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Abstract. The normal operation of synchronous modules may be tem-
porarily suspended or finally aborted due to requests of their environ-
ment. Hence, if a temporal logic specification has already been verified
for a synchronous module, then the available verification result can typ-
ically only be used if neither suspension nor abortion will take place.
Also, the simulation of synchronous modules has to be finally aborted so
that temporal logic specifications referring to infinite behaviors cannot
be completely answered. In this paper, we therefore define transforma-
tions on temporal logic specifications to lift available verification results
for synchronous modules without suspension or abortion to refined tem-
poral logic specifications that take care of these preemption statements.
This way, one can establish simulation and modular verification of syn-
chronous modules in contexts where preemptions are used.

1 Introduction

Reactive systems have been introduced as a special class of systems that have an
ongoing interaction with their environment [11]. Their execution is divided into
reaction steps, where the system reads inputs from the environment and reacts
by computing the corresponding outputs. In contrast to interactive systems, the
environment is allowed to initiate the interactions at any time, so that reactive
systems usually have to work under real-time constraints. Typical examples are
synchronous hardware circuits, many protocols, and many embedded and cyber-
physical systems.

For the design of reactive systems, synchronous languages have been devel-
oped [9,3] whose paradigm directly reflects the reactive nature of the systems
they describe. In addition to the explicit notion of reaction steps, languages
like Esterel [4] and Quartz [15] offer many convenient statements for the design
of reactive systems. One class of such statements are preemption statements
for abortion and suspension that overwrite the normal behavior of the system
when a specified condition holds. For example, the abortion statement abort S
when(σ) behaves as its body statement S as long as the condition σ is false, and
immediately terminates when σ holds. The suspension statement suspend S
when(σ) also behaves as its body statement S as long as the condition σ is false,
and suspends the computation in each step where σ holds. Both preemption
statements can moreover be weak or strong which makes a difference on their
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influence on the control and data flow of the controlled statement S: While the
weak versions allow the data flow actions to take place even if the condition σ
holds, the strong versions also block the data flow.

Since reactive systems are often used in safety-critical applications, their func-
tional correctness is of essential importance. For this reason, simulation and for-
mal verification are routine steps in their design flows, and in particular, model
checking is often used for these systems. However, due to the well-known state
space explosion problem, a modular or compositional verification [7,6] is desired
where modules can be replaced by their already verified properties. Large reac-
tive systems can only be verified by modular or compositional approaches despite
the tremendous progress on model checking procedures we have seen in the past
two decades. Another reason for modular verification is that modules are de-
fined for being reused later on, and therefore the effort for formal verification
amortizes when one can simply reuse also the already verified properties.

However, it is clear that calling a module S in a preemption statement changes
the behavior, so that temporal properties that hold for S may no longer be valid
for the entire statement. It is therefore unclear how one can reuse available veri-
fication results for the statement S, which leads to the central question answered
by this paper: ‘What can we say about temporal properties of (weak)abort
S when(σ) or (weak)suspend S when(σ), when we know that S satisfies a
temporal property ϕ?’

In this paper, we therefore define transformations to map a temporal logic
formula ϕ to modified temporal logic formulas Θwk

ab (ϕ, σ), Θ
st
ab(ϕ, σ), Θ

wk
sp (ϕ, σ),

Θst
sp(ϕ, σ) such that these formulas hold for weak abort S when(σ), abort S

when(σ), weak suspend S when(σ), and suspend S when(σ), respectively,
provided that S satisfies ϕ. It is clear that these formulas are equivalent to ϕ if
σ is false, and that ‘as much as possible’ of ϕ should be retained.

The results we present in this paper are not only useful for modular verifica-
tion, which is our main interest. In [2], the authors considered the problem to
make specifications for the simulation of reactive systems, which is difficult since
the simulation has to be aborted after some finite time, so that properties that
refer to the infinite behavior of the system cannot be completely answered. Our
results can be also used for simulation in preemption contexts.

In [8], we already established modular verification techniques for synchronous
programs. There a preemption context was simulated by introducing new in-
put variables for the verification task. Hence, some assumptions about the con-
text were made during the verification of a module. In this paper, however,
we lift a given verification result M |= ϕ where M does not consider any
preemption statement to new results Θwk

ab (M, σ) |= Θwk
ab (ϕ, σ), Θ

st
ab(M, σ) |=

Θst
ab(ϕ, σ), Θ

wk
sp (M, σ) |= Θwk

sp (ϕ, σ), Θ
st
sp(M, σ) |= Θst

sp(ϕ, σ) where Θwk
ab (M, σ),

Θst
ab(M, σ), Θwk

sp (M, σ), Θst
sp(M, σ) are weak abort M when(σ), abort M

when(σ), weak suspendM when(σ), and suspendM when(σ), respectively.
Thus, concerning preemption statements, the results presented here are stronger
since they allow us to introduce preemption in the module even if it has not
been considered there from the beginning.
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The outline of our paper is as follows: Section 2 explains the syntax and se-
mantics of the linear temporal logic (LTL), the representation of synchronous
systems by guarded actions and transition systems, and defines the preemp-
tions Θwk

ab (G, σ), Θst
ab(G, σ), Θwk

sp (G, σ), and Θst
sp(G, σ) for a set of guarded actions

G. Then, in Section 3 the transformations Θwk
ab (ϕ, σ), Θ

st
ab(ϕ, σ), Θ

wk
sp (ϕ, σ), and

Θst
sp(ϕ, σ) are defined and correctness proofs are given. Section 4 illustrates our

approach.

