A Tool for Behaviour-Based Discovery
of Approximately Matching Web Services*:*

*

Mahdi Sargolzaei!, Francesco Santini?,
Farhad Arbab?, and Hamideh Afsarmanesh’

! Universiteit van Amsterdam, Amsterdam, Netherlands
{H.Afsarmanesh,M.Sargolzaei}@uva.nl
2 EPI Contraintes, INRIA - Rocquencourt, France
francesco.santini@inria.fr
3 Centrum Wiskunde & Informatica, Amsterdam, Netherlands
Farhad.ArbabQcwi.nl

Abstract. We present a tool that is able to discover stateful Web Ser-
vices in a database, and to rank the results according to a similarity
score expressing the affinities between each of them and a user-submitted
query. To determine these affinities, we take behaviour into account, both
of the user’s query and of the services. The names of service operations,
their order of invocation, and their parameters may differ from those
required by the actual user, which necessitates using similarity scores,
and hence the notion of soft constraints. The final tool is based on Soft
Constraint Automata and an approximate bisimulation among them,
modeled and solved as a Constraint Optimisation Problem.

1 Introduction

Web Services (WSs) [I] constitute a typical example of the Service Oriented
Computing (SOC) paradigm.WS discovery is the process of finding a suitable
WS for a given task. To enable a consumer use a service, its provider usually
augments a WS endpoint with an interface description using the Web Service
Description Language (WSDL). In such loosely-coupled environments, automatic
discovery becomes even more complex: users’ decisions must be supported by
taking into account a similarity score that describes the affinity between a user’s
requested service (the query) and the specifications of actual services available
in the considered database.

Although several researchers have tackled this problem and some search tools
(e.g., [16]) have achieved good results, very few of them (see Sec. [f]) consider the

* This work was carried out during the second author’s tenure of the ERCIM “Alain
Bensoussan” Fellowship Programme, which is supported by the Marie Curie Co-
funding of Regional, National and International Programmes (COFUND) of the
Furopean Commission.

** The first and fourth authors are partially supported by the FP7 project GLONET,
funded by the European Commission.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 152-{[66] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

A Tool for Behaviour-Based Discovery 153

behavioural signature of a service, which describes the sequence of operations a
user is actually interested in. This is partly due to the unavoidable limitations
of today’s standard specifications, e.g., WSDL, which do not encompass such
aspects. Despite this, the behaviour of stateful services represents a very impor-
tant issue to be considered during discovery, to provide users with an additional
means to refine the search in such a diverse environment.

In this paper, we first describe a formal framework (originally introduced
in [4]) that, during the search procedure, considers both a description of the
requested (stateful) service behaviour, and a global similarity score between
services and queries. This underlying framework consists of Soft Constraint Au-
tomata (SCA), where semiring-based soft constraints (see Sec. [2]) enhance clas-
sical (not soft) CA [B] with a parametric and computational framework that can
be used to express the optimal desired similarity between a query and a service.

The second and the main contribution of the work reported in this paper is
an implementation of such a framework using approximate bisimulation tech-
niques [11] between two SCA: we implement this inexact comparison between a
query and a service as a Constraint Optimisation Problem (COP), by using Ja-
CoP libraried!]. In the end, we are able to rank all search results according to their
similarity with a proposed query. In this way, we can benefit from off-the-shelf
techniques with roots in Artificial Intelligence (AI), in order to tackle the search
complexity over large databases. To evaluate a similarity score we use different
metrics to measure the syntactical distance between operations and between pa-
rameter names (see Sec.), e.g., between “get Weather” and “g weather”. These
values are then automatically cast into soft constraints as semiring values (see
Sec.), with the purpose of being parametrically composed and optimised for
the sake of discovery. Thus, a user may eventually choose a service that adheres
to her/his needs more than the other ones in a database.

The exploitation of the behaviour during a search process represents the main
feature of our tool. SCA represent the formal model we use to represent be-
haviours: the different states of an SCA represent the different states of a stateful
service/query. Relying on SCA allows us to have a framework that comes along
with sound operators for composition and hiding of queries [4]. Our plan is to
integrate this search tool with the tool presented in [I4]. In this comprehensive
tool it will be possible, first to search for the desired WSs (or components), and
then to compose them into a more complex structured service [14].

