
Constraint Specification and Test Generation

for OSEK/VDX-Based Operating Systems�

Yunja Choi

School of Computer Science and Engineering, Kyungpook National University, Korea
yuchoi76@knu.ac.kr

Abstract. This work suggests a method for systematically construct-
ing an environment model for automotive operating systems compliant
with the OSEK/VDX international standard by introducing a constraint
specification language, OSEK CSL, and defining its underlying formal
models. OSEK CSL is designed for specifying constraints of OSEK/VDX
using a pre-defined set of constraint types identified from the
OSEK/VDX standard. Each constraint specified in OSEK CSL is in-
terpreted as a context-free language and is converted into push-down
automata using NuSMV, which allows automated test sequence gener-
ation using LTL model checking. This approach supports selective ap-
plications of constraints and thus is able to control the “degree” of test
sequences with respect to test purposes. An application of the suggested
approach demonstrates its effectiveness in identifying safety problems.

1 Introduction

An automotive operating system is typical safety-critical software and therefore
requires extensive analysis using formal methods. However, existing formal ap-
proaches in this domain [6,7] have either been seen difficult to use or do not
scale in practice. Instead, conformance testing [12] has been a de facto veri-
fication method in industry; for example, in order to get a certificate for an
operating system compliant with the OSEK/VDX international standard [1],
a system must pass a test suite distributed by a certification agency. A major
problem with conformance testing is that the tests are designed for checking
functionalities, not for checking safety, and do not aim at comprehensive ver-
ification. Our previous work [4] revealed some potential safety problems in an
OSEK/VDX-based operating system using model checking, which would have
slipped through with conformance testing.

Though a comprehensive but cost-effective verification approach is hard to
find, we may be able to control the degree of comprehensiveness by modular-
izing systems and selectively applying verification techniques so that we can
achieve comprehensiveness to an anticipated degree with moderate cost. This
work aims at automated test sequence generation that allows comprehensive

� This work was supported by the National Research Foundation of Korea Grant
funded by the Korean Government (NRF-2012R1A1A4A01011788).

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 305–319, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

306 Y. Choi

checking of possible interactions between an automotive operating system and
its application tasks. This is achieved by (1) introducing a constraint specifica-
tion language, OSEK CSL, designed for specifying constraints identified from
the OSEK/VDX standard, (2) defining its underlying formalism in pushdown
automata whose formal models are modularly defined in the input language of
the symbolic model checker NuSMV [13], and (3) generating test sequences using
LTL model checking.

OSEK CSL is devised to make the specification of operational environments
modular and systematic; it is a simple and intuitive constraint specification
language consisting of only four basic building blocks, each of which can be in-
dependently specified and imposed on a system model. Each constraint specified
in OSEK CSL is systematically translated into NuSMV and combined with a
generic task model. The task model is pre-defined as a NuSMV module rep-
resenting the abstract behavior of a generic task as required in the standard.
It is an abstract task model since it includes only the basic requirements from
the OSEK/VDX standard without any implementation details. We have stan-
dardized the mapping between each constraint and a NuSMV module so that
any number of constraints can be added by engineers and their corresponding
NuSMV modules can be instantiated automatically.

Test sequence generation is automated through LTL model checking on the
NuSMV model using trap properties designed to cover all transitions for each
constraint/task module. Our approach enables us to control the degree of test
sequences from “perfect” to “erroneous” and “false”, depending on the number
of constraints imposed for LTL model checking. In this way, the generated test
sequences include correct inputs as well as undesirable or unexpected inputs, as
required by safety analysis.

Our approach is applied to Trampoline [2], an open source operating system
based on OSEK/VDX, and identified two assertion violations and a segmentation
fault error that had been missed by existing approaches, including conformation
testing and model checking.

The remainder of this paper is organized as follows: Section 2 briefly sketches
the background of this work and the overall approach. Section 3 introduces our
OSEK CSL language. Section 4 explains the NuSMV module for a represen-
tative OSEK CSL constraint type and the test sequence generation approach
using LTL model checking. An application result using the suggested approach
is presented in Section 5, followed by a discussion on related work (Section 6)
and the conclusion (Section 7).

