
Real-Time Migration Properties

of rTiMoVerified in Uppaal

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. This paper extends the TiMo family by introducing a real-
time version named rTiMo. The rTiMo processes are able to move be-
tween different locations of a distributed environment, and communicate
locally with other processes. Real-time constraints are used to control
migration and communication in a real-time distributed system. In or-
der to verify several properties of complex mobile systems described in
rTiMo, we establish a relationship between rTiMo networks and a class
of timed safety automata. The relationship allows the verification of tem-
poral properties of real-time migrating processes using Uppaal capabil-
ities. In particular, we check whether certain configurations are reached,
and that certain timing constraints hold for an entire complex evolution.

1 Introduction

A rather simple and expressive formalism calledTiMo was previously introduced
in [8] in order to describe complex distributed systems in which processes are
able to migrate within an environment defined by a number of explicit locations.
Processes are active entities that can move from location to location to meet and
communicate with other processes rather than using the client/server method
(various types of communication are presented in [4]). Each process has its own
agenda and hence initiates and controls its interactions according to its needs and
goals. Timing constraints are used to coordinate interactions in time and space
by using migration and communication [9]. Timing constraints for migration
allow one to specify a temporal interval after which a mobile process must move
to another location. Two processes may communicate if they are present at the
same location. Inspired by TiMo, a flexible software platform supporting the
specification of agents and allowing timed migration in a distributed environment
is presented in [7]. We have enriched this basic formalism with access permissions
by using a type system [10]. More information on the TiMo family is available
at iit.iit.tuiasi.ro/~fml/TiMo.

This paper is devoted to a real-time extension of TiMo named rTiMo, a
calculus in which a global clock is used for the dynamic evolution of the whole
system. In rTiMo, the discrete transitions caused by performing actions with
timeouts are alternated with continuous transitions. Although the syntax of
rTiMo is close to that of TiMo [10], their semantics are different. The number
of semantic rules in rTiMo is higher than in TiMo . Other differences between
rTiMo and TiMo are:

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 31–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

iit.iit.tuiasi.ro/~fml/TiMo

32 B. Aman and G. Ciobanu

• action deadline in rTiMo is a real positive number, while in TiMo it is a
positive natural number;

• clock in rTiMo is a single global clock, while in TiMo there is a local clock
for each location;

• time step in rTiMo can have any length, while in TiMo it has length 1 (at
each location);

• passage of time in rTiMo is performed by delay rules, in contrast with TiMo
where in each location l there is a local function φl that is used to decrement
all timers by 1 at location l;

• evolution step in rTiMo is a sequence of individual actions followed by the
passing of time, in contrast with TiMo where an evolution step is a se-
quence of individual actions happening at the same location l, followed by
the passing of time and elimination of all special symbols � at location l
(� is a purely technical notation used in the formalisation of the structural
operational semantics of TiMo ; intuitively, �P specifies a process P that
is temporarily stalled and so cannot execute any action).

The semantics of rTiMo is provided by multiset labelled transitions in which
multisets indicate the actions executed in parallel. In order to illustrate the co-
ordination in time and space of a migrating process in rTiMo, we adapt the
TravelShop example used in [9] where the clients buy tickets to predefined desti-
nations from some travel agents. Since time is an important issue, it was studied
in various papers [11,13]. Within rTiMo we investigate the possibility of verify-
ing certain interesting real-time properties such as safety properties (a specified
error cannot occur) and bounded liveness properties (configuration reachabil-
ity within a certain amount of time). The development of effective techniques
and tools is required by the automated analysis and verification of complex dis-
tributed systems. We establish a formal relationship between rTiMo and timed
safety automata [15], allowing the use of the model checking capabilities of the
software tool Uppaal [17] to verify several temporal properties of distributed
networks with migrating and communicating processes described in rTiMo.

2 Syntax and Semantics of rTiMo

The syntax of rTiMo is given in Table 1, where we assume:

• a set Loc of locations, a set Chan of communication channels, and a set Id
of process identifiers (each id ∈ Id has its arity mid);

• for each id ∈ Id there is a unique process definition id(u1, . . . , umid
)
def
= Pid,

where the distinct variables ui are parameters;
• a ∈ Chan is a communication channel; l is a location or a location variable;
• t ∈ R+ is a timeout (deadline) of an action; u is a tuple of variables;
• v is a tuple of expressions built from values, variables and allowed operations.

Timing constraints applied to migrating processes allow one to specify how
many time units are required by a process to move from one location to another.

