪{ f1 ≺ f2 | f1 ∈ Ln, f2 ∈ Lm,n < m}.

This order is well-founded (it can clearly be embedded into the ordinal ω2, since every
≺i can be embedded into ω). If f1, f2 ∈ Sn

P and f1 ≺n f2, then f1 ≺ f2. Therefore,
the bodies used to show well-foundedness of a fact f ∈ Ln can be used to show well-
foundedness of f ∈ S∞

P . ��

The final ingredient to the proof of Theorem 6 is the following lemma. In the classi-
cal case, an analogous result was shown by taking advantage of the Gelfond-Lifschitz
reduct of P [14]. Since this is not available for abstract rules, we need to take a very
different approach, using an induction over the sets of facts in M for which well-
foundedness is established by a rule from stratum Pk or below.

Lemma 3. If M is a stable model of P and F, then S∞
P = M.

424 M. Krötzsch, D. Magka, and I. Horrocks

Proof (of Theorem 6). If ⊥ /∈ S∞
P then by Proposition 4, S∞

P is a stable model of P and
F . Together with Lemma 3 this implies that S∞

P is the unique stable model of P and F .
If ⊥ ∈ S∞

P suppose for a contradiction that M is a stable model of P and F . Then by
Lemma 3, S∞

P = M, which contradicts the fact that ⊥ /∈M. ��

7 Stratifying Programs with Equality

In this section, we apply the previous results to show how a normal logic program
with equality may be stratified. Classical logic programming engines support syntactic
(term) equality that is easy to handle: it may only occur in the body of a rule. In contrast,
equality generating dependencies in databases are rules that may infer new equalities
between domain elements [1]. Inferred equality also plays a major role in ontology lan-
guages, which can be processed with answer set programming engines [6]. Fortunately,
the special characteristics of equality can be fully expressed by logic programming
rules, using the following well-known equality theory:

X ≈ X ← (4)

X ≈ Y ← Y ≈ X (5)

X ≈ Z ← X ≈ Y,Y ≈ Z (6)

p(X1, . . . ,Y, . . . ,Xn)← X ≈ Y, p(X1, . . . ,X , . . . ,Xn) (7)

where a rule of the form (7) is required for every n-ary predicate p (in a given program
P), and every position of X within that predicate. We call this logic program P≈. While
this approach allows logic programs to support equality without defining a special se-
mantics, it has severe effects on stratification.

Example 9. Consider the program P that consists of the following rules

human(X)← biped(X),not bird(X) (8)

Y ≈ Z ← human(X),birthplace(X ,Y),birthplace(X ,Z) (9)

together with a suitable equality theory P≈ for the predicates used therein. Rule r(9)

states that each human has at most one birthplace. Let rbird denote the version of rule
(7) in P≈ for predicate bird. Now P cannot be R-stratified: if all set of ground facts are
allowed as input, we have r(8)

+−→ r(9)
+−→ rbird

−−→ r(8).

The previous example illustrates the fact that the equality theory leads to almost ar-
bitrary reliances between otherwise unrelated rules, thus preventing stratification. This
potential interaction is hardly desirable in this case, since no bird can ever be a birth-
place. In [14] the authors have proposed the use of constraints to reduce the amount of
reliances. We can obtain a similar effect using abstract rules.

Example 10. Consider the constraint r⊥ : ⊥ ← bird(X),birthplace(Y,X) and the pro-
gram P of Example 9. Define the program P′ := {r⊥ ◦ r | r ∈ P}, which immediately
applies the constraint after each rule application. Instead of r(9)

+−→ rbird, we now find
(r⊥ ◦ r(9)) �+−→ (r⊥ ◦ rbird) since ⊥ is derived in all cases where the reliance could oc-
cur. Unfortunately, this approach still fails to make P′ R-stratifiable, since we still find
(r⊥ ◦ r(8))

+−→ (r⊥ ◦ r(9))
+−→ (r⊥ ◦ r(5))

+−→ (r⊥ ◦ rbird)
−−→ (r⊥ ◦ r(8)).

Concrete Results on Abstract Rules 425

The symmetry rule (5) is used in the previous example to ensure that every reliance
can be shown without violating the constraint. This is unfortunate since the program
has only at most one unique stable model: in all situations where the chain of reliances
of the example is mirrored by an actual chain of rule applications, the constraint r⊥
must be violated. This problem can be overcome by incorporating equality reasoning
into each rule application as follows.

Example 11. Let P≈ denote the equality theory for rules (8) and (9). Define a rule r̂ :=
r⊥◦(

⋃
P≈)∞, and rules r1 := r̂◦r(8) and r2 := r̂◦r(9). Note that these are indeed abstract

rules by Theorem 3. Admissible input sets D are defined to be all models of r̂. Then the
program {r1,r2} is R-stratified, and the only reliance is r1

+−→ r2. By Theorems 4 and 5,
as well as Proposition 3, the stable models of {r1,r2} are identical to the stable models
of P′ from Example 10. By Theorem 6, P′ thus has a unique stable model whenever it
is satisfiable.

The previous example outlines an interesting general approach to analyse the effects
of equality. More important, however, is the fact that we have defined this extension
and verified its key properties in a few lines. In contrast, the extension with constraints
sketched in Example 10 originally required several pages of correctness proofs [14]. A
major goal of our abstract framework is to extract the common ideas of such proofs,
to provide an easy-to-use toolbox for establishing similar properties for many different
scenarios and kinds of rules.

8 Conclusions

In this work, we proposed an abstract framework for studying logic programs, where
rules are simply viewed as functions over an abstract set of derivable facts. We have
shown that recent results on stratification and stable models can be lifted to this general
case, and how these results can be instantiated to obtain a new approach for dealing with
equality in logic programs. This result also takes advantage of a variety of semantic-
preserving algebraic operations that we have introduced to construct abstract rules.

The purpose of this work is to demonstrate how abstract rules can serve as a power-
ful framework for establishing universal results about rule-based reasoning, which can
readily be instantiated in concrete cases. There are numerous directions into which this
research can be extended next. An obvious step is to define abstract notions of other se-
mantics, such as the well-founded semantics, and to lift other relevant conditions, such
as order consistency [8] and acyclicity [9,4,11]. In each case, new concrete applications
of these results should be established, thus bridging gaps between different areas where
rule languages are considered. Finally, even our basic notion of abstract rule may still
be extended further, e.g., by allowing rules to retract facts. Moreover, our approach does
not cover disjunctive rules, although these can often be simulated using nonmonotonic
negation by rewriting p→ q1∨q2 as p,not q1 → q2 and p,not q2 → q1 [5].

Besides extensions of the abstract rules framework, it is also worthwhile to explore
further application areas for these notions. All examples given herein are based on nor-
mal logic programs. Our treatment of equality shows that this already allows interesting
applications, but it would also be interesting to consider different notions of rules. Pos-
sible candidates are rules that support datatype reasoning and data-related constraints.

426 M. Krötzsch, D. Magka, and I. Horrocks

Acknowledgements. This work was supported by the Royal Society, the Seventh Frame-
work Program (FP7) of the European Commission under Grant Agreement 318338,
‘Optique’, and the EPSRC projects ExODA, Score! and MaSI3.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
2. Baget, J.F.: Improving the forward chaining algorithm for conceptual graphs rules. In:

Dubois, D., Welty, C.A., Williams, M.A. (eds.) Proc. 9th Int. Conf. on Principles of Knowl-
edge Representation and Reasoning, KR 2004, pp. 407–414. AAAI Press (2004)

3. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables: Walk-
ing the decidability line. Artificial Intelligence 175(9-10), 1620–1654 (2011)

4. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo, D.
(eds.) Proc. 27th Symposium on Principles of Database Systems, PODS 2008, pp. 149–158.
ACM (2008)

5. Eiter, T., Fink, M., Tompits, H., Woltran, S.: On eliminating disjunctions in stable logic
programming. In: Dubois, D., Welty, C.A., Williams, M.A. (eds.) Proc. 9th Int. Conf. on
Principles of Knowledge Representation and Reasoning, KR 2004, pp. 447–458. AAAI Press
(2004)

6. Eiter, T., Krennwallner, T., Schneider, P., Xiao, G.: Uniform evaluation of nonmonotonic
DL-programs. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 1–22.
Springer, Heidelberg (2012)

7. Fages, F.: A new fixpoint semantics for general logic programs compared with the well-
founded and the stable model semantics. New Generation Comput. 9(3/4), 425–444 (1991)

8. Fages, F.: Consistency of Clark’s completion and existence of stable models. Meth. of Logic
in CS 1(1), 51–60 (1994)

9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answer-
ing. Theoretical Computer Science 336(1), 89–124 (2005)

10. Krötzsch, M., Magka, D., Horrocks, I.: Concrete results on abstract rules. Tech. rep., Univer-
sity of Oxford (2013), http://korrekt.org/page/Publications

11. Lierler, Y., Lifschitz, V.: One more decidable class of finitely ground programs. In: Hill, P.M.,
Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 489–493. Springer, Heidelberg (2009)

12. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans.
Comput. Logic 2(4), 526–541 (2001)

13. Lloyd, J.W.: Foundations of Logic Programming. Springer (1988)
14. Magka, D., Krötzsch, M., Horrocks, I.: Computing stable models for nonmonotonic exis-

tential rules. In: Proc. 23rd Int. Joint Conf. on Artificial Intelligence, IJCAI 2013. AAAI
Press/IJCAI (to appear, 2013)

15. Przymusinski, T.C.: On the declarative and procedural semantics of logic programs. J. Au-
tom. Reasoning 5(2), 167–205 (1989)

16. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints.
TPLP 3(4-5), 609–622 (2003)

http://korrekt.org/page/Publications

Linear Logic Programming for Narrative

Generation

Chris Martens1, Anne-Gwenn Bosser2, João F. Ferreira2, and Marc Cavazza2

1 Carnegie Mellon University
2 Teesside University

Abstract. In this paper, we explore the use of Linear Logic program-
ming for story generation. We use the language Celf to represent nar-
rative knowledge, and its own querying mechanism to generate story
instances, through a number of proof terms. Each proof term obtained is
used, through a resource-flow analysis, to build a directed graph where
nodes are narrative actions and edges represent inferred causality rela-
tionships. Such graphs represent narrative plots structured by narrative
causality. This approach is a candidate technique for narrative genera-
tion which unifies declarative representations and generation via query
and deduction mechanisms.

Keywords: Linear Logic Programming, Narrative Modelling, Celf.

1 Introduction

Linear Logic [5] has recently been proposed as a suitable representational model
for narratives [2]: its resource-sensitive nature allows to naturally reason about
narrative actions and the changes they cause in the environment. In this pa-
per, we explore Linear Logic programming as a tool for narrative representation
and narrative generation. We describe how initial circumstances and narrative
actions can be declared in the Linear Logic programming language Celf [11]
and how using Celf’s search mechanism allows the generation of proof terms
which can be interpreted as causally structured narrative plots. To improve
narrative analysis, we developed a prototype front-end to Celf. We illustrate
how to use story material to program and generate a variety of plots using the
novel Madame Bovary [4]: its narrative causal structure has been emphasized
in Flaubert’s working material [8]. Preliminary results are encouraging, allowing
the generation of story variants through a methodical programming approach.

2 Related Works

Narratives have always been an important topic for research in AI for their
role as knowledge structures [12] and recent years have seen the widespread
adoption of planning techniques for the construction of narrative generation
systems [14], mostly because they support the representation of causality. Linear

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 427–432, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

428 C. Martens et al.

Logic provides an expressive model of action and change (information revision
is dealt with at the level of the logical rules through the linear implication)
which has led previous work to explore its suitability for narrative representation
using a story-as-proof analogy [2]. The intractability of proof search in expressive
fragments of Linear Logic has led to the use of a proof assistant [3] for story
generation and for evidencing properties transcending all narratives in a semi-
automated manner. Support of narrative causality at the logical level is also
an advantage when compared with standard logic programming approaches to
narrative generation [13]. LolliMon [9] and Celf [11] are recent systems that
have extended Lolli [7] (which follows a goal-directed backward proof-search
interpretation in the intuitionistic fragment of Linear Logic) and where forward
and backward chaining phases may be controlled by the programmer using a
monad. We refer the reader to [10] for an overview and application survey.

3 Programming a Narrative

3.1 A Celf Program Describing a Narrative

Celf1 [11] uses dependent types for the representation of logical predicates; this
approach to logic programming means that the result of a query is a term of
the corresponding type, which can be analysed as a computational artefact. Celf
programs are normally divided into two main parts: a signature, which is a
declaration of type and terms constants describing data and transitions, and
query directives, defining the problem for which Celf will try to find solutions
(proof terms showing that a given type is inhabited).

The technique used by Celf to compute proof terms is called focusing, based on
the foundations of Focused Linear Logic [1] interpreted as Monadic Concurrent
Logic Programming [9]: Celf gives the programmer control over when to enter a
forward-chaining phase, which may use synchronous connectives, through the use
of a monad (denoted using curly brackets {. . .}). The search triggered by a query
in Celf begins in a backward-chaining phase using the query type as its goal, and
if that type includes a monadic expression, it will enter a forward-chaining phase.
This phase is implemented with a committed choice semantics, backtracking
over the selection of a rule only when its antecedents cannot be met—effectively
inducing a random choice between all fireable rules on each forward chaining
step. This built-in nondeterminism lets us go automatically from a specification
of a narrative structure to the automatic generation of stories.

3.2 Identification of Narrative Elements

The process of programming a narrative is that of describing circumstances that
can, by execution of the program, generate one or many stories. Following a
widespread paradigm in narrative generation research, we use an existing, lin-
ear, baseline story to support our experiments. Identifying the circumstances

1 The Celf system can be obtained from https://github.com/clf/celf

https://github.com/clf/celf

Linear Logic Programming for Narrative Generation 429

1 emma : type.
2 emmaCharlesMarried : type.
3 <............. >
4 arsenic : type.
5 emmaIsDead : type.
6 emmaSpendsYearsInConvent : type = emma * convent -o {!novels * !grace * !

education * @emma}.
7 emmaMarriesCharles : type = emma * escapism * grace * charles -o {

emmaIsBored * @emma *!emmaCharlesMarried}.
8 emmaDoesNotGoToBall : type = emma * ball -o {emmaIsBored * @emma }.
9 < >

10 emmaContractsDebts : type = emma * emmaIsBored -o {@debt * @emma }.
11 emmaGetsSick : type = emma * emmaIsDespaired -o {@debt * @debt * @debt *

@debt * !charlesIsConcerned * @emma}.
12 emmaJumpsThroughWindow : type = emma * emmaIsDespaired * emmaRebels -o {

@emmaIsDead}.
13 emmaLearnsBovaryFatherDeath : type = emma * leonEmmaTogether *

charlesIsConcerned * homais -o {@arsenic * @inheritance *
@leonEmmaTogether * @emma}.

14 emmaCommitsSuicide : type = emma * ruin * arsenic * emmaRebels -o {
@emmaIsDead}.

15 init : type =
16 { convent * @emma * @leonIsBored * !charles * !rodolphePastLoveLife * !

homais
17 * @emmaSpendsYearsInConvent
18 * @(emmaGoesToBall & emmaDoesNotGoToBall)
19 <.......>
20 * !emmaContractsDebts
21 }.
22 #query * * * 100 (init -o {emmaIsDead}).

Fig. 1. Celf excerpt for a fragment of Madame Bovary. Atomic types (narrative re-
sources) are followed by types describing narrative actions, the initial environment
declaration and a query of 100 attempts to generate stories ending with Emma’s death.
The complete file (105 lines of code) is available on https://github.com/jff/TeLLer.)

within a static story such as Madame Bovary [4] is a human activity that can
be assisted by companion works [8]. Figure 1 shows an example of a Celf pro-
gram representative of the form we use to model narratives, and composed of a
signature and a query (line 22).

The narrative elements we identify and model fall into two main categories.
Narrative resources are available story elements (including characters) as well
as states of the story, which may be related to characters and motives. In the
present example, we model them using atomic types (lines 1–5). Narrative
actions are transforming events occurring in the narrative. We model the impact
they have on the narrative, in terms of resource creation and consumption using
asynchronous types (lines 6–14), here linear implication formulae.

The type init on line 15 describes the initial narrative environment. Re-
sources can be introduced as a) linear (default): there is one copy in the initial
environment, and it will need to be consumed for any computation to terminate
successfully. Emma’s boredom is modelled as linear, since one of the driving
force for her actions in the story is to escape this state; b) affine (using @): there
is initially one copy in the initial environment and it may or may not be con-
sumed by a successful computation. Because Emma may die in the story, the
corresponding resource is introduced as persistent; c) persistent, (using !): there
are arbitrarily many copies in the initial environment and any number of them

430 C. Martens et al.

may be consumed by a successful computation. We use this to denote immutable
facts and hard rules, such as Emma and Charles married status for instance.

In addition to the author’s notes [8] for filtering through story events irrelevant
for the modelled narrative structure, we proceed iteratively, and lazily model a
new resource when we model a narrative action involving it. The narrative action
corresponding to Emma taking arsenic to poison herself illustrates this process:
Emma (returning late from a date with Leon) learns about her father’s death
from Homais because Charles is afraid to upset her. She learns about inheritance.
We first model:

emmaLearnsBovaryFatherDeath : type = emma * leonEmmaTogether *
charlesIsConcerned * homais -o {@inheritance * @leonEmmaTogether *
@emma}

During the same event, a side conversation occurs between two of the characters
present during which Emma incidentally learns where to find arsenic. The im-
portance of this knowledge becomes apparent only when we model the narrative
action corresponding to Emma’s death. We then modify the code so that the
action adds the corresponding resource to the environment and obtain the code
on lines 13 and 14.

Mutually exclusive narrative actions can be explicitly suggested using the
choice connective & in the declaration of the initial conditions. These can be
used to encode key turning points in the narrative that are broadly recognized
as such, which is frequently the case when using existing stories as a baseline.
We use this connective to model Emma’s choice to attend the ball (see line 18).

Once the narrative modelled, it is run using Celf and the proof-terms obtained
are post-processed for causality analysis. Following a long tradition of analysing
causality via graphs [6], we developed a prototype tool, CelfToGraph2 , that auto-
matically transforms proof terms generated by Celf into directed acyclic graphs.
Such graphs represent narrative plots, structured by narrative causality, where
nodes are narrative actions and edges represent inferred causality relationships.

One advantage of modelling narratives using a programming language is the
ability to iteratively fine tune the model: a programmer alternates between cod-
ing and testing phases, which is facilitated by the frontend that we developed: in
addition to the generation of causal graphs representing narratives, CelfToGraph
queries can exhibit plots with specific characteristics. One can also verify if the
generated set has a varied output (differing significantly from the original plot),
test the impact of more narrative drive on the generation (for instance by
comparing the effect of affine vs. linear models of narrative actions), or fine-tune
resource threshold quantities.

3.3 Generated Plots

The entire code corresponding to the excerpt on Figure 1 consists of a total of
105 lines, including 31 narrative action descriptions. As we have only explicitly

2 CelfToGraph requires Celf v2.9 and is available at https://github.com/jff/TeLLer

https://github.com/jff/TeLLer

Linear Logic Programming for Narrative Generation 431

init

emmaSpendsYearsInCovent

emmaReadsRomanticNovels

leonFallsInLoveemmaMarriesCharles

emmaReadsRomanticNovels

emmaContractsDebts emmaInvitedToBall

emmaDoesNotGoToBall

emmaDiscoversLeonsLove

rodolpheDecidesToSeduceEmma

emmaPushesLeonAway

emmaAcceptsRodolpheAdvances emmaContractsDebts

rodolpheRelationshipFalters

charlesDecidesToOperateHypolyte

hypolyteIsAmputated

emmaPurchasesProstheticLeg emmaPurchasesGift

emmaOffersGift

rodolpheBreaksUp

emmaJumpsThroughWindow

Fig. 2. One of 41 causally structured generated plots exhibited using CelfToGraph. In
this variant, Emma does not attend the ball and defenestrates when left by Rodolphe.

encoded one branching choice, the variety of outputs is due to the linear se-
mantics of narrative actions (producing resources that may be contended) and
forward chaining variability.

The code described allows to generate 72 different narrative sequences for
100 attempts. After an automatic comparison of the corresponding plots using
CelfToGraph, , we can exhibit 41 different plots (characterised by different gener-
ated causal structures), meaning that a number of different narrative sequences
share the same causal structures. This allows the characterisation of classes of
true story variants. Figure 2 shows a story variant among those generated,
which has been exhibited by the tool: in this story, Emma jumps through the
window following the departure of Rodolphe. If we look at the code Figure 2l. 11
and l. 12 two narrative actions consume the resource emmaIsDespaired. When
the first is triggered by the forward chaining mechanism, we obtain a story
ending with Emma jumping through the window. When requesting 1000 query
attempts, we obtain 747 solutions, among which 697 are different narrative se-
quences, and 226 true story variants.

4 Conclusion

There has been much interest in the use of Linear Logic to represent natural lan-
guage semantics and the semantics of action and change. Narrative structures are

432 C. Martens et al.

based on the integration of the above phenomena, and Linear Logic programming
provides a direct mechanism to operationalize these descriptions.

Our first results reported here are clearly encouraging, offering all the benefits
of a declarative representation. This opens perspectives for applications such
as Interactive Storytelling, where narrative generation is a default interaction
paradigm, allowing narratives to adapt to changes in the environment.

In future work, we intend to develop this approach with the definition of
an interaction paradigm using Linear Logic’s choice connectives and on-the-
fly environment modifications. Another interesting line of inquiry would be to
explore the possible definition of normal forms for stories generated.

References

1. Andreoli, J.: Logic programming with focusing proofs in Linear Logic. Journal of
Logic and Computation 2, 297–347 (1992)

2. Bosser, A.G., Cavazza, M., Champagnat, R.: Linear Logic for non-linear story-
telling. In: ECAI 2010. Frontiers in Artificial Intelligence and Applications, vol.
215. IOS Press (2010)

3. Bosser, A.-G., Courtieu, P., Forest, J., Cavazza, M.: Structural analysis of narra-
tives with the Coq proof assistant. In: van Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 55–70. Springer, Heidelberg
(2011)

4. Flaubert, G.: Madame Bovary. Revue de Paris (1857), edition 2001 Collection Folio
Classiques, ISBN 9782070413119

5. Girard, J.Y.: Linear Logic. Theoretical Computer Science 50(1), 1–102 (1987)
6. Greenland, S., Pearl, J., Robins, J.: Causal diagrams for epidemiologic research.

Epidemiology, 37–48 (1999)
7. Hodas, J.S., Miller, D.: Logic programming in a fragment of Intuitionistic Linear

Logic. Information and Computation 110(2), 327–365 (1994)
8. Leclerc, Y.: Flaubert, Plans et Scénarios de Madame Bovary, Zuma, Cadeilhan

(1995)
9. López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent Linear Logic

programming. In: Proceedings of the 7th International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming (2005)

10. Miller, D.: Overview of Linear Logic programming. Linear Logic in Computer Sci-
ence 316, 119–150 (2004)

11. Schack-Nielsen, A., Schürmann, C.: Celf – A logical framework for deductive
and concurrent systems (System description). In: Armando, A., Baumgartner, P.,
Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 320–326. Springer,
Heidelberg (2008)

12. Schank, R., Abelson, R.: Scripts, plans, goals and understanding: An inquiry into
human knowledge structures. Psychology Press (1977)

13. Schroeder, M.: How to tell a logical story. In: Narrative Intelligence: Papers from
the AAAI Fall Symposium. AAAI Press (1999)

14. Young, R.M.: Notes on the use of plan structures in the creation of interactive
plot. In: Narrative Intelligence: Papers from the AAAI Fall Symposium. AAAI
Press (1999)

Implementing Informal Semantics of ASP

Artur Mikitiuk1 and Miroslaw Truszczynski2

1 Mathematics & Natural Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
2 Department of Computer Science, University of Kentucky, Lexington, KY 40506-0633, USA

Abstract. We describe a system that, given a theory of an answer-set program-
ming (ASP) system psgrnd, generates its informal reading in natural language.
That reading helps understand the psgrnd theory, and verify its correctness or
identify programming errors. Similar tools can be developed for other ASP for-
malisms. To this end, the basic language used by the system has to be extended
to allow the programmer provide (minimal) additional information on how to
understand atomic concepts, of which the theory (program) is built.

1 Introduction

Declarative programming rests on the idea that coding simply consists of writing down
problem specifications given in natural language as formal expressions in some logic
(declarative programming language). It requires a close and unambiguous syntactic
connection between informal statements of the natural language and formal statements
of the target declarative programming language. The connection must tie the intended
informal meaning of natural text expressions with the formal meaning of formal state-
ments (programs or theories). This connection exists in the case of the first-order (FO)
logic and its extension, the logic FO(ID), that was proposed as a computational knowl-
edge representation formalism [2]. It is in fact the main reason why FO logic and its
extensions gained so much attention by the knowledge representation community.

Our goal in this work is to show that the informal semantics can be “implemented,”
that is, one can generate an informal reading of a formal declarative program (knowl-
edge base) representing a problem. We describe an implementation of the informal
semantics of an ASP system psgrnd [4,3]. That system extends the FO logic with cardi-
nality and weight constraints, and with Horn logic program rules to represent monotone
definitions. It can be seen as a fragment of the computational knowledge representation
system FO(ID) [2,1], when the latter is restricted to the class of Herbrand models.

Our approach follows our earlier work in this direction [6]. The main extensions the
present system pspbdb offers consist of the support to handle definitions and aggregates
(neither issue was addressed before), and in redesigned natural language templates.

The ASP community has been addressing the issues of testing and debugging of
ASP programs [7,9], and program development environments [5,8]. We believe tools
producing informal readings of answer-set programs will further promote the accep-
tance of ASP.

2 The Implementation of the Program pspbdb

The language PSpb has been proposed in [3] for modeling search problems specified in
terms of boolean combinations of pseudo-boolean constraints (pb-constraints for short).

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 433–438, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

434 A. Mikitiuk and M. Truszczynski

This language extends FO logic with the ability to model explicitly pb-constraints and
to define Horn predicates. A formal grammar describing the syntax of the language
PSpb is available at http://www.cs.uky.edu/psgrnd/.

Program pspbdb is a tool translating theories in the language PSpb into English sen-
tences that represent the informal meaning (semantics) of a PSpb theory.1 The transla-
tion is based on comments for the debugger placed in the theory being translated next
to data atom and weight function definitions and next to predicate declarations (cannot
be placed before such definitions or declarations). Here are some examples.
vtx(1..200). %%vtx(X) means #vertex X
edge(86,163). %%edge(A,B) means #(A,B) is an edge
pred hc(vtx,vtx):edge.

%%hc(A,B) means #edge(A,B) belongs to Ham cycle

A comment for the debugger starts with a double percent sign followed by a predicate
or weight function name with names of its arguments, followed by the word means and
a hash sign. The text after the hash sign until the end of the line is an explanation. This
explanation is used by pspbdb during translation of program or data atoms and weight
function calls appearing in program rules. The quality of the translation depends on the
accuracy of the provided comments.

Program pspbdb has been written in C++. It follows our earlier work [6] and reuses
large parts of the psgrnd code [3]. The formal grammar for the language PSpb has
been extended with additional productions including syntax of comments for the de-
bugger. The lexical analyzer from psgrnd had to be modified to recognize additional
tokens (double percent sign, keyword means, hash sign). The psgrnd code related to
parsing had to be modified by adding new functions needed to process comments for
the debugger and to translate rules in the processed PSpb theory into English sentences.

Translation of Atoms and Weight Function Calls. The translation of a program atom
is done by replacing symbols (formal parameters) provided in the comment following
the predicate declaration with actual arguments. For example, given the declaration

pred color(vtx,clr). %%color(A,B) means #vertex A is colored B

atom color(X, red) is translated as vertex X is colored red. The weight function calls
are translated similarly as atoms (but comments explaining such calls should be written
in plural). Next, if a program atom has a list of local variables, it is translated as for
some value of . . . or for some tuple (. . .) depending on whether the list contains one or
more variables.

A cardinality constraint of the form l{A1, . . . , Ak}u is in general case translated as

there are at least l but but not more than u atoms such that
“translation of A1” OR . . . OR “translation of Ak”

Our program recognizes several special cases: when the lower bound l and the upper
bound u are equal, when one or both of the bounds are equal to 1, when one of the
bounds is missing. In such cases the translation is modified accordingly.

The translation of pb-constraints (weighted atoms) is similar to that of cardinality
constraints. Given the following explanations of weight function size and predicate in

1 Download from http://www.cs.uky.edu/ai/software/pspbdb.tar.gz.

http://www.cs.uky.edu/psgrnd/
http://www.cs.uky.edu/ai/software/pspbdb.tar.gz

Implementing Informal Semantics of ASP 435

size(5)=13. %%size(A) means #the sizes of A
pred in(item). %%in(A) means #A that are in the knapsack

a pb-constraint “{in(X) = size(X)[X]}15.” is translated as

The sum of the sizes of X FOR THOSE X
that are in the knapsack is not more than 15

Translation of Rules. A rule A1, A2, . . . , As → B1|B2| . . . |Bt, is translated into a
sentence of one of the following two forms depending on whether the body is present.

(a) IF “translation of A1”
AND “translation of A2”

· · ·
AND “translation of As”
THEN “translation of B1”
OR “translation of B2”

· · ·
OR “translation of Bt”

(b)

“translation of B1”
OR “translation of B2”

· · ·
OR “translation of Bt”

The sentence may be preceded by the statement “For every X1 and . . . and Xn,” to in-
dicate which variables in the formula are universally quantified. For example, if we
provide the following meaning for predicate in

pred in(time,pos,pos,entry). %%in(A,B,C,D) means
#at time A entry D is in position (B,C)

the rule “in(T,X, Y,A)[A].” is translated as

For every T and X and Y,
at time T entry A is in position (X,Y) for some value of A

When the head is missing, the clause specifies a constraint. We do not present transla-
tions of constraints due to space restrictions.

Horn rules in PSpb are used to define Horn predicates. Such definitions can be ex-
plained under two restrictions: (1) all rules defining the same Horn predicate are not
separated with other rules; (2) the predicate in the heads of all its defining rules has the
same list of arguments. Then

A :− B1,1, . . . , B1,k1

· · ·
A :− Bm,1, . . . , Bm,km

translates
to

DEFINING
“Translation of atom A”
(case 1) IF “translation of the 1st body”

· · ·
(case m) IF “translation of the mth body”
AND in no other case

Dealing with Symbolic Constants. Program pspbdb works in two stages due to the
way psgrnd works. The grounder accepts theories and data sets containing some sym-
bolic constants (integer parameters). For example, when a graph has n vertices, one
can define data predicate vtx(1..n). When the program is invoked, this value has to be

436 A. Mikitiuk and M. Truszczynski

provided in the command line. Since pspbdb reuses large parts of code from psgrnd,
it also requires the value of n to be provided in the command line. In the first stage
pspbdb creates a temporary file with translation containing numerical values of such
parameters.

In the second stage the temporary file is scanned for values of command line param-
eters. However, a number may appear in the text as the value of a parameter but it may
also appear because the number occurs in the translated rule. If the parameter does not
appear in the rule, we leave the number. If the number does not appear in the rule, we
replace it with the name of the parameter.

The problem is what to do when both the parameter and the number occur in the
original rule. For example, one could have a cardinality constraint of the form 2{. . .}n
when the value of n is 2. We could also have two parameters with the same value. In
such cases pspbdb leaves the number in the translation (we plan to work on this case in
the future). To avoid such situations, the user could give each parameter a different value
(this value does not matter for pspbdb) and avoid giving small values (0, 1, 2) because
such numbers often appear in the rules. If one notices in the translation a number instead
of a parameter, one can re-run the program with another value of this parameter.

Program Usage. Program is invoked from a UNIX command line in the following
way:

pspbdb [dataF ileList] ruleF ile [constantList] [−o output]

An optional dataFileList consists of one or more files specifying the “data” component
of the problem description while ruleFile contains the “program” component. A con-
stantList is a list of value assignments for parameters appearing in these files. If the
names of constants are n1, . . . , nM and the corresponding values are v1, . . . , vM , the
constantList has form n1 = v1 . . . nM = vM . If -o option is not specified, the default
output file is out.pspbdb.

3 Results

Due to space restriction, we will present in this section only two examples of PSpb

theories with added comments for the debugger and the results produced by pspbdb.
The examples illustrate in particular the new features of the program: the cardinality
constraints and Horn rules. Our first example is a program for the n queens problem.

num(1..n).
pred q(num,num). %%q(A,B) means #queen in row B and col A
var num C,R,I.
1{q(C,R)[C]}1. %exactly one queen in every row
1{q(C,R)[R]}1. %exactly one queen in every col
q(C,R), q(C+I,R+I) -> . %no two queens on
q(C,R), q(C+I,R-I) -> . %the same diagonal

Processing this theory gives the following result (to save space we skip empty lines):

LINE 4:
1{q(C,R)[C]}1. %exactly one queen in every row
For every R,

Implementing Informal Semantics of ASP 437

queen in row R and col C for exactly one value of C
LINE 5:
1{q(C,R)[R]}1. %exactly one queen in every col
For every C,

queen in row R and col C for exactly one value of R
LINE 6:
q(C,R), q(C+I,R+I) -> . %no two queens on
The following properties must not occur together:

queen in row R and col C
queen in row R + I and col C + I

LINE 7:
q(C,R), q(C+I,R-I) -> . %the same diagonal
The following properties must not occur together:

queen in row R and col C
queen in row R - I and col C + I

The second example is a program encoding the Hamiltonian cycle problem.

%%edge(A,B) means #(A,B) is an edge
start(1). %%start(X) means #X is a start vertex
pred hc(vtx,vtx):edge.
%%hc(A,B) means #edge(A,B) belongs to Ham cycle
pred visit(vtx). %%visit(A) means
#vertex A can be reached from start via Ham cycle edges
var vtx X,Y.
1{hc(X,Y)[Y]}1.
1{hc(X,Y)[X]}1.
visit(Y) :- visit(X),hc(X,Y).
visit(Y) :- start(Y).
visit(X).

The translation produced by pspbdb is given below.

LINE 1263:
1{hc(X,Y)[Y]}1.
For every X,

edge(X,Y) belongs to Ham cycle for exactly one value of Y
LINE 1264:
1{hc(X,Y)[X]}1.
For every Y,

edge(X,Y) belongs to Ham cycle for exactly one value of X
LINE 1265:
visit(Y) :- visit(X),hc(X,Y).
LINE 1266:
visit(Y) :- start(Y).
DEFINING
vertex Y can be reached from start via Ham cycle edges
(case 1) IF vertex X can be reached from start via Ham cycle

edges
AND edge(X,Y) belongs to Ham cycle

(case 2) IF Y is a start vertex

438 A. Mikitiuk and M. Truszczynski

AND in no other case
LINE 1267:
visit(X).
For every X,

vertex X can be reached from start via Ham cycle edges

4 Discussion and Future Work

The examples presented above show that if a PSpb program is annotated with the in-
structions how to render predicates, the tool pspbdb generates text that well captures
the intended meaning of the program. The annotations are minimal and not a burden on
the programmer. They simply represent associations between formal symbols and their
intended reading the programmer established in the program design phase.

Our work suggests several uses for programs such as pspbdb. In ASP they can assist
the programmer in developing correct programs and they can help in understanding
programs developed by others (an onerous task). They can also help in teaching formal
logics. When students are asked to represent a statement in logic, a program translating
logical expressions into English could help them recognize and correct errors.

There are several possible improvements to pspbdb concerning replacing numeric
values with symbolic constants, relaxing restrictions on Horn rules, and an interactive
operation of the tool. Importantly, the tool can be extended to other flavors of answer
set programming that are based on the syntax of (disjunctive) logic programs.

References

1. Denecker, M.: A knowledge base system project for FO(.). In: Hill, P.M., Warren, D.S. (eds.)
ICLP 2009. LNCS, vol. 5649, p. 22. Springer, Heidelberg (2009)

2. Denecker, M., Ternovska, E.: A logic for non-monotone inductive definitions. ACM Transac-
tions on Computational Logic 9(2) (2008)

3. East, D., Iakhiaev, M., Mikitiuk, A., Truszczyński, M.: Tools for modeling and solving search
problems. AI Communications 19(4), 301–312 (2006)

4. East, D., Truszczyński, M.: Predicate-calculus based logics for modeling and solving search
problems. ACM Transactions on Computational Logic 7, 38–83 (2006)

5. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: Integrated development environment for answer
set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp.
317–330. Springer, Heidelberg (2011)

6. Mikitiuk, A., Moseley, E., Truszczynski, M.: Towards debugging of answer-set programs in
the language pspb. In: Proceedings of the 2007 International Conference on Artificial Intelli-
gence, ICAI 2007, pp. 635–640 (2007)

7. Oetsch, J., Prischink, M., Pührer, J., Schwengerer, M., Tompits, H.: On the small-scope hy-
pothesis for testing answer-set programs. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Pro-
ceedings of the 13th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2012. AAAI Press (2012)

8. Oetsch, J., Pührer, J., Tompits, H.: The sealion has landed: An ide for answer-set
programming—preliminary report. CoRR abs/1109.3989 (2011)

9. Vos, M.D., Kisa, D.G., Oetsch, J., Pührer, J., Tompits, H.: Annotating answer-set programs in
lana. Theory and Practice of Logic Programming 12(4-5), 619–637 (2012)

Implementing Belief Change in the Situation

Calculus and an Application

Maurice Pagnucco 1 , David Rajaratnam 1 ,
Hannes Strass 2 , and Michael Thielscher 1

1 School of Computer Science and Engineering, UNSW, Australia
{morri,daver,mit}@cse.unsw.edu.au
2 Leipzig University, Leipzig, Germany
strass@informatik.uni-leipzig.de

Abstract. Accounts of belief and knowledge in the Situation Calculus
have been developed and discussed for some time yet there is no extant
implementation. We develop a practical implementation of belief and be-
lief change in the Situation Calculus based on default logic for which we
have an implemented solver. After establishing the mapping with default
logic we demonstrate how belief change in the Situation Calculus can be
used to solve an interesting problem in robotics – reasoning with mis-
leading information. Motivated by a challenge in the RoboCup@Home
competition, we give a solution to the problem of planning robustly in
cases where operators provide the robot with misleading or incorrect
information.

1 Introduction

Several accounts of belief and knowledge in the Situation Calculus have been de-
veloped and discussed for some time [1–3] yet there is no extant implementation.
In this paper, we show how belief and belief change in the Situation Calculus
according to the account of [1, 4] can be implemented. We do so by mapping this
formalisation of belief change in the Situation Calculus to an account of default
logic for which we have an implemented solver [5].

As we establish this mapping into default logic, we demonstrate how belief
change in the Situation Calculus can be used to solve an interesting problem in
robotics – reasoning with misleading information. Motivated by a challenge in
the RoboCup@Home competition, we give a solution to the problem of planning
robustly in cases where operators provide the robot with misleading or incorrect
information. What, for example, should a robot given the task of returning
with the red cup from the kitchen table do when it arrives in the kitchen to
find no red cup but instead notices a blue cup and a red plate on the table?
In RoboCup@Home, the best course of action is not to return empty-handed
but to attempt to salvage the situation by applying a form of commonsense
preferences to return with one of the objects available. Our results pave the way
for a practical and efficient solution to such problems.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 439–451, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

440 M. Pagnucco et al.

The rest of the paper proceeds as follows. We first provide the technical
background to understand the paper. Then we describe a formal specification
of belief change in the Situation Calculus. A motivating example based on
RoboCup@Home is introduced in order to demonstrate a challenging problem
that can be solved using this account of belief change in the Situation Calculus.
Next, we present another solution, that is based on an implementable fragment
of prioritised default logic and show how belief change in the Situation Calculus
can be translated into this logic. Finally, we show that the two solutions yield
the same results, discuss our findings in a broader context and conclude.

2 Technical Preliminaries

2.1 Situation Calculus

The Situation Calculus provides a formal language based on that of classical first-
order logic in which to describe dynamic domains [6, 7]. Three types of terms are
distinguished: situations representing a snapshot of the world; fluents denoting
domain properties that may change as a result of actions; and actions that can
be performed by the reasoner. We use the predicate Holds(f, s) to specify that a
fluent f holds at a particular situation. As a matter of convention a short form
is adopted such that for any n -ary fluent f(x1, . . . , xn), writing f(x1, . . . , xn, s)
is a short form for Holds(f(x1, . . . , xn), s). A special function do(a, s) represents
the situation that results from performing action a at situation s. S0 denotes
the initial situation where no actions have taken place. For each action we need to
specify preconditions Poss(a, s) specifying the conditions under which action a
is possible in situation s and effect axioms that specify how the value of a fluent
changes when an action is performed.1 For a more comprehensive formulation of
what is required of a Situation Calculus basic action theory (BAT), the reader
is referred to [7].

2.2 Iterated Belief Revision in the Situation Calculus

A request to an agent to achieve a goal affects its beliefs. For instance, when the
agent is asked to collect the red cup from the kitchen table, it is reasonable for
the agent to believe that there is in fact a red cup located on the kitchen table.
We therefore adopt an extension to the Situation Calculus capable of represent-
ing beliefs. Several accounts exist [1–3] however we use that of Shapiro et al. [1].
It is based on the ideas of Moore and extended by Cohen and Levesque [8] who
introduced knowledge into the Situation Calculus by reifying the accessibility re-
lation in modal semantics for knowledge. Two types of actions are distinguished:
physical actions which alter the world (and hence fluent values) when performed;
and, sensing actions that are associated with a sensor and determine the value
of a fluent (e.g., a vision system used to determine whether a red cup is on a

1 In fact, we compile effect axioms into successor state axioms (SSAs) [7].

Implementing Belief Change in the Situation Calculus and an Application 441

table). Sensing actions are also referred to as knowledge producing actions as
they inform the reasoner about fluent values but do not alter the world state.

Scherl and Levesque [9] introduced the relation B(s′, s) denoting that if the
agent were in situation s, it would consider s′ to be possible.2 This is adopted
by Shapiro et al. [1]. The successor state axiom for the B relation is given in
the table below as Axiom (B1) and states that s′′ is possible at the situation
resulting from performing action a at situation s whenever the sensing action
associated with a agrees on its value at s and s′. SF(a, s) is a predicate
that is true whenever the sensing action a returns the sensing value 1 at s
and was introduced by Levesque [10]. The innovation of Shapiro et al. [1] is
to associate a plausibility with situations. Plausibility values are introduced, in
decreasing order with a value of 0 being the most plausible, for initial situations
and these values remain the same for all successor situations as expressed in
Axiom (B2) below. This is critical for preserving the introspection properties for
belief. The plausibility values themselves are not important, only the ordering
over situations that they induce. Axioms (B3) and (B4) define the situations s′

that are most plausible (MP) and most plausible situations that are possible –
i.e., B-related – (MPB) at s , respectively. In Axiom (B5) we define sentence
φ to be believed in situation s (Bel(φ, s)) whenever it is true at all the most
plausible situations that are possible at s. Finally, Axiom (B6) specifies that
any situations B-related to an initial situation are also initial situations. The
distinguished predicate Init(s) indicates that s is an initial situation.

B1. B(s′′, do(a, s)) ≡ ∃s′[B(s′, s) ∧ s′′ = do(a, s′) ∧ SF(a, s′) ≡ SF(a, s))]
B2. pl(do(a, s)) = pl(s)

B3. MP(s′, s)
def
= ∀s′′.B(s′′, s) ⊃ pl(s′) ≤ pl(s′′)

B4. MPB(s′, s)
def
= B(s′, s) ∧MP(s′, s)

B5. Bel(φ, s)
def
= ∀s′.MPB(s′, s) ⊃ φ[s′]

B6. Init(s) ∧B(s′, s) ⊃ Init(s′)

3 Formalisation in the Situation Calculus

The formalisation of our approach is based on the iterated belief revision ex-
tension to the Situation Calculus. Notably, the problem is specified in terms of
primitive fluents, primitive actions, sensing actions, an initial state, precondition
axioms, and successor state axioms. In order to deal with the potential for de-
feasible information we introduce a number of restrictions to this formalism. In
essence these restrictions are designed to exploit the way in which abstract logical
names can be anchored to the perception of actual objects in the environment.

Objects. We require a fixed set I of individual objects, to which a unique
names assumption is applied. Intuitively, they identify the items that a robot
is trained to recognise. We introduce the fluent Same(x, y) to express that two

2 Note the order of the arguments as it differs from that commonly used in modal
semantics of knowledge.

442 M. Pagnucco et al.

names refer to the same real object, and allow a set of additional names N =
{O1, . . . , On}, ensuring that these names only refer to existing objects in the
domain: ∨

A∈I

Same(Oi, A, s), for 1 ≤ i ≤ n

Same is required to be reflexive, symmetric and transitive and is further ax-
iomatised using “substitutivity” axioms to enforce that identical objects agree
on all fluent properties F of the domain

Same(x, y, s) ⊃ (F (z̄, s)[zi/x] ≡ F (z̄, s)[zi/y])

and the SSA Same(x, y, do(a, s)) ≡ Same(x, y, s) . The trivial successor state
axiom of this fluent reflects the intuition that hypotheses about names referring
to objects will only be affected by knowledge-producing actions.

Informing the Robot. Informing the robot about the operator’s belief in the
state of the world is formalised outside of the underlying action calculus at the
meta-level and is subsequently compiled into the initial state axioms.

Let f be a fluent literal. Then Told(f, S0), which we abbreviate as Told(f),
represents the act of the operator informing the robot about the operator’s
understanding of the initial state of the world. Additionally, object references in
f must consist only of the names in N , reflecting the intuition that the operator
may only ever refer to objects on the basis of their properties, but not by using
their names. Finally, a set of operator commands T is consistent provided there
is no fluent f such that Told(f) ∈ T and Told(¬f) ∈ T .

Setting Goals. Requests from the user for the robot to perform a task are
required to be of the form Goal (∃s.φ(s)) where φ(s) is a sentence expressing
the goal to be achieved. As with the operator commands, all objects referenced
in φ(s) must be referred to only by the names in N .

Motivating Example: Dealing with Misleading Information

The following example will be used to illustrate our approach. It represents a
reasonably practical example of moderate sophistication sufficient for the space
available. Moreover it is of interest as it represents an instance of goal revi-
sion which can be innovatively handled by the account of belief change in the
Situation Calculus that we adopt here.

The Robocup@Home (robocupathome.org) competition is an international
initiative to foster research into domestic robots. Effective domestic robots must
be able to perform tasks in response to user commands and to behave robustly if
the information provided is in some way erroneous. This is demonstrated in the
“General Purpose Service Robot” challenge of the Robocup@Home 2010 Com-
petition,3 and the following scenario is based on an example from this challenge.

3 http://www.robocupathome.org/documents/rulebook2010_FINAL_VERSION.pdf

http://www.robocupathome.org/documents/rulebook2010_FINAL_VERSION.pdf

Implementing Belief Change in the Situation Calculus and an Application 443

Scenario 1. The robot is in the living room of the home. The home has a kitchen
with a table in the middle. The robot is told to fetch the red cup from the kitchen
table. However, there is no red cup on the kitchen table and the robot only dis-
covers this fact once it arrives in the kitchen and looks for the cup on the table.

We highlight two separate cases. In the base case there is only a blue cup on
the table. In the extended case there is a blue cup and a red plate on the table.

While a robot cannot know the precise intentions of the human operator, it
can nevertheless apply commonsense knowledge in its responses. In the first case,
faced with no alternatives, it might simply fetch the blue cup. In the second case,
it might assume that the user is more interested in the type of object than its
colour and so would prefer the blue cup over the red plate.

For simplicity of presentation we provide a compact encoding of this scenario.
In particular for binary properties we adopt only one of each binary pair, with
the intuition that the negation of the given property implies that its pair must
hold. For example, if an object is not a cup then it must be a plate.

Objects. The Robocup@Home challenge deals with a fixed set of household
objects that are determined at the start of the competition. This allows the
teams time to train their vision systems to be able to detect and distinguish
between these objects. In our example scenario, there are two cups, one red and
one blue, and a red plate: I = {CR, CB, PR}.

Primitive Fluents. The primitive fluents in our domain and their meanings
are as follows. InKitchen : the robot is in the kitchen, Holding(o): the robot is
holding an object, OnTable(o): the object is on the kitchen table, Cup(o): the
object is a cup, Red(o): the object is red.

Primitive Actions SwitchRoom : moving from the living room to the kitchen
and vice-versa; PickUp(o): pick up an object from the kitchen table.

Sensing. The robot is trained to recognise the pre-determined set of objects
I . The main sensing task is then to detect whether or not these specific objects
are located on the kitchen table. This is encapsulated by the sensing action
SenseOT (o) that senses if object o ∈ I is on the table. The SF(a, s) predicate,
introduced in the previous section, is used to axiomatise the act of sensing:

SF(PickUp(o), s) ≡ true

SF(SwitchRoom , s) ≡ true

InKitchen(s) ⊃ (SF(SenseOT (o), s) ≡ OnTable(o, s))

Initial State. In the initial state the robot is in the living room (i.e., not in the
kitchen) and is not holding anything: ¬InKitchen(S0) ∧ (∀x)(¬Holding (x, S0)).

Informing the Robot. The robot is told that there is a red cup on the table:
Told(Cup(O1)), Told(Red(O1)), Told(OnTable(O1)).

Precondition Axioms. The robot can only pick up an item when it is not
already holding an object and the item in question is on the kitchen table:

444 M. Pagnucco et al.

Poss(PickUp(o), s) ≡ (∀x)(¬Holding (x, s)) ∧ InKitchen(s) ∧ OnTable(o, s); the
robot can always switch locations: Poss(SwitchRoom , s) ≡ true.

Successor State Axioms. If the robot wasn’t already in the kitchen then it
will be as a result of switching rooms: InKitchen(do(a, s)) ≡ (¬InKitchen(s) ∧
a = SwitchRoom) ∨ (InKitchen(s) ∧ a �= SwitchRoom); an item will be on
the table only if it was previously on the table and has not been picked up:
OnTable(o, do(a, s)) ≡ OnTable(o, s)∧ a �= PickUp(o); the robot will be holding
an object if it picks it up or was already holding the object: Holding(o, do(a, s)) ≡
a = PickUp(o) ∨ Holding(o, s); object type is persistent: Cup(o, do(a, s)) ≡
Cup(o, s); colour is persistent: Red(o, do(a, s)) ≡ Red(o, s).

Preferences. In order to use the framework for belief change in the Situa-
tion Calculus to deal with misleading information we proceed as follows. Every
planning problem (i.e., request to achieve a goal) is considered a new reason-
ing problem.4 The statements, Told(f(x̄)) and Goal (∃s.φ(s)) , are used to as-
cribe initial beliefs and a goal to achieve. They are interpreted at the meta-level
and are not part of the object language. In our example scenario, the request
Told(Cup(O1)), Told(Red(O1)), Told(OnTable(O1)), Goal (∃s.Holding(O1, s))
asks the agent to collect a red cup from the table. This results in the specifi-
cation of a reasoning about action problem in the Situation Calculus extended
with beliefs. In particular, the request specifies what should be believed in the
initial situation S0 and as such partially restricts the plausibility relation pl().
However, our beliefs may be mistaken – there is no red cup on the table – and
as a result we need to formulate an alternative course of action to get the best
out of the situation at hand. Which alternative course of action to take is de-
termined by preferences that are specified using a meta-level preference relation
<C . These preferences further restrict the plausibility of situations pl().

Preferences reflect the robot’s commonsense knowledge. In our scenario, for
example, the robot may prefer to fetch an object that is of the same type as
requested but of a different colour, and most of all prefer to find an object in
the room to which it was sent.

OnTable <C Cup <C Red (1)

It is of course possible to conceive of a scenario in which the above preference
for, say, non-red cups in the kitchen over red non-cups elsewhere is reversed. The
operator may be a child building a colour collage and therefore assign greater
importance to the colour of the object than its type.

In reality, determining the best set of preferences would be a complex task
requiring the robot to combine subtleties of natural language processing with spe-
cific knowledge about the operator. Such considerations are beyond the scope of
this paper, and so we just presuppose a given commonsense preference ordering,
represented by a partial order among fluent names.

Next, we directly compile the Told() statements plus an ordering like (1) into
a plausibility ordering over all the initial situations. Here, the initial situations

4 This is not crucial to our approach but considerably simplifies the notation and
formal machinery required and, in any case, is not central to the main contributions.

Implementing Belief Change in the Situation Calculus and an Application 445

encode all possible hypotheses of what the operator might have meant by their
commands. The commonsense preference is then used to rank these hypotheses
according to their plausibility. In order to relate this preference ordering to the
Told() statements we introduce the notation 〈·〉 to extract the fluent name from
a fluent literal (e.g., 〈¬Cup(O1)〉 = Cup).

