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Abstract. We present a program transformation framework based on
symbolic execution and deduction. Its virtues are: (i) behavior preser-
vation of the transformed program is guaranteed by a sound program
logic, and (ii) automated first-order solvers are used for simplification
and optimization. Transformation consists of two phases: first the source
program is symbolically executed by sequent calculus rules in a program
logic. This involves a precise analysis of variable dependencies, aliasing,
and elimination of infeasible execution paths. In the second phase, the
target program is synthesized by a leaves-to-root traversal of the symbolic
execution tree by backward application of (extended) sequent calculus
rules. We prove soundness by a suitable notion of bisimulation and we
discuss one possible approach to automated program optimization.

1 Introduction

State-of-the-art program verification systems can show the correctness of com-
plex software written in industrial programming languages [1]. The main reason
why functional verification is not used routinely is that considerable expertise is
required to come up with formal specifications [2], invariants, and proof hints.
Nevertheless, modern software verification systems are an impressive achieve-
ment: they contain a fully formal semantics of industrial programming languages
and, due to automated first-order reasoning and highly developed heuristics, in
fact a high degree of automation is achieved: more than 99,9% of the proof steps
are typically completely automatic. Given the right annotations and contracts,
often 100% automation is possible. This paper is about leveraging the enormous
potential of verification tools that at the moment goes unused.

The central observation is that everything making functional verification hard,
is in fact not needed if one is mainly interested in simplifying and optimizing a
program rather than proving it correct. First, there is no need for complex for-
mal specifications: the property that two programs are bisimilar on observable
locations is easy to express schematically. Second, complex invariants are only
required to prove non-trivial postconditions. If the preservation of behavior be-
comes the only property to be proven, then simple, schematic invariants will do.
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Hence, complex formulas are absent, which does away with the need for difficult
quantifier instantiations.

On the other hand, standard verification tools are not set up to relate a
source and a target program, which is what is needed for program simplification
and optimization. The main contribution of this paper is to adapt the program
logic of a state-of-the-art program verifier [3] to the task of sound program
transformation and to show that fully automatic program simplification and
optimization with guaranteed soundness is possible as a consequence.

This paper extends previous work [4], where the idea of program specialization
via a verification tool was presented for the first time. We remodeled the ad-
hoc semantics of the earlier paper in terms of standard bisimulation theory [5].
While this greatly improves the presentation, more importantly, it enables the
new optimization described in Sect. 5.

Aiming at a concise presentation, we employ the small OO imperative pro-
gramming language PL. It contains essential features of OO languages, but
abstracts away from technicalities that complicate the presentation. Sect. 2 in-
troduces PL and Sect. 3 defines a program logic for it with semantics and a
calculus. These are adapted to the requirements of program transformation in
Sect. 4. In Sect. 5 we harvest from our effort and add a non-trivial optimization
strategy. We close with related work (Sect. 6) and future work (Sect. 7).

2 Programming Language

PL supports classes, objects, attributes, method polymorphism (but not method
overloading).Unsupported features are generic types, exceptions, multi-threading,
floating points, and garbage collection. The types of PL are the types derived from
class declarations, the type int of mathematical integers (Z), and the standard
Boolean type boolean.

A PL program p is a non-empty set of class declarations, where each class
defines a class type. PL contains at least two class types Object and Null. The
class hierarchy (without Null) forms a tree with class Object as root. The type
Null is a singleton with null as its only element and may be used in place of
any class type. It is the smallest class type.

A class Cl := (cname, scnameopt, f ld,mtd) consists of (i) a classname cname
unique in p, (ii) the name of its superclass scname (optional, only omitted for
cname = Object), (iii) a list of field declarations fld and method declarations
mtd. The syntax coincides with that of Java. The only features lacking from
Java are constructors and initialization blocks. We use some conventions: if not
stated otherwise, any sequence of statements is viewed as if it were the body of
a static, void method declared in a class Default with no fields.

Any complex statement can be easily decomposed into a sequence of simpler
statements without changing the meaning of a program, e.g., y = z ++; can be
decomposed into int t = z; z = z + 1; y = t;, where t is a fresh variable,
not used anywhere else. As we shall see later, a suitable notion of simplicity is
essential, for example, to compute variable dependencies and simplify symbolic
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states. This is built into our semantics and calculus, so we need a precise defi-
nition of simple statements. Statements in the syntactic category spStmnt have
at most one source of side effect each. This can be a non-terminating expression
(such as a null pointer access), a method call, or an assignment to a location.

spStmnt ::= spLvarDecl | locVar’=’spExp’;’ | locVar’=’spAtr’;’
| spAtr’=’spExp’;’

spLvarDecl ::=Type IDENT’;’

spExp ::= (locVar.)optspMthdCall | spOpExp | litVar
spMthdCall ::= mthdName’(’litVaropt(’,’litVar)

∗’)’
spOpExp ::= !litVar | -litVar | litVar binOpr litVar
litVar ::= litval | locVar litval ::=Z | TRUE | FALSE | null
binOpr ::= < | <= | >= | > | == | & | | | * | / | % | + | -
locVar ::= IDENT spAtr ::= locVar.IDENT

3 Program Logic and Sequent Calculus

Symbolic execution was introduced independently by King [6] and others in the
early 1970s. The main idea is to take symbolic values (terms) instead of concrete
ones for the initial values of input variables, fields, etc., for program execution.
The interpreter then performs algebraic computations on terms instead of com-
puting concrete results. In this paper, following [7], symbolic execution is done
by applying sequent calculus rules of a program logic. Sequent calculi are often
used to verify a program against a specification [7], but here we focus on sym-
bolic execution, which we embed into a program logic for the purpose of being
able to argue the correctness of program transformations and optimizations.