2 Preliminaries

This section introduces the temporal logic LTL, the representation of synchronous
systems by synchronous guarded actions, and their represented state transition
systems as foundations for our transformations.

2.1 Syntax and Semantics of LTL

For specifications, we consider linear temporal logic, since it is well-known that
branching time logics like CTL do not lend themselves well for modular verifi-
cation [12]. Given a finite set of variables V , the following grammar rules with
starting symbol S define the formulas of the temporal logic LTL.

S ::= AP P ::= 0 | 1 | V | ¬P | P ∧ P | P ∨ P | XP | [P U P ] | [P U P ]

The symbol S represents thereby state formulas and P represents the path for-
mulas. Similar to preemption statements, [ϕ U ψ] is often called the ‘strong un-
til’ while [ϕ U ψ] is called the ‘weak until’ operator. It is well-known that these
operators are sufficient to define LTL, but for convenience, we may also intro-
duce further operators like Gϕ := [ϕ U 0] (always), Fϕ := [1 U ϕ] (eventual),
[ϕW ψ] := [¬ψ U ϕ ∧ ψ)] (weak when), and [ϕ W ψ] := [¬ψ U (ϕ ∧ ψ)] (strong
when). Their meaning is defined on state transition systems.

Definition 1 (Transition Systems). A transition system T = (S, I,R,L)
for a finite set of variables V is given by a finite set of states S ⊆ 2V , a set
of initial states I ⊆ S, a transition relation R ⊆ S × S, and a label function
L : S → 2V that maps each state to the set of variables that hold in this state.

An infinite path is a function π : N→ S with (π(t), π(t+1)) ∈ R, where we denote
the t-th state of the path π as π(t−1) for t ∈ N. The semantics of path formulas
of a transition system T is defined by the relation (T , π, t) |= ϕ that defines if
a path formula ϕ holds on position t of a path π of a transition system T (see
e. g. [14] for a full definition).

– (T , π, t) |= p holds iff p ∈ L(π(t)) for every p ∈ V
– (T , π, t) |= Xϕ holds iff (T , π, t+ 1) |= ϕ
– (T , π, t) |= [ϕ U ψ] holds iff there is a δ such that (T , π, t + δ) |= ψ and for all
x < δ, we have (T , π, t+ x) |= ϕ

– (T , π, t) |= [ϕ U ψ] holds iff (T , π, t) |= [ϕ U ψ] or for all x, we have (T , π, t+x) |= ϕ.

Aϕ holds in a state s of T if all paths π starting in s satisfy (T , π, 0) |= ϕ. Finally,
a transition system T satisfies a LTL formula AΦ if all initial states satisfy Φ, in
this case, we write T |= AΦ.
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2.2 The Synchronous Model of Computation

The execution of synchronous languages [9,3] is divided into a discrete sequence
of reaction steps that are also called macro steps. Within each macro step, the
system reads all inputs and instantaneously generates all outputs depending on
the current state and the read inputs. Also, the next state is computed in parallel
to the current outputs. There are many synchronous languages including Esterel
[4], Quartz [15], Lustre [10], Signal [13], and SyncCharts [1]. In the following, we
do not focus on a particular synchronous language, and therefore use synchronous
guarded actions as an intermediate representation for any synchronous language.
An example for generating guarded actions for a Quartz program is presented
in [8] while [5,15] describes the general compilation.

Definition 2 (Synchronous Guarded Actions). A synchronous system over
input Vi, label Vl, state Vs, and output variables Vo is defined by a set of guarded
actions. A guarded action is thereby a pair γ ⇒ α consisting of a boolean con-
dition γ called the trigger of the guarded action and its action α. Actions are
either immediate assignments x = τ or delayed assignments next(x) = τ where
x ∈ Vl ∪ Vs ∪ Vo.

The intuitive meaning of synchronous guarded actions is a state transition system
over the variables V := Vi∪Vl ∪Vs∪Vo (see Definition 1). A state s is thereby a
valuation of variables to their respective values and the transition relation will
be formally defined below. Intuitively, the meaning is that whenever the guard
is true in a state s, the action is fired, which means that the corresponding
equation must be true. In case of an immediate assignment x = τ this means
that in state s, variable x must have the same value as τ , and for a delayed
assignment next(x) = τ , it means that in all successor states s′, variable x
must have the value that τ has on s. Whenever there is no guarded action that
determines the value of a variable, a default action takes place. This default
reaction assigns a default value for event variables, and the previous value for
memorized variables. Input and label variables are always event variables, while
state and output variables may be event or memorized variables. Both kinds of
variables are important for the convenient modeling of reactive systems.

Furthermore, we partition the set of guarded actions into control and data
flow actions, which will be important for defining strong and weak preemptions.