Definition 1. Let Σ be a Situation Calculus BAT, B the axioms for iterated
belief revision in the Situation Calculus, I be the set of domain objects, N be
a set of additional names, T be a set of consistent operator commands and
<C be a commonsense preference ordering. Then (Σ ∪B, T,<C) is a Situation
Calculus BAT extended with belief and commonsense preferences such that:

1. The initial situations are created by the axioms

(∃s)
(
B(s, S0) ∧

∧
O∈N

Same(O, σ(O), s)

)
(2)

for all functions σ : N → I .
2. For every pair of initial situations s1, s2, we define

pl(s1) < pl(s2)

iff both
(a) there is some Told(f(x̄)) ∈ T such that Σ ∪ {(2)} |= f(x̄, s1) and

Σ ∪ {(2)} |= ¬f(x̄, s2); and,
(b) for every Told (f(x̄1)) ∈ T such that

Σ ∪ {(2)} |= ¬f(x̄1, s1) and Σ ∪ {(2)} |= f(x̄1, s2)

there is a Told(g(x̄2)) ∈ T such that 〈g〉 <C 〈f〉 ,

Σ ∪ {(2)} |= g(x̄2, s1) and Σ ∪ {(2)} |= ¬g(x̄2, s2)

Part 1 creates all the initial situations. Intuitively, the function σ says which
names are assigned to which real object; so σ1(O1) = σ1(O3) = CR means that
O1 and O3 are considered the same as the red cup CR . The number of axioms
thus generated is polynomial in the number of domain objects, but exponential in
the number of additional names.5 This is one of the main reasons why a direct
implementation of Situation Calculus with belief change would be practically
infeasible for our problem at hand and why we are interested in developing a
more practical implementation based on default logic.

Part 2 restricts the plausibility relation over initial situations. Initial situation
s1 is preferred to s2 whenever s1 assigns the value true to a fluent preferred
under the preference ordering <C and s2 assigns the value false; additionally,
for all fluents f where this is the other way around (f is true in s2 and false
in s1), there must be a preferred fluent g which holds in s1 but not in s2 .

From this formalisation of the scenario, we can establish the fact that the
robot will initially believe what it is told.

5 Recall that the number of functions σ : N → I is |I ||N| .

446 M. Pagnucco et al.

Proposition 1. Let Σ be a Situation Calculus BAT, B the axioms for iter-
ated belief revision in the Situation Calculus, T be a set of consistent operator
commands, and <C be a commonsense preference ordering. Then (Σ∪B, T,<)
is a Situation Calculus BAT extended with belief and commonsense preferences
such that for all Told(f(x̄)) ∈ T we have (Σ ∪B, T,<C) |= Bel(f(x̄), S0) .

Plan Execution. This formalism allows the robot to change its beliefs about
what it is told. In this paper we assume that the robot has determined a plan and
begun its execution. We can therefore consider the robot’s changing beliefs with
regards to satisfying its goal of holding object O1 by considering the situation6

do([SwitchRoom , SenseOT (CR), SenseOT (CB), SenseOT (PR),PickUp(O1)], S0)

Initially the robot believes that the object O1 refers to the red cup CR . However
when the robot arrives in the kitchen it finds that there is only a blue cup on
the table. Consequently the robot changes its belief about O1 to now refer to
the blue cup CB . This scenario is visualised by Figure 1 showing the possible
situations based on the robot’s beliefs and the plausibility relation.

In the extended example the robot arrives in the kitchen to find both a blue
cup and red plate on the table. It therefore has a choice, which it resolves based
on its preference for object type over colour (1), consequently modifying its belief
about O1 to again refer to the blue cup.

4 A Default Logic Approach

The Situation Calculus with beliefs provides an expressive formalism for tackling
the problem of agents receiving erroneous information and expected to use some
basic commonsense reasoning under these circumstances. Next we address the
problem of turning the theory into a practical implementation. To this end we
adapt a recently developed extension of action logics with default reasoning [11],
which can be effectively implemented using Answer Set Programming [12]. The
idea is to treat potentially erroneous information as something that is considered
true by default but can always be retracted should the agent make observations
to the contrary. We extend the existing approach by prioritised defaults that
allow us to provide our robot with preferences among different ways of remedying
a situation in which it has been misled.

Supernormal Defaults. To begin with, we instantiate the general framework
of [11] to the Situation Calculus and to a restricted form of default rules. Each
operator command Told([¬]f(x̄), s) is translated into a supernormal default of
the form

: f(x̄, s)

f(x̄, s)
or

: ¬f(x̄, s)
¬f(x̄, s)

With these rules the robot will believe, by default, everything it is told. For our
running example we thus obtain these three defaults about the initial situation:

δCup =
: Cup(O1, S0)

Cup(O1, S0)
δRed =

: Red(O1, S0)

Red(O1, S0)
δOnTable =

: OnTable(O1, S0)

OnTable(O1, S0)

6 do([a1, . . . , an], s) abbreviates do(an, . . . , do(a2, do(a1, s)) . . .).

Implementing Belief Change in the Situation Calculus and an Application 447

pl = 0 pl = 0 pl = 1 pl = 1 pl = 2 pl = 2 pl = 2 pl = 2

Same(O1, CR)
OnTable(CR)
OnTable(CB)

¬InKitchen

Same(O1, CR)
OnTable(CR)
¬OnTable(CB)

¬InKitchen

Same(O1, CB)
OnTable(CR)
OnTable(CB)

¬InKitchen

Same(O1, CB)
¬OnTable(CR)
OnTable(CB)

¬InKitchen

Same(O1, CB)
OnTable(CR)
¬OnTable(CB)

¬InKitchen

Same(O1, CR)
¬OnTable(CR)
OnTable(CB)

¬InKitchen

Same(O1, CR)
¬OnTable(CR)
¬OnTable(CB)

¬InKitchen

Same(O1, CB)
¬OnTable(CR)
¬OnTable(CB)

¬InKitchen

SwitchRoom

InKitchen InKitchen InKitchen InKitchen InKitchen InKitchen InKitchen InKitchen

SenseOT(CR)

SenseOT(CB)

PickUp(O1)

Same(O1, CB)
Holding(O1)

¬OnTable(CB)

InKitchen

Fig. 1. The robot is told to pick up the red cup from the table, but finds only a blue cup.
For succinctness, details of the red plate and the status of the persistent fluents Cup
and Red are omitted. Furthermore, only the accessibility relations (dotted lines) for
the actual situation (fourth from the left) are shown. The transition of situations based
on actions are indicated by the solid vertical lines. Values for the plausibility relation
are assigned to the initial situations based on the preferences. The initial situations in
which the robot believes that it is going to pick up the red cup on the table are the
most preferred (pl = 0). Next are those in which the robot believes that it is going to
pick up the blue cup on the table (pl = 1). Finally, the least preferred are situations
where the robot believes that the item to pick up is not on the table (pl = 2).

A Situation Calculus default theory is a pair (Σ,Δ) where Σ is aSituation
Calculus BAT as above and Δ is a set of default rules.

Priorities. In a prioritised default theory [13], the default rules are partially or-
dered by ≺, where δ1 ≺ δ2 means that the application of default δ1 is preferred
over the application of δ2 . For our purpose, we can map a given commonsense
preference ordering among fluent names directly into a partial ordering among
the defaults from above. For example, with the ordering given by (1) we obtain
δOnTable ≺δCup≺δRed . A prioritised Situation Calculus default theory is a triple
(Σ,Δ,≺) where (Σ,Δ) is as above and ≺ is a partial ordering on Δ.

Extensions. Reasoning with default theories is based on the concept of so-
called extensions , which can be seen as a way of assuming as many defaults as
possible without creating inconsistencies [13, 14].

Definition 2. Consider a prioritised Situation Calculus default theory (Σ,Δ,≺).
Let E be a set of formulas and define E0 := Th(Σ) and, for i ≥ 0,

Ei+1 := Th(Ei ∪ {γ | : γ
γ ∈ Δ, ¬γ �∈ E})

Then E is an extension of (Σ,Δ,≺) iff E =
⋃

i≥0 Ei.

448 M. Pagnucco et al.

Let a partial ordering be defined as E1 ≺≺ E2 iff both

(a) there is : γ
γ in Δ such that γ ∈ E1 but γ �∈ E2; and,

(b) for every : γ1

γ1
such that γ1 �∈ E1 but γ1 ∈ E2 there is : γ2

γ2
≺ : γ1

γ1
in Δ

such that γ2 ∈ E1 but γ2 �∈ E2.

Extension E is a preferred extension of (Σ,Δ,≺) iff there is no E′ such that
E′ ≺≺ E . Entailment (Σ,Δ,≺) |≈ φ is defined as φ being true in all preferred
extensions.

In our running example, when initially the robot has no information to the
contrary it can consistently apply all defaults, resulting in a unique preferred
extension that entails Cup(O1, S0) ∧ Red(O1, S0) ∧OnTable(O1, S0) . Based on
these default conclusions the Situation Calculus axioms entail the same plans
for a given goal as those for the Situation Calculus extended with belief and
commonsense preferences. But suppose that the robot enters the kitchen and
observes what is indicated in Figure 1, that is,

Same(O1, CR, S) ∨ Same(O1, CB, S)
Cup(CR, S) ∧Red(CR, S)
Cup(CB , S) ∧ ¬Red(CB, S)
¬OnTable(CR, S) ∧OnTable(CB , S)

where S is the situation after SwitchRoom followed by SenseOT (CR) and
SenseOT (CB). Disregarding priorities for now, there are two extensions, char-
acterised by

{Same(O1, CR, S),¬OnTable(O1, S)} ⊆ E1

{Same(O1, CB, S),¬Red(O1, S)} ⊆ E2

However, given the priorities from above, only E2 is a preferred extension,
triggering the robot to pick up the blue cup.

In the second case of the scenario, the robot further senses that there is also a
red plate on the table. In this case there will be a third extension E3 such that
{Same(O1, PB, S),¬Cup(O1, S)} ⊆ E3 . However, as with the first case, E2 is
still the only preferred extension and therefore the robot selects the blue cup.

Implementation. Answer Set Programming (ASP) [12] is well-suited for effi-
ciently implementing nonmonotonic reasoning formalisms. Extended logic pro-
grams can be seen as special kinds of default theories [15] and this correspondence
can be used to transform a default theory into an answer set program. Entail-
ment of a formula by the default theory can then be determined by querying
the answer set program. This transformation technique has been developed in
[5]. In the following, we outline this technique (steps 2 to 4) and extend it to
cover preferences (step 1). This allows the transformation of a sufficiently re-
stricted prioritised Situation Calculus default theory (Σ,Δ,≺) into an answer
set program PΣ,Δ,≺.

Step 1.We transform the prioritised SituationCalculus default theory (Σ,Δ,≺)
into a Situation Calculus default theory (Σ≺, Δ≺) where the preferences have

Implementing Belief Change in the Situation Calculus and an Application 449

been encoded at the object-level [16]. This is done by explicitly keeping track of
default δ’s meta-level applicability ok(δ) and whether it was applied (ap(δ)) or
blocked (bl(δ)). For example, δCup and δRed are transformed into

ok(δCup) : Holds(Cup(O1), S0)

Holds(Cup(O1), S0) ∧ ap(δCup)

ok(δCup) ∧ ¬Holds(Cup(O1), S0) :

bl(δCup)

ok(δRed) : Holds(Red(O1), S0)

Holds(Red(O1), S0) ∧ ap(δRed)

ok(δRed) ∧ ¬Holds(Red(O1), S0) :

bl(δRed)

The preference between the defaults is enforced by statements like (ap(δCup) ∨
bl(δCup)) ⊃ ok(δRed), effectively saying that δRed can only be applied once it is
clear whether the more preferred default δCup has been “processed”.

Step 2. We instantiate the defaults from Δ≺ and the axioms from Σ≺ for the
given Situation Calculus signature. This yields a propositional default theory.

Step 3. We rewrite the ground instantiation of Σ≺ into a set PΣ≺ of extended
logic program rules.

Step 4. We map Δ≺ into a set of logic program rules. A default of the form
p:q

r1∧r2
becomes ri ← p, not −q for i = 1, 2; a rule p∧q:

r is turned into r← p, q.
Here not is the usual nonmonotonic negation of normal logic programs; −q is a
new predicate symbol standing for the (classical) negation of q [15]. The result-
ing rules together with PΣ≺ now form the corresponding answer set program
PΣ,Δ,≺ of the initial prioritised Situation Calculus default theory (Σ,Δ,≺).

5 Equivalence of the Two Approaches

We are now in a position to state the central result of this paper, which says
that our prioritised Situation Calculus default theories are suitable approxima-
tions of the Situation Calculus extended with belief and commonsense prefer-
ences. Unfortunately, lack of space prevents us from giving a rigorously for-
mal account. Generally speaking, the latter is more expressive for two rea-
sons. First, it allows to infer meta-statements about beliefs, as in the formula
Bel(Bel(Red(O1), S0), do(SwitchRoom , S0)). Second, all possible situations are
ranked according to pl(), thus allowing to draw conclusions about their relative
ordering, whereas in prioritised default logics the non-preferred extensions are
not considered for entailment. However, neither of these two features is relevant
for the problem at hand, and we can prove the following.

Theorem 1. Let Σ be a Situation Calculus BAT, B the axioms for iter-
ated belief revision in the Situation Calculus, T a set of consistent operator
commands, <C a commonsense preference ordering, Δ,≺ a set of default
rules and an ordering as explained above, a1, . . . , an a sequence of actions,
and SFn := {[¬]SF (a1, S0), . . . , [¬]SF(an, do([a1, . . . , an−1], S0))} a set of lit-
erals describing a particular sequence of sensing results. Then for any objective
formula φ (that is, any formula φ without Bel) we find

(Σ ∪B ∪ SFn, T,<C) |= Bel(φ, do([a1, . . . , an], S0))
iff (Σ ∪ SFn, Δ,≺) |≈ Holds(φ, do([a1, . . . , an], S0))

450 M. Pagnucco et al.

Proof (sketch): By induction on the number of actions n . If n = 0, by Propo-
sition 1 the robot believes all operator commands; in a similar way it can
be shown that there is a unique preferred extension which entails the exact
same statements about S0 that are true in all most plausible initial situa-
tions. For the induction step, if an+1 is a physical action the claim follows
from the fact that both axiomatisations share the same basic action theory.
If an+1 is a sensing action, then any possible situation in do([a1, . . . , an], S0)
that contradicts [¬]SF (an+1, do([a1, . . . , an, an+1], S0) is no longer possible in
do([a1, . . . , an, an+1], S0); likewise, any extension of (Σ ∪ SFn, Δ,≺) that con-
tradicts this sensing literal is no longer an extension of (Σ ∪ SFn+1, Δ,≺). The
claim follows from the structural equivalence of the construction of the plausi-
bility ordering in Def. 1 (Item 2) and of preferred extensions in Def. 2. ��

6 Conclusions

We developed an effective implementation of a well established approach to be-
lief change in the Situation Calculus [1, 4]. This was achieved by mapping a
problem instance expressed using this particular approach to belief change in
the situation calculus into a default logic theory for which an ASP based imple-
mentation exists [11]. We illustrated our approach using an example inspired by
the RoboCup@Home rulebook. This example innovatively solves the problem of
how a reasoner faced with an unachievable goal should nevertheless do its best
to salvage the situation by relying on its preferences.

It is important to observe that while our example scenario encodes a user
request to fetch a single item, the formalism allows for more complex cases,
such as conjunctive and disjunctive goals. However care must be taken when
formulating requests. For example, a disjunctive request to fetch a fork or a
spoon should be encoded as a request to fetch one of two distinct objects, a spoon
object or a fork object. The alternative, and less intuitive, encoding would be to
fetch a single object for which the operator is unsure if it is a fork or a spoon.
This latter encoding is not possible due to restrictions on the Told statements.

We formalised our solution using an extension of the Situation Calculus to
handle beliefs and mapped this solution into a solvable default logic theory. An
alternative approach to tackling the example we presented would have been to
consider goal revision [17]. However note that proposals like this one modify goals
at the explicit request of an agent and do not consider that the goals themselves
may be unachievable. In our approach, the goal cannot be achieved and we argue
that this is more accurately dealt with by reasoning about the robot’s beliefs
(i.e., expectations about the world).

In related work, Lee and Palla [18] implement the situation calculus in ASP.
However, adding the belief axioms of our paper to their approach would entail
explicitly representing all possible alternative situations (since their plausibilities
matter). Our approach avoids this technical problem by using default logic where
only preferred extensions are considered for entailment.

Implementing Belief Change in the Situation Calculus and an Application 451

Acknowledgements. This research was supported under Australian Research
Council’s (ARC) Discovery Projects funding scheme (project DP 120102144).
The fourth author is the recipient of an ARC Future Fellowship (FT0991348)
and is also affiliated with the University of Western Sydney.

References

1. Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.: Iterated belief change in
the situation calculus. AIJ 175(1), 165–192 (2011)

2. Demolombe, R., del Pilar Pozos Parra, M.: A simple and tractable extension of
situation calculus to epistemic logic. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000.
LNCS (LNAI), vol. 1932, pp. 515–524. Springer, Heidelberg (2000)

3. Demolombe, R., Pozos-Parra, M.P.: Belief change in the situation calculus: A new
proposal without plausibility levels. In: Proc. of the Workshop on Belief Revision
and Dynamic Logic at ESSLLI (2005)

4. Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.: Iterated belief change in
the situation calculus. In: KR, pp. 527–538 (2000)

5. Strass, H.: The draculasp system: Default reasoning about actions and change
using logic and answer set programming. In: NMR (2012)

6. McCarthy, J.: Situations, actions and causal laws. Stanford AI Project Memo 2
(1963)

7. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press (2001)

8. Cohen, P., Levesque, H.: Rational interaction as the basis for communication. In:
Cohen, P., Morgan, J., Pollack, M. (eds.) Intentions in Communication, pp. 221–
256. MIT Press (1990)

9. Scherl, R., Levesque, H.: Knowledge, action, and the frame problem. AIJ 144(1-2),
1–39 (2003)

10. Levesque, H.: What is planning in the presence of sensing? In: AAAI, pp. 1139–
1146 (1996)

11. Baumann, R., Brewka, G., Strass, H., Thielscher, M., Zaslawski, V.: State defaults
and ramifications in the unifying action calculus. In: KR, pp. 435–444 (2010)

12. Gelfond, M.: Answer Sets. In: Handbook of KR, pp. 285–316 (2008)
13. Brewka, G.: Adding priorities and specificity to default logic. In: MacNish, C.,

Moniz Pereira, L., Pearce, D.J. (eds.) JELIA 1994. LNCS (LNAI), vol. 838, pp.
247–260. Springer, Heidelberg (1994)

14. Reiter, R.: A logic for default reasoning. AIJ 13, 81–132 (1980)
15. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive

Databases. New Gen. Comp. 9, 365–385 (1991)
16. Delgrande, J., Schaub, T.: Expressing preferences in default logic. AIJ 123(1-2),

41–87 (2000)
17. Shapiro, S., Lespérance, Y., Levesque, H.: Goal change. In: IJCAI 2005, pp. 582–

588 (2005)
18. Lee, J., Palla, R.: Situation Calculus as Answer Set Programming. In: Proceedings

of the Twenty-Fourth Conference on Artificial Intelligence, AAAI 2010, pp. 309–
314 (July 2010)

Debugging Non-ground ASP Programs with Choice
Rules, Cardinality and Weight Constraints

Axel Polleres1, Melanie Frühstück1,
Gottfried Schenner1, and Gerhard Friedrich2

1 Siemens AG Österreich, Siemensstraße 90, 1210 Vienna, Austria
2 Alpen-Adria Universität, Klagenfurt, Austria

Abstract. When deploying Answer Set Programming (ASP) in an industrial
context, for instance for (re-)configuration [5], knowledge engineers need debug-
ging support on non-ground programs. Current approaches to ASP debugging,
however, do not cover extended modeling features of ASP, such as choice rules,
conditional literals, cardinality and weight constraints [13]. To this end, we en-
code non-ground ASP programs using extended modeling features into normal
logic progams; this encoding extends existing encodings for the case of ground
programs [4,10,11] to the non-ground case. We subsequently deploy this transla-
tion on top of an existing ASP debugging approach for non-ground normal logic
programs [14]. We have implemented and tested the approach and provide eval-
uation results.

1 Introduction

Answer Set Programming (ASP), with its intuitive and declarative modeling features –
offering the possibility to model knowledge base constraints concisely in the form of
non-ground programs plus advanced modeling feature such as choice rules, cardinality
constraints and weight constraints [13] – has become an attractive tool for knowledge
engineers also in an industrial context. For instance, within the RECONCILE project1

we deploy ASP for modeling and solving configuration and (re-)configuration prob-
lems [5] occurring in practical settings such as in large-scale projects in the railway
automation domain.

While in such a context the advanced features in Answer Set Programming (ASP)
significantly increase the declarative modeling capabilities of the language, debugging
tools that support the full language of ASP are still missing: most approaches for de-
bugging are only able to deal with propositional programs [1, 2, 9, 16, 18], with the
exception of Oetsch et al. [14], who developed a meta-program for debugging normal
logic programs. Still, this latter approach does not support debugging in the presence of
features such as choice rules, cardinality constraints and weight constraints.

Notably, as shown in earlier works, these language constructs do not raise expressiv-
ity beyond normal logic programs: Ferraris and Lifschitz [4] have shown how weight

1 https://www.cee.siemens.com/web/at/de/corporate/portal/
Innovation/InnovationStories/Pages/Reconcile.aspx

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 452–464, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

https://www.cee.siemens.com/web/at/de/corporate/portal/Innovation/InnovationStories/Pages/Reconcile.aspx
https://www.cee.siemens.com/web/at/de/corporate/portal/Innovation/InnovationStories/Pages/Reconcile.aspx

Debugging Non-ground ASP Programs with Choice Rules, Cardinality 453

constraints can be encoded as nested expressions, while Janhunen and Niemelä [11]
provide a translation of choice rules, cardinality and weight constraints into normal
logic programs. In one step of the translation process they show how to transform
SMODELS programs to normal programs. Another representation of the translation
of choice and cardinality rules to normal logic programs can be found in [10]; their
approach is based on [11] introducing more intermediate steps in the translation.

However, all the above mentioned literature focus on propositional ASP programs.
In this paper we describe a transformation of non-ground choice rules, as well as car-
dinality and weight constraints with conditions into non-ground logic programs. Our
proposal is mainly based on the structure of rules of Gebser and Schaub [10]. Even-
tually, we show how to deploy this non-ground embedding for debugging programs
using advanced ASP features: based on the non-ground debugging approach by Oetsch
et al. [14] for normal logic programs, after applying our translation process, ASP de-
bugging also becomes feasible for programs using more advanced ASP features.

We first introduce the ASP language used herein in Section 2. Then, we extend the
translation of [10] to the non-ground case (Section 3). We present an evaluation of
this translation, comparing our non-ground embedding to the propositional embedding
from [11] in Section 4. Finally, in Section 5 we illustrate how our translation can be
embedded into the debugging approach of [14], before we conclude in Section 6.

2 Preliminaries

Syntax. A literal is an atom that is possibly preceded by the strong negation symbol ¬.
We define a normal (non-ground) rule r as

h(xh) ← Body(XBody). (1)

where h(xh) defines the head of the rule, i.e. a literal including its vector of parameters
xh (variables and constants).2 The body of a rule Body(XBody) = Body+(XBody) ∪
Body−(XBody−) consists of Body+(XBody), the set of all positive body literals, and
Body−(XBody−), a set of default-negated body literals (i.e. literals preceded by not).
XBody denotes the set of all variables occurring in body literals; note that since we
assume safety all these variables also occur in positive body literals, i.e. more precisely:
a rule r of the form (1) is called safe if Xh ⊆ XBody and XBody− ⊆ XBody; if the
head is omitted then r is called a constraint; if the body is empty then r is called a fact.

Additionally to normal rules of the form (1), we consider programs expanded with
choice rules and cardinality rules, as for instance supported by Potsdam Answer set
Solving Collection (Potassco) [7]. Choice rules have the form

{h1(xh1) : Cond(Yh1), . . . , hn(xhn) : Cond(Yhn)} ← Body(XBody). (2)

2 As usual, we denote variables by upper case letters and constants by alphanumeric strings
starting with a lower case letter. We further denote mixed vectors of constants and variables
by overlined lower case letters (such as x) whereas, accordingly, we denote the correspond-
ing vector of all variables occurring in x by X (preserving order) and by X we denote the
respective corresponding (unordered) set of variables.

454 A. Polleres et al.

where hi(xhi) : Cond(Yhi) is called a conditional literal. The condition Cond(Yhi)
consists of positive literals (with variables in Yhi) separated by further colons, read as
a conjunction, and can be possibly empty.3

Further, cardinality constraints l{h1(xh1) : Cond(Yh1), . . . , hn(xhn) : Cond(Yhn)}u
where l, u are either numeric constants or variables representing lower and upper bounds
are allowed in rule heads and bodies, i.e. w.l.o.g. in rules of the following forms:

h(xh) ← l{b1(xb1) : Cond(Yb1), . . . , bn(xbn) : Cond(Ybn)}u, Body(XBody). (3)

h(xh) ← not l{b1(xb1) : Cond(Yb1), . . . , bn(xbn) : Cond(Ybn)}u, Body(XBody). (4)

l{h1(xh1) : Cond(Yh1), . . . , hn(xhn) : Cond(Yhn)}u ← Body(XBody). (5)

We call a set P of safe rules of the forms (1)–(5) a program: here, we extend the
standard notion of safety for rules of the form (1) to rules (2)–(5) as follows: a condi-
tional literal hi(xhi) : Cond(Yhi) within a rule r is safe if for all 1 ≤ i ≤ n it holds
that Xhi ⊆ XBody ∪ Yhi . Accordingly, rules of the forms (2)–(5) are safe if (i) they
are safe in the standard sense (see above), (ii) all conditional literals are safe, and (iii)
bounds l, u are either constants or variables from XBody.4

Semantics. The Herbrand universe HUP of a program P is the set of all constants
appearing in P and the Herbrand base HBP is the set of all ground atoms constructed
by predicate symbols in P using constants from HUP .5

As usual in ASP, we define the semantics of a program P in terms of its grounding;
the grounding of a rule r, ground(r), is defined by the set of ground rules obtained from
(i) taking the set of all its ground instantiations, and (ii) replacing each conditional literal
hi(xhi) : Cond(Yhi) (within a choice or a cardinality constraint) with the set of all
possible ground conditional literals obtained from substituting variables with constants
from HUP . Accordingly, we call ground(P) =

⋃
r∈P ground(r), the grounding of

program P . Note that this procedure covers the two-step instantiation described in [17]:
i.e. what they call “global” variables are replaced through step (i) and “local” variables
during the expansion in step (ii).

An interpretation I ⊆ HBP satisfies a ground literal b, written I |= b, if b ∈ I . Anal-
ogously, I |= b for a ground cardinality constraint b = l{h1 : c1,1 : ... : c1,m1 , . . . , hn :
cn,1 : ... : cn,mn}u, if

l ≤| {hi | {hi, ci,1, ..., ci,mi} ⊆ I} |≤ u

3 For simplicity we only consider positive conditional literals and conditions herein; tools of
Potassco also allow default negation within conditional literals which we leave to future work.
In our formal definitions we also exclude built-ins in conditions (which we allow though in
our implementation, cf. Section 5).

4 Note that we leave out the form where cardinality constraints can be used to assign val-
ues to unsafe variables; tools of Potassco also allow cardinality constraints of the form
X = {h1(xh1) : Cond(Yh1), . . . , hn(xhn) : Cond(Yhn)} which assign the cardinality
to an (unsafe) variable; we leave this extension to future work.

5 Note that we assume no “overloading”, i.e. each predicate symbol has a fixed arity. This re-
striction, which is not made in current ASP tools (like those of Potassco), can be easily lifted in
a preprocessing step where you replace predicate names occurring in different arities with new
unique predicate names per arity, e.g. p(X), p(X,Y) become p/2(X,Y), p/1(X), or alike.

Debugging Non-ground ASP Programs with Choice Rules, Cardinality 455

Next, we define the reduct rI of a rule r wrt. I ⊆ HBP as a set of rules as follows
– if r : h← Body is a ground rule where h is a literal, then

rI =
{
{h ← Body+} if there is no not b ∈ Body− with I |= b.
∅ otherwise

– if r : {h1 : c1,1 : ... : c1,m1 , . . . , hn : cn,1 : ... : cn,mn} ← Body is a ground
choice rule, then rI is a set containing, for each hi ∈ I ∩ {h1, ..., hn}, the rule

rIhi
=

{
hi ← ci,1, ..., ci,mi , Body+ if there is no not b ∈ Body− with I |= b.
∅ otherwise

Any consistent interpretation I , such that I is a (subset-)minimal model of P I =⋃
r∈P rI is called an answer set; likewise, answer sets for a non-ground program P

are defined as the answer sets of ground(P).
As in [17], we view rules of the form (5) as syntactic sugar not treated separately in

the semantics; we will get back to these in the next section.

As a further extension, weighted conditional literals which assign a weight wi (either
a numeric constant or a safe variable, cf. footnote 4) to a conditional literal are allowed
in so called weight constraints of the form

l[h1(xh1) : Cond(Yh1) = w1, . . . , hn(xhn) : Cond(Yhn) = wn]u (6)

These distinguish from cardinality constraints in that values are summed in a multi-set
semantics, i.e. weights wi, wj of satisfying ground instances for each conditional literal
i and j count separately even if hi = hj , i.e. when replacing cardinality constraints
within rules of the forms (3)–(5) with their weighted counterparts, the upper and lower
bounds mean to indicate bounds for sums of weights of satisfied instances, rather than
counting distinct instances. The semantics of weight constraints extends the semantics
for cardinality constraints straightforwardly, formal details of which we omit here for
space limitations.

3 Translation to Normal Rules

We translate rules of forms (2)–(5) successively to normal rules in several steps.
Step 1. We first consider choice rules of the form (2). A choice rule can be translated
into following rules:

h1(xh1) ← Body(XBody), Cond(Yh1), not h
′
r,1(xh1).

h
′
r,1(xh1) ← Body(XBody), Cond(Yh1), not h1(xh1).

. . . (7)

hn(xhn) ← Body(XBody), Cond(Yhn), not h
′
r,n(xhn).

h
′
r,n(xhn) ← Body(XBody), Cond(Yhn), not hn(xhn).

where the h′
r,i are new predicate symbols, unique to the rule r they appear in (to avoid

interferences between the translations of several choice rules).

456 A. Polleres et al.

Step 2. Next, we reduce any rules with cardinality constraints to the form of (3), that
is, we rewrite rules of the forms (4)+(5) in such a way that cardinality constraints only
appear positively in rule bodies: a cardinality rule r of the form (5) is replaced by

(i) its unconstrained variant, i.e. the translation (according to Step 1) of the choice rule
obtained by removing upper and lower bounds l and u; and

(ii) the following pair of rules (where, cr is a “fresh” predicate symbol):

cr(XBody) ← l{h1(xh1) : Cond(Yh1), ..., hn(xhn) : Cond(Yhn)}u,Body(XBody). (8)

← not cr(XBody), Body(XBody). (9)

Similarly, cardinality rules of the form (4) are replaced by the pair of rules

cr(XBody) ← l{b1(xb1) : Cond(Yb1), ..., bn(xbn) : Cond(Ybn)}u, Body(XBody). (10)

h(xh) ← not cr(XBody), Body(XBody). (11)

Step 3. Finally, cardinality rules of the form (3) – including those of the forms (8)+(10)
obtained in the previous step – are translated as follows.

(i) First, we translate the body cardinality constraint to a variant with only lower
bounds as follows

h(xh) ← lr(XBody), not ur(XBody), Body(XBody). (12)

lr(XBody) ← l{b1(xb1) : Cond(Yb1), ..., bn(xbn) : Cond(Ybn)}, Body(XBody). (13)

ur(XBody) ← u+ 1{b1(xb1) : Cond(Yb1), ..., bn(xbn) : Cond(Ybn)}, Body(XBody). (14)

where lr, ur are new predicate symbols. Note that Body(XBody) in rule (12) is
not strictly necessary when both a lower and an upper bound are given, but, since
both lr(XBody) and not ur(XBody) are optional in this rule, it is necessary to
guarentee safety in the absence of the latter. Likewise, rule (13) (and (14), resp.) is
only needed in case a lower (or upper, resp.) bound is given.

(ii) Next, we translate rules with a body cardinality constraint with only lower bounds,
i.e. rules of the form

h(xh) ← l{b1(xb1) : Cond(Yb1), . . . , bn(xbn) : Cond(Ybn)}, Body(XBody). (15)

are translated to

h(xh) ← cntr(XBody , C), Body(XBody), C ≥ l. (16)

The definition of the new predicate cntr is given as follows. We assume a built-in
predicate “<” defining a total, lexical order for pairs of constants in HUP . Further,
for sequence xbi , let xbi

′ denote the sequence obtained from replacing each variable x
occurring in xbi by a fresh variable x′. Lastly, let x∪

r,i = (xbi , XBody), i.e. the concate-

nation of the two vectors xbi and XBody and x∪
r,i

′
= (xbi

′, XBody).

Debugging Non-ground ASP Programs with Choice Rules, Cardinality 457

We now define the predicate cntrby the following auxiliary rules, for each i ∈ {1, . . . , n}

valr,bi(x
∪
r,i) ← bi(xbi), Cond(Ybi), Body(XBody). (17)

existsr,bi(XBody) ← Body(XBody), valr,bi(x
∪
r,i). (18)

exists
<
r,bi

(x∪
r,i) ← valr,bi(x

∪
r,i), valr,bi(x

∪
r,i

′
), xbi

′
<|xbi

| xbi . (19)

exists
>
r,bi

(x∪
r,i) ← valr,bi(x

∪
r,i), valr,bi(x

∪
r,i

′
), xbi <|xbi

| xbi
′
. (20)

nextr,bi(x
∪
r,i, x

∪
r,i

′
) ← valr,bi(x

∪
r,i), valr,bi(x

∪
r,i

′
), xbi <|xbi

| xbi
′
, (21)

not betweenr,bi(x
∪
r,i, x

∪
r,i

′
).

betweenr,bi(x
∪
r,i, x

∪
r,i

′′
) ← valr,bi(x

∪
r,i), valr,bi(x

∪
r,i

′
), valr,bi(x

∪
r,i

′′
), (22)

xbi <|xbi
| xbi

′
, xbi

′
<|xbi

| xbi
′′
.

cntr,bi(x
∪
r,i, 1) ← valr,bi(x

∪
r,i), not exists

<
r,bi

(x∪
r,i). (23)

cntr,bi (x
∪
r,i

′
, N + 1) ← nextr,bi(x

∪
r,i, x

∪
r,i

′
), cntr,bi(x

∪
r,i, N). (24)

cnt
′
r,bi(XBody , N) ← cntr,bi (x

∪
r,i, N), not exists>r,bi(x

∪
r,i) (25)

cnt
′
r,bi(XBody , 0) ← Body(XBody), not existsr,bi(XBody). (26)

where <n is an auxiliary predicate of arity 2n which determines whether the first of
two vectors of the same length n is lexicographically smaller than the latter. For n > 0,
the predicate <n can be easily defined recursively over the built-in predicate “<” in the
rules (27)+(28) as follows:

(X1, ..., Xk) <k (Y1, ..., Yk) ← X1 < Y1. ∀1 ≤ k ≤ n

(27)

(X1, X2, ..., Xk) <k (X1, Y2, ..., Yk) ← (X2, ..., Xk) <k−1 (Y2, ..., Yk). ∀1 < k ≤ n

(28)

Rule (17) “collects” all possible bindings (“values”) for variables that make a particular
conditional atom bi true, dependent on a particular body instantiation. The auxiliary
rule (18) determines whether a value exists at all for a particular body instantiation; ex-
istence of a smaller, or greater, resp., than a prticular value is computed in the auxiliary
rules (19)+(20). Rules (21) and (22) define a total order over values, defining a suc-
cessor predicate (next) via the auxiliary information that no value lies in between two
consecutive values. The cntr,bi predicate then counts all the instantiations that belong
to a particular conditional atom bi, cf. rules (23)+(24). Rule (25) collects, for each bi
and body instantiation, the maximum count in the auxiliary predicates cnt′r,bi , where
rule (26) sets this predicate to 0, in case no actual value exists for the conditional atom
bi. Finally, cntr is defined by the following rule which simply sums up all the maximum
counts for the respective bi’s.

cntr(XBody , N)← cnt
′
r,b1 (XBody , N1), ..., cnt

′
r,bm (XBody , Nm), N=N1+...+Nm . (29)

where {b1, . . . , bm} is the set of distinct predicate names occurring in {b1, . . . , bn}.

Proposition 1. The answer sets of a program P and its translation obtained from Steps
1-3 outlined above are in 1-to-1 correspondence.

458 A. Polleres et al.

While we omit a full proof, we argue that the translation steps outlined above “em-
ulate” semantics as described in Section 2 on non-ground programs, when assuming
that HUP contains apart from explicitly mentioned constants, integers from 0 to a
finitely computable upper bound for instantiating and evaluating N in rules (24),(25),
and (29) correctly; state-of-the-art ASP solvers like Potassco deal with such arithmetics
appropriately out-of-the-box, which is our main concern when deploying the translation
within our debugging use case (cf. Section 5 below).

As a possible optimization, which reduces the number and size of non-ground rules,
note that it is possible to equivalently replace rules (19)–(25) with the following rules

cntr,bi(x
∪
r,i, 1) ← valr,bi(x

∪
r,i). (23’)

cntr,bi (x
∪
r,i

′
, N + 1) ← valr,bi(x

∪
r,i

′
), xbi <|Xbi

| xbi
′
, cntr,bi (x

∪
r,i, N). (24’)

cnt
′
r,bi(XBody , N) ← cntr,bi(x

∪
r,i, N), not nmaxr,bi(XBody , N). (25’)

nmaxr,bi(XBody , N − 1) ← cntr,bi (x
∪
r,i, N). (25”)

The idea behind this optimization is that, despite getting potentially various derivations
for each N per body instance in rules (23’)+(24’), there is only one unique maximum
N derived per body instance, cf. rule (25’), which is the only relevant fact for rule (29),
and in consequence for rule (16). Here, the new auxiliary rule (25”) is needed to assess
that a certain value N is not the maximum count.

Taking this further, the instances of <|Xbi
| above can be replaced by a custom com-

parison predicate smallerr,bi for each conditional atom bi. Let ki denote the arity of
bi, then smallerr,bi is defined by the following set of rules:

smallerr,bi(X1, . . . , Xki , Y1, . . . , Yki) ← X1 < Y1,

valr,bi(X1, . . . , Xki , XBody), valr,bi(Y1, . . . , Yki , XBody).

smallerr,bi(X1, X2, . . . , Xki , X1, Y2, . . . , Yki) ← X2 < Y2,

valr,bi(X1, X2, . . . , Xki , XBody), valr,bi(X1, Y2, . . . , Yki , XBody). (30)

...

smallerr,bi(X1, . . . , Xki , X1, . . . , Xki−1, Yki) ← Xki < Yki ,

valr,bi(X1, . . . , Xki , XBody), valr,bi(X1, . . . , Xki−1, Yki , XBody).

The idea of this definition is that the smallerr,bi predicate really only compares val-
ues relevant for the particular bi, instead of defining a generic smaller relation between
any tuples in HUn

P , which potentially narrows down the size of the grounding.

3.1 Extending the Translation by Weights

So far, we have only treated “pure” cardinality constraints, involving only conditional
atoms with the default weight 1. It is not hard to extend the translation above to arbitrary
weight constraints involving weighted conditional literals of the form (6). Firstly, we
redefine x∪

r,i as follows

x∪
r,i = (xbi , XBody, wi)

Debugging Non-ground ASP Programs with Choice Rules, Cardinality 459

i.e. we carry over weights as an additional parameter in our auxiliary predicates. Apart
from this change, rules (17)–(22) are modified with respect to the predicate names
valr,bi , existsr,bi , exists

<
r,bi

, exists>r,bi , nextr,bi , and betweenr,bi which are now re-
placed with valr,i, firstr,i, existsr,i, exists<r,i, exists

>
r,i, nextr,i, and betweenr,i,

respectively. I.e. values are no longer collected “per predicate” bi, but separately for
each weighted conditional literal at position 1 ≤ i ≤ n, in order to cater for the multi-
set semantics of weight constraints. Secondly, we need to replace the counting rules
(23)–(26) and (29) by rules that do summation instead; we use, in analogy to the cnt
and cnt′ predicates from above a new predicates sum and sum′ here:

sumr,i(x∪
r,i, wi) ← valr,i(x∪

r,i), not exists
<
r,i(x

∪
r,i). (31)

sumr,i(x∪
r,i,W +wi) ← nextr,i(x∪

r,i

′
, x∪

r,i), sumr,i(x∪
r,i

′
,W). (32)

sum
′
r,i(XBody,W) ← sumr,i(x∪

r,i,W), not exists>r,i(x
∪
r,i). (33)

sum
′
r,i(x

∪,0
r,i , 0) ← Body(XBody), not existsr,i(XBody). (34)

sumr(XBody,W) ← sum
′
r,1(XBody ,W1), ..., sum

′
r,n(XBody ,Wn), (35)

W = W1 + ...+Wn.

Similar to the predicates cnt and cnt′ before, the unique total sum value over all
values is collected in the sum′

r,i predicates for each i, whereas the sumr,i predicates
collect the respective intermediate sums. Note that, due to negative weights, sums are
not necessarily monotonically increasing over all values; this prevents, on the one hand,
the same optimization as for cnt (cf. rules (23’)+(25”)) to be applied in the case of
weight constraints. On the other hand, the resulting encoding can – assuming that re-
spective arithmetic is supported – deal with negative weights out-of-the-box, i.e. nega-
tive weights do not need to be eliminated as in [13].

Finally, rule (16) is analogously replaced by

h(Xh)← sumr(XBody,W), Body(XBody),W ≥ l. (36)

4 Evaluation

Obviously, the additional machinery added in our translation comes at a cost. In order
to evaluate how much it affects program size and performance in state of the art solvers,
we chose some benchmark problems from the second Answer Set Programming Com-
petition [3] involving cardinality constraints and choices: we took 8 different instances
for graph colouring, knight tour, hanoi and partner units.

For grounding and solving we used gringo (v. 3.0.5) and clasp (v. 2.1.1) from Potassco.
Results are reported in Table 1: each column reports size of the non-ground program
(#ng), size of the program after grounding (#g), and evaluation time (t) in seconds
(including grounding, translation and solving). We report results for grounding and eval-
uating the original program (orig), our naı̈ve translation (tr), the optimized translation
(tropt) using rules (23’)–(30). Additionally, as a reference, we compare our results to first
grounding the original program and then applying a ground transformation trlp2normal
to normal programs, using the tool lp2normal by Janhunen and Niemelä [11].

460 A. Polleres et al.

Table 1. Total times (in seconds)

Program Instance∗ orig tr tropt trlp2normal

#ng/#g/t #ng/#g/t #ng/#g/t #ng/#g/t
Graph 1 − 125 1672/6903/1.11 1690/23753/20.48 1687/20503/2.02 1672/10235/0.2
Colouring 11 − 130 1757/7243/ > 900 1775/22778/ > 900 1772/19653/ > 900 1757/9780/ > 900

21 − 135 1986/8087/ > 900 2004/25232/ > 900 2001/21857/ > 900 1986/11194/ > 900
30 − 135 1794/7415/14.24 1812/24560/24.71 1809/21185/4.51 1794/10522/13.44
31 − 140 2039/8315/419.13 2057/26095/ > 900 2054/22595/ > 900 2039/11537/283.05
40 − 140 2219/8945/ > 900 2237/26725/ > 900 2234/23225/ > 900 2219/12167/ > 900
41 − 145 2262/9138/ > 900 2280/27553/ > 900 2277/23928/ > 900 2262/12475/ > 900
51 − 150 2405/9681/ > 900 2423/28731/ > 900 2420/24981/ > 900 2405/13133/ > 900

Knight 01 − 8 21/1852/0 61/23078/0.45 55/17794/0.2 21/5043/0.01
Tour 03 − 12 22/4526/0.01 62/68044/6.34 56/50975/1.08 22/13386/0.04

05 − 16 21/8388/0.03 61/136810/44.62 55/101314/5.01 21/25822/0.08
06 − 20 21/13432/0.05 61/229346/232.84 55/168760/15.46 21/42233/0.12
07 − 30 21/31222/0.14 61/564694/ > 900 55/412272/181.31 21/100752/0.43
08 − 40 21/56412/0.34 61/1048642/ > 900 55/762774/758.63 21/184230/0.85
09 − 46 21/75078/0.42 61/1410338/ > 900 55/1024440/ > 900 21/246336/1.23
10 − 50 22/89000/0.88 62/1681185/ > 900 56/1220267/ > 900 22/292706/1.58

Hanoi 09 − 28 104/37323/1.56 168/3279898/ > 900 156/1745347/51.24 104/52445/4.39
11 − 30 106/40041/13.62 170/3514328/ > 900 158/1870177/51.42 106/56243/5.74
15 − 34 110/45477/51.56 174/3983116/ > 900 162/2119757/441.48 110/63839/31.71
16 − 40 100/31886/1.56 164/2811325/ > 900 152/1496006/19.15 100/44848/2.07
22 − 60 102/33314/0.82 166/3175997/633.51 154/1683463/26.99 102/46472/1.37
36 − 80 106/40041/1.19 170/3514364/600.88 158/1870217/30.89 106/56243/1.11
41 − 100 104/37322/0.48 168/3279933/321.64 156/1745386/22.45 104/52444/0.98
47 − 120 99/30527/1.9 163/2694686/845.48 151/1434231/16.28 99/42949/0.75

Partner 176 − 24 68/13213/0.61 146/162007/40.98 131/102667/7.1 68/19347/1.07
Units 29 − 40 108/61777/0.13 186/1068887/ > 900 171/631427/ > 900 108/79679/6.98

23 − 30 117/40332/0.13 195/451513/ > 900 180/277733/8.51 117/51127/0.49
207 − 58 136/162537/0.61 214/4857458/ > 900 199/2730134/ > 900 136/203258/1.48
204 − 67 141/223931/1.54 219/7672436/ > 900 204/4285390/ > 900 141/276403/1.86
175 − 75 290/689087/20.78 368/15446057/ > 900 353/8611453/ > 900 290/762711/27.44
52 − 100 254/963749/ > 900 332/36843565/ > 900 317/20137215/ > 900 254/1082289/ > 900
115 − 100 254/963806/ > 900 332/37214669/ > 900 317/20328419/ > 900 254/1082942/ > 900

∗) For the instance naming convention, please refer to http://dtai.cs.kuleuven.be/events/ASP-competition/index.shtml.

As expected, the results in Table 1 show that the time that evaluation time rises signif-
icantly, which is mainly due to a blowup during grounding. There are certain exceptions,
as in our selection one particular graph colouring example where our optimized encod-
ing even outperforms all others. Solving the instances with pre-grounding the original
program and using lp2normal on the ground instantiated program shows better re-
sults, however we couldn’t use this approach in our use case of debugging, described in
the next section.

5 Debugging with Ouroboros

In our project, we deploy ASP programs for encoding (re-)configuration problems [5],
where debugging of the resulting (non-ground) programs became a significant issue
in practical use cases. We base our debugger on the approach of Oetsch et al. [14],
who developed a meta-program for debugging non-ground programs in ASP. The basic
idea of this debugging method is to reify a program P as well as the fully expected
interpretation I . Reification means that the program and interpretation are brought onto
a meta-level. Finally, the meta program and meta interpretation are fed to an ASP solver.
The obtained answer sets explain why I is not an answer set of P .

There are two main explanation classes why an interpretation I is not answer set of
P . First, some atoms of the interpretation can form an unfounded loop. A non-empty set

Debugging Non-ground ASP Programs with Choice Rules, Cardinality 461

L of ground literals is a loop of P iff for each pair (a, b) ∈ L there is a path from a to b
in the positive dependency graph. The length of the path from a to b can be equal to or
greater than 0. Additionally, let I, J be interpretations. J is supported by P wrt. I if the
grounding of P contains some rule r whose body is satisfied by I and some head atoms
of r are included in J , but all head atoms of r that are not included in J are false under
I . Moreover, this support is ensured to be external, that means without any reference to
the set J itself [14]. If J is not externally supported by P wrt. I , J is called unfounded
by P with respect to I . In particular, if there is a loop in P that is contained in I but
this loop is not externally supported (unfounded) by P with respect to I then I is not an
answer set and the debugger program returns the unfounded (sub)set of I . The second
type of explanation are unsatisfied rules, that means that instantiations of rules in P are
not satisfied by I , in this case the debugger returns the (non-ground) unsatisfied rule(s).

The original meta-program debugger was written for DLV System [12] and can han-
dle non-ground (even disjunctive) logic programs, integer arithmetic (+, ∗), comparison
predicates (=, �=,≤, <,≥, >) and strong negation. We made some minor adaptions to
use Potassco, which we deployed throughout our project, where we do not need disjunc-
tion but make heavy use of other extended constructs such as choices, cardinality and
weight constraints: As a first step, we transformed the meta-program in such a way that
the usage of Potassco system [8] for debugging was facilitated. Debugging of programs
containing choices, cardinality and weight constraints was enabled straightforwardly
by (i) applying our presented translation from Section 3 above to the input, whereas we
translate back debugging results from the meta-program, such that they refer back to
the original rules with choices and cardinality constraints, whenever a rule occurring
from our translation is identified as “buggy”. Minor additional adaptions of the meta-
program included support for extended integer arithmetic (e.g. to support use of − in
rule (25”)). To support the debugging process including the translation of cardinality
constraints, we extended the SeaLion Eclipse plugin [15] (an integrated development
environment (IDE) for Answer Set Programming) by the Ouroboros plugin6. Our ex-
tended Ouroboros plugin can handle rules with cardinality constraints (and has not
yet implemented the translation of weight constraints).

The plugin, including the new transformed and extended meta-program debugger
based on [14], can be found athttps://mmdasp.svn.sourceforge.net/svnroot/
mmdasp/sealion/trunk/org.mmdasp.sealion.ouroboros/ . To illustrate a sim-
ple debugging scenario consider the following example from constraint-based configu-
ration. ASP programmer Lilian wants to assign each thing to exactly one cabinet with
the constraint that there should not be more than two things in one cabinet. Her program,
P1, looks as follows:

thing(th1). thing(th2). thing(th3).
cabinet(c1). cabinet(c2). cabinet(c3).
1 {cabinetToThing(X, Y) : cabinet(X)} 1 :- thing(Y).
:- 2 {cabinetToThing(X, Y) : thing(Y)}, cabinet(X).

Executing P1, Lilian gets six answer sets. However, she wonders why there are only
answer sets where in each of them one cabinet has exactly one thing. Normally, there

6 Details on the Ouroboros plugin can be found in a companion system description [6].

https://mmdasp.svn.sourceforge.net/svnroot/mmdasp/sealion/trunk/org.mmdasp.sealion.ouroboros/
https://mmdasp.svn.sourceforge.net/svnroot/mmdasp/sealion/trunk/org.mmdasp.sealion.ouroboros/

462 A. Polleres et al.

should be answer sets where e.g. cabinet c2 has two things. So she decides to save the
following interpretation – I1 – as facts, where she replaced cabinetToThing(c3,
th2) with cabinetToThing(c2, th2) to check why it is not an answer set:

thing(th1). thing(th2). thing(th3).
cabinet(c1). cabinet(c2). cabinet(c3).
cabinetToThing(c1, th3).
cabinetToThing(c2, th1).
cabinetToThing(c2, th2).

Now she creates a debug configuration and selects the program file as well as the
adapted interpretation file and chooses the explanation type Unsatisfiability. After de-
bugging the explanation says Guessed rule: :- 2 {cabinetToThing(X, Y) : thing(Y)}, cab-
inet(X). Indeed, investigation of this rule reveals that the lower bound was set wrongly
and should be 3 instead of 2.