3.1 Program Logic

Our program logic is dynamic logic (DL) [8]. The target program occurs in
unencoded form as a first-class citizen inside the logic’s connectives. Sorted first-
order dynamic logic is sorted first-order logic that is syntactically closed wrt
program correctness modalities [·]· (box) and 〈·〉· (diamond). The first argument
is a program and the second a dynamic logic formula. Let p denote a program
and φ a dynamic logic formula then [p]φ and 〈p〉φ are DL-formulas. Informally,
the former expresses that if p is executed and terminates then in all reached final
states φ holds; the latter means that if p is executed then it terminates and in
at least one of the reached final states φ holds.

We consider only deterministic programs, hence, a program p executed in a
given state s either terminates and reaches exactly one final state or it does not
terminate and there are no reachable final states. The box modality expresses
partial correctness of a program, while the diamond modality coincides with
total correctness. A dynamic logic based on PL-programs is called PL-DL. The
signature of the program logic depends on a context PL-program C.
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Definition 1 (��-Signature ΣC). A signature ΣC = (Srt,�,Pred,Func, LgV)
consists of: (i) a set of names Srt called sorts containing at least one sort for each
primitive type and one for each class Cl declared in C: Srt ⊇ {int, boolean} ∪
{Cl | for all classes Cl declared in C}; (ii) a partial subtyping order �: Srt×Srt
that models the subtype hierarchy of C faithfully; (iii) infinite sets of predicate
symbols Pred := {p : T1 × . . . × Tn | Ti ∈ Srt, n ∈ N} and function symbols
Func := {f : T1×. . .×Tn → T | Ti, T ∈ Srt, n ∈ N}. We call α(p) = T1×. . .×Tn
and α(f) = T1 × . . .× Tn → T the signature of the predicate/function symbol.
Func := Funcr ∪ PV ∪ Attr is further divided into disjoint subsets:

– the rigid function symbols Funcr, which do not depend on the current state
of program execution;

– the program variables PV = {i, j, . . .}, which are non-rigid constants;

– the attribute function symbols Attr, such that for each attribute a of type T
declared in class Cl an attribute function a@Cl : Cl → T ∈ Attr exists. We
omit the @C from attribute names if no ambiguity arises.

(iv) a set of logical variables LgV := {x : T |T ∈ Srt}.
ΠΣC denotes the set of all executable PL programs (i.e., sequences of state-

ments) with locations over signature ΣC . In the remaining paper, we use the
notion of a program to refer to a sequence of executable PL-statements. If we
want to include class, interface or method declarations, we either include them
explicitly or make a reference to the context program C.

Terms t and formulas φ are defined as usual, thus omitted here for brevity.
We use updates u to describe state changes by means of an explicit substitution.
An elementary update i := t or t.a := t is a pair of location and term. They
are of single static assignment (SSA) form, with the same meaning as simple
assignments. Elementary updates are composed to parallel updates u1‖u2 and
work like simultaneous assignments. Updates u are defined by the grammar
u ::= i := t | t.a := t | u ‖ u | {u}u (where a ∈ Attr) together with the usual well-
typedness conditions. Updates applied on terms or formulas, written {u}t resp.
{u}φ, are again terms or formulas. Updates applied on terms or formulas, written
{u}t resp. {u}φ, are again terms or formulas. Terms, formulas and updates are
evaluated with respect to a PL-DL Kripke structure:

Definition 2 (Kripke structure). APL-DLKripke structureKΣPL = (D, I, S )
consists of (i) a set of elements D called domain, (ii) an interpretation I with

– I(T ) = DT , T ∈ Srt assigning each sort its non-empty domain DT . It ad-
heres to the restrictions imposed by the subtype order �; Null is always
interpreted as a singleton set and subtype of all class types;

– I(f) : DT1×. . .×DTn → DT for each rigid function symbol f : T1×. . .×Tn →
T ∈ Funcr;

– I(p) ⊆ DT1 × . . .×DTn for each predicate symbol p : T1 × . . .× Tn ∈ Pred;

and (iii) a set of states S assigning meaning to non-rigid function symbols: let
s ∈ S then s(a@Cl) : DCl → DT , a@Cl : Cl → T ∈ Attr and s(i) : DT , i ∈ PV.
The pair D = (D, I) is called a first-order structure.
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valD,s,β(x := t)(s) = s[x← t]
valD,s,β(o.a := t)(s) = s[(a)(valD,s,β(o))← t]
valD,s,β(u1‖u2)(s) = valD,s,β(u2)(valD,s,β(u1)(s))
valD,s,β({u1}u2)(s) = valD,s′,β(u2)(s