Definition 3 (Control and Data Flow). The control flow are guarded actions
writing a label variable Vl, while the data flow are guarded actions writing a state
variable Vs or an output Vo. We assume that guarded actions of the control flow
have the form γ ⇒ next(�) = true.

Label variables Vl correspond with places in the program where the control flow
can rest between the macro steps, i.e., these labels denote places in the program
code where a macro step ends and where another one starts. By construction,
these labels are translated to boolean variables where only guarded actions as
shown above are obtained. Since labels are event variables, they will be auto-
matically reset to false if there is no assignment making them true.
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The above informal remarks lead to the following formal definition of a state
transition system. The aim is to generate boolean formulas for the initial state
condition and the transition relation that can be directly used for model check-
ing. To this end, we first define some auxiliary functions.

Definition 4 (Reactions per Variable). Assume that for a variable x ∈ V,
we have the guarded actions (γ1, x = τ1), . . . , (γp, x = τp) with immediate and
(χ1,next(x) = π1), . . . , (χq,next(x) = πq) with delayed assignments. Then,
we define the following boolean formulas over V ∪ V ′, where v′ ∈ V ′ represents
the variable v ∈ V in the next step/state and Initial(x) denotes the initial value of
variable x that is 0 for integers and false for booleans. Additionally, we make
use of the substitution 〈ϕ〉V′

V that replaces all occurrences of a variable v ∈ V in
ϕ by the corresponding variable v′ ∈ V ′.

– Default(x) :=

{
Initial(x) : if x is an event variable
x : if x is a memorized variable

– ImmActs(x) :=
∧p

j=1(γj → x = τj)

– DelActs(x) :=
∧q

j=1(χj → x′ = πj)

– InitDefActs(x) :=
(∧p

j=1 ¬γj
)
→ x = Initial(x)

– NextDefActs(x) :=
〈∧p

j=1 ¬γj
〉V′

V
∧
(∧q

j=1 ¬χj

)
→ x′ = Default(x)

We will use the above formulas to construct now an initial state condition I and
the transition relation R of a transition system.

Definition 5 (Symbolic Representation of Systems). For a synchronous
system over the variables V consisting of input Vi, label Vl, state Vs, and output
variables Vo, the transition system T := (S, I,R,L) is defined by the states
S = 2V , L(s) := s, the following initial state condition I, and the state transition
relation R, where Vwrite := Vl ∪ Vs ∪ Vo denotes the writable variables.

– I :=
∧

x∈Vwrite
ImmActs(x) ∧

∧
x∈Vwrite

InitDefActs(x)
– R :=

∧
x∈Vwrite

ImmActs(x) ∧
∧

x∈Vwrite
DelActs(x) ∧

∧
x∈Vwrite

NextDefActs(x)

Whenever one of the guards γi of an immediate assignment γi ⇒ x = τi holds
in the definition of R, then the equation x = τi must hold, since the assignment
has an immediate effect. Analogously, if a guard χi of a delayed assignment
χi ⇒ next(x) = πi holds, then the equation x′ = πi that defines the value for x
in the next step must hold. The value of x is determined by the default action if
no guard χi held in the previous step and no guard γi holds in the current step.

2.3 Preemption Statements

In the following, we describe the semantics of the four different preemption
statements ((weak)abort, (weak)suspend) used in Quartz1.

1 We only consider the immediate variants of these statements in this paper that
observe the preemption condition also in the first macro step of the statement while
other variants omit the starting point of time. All results presented here can be easily
transferred to the omitted delayed variants as well.
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Definition 6 (Preemption of Synchronous Systems). Given guarded ac-
tions G of a synchronous system over input Vi, label Vl, state Vs, and output
variables Vo. Then, the weak/strong abortion and weak/strong suspension with a
condition σ is obtained by modifying the guarded actions as follows to obtain syn-
chronous systems Θst

ab(G, σ), Θwk
ab (G, σ), Θst

sp(G, σ), and Θwk
sp (G, σ), respectively.

preemption control flow data flow
(γ ⇒ next(�) = true) ∈ G (γ ⇒ α) ∈ G

strong abort σ Θst
ab(G, σ) ¬σ ∧ γ ⇒ next(�) = true ¬σ ∧ γ ⇒ α

weak abort σ Θwk
ab (G, σ) ¬σ ∧ γ ⇒ next(�) = true γ ⇒ α

strong suspend σ Θst
sp(G, σ) (¬σ ∧ γ) ∨ (� ∧ σ) ⇒ next(�) = true ¬σ ∧ γ ⇒ α

weak suspend σ Θwk
sp (G, σ) (¬σ ∧ γ) ∨ (� ∧ σ) ⇒ next(�) = true γ ⇒ α

The table shows that the guarded actions of the data flow are only modified by
the strong preemption statements since weak preemption allows data actions to
take place at the time of preemption. Moreover, weak and strong abortions have
the same effect on the control flow. Abortion statements disable all assignments
to control flow labels � so that the control flow leaves the system in case of
abortion. During a suspension, the control flow is kept and does not move to
other labels.

