
From Extraction of Logical Specifications
to Deduction-Based Formal Verification

of Requirements Models

Radosław Klimek

AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland

rklimek@agh.edu.pl

Abstract. The work relates to formal verification of requirements mod-
els using deductive reasoning. Elicitation of requirements has significant
impact on the entire software development process. Therefore, formal
verification of requirements models may influence software cost and re-
liability in a positive way. However, logical specifications, considered as
sets of temporal logic formulas, are difficult to specify manually by inex-
perienced users and this fact can be regarded as a significant obstacle to
practical use of deduction-based verification tools. A method of building
requirements models, including their logical specifications, is presented
step by step. Requirements models are built using some UML diagrams,
i.e. use case diagrams, use case scenarios, and activity diagrams. Orga-
nizing activity diagrams into predefined workflow patterns enables au-
tomated extraction of logical specifications. The crucial aspect of the
presented approach is integrating the requirements engineering phase
and the automatic generation of logical specifications. Formal verifica-
tion of requirements models is based on the deductive approach using the
semantic tableaux reasoning method. A simple yet illustrative example
of development and verification of a requirements model is provided.

Keywords: requirements engineering, formal verification, deductive rea-
soning, use case diagrams, use case scenarios, activity diagrams, workflows
patterns, temporal logic, logical specifications, semantic tableaux method.

1 Introduction

Software modeling enables better understanding of the domain problem and
of the system under development. Requirements engineering is an important
part of software modeling. Requirements elicitation should lead into a coherent
structure of requirements and have significant impact on software quality and
costs. Thinking of requirements must precede the analysis, design, and code
generation acts. Requirements models are descriptions of delivered services in
the context of operational constraints. Identifying software requirements of the
system-as-is, gathering requirements and formulation of requirements by users
allows defects to be identified earlier in a life cycle.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 61–75, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

62 R. Klimek

UML, i.e. the Unified Modeling Language [16], which is ubiquitous in the
software industry can be a powerful tool for the requirements engineering pro-
cess. Use cases are central to UML since they strongly affect other aspects of
the modeled system and, after joining the activity diagrams, may constitute a
good vehicle to discover and write down requirements. Temporal logic is a well
established formalism which allows to describe properties of reactive systems,
also visualized in UML. The semantic tableaux method, which is a proof formal-
ization for assessing logical satisfiability, seems intuitive and may be regarded as
goal-based formal reasoning.

Formal methods enable precise formulation of important artifacts arising dur-
ing software development and help eliminate ambiguity. There are two well es-
tablished approaches to formal reasoning and system verification [5]. The first
is based on state exploration (“model checking”) and the second is based on
deductive reasoning. However, model checking is an operational rather than an-
alytic approach.Deductive inference enables the analysis of infinite computation
sequences. On the other hand, one important problem of the deductive approach
is the lack of automatic methods for obtaining logical specifications considered as
sets of temporal logic formulas. The need to build logical specifications manually
can be recognized as a major obstacle to untrained users. Thus, the automation
of this process seems particularly important. Moreover, application of the formal
approach to the entire requirements engineering phase may increase the maturity
of requirements models.

Motivation, Contributions and Related Works. The motivation for this
work is the lack of tools and practical applications of deductive methods for
formal verification of requirements models. Another motivation, which is asso-
ciated with the previous one, is the lack of tools for automatic extraction of
logical specifications from software models. However, requirements models built
using use case and activity diagrams seem to be suitable for such an extraction
process. All of the aforementioned aspects of the formal approach seem to be an
intellectual challenge in software engineering.

The contribution of the work is a method for building formal requirements
models, including their logical specification, based on some UML diagrams. A
complete deduction-based system which enables the automated and formal ver-
ification of requirements models is proposed. Another contribution is a method
for automating the generation of logical specifications. The generation algorithm
for selected workflow patterns is presented. The reasoning process is performed
using the semantic tableaux method for temporal logic. The proposed method
is characterized by the following advantages: introducing workflow patterns as
primitives to requirements engineering and logical modeling, scaling up to real-
world problems, and logical patterns once they are defined and widely used. All
these factors are discussed in the work and summarized in the last section.

There are some fundamental works on requirements engineering, c.f. the work
by van Lamsweerde [15], which is a comprehensive study of many fundamentals
of this area. The work by Chakraborty et al. [4] discusses some social processes
associated with requirements engineering. In the work by Rauf et al. [17], a

From Extraction of Logical Specifications 63

method for extracting logical structures from documents is presented. In the
work by Kazhamiakin [11], a method based on formal verification of require-
ments using temporal logic and model checking approach is proposed, and a
case study is discussed. Hurlbut [10] provides a very detailed survey of selected
issues concerning use cases. The informal character of scenario documentation
implies several difficulties in reasoning about the system behavior and validating
the consistency between the diagrams and scenario descriptions. Barrett et al. [2]
presents the transition of use cases to finite state machines. Zhao and Duan [20]
shows formal analysis of use cases; however, the Petri Nets formalism is used. Es-
huis and Wieringa [8] addresses the issues of activity diagram workflows but the
goal is to translate diagrams into a format that allows model checking. There
are some other works in the area of the formal approach and UML-based re-
quirements engineering but there is a lack of works for deduction-based formal
verification with temporal logic and the semantic tableaux method for UML-
based requirements models. The work [12] is a (very) preliminary version of
this one, and the differences include: a lower level of formalization, differences
in predefined workflow patterns, more casual algorithm for generating logical
specifications, and the lack of an accurate case study.