′), where s′ = valD,s,β(u1)(s)
valD,s(x = e) = {s′[x← d] | (s′, d) ∈ valD,s(e)}, x ∈ PV
valD,s(o.a = e) = {s′′[a(do)← de] | (s′, do) ∈ valD,s(o) ∧ (s′′, de) ∈ valD,s′(e)}
valD,s(p1; p2) =

⋃
s′∈valD,s(p1)

valD,s′(p2)

valD,s(if(e) {p} else {q}) =
⎧
⎨

⎩

valD,s′,β(p), (s′,True) ∈ valD,s(e)
valD,s′,β(q), (s′,False) ∈ valD,s(e)
∅, otherwise

valD,s(while(e){p}) =

⎧
⎪⎪⎨

⎪⎪⎩

⋃
s1∈S1

valD,s1(while(e){p}) where S1 = valD,s′(p),

if (s′,True) ∈ valD,s(e)
{s′}, if (s′,False) ∈ valD,s(e)
∅, otherwise

Fig. 1. Definition of PL-DL semantic evaluation function (excerpt)

A variable assignment β : LgV → DT maps a logical variable x : T to its
domain DT . A term, formula or update is evaluated relative to a given first-
order structure D = (D, I), a state s ∈ S and a variable assignment β, while
programs and expressions are evaluated relative to aD and s ∈ S . The evaluation
function val is defined recursively. It evaluates (i) every term t : T to a value
valD,s,β(t) ∈ DT ; (ii) every formula φ to a truth value valD,s,β(φ) ∈ {tt, ff};
(iii) every update u to a state transformer valD,s,β(u) ∈ S → S , (iv) every
statement st to a set of states valD,s(st) ⊆ 2S ; and (v) every expression e : T to
a set of pairs of state and value valD,s,(e) ⊆ 2S×T . As PL is deterministic, all
sets of states or state-value pairs have at most one element.

Fig. 1 shows an excerpt of the semantic definition of updates and programs,
more definitions are in our technical report [9]. The expression s[x← v] denotes
a state coincides with s except at x which is mapped to the evaluation of v.

Example 1 (Update semantics). We illustrate the semantics of updates of Fig. 1.
Evaluating {i := j + 1}i ≥ j in a state s is identical to evaluating the formula
i ≥ j in a state s′ which coincides with s except for the value of i which
is evaluated to the value of valD,s,β(j + 1). Evaluation of the parallel update
i := j‖j := i in a state s leads to the successor state s′ identical to s except
that the values of i and j are swapped. The parallel update i := 3‖i := 4
has a conflict as i is assigned different values. In such a case the last occurring
assignment i := 4 overrides all previous ones of the same location. Evaluation
of {i := j}{j := i}φ in a state s results in evaluating φ in a state, where i has
the value of j, and j remains unchanged.

Remark. {i := j}{j := i}φ is the sequential application of updates i := j and
j := i on the formula φ. To ease the presentation, we overload the concept of
update and also call {i := j}{j := i} as an update. In the following context,
if not stated otherwise, we use the upper-case letter U to denote this kind of
“misused” update, compared to the real update that is denoted by a lower-case
letter u. An update U could be the form of {u} and {u1} . . . {un}.
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emptyBox
Γ =⇒ Uφ,Δ
Γ =⇒ U []φ,Δ assignment

Γ =⇒ U{x := litV ar}[ω]φ,Δ
Γ =⇒ U [x = litV ar;ω]φ,Δ

assignAddition
Γ =⇒ U{x := litV ar1 + litV ar2}[ω]φ,Δ
Γ =⇒ U [x = litV ar1 + litV ar2;ω]φ,Δ

ifElse
Γ,Ub = TRUE =⇒ U [p;ω]φ,Δ Γ,U¬b = TRUE =⇒ U [q;ω]φ,Δ

Γ =⇒ U [if (b) {p} else {q} ω]φ,Δ

loopInvariant

Γ =⇒ Uinv,Δ (init)
Γ,UVmod(b = TRUE ∧ inv) =⇒ UVmod[p]inv,Δ (preserves)
Γ,UVmod(b = FALSE ∧ inv) =⇒ UVmod[ω]φ,Δ (use case)

Γ =⇒ U [while (b) {p} ω]φ,Δ

Fig. 2. Selected sequent calculus rules (for more detail see [9,3])

3.2 Sequent Calculus

We define a sequent calculus for PL-DL. Symbolic execution of a PL-program is
performed by application of sequent calculus rules. Soundness of the rules ensures
validity of provable PL-DL formulas in a program verification setting [3].