2 Background and Approach

OSEK/VDX is a joint project of the automotive industry, which aims at es-
tablishing an industry standard for an open-ended architecture for distributed
control units in vehicles. The standard has been adopted by major automobile
manufacturers as well as by the AUTOSAR open source architecture defined by
a consortium of over 50 automotive manufacturers worldwide.

Constraint Specification and Test Generation 307

Conformance testing is a standard verification method for the certification
of OSEK/VDX-based operating systems. However, conformance test suites are
typically insufficient for identifying safety problems. As OSEK/VDX explicitly
specifies more than 26 basic APIs, thorough conformance testing would require
at least 26×2×3 test cases, even if we assume two arguments per API and even
if only boundary values for the arguments were chosen. The possible number of
execution sequences for these 26× 2 × 3 test cases would rise to 156 factorials,
a large number to be tested in practice.

Our previous works tried to address this issue using property-based code slic-
ing and test generation [4,14]. The idea was to perform focused verification by
slicing the operating system kernel with respect to the given safety properties.
Those approaches have proven increased verification efficiency and effectiveness
in identifying safety issues. Nevertheless, model checking still costs a lot (e.g.,
30 Gbytes of memory were consumed during verification of one safety prop-
erty) and requires some knowledge of the underlying technique. Property-based
slicing and test generation were cheaper and easier to apply in practice com-
pared to a similar approach using model checking, but comprehensiveness was
not achieved. Both cases over-approximated the system environment by allowing
non-deterministic API calls from tasks and by informally imposing constraints
on the environment model or during the scenario generation process.

Temporal logic model checking

Source Code Safety Properties

Property-based
dependency

analysis

Constraint
specification

using
OSEK_CSL

Generic
NuSMV

task model

NuSMV contraint
modules

List of property-
related API functions

Counterexample
traces

Conversion to
test sequencesArbitrary API

sequence
generation

Trap properties

Fig. 1. Overall approach

Figure 1 illustrates an overview of our improved approach. First, we option-
ally identify API functions related to given safety properties through a depen-
dency analysis using a static code analyzer, as explained in [14]. This process
is not mandatory, but helpful in reducing the test input space. Once the list
of (property-related) API functions has been determined, users need to specify
the desired system constraints using OSEK CSL and choose which of those con-
straints will be actually imposed during test sequence generation. OSEK CSL
consists of four basic constructs, each representing a constraint type. We have de-
fined an NuSMV module for each construct as a pushdown automaton. A generic
task model for OSEK/VDX-compliant operating systems is also predefined as
an NuSMV module. Finally, a set of trap properties is specified in LTL by as-
serting that not every state or transition is reachable in each NuSMV module.

308 Y. Choi

Temporal logic model checking is performed to verify whether the given trap
properties are satisfied by the model, defined as a conjunction of the generic
task model, the set of constraint modules, and arbitrary API sequences. If a trap
property is refuted, the corresponding counterexample sequence is converted into
a test sequence.

Since the first part of the approach was already explained in [14] and the
approach is independent of whether property-based extraction of API functions
is used or not (entire API functions can be used as they are), this paper focuses
on constraint specification using OSEK CSL, constraint modeling in NuSMV,
and test sequence generation using temporal logic model checking.

3 Constraint Specification Language

A typical and straightforward environment of an operating system is an arbi-
trary call sequence of API functions provided by the operating system, which
apparently simulates an actual environment, but includes too many impossible or
undesirable interactions and results in a large number of false alarms when ver-
ification is performed. Analyzing counterexamples and identifying false alarms
is a time-consuming process. To reduce such inefficiency, this work suggests a
systematic method for formalizing constraints from the OSEK/VDX standard
and reflecting them in the environment model.

3.1 OSEK/VDX Requirements and Constraints

OSEK/VDX defines task models for user-defined tasks, which are the basic build-
ing blocks of an application program. A task interacts with the operating system
through system calls. OSEK/VDX explicitly defines a total of 26 such APIs.
Figure 2 (a) is the task model for an extended task specified in the standard.
Figure 2 (b) is our version of the same task model annotated with related APIs
and an explicitly specified initial state. We use three types of annotations; the one
finishing with ‘?’ represents an external API call from other tasks, the one finish-
ing with ‘!’ is an internal API call, and the one surrounded by <> is an internal
event caused by system scheduling. For example, the transition from running
to suspended is triggered by the internal API call to either TerminateTask
or ChainTask, but the transitions between ready and running are caused by
priority-based task scheduling.