In addition, any preemption context represented by the transition system
T ′ := (S ′, I ′,R′,L′) changes the behavior only if σ holds. Hence on a path π
where no preemption takes place (∀i.π(i) �|= σ), the behavior of T ′ is equivalent
to the original transition system T := (S, I,R,L). Hence, it is clear that we
have S ⊆ S ′, I ⊆ I ′ and R ⊆ R′, which allows us to apply the following lemma:

Lemma 1. Let T = (S, I,R,L) and T ′ = (S ′, I ′,R′,L′) be two transition
systems where S ⊆ S ′, I ⊆ I ′, R ⊆ R′, and L(ϑ) = L′(ϑ) holds for any state
ϑ ∈ S. Then, there exists a simulation relation 
 between T and T ′.

Proof. Simply define the simulation relation 
 as follows: ϑ1 
 ϑ2 :⇔ ϑ1 = ϑ2,
i.e. 
 is the identity relation that satisfies the simulation relation properties.

3 Making LTL Specifications Preemptive

In general, a temporal logic formula ϕ that holds in a synchronous system given
by its guarded actions G will no longer be valid in one of the systems Θst

ab(G, σ),
Θwk

ab (G, σ), Θst
sp(G, σ), and Θwk

sp (G, σ). For example, the system G = {true ⇒
next(�) = true, � ⇒ c = i} with Vi = {i}, Vl = {�}, and Vo = {c} is modified
to Θst

ab(G, abrt) = {¬abrt ⇒ next(�) = true,¬abrt ∧ � ⇒ c = i}. There-
fore, the LTL specification A G (c↔i) that holds on G is no longer satisfied
in Θst

ab(G, abrt). However, a specification like A [(c↔ i) U abrt] holds, which
states that c is equivalent to i until an abortion takes place.

In the following, we define transformationsΘst
ab(ϕ, σ), Θ

wk
ab (ϕ, σ),Θ

st
sp(ϕ, σ), and

Θwk
sp (ϕ, σ) for temporal logic formulasϕ so that we establish the followingmodular

proof rules. These rules allow us to reason about a satisfied temporal logic property
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(e.g. Θst
ab(ϕ, σ)) of a system in a preemption context (e.g. Θst

ab(G, σ)), in case the
property ϕ has already been proved for G. Since we want to use our rules in an
interactive verification tool that considers systems defined by guarded actions, we
define these rules directly on guarded actions. Nevertheless, the correctness proofs
will use the equivalent representation of transition systems that we defined in the
previous section.

G |= ϕ
Θst

ab(G, σ) |= Θst
ab(ϕ, σ)

G |= ϕ

Θwk
ab (G, σ) |= Θwk

ab (ϕ, σ)

G |= ϕ DFNxtEvtFree(G)
Θst

sp(G, σ) |= Θst
sp(ϕ, σ)

G |= ϕ

Θwk
sp (G, σ) |= Θwk

sp (ϕ, σ)

The upper part defines the assumptions of the rule, the lower part defines the
conclusions that hold by the rule. The condition DFNxtEvtFree(G) and the trans-
formation Θst

sp(ϕ, σ) are explained in Section 3.2.
To this end, we assume without loss of generality that the given specification ϕ

is in negation normal form and the next operators are shifted inwards such that
next operators only occur in front of a variable, its negation or a next operator.

3.1 Transformation for Strong Abortion

An abortion can stop the execution of a system in every step. Hence, a preemp-
tive specification should express that either the specification ϕ has already been
satisfied or that the execution was aborted in a step before the specification was
fulfilled (or violated). These thoughts lead to the following definition.

Definition 7 (Transformation Θst
ab(ϕ, σ)). The transformation Θst

ab(ϕ, σ) that
generates an abort-sensitive specification for Aϕ is defined recursively as

Θst
ab(ϕ, σ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ ∨ ϕ, if ϕ is propositional

σ ∨ X(Θst
ab(ψ, σ)), if ϕ = Xψ

[Θst
ab(ψ, σ)⊗Θst

ab(γ, σ)], if ϕ = ψ ⊗ γ with ⊗ ∈ {U,U}
Θst

ab(ψ, σ) ⊗Θst
ab(γ, σ), if ϕ = ψ ⊗ γ with ⊗ ∈ {∧,∨}.

The crucial point of the definition is that we have to forbid the use of a variable
after an abortion took place, which is achieved in that all recursive calls will
finally introduce a disjunction with σ. The definition states that for the next
operator, the specification ϕ = Xψ must lead to a specification that requires that
the execution is aborted in the current or next step since σ holds or ψ holds in the
next step. Thus, the specification ϕ := [ψ U γ] (and [ψ U γ] respectively) requires
that ψ holds in every step until (eventually) γ or σ holds (the condition σ is added
implicitly by the recursive calls). Note that it is impossible to abort the left-hand
side of a (strong) until without aborting the right-hand side, too. The same is
valid for the Boolean operators because σ is added simultaneously on both sides.
For a propositional formula ϕ, we have for example Θst

ab(Gϕ, σ) = [ϕ U σ] and
Θst

ab(Fϕ, σ) = F(ϕ ∨ σ).
Correctness. To prove the correctness of the proof rule related to the above
transformation, we will make use of the following lemmata.
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Lemma 2 (Containment of ϕ). The transformation preserves the original
specification if no preemption takes place, i.e., Θst

ab(ϕ, false) = ϕ holds.