A sequent is a pair of sets of formulas Γ = {φ1, . . . , φn} (antecedent) and
Δ = {ψ1, . . . , ψm} (succedent) of the form Γ =⇒ Δ. Its semantics is defined by
the formula

∧
φ∈Γ φ→

∨
ψ∈Δ ψ. A sequent calculus rule has one conclusion and

zero or more premises. It is applied to a sequent s by matching its conclusion
against s. The instantiated premises are then added as children of s. Our PL-DL
sequent calculus behaves as a symbolic interpreter for PL. A sequent for PL-DL
is always of the form Γ =⇒ U [p]φ,Δ. During symbolic execution performed by
the sequent rules (see Fig. 2) the antecedents Γ accumulate path conditions and
contain possible preconditions. The updates U record the current symbolic value
at each point during program execution and the φ’s represent postconditions.
Symbolic execution of a program p works as follows:

1. Select an open proof goal with a [·] modality. If no [·] exists on any branch,
then symbolic execution is completed. Focus on the first active statement
(possibly empty) of the program in the modality.

2. If it is a complex statement, apply rules to decompose it into simple state-
ments and goto 1., otherwise continue.

3. Apply the sequent calculus rule corresponding to the active statement.
4. Simplify the resulting updates and apply first-order simplification to the

premises. This might result in some closed branches. It is possible to detect
and eliminate infeasible paths in this way. Goto 1.

Example 2. We look at typical proof goals that arise during symbolic execution:

1. Γ, i > j ⇒ U [if (i>j) {p} else {q} ω]φ: Applying rule ifElse and sim-
plification eliminates the else branch and symb. exec. continues with p ω.

2. Γ ⇒ {i := c‖ . . .}[j = i; ω]φ where c is a constant: It is sound to replace
the statement j = i with j = c and continue with symbolic execution. This
is known as constant propagation. More techniques for partial evaluation can
be integrated into symbolic execution [10].
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Program

. . . ;

. . .

if (cond) {
. . . }

else {
. . . }

while (guard) {
. . . }

. . .

. . . ;

Symbolic Execution Tree (SET)

n0

cond

guard guard

n3

n4

n5

n6

b0

b1 then-branch b2 else-branch

b3 loop body
b4

b5 loop body
b6

S.E.−→

Fig. 3. Symbolic execution tree with loop invariant applied

3. Γ ⇒ {o1.a := v1‖ . . .}[o2.a = v2; ω]φ: After executing o2.a = v2, the alias
is analyzed as follows: (i) if o2 = null is true the program does not terminate;
(ii) else, if o2 = o1 holds, the value of o1.a in the update is overriden and
the new update is {o1.a := v2‖ . . . ‖o2.a := v2}; (iii) else the new update
is {o1.a := v1‖ . . . ‖o2.a := v2}. Neither of (i)–(iii) might be provable and
symbolic execution split into these three cases when encountering a possibly
aliased object access.

The result of symbolic execution for a PL program p following the sequent cal-
culus rules is a symbolic execution tree (SET), as illustrated in Fig. 3. Complete
symbolic execution trees are finite acyclic trees whose root is labeled with Γ =⇒
[p]φ,Δ and no leaf has a [·] modality. W.l.o.g. we can assume that each inner
node i is annotated by a sequent Γi =⇒ Ui[pi]φi, Δi, where pi is the program
to be executed. Every child node is generated by rule application from its par-
ent. A branching node represents a statement whose execution causes branching,
e.g., conditional, object access, loops etc. We call a sequential block a maximal
program fragment in an SET that is symbolically executed without branching.
For instance, there are 7 sequential blocks in the SET on the right of Fig. 3.

4 Sequent Calculus for Program Transformation

The structure of a symbolic execution tree makes it possible to synthesize a
program by bottom-up traversal. The idea is to apply the sequent calculus rules
reversely and generate the program step-by-step. This requires to extend the
sequent calculus rules with means for program synthesis. Obviously, the syn-
thesized program should behave exactly as the original one, at least for the
observable locations. To this end we introduce the notion of weak bisimulation
for PL programs and show its soundness for program transformation (see [9]).
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4.1 Weak Bisimulation Relation of Program

Definition 3 (Location sets, observation equivalence). A location set Loc
is a set containing program variables x and attribute expressions o.a with a ∈ Attr
and o being a term of the appropriate sort.

Given two states s1, s2 and a location set obs. A relation ≈: Loc×S ×S is an
observation equivalence iff for all D, β and ol ∈ obs, valD,s1,β(ol) = valD,s2,β(ol)
holds. It is written as s1 ≈obs s2. We call obs observable locations.

The semantics of a PL program p (Fig. 1) is a state transformation. Executing
p from a start state s results in a set of end states S′, where S′ is a singleton {s′}
if p terminates, or ∅ otherwise. We identify a singleton with its only member, so
in case of termination, valD,s(p) is evaluated to s′ instead of {s′}.

A transition relation −→: Π × S × S relates two states s, s′ by a program

p iff p starts in state s and terminates in state s′, written s
p−→ s′. We have:

s
p−→ s′, where s′ = valD,s(p). If p does not terminate, we write s

p−→.
Since a complex statement can be decomposed into a set of simple statements,

which is done during symbolic execution, we can assume that a program p con-
sists of simple statements. Execution of p leads to a sequence of state transitions:

s
p−→ s′ ≡ s0

sSt0−→ s1
sSt1−→ . . .

sStn−1−→ sn
sStn−→ sn+1, where s = s0, s

′ = sn+1, si a
program state and sSti a simple statement (0 ≤ i ≤ n). A program state has
the same semantics as the state defined in a Kripke structure, so we use both
notations without distinction.