The OSEK/VDX standard explicitly/implicitly specifies constraints among
the APIs, some of which are listed in Table 1. Analyzing those constraints reveals
that they can be categorized into four types.

1. A system call f1 shall be followed by f2 (though not necessarily directly).
2. The number of calls to f is limited by n.
3. A system call f shall not be called in between two system calls f1 and f2.
4. No system call shall be made after a call to f .

Constraint Specification and Test Generation 309

ready

waiting suspended

running

activate

terminate

preempt

start

wait

release

(a) Task model for an extended task

(from OSEK/VDX)

ready

waiting suspended

running

ActivateTask?

ChainTask?

TerminateTask!

ChainTask!

<preempt>

<start>

WaitEvent!

SetEvent?

(b) Task model and related APIs

Fig. 2. Task model and related APIs

For example, if GetResource is called, the matching system call
ReleaseResource must be called afterwards, and WaitEvent shall not be called
in between them.

The types of constraints can also be classified by scope since some con-
strain global behavior and others constrain local behavior; GetResource
and ReleaseResource are in the local scope because once a task calls the
GetResource system call, ReleaseResource needs to be called in the same task.
On the other hand, WaitEvent and SetEvent are in the global scope. The task
that calls SetEvent should be different from the task that calls WaitEvent
for the same event, but they need to be called in pairs. TerminateTask and
ChainTask are the examples that cannot be followed by any system calls in the
same task.

3.2 Constraint Specification Language OSEK CSL

To formally specify such constraints, we define a simple constraint speci-
fication language called OSEK CSL (Constraint Specification Language for
OSEK/VDX). OSEK CSL consists of four basic constraint types, which can
be defined with context-free grammars and their corresponding pushdown au-
tomata. This section introduces each basic constraint type, defines the constraint

Table 1. Constraints from the OSEK/VDX standard

Constraints

C1 Ending a task without a call to TerminateTask or ChainTask is strictly forbidden
and causes undefined behavior.

C2 TerminateTask, ChainTask, Schedule, WaitEvent shall not be called while a
resource is occupied.

C3 A task calling WaitEvent shall go to the waiting state and shall not be activated.
again before SetEvent is called by other tasks.

C4 OSEK strictly forbids nested access to the same resource.

C5 A task shall not terminate without releasing resources.

310 Y. Choi

specification language, and provides formal definitions for representative con-
straint types.

Definition 1 (constraint types) Let Σ be a set of API functions in the
OSEK/VDX standard and N a set of natural numbers. For any f, f1, f2 ∈ Σ,
A′ ⊆ Σ, and n ∈ N ,

1. InPairs(f1, f2) : f2 shall be called after for each call to f1.

2. Limited(f, n) : The number of calls to f shall not exceed n.

- SetLimited(A′, n) : The total number of calls to the functions in A′ shall
not exceed n.

3. NotInBetween(f, f1, f2) : A call to f shall not be allowed in between calls
to f1 and f2.

4. MustEndWith(f) : f shall be called eventually and no calls shall be allowed
afterwards.

Each constraint type can be defined as a context-free language or a regular
language over Σ. For example, Limited(f, n) and SetLimited(A′, n) are regular
languages that can be formalized using finite automata. InPairs, on the other
hand, requires a little more thought since it cannot be expressed in regular
language, as we need to keep track of the number of calls to a specific system
call. In fact, the derivation rule for InPairs(a, b) can be defined as follows:

S → aSb | abS | Sab | xS | λ, x �∈ {a, b}.

For NotInBetween(c, a, b), where InPairs(a, b) is true, the derivation rules
S → aSb and S → xS are refined:

S → aS′b | abS | Sab | xS | λ, x �∈ {a, b}
S′ → yS′ | S, y �∈ C(a, b) ∪ {a, b},

where C(a, b) =
⋃{c | NotInBetween(c, a, b)}.