Real-Time Migration Properties of rTiMoVerified in Uppaal 33

A timer in rTiMo is denoted by Δ3. When it is associated with a migration
process goΔ3shop then P , it indicates that process P moves to location shop
after 3 time units. A timer Δ5 associated with an output process aΔ5!〈z〉 then P
else Q makes the channel a available for communication, namely it can send z
for a period of 5 time units. It is also possible to restrict the waiting time for an
input process aΔ4?(x) then P else Q along a channel a; if the communication does
not happen before the deadline 4, the waiting process gives up and it switches
to the alternative process Q.

Table 1. rTiMo Syntax

Processes P,Q ::= aΔt!〈v〉 then P else Q � (output)
aΔt?(u) then P else Q � (input)
goΔtl then P � (move)
0 � (termination)
id(v) (recursion)
P | Q � (parallel)

Located processes L ::= l[[P]]
Networks N ::= L � L | N

The only variable binding constructor is aΔt?(u) then P else Q which binds
the variable u within P (but not within Q). We use fv(P) to denote the free
variables of a process P (and similarly for networks); for a process definition,
we assume that fv(Pid) ⊆ {u1, . . . , umid

}, where ui are the process parameters.
Processes are defined up-to an alpha-conversion, and {v/u, . . .}P denotes P in
which all free occurrences of a variable u are replaced by v, possible after alpha-
converting P in order to avoid clashes.

Mobility is provided by a process goΔtl then P that describes the migration
from the current location to the location indicated by l within t time units. Since l
can be a variable, and so its value is assigned dynamically through communica-
tion with other processes, this form of migration supports a flexible scheme for
the movement of processes from one location to another. Thus, the behaviour can
adapt to various changes of the distributed environment. Processes are further
constructed from the (terminated) process 0, and parallel composition P | Q. A
located process l[[P]] specifies a process P running at location l, and a network
is built from its components N | N ′. A network N is well-formed if there are no
free variables in N .

The first component of the operational semantics of rTiMo is the structural
equivalence ≡ on networks; it is the smallest congruence such that the equalities
in Table 2 hold.

Table 2. rTiMo Structural Congruence

(NNULL) N | 0 ≡ N
(NCOMM) N | N ′ ≡ N ′ | N
(NASSOC) (N | N ′) | N ′′ ≡ N | (N ′ | N ′′)
(NSPLIT) l[[P | Q]] ≡ l[[P]] | l[[Q]]

34 B. Aman and G. Ciobanu

The role of ≡ is to rearrange a network in order to apply the rules of the
operational semantics given in Table 3. Using the equalities of Table 2, a given
networkN can always be transformed into a finite parallel composition of located
processes of the form l1[[P1]] | . . . | ln[[Pn]] such that no process Pi has the
parallel composition operator at its topmost level. Each located process li[[Pi]]
is called a component of N , and the whole expression l1[[P1]] | . . . | ln[[Pn]] is
called a component decomposition of the network N .

The semantics of rTiMo is presented in Table 3. The multiset labelled tran-

sitions of form N
Λ−→ N ′ use a multiset Λ to indicate the actions executed in

parallel in one step. When the multiset Λ contains only one action λ, in order

to simplify the syntax, we write N
λ−→ N ′. The transitions of form N

t� N ′

represent a time step of length t.
In rule (Move0), the process goΔtl then P migrates from location l to l′

and evolves as process P . In rule (Com), a process aΔt!〈v〉 then P else Q, from
location l, succeeds in sending a tuple of values v over channel a to process
aΔt?(u) then P ′ else Q′ from location l. Both processes continue to execute at
location l, the first one as P and the second one as {v/u}P ′. If a communication
action has a timer equal to 0, then by using the rule (Put0) for output action
or the rule (Get0) for input action, the process aΔ0 ∗ then P else Q, for ∗ ∈
{!〈v〉, ?(x)} continues as the alternative process Q. Rule (Call) simulates the
evolution of a recursion process. The rules (Equiv) and (DEquiv) are used to
rearrange a network in order to apply a rule. Rule (Par) is used to compose
larger networks from smaller ones by putting them in parallel and considering
the union of multisets of actions.

The rules devoted to the passing of time are starting with D. In rule (DPar),

N1 | N2 	 λ−→ means that no action λ (i.e, an action labelled by l′�l, {v/u}@l, id@l,
goΔ0@l, a?Δ0@l or a!Δ0@l) can be applied to the network N1 | N2 (obtained
using (Par) rules). We use negative premises: the passing to a new step is per-
formed based on the absence of actions. According to [12], our semantics allows
the use of negative premises without leading to an inconsistent set of rules.

A complete computational step is captured by a derivation of the form:

N
Λ−→ N1

t� N ′.
This means that a derivation is a sequence of individual actions followed by a
time step. We say that N ′ is directly reachable from N . If there is no applicable

action, we write N
t� N ′ to indicate time progress.