In the background of this debugging process, the following happens: Let us denote
the set of rules containing cardinality constraints or choices from a given program P
as Pcc = {rcc1, . . . , rccn}. Moreover, let tr(rcci) be the translation of a resp. rule rcci
according to Section 3. In our case, the two cardinality constraint rules of P1,cc are
translated as follows:

cabinetTOthing(X, Y) :- thing(Y), cabinet(X), not -cabinetTOthing(X, Y).
-cabinetTOthing(X, Y) :- thing(Y), cabinet(X), not cabinetTOthing(X, Y).
:- not lowerUpperOK_1(Y), thing(Y).
lowerUpperOK_1(Y) :- not upper_1(Y), lower_1(Y), thing(Y).
lower_1(Y) :- cnt_1(Y, CounterC), CounterC >= 1, thing(Y).
upper_1(Y) :- CounterC > 1, cnt_1(Y, CounterC), thing(Y).
val_1_0(X, Y, Y) :- cabinet(X), cabinetTOthing(X, Y), thing(Y).
exists_1_0(Y) :- thing(Y), val_1_0(X, Y, Y).
smaller_1_0(X, Y, X1, Y1) :- val_1_0(X, Y, YBody), val_1_0(X1, Y1, YBody), X < X1.
smaller_1_0(X, Y, X, Y1) :- val_1_0(X, Y, YBody), val_1_0(X, Y1, YBody), Y < Y1.
cnt_1_0(X, Y, YBody, 1) :- val_1_0(X, Y, YBody).
cnt_1_0(X1, Y1, YBody, Ncounter1) :- val_1_0(X1, Y1, YBody),

smaller_1_0(X, Y, X1, Y1), cnt_1_0(X, Y, YBody, Ncounter), Ncounter1 = Ncounter+1.
cntPrime_1_0(YBody, Ncounter) :- cnt_1_0(X, Y, YBody, Ncounter),

not nmax_1_0(YBody, Ncounter).
cntPrime_1_0(Y, 0) :- thing(Y), not exists_1_0(Y).
nmax_1_0(YBody, Ncounter1) :- cnt_1_0(X, Y, YBody, Ncounter), Ncounter1 = Ncounter-1.
cnt_1(YBody, Ncounter0) :- cntPrime_1_0(YBody, Ncounter0).
:- lower_2(X), cabinet(X).
lower_2(X) :- cnt_2(X, CounterC), CounterC >= 2, cabinet(X).
val_2_0(X, Y, X) :- thing(Y), cabinetTOthing(X, Y), cabinet(X).
exists_2_0(X) :- cabinet(X), val_2_0(X, Y, X).
smaller_2_0(X, Y, X1, Y1) :- val_2_0(X, Y, XBody), val_2_0(X1, Y1, XBody), X < X1.
smaller_2_0(X, Y, X, Y1) :- val_2_0(X, Y, XBody), val_2_0(X, Y1, XBody), Y < Y1.
cnt_2_0(X, Y, XBody, 1) :- val_2_0(X, Y, XBody).
cnt_2_0(X1, Y1, XBody, Ncounter1) :- val_2_0(X1, Y1, XBody),

smaller_2_0(X, Y, X1, Y1), cnt_2_0(X, Y, XBody, Ncounter), Ncounter1 = Ncounter+1.
cntPrime_2_0(XBody, Ncounter) :- cnt_2_0(X, Y, XBody, Ncounter),

not nmax_2_0(XBody, Ncounter).
cntPrime_2_0(X, 0) :- cabinet(X), not exists_2_0(X).
nmax_2_0(XBody, Ncounter1) :- cnt_2_0(X, Y, XBody, Ncounter), Ncounter1 = Ncounter-1.
cnt_2(XBody, Ncounter0) :- cntPrime_2_0(XBody, Ncounter0).

Since the debugging approach requires a complete interpretation, we first have to
extend the interpretation I given for debugging by the newly derivable auxiliary liter-
als introduced in the translation. For this purpose a distinction must be made between
satisfied and unsatisfied (wrt. I) cardinality constraints: if rcci involves a cardinality
constraint with bounds, then tr(rcci) contains an integrity constraint (either the rule is

Debugging Non-ground ASP Programs with Choice Rules, Cardinality 463

a constraint, then see rule (8) or (10) or otherwise see rule (9)); now, if the cardinality
constraint is satisfied under the interpretation at hand, solving tr(rcci) ∪ I yields one
answer set that contains the additionally required literals. If a cardinality constraint Pi

is not satisfied under the interpretation, then solving tr(rcci) ∪ I yields no answer set
at all. In this case, the original interpretation I is used. Thus, if a cardinality constraint
is unsatisfied under I the debugger meta-program will state that rule (17) and rule (26)
are unsatisfied.

As another case, some atoms of the interpretation can also form an unfounded loop.
Let us consider Lilian’s program just with the first cardinality constraint, denoted as P2:

thing(th1). thing(th2).
cabinet(c1). cabinet(c2).
1 {cabinetTOthing(X, Y) : cabinet(X)} 1 :- thing(Y).

This program has four answer sets. However, Lilian expects to have some answer
sets something like cabinetTOthing(c3,th3), i.e. expects interpretation I2 to
be an desired answer set:

thing(th1). thing(th2).
cabinet(c1). cabinet(c2).
cabinetTOthing(c2, th1).
cabinetTOthing(c1, th2).
cabinetTOthing(c3, th3).

In this case, the debugging output explains that cabinetTOthing(c3, th3).
forms an unfounded loop. In particular, there is neither a fact thing(th3) nor a fact
cabinet(c3).

We emphasize that both these kinds of errors – wrong cardinalities, missing facts –
occurred in practice in the encodings of our practical configuration settings.

6 Conclusions

We have presented a non-ground embedding of advanced ASP constructs (choices, car-
dinality and weight constraints) into normal logic programs and demonstrated how this
embedding can be used to debug non-ground ASP programs using these constructs in
the domain of configuration. While the non-ground embedding allowed us to extend an
existing debugging approach for normal non-ground progams [15] relatively straight-
forwardly, our preliminary evaluation of the non-ground transformation shows that it
cannot compete directly with non-ground embeddings as of yet. An investigation of
further optimizations, or the possibility to use more efficient ground transformations
directly in our debugger are on our agenda for future work.

Acknowledgements. The authors would like to thank Tomi Janhunen for providing ad-
vice on how to use the tools from [11] in our evaluation and Jörg Pührer for supporting
and giving advice regarding the Ouroboros plugin. This work was funded by FFG
FIT-IT within the scope of the project RECONCILE (grant number 825071).

464 A. Polleres et al.

References

1. Brain, M., De Vos, M.: Debugging logic programs under the answer set semantics. In: 3rd
International Workshop on Answer Set Programming, ASP 2005. CEUR Workshop Proceed-
ings, pp. 141–152 (2005)

2. Caballero, R., Garcı́a-Ruiz, Y., Sáenz-Pérez, F.: A theoretical framework for the declarative
debugging of datalog programs. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2008. LNCS,
vol. 4925, pp. 143–159. Springer, Heidelberg (2008)

3. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set
programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

4. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory Pract. Log. Pro-
gram. 5(1-2), 45–74 (2005)

5. Friedrich, G., Ryabokon, A., Falkner, A.A., Haselböck, A., Schenner, G., Schreiner, H.:
(Re)configuration using Answer Set Programming. In: IJCAI 2011 Workshop on Config-
uration, pp. 17–25 (2011)

6. Frühstück, M., Pührer, J., Friedrich, G.: Debugging answer-set programs with Ouroboros –
extending the SeaLion plugin. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI),
vol. 8148, pp. 323–328. Springer, Heidelberg (2013)

7. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo (2010)

8. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)

9. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debug-
ging answer-set programs. In: Proceedings of the 23rd National Conference on Artificial
Intelligence, AAAI 2008, vol. 1, pp. 448–453. AAAI Press (2008)

10. Gebser, M., Schaub, T.: Answer set solving in practice (2011),
http://www.cs.uni-potsdam.de/˜torsten/ijcai11tutorial/asp.pdf
(visited on October 18, 2012)

11. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to
propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 111–130. Springer,
Heidelberg (2011)

12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv sys-
tem for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562
(2006)

13. Niemelä, I., Simons, P., Soininen, T.: Stable model semantics of weight constraint rules.
In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp.
317–331. Springer, Heidelberg (1999)

14. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: On debugging non-ground
answer-set programs. Theory Pract. Log. Program. 10(4-6), 513–529 (2010)

15. Oetsch, J., Pührer, J., Tompits, H.: The sealion has landed: An IDE for answer-set program-
ming. In: 25th Workshop on Logic Programming, WLP (2011)

16. Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer set se-
mantics. Theory Pract. Log. Program. 9(1), 1–56 (2009)

17. Syrjänen, T.: Cardinality constraint programs. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 187–199. Springer, Heidelberg (2004)

18. Syrjänen, T.: Debugging inconsistent answer set programs. In: Proc. NMR, vol. 6, pp. 77–83
(2006)

http://www.cs.uni-potsdam.de/~torsten/ijcai11tutorial/asp.pdf

Conflict-Based Program Rewriting
for Solving Configuration Problems

Anna Ryabokon1, Gerhard Friedrich1, and Andreas A. Falkner2

1 Universitaet Klagenfurt, Austria
firstname.lastname@aau.at

2 Siemens AG Österreich, Vienna, Austria
firstname.{middleinitial.}lastname@siemens.com

Abstract. Many real-world design problems such as product configuration re-
quire a flexible number of components and thus rely on tuple generating depen-
dencies in order to express relations between entities. Often, such problems are
subject to optimization, preferring models which include a minimal number of
constants substituted in existentially quantified formulas.

In this paper we propose an approach based on automated program rewriting
which avoids such substitutions of existentially quantified variables that would
lead to a contradiction. While preserving all solutions, the method significantly
reduces runtime and solves instances of a class of real-world configuration prob-
lems which could not be efficiently solved by current techniques.

1 Introduction

A number of important real-world applications require knowledge representation (KR)
languages that are able to express the existence of certain objects. For instance, a com-
puter configuration system [20] might require the existence of a compatible CPU for
each motherboard. The rules with existentially quantified heads used to express these
relations are often referred to as tuple generating dependencies (TGDs). Modern knowl-
edge representation (KR) formalisms such as Datalog+/-[4] or Description Logic [2]
are able to represent TGDs. They are used for query answering and allow to verify
whether a given set of facts is a problem solution. However, in some applications such
as knowledge-based configuration the problem solutions are unknown a priori and have
to be generated, e.g. by computing (subsets) of preferred logical models.

General languages for configuration problems such as LoCo [1] allow to model con-
ditional inclusion of components by means of TGDs. Since in general case a knowledge
base containing TGDs might have infinite models (configurations), a language must
ensure the finiteness of models by bounding the number of generated components de-
pending on the user input. Namely, we have to verify whether the set of user-defined
input components of a configuration problem, given as facts, suffice to make the con-
figuration problem finite. Assuring the finiteness of models is desirable not only for
guaranteeing decidability, but is also obvious for practical reasons such as realizability
of a configuration since infinite configurations cannot be manufactured. After the finite
bounds on the number of required components are computed, configurations are found
by the means of model construction.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 465–478, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

466 A. Ryabokon, G. Friedrich, and A.A. Falkner

In many cases, computation of precise bounds is impossible since current meth-
ods [7,1,8] do not consider additional constraints given in a problem description. In this
case one generates a number of components corresponding to an upper bound, which
usually is more than required to solve a configuration problem instance. In order to
obtain a solution with the minimal number of components, a system requires a set of
preference criteria to be defined by a user. These criteria are then provided to a solver
which returns preferred models. The computation of a(n optimal) model can be done by
translating a general logical description of a problem instance to Answer Set Program-
ming (ASP) [13,3].

In practice finding an optimal solution might take unacceptable time because of the
large number of constants (components) and the presence of symmetric models. They
can be obtained from other models by interchanging constants substituted in existen-
tially quantified variables. As practice shows, the larger the number of existing sym-
metric models is the worse is solving performance.

There are two general ways to overcome this problem: extend the knowledge base
with additional symmetry breaking constraints [5] and/or reduce the sets of generated
constants used in the rules approximating TGDs (domain filtering [9,14]). However,
these techniques have only been developed for specific KR languages, e.g. ASP or con-
straint programming, and are not supported by general languages such as [1]. Moreover,
the evaluation presented in [18] shows that the application of the known symmetry-
breaking approach for ASP [5] works well for the pigeonhole problem, but does not
improve solving performance when applied to such problems as rack configuration.

In this paper we propose a novel TGD rewriting approach which is applicable to
general knowledge representation languages. This method improves the elimination of
existential quantifiers based on or-terms. The basic idea of eliminating existential quan-
tification [1] is to compute a sufficiently large set of fresh constants (called domain) for
each existential quantifier and replace the existentially quantified variables in the TGDs
by an or-term. Roughly speaking, the or-term contains an atom for every combination
of elements of the domains of the existential quantifiers. We exploit conflicting variable
substitutions in order to reduce the length of these or-terms thus reducing the number
of choice points in the search space. To the best of our knowledge there are no previ-
ous proposals for an automatic rewriting of existential rules. The algorithm is evaluated
on a set of industrial configuration problem instances corresponding to combinatorial
problems which include several optimization criteria. These problems require selection
and assignment of hardware modules depending on the user and system requirements
and occur frequently during configuration of technical systems produced by Siemens,
such as telephone switching systems, electronic railway interlocking system, automa-
tion systems, etc.

The experimental results show that the algorithm can find (optimal) solutions for
problems occurring in practice within an acceptable time. For the set of reference in-
dustrial problems, the method was able to find solutions which are up to 525% better
with respect to the specified preference criteria. For the largest problem instances the
standard solver was not able to find a solution with optimal costs using the original
program in 3 hours, whereas the rewritten program required at most 11 minutes.

Conflict-Based Program Rewriting for Solving Configuration Problems 467

In Section 2 we present an approach for rewriting TGDs that allows the search to
be performed efficiently. In Section 3 the implementation details are provided and in
Section 4 the evaluation results are analyzed. Finally, in Section 5 we conclude and
discuss future work.

2 Rewriting of Existential Rules

In this section, after an introduction of some preliminaries, we describe the rewriting
algorithm that uses binary constraints to limit the number of generated constants (nulls)
and, thus, accelerates evaluation of programs containing TGDs.

2.1 Preliminaries

In configuration languages applied by Siemens in practice variants of TGDs are used to
express relations between two components. Formally, a TGD σ of such a language is a
first order formula of the form

∀X ∈ SX Φ(X)→ ∃ul Z ∈ SZ Ψ(X,Z) (1)

where Φ(X) is an atom and Ψ(X,Z) is a conjunction of atoms. An atom is an expres-
sion of the form ri(t1, . . . , tn), where t1, . . . , tn are terms and ri is an element of a
finite set of relation names (predicates) R = {r1, . . . , rn}. Each term can be either a
variable or a constant or a null (Skolem constant). The infinite countable domains of
the terms are denoted by ΔV , ΔC and ΔN respectively and the union of these domains
by Δ. An atom ri(t1, . . . , tn) is called ground if all terms in the tuple 〈t1, . . . , tn〉 are
elements of the set ΔC ∪ΔN . The set Hbase(ΔC ∪ΔN) (Herbrand base) contains all
ground atoms that can be generated using predicates inR and terms in ΔC ∪ΔN .

Formula (1) includes two extensions w.r.t. classical first-order formulas, namely,
counting existential quantifiers and sorts S ⊆ ΔC ∪ ΔN . The latter is required by
the fact that all components of one type in a component catalog must have a unique
identifier. Consequently, configuration languages employed in industry and proposed
in [1] allow the definition of a sort of identifiers for each component type of a prob-
lem. All sorts defined in a problem description are required to be mutually disjoint, i.e.
Si ∩ Sj = ∅. As it is shown in [1] a program including rules of the form (1) can be
reduced to a classical first-order program.

An example of a typical configuration TGD is a binary relation between two compo-
nents C1 and C2 that relates at least l and at most u instances of C2 with each C1:

∀X ∈ SX C1(X)→ ∃ul Z ∈ SZ C2(Z) ∧ C12C2(X,Z)

where sorts SX and SZ for variables X andZ contain identifiers of component instance
available in a problem description.

An atom Φ(X) is often called the body of a rule and the conjunction Ψ(X,Z) is
the head. A rule with an empty body body(r) = ∅ is usually referred to as a fact.
Facts can be of the two types existential and ground depending on whether they contain
some existentially quantified variables or not. Note that, an existential fact can be a

468 A. Ryabokon, G. Friedrich, and A.A. Falkner

conjunction of atoms including one existentially quantified variable. A program Σ is a
finite set of rules. It contains rules of the form (1) as well as first-order rules with only
universally quantified variables. In addition, edb(Σ) denotes a set of all ground facts of
the program Σ and by idb(Σ) all other rules.

A substitution is a homomorphism θ : Δ �→ ΔC ∪ΔN that maps elements of ΔC

and ΔN to themselves. In order to simplify the presentation we denote a substitution of
the variables in an atom at by θ(at). For the sorted variables the substitution function
is defined as θ : Δ �→ S, where S ⊆ ΔC ∪ΔN .

Since sorts and counting existential quantifies can be reduced to classical first-order
logic we use the following semantic of a program Σ. Let A be a set of atoms. Given
an atom at the set A entails at (A |= at) if there is a substitution θ such that θ(at) ∈
A. A set of ground atoms M ⊂ Hbase(ΔC ∪ ΔN) is a model of the program Σ if
for every rule σ ∈ Σ there exists a substitution θ(body(σ)) ⊆ M such that M |=
θ′(head(σ)), where θ′ contains all and only substitutions for existentially quantified
variables Z , see [6,4,15] for more details. In configuration solutions often correspond to
a minimal set of atoms in order to reduce the costs. Therefore, in practice we can focus
on the computation of minimal models. The computation of finite models containing
the optimal solutions (configurations) can be accomplished by using ASP encodings
and solvers.

Note, that in case of configuration the number of nulls used in a solution must be
finite, since infinite solutions are of no practical interest. Therefore, configuration lan-
guages use methods as in [8] to compute the required number of nulls for each sort or
to determine that there is no finite solution. Consequently, we assume that the sorts are
fixed. The bounds can be determined for the number of components by methods pre-
sented in [7,1,8]. For the practical configuration problems of Siemens these bounds can
be computed in polynomial time.

2.2 Conflict-Based Program Rewriting

Given a program Σ, a reasoning algorithm, e.g. chase [6,4], usually starts from the set
of rules edb(Σ) and iteratively extends it by searching any applying substitutions to
the rules in idb(Σ). In case of a TGD σ with θ(body(σ)) ⊆ edb(Σ) the reasoning
algorithm first rewrites it as an existential fact of the form

∃ul Z ∈ SZ Ψ(θ(X), Z) (2)

where θ(X) maps variable X to some constant in SX . Next, the algorithm searches for
an extension θ′ of the substitution θ on X ∪ Z associating the variable Z with some
element of SZ . The resulting ground facts are then added to edb(Σ). Usually reasoning
algorithms use a variant of an extension function θ′ that associates a fresh null with
each variable in order to obtain a universal solutionM, i.e. such solution that any other
solutions, say M′, can be obtained from M by a homomorphism h : ΔN ∪ ΔC →
ΔN ∪ΔC that maps elements of ΔC to themselves [6,15].

Example 1. Consider the following program capturing a frequent case in technical con-
figuration which includes two component types and a typical ∃11 relation between them.

Conflict-Based Program Rewriting for Solving Configuration Problems 469

Given a set of things, store each of them in exactly one cabinet taking into account that
things t1 and t2 cannot be placed in the same cabinet. The domain of cabinets is defined
as SZ = {ϕ1, ϕ2, ϕ3}.

r1 : thing(t1) ∧ thing(t2) ∧ thing(t3)

r2 : ∀X thing(X)→ ∃11Z ∈ SZ t2c(X,Z)

r3 : ∀X t2c(t1, X) ∧ t2c(t2, X)→

The reasoning algorithm starts with an edb(Σ) = {thing(t1), thing(t2), thing(t3)}
and finds a substitution θ1 = {X/t1}. This substitution allows to rewrite the sec-
ond rule as an existential fact ∃11Z ∈ SZ t2c(t1, Z). The second substitution θ2 =
{X/t2} results in the fact ∃11Z ∈ SZ t2c(t2, Z) and the third θ3 = {X/t3} in
∃11Z ∈ SZ t2c(t3, Z). An extension function might introduce different mappings.
For instance, it can map every variable to a different null and obtain three grounded
atoms t2c(t1, ϕ1), t2c(t2, ϕ2), and t2c(t3, ϕ3), where each ϕi corresponds to a cabi-
net. edb(Σ) extended with these facts is a model of the program above. However, an
extension resulting in t2c(t1, ϕ1), t2c(t2, ϕ1), and t2c(t3, ϕ1) does not allow to obtain
a model of the program because of the constraint (rule r3).

Definition 1 (Conflict set). Let Ψ := {Ψ(θ1(X), Z), . . . , Ψ(θn(X), Z)} be the set of
sorted existential facts Ψ of a program Σ in which variable Z range over the same sort
SZ . A pair of facts CS ⊆ Ψ is a conflict set iff Σ ∪

{
∃Z

∧
a∈CS a

}
is inconsistent.

A set CS of conflict sets can be computed using this definition as shown in Section 3.
Given the set CS, we can rewrite TGDs in Σ in a way that the reasoning algorithm will
extend substitutions for any pair of conflicting atoms with different constants (nulls).

Definition 2 (TGD rewriting problem). Let CS be a set of conflict sets and Σ be a
program including TGDs of the form (1). The TGD rewriting problem is to find such
domain restrictions for the substitution function θ for each TGD in Σ such that:

a) each set Ψ of sorted existential facts do not contain conflict sets CS ∈ CS;
b) all possible models are preserved up to symmetric ones (renaming of nulls).

In order to rewrite the original TGD, first, we use Algorithm 1 which finds for each
existential fact Ψi ∈ Ψ a tuple

〈
DX

i , DZ
i

〉
, where the set DX

i ⊆ SX contains all
constants that are substituted by θi to the variable X in Formula (1) and the set DZ

i ⊆
SZ contains all nulls which are used to substitute Z . Next, given the resulting set of all
tuples SN =

{〈
DX

1 , DZ
1

〉
, . . . ,

〈
DX

n , DZ
n

〉}
we rewrite the TGD (1) as follows:

∀X ∈ DX
i Φ(X)→ ∃ul Z ∈ DZ

i Ψ(X,Z) (3)

Assuming that the initial program Σ is consistent, none of the rewritten TGDs (3) in
the program Σ′ can result in generation of a conflict set CS ∈ CS.

Our algorithm uses three functions: GETSUBSTITUTIONCONSTANTS, GETNULLS, and
GETCONSTANTS. The first function retrieves all constants that were substituted for the
universally quantified variable X . The injective function GETNULLS : Ψ �→ P(S∩ΔN)

470 A. Ryabokon, G. Friedrich, and A.A. Falkner

Algorithm 1. GenerateExtensions
input : A set CS of conflict sets, a set Ψ of existential facts, a domain S, program Σ

output: A set of substitutions associated with a set of nulls SN
1 SN ← ∅;
2 for i ← 1 to |Ψ| do
3 DX ← GETSUBSTITUTIONCONSTANTS(Ψi);
4 DZ ← GETNULLS(Ψi, S);
5 DZ ← DZ ∪ GETCONSTANTS(Σ,S);
6 for j ← 1 to i− 1 do
7 if ∀CS ∈ CS CS �⊆ {Ψi, Ψj} then
8 DZ ← DZ ∪ GETNULLS(Ψj , S);

9 SN ← SN ∪
{〈

DX , DZ
〉}

;

10 return SN ;

associates a set of nulls ϕi ⊆ S ∩ ΔN with every Ψi ∈ Ψ, such that ϕi includes u
fresh nulls for the variable Z , which are not used in any of the previous substitutions.
GETCONSTANTS returns all constants from the set S ∩ΔC contained in Σ. The sort S
is initialized prior to the solving and includes a sufficient number of fresh nulls (see
Section 2.1) and additional constants contained in the original program. Such constants
should always be included in every domain DZ to ensure that all models are preserved.

For each atom Ψi ∈ Ψ Algorithm 1 initializes the set DZ with a set of fresh nulls
ϕi corresponding to the fact Ψi and all constants of S appearing in Σ. Next, DZ is
extended with the nulls corresponding to Ψj ∈ Ψ non-conflicting with Ψi. If there are
multiple sets of existential facts Ψ = {Ψ1, . . . ,Ψi} ranging over mutually disjoint
sorts SZ

1 , . . . , S
Z
i then the algorithm is applied to each Ψk ∈ Ψ separately.

The rewriting approach modifies the range of the substitution function, defined as
a homomorphism θ : Δ �→ S by replacing S with its subset D. All other elements
of the structure such as predicates remain constant. Such modification guarantees that
only conflicting pairs of nulls, i.e. {ϕi, ϕj} �⊆ DZ , are not substituted for existentially
quantified variables of a TGD. Assuming that the instantiations of universally quanti-
fied variables is complete based on the grounded facts, we argue that our rewriting is
model preserving (up to renaming of nulls) because (a) we consider all constants of
the corresponding sort from the program, (b) we add u fresh nulls, and (c) eliminate
nulls which are conflicting w.r.t. a given conflict set CS. The case where additional
deductions extend the set of grounded facts is described in Section 2.3.

Of course, the method does not ensure the elimination of all possible conflicts, but
only those given in CS. In addition, we also do not require CS to contain all conflicts.
In particular, in our implementation we focus on conflicts which can be efficiently de-
tected by using the Horn fragment of Σ, where consistency can be checked in polyno-
mial time. Similar to filtering methods used in constraint satisfaction problem solving,
we focus on the elimination of the binary conflicts in order to increase efficiency of the
algorithm. Our evaluation shows that the suggested algorithm allows to achieve signifi-
cant reduction of computation time for real-world problems.

Conflict-Based Program Rewriting for Solving Configuration Problems 471

Note that Algorithm 1 prevents the generation of many symmetric solutions by gen-
erating only a lower triangle of the matrix of nulls that can be substituted for exis-
tentially quantified variables. Each row of this matrix corresponds to an element of
DX and each column to one of the nulls in DZ . For instance, if atoms t2c(t1, Z) and
t2c(t2, Z) are not conflicting then the algorithm generates two tuples 〈{t1} , {ϕ1}〉 and
〈{t2} , {ϕ1, ϕ2}〉, thus, avoiding a symmetric solution {t2c(t1, ϕ2), t2c(t2, ϕ2)}.

Example 2 (continue Example 1). Let edb(Σ) be extended with facts defining two more
things {thing(t4), thing(t5)} and SZ = {ϕ1, . . . , ϕ5}. Also in idb(Σ) we replace the
constraint r3 with a set of constraints that do not allow to assign any of the things
{t1, t2} and {t3, t4, t5} to the same cabinet. Assume that for the set of facts

Ψ = {t2c(t1, Z), t2c(t2, Z), t2c(t3, Z), t2c(t4, Z), t2c(t5, Z)}

all constraints in idb(Σ) result in the following set of conflict sets:

CS = { {t2c(t1, Z), t2c(t3, Z)} , {t2c(t1, Z), t2c(t4, Z)} , {t2c(t1, Z), t2c(t5, Z)} ,
{t2c(t2, Z), t2c(t3, Z)} , {t2c(t2, Z), t2c(t4, Z)} , {t2c(t2, Z), t2c(t5, Z)}}

Application of Algorithm 1 to the given sets Ψ, CS and the domain of nulls SZ =
{ϕ1, . . . , ϕ5} results in the following set of extensions SN :

t1 : {ϕ1} t2 : {ϕ1, ϕ2} t3 : {ϕ3} t4 : {ϕ3, ϕ4} t5 : {ϕ3, ϕ4, ϕ5}

Given the set SN we use the suggested transformation to rewrite the TGD in Example 2
as follows:

thing(t1)→ ∃11Z ∈ {ϕ1} t2c(t1, Z) thing(t3)→ ∃11Z ∈ {ϕ3} t2c(t3, Z)

thing(t2)→ ∃11Z ∈ {ϕ1, ϕ2} t2c(t2, Z) thing(t4)→ ∃11Z ∈ {ϕ3, ϕ4} t2c(t4, Z)

thing(t5)→∃11Z∈{ϕ3, ϕ4, ϕ5} t2c(t5, Z)

The resulting program reduces the number of possible extensions significantly. In the
Example 1 the standard elimination of existential quantification would result in a set of
five nulls {ϕ1, . . . , ϕ5}, where each existential quantified variable can be substituted
by an element of this set. Such a set of nulls allows 55 = 3125 possible combinations
of substitutions of nulls, whereas the rewritten program allows only 12 combinations
which is 260 times smaller than using the common algorithm. In this example we pre-
serve all possible models, up to symmetric ones, because the algorithm eliminated only
those nulls from the sets DZ

i whose substitution results in an inconsistency.

2.3 Rewriting of Multiple TGDs

Descriptions of complex problem instances might include multiple TGDs such that
some of them depend on the others, i.e. the body Φ(X) of a TGD σ1 contains an atom
at ∈ Φ(X) which can be derived from some atom in the head Ψ(X,Z) of a TGD σ2.

Recursive Algorithm 2 starts with computation of a partial solution F using GET-
NEXTSOLUTION function. This function returns a set of grounded facts computed for

472 A. Ryabokon, G. Friedrich, and A.A. Falkner

Algorithm 2. Solve
input : A program Σ

output: A set of atoms representing the best solution of a problem instance

1 Sol ← ∅;
2 loop
3 F ← GETNEXTSOLUTION(Σ);
4 if F = ∅ then break EF ← GETEXISTENTIALFACTS(Σ ∪ F);
5 if EF �= ∅ then
6 SN ← ∅;
7 foreach 〈Ψi, Si〉 ∈ EF do
8 CS ← GETCONFLICTSETS(Ψi, Σ ∪ F);
9 SN ← SN ∪ GENERATEEXTENSIONS(CS,Ψi, Si, Σ);

10 Σ′ ← REWRITE(SN , Σ ∪ F);
11 PS ← SOLVE(Σ′);
12 Sol ← Sol ∪ {PS ∪ F};

13 else Sol ← Sol ∪ {F}
14 return GETBESTSOLUTION(Sol);

a (rewritten) program excluding all TGDs of form (1) with existential quantifiers. In the
first iteration the function returns all facts that are derivable from edb(Σ) without TGDs
including existential quantification. In the next iteration, it returns a set of grounded
facts {Ψ(θ′1(X), θ′1(Z)), . . . , Ψ(θ′n(X), θ′n(Z))} computed for TGDs justified by the
facts derived in the previous iteration, etc. If the next partial solution F is empty, then
the algorithm exits the loop and returns the best of the solutions stored in Sol. Other-
wise, GETEXISTENTIALFACTS retrieves a set EF of tuples 〈Ψi, Si〉 from Σ, where all
Ψi are justified by the facts in F . In addition, the function selects only those existential
facts Ψi that are generated by new substitutions of the universal variables. By “new” we
mean those which were not used for rewriting in previous iterations.

For each tuple 〈Ψi, Si〉, comprising a set of existential facts Ψi and a sort Si of ex-
istentially quantified variables occurring in Ψi, we compute a set of conflicts according
to the Definition 1. Given the set of conflicts CS Algorithm 1 generates the set of ex-
tensions SN and the target TGDs are then rewritten to obtain Σ′, as described above.
Next, the algorithm calls itself providing the extended program as an input. The facts
F , added on the rewriting step (REWRITE), justify the bodies of TDGs that were not jus-
tified on the previous iteration, thus allowing us to apply the rewriting one more time.
The program continues the search in a depth-first order until all solutions are enumer-
ated and returns the best one in case preference criteria are defined by a user.

When the rewriting method is applied to recursive TGDs we guarantee its termina-
tion because the lower and upper bounds on the number of constants corresponding to
each component are finite and determined prior to execution of the Algorithm 2. To
rewrite a recursive TDG we have to take into account all constants of a sort that are
already appearing in a partial solution. These constants must be added to the initial set
DZ by the function GETCONSTANTS (see Algorithm 1).

Conflict-Based Program Rewriting for Solving Configuration Problems 473

The algorithm allows the identification of a solution by executing its fast variant in
which we investigate only the left-most branch in the search tree, i.e. it selects one of the
optimal partial solutions on each step and continues until the whole model is generated.
This greedy approach is important in practice since users often want to test the model
they are developing and require a solving method which responds quickly.

3 Implementation

The method suggested in the paper can be applied to knowledge bases defined using
knowledge representation languages such as LoCo [1], thus allowing application of
modern solvers of combinatorial search problems like SAT, answer set programming
or constraints. We ensure the finiteness of the logical models by bounding the number
of generated nulls depending on the user input. The rewriting approach is implemented
using the translation to ASP as suggested in [10]. Following this methodology each
TGD is translated to a choice rule [19] of the form:

lower {Ψ(X,Z) : domain(Z)}upper : -Φ(X). (4)

where domain(Z) is a domain for the existentially quantified variables, which contains
as many constants as the corresponding set DZ . An operator “:” generates a set of atoms
by substituting all possible constants appearing in the atoms with the domain predicate.
The ASP semantics [12] ensures that at least lower and at most upper atoms from the
set of atoms defined in the head of a choice rule are elements of each answer set. The
latter is a set of atoms justified by a program with respect to the ASP semantics [3].
The implementation is done using Potassco system [11] which is the winner of the last
ASP competition.

Example 3. The sample program Σ presented in Example 1 is encoded as follows:

thing(t1). thing(t2). thing(t3). domain(c1). domain(c2). domain(c3).

1 {t2c(X,Z) : domain(Z)} 1 : - thing(X).

: - t2c(t1, X), t2c(t2, X).

Application of Gringo, which is the Potassco grounder, expands the choice rule and the
constraints into three pairs of rules such as:

1 {t2c(t1, c1), t2c(t1, c2), t2c(t1, c3)}1 : - thing(t1).
: - t2c(t1, c1), t2c(t2, c1).

A sample answer set justified by the grounded program includes all facts given in
edb(Σ) and a set of atoms {t2c(t1, c1), t2c(t2, c2), t2c(t3, c1)}. A solver identifies 18
possible answer sets for this problem.

Minimization of the number of nulls, i.e. constants defined in the domain, used in
the solution is very important. In problems like configuration this corresponds to the
minimization of the number of components used in the system, thus reducing the costs

474 A. Ryabokon, G. Friedrich, and A.A. Falkner

of a product. In our case, minimization can be done using the optimization algorithms
available in ASP systems. We can add the following rules to model this in Potassco:

usedNull(Z) : - t2c(X,Z).

#minimize {usedNull(Z)} .

The latter rule specifies a preference criterion which forces a solver to return only an-
swer sets including a minimal number of atoms from the set. In our example, the pre-
ferred answer set is the one which includes a minimal number of elements from the
set {usedNull(c1), usedNull(c2), usedNull(c3)}. Given such preference criteria a
solver returns only 12 answer sets.

The rewriting program executes the algorithms presented in Section 2. The identifi-
cation of conflict sets is implemented using Definition 1. We remove from the grounded
program all choice rules and add pairs of facts which represent a potential conflict set.
If the resulting program is unsatisfiable then the pair is a conflict set. Note, that the
translated ASP program without choice rules includes only Horn clauses (clauses with
at most one positive literal). Completeness of the set of conflicts CS is not required.
Taking into account that there are at most n(n− 1)/2 possible pairs of atoms, the iden-
tification of conflicts can be done in polynomial time, i.e. O(n2).

In addition, performance of the solver can be improved by introduction of the order-
ing on the sets of fresh nulls. For the original program we specify a set of rules defining
lexicographical ordering of all constants in a domain. Applied to Example 1 the or-
dering rules force a solver to use cabinets corresponding to lexicographically smaller
constants first. We define ordering rules for nulls which are used in the rewritten pro-
gram associated with each set of non-conflicting atoms, i.e. such atoms of any facts Ψi

and Ψj for which DZ
i ∩ DZ

j �= ∅. The order is defined by the number of occurrences
of a null in tuples of the set SN . The more frequently the null is used the higher is its
order. In Example 2 for set {t1, t2} the set of nulls is ordered as {ϕ1, ϕ2} since ϕ1 is
used twice and ϕ2 only once. Such ordering requires a solver to substitute ϕ1 first.

4 Evaluation

We evaluated our approach on a slightly modified version of the House configuration
problem proposed in [17]. The problem is an abstraction of various configuration prob-
lems occurring in practice of Siemens, where entities may be contained in other enti-
ties and several requirements and constraints in and between entities must be fulfilled.
Namely, we considered the modification of this problem studied and evaluated in [10,1].
The benchmarks1 correspond to a reconfiguration problem which includes knowledge
describing a legacy solution (previous solution which has to be reconciled with new
requirements) used for finding a reconfiguration solution. It is impossible to compare
our results with the results provided in [10] since the presence of a legacy solution
in some cases simplifies the solving, e.g. in problem instances Newroom. Ignoring the
legacy knowledge we get a set of configuration problem instances which were evalu-
ated in this paper using the plain ASP encoding without the rewriting and the rewriting

1 http://proserver3-iwas.uni-klu.ac.at/reconcile/index.php/benchmarks

http://proserver3-iwas.uni-klu.ac.at/reconcile/index.php/benchmarks

Conflict-Based Program Rewriting for Solving Configuration Problems 475

program. Moreover, from four types of configuration problems described in [10] we
present the evaluation results for Empty, Long and Newroom instances. As it turned out
during the experiments, Swap does not contain the binary conflicts necessary for an ef-
ficient application of the conflict-based rewriting and only the common encoding can be
applied. The overhead for the rewriting of the hardest Swap instance is about 3 minutes
which is rather small in comparison to the overall solution time.

A knowledge base for a House problem instance comprises objects such as person,
thing, cabinet, and room, where things can be long or short and cabinets high or small.
The number of cabinets and rooms generated for each problem equals the number of
things such that a fresh constant can be used in each relation. The configuration problem
is to place these things into cabinets and the cabinets into rooms such that the following
configuration requirements are satisfied:

– each thing must be stored in exactly one cabinet;
– a cabinet can contain at most 5 things;
– every cabinet must be placed in exactly one room;
– a room can contain at most 4 cabinets;
– a person can own any number of rooms;
– each room belongs to a person;
– a room may only contain cabinets storing things of the owner of the room;
– a long thing can only be put into a high cabinet;
– a small cabinet occupies 1 and a high cabinet 2 of 4 positions available in a room;
– a solution with minimal number of high cabinets, cabinets and rooms is preferred.

The evaluation experiments were performed using the grounder Gringo v. 3.0.4 and
the solver Clasp v. 2.0.6 (default portfolio options) from Potassco ASP collection2 [11]
on a system with Intel i7-3930K CPU (3.20GHz), 32Gb of RAM and running Ubuntu
11.10. Note that the method is not only restricted to the mentioned ASP system. Usage
of systems such as DLV [16] is possible with some modifications in the translation,
since choice rules are not supported by its knowledge representation language. The
algorithms presented in Section 2 as well as supporting methods, such as finding of
justified choice rules or their modifications, were implemented in Java. In our evaluation
we tested the algorithm allowing the backtracking only in a situation when a set partial
solution cannot be extended. That is, any extension results in an unsatisfiable program
due to non-binary constraints. The algorithm quits as soon as the first solution is found.

The set of benchmark problems comprised 24 configuration instances including 8
instances of each type. The name of an instance indicates the number of persons and
things declared in an EDB. The size of the grounded program depending on an EDB
varies from 0.6 to 620 Mb with an average of 133 Mb (Lparse format). The ASP pro-
gram corresponding to the House problem included a set of rules expressing the require-
ments given above. The costs of a solution were determined as a number of generated
components used in a solution.

We compared the suggested rewriting approach with an ASP program without rewrit-
ing referred to as Rewriting and Original respectively. We measured execution time and

2 http://potassco.sourceforge.net/

http://potassco.sourceforge.net/

476 A. Ryabokon, G. Friedrich, and A.A. Falkner

0

100

200

300

400

500

So
lu

tio
n

co
st

s
Rewriting Original (subopt) Original (opt) Optimum

Fig. 1. Quality of solutions identified by Original and Rewriting in 900 seconds

10

100

1000

10000

100000

1000000

26 53 79 105 132 158 184 211

Ru
nt

im
e

(m
s)

Average problem size (number of things)

Grounding Parsing Conflict detection Nulls generation
Rewriting Solving Total

Fig. 2. Time to find a solution using three optimization criteria and Rewriting

optimality of the solution found within 900 seconds. In both cases we used the ordering
rules as defined in Section 2.

The evaluation showed that the solver Clasp was able to find solutions with the
minimal costs, i.e. minimum number of used nulls (high cabinets/cabinets/rooms) for
the 10 smallest cases presented in Fig. 1 using Original. Among them it was able to
prove the optimality only for three smallest instances empty_p05t025, long_p02t030,
newroom_p02t024 in 0.3, 1.2 and 103 seconds respectively which are presented by Orig-
inal (opt). Generally, the solver had a problem with proving optimality of a solution
given Original encoding and in most of the cases the timeout was reached – Original
(subopt). In opposite, Rewriting was able to find a solution with optimal costs for all
considered cases requiring 640 seconds for the hardest instance long_p16t240. Addi-
tionally, we did an experiment running the solver on the instance long_p16t240 for
3 hours with Original and the solver still failed to improve the costs of the preferred
solution. Thus, Rewriting finds significantly better solutions in less time than Original.

Fig. 2 presents the overall runtime of the Rewriting solving the House configuration
problem including three optimization criteria, i.e. minimizing the number of high cab-
inets, cabinets and rooms. The total runtime was divided into the following processing
stages: grounding, parsing, conflict detection, nulls generation, rewriting and solving.

Conflict-Based Program Rewriting for Solving Configuration Problems 477

All Empty, Long and Newroom instances are grouped depending on the average num-
ber of things. We took the number of things to represent the instances and their average
time to illustrate the results. Here we provide time segments for all instances and a total
time using Rewriting. As the diagram shows, the hardest instance was solved in about
640 seconds including 225 seconds for grounding, 170 seconds for the conflict detec-
tion and 205 seconds for solving. The remaining 40 seconds were used for parsing,
generation of nulls and rewriting. The rewriting takes very little time, 79 milliseconds
for the mentioned test instance. This makes it invisible on the diagram compared with
other stages for the smallest test instances.

5 Conclusions and Future Work

The evaluation results demonstrate the convincing superiority of the rewriting approach
over the common (original) encoding using state-of-the art solvers for instances rele-
vant to practice. Modifying the existential rules by elimination of the problems’ binary
conflicts allows to speed up computations and strongly enhance the quality of returned
solutions. However, a tight integration of the method into an ASP solver will improve
the performance even more. Nevertheless, we demonstrated a significant speed up for
a typical class of configuration problems occurring in practice. From the application
point of view we are going to extend our method to a reconfiguration case, when a
legacy configuration has to be reconciled to meet new requirements.

Acknowledgments. This research has been funded by the Austrian Research Promo-
tion Agency (grant numbers: 825071 and 840242).The authors would like to thank all
anonymous reviewers for their comments and especially Conrad Drescher for the dis-
cussions regarding LoCo.

References

1. Aschinger, M., Drescher, C., Vollmer, H.: LoCo – A Logic for Configuration Problems. In:
Proceedings of the 20th European Conference on Artificial Intelligence, pp. 73–78 (2012)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook. Cambridge University Press (2010)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communica-
tions of the ACM 54(12), 92–103 (2011)

4. Calì, A., Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog+/-: A family of languages for on-
tology querying. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science, pp. 351–368 (2010)

5. Drescher, C., Tifrea, O., Walsh, T.: Symmetry-breaking Answer Set Solving. AI Communi-
cations 24(2), 177–194 (2011)

6. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Transactions on
Database Systems 30(1), 174–210 (2005)

7. Falkner, A., Feinerer, I., Salzer, G., Schenner, G.: Computing Product Configurations via
UML and Integer Linear Programming. Journal of Mass Customisation 3(4), 351–367 (2010)

8. Feinerer, I.: Efficient large-scale configuration via integer linear programming. AI for Engi-
neering Design, Analysis and Manufacturing 27, 37–49 (2013)

478 A. Ryabokon, G. Friedrich, and A.A. Falkner

9. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction problems. In:
Proceedings of the 9th National Conference on Artificial Intelligence, pp. 227–233 (1991)

10. Friedrich, G., Ryabokon, A., Falkner, A.A., Haselböck, A., Schenner, G., Schreiner, H.: (Re)
configuration based on model generation. In: Proceedings of the Second Workshop on Logics
for Component Configuration, LoCoCo, vol. 65, pp. 26–35 (2011)

11. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.:
Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24(2), 107–124
(2011)

12. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187-188, 52–89 (2012)

13. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: 5th Inter-
national Conference and Symposium on Logic Programming, pp. 1070–1080 (1988)

14. Haselböck, A.: Exploiting interchangeabilities in constraint-satisfaction problems. In: Pro-
ceedings of the 13th International Joint Conference on Artificial Intelligence, pp. 282–289
(1993)

15. Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently Computable Datalog∃ Programs.
In: Proceedings of the 13th International Conference on Principles of Knowledge Represen-
tation and Reasoning, pp. 13–23 (2012)

16. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic (TOCL) 7(3), 499–562 (2006)

17. Mayer, W., Bettex, M., Stumptner, M., Falkner, A.: On solving complex rack configuration
problems using CSP methods. In: Proceedings of the Workshop on Configuration (2009)

18. Ryabokon, A.: Study: Symmetry breaking for ASP. CoRR arXiv:1212.2657 (2012)
19. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence 138, 181–234 (2002)
20. Stumptner, M.: An overview of knowledge-based configuration. AI Communications 10(2),

111–125 (1997)

Program Updating by Incremental
and Answer Subsumption Tabling

Ari Saptawijaya and Luı́s Moniz Pereira

Centro de Inteligência Artificial (CENTRIA), Departamento de Informática
Faculdade de Ciências e Tecnologia, Univ. Nova de Lisboa, 2829-516 Caparica, Portugal

ar.saptawijaya@campus.fct.unl.pt, lmp@fct.unl.pt

Abstract. We propose a novel conceptual approach to program updates imple-
mentation that exploits two features of tabling in logic programming (in XSB
Prolog): incremental and answer subsumption tabling. Our approach, EVOLP/R,
is based on the constructs of Evolving Logic Programs (EVOLP), but simpli-
fies it at first by restricting updates to fluents only. Rule updates are nevertheless
achieved via the mechanism of rule name fluents, placed in rules’ bodies, permit-
ting to turn rules on or off, through assertions or retractions of their corresponding
unique name fluents. Incremental tabling of fluents allows to automatically main-
tain – at engine level – the consistency of program states. Answer subsumption of
fluents addresses the frame problem – at engine level – by automatically keeping
track of their latest assertion or retraction. The implementation is detailed here to
the extent that it may be exported to other logic programming tabling systems.

Keywords: logic program updates, incremental tabling, answer subsumption
tabling.

1 Introduction

In this paper we explore the use of state-of-the-art logic programming implementation
techniques to exploit their use in addressing a classical non-monotonic reasoning prob-
lem, that of logic program updates, with incidence on representing change, i.e. internal
or self and external or world changes. Our approach, EVOLP/R, follows the paradigm
of Evolving Logic Programs (EVOLP) [1], by adapting its syntax and semantics, but
simplifies it at first by restricting updates to fluents only. This restriction nevertheless
permits rule updates to take place, as long as we know the rules beforehand, i.e. ones not
constructed, learnt, or externally given. To update the program with such known-from-
the-start rules, special fluents that serve as names of rules and identify rules uniquely
are introduced. Such a rule name fluent is placed in the body of a rule to turn the rule
on and off (cf. [2]), this being achieved by asserting or retracting the rule name fluent.

We foster a novel implementation technique to program updates by exploiting Pro-
log tabling mechanisms, notably two features of XSB Prolog: incremental and answer
subsumption tabling. Incremental tabling of fluents allows to automatically maintain
the consistency of program states, analogously to assumption based truth-maintenance

� Affiliated with Fakultas Ilmu Komputer at Universitas Indonesia, Depok, Indonesia.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 479–484, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

480 A. Saptawijaya and L.M. Pereira

system, due to assertion and retraction of fluents. On the other hand, answer subsump-
tion of fluents allows to address the frame problem by automatically keeping track of
their latest assertion or retraction, whether obtained as updated facts or concluded by
rules. The employment of these tabling features has profound consequences in model-
ing agents. It permits separating higher-level declarative representation and reasoning,
as a mechanism pertinent to agents, from a world’s inbuilt reactive laws of operation.
The latter, being of no operational concern to the problem representation level, are rel-
egated to engine-level enacted tabling features. EVOLP/R is realized using a program
transformation plus a library of system predicates. The transformation adds some ex-
tra information, e.g. timestamps, for internal processing. Rule name fluents are system
generated and also added in the transform. System predicates are defined to operate on
the transform by combining the usage of incremental and answer subsumption tabling.

We describe the constructs of EVOLP/R (Section 2), detail the implementation tech-
nique (Section 3), and discuss related work along with concluding remarks (Section 4).

2 The EVOLP/R Language

For convenience, we represent EVOLP/R programs as propositional Horn theories, by
simply adapting EVOLP definitions [1]. Let K be an arbitrary set of propositional vari-
ables. We denote K̃ as the extension ofK, and is defined as K̃ = {A : A ∈ K} ∪ {∼A :
A ∈ K}. Atoms A ∈ K and ∼A are called positive fluents and negative fluents, respec-
tively. As in EVOLP, program updates are enacted by having the reserved predicate
assert/1 in the head of a rule. We define now the EVOLP/R language and program.

Definition 1. Let K̃ be the extension of a setK of propositional variables. The EVOLP/R
language L is defined inductively as follows:

1. All propositional atoms in K̃ are propositional atoms in L.
2. If A is a propositional atom in L, then assert(A) is a propositional atom in L.
3. If A is a propositional atom in L, then ∼assert(A) is a propositional atom in L.
4. If A0 is a propositional atom in L and A1, . . . , An, with n ≥ 0, are literals in L

(i.e. a propositional atom A, or its default negation not A), then A0 ← A1, . . . , An

is a rule in L.
5. Nothing else is a propositional atom in L.

An EVOLP/R program over a language L is a (possibly infinite) set of rules in L.

We extend the notion of positive and negative fluents in K̃ to propositional atoms
A and ∼A in L, respectively. They are said to be complement each other. When it is
clear from the context, we refer both of them as fluents. Retraction of fluent A (or ∼A),
making it false, is achieved by asserting its complement ∼A (or A, respectively). I.e.,
no reserved predicate for retraction is needed. Non-monotonicity of a fluent can thus be
admitted by asserting its complement, so as to let the latter supervene the former. Ob-
serve that the syntax permits embedded assertions of literals, e.g. assert(assert(a)),
∼assert(assert(a)); the latter being the complement of the former.

By Definition 1, EVOLP/R programs are not generalized logic programs (like in
EVOLP), but they nevertheless permit negative fluents in the rules’ heads. Indeed, one

Program Updating by Incremental and Answer Subsumption Tabling 481

may view negative fluents as explicit negations, and due to the coherence principle [3],
that explicit negation entails default negation, negative fluents obey the principle. There-
fore, the two forms of rules’ heads, i.e. assert(not A) in EVOLP and assert(∼A)
in EVOLP/R, can be treated equivalently. This justification allows the semantics of
EVOLP/R to be safely based on that of EVOLP, as long as the paraconsistency of simul-
taneously having A and ∼A is duly detected and handled, say with integrity constraints
or preferences. Note that EVOLP/R restricts updates to fluents only. Nevertheless, rule
updates (like in EVOLP) can be achieved, via the mechanism of rule name fluents,
placed in rules’ bodies, allowing to turn rules on or off, through assertions or retrac-
tions of their corresponding unique name fluents.

Like EVOLP, besides the self-evolution of a program, EVOLP/R also allows influ-
ence from the outside, either as an observation of fluents that are perceived at some
state, or assertion orders of fluents on the evolving program. Different from EVOLP,
the outside influence in EVOLP/R, referred as external updates, persist by inertia as
long as they do not conflict with the more recent values for them. Nevertheless, we may
easily define external updates that do not persist by inertia, called events in EVOLP, by
defining for every atomic event E the rule: assert(∼E)← E, i.e. if event E is imposed
at some state i, then it is no longer assumed from the next state, i.e. (i + 1), onwards.
In other words, E holds at state i only.

3 Implementing EVOLP/R in Tabled Logic Programming

Tabling in logic programming affords reuse of solutions, rather than recomputing them,
by maintaining subgoals and their answers (obtained in query evaluation) in a table.
In implementing EVOLP/R, we exploit in combination two features of tabling in XSB
Prolog [4]: (1) Incremental tabling, which ensures the consistency of answers in tables
with all dynamic facts and rules upon which the tables depend, and (2) Answer sub-
sumption, which allows tables to retain only answers that subsume others with respect
to some partial order relation. The reader is referred to [5] for the definitions, options,
examples and details of both features.

The EVOLP/R implementation consists of a compiled program transformation plus
a library of system predicates. The transformation adds information to program clauses:
(1) Timestamp includes two extra arguments of fluents, i.e. holds time (the time when a
fluent is true) and query time (the time when it is queried), (2) Rule name as a special
fluent $rule(p/n, idi), which identifies rule of predicate p with arity n by its unique
name identity idi, and is introduced in its body, for checking that the rule still holds.

Transformation. Example 1 illustrates the transformation technique and how the extra
information figures in the transform (predicates $rule and assert are written as $r
and as, respectively). In EVOLP/R, the initial timestamp is set at 1, when a program is
inserted. Fluent predicates can be defined as facts (extensional) or by rules (intensional).