Proof. The lemma can be easily proved by induction over ϕ.

The following lemma states that the transformed specifications are vacuously
satisfied if σ holds.

Lemma 3. For an arbitrary but fixed condition σ and a path π′ through Θst
ab(G, σ)

and a position m such that π′(m) � σ holds, we have

(Θst
ab(G, σ), π′,m) |= Θst

ab(ϕ, σ).

Proof. The proof can be easily shown by an induction over the structure of ϕ.

The following theorem ensures the correctness of the modular proof rule for
strong abortion, and even that the assumption and conclusion of the rule are
equivalent.

Theorem 1. For any set of guarded actions G and any condition σ, the follow-
ing holds Θst

ab(G, σ) |= Θst
ab(ϕ, σ)↔ G |= ϕ.

Proof. The ’→’ direction states that we retained ‘as much as possible’ in our
transformation and it follows directly from Lemma 2 and Lemma 1. The ’←’
direction directly proves the correctness of the proof rule.

Let T be the original transition system for G and T ′ be the transition system
for Θst

ab(G, σ). Obviously, if σ does not occur on a path π′ through T ′, then the
original system T already contained π′ and we can conclude from Lemma 2 that
(T ′, π′) |= Θst

ab(ϕ, σ) = ϕ.
Assume we have a path π ∈ T through the original system and π′ ∈ T ′ is a

path that is equivalent to π up to a minimal position tσ where σ holds. We show
by finite induction on the number of temporal operators (‖ϕ‖) in an arbitrary
formula ϕ, that ∀m ≤ tσ: if (T , π,m) |= ϕ we have (T ′, π′,m) |= Θst

ab(ϕ, σ).

Base Case: ‖ϕ‖ = 0, hence ϕ is propositional and Θst
ab(ϕ, σ) is equivalent to

ϕ ∨ σ. A case distinction for π′(m) solves the case: for π′(m) � σ we have
(T ′, π′,m) |= σ and for π′(m)

� σ we have (T ′, π′,m) |= ϕ following from the
definition of π and π′. Hence, (T ′, π′,m) |= ϕ ∨ σ = Θst

ab(ϕ, σ) holds.
Inductive Step: ‖ϕ‖ = m + 1, hence, Θst

ab(ϕ, σ)’s result is besides the triv-
ial boolean combinations either σ ∨ XΘst

ab(ψ, σ), [Θ
st
ab(ψ, σ) U Θst

ab(γ, σ)], or
[Θst

ab(ψ, σ) U Θst
ab(γ, σ)].

For the next operator we have (T , π,m) |= Xψ
def⇒ (T , π,m + 1) |= ψ. If

m+ 1 < tσ, we can apply the inductive hypothesis to conclude (T ′, π′,m+
1) |= Θst

ab(ψ, σ). Otherwise, σ holds at position m+ 1, and one can conclude
from Lemma 3 that (T ′, π′,m+ 1) |= Θst

ab(ψ, σ)
Now we turn to the strong-until-operator, i. e. we consider the case that

(T , π,m) |= [ψ U γ], hence there exists a tγ such that ∀m ≤ t′ < tγ .
(T , π, t′) |= ψ and (T , π, tγ) |= γ. Hence, if tγ < tσ, we can use our in-
ductive hypothesis to conclude that ∀m ≤ t′ < tγ .(T ′, π′, t′) |= Θst

ab(ψ, σ)
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and (T ′, π′, tγ) |= Θst
ab(γ, σ). For the other case, we apply Lemma 3 to con-

clude that (T ′, π′, tσ) |= Θst
ab(γ, σ) and we can apply the I.H. to prove that

∀m ≤ t′ < tσ.(T ′, π′, t′) |= Θst
ab(ψ, σ). Hence (T ′, π′,m) |= Θst

ab([ψ U γ] , σ)
holds in both cases. The case for weak until is shown analogously.

3.2 Transformation for Strong Suspension

A suspension can postpone the current execution of the guarded actions to a
later point of time. Hence, no guarded action is executed during the suspension,
but the delayed assignments of the previous step still take place. The suspend-
sensitive specification must ensure that either the execution of the system is
suspended, and a violation of the specification is secondary (because no step of
the original system is executed) or the next macro step of the system is executed,
and as a consequence, the specification must be satisfied for this step. Note that
it is possible to suspend the system infinitely often and that this case must be
covered as well.

Unfortunately, the transformation defined below is not applicable if the data
flow contains next assignments to event variables, because such an assignment
may get lost during a suspension. The problem is explained in detail in The-
orem 2. Hence, we exclude systems violating this requirement by adding the
assumption DFNxtEvtFree(G) to the rule. This condition checks that the data
flow is free of next assignments to event variables.