2 Methodology

The outline of the procedure and guidelines used for the construction of a re-
quirements model, as it is understood in the work, is briefly discussed below.
It constitutes a kind of methodology and its subsequent steps are presented in
Fig. 1. The entire procedure can be summarized in the following items:

1. Use case diagrams

2. Use case scenarios a1, a2, a3, ...

3. Activity diagrams P,WL

4. Logical spec. generation Π(P,WL) −→ L

5. Defining properties Q

6. Reasoning process C(L) ⇒ Q

R
eq

ui
re

m
en

ts
m

od
el

m
at

ur
ity

Lo
gi

ca
lm

od
el

in
g

&
re

as
on

in
g

Formalization

Fig. 1. Software requirements modeling and deduction-based verification

64 R. Klimek

1. use case diagrams – use case modeling to understand functions and goals of
a system;

2. use case scenarios – identifying and extracting atomic activities;
3. activity diagrams – modeling workflows using predefined patterns;
4. automatic generation of logical specifications from requirements models;
5. manual definition of the desired model properties;
6. formal verification of a desired property using the semantic tableaux method.

All steps are shown on the left side of Fig. 1. The first three steps involve the
requirements modeling phase but the last three steps involve generation of logical
specification and analysis of requirements model properties. The loop between
the last two steps refers to a process of both identifying and verifying more
and more new properties of the examined model. Some symbols and notation
resulting from the introduced formalization are on the right side of Fig. 1 and
they are discussed in further sections of the work. Generally, it leads, step by
step, from an abstract view of a system to more and more detailed and reliable
and, finally, verified requirements models.

3 Use Cases and Identification of Activities
Defining use cases and scenarios is important not only to understand the func-
tionalities of a system but also to identify elementary activities. The activities
play an important role when building logical specifications, i.e. the logical specifi-
cation is modeled over atomic activities. The use case diagram consists of actors
and use cases. Actors are objects which interact with a system and create the
system’s environment, thus providing interaction with the system. Use cases are
services and functionalities which are used by actors. The use case diagrams
are a rather descriptive technique and do not refer to any details of the system
implementation [18].

Let us present it more formally. In the initial phase of a system modeling, use
case diagramsUCD1, ..., UCDn are built. EveryUCDi diagramcontains some use
casesUC1, ..., UCm which describe the desired functionality of a system. A typical
and sample use case diagram is shown in Fig. 2. It consists of three actors and three
use cases, UC1, UC2 and UC3, modeling a system of car insurance and damages
liquidation. The diagram seems to be intuitive and is not discussed in detail.

Use cases are commonly used for capturing requirements through scenarios
which are brief narratives that describe the expected use of a system. A scenario
is a possible sequence of steps which enables the achievement of a particular goal
resulting from the functionality of a use case. Every use case UCi has its own
scenario. From the point of view of the approach presented here, scenarios play
an additional important role, which is identification of atomic activities used to
build individual scenario steps. An activity is the smallest unit of computation.
Thus, every scenario contains some activities a1, ..., an. The set of atomic ac-
tivities AA contains all activities identified and defined for all scenarios. The
most valuable situation is when the entire use case scenario involves identified
activities and the narrative does not dominate and is limited to model behavior,
which is later formally shown in activity diagrams.

From Extraction of Logical Specifications 65

Client

InsuranceCompany

UC3: InsuranceDamageLiquidation

UC2: PoliceReport

Police«extends»

UC1: PurchaseInsurancePolicy

UC3: InsuranceDamageLiquidation
Scenario:

1. Client’s “SystemLogIn”
2. Client’s “DamageVindication”
3. “SupplyDocumentaryEvidence”
4. “MechanicalRepairs”
5. “BodyRepairs”
6. “RentVehicle”
7. “TestDrive”
8. Client’s “SystemLogOut”

Alternatives:
2. If vindication is already processed then

“WarningDoubleVindication” and
“SystemLogOut”

Extensions:
3. If there exists the police report then

include it when
“SupplyDocumentaryEvidence”

Fig. 2. A sample use case diagram UCD “CarInsuranceLiquidatingDamages” (left) and
a scenario for the use case UC3 “InsuranceDamageLiquidation” (right)

A sample scenario for the use case UC3, i.e. “InsuranceDamageLiquidation”,
is shown in Fig. 2. It contains some atomic activities which are identified when
preparing the scenario. The alternative and extension points are defined. The
“DamageVindication” activity represents the registration process in the insurer
system and the start of the process of recovery damages. While the car repair
process is carried out (“MechanicalRepairs” and “BodyRepairs”), the client can
hire a replacement vehicle (“RentVehicle”). The level of formalization presented
here, i.e. when discussing use cases and their scenarios, is intentionally not very
high. This assumption seems realistic since this is an initial phase of require-
ments modeling. Dynamic aspects of activities are to be modeled strictly when
developing activity diagrams, c.f. section 5.