The first item of the following proposition states that the passage of time
does not introduce any nondeterminism into the execution of a process. Also, if
a process is able to evolve to a certain time t, then it must evolve through every
time moment before t; this means that the process evolves continuously.

Proposition 1. For any networks N , N ′ and N ′′, the following sentences hold:

1. N
0�N ;

2. If N
t�N ′ and N t�N ′′, then N ′≡N ′′;

3. N
(t+t′)� N ′ if and only if there is a N ′′ such that N

t� N ′′ and N ′′ t′� N ′.

Real-Time Migration Properties of rTiMoVerified in Uppaal 35

Table 3. rTiMo Operational Semantics

(Stop) l[[0]] � λ−→ (DStop) l[[0]]
t� l[[0]]

(DMove)
t ≥ t′ ≥ 0

l[[goΔtl′ then P]]
t′� l[[goΔt−t′ l′ then P]]

(Move0) l[[goΔ0l′ then P]]
l�l′−−→ l′[[P]]

(Com) l[[aΔt!〈v〉 then P else Q | aΔt′?(u) then P ′ else Q′]]
{v/u}@l−−−−−→ l[[P | {v/u}P ′]]

(DPut)
t ≥ t′ ≥ 0

l[[aΔt!〈v〉 then P else Q]]
t′� l[[aΔt−t′ !〈v〉 then P else Q]]

(Put0) l[[aΔ0!〈v〉 then P else Q]]
a!Δ0@l−−−−−→ l[[Q]]

(DGet)
t ≥ t′ ≥ 0

l[[aΔt?(u) then P else Q]]
t′� l[[aΔt−t′?(u) then P else Q]]

(Get0) l[[aΔ0?(u) then P else Q]]
a?Δ0@l−−−−−→ l[[Q]]

(DCall)
l[[Pid{v/x}]] t� l[[P ′

id]]

l[[id(v)]]
t� l[[P ′

id]]
where id(v)

def
= Pid

(Call)
l[[Pid{v/x}]] Λ−→ l[[P ′

id]]

l[[id(v)]]
Λ−→ l[[P ′

id]]
where id(v)

def
= Pid

(DPar)
N1

t� N ′
1 N2

t� N ′
2 N1 | N2 � λ−→

N1 | N2
t� N ′

1 | N ′
2

(Par)
N1

Λ1−−→ N ′
1 N2

Λ2−−→ N ′
2

N1 | N2
Λ1∪Λ2−−−−→ N ′

1 | N ′
2

(DEquiv)
N ≡ N ′ N ′ t� N ′′ N ′′ ≡ N ′′′

N
t� N ′′′

(Equiv)
N ≡ N ′ N ′ Λ−→ N ′′ N ′′ ≡ N ′′′

N
Λ−→ N ′′′

36 B. Aman and G. Ciobanu

Example 1. We adapt the TravelShop example of [9] in which a client attempts
to get a ticket to a predefined destination in a short time and at a good price.
The scenario involves five locations and six processes.

Fig. 1. The initial network indicates the migration paths of the processes [9]

The role of each process represented in Figure 1 is as follows:

• client is a process that initially resides in the home location, has an amount
of 130 cash, and intends to pay for a flight after comparing two offers (stan-
dard and special) provided by the travel shop. After entering the travelshop
location, the client receives the location of the standard offer where it should
move to obtain this standard offer, and also the location where a special offer
can be obtained. Then, it moves to the special location to receive the special
offer. Finally, the client moves to the bank, pays for the special (cheaper)
offer, and returns to the home location.

• agent is a process that initially resides in the travelshop location, has an
amount of 100 cash, and informs the client where to look for the standard
offer. It then moves to the bank in order to collect the money from the till.
After that, the agent returns to the travelshop.

• flightinfo communicates the standard offer (110 cash) to clients as well as
the location (special) of the special offer.

• saleinfo communicates the special offer (90 cash) to clients together with the
location (bank) of the bank. It can also accept an update of the special offer
coming from the travelshop location.

• update migrates from the travelshop to the special location in order to update
the special offer to the amount of 60 cash.

• till resides at the bank location, has an initial amount of 10 cash, and can
either receive e-money paid in by the clients, or transfer the accumulated
e-money to the agent.

In what follows we use some shorthand notations:
a!〈v〉 → P stands for aΔ∞〈v〉 then P else 0;
a?(u) → P stands for aΔ∞(u) then P else 0.