Definition 8 (Transformation Θst
sp(ϕ, σ)). For a given specification Aϕ, the

transformation Θst
sp(ϕ, σ) is defined as

Θst
sp(ϕ, σ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ϕW ¬σ] , if ϕ is propositional[
(XΘst

sp(ψ, σ)) W ¬σ
]
, if ϕ = Xψ

[Θst
sp(ψ, σ)⊗Θst

sp(γ, σ)], if ϕ = ψ ⊗ γ with ⊗ ∈ {U,U}
Θst

sp(ψ, σ) ⊗Θst
sp(γ, σ), if ϕ = ψ ⊗ γ with ⊗ ∈ {∧,∨}.

The crucial point is again that we have to forbid the use of a variable when-
ever the suspension takes place. Note again that all recursive calls will finally
introduce a weak when operator. A module satisfying a specification ϕ := Xψ is
suspendable in two macro steps. The definition states that the evaluation is post-
poned to the first point of time where σ becomes false. Thus, the specifications
ϕ := [ψ U γ] (and [ψ U γ] respectively) must lead to a specification that requires
that ψ holds in every step until (eventually) γ holds or an (in)finite suspension
takes place (covered by the weak when operator introduced by recursive calls).

We have Θst
sp(Gϕ, σ) = G [ϕ W ¬σ] and Θst

sp(Fϕ, σ) = F [ϕW ¬σ], for a propo-
sitional ϕ.

An interesting fact is that an infinite suspension is equivalent to an abortion,
hence only a special case of it. Hence, the transformation for abort can be also
obtained from the suspension transformation.



100 M. Gesell, A. Morgenstern, and K. Schneider

Correctness. The following theorem ensures the correctness of the modular
proof rule for strong suspension.

Theorem 2. For any set of guarded actions G, where DFNxtEvtFree(G) holds
for G and any condition σ, we have Θst

sp(G, σ) |= Θst
sp(ϕ, σ)↔ G |= ϕ.

Since the already proved rule for abort is a special case of the suspension rule,
we only have to extend the proof of Theorem 1 at the appropriate places. We
will omit this here and only describe the proof idea with help of Figure 1. There,
the effect of a suspension on a simple Quartz program (given in Figure 2) is
described in Figure 1. We consider three important points of time t0, t1 and
t1s: t0 corresponds to a not suspended macro step starting in l0, where the
next assignment to x takes place. The time step t1 is the intended execution of
the macro step starting in l1, but this step is now suspended. Nevertheless, the
assignment to the variable x from the previous step takes place (v0), but the
immediate assignment to y is postponed until t1s, which is the first point of time
where the suspension is released. The assertion ϕ(x, y) intended to be evaluated
at point t1 is postponed as well. It is no problem to evaluate ϕ(x, y) in t1s,
since the immediate assignment is executed in the same step and for the delayed
assignment the default reaction transfers the value v0 to the step t1s (indicated
by the dashed box). Unfortunately, this holds only for memorized variables,
since event variables are set to the type’s default value and so the value v0
gets lost during suspension. Hence, the example shows that a next assignment
to an event variable in the data flow may completely change the behavior of
the system. Hence, nothing can be deduced from the original specification. The
delayed assignments to the control flow events are not problematic, i.e., are
handled correctly.

Fig. 1. Time Table for Suspend

.

.

.
l0: pause;
next (x) = v0;
l1: pause;
y = v1;
assert(ϕ(x,y));

.

.

.

Fig. 2. Quartz Program

3.3 Transformation for Weak Abortion

The weak preemption statements differ from their strong variants by allowing
the execution of the data flow when the preemption takes place. If the abortion
should take place at the termination point, it will therefore not modify the
behavior. A weak abort-sensitive specification should express that either the
specification ϕ is already satisfied or the execution was aborted in a state not
violating the specification, but before it was ultimately fulfilled.
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Definition 9 (Transformation Θwk
ab (ϕ, σ)). For a given specification Aϕ, the

transformation Θwk
ab (ϕ, σ) is defined as

Θwk
ab (ϕ, σ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ, if ϕ is propositional

σ ∨ XΘwk
ab (ψ,σ), if ϕ = Xψ

[Θwk
ab (ψ, σ)⊗ (Θwk

ab (γ, σ) ∨ σ ∧ Θwk
ab (ψ, σ))], if ϕ = [ψ ⊗ γ] for ⊗ ∈ {U,U}

Θwk
ab (ψ, σ)⊗Θwk

ab (γ, σ), if ϕ = ψ ⊗ γ and ⊗ ∈ {∧,∨}

The crucial point of the definition is that the specification must not be violated in
a step where a weak abortion takes place. Hence, for the evaluation of a variable
the value of σ is unimportant and only influences reads to the variable in a later
step. This requires a different treatment of the until operators: Their evaluation
must stop in a step where σ is satisfied. Furthermore, in such a step also one
side of the operator must be satisfied. Hence, Θwk

ab (ψ, σ) ∨Θwk
ab (γ, σ) must hold,

but the right-hand side of this disjunction is already covered by

Θwk
ab (γ, σ) ∨ σ ∧ (Θwk

ab (ψ, σ) ∨Θwk
ab (γ, σ)) = Θwk

ab (γ, σ) ∨ σ ∧Θwk
ab (ψ, σ)

and so it is enough to additionally demand σ∧Θwk
ab (ψ, σ) to successfully stop the

evaluation of the operator. For the next operator, the specification ϕ = Xψ must
lead to a specification that requires that the execution is aborted in the first step
(without restrictions) or ψ holds in the next step (with/without abortion).