The rest of this paper is structured as follows. In Sec. 2] we summarise the
background on semiring-based soft constraints [7], as well as the background on
SCA [4]. Section Bl shows some examples of how to use SCA to represent the
behaviour of services and the similarity between their operation and parameter
names. Section [describes our tool which implements the search introduced in
Sec. Bl while Sec. [l focuses on how we measure the similarity between two dif-
ferent behavioural signatures. Section @l introduces the first experimental results
evaluating the precision of this tool. In Sec. [f] we report on the related work.
Finally, in Sec. [{l we draw our conclusions and explain our future work.

! Java Constraint Programming solver (JaCoP): http://www.jacop.eu

http://www.jacop.eu

154 M. Sargolzaei et al.

2 Soft Constraint Automata

Semring-based Soft Constraints. A c-semiring [7] (simply semiring in the
sequel) is a tuple S = (A, +, x,0,1), where A is a possibly infinite set with
two special elements 0,1 € A (respectively the bottom and top elements of A)
and with two operations + and x that satisfy certain properties over A: + is
commutative, associative, idempotent, closed, with 0 as its unit element and 1
as its absorbing element; x is closed, associative, commutative, distributes over
+, 1 is its unit element, and 0 is its absorbing element. The + operation defines
a partial order <g over A such that a <g b iff a + b = b; we say that a <g b if b
represents a value better than a. Moreover, + and x are monotone on <g, 0 is
the min of the partial order and 1 its max, (A, <g) is a complete lattice and +
is its least upper bound operator (i.e., a + b = lub(a, b)) [7.

Some practical instantiations of the generic semiring structure are the boolean
<{false true}, v, A, false, true), fuzzy {[0..1], max, min, 0, 1), probabilistic {[0..1],
max, x,0,1) and weighted (R* U {+00}, min, 0> (Where x and + respec-
tively represent the arithmetic multiplication and addltlon).

A soft constraint [7] may be seen as a constraint where each instantiation of
its variables has an associated preference. An example of two constraints defined
over the Weighted semiring is given in Fig. Bl Given S = (A4, +, x,0,1) and an
ordered finite set of variables V over a domain D, a soft constraint is a function
that, given an assignment n : V' — D of the variables, returns a value of the
semiring, i.e., ¢: (V — D) — A. Let C = {c | ¢ : DISV] — A} be the set of all
possible constraints that can be built starting from S, D and V: any function
in C depends on the assignment of only a (possibly empty) finite subset I of V|
called the support, or scope, of the constraint. For instance, a binary constraint
Cpy (e, {z,y} =1 S V) is defined on the support supp(c) = {z,y}. Note that
en[v = d] means ¢’ where 7' is 7 modified with the assignment v = d. Note
also that cn is the application of a constraint function ¢ : (V. — D) — A to
a function n : V. — D; what we obtain is, thus, a semiring value c¢n = a.The
constraint function a always returns the value a € A for all assignments of domain
values, e.g., the 0 and 1 functions always return 0 and 1 respectively.

Given the set C, the combination function ® : C x C — C is defined as
(c1 ® ca)n = c1n x can [1]; supp(cr ® c2) = supp(c1) U supp(ce). Likewise, the
combination function @ : C ®C — C is defined as (c1 @ c2)n = c1n + can [7;
supp(c1®cea) = supp(cr)usupp(cz). Informally, ® /@ builds a new constraint that
associates with each tuple of domain values for such variables a semiring element
that is obtained by multiplying/summing the elements associated by the original
constraints to the appropriate sub-tuples. The partial order <g over C can be
easily extended among constraints by defining ¢; Eg co <= Vn,c1n <g can.

The search engine of the tool we present in Sec. M relies on the solution of
Soft Constraint Satisfaction Problems (SCSPs) [1], which can be considered as
COPs. An SCSP is defined as a quadruple P = <{S,V, D,C), where S is the
adopted semiring, V' the set of variables with domain D, and C'is the constraint
set. Sol(P) =) C collects all solutions of P, each associated with a similarity
value s € S. Soft constraints are also used to define SCA (see Sec [2).

A Tool for Behaviour-Based Discovery 155

Soft Constraint Automata. Constraint Automata were introduced in [5] as a
formalism to describe the behaviour and possible data flow in coordination mod-
els (e.g., Reo [5]); they can be considered as acceptors of Timed Data Streams
(TDS) [35]. In [] we paved the way to the definition of Soft Constraint Au-
tomata (SCA), which represent the theoretical fundament behind our tool.