4 Logical Background

Temporal logic TL introduces symbolism for reasoning about truth and falsity
of formulas throughout the flow of time, taking the changes of their valuations
into consideration. Two basic and unary operators are � for “sometime (or even-
tually) in the future” and � for “always in the future”; these are dual operators.
Temporal logic exists in many varieties; however, these considerations are limited
to the linear-time temporal logic or linear temporal logic LTL. Linear temporal
logic refers to infinite sequences of computations and attention is focused on
the propositional linear time logic PLTL. These sequences refer to the Kripke
structure which defines the semantics of TL, i.e. a syntactically correct formula
can be satisfied by an infinite sequence of truth evaluations over a set of atomic
propositions AP. It should be pointed out that atomic propositions are identical
to atomic activities defined in section 3, i.e. AA = AP . The basic issues related
to the TL syntax and semantics are discussed in many works, e.g. [7,19].

66 R. Klimek

The properties of the time structure are fundamental to a logic. Of particular
significance is the smallest, or minimal, temporal logic, e.g. [3], also known as
temporal logic of class K. The minimal temporal logic is an extension of the
classical propositional calculus of the axiom �(Φ ⇒ Ψ) ⇒ (�Φ ⇒ �Ψ) and the
inference rule |−Φ =⇒ |−�Φ. The essence of the logic is the fact that there are
no specific assumptions for the properties of the time structure. The following
formulas may be considered as typical examples: action ⇒ �reaction, �(send ⇒
�receive), �alive,�¬(badevent), etc. The considerations of the work are limited
to this logic since it allows to define many system properties (safety, liveness);
it is also easier to build a deduction engine, or use existing verified provers, and
to quickly verify the approach proposed in the work.

Semantic tableaux is a decision-making procedure for checking satisfiability of
a formula. The method is well known in classical logic but it can also be applied in
modal and temporal logics [6]. The method is based on formula decompositions.
In the semantic tableaux method, at the end of the decomposition procedure, all
branches of the received tree are searched for contradictions. When all branches
of a tree have contradictions, it means that the inference tree is closed. If a nega-
tion of the initial formula is placed in the root, this leads to the statement that
the initial formula is true. This method has some advantages over the traditional
axiomatic approach. In the classical reasoning approach, starting from axioms,
longer and more complicated formulas are generated and derived. Formulas be-
come longer and longer step by step, and only one of them will lead to the
verified formula. The method of semantic tableaux is characterized by a reverse
strategy. The method provides, through so-called open branches of the semantic
tree, information about the source of an error, if one is found, which is another
and very important advantage of the method. Summing up, the tableaux are
global, goal-oriented and “backward”, while resolution is local and “forward”.

A simple yet illustrative example of an inference tree is shown in the left side
of Fig. 3. The relatively short formula gives a small inference tree, but shows
how the method works. The label [i, j] means that it is the i-th formula, i.e. the
i-th decomposition step, received from the decomposition transformation of a
formula stored in the j-th node. The label “1 :” represents the initial world in
which a formula is true. The label “1.(x)”, where x is a free variable, represents
all possible worlds that are consequences of world 1. On the other hand, the label
“1.[p]”, where p is an atomic formula, represents one of the possible worlds, i.e.
a successor of world 1, where formula p is true. The decomposition procedure
adopted and presented here refers to the first-order predicate calculus and can be
found, for example, in the work [9]. All branches of the analyzed trees are closed
(×). There is no valuation that satisfies the root formula. This, consequently,
means that the formula before the negation is always satisfied.

An outline architecture of the proposed deduction-based verification system is
presented in Fig. 3. A similar system is proposed in work [13]. The system works
automatically and consists of some important elements. The G component gen-
erates logical specifications which are sets of a usually large number of temporal
logic formulas (of class K). Formula generation is performed automatically from

From Extraction of Logical Specifications 67

[1,−]1 : ¬((�(a ⇒ �b) ∧�(b ⇒ �c)) ⇒ �(a ⇒ �c))

[2, 1]1 : �(a ⇒ �b) ∧ �(b ⇒ �c) ∧�a ∧�¬c
[3, 2]1 : �a

[4, 2]1 : �¬c
[5, 2]1 : �(b ⇒ �c)

[6, 2]1 : �(a ⇒ �b)

[7, 3]1.[a] : a

[8, 4]1.(x) : ¬c
[9, 5]1.(y) : b ⇒ �c

[10, 9]1 : ¬b
[13, 6]1.(z) : a ⇒ �b

[15, 13]1 : ¬a
×

[16, 13]1 : �b

[17, 16]1.[b] : b

×

[11, 9]1 : �c

[12, 11]1.[c] : c

[14, 6]1.[z] : a ⇒ �b

[18, 14]1 : ¬a
×

[19, 14]1 : �b

[20, 19]1.[b] : b

×

���

�������

��	
 ������������

��������� �

P

�� ��������

������ �
Q

���

�����	
 ����

L

Fig. 3. A sample inference tree (left) and a deduction-based verification system (right)

workflow models, which are constructed from predefined patterns for activity di-
agrams. The extraction process is discussed in section 6. The whole specification
L can be treated as a conjunction of formulas f1∧. . .∧fn = C(L), where every fi
is a formula generated during the extraction process. The Q formula is a desired
property for a requirements model. Both the system specification and the exam-
ined properties are input to the T component, i.e. Semantic Tableaux Temporal
Prover, or shortly ST Temporal Prover, which enables the automated reasoning
in temporal logic using semantic tableaux. The input for this component is the
formula C(L) ⇒ Q, or, more precisely:

f1 ∧ . . . ∧ fn ⇒ Q (1)