Some simple statements reassign values (write) to a location ol in the observ-
able locations that affects the evaluation of ol in the final state. We distinguish
these simple statements from those that do not affect the observable locations.

Definition 4 (Observable and internal statement/transition). Consider

states s, s′, a simple statement sSt, a transition relation −→, where s
sSt−→ s′,

and the observable locations obs; we call sSt an observable statement and −→ an
observable transition, iff for all D, β, there exists ol ∈ obs, and valD,s′,β(ol) �=
valD,s,β(ol). We write

sSt−→obs. Otherwise, sSt is called an internal statement
and −→ an internal transition, written −→int.

In this definition, observable/internal transitions are minimal transitions that
relate two states with a simple statement. We indicate the simple statement sSt

in the notion of the observable transition
sSt−→obs, since sSt reflects the changes

of the observable locations. In contrast, an internal statement does not appear
in the notion of the internal transition.

Example 3. Given observable locations set obs={x, y}, the simple statement “x
= 1 + z;” is observable, because x’s value is reassigned (could be the same
value). The statement “z = x + y;” is internal, since the evaluation of x, y are
not changed, even though the value of each variable is read by z.

Remark. An observable transition may change the set of observable locations.

Assume an observable transition s
sSt−→obs s

′ changes the evaluation of some
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location ol ∈ obs in state s′. To continue with the execution of program p′ from
state s′, the set of observable locations obs′ in state s′ should also contain the
locations ol′ that read the value of ol in some statement in p′, because the change
to ol can lead to a change of ol′ at some later point in p′.
Example 4. Consider obs={x, y} and program fragment “z = x + y; x = 1 +

z;”. z = x + y; becomes observable because the value of z is changed and it will
be used later in the observable statement x = 1 + z;. The observable location
set obs′ should also contain z after the execution of z = x + y; .

Definition 5 (Weak transition). The transition relation =⇒int is the reflex-
ive and transitive closure of −→int: s =⇒int s

′ holds iff for states s0,. . .,sn,
n≥0, we have s = s0, s

′ = sn and s0 −→int s1 −→int · · · −→int sn. In the case

of n = 0, s =⇒int s holds. The transition relation
sSt
=⇒obs is the composition of

the relations =⇒int,
sSt−→obs and =⇒int: s

sSt
=⇒obs s

′ holds iff there are states s1

and s2 such that s =⇒int s1
sSt−→obs s2 =⇒int s

′. The weak transition
̂sSt
=⇒obs

represents either
sSt
=⇒obs, if sSt observable or =⇒int otherwise. In other words,

a weak transition is a sequence of minimal transitions that contains at most one
observable transition.

Definition 6 (Weak bisimulation for states). Given two programs p1, p2
and observable locations obs, obs′, let sSt1 be a simple statement and s1, s

′
1 two

program states of p1, and sSt2 is a simple statement and s2, s
′
2 are two program

states of p2. A relation ≈ is a weak bisimulation for states iff s1 ≈obs s2 implies:

– if s1
̂sSt1=⇒obs s

′
1, then s2

̂sSt2=⇒obs s
′
2 and s′1 ≈obs′ s′2

– if s2
̂sSt2=⇒obs s

′
2, then s1

̂sSt1=⇒obs s
′
1 and s′2 ≈obs′ s′1

where valD,s1(sSt1) ≈obs′ valD,s2(sSt2).
Definition 7 (Weak bisimulation for programs). Let p1, p2 be two pro-
grams, obs, obs′ observable locations, and ≈ a weak bisimulation relation for
states. ≈ is a weak bisimulation for programs, written p1 ≈obs p2, if for the
sequence of state transitions:

s1
p1−→ s′1 ≡ s01

sSt01−→ s11
sSt11−→ . . .

sStn−1
1−→ sn1

sStn1−→ sn+1
1 , with s1 = s01, s

′
1 = sn+1

1 ,

s2
p2−→ s′2 ≡ s02

sSt02−→ s12
sSt12−→ . . .

sStm−1
2−→ sm1

sStm2−→ sm+1
2 , with s2 = s02, s

′
2 = sm+1

2 ,

we have (i) s′2 ≈obs s′1; (ii) for each state si1 there exists a state sj2 such that

si1 ≈obs′ sj2; (iii) for each state sj2 there exists a state si1 such that sj2 ≈obs′ si1,
where 0 ≤ i ≤ n and 0 ≤ j ≤ m.

The above definition requires a weak transition that relates two states with at
most one observable transition. This definition reflects the structural properties
of a program and can be characterized as a small-step semantics [11]. The lemma
Def. 7 to a big-step semantics [12].

Lemma 1. Let p, q be programs and obs the set of observable locations. If p ≈obs
q then for any first-order structureD and state s, valD,s(p) ≈obs valD,s(q) holds.
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4.2 The Weak Bisimulation Modality

We introduce a weak bisimulation modality which allows us to relate two pro-
grams that behave indistinguishably on the observable locations.