SCA [] use a finite set N of names, e.g., N' = {n1,...,n,}, where n; (i € 1..p)
is the 4-th input/output port. The transitions of SCA are labeled with pairs
consisting of a non-empty subset N € A and a soft (instead of crisp as in [3])
data-constraint c¢. Soft data-constraints can be viewed as an association of data
assignments with a preference for that assignment. Formally,

Definition 1 (Soft Data-Constraints). A soft data-constraint is a function
c¢: ({d, | n € N} - Data) — A defined over a semiring S = (A, +, %x,0,1),
where {d,, | n € N} — Data is a function that associates a data item with every
variable d, related to port name n € N € N, and Data is the domain of data
items that pass through ports in N'. The grammar of soft data-constraints is:

C{d,|neN} = 0 | 1 | c1®co | c1 & co

where {d,, | n € N} is the support of the constraint, i.e., the set of variables
(related to port names) that determine its preference.

Informally, a soft data-constraint is a function that returns a preference value
a € A given an assignment for the variables {d,, | n € N} in its support. In the
sequel, we write SDC(N, Data), for a non-empty subset N of N, to denote the set
of soft data-constraints. We will use SDC' as an abbreviation for SDC(N, Data).
Note that in Def. [[l we assume a global data domain Data for all names, but,
alternatively, we can assign a data domain Data,, for every variable d,,.

We state that an assignment 7 for the variables {d,, | n € N} satisfies ¢ with
a preference of a € A, if cn = a.

In Def. 2 we define SCA. Note that by using the boolean semiring, thus within
the same semiring-based framework, we can exactly model the “crisp” data-
constraints presented in the original definition of CA [5]. Therefore, CA are
subsumed by Def. Pl Note also that weighted automata, with weights taken from
a proper semiring, have already been defined in the literature [I0]; in SCA,
weights are determined by a constraint function instead.

Definition 2 (Soft Constraint Automata). A Soft Constraint Automaton
over a domain Data, is a tuple Ts = (Q,N, —, Qq,S) where 1) S is a semiring
(A, +,%x,0,1), ii) Q is a finite set of states, iii) N is a finite set of names, iv)

— is a finite subset of Q x 2V x SDC x Q, called the transition relation of
Ts, and v) Qo © Q is the set of inilial states. We write q e, p instead of
(¢, N,c,p) € —. We call N the name-set and ¢ the guard of the transition. For

every transition q N, p we require that i) N + &, and ii) ¢ € SDC(N, Data)
(see Def.[0). Ts is called finite iff Q, — and the underlying data-domain Data
are finite.

156 M. Sargolzaei et al.

{L}
a (1) —» N) > R* s.t. ci(dp) = dp +3
(SRR -Loadp) = ar
_’ o () = N) > R* s.t. ca(dr) = dyt +5
{M}
C2
Fig. 1. A Soft Constraint Automaton Fig. 2. c1 and c2 in Fig[ll

The intuitive meaning of an SCA Tg as an operational model for service
queries is similar to the interpretation of labeled transition systems as formal
models for reactive systems. The states represent the configurations of a service.
The transitions represent the possible one-step behaviour, where the meaning
of ¢ ™% pis that, in configuration ¢, the ports in n € N have the possibility
of performing I/O operations that satisfy the soft guard ¢ and that leads from
configuration ¢ to p, while the ports in M\N do not perform any I/O operation.
Each assignment of variables {d,, | n € N} represents the data associated with
ports in N, i.e., the data exchanged by the I/O operations through ports in N.

In Fig. [l we show an example of a (deterministic) SCA. In Fig. Pl we define
the weighted constraints ¢; and co that describe the preference (e.g., a monetary
cost) for the two transitions in Fig. [e.g., ¢1(dr, = 2) = 5.

In [4] we have also softened the synchronisation constraints associated with
port names in N over the transitions. This allows for different service operations
to be considered somehow similar for the purposes of a user’s query. Note that
a similar service can be used, e.g., when the “preferred” one is down due to
a fault, or when it offers bad performances, e.g., due to the high number of
requests. Definition [3] formalises the notion of soft synchronisation-constraint.