Real-Time Migration Properties of rTiMoVerified in Uppaal 37

The rTiMo syntax of these processes is as follows:
client(init) = goΔ5travelshop→ flight?(standardoffer) →

goΔ4standardoffer → finfo2?(p1, specialoffer) →
goΔ3specialoffer → sinfo2?(p2, paying)→ goΔ6paying →
payc!〈min{p1, p2}〉 → goΔ4home→ client(init−min{p1, p2})

update(saleprice) = goΔ0special→ info1!〈saleprice〉
agent(balance) = flight!〈standard〉 → goΔ10bank → paya?(profit) →

goΔ12travelshop→ agent(balance+ profit)
flightinfo(price, next) = finfo2!〈price, next〉 → flightinfo(price, next)
saleinfo(price, next) = info1Δ10?(newprice)

then saleinfo(newprice, next)
else sinfo2!〈price, next〉 → saleinfo(price, next)

till(cash) = paycΔ1?(newpayment)
then till(cash+ newpayment)
else paya!〈cash〉! then till(0) else till(cash))

A possible final network after 22 units of time is represented in Figure 2.

Fig. 2. A possible final network [9]

3 Timed Safety Automata

Due to their simplicity, timed safety automata have been used by several tools
(e.g., Uppaal) for the simulation and verification of timed automata [1].

Syntax. Assume a finite set of real-valued variables C ranged over by x, y, . . .
standing for clocks, and a finite alphabet Σ ranged over by a, b, . . . standing for
actions. A clock constraint is a conjunctive formula of constraints of the form
x ∼ m or x − y ∼ m, for x, y ∈ C, ∼∈ {≤, <,=, >,≥}, and m ∈ N. The set of
clock constraints, ranged over by g, is denoted by B(C).
Definition 1. A timed safety automaton A is a tuple 〈N,n0, E, I〉, where
• N is a finite set of nodes;
• n0 is the initial node;
• E ⊆ N × B(C)×Σ × 2C ×N is the set of edges;
• I : N → B(C) assigns invariants to nodes.

n
g,a,r−−−→ n′ is a shorthand notation for 〈n, g, a, r, n′〉 ∈ E. Node invariants are

restricted to constraints of the form: x ≤ m or x < m where m ∈ N.

38 B. Aman and G. Ciobanu

start
y<=20

loop
y<=50

end
y<=20

10<=y
enter

x:=0, y:=0

40<=y
leave
y:=0

x==10
work
x:=0

10<=y
y:=0

Fig. 3. Timed Safety Automata

In other words, a timed safety automata is
a graph having a finite set of nodes and
a finite set of labelled edges (representing tran-
sitions), using real-timed variables (represent-
ing the clocks of the system). The clocks are
initialised with zero when the system starts,
and then increased synchronously with the same
rate. The behaviour of the automaton is re-
stricted by using clock constraints, i.e. guards
on edges, and local timing constraints called
node invariants (e.g., see Figure 3). An automa-
ton is allowed to stay in a node as long as the
timing conditions of that node are satisfied. A
transition can be taken when the edge guards
are satisfied by clocks values. When a transition
is taken, clocks may be reset to zero.

Networks of Timed Automata. A network of timed automata is the parallel
composition A1 | . . . | An of a set of timed automata A1, . . . ,An combined into
a single system using the CCS-like parallel composition operator and with all
internal actions hidden. Synchronous communication inside the network is by
handshake synchronisation of input and output actions. In this case, the action
alphabet Σ consists of a? symbols (for input actions), a! symbols (for output
actions), and τ symbols (for internal actions). A detailed example is found in [15].

A network can perform delay transitions (delay for some time), and action
transitions (follow an enabled edge). An action transition is enabled if the
clock assignment also satisfies all integer guards on the corresponding edges. In
synchronisation transitions, the resets on the edge with an output-label are per-
formed before the resets on the edge with an input-label. To model urgent syn-
chronisation transitions that should be taken as soon as they are enabled (the
system may not delay), a notion of urgent channels is used. 1-to-many synchro-
nisations are possible using broadcast channels: an edge with synchronisation
label a! emits a broadcast and any enabled edge with synchronisation label a?
synchronises with the emitting automata.

Let u, v, . . . denote clock assignments mapping C to non-negative reals R+.
Even though u and v and N are overloaded (we keep the initial notations in
both formalisms), they are understood according to their context. g |= u means
that the clock values u satisfy the guard g. For d ∈ R+, the clock assignment
mapping all x ∈ C to u(x) + d is denoted by u + d. Also, for r ⊆ C, the clock
assignment mapping all clocks of r to 0 and agreeing with u for the other clocks
in C\r is denoted by [r → 0]u. Let ni stand for the ith element of a node vector
n, and n[n′

i/ni] for the vector n with ni being substituted with n′
i.