Due to the fact that the semantic tableaux method is an indirect proof, i.e.
reductio ad absurdum, after the negation of the formula 1, it is placed at the
root of the inference tree and decomposed using well-defined rules of the semantic
tableaux method. If the inference tree is closed, it means that the initial formula 1
is true. The output of the T component, and therefore also the output of the
entire deductive system, is the answer Yes/No. This output also realizes the final
step of the procedure shown in Fig. 1. However, the verification procedure can
be performed for the further properties, c.f. the loop in Fig. 1.

The verification procedure which results from the deduction system in Fig. 3
can be summarized as follows:

68 R. Klimek

1. automatic generation of system specifications (the G component);
2. introduction of the property Q of the system;
3. automatic inference using semantic tableaux (the T component) for the

whole complex formula, c.f. formula 1.
Steps 1 to 3, in whole or individually, may be processed many times, whenever
the specification of the UML model is changed (step 1) or if there is a need for
a new inference due to the revised system specification (steps 2 or 3).

5 Workflow Patterns and Modeling Activities

Activity diagrams constitute a closure of the development phase for requirements
models, by introducing dynamic aspects for models. This aspect is subjected to
the correctness analysis for safety and liveness properties. The activity diagram
enables modeling of workflow activities. It constitutes a graphical representation
of workflow showing the flow of control from one activity to another. It supports
choice, concurrency and iteration. The important goal of activity diagrams is to
show how an activity depends on others [16].

f1

f4

(a) Sequence

f1

f2 f3

f4

(b) Concurrency

f1

f2 f3

f4

(c) Branching

f1

f2

f3

f4

(d) LoopWhile

SystemLogIn

DamageVindication

SupplyDocumentaryEvidence

MechanicalRepairs

RentVehicle

SystemLogOut

WarningDoubleVindication

BodyRepairs

TestDrive

Fig. 4. Workflow patterns for activities (left) and a sample activity diagram AD3 for
use case UC3 “InsuranceDamageLiquidation” (right)

From the viewpoint of the approach presented in the work, it is important to
introduce a number of predefined workflow patterns for activities that provide all
workflows in a structural form. A pattern is a generic description of the structure
of some computations. Nesting of patterns is permitted. The following workflow
patterns are predefined: sequence, concurrent fork/join, branching and loop while
for iteration as they are shown in Fig. 4. It is assumed that only predefined
patterns can be used for modeling of activity behavior. Such structuring is not
a limitation when modeling arbitrarily complex sets of activities.

From Extraction of Logical Specifications 69

For every use case UCi and its scenario, a activity diagram ADi is developed/-
modeled. The activity diagram workflow is modeled only using atomic activities
which are identified when building a use case scenario. Furthermore, workflows
are composed only using the predefined design patterns shown in Fig. 4. A sam-
ple activity diagram AD3 is shown in Fig. 4. It models behavior of the UC3

use case shown in Fig. 2, using activities from the scenario in Fig. 2. After the
start of the vindication process, i.e. “DamageVindication”, it is checked whether
it is already being processed. If yes, the decision to register this fact is made,
as it is likely another attempt at vindication of the same event, c.f. “Warning-
DoubleVindication”. The scenario analysis and the nature of other activities, i.e.
“MechanicalRepairs”, “BodyRepairs” and “RentVehicle”, leads to the conclusion
that they can and should be performed concurrently.

6 Generating Logical Specifications

The phase of modeling requirements is complete when all activity diagrams for all
scenarios are built, c.f. Fig. 1 and section 5. Then, the phase of generating logical
specifications and formal analysis of the desired properties begins. The logical
specification generation process must be performed in an automatic way. Such
logical specifications usually consist of a large number of temporal logic formulas
and their manual development is practically impossible since this process can
be monotonous, error-prone and the creation of such logical specifications is
difficult for inexperienced analysts. On the other hand, the verified properties of
the system constitute usually easier formulas, not to mention the fact that they
are rather individual temporal logic formulas.

The proposed algorithm for automatic extraction of logical specifications is
based on the assumption that all workflows for activity diagrams are built using
only well-known workflow patterns, c.f. Fig. 4. The process of building a logical
specification can be presented in the following steps:

1. analysis of activity diagrams to extract all predefined workflow patterns,
2. translation of the extracted patterns to a logical expression WL,
3. generating a logical specification L from logical expressions, i.e. receiving a

set of temporal logic formulas.