Internal formal specification of these constraints can be standardized as
shown in Figure 3. Figure 3 (a) is a pushdown automaton for InPairs(a, b) ∧
NotInBetween(c, a, b); s0 is the initial state and the final state. It ignores letters
other than a, moves to state s1, pushing 0 to the stack once it receives a. In s1, it
ignores letters other than a, b, and c. It moves to s2, pushing 1 into the stack, if
it receives a. It pushes 1 for each input a, pops for each input b, does not change
for each input other than a, b, c, and moves to s0 if the input is b and the stack
top is 0. Receiving input c when it is in state s1 or s2 results in moving to s3,
which is an error state.

Figure 3 (b) shows the formal representation of InPairs(a, b) ∧
NotInBetween(c, a, b)∧Limited(a, n), limiting the size of the stack and checking
whether the stack is full or not during the language process.

SetLimited(A′, n) allows us to specify the limit of the calls to a set of APIs.
For example, SetLimited({f1, f2}, 10) specifies that the number of calls to f1

Constraint Specification and Test Generation 311

plus the number of calls to f2 shall not exceed 10, which can be categorized as
a regular language. The rule for MustEndWith(f) is also simple:

S → xS | f,where x ∈ Σ − {f}

These constraints are classified into global constraint types and local
constraint types. A global constraint type must hold in a global scope,
i.e., among tasks, and a local constraint type must hold within a task.
According to the OSEK/VDX standard, Limited and SetLimited are
global, while NotInBetween and MustEndWith are local. InPairs can be
both. For example, InPairs(WaitEvent, SetEvent) has global scope, but
InPairs(GetResource,ReleaseResource) has local scope. To distinguish global
InPairs from local ones, we add GInPairs to the four basic constraint types
in OSEK CSL.

An environment of an OSEK/VDX-based operating system is defined using
OSEK CSL based on these four constraint types.

Definition 2 (Environment Model) The language induced by OSEK CSL is
the intersection of an arbitrary number of languages defined by the basic con-
straint types. Formally, let Li be a language defined by one of the constraint
types, and suppose there are n such languages. Then,

L(OSEK CSL) =
⋂

i∈{1..n}
Li.

This defines an environment of an OSEK/VDX-based operating system.

4 Formal Specification Using NuSMV

Since there can be a number of constraints, we need to compute their inter-
sections in order to identify a language accepted by all specified constraints.

Fig. 3. Formal representation of constraint types

312 Y. Choi

1 MODULE InPairs(first, second, alphabet, exclusiveSet, task)

2 VAR

3 state : {s0, s1, s2, s3};

4 mystack : STACK(first, second, alphabet, task.state, state);

5

6 ASSIGN

7 init(state):= s0; /* initial state */

8 init(mystack.top):=0; /* initial value of the stack top */

9 ...

10 next(state):= /* defines the transition relation */

11 case task.state = running & !terminationRequested :

12 case state = s0 :

13 case next(alphabet)=first & mystack.top= 0 : s1;

14 TRUE : state;

15 esac;

16 state = s1 :

17 case next(alphabet)=first & mystack[mystack.top]=0 : s2;

18 next(alphabet)=second & mystack[mystack.top]=0 : s0;

19 next(alphabet) in exclusiveSet : s3;

20 TRUE : state;

21 esac;

22 ...

23 esac;

Fig. 4. NuSMV MODULE for InPairs constraint type

We perform the computation using the model checker NuSMV under the as-
sumption that the maximum number of system calls is bounded. This assump-
tion is necessary since NuSMV is based on a finite state machine which cannot
handle stacks of indefinite size as in constraint automata. Despite the limitation,
NuSMV was chosen because of its modular structure, its simple but sufficient ex-
pression for specifying state machines, and most importantly, its powerful model
checking capability for test sequence generation.

This section describes our method for modeling the representative constraint
type using NuSMV by systematically mapping it to a MODULE in NuSMV. An
NuSMV module for the generic task model is also introduced.

4.1 Formal Specification for Constrained Environments

Due to space limitations, this section provides details of the modeling approach
only for the most frequently used constraint type InPairs ∧ NotInBetween.
Figure 4 shows a fraction of the NuSMV MODULE for the constraint type.