Real-Time Migration Properties of rTiMoVerified in Uppaal 39

A network state is a pair 〈n, u〉, where n denotes a vector of current nodes of
the network (one for each automaton), and u is a clock assignment storing the
current values of all network clocks and integer variables.

Definition 2. The operational semantics of a timed automaton is a transition
system where states are pairs 〈n, u〉 and transitions are defined by the rules:

• 〈n, u〉 d−→ 〈n, u+ d〉 if u ∈ I(n) and (u+ d) ∈ I(n), where I(n) =
∧
I(ni);

• 〈n, u〉 τ−→ 〈n[n′
i/ni], u

′〉 if ni
g,τ,r−−−→ n′

i, g |= u, u′ = [r → 0]u and u′ ∈
I(n[n′

i/ni]);

• 〈n, u〉 τ−→ 〈n[n′
i/ni][n

′
j/nj], u

′〉 if there exist i 	= j such that

1. ni
gi,a?,ri−−−−−→ n′

i, nj
gj ,a!,rj−−−−−→ n′

j, gi ∧ gj |= u,
2. u′ = [ri → 0]([rj → 0]u) and u′ ∈ I(n[n′

i/ni][n
′
j/nj]).

4 Relating rTiMo to Timed Safety Automata

In order to use well-known tools such as Uppaal for the verification of dis-
tributed networks with migration and communication, we establish a relation-
ship between rTiMo and timed safety automata.

Building a timed safety automaton for each located process: Given a component
l[[P]] of an rTiMo network, we associate to it a timed safety automaton A =
〈N,n0, E, I〉 with a local clock x, where n0 = l0, N = {l0}, E = ∅, I = ∅. The
nodes of the associated automata are labelled using the current location of the
located process P (l in this case), and an index such that the nodes are uniquely
labelled in this automaton (we start with the index 0, and increment it when
necessary). Thus, l0 means that we model a located process running at location l
in rTiMo . The components N , E and I are updated depending on the structure
of process P :

– for P = aΔt!〈v〉 then P1 else P ′
1 we have

• N = N ∪ {li+1, li+2};
∗ If P is running at location l, and N contains some indexed nodes l,
namely l0, . . . , li then add li+1 and li+2 to N . The two nodes indicate
the two executions of the located process P , leading to either P1

or P ′
1.

• E = E ∪ {n, x < t, a!, x = 0, li+1} ∪ {n, x == t, τ, x = 0, li+2};
∗ If process P is running at location l, and i > 0 it means that the au-
tomaton already contains some edges, and a process P was launched
from the then or else branch of a process P ′. Since the translation
is made depending on the structure of the processes, it means that
the action leading to P is already modelled in the automaton. If
P ′ = bΔt′ !〈w〉 then P else P ′′ or P ′ = bΔt′ !〈w〉 then P ′′ else P or
P ′ = bΔt′?(x) then P else P ′′ or P ′ = bΔt′?(x) then P ′′ else P or
P ′ = goΔt′ l then P , then the action of P ′ is modelled by an edge
with the last component lk, and thus n = lk.

40 B. Aman and G. Ciobanu

∗ Otherwise, n = l0.
The edge {n, x < t, a!, x = 0, l′i+1} encodes the then branch leading to
process P1, while the edge {n, x == t, τ, x = 0, li+2} encodes the else
branch leading to process P ′

1. Channel a is an urgent channel (commu-
nication takes place as soon as possible).

• I(n) = {x <= t}.
∗ The process should communicate before a maximum of t units of
time have elapsed.

– for P = aΔt?(y) then P1 else P ′
1 we have

• N = N ∪ {li+1, li+2};
∗ If P is running at location l, and N contains some indexed nodes l
(namely l0, . . . , li), then add li+1 and li+2 to N . The two nodes in-
dicate the two executions of the located process P , leading either to
P1 or P ′

1.

• E = E ∪ {n, x < t, a?, {x = 0, y = v}, li+1} ∪ {n, x == t, τ, x = 0, li+2};
∗ If process P is running at location l and i > 0, using a similar
argument as for the output action, it holds that n = lk.

∗ Otherwise, n = l0.
The edge {n, x < t, a?, {x = 0, y = v}, l′i+1} encodes the then branch
leading to process P1, while the edge {n, x == t, τ, x = 0, li+2} encodes
the else branch leading to process P ′

1. In order to use an assignment y = v
on the edge with a?, we impose the condition that channel a can be used
at most once for output actions in the translated rTiMo network. This
requirement reflects somehow the global asynchronicity of distributed
systems (as it is described formally in process calculi).

• I(n) = {x <= t}.
∗ The process should communicate before a maximum of t units of
time have elapsed.

– for P = goΔtl′ then P ′ we have
• N = N ∪ {l′j};

∗ If N contains indexed nodes l′ (namely l′0, . . . , l
′
j−1), then add l′j

to N .
∗ Otherwise, add l′0 to N .