Extensional fluent instances, like a, are translated into a rule which inertially con-
strains its validity from its holds time up to query time Q. In Example 1, a holds at the
initial time 1. This validity may become superseded by that of the fluent’s complement.
For rule regulated intensional fluent instances, like b and as(∼a), unique rule name
fluents are introduced and translated just like for extensional fluents (lines 2, 4, 6).

482 A. Saptawijaya and L.M. Pereira

Line 3 shows the translation of rule b← a. The extra arguments in its head are holds
time H of fluent b and the query time Q. Calls to the goals in the body are translated into
calls to the system predicate holds/3 (defined later). In the transform of b ← a (line
3), the first goal in its body verifies whether the unique rule name fluent $r(b/0, id1)
holds within query time Q, in which case its latest holds time (i.e. the latest time up
to Q this rule was turned on) Hr is returned. The next goal verifies whether a holds
at Q by returning its latest holds time Ha. The validity of b at Q, with its holds time
H (≤ Q), is thus obtained from the maximum of Hr and Ha (i.e. H is determined by
which inertial fluent in its body holds latest), via max/2 system predicate.

Rule as(∼a) ← b is transformed into two rules: the transform in line 5 is similar to
that of rule b← a, whereas the one in line 7 is derived as the effect of asserting ∼a. I.e.,
the validity of ∼a, being queried at time Q, depends on the latest time when its rule was
turned on (Hr in 1st goal in the body) and when as(∼a) took place (Has in 4th goal in
the body). The latter goal is considered at a query time Qas, where 1 ≤ Qas ≤ Q − 1
(generated recursively via gen/2 system predicate), i.e. existential Has is obtained by
querying at a time point Qas within Q − 1, just before ∼a is queried (at Q). The holds
time H (≤ Q) of ∼a is thus determined, via max/2, between Hr and Has + 1 (rather
than Has, because ∼a is actually asserted one time step from the time as(∼a) holds).

Example 1. Program: a. b← a. as(∼a)← b. transforms into:

1. a(1, Q) ← 1 ≤ Q.
2. $r(b/0, id1, 1, Q) ← 1 ≤ Q.
3. b(H,Q) ← holds($r(b/0, id1), Hr, Q), holds(a,Ha, Q),

max([Hr, Ha], H), H ≤ Q.
4. $r(as(∼a/0), id1, 1, Q)← 1 ≤ Q.
5. as(∼a,H,Q) ← holds($r(as(∼a/0), id1), Hr, Q), holds(b,Hb, Q),

max([Hr, Hb], H), H ≤ Q.
6. $r(∼a/0, id1, 1, Q) ← 1 ≤ Q.
7. ∼a(H,Q) ← holds($r(∼a/0, id1), Hr, Q), Q′ is Q− 1,

gen(Qas, Q
′), holds(as(∼a), Has, Qas),

H ′
a is Has + 1, max([Hr , H

′
a], H), H ≤ Q.

Since any fluents occurring in the program may be updated, all fluents and their
complements should be declared as dynamic and incremental (in order to benefit from
incremental tabling), e.g. :- dynamic a/2,‘∼a’/2 as incremental. Their
incremental assertions may influence program states, notably the latest time when they
are true, which is maintained in conjunction with answer subsumption tabling.

System Predicates. We first introduce predicate fluent/3, i.e. given query time Qt,
fluent(F,Ht,Qt) looks for (dynamic) definitions of fluent F , and returns the one with
the latest holds time Ht. It makes good combined use of tabling features: (1) Since
fluent/3 aims at returning only the latest holds time of F , fluent/3 can be tabled
using answer subsumption on its second argument; and (2) Predicate fluent/3 depends
on dynamic fluent definitions of F , and this dependency indicates that fluent/3 can be
tabled incrementally, to avoid abolishing the table each time a Prolog assertion is made
and then recomputing from scratch. Consequently, predicate fluent/3 is declared as
:- table fluent(,po(’>’/2),) as incremental. It is defined as:

Program Updating by Incremental and Answer Subsumption Tabling 483

fluent(F,Ht,Qt)← extend(F, [Ht,Qt], F ′), call(F ′).

where extend(F,Args, F ′) extends the arguments of fluent F with those in list Args
to obtain F ′. Since fluent/3 enjoys incremental and answer subsumption tabling, it
cannot also be dynamic [5]; the latter being delegated to F ′.

Example 1 describes how predicate holds(F,Ht,Qt) should be interpreted, i.e. it
verifies whether fluent F is true in a given query time Qt, in which case its latest holds
time Ht is returned. It suggests that holds/3 can be defined using fluent/3, which
provides such latest holds time. But additionally, holds/3 has to make sure its fluent
complement ∼F does not hold after Ht, in which case F will fail to hold. I.e.,

holds(F,Ht,Qt)← compl(F, F ′), f luent(F,Ht,Qt), f luent(F ′, Ht′, Qt),
(Ht �= 0→ Ht ≥ Ht′ ; fail).

where compl(F, F ′) obtains the fluent complement F ′ from F . The last goal in the
body, i.e. (Ht �= 0 → Ht ≥ Ht′ ; fail), specifies the condition for F to successfully
hold. Observe that this condition requires every fluent and its complement to be defined
at time 0 (zero), i.e. they are set to true in that special (vacuum) moment in time. This
aims to prevent holds/3 to fail prematurely in calls to fluent/3, which may happen
when a fluent or its complement is not defined yet. The condition reads quite straight-
forward, where only positive timestamps are countenanced, i.e. Ht �= 0 (as they reflect
actual time after 0 when a fluent is true): F holds lastly at Ht with respect to query
time Qt only if Ht is at least the same as the latest holds time Ht′ of ∼F . Note that the
condition also implicitly covers the case when ∼F is never asserted (i.e. Ht′ = 0). It
also allows paraconsistency (in case Ht = Ht′), to be dealt by the user as desired.

Example 2. Recall Example 1, which is loaded initially at time 1. It is easy to ver-
ify that query holds(a,H, 1) succeeds with H = 1, whereas holds(a,H, 2) fails, but
holds(∼a,H, 2) succeeds with H = 2; the latter two persist by inertia. Suppose at time
3, an external update {a,∼$r(b/0, id1)} is given. Now, holds(a,H, 3) no longer fails,
but succeeds with H = 3, because fluent(a,H, 3) succeeds, now with H = 3 (instead
of with H = 1), thanks to incremental tabling (triggered by the external update a) and
answer subsumption, whereas fluent(∼a,H ′, 3) succeeds with H ′ = 2, and H ≥ H ′.
Moreover, due to the external update ∼$r(b/0, id1), rule b ← a is turned off at time
3; consequently holds(b,H, 3) fails (so do holds(as(∼a), H, 3) and holds(∼a,H, 4)).
Thus, a continues to hold at time 4, i.e holds(a,H, 4) succeeds with H = 3, onwards.

4 Concluding Remarks

We have proposed EVOLP/R as a simplified EVOLP, by restricting updates to fluents
only, for the moment. Rule updates can nevertheless be enacted by introducing a unique
rule name fluent to each rule, placed in its body, functioning as a switch to turn the rule
on and off. We also showed how incremental tabling is useful to facilitate fluent updates
incrementally in dynamic environments and evolving systems (in line with the goals of
introducing incremental tabling [6]), and in conjunction with answer subsumption, to
avoid recursing through the frame axiom but instead allow direct access to the latest
time when a fluent is true.

484 A. Saptawijaya and L.M. Pereira

As a distinct but somewhat similar and complementary approach, we should men-
tion the recent Logic-based Production System with abduction [7], and its successive
installments [8], aiming at defining a new encompassing logic-based framework for
computing, for knowledge representation and reasoning. It relies on the fundamental
role of state transition systems in computing, and involving fluent updates by destruc-
tive assignment. It is implemented in LPA Prolog [9], but no details are given about it.
In future, we intend to learn from their results and evolve EVOLP/R towards enabling
their higher level constructs and compare implementations. Their approach differs from
ours in that it defines a new language and an operational semantics, rather than taking
an existing one, and implements it on a commercial Prolog system with no underlying
tabling mechanisms.

It is our purpose to combine EVOLP/R with tabled abduction [10], so as to jointly
afford abduction and updating in one integrated XSB system by exploiting its tabling
features, and to apply the integrated system to abductive moral reasoning (cf. [11, 12]),
with updating and argumentation, as a sequel to our ongoing approach to this type of
non-monotonic reasoning.

Acknowledgements. We thank David S. Warren for elucidating features of tabling. AS
acknowledges the support of FCT/MEC Portugal, grant SFRH/BD/72795/2010.

References

1. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Flesca, S.,
Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–61.
Springer, Heidelberg (2002)

2. Poole, D.L.: A logical framework for default reasoning. Artificial Intelligence 36(1), 27–47
(1988)

3. Alferes, J.J., Pereira, L.M.: Reasoning with Logic Programming. LNCS (LNAI), vol. 1111.
Springer, Heidelberg (1996)

4. Swift, T., Warren, D.S.: XSB: Extending Prolog with tabled logic programming. Theory and
Practice of Logic Programming 12(1-2), 157–187 (2012)

5. Swift, T., Warren, D.S., Sagonas, K., Freire, J., Rao, P., Cui, B., Johnson, E., de Castro, L.,
Marques, R.F., Saha, D., Dawson, S., Kifer, M.: The XSB System Version 3.3.x Volume 1:
Programmer’s Manual (2012)

6. Saha, D.: Incremental Evaluation of Tabled Logic Programs. PhD thesis, SUNY Stony Brook
(2006)

7. Kowalski, R., Sadri, F.: Abductive logic programming agents with destructive databases.
Annals of Mathematics and Artificial Intelligence 62(1), 129–158 (2011)

8. Kowalski, R., Sadri, F.: Towards a logic-based unifying framework for computing (2013),
http://www.doc.ic.ac.uk/˜rak/papers/TUF.pdf

9. Logic Programming Associates Ltd.: LPA prolog, http://www.lpa.co.uk/
10. Saptawijaya, A., Pereira, L.M.: Tabled abduction in logic programs. Accepted as Technical

Communication at ICLP 2013 (2013), http://centria.di.fct.unl.pt/˜lmp/
publications/online-papers/tabdual lp.pdf

11. Pereira, L.M., Saptawijaya, A.: Modelling Morality with Prospective Logic. In: Anderson,
M., Anderson, S.L. (eds.) Machine Ethics, pp. 398–421. Cambridge U. P. (2011)

12. Han, T.A., Saptawijaya, A., Pereira, L.M.: Moral reasoning under uncertainty. In: Bjørner, N.,
Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 212–227. Springer, Heidelberg (2012)

http://www.doc.ic.ac.uk/~rak/papers/TUF.pdf
http://www.lpa.co.uk/
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/tabdual_lp.pdf
http://centria.di.fct.unl.pt/~lmp/publications/online-papers/tabdual_lp.pdf

Characterization Theorems for Revision

of Logic Programs

Nicolas Schwind and Katsumi Inoue

National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

{schwind,inoue}@nii.ac.jp

Abstract. We address the problem of belief revision of logic programs,
i.e., how to incorporate to a logic program P a new logic program Q.
Based on the structure of SE interpretations, Delgrande et al. [5] adapted
the AGM postulates to identify the rational behavior of generalized logic
program (GLP) revision operators and introduced some specific opera-
tors. In this paper, a constructive characterization of all rational GLP
revision operators is given in terms of an ordering among propositional
interpretations with some further conditions specific to SE interpreta-
tions. It provides an intuitive, complete procedure for the construction
of all rational GLP revision operators and makes easier the compre-
hension of their semantic properties. In particular, we show that every
rational GLP revision operator is derived from a propositional revision
operator satisfying the original AGM postulates. Taking advantage of
our characterization, we embed the GLP revision operators into struc-
tures of Boolean lattices, that allow us to bring to light some potential
weaknesses in the adapted AGM postulates. To illustrate our claim, we
introduce and characterize axiomatically two specific classes of (rational)
GLP revision operators which arguably have a drastic behavior.

1 Introduction

Logic programs (LPs) are well-suited for modeling problems which involve com-
mon sense reasoning (e.g., biological networks, diagnosis, planning, etc.) Due to
the dynamic nature of our environment, beliefs represented through an LP P are
subject to change, i.e., because one wants to incorporate to it a new LP Q. Since
there is no unique, consensual procedure to revise a set of beliefs Alchourrón,
Gärdenfors and Makinson [1] introduced a set of desirable principles w.r.t. belief
change called AGM postulates. Katsuno and Mendelzon [14] adapted them for
propositional belief revision and distinguished two kind of change operations,
i.e., revision and update [13] characterized for each one of these change opera-
tions by a set of so-called KM postulates. Revision consists in incorporating a
new information into a database that represents a static world, i.e., new and old
beliefs describe the same situation but the new ones are more reliable. In the
case of update, the underlying world evolves by the occurence of some events
i.e., new and old beliefs describe two different states of the world.

Our interests focus here on the problem of revision of logic programs. Most of
works dealing with belief change in logic programming are concerned with update

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 485–498, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

486 N. Schwind and K. Inoue

[20,2,8], and they do not lie into the AGM framework, particularly due to their
syntactic, rule-based essence. Indeed, given the nonmonotonic nature of LPs
the AGM/KM postulates can not be directly applied to logic programs. Still,
the notion of SE interpretations [19] - initially introduced to characterize the
strong equivalence between logic programs [16] - provide a monotonic semantical
characterization of LPs. Then, based on these structures, Delgrande et al. [5,7]
adapted the AGM/KM postulates in the context of logic programming. They
proposed several revision operators and investigated their properties w.r.t. the
adapted postulates. Their work covered a serious drawback in the field of belief
revision in logic programming. However the constructive characterization of all
rational belief revision operators remains an open issue.

In this paper, we consider the revision of generalized logic programs (GLPs),
which is a very general form of programs. We provide a characterization theorem
for the GLP revision operators, that is, a sound and complete model-theoretic
construction of the rational LP revision operators (i.e., those which fully satisfy
the adaptation of AGM postulates to LPs). Interestingly, our result shows that
every rational LP revision operator is derived from a rational propositional re-
vision operator (i.e., satisfying the KM postulates in the propositional setting).
Our characterization makes easier the refined analysis of LP revision operators.
Indeed, we can embed the GLP revision operators into structures of Boolean
lattices, that allows us to bring out some potential weaknesses in the original
postulates and pave the way for the discrimination of some rational GLP revision
operators.

The next section introduces some preliminaries about belief revision in propo-
sitional logic and some necessary background on answer-set programs. Section
3 introduces the LP revision operators and some preliminary results. Section
4 provides the characterization theorem for GLP revision operators. In Section
5 we partition the class of GLP revision operators into subclasses of Boolean
lattices, then we introduce and characterize axiomatically two specific classes
of (rational) GLP revision operators, i.e., the skeptical and brave GLP revision
operators. We conclude in Section 6 and propose some perspectives for further
work. For space reasons, only proof sketches of some propositions are provided
in an appendix.

2 Preliminaries

We consider a propositional language L defined from a finite set of propositional
variables (also called atoms) A and the usual connectives. ⊥ (resp.) is the
Boolean constant always false (resp. true). An interpretation over A is a total
function from A to {0, 1}. To avoid heavy expressions, an interpretation I is
also viewed as the subset of atoms from A that are true in I. For instance, if
A = {p, q}, then the interpretation over A such that I(p) = 1 and I(q) = 0 is
also represented as the set {p}. The set of all interpretations is denoted Ω. An
interpretation I is a model of a formula φ ∈ L iff it makes it true in the usual
truth functional way. A consistent formula is a formula that admits a model.
mod(φ) denotes the set of models of formula φ, i.e., mod(φ) = {I ∈ Ω | I |= φ}.

Characterization Theorems for Revision of Logic Programs 487

2.1 Belief Revision in Propositional Logic

This section introduces some background on propositional belief revision. Basi-
cally, a revision operator ◦ is a mapping associating two formulae φ, ψ with a new
formula, denoted φ ◦ ψ. The AGM framework [1] describes the standard princi-
ples for belief revision (e.g., consistency preservation and minimality of change),
which capture changes occuring in a static domain. Katsuno and Mendelzon [13]
equivalently rephrased the AGM postulates as follows:

Definition 1 (KM revision operator). A KM revision operator ◦ is a propo-
sitional revision operator that satisfies the following postulates, for all formulae
φ, φ1, φ2, ψ, ψ1, ψ2:

(R1) φ ◦ ψ |= ψ;
(R2) If φ ∧ ψ is consistent, then φ ◦ ψ ≡ φ ∧ ψ;
(R3) If ψ is consistent, then φ ◦ ψ is consistent;
(R4) If φ1 ≡ φ2 and ψ1 ≡ ψ2, then φ1 ◦ ψ1 ≡ φ2 ◦ ψ2;
(R5) (φ ◦ ψ1) ∧ ψ2 |= φ ◦ (ψ1 ∧ ψ2);
(R6) If (φ ◦ ψ1) ∧ ψ2 is consistent, then φ ◦ (ψ1 ∧ ψ2) |= (φ ◦ ψ1) ∧ ψ2.

These so-called KM postulates capture the desired behavior of a revision op-
erator, e.g., in terms of consistency preservation and minimality of change.

KM revision operators can be characterized in terms of total preorders over
interpretations. Indeed, each KM revision operator corresponds to a faithful
assignment [13]:

Definition 2 (Faithful assignment). A faithful assignment is a mapping
which associates with every formula φ a preorder ≤φ over interpretations1 such
that for all interpretations I, J and all formulae φ, φ1, φ2, the following condi-
tions hold:

(a) If I |= φ and J |= φ, then I 5φ J ;
(b) If I |= φ and J �|= φ, then I <φ J ;
(c) If φ1 ≡ φ2, then ≤φ1=≤φ2 .

Theorem 1 ([14]). A revision operator ◦ is a KM revision operator if and
only if there exists a faithful assignment associating every formula φ with a total
preorder ≤φ such that for all formulae φ, ψ, mod(φ ◦ ψ) = min(mod(ψ),≤φ).

KM revision operators include the class of distance-based revision operators
(see, for instance, [4]), i.e., those operators characterized by a distance between
interpretations:

Definition 3 (Distance-based revision operator). Let d be a distance be-
tween interpretations2, extended to a distance between every interpretation I and

1 For each preorder ≤φ, �φ denotes the corresponding indifference relation and <φ

the corresponding strict ordering.
2 Actually, a pseudo-distance is enough, i.e., triangular inequality is not mandatory.

488 N. Schwind and K. Inoue

every formula φ by d(I, φ) = min{d(I, J) | J |= φ} if φ is consistent, 0 other-
wise. The distance-based revision operator ◦d is defined for all formulae φ, ψ by
mod(φ ◦d ψ) = min(mod(ψ),≤d

φ) where the preorder ≤d
φ induced by φ is defined

for all interpretations I, J by I ≤d
φ J iff d(I, φ) ≤ d(J, φ).

Theorem 2. Every distance-based revision operator is a KM revision operator,
i.e., it satisfies the postulates (R1 - R6).

Usual distances are dD, the drastic distance (dD(I, J) = 1 iff I �= J), and
dH the Hamming distance (dH(I, J) = n if I and J differ on n variables).
Noteworthy, the faithful assignment corresponding to the revision operator based
on the drastic distance dD (so-called drastic revision operator) associates with
every formula a (unique) two-level preorder:

Definition 4 (Drastic revision operator). The drastic revision operator,
denoted ◦D, is the revision operator based on the drastic distance.

Likewise, the revision operator based on Hamming distance corresponds to
the well-known Dalal revision operator [4]:

Definition 5 (Dalal revision operator). The Dalal revision operator, de-
noted ◦Dal, is the revision operator based on the Hamming distance.

2.2 Logic Programming

In this section, we define the syntax and semantics of generalized logic programs.
We use the same notations as in [5]. A generalized logic program (GLP) is a finite
set of rules of the form

a1; . . . ; ak;∼ b1; . . . ;∼ bl ← c1, . . . , cm,∼ d1, . . . ,∼ dn,

where k, l,m, n ≥ 0.
Each ai, bi, ci, di is either one of the constant symbols ⊥, , or an atom from

A; ∼ is the negation by failure; “;” is the disjunctive connective, “,” is the
conjunctive connective of atoms. The right-hand and left-hand sides of r are
respectively called the head and body of r. For each rule r, we define H(r)+ =
{a1, . . . , ak}, H(r)− = {b1, . . . , bl}, B(r)+ = {c1, . . . , cm}, and B(r)− = {d1, . . . ,
dn}. For the sake of simplicity, a rule r is also expressed as follows:

H(r)+;∼ H(r)− ← B(r)+,∼ B(r)−.

A logic program is interpreted through its preferred models based on the
answer set semantics. A (classical) model X of a GLP P (written X |= P) is an
interpretation from Ω that satisfies all rules from P according to the classical
definition of truth in propositional logic.mod(P) will denote the set of all models
of a GLP P . An answer set X of a GLP P is a minimal (w.r.t. set inclusion)
set of atoms from A that is a model of the program PX , where PX is called
the reduct of P relative to X and is defined as PX = {H(r)+ ← B(r)+ | r ∈
P , H(r)− ⊆ X,B(r)− ∩ X = ∅}. The classical notion of equivalence between
programs corresponds to the correspondence of their answer sets.

Characterization Theorems for Revision of Logic Programs 489

SE interpretations are semantic structures characterizing strong equivalence
between logic programs [19], they provide a monotonic semantic foundation of
logic programs under answer set semantics. An SE interpretation overA is a pair
(X,Y) of interpretations over A such thatX ⊆ Y . An SE model (X,Y) of a logic
program P is an SE interpretation over A that satisfies Y |= P and X |= PY ,
where PY is the reduct of P relative to Y . For the sake of simplicity, set-notations
will be dropped within SE interpretations, e.g., the SE interpretation ({p}, {p, q})
will be simply denoted (p, pq). Through their SE models, logic programs are
semantically described in a stronger way than through their answer sets, as
shown in the following example which belongs to [5]:

Example 1. Let P = {p; q ← } and Q = {p ←∼ q, q ←∼ p}. Then AS(P) =
AS(Q) = {{p}, {q}}, that is, they admit the same answer sets, however their SE
models differ: SE(P) = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq)}, while SE(Q) =
{(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, pq)}.

A program P is consistent if SE(P) �= ∅. Two programs P and Q are said
to be strongly equivalent, denoted P ≡s Q, whenever SE(P) = SE(Q). We
also write P ⊆s Q if SE(P) ⊆ SE(Q). Two programs are equivalent if they
are strongly equivalent, but the other direction does not hold in general. Note
that Y is an answer set of P iff (Y, Y) ∈ SE(P) and no (X,Y) ∈ SE(P) with
X ⊂ Y exists. We also have (Y, Y) ∈ SE(P) iff Y ∈ mod(P). A set of SE
interpretations S is well-defined if for every interpretation X,Y with X ⊆ Y , if
(X,Y) ∈ S then (Y, Y) ∈ S. Every GLP has a well-defined set of SE models.
Moreoever, from every well-defined set S of SE models, one can build a GLP P
such that SE(P) = S [10,3].

3 Logic Program Revision Operators

Given the nonmonotonic nature of answer-set programs, Delgrande et al. [5]
pointed out that the rational behavior of revision operators for logic programs
cannot be expressed using the original KM postulates (cf. Definition 1). There-
fore, they proposed an adaptation of these postulates in the context of logic pro-
gramming using the characterization of logic programs through their SE models.
To this end, they first defined the operation of expansion of two logic programs:

Definition 6 (Expansion operator [5]). Given two programs P ,Q, the ex-
pansion of P by Q, denoted P + Q is any program R such that SE(R) =
SE(P) ∩ SE(Q).

Though the expansion of logic programs trivializes the result whenever the
two input logic programs admit no common SE models, this operation is of
interest in its own right. Indeed, it has be shown that if P and Q are GLPs then
there exists a construction of a logic program P +Q that is also a GLP [6].

Expansion of programs corresponds to the model-theoretical definition of ex-
pansion expressed through KM postulates. Delgrande et al. rephrased the full set
of KM postulates in the context of GLPs. Beforehand, we define a logic program

490 N. Schwind and K. Inoue

revision operator as a simple function, that considers two GLPs (the original
one and the new one) and returns a revised GLP:

Definition 7 (LP revision operator). A LP revision operator � is a mapping
associating two GLPs P ,Q with a new GLP, denoted P �Q.

Definition 8 (GLP revision operator [5]). A GLP revision operator ∗ is
an LP revision operator that satisfies the following postulates, for all GLPs
P ,P1,P2,Q,Q1,Q2,R:

(RA1) P ∗ Q ⊆s Q;
(RA2) If P +Q is consistent, then P ∗ Q ≡s P +Q;
(RA3) If Q is consistent, then P ∗ Q is consistent;

(RA4) If P1 ≡s P2 and Q1 ≡s Q2, then P1 ∗ Q1 ≡ P2 ∗ Q2;

(RA5) (P ∗ Q) +R ⊆s P ∗ (Q+R);

(RA6) If (P ∗ Q) +R is consistent, then P ∗ (Q+R) ⊆s (P ∗ Q) +R.

Delgrande et al. proposed in [5] a specific revision operator that is inspired
from Satoh’s propositional revision operator [18], i.e., it is based on the set con-
tainment of SE interpretations. This operator satisfies postulates (RA1 - RA5).
Though it seems to have a good behavior on some instances, this operator does
not satisfy (RA6), so that it does not fully respect the principle of minimality of
change (see [12], Section 3.1 for details on this postulate). However, the whole set
of postulates is consistent, as they later introduce the so-called cardinality-based
revision operator [6] that reduces to the Dalal revision operator over proposi-
tional models3, and that satisfies all the postulates (RA1 - RA6):

Definition 9 (Cardinality-based revision operator). Given a program P,
let φP , ψP , ψQ, α(P,Q) be propositional formulae satisfying mod(φP) = {X |
(X,Y) ∈ SE(P)}, mod(ψP) = mod(P), mod(ψQ) = mod(Q) and mod(α(P,Q))
= {X | (X,Y) ∈ SE(Q), Y |= ψP ◦Dal ψQ}. The cardinality-based revision op-
erator, denoted �c, is defined for all programs P ,Q by SE(P �c Q) = {(X,Y) |
Y |= ψP ◦Dal ψQ, X |= φP ◦Dal α(P,Q)}}.

Theorem 3 ([6]). �c is a GLP revision operator.

In addition, we introduce below a simple LP revision operator which also
satisfies the whole set of postulates (RA1 - RA6):

Definition 10 (Drastic LP revision operator). The drastic GLP revision
operator ∗D is defined for all GLPs P ,Q as P ∗D Q = P + Q if P + Q is
consistent, otherwise P ∗D Q = Q.

Proposition 1. ∗D is a GLP revision operator.

3 This definition is equivalent to the original one introduced in [6], reformulated here
for space reasons.

Characterization Theorems for Revision of Logic Programs 491

Theorem 3 and Proposition 1 show that postulates (RA1 - RA6) form a con-
sistent set of properties, but it is not known whether there exist more GLP
revision operators than the cardinality-based and the drastic LP revision op-
erators. Moreoever, the cardinality-based revision operator has a parsimonious
behavior compared to the drastic LP revision operator; however, both are fully
satisfactory in terms of revision principles; this raises the problem on how to
discard some rational operators from others.

In the next section, we fill the gap and we give a constructive, full characteri-
zation of GLP revision operators. This allows us to get a clear, complete picture
of the class of GLP revision operators.

4 Characterization of GLP Revision Operators

We now provide the main result of our paper, i.e., a characterization theorem
for GLP revision operators. That is, we show that each GLP revision operator
(i.e., each LP revision operator satisfying the postulates (RA1 - RA6)) can be
characterized in terms of preorders over the set of all classical interpretations,
with some further conditions specific to SE interpretations.

Definition 11 (LP faithful assignment). A LP faithful assignment is a map-
ping which associates with every GLP P a preorder ≤P over interpretations such
that for every GLP P ,Q and every interpretation Y, Y ′, the following conditions
hold:

(1) If Y |= P and Y ′ |= P, then Y 5P Y ′;
(2) If Y |= P and Y ′ �|= P, then Y <P Y ′;
(3) If P ≡s Q, then ≤P=≤Q.

Definition 12 (Well-defined assignment). A well-defined assignment is a
pair (Φ, Ψ), where Φ is an LP faithful assignment and Ψ is a mapping which
associates with every GLP P and every interpretation Y a set of interpretations
Ψ(P , Y) (simply denoted P(Y)), such that for all GLPs P ,Q and all interpre-
tations X,Y , the following conditions hold:

(a) Y ∈ P(Y);
(b) If X ∈ P(Y), then X ⊆ Y ;
(c) If (X,Y) ∈ SE(P), then X ∈ P(Y);
(d) If (X,Y) /∈ SE(P) and Y |= P, then X /∈ P(Y);
(e) If P ≡s Q, then P(Y) = Q(Y).

We are ready to bring to light our main result:

Proposition 2. An operator � is a GLP revision operator iff there exists a
well-defined assignment (Φ, Ψ), where Φ associates with every GLP P a total
preorder ≤P , Ψ associates with every GLP P and every interpretation Y a set
of interpretations P(Y), such that for all GLPs P ,Q, SE(P � Q) = {(X,Y) |
(X,Y) ∈ SE(Q), ∀Y ′ |= Q Y ≤P Y ′, X ∈ P(Y)}.

492 N. Schwind and K. Inoue

Note that there is no relationship between the mappings Φ, Ψ induced from
a well-defined assignment, that is, each one of them can be defined in a com-
pletely independent way. Therefore, an interesting consequence from Theorem
1 and Proposition 2 is that every GLP revision operator is an extension of a
(propositional) KM revision operator:

Definition 13 (Propositional-based LP revision operator). Given a pro-
gram P, let ψP be any propositional formula such that mod(ψP) = mod(P). Let
◦ be a propositional revision operator and f be a mapping from Ω to 2Ω such
that for every interpretation Y , Y ∈ f(Y) and if X ∈ f(Y) then X ⊆ Y . The
propositional-based LP revision operator w.r.t. ◦ and f , denoted �◦,f , is defined
for all GLPs P ,Q by SE(P�◦,fQ) = SE(P+Q) if P+Q is consistent, otherwise
SE(P �◦,f Q) = {(X,Y) | (X,Y) ∈ SE(Q), Y |= ψP ◦ ψQ, X ∈ f(Y)}.

�◦,f is said to be a propositional-based GLP revision operator if ◦ is a KM
revision operator (i.e., satisfying postulates (R1 - R6)).

Proposition 3. The classes of GLP revision operators and propositional-based
GLP revision operators coincide.

For every propositional revision operator ◦, let GLP (◦) denote the set of all
propositional-based LP revision operators w.r.t. ◦. From Definition 13, it is easy
to see that each propositional-based LP revision operator is built from a unique
propositional revision operator, that is, for all propositional revision operators
◦1, ◦2, we have ◦1 �= ◦2 if and only if GLP (◦1)∩GLP (◦2) = ∅. Therefore, a direct
consequence of Proposition 3 is that the class of GLP revision operators can be
viewed as the partition {GLP (◦) | ◦ is a KM revision operator}. Similarly, for
each propositional revision operator ◦, for all propositional-based LP revision
operators �◦,f1 , �◦,f22 , we have �◦,f1 �= �◦,f22 if and only if f1 �= f2.

Note that the cardinality-based revision operator �c (cf. Definition 9) cor-
responds to the propositional-based GLP revision operator �◦Dal,f , where ◦Dal

is the Dalal revision operator (cf. Definition 5) and f is defined for every in-
terpretation Y as f(Y) = {X | X ⊆ Y, ∃Z |= ψP ◦Dal ψQ, ∀X ′ ⊆ Y, ∀Z ′ |=
ψP ◦Dal ψQ, dH(X,Z) ≤ dH(X ′, Z ′)}. In addition, the drastic GLP revision op-
erator (cf. Definition 10) corresponds to the propositional-based GLP revision
operator �◦D,f , where ◦D is the drastic revision operator (cf. Definition 4) and
f is defined for every interpretation Y as f(Y) = 2Y .

Remark that in the case where P and Q have no common SE models, then
a propositional-based GLP revision operator �◦,f gives preference to the second
component of SE interpretations, that is driven by the choice of the underlying
propositional revision operator ◦. However, one can directly see from Definition
13 that the first element of SE interpretations (that is specified using f) is
totally unconstrained. We will show in the next section that this “freedom” on
the choice of the first component of SE interpretations raises some issues for
some subclasses of fully rational LP revision operators.

Our characterization theorem provides an intuitive construction of GLP re-
vision operators and aids the analysis of their semantic properties, as it is illus-
trated in the next section.

Characterization Theorems for Revision of Logic Programs 493

5 GLP Revision Operators Embedded into Boolean
Lattices

We now take a closer look to the set of GLP revision operators associated with
each given KM revision operator. The characterization theorem provided in the
previous section allows us to embed the subclass GLP (◦), for each KM revision
operator ◦, into a structure of Boolean lattice4.

Definition 14. Let ◦ be a propositional revision operator. We define the binary
relation $◦ over GLP (◦) as follows: for all propositional-based LP revision op-
erators �◦,f1 , �◦,f2 , �◦,f1 $◦ �◦,f2 if and only for every interpretation Y , we have
f2(Y) ⊆ f1(Y).

It can be easily checked that for each propositional revision operator ◦, (GLP (◦),
$◦) forms a Boolean lattice, that corresponds to the product of the Boolean lat-

tices {(BY ,⊆) | Y ∈ Ω}, where BY = {Z ∪ {Y } | Z ∈ 22
Y \Y }. The following

result shows that this lattice structure can be used to analyse the relative seman-
tic behavior of GLP revision operators from (GLP (◦),$◦).

Proposition 4. Let ◦ be a KM revision operator. Then for all GLP revision
operators �1, �2 ∈ GLP (◦), �1 $◦ �2 if and only if for all GLPs P ,Q, we have
AS(P �1 Q) ⊆ AS(P �2 Q).

This result paves the way for the choice of a specific GLP revision operator
depending on the desired “amount of information” provided by the revised GLP
in terms of number of its answer sets. We illustrate this notion by considering
two specific classes of GLP revision operators that correspond respectively to the
suprema and infima of lattices (GLP (◦),$◦) for all KM revision operators ◦.

Definition 15 (Skeptical GLP revision operators). The skeptical GLP
revision operators, denoted �◦S are the propositional-based GLP revision operators
�◦,f where f is defined for every interpretation Y by f(Y) = 2Y .

Definition 16 (Brave GLP revision operators). The brave GLP revision
operators, denoted �◦B are the propositional-based GLP revision operators �◦,f

where f is defined for every interpretation Y by f(Y) = ∅.

For each propositional revision operator ◦, we have �◦S = inf(GLP (◦),
$◦) and �◦B = sup(GLP (◦),$◦). We now illustrate how much the behavior
of skeptical and brave GLP revision operators diverge through the following
representative example:

Example 2. Consider ◦D the propositional drastic revision operator. Let P =
{p ← , q ← ,⊥ ← r} and Q = {⊥ ← p, q,∼ r}. We have AS(P) = {p, q},
AS(Q) = {∅}, AS(P �◦D

S Q) = {∅} and AS(P �◦D

B Q) = {∅, {p}, {q}, {r}, {pr},
{qr}, {pqr}}.
4 A Boolean lattice is a partially ordered set (E,≤E) which is isomorphic to the set of
subsets of some set F together with the usual set-inclusion operation, i.e., (2F ,⊆).

494 N. Schwind and K. Inoue

We provide an axiomatic characterization of each one of these two subclasses of
GLP revision operators in order to get a clearer view of their general behavior.
Each characterization theorem below is given in terms of answer sets of the
revised program.

Proposition 5. The skeptical GLP revision operators are the only GLP revision
operators � such that for all GLPs P ,Q, whenever P+Q is inconsistent, we have
AS(P �Q) ⊆ AS(Q).

Proposition 6. Given a program P, let ψP be any propositional formula such
that mod(ψP) = mod(P). The brave GLP revision operators are the only GLP
revision operators �◦,f such that for all GLPs P ,Q, whenever P +Q is incon-
sistent, we have AS(P �◦,f Q) = mod(ψP ◦ ψQ).

Remark that the drastic GLP revision operator (cf. Definition 10), i.e., the
skeptical GLP revision operator based on the propositional drastic revision oper-
ator, is a specific case from the result given in Proposition 5 whereAS(P�◦D

S Q) =
AS(Q) whenever P+Q is inconsistent. In addition, the brave GLP revision oper-
ator based on the propositional drastic revision operator satisfies AS(P �◦D

B Q) =
mod(Q) whenever P +Q is inconsistent.

Though they are rational LP revision operators w.r.t. the postulates (RA1 -
RA6), skeptical and brave operators have a rather trivial, thus undesirable be-
havior. On the one hand, consider where p is believed to be true, then learned
to be false. That is, {⊥ ← p} ⊆ P and Q = {p ← }. Then one obtains that
AS(P �◦S Q) ⊆ AS(Q), that is, AS(P �◦S Q) = {{p}}, i.e., for any such program
P , on learning that p is true the revision states that only p is true. On the other
hand, brave operators only focus on classical models of logic programs P ,Q to
compute P �◦B Q (whenever P + Q is inconsistent), thus they do not take into
consideration the inherent, non-monotonic behavior of logic programs. As a con-
sequence, programs P �◦B Q will often admit many answer sets that are actually
irrelevant to the input programs P and Q. Stated otherwise, skeptical and brave
GLP revision operators are dual sides of a “drastic” behavior for the revision.
These operators are representative examples that provide some “bounds” of the
complete picture of GLP revision operators GLP (◦), for each KM revision op-
erator ◦. Discarding such drastic behaviors may call for additional postulates in
order to capture more parsimonious revision procedures in logic programming,
as for instance the cardinality-based revision operator (cf. Definition 9) which is
neither brave nor skeptical. Stated otherwise, it seems necessary to refine the ex-
isting properties that every rational revision operator should satisfy so that the
answer sets of the revised program P �◦,f Q fall “between” these two extremes
(i.e., between AS(Q) and mod(P ◦ Q)) in the sense of set inclusion.

6 Conclusion and Perspectives

In this paper, we pursued some previous work on revision of logic programs,
where the adopted approach is based on a monotonic characterization of logic

Characterization Theorems for Revision of Logic Programs 495

programs using SE interpretations. We considered the revision of generalized
logic programs (GLPs) and characterized the class of rational GLP revision op-
erators in terms of an ordering among classical interpretations with some further
conditions specific to SE interpretations. The constructive characterization we
provide facilitates the comprehension of their semantic properties by drawing
a clear, complete picture of GLP revision operators. Interestingly, we showed
that a GLP revision operator is an extension of a rational propositional re-
vision operator, that is, each propositional revision operator corresponds to a
specific subclass of GLP revision operators. Moreover, we showed that each one
of these subclasses can be embedded into a Boolean lattice, which infimum and
supremum, the so-called skeptical and brave GLP revision operators, have some
drastic behavior.

This work can be extended into several directions in belief change theory for
logic programming. Our results make easier the improvement of the current AGM
framework in the context of logic programming. Indeed, though the subclasses
of skeptical and brave GLP revision operators are fully satisfactory w.r.t. the
AGM revision principles, their behavior is shown to be rather trivial. This may
call for additional postulates which would aim to capture more parsimonious,
balanced classes of GLP revision operators. Additionally, we will investigate the
case of logic program merging operators (merging can be viewed as a multi-
source generalization of belief revision). Indeed it is not even known whether
there exists a fully rational merging operator, i.e., that satisfies the whole set of
postulates proposed by Delgrande et al. [7] for logic programs merging operators.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50(2),
510–530 (1985)

2. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.:
Dynamic updates of non-monotonic knowledge bases. Journal of Logic Program-
ming 45(1-3), 43–70 (2000)

3. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic
programs. Theory and Practice of Logic Programming 7(6) (2007)

4. Dalal, M.: Investigations into a theory of knowledge base revision: Preliminary
report. In: Proc. of the 7th National Conference on Artificial Intelligence, AAAI
1988, pp. 475–479 (1988)

5. Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: Belief revision of logic pro-
grams under answer set semantics. In: Proc. of the 11th International Conference
on Principles of Knowledge Representation and Reasoning, KR 2008, pp. 411–421
(2008)

6. Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: A general approach to belief
change in answer set programming. CoRR, abs/0912.5511 (2009)

7. Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: Merging logic programs un-
der answer set semantics. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS,
vol. 5649, pp. 160–174. Springer, Heidelberg (2009)

496 N. Schwind and K. Inoue

8. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming 2(6), 711–767
(2002)

9. Eiter, T., Fink, M., Tompits, H., Woltran, S.: On eliminating disjunctions in stable
logic programming. In: Proc. of the 9th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2004, pp. 447–458 (2003)

10. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer set
programming. In: Proc. of the 19th International Joint Conference on Artificial
Intelligence, IJCAI 2005, pp. 97–102 (2005)

11. Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Program-
ming 35(1), 39–78 (1998)

12. Katsuno, H., Mendelzon, A.O.: A unified view of propositional knowledge base up-
dates. In: Proc. of the 11th International Joint Conference on Artificial Intelligence,
IJCAI 1989, pp. 1413–1419 (1989)

13. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge
base and revising it. In: Proc. of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning, KR 1991, pp. 387–394 (1991)

14. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artificial Intelligence 52(3), 263–294 (1992)

15. Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical
framework. Journal of Logic and Computation 12(5), 773–808 (2002)

16. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4), 526–541 (2001)

17. Lifschitz, V., Woo, T.Y.C.: Answer sets in general nonmonotonic reasoning (pre-
liminary report). In: Proc. of the 3rd International Conference on Principles of
Knowledge Representation and Reasoning, KR 1992, pp. 603–614 (1992)

18. Satoh, K.: Nonmonotonic reasoning by minimal belief revision. In: Proc. of the
International Conference on Fifth Generation Computer Systems, FGCS 1988, pp.
455–462 (1988)

19. Turner, H.: Strong equivalence made easy: nested expressions and weight con-
straints. Theory and Practice of Logic Programming 3(4-5), 609–622 (2003)

20. Zhang, Y., Foo, N.Y.: Towards generalized rule-based updates. In: Proc. of the
15th International Joint Conference on Artificial Intelligence, IJCAI 1997, pp. 82–
88 (1997)

Appendix: Proof Sketches

Proposition 2
(Only if part) In this proof, for every well-defined set of SE interpretations
S, glp(S) denotes any GLP P such that SE(P) = S. Let ∗ be a GLP revision
operator. For every GLP P , define the relation ≤P over interpretations such that
∀Y, Y ′ ∈ Ω, Y ≤P Y ′ iff Y |= P ∗ glp({(Y, Y), (Y ′, Y ′)}). Moreover, for every
GLP P , ∀Y ∈ Ω, let P(Y) = {X ⊆ Y | (X,Y) ∈ SE(P ∗glp({(X,Y), (Y, Y)}))}.
We claim that ≤P is a total preorder (this part of proof is similar to the one
given for Theorem 11 in [15]5).

5 In the proof of Theorem 11 in [15], propositional merging operators are considered.
Multi-sets of formulae (so-called profiles) are merged under a certain integrity con-
straint represented by a formula. This part of our proof is similar if one restricts
ourselves to singleton profiles.

Characterization Theorems for Revision of Logic Programs 497

Now we show that SE(P ∗ Q) = {(X,Y) | (X,Y) ∈ SE(Q), ∀Y ′ |= Q, Y ≤P
Y ′, X ∈ P(Y)}. Let us denote S the latter set and first show the first in-
clusion SE(P ∗ Q) ⊆s S. Let (X,Y) ∈ SE(P ∗ Q) and let us show that (i)
(X,Y) ∈ SE(Q), (ii) ∀Y ′ |= Q, Y ≤P Y ′ and that (iii) X ∈ P(Y). (i) is direct
from (RA1). For (ii), let Y ′ |= Q. Since ∗ returns a GLP, SE(P ∗ Q) is well-
defined. That is, since (X,Y) ∈ SE(P ∗ Q), we also have (Y, Y) ∈ SE(P ∗ Q).
Therefore, P ∗Q+ glp({(Y, Y), (Y ′, Y ′)}) is consistent. So by (RA5) and (RA6),
(Y, Y) ∈ P ∗ glp({(Y, Y), (Y ′, Y ′)}). Hence, Y ≤P Y ′. For (iii), since (X,Y) ∈
SE(P ∗ Q), SE(P ∗ Q) + glp({(X,Y), (Y, Y)}) is consistent, we have (X,Y) ∈
SE(P ∗ glp({(X,Y), (Y, Y)})) by (RA5) and (RA6); hence, X ∈ P(Y). Let us
now show the other inclusion S ⊆s SE(P ∗Q). Assume (X,Y) ∈ S. So ∀Y ′ |= Q,
Y ≤P Y ′ and X ∈ P(Y). First, from the definition of P(Y) and by (RA1) and
(RA3), we have Y ∈ P(Y). So Y ∈ S. Since S �= ∅,Q is consistent, thus by (RA1)
and (RA3) ∃Y∗ |= Q, Y∗ ∈ SE(P ∗Q). Let R# = glp({(X,Y), (Y, Y), (Y∗, Y∗)}).
So P ∗ Q + R# is consistent. Then by (RA5) and (RA6), P ∗ Q + R# =
P ∗ R#. We have to show that (X,Y) ∈ P ∗ R#. Assume towards a con-
tradiction that (X,Y) /∈ P ∗ R#. By (RA1) and (RA3) and since (Y∗, Y∗) ∈
P ∗ R#, we have two remaining cases: (i) P ∗ R# = glp({(Y∗, Y∗)}). Since
P∗R#+glp({(Y, Y), (Y∗, Y∗)}) is consistent, by (RA5) and (RA6) we get that P∗
glp({(Y, Y), (Y∗, Y∗)}) = glp({(Y∗, Y∗)}). This contradicts Y ≤P Y ′. (ii) P∗R# =
glp({(Y, Y), (Y∗, Y∗)}). Since P ∗ R# + glp({(X,Y), (Y, Y)}) is consistent, by
(RA5) and (RA6) we get that P ∗ glp({(X,Y), (Y, Y)}) = glp({(Y, Y)}). This
contradicts X ∈ PY .

It is harmless to verify that all conditions (1 - 3) of the faithful assignment
and conditions (a - e) of the well-defined assignment are satisfied: conditions (a)
and (b) are direct from the definition of P(Y), conditions (1), (2), (c) and (d)
come from (RA2), and conditions (3) and (e) are derived from (RA4).

(If part) We consider a faithful assignment that associates with every GLP P a
total preorder ≤P and a well-defined assignment that associates with every GLP
P and every interpretation Y a set P(Y) ⊆ Ω, such that ∀P ,Q, SE(P ∗ Q) =
{(X,Y) | (X,Y) ∈ SE(Q), ∀Y ′ |= Q, Y ≤P Y ′, X ∈ P(Y)}. Let P ,Q be two
GLPs and X,Y ∈ Ω. We have to show that SE(P ∗ Q) is well-defined. Let
(X,Y) ∈ SE(P ∗ Q). Since SE(P ∗ Q) is a set of SE interpretations, X ⊆ Y .
Moreover, by condition (a) of the well-defined assignment, Y ∈ P(Y), so Y ∈
SE(P ∗ Q). Hence, SE(P ∗ Q) is well-defined.

It is harmless to verify that postulates (RA1 - RA6) are satisfied: (RA1) and
(RA3) are obvious from the definition of SE(P ∗ Q), (RA2) comes from con-
ditions (1), (2), (c) and (d), (RA4) is derived from conditions (3) and (e), and
(RA5) and (RA6) hold by definition.

Proposition 3
Consider beforehand that P + Q is inconsistent (the other case is trivial from
Proposition 2 and postulate (RA2)). When reducing the SE interpretations to
their second components, the fact that the set of all classical models of P �◦,f Q

498 N. Schwind and K. Inoue

corresponds to the models of ψP ◦ψQ comes from the similarities between an LP
faithful assignment (cf. Definition 11) and a faithful assignment (cf. Definition
2), and from Proposition 2 and Theorem 1. Regarding all first components of SE
interpretations, the correspondence between f (cf. Definition 13) and P(Y) (cf.
conditions (a - e) of the well-defined assignment in Definition 12) can be easily
seen.

Flexible Combinatory Categorial Grammar Parsing
Using the CYK Algorithm and Answer Set

Programming

Peter Schüller

Cognitive Robotics Laboratory, Sabancı University, Turkey
peterschueller@sabanciuniv.edu

Abstract. Combinatory Categorial Grammar (CCG) is a grammar formalism
used for natural language parsing. CCG assigns structured lexical categories to
words and uses a small set of combinatory rules to combine these categories in
order to parse sentences. In this work we describe and implement a new approach
to CCG parsing that relies on Answer Set Programming (ASP) — a declarative
programming paradigm. Different from previous work, we present an encoding
that is inspired by the algorithm due to Cocke, Younger, and Kasami (CYK). We
also show encoding extensions for parse tree normalization and best-effort pars-
ing and outline possible future extensions which are possible due to the usage
of ASP as computational mechanism. We analyze performance of our approach
on a part of the Brown corpus and discuss lessons learned during experiments
with the ASP tools dlv, gringo, and clasp. The new approach is available in the
open source CCG parsing toolkit AspCcgTk which uses the C&C supertagger as
a preprocessor to achieve wide-coverage natural language parsing.

1 Introduction

Parsing is the task of recovering the structure of sentences which is an important task in
natural language processing (NLP). Contemporary NLP systems often process input in
a ‘pipeline’ consisting of sequential steps of chunking, part-of-speech tagging, parsing,
semantical annotation, and further steps. A widely-used technique in such pipelines is
to statistically select a single best result of one stage and feed it to the next one.

However many natural language effects cannot be handled satisfactorily with such an
approach, because natural language ambiguities can emerge in various levels of process-
ing and some of them can only be resolved on other levels. For example the sentence

“John saw the astronomer with the telescope.” (1)

admits two structures, intuitively one where John used a telescope to see the astronomer,
and one where John saw an astronomer who had a telescope. On the other hand,

“John saw the astronomer with the dog.” (2)

cannot only have the structure such that John saw an astronomer who had a dog. These
sentences both have a syntactic ambiguity: whether the with-clause modifies ‘saw’ or

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 499–511, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

500 P. Schüller

‘the astronomer’. In (2) semantic information about “dog”, i.e., that it can (usually) not
be used as a “tool for seeing”, rules out the structure where ‘John performed the action
of seeing by means of the dog’. On the other hand (1) can only be disambiguated using
contextual information from the world or from previous or following sentences.

These examples show that, to make sense of natural language, a bidirectional in-
tegration of natural language processing modules is necessary. Answer Set Program-
ming (ASP) [3,7] is a declarative logic programming formalism which is well-suited to
serve as computational formalism for NLP tasks: ASP programs can contain (i) guesses,
which support modeling ambiguities of any kind; (ii) definitions of auxiliary concepts,
which support modeling processes of natural language (in particular compositionality),
and (iii) constraints which support modeling of linguistic constraints on all phenomeno-
logical levels.

In this work we describe an efficient encoding for parsing Combinatory Categorial
Grammar (CCG) using ASP. CCG is a popular grammar formalism used in natural lan-
guage parsing, which assigns structured categories to words of a sentence and uses a
set of combinatory rules to combine these categories and to parse the sentence. Dif-
ferent from previous work [22] which modeled CCG parsing as action planning we
here propose an encoding that is inspired by the CYK algorithm [12, 19, 33] and per-
forms the major computational effort already within instantiation of the program. The
combinatorial power of ASP is used for reasoning about parse tree shapes, parse tree
normalizations [9,15,32], best-effort parsing and further possible extensions, e.g., [23].

Our main contributions are:

– we describe an adaptation of CYK algorithm for CCG parsing and give an encoding
which builds a CYK chart during instantiation of the ASP encoding;

– we provide an encoding for enumerating parse trees based on the above encoding;
– we show how normalizing constraints for CCG can be realized as an additional

ASP program module;
– we describe an extension of our encoding that supports best-effort parsing, i.e.,

providing maximal coverage of the input if no full parse tree is possible;
– we report on experiments which show that our approach provides reasonable pars-

ing times and compare the new encoding to the previous approach for CCG parsing
with ASP [22] and to the C&C parser;

– we discuss several lessons learned and interesting observations gained from this
application of ASP.

An extension of the encodings presented in this work are released as version 0.4 of the
open source CCG parsing toolkit ASPCCGTK1 which uses the C&C supertagger [10]
to achieve wide coverage and can visualize multiple CCG parse trees [22].