MODULE InPairs(..) is a reusable component for specifying the constraint
type InPairs ∧ NotInBetween in the local scope. It is a straightforward
translation of the automaton in Figure 3 (a); the parameters first and second
are for API function names that are supposed to be in pairs, alphabet is the set of

Constraint Specification and Test Generation 313

API names, task is the name of the task that is the scope of the constraint, and
exclusiveSet is the set of API calls that are not supposed to be called in between
first and second. The exclusiveSet is identified from the NotInBetween con-
straints. If there are no NotInBetween constraints related to first and second,
then the exclusiveSet is empty and InPairs∧NotInBetween = InPairs. As in
Figure 3 (a), there are four states s0, s1, s2, and s3, where s0 is the initial state.
The transitions between states are defined in the ASSIGN construct (line 6)
using the next keyword. All the transitions are only possible when the task is
in the running state. The model checks this condition by task.state = running
(line 11). The transition rules defined in case..esac are a direct translation of
the pushdown automata in Figure 3 (a).

Whenever a new constraint of the InPairs∧NotInBetween type is required,
the module is instantiated in the NuSMV main module. For example, if there
are two tasks with the same type of local constraints, we declare two constraints
as follows:

constraint 1 : InPairs(f1, f2, alphabet, exclusiveSet, task 1);

constraint 2 : InPairs(f ′
1, f

′
2, alphabet, exclusiveSet

′, task 2);

The NuSMV module for the InPairs constraint type in the global scope
differs little from that in the local scope, since the only difference between them
is whether the stack of the pushdown automata is maintained locally or globally.
Therefore, the same local module can be reused for global constraints of the same
type. The signature for the global constraint type GInPairs is defined as

MODULE GInPairs(first, second, alphabet, exclusiveSet),

where its body is the same as that of InPairs except that line 11 of Figure 4
is removed. The task information is not passed to the global module since it is
independent of tasks.

4.2 Formal Specification for Generic User Tasks

A Basic NuSMV Model for a User Task. A user task is modeled according
to the task model shown in Figure 2 (b). Since it is a general task model, the same
formal specification is used independent of the constraint types. The following
shows the basic form of the NuSMV MODULE for the task model.

1 MODULE Task(alphabet, id, priority)

2 VAR

3 state : {suspended, ready, waiting, running};

4

5 ASSIGN

6 next(state):=

7 case

8 state = suspended & (next(alphabet) = ActivateTask

9 | next(alphabet) = ChainTask) : ready;

10 state = ready /* & if scheduled next */ : running;

314 Y. Choi

11 state = running & (next(alphabet) = TerminateTask |

12 next(alphabet) = ChainTask) : suspended;

13 state = running & next(alphabet) = WaitEvent : waiting;

14 state = waiting & next(alphabet) = SetEvent : ready;

15 TRUE : state;

16 esac;

...

However, this basic form is not enough to model task behavior, and it needs
to be elaborated more to address the OSEK/VDX requirements. The following
lists some of the requirements that have a direct impact on the task model;

1. A task transits to the running state from the ready state only if it is sched-
uled by the operating system (line 10). Priority-based FIFO scheduling is
required in OSEK/VDX.

2. Only one task shall run at a given time. Line 10 should be constrained more
to ensure this.

3. Task priority can be dynamically changed based on the PCP (Priority Ceiling
Protocol). Since task scheduling is priority-based, the change of task priority
needs to be specified.

4. PCP requires resource management. Therefore, we cannot correctly model
task behavior without specifying resource management.

In order to address these requirements, the basic task model is refined by
adding more abstract components and references to those components to the
task model. For example, the signature of the task model changes to

MODULE Task(alphabet, id, priority, res1, res2, readyP, SomeoneIsRunning,

conState),

where res1 and res2 are names of resources, readyP is the name of the variable
that keeps track of the highest number among the priorities of the tasks in the
ready state, SomeoneIsRunning is a global flag indicating whether there is a
running task, and conState is the state of the local constraint of the task. In
order words, each task has references to resources, information on whether its
constraints are currently satisfied or not, and some basic information about other
tasks.

Handling Priority-based FIFO Scheduling. The generic task model keeps
track of the state of each task and selects the task with the highest priority
among all tasks in the ready state, instead of explicitly modeling a priority-
based FIFO queue. This requires a simple change in line 10 of the basic task
model:

10: state = ready & !SomeoneIsRunning :

case priority >= readyP : running;

TRUE : state;

esac;

Constraint Specification and Test Generation 315

It checks whether the state is ready and there is no task running currently. If
this is true, it checks again whether the priority of the task is greater than or
equal to all the priorities of the tasks in the ready state. The task moves to the
running state only when all those conditions are satisfied.