The new node indicates the execution of process P leading to P ′.
• E = E ∪ {n, x == t, τ, x = 0, l′j};

∗ If process P is running at location l and i > 0, using a similar
argument as for the communication actions, it holds that n = lk.

∗ Otherwise, n = l0.
• I(n) = {x <= t}.

∗ The process should leave location n before a maximum of t units of
time have elapsed.

– for P = 0 we have
• N , E and I remain unchanged, and the construction of A stops.

– for P = id(v) we have
• N remains the same;

Real-Time Migration Properties of rTiMoVerified in Uppaal 41

• E = E ∪ {n, x == 0, τ, {x = 0, varid = v}, l0};
∗ If process P is running at location l and i > 0, using a similar
argument as for the communication actions, it holds that n = lk.

∗ Otherwise, n = l0.
• I(n) = {x <= 0}.

∗ The process should leave location n in maximum of 0 units of time.
– for P =P1 | . . . |Pk,k>1, and Pj does not contain operator | at top level, then

• N = N ∪ {li+1};
∗ If P is running at location l, and N contains some indexed nodes l
(namely l0, . . . , li), then add li+1 to N .

• E = E ∪ {n, , a!, {x = 0}, li+1};
∗ If process P is running at location l and i > 0, using a similar
argument as for the communication actions, it holds that n = lk.
We use a new channel labelled a as a broadcast channel, in order to
start at the same time all the parallel processes from P .

∗ Otherwise, n = l0.
The new edge leads to process P1. For each of the other processes Pj ,
j > 1, a new automaton Aj = 〈Nj , nj0, Ej , Ij〉 is constructed, where:
∗ nj0 = l0; Nj = {l0, l1}; Ej = {l0, , a?, {x = 0}, l1}; Ij(l0) = ∅.

This automaton is constructed then recursively using the definition of Pj .
• I(n) = {x <= 0}.

∗ The process has to communicate in maximum of 0 units of time.

Building a timed automaton for each located process leads to the next result
about the equivalence between an rTiMo networkN and its corresponding timed
safety automaton AN in state 〈nN , uN〉 (i.e., (AN , 〈nN , uN 〉). Their transition
systems differ not only in transitions, but also in states; thus, we adapt the
notion of bisimilarity:

Definition 3. A symmetric relation ∼ over TiMo networks and the timed
safety automata, is a bisimulation if whenever (N, (AN , 〈nN , uN 〉)) ∈∼:

– if N
λ−→ N ′, then 〈nN , uN〉 τ−→ 〈nN ′ , uN ′〉 and (N ′, (AN ′ , 〈nN ′ , uN ′〉)) ∈∼ for

some N ′.
– if N

t� N ′, then 〈nN , uN〉 d−→ 〈nN ′ , uN ′〉 and (N ′, (AN ′ , 〈nN ′ , uN ′〉)) ∈∼ for
some N ′, where uN ′ = uN + d.

Having defined bisimulation, we can state our main theorem as follows.

Theorem 1. Given an rTiMo network N with channels appearing only once
in output actions, there exists a timed safety automaton AN with a bisimilar
behaviour. Formally, N ∼ AN .

Proof (Sketch). The construction of the timed safety automaton simulating a
given rTiMo network is presented above. Due to the limitations of Uppaal , we
imposed the requirement of using at most once an output actions in order to
allow the assignment y = v on edges with input labels (as used in the building
of the automaton).

42 B. Aman and G. Ciobanu

A bisimilar behaviour is given by:

• at the start of execution, all clock in rTiMo and their corresponding timed
automata are set to 0;

• the consumption of a go action in a node li is matched by an τ edge obtained
by translation;

• a communication rule is matched by a synchronisation between the edges
obtained by translations;

• the passage of time is similar in both formalisms: in rTiMo the global clock
is used to decrement by d all timers in the network when no action is possible,
while in the timed automata all local clocks are decremented synchronously
with the same value d when no edge can be taken.

Thus, the size of a timed safety automata AN is polynomial with respect to the
size of a TiMo network N , and the state spaces have the same number of states.

Reachability Analysis. One of the most useful question to ask about a timed
automaton is the reachability of a given set of final states. Such final states may
be used to characterise safety properties of a system.

Definition 4. We write 〈n, u〉 −→ 〈n′, u′〉 whenever 〈n, u〉 σ−→ 〈n′, u′〉 for σ ∈
Σ ∪ R+. For an automaton with initial state 〈n0, u0〉, 〈n, u〉 is reachable if and
only if 〈n0, u0〉 →∗ 〈n, u〉. More generally, given a constraint φ ∈ B(C) if 〈n, u〉
is reachable for some u satisfying φ then a state 〈n, φ〉 is reachable.