Definition 8 (Weak bisimulation modality—syntax). The bisimulation
modality [ p � q ]@(obs, use) is a modal operator providing compartments for
programs p, q and location sets obs and use. We extend our definition of for-
mulas: Let φ be a PL-DL formula and p, q two PL programs and obs, use two
location sets such that pv (φ) ⊆ obs where pv(φ) is the set of all program variables
occurring in φ, then [ p � q ]@(obs, use)φ is also a PL-DL formula.

The intuition behind the location set usedVar(s, p, obs) defined below is to cap-
ture precisely those locations whose value influences the final value of an observ-
able location l ∈ obs after executing a program p. We approximate the set later
by the set of all program variables in p that are used before being redefined.

Definition 9 (Used program variable). A variable v ∈ PV is called used by
a program p w.r.t. a location set obs, if there exists an l ∈ obs such that

D, s |= ∀vl.∃v0.((〈p〉l = vl)→ ({v := v0}〈p〉l �= vl))

The set usedVar(s, p, obs) is defined as the smallest set containing all heap
locations and all used program variables of p w.r.t. obs.

The formula defining a used variable v of a program p encodes that there is an
interference with a location contained in obs. E.g., variable z in Ex. 4 is a used
variable. We formalize the semantics of the weak bisimulation modality:

Definition 10 (Weak bisimulation modality—semantics). Given p, q pro-
grams, D, s, β, and obs, use as above; valD,s,β([ p � q ]@(obs, use)φ) = tt iff

1. valD,s,β([p]φ) = tt
2. use ⊇ usedV ar(s, q, obs)
3. for all s′ ≈obs∪use s we have valD,s(p) ≈obs∪use valD,s′(q)

4.3 Sequent Calculus Rules for the Bisimulation Modality

The sequent calculus rules for the bisimulation modality are of the form:

ruleName

Γ1 =⇒ U1[ p1 � q1 ]@(obs1, use1)φ1, Δ1

. . .
Γn =⇒ Un[ pn � qn ]@(obsn, usen)φn, Δn

Γ =⇒ U [ p � q ]@(obs, use)φ,Δ

Fig. 4 shows some extended sequent calculus rules, more are available in [9].
Unlike standard sequent calculus rules that are executed from root to leaves,
sequent rule application for the bisimulation modality consists of two phases:
In the first phase, the source program p is evaluated as usual. In addition, the
observable location sets obsi are propagated, since they contain the locations
observable by pi and φi that will be used in the second phase. Typically, obs
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emptyBox
Γ =⇒ U@(obs, )φ,Δ

Γ =⇒ U [ nop � nop ]@(obs, obs)φ,Δ

assignment
Γ =⇒ U{l := r}[ ω � ω ]@(obs, use)φ,Δ

(
Γ =⇒ U [ l = r;ω � l = r;ω ]@(obs, use− {l} ∪ {r})φ,Δ if l ∈ use
Γ =⇒ U [ l = r;ω � ω ]@(obs, use)φ,Δ otherwise

)

ifElse

Γ,Ub =⇒ U [ p;ω � p;ω ]@(obs, usep;ω)φ,Δ
Γ,U¬b =⇒ U [ q;ω � q;ω ]@(obs, useq;ω)φ,Δ

Γ =⇒ U [ if (b) {p} else {q};ω �
if (b) {p;ω} else {q;ω} ]@(obs, usep;ω ∪ useq;ω ∪ {b})φ,Δ

(with b boolean variable.)

loopInvariant

Γ =⇒ Uinv,Δ
Γ,UVmod(b = TRUE ∧ inv) =⇒ UVmod

[ p � p ]@(obs ∪ use1 ∪ {b}, use2)inv,Δ
Γ,UVmod(b = FALSE ∧ inv) =⇒ UVmod[ ω � ω ]@(obs, use1)φ,Δ

Γ =⇒ U [ while(b){p}ω � while(b){p}ω ]@(obs, use1 ∪ use2 ∪ {b})φ,Δ

Fig. 4. A collection of sequent calculus rules for program transformation

contains the return variables of a method and the locations used in the continu-
ation of the program, e.g., program variables used after a loop must be reflected
in the observable locations of the loop body. The result of this phase is a sym-
bolic execution tree as illustrated in Fig. 3. In the second phase, we synthesize
the target program q and used variable set use from qi and usei by applying
the rules in a leaves-to-root manner. One starts with a leaf node and apply the
emptyBox rule, then stepwise generates the program within its sequential block,
e.g., b3,. . . , b6 in Fig. 3. These are combined by rules corresponding to state-
ments that contain a sequential block, such as loopInvariant (containing b3 and
b4). One continues with the sequential block containing the compound state-
ments, e.g., b2, until the root is reached. Note that the order of processing the
sequential blocks matters, for instance, the program for the sequential block b4
must be generated before that for b3, because the observable locations in node
n3 depend on the used variable set of b4 according to the loopInvariant rule.