Handling Priority Ceiling Protocol. The priority of a task is statically pre-
defined for each task and cannot be changed throughout the whole execution
life cycle, except for the case when it allocates a resource with higher priority
than the task. This is called Priority Ceiling Protocol (PCP) and is designed to
prevent the problem of priority inversion. The PCP is incorporated into the task
model by defining transition rules for changing the priority of a task, depending
on whether it allocates or releases resources. The following reflects the change
of the basic task module when the system includes two resources:

next(priority):=

case state = running & next(alphabet)=GetResource :

case (res1.owner=0 & (res1.priority > priority)) : res1.priority;

(res2.owner=0 & (res2.priority > priority)) : res2.priority;

TRUE : priority;

esac;

...

This model does not explicitly specify which resource is requested by which
task, but models it as allocating whichever resource is available. It is originally
required to specify the resource type when asking for resource allocation in
the form ‘GetResource(res1)’, but our alphabet consists of API names without
parameters for the sake of simplicity. For the input alphabet GetResource, it
checks and allocates the first available resource. For ReleaseResource, it releases
the last allocated resource first, as specified in the OSEK/VDX requirements.

4.3 Test Generation via LTL Model Checking

Given the generic task model and a set of constraints on the sequence of input
alphabets, our goal is to generate task sequences w.r.t the API call sequence
that executes all paths leading to either final states or error states of tasks and
constraints. We define three types of trap properties for checking reachability:

Definition 3 (trap properties) Suppose there are n number of
constraints specified in OSEK CSL and m tasks. Let CSi =
{csi0, csi1, csi2, csi3}, i = 1..n, be a set of states in the ith constraint and
Sj = {suspendedj, readyj , runningj, waitingj}, j = 1..m, a set of states in the
jth task. Then,

1. A trap property for checking whether there is a path from a kth state to a
final state in the ith constraint/task:

tpcrik
def
= G(CSi.state = csik → ! F (CSi.state = csi0)) /*for constraints*/

tptrik
def
= G(Si.state = sik → ! F (Si.state = suspendedi)) /*for tasks*/,

where csik ∈ CSi, sik ∈ {readyi, runningi, waitingi}.

316 Y. Choi

2. A trap property for checking whether an ith task can be activated at least
twice:

tptai
def
= G((taski.state �= suspendedi & X(taski.state = suspendedi)) →

! F (taski.state = readyi))

3. A set of trap properties for checking whether each element of the alphabet is
exercised as an input at least once:

tpΣ
def
= {G ! (SomeoneIsRunning & alphabet = a) | a ∈ Σ}

Trap properties are specified in LTL (Linear Time temporal Logic), where the
temporal connectives G, X and F mean “Globally”, “neXt states” and “some-
time in Future state”, respectively. For example, tpcrij means that “for all exe-

cution paths if the ith constraint is in state csij , there is no path from the state

leading to the final state csi0. tp
ta
i means that it is globally true that if the ith

task is not in the suspended state and will transit to the suspended state in the
next state, then there will be no path where the task reaches the ready state in
the future. In other words, the property says that a task is not activated again
once it is terminated. The set of system trap properties is the union of all three
types of trap properties:

tp = {tpcrij , tptrpq, tptap | i = 1..n, j = 0..3, p = 1..m, q = 1..3} ∪ tpΣ .

Though we generate trap properties for all system constraints, the degree of con-
straints to be imposed on the model can vary. We define the Degree of constraints
(DoC) asm/n, where n is the total number of constraints specified in OSEK CSL
and m is the number of actual constraints imposed on the NuSMV model. We
say the environment model is perfect if DoC = 1, erroneous if 0 < DoC < 1, and
false if DoC = 0. We impose various degrees of constraints for counterexample
generation because safety verification requires not only perfect test sequences,
but also erroneous test sequences with illegal input values.

The set of trap properties is verified using the model checker NuSMV. NuSMV
generates a counterexample trace if the properties are verified as false. The con-
version from a counterexample trace to a test program is straightforward since the
trace shows a step-by-step change of API calls for each task as shown in Table 2.