Invariant properties can be specified using clock constraints in combination
with local properties on nodes. The reachability problem is decidable [5].

The reachability problem can be also defined for rTiMo networks.

Definition 5. We write N −→ N ′ if N λ−→ N ′ or N t′� N ′ for actions λ of the
form l′ � l, {v/u}@l, id@l, goΔ0@l, a?Δ0@l or a!Δ0@l. Starting from an rTiMo
network N0, a configuration N1 is reachable if and only if N0 →∗ N1.

The following result is a consequence of Theorem 1.

Corollary 1. For an rTiMo network with channels appearing only once in out-
put actions, the reachability problem is decidable.

Bisimulation. Two timed automata are defined to be timed bisimilar in [5] if
and only if they perform the same action transitions and reach bisimilar states.

Definition 6. A symmetric relation R over the timed automata and the alpha-
bet Σ ∪ R+, is a bisimulation if:

– for all (s1, s2) ∈ R, if s1
σ−→ s′1 for σ ∈ Σ ∪ R+ and s′1, then s2

σ−→ s′2 and
(s′1, s

′
2) ∈ R for some s′2.

Proposition 2. [6] Timed bisimulation is decidable.

In a similar way to our previous approach in [2], we define the bisimulation
over configurations of rTiMo networks.

Real-Time Migration Properties of rTiMoVerified in Uppaal 43

Definition 7. A symmetric relation R over the rTiMo networks and the set
Act of actions, is a bisimulation if:

– for all (N1, N2) ∈ R, if N1
λ−→ N ′

1 for λ ∈ Act and N ′
1, then N2

λ−→ N ′
2 and

(N ′
1, N

′
2) ∈ R for some N ′

2.

– for all (N1, N2) ∈ R, if N1
t� N ′

1 for t ∈ N and N ′
1, then N2

t� N ′
2 and

(N ′
1, N

′
2) ∈ R for some N ′

2.

The following result is a consequence of Theorem 1.

Corollary 2. For two rTiMo networks with channels appearing only once in
output actions, timed bisimulation is decidable.

5 Verifying Properties of rTiMo by Using Uppaal

By virtue of the results presented in the previous section, we can verify real-time
systems corresponding to a subclass of rTiMo networks by using Uppaal . In
general, modelling and verification of real-time systems in Uppaal were pre-
sented in [16]. Uppaal can be used to check temporal properties of networks of
timed safety automata, properties expressed in Computation Tree Logic (CTL).
If φ and ψ are boolean expressions over predicates on nodes, integer variables
and clock constraints, then the formulas have the following forms:

A [] φ - Invariantly φ; A 〈 〉 φ - Always Eventually φ;
E [] φ - Potentially Always φ; E 〈 〉 φ - Possibly φ;
φ � ψ - φ always leads to ψ. This is a shorthand for A [] (φ⇒ A 〈 〉 ψ)

The properties most commonly used in verification of timed systems are E 〈 〉 φ
and A [] φ. They represent safety properties (a specified error can not occur).

The properties A 〈 〉 φ, E [] φ and φ � ψ represent unbounded liveness prop-
erties (used to express and check global progress), and are not commonly used in
Uppaal case studies. Bounded properties are important for timed systems.

Example 2. Using both types of properties, we performed some verifications in
Uppaal for the system presented in Example 1.

• E[]clientcash <= 0
Checks if potentially always on some path clientcash <= 0 is not satisfied.

• A <> till.bank1 imply till.x >= 1
Checks if the till automaton is in the bank node, then the value of the local
clock is >= 1.

• E <> (clientcash == 70)&&(agentcash == 170)&&(bankcash == 60)
Checks if there exists a state containing the configuration of Figure 2.

• A[] not deadlock
Checks that there exists deadlocks. The error is due to state space explosion.

Several other properties of rTiMo systems can be verified by using Uppaal .

44 B. Aman and G. Ciobanu

Fig. 4. Verification in Uppaal

6 Conclusion

When modelling distributed systems it is useful to have explicit notions of lo-
cations, clocks, explicit migrations and resource management. Various process
calculi derived from π-calculus [18] have been proposed to model some of these as-
pects. Various features were introduced over the basic π-calculus: e.g., explicit lo-
cations in distributed π-calculus [14], and explicit migration and timers in timed
distributed π-calculus (tDπ) [11]. TiMo [8] is essentially a simplified version of
tDπ designed to allow appropriate software architecture for implementation [7].
TiMo represents an attempt to bridge the gap between the existing (theoretical)
process calculi and forthcoming realistic languages for multi-agent systems.