Lemma 2. The extended sequent calculus rules are sound. (For the proof see [9])

5 Optimization

Sect. 4.2 introduced an approach to program simplification based on the ex-
tended sequent calculus rules. The generated program consists only of simple
statements and is optimized to a certain degree, because the used variable set
avoids generating unnecessary statements. Updates reflect the state of program
execution. In particular, the update in a sequential block records the evaluation
of the locations in that sequential block, it can be used for further optimization.
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5.1 Update Simplification

Within a sequential block, after application of sequent rules (e.g., assignment),
we often obtain an update U of the form {u1} . . . {un}. It can be simplified into
a single update {u}, namely the normal form (NF) of update.

Definition 11 (Normal form of update). An update is in normal form,
denoted by Unf , if it has the shape {u1‖ . . . ‖un}, n ≥ 0, where each ui is an
elementary update and there is no conflict between ui and uj for any i �= j.

The normal form of an update U = {u1} . . . {un} can be achieved by applying
a sequence of update simplification steps. Soundness of these rules and that they
achieve normal form are proven in [13]. The update rules are reproduced in [9].

Like elementary updates, updates in normal form are in SSA. It is easy to
maintain normal form of updates in a sequential block when applying the ex-
tended sequent calculus rules of Fig. 4. This can be used for further optimization
of the synthesized program. Take the assignment rule, for example: after each
forward rule application, we do an update simplification step to maintain the
normal form of the update for that sequential block; when a statement is synthe-
sized by applying the rule backwards, we use the update instead of the executed
assignment statement, to obtain the value of the location to be assigned; then
we generate the assignment statement with that value.

Example 5. Consider the program “i = j + 1; j = i; i = j + 1;”. After exe-
cuting the first two statements and simplification, we obtain the normal form up-
date Unf2 = {i := j + 1‖j := j + 1}. Doing the same with the third statement

results in Unf3 = {j := j + 1‖i := j + 2}, which implies that in the final state i
has value j+ 2 and j has value j+ 1.

Let i be the only observable location, for which a program is now synthesized
bottom-up, starting with the third statement. The rules in Fig. 4 would allow to
generate the statement i = j + 1;. But, reading the value of location i from
Unf3 as sketched above, the statement i = j + 2; is generated. This reflects the
current value of j along the sequential block and saves an assignment.

A first attempt to formalize our ideas is the following assignment rule:

Γ =⇒ Unf1 [ ω � ω ]@(obs, use)φ,Δ
(
Γ =⇒ Unf [ l = r;ω � l = r1;ω ]@(obs, use− {l} ∪ {r})φ,Δ if l ∈ use
Γ =⇒ Unf [ l = r;ω � ω ]@(obs, use)φ,Δ otherwise

)

with Unf1 = {. . . ‖l := r1} being the normal form of Unf{l := r}
However, this rule is not sound. If we continue Ex. 5 with synthesizing the first
two assignments, we obtain j = j + 1; i = j + 2; by using the new rule,
which is clearly incorrect, because i has final value j + 3 instead of j + 2.
The problem is that the values of locations in the normal form update are
independently synthesized from each other and do not reflect how one state-
ment is affected by the execution of previous statements in sequential execution.
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To ensure correct usage of updates in program generation, we introduce the
concept of a sequentialized normal form (SNF) of an update.

Definition 12 (Elementary update independence). An elementary update
l1 := exp1 is independent from another elementary update l2 := exp2 if l1 does
not occur in exp2 and l2 does not occur in exp1.

Definition 13 (Sequentialized Normal Form update). An update is in
sequentialized normal form, denoted by Usnf , if it has the shape of a sequence
of two parallel updates {ua1‖ . . . ‖uam}{u1‖ . . . ‖un}, m ≥ 0, n ≥ 0.
{u1‖ . . . ‖un} is the core update, denoted by Usnfc , where each ui is an ele-

mentary update of the form li := expi, and all ui, uj (i �= j) are independent
and have no conflict.
{ua1‖ . . . ‖uam} is the auxiliary update, denoted by Usnfa , where (i) each uai is

of the form lk := l (k ≥ 0); (ii) l is a program variable; (iii) lk is a fresh program
variable not occurring anywhere else in Usnfa and not occurring in the location
set of the core update lk /∈ {li|0 ≤ i ≤ n}; (iv) there is no conflict between uai
and uaj for all i �= j.

Any normal form update whose elementary updates are independent is also SNF
update that has only a core part.

Example 6 (SNF update).

– {i0 := i‖i1 := i}{i := i0+1‖j := i1} is in sequentialized normal form (SNF).
– {i0 := j‖i1 := i}{i := i0+1‖j := i1} and {i0 := i+1‖i1 := i}{i := i0+1‖j :=
i1} are not in SNF: i0 := j has different base variables on the left and right,
while i0 := i+ 1 has a complex term on the right, both contradicting (i).

To compute the SNF of an update, we need two more rules:

– (associativity) {u1}{u2}{u3}� {u1}({u2}{u3})
– (introducing auxiliary) {u}� {x0 := x}({x := x0}{u}), where x0 /∈ pv

Lemma 3. The associativity rule and introducing auxiliary rule are sound.