Table 2. A fraction of a counterexample trace for tpcr11

steps 1 2 3 4 5 6

task1 state ready running running running running waiting
API calls GetResource ReleaseResource GetResource WaitEvent

task2 state running waiting waiting waiting waiting waiting
API calls WaitEvent

Constraint Specification and Test Generation 317

Table 3. Comparison of branch coverage

scheduler scheduled schedulew schedules eventw tasks events
Formal 100%(3/3) 60%(3/5) 66.67%(2/3) 100%(1/1) 75%(3/4) 100%(4/4) 80%(4/5)
Informal 100%(3/3) 80%(4/5) 66.67%(2/3) 100%(1/1) 75%(3/4) 100%(4/4) 80%(4/5)

5 Experiments

A total of 30 counterexamples were generated for an OSEK/VDX model with
two tasks, two local constraints, and one global constraint, using the suggested
approach. It took 10 minutes 43 seconds for the whole counterexample genera-
tion, performing 44 iterations and searching 3.4e+10 states for each LTL model
checking process on average. The test sequences are used to test the OSEK/VDX-
based open source operating system Trampoline [2], which was also used as a case
example in our previous work using property-based code slicing and simulation-
based scenario generation [14].

Table 3 shows the branch coverage of some of the Trampoline source functions
identified by using property-based code slicing, comparing the coverage result
using OSEK CSL-based test sequence generation (Formal) and the result of
using a random scenario generator (Informal)1. A total of 24 test sequences
(after removing duplicated sequences) of an average length of 6 was used for the
Formal case, while one test sequence of length 32 was used for the Informal
case since it was the sequence that showed the best coverage from our previous
work. Though we did not aim at high code coverage, Table 3 shows that the
suggested approach achieves branch coverage similar to that of the best result
using a random scenario generator.

The more interesting and important result is that the approach using
OSEK CSL actually found safety problems that were missed throughout exist-
ing model checking and testing approaches. These include two assertion viola-
tions and one segmentation fault error. For example,

TASK(t1){ TASK(t2){

WaitEvent(e1); ReleaseResource(r1);

} WaitEvent(e1); }

is a test constructed from the counterexample trace generated from
G ! (SomeoneIsRunning & alphabet = ReleaseResource). This is an example
of erroneous test sequences that do not obey constraints, since ReleaseResource
is called without calling GetResrouce first. Running this test results in the fol-
lowing situation:

trampoline: ../os/tpl_os_kernel.c:522: tpl_put_preempted_proc:

Assertion ‘tpl_fifo_rw[prio].size < tpl_ready_list[prio].size’

failed. ./doit: line 2: 25016 Aborted (core dumped) ./trampoline

1 Abbreviated function names are used to save space.

318 Y. Choi

These problems could not be identified by conformance testing or existing
model-based test generation approaches because they are based on the “correct”
model of OSEK/VDX and do not necessarily test illegal task behaviors.

6 Related Work

Specification-based test generation is a well-known technique. From the early
1990s, there have been numerous approaches that use formal languages to spec-
ify requirements and generate test cases [10]. Among them, references [3,9,16] are
the closest to our work in that they also try to provide a solution for efficient verifi-
cation of OSEK/VDX-based operating systems. [3] uses Z and SPIN for specifying
test requirements and generating test sequences for OSEK/VDX. References [9]
and [16] model OSEK/VDX requirements in Promela and generate test sequences
bymodel checking trap properties using SPIN. All thoseworksmodel OSEK/VDX
functional requirements, but do not explicitly consider system constraints. Our
work focuses on constraint specification in order to generate a more efficient inter-
action environment and provides modular specification methods for constraints.

Our work is also closely related to automated environment generation for
software verification in general [5,15]; Tkachuk et al. [15] developed the Bandera
Environment Generator, which automates the generation of environments from
user-specified assumptions for Java programs. The specification is limited to
regular expressions.

There have been more traditional approaches for verifying automotive soft-
ware using formal methods [8,11], formally specifying OSEK/VDX requirements
in CSP and performing formal verification using model checking or theorem prov-
ing. Using such formal specification languages requires experts in formal meth-
ods, who are usually not available in practice. Our approach provides an intuitive
specification language with underlying formal specification so that constraints
can be easily specified, transformed, and checked.