Regarding the examples, we haveΘwk
ab (Gϕ, σ) = [ϕ U (σ ∧ ϕ)] andΘwk

ab (Fϕ, σ) =
F(σ ∨ ϕ) for a propositional ϕ .

Correctness. The following theorem ensures the correctness of the modular
proof rule for weak abortion.

Theorem 3. For any set of guarded actions G and any condition σ, the follow-
ing holds: Θwk

ab (G, σ) |= Θwk
ab (ϕ, σ)↔ G |= ϕ.

The proof is similar to the proof of Theorem 1: the used Lemma 2 is analogous
for the weak abortion case, but Lemma 3 must be replaced by the following
lemma:

Lemma 4. Let T be the original transition system for G that satisfis ϕ and T ′

be the transition system for Θwk
ab (G, σ). Assume we have paths π ∈ T and π′ ∈ T ′

that is equivalent to π up to a minimal position where σ holds. For an arbitrary
position m such that π′(m) � σ holds, we have (Θwk

ab (G, σ), π′,m) |= Θwk
ab (ϕ, σ).

Proof. The proof can be made by an induction over the structure of ϕ and the
fact (Θwk

ab (G, σ), π′,m) |= ϕ which follows from the definition of Θwk
ab .

With this lemma and the fact inferred from Definition Θwk
ab that the considered

paths π and π′ are equivalent up to tσ, the proof is analogous to Theorem 1.

3.4 Transformation for Weak Suspension

A weak suspension freezes the control flow, but the data flow is not affected.
Hence, the weak suspend-sensitive specification must express that in case of a
suspension, the current state is not left which motivates the following definition.
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Definition 10 (Transformation Θwk
sp (ϕ, σ)). Given Ω := G(σ∧Θwk

sp (γ, σ)) and
⊗ ∈ {∧,∨,U}, then we define

Θwk
sp (ϕ, σ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(σ ∧ ϕ) U (¬σ ∧ ϕ)] , if ϕ is propositional[
σ U ¬σ ∧ XΘwk

sp (ψ, σ)
]
, if ϕ = Xψ[

Θwk
sp (ψ, σ) U (Θwk

sp (γ, σ) ∨Ω)
]
, if ϕ = [ψ U γ]

Θwk
sp (ψ, σ) ⊗Θwk

sp (γ, σ), if ϕ = ψ ⊗ γ.

Regarding the examples, we have Θwk
sp (Gϕ, σ) = G [(σ ∧ ϕ U (¬σ ∧ ϕ)]) and that

Θwk
sp (Fϕ, σ) = F [(σ ∧ ϕ) U (¬σ ∧ ϕ ∨ Gσ)] holds for a propositional ϕ.
It is again provable that the weak abortion is equivalent to an infinite weak

suspension. The only difference to the strong case is that the weak until operator
inΘwk

sp (ϕ, σ) is not changed, because both sides already cover the changes made in

Θwk
ab (ϕ, σ). The term

[
Θwk

sp (ψ, σ) U Θwk
sp (γ, σ) ∨ G(σ ∧ (Θwk

sp (ψ, σ) ∨Θwk
sp (γ, σ)))

]
is reducible to

[
Θwk

sp (ψ, σ) U Θwk
sp (γ, σ)

]
.

Correctness. The following theorem ensures the correctness of the modular
proof rule for weak suspension.

Theorem 4. For any set of guarded actions G and any condition σ, the follow-
ing holds: Θwk

sp (G, σ) |= Θwk
sp (ϕ, σ)↔ G |= ϕ.

Proof. The proof for the weak suspend case is analogous to the proof of The-
orem 2, but the exclusion of delayed assignments to event variables (checked by
DFNxtEvtFree(G)) is not necessary, because all data flow assignments are exe-
cuted in case of a weak suspension. Hence, the assignments to y and x’s take
place at t1 and ϕ(x,y) can be evaluated there, too. We illustrate this situation in
Figure 3 in analogy to Figure 1. Nevertheless, a set of guarded actions containing
next assignments to event variables may only satisfy ϕ(x,y) during suspension,
since the assignment to x is lost after t1.