2 Preliminaries

CCG. A Combinatory Categorial Grammar (CCG) [29] is a tuple G = (Σ,N, S, f, R)
with Σ a finite set of terminal symbols, N a finite set of atomic categories, S ∈ N the

1 http://www.kr.tuwien.ac.at/staff/former_staff/ps/aspccgtk/

http://www.kr.tuwien.ac.at/staff/former_staff/ps/aspccgtk/

Flexible Combinatory Categorial Grammar Parsing Using CYK and ASP 501

start category, f a function mapping from terminal symbols to complex categories, and
R a finite set of combinatory rules. Complex categories are defined as follows: every
atomic category is a complex category; given complex categories A and B, A/B and
A\B are complex categories; nothing else is a complex category.

A combinatory rule (also called combinator) is of the form

X1 . . . Xn

C
A (3)

where A is a symbol indicating the name of the rule and C , X1, . . . , Xn are categories:
we call X1, . . . , Xn the precondition categories of A and C the result category of A.

English can be parsed with the following combinators [29]: forward and backward
application (> and <, respectively), forward and backward composition (>B and <B),
forward and backward type raising (>T and <T), backward cross composition, back-
ward cross substitution, and coordination.

We limit the presentation of our work to the following set of combinators.
A/B B
A >

A/B B/C
A/C >B

A
B/(B\A) >T

B A\B
A <

B\C A\B
A\C <B

A
B\(B/A) <T

These combinatory rules are rule schemas with one or two preconditions, called
unary and binary combinators, respectively, in the following. In this work we only con-
sider the syntactic side of these combinators and disregard the semantic operations (fol-
lowing principles of combinatory logic) which are associated with combinators.

We use A, B, C, . . . to denote variables in CCG rule schemas. CCG derivation is
defined in terms of a function f which maps terminal symbols to CCG categories, and
in terms of substitution of adjacent CCG categories by instantiations of combinators.
Formally the CCG derivation relation⇒ contains for all α, β ∈ (N ∪Σ)

(i) αCβ ⇒ αcβ for terminal symbol c ∈ Σ and category C ∈ f(c) i.e., the terminal
symbol c is mapped to category C by f , furthermore

(ii) αCβ ⇒ αX1 · · ·Xnβ for an instantiation of a combinatory rule A∈R of form (3).

The language generated by a CCG G is the set {α ∈ Σ | S ⇒ α} where ⇒ is
the transitive closure of⇒.

A derivation S ⇒ α can be considered as a set of parse trees: “S” is the root of
a tree, a tree node is either the category C on the left side of (i) or (ii) above; a tree
node generated by (i) has one child which is terminal c; a node generated by (ii) has an
ordered sequence of children X1, . . . , Xn; in-order traversal of the tree leafs yields α.

The problem of enumerating parse trees is to obtain all distinct parse trees given α.
In the following we will call a natural language input a ‘sentence’ and the terminal

symbols of such an input we will call ‘tokens’.2

Example 1. The sentence “The dog bit John” with f such that f(“The”) = {NP/N},
f(“dog”) = {N}, f(“bit”) = {S\NP , (S\NP)/NP}, f(“John”) = {NP} can be
derived using combinators > and < as follows:

2 Using the term ‘word’ can be misleading: what we call ‘sentence’ is sometimes called ‘word’,
words such as “it’s” can become multiple tokens, and punctuation symbols are tokens as well.

502 P. Schüller

The
NP/N

dog

N

NP
>

bit
(S\NP)/NP

John
NP

S\NP >

S
<

where lines below tokens of the sentence show derivations of type (i), i.e., mappings
using f ; lines below show derivations of type (ii), i.e., instantiations of combinators.
Note that f provides two categories for “bit” corresponding to the ambiguity between
the intransitive and transitive reading of the verb “to bite”.

ASP. Answer set programming (ASP) [3, 7, 25, 27] is a declarative programming for-
malism based on the answer set semantics of logic programs [18]. The idea of ASP is to
represent a given computational problem by a program whose answer sets correspond
to solutions, and then use an answer set solver to generate answer sets for this program.
A common methodology in ASP is called GENERATE-DEFINE-TEST [24]: the GENER-
ATE part of a program describes a collection of answer set candidates; the TEST part
consists of constraints that eliminate candidates that do not correspond to solutions; the
DEFINE part defines concepts in terms of other concepts.

We will present this work using the ASP-Core-2 language [8] of which we introduce
a subset on the following example: given as a set of facts of form edge(X,Y) encoding
a graph, a typical logic program for solving the 3-colorability problem looks as follows:

vertex (X)← edge(X,).
vertex(Y)← edge(, Y).

1≤{ color (X, red), color (X, green), color (X, blue) }≤ 1← vertex (X).
← color (X1, C), color (X2, C), edge(X1, X2).

The first two rules DEFINE vertex in terms of edge (‘ ’ symbols are anonymous vari-
ables); the third rule GENERATEs one color for each vertex; the fourth rule performs
a TEST: it is a constraint which eliminates candidate solutions where two adjacent ver-
texes have the same color.

Variables are universally quantified over rules; a logic program is generally evaluated
by (i) grounding it, i.e., instantiating all variables with terms that contain no variables,
and (ii) searching for an answer set using methods related to SAT solving [17]. In this
work we will use uninterpreted function symbols, e.g., in addition to constants pro-
grams can contain function terms. We use this to represent non-atomic CCG categories:
r(“S”, “S”) and l(r(“S”, “NP”), “NP”) represent S/S and (S/NP)\NP , respectively.

Additionally we use count aggregates as literals in rule bodies: intuitively the literal
2≤#count { X : pred(X,Y) }≤ 4 is true iff the set of substitutions for variable X
such that pred(X,Y) is true in the answer set candidate has cardinality 2, 3, or 4.

For a detailed description of ASP-Core-2 and for semantics of ASP we refer to [8].

3 Realizing CCG Parsing with CYK in Answer Set Programming

A sentence α with n tokens is presented to our CCG parser encoding as a set of
facts of the form catFor(C,P) where C specifies the CCG category and P the token

Flexible Combinatory Categorial Grammar Parsing Using CYK and ASP 503

position: P ∈{1, . . . , n}. Intuitively these categories are obtained from statistical tag-
ging; a parser must select a single category at each position for generating a parse tree.
Given a sentence α we denote by inp(α) its encoding in terms of token categories.

Example 2 (ctd.). “The dog bit John” has n=4 tokens and inp(“The dog bit John”)=
= {catFor(l(“NP”, “N”), 1), catFor(“N”, 2), catFor(l(“S”, “NP”), 3),

catFor(r(l(“S”, “NP”), “NP”), 3), catFor(“NP”, 4)}
CYK for CCG. The CYK algorithm was originally proposed for parsing Context Free
Grammar in Chomsky Normal Form [12, 19, 33], i.e., grammars with rules of the form
A ⇒ BC (corresponding to binary CCG combinators) and A ⇒ c (corresponding
to application of the function f) only, where A, B, and C are nonterminals, and c
is a terminal. An adaptation for parsing grammars which also contain rules of the form
A⇒ B (corresponding to CCG type raising) has been discussed in [21], in [30] specific
problems of parsing CCG with CYK are discussed.

Algorithm 1 shows an adaptation of CYK to parse CCG in the spirit of [21]; Figure 1
visualizes a CYK chart and possible combinator applications for n = 3 tokens.

3.1 Building a CYK Chart via ASP Grounding

The ASP encoding we present in the following realizes Algorithm 1 such that a CYK
chart for the given input is computed during program instantiation. To that end we
present a non-ground encoding where identifiers starting with a capital letter denote
variables and ‘ ’ denotes anonymous variables.

We represent contents of chart cells C ∈TI,J using predicate grid (I, J, C). Corre-
sponding to line 2 of Alg. 1 we fill diagonal cells TD,D with f(aD) using rule

grid (D,D,C)← catFor(C,D). (4)

We track applicability of unary (lines 2 and 10) and binary (line 8) combinators using
predicates applicableU and applicableB , resp.: applicableU (R, I, J, C′, C) represents
that combinator R can be applied to category C in cell TI,J and yields category C′ in
the same cell; applicableB (R, I, J,H,C′, X, Y) represents that combinator R can be
applied to categories X and Y in cells TH,J and TI,H+1, resp., and yields category C′

in TI,J (see also Fig. 1). We next give examples for encoding combinators >T and >:

applicableU (“>T”, I, J, r(B, l(B,A)), A)←
grid (I, J, A), raiseCategory(A,B).

[
A

B/(B\A) >T

]
(5)

applicableB (“>”, I, J,H,A, r(A,B), B)←
grid (H, J, r(A,B)), grid (I,H +1, B).

[
A/B B

A
>

]
(6)

We define categories resulting from applicable rules to be part of the chart using rules

grid(I, J, C)← applicableU (, I, J, C,).
grid(I, J, C)← applicableB (, I, J, , C, ,).

(7)

This concludes the deterministic non-ground programΠCYK which consists of rules (4)
to (7). Intuitively this encoding defines applicability from chart cells as lines 2, 8 and 10

504 P. Schüller

Algorithm 1. CYK adapted for CCG Parsing
Input: CCG G=(Σ,N, S, f,R); token sequence α= a1, . . . , an ∈ Σ� with n ≥ 1

1 for d = 1, . . . , n do // initialize diagonal cells (d, d) using f and unary combinators in R

2 Td,d := f(ad)∪
{
B′ | A′ ∈ f(ad) and A′

B′ is an instantiation of a combinator A
B

in R
}

3 for i=2, . . . , n do // iterate columns i from left to right
4 for j= i− 1, . . . , 1 do // iterate rows j from bottom to top
5 Ti,j := ∅
6 for h= j, . . . , i− 1 do // iterate distance of source cells from left and from top

7 foreach combinator B C
A in R do

8 if B′ ∈Th,j and C′ ∈Ti,h+1 and A′,B′, C′ can instantiate A,B, C then
9 Ti,j := Ti,j ∪ {A}

10 Ti,j :=Ti,j ∪
{
B′ | A′ ∈Ti,j and A′

B′ is an instantiation of a combinator A
B

in R
}

11 if S ∈ T1,n then return yes else return no

A/B B
A >

AA/B

B

T1,1 T2,1 T3,1

T2,2 T3,2

T3,3

Ti,jTh,j

Ti,h+1

Fig. 1. CYK chart visualization for input sentence with 3 tokens and for > combinator

of Alg. 1 do, furthermore it defines that categories that result from applying combinators
are again part of chart cells.

Given a sentence α, program inp(α)∪ΠCYK has a single answer set I which repre-
sents the CYK chart for α as produced by lines 1 to 10 of Alg. 1.

For space reasons we here do not present type conversion (e.g., N⇒NP) and punc-
tuation rules (e.g., to handle commas) as described in [11, Appendix A]; these features
are necessary for wide-coverage parsing and they are implemented in ASPCCGTK.

Language Membership. We can check whether an input is part of the language by
checking whether cell (n, 1) contains category S, e.g., using the following constraint:

← not grid(n, 1, “S”). (8)

or by performing an ASP query (see Section 4 on Magic Set experiments).

3.2 Enumerating Parse Trees

We next describe an encoding for enumerating all parse trees of a given input. We
achieve this by (i) guessing which applicable combinators are applied and (ii) restricting
the guess to a tree such that the chosen combinators form edges, input tokens are leaves,
and category “S” in cell (n, 1) is the root node.

Flexible Combinatory Categorial Grammar Parsing Using CYK and ASP 505

For each applicable combinator we guess whether it is applied or not:

0≤{ applyB (R, I, J,H,X, Y, Z) }≤ 1← applicableB (R, I, J,H,X, Y, Z).
0≤{ applyU (R, I, J,X, Y) }≤ 1← applicableU (R, I, J,X, Y).

(9)

To ensure that the above guess induces a parse tree, we first define reachability of cate-
gories in cells from other categories via applied combinators.

reach(H, J,Cleft)← reach(I, J, C), applyB (, I, J,H,C,Cleft ,).
reach(I,H +1, Cdown)← reach(I, J, C), applyB (, I, J,H,C, , Cdown).
reach(I, J, CsameCell)← reach(I, J, C), applyU (, I, J, CsameCell , C)

(10)

We ensure that the guess is restricted to parse using the following rules

reach(n, 1, “S”)← (11)

← valid (I, I),#count{ C : reach(I, I, C), catFor (C, I) }≤ 0 (12)

← applyB (, I, J, , C, ,), not reach(I, J, C)
← applyU (, I, J, C,), not reach(I, J, C)

(13)

← valid (I, J), 2≤#count{ C : applyU (, I, J, C,) }
← valid (I, J), 2≤#count{ C : applyB (, I, J, , C, ,) } (14)

These rules define the root category “S” to be reachable (11), require that each word is
reachable (12), disallow unreachable combinators to be applied (13), and disallow more
than one binary (resp., unary) combinator application in one cell (14).

By ΠTree we denote rules (9) to (14). ΠTree follows the classical GENERATE-DEFINE-
TEST approach: it guesses a subset of applicable combinators (9), defines a notion of
reachability (10)-(11), and restricts the guess to certain trees (12)-(14).

With ΠTree we can enumerate parse trees: given an input sentence α the answer sets
of program inp(α)∪ΠCYK ∪ΠTree correspond 1-1 to the CCG parse trees of α.

Note that we do not use f in our encoding, instead we use f to generate inp(α); this
is because f corresponds to statistical tagging which is handled outside of our encoding.

Parse Tree Normalization. CCG generates spurious parse trees which are not of inter-
est because they provably lead to the same linguistic interpretation as other parse trees;
this can only be avoided by normalization of parse trees [9, 15, 32] which is performed
by constraining the shape of CCG parse trees depending on the type of combinator used
to create each tree node. For example, using the category resulting from >T as the first
prerequisite of > can always be replaced by a single application of <. Fortunately such
constraints can be represented easily in ASP, the above normalization is encoded as

← applyB (“>”, I, J,H, , L,), applyU (“>T”, I,H, L,). (15)

Such normalizations can eliminate an exponential number of spurious parse trees [15].
Thanks to the modularity of our encoding we can maintain multiple sets of normalizing
constraints (e.g., to normalize towards left- or right-branching) and simply add them to
our program when needed without changing rules in the encoding.

506 P. Schüller

Best-Effort CCG Parsing. If a sentence has no parse tree it can be useful to obtain a
best-effort parse forest. This can be done with respect to various optimization criteria,
e.g., finding a minimum of root nodes for a set of parse trees which contains all tokens
of an input or ignoring a minimum of input tokens. Our parser encoding allows us to
perform such best-effort parsing with only small modifications. For example we can
create a parser that enumerates (i) complete parse trees if one exists, otherwise (ii)
partial parse trees with a minimum number of root nodes such that all input tokens are
reachable. This is achieved by replacing (11) with the following set of rules:

0≤{ guessReach(I, J, C) }≤ 1← grid (I, J, C).
reach(I, J, C)← guessReacch(I, J, C).

#minimize{1 : guessReach(I, J, C)}.
(16)

4 Experimental Evaluation

For performance evaluation we used Section A of the Brown corpus [16] which is a
freely available English language corpus. We selected Section A because it contains
newspaper articles and the C&C supertagger we use for tagging the input is trained on
a newspaper corpus. Section A contains 4611 sentences in total, Table 1 groups these
sentences in terms of their length, e.g., the corpus contains 684 sentences with a length
between 11 and 15 words (inclusive) where the average sentence length is 13.

Our experiments were performed similar as the C&C parser operates when parsing a
sentence: we obtain tags of probability class β=0.075, 0.03, and 0.001 from the C&C
supertagger, then we run our encoding on categories obtained with β≥ 0.075, if this
does not yield a parse tree we retry with β≥ 0.03, then with β≥ 0.001, and we register
failure if even this does not yield a parse trees.

Where not otherwise indicated we used GRINGO version 3.0.5 and CLASP3 version
2.1.1 for experiments; some experiments were performed with DLV4 version 2012-12-
17. We used a timeout of 300 seconds and enumerated up to 100 parse trees for each
sentence, this was done in single threaded mode on a Linux server with 32 2.4GHz
Intel R© E5-2665 CPU cores and 64GB memory.

Table 1 reports the number of CCG tags required to parse a sentence (if no parse was
found the value for β=0.001), the number of parse trees obtained for each sentence,
and the percentage of sentences where a parse tree was found. For example, sentences
with 11-15 words required 25 tags for parsing on average, each sentence yielded on
average 38 parse trees, and 84.9% of sentences yielded at least one parse tree.

Comparison with Planning Approach.. We compare our approach (CYK+ASP) with
the ASP formulation for CCG parsing that uses planning [22]. The CYK algorithm is
a (dynamic programming) approach, therefore in a CYK chart partial parse trees can
be reused between complete parse trees. This is not possible in the planning approach
which requires the notion of time to define an order of combinator applications.

Table 1 reports performance of the planning approach: experiments show that the
CYK approach scales much better than planning, especially for larger sentences. Per-
formance is similar only for the shortest group of sentences, for sentences of length

3 http://potassco.sourceforge.net/
4 http://www.dlvsystem.com/

Flexible Combinatory Categorial Grammar Parsing Using CYK and ASP 507

Table 1. Performance comparison on Section A (newspaper) of Brown corpus using C&C for
tagging. Times and timeouts are for the task of enumerating up to 100 parse trees per sentence.

Group: words in sentence # 1-10 11-15 16-20 21-25 26-30 31-35 36-40 41+

Sentences in group # 983 684 779 704 526 396 258 281
Words in sentence avg # 5 13 17 22 27 32 37 48

CCG categories† avg # 14 25 37 48 59 77 87 122
Parse Trees avg # 6 38 65 81 80 80 79 72
Sentences with parse tree % 64.2 84.9 84.7 85.9 82.1 81.1 79.1 73.0

CYK+ASP parse time avg sec 0.6 0.7 1.2 1.9 3.5 6.7 11.9 42.0
CYK+ASP timeouts # 0 0 0 0 0 0 0 8

Planning+ASP parse time avg sec 0.8 4.3 19.1 62.1 110.1 135.7 156.5 205.5
Planning+ASP timeouts # 0 0 4 51 137 157 118 149
† Category set with smallest β value that is sufficient for finding a parse tree, β = 0.001 if
no parse tree can be found with tags provided by the C&C supertagger.

21-25 the CYK approach gives an answer within 1.9 seconds while planning requires
more than one minute. Moreover, the planning approach suffers from timeouts already
with sentences of length 16-21 while the CYK approach has no timeout for any sentence
smaller than 41 tokens.

The CYK approach requires a maximum of 1.5GB of memory with an average of
1.1GB over all sentences, where as the planning approach requires up to 5.8GB of
memory with an average of 3.8GB.

Parse Effort Profile. Figure 2 gives a diagram of parsing time for all sentences in our
benchmark, first grouped by the β value required to find a parse tree, then by the time
required to enumerate up to 100 parse trees. E.g., 2596 sentences obtain a parse tree
with β=0.075 and 3639 out of 4611 sentences obtain a parse tree with β≥ 0.001. We
plot total time required (dashed red) and solver time required (solid blue).

The graph shows that parse time is not distributed evenly among the sentences in
the benchmark: a majority of sentences can be parsed in a comparatively short time, in
particular for sentences with the most probable tags (β=0.075), while there are few
sentences in the benchmark that take a disproportionately high amount of time. There
is only a weak correlation between difficulty of a sentence and its length or amount of
tags (not shown), therefore additionally plotting the amount of tags and/or the length of
each sentence in the figure would make it unreadable. Furthermore we see that solving
time is negligible compared to grounding time.

Additionally we measured the time for grounding ΠCYK and the time for grounding
ΠCYK ∪ΠTree (not shown here); these times are nearly the same independent from the
length of the input. This shows that the main computational effort is due to ΠCYK .

Comparison with C&C. The popular C&C parser is designed as a highly efficient
CCG wide coverage parser [11, 13] and it operates on the same C&C tagger output as
our parser. This makes it suitable for a comparison: in [13] C&C is reported to parse the
whole section 00 of CCGBank (1913 sentences with a similar distribution of sentence
lengths as in the Brown corpus) within less than 100 seconds on a slower computer than

508 P. Schüller

 0

 5

 10

 15

 20

 25

 30

 1 2596 2906 3639 4611

Ti
m

e
(s

ec
)

Sentence in Corpus

ground+solve
solve

β=0.075 β=0.003 β=0.001

found at least one parse tree found no parse tree

Fig. 2. Total time and solve time for parsing Section A of the Brown corpus, grouped by the
tagger β value required to parse each sentence and sorted by parse time (timeout 300 seconds)

ours. Therefore our approach clearly cannot compete with the performance of C&C.
However, the aim of this work was not to build the fastest parser, but to build a flexible
parser with reasonable performance that can return multiple parse trees and can easily
be extended with reasoning capabilities that go beyond what C&C can do.

Stratification and DLV vs GRINGO+CLASP. Apart from benchmarking with GRINGO

and CLASP we also considered DLV. Our first observation was that DLV does not recog-
nize our encoding to be finitely groundable due to rule (5) and other raising rules which
contain a higher level of function symbol nesting in their head than in the body. How-
ever due to the raiseCategory predicate (which does not depend on the applicableU
predicate in the head of (5)) the program clearly has a finite instantiation and using DLV

with the option -nofinitecheck leads to a finite grounding.
In an early version of the encoding, computing the set of possible categories of a

token was performed with a non-stratified rule. With this encoding, DLV performed
consistently better than GRINGO for the task of grounding. Replacing this rule by a few
stratified rules changed the situation: now DLV produced a slightly smaller grounding in
about the same time, but GRINGO became so much faster that it consistently performed
better than DLV. (All results in this paper were produced using GRINGO+CLASP and
the stratified encoding.) We conclude that efficiency of GRINGO is very sensitive to
program structure while for DLV we could not observe this in our benchmarks.

Queries and Magic Sets. As ΠCYK is stratified it is possible to use Magic Sets [1]
for efficient query evaluation, e.g., the query ‘grid(n, 1, “S”)?’ checks whether a parse
tree exists. Such a check is important to see whether a given set of tags is sufficient
for finding a parse tree, or whether the β value needs to be reduced to obtain more
tags. Unfortunately, using DLV with Magic Set for the above query led to much longer
grounding times than using DLV without Magic Set; the reason is not clear to us yet.

Grounding vs Solving. Finally we experimented with putting some of the tree normal-
ization constraints, e.g., (15), already into the ΠCYK encoding. This requires to define
exceptions to rule applicability, therefore the CYK encoding becomes more complicated

Flexible Combinatory Categorial Grammar Parsing Using CYK and ASP 509

(it is still stratified). The result of this experiment is a reduced grounding size and (with
GRINGO) a significantly increased grounding time. As the time spent in grounding and
solving of ΠTree (including all normalization constraints) is negligible, we reverted to
the simpler CYK encoding with larger and faster grounding. We conclude that eliminat-
ing solutions in solving can perform significantly better than making a program more
complex in order to eliminate those solutions already in grounding, even if the complex
program has a smaller instantiation.

5 Related Work

CCG-based systems OPENCCG [31] and TCCG [4,5] (implemented in the LKB toolkit)
can provide multiple parse trees for a given sentence. Both use chart parsing algorithms
with CCG extensions such as modalities or hierarchies of categories. While OPENCCG
is primarily geared towards generating sentences from logical forms, TCCG targets
parsing. However, both implementations require lexicons with specialized categories.

The wide-coverage CCG parser C&C [9, 10] relies on machine learning techniques
for tagging an input sentence with CCG categories as well as for computing the single
most likely parse tree with an efficient chart algorithm. In ASPCCGTK we reuse the
CCG supertagger of C&C to obtain CCG categories, we also compare ASPCCGTK to
C&C performance.

The Grail parser [26] is based on multi-modal categorial grammar (which is able to
represent CCG) and contains a graphical user interface for ‘interactive parsing’. Grail
uses theorem proving techniques based on the Lambek calculus, this makes it very
expressive but slow in some cases; therefore in some cases the user must support the
search for a parse tree in the user interface. Compared to our work, Grail is more general
and has different aims, e.g., being a tool for learning about Lambek calculus.

Transforming context free grammars (CFGs) in Chomsky Normal Form (CNF) us-
ing the CYK algorithm and parsing them using SAT solvers has been studied under
the name “GRAMMAR constraint” [20, 28], including recent work based on ASP [14].
Results indicate that SAT and ASP solving can perform well for parsing using the CYK
algorithm. Two important differences between these studies and our work are: (i) CFGs
use atomic categories and a large set of rules that forms the grammar, while CCG uses
structured categories and a small set of rule schemas, hence performance observations
might not directly carry over and encodings must be significantly different; moreover
(ii) our work is about natural language parsing while GRAMMAR studies experiment
with artificial grammars that encode solutions to Shift Scheduling problems.

Parsing CCG with CYK is not polynomial if categories are represented explicitly,
however recording only changes of categories can make it polynomial [30]; we here
represent categories explicitly and consider a more involved encoding as future work.

6 Conclusion

We have presented an encoding for parsing CCG in ASP which — as opposed to a pre-
vious approach, and as opposed to usual ASP methodology — puts the major effort of
computation into instantiation of the representation. This increased effort of grounding

510 P. Schüller

allows the search for an answer set to be fast, empirical results show that the new ap-
proach consistently outperforms the former approach that used planning. Experiments
show that our approach provides reasonable performance for using it in practice.

The possibility to trade search effort for grounding effort is due to the CYK algorithm
which has been around for a long time and can be realized in ASP in a natural way.
This approach of gaining efficiency goes against the declarativity of ASP, because our
encoding effectively prescribes a way of grounding that reproduces the data structure
generated by CYK. Nevertheless the result is a parsing framework that profits from the
declarative nature of ASP because reasoning modules that operate on parse trees (i.e.,
normalization, semantic disambiguation) can be tightly and modularly integrated with
the parser without significant changes to the parser encoding.

Future Work. In the future we want to adapt ASPCCGTK to become compatible with
Boxer [6] which is a tool for creating semantic representations for sentences in first or-
der logic. Integration with Boxer opens new possibilities for NLP tasks where multiple
readings of a sentence must be considered, e.g., for Recognizing Textual Entailment
(RTE) or Semantic Evaluation (SemEval) Challenges.

We have done preliminary work on disambiguation of parse trees using semantic
information [23], e.g., from FRAMENET [2], such that the large number of parse trees
(our experiments enumerated up to 100 trees per sentence) can be reduced to those trees
which are consistent with semantic restrictions (see examples in the introduction). In the
future we want to continue work in that direction.

If better efficiency becomes an issue, using techniques from [30] and computing the
CYK chart in C++ and enumerating parse trees with constraints in ASP are possibilities.

Finally our CYK encoding could be useful for benchmarking ASP grounders.

Acknowledgments. We thank Yuliya Lierler for fruitful discussions related to the top-
ics of this work. We thank the anonymous reviewers for their constructive comments.
Peter Schüller is supported by TUBITAK Research Fellowship 2216.

References

1. Alviano, M., Faber, W., Greco, G., Leone, N.: Magic sets for disjunctive datalog programs.
Tech. rep., Università della Calabria, Dipartimento di Matematica (2009)

2. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet Project. In: 36th Annual
Meeting of the Association for Computational Linguistics and 17th International Conference
on Computational Linguistics, pp. 86–90 (1998)

3. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-
bridge University Press (2003)

4. Beavers, J.: Documentation: A CCG implementation for the LKB. Tech. rep., Stanford Uni-
versity, Center for the Study of Language and Information (2003)

5. Beavers, J.: Type-inheritance combinatory categorial grammar. In: International Conference
on Computational Linguistics, COLING 2004 (2004)

6. Bos, J.: Wide-coverage semantic analysis with boxer. In: Semantics in Text Processing, STEP,
pp. 277–286. College Publications (2008)

7. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

8. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: ASP-Core-2 input language format (2012)

Flexible Combinatory Categorial Grammar Parsing Using CYK and ASP 511

9. Clark, S., Curran, J.R.: Log-linear models for wide-coverage CCG parsing. In: SIGDAT Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2003 (2003)

10. Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In: 42nd Annual
Meeting of the Association for Computational Linguistics, ACL, pp. 104–111 (2004)

11. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with CCG and log-linear
models. Computational Linguistics 33(4), 493–552 (2007)

12. Cocke, J., Schwartz, J.T.: Programming Languages and Their Compilers. Courant Institute
of Mathematical Sciences, New York (1970)

13. Djordjevic, B., Curran, J.R.: Efficient combinatory categorial grammar parsing. In: Proceed-
ings of the 2006 Australasian Language Technology Workshop, ALTW, pp. 3–10 (2006)

14. Drescher, C., Walsh, T.: Modelling grammar constraints with answer set programming. In:
International Conference on Logic Programming, vol. 11, pp. 28–39 (2011)

15. Eisner, J.: Efficient normal-form parsing for combinatory categorial grammar. In: 34th An-
nual Meeting of the Association for Computational Linguistics, pp. 79–86. ACL (1996)

16. Francis, W.N., Kucera, H.: Brown corpus manual. Letters to the Editor 5(2), 7 (1979)
17. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:

International Joint Conference on Artificial Intelligence, pp. 386–392 (2007)
18. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc.

International Logic Programming Conference and Symposium, ICLP, pp. 1070–1080 (1988)
19. Kasami, T.: An efficient recognition and syntax analysis algorithm for context-free languages.

Tech. Rep. AFCRL-65-758, Air Force Cambridge Research Laboratory (1965)
20. Katsirelos, G., Narodytska, N., Walsh, T.: Reformulating global grammar constraints. In: van

Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 132–147. Springer,
Heidelberg (2009)

21. Lange, M., Leiß, H.: To CNF or not to CNF? An efficient yet presentable version of the CYK
algorithm. In: Informatica Didactica 8. Universität Potsdam (2009)

22. Lierler, Y., Schüller, P.: Parsing Combinatory Categorial Grammar via planning in Answer
Set Programming. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning.
LNCS, vol. 7265, pp. 436–453. Springer, Heidelberg (2012)

23. Lierler, Y., Schüller, P.: Towards a tight integration of syntactic parsing with semantic disam-
biguation by means of declarative programming. In: Erk, K., Koller, A. (eds.) 10th Interna-
tional Conference on Computational Semantics (2013)

24. Lifschitz, V.: Answer set programming and plan generation. Artif. Intel. 138, 39–54 (2002)
25. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer (1999)
26. Moot, R.: Proof Nets for Linguistic Analysis. Ph.D. thesis, Utrecht Institute of Linguistics

OTS (2002)
27. Niemelä, I.: Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)
28. Quimper, C.-G., Walsh, T.: Decomposing global grammar constraints. In: Bessière, C. (ed.)

CP 2007. LNCS, vol. 4741, pp. 590–604. Springer, Heidelberg (2007)
29. Steedman, M.: The syntactic process. MIT Press, London (2000)
30. Vijay-Shanker, K., Weir, D.J.: Polynomial time parsing of combinatory categorial grammars.

In: 28th Annual Meeting of the Association for Computational Linguistics, pp. 1–8 (1990)
31. White, M., Baldridge, J.: Adapting chart realization to CCG. In: European Workshop on

Natural Language Generation, EWNLG 2003 (2003)
32. Wittenburg, K.: Predictive combinators: a method for efficient processing of combinatory cat-

egorial grammars. In: 25th Annual Meeting of the Association for Computational Linguistics,
ACL, pp. 73–80 (1987)

33. Younger, D.H.: Recognition and parsing of context-free languages in time n3. Information
and Control 10(2), 189–208 (1967)

Early Recovery in Logic Program Updates�

Martin Slota1, Martin Baláž2, and João Leite1

1 CENTRIA & Departamento de Informática, Universidade Nova de Lisboa
2 Faculty of Mathematics, Physics and Informatics, Comenius University

Abstract. We pinpoint the limitations of existing approaches to the treatment
of strong and default negation in answer-set program updates and formulate the
early recovery principle that plausibly constrains their interaction.

Keywords: answer-set programming, updates, strong negation, default negation.

1 Introduction

The increasingly common use of rule-based knowledge representation languages in
highly dynamic and information-rich contexts, such as the Semantic Web [1], requires
standardised support for updates of knowledge represented by rules. Answer-set pro-
gramming [2, 3] forms the natural basis for investigation of rule updates, and various
approaches to answer-set program updates have been explored [4–16].

The most straightforward kind of conflict arising between an original rule and its up-
date occurs when the original conclusion logically contradicts the newer one. Though
the technical realisation and final result may differ significantly, depending on the par-
ticular rule update semantics, this kind of conflict is resolved by letting the newer rule
prevail over the older one. Actually, under most semantics, this is also the only type of
conflict that is subject to automatic resolution [4–6, 9, 10, 13, 14].

From this perspective, allowing for both strong and default negation to appear in
heads of rules is essential for an expressive and universal rule update framework [7].
While strong negation is the natural candidate here, used to express that an atom be-
comes explicitly false, default negation allows for more fine-grained control: the atom
only ceases to be true, but its truth value may not be known after the update. The lat-
ter also makes it possible to move between any pair of epistemic states by means of
updates, as illustrated in the following example:

Example 1 (Railway crossing [7]). Suppose that we use the following logic program to
choose an action at a railway crossing:

cross←¬train. wait← train. listen←∼train,∼¬train.
� M. Slota and J. Leite were supported by Fundação para a Ciência e a Tecnologia under project

“ERRO – Efficient Reasoning with Rules and Ontologies” (PTDC/EIA-CCO/121823/2010).
The collaboration between the co-authors resulted from the Slovak–Portuguese bilateral
project “ReDIK – Reasoning with Dynamic Inconsistent Knowledge”, supported by the
APVV agency under SK-PT0-0028-10 and by Fundação para a Ciência e a Tecnologia
(FCT/2487/3/6/2011/S).

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 512–517, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Early Recovery in Logic Program Updates 513

The intuitive meaning of these rules is as follows: one should cross if there is evidence
that no train is approaching; wait if there is evidence that a train is approaching; listen
if there is no such evidence.

Consider a situation where a train is approaching, represented by the fact (train.).
After this train has passed by, we want to update our knowledge to an epistemic state
where we lack evidence with regard to the approach of a train. If this was accomplished
by updating with the fact (¬train.), we would cross the tracks at the subsequent state,
risking being killed by another train that was approaching. Therefore, we need to ex-
press an update stating that all past evidence for an atom is to be removed, which can
be accomplished by allowing default negation in heads of rules. In this scenario, the
intended update can be expressed by the fact (∼train.).

With regard to the support of negation in rule heads, existing rule update semantics
fall into two categories: those that only allow for strong negation, and those that pri-
marily consider default negation. As illustrated above, the former are unsatisfactory as
they render many belief states unreachable by updates. As for the latter, they optionally
provide support for strong negation by means of a syntactic transformation.

Two such transformations are known from the literature, both of them based on the
principle of coherence: if an atom p is true, its strong negation ¬p cannot be true si-
multaneously, so ∼¬p must be true, and also vice versa, if ¬p is true, then so is ∼p.
The first transformation, introduced in [17], encodes this principle directly by adding,
to both the original program and its update, the rules (∼¬p ← p.) and (∼p ← ¬p.)
for every atom p. This way, every conflict between an atom p and its strong negation
¬p directly translates into two conflicts between the objective literals p, ¬p and their
default negations. However, the added rules lead to undesired side effects that stand in
direct opposition with basic principles underlying updates. Specifically, despite the fact
that the empty program does not encode any change in the modelled world, the stable
models assigned to a program may change after an update by the empty program.

This undesired behaviour is addressed in an alternative transformation from [7] that
encodes the coherence principle more carefully. Nevertheless, this transformation also
leads to undesired consequences, as demonstrated in the following example:

Example 2 (Faulty sensor). Suppose that we collect data from sensors and multiple sen-
sors are used to supply information about the critical fluent p. In case of a malfunction
of one of the sensors, we may end up with the inconsistent logic program { p.,¬p.}.
At this point, no stable model of the program exists and action needs to be taken to find
out what is wrong. If a problem is found in the sensor that supplied the first fact (p.),
after the sensor is repaired, this information needs to be reset by updating the program
with the fact (∼p.). Following the universal pattern in rule updates, where recovery
from conflicting states is always possible, we would expect that some stable model be
assigned to the updated program. However, the transformational semantics for strong
negation defined in [7] still does not provide any stable model – we remain without a
valid epistemic state despite the fact that all conflicts have been solved.

In this short paper we discuss the issues with combining strong and default negation
in the context of rule updates. Namely, after presenting the necessary preliminaries, we
formulate a generic desirable principle that is violated by the existing approaches.

514 M. Slota, M. Baláž, and J. Leite

2 Preliminaries

We assume that a countable set of propositional atoms A is given and fixed. An objective
literal is an atom p ∈ A or its strong negation ¬p. We denote the set of all objective
literals by L. A default literal is an objective literal preceded by ∼ denoting default
negation. A literal is either an objective or a default literal. We denote the set of all
literals by L∗. As a convention, double negation is absorbed, so that ¬¬p denotes the
atom p and∼∼l denotes the objective literal l. Given a set of literals S, we introduce the
following notation: S+ = { l ∈ L | l ∈ S}, S− = { l ∈L | ∼l ∈ S},∼S = {∼L | L ∈ S}.

A rule is a pair π = (Hπ,Bπ) where Hπ is a literal, referred to as the head of π,
and Bπ is a finite set of literals, referred to as the body of π. Usually we write π as
(Hπ ← B+

π ,∼B−π .). A fact is a rule whose body is empty. A program is a set of rules.
An interpretation is a consistent subset of the set of objective literals, i.e., a subset

of L does not contain both p an ¬p for any atom p. The satisfaction of an objective
literal l, default literal∼l, set of literals S, rule π and program P in an interpretation J is
defined in the usual way: J |= l iff l ∈ J; J |=∼l iff l /∈ J; J |= S iff J |= L for all L ∈ S;
J |= π iff J |= Bπ implies J |= Hπ; J |= P iff J |= π for all π ∈ P. Also, J is a model of
P if J |= P, and P is consistent if it has a model. Furthermore, the set �P�SM of stable
models of P consists of all interpretations J such that J∗ = least(P∪ def(J))1 where
def(J) = {∼l. | l ∈ L\ J }, J∗ = J∪∼(L\J) and least(·) denotes the least model of the
argument program in which all literals are treated as propositional atoms.

Turning our attention to rule updates, a rule update semantics assigns stable models
to a sequence of programs where each component represents an update of the preceding
ones. Formally, a dynamic logic program (DLP) is a finite sequence of programs and by
all(P) we denote the multiset of all rules in the components of P. A rule update seman-
tics S assigns a set of S-models, denoted by �P�S, to P. We concentrate on semantics
based on the causal rejection principle [4–7,9,10,13] which states that a rule is rejected
if it is in a direct conflict with a more recent rule. The fundamental type of conflict be-
tween rules π and σ occurs when they have complementary heads, i.e. Hπ = ∼Hσ. We
define the most mature of these semantics, the refined dynamic stable models [9,10]. Let
P = 〈Pi〉i<n be a DLP without strong negation. Given an interpretation J, the multisets
of rejected rules rej(P,J) and of default assumptions def(P,J) are defined by:

rej(P,J) =
{

π ∈ Pi
∣∣ i < n∧∃ j ≥ i ∃σ ∈ Pj : Hπ =∼Hσ∧ J |= Bσ

}
,

def(P,J) = {∼l | l ∈ L∧¬(∃π ∈ all(P) : Hπ = l∧ J |= Bπ)} .

The set �P�RD of RD-models of P consists of all interpretations J such that

J∗ = least([all(P)\ rej(P,J)]∪def(P,J)) .

Support for strong negation can be added to this semantics by performing a syntactic
transformation that translates conflicts between opposite objective literals l and ¬l into
conflicts between objective literals and their default negations. Two such transforma-
tions have been suggested based on the principle of coherence [7,17]. For any program
P and DLP P = 〈Pi〉i<n they are defined as follows: P† = 〈P†

i 〉i<n, P‡ = 〈P‡
i 〉i<n,

P† = P∪{∼¬l ← l. | l ∈ L} , P‡ = P∪{∼¬Hπ ← Bπ. | π ∈ P∧Hπ ∈ L} .

1 The original definition based on reducts [2, 3, 18] is equivalent to the one we use here [7].

Early Recovery in Logic Program Updates 515

3 Early Recovery Principle

The problem with existing semantics for strong negation in rule updates is that seman-
tics based on the first transformation (P†) assign too many models to some DLPs, while
semantics based on the second transformation (P‡) sometimes do not assign any model
to a DLP that should have one. The former is illustrated in the following example:

Example 3. Consider the DLP P1 = 〈P,U〉 where P = { p.,¬p.} and U = /0. Since P
has no stable model and U does not encode any change in the represented domain, it
should follow that P1 has no stable model either. However, �P†

1 �RD = {{ p} ,{¬p}},
i.e. two models are assigned to P1 when using the first transformation to add support
for strong negation. To verify this, observe that P†

1 = 〈P†,U†〉 where

P† : p. ¬p. U† : ∼p←¬p. ∼¬p← p.

∼p←¬p. ∼¬p← p.

Consider the interpretation J1 = { p}. It is not difficult to verify that rej(P†
1,J1) =

{¬p.,∼¬p← p.} and def(P†
1,J1) = /0, so it follows that

least
([

all(P†
1)\ rej(P

†
1,J1)

]
∪def(P†

1,J1)
)
= { p,∼¬p}= J∗1 .

In other words, J1 ∈ �P†
1 �RD and similarly it can be verified that {¬p} ∈ �P†

1 �RD.

Thus, the problem with the first transformation is that an update by an empty pro-
gram, which does not express any change in the represented domain, may affect the
original semantics. This behaviour goes against basic and intuitive principles under-
lying updates, grounded already in the classical belief update postulates [19, 20] and
satisfied by virtually all belief update operations [21] as well as by the vast majority of
existing rule update semantics, including the original RD-semantics.

This undesired behaviour can be corrected by using the second transformation in-
stead. The more technical reason is that it does not add any rules to a program in the
sequence unless that program already contains some original rules. However, its use
leads to another problem: sometimes no model is assigned when in fact one is expected.

Example 4. Consider again Example 2, formalised as the DLP P2 = 〈P,V 〉 where P =
{ p.,¬p.} and V = {∼p.}. It is reasonable to expect that since V resolves the conflict
present in P, a stable model should be assigned to P2. However, �P‡

2 �RD = /0. To verify
this, observe that P‡

2 = 〈P‡,V ‡〉 where P‡ = { p.,¬p.,∼p.,∼¬p.} and V ‡ = {∼p.}.
Given an interpretation J, we conclude that rej(P‡

2,J) = P‡ and def(P‡
2,J) = /0, so J

cannot belong to �P‡
2 �RD since

least
([

all(P‡
2)\ rej(P

‡
2,J)

]
∪def(P‡

2,J)
)
= {∼p} �= J∗ .

Based on this example, in the following we formulate a generic early recovery prin-
ciple that formally identifies conditions under which some stable model should be as-
signed to a DLP. For the sake of simplicity, we concentrate on DLPs of length 2 which
are composed of facts.

516 M. Slota, M. Baláž, and J. Leite

We begin by defining, for every objective literal l, the sets of literals l and ∼l as
follows: l = {∼l,¬l } and ∼l = { l }. Intuitively, for every literal L, L denotes the set of
literals that are in conflict with L. Furthermore, given two sets of facts P and U , we say
that U solves all conflicts in P if for each pair of rules π,σ ∈ P such that Hσ ∈ Hπ there
is a fact ρ ∈U such that either Hρ ∈ Hπ or Hρ ∈ Hσ.

Considering a rule update semantics S, the new principle simply requires that when
U solves all conflicts in P, S will assign some model to 〈P,U〉. Formally:

Early recovery principle: If P is a set of facts and U is a consistent set of facts that
solves all conflicts in P, then �〈P,U〉�S �= /0.

We conjecture that rule update semantics should generally satisfy the above princi-
ple. In contrast with the usual behaviour of belief update operators, the nature of existing
rule update semantics ensures that recovery from conflict is always possible, and this
principle simply formalises the sufficient conditions for such recovery.

The introduced principle can guide the future addition of full support for both kinds
of negations in other approaches to rule updates, such as those proposed in [8, 11, 14,
16]. Stronger versions of the principle that apply to DLPs of arbitrary length and with
programs other than just sets of facts are also conceivable.

Furthermore, these considerations are also interesting in the context of updates of
hybrid knowledge bases [22, 23] and for the development of well-founded rule and
hybrid update semantics [24, 25]. An interesting path for future work is also the study
of updates of expressive extensions of logic programs [26] in which different negations
besides the classical one can be considered.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 28–
37 (2001)

2. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R.A., Bowen, K.A. (eds.) Proceedings of the 5th International Conference and Symposium
on Logic Programming, ICLP/SLP 1988, pp. 1070–1080. MIT Press (1988)

3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365–385 (1991)

4. Leite, J.A., Pereira, L.M.: Generalizing updates: From models to programs. In: Dix, J., Moniz
Pereira, L., Przymusinski, T.C. (eds.) LPKR 1997. LNCS (LNAI), vol. 1471, pp. 224–246.
Springer, Heidelberg (1998)

5. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic up-
dates of non-monotonic knowledge bases. The Journal of Logic Programming 45(1-3), 43–70
(2000)

6. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on
causal rejection. Theory and Practice of Logic Programming (TPLP) 2(6), 721–777 (2002)

7. Leite, J.A.: Evolving Knowledge Bases. Frontiers of Artificial Intelligence and Applications,
vol. 81, xviii + 307 p. Hardcover. IOS Press (2003)

8. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates.
Theory and Practice of Logic Programming (TPLP) 3(6), 671–713 (2003)

9. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for semantics
of dynamic logic programming. Studia Logica 79(1), 7–32 (2005)

Early Recovery in Logic Program Updates 517

10. Banti, F., Alferes, J.J., Brogi, A., Hitzler, P.: The well supported semantics for multidimen-
sional dynamic logic programs. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.)
LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 356–368. Springer, Heidelberg (2005)

11. Zhang, Y.: Logic program-based updates. ACM Transactions on Computational Logic 7(3),
421–472 (2006)

12. Šefránek, J.: Irrelevant updates and nonmonotonic assumptions. In: Fisher, M., van der
Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 426–438.
Springer, Heidelberg (2006)

13. Osorio, M., Cuevas, V.: Updates in answer set programming: An approach based on basic
structural properties. Theory and Practice of Logic Programming 7(4), 451–479 (2007)

14. Delgrande, J.P., Schaub, T., Tompits, H.: A preference-based framework for updating logic
programs. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 71–83. Springer, Heidelberg (2007)

15. Šefránek, J.: Static and dynamic semantics: Preliminary report. In: Mexican International
Conference on Artificial Intelligence, pp. 36–42 (2011)

16. Krümpelmann, P.: Dependency semantics for sequences of extended logic programs. Logic
Journal of the IGPL 20(5), 943–966 (2012)

17. Alferes, J.J., Pereira, L.M.: Update-programs can update programs. In: Dix, J., Przymusin-
ski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 110–131. Springer,
Heidelberg (1997)

18. Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Programming 35(1),
39–78 (1998)

19. Keller, A.M., Winslett, M.: On the use of an extended relational model to handle changing
incomplete information. IEEE Transactions on Software Engineering 11(7), 620–633 (1985)

20. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and
revising it. In: Allen, J.F., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning, KR 1991, pp. 387–
394. Morgan Kaufmann Publishers (1991)

21. Herzig, A., Rifi, O.: Propositional belief base update and minimal change. Artificial Intelli-
gence 115(1), 107–138 (1999)

22. Slota, M., Leite, J.: Towards Closed World Reasoning in Dynamic Open Worlds. Theory and
Practice of Logic Programming 10(4-6), 547–564 (2010)

23. Slota, M., Leite, J., Swift, T.: Splitting and updating hybrid knowledge bases. Theory and
Practice of Logic Programming 11(4-5), 801–819 (2011)

24. Banti, F., Alferes, J.J., Brogi, A.: Well founded semantics for logic program updates. In:
Lemaı̂tre, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315,
pp. 397–407. Springer, Heidelberg (2004)

25. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description logics
under the well-founded semantics. Artificial Intelligence 175(9-10), 1528–1554 (2011)

26. Gonçalves, R., Alferes, J.J.: Parametrized logic programming. In: Janhunen, T., Niemelä, I.
(eds.) JELIA 2010. LNCS, vol. 6341, pp. 182–194. Springer, Heidelberg (2010)

Preference Handling

for Belief-Based Rational Decisions�

Samy Sá and João Alcântara

Universidade Federal do Ceará
MDCC, Campus do Pici, Bl 910

Fortaleza, Brazil
samy@ufc.br, jnando@lia.ufc.br

Abstract. We introduce an approach to preferences suitable for agents
that base decisions on their beliefs. In our work, agents’ preferences are
perceived as a consequence of their beliefs, but at the same time are
used to feed the knowledge base with beliefs about preferences. As a re-
sult, agents can reason with preferences to hypothesize, explain decisions,
and review preferences in face of new information. Finally, we integrate
utility-based to reasoning-based criteria of decision making.

Keywords: Reasoning with Preferences, Preference Handling, Decision
Making.

1 Introduction

Autonomous agents are frequently required to make decisions and expected to do
so according to their beliefs, goals, and preferences, however, beliefs are rarely
connected to the preferences of the agent. Dietrich and List argue in [2] that
logical reasoning and the economic concept of rationality are almost entirely
disconnected in the literature: while logical accounts of reasoning rarely gets to
deal with rational decisions in the economic sense, social choice is never wor-
ried about the origin of agents’ preferences. But if preferences are disconnected
from beliefs, how can an agent explain their decisions? How could we model the
influence of new information in an agent’s preferences?

In order to reason about options available in a decision, an agent needs a
complimentary theory of what the best options are. Since rationality involves
trying to maximize gains (utility), the successful integration of rationality and
beliefs requires quantifying the utility of some of those beliefs. Further, reasoning
with preferences under uncertainty is a feature rarely considered in the litera-
ture (as mentioned in [3]), even though it plays a key role in rational choice and
game theory [9]. Our approach also considers agent theories with multiple mod-
els, therefore accounting for decisions under uncertainty while making it easy to

� This is a reviewed and extended version of [10] focused on single agent decisions.
�� This research is supported by CNPq (Universal 2012 - Proc. n 473110/2012-1),

CAPES (PROCAD 2009), CNPq/CAPES (Casadinho/PROCAD 2011).

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 518–523, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Preference Handling for Belief-Based Rational Decisions 519

perform reasoning tasks such as abduction and belief revision as means to eval-
uate or update an agent’s preferences. In this paper, we show how comparing
available options by weighing their relevant features can successfully connect ra-
tionality and qualitative preferences in a way to relate rational decision criteria
[9] and an inherently qualitative criteria for reasoning-based decisions [5].

2 Preferences as Utility + Beliefs

In this section, we introduce our notions of preference profiles and quality thresh-
olds. Agent preferences are a consequence of their beliefs as we attribute weights
to unary predicates meaning features relevant to judge options (alike to weighted
propositional formulas [8]) to build an unary utility function. Quality thresholds
are used to classify options as good, poor or neutral in the eyes of the agent.

Definition 1. (preference profile) Let Pred be the set of all unary predicates
P (x) used to express possible features of objects in the language of an agent.
A preference profile is a triple Pr = 〈Ut, Up, Lw〉, involving a utility function
Ut : Pred→ R, and upper and lower utility thresholds Up, Lw ∈ R, Up ≥ Lw.

An agent can have as many preference profiles as desired for each kind of
decision the agent may get involved (as proposed in [2]). Each profile (with
utilities and thresholds) can be obtained, for instance, from design (just as with
the knowledge base) or by modeling user preferences. In each case, a preference
profile gives us two perspectives of preferences: quantitative and qualitative.

Given an agent theory and a preference profile Pr = 〈Ut, Up, Lw〉, ranking
possible outcomes is straightforward: Let Alt = {o1, . . . , on} be the set of avail-
able options, each option oi, 1 ≤ i ≤ n, has attributed utility

UtS(oi) =
∑

P (x), P (oi) ∈ S

Ut(P (x)),

where S is a model of the agent’s knowledge base. In the context of a particular
model S, oi is a good option if UtS(oi) ≥ Up, a poor option if UtS(oi) < Lw,
and neutral (neither good or poor) otherwise. In that sense, if Up = Lw, there
are only good and poor options in the eyes of the agent.

The concept of preference profile in Definition 1 induces, for each model S of
the agent theory, a total preorder1 over the set of available options

�S= {(oi, oj) | UtS(oi) ≥ UtS(oj)}.

The proposition oi �S oj is usually read as “oi is weakly preferred to oj [6] in
S”. If the agent is indifferent about two options oi, oj , i.e., if both oi �S oj and
oj �S oi hold, we write oi ∼S oj .

From now on, we will account for agents as a pair Ag = (KB,Prefs) in-
volving a program KB and a set Prefs of preference profiles. Also, whenever
we mention an utility function Ut or thresholds Up, Lw, the assumption that
Pr = 〈Ut, Up, Lw〉 is the selected preference profile in a decision is left implicit.

1 A total preorder is a relation that is transitive, reflexive and in which any two
elements are related. Total preorders are also called weak orders.