Definition 3 (Soft Synchronization-constraint). A soft synchronization-
constraint is a function ¢ : (V. — N) — A defined over a semiring S =
(A, +, x,0,1, where V is a finite set of variables for each I/O ports, and N is
the set of 1/0 port names of the SCA.

3 Representing the Behaviour of Services with SCA

In this section we show how the formal framework presented in Sec.[2] (e.g., SCA)
can be used to consider a similarity score between a user’s query and the service
descriptions in a database, in oder to find the best possible matches for the user.

We begin by considering how parameters of operations can be associated
with a score value that describes the similarity between a user’s request and
an actual service description in a database. We suppose to have two different
queries: the first, getByAuthor(Firstname), which is used to search for confer-
ence papers using the Firstname (i.e., the parameter name) of one of its authors;
the name of the invoked service operation is, thus, getByAuthor. The second
query, getByTitle (Conference), searches for conference papers, using the title
of the Conference wherein the paper has been published; the name of the in-
voked operation is getByTitle. These two queries are represented as the SCA

A Tool for Behaviour-Based Discovery 157

C1 C2
{get By Author} 1 F--a L - -
C1
kS ‘
£ I L]
O 0.2 Lo] : |
0 ‘ i t 0 1 ‘
{gctByTitl(ﬁ} Firstname Fullname Lastname Conference Proceedings
€z dgetByAuthor dgetByTitIe

Fig. 3. Two soft Constraint Automata Fig.4. The definitions of ¢; and c2 in
representing two different queries Fig. Bl

(see Sec. @) go and ¢1, in Fig. Bl Soft constraints ¢; and c¢o in Fig. @ define a
similarity score between the parameter name used in a query and all parameter
names in the database (for the same operation name, i.e., either getByAuthor
or getByTitle). These similarity scores can be modeled with the fuzzy semiring
{[0..1], max, min, 0, 1) wherein the aim is to maximise the similarity (+ = max)
between a request and a service returned as a matching result. Constraint ¢; in
Fig. [states that similarity is full if a getByAuthor operation in the database
takes Firstname as parameter (since 1 is the top preference of the fuzzy semir-
ing), less perfect, that is 0.8, if it takes Fullname (usually, Fullname includes
Firstname), or even less perfect, that is 0.2, if it takes Lastname only. Similar
considerations apply to the operation name getByTitle (see Fig. B]) and ¢y in
Fig. [l Similarity scores are automatically extracted as explained in Sec. [l

Suppose now that our database contains the four services represented in Fig. Bl
All these services are stateless, i.e., their SCA have a single state each. For in-
stance, service a has only one invocable operation whose name is getByAuthor,
which takes Lastname as parameter. Service d has two distinct operations,
getByAuthor and getByTitle.

According to the similarity scores expressed by ¢; and co in Fig. [, queries gqo
and ¢; in Fig.[Blreturn different result values for each operation/service, depend-
ing on the instantiation of variables dgetByauthor and dgetByTitie. Considering qo,
services a, b, and d have respective preferences of 0.2, 1, and 0.8. If query ¢ is
used instead, the possible results are operations ¢ and d, with respective pref-
erences of 1 and 0.3. When more than one service is returned as the result of
a search, the end user has the freedom to choose the best one according to his
preferences: for the first query qg, the user can opt for service b, which corre-
sponds to a preference of 1 (i.e., the top preference), while for query ¢; the user
can opt for ¢ (top preference as well).

{getByAuthor} {get By Author} {getByTitle}

{get By Author}
dgetByAuthor = Lastname dyetByAuthor = Firstname dgeipyritie = Conference

dgerByAuthor = Fullname

{get ByTitle}
dyetyritie = Proceedings

Fig. 5. A database of services for the queries in Fig. B} d perfoms both kinds of search

158 M. Sargolzaei et al.

{za}
{x} Cay (24 = AddToBasket) = 1
¢z (v = getByAuthor) =1
co(x = getByTitle) = 0.7 ' Cor (1 = Ingm) —1 (s = AddToBasket)

@ /’/z:\
(z2 = LogOut)

Cay

fas}
w5 (T5 = bthpmr]) =1

{ze}
Czg(z6 = Charging) =1

Fig.6. A similarity-based query for Fig.7. A similarity-based query for the on-
the Author/ Title example line purchase service