Fig. 3. Time Table for Weak Suspend
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4 Example

In this section, we show how to apply the developed proof rules. To this end, let
us assume that we have an already implemented traffic light controller, like the
one represented by the (simplified) set of guarded actions in Figure 4 obtained
from the Quartz file in Figure 5. Note that during compilation a boot flag bf is
added that is false in the first macro step and true in all other steps. This
is necessary for initialization purposes. The traffic light controller has one input

control flow:
True ⇒ next(bf)
¬req∧(¬bf∨l0) ⇒ next(l0)
req∧(¬bf∨l0) ⇒ next(l1)
l1 ⇒ next(l2)

data flow:
req∧(¬bf∨l0∨l2) ⇒ ylw
l1 ⇒ grn = True

specifications:
A G (req→grn∨ylw∧(X grn))

Fig. 4. Compiled Guarded Actions

module TrafficLightController
(event ?req , !ylw , !grn){
loop{

while (¬req){
l0: pause;

}
emit (ylw);
l1: pause;
emit (grn);
l2: pause;

}
} satisfies {
A G (req→grn∨ylw∧X grn);

}

Fig. 5. Quartz Source Code

variable req and two output variables ylw and grn (indicated by ? and ! re-
spectively), which are Boolean events. Thus, the outputs are false for macro
steps not assigning a value to them. A traffic light usually has three lights, we
will model these lights with the two output variables: ylw=true means that the
yellow light is on, grn=true means that the green light is on, and grn=false
means that the red light is on. The behavior of the controller is very simple,
as long as the environment does not request a green light by req=true, the
controller will respond by not setting any output (hence, the red light is on).
A request is answered by enabling the yellow light (and the red light, since
grn=false) in the current step, and the green light in the next step. Fur-
thermore, it is easily provable that the controller implements the specification
A G (req→ grn ∨ ylw ∧ X grn).

Assume, we want to extend the traffic light controller to operate additionally
lights for a crossing pedestrian (with priority). To this end, we reuse the already
existing controller, like it is done in Figure 72. In Figure 6, we added the guarded
actions for the compiled version where we simplified the Quartz compiler’s output
and for a better readability, we replaced the term (C.l0 ∨ C.l1 ∨ C.l2) by inC

and (P.l0 ∨ P.l1 ∨ P.l2) by inP. The original module was used twice, but
embedded in two different abort statements (in the second call the output
for the yellow light is ignored, which is indicated by the underscore). It is not
obvious that this implementation is correct, but we will see that our rules help
to determine this.

2 We omitted the immediate modifier for both abort statements to be consistent
with the defined rules.
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control flow:
True ⇒ next(bf)
¬reqP∧¬reqC∧(bf∨(C.l2∨C.l0)∨inP)

⇒ next(C.l0)
¬reqP∧reqC∧(bf∨(C.l2∨C.l0)∨inP)

⇒ next(C.l1)
¬reqP∧C.l1∧¬reqP ⇒ next(C.l2)
reqP∧(bf∨inC∨(P.l0∨P.l2))

⇒ next(P.l1)
reqP∧P.l1 ⇒ next(P.l2)

data flow:
bf∧reqC∧¬reqP ⇒ ylwC
¬reqP∧reqC∧C.l0 ⇒ ylwC
C.l1∧¬reqP ⇒ grnC
reqC∧C.l2∧¬reqP ⇒ ylwC
P.l1 ⇒ grnP
reqP∧P.l2 ⇒P.ylw
reqP∧(C.l0∨C.l1∨C.l2) ⇒P.ylw
reqC∧¬reqP∧(P.l0∨P.l1∨P.l2) ⇒ ylwC

Fig. 6. Compiled Guarded Actions

module TrafficLightController2
(event ?reqC , !ylwC , !grnC ,

?reqP , !grnP ,){
loop{

abort{
C: TrafficLightController

(reqC , ylwC , grnC);
}when (reqP);
weak abort{

P: TrafficLightController
(reqP , , grnP);

}when(¬reqP);
}

}

Fig. 7. Quartz Source Code

Applying our rules for the two abort statements after renaming the variables
to the specification ϕ(req,ylw,grn) = G(req→ grn ∨ ylw ∧ X grn) leads to
Θst

ab(ϕ(reqC,ylwC,grnC), reqP). Hence, we have to evaluate
Θst

ab([(¬reqC ∨ grnC ∨ ylwC ∧ X grnC) U false], reqP) =
G (reqC→ reqP ∨ grnC ∨ ylwC ∧ X (grnC ∨ reqP))

Using the same steps we deduce the specification for the weak abort as
Θwk

ab (ϕ(reqP, ,grnP), σ) = [reqP→ grnP ∨ X grnP U ¬reqP].
Hence, we know that the module calls of the TrafficLightController to-

gether with the surrounding abort statement satisfies the corresponding spec-
ification (without having to verify it).

Additionally, the first specification tells us that we reached the goal priori-
tizing the pedestrian’s lights, because reqP is able to shadow a green light for
the cars. The second specification shows that in every step, we are inside the
second abort either reqP→ grnP ∨ X grnP or ¬reqP holds. Additionally, we
know that the statement before the second abort terminates if and only if
reqP holds. Hence, in the first step of the second abort statement, the prop-
erty grnP ∨ X grnP must hold. Hence, the reuse of the traffic-light controller
lead to a correct implementation.

Nevertheless, we have to define similar rules for the other Quartz statements,
e.g. a rule for sequences, to determine a property that is valid for the whole
TrafficLightController2 module.

5 Conclusion

In this paper, we defined transformations to modify given verification results such
that these will take care of preemptions of the system. These transformations
allow us to define modular proof rules for preemption statements to reason about
their correctness. We are thereby able to introduce preemption statements even
though these have not been considered in the available verification results, and
our transformations automatically derive new specifications that hold under the
preemption contexts.
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