520 S. Sá and J. Alcântara

3 Beliefs about Preferences

We now show how to build a general theory of preferences to reason about avail-
able options. We use a preference profile (Sec. 2) to devise a set of special rules (a
module) about the quality of available options. The rules encoding preferences
are not to interfere with the models of the original program: It is only tolerated
to add conclusions about the quality of options. New predicates G(x), N(x) are
introduced to KB, standing for good (G(x)) and neutral (N(x)) options, while
options that are not good (¬G(x)) are poor. Such predicates are the only ones
allowed in the head of rules encoding preferences.

Let R∗ be the set of all predicates relevant to the decision, i.e., any P (x) with
Ut(P (x)) �= 0 in Pr. To build the set KBPr of preference rules, first compute

RUt =
∑

P (x)∈R

Ut(P (x)),

for each R ⊆ R∗. Then, for each such R, KBPr should have a rule r in the
general form

∧
({P (x)|P (x) ∈ R} ∪ {¬P (x)|P (x) ∈ R∗ \ R})→ conc(r), where

conc(r) = G(x) if RUt ≥ Up, conc(r) = ¬G(x) if RUt < Lw, and conc(r) =
N(x) otherwise.

If the agent Ag = (KB,Prefs) considers a particular preference profile Pr,
its reasoning will be modeled by inference in KB′ = KB ∪KBPr. Observe that
KB′ is consistent if KB is consistent, since the models are the same with added
conclusions on the quality of options. Also, the number of rules is exponential
in |R∗|, but they only need to be calculated once (we can save it in a file, for
instance) and |R∗| is not likely to be large.

By employing rules as above, we have preferences integrated with beliefs in two
ways. First, beliefs promote the utility of each option, so preferences are based
on them. Second, the calculated utilities are used to complement the knowledge
base with predicated formulas regarding beliefs about them.

4 On Multiple Preference Profiles

In [2], Dietrich and List propose that the preferences of an agent are conditioned
by a set of reasons M and each subset of M induces a different preference
ordering. Two axioms are proposed to govern the relationship between an agent’s
set of beliefs and their preferences across variations of their motivational state:

Axiom 1. ([2]) For any two options oi, oj ∈ O and any M ⊆ Pred, if {P (x) ∈
M | P (oi) holds} = {P (x) ∈M | P (oj) holds}, then x ∼ y.

Axiom 2. ([2]) For any oi, oj ∈ O and any M,M ′ ⊆ Pred such that M ′ ⊇M ,
if {P (x) ∈M ′ \M | P (oi) or P (oj) hold} = ∅, then x �M y ⇔ x �M ′ y.

Roughly speaking, Axiom 1 states that two options with the exact same char-
acteristics should be equally preferred. Axiom 2 treats the case where new at-
tributes become relevant to the decision. In that case, the preferences over any
two options that do not satisfy the extra criteria should remain unchanged.

Preference Handling for Belief-Based Rational Decisions 521

Theorem 1. Each preference relation �S (Sec. 2) satisfies Axioms 1 and 2.

Proof. Consider any consistent answer set S of the agent’s knowledge base KB.
If two options satisfy the exact same predicates in S, the utility attributed to
both options will be the same, so Axiom 1 is satisfied. Now suppose a preference
profile Pr is updated in a way the predicate P (x) becomes relevant, i.e., in the
updated profile Pr′, Ut′(P (x)) �= 0, while originally, Ut(P (x)) = 0. If neither
options oi, oj satisfy P (x) in S, i..e, if P (oi), P (oj) �∈ S, then their utility remains
unchanged. Therefore, Axiom 2 is satisfied.

As a consequence, our approach to model preferences of an agent will ade-
quately relate their set of beliefs to their preferences. Variations of the agent’s
motivational state are modeled as different profiles for the same decisions. Pref-
erences are integrated to the knowledge base as in Section 3.

5 Making Decisions

When there is no uncertainty, the decision of a single agent should be straightfor-
ward: Just maximize utility. Since options in our approach can satisfy positive
and negative features, maximizing utility can be perceived as comparing and
weighting such features, as in the principle of Bivariate monotonicity [5].

Definition 2. (bivariate monotonicity) A decision criteria satisfies bivariate
monotonicity if, for each answer set S of KB, whenever o+S

i ⊇ o+S

j and o−S

i ⊆
o−S

j available, it prefers oi at least as much as oj.

Bivariate monotonicity states that whenever an option has all advantages of
another (possibly more), but no disadvantages the second does not (possibly
less), the first option is possibly better. Of course, if the set of pros and cons is
exactly the same, one option is just as good as the other.

In the following, consider oi and oj are two options, KB denotes a knowledge
base, and the preference profile Pr = 〈Ut, Up, Lw〉 is selected. Let o+S

i denote the
set of positive features satisfied by oi in S, i.e., those P (x) such that P (oi) ∈ S
and Ut(P (x)) > 0, and o−S

i denote the set of negative features satisfied by oi in
S, i.e., those P (x) such that P (oi) ∈ S and Ut(P (x)) < 0.

Theorem 2. When there is no uncertainty, i.e., there is a single plausible sce-
nario, maximizing utility satisfies bivariate monotonicity.

Proof. In any specific scenario S, if o+i ⊇ o+j while o−i ⊆ o−j , we will have

UtS(oi) ≥ UtS(oj), so maximizing utility satisfies bivariate monotonicity.

6 Decisions under Uncertainty

Our notion of preference profile induces the construction of a payoff matrix in
case of multiple plausible scenarios, so we employ decision criteria from game
theory [9], namely the maximin criteria.

522 S. Sá and J. Alcântara

Definition 3. (maximin criteria) In a decision problem with uncertainty, let
AS denote the set of possible scenarios (models of a theory) according to the
beliefs of an agent. An option oi is at least as preferred as the option oj by the
maximin criteria, i.e. oi �MAXIMIN oj iff

MIN({UtS(oi) | S ∈ AS}) ≥MIN({UtS(oj) | S ∈ AS}).

The best options are those oi such that oi �MAXIMIN oj for all oj , j �= i.

Theorem 3. The maximin criteria for decision making under uncertainty sat-
isfies bivariate monotonicity (Definition 2) in the case of multiple scenarios.

Proof. Let oi, oj be any two available options, and suppose o+S

i ⊇ o+S

j and

o−S

i ⊆ o−S

j hold in every S ∈ AS (if any different, the options cannot be
directly compared). Let the quality of any options with the least quality be
MIN({UtS(oj) | S ∈ AS}) = m. Let M ∈ AS be any answer set such that
UtM (oj) = m. By Theorem 2, UtM (oi) ≥ UtM (oj), so the least utility at-
tributed to oi is MIN({UtS(oi) | S ∈ AS}) ≥ m and oi �MAXIMIN oj . As a
consequence, oi �MAXIMIN oj , i.e., oi is at least as preferred as oj .

7 Related Work

Dietrich and List, in [2], observe that logical reasoning and the economic con-
cept of rationality are almost entirely disconnected in the literature and propose
preference orderings based on alternative logical contexts as being different psy-
chological states of the agent. We connect logics and utility-based decisions in
this paper by attaching utilities to predicates, so the best outcomes satisfy the
most interesting combinations of predicates. We then connect rational behavior
from game theory to bipolar preferences due to Dubois et al. [5]. On the other
hand, Dietrich and List are not concerned with reasoning about preferences in
[2], but restrict their analysis to how beliefs can influence decisions.

Lafage and Lang propose in [8] an approach to group decisions based on
weighted logics in which formulas represent constraints and weights are at-
tributed to each formula to quantify importance. This is related to the way
we build utility functions and preferences, however they allow formulas with
connectives, while we restrict utility evaluation to ground formulas with unary
predicates. Brafman proposes in [1] a relational language of preferences where
rules may include utility values in the conclusions. The author argues the ap-
proach is flexible, as their value functions can handle a dynamic universe of
objects. We consider our approach is also very flexible, as an agent can quickly
evaluate a new option, since all the weight is in the features relevant to the agent.

Our proposal takes advantage of multiple models of a theory to reason over
uncertainty as decision are utility-based and built over unary predicates. This
kind of approach is surprisingly not common, as also stated by Doyle in [4]. A
notable exception is [7], where Labreuche deals with the issue of explaining a
decision made in a multi-attribute decision model where attributes are weighted
in an attempt to circumvent the difficulties of properly explaining utility-based

Preference Handling for Belief-Based Rational Decisions 523

decisions. Anyway, our work has an alike motivation: arguments are better re-
lated to logic-based formalisms, so we attach weights to attributes (predicates)
to calculate preferences and translate them back into a logical language. For an
account of approaches and applications of preferences in Artificial Intelligence,
see the more recent survey from Domshlak et al. [3].

8 Conclusions and Future Work

We have introduced an approach to integrate beliefs and rationality in a way
utility-based criteria for decisions is shown to satisfy criteria from reasoning-
based decision making. This is achieved by attributing utility to unary predi-
cates used to encode relevant qualities of a decision, together with the notion of
qualitative thresholds, both parts of our preference profiles. By doing so, agent
preferences are simultaneously perceived in different perspectives: a utility-based
cardinal order, a regular ordinal order and a classification in good/poor/neutral
options. All three perspectives are integrated as we devise rules that encode the
preferences of the agent and append them to its knowledge base for reasoning
purposes. The result is a formalism capable of modeling reasoning about prefer-
ences where beliefs are the base for rational decisions. Next, we intend to explore
how this model can be employed in group decisions by deliberation and voting.

References

1. Brafman, R.I.: Relational preference rules for control. Artif. Intell. 175(7-8), 1180–
1193 (2011)

2. Dietrich, F., List, C.: A reason-based theory of rational choice*. Noûs 47(1), 104–
134 (2013)

3. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: An overview.
Artif. Intell. 175(7-8), 1037–1052 (2011)

4. Doyle, J.: Prospects for preferences. Computational Intelligence 20(2), 111–136
(2004)

5. Dubois, D., Fargier, H., Bonnefon, J.-F.: On the qualitative comparison of decisions
having positive and negative features. J. Artif. Intell. Res. (JAIR) 32, 385–417
(2008)

6. Fishburn, P.C.: Preference structures and their numerical representations. Theor.
Comput. Sci. 217(2), 359–383 (1999)

7. Labreuche, C.: A general framework for explaining the results of a multi-attribute
preference model. Artif. Intell. 175(7-8), 1410–1448 (2011)

8. Lafage, C., Lang, J.: Logical representation of preferences for group decision mak-
ing. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) KR, pp. 457–468. Morgan
Kaufmann (2000)

9. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)
10. Sá, S., Alcântara, J.: Preferences with qualitative thresholds and methods for in-

dividual and collective decisions (extended abstract). In: Ito, onker, Gini, Shehory
(eds.) AAMAS. IFAAMAS (2013)

Logic-Based Techniques

for Data Cleaning: An Application
to the Italian National Healthcare System�

Giorgio Terracina1, Alessandra Martello2, and Nicola Leone1

1 Università della Calabria
2 DLVSystem s.r.l.

{terracina,leone}@mat.unical.it, martello@dlvsystem.com

Abstract. In this paper we present a technique based on logic pro-
gramming for data cleaning, and its application to a real use case from
the Italian Healthcare System. The use case is part of a more com-
plex project developing a business intelligence suite for the analysis of
distributed archives of tumor-based diseases.

1 Introduction

Data anomalies can be roughly classified in syntactic (attribute-level), seman-
tic (tuple-level), and coverage anomalies (e.g., missing values). Data cleaning
tasks may also be classified as single-source or multi-source, depending on the
number of sources they are able to deal with. Proposed approaches span over sev-
eral methods, such as parsing [5], integrity constraint enforcement [4], duplicate
elimination [2],and statistical methods [3].Only few data cleaning approaches are
based on computational logic. In fact, data cleaning activities inherently involve
procedural tasks and mathematical computations, and require access to possibly
distributed databases; this does not fit well with many logic-based frameworks.

In this paper we address the issue of data cleaning from a logic-based per-
spective. In particular, we resort to recent extensions for logic programming [1]
and to evaluation engines supporting them, like dlvDB [6], allowing to both ac-
cess possibly distributed databases, and include inherently procedural subtasks
or mathematical computations directly into logic programs specification. The
proposed approach is logic-based and addresses multi-source data cleaning for
syntactic and semantic anomaly detection, where a reference dictionary is used
for anomaly detection and their potential correction.

The proposed approach should be considered complementary to the existing
ones, and capable to provide simplified and flexible specifications of the logic
of the data cleaning task. The approach has been implemented as a plugin of
Pentaho Data Integration (Kettle)1 and applied to the AIRTUM real use case.

� This work has been partially funded by the Calabria Region under the project “Piano
Interaziendale di Innovazione del Contratto di Investimento Industria, Artigianato
e Servizi” N. 1220000408.

1 http://kettle.pentaho.com/

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 524–529, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://kettle.pentaho.com/

Logic-Based Techniques for Data Cleaning 525

2 A Logic-Based Approach for Data Cleaning

The main goal of our approach is the definition of an automatic procedure for
generating logic programs able to identify and, whenever possible, correct errors
within the data. Another objective is to provide an easily configurable solution,
also adaptable to several domain-specific applications.

In order to perform record validation and comparison our approach assumes
to exploit additional knowledge bases (also called dictionaries); moreover, since
exact matches are usually not sufficient to detect inter-source matchings and
errors in the data, and since we want to provide also a semi-automatic correction
strategy, we resort to logic programming language extensions allowing function
calls within logic programs [1,6].

Data involved in the cleaning process can be categorized in several ways, such
as correct, not correct but with values within the reference domain, not correct
with values outside the reference domain, certainly repairable (i.e. data is wrong,
but it is possible to identify exactly one correction), possibly repairable (i.e. data
is wrong but there is ambiguity on the proper correction), and wrong and not
repairable. Then, analyzed data are classified and streamed out separately.

Starting from some basic input specifications, the approach builds the logic
program for automatic error detection and semi-automatic error correction.

In order for the approach to work properly, the user should specify:

(1) the table t(Kt, Jt) to be validated;
(2) the reference dictionary d(Kd, Jd);
(3) join conditions between t and d (possibly expressed through a matching

function fM);
(4) the comparison function fR, and the corresponding threshold thR, to be used

for suggesting corrections;
(5) the reference to the DBMS functions corresponding to fM and fR.
(6) ODBC access paths for DBMS data sources.

The notation t(Kt, Jt) stands for table t having the list of key attributes Kt;
attributes Jt are those involved in some join. We will refer to the i-th variable
in Jt as Jt[i]. Each table may have some other attributes not involved in the
cleaning process. Without loss of generality we do not explicitly mention them.

Join conditions specify the mappings between attributes in t and attributes
in d, possibly transformed by some matching function. As an example, an at-
tribute in t representing a date, may be required to be transformed in some
standard format first, in order to be matched with a dictionary of dates, and the
corresponding join condition may be expressed as:

t(. . .myDate . . .), d(. . . refDate . . .),#standardize(myDate, refDate)
The algorithm we have designed for the automatic generation of logic pro-

grams for data cleaning is shown in Procedure RuleBuilder. The first step (Row
3) identifies the set of tuples tuple ok without errors. Observe that, if an exact
matching is sufficient, #fM can be safely downgraded to the identity operator.
Row 5 identifies tuple-level errors (named tuple not ok).These are then detailed
at attribute-level by considering two kinds of attribute errors: (i) in dic, i.e. the

526 G. Terracina, A. Martello, and N. Leone

Procedure RuleBuilder(Tables t, d, Functions #fM ,#fR)
Input : Set of specifications
Output: Set R of rules

1 begin
2 R:=∅;
3 R:=R∪

tuple ok(Kt, Jt) ← t(Kt, Jt,), d(Kd, Jd,),#fM (Jt[1], Jd[1]), . . .#fM (Jt[m], Jd[m]);
4 % error detection phase;

5 R:=R∪ tuple not ok(Kt, Jt) ← t(Kt, Jt,), not tuple ok(Kt, Jt);

6 foreach 1 ≤ i ≤ |Jt| do

7 R:=R∪ in dic Ji(Kt, Jt[i]) ← tuple not ok(Kt, Jt), d(Kd, Jd,),#fM (Jt[i], Jd[i]);

8 R:=R∪ inconst in dic(Kt, Jt) ← in dic J1(Kt, Jt[1]), . . . , in dic Jm(Kt, Jt[m]);

9 R:=R∪ inconst out dic(Kt, Jt) ← tuple not ok(Kt, Jt), not inconst in dic(Kt, Jt);

10 foreach 1 ≤ i ≤ |Jt| do

11 R:=R∪ out dic Ji(Kt, Jt[i]) ← inconst out dic(Kt, Jt), not in dic Ji(Kt, Jt[i]);

12 % error correction phase ;

13 foreach 1 ≤ i ≤ |Jt| do
14 R:=R∪ repair tab attr Ji(Kt, Jt,Kt, Jt[1], . . . Jd[i], . . . , Jt[m], R) ←
15 tuple not ok(Kt, Jt), d(Kd, Jd,),#fM (Jt[1], Jd[1]), . . .

16 #fM (Jt[i − 1], Jd[i − 1]),#fM(Jt[i+ 1], Jd[i+ 1]) . . .#fM(Jt[m], Jd[m]),

17 #fR(Jt[i], Jd[i], R), R < thR;

attribute value is wrong but it falls within the dictionary domain, (ii) out dic,
i.e. the attribute value is wrong and outside the dictionary domain. Rows 6-7
and 10-11 classify each attribute of a wrong tuple accordingly. Based on this
attribute classification, the approach classifies wrong tuples as either having all
attribute values within the dictionary (inconst in dic in Row 8) or with at least
one attribute value falling outside the dictionary (inconst out dic in Row 9).

The next step, which is carried out in Rows 13–17, identifies possible auto-
matic attribute corrections for wrong tuples. Specifically, given the i-th join at-
tribute of t, a repair tab attr Ji table is built which contains the original (wrong)
tuple 〈Kt, Jt〉 and the proposed modification as 〈Kt, Jt[1], . . . Jd[i], . . . , Jt[m]〉,
where Jd[i] is a value from the dictionary. A measure of confidence for the
proposed modification is given by the value R in repair tab attr Ji, whose
computation is specified next.

A tuple is considered repairable if exactly one attribute is wrong w.r.t. the
dictionary. Observe that there may be several tuples in the dictionary satisfying
the join condition imposed for d and t in Rows 14–17. Then, the potential cor-
rections are those dictionary values Jd[i] sufficiently similar to the wrong Jt[i];
function #fR has precisely the role of measuring the distance R between the
two2. If R is below the threshold thR, Jd[i] is proposed as a correction, along
with R. The value R could also be used as a quality measure to rank the proposed
correction in subsequent steps of the computation.

2 In Procedure RuleBuilder, we assumed #fR to provide a distance measure R (this
could be, e.g., Hamming or Levenshtein for strings, or a simple difference for inte-
gers); a switch to similarity measures is straightforward.

Logic-Based Techniques for Data Cleaning 527

Fig. 1. DLVCleaner Plugin Architecture

The approach has been implemented as a Pentaho Kettle plugin, we called
DLVCleaner, whose architecture is shown in Figure 1.

3 Application to the AIRTUM Use Case

In this section we describe the AIRTUM Tumor Registry use case we exploited
as an application of our approach. This use case is part of a project funded by
the Calabria Region which involves several IT companies and institutions from
Calabria. The AIRTUM tumor registry used in the project considers information
pertaining to several local healthcare centers (called ASL) from Calabria. Data
are collected from many different sources, including public hospitals, ASL, re-
gional sanitary agencies, family doctors, etc. Collected information include the
kind of diagnosed cancer, personal data of the patient, current clinical condi-
tions, past and current treatments, disease evolution, etc. All such information
are extremely important to analyze causes and evolutions of cancer diseases, in
order to study proper treatments, prevention policies, and to schedule sanitary
budgets. Overall, the project considered more than 200 tables as sources of data.

Almost all of this information should be inter-linked by the identity of the
patient. However, such an information is often imprecise in local sources, since in
many cases data are loaded manually. Even patient identification codes, like Tax
Codes or Social Security Numbers are often absent or wrong. As a consequence,
one of the crucial tasks in this project was the proper identification of each
mentioned patient through a subset of its attributes. However, even different
official municipality registries used different schemas and standards to represent
data; this required a careful analysis of official data too.

The approach followed in the project consisted in first gathering a set of basic
information of each patient mentioned among the sources into a local registry of
individuals, called stg airtum registry, where stg stands for staging area. Then,
this registry has been cleansed using official data as dictionaries.

528 G. Terracina, A. Martello, and N. Leone

Fig. 2. Example of a Kettle workflow using the DLVCleaner plugin in AIRTUM

As it should be clear from this brief presentation, the overall project is quite
complex and involves several integration and cleaning tasks. We next present
the general philosophy followed in the project and the adoption of our approach
for cleaning tasks, by showing the cleaning steps for the birthplace of a patient.

The dictionary table exploited in this case includes several attributes, such as
city name, ISTAT code, region, province, nation etc. From a careful analysis of
involved sources, it has been possible to point out that the birthplace is expressed
in a very heterogeneous way. In fact, sometimes it is specified by a three-digit
number, which often corresponds to an official code for foreign nationality (used
in place of city name). Sometimes it is expressed by a number corresponding
to the Italian ISTAT classification of cities. In other cases, it is described by
a text pair (city - nation) containing either Italian or foreign cities with the
corresponding nation. Finally, sometimes the birthplace is not specified at all.

Figure 2 shows how the DLVCleaner plugin has been used to address the
cleaning of the birthplace attribute in stg airtum registry table. From the previ-
ous analysis, it emerged that it is profitable to carry out specific cleaning activ-
ities depending on the format of each birthplace instance. In fact, the workflow
shown in Figure 2 first discards tuples from stg airtum registry having NULL
birthplaces (these are handled in a different sub-task not shown in Figure 2).
Then it partitions remaining stg airtum registry tuples singling out (i) the three-
digit birthplaces, (ii) the numbered birthplaces, (iii) the foreign cities, and (iv)
Italian cities (all the rest). Each of these data flows is sent to a specifically config-
ured DLVCleaner instance which, based on the stream classifications introduced
in previous sections, outputs results onto one of four tables, namely valid tuples,
corrected tuples, suggested tuples, and anomalies. The four DLVCleaner plugin
instances have been suitably configured for the specific birthplace format.

Logic-Based Techniques for Data Cleaning 529

As an example, in the DLVCleaner 3digit birthplace transformation the birth-
place is mapped onto the nationality attribute of the reference dictionary, whereas
in DLVCleaner number birthplace the birthplace is mapped onto the ISTAT code
dictionary attribute. Analogously, in DLVCleaner birthplace the pair (city - na-
tion) is handled by a matching function that first tokenizes the string, singling
out the city name, and then matches it to the city name dictionary attribute. In
order to detect potential corrections, the most proper comparison function is ap-
plied, depending on data format; as an example, for the three-digit birthplaces,
we used the Hamming distance whereas for city names we used the Levenshtein
distance.

Setting up the workflow shown in Figure 2 takes only few minutes and it is
possible to follow a try-and-error approach. In the described use case, the input
table was composed of 1.000.000 tuples collecting records from 155 municipal-
ities, whereas the dictionary stored about 15.000 tuples. From the application
of the transformation shown in Figure 2 we obtained that almost 50% of in-
put tuples were wrong. 72% of wrong tuples have been automatically corrected,
whereas 24% had multiple corrections. Only 2% of input tuples have been de-
tected as wrong and not repairable.

Clearly, the cleaning step for birthplaces shown above is only one small step
in a more complete workflow dealing with the overall database.

4 Conclusion

In this paper we illustrated the application of a logic-based approach to data
cleaning in the real world AIRTUM use case. We have shown that extensions
of classical logic programming, such as external function calls and database
interaction, may enable logic programming to be effectively exploited in practice.
As for future work, we plan to further extend the approach to accommodate also
cleaning strategies not necessarily based on dictionaries.

References

1. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Enhancing ASP by functions: Decidable
classes and implementation techniques. In: AAAI (2010)

2. Hernandez, M., Stolfo, S.: The merge/purge problem for large databases. In: Pro-
ceedings of the ACM SIGMOD Conference (1995)

3. Maletic, J., Marcus, A.: Data cleansing: Beyond integrity analysis. In: Proceedings
of the Conference on Information Quality (October 2000)

4. Mayol, E., Teniente, E.: A survey of current methods for integrity constraint main-
tenance and view updating. In: Kouloumdjian, J., Roddick, J., Chen, P.P., Embley,
D.W., Liddle, S.W. (eds.) ERWorkshops 1999. LNCS, vol. 1727, pp. 62–73. Springer,
Heidelberg (1999)

5. Raman, V., Hellerstein, J.: Potter’s wheel: An interactive framework for data trans-
formation and cleaning. In: Proc. of VLDB 2001, Roma, Italy (2001)

6. Terracina, G., De Francesco, E., Panetta, C., Leone, N.: Enhancing a DLP system
for advanced database applications. In: Calvanese, D., Lausen, G. (eds.) RR 2008.
LNCS, vol. 5341, pp. 119–134. Springer, Heidelberg (2008)

Justifications for Logic Programming

Carlos Viegas Damásio1, Anastasia Analyti2, and Grigoris Antoniou3

1 CENTRIA, Departamento de Informática Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

cd@fct.unl.pt
2 Institute of Computer Science, FORTH-ICS, Crete, Greece

analyti@ics.forth.gr
3 Department of Informatics, University of Huddersfield, Huddersfield, UK, and

Institute of Computer Science, FORTH-ICS, Crete, Greece
G.Antoniou@hud.ac.uk

Abstract. Understanding why and how a given answer to a query is gen-
erated from a deductive or relational database is fundamental to obtain
justifications, assess trust, and detect dependencies on contradictions.
Propagating provenance information is a major technique that evolved in
the database literature to address the problem, using annotated relations
with values from a semiring. The case of positive programs/relational
algebra is well-understood but handling negation (or set difference in
relational algebra) has not been addressed in its full generality or has
deficiencies. The approach defined in this work provides full provenance
information for logic programs under the least model, well-founded se-
mantics and answer set semantics, and is related to the major existing
notions of justifications for all these logic programming semantics.

1 Introduction

An essential problem that users of logic programming systems face is the under-
standing of why a given query is true or false in a model of a program, under a
given particular semantics. This problem has received attention for quite a long
time, and has been addressed for the case of definite programs under least model
semantics in [20,15], stratified negation in [20,19], for the case of well-founded
semantics in [16,19,17], and for the answer set semantics in [17]. Most of the
approaches resort to the non-deterministic construction of complex structures,
usually graph based in order to obtain justifications for programs [19,15,17], or
provide algorithmic approaches [20,2]. In this paper it is presented a fully declar-
ative and logical approach to the problem, by constructing provenance formulae
from which justifications can be extracted. Even though the problem of finding
justifications is related to the debugging of logic programming theories [16,2,1,5],
the exact relationship will be deferred to a subsequent work.

In the current work is defined a declarative logical approach able to extract
provenance information for logic programs. Using values of the Lindenbaum-
Tarski algebra as annotation tags for atoms, we are able to specify
1 Partially supported by FCT Project ERRO PTDC/EIACCO/121823/2010.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 530–542, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Justifications for Logic Programming 531

why-provenance both for definite and normal logic programs under well-founded
semantics, and relate it to abduction and calculation of prime implicants. The
approach is subsequently generalised to the case of answer set programming.
Moreover, why-provenance for the case of well-founded semantics is novel, ex-
tending the results known for the case of relational algebra, since the case of
bag semantics with positive recursion has been addressed in [10], but to the best
of our knowledge no work in the literature considers the case of recursion over
negation under set (or bag) semantics. We will use these provenance formulae to
obtain justifications for literals true in a given model, extending the approaches
of evidence graphs [15] and offline justifications [17].

The background is introduced in the next section. Section 3 specifies the
why-provenance approach for the case of definite programs, covering the case
of positive relational algebra, introducing also why-provenance for the case of
an atom not belonging to the model. The technique is generalized afterwards
to the well-founded semantics in Section 4. Why-provenance for the answer set
semantics can be obtained from the provenance formulas for the well-founded
model. We discuss our results and summarize the main conclusions in the last
section. It is assumed that the reader is acquainted with the major semantics for
logic programs: least model [21], well-founded [7] and answer set semantics [8].

2 Preliminaries and Background

Normal logic programs are sets of rules. A rule r has the following syntax:
A1 :− A2, . . . , Am,∼Am+1, . . . ,∼An(n ≥ m ≥ 0), where each Ai is a logi-
cal atom without occurrence of function symbols. As usual, define Head(r) =
A1, Body+(r) = {A2, . . . , Am}, Body−(r) = {Am+1, . . . , An}, and Body(r) =
{A2, . . . , Am,∼Am+1, . . . ,∼An}. A program is definite (or positive) if there are
no occurrences of weakly negated atoms. Without loss of generality, it is assumed
that programs are ground (no variables in the rules). Given a set of literals J
let ∼J = {a | ∼a ∈ J} ∪ {∼a | a ∈ J ∧ ∀b a �= ∼b}. The Herbrand Base HP of a
program P is formed by the set of atoms occurring in it. A two-valued interpre-
tation is a subset of HP specifying the true atoms, and a partial interpretation is
a subset of HP ∪∼HP . A two-valued interpretation I corresponds to the partial
interpretation I ∪∼(HP \ I). The least model least(P) of a definite program P
is the least fixpoint of operator TP (I) = {Head(r) | r ∈ P ∧Body(r) ⊆ I}. The
answer sets of normal logic program P are the fixpoints of Γ (I) = least(P I),
where P I = {Head(r) ← Body+(r) | r ∈ P,Body−(r) ∩ I = ∅}. The well-
founded model WFMP of P is T ∪∼F where T and F are interpretations such
that T ∩ F = ∅, T is the least fixpoint T = Γ (Γ (T)) and F = HP \ Γ (T).

Example 1. Consider the following logic program

a :− c,∼b. b :− ∼a. d :− ∼c,∼d. c :− ∼e. e :− f. f :− e.

This program has two answer sets: M1 = {a, c} and M2 = {b, c} (absent atoms
are false). Its well-founded model is WFM = {c,∼d,∼e,∼f} (absent literals
are undefined). A program may not have answer sets: by adding the fact e to
the previous program, c becomes false, but then d can only be true iff it is false.

532 C.V. Damásio, A. Analyti, and G. Antoniou

Determining why a given atom belongs to the model of a program is not a
trivial task, due to the mutual dependencies that can occur in programs. This is
fundamental to users to be able to debug or to check their programs. In [15] is
defined the notion of evidence for tabled definite logic programs, extending the
previous work in [19], where it is assumed a left-to-right execution order of goals.
This approach has been generalised in [17] to the case of normal logic programs
by introducing offline-justifications.

Definition 1 (Offline explanation graph). Let P be a program, J a partial
interpretation, U a set of atoms, and b± an element of H+

P ∪ H
−
P , where H

+
P =

{a+ | a ∈ HP } and H
−
P = {a− | a ∈ HP }. An offline explanation graph G

of b with respect to J and U is a labeled, directed graph G = (N,E), where
N ⊆ H

+
P ∪H

−
P ∪ {assume,,⊥} and E ⊆ N ×N × {+,−}, satisfying:

1. Element b± belongs to N and every node of G is reachable from b±;
2. The only sinks in the graph are: assume,, and ⊥;
3. For every h+ ∈ N then h ∈ J , and there is h :− b1, . . . , bm,∼c1, . . . ,∼cn in

P such that {b1, . . . , bm} ⊆ J and {∼c1, . . . ,∼cn} ⊆ J ∪ ∼U .
Additionally, there is an arc (h+, b+i ,+) for each 1 ≤ i ≤ m, and an arc
(h+, c−j ,−) for each 1 ≤ j ≤ n; if the rule has an empty body (it is a fact),
then h+ is (h+,,+) ∈ E. No more arcs have source h+.

4. If h− ∈ N and h ∈ U then (h−, assume,−) is the only arc with source h−;
5. For every h− ∈ N such that h �∈ U then ∼h ∈ J , and the successors of h− is

the least set of arcs such that for every rule h :− b1, . . . , bm,∼c1, . . . ,∼cn:
– ∃1≤i≤m such that (h−, b−i ,+) and ∼bi ∈ J or bi ∈ U , or
– ∃1≤j≤n such that (h−, c+j ,−) and cj ∈ J .

If there are no rules for h then the only arc with source h− is (h−,⊥,+);
6. There are no cycles in the subgraph involving nodes in H

+
P and containing

arcs labeled only with +;

The labels of the arcs in an offline explanation graph indicate if the depen-
dency is positive or negative. There are special nodes used to denote true facts
(), and atoms without rules (⊥). The set of assumptions U captures the literals
which are assumed false, and there is a special sink node for those (assume). In
order to make an atom true, a rule with a true body must exist (true positive
atoms and false weakly negated literals). We have a dual reason for a literal
being false: all rules must have a falsified positive atom bi (thus b−i must belong
to the graph) or a falsified negated literal cj (thus c+j must belong to G).

An offline justification of an answer set M of a program P is an offline expla-
nation graph for M using the set of assumptions U containing the false atoms in

Fig. 1. Offline justification graphs for the program of Example 1

Justifications for Logic Programming 533

M that are undefined in the well-founded model WFMP . Moreover, this graph
does not have negative cycles. It is also shown in [17] that every non-undefined
atom in WFMP can be justified without any assumptions.
Example 2. The offline justification for a in the answer set {a, c} of Example 1
can be found in the left hand side of Figure 1. So, a is true because c is true
and b is assumed false. Atom c is true because e is false due to a positive mutual
dependency between e and f . The offline justification for b in the answer set
{b, c} is simpler, and rests solely in the assumption that a is false. Intuitively, an
offline justification graph represents a conjunction of literals true in the model
supporting the conclusion plus dependency information.

Relational algebra has expressive power equivalent to acyclic datalog pro-
grams, and the translation of relational algebra queries into datalog is immedi-
ate. There is an extensive work on provenance for the case of relational algebra,
that is summarised here to motivate the use of the proposed algebraic structure
to represent why-provenance for logic programs, and simultaneously relate to
this area of research. A general data model for annotated relations has been
introduced in [10], for positive relational algebra (i.e., excluding the difference
operator). These annotations can be used to check derivability of a tuple, lineage,
and provenance, and perform query evaluation over incomplete/probabilistic
databases. The main concept is the notion of K-relation where tuples are anno-
tated with values (tags) of a commutative semiring K, while positive relational
algebra operators semantics are extended and captured by corresponding com-
positional operations over K. A commutative semiring is an algebraic structure
K = (K,⊕,⊗, 0, 1)where (K,⊕, 0) is a commutative monoid (⊕ is associative and
commutative, to capture union of relations) with identity element 0, (K,⊗, 1)
is a commutative monoid with identity element 1, to encode natural join, and
thus operation ⊗ distributes over ⊕, and 0 is an annihilating element of ⊗. The
obtained algebra on K-relations is expressive enough to capture different kinds
of annotations with set or bag semantics, and it is shown that the semiring of
polynomials with integer coefficients is the most general semiring.

Example 3. A photo sharing site allows users to register, and users can upload
photos of users. Of course, all registered users are users. Users are represented
in a relation u(Name), registered users in r(Name), guest users in g(Name), and
p(U1,U2) stores the information that user U1 has uploaded a photo of user U2.
Ann, Bob and David are registered users, Ann uploaded a photo of David, and
Bob uploaded a photo of himself. Consider K-relations r = {a : t1, b : t2, d : t3},
and p = {(a, d) : p1, (b, b) : p2}, where t1, t2, t3, p1 and p2 are tuple identifiers.
Let u = r∪ g be a view and query Π [ρx←Name(u) �� ρx←U1,y←U2(p) �� ρy←Name(r)]
to check if there is an user that uploaded a photo of a registered user. In the
most general semiring of polynomials with integer coefficients, the provenance
for the query under bag semantics is p1 × t1 × t3 + p2 × t2

2, showing that a
join of the tuples identified by p1, t1 and t3, or the join of the tuple anno-
tated of p2 with t2 (two times) are the ways to construct a solution to the
query. Why-provenance returns the annotation {{p1, t1, t3}, {p2, t2}}, or equiv-
alently, the boolean formula (p1 ∧ t1 ∧ t3) ∨ (p2 ∧ t2) showing which tuples

534 C.V. Damásio, A. Analyti, and G. Antoniou

have been used for obtaining each answer under set semantics; using lineage
semiring one gets simply {p1, p2, t1, t2, t3}, i.e. the tuples supporting the query.
This situation can be encoded in datalog by the set of facts (extensional part)
{r(a), r(b), r(d), p(a, d), p(b, b)} and intensional rules: c :− u(X), p(X,Y), r(Y).;
u(X) :− r(X).; u(X) :− g(X). Because we have facts, r(a), r(d), p(a, d), or r(b)
and p(b, b) we can conclude that c holds. This corresponds exactly to what is
obtained with the why-provenance semiring of Boolean formulas (see [10]).

To be able to capture relational difference, i.e. negation, the authors in [6]
assume the K semiring is naturally ordered (i.e. binary relation x $ y is a partial
order, where x $ y iff there exists a z ∈ K such that x ⊕ z = y), and require
additionally that for every pair x and y there is a least z such that x $ y ⊕ z,
defining in this way x0 y to be such smallest z. A K semiring with such monus
0 operator is designated by m-semiring. An important m-semiring is obtained
from the above Boolean formulas semiring, being powerful enough to represent
why-provenance for relational algebra under set semantics. The shortcomings of
the database approach is that it can only handle negation over acyclic programs,
and it is not able to indicate which rules have been used to derive an answer. In
Example 3, c holds because the ground program contains rule u(b) : −r(b) and
the above mentioned facts (or similarly, for the cases of a and c).

3 Provenance for Definite Logic Programming

Provenance in Logic Programming is captured by adapting the Boolean formulas
m-semiring for tackling full why-provenance information, i.e. both negative and
positive. This is achieved by annotating every literal in the language by an
identifier, as well as every rule with an identifier ri, where i is the rule number
in some ordering of the program. Our setting is restricted to the case of finite
logic programs, and is inspired in the debugging transformation presented in [16].

Definition 2. Given a logic program P over the Herbrand Base HP , let BP be
the free Boolean algebra generated by the propositional variables HP ∪not(HP)∪
{ri|1 ≤ i ≤| P |}, i.e. the Lindenbaum-Tarski algebra of the propositional lan-
guage HP ∪not(HP)∪{ri|1 ≤ i ≤| P |}. The elements of BP are the equivalence
classes of propositional formulas under logical equivalence. Meet (∧), join (∨),
and complementation (′) are defined by: [φ] ∨ [ψ] = [φ ∨ ψ], [φ] ∧ [ψ] = [φ ∧ ψ],
[φ]′ = [¬φ]. The bottom element is 0 = [φ ∧ ¬φ] = [f], and the top element
1 = [φ ∨ ¬φ] = [t]. The partial ordering of BP is entailment: [φ] $ [ψ] iff
φ |= ψ. The KWhyNot provenance m-semiring is obtained from BP by letting
[φ]⊕[ψ] = [φ]∨[ψ] = [φ∨ψ], [φ]⊗[ψ] = [φ]∧[ψ] = [φ∧ψ] and [φ]−[ψ] = [φ∧¬ψ].

Notice that in the above definition propositional variables of the form at and
not(at) are introduced for every atom at in the Herbrand Base. There is no
relationship between at and not(at) since they are different propositional sym-
bols; thus [¬not(at)] and [at] are distinct elements of KWhyNot . An identifier
is also introduced for each rule in the program. A provenance formula is simply

Justifications for Logic Programming 535

an arbitrary Boolean formula over the atoms, default negation of atoms and rule
identifiers. We could use as annotation of literals any set of identifiers just taking
care that identifiers are in one-to-one correspondence with HP ∪ not(HP).

In order to extract provenance information for definite logic programs, we
introduce why-not provenance programs:

Definition 3. A why-not provenance program is a finite set of why-not prove-
nance rules of the form A⇐ [J]⊗B1 ⊗ . . .⊗Bm where A, B1, . . . , Bm (m ≥ 0)
are ground atoms, and [J] is an element of KWhyNot .

Why-provenance programs have rules which are monotonic, and thus the stan-
dard results of multivalued logic programming apply [4], namely the existence of
a least model that can be obtained by iterating a modified TP operator starting
from the interpretation that maps every atom to 0.

Definition 4. Consider a logic program P and a why-not provenance program
P over HP . An interpretation I for why-not provenance program P is a mapping
I : HP → BP . The set of all interpretations is a lattice with pointwise ordering:
given any interpretations I1 and I2 we say that I1 $ I2 iff for every A ∈ HP it
is the case that I1(A) $ I2(A), i.e. I1(A) |= I2(A).

An interpretation I satisfies a rule A⇐ [J]⊗B1⊗. . .⊗Bm of why-not program
P iff I(A) 6 [J] ⊗ I(B1) ⊗ . . . ⊗ I(Bm) iff J ∧ I(B1) ∧ . . . ∧ I(Bm) |= I(A).
Intepretation I is a model of P iff I satisfies all the rules of P.

Lemma 1. Consider a why-not provenance program P. Program P has a least
model MP which can be obtained by iterating through the following operator
starting from the least interpretation I0, which maps every atom to 0:

TP(I)(A) =
⊕
{J ∧ I(B1) ∧ . . . ∧ I(Bm) | A⇐ [J]⊗B1 ⊗ . . .⊗Bm ∈ P}

=
[∨

A⇐[J]⊗B1⊗...⊗Bm∈P J ∧ I(B1) ∧ . . . ∧ I(Bm)
]

Determining why-not provenance for logic programs rests in the following
techniques. First, every non-factual rule is annotated with the formula [ri]. Sec-
ond, for every atom A if there is a fact for it in the program, a rule A⇐ [A] will be
introduced in the why-provenance program, otherwise the rule A⇐ [¬not(A)] is
added. We could have used a rule A⇐ [ri] for annotating facts, but the outcome
intepretation would be less readable.

Definition 5. Let P be a definite logic program and P(P) the why-not prove-
nance program constructed as follows:

– For the ith rule A :− B1, . . . , Bm that is not a fact in P (i.e., m ≥ 1) add
the why-not provenance rule A⇐ [ri]⊗B1 ⊗ . . .⊗Bm to P(P);

– For every atom A in HP if there is a fact A in P then add A⇐ [A] to P(P),
otherwise add A⇐ [¬not(A)] to P(P).

The why-not provenance information Why(A) for an atom A is given by WhyP
(A) = MP(P)(A), and for literal ∼A is given by WhyP (∼A) = [¬MP(P)(A)].

536 C.V. Damásio, A. Analyti, and G. Antoniou

The rationale is: if there is a fact A and possibly rules ri, . . . , rj for it, the
why-provenance formula for A has the shape [(ri∧Whyi)∨ . . .∨(rj∧Whyj)∨A];
otherwise, if there is no fact for A it has the form [(ri∧Whyi)∨. . .∨(rj∧Whyj)∨
¬not(A)]. In the former, one justification for A being true is [A] meaning that
there is a fact for A, other justifications are obtained by using a given rule rk
and justifying why the body is true. The latter case is better understood if we
look at the justification for ∼A having why-provenance formula [¬(ri∧Whyi)∧
. . . ∧ ¬(rj ∧Whyj) ∧ not(A)], expressing that all bodies must be falsified and
that [not(A)] holds (there is no fact for A).

Definition 6. Let P be a logic program, and C be a conjunction of literals of
KWhyNot . Define the following sets of facts and rules of program P :

KeepFacts(C) = {A. | A ∈ C} RemoveFacts(C) = {A. | ¬A ∈ C}
MissingFacts(C) = {A. | ¬not(A) ∈ C} NoFacts(C) = {A. | not(A) ∈ C}
KeepRules(C) = {A :− Body | ri ∈ C and A :− Body is the ith rule of P}
RemoveRules(C)={A :−Body | ¬ri ∈ C and A :−Body is the ith rule of P}

The first major result relates why-not provenance information with changes
to the original program:

Theorem 1. Let P be a definite logic program, A an arbitrary atom, G a set of
facts not in P , F a subset of facts of P and R a subset of rules of P . Then:

– Atom A belongs to the least model of P \(F ∪R)∪G iff there is a conjunction
C = A1∧. . .∧Am∧ri1∧. . .∧rik∧¬notQ1∧. . .∧¬notQn such that C |= WhyP (A),
MissingFacts(C) ⊆ G, KeepFacts(C)∩F = ∅ and KeepRules(C)∩R = ∅.
A conjunction of this form is said to be a truth-support for A.

– Atom A does not belong to the least model of P \ (F ∪ R) ∪ G iff there is a
conjunction C = ¬A1 ∧ . . .∧ ¬Am ∧ ¬ri1 ∧ . . .¬rik ∧ notQ1 ∧ . . .∧ notQn such
that C |= WhyP (∼A), RemoveFacts(C) ⊆ F , RemoveRules(C) ⊆ R and
NoFacts(C) ∩G = ∅. Conjunction C is said to be a falsity-support for A.

By letting F = R = G = {} no changes to the program are permitted, and
thus justifications for the literals true in the least model of P are:

Corollary 1. Let P be a definite logic program and M its least model. Then:

– An atom A belongs to M (A is true) iff there is a conjunction of propositional
variables C = A1 ∧ . . . ∧ Am ∧ ri1 ∧ . . . ∧ rik such that C |= WhyP (A);

– An atom A does not belong to M (A is false) iff there is a conjunction of
propositional variables C = notQ1 ∧ . . . ∧ notQn such that C |= WhyP (∼A).

The results in the above corollary are very interesting, meaning that the min-
imal justification for literals in the least model of a logic program are the prime
implicants1 containing no negations of the corresponding why-not provenance
formula. The fundamental use of prime implicates/implicants as justifications
goes back to Assumption-Truth Maintenance Systems [18], and has been re-
cently used to capture the notion of causality in databases [14].
1 A prime implicant of F is a minimal conjunction of literals C such that C |= F .

Justifications for Logic Programming 537

Example 4. Consider the logic program P , where rules are numbered:

(1) a :− b. a. (2) b :− a. (3) c :− b, d. (4) c :− e, f. d. (5) e :− f. f.

All atoms hold in the least model of P . Why-not provenance program P(P) is:

a⇐ [r1]⊗ b.
a⇐ [a].

b⇐ [r2]⊗ a.
b⇐ [¬not(b)].

c⇐ [r3]⊗ b⊗ d.
c⇐ [r4]⊗ e⊗ f.
c⇐ [¬not(c)].

d⇐ [d]. e⇐ [r5]⊗ f
e⇐ [¬not(e)].
f ⇐ [f].

Why(a) = [(r1 ∧ ¬not(b)) ∨ a] Why(∼a) = [¬((r1 ∧ ¬not(b)) ∨ a)]
= [(¬a ∧ ¬r1) ∨ (¬a ∧ not(b))]

Why(b) = [(r2 ∧ a) ∨ ¬not(b)] Why(∼b) = [¬((r2 ∧ a) ∨ ¬not(b))]
= [(¬r2 ∧ not(b)) ∨ (¬a ∧ not(b))]

Why(d) = [d] Why(∼d) = [¬d]
Why(e) = [(r5 ∧ f) ∨ ¬not(e)] Why(∼e) = [(¬f ∧ not(e)) ∨ (¬r5 ∧ not(e))]
Why(f) = [f] Why(∼f) = [¬f]

Why(c) = [(r3 ∧ ((r2 ∧ a) ∨ ¬not(b)) ∧ d) ∨ (r4 ∧ ((r5 ∧ f) ∨ ¬not(e)) ∧ f) ∨ ¬not(c)]
= [(r2 ∧ r3 ∧ a ∧ d) ∨ (r3 ∧ d ∧ ¬not(b)) ∨ (r4 ∧ r5 ∧ f) ∨ (r4 ∧ f ∧ ¬not(e)) ∨ ¬not(c)]
We can conclude that d and f are true, because they are stated as facts, and thus
to make them false is required their removal. Regarding e, it can be concluded
that e is true because of rule 5 and that the fact f is true; anyway, we can
make it true by adding the fact e. In order to make e false, it cannot be added
as a fact, and fact f or rule r5 should be removed (or both). Atom a is true
because there is a fact for it, or if the rule r1 is kept and a fact for b is added (a
may be removed). To make a false we always have to remove the fact for a, and
additionally remove rule r1 or not introduce a fact for b. The situation for c is
rather complex, but it holds because rules r2 and r3 are present, as well as facts
a and d, or because rules r4 and r5 are in the program as well as the fact for f .
There are many ways of making c false, for instance by removing facts d and f .

Example 5. Consider the following definite logic program where all atoms are
false in the least model: {(1) a :− b. (2) b :− a, c. (3) b :− d.}. It can be
checked that not(a) ∧ not(b) ∧ not(d) |= Why(∼a), not(a) ∧ not(b) ∧ not(d) |=
Why(∼b) and not(b) ∧ not(c) ∧ not(d) |= Why(∼b). If we do not allow changes
to the program, this provenance information is interpreted as follows: a is false
because we do not have a fact for a, b and d; while b is false because we do
not have a fact for b, d and a or c. Thus, one needs to add a, b, or d to make
a true, while it is required to add b, d, or a and c to turn b true. This can be
confirmed from Why(a) = [(r1 ∧ r3 ∧ ¬not(d)) ∨ (r1 ∧ ¬not(b) ∨ ¬not(a))] and
Why(b) = [(r2 ∧ ¬not(a) ∧ ¬not(c)) ∨ (r3 ∧ ¬not(d) ∨ ¬not(b))].

The relationship to evidence graphs (see [15]) is stated in the next theorem:

Theorem 2. Consider a definite logic program P . For every evidence graph for
A (resp. ∼A) it is possible to construct a truth-support (resp. falsity-support)
formula C such that C |= WhyP (A) (resp. C |= WhyP (∼A)). For every, prime
implicant truth-support C = A1 ∧ . . . ∧ Am ∧ ri1 ∧ . . . ∧ rik of WhyP (A) it is
possible to construct an evidence graph for A.

538 C.V. Damásio, A. Analyti, and G. Antoniou

Our approach allows us to capture all the evidence according to [15], but this
work lacks some of our justifications mostly for the case of false atoms. This
is expected since evidence graphs are constructed for the negative case just by
looking at the first false atom in the body of rules, ignoring possibly other false
atoms. The comparison to offline justifications is deferred to the next since our
results will cover both definite and normal logic programs, generalizing Th. 2.

4 Provenance for Well-Founded Semantics

By mimicking the iteration of Γ 2 operator, we can obtain the provenance in-
formation for logic programs under well-founded semantics by defining a corre-
sponding Gelfond-Lifschitz like operator. The correctness and extra motivation
for this approach can be found in [3].

Definition 7. Let P be a logic program and I a why-not provenance interpre-
tation. Construct provenance program P

I as follows:

– For the ith rule A :− B1, . . . , Bm,∼C1, . . . ,∼Cn (m + n ≥ 1) in P add
provenance rule A⇐ [ri ∧ ¬I(C1) ∧ . . .¬I(Cn)]⊗B1 ⊗ . . .⊗Bm to P

I ;
– For every atom A in HP if there is a fact A in P then add A ⇐ [A] to P

I ,
otherwise add A⇐ [¬not(A)] to P

I .

Operator GP (I) = MP
I

returns the least model of why-not program P
I .

It is clear that the operator GP is anti-monotonic, and therefore G2
P is mono-

tonic having a least model TP , corresponding to provenance information for what
is true in the well-founded model, while TUP = GP (TP) contains the why-not
provenance of what is true or undefined in the well-founded model of P .

Definition 8. Let P be a normal logic program, and TP the least model of G2
P ,

and TUP = GP (TP), and A an atom. The why-not provenance information
under the well-founded semantics is defined as follows: WhyP (A) = [TP (A)];
WhyP (∼A) = [¬TUP (A)]; and WhyP (undef A) = [¬TP (A) ∧ TUP (A)].

As usual, for the case of stratified programs (no cycles through negations)
we obtain a model on which for every atom A we have WhyP (A) = [TP (A)] =
[TUP (A)] = [¬WhyP (∼A)], and thus WhyP (undef A) = 0. The why-not prove-
nance for undefined literals is obtained from the why-not provenance for truth
or undefinedness minus the why-not provenance of truth.

Theorem 3. Let P be a normal logic program, G a set of facts not in P , F a
subset of facts of P , and R a subset of rules of P . A literal L belongs to the WFM
of (P \ (F ∪ R)) ∪ G iff there is a conjunction of literals C |= WhyP (L), such
that RemoveFacts(C) ⊆ F , KeepFacts(C) ∩ F = ∅, RemoveRules(C) ⊆ R,
KeepRules(C)∩R = ∅, MissingFacts(C) ⊆ G, and NoFacts(C) ∩G = ∅.