Predefined workflow patterns constitute a kind of primitives which are de-
fined using temporal logic formulas. Therefore, an elementary set pat() of for-
mulas over atomic formulas ai, where i > 0, which is also denoted pat(ai), is
a set of temporal logic formulas f1, ..., fm such that all formulas are syntacti-
cally correct (and restricted to the logic K). For example, an elementary set
pat(a, b, c, d) = {a ⇒ �b, b ⇒ �(c∨d),�¬((a∨b)∧¬c)} is a three-element set of
PLTL formulas, created over four atomic formulas. Let Σ be a set of predefined
design patterns, i.e. Σ = {Sequence, Concurrency, Branching, LoopWhile}.
The proposed temporal logic formulas should describe both safety and liveness
properties of each pattern. Let us introduce some aliases: Seq as Sequence,
Concur as Concurrency, Branch as Branching and Loop as LoopWhile.

70 R. Klimek

Every activity workflow is designed using only predefined design patterns.
Every design pattern has a predefined and countable set of linear temporal logic
formulas. The workflow model can be quite complex and it may contain nesting
patterns. Let us define a logical expression, which is similar to well known reg-
ular expressions, to represent any potentially complex structure of the activity
workflow but also to have a literal representation for these workflows. The logical
expression WL is a structure created using the following rules:

– every elementary set pat(ai), where i > 0 and every ai is an atomic formula,
is a logical expression,

– every pat(Ai), where i > 0 and every Ai is either
• an atomic formula, or
• a logical expression pat(),

is also a logical expression.

Examples of logical expressions are given in the section 7.

/* ver. 6.04.2013 */
Sequence(f1,f4):
f1 => <>f4 / ~f1 => ~<>f4 / []~(f1 & f4)
Concurrency(f1,f2,f3,f4):
f1 => <>f2 & <>f3 / ~f1 => ~(<>f2 & <>f3)
f2 & f3 => <>f4 / ~(f2 & f3) => ~<>f4
[]~(f1 & (f2 | f3)) / []~((f2 | f3) & f4) / []~(f1 & f4)
Branching(f1,f2,f3,f4):
f1 => (<>f2 & ~<>f3) | (~<>f2 & <>f3)
~f1 => ~((<>f2 & ~<>f3) | (~<>f2 & <>f3))
f2 | f3 => <>f4 / ~(f2 | f3) => ~<>f4 / []~(f1 & f4)
[]~(f2 & f3) / []~(f1 & (f2 | f3)) / []~((f2 | f3) & f4)
LoopWhile(f1,f2,f3,f4):
f1 => <>f2 / ~f1 => ~<>f2
f2 & c(f2) => <>f3 & ~<>f4 / ~(f2 & c(f2)) => ~(<>f3 & ~<>f4)
f2 & ~c(f2) => ~<>f3 & <>f4 / ~(f2 & ~c(f2)) => ~(~<>f3 & <>f4)
f3 => <>f2 / ~f3 => ~<>f2
[]~(f1 & f2) / []~(f1 & f3) / []~(f1 & f4)
[]~(f2 & f3) / []~(f2 & f4) / []~(f3 & f4)

Fig. 5. A predefined set of patterns P and their temporal properties

The last step is to define a logical specification which is generated from logi-
cal expressions. The logical specification L consists of all formulas derived from a
logical expression WL using the algorithm Π , i.e. L(WL) = {fi : i ≥ 0 ∧ fi ∈
Π(WL, P)}, where fi is a TL formula. Generating logical specifications is not a
simple summation of formula collections resulting from a logical expression. The
generation algorithm has two inputs. The first one is a logical expressionWL which
is a kind of variable, i.e. it varies for every (workflow) model, when the workflow
is subjected to any modification. The second one is a predefined set P which is
a kind of constant, i.e. once defined then widely used. The example of such a set

From Extraction of Logical Specifications 71

is shown in Fig 5. However, the formulas are not discussed in the work because
of its limited size. They might be a subject of consideration in a separate work.
Moreover, the formulas can and should be prepared by an expert with skills and
theoretical background. It guarantees that an inexperienced software analyst or
engineer will be able to obtain correct logical models. Most elements of the prede-
fined P set, i.e. comments, two temporal logic operators, classical logic operators,
are not in doubt. The slash allows to place more formulas in a single line. f1, f2
etc. are atomic formulas for a pattern. They constitute a kind of formal arguments
for a pattern. �f means that sometime (or eventually in the future), activity f is
satisfied, i.e. the token reaches the activity. c(f) means that the logical condition
associatedwith activity f has been evaluated and is satisfied. All formulas describe
both safety and liveness properties for a pattern [1].

The output of the generation algorithm is a logical specification understood
as a set of temporal logic formulas. The algorithm (Π) is as follows:
1. at the beginning, the logical specification is empty, i.e. L = ∅;
2. the most nested pattern or patterns are processed first, then, less nested

patterns are processed one by one, i.e. patterns that are located more towards
the outside;

3. if the currently analyzed pattern consists only of atomic formulas, the logical
specification is extended, by summing sets, by formulas linked to the pattern
currently being analyzed pat(), i.e. L = L ∪ pat();

4. if any argument is a pattern itself, then
(a) firstly, the f1 formula, and next
(b) the f4 formula
of this pattern (if any), or otherwise considering only the most nested nesting
far left, or right, respectively, are substituted separately in the place of the
pattern as an argument.