We now move from parameter names to operation names, and show that
by using soft synchronisation constraints (see Def. Bl), we can also compute a
similarity score among them. For example, suppose that a user queries ¢¢ in
Fig. Bl The possible results are services a, b and d in the database of Fig. [l
since service c has an operation named getByTitle, different from getByAuthor.
However, the two services are somehow similar, since they both return a paper
even if the search is based either on the author or on the conference. As a result,
a user may be satisfied also by retrieving (and then, using) service ¢. This can
be accomplished with the query in Fig. B where c,(x = getByAuthor) = 1,
and ¢, (z = getByTitle) = 0.7. Note that we no longer deal with constraints on
parameter names, but on operation names. Then, we can also look for services
that have similar operations, not only similar parameters in operations.

However, the main goal of this paper is to compute a similarity score con-
sidering also the behaviour of queries and services. For instance (the query in
Fig. [, a user may need to find an on-line purchase service satisfying the fol-
lowing requirements:) charging activity comes before shipping activity, i) to
purchase a product, the requester first needs to log into the system and finally
log out of the system, and 4) filling the electronic basket of a user may consist
of a succession of “add-to-basket” actions. In Sec. Bl we will focus on this aspect.

Constraints on parameter (their data-types as well) and operation names can
be straightforwardly mixed together to represent a search problem where both
are taken into account simultaneously for optimization. The tool in Sec. @ ex-
ploits this kind of search: the similarity functions represented by constraints are
computed through the composition of different syntactic similarity metrics.

4 Tool Description

Conceptually, our behaviourally-based WS discovery proceeds in four successive
steps: i) generate a Web Service Behaviour Specification (WSBS) for each reg-
istered WS (a WSBS is basically a CA), i) process preference-oriented queries
(basically represented as SCA), 4ii) model an approximate bisimulation between
a query and our services as an SCSP (see Sec.), and finally, iv) solve this
problem (see Sec. [2). Note that we are also able to translate other kinds of
behavioural service specification, as WS-BPELF, into (S)CA [8).

2 WS-Business Process Execution Language, 2.0: http://tinyurl.com/czkoolw

http://tinyurl.com/czkoolw

A Tool for Behaviour-Based Discovery 159

'WSDL Parser

WSDL /’{
Registry
WsBs
Generator Assembler

Approximate Similarity-based
8 VEESD Bisimulation SCSP Solver Ranking of
Programmer Registry Problem Services

Similarity
Calculator

Constraint

Query Preference-oriented
Processor Query

Fig. 8. General architecture of the tool

Step 7 is needed because no standard language or tool exists to specify the
behaviour of stateful WSs. Therefore, we have to define our internal WSBS
as a behavioural specification for WSs, using WSDL and some extra necessary
annotations. In step 7, we obtain a query from a user and we process it to find
the similarities between the request and the actual services in the database. In
the third step, we set up an SCSP (see Sec.), where soft-constraint functions
are assembled by using the similarity scores derived from step ii; at the same
time, we define those constraints that compare the two behavioural signatures
(query/service), and measure their similarity. Finally, we find the best solutions
for this SCSP, and we return them to the user. All these steps are implemented
by different software modules, whose global architecture is defined in Fig. Bl

WSDL Parser. We rely on a repository of WSDL documents that are captured
in a registry, i.e., the WSDL Registry (see Fig.[R). WSDL is an XML-based stan-
dard for syntactical representation of WSs, which is currently the most suitable
for our purpose. First, we parse these XML-based documents to extract the
names and interfaces of service operations using the Azis2 technologyE

WSBS Generator. While a WSDL document specifies the syntax and the
technical details of a service interface, it lacks the information needed to convey
its behavioural aspects. In fact, a WSDL document only reveals the operation
names and the names and data types of their arguments. Hence, we must indi-
cate the permissible operation sequences of a service. If we know that a WS is
stateless, then all of its operations are permissible in any order. For a stateful
service, however, we need to know which of its operations is (not) allowed in
each of its states. In [14], some of the authors of this paper have already for-
malised the behaviour of a WS (i.e., the WSBS) in terms of CA [5]. Therefore,
we adopt the Fxtensible Coordination Tools (ECT) [2], which consist of a set of
plug-ins for the Fclipse platfornﬂ, as the core of the WSBS Generator, in order
to generate a CA to specify the externally observable behaviour of a service.
Normally, the ECT is used to give a semantics to Reo circuits [5]. The resulting
CA are captured as XML documents, where the <states> and <transitions>
tags identify the structure of each automaton. It is also possible to indicate the