Several proposals for real-time modelling and verification are present in the
literature: timed automata [1], timed CSP [20], timed ACP [3], and several timed
extensions of CCS [19,21]. In this paper we defined a formalism called rTiMo
that uses real-time and explicit timeouts, and so is useful for expressing certain
temporal properties of multi-agent systems with migration and time constraints.
In order to illustrate in rTiMo the coordination of migrating agents in time and
space, we adapt the TravelShop example from [9] in which a client attempts to
get a ticket to a predefined destination in a short time and/or at a good price.
Although the syntax of rTiMo is quite close to that of TiMo , its semantics is
different in many aspects: the number of semantic rules, number of clocks, time
nature (continuous or discrete), systems evolution.

We established a formal relationship between rTiMo and timed safety au-
tomata allowing the use of model checking capabilities provided by Uppaal to
verify several temporal properties of distributed networks with migrating and
communicating processes described in rTiMo. The verification performed on
the TravelShop example also validates the rTiMo semantics.

As future work we intend to use this relationship for improvements in rTiMo
(e.g., constraints on integers, lower and upper time bounds) in order to extend
the classes of complex systems that can be modelled and analysed.

Acknowledgements. Many thanks to the reviewers for their useful comments.
The work was supported by a grant of the Romanian National Authority for
Scientific Research, project number PN-II-ID-PCE-2011-3-0919.

Real-Time Migration Properties of rTiMoVerified in Uppaal 45

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

2. Aman, B., Ciobanu, G., Koutny, M.: Behavioural Equivalences over Migrating
Processes with Timers. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE 2012.
LNCS, vol. 7273, pp. 52–66. Springer, Heidelberg (2012)

3. Baeten, J.C.M., Bergstra, J.A.: Real Time Process Algebra. Journal of Formal
Aspects of Computing Science 3(2), 142–188 (1991)

4. Baumann, J., Hohl, F., Radouniklis, N., Rothermel, K., Straβer, M.: Communica-
tion Concepts for Mobile Agent Systems. In: Rothermel, K., Popescu-Zeletin, R.
(eds.) MA 1997. LNCS, vol. 1219, pp. 123–135. Springer, Heidelberg (1997)

5. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–
124. Springer, Heidelberg (2004)

6. Čerāns, K.: Decidability of Bisimulation Equivalences for Parallel Timer Processes.
In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993)

7. Ciobanu, G., Juravle, C.: Flexible Software Architecture and Language for Mobile
Agents. Concurrency and Computation: Practice and Experience 24, 559–571 (2012)

8. Ciobanu, G., Koutny, M.: Modelling and Verification of Timed Interaction and
Migration. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp.
215–229. Springer, Heidelberg (2008)

9. Ciobanu, G., Koutny, M.: Timed Mobility in Process Algebra and Petri Nets.
Journal of Logic and Algebraic Programming 80, 377–391 (2011)

10. Ciobanu, G., Koutny, M.: Timed Migration and Interaction With Access Permis-
sions. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 293–307.
Springer, Heidelberg (2011)

11. Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. Electronic Notes in
Theoretic Computer Science 164(3), 81–99 (2006)

12. Groote, J.F.: Transition System Specifications with Negative Premises. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 332–341. Springer,
Heidelberg (1990)

13. Hennessy, M., Regan, T.: A Process Algebra for Timed Systems. Information and
Computation 117, 221–239 (1995)

14. Hennessy, M.: A Distributed π-calculus. Cambridge University Press (2007)
15. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for

Real-time Systems. Information and Computation 111, 192–224 (1994)
16. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Test-

ing Real-Time Systems Using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

17. Larsen, K.G., Petterson, P., Yi, W.: Uppaal in a Nutshell. International Journal
on Software Tools for Technology Transfer 1(2), 134–152 (1997)

18. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press (1999)

19. Moller, F., Tofts, C.: A Temporal Calculus of Communicating Systems. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer,
Heidelberg (1990)

20. Reed, G.M., Roscoe, A.W.: A Timed Model for Communicating Sequential Pro-
cesses. Theoretical Computer Science 58(1-3), 249–261 (1988)

21. Yi, W., Pettersson, P., Daniels, M.: Automatic Verification of Real-time Commu-
nicating Systems by Constraint-solving. In: International Conference on Formal
Description Techniques, pp. 223–238 (1994)

	Real-Time Migration Properties of rTiMo Verified in Uppaal
	1 Introduction
	2 Syntax and Semantics of rTiMo
	3 Timed Safety Automata
	4 RelatingrTiMo to Timed Safety Automata
	5 Verifying Properties of rTiMo by Using Uppaal
	6 Conclusion
	References