Let us supplement the algorithm by some examples. The example for the step 3:
Concur(a, b, c, d) gives L = {a ⇒ �b ∧�c,¬a ⇒ ¬(�b ∧�c), b ∧ c ⇒ �d,¬(b ∧
c) ⇒ ¬�d,�¬(a ∧ (b ∨ c)),�¬((b ∨ c) ∧ d),�¬(a ∧ d)}. The example for the
step 4: Branch(Seq(a, b), c, d, e) leads to L =

�

�

�

�

{ a ⇒ �b,¬a ⇒ ¬�b,�¬(a ∧
b)}∪

�

�

�

�

{ a ⇒ (�c∧¬�d)∨(¬�c∧�d),¬a ⇒ ¬((�c∧¬�d)∨(¬�c∧�d)), c∨d ⇒
�e,¬(c ∨ d) ⇒ ¬�e,�¬(c ∧ d),�¬(a ∧ (c ∨ d)),�¬((c ∨ d) ∧ e),�¬(a ∧ e)} ∪
�

�

�

�

{ b ⇒ (�c ∧ ¬�d) ∨ (¬�c ∧ �d),¬b ⇒ ¬((�c ∧ ¬�d) ∨ (¬�c ∧ �d)), c ∨ d ⇒
�e,¬(c∨d) ⇒ ¬�e,�¬(c∧d),�¬(b∧(c∨d)),�¬((c∨d)∧e),�¬(b∧e)}

�

�

�

	

={ a ⇒
(�c∧¬�d)∨(¬�c∧�d),¬a ⇒ ¬((�c∧¬�d)∨(¬�c∧�d)), c∨d ⇒ �e,¬(c∨d) ⇒
¬�e,�¬(c ∧ d),�¬(a ∧ (c ∨ d)),�¬((c ∨ d) ∧ e),�¬(a ∧ e), b ⇒ (�c ∧ ¬�d) ∨
(¬�c ∧ �d),¬b ⇒ ¬((�c ∧ ¬�d) ∨ (¬�c ∧ �d)),�¬(b ∧ (c ∨ d)),�¬(b ∧ e)}.
The first set follows from the

�

�

�

�

nested pattern, the second set follows directly
from the algorithm point

�

�

�

�

4a , and then the third set follows from the algorithm
point

�

�

�

�

4b , while the
�

�

�

�

final specification is the sum of all generated sets.

Remarks. Formulas f1 and f4 play an important role for every pattern, i.e.
they are certainly the first and the last, respectively, active activity/task for a

72 R. Klimek

pattern. In the case of nested patterns, f1 and f4 enable considering the pattern
as a whole, which is the goal of the last step of the algorithm. It is mandatory
for every two patterns to have disjoint sets of atomic activities; moreover, every
two patterns contained in a logical expression are either disjointed or completely
contained in one another, c.f. formula 2, which, in conjunction with a particular
role of f1 and f4, does not lead to potential contradictions. Formulas f1 and
f4 must be considered separately, c.f. 4a and 4b of the algorithms, in order to
guarantee access to a pattern both to/from the “front” and to/from the “back” of
a pattern with respect to both the preceding and the following pattern. It may
cause some redundancy of generated formulas, but on the other hand it covers
all properties of combined patterns, i.e. it guarantees reachability (liveness), if
necessary, of all (individual) activities.

7 Reasoning and Verification

Let us summarize the entire method proposed in the work. The first phase, let
us call it the modeling phase, enables development of requirements models and
includes the following steps:

– modeling of all use case diagrams UCD1, ..., UCDm, where UC1, ..., UCn are
all use cases contained in all use case diagrams;

– modeling of scenarios for all use cases UC1, ..., UCn and identification of
atomic activities AA = {a1, ..., al};

– modeling of activity diagrams AD1, ..., ADn for all scenarios using predefined
workflow patterns, c.f. Fig. 4, and using the identified atomic activities.

All the above steps require the assistance of an engineer and cannot be done
automatically. The next phase, let us call it the analytical phase, introduces a
certain degree of automation and includes the following steps:

– translation of all activity diagrams AD1, ..., ADn (and their workflows) to
logical expressions WL,1, ...,WL,n;

– generation of logical specifications L1, ..., Ln for all logical expressions using
the Π algorithm, i.e. Π(P,WL,i) −→ Li for every i = 1, ..., n;

– summing of specifications, i.e. L = L1 ∪ ... ∪ Ln;
– (manual) definition of the desired property Q;
– start of the process of automatic reasoning using the semantic tableaux

method for formula f1 ∧ ... ∧ fk ⇒ Q, where f1, ..., fk are formulas which
belong to the logical specification L.

The above steps illustrate the entire operation of the system shown in Fig. 3. The
loop between the last two steps, c.f. Fig. 1, refers to a process of both introducing
and verifying more and more new properties (formula Q) of the examined model.