Justifications for Logic Programming 539

The above result, generalizing Th. 2, is a fundamental new contribution to
the literature of provenance in logic programming, and in particular for data-
log. Since any relational algebra query can be translated into an acyclic logic
program, thus it is possible to extract for the first time complete provenance
information for a more expressive extension of full relational algebra.

Example 6. Consider the logic program P = {(1) a :− ∼a, b. (2) b :− ∼c.}. In
the well-founded model of P we have a undefined, b true, and c false. Thus:

TP (a) = [¬not(a)] TUP (a) = [(r1 ∧ r2 ∧ not(c)) ∨ (r1 ∧ ¬not(b) ∨ ¬not(a))]
TP (b) = [(r2 ∧ not(c)) ∨ ¬not(b)] TUP (b) = [(r2 ∧ not(c)) ∨ ¬not(b)]
TP (c) = [¬not(c)] TUP (c) = [¬not(c)]

The why-not provenance information for negated literals is:

WhyP (∼a) = [(not(a) ∧ not(b) ∧ ¬not(c)) ∨ (¬r2 ∧ not(a) ∧ not(b)) ∨ (¬r1 ∧ not(a))]
WhyP (∼b) = [(not(b) ∧ ¬not(c)) ∨ (¬r2 ∧ not(b))]
WhyP (∼c) = [not(c)]

Thus, WhyP (undef a)= [(r1 ∧ r2 ∧ not(a) ∧ not(c)) ∨ (r1 ∧ not(a) ∧ ¬not(b))],
WhyP (undef c) = 0 and WhyP (undef b) = 0. The interpretation of these re-
sults is now clear. Atom a is undefined since there is no positive prime implicant
both for WhyP (a) and WhyP (∼a); the justification for a being undefined is
that there is no fact for a and for c and both rules are in the program, or if
we keep only rule r1 then a fact for b must be added, as can be extracted from
WhyP (undef a). Moreover, in order to make a true we need to add fact a, while
to make it false one solution is to make c true or remove the rule for b in order to
make b false, and not adding facts for a and b; alternatively, we remove the rule
for a and do not add a fact for it. There is no way of making b and c undefined.

Theorem 4. Let G = (N,E) be an offline justification for a literal L true in
the well-founded model M of a program P , with respect to M and empty set
of assumptions. Let C =

∧
(h+,�,+)∈E h ∧

∧
h−∈N not(h) ∧

∧
h+∈N rih , where rih is

the identifier of a rule for h satisfied by G, then C |= WhyP (L).

The converse direction does not hold, since we have more justifications for
a literal being true. An important particular example is a program containing
rules a :− ∼b and a :− b. We have WhyP (A) = [(r1 ∧ ¬not(b)) ∨ (r2 ∧ not(b))],
but r1 ∧ r2 |= WhyP (A), thus if both rules are kept, a holds independently of
any changes to the program. This cannot be obtained from offline-justifications.

5 Provenance for Answer Set Semantics

The extension of our approach to answer set programming is now straightforward
due to the previous results.

Definition 9. Let P be a logic program, and L a literal. The answer set why-not
provenance for L is AnsWhyP (L) = WhyP (L) ∧

∧
A∈HP

¬WhyP (undefA).

540 C.V. Damásio, A. Analyti, and G. Antoniou

We combine the provenance of the literal obtained under well-founded semantics,
and impose that all literals cannot be undefined. Note that this contrasts with
traditional approaches where the justification is local in the sense that only a
subset of the dependency graph is included in the justification. This is required
since a literal can occur in the body of a constraint, or the program may be
inconsistent because of odd-loops, and is formally supported by the results in [11]
showing that there is no modular transformation of answer set semantics into
propositional theories (this requirement is illustrated in a subsequent example).

Theorem 5. Let P be a program, M an answer set of P , and L a literal true
in M . Then there is a conjunction C |= AnsWhyP (L) that does not contain any
negative literals (obtained as in Th. 4) for literals true in the WFMP . For every
atom ∼A ∈M that is undefined in WFMP , C includes not(A) ∧ ¬ri1 ∧ . . . ∧ ¬rik
where {ri1 , . . . , rik} is the set of identifiers of all rules for A.

The above theorem follows from the result in [17] stating that there is an offline
justification with respect to M and the set of assumptions containing the literals
false in M that are undefined in the well-founded model of P . Moreover, this
justification does not have cycles. Therefore, by representing these assumptions
as a conjunction of literals, we can then construct such a C. In order to assume
a literal false we cannot add a fact for it (not(A)), and must remove all existing
rules for it in the program (¬ri1 ∧ . . . ∧ ¬rik).

Example 7. Consider the simplified version of the program in Example 1.

(1) a :− c,∼b. (2) b :− ∼a. (3) d :− ∼c,∼d. c.

It has two stable models {a, c} and {b, c}, and its why-not provenance is:
AnsWhy(a) = [(c ∧ ¬not(a)) ∨ (r1 ∧ ¬r2 ∧ c ∧ not(b)) ∨ (¬not(a) ∧ ¬not(d))]
AnsWhy(∼a) = [not(a) ∧ (¬r1 ∨ (¬c ∧ ¬not(d)) ∨ (c ∧ ¬not(b)) ∨ (¬not(b) ∧ ¬not(d)))]
AnsWhy(b) = [r2 ∧ not(a) ∧ (¬r1 ∨ ¬c ∨ ¬not(d)) ∧ ¬(r1 ∧ ¬c ∧ not(d))]
AnsWhy(∼b) = [not(b) ∧ (¬r2 ∨ ¬not(a)) ∧ ¬(r1 ∧ ¬c ∧ not(d))]
AnsWhy(c) = [(c ∧ ¬(r1 ∧ r2 ∧ not(a) ∧ not(b))]
AnsWhy(∼c) = [(¬c ∧ ¬not(d)) ∨ (¬c ∧ ¬r1)]
AnsWhy(d) = [(¬c ∧ ¬not(d)) ∨ (¬not(d) ∧ ¬(r1 ∧ r2 ∧ not(a) ∧ not(b)))]
AnsWhy(∼d) = [(((c ∧ not(d)) ∨ (¬r1 ∧ not(d))) ∧ ¬(r1 ∧ r2 ∧ not(a) ∧ not(b))]

The results are expected and intuitive. Regarding c, it holds because we have a
fact for it. The formula ¬(r1 ∧ r2 ∧ not(a)∧ not(b)) guarantees that a and b are
not undefined: we have to remove at least one of the first two rules, or to add
the fact a or b. More interestingly is AnsWhy(∼c): it expresses that to make c
false, it is necessary of course to remove the fact for c, and remove the rule for
d or introduce a fact for d, otherwise an odd-loop would appear. By making c
false, a becomes false and b true, and thus it is no longer required to guarantee
that they are not undefined. The justifications for d and ∼d are similar. The
truth of a in the first model is justified by the fact c, and by assuming b to be
false as captured by the conjunction r1∧¬r2∧c∧not(b); if c is kept then a can
be added to make it true. If c is removed, then a can be made true by adding

Justifications for Logic Programming 541

it, as well as the fact for d in order to avoid inconsistency. Regarding the truth
of b in the second answer set, it is required to assume a false as encoded by
not(a) ∧ ¬r1 in the conjunction r2 ∧ not(a) ∧ ¬r1, and corresponds exactly to
the offline justification for b in Fig. 1.

6 Discussion and Conclusions

The applications of why-provenance for logic programs are manifold. The first,
and our main motivation, is to understand how a literal is derived from the
program. This extends to the case of queries with arbitrary relational algebra
operators. Other important application, is the study of why-provenance in the
Semantic Web: our approach can detect monotonic and non-monotonic depen-
dencies in SPARQL queries over arbitrary graphs.

It is defined for the first-time a complete provenance model for the major se-
mantics of logic programs. However, there are some important questions remain-
ing to be addressed. In particular, the size of the formulas generated is not guar-
anteed to be polynomial on the size of the program. This is not a surprise since for
some programs it may be required an exponential number of propositional formu-
las to capture the answer set semantics [12]. However, there are also known poly-
nomial encodings by introducing extra symbols in the translation [13,11], and for
the case of programs without positive loops we can construct a polynomial for-
mula and thus obtaining a polynomial representation for full relational algebra.
Additionally, we need only a linear number of iterations of the immediate con-
sequences operator to reach the fixpoint in the case of definite programs, and a
polynomial time number of iterations for the case of the well-founded semantics.
Our approach contrasts with evidence graphs [15] and offline-justifications [17] by
being more informative. In fact, our provenance formulas are a declarative repre-
sentation of all such justifications, which can be exponential in number since the
number of prime implicants is exponential in the size of the formula, and the prob-
lem of generating them is co-NP-hard. Additionally, the complexity of conjunctive
query answering over K-relations most of the times is NP-complete (see [9]).

Why-not provenance formulas resort to a program transformation previously
defined for declarative debugging of logic programs [16]. The debugging of An-
swer Set Programs has been addressed in the literature by several authors, and
the most effective approaches resort to meta-transformations to address the sev-
eral forms of anomalies that can be found in programs [1,5]. In fact, our approach
is capable of providing the corrections (adding or removing facts, and removing
rules) in order to obtain what is desired. The approaches presented in [1,5] are
more fine grained, and are designed to detect errors in programs. Nevertheless,
we conjecture the approaches to be related and this is left for future work. For
instance, justifications for violation of integrity constraints can be obtained by
putting the head false in all ICs, and determine why-not justification for false.
In general, a direction to explore, consists of translating why-provenance into
ASP, apply the debugging transformations and extract the corresponding propo-
sitional theories. The generalization to the first-order case is an open research
issue, but first-order abduction or constructive negation may be necessary.

542 C.V. Damásio, A. Analyti, and G. Antoniou

References

1. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging
ASP programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007)

2. Brain, M., Vos, M.D.: Debugging logic programs under the answer set semantics.
In: Proc. of ASP 2005 Workshop. CEUR Workshop Proceedings, vol. 142 (2005)

3. Damásio, C.V., Pereira, L.M.: Antitonic logic programs. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 379–392.
Springer, Heidelberg (2001)

4. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Ben-
ferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–
759. Springer, Heidelberg (2001)

5. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique
for debugging answer-set programs. In: AAAI 2008, pp. 448–453. AAAI Press
(2008)

6. Geerts, F., Poggi, A.: On database query languages for K-relations. J. Applied
Logic 8(2), 173–185 (2010)

7. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General
Logic Programs. Journal of the ACM 38(3), 620–650 (1991)

8. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: Proc. of ICLP 1988, pp. 1070–1080. MIT Press (1988)

9. Green, T.J.: Containment of conjunctive queries on annotated relations. In: Proc.
of Database Theory - ICDT 2009, vol. 361, pp. 296–309 (2009)

10. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proc. of
PODS 2007, pp. 31–40. ACM, New York (2007)

11. Janhunen, T.: Some (in)translatability results for normal logic programs and propo-
sitional theories. Journal of Applied Non-Classical Logics 16(1-2), 35–86 (2006)

12. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Trans.
Comput. Logic 7(2), 261–268 (2006)

13. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal
logic programs to propositional logic. In: Proc. of IJCAI 2003, pp. 853–858. Morgan
Kaufmann Publishers Inc. (2003)

14. Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.:
Causality in databases. IEEE Data Eng. Bull. 33(3), 59–67 (2010)

15. Pemmasani, G., Guo, H.-F., Dong, Y., Ramakrishnan, C.R., Ramakrishnan, I.V.:
Online justification for tabled logic programs. In: Kameyama, Y., Stuckey, P.J.
(eds.) FLOPS 2004. LNCS, vol. 2998, pp. 24–38. Springer, Heidelberg (2004)

16. Pereira, L.M., Damásio, C.V., Alferes, J.J.: Diagnosis and debugging as contradic-
tion removal. In: Proc. of LPNMR 1993, pp. 316–330 (1993)

17. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under an-
swer set semantics. TPLP 9(1), 1–56 (2009)

18. Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance sys-
tems: Preliminary report. In: Proc. of AAAI 1987, pp. 183–189 (1987)

19. Roychoudhury, A., Ramakrishnan, C.R., Ramakrishnan, I.V.: Justifying proofs us-
ing memo tables. In: Proc. of PPDP, pp. 178–189 (2000)

20. Specht, G.: Generating explanation trees even for negations in deductive database
systems. In: Proc. of LPE, pp. 8–13 (1993)

21. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. J. ACM 23(4), 733–742 (1976)

Belief Change in Nonmonotonic Multi-Context Systems

Yisong Wang1, Zhiqiang Zhuang2, and Kewen Wang2

1 Department of Computer Science, Guizhou University, Guiyang, 550025, China
2 School of Information and Communication Technology, Griffith University, Australia

Abstract. Brewka and Eiter’s nonmonotonic multi-context system is an elegant
knowledge representation framework to model heterogeneous and nonmonotonic
multiple contexts. Belief change is a central problem in knowledge represen-
tation and reasoning. In this paper we follow the classical AGM approach to
investigate belief change in multi-context systems. Specifically, we formulate se-
mantically the AGM postulates of belief expansion, revision and contraction for
multi-context systems. We show that the change operations can be characterized
in terms of minimal change by ordering equilibria of multi-context systems. Two
distance based revision operators are obtained and related to the classical Satoh
and Dalal revision operators (via loop formulas).

1 Introduction

Knowledge Representation and Reasoning (KR) is a long-standing and traditional re-
search area, which plays a crucial role in artificial intelligence and computer science.
A mass of logical theories have been proposed for KR, including monotonic and non-
monotonic ones [18]. Among the latter, logic programming based on answer set se-
mantics (ASP) is distinguished due to its elegant theoretical foundation and efficient
implementations for various applications [16,6].

Over the last decade, there has been increasing interest in KR systems compris-
ing multiple knowledge bases. It leads to the development of Multi-Context Systems
(MCS), which builds up on several theories (the contexts) that are interlinked with
bridge rules so that it allows to incorporate knowledge into a context according to
knowledge in other contexts [28,3]. The abstract and general MCS framework of Brewka
and Eiter [3] is of special interest since it allows for heterogeneous and nonmonotonic
MCS in two aspects. On the one hand, every context may have different and nonmono-
tonic logics; on the other hand, bridge rules may use default negation. It raises many
attractive applications in interesting scenarios [4].

As knowledge is continually evolving and subject to change, change of logical the-
ories and knowledge bases is a central issue in KR. Three major operations on belief
change are expansion, revision and contraction [25]. Among the work on belief change,
the most influential approach is AGM model, where a set of postulates is proposed
for rational belief change operations [1]. Those postulates for propositional knowledge
bases are semantically characterized in terms of minimal change [19].

In nonmonotonic logics and ASP in particular, the problem of knowledge base
change appears to be intrinsically more difficult than in a monotonic setting. For an-
swer set programming, there has been substantial efforts in developing belief change,

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 543–555, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

544 Y. Wang, Z. Zhuang, and K. Wang

several approaches have been proposed, and some of them are under the title ofupdate
[29,2,13,26,10]. As multi-context systems may refer to multiple individual (nonmono-
tonic) contexts, belief change in MCS is highly possible and intricate because of non-
monotonic bridge rules, thus a challenge. Let us consider the following scenario.

Example 1. [A running example] John went to hospital for a high fever lasting more
than a week. Doctors Smith and Alice were assigned to diagnose John’s high fever in
two rounds. In the first round of diagnosis, while Smith believes that there is no bird
flu, Alice thinks that it is due to either bird flue or pneumonia, and she believes that
pneumonia means no swine flu. They both agree that if one concludes with bird/swine
flu then the other does.

In the second round of diagnosis, while Alice has the same knowledge as in the first
round, Smith believes that John got either bird flu or swine flu. And the agreement
between Smith and Alice are same as in first round. In terms of the second round of
diagnosis, how should we update/change the beliefs about John’s high fever in the first
round of diagnosis?

In this paper we follow the classical AGM approach to address the above belief
change problem in multi-context systems. We formulate the postulates of belief change
(expansion, revision and contraction) for multi-context systems in a semantic manner.
By orderings over equilibria of multi-context systems, we characterize the postulates
of belief change operators in terms of minimal change. According to the generalized
Satoh and Dalal distance [27,7] among equilibria, two specific revision operators for
multi-context systems are obtained. Since the equilibria of a multi-context system can
be captured by the models of a corresponding propositional theory, i.e. loop formu-
las [8], we establish a connection between the revisions for multi-context systems and
propositional theories.

The rest of the paper is organized as follows. In the next section, we briefly recall the
basic notions of AGM model for belief change and multi-context systems. In Section 3,
we formulate the belief change postulates for expansion, revision and contraction. Their
properties are investigated. Related work and future work are discussed in Section 4.
Due to space constraints, we only give a stench of the proofs.

2 Preliminaries

In the section we briefly recall basic notions of belief change [1,19] and multi-context
systems [3,4]. For a comprehensive overview of AGM model, see [14].

2.1 Classical Belief Revision

The three major belief changes are expansion, revision and contraction. While expan-
sion means addition of a belief without checking inconsistency, contraction means re-
moval of a belief, revision stands for addition of a belief while maintaining consistency.

The most recognized belief change theory is AGM model [1]. Katsuno and Mendel-
zon semantically formulated AGM belief revision postulates as an operator : L×L→
L satisfying the following conditions [19]:

(R1) α β . β.

Belief Change in Nonmonotonic Multi-Context Systems 545

(R2) If α ∧ β is satisfiable then α β ≡ α ∧ β.
(R3) If β is satisfiable then α β is also satisfiable.
(R4) If α1 ≡ α2 and β1 ≡ β2 then α1 β1 ≡ α2 β2.
(R5) (α β) ∧ γ . α (β ∧ γ).
(R6) If (α β) ∧ γ is satisfiable then α (β ∧ γ) . (α β) ∧ γ.

Here we assume that L is a propositional language over a finite signature and we fix
a way of representing any deductively closed set K of formulas by a propositional
formula ψ such that K = {φ|ψ . φ}. The intuition behind the first four postulates can
be easily read out, e.g., the new knowledge β is kept in the updated knowledge base by
(R1). The last two postulates express that the revision by a conjunction is the same as
revision by one conjunct conjoined with the other conjunct if the result is satisfiable.

In proportional logic, the belief expansion is quite natural and trivial which is defined
as α + β =def Cn(α ∪ β), i.e. {φ|α ∧ β . φ}. The revision and contraction (

.−) can
be defined by each other via identities and expansion as follows:

– Levi identity: α β =def (α
.−¬β) + β,

– Harper identity: α
.−β =def α ∩ (α ¬β).

Recall that formulas are identified as deductively closed sets (called knowledge sets).

2.2 Nonmonotonic Multi-Context Systems

We recall the basic notations of nonmonotonic multi-context systems [3]. An (abstract)
logic L is a tuple L = (KBL,BSL,ACCL), where

– KBL is a set of well-formed knowledge bases, each being a set (of formulas),
– BSL is a set of possible belief sets, each being a set (of formulas),
– ACCL : KBL → 2BSL assigns to each kb ∈ KBL a set of acceptable belief sets.

For instance, if L is ASP then KBL is a set of ASP programs, BSL is a collection of
sets of atoms and, ACCL assigns every ASP programs a set of answer sets. For our
belief change purpose, we assume that (i) the signature of L is finite, (ii) each belief set
of L can be represented as a set of atoms and, (iii) for every collection ML of belief
sets of L there exists a knowledge base kb such that ACCL(kb) = ML. The ASP
logic [15] and propositional logic satisfy the conditions (ii) and (iii). Note that if L is
a propositional logic over finite signature then every formula α of L can be identified
with its deductive closure, i.e. {φ|α . φ}. In the following we identify a formula (and
a single element set of formulas) α with Cn(α) when it is clear from context.

Given a sequence L of abstract logics (L1, . . . , Ln), an indexed atom of L is an
expression of the form (i : p) where 1 ≤ i ≤ n and p is an element of some belief sets
of Li. An Li-bridge rule r over L is an expression of the form

p← (c1 : p1), . . . , (cm : pm), not (cm+1 : pm+1), . . . , not (ck : pk) (1)

where p is a formula of Li = (KBi,BSi,ACCi) such that {p} ∪ kbi ∈ KBi for
any kbi ∈ KBi, and each (ci : pi) is an indexed atom of L. We denote Head(r) = p,
Pos(r) = {(ci : pi)|1 ≤ i ≤ m} and Neg(r) = {(cj : pj)|m+ 1 ≤ j ≤ k}.

546 Y. Wang, Z. Zhuang, and K. Wang

Definition 1. A multi-context system (MCS in short) α = (C1, . . . , Cn) consists of
contexts Ci = (Li, kbi, bri), where Li = (KBi,BSi,ACCi) is an abstract logic,
kbi ∈ KBi is a knowledge base of Li, and bri is a set of Li-bridge rules over L =
(L1, . . . , Ln) and 1 ≤ i ≤ n.

We usually abbreviate a context (L, kb, br) as (kb, br) if the underlying logic L is clear
from the context, unless explicitly stated otherwise. A belief state (of L) is a sequence
S = (S1, . . . , Sn) such that Si is an element of BSi for every i (1 ≤ i ≤ n). By
BSL we denote the belief state space of L, i.e., BSL = {S|S is a belief state of L}.
For a collection M ⊆ BSL of belief states, we denote M the complement of M, i.e.,
M = BSL \M. The belief state S satisfies an indexed atom (c : p), written S |= (c : p),
if p ∈ Sc. A bridge rule r of the form (1) is applicable w.r.t. S if S satisfies (ci : pi) for
every i (1 ≤ i ≤ m) and it does not satisfy (cj : pj) for every j (m+ 1 ≤ j ≤ k). By
app(br,S) we denote the set of bridge rules in br that are applicable w.r.t. S.

Definition 2. A belief state S = (S1, . . . , Sn) of L is an equilibrium of α iff Si ∈
ACCi(kbi ∪ {Head(r)|r ∈ app(bri,S)}) for every i (1 ≤ i ≤ n).

In what follows we denote EQ(α) the set of equilibria of the multi-context system α.
If EQ(α) �= ∅ then it is consistent, otherwise it is inconsistent. Since we assume that
every logic Li in a multi-context system has the ability to express an arbitrary given
collection of belief sets by a knowledge base of Li, for any collection S of belief states
of L, there exists a multi-context system α such that EQ(α) = S. For convenience, we
denote the multi-context system by form(S).

Example 2. [Continued from Example 1] We can use two multi-context systems α and
β to model the first and second rounds of diagnosis respectively as follows. Here, the
underlying logic of each context is propositional logic. The multi-context system α =
(C1, C2) where C1 is for Smith, while C2 for Alice, Ci = (Li, kbi, bri) for i = 1, 2,

– kb1 = {¬bird flu},
– br1 = {bird flu← (2 : bird flue); swine flu← (2 : swine flu)},
– kb2 = {(bird flu ∨ pneumonia) ∧ (pneumonia↔ ¬swine flu)},
– br2 = {bird flu← (1 : bird flu); swine flu← (1 : swine flu)}.

Please note here that the signature of L1 does not contain pneumonia. It is not difficult
to check that α has a unique equilibrium (∅, {pneumonia}).

The multi-context system β = (C′
1, C

′
2), where C′

1 is for Smith, while C′
2 for Alice,

C′
i = (Li, kb

′
i, br

′
i) for i = 1, 2, and

– kb′1 = {bird flu ∨ swine flu}, br′1 = br1,
– kb′2 = kb2, br′2 = br2.

One can verify that β has two equilibria (S1, S2) and (S′
1, S

′
2) where

– S1 = {bird flu}, S2 = {bird flu, pneumonia},
– S′

1 = {bird flu, swine flu}, S′
2 = {bird flu, swine flu}.

Now the problem in Example 1 becomes that how should we change the multi-context
system α using β? Though kb1 ∧ kb′1 is obviously consistent, it is a wishful thinking
to change only kb1 with kb1 kb′1 in the multi-context system α, because both α
and β have some acceptable belief states (equilibria) but such a revised result has no
acceptable belief state. This violates the traditional intuition of belief revision.

Belief Change in Nonmonotonic Multi-Context Systems 547

3 Belief Change for Nonmonotonic Multi-Context Systems

In the following we consider the three major belief changes, expansion, revision and
contraction in multi-context systems, starting from the expansion. We assume that the
underlying logical language of multi-context systems is L = (L1, . . . , Ln) and belief
change operators are mappings of the form L × L → L.

3.1 Expansion

Recall that the intuition of expansion is to add belief without checking inconsistency.
Semantically speaking, for the expansion of α by β, written α+β, the acceptable belief
states of the expansion result are exactly those that are acceptable belief states of both
α and β. This motivates the postulates for expansion in multi-context systems:

(mcs-E1) EQ(α+ β) ⊆ EQ(α) ∩EQ(β);
(mcs-E2) If EQ(α) ⊆ EQ(β) then EQ(α+ β) = EQ(α);
(mcs-E3) If EQ(α′) ⊆ EQ(α) then EQ(α′ + β) ⊆ EQ(α+ β).

Recall that EQ(α) is the set of the equilibria of α.

Theorem 1. The expansion operator + satisfies (mcs-E1) – (mcs-E3) iff EQ(α+β) =
EQ(α) ∩ EQ(β) for any multi-context systems α and β.

Proof Sketch: We prove “only if”. By (mcs-E1) we obtain EQ(α + β) ⊆ EQ(α) ∩
EQ(β). Let γ be an MCS satisfying EQ(γ) = EQ(α) ∩ EQ(β). By (mcs-E2) we
have EQ(γ + β) = EQ(γ). Note that EQ(γ + β) ⊆ EQ(α + β) holds by (mcs-E3).
It follows that EQ(α) ∩EQ(β) = EQ(γ + β) ⊆ EQ(α+ β).

It shows that the expansion of two multi-context systems are semantically unique. For
the multi-context systems α and β in Example 2, they have no common equilibria. It
is not appropriate to model the belief change by the expansion, in the sense that the
expansion result is inconsistent.

Recall that, in propositional logic, the expansion of a formula α by a formula β
can be obtained by α ∧ β. As the underlying logics in multi-context systems may be
nonmonotonic, such a simple approach does not work for multi-context systems. For
instance in ASP logic, let α = {p ← not p} and β = {p}, here α and β can be
taken as multi-context systems with only one context and having no bridge rules. Then
α∪β = {p← not p; p} which has an answer set {p} but it is not an answer set of α,
which has no answer set. It illustrates that an expansion for nonmonotonic logics, and
thus multi-context systems, is fundamentally different from that of propositional logic.

However, if the expansion can be relaxed as EQ(α) ∩ EQ(β) ⊆ EQ(α + β), i.e.,
the postulate (mcs-E1) is discarded, then we can have a simple expansion like the one
for propositional logic. We will make this point clear in the following. A logic L is
quasi-cumulative if for any two knowledge bases kb and kb′ of L, and a belief set S of
L such that S ∈ ACCL(kb)∩ACCL(kb

′) then S ∈ ACCL(kb∪ kb′). It is clear that
propositional logic, first-order logic and description logic are all semi-cumulative. We
can show that ASP logic define in [15] is quasi-cumulative.

Proposition 1. Let Π1 and Π2 be two propositional theories and S an answer set of
Π1 and Π2. Then S is an answer set of Π1 ∪Π2.

548 Y. Wang, Z. Zhuang, and K. Wang

Let α = (C1, . . . , Cn) and β = (C′
1, . . . , C

′
n) be two multi-context systems over the

logic languages L = (L1, . . . , Ln), where the underlying logics Lis of the contexts are
quasi-cumulative. The semi-expansion of α by β, written α ∓ β, is the multi-context
system (C1 + C′

1, . . . , Cn + C′
n) where Ci + C′

i is the context whose knowledge base
(resp. bridge rule) is the union of the knowledge bases (resp. bridge rules) from the
contexts Ci and C′

i for each i (1 ≤ i ≤ n).

Theorem 2. Let α and β be two multi-context systems where the underlying logics
of the contexts are quasi-cumulative. If S is an equilibrium of α and β then it is an
equilibrium of α∓ β.

Proof Sketch: Let S = (S1, . . . , Sn). It suffices to prove Si ∈ ACCLi(kbi ∪ kb′i ∪
{Head(r)|r ∈ app(bri,S) ∪ app(br′i,S)}) for every i (1 ≤ i ≤ n). Recall that Si ∈
ACCLi(kbi ∪ {Head(r)|r ∈ app(bri,S)}) and Si ∈ ACCLi(kb

′
i ∪ {Head(r)|r ∈

app(br′i,S)}). By the quasi-cumulative property of the underlying logic Li, we have
Si ∈ ACCLi(kbi ∪ {Head(r)|r ∈ app(bri,S)} ∪ kb′i ∪ {Head(r)|r ∈ app(br′i,S)},
i.e. Si ∈ ACCLi(kbi ∪ kb′i ∪ {Head(r)|r ∈ app(bri ∪ br′i,S)}).

3.2 Revision

Note that, in the revision of a knowledge base α (a set of formulas) by a formula β, the
intent is that the resulted knowledge base contains β and is consistent (unless β is not),
while keeping whatever information ofα can be “reasonably” retained [1]. Semantically
speaking, the revision of α by β is a knowledge base α′ whose intended models are just
those of β that are “closest” to those of α [19]. This motivates the following revision
postulates for multi-context systems:

(mcs-R1) EQ(α β) ⊆ EQ(β);
(mcs-R2) If EQ(α) ∩ EQ(β) �= ∅ then EQ(α β) = EQ(α) ∩EQ(β);
(mcs-R3) If EQ(β) �= ∅ then EQ(α β) �= ∅;
(mcs-R4) If EQ(α1) = EQ(α2) and EQ(β1) = EQ(β2)

then EQ(α1 β1) = EQ(α2 β2);
(mcs-R5) EQ(α β1) ∩ EQ(β2) ⊆ EQ(α β′);
(mcs-R6) If EQ(α β1)∩EQ(β2) �= ∅ then EQ(α β′) ⊆ EQ(α β1)∩EQ(β2)

where β′ is a multi-context system such that EQ(β′) = EQ(β1) ∩ EQ(β2). The in-
tended meaning of these revision postulates for multi-context systems is similar to that
of propositional logic in Section 2.1.

Orders between Belief States. Let L be an abstract logic. A pre-order $L over the
possible belief sets1 of L is a reflexive and transitive binary relation on BSL. And we
define ≺L as S ≺L S′ iff S $L S′ and S′ �$L S. A pre-order $L is total if for every
two belief sets S and S′ of L, either S $L S′ or S′ $L S. A function that assigns a
knowledge base kb of L a pre-order$kb is faithful if the following conditions hold:

(1) If S, S′ ∈ ACCL(kb) then S $kb S
′ does not hold.

1 Recall that the notion of belief sets corresponds to “interpretations” in propositional logic.

Belief Change in Nonmonotonic Multi-Context Systems 549

(2) If S ∈ ACCL(kb) and S′ /∈ ACCL(kb) then S $kb S
′.

(3) If ACCL(kb) = ACCL(kb
′) then $kb is same to $kb′ .

Let ML be a collection of belief sets of L. A belief set S ∈ML is minimal w.r.t. $kb if
there is no S′ ∈ML such that S′ ≺kb S. We denote

Min(ML,$kb) = {S|S is minimal in ML w.r.t. $kb}.

Let α = (C1, . . . , Cn) be an MCS over langues L = (L1, . . . , Ln) with Ci =
(Li, kbi, bri) (1 ≤ i ≤ n), S = (S1, . . . , Sn) and S ′ = (S′

1, . . . , S
′
n) two belief states

of α. A pre-order $L over the space of belief states of L is a reflexive and transitive
binary relation such that S $L S ′ if Si $Li S′

i for every i (1 ≤ i ≤ n). Similarly,
≺L is defined as S ≺L S ′ if S $L S ′ and S ′ �$L S. A pre-order $L is total if either
S $L S ′ or S ′ $L S for every two of belief states S and S ′ of L. A function that
assigns α a pre-order$α is faithful whenever the assigned pre-order$kbi is faithful for
every i (1 ≤ i ≤ n).

Let S be a collection of belief states of L. A belief state S ∈ S is minimal w.r.t. $α

if there is no S ′ ∈ S such that S ′ ≺α S. We define

Min(S,$α) = {S|S is minimal in S w.r.t. $α}.

Theorem 3. A revision operator satisfies the conditions (mcs-R1)–(mcs-R6) iff there
exists a faithful assignment that maps each MCS α of L to a total pre-order $α such
that EQ(α β) = Min(EQ(β),$α).

Proof Sketch: The overall proof is similar to that of Theorem 3.3 of [19]. We out-
line the proof of “only if”. Firstly we define $α over the space of belief states as
S $α S ′ if either S ∈ EQ(α) or S ∈ EQ(α β′) where β′ is an MCS such that
EQ(β′) = {S,S ′}. We can show that $α is a total pre-order and the assignment that
maps α to $α is faithful. Finally we can prove EQ(α β) ⊆ Min(EQ(β),$α) and
Min(EQ(β),$α) ⊆ EQ(α β).

This theorem shows that our belief revision operator for multi-context systems obeys
the principle of minimal change in the sense that the acceptable belief states (equilibria)
of the revision result αβ are exactly the ones of β that are “closet” to those of α. There
are many approaches of “closeness” in propositional logic, we consider two distance-
based operators for multi-context systems in the following.

Two Distance Based Revision Operators. Given two belief states S = (S1, . . . , Sn)
and S ′ = (S′

1, . . . , S
′
n) of L, we define the following notations,

– |S| =
∑n

i=1 |Si|, where |S| denotes the cardinality of the set S,
– S ⊆ S ′ if Si ⊆ S′

i for every i (1 ≤ i ≤ n);
– S ⊂ S ′ if S ⊆ S ′ and Si ⊂ S′

i for some i (1 ≤ i ≤ n);
– S 0 S ′ = (S1 0 S′

1, . . . , Sn 0 S′
n), where 0 is the symmetric difference operator

between sets, i.e. X 0 Y = (X \ Y) ∪ (Y \X).

Let α and β be two multi-context systems. We define

0min(α, β) = min⊆({S 0 S ′ : S ∈ EQ(α) & S ′ ∈ EQ(β)}),
| 0 |min(α, β) = min≤({|S 0 S ′| : S ∈ EQ(α) & S ′ ∈ EQ(β)})

550 Y. Wang, Z. Zhuang, and K. Wang

where min⊆(X) denotes the set of minimal (under set inclusion) elements in collection
X of sets, and min≤(X) denotes the least number in the set X of numbers.

Definition 3. The revision operators s and d for multi-context systems are defined
respectively as follows:

EQ(αs β) = {S ∈ EQ(β)|∃S ′ ∈ EQ(α) s.t. S 0 S ′ ∈ 0min(α, β)},
EQ(αd β) = {S ∈ EQ(β)|∃S ′ ∈ EQ(α) s.t. |S 0 S ′| = | 0 |min(α, β)}.

Intuitively, the revision result α β has the equilibria of β that are “closest” to some
equilibrium of α, where � ∈ {s, d}. One can see that the operator s (resp. d) is iden-
tical to Sato revision operator ◦S (resp. Dalal revision operator ◦D) in [19] when there
is only one context with underlying proportional logic and without bridge rules. There-
fore, the revision operators s and d are generalizations of propositional knowledge
base revision operator ◦S and ◦D respectively.

Example 3 (Continued from Example 2). According to the operators s and d, one
can check that the unique equilibrium of α β is (S1, S2), where S1 = {bird flu},
S2 = {bird flu, pneumonia} and � ∈ {s, d}. A multi-context system corresponding
to α β can be (C′′

1 , C
′′
2) with C′′

i = (kb′′i , br
′′
i) for i = 1, 2 where

– kb′′1 = {bird flu ∧ ¬swine flu}, note that pneumonia is not a symbol of L1,
– kb′′2 = {bird flu ∧ pneumonia ∧ ¬swine flu},
– br′′1 = br′′2 = ∅, or alternatively br′′1 = br1 and br′′2 = br2.

Theorem 4. Suppose that α is consistent. The revision operators s satisfies (mcs-R1)
– (mcs-R5); and the revision operator d satisfies (mcs-R1) – (mcs-R6).

Proof Sketch: We prove that d satisfies (mcs-R6). By EQ(β′) = EQ(β1)∩EQ(β2),
we have | 0 |min(α, β1) ≤ | 0 |min(α, β′). Recall that EQ(α d β1) ∩ EQ(β2) �= ∅.
It implies that there exists S ∈ EQ(β2) ∩ EQ(β1) and |S 0 S ′| = | 0 |min(α, β1) for
some S ′ ∈ EQ(α), from which it follows that | 0 |min(α, β′) ≤ | 0 |min(α, β1). Thus
| 0 |min(α, β′) = | 0 |min(α, β1). Let S ∈ EQ(α d β′). We have S ∈ EQ(β1) ∩
EQ(β2) and ∃S ′ ∈ EQ(α) s.t. |S 0S ′| = |0 |min(α, β′). It implies S ∈ EQ(β1) and
S ′ ∈ EQ(α) s.t. |S 0 S ′| = | 0 |min(α, β1). Thus S ∈ EQ(αd β1).

The operator s may falsify (mcs-R6) due to the fact that the corresponding revision
operator ◦S in propositional logic may falsify the corresponding postulate (R6) (cf.
Example 4.1 of [19]).

Relating to Classical Revision via Loop Formulas. Recall that every context in a
multi-context system has its own language, which has its own signature too. In this
sense, the signatures for contexts are pairwise disjoint. In the following we assume that
the signatures for the langues in L share no common symbols, unless explicitly stated
otherwise. In the following readers are assumed being familiar with answer set program-
ming [16] and the basic notions of loops and loop formulas of logic programs [22].

We note that if L consists of ASP logics, then every MCS can be translated into
a propositional theory via loop formulas [8]. Briefly, given a multi-context system

Belief Change in Nonmonotonic Multi-Context Systems 551

α = (C1, . . . , Cn) with Ci = (Li, kbi, bri) where Lis are ASP logics, by identify-
ing Ci with the logic program Πi = kbi ∪ �(bri) where �(bri) is obtained from bri by
replacing every indexed atom of the form (n : p) with the atom p,

– the loops of Ci are the loops of Πi, 2

– the loop formula λ(X,Ci) for loop X of Ci is the same as the loop formula
LF (X,Πi) for the loop X of Πi with the exception that it allows for circular
supports3 from �(bri),

– the loop completion π(Ci) of Ci is the following theory

{λ(X,Ci)|X is a loop of Ci} ∪ κ(Πi).

where κ(Πi) is obtained from Πi by replacing every rule as a formula4,
– the loop completion π(α) of α is π(C1) ∪ · · · ∪ π(Cn).

It is proved that the equilibria of α correspond one-to-one to the models of π(α) (cf.
Theorem 5 of [8]). To illustrate the notion of loop formulas for multi-context systems,
let us consider the following example.

Example 4. Let α = (C1, C2) and β = (C′
1, C

′
2) be two multi-context systems with

Ci = (Li, kbi, bri) and C′
i = (Li, kb

′
i, br

′
i) for i = 1, 2 where

– both L1 and L2 are ASP logics,
– kb1 = {p}, kb2 = {p′}, kb′1 = {← p} and kb′2 = {← p′},
– br1 = {p← not (2 : p′)}, br2 = {p′ ← (1 : p)}, br′1 = br′2 = ∅.

One can check that the unique equilibrium of α is S = ({p}, {p′}) and the unique
equilibrium of β is S ′ = (∅, ∅). Note that the loop of C1 is X = {p}, which is the
unique loop of C′

1, and X ′ = {p′} is the unique loop of C2 and C′
2. Now we have:

– π(C1) ≡ p ∧ (¬p′ ⊃ p) ∧ (p ⊃ ∨ ¬p′), the last conjunct is λ(X,α),
– π(C2) ≡ p′ ∧ (p ⊃ p′) ∧ (p′ ⊃ ∨ p), the last conjunct is λ(X ′, β),
– π(α) ≡ π(C1) ∧ π(C2) ≡ p ∧ p′,
– π(C′

1) ≡ ¬p ∧ (p ⊃ ⊥), the last conjunct is λ(X,C′
1),

– π(C′
2) ≡ ¬p′ ∧ (p′ ⊃ ⊥), the last conjunct is λ(X ′, C′

2),
– π(β) ≡ ¬p ∧ ¬p′.

One can verify that, over the signature {p, p′}, the unique model of π(α) is {p, p′}, and
the unique model of π(β) is ∅.

We will show that belief revision in multi-context systems with ASP logics can be
achieved by revision in propositional logic via loop formulas.

Lemma 1. Let S = (S1, . . . , Sn) and S ′ = (S′
1, . . . , S

′
n) be two belief states of L.

(i) S ⊆ S ′ iff (
⋃

1≤i≤n Si) ⊆ (
⋃

1≤i≤n S
′
i).

2 Here, every single element set is a loop as defined in [20].
3 E.g., the rule “a ← a, b, not c” is a circular supporting rule for a.
4 E.g., the rule “a ← b, c, not d” is replaced by ¬d ∧ b ∧ c ⊃ a.

552 Y. Wang, Z. Zhuang, and K. Wang

(ii) |S| ≤ |S ′| iff |(
⋃

1≤i≤n Si)| ≤ |(
⋃

1≤i≤n S′
i)|.

The following theorem shows that, a belief revision for multi-context systems with
loop definable logics can be achieved via a belief revision in propositional logic.

Theorem 5. Let α and β be two multi-context systems where the underlying logics are
ASP. Then the equilibria of αs β (resp. αd β) correspond one-to-one to the models
of π(α) ◦S π(β) (resp. π(α) ◦D π(β)).

Proof Sketch: We prove the case s. Let S = (S1, . . . , Sn) be a belief state of L.
We define π(S) =

⋃
1≤i≤n Si. Clearly, π is a one-to-one mapping from S to π(S). We

have that S ∈ EQ(αs β)
iff S ∈ EQ(β) and ∃S ′ ∈ EQ(α) s.t S 0 S ′ ∈ 0min(α, β)
iff π(S) ∈ Mod(π(β)) and ∃π(S ′) ∈ Mod(π(α)) s.t π(S) 0 π(S ′) ∈ 0min(π(α),
π(β)) by (i) of Lemma 1, the fact π(S) 0 π(S ′) = π(S 0 S ′) and Theorem 5 of [8]
iff π(S) ∈Mod(π(α) ◦s π(β)).

Example 5. [Continued from Example 4] In terms of the revision operatorss and d,
we evidently have that the unique equilibrium of αs β and αd β is S ′. Thus we can
take β as one of its revision result. One can check that π(α)◦ π(β) = (p∧p′)◦ (¬p∧
¬p′), the unique model of π(α) ◦ π(β) is the model of π(β) for � ∈ {S,D}.

Partial Order Revisions. To characterize revision operators for multi-context systems
that satisfy the postulates (mcs-R1) – (mcs-R6) in terms of pre-orders among belief
states, it requires that every two belief states must be comparable, i.e. the pre-orders
are total. Similar to the belief revision for propositional logic, it needs some partial
orders among interpretations instead of total ones sometimes. We follow Katsuno and
Mendelzon’s approach to relax the totality conditions on orders over belief states. This
motivates the following two postulates as a replacement of (mcs-R6):

(mcs-R6a) If EQ(αβ1) ⊆ EQ(β2) andEQ(αβ2) ⊆ EQ(β1) thenEQ(αβ1) =
EQ(α β2).

(mcs-R6b) EQ(α β1) ∩ EQ(α β2) ⊆ EQ(α β) where β is an MCS such that
EQ(β) = EQ(β1) ∪EQ(β2).

There are two alternatives to the postulate (mcs-R6a):

(mcs-R6w) If EQ(α β1) ⊆ EQ(β2), then EQ(α β) ⊆ EQ(α β1) ∩
EQ(β2) where β is an MCS satisfying EQ(β) = EQ(β1) ∩ EQ(β2).
(mcs-Rt) If EQ(α β) = EQ(β1) and EQ(α γ) = EQ(β2) then EQ(α
ζ) = EQ(β1) where β, γ, ζ are MCSs satisfying EQ(β) = EQ(β1) ∪ EQ(β2),
EQ(γ) = EQ(β2) ∪EQ(β3) and EQ(ζ) = EQ(β1) ∪EQ(β3).

Lemma 2. Assume that a revision operator for multi-context systems satisfies (mcs-
R1) – (mcs-R5). Then the following conditions are equivalent:

(i) The revision operator satisfies (mcs-R6a).
(ii) The revision operator satisfies (mcs-R6w).

Belief Change in Nonmonotonic Multi-Context Systems 553

(iii) The revision operator satisfies (mcs-Rt).

Theorem 6. A revision operator satisfies conditions (mcs-R1)–(mcs-R5) and (mcs-
R6a)–(mcs-R6b) iff there exists a faithful assignment that maps each multi-context sys-
tem α to a partial pre-order $α such that EQ(α β) = Min(EQ(β),$α).

Proof Sketch: It can be proved as that of Theorem 5.2 of [19].

3.3 Contraction

In propositional logic belief contraction is definable via Harper identity. It has indepen-
dently desirable properties. In the following we adapt these properties for nonmonotonic
multi-context systems and relate it with the revision and expansion for MCSs.

Suppose .− is a contraction operator for multi-context systems. The contraction pos-
tulates for multi-context systems are formulated below from a model theoretical view:

(mcs-C1) EQ(α) ⊆ EQ(α
.−β);

(mcs-C2) If EQ(α) �⊆ EQ(β) then EQ(α
.−β) = EQ(α);

(mcs-C3) If β is not a tautology then EQ(α
.−β) �⊆ EQ(β);

(mcs-C4) If EQ(β) = EQ(γ) then EQ(α
.−β) = EQ(α

.−γ);
(mcs-C5) EQ(α

.−β) ∩ EQ(β) ⊆ EQ(α);
(mcs-C6) EQ(α

.−β) ⊆ EQ(α
.−β1) ∪ EQ(α

.−β2);
(mcs-C7) EQ(α

.−β1) ⊆ EQ(α
.−β) whenever EQ(α

.−β) �⊆ EQ(β1)

where β is a multi-context system with EQ(β) = EQ(β1) ∩EQ(β2) in (mcs-C6) and
(mcs-C7). In terms of Harper identity, a belief contraction

.− can be defined via a belief
revision as follows:

EQ(α
.−β) = EQ(α) ∪ EQ(α β′) (2)

where β′ is a multi-context system satisfying EQ(β′) = EQ(β).

Proposition 2. The belief contraction defined by equation (2) satisfies the postulates
(mcs-C1) – (mcs-C7).

Based on the contraction and the above expansion, the revision operator can be al-
ternatively defined by Levi identity as follows:

EQ(α′ β) = EQ((α
.−β′) + β) (3)

where β′ is a multi-context system satisfying EQ(β′) = EQ(β).

Proposition 3. The revision operator ′ is identical to for multi-context systems.

4 Discussion and Conclusion

Related Work. Belief revision has been investigated in multiple (heterogeneous) in-
formation sources, multi-agent systems in particular [23,11,12]. On the one hand, there

554 Y. Wang, Z. Zhuang, and K. Wang

is no AGM style postulates for those approaches; on the other hand, both knowledge
bases and bridge rules of agents are monotonic.

Note that each knowledge base in propositional logic can be seen as an MCS. One
can easily see that the belief revision operator for multi-context systems is a gener-
alization to the one for propositional logic. As every answer set program can be taken
as an MCS, the proposed belief change theory for MCS is applicable for ASP as well.
This approach is substantially different from the existing ones, however. Many of them
are under the title update [29,2,13,26,9,24,17], in which a update of a sequence of logic
programs is focused and founded on the notion of causal rejection – some rules in a
logic program will be rejected since they conflict with some others in a higher priority
logic program. Thus these approaches fall outside the AGM belief revision paradigm
and are syntactic in nature. Delgrande et al. proposed a model-theoretical belief revi-
sion model for ASP [10], in which they concentrated on “SE-models” that capture the
strong equivalence5 of logic programs [21]. When applying our belief change theory of
MCS to ASP, it considers answer sets instead of SE-models.

Conclusion and Future Work. Following AGM model we proposed a model-
theoretical belief expansion, revision and contraction theories for nonmonotonic multi-
context systems under equilibria semantics. Two distance-based revision operators were
presented. There are two other important semantics – grounded equilibria and well-
founded model [3]. We believe that it is possible to establish similar results under the
two semantics. Some interesting and challenging issues remain. For instance, in the
case that every underlying logics of MCS has a belief revision operator, such as man-
aged multi-context systems [5], is it possible to obtain a rational revision operator for
MCS by combining these individual revision operators?

Acknowledgement. This work was partially supported by Australian Research Coun-
cil under grants DP1093652 and DP110101042. Yisong Wang was also partially sup-
ported by NSFC under grants 60963009 and 61262029 and Stadholder Fund of Guizhou
Province under grant (2012)62.

References

1. Alchourrön, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. JSL 50(2), 510–530 (1985)

2. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic up-
dates of non-monotonic knowledge bases. JLP 45(1), 43–70 (2000)

3. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
AAAI 2007, Vancouver, Canada, pp. 385–390. AAAI Press (2007)

4. Brewka, G., Eiter, T., Fink, M.: Nonmonotonic multi-context systems: A flexible approach
for integrating heterogeneous knowledge sources. In: Balduccini, M., Son, T.C. (eds.) Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565,
pp. 233–258. Springer, Heidelberg (2011)

5. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Walsh, T.
(ed.) IJCAI 2011, Barcelona, Spain, pp. 786–791. IJCAI/AAAI (2011)

5 Two logic programs Π1 and Π2 are strongly equivalent if Π1 ∪Π and Π2 ∪Π have the same
answer sets for any logic program Π .

Belief Change in Nonmonotonic Multi-Context Systems 555

6. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communica-
tions of the ACM 54(12), 92–103 (2011)

7. Dalal, M.: Investigations into a theory of knowledge base revision. In: AAAI 1988, St. Paul,
MN, pp. 475–479. AAAI Press/The MIT Press (1988)

8. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context
systems. In: KR 2010, Toronto, pp. 60–70. AAAI Press (2010)

9. Delgrande, J.P., Schaub, T., Tompits, H.: A preference-based framework for updating logic
programs. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 71–83. Springer, Heidelberg (2007)

10. Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: A model-theoretic approach to belief
change in answer set programming. TOCL 14(2), A:1–A:42 (2012)

11. Dragoni, A.F., Giorgini, P.: Toward a revision for multi-context systems. In: Workshop on
Logics for Agent-Based Systems, LABS 2002, Tolose, France (2002)

12. Dragoni, A.F., Giorgini, P.: Distributed belief revision. In: AAMAS 2003, vol. 6(2), pp. 115–
143 (2003)

13. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on
causal rejection. TPLP 2, 711–767 (2002)

14. Fermé, E.L., Hansson, S.O.: AGM 25 years - twenty-five years of research in belief change.
JPL 40(2), 295–331 (2011)

15. Ferraris, P.: Logic programs with propositional connectives and aggregates. TOCL 12(4),
25:1–25:40 (2011)

16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP
1988, Seattle, Washington, pp. 1070–1080. MIT Press (1988)

17. Guadarrama, J.C.A.: On Updates of Epistemic States Belief Change under Incomplete Infor-
mation. PhD thesis, Clausthal University of Technology (2010)

18. Van Harmelen, F., Lifschitz, V., Porter, B. (eds.): Handbook of Knowledge Representation.
Elsevier (2008)

19. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change.
Artificial Intelligence 52(3), 263–294 (1992)

20. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.)
ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)

21. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. TOCL 2(4), 526–
541 (2001)

22. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1-2), 115–137 (2004)

23. Liu, W., Williams, M.-A.: A framework for multi-agent belief revision. Studia Logica 67(2),
291–312 (2001)

24. Osorio, M., Cuevas, V.: Updates in answer set programming: An approach based on basic
structural properties. TPLP 7(4), 451–479 (2007)

25. Peppas, P.: Belief Revision. In: Handbook of Knowledge Representation, ch. 8. Foundations
in Artificial Intelligence, pp. 317–360. Elsevier (2008)

26. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates.
TPLP 3(6), 671–713 (2003)

27. Satoh, K.: Nonmonotonic reasoning by minimal belief revision. In: FGCS 1988, Tokyo,
Japan, pp. 455–462 (1988)

28. Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artificial Intelli-
gence 155(1-2), 41–67 (2004)

29. Zhang, Y., Foo, N.Y.: Towards generalized rule-based updates. In: IJCAI (1), pp. 82–88.
Morgan Kaufmann (1997)

On Optimal Solutions of Answer Set
Optimization Problems

Ying Zhu and Miroslaw Truszczynski

Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA

Abstract. In 2003, Brewka, Niemelä and Truszczynski introduced
answer-set optimization problems. They consist of two components: a
logic program and a set of preference rules. Answer sets of the program
represent possible outcomes; preferences determine a preorder on them.
Of interest are answer sets of the program that are optimal with respect
to the preferences. In this work, we consider computational problems con-
cerning optimal answer sets. We implement and study several methods
for the problems of computing an optimal answer set; computing an-
other one, once the first one is found; and computing an optimal answer
set that is similar to (respectively, dissimilar from) a given interpreta-
tion. For the problems of the existence of similar and dissimilar optimal
answer set we establish their computational complexity.