7 Conclusion

This work presents a systematic and modular method for specifying constraints
for OSEK/VDX-based operating systems. Constraint specification plays an im-
portant role in constructing the correct environment of a system, enabling us
to generate effective test sequences. We have analyzed types of constraints in
OSEK/VDX, categorized them into four basic types, and defined an NuSMV
module for each constraint type so that any constraint of a given type can be
automatically instantiated. These constraints can be selectively imposed on the
generic task model, generating varying degrees of test sequences. Comprehen-
siveness can be controlled through trap properties.

The suggested approach is extensible; though we have identified four con-
straint types in OSEK/VDX, there can be more. We believe that incorporating
additional constraint types will not affect the existing definitions and the under-
lying formalism.

Constraint Specification and Test Generation 319

We note that NuSMV is an effective tool suitable for our purposes, but can-
not handle infinite systems directly without abstractions. Future work will in-
clude more investigation on formal verification tools for infinite systems aimed
at possible replacement of NuSMV and more extensive experiments with various
measures.

References

1. OSEK/VDX operating system specification 2.2.3
2. Trampoline – opensource RTOS project, http://trampoline.rts-software.org
3. Chen, J., Aoki, T.: Conformance testing for OSEK/VDX operating system using

model checking. In: 18th Asia-Pacific Software Engineering Conference (2011)
4. Choi, Y.: Safety analysis of the Trampoline OS using model checking: An experi-

ence report. In: Proceedings of 22nd IEEE International Symposium on Software
Reliability Engineering (2011)

5. de la Riva, C., Tuya, J.: Automatic generation of assumptions for modular verifi-
cation of software specifications. Journal of Systems and Software (2006)

6. In der Riden, T., Kanpp, S.: An approach to the pervasive formal specification and
verification of an automotive system. In: Proceedings of the International Workshop
on Formal Methods in Industrial Critical Systems (2005)

7. Lettnin, D., et al.: Semiformal verification of temporal properties in automotive
hardware dependent software. In: Proceedings of Design, Automation, and Test in
Europe Conference and Exhibition (April 2009)

8. Shi, J., et al.: ORIENTAIS: Formal verified OSEK/VDX real-time operating sys-
tem. In: IEEE 17th International Conference on Engineering of Complex Computer
Systems (2012)

9. Fang, L., et al.: Formal model-based test for AUTOSAR multicore RTOS. In: Pro-
ceeding of the IEEE 5th International Conference on Software Testing, Verification
and Validation, pp. 251–259 (2012)

10. Hierons, R.M., et al.: Using formal specifications to support testing. ACM Com-
puting Surveys (2009)

11. Zhao, Y., et al.: Modeling and verifying the code-level OSEK/VDX operating sys-
tem with CSP. In: 5th International Symposium on Theoretical Aspects of Software
Engineering, pp. 142–149 (2011)

12. John, D.: OSEK/VDX conformance testing - MODISTARC. In: Proceedings of
OSEK/VDX Open Systems in Automotive Networks (1998)

13. NuSMV: A New Symbolic Model Checking, http://nusmv.irst.itc.it/
14. Park, M., Byun, T., Choi, Y.: Property-based code slicing for efficient verifica-

tion of osek/vdx operating systems. In: First International Workshop on Formal
Techniques for Safety-Critical Systems (2012)

15. Tkachuk, O., Dwyer, M.B., Pasareanu, C.S.: Automated environment generation
for software model checking. In: 18th IEEE International Conference on Automated
Software Engineering, pp. 116–129 (October 2003)

16. Yatake, K., Aoki, T.: Automatic generation of model checking scripts based on
environment modeling. In: van de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS,
vol. 6349, pp. 58–75. Springer, Heidelberg (2010)

http://trampoline.rts-software.org
http://nusmv.irst.itc.it/

	Constraint Specification and Test Generation for OSEK/VDX-Based Operating Systems
	1 Introduction
	2 Background and Approach
	3 Constraint Specification Language
	3.1 OSEK/VDX Requirements and Constraints
	3.2 Constraint Specification Language OSEK CSL

	4 Formal Specification Using NuSMV
	4.1 Formal Specification for Constrained Environments
	4.2 Formal Specification for Generic User Tasks
	4.3 Test Generation via LTL Model Checking

	5 Experiments
	6 Related Work
	7 Conclusion
	References