Let us consider the activity diagram AD3 shown in Fig. 4 for use case UC3

“InsuranceDamageLiquidation”. Activity diagrams constitute the input for the
deduction system shown in Fig. 3. The logical expression WL,3 for AD3 is

From Extraction of Logical Specifications 73

Seq(SystemLogIn,Branch(DamageV indication, Concur(
SupplyDocumentaryEvidence, Seq(MechanicalRepairs, BodyRepairs),
RentV ehicle, T estDrive),WarningDoubleV indication, SystemLogOut))

Substituting letters of the Latin alphabet in places of propositions: a –
SystemLogIn, b – DamageVindication, c – SupplyDocumentaryEvidence, d –
MechanicalRepairs, e – BodyRepairs, f – RentVehicle, g – TestDrive, h – Warn-
ingDoubleVindication, and i – SystemLogOut, then the expression WL,3 is

Seq(a,Branch(b, Concur(c, Seq(d, e), f, g), h, i)) (2)

Replacing propositions (atomic activities) by Latin letters is a technical matter.
In the real world, original names of the activities would be used.

A logical specification L for the logical expression WL,3 is built in the fol-
lowing steps. At the beginning, the specification of a model is L = ∅. Most
nested pattern is Seq. The next considered pattern is Concurrency, and then
Branching. The most outside situated pattern is once again Seq. The resulting
logical specification contains the formulas

L = {d ⇒ �e,¬d ⇒ ¬�e,�¬(d ∧ e), c ⇒ �d ∧�f,¬c ⇒ ¬(�d ∧�f),

d ∧ f ⇒ �g,¬(d ∧ f) ⇒ ¬�g,�¬(c ∧ (d ∨ f)),�¬((d ∨ f) ∧ g),

�¬(c ∧ g), c ⇒ �e ∧�f,¬c ⇒ ¬(�e ∧�f), e ∧ f ⇒ �g,

¬(e ∧ f) ⇒ ¬�g,�¬(c ∧ (e ∨ f)),�¬((e ∨ f) ∧ g),

b ⇒ (�c ∧ ¬�h) ∨ (¬�c ∧�h),¬b ⇒ ¬((�c ∧ ¬�h) ∨ (¬�c ∧�h)),

c ∨ h ⇒ �b,¬(c ∨ h) ⇒ ¬�b,�¬(c ∧ h),�¬(b ∧ (c ∨ h)),

�¬((c ∨ h) ∧ i),�¬(b ∧ i), b ⇒ (�g ∧ ¬�h) ∨ (¬�g ∧�h),

¬b ⇒ ¬((�g ∧ ¬�h) ∨ (¬�g ∧�h)), g ∨ h ⇒ �b,¬(g ∨ h) ⇒ ¬�b,

�¬(g ∧ h),�¬(b ∧ (g ∨ h)),�¬((g ∨ h) ∧ i),

a ⇒ �b,¬a ⇒ ¬�b,�¬(a ∧ b), a ⇒ �i,¬a ⇒ ¬�i,�¬(a ∧ i)} (3)

Formula 3 represents the output of the G component in Fig. 3.
Formal verification is the act of proving the correctness of a system (live-

ness, safety). Liveness means that the computational process achieves its goals,
i.e. something good eventually happens. Safety means that the computational
process avoids undesirable situations, i.e. something bad never happens. The
liveness property for the model can be

b ⇒ �f (4)

which means that if the damage vindication is satisfied then sometime in
the future the replacement car is reached, formally DamageV indication ⇒
�RentV ehicle. The safety property for the examined model can be

�¬(h ∧ f) (5)

74 R. Klimek

which means that it never occurs that the rental of a vehicle and the
double vindication are satisfied in the same time, or more formally
�¬(WarningDoubleV indication ∧ RentV ehicle). When considering the prop-
erty expressed by formula 4 then the whole formula to be analyzed using semantic
tableaux, providing a combined input for the T component in Fig. 3, is

((d ⇒ �e) ∧ (¬d ⇒ ¬�e) ∧ ... ∧ (¬a ⇒ ¬�i) ∧ (�¬(a ∧ i))) ⇒ (b ⇒ �f) (6)

When considering the property expressed by formula 5 then the whole formula
is constructed in a similar way as

((d ⇒ �e) ∧ (¬d ⇒ ¬�e) ∧ ... ∧ (¬a ⇒ ¬�i) ∧ (�¬(a ∧ i))) ⇒ (�¬(h ∧ f)) (7)

In both cases, i.e. formulas 6 and 7, after the negation of the input formula within
the prover, the inference trees are built. Presentation of a full inference tree for
both cases exceeds the size of the work. (The simple inference tree from Fig. 3 gives
an idea how it works.) All branches of the semantic trees are closed, i.e. formulas 4
and 5 are satisfied in the considered requirements model. In the case of falsification
of the semantic tree the open branches are obtained and provide information about
the source of an error what is another advantage of the method.

Although the logical specification was generated for only one activity diagram
AD3, that is L = L3, c.f. formula 3, the method is easy to scale up, i.e. extending
and summing up logical specifications for other activity diagrams and their sce-
narios. Then, it will be possible to examine logical relationships (liveness, safety)
for different activities coming from different activity diagrams.