1 Introduction

Preferences play an important role in AI applications that involve decision mak-
ing [7,8]. In many practical problems, hard constraints still leave many feasible
solutions and a mechanism for selecting those with some desirable properties is
needed. A typical approach consists of eliciting from the user preferences (some-
times referred to as soft constraints) on the space of solution candidates and
returning to the user only those solutions that “score” high on the user’s pref-
erence criteria, in most cases, actually only those that are optimal. To provide
a formal basis to that approach, researchers proposed several preference repre-
sentation formalisms [8]. However, in most cases, preference theories still have
multiple optimal solutions and the final selection has to be performed by user.

To help the user make that selection, one needs computational support for
the key preference reasoning tasks. They include computing an optimal solution,
and computing an alternative optimal solution once the first optimal solution
was found. In some cases, the user knows a combination of desirable properties
and would like to pose that as a query to which the system would respond with
optimal solutions that come close (are similar). On the flip side, the user may
know a combination of undesirable properties and would like to see optimal
solutions that are unlike that undesirable one (are dissimilar).

The problem of computing similar/dissimilar solutions was identified as im-
portant in the setting of problems defined by hard constraints, and was studied
in the context of answer sets of programs by Eiter et al. [5]. We consider it in
a more general setting of preference formalisms. Specifically, our work concerns

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 556–568, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Optimal Solutions of ASO Problems 557

the problems mentioned above in the preference formalism of answer set opti-
mization (ASO) [2]. We are interested in the computational complexity of these
problems, and in effective computing methods. In particular, we study applica-
tions of answer set programming [10,11] and answer-set programming tools to
solve them.

The main contributions of our paper are as follows. (1) We show that for ASO
programs, the problems of the existence of optimal answer sets that are similar
to (respectively, dissimilar from) a given interpretation are Σp

2 -complete. (2) We
propose several methods, exploiting answer set solvers, to support optimization
tasks in ASO. Some of these methods are fully declarative, that is, represent
optimization problems in terms of single disjunctive logic programs. However,
in one of our methods, we execute the optimization task in an iterative way.
(3) We give several methods of generating random instances of ASO programs
for testing and present experimental results. They show that for non-ranked
preferences, encodings in terms of disjunctive programs are competitive, that is,
disjunctive answer set solvers work well. On the other hand, if ASO programs
have ranked preferences, the solvers are no longer effective on the encodings
we used. The results suggest a class of challenging benchmarks for ASP solvers
developed for disjunctive logic programs.

2 Preliminaries

An answer set optimization (ASO) program P [2] consists of two parts: a gener-
ator Pgen and a selector Ppref . The generator is a propositional non-disjunctive
answer set program1 or a propositional theory. It is used to represent hard con-
straints. The complexity results we present below do not depend on the exact
form of the generator as the complexity of model generation task is the same for
the two types of generators we allow. However, in the experimentation part of the
work, for the sake of concreteness we consider as generators only propositional
CNF theories.

The selector is a collection of preference rules of the form:

C1 > · · · > Ck ← a1, . . . , an, ¬ b1, . . . , ¬ bm (1)

where ais and bis are literals and Cis are boolean combinations of atoms. The
selector represents preferences or soft constraints of the problem. Informally,
the rule above reads: if an answer set contains a1, . . . , an and does not contain
any of the literals b1, . . . , bm, then C1 is preferred over C2, C2 is preferred over
C3, etc.

The formal semantics of rule (1) is based on the notion of the satisfaction
degree. Let r be a rule of the form (1). If an interpretation S does not satisfy the
body of r or if it does not satisfy any of the options in the head of r, then r is
irrelevant to S and the satisfaction degree of S on r, vS(r), is set to 1. Otherwise,
1 Allowing disjunctive programs as generators is possible but that affects the complex-

ity results as well as computational methods used.

558 Y. Zhu and M. Truszczynski

we define the satisfaction degree of S on r by setting vS(r) = min{i : S |= Ci}.
Now, given two answer sets S1 and S2, we say that S1 is preferred over S2,
written as S1 � S2, if vS1 (r) ≤ vS2 (r), for every rule r ∈ Ppref . We say that
S1 is strictly preferred to S2, written as S1 � S2, if S1 � S2 and for some
rule r ∈ Ppref , vS1(r) < vS2 (r). An answer set (a model, if the generator is a
propositional theory) S is optimal if there is no answer set (model) S′ of the
generator such that S′ � S.

To illustrate the ASO formalism, we consider a simple example. Let us assume
Pgen is any theory generating 4 answer sets:

S1 = {soup, beef}, S2 = {salad, beef},

S3 = {soup, fish}, S4 = {salad, fish}.

For example, we can take for Pgen an answer set program:

1{soup, salad}1
1{beef, fish}1

or a propositional theory:

(soup ∨ salad) ∧ (beef ∨ fish) ∧ ¬(soup ∧ salad) ∧ ¬(beef ∧ fish).

Assuming Ppref is:

soup > salad

beef > fish,

the satisfaction vectors for the four answer sets are V1 = (1, 1), V2 = (2, 1),
V3 = (1, 2), V4 = (2, 2), respectively. Thus, S1 is the optimal answer set, S4 is
the worst answer set, and S2 and S3 are incomparable.

The formalism we just presented is rather weak in that it is based on the
Pareto Principle. Consequently, it renders many answer sets of Pgen optimal.
To strengthen it one may consider ranked preferences, that is, preferences that
differ in importance. A ranked ASO program is a tuple (Pgen, Ppref), where Pgen
is as before and Ppref is a collection of ranked preference rules, that is, rules of
the form

C1 > · · · > Ck
j← a1, . . . , an, ¬ b1, . . . , ¬ bm (2)

where the notation is as above, the only difference being the presence of a positive
integer j indicating the rank (with 1 being the highest rank possible.) For a rule
r, we write rank(r) to denote its rank.

The satisfaction degree is defined as before. Given two answer sets S1 and S2,
we say that S1 is preferred over S2, written as S1 � S2 if vS1(r) = vS2(r), for
every rule r ∈ Ppref , or if there is a rule r0 such that

1. vS1 (r0) < vS2(r0)

On Optimal Solutions of ASO Problems 559

2. vS1 (r) ≤ vS2(r), for every rule r such that rank(r) = rank(r0)
3. vS1 (r) = vS2(r), for every rule r such that rank(r) < rank(r0).

Moreover, S1 is strictly preferred over S2, S1 � S2, if S1 � S2 holds due to the
existence of the rule r0 above. As before, an answer set (or model) S is optimal
if there is no answer set (model) S′ such that S′ � S.

3 Problems and Complexity

In the paper we consider the propositional case only and assume all programs are
finite. The two fundamental optimization problems for any preference framework
concern finding an optimal solution and an alternative one. We state them below
for ASO programs.

optimal solution Given an ASO program P , decide whether an optimal an-
swer set (model) S for P exists.

another optimal solution Given an ASO program P , and one optimal an-
swer set (model) S, decide whether a different optimal answer set (model)
S′ (S′ 	= S) for P exists.

Clearly, if the generator of an ASO program P has answer sets (models, respec-
tively), P has an optimal answer set (model). Thus the complexity of deciding
whether an optimal solution exists is the same as the complexity of deciding
whether the generator Pgen is satisfiable (relative the semantics of choice). That
latter problem is NP-complete for both generator formalisms (we recall that gen-
erators are restricted to be non-disjunctive programs) and therefore, so is the
former.

For the problem another optimal solution, if we can find an answer set
of Pgen, which is not worse than the given optimal one S and different from it,
then there exists another optimal answer set for P . The complexity of deciding
whether there is an answer set of Pgen that is not worse than S is clearly in NP.
The hardness can be proved by reduction from the answer set existence problem.
The same arguments apply to the case of propositional theories as generators.
Thus, we have the following result.

Theorem 1. The another optimal solution problem is NP-complete.

We also consider the problems of finding a similar/dissimilar optimal solution
to/from a given one. In each problem we assume that the distance is determined
by some measure of distance between interpretations, say Δ. Moreover, we as-
sume that the input consists of an ASO program P , an interpretation S, and a
nonnegative integer k.

k-similar optimal solution Decide whether there is an optimal answer set
(model) S′ such that Δ(S, S′) ≤ k.

k-dissimilar optimal solution Decide whether there is an optimal answer
set (model) S′ such that Δ(S, S′) ≥ k.

560 Y. Zhu and M. Truszczynski

The complexity of these problems depends on the complexity of deciding
whether Δ(S, S′) ≤ k. Assuming that problem is in P, the problems to find
a similar/dissimilar optimal answer set are Σp

2 -complete. The membership can
be showed by guessing an interpretation S′, verifying whether S′ is an optimal
answer set (that problem is coNP-complete [2]), and checking whether Δ(S, S′) ≤
k (in polynomial time). For the hardness, we construct a reduction from the
problem to decide whether there is an optimal answer set including a given
literal, which is Σp

2 -complete [2]. The details depend on the definition of the
distance function. The theorems we present below assume that the Hamming
distance HD is used to measure how far from each other are the solutions.

Theorem 2. Given an ASO program P , an interpretation S, and a nonnegative
integer k, deciding whether there is an optimal answer set (model) S′ such that
HD(S, S′) ≤ k is Σp

2 -complete.

Proof: (Membership) The problem is in Σp
2 because we can guess an interpre-

tation S′, verify in polynomial time that it is an answer set, then use a coNP-
oracle to verify that S′ is an optimal answer set [2] and, finally, check whether
HD(S, S′) ≤ k in polynomial time.
(Hardness) Given an ASO program P and a literal l, it is Σp

2 -hard to decide
whether there is an optimal answer set M , such that l ∈ M [2]. We construct
an ASO program P ′ and an interpretation S so that there is an optimal answer
set S′ for P ′ with HD(S, S′) ≤ k if and only if there is an optimal answer set
M for P and l ∈ M .

To this end, we first introduce k+1 fresh atoms a1, a2, . . . , ak+1. We construct
the program P ′ and an interpretation S as follows. We define

P ′
gen = Pgen ∪ {a1 ← not l, a2 ← not l, . . . , ak+1 ← not l}

and set k to the number of atoms in P , P ′
pref = Ppref and S = ∅.

(⇐) We show that if there is an optimal answer set M such that l ∈ M , then
there is an optimal answer set S′ with HD(S, S′) ≤ k.

Let M be an optimal answer set for P and l ∈ M . Let S′ = M . Clearly, S′ is
an optimal answer set of P ′ and ai /∈ S′ for i = 1, . . . , k +1. Since |S′| = |M | ≤ k
and |S| = 0, we have HD(S, S′) ≤ k.
(⇒) Next, we show that if there is an optimal answer set S′, and HD(S, S′) ≤ k,
then there is an optimal answer set M , and l ∈ M .

Let S′ be an optimal answer set of P ′ and HD(S, S′) ≤ k. If some ai in S′,
then all ai in S′. Thus |S′| ≥ k + 1 and HD(S, S′) ≥ k + 1, which is contradicts
to our assumption. It follows that ai /∈ S′, for every i, and that l ∈ S′. Let
M = S′. Clearly, M is an optimal answer set of P and l ∈ M .

The next theorem concerns the problem of finding a dissimilar optimal answer
set. The proof is similar and we omit it.

Theorem 3. Given an ASO program P , an interpretation S, and a nonnegative
integer k, deciding whether there is an optimal answer set (model) S′ such that
HD(S, S′) ≥ k is Σp

2 -complete.

On Optimal Solutions of ASO Problems 561

4 Computational Methods

In this paper, we study three methods to solve the problems we discussed above.
We describe them under the assumption that the generator is an answer set pro-
gram but the discussion extends literally to the case when we use propositional
theories for generators. The first method uses an iterative way to find optimal
answer sets in ASO programming. The second method modifies the ASP solver
clasp [6]. The third method encodes the problems as disjunctive logic programs.
We used dlv [9] and claspD [3] to process them.

4.1 Iterative Method

This method is based on an answer set program, a “tester”, to decide whether
an answer set of a generator program is optimal with respect to the preference
relation determined by the selector. The tester program is designed to have
no answer sets when the input answer set is optimal; otherwise it returns a
strictly better answer set. We designed the tester program following the method
described by Brewka et al. [2].

To find an optimal answer set, the iterative method starts with any answer set
to the generator (if none exists, it terminates with failure) and runs the tester
program on it. If a better answer set is found, the tester program is run on it.
This iterative improvement process terminates as the space of answer sets is
finite. When it does, the method returns the last answer set generated.

To find another optimal answer set, we first find an answer set which is not
worse than and different from a given optimal answer set, say M . Such an answer
set will be incomparable to M , or will be different from M but have the same
satisfaction vector as M . These constraints can be modeled as rules. We add
them to the generator program. Answer sets of the program that results are
precisely the answer sets of the original generator program that are not worse
than and different from M . Starting the iterative process described above from
any of them (if there are none, M is the only optimal answer set) results in an
optimal answer set different from M .

To solve the problem finding a similar or dissimilar optimal answer set, the
iterative method computes optimal answer sets one by one, following the method
described above, until it finds an optimal answer set which satisfies the distance
limitation or until no more optimal answer sets can be found. As the method
proceeds, all optimal answer sets found are stored and more and more constraints
representing computed optimal answer sets are added to the original generator.
Thus, the method may become infeasible for problems with the large number of
optimal answer sets (however, that does not show in the range of problems we
experimented with).

4.2 Modified clasp

The iterative method needs to record many optimal answer sets when solving
the problems to find a similar/dissimilar optimal answer set. The second method

562 Y. Zhu and M. Truszczynski

modifies the ASP solver clasp to solve the problems without the need to store
intermediate results. To this end, we modify clasp so that when each time it
finds an answer set, it checks its optimality using the tester program described
above. When an optimal answer set is found, the program terminates.

To find another optimal answer set, we call the modified clasp on the problem
with the generator modified to reflect the constraints for an answer set not to
be identical to or worse than the given optimal one (described above). To find a
similar (dissimilar) optimal answer set to a given interpretation, we add distance
constraints to the generator program and run the modified clasp on the program
that results.

4.3 The Disjunctive Logic Program Encoding

Both the iterative way and the modified clasp need multiple calls to an ASP
solver to solve our preference optimization problems. Moreover, the iterative
method organizes the calls in a procedural (imperative) manner rather than
declaratively. Our third method compiles the entire computation into a single
disjunctive logic program so that a single call to a program such as dlv or claspD
could solve it (the complexity result guarantee the existence of such representa-
tions). It does not need to store any intermediate results.

To this end, we first describe the problem in terms of a quantified boolean
formula (QBF) and then apply a version of the Eiter-Gottlob translation [4]
to produce the program. We provide the details for the problem of computing
a single optimal answer set. The other problems can be handled similarly, as
they essentially only differ in additional constraints one needs to impose on the
generator.

It is convenient to assume now that the generator is a propositional formula
(the case of a logic program is not much different). Thus, let G be a propositional
formula representing the generator. We write G(X) to stress that it is built of
propositional atoms in some set X = {x1, . . . , xm}. By G(Y) we will denote the
same formula but with yi replacing xi, 1 ≤ i ≤ m. Finally, let F (X, Y) be a
propositional formula representing the statement that the interpretation Y is
strictly better than X (one can construct it from the selector part of the ASO
program). The property that an interpretation over X is an optimal answer set
can be stated as follows: an interpretation X is an answer set and for every other
interpretation Y , Y is not an answer set or Y is not strictly better than X . It
can be expressed formally by the QBF

Φ = ∃X∀Y (G(X) ∧ (¬G(Y) ∨ ¬F (X, Y))).

Applying the Eiter-Gttlob translation [4] to Φ (it should be adjusted to the
structure of the QBF Φ, part of which is subject only to the existential quantifier)
results in a disjunctive logic program whose answer sets correspond to the answer
sets of the given optimization problem.

If we modify G(X) (but not G(Y)) with constraints that X be not identical
to and not worse than a given interpretation, or that X be at distance at least

On Optimal Solutions of ASO Problems 563

(at most) k from a given interpretation, we obtain disjunctive logic programs
encoding the remaining problems of interest. We omit the details due to the page
limit.

5 Experiments and Analysis

All the methods we developed were implemented in C/C++. All experiments
were conducted on an Intel processor clocked at 2.40GHz with 2GB memory.

We experimented with the three computational methods described in Section
4. For the iterative method we used clasp-2.1.1 as the ASP solver. With the
third method we used two disjunctive ASP solvers: claspD-1.1.2 and dlv-2012-
12-17. In the discussion below we simply write claspD and dlv, respectively to
denote the appropriate version of the method described in Section 4.3. Similarly,
we write iterative and mclasp (modified clasp) for the other two methods.

In experiments we used ASO problems in which generators are represented
by 3-CNF formulas, because there are well understood random models to gen-
erate them. To construct them, we randomly generated 3-CNF formulas with n
atoms and 3n and 4n clauses respectively. The numbers of clauses are below the
threshold ratio of 4.25n to ensure that generators have models (the space of fea-
sible solutions is not empty). This is important as we are interested in studying
optimization problems of selecting optimal solutions and not the satisfiability
problem. We note that the formulas in the first class have more models than
those in the second class. Thus, the two classes are qualitatively different.

We generated preference rules for the selectors through the following three
mechanisms:

1. randomly generating 3n preference rules without rank (n being as before the
number of atoms)

2. randomly generating 3n rules with two ranks, half of the rules having rank
1 and half of the rules having rank 2

3. extracting preference rules from two lexicographic preference trees (LP-trees,
for short) [1].

In the first two cases, we randomly choose a variable, say x, and form the
head to be of the form x > ¬x or ¬x > x, choosing between them with equal
probability. Each rule has no condition or has a condition of at most two literals.
With the probability 0.5 it has no condition, having a one literal condition or
two literal condition are equally likely. Literals for the conditions are generated
uniformly at random.

LP trees are concise representations of strict total orders [1]. Preferences en-
coded by LP trees can be represented as ranked preference rules, with as many
ranks as there are atoms in the language. For the third method, for each in-
stance we randomly generate two LP trees (we subject them to some restrictions
to make their sizes linear in the number of atoms: each tree may have at most one
node where it splits into two branches, and each node’s preferences depend on
values in at most one ancestor node). To form a selector, we represent preferences
encoded by the two trees as ranked preference rules.

564 Y. Zhu and M. Truszczynski

We considered four computational problems: optimal solution, another
optimal solution, 3-similar optimal solution, and 8-dissimilar op-
timal solution. For the problems to find a similar/dissimilar optimal an-
swer set, we used the Hamming distance to measure the distance between two
answer sets.

We prepared data sets for unranked and ranked cases. For unranked case,
n ranged with step 10 from 20 to 120 and for the ranked one, from 20 to 50.
For each n, 20 instances were generated and the total computation time was
calculated. We only present the experimental results for the three data sets
with generators consisting of 4n three-literal clauses. The relative behavior of
all the methods is the same for 3n-clause generators as for 4n-clause generators.
However, the problems based on 3n-clause generators are harder as the space of
feasible solutions is larger.

The first data set consists of problems with 4n clauses in generators and with
3n random preference rules all of rank 1. Table 1 shows the computation time for
optimal solution and another optimal solution problems. The iterative
method scales up the best and is a clear winner. The reasons seem to be that its
iterative improvement process terminates with no backtracks and, since there
are many optimal solutions for this data set, few iterations are required. For
the same reasons, the method is similarly effective on the another optimal
solution problem. The mclasp method quickly becomes impractical. It simply
searches through the space of all answer sets seeking an optimal one, and does
not take advantage of the information gathered earlier. We see how that may be
a problem when we look at times for the problem another optimal solution,
where mclasp has a smaller search space to consider (only of those answer sets
that are different and not worse from the given one). Indeed for that problem,
mclasp does slightly better. The third method that compiles the problems into
single disjunctive programs, behaves better and, especially when implemented
with claspD, scales up reasonably well. It is slower on the another optimal
solution problem than on the optimal solution one. That may be caused
by the fact that the another optimal solution problem requires additional
constraints and programs the two methods have to work with get larger.

Table 1. Results of experiments on data set 1 for the first two problems

optimal solution another optimal solution
nVar Iterative mclasp claspD dlv Iterative mclasp claspD dlv

20 4.14 7.64 1.97 1.46 2.86 5.84 1.80 1.61
30 4.86 8.82 2.52 1.91 4.59 12.64 2.46 2.74
40 6.41 21.03 3.19 2.24 4.81 11.45 3.46 2.48
50 6.79 32.95 3.61 2.92 5.35 13.19 4.11 3.55
60 11.19 500+ 9.48 8.63 9.74 277.73 9.56 8.75
70 12.77 500+ 12.82 7.27 10.67 500+ 12.84 7.30
80 13.99 500+ 11.54 9.92 12.99 500+ 11.50 11.88
90 11.29 500+ 15.33 302.25 9.24 500+ 16.57 301.01

100 11.17 500+ 13.86 129.83 11.03 500+ 14.07 500+
110 14.16 500+ 19.24 179.35 11.08 500+ 21.31 500+
120 14.83 500+ 48.64 500+ 15.11 500+ 51.04 500+

On Optimal Solutions of ASO Problems 565

Table 2. Results of experiments on data set 1 for the last two problems

3-similar optimal solution 8-dissimilar optimal solution
nVar Iterative mclasp claspD dlv Iterative mclasp claspD dlv

20 11.80 6.37 2.16 1.97 11.34 5.56 2.09 1.83
30 97.93 7.13 2.80 2.84 12.70 10.25 3.23 2.46
40 159.74 14.35 3.22 3.50 15.98 38.89 3.04 5.89
50 500+ 25.83 4.19 4.40 24.84 33.92 4.02 4.31
60 500+ 43.75 6.72 6.49 96.35 162.91 8.77 14.53
70 500+ 93.52 7.48 6.80 16.75 500+ 11.62 19.70
80 500+ 122.10 8.26 10.99 66.63 500+ 12.22 16.63
90 500+ 500+ 6.15 8.22 12.33 500+ 11.85 330.39
100 500+ 500+ 7.62 7.33 22.09 500+ 12.60 154.13
110 500+ 500+ 8.09 9.20 73.29 500+ 72.71 34.31
120 500+ 500+ 8.90 12.74 17.08 500+ 58.61 280.67

Next, we tested all approaches on the two remaining problems: 3-similar op-
timal solution, and 8-dissimilar optimal solution. The results are shown
in Table 2. In all approaches we modeled the distance constraints using aggre-
gates. On both problems, the mclasp method does not perform well but slightly
better than on the first two problems. The difference seems to be caused by the
fact that the search space now is slightly smaller (mclasp checks the optimality
as it searches for answer sets already subject to the distance condition). The
iterative method does not perform well on the 3-similar optimal solution
problem (it times out when n ≥ 50) but is the fastest on the 8-dissimilar
optimal solution problem. To find a similar/dissimilar optimal answer set,
the iterative method keeps finding optimal answer sets one by one, remembering
those found along the way until it finds an answer set that satisfies the distance
constraint. For instances with a large number of variables, the constraint that
the distance is ≤ 3 is substantially stricter than that the distance is ≥ 8. As its
“improvement” search is essentially uninformed, the iterative method performs
poorly on the former problem and very well on the latter one. The third method
shows an orthogonal behavior. It works very well on the 3-similar optimal
solution problem but, while still acceptable, much worse on the 8-dissimilar
optimal solution problem. It may be that while a tightly constraint search
space is a problem for the iterative method, which in some way is blind to
the distance constraint until the very end, it is in fact beneficial for the third
method.

The data set 2 is the same as the data set 1, except that preference rules
are now assigned ranks. Half of the rules have rank 1 and the other half have
rank 2. The results of experiments on that data set 2 are shown in Tables 3
and 4. It is evident that except for the iterative method, other methods become
much slower in comparison with their performance on the data set 1. For the
data set 2, because of the ranks, the number of optimal answer sets is much
smaller than for the corresponding instances in the data set 1. Thus, with the
same search space of answer sets, it is much more difficult for mclasp to find an
optimal one. In contrast, the change in the number of optimal answer sets does
not have a major influence on the performance of the iterative method. For the
two implementations of the third method, in the presence of ranks the theory

566 Y. Zhu and M. Truszczynski

Table 3. Results of experiments on data set 2 for the first two problems

optimal solution another optimal solution
nVar Iterative mclasp claspD dlv Iterative mclasp claspD dlv

20 3.74 7.21 15.78 15.87 2.64 5.10 20.57 14.78
30 4.81 21.29 33.61 168.63 4.43 24.01 31.47 179.82
40 6.51 82.28 63.33 61.57 4.68 31.62 63.70 54.61
50 7.70 322.17 93.22 200.35 5.62 72.48 106.79 281.17

Table 4. Results of experiments on data set 2 for the last two problems

3-similar optimal solution 8-dissimilar optimal solution
nVar Iterative mclasp claspD dlv Iterative mclasp claspD dlv

20 7.49 25.80 21.04 24.43 11.10 8.23 19.48 16.36
30 26.59 35.08 33.02 70.41 13.19 19.13 35.59 104.65
40 169.50 100.94 50.53 139.73 6.64 73.46 60.84 326.03
50 450.06 124.11 76.20 152.77 12.23 211.83 107.33 225.17

modeling the “not worse” constraint gets more complicated. That results in a
larger program and poorer performance of claspD and dlv. We observe similar
results for the problems to find a similar/dissimilar optimal answer set. The only
interesting thing to note here is that the iterative method performs better than
in the case of the data set 1. This is due to the smaller number of optimal answer
sets for the corresponding instances. Consequently, there are fewer of them to
search through.

Table 5 shows the results for data set 3, in which the selector of each instance
consists of ranked preference rules extracted from two randomly generated LP-
trees. Because one LP-tree has only one optimal answer set (it defines a total
strict order), most of the instances in this data set have very few optimal answer
sets. The experiments show that all methods perform worse here than on the
corresponding problems for the other two data sets. Because of many levels
of ranks, the performance of claspD and dlv deteriorates rapidly and in most
cases even for relatively small values of n they time out. We do not report
these results here. The other two methods perform better, with the iterative
method performing well on all these problems. In fact, due to a small number of
optimal answer sets, it runs faster for the 3-similar optimal solution, and
8-dissimilar optimal solution problems than it did on instances from the
other two data sets.

Table 5. Results of experiments on data set 3

optimal solution another optimal
solution

3-similar optimal
solution

8-dissimilar optimal
solution

nVar Iterative mclasp Iterative mclasp Iterative mclasp Iterative mclasp
20 6.18 26.35 3.66 8.01 5.21 20.62 5.22 15.50
30 9.61 304.27 6.78 33.28 8.45 46.17 7.83 330.08
40 13.39 500+ 7.02 30.95 7.80 93.98 7.63 500+
50 27.70 500+ 14.92 500+ 16.62 310.89 13.32 500+

On Optimal Solutions of ASO Problems 567

6 Discussion and Conclusions

We studied three kinds of computational problems related to reasoning with
preferences in the ASO formalism: to find an optimal answer set, to find an
alternative optimal answer set, and to find a similar/dissimilar optimal answer
set. We extended results known previously by showing that the problems of de-
ciding the existence of a similar (dissimilar, respectively) optimal answer set are
Σp

2 -complete. In this way, all problems considered are located within the second
level of the polynomial hierarchy. Thus, they can be modeled as disjunctive logic
programs under the answer-set semantics and disjunctive ASP solvers can be
used to solve them. This observation formed the basis of one of the approaches
we developed and experimented with in the paper, employing the solvers claspD
and dlv. We also developed a more naive method of using ASP in which an ASP
solver searches for answer sets and tests them for optimality as it finds them (the
mclasp approach). Finally, we proposed a mix of imperative and declarative ap-
proaches (the iterative method), which consists of an imperative algorithm that
uses ASP solvers for solving some basic optimization tasks that are at the first
level of the polynomial hierarchy.

According to the experimental results, with unranked preferences, the iterative
method works the best for problems to find optimal answer sets. It is due to the
fact that it implements a simple iterative improvement process that is bound
to terminate. Since no additional constraints are required to be satisfied, any
final result is as good as any other. However, when additional requirements are
imposed (like particular distance from another optimal outcome), the method
does not perform well. Instead, the method compiling the entire reasoning task
into a disjunctive logic program (and then using claspD or dlv) is most promising
overall for the problems to find similar/dissimilar optimal answer sets. That
points to the potential of declarative approaches, as they win on that class of
instances with the iterative method, that implements in a procedural way a
reasonable heuristics of zooming in on an optimal answer set. However, even
if there are preferences of two different ranks the picture starts to change and
for instances with very many ranks changes drastically. The method based on
modeling problems as disjunctive logic programs lags much behind the iterative
one, the reason being much larger sizes of programs needed to model comparisons
of interpretations when multiple ranks are present.

Lastly, we note that for the types of preference rules we considered, the it-
erative method works well for the problems of finding an optimal answer set
and an alternative one, once the first one was found. For problems to find simi-
lar/dissimilar answer sets its performance may be negatively affected when the
search space of answer sets is large and the distance constraint is relatively tight.

On the one hand, our work demonstrates the effectiveness of ASP tools
in addressing preference optimization problems. On the other hand, it brings
up classes of challenging benchmarks based on problems that are Σp

2 -complete
(ranked ASO problems) that can stimulate further research on solver enhance-
ments.

568 Y. Zhu and M. Truszczynski

In the future work, we will study possible improvements to our third method
based on disjunctive logic program encodings. We will also consider additional
optimization problems (for instance, finding a set of p diverse optimal answer
sets). Finally, as part of the present work we experimented also with QBF encod-
ings and QBF solvers. The performance of that approach was not satisfactory
mostly due to the fact that the solvers we considered do not provide support
for aggregates. We intend to study QBF encodings with aggregates as well as
extensions to QBF solvers capable to support aggregates.

Acknowledgments. This work was supported by the NSF grant IIS-0913459.

References

1. Booth, R., Chevaleyre, Y., Lang, J., Mengin, J., Sombattheera, C.: Learning con-
ditionally lexicographic preference relations. In: ECAI, pp. 269–274 (2010)

2. Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: IJCAI, pp.
867–872 (2003)

3. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M.,
Schaub, T.: Conflict-driven disjunctive answer set solving. In: KR 2008, pp. 422–
432. AAAI Press (2008)

4. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–
323 (1995)

5. Eiter, T., Erdem, E., Erdoğan, H., Fink, M.: Finding similar or diverse solutions
in answer set programming. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS,
vol. 5649, pp. 342–356. Springer, Heidelberg (2009)

6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: Twentieth International Joint Conference on Artificial Intelligence, IJ-
CAI 2007, pp. 386–392. MIT Press (2007)

7. Goldsmith, J., Junker, U.: Special Issue on Preferences. AI Magazine 29(4) (2008)
8. Kaci, S.: Working with Preferences: Less Is More. Cognitive Technologies. Springer

(2011)
9. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:

The dlv system for knowledge representation and reasoning. ACM Transactions on
Computational Logic 7(3), 499–562 (2006)

10. Marek, V., Truszczynski, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K., Marek, V., Truszczynski, M., Warren, D. (eds.) The
Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Berlin
(1999)

11. Niemelä, I.: Logic programming with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4),
241–273 (1999)

Author Index

Aguado, Felicidad 23
Alcântara, João 518
Alferes, José Júlio 36, 361
Alviano, Mario 42, 54, 67
Ambroz, Thomas 73
Analyti, Anastasia 530
Andres, Benjamin 79, 92
Antić, Christian 102
Antoniou, Grigoris 530
Anwar, Saadat 116

Babb, Joseph 122
Balai, Evgenii 135
Baláž, Martin 512
Balduccini, Marcello 148
Baral, Chitta 116, 161
Barilaro, Rosamaria 168
Baumann, Ringo 174
Becker, Bernd 92
Bhatt, Mehul 290
Bomanson, Jori 187
Borchmann, Daniel 200
Bordron, Philippe 206
Bosser, Anne-Gwenn 427
Brewka, Gerhard 1, 174

Calimeri, Francesco 42
Cavazza, Marc 427
Cerexhe, Timothy 219
Charwat, Günther 42, 73, 233
Chen, Wu 239
Collet, Guillaume 245
Costantini, Stefania 257

Dao-Tran, Minh 42
Delgrande, James 264
Dodaro, Carmine 42, 54
Drescher, Christian 277
Dylla, Frank 290

Eiter, Thomas 102
Eppe, Manfred 290
Eveillard, Damien 206, 245

Faber, Wolfgang 54, 67
Falkner, Andreas A. 465

Fariñas del Cerro, Luis 304
Ferreira, João F. 427
Fink, Michael 102, 168, 317
Formisano, Andrea 257
Friedrich, Gerhard 323, 452, 465
Frühstück, Melanie 323, 452

Galanaki, Chrysida 329
Gebser, Martin 79, 92, 245, 342, 348
Gelfond, Michael 135
Germano, Stefano 317
Glase, Thomas 342
Glaß, Michael 79
Gonçalves, Ricardo 361, 374

Harrison, Amelia 387
Haubelt, Christian 79
Herzig, Andreas 304
Horrocks, Ian 414

Ianni, Giovambattista 42, 233, 317
Inclezan, Daniela 395
Inoue, Katsumi 116, 485

Janhunen, Tomi 187
Ji, Jianmin 401
Jost, Holger 348
Jusits, Andreas 73

Kaminski, Roland 348
Knorr, Matthias 36, 374
Kowalski, Robert 11
Krennwallner, Thomas 42, 233
Kronegger, Martin 42, 233
Krötzsch, Markus 414

Lee, Joohyung 122
Leite, João 374, 512
Leone, Nicola 54, 524
Lierler, Yuliya 148
Lifschitz, Vladimir 387
Lin, Fangzhen 401

Maass, Alejandro 206
Magka, Despoina 414
Martello, Alessandra 524
Martens, Chris 427

570 Author Index

Mikitiuk, Artur 433
Moniz Pereira, Lúıs 479

Nomikos, Christos 329

Obermeier, Philipp 348
Oetsch, Johannes 42

Pagnucco, Maurice 439
Peppas, Pavlos 264
Pérez, Gilberto 23
Pfandler, Andreas 42, 233
Polleres, Axel 452
Prigent, Sylvain 245
Pührer, Jörg 42, 323

Rajaratnam, David 439
Redl, Christoph 42, 233, 317
Reimann, Felix 79
Ricca, Francesco 42, 54, 168
Rondogiannis, Panos 329
Ryabokon, Anna 465

Sá, Samy 518
Sabuncu, Orkunt 219, 342, 348
Saptawijaya, Ari 479
Sauer, Matthias 92
Schaub, Torsten 79, 92, 245, 342, 348
Schenner, Gottfried 452
Schneider, Marius 348
Schneider, Patrik 42
Schubert, Tobias 92

Schüller, Peter 148, 317, 499
Schwengerer, Martin 42, 233
Schwind, Nicolas 485
Siegel, Anne 206, 245
Slota, Martin 374, 512
Spendier, Lara Katharina 42, 233
Strass, Hannes 439
Su, Ezgi Iraz 304

Terracina, Giorgio 168, 524
Thiele, Sven 206, 245
Thielscher, Michael 219, 439
Truszczynski, Miroslaw 387, 433, 556

Vidal, Concepción 23
Viegas Damásio, Carlos 530
Vo, Nguyen H. 161

Wallner, Johannes Peter 42, 73, 233
Walsh, Toby 277
Wang, Kewen 36, 543
Wang, Yisong 543
Woltran, Stefan 73, 264
Wu, Maonian 239

Xiao, Guohui 42, 233

Zhang, Dongmo 239
Zhang, Yuanlin 135
Zhu, Ying 556
Zhuang, Zhiqiang 543

	Preface
	Organization
	Table of Contents
	Towards Reactive Multi-Context Systems
	1 Introduction
	2 Nonmonotonic Multi-Context Systems
	3 Managed MCS: Beyond Information Flow
	4 Reactive MCS: A Sketch
	5 Reactive ASP: A Bottom Up Approach
	6 Discussion and Future Work
	References

	Logic Programming in the 1970s
	1 What is Logic Programming?
	2 The Prehistory of Logic Programming
	2.1 Resolution
	2.2 Procedural Representations of Knowledge
	2.3 Improved Resolution Proof Procedures

	3 The Procedural Interpretation of Horn Clauses
	3.1 The Relationship with Formal Grammars
	3.2 Horn Clauses and SLD-Resolution
	3.3 Logic + Control

	4 The Semantics of Horn Clause Programs
	4.1 What Is the Meaning of a Program?
	4.2 Fixed Point Semantics
	4.3 Minimal Model Semantics

	5 Negation as Failure
	5.1 The Clark Completion
	5.2 The Analogy with Arithmetic

	6 Where Did We Go from Here?
	References

	Integrating Temporal Extensions of Answer Set Programming
	1 Introduction
	2 Dynamic Temporal Equilibrium Logic
	3 Embedding TEL
	4 Embedding TAS
	5 Computation of Temporal Equilibrium Models
	6 Conclusions
	References

	Forgetting under the Well-Founded Semantics
	1 Introduction
	2 Preliminaries
	3 Forgetting under the Well-Founded Semantics
	4 Computation of Forgetting
	4.1 Na¨ıve Semantics-Based Algorithm
	4.2 Query-Based Algorithm
	4.3 Forgetting as Program Transformations

	5 Conclusions
	References

	The Fourth Answer Set Programming Competition: Preliminary Report
	1 Introduction
	2 Format of the Fourth ASP Competition
	3 Competition Language Overview
	4 Benchmark Suite
	5 Participants
	References

	WASP: A Native ASP Solver Based on Constraint Learning
	1 Introduction
	2 Preliminaries
	3 Answer Set Computation
	3.1 Main Algorithm
	3.2 Propagation
	3.3 Constraint Learning
	3.4 Heuristics

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	The Complexity Boundary of Answer Set Programming with Generalized Atoms under the FLP Semantics
	1 Introduction
	2 Syntax and Semantics
	3 Main Complexity Result
	4 Discussion
	References

	ARVis: Visualizing Relationsbetween Answer Sets
	1 Introduction
	2 Answer Set Relationship Visualizer
	3 Case Study: Abduction
	4 Conclusion
	References

	Symbolic System Synthesis Using Answer Set Programming
	1 Introduction
	2 Related Work
	3 Symbolic System Synthesis
	4 ASP-Based System Synthesis
	5 Experiments
	6 Conclusion
	References

	Accurate Computation of Sensitizable Paths Using Answer Set Programming
	1 Introduction
	2 ASP Encoding
	3 Experimental Results
	4 Conclusions
	References

	HEX Semantics via Approximation Fixpoint Theory
	1 Introduction
	2 Preliminaries
	2.1 HEX Programs
	2.2 Approximation Fixpoint Theory

	3 Fixpoint Semantics for Normal HEX Programs
	3.1 Answer-Set Semantics
	3.2 Well-Founded Semantics

	4 Fixpoint Semantics for Disjunctive HEX Programs
	4.1 Non-deterministic Approximations and Computations
	4.2 Answer-Set Semantics

	5 Related Work
	6 Discussion and Conclusion
	References

	Encoding Higher Level Extensionsof Petri Nets in Answer Set Programming
	1 Introduction
	2 Fundamentals
	3 Translating Petri Nets with Colored Tokens to ASP
	4 Extensions
	5 Example Use of Our Encoding and Reasoning Abilities
	References

	Cplus2ASP: Computing Action Language C+in Answer Set Programming
	1 Introduction
	2 FromC + to ASP
	2.1 Review: Multi-valued Propositional Formulas
	2.2 C+ as Multi-valued Propositional Formulas under SM
	2.3 Translating Multi-valued Propositional Formulas to Propositional Formulas under SM
	2.4 Incremental Computation of

	3 SystemCplus2ASP v2
	3.1 Running Modes of System Cplus2ASP v2
	3.2 Lua in System Cplus2ASP v2

	4 Experiments
	5 Conclusion
	References

	Towards Answer Set Programming with Sorts
	1 Introduction
	2 Syntax and Semantics of
	2.1 Discussion

	3 Checking the Program Syntax
	4 Empty Rule Checking
	5 Computing Answer Sets of a
	Program
	6 Conclusion
	References

	Prolog and ASP Inference under One Roof
	1 Introduction
	2 Hybrid Programs
	3 Review: Abstract Answer Set Solver
	4 AbstractQUERY+
	5 The “blackbox”
	6 Experimental Domains and Results
	7 Conclusions
	References

	Event-Object Reasoning with CuratedKnowledge Bases: Deriving Missing Information
	1 Introduction
	2 Background: Frame-Based Knowledge Bases; ASP
	3 Knowledge Description Graphs
	4 Reasoning about Missing Info. in KDGs
	5 Entity Resolution and Finding the Possible Next Events
	6 ASP Encodings
	7 Conclusion and Discussion
	References

	Towards Query Answering in Relational Multi-Context Systems
	1 Introduction
	2 Preliminaries
	3 Query Answering for MCS
	4 Computing Query Answers
	5 Proof-of-Concept Prototype and Preliminary Evaluation
	6 Conclusion
	References

	Spectra in Abstract Argumentation: An Analysis of Minimal Change
	1 Introduction
	2 Background
	3 The Spectrum Problem
	3.1 The (st, ss, pr,Φ)-Spectrum (Φ ∈ {E,N,S})
	3.2 Properties of the (st, ss, pr,W)-Spectrum
	3.3 A Note on the (st, ss, pr,U)-Spectrum

	4 Related Work and Conclusions
	References

	Normalizing Cardinality Rules Using Merging and Sorting Constructions
	1 Introduction
	2 Preliminaries
	3 Basic Building Blocks: Mergers and Sorters
	4 Normalization of Cardinality Rules
	5 Correctness Considerations
	6 Experiments
	7 Conclusions
	References

	Experience Based Nonmonotonic Reasoning
	1 Introduction
	2 Formal Concept Analysis
	3 Nonmonotonic Reasoning in Formal Contexts
	4 Non-monotonic Rules
	5 Conclusions and Future Research
	References

	An ASP Application in Integrative Biology:Identification of Functional Gene Units
	1 Introduction
	2 An Integrated Model: Identifying Functional Gene Units
	3 Genome Segments, an Alternative Approach to Identify Functional Gene Units
	4 ASP Encoding
	5 Enumerating Shortest Genome Segments
	6 Experiments and Results
	7 Discussion
	References

	Evaluating Answer Set Clause Learningfor General Game Playing
	1 Introduction
	2 Game Description Language
	3 Logic Programming,
	and reactive ASP
	4 Translation
	5 Method
	6 Results
	7 Conclusion
	References

	VCWC: A Versioning Competition Workflow Compiler
	1 Introduction
	2 Modeling a Competition
	3 Implementation of the VCWC System
	4 Discussion and Conclusions
	References

	A Sequential Model for Reasoning about Bargaining in Logic Programs
	1 Introduction
	2 The Bargaining Model
	3 Sequential Bargaining Procedures
	4 Construction of Bargaining Procedure
	5 Conclusion
	References

	Extending the Metabolic Network ofEctocarpus Siliculosus Using Answer Set Programming
	1 Introduction
	2 Metabolic Network Completion
	3 Reversible Reactions
	4 Experiments
	4.1 Reconstruction of the Metabolic Network of
	4.2 Study of Scalability

	5 Conclusions
	Reference

	Negation as a Resource: A Novel View on Answer Set Semantics
	1 Introduction
	2 Background on Linear Logic and ASP, and on Their Relationship
	3 Negation as a Resource: A Novel View on Answer Set Semantics
	4 Concluding Remarks
	References

	AGM-Style Belief Revision of Logic Programs under Answer Set Semantics
	1 Introduction
	2 Background and Formal Preliminaries
	2.1 Answer Set Programming
	2.2 Belief Revision
	2.3 Belief Change in Logic Programming

	3 Recasting Belief Revision in Terms of Answer Set Programs
	4 Belief Revision of Answer Set Programs
	5 Iteration and GLP Belief Revision
	6 Conclusion
	References

	Efficient Approximation ofWell-Founded Justification and Well-Founded Domination
	1 Introduction
	2 Preliminaries
	3 Dominators in the Support Flowgraph
	4 Well-Founded Domination
	5 Propagating Reachability in ASP
	6 Experiments
	7 Related Work
	8 Conclusions
	References

	Approximate Epistemic Planning with Postdiction as Answer-Set Programming
	1 Introduction
	2 Related Work
	3 h-Approximation and Its Translation to ASP
	3.1 Translation Rules: (
	3.2 Γhapx – Foundational Theory (F1–F5)
	3.3 Plan Extraction from Stable Models
	3.4 Complexity of h-Approximation
	3.5 Translation Optimizations

	4 A Temporal Query Semantics for
	5 Evaluation and Case-Study
	6 Conclusion
	References

	Combining Equilibrium Logic and Dynamic Logic
	1 Introduction
	2 A Dynamic Extension of
	Logic and of Equilibrium Logic
	2.1 The Language
	2.2 Dynamic Here-and-There Logic
	2.3 Dynamic Equilibrium Logic

	3 DL-PA: Dynamic Logic of Propositional Assignments
	3.1 Language
	3.2 Semantics
	3.3 Complexity of the Full Language
	3.4 Complexity of the Star-Free Fragment

	4 RelatingD-HT and DL-PA
	4.1 Copying Propositional Variables
	4.2 Useful
	4.3 Translating
	4.4 From
	4.5 From Dynamic Equilibrium Logic to
	4.6 From

	5 Conclusion
	References

	ActHEX: Implementing HEX Programs with Action Atoms
	1 Introduction
	2 Preliminaries
	3 Conceptual Improvements to the
	4 System Architecture and Implementation
	5 Application and Evaluation
	6 Conclusion
	References

	Debugging Answer-Set Programswith Ouroboros – Extending the SeaLion Plugin
	1 Introduction
	2 Backend
	3 Usage and Graphical User Interface
	3.1 Debug Configurations
	3.2 Debugging Explanation View
	3.3 Additional Features in the Interpretation View

	4 Conclusion
	References

	Game Semantics for Non-monotonic IntensionalLogic Programming
	1 Introduction
	2 Preliminaries
	2.1 Intensional Logic Programming
	2.2 Infinite Games of Perfect Information

	3 The Game for Monotonic Intensional Logic Programs
	4 The Extended Game
	5 Conclusions
	References

	Matchmaking with Answer Set Programming
	1 Introduction
	2 Matchmaking Scheduling
	3 Matchmaking Scheduling in ASP
	4 Experiments
	5 Discussion
	References

	Ricochet Robots: A Transverse ASP Benchmark
	1 Introduction
	2 EncodingRicochet
	2.1 Fact Format
	2.2 Plain Encoding
	2.3 Advanced Encoding
	2.4 Output Format and Visualization

	3 Experimental Case Studies
	3.1 Encodings and Configurations
	3.2 ASP Solving Technologies

	4 Discussion
	References

	Decidability and Implementationof Parametrized Logic Programs
	1 Introduction
	2 Parametrized Logic Programs
	2.1 Language
	2.2 Semantics
	2.3 Examples

	3 Decidability and Implementation
	4 Conclusions and Future Work
	References

	Non-monotonic Temporal Goals
	1 Introduction
	2 Logic of Beliefs and Goals
	2.1 Linear Temporal Logic
	2.2 Logic of Beliefs and Goals

	3 Non-monotonic Belief and Goal Specification
	3.1 Belief and Goal Bases
	3.2 Semantics

	4 Properties
	5 Decidability and Implementation
	6 Related Work
	7 Conclusions and Future Work
	References

	On Equivalent Transformations of InfinitaryFormulas under the Stable Model Semantics
	1 Introduction
	2 Stable Models of Infinitary Propositional Formulas
	3 Basic Infinitary System of Natural Deduction
	4 MainTheorem
	5 Some Useful Properties of the Basic System
	6 Examples Involving Aggregates
	7 Future Work
	References

	An Application of ASP to the Fieldof Second Language Acquisition
	1 Introduction
	2 An Analysis of IP Based on Its ASP Model
	3 Automating the Predictions of IP
	4 The System
	5 Conclusions
	References

	Turner’s Logic of Universal Causation,Propositional Logic, and Logic Programming
	1 Introduction
	2 Preliminaries
	2.1 Propositional Languages
	2.2 Turner’s Logic of Universal Causation
	2.3 Logic Programming

	3 From Turner’s Logic of Universal Causation to Propositional Logic
	4 From Turner’s Logic of Universal Causation to Logic Programming
	5 Related Work
	5.1 Turner’s Conversion from a Fragment of UCL to Disjunctive
	5.2 Ferraris’s Translation from Causal Theories to Logic Programs
	5.3 Lee’s Translation from Causal Theories to Propositional Theories with Loop Formulas

	6 Conclusion
	References

	Concrete Results on Abstract Rules
	1 Introduction
	2 Abstract Rules and Models
	3 Constructing Abstract Rules
	4 Strong Equivalence of Abstract Programs
	5 Reliances and Stratifications
	6 Computing Stable Models of Stratified Rule Sets
	7 Stratifying Programs with Equality
	8 Conclusions
	References

	Linear Logic Programming for NarrativeGeneration
	1 Introduction
	2 Related Works
	3 Programming a Narrative
	3.1 A Celf Program Describing a Narrative
	3.2 Identification of Narrative Elements
	3.3 Generated Plots

	4 Conclusion
	References

	Implementing Informal Semantics of ASP
	1 Introduction
	2 The Implementation of the Program
	3 Results
	4 Discussion and Future Work
	References

	Implementing Belief Change in the SituationCalculus and an Application
	1 Introduction
	2 Technical Preliminaries
	2.1 Situation Calculus
	2.2 Iterated Belief Revision in the Situation Calculus

	3 Formalisation in the Situation Calculus
	4 A Default Logic Approach
	5 Equivalence of the Two Approaches
	6 Conclusions
	References

	Debugging Non-ground ASP Programs with Choice Rules, Cardinality andWeight Constraints
	1 Introduction
	2 Preliminaries
	3 Translation to Normal Rules
	3.1 Extending the Translation by Weights

	4 Evaluation
	5 Debugging with Ouroboros
	6 Conclusions
	References

	Conflict-Based Program Rewriting for Solving Configuration Problems
	1 Introduction
	2 Rewriting of Existential Rules
	2.1 Preliminaries
	2.2 Conflict-Based Program Rewriting
	2.3 Rewriting of Multiple TGDs

	3 Implementation
	4 Evaluation
	5 Conclusions and Future Work
	References

	Program Updating by Incremental and Answer Subsumption Tabling
	1 Introduction
	2 The EVOLP/R Language
	3 Implementing EVOLP/R in Tabled Logic Programming
	4 Concluding Remarks
	References

	Characterization Theorems for Revisionof Logic Programs
	1 Introduction
	2 Preliminaries
	2.1 Belief Revision in Propositional Logic
	2.2 Logic Programming

	3 Logic Program Revision Operators
	4 Characterization of GLP Revision Operators
	5 GLP Revision Operators Embedded into Boolean Lattices
	6 Conclusion and Perspectives
	References

	Flexible Combinatory Categorial Grammar Parsing Using the CYK Algorithm and Answer Set Programming
	1 Introduction
	2 Preliminaries
	3 Realizing CCG Parsing with CYK in Answer Set Programming
	3.1 Building a CYK Chart via ASP Grounding
	3.2 Enumerating Parse Trees

	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	Early Recovery in Logic Program Updates
	1 Introduction
	2 Preliminaries
	3 Early Recovery Principle
	References

	Preference Handlingfor Belief-Based Rational Decisions
	1 Introduction
	2 Preferences as Utility + Beliefs
	3 Beliefs about Preferences
	4 On Multiple Preference Profiles
	5 Making Decisions
	6 Decisions under Uncertainty
	7 Related Work
	8 Conclusions and Future Work
	References

	Logic-Based Techniquesfor Data Cleaning: An Applicationto the Italian National Healthcare System
	1 Introduction
	2 A Logic-Based Approach for Data Cleaning
	3 Application to the AIRTUM Use Case
	4 Conclusion
	References

	Justifications for Logic Programming
	1 Introduction
	2 Preliminaries and Background
	3 Provenance for Definite Logic Programming
	4 Provenance for Well-Founded Semantics
	5 Provenance for Answer Set Semantics
	6 Discussion and Conclusions
	References

	Belief Change in Nonmonotonic Multi-Context Systems
	1 Introduction
	2 Preliminaries
	2.1 Classical Belief Revision
	2.2 NonmonotonicMulti-Context Systems

	3 Belief Change for Nonmonotonic Multi-Context Systems
	3.1 Expansion
	3.2 Revision
	3.3 Contraction

	4 Discussion and Conclusion
	References

	On Optimal Solutions of Answer SetOptimization Problems
	1 Introduction
	2 Preliminaries
	3 Problems and Complexity
	4 Computational Methods
	4.1 Iterative Method
	4.2 Modified clasp
	4.3 The Disjunctive Logic Program Encoding

	5 Experiments and Analysis
	6 Discussion and Conclusions
	References

	Author Index