3http://axis.apache.org/axis2/java/core/
* ECT webpage: http://reo.project.cwi.nl/reo/wiki/Tools

http://axis.apache.org/axis2/java/core/
http://reo.project.cwi.nl/reo/wiki/Tools

160 M. Sargolzaei et al.

{Purchase}

q0 AddToBasket ql;
ql AddToBasket qi;
ql Purchase qO0.

{AddToBasket}

{AddToBasket}

Fig.10. Text file representing the

Fig.9. An example of WSBS WSBS in Fig.

behaviour of WSs in text files, in a simplified form. The file in Fig. [0 describes
the service represented in Fig. [0 In our architecture, all WSBSs are stored in a
WSBS Registry (see Fig. B]).

We can automatically extract a single-state automaton from the operations
defined in a WSDL document describing a stateless WS: we use this support-tool
to extract the automata for the real-world WSs used in our following experiment.
For stateful WSs, we developed an interactive tool that (using a GUI) allows a
programmer (see Fig. [B]) to visually create the automaton states describing the
behavior of a service, and tag its transitions with the operations defined in its
WSDL document.

Query Processor. At search time, a user specifies a desired service by means of
a text file, and feeds it to this module. An example of our query is represented in
Fig.Idl The query format allows to specify all desired transitions among states,
including operation names, and the names and data types of their arguments. It
enables to search for multiple similar services (separated by “or” operators) at
the same time while the tool ranks all the results in the same list. Finally, the tool
assigns to each service description a preference score prescribed by the user. A
user may use a score (e.g., fuzzy preferences in [0..1]) to weigh all the results, as
represented in Fig. [[Tl Each query is represented as an SCA [] (see Sec.), since
preferences can be represented by soft constraints. This textual representation
resembles a list of WSBSs, each of them associated with a preference score (see
Fig. [l and Fig. [I0 for a comparison).

Similarity Calculator. As Fig. [§ shows, this module requires two inputs: the
WSBSs and the processed query. It returns three different kinds of similarity
scores, which reflect the similarities between one service and one query i) oper-
ations names,) names of input-parameters of operations, and i) data types
of input-parameters. We use different string similarity-metrics (also known as
string distance functions) as the functions to measure the similarity between
two text-strings. We have chosen three of the most widely known metrics, in-
cluding the Levenshtein Distance, the Matching Coefficient, and the QGrams
Distance. Each of these metrics operates with two input strings, and return a
score estimating their similarity. Since each function returns a value in [0..1], we
average these three scores to merge them into a single value still in [0..1].
These similarity scores are subsequently used by the Constraint Assembler in
Fig. B in order to define the similarity functions that are translated into soft
constraints, as explained in Sec. Bl The representation of the search problem

A Tool for Behaviour-Based Discovery 161

g0 Weather(City:string) qO, [1.0] or qO Weather(Zipcode:string) qO, [0.8]

Fig. 11. A single-state query asking for the weather conditions over a City, or using a
Zipcode. Different user’s preference scores are represented within square brackets.

in terms of constraints is completely constructed by the Constraint Assembler
module, while the Similarity Calculator only provides it with similarity scores.

Constraint Assembler. This module produces a model of the discovery prob-
lem, in the form of approximate bisimulation (see Sec. [l), as an SCSP (see
Sec.[2). To do so, it represents all preference and similarity requirements as soft
constraints. In order to assemble these constraints, we used JaCoP, which is a
Java library that provides a finite-domain constraint programming paradigm.
We have made ad-hoc extensions to the crisp constraints offered by JaCoP
in order to equip them with weights, and we have exploited the possibility to
minimise/maximise a given cost function to solve SCSPs. Specifically, we have
expressed the WSs discovery problem as a fuzzy optimisation problem, by im-
plementing the fuzzy semiring, i.e., {[0..1], max, min, 0, 1) (see Sec.).

For instance, SumWeight is a JaCoP constraint that computes a weighted
sum as the following pseudo-code: wy =1 + w2 x2 +ws x3 = sum, where sum
represents the