8 Conclusion

The work proposes a two-phase strategy for formal analysis of requirements mod-
els. The first one is carried out by an engineer using a defined methodology and
the second one can be (in most) automatic and enables formal verification of
the desired properties (liveness, safety). Introducing logical patterns as logical
primitives allows for breaking of some barriers and obstacles in receiving log-
ical specifications as a set of a large number of temporal logic formulas in an
automated way. Application of formal verification, which is based on deductive
inference, helps to significantly increase the maturity of requirements models
considering infinite computations and using a human-intuitive approach.

Futureworksmay include the implementation of the logical specification genera-
tion module and the temporal logic prover.Considering graph transformations [14]
is encouraging for requirements models involving distributed representation of
knowledge and their efficient implementation. It should result in a CASE software
which could be a first step involved in creating industrial-proof tools, i.e. imple-
menting another part of formal methods, hope promising, in industrial practice.

Acknowledgement. The author would like to thank the anonymous Reviewers
for their valuable comments that helped to improve the work. This work is co-
financed by the EU, Human Capital Operational Programme, SPIN project no.
502.120.2066/C96 and co-financed by the AGH Research Fund no. 11.11 120.859.

From Extraction of Logical Specifications 75

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Let-
ters 21(4), 181–185 (1985)

2. Barrett, S., Sinnig, D., Chalin, P., Butler, G.: Merging of use case models: Semantic
foundations. In: 3rd IEEE International Symposium on Theoretical Aspects of
Software Engineering (TASE 2009), pp. 182–189 (2009)

3. van Benthem, J.: Temporal Logic. In: Handbook of Logic in Artificial Intelligence
and Logic Programming, vol. 4, pp. 241–350. Clarendon Press (1993–1995)

4. Chakraborty, S., Sarker, S., Sarker, S.: An exploration into the process of require-
ments elicitation: A grounded approach. Journal of the Association for Information
Systems 11(4), 212–249 (2010)

5. Clarke, E., Wing, J., et al.: Formal methods: State of the art and future directions.
ACM Computing Surveys 28(4), 626–643 (1996)

6. d’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J.: Handbook of Tableau Meth-
ods. Kluwer Academic Publishers (1999)

7. Emerson, E.: Temporal and Modal Logic. In: Handbook of Theoretical Computer
Science, vol. B, pp. 995–1072. Elsevier, MIT Press (1990)

8. Eshuis, R., Wieringa, R.: Tool support for verifying uml activity diagrams. IEEE
Transactions on Software Engineering 30(7), 437–447 (2004)

9. Hähnle, R.: Tableau-based Theorem Proving. ESSLLI Course (1998)
10. Hurlbut, R.R.: A survey of approaches for describing and formalizing use cases.

Tech. Rep. XPT-TR-97-03, Expertech, Ltd. (1997)
11. Kazhamiakin, R., Pistore, M., Roveri, M.: Formal verification of requirements using

spin: A case study on web services. In: Proceedings of 2nd International Conference
on Software Engineering and Formal Methods (SEFM 2004), Beijing, China, pp.
406–415 (September 28-30, 2004)

12. Klimek, R.: Proposal to improve the requirements process through formal verifica-
tion using deductive approach. In: Filipe, J., Maciaszek, L. (eds.) Proceedings of
7th Int. Conf. on Evaluation of Novel Approaches to Software Engineering (ENASE
2012), Wrocław, Poland. pp. 105–114. SciTePress (June 29–30, 2012)

13. Klimek, R.: A Deduction-based System for Formal Verification of Agent-ready
Web Services. In: Advanced Methods and Technologies for Agent and Multi-Agent
Systems, Frontiers of Artificial Intelligence and Applications, vol. 252, pp. 203–212.
IOS Press (2013), http://ebooks.iospress.nl/publication/32843

14. Kotulski, L.: Supporting software agents by the graph transformation systems. In:
Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006.
LNCS, vol. 3993, pp. 887–890. Springer, Heidelberg (2006)

15. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML
Models to Software Specifications. John Wiley & Sons (2009)

16. Pender, T.: UML Bible. John Wiley & Sons (2003)
17. Rauf, R., Antkiewicz, M., Czarnecki, K.: Logical structure extraction from software

requirements documents. In: 19th IEEE International Requirements Engineering
Conference (RE 2011), Trento, Italy, August 29-September 2, pp. 101–110. IEEE
Computer Society (2011)

18. Schneider, G., Winters, J.: Applying use cases: a practical guide. Addison-Wesley
(2001)

19. Wolter, F., Wooldridge, M.: Temporal and dynamic logic. Journal of Indian Council
of Philosophical Research XXVII(1), 249–276 (2011)

20. Zhao, J., Duan, Z.: Verification of use case with petri nets in requirement analysis. In:
Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.)
ICCSA 2009, Part II. LNCS, vol. 5593, pp. 29–42. Springer, Heidelberg (2009)

http://ebooks.iospress.nl/publication/32843

	From Extraction of Logical Specifications to Deduction-Based Formal Verification of Requirements Models
	1 Introduction
	2 Methodology
	3 Use Cases and Identification of Activities
	4 Logical Background
	5 Workflow Patterns and Modeling Activities
	6 Generating Logical Specifications
	7 Reasoning and Verification
	8 Conclusion
	References