We can maintain the SNF of an update on a sequential block as follows: after
executing a program statement, apply the associativity rule and compute the
core update; if the newly added elementary update l := r is not independent
from some update in the core, then apply introduce auxiliary rule to introduce
{l0 := l}, then compute the new auxiliary update and core update.

5.2 Extended Sequent Calculus Rules Involving Updates

With the help of the SNF of an update, the assignment rule becomes:

Γ =⇒ Usnf1 [ ω � ω ]@(obs, use)φ,Δ
(
Γ =⇒ Usnf [ l = r;ω � l = r1;ω ]@(obs, use− {l} ∪ {r})φ,Δ if l ∈ use
Γ =⇒ Usnf [ l = r;ω � ω ]@(obs, use)φ,Δ otherwise

)

where Usnf1 = Usnfa1 {. . . ‖l := r1} is the SNF of Usnf{l := r}).
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Whenever the core update is empty, the auxAssignment rule

Γ =⇒ Usnfa1 [ ω � ω ]@(obs, use)φ,Δ
(
Γ =⇒ Usnfa [ ω � Tl l

0 = l;ω ]@(obs, use− {l0} ∪ {l})φ,Δ if l0 ∈ use
Γ =⇒ Usnfa [ ω � ω ]@(obs, use)φ,Δ otherwise

)

where Usnfa = {u} and Usnfa1 = {u‖l0 := l} being the auxiliary update

is used. I.e., the auxiliary assignments are always generated at the start of a
sequential block. Most other rules are obtained by replacing U with Usnf , see [9].
Example 7. We demonstrate that the program from Ex. 5 is now handled cor-
rectly. After executing the first two statements and simplifying the update, we
get the normal form update Unf2 = {i := j+ 1‖j := j+ 1}. Here a dependency
issue occurs, so we introduce the auxiliary update {j0 := j} and simplify to the

sequentialized normal form update Usnf2 = {j0 := j}{i := j0 + 1‖j := j0 + 1}.
Continuing with the third statement and performing update simplification re-
sults in the SNF update Usnf3 = {j0 := j}{j := j0+1‖i := j0+2}. By applying
the rules above, we synthesize the program int j0= j; i = j0+2;, which still
saves one assignment and is sound.

Remark. The program is first synthesized within a sequential block and then
constructed. The SNF updates used in the above rules belong to the current
sequential block. An execution path may contain several sequential blocks. We
keep the SNF update for each sequential block without simplifying them further
into a bigger SNF update for the entire execution path. E.g. in Fig. 3, the
execution path from node n0 to n4 involves 3 sequential blocks b0, b1 and
b4. When we synthesize the program in b4, more precisely, we should write
Usnf0 Usnf2 Usnf4 to represent the update used in the rules. However, we just care
about the SNF update of the b4 when generating the program for b4, so in the
above rules, Usnf refers to Usnf4 and the other SNF updates are omitted.

Lemma 4. The extended sequent calculus rules involving updates are sound.

6 Related Work

JSpec [14] is a state-of-the-art program specializer for Java. It uses an offline
partial evaluation technique that depends on binding time analysis. Our work is
based on symbolic execution to derive information on-the-fly, similar to online
partial evaluation [15], however, we do not generate the program during symbolic
execution, but synthesize it in the second phase. In principle, our first phase
can obtain as much information as online partial evaluation, and the second
phase can generate a more precise optimized program. A major advantage of
our approach is that the generated program is guaranteed to be correct. There
is work on proving the correctness of a partial evaluator by [16], but they need
to encode the correctness properties into a logic programming language.
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Verifying Compiler [17] project aims at the development of a compiler that
verifies the program during compilation. On contrast, our work might be called
Compiling Verifier, since the optimized program is generated on the basis of
a verification system. Recently, compiler verification became possible [18], how-
ever, it aims at verifying a full compiler with fixed rules, which is very expensive,
while our approach works at a specific target program and is fully automatic.

The product program technique [19] can be used to verify that two closely
related programs preserve behavior, but the programs must be given and loop
invariants must be supplied. This has been applied for loop vectorization [20],
where specific heuristics do away with the need for invariants and target program
is synthesized. The main differences to our work are that we aim at general
programs and we use a different synthesis principle.

7 Conclusions and Future Work

We presented a sound framework for program transformation and optimization.
It employs symbolic execution, deduction and bisimulation to achieve a precise
analysis of variable dependencies and aliasing, and yields an optimized program
that has the same behavior as the original program with respect to the observable
locations. We presented also an improved and sound approach to obtain a more
optimized program by involving updates into the program generation.

The language PL in this paper is a subset of Java, but our technique is valid
in general. We intend to extend our approaches to full Java. Observable locations
need not be restricted to return variables as in here, but, for example, could be
publicly observable variables in an information flow setting. We plan to apply
our approaches to language-based security. Finally, the bisimulation modality is
not restricted to the same source and target programming language, so we plan
to generate Java bytecode from Java source code which will result in a deductive
Java compiler that guarantees sound and optimizing compilation.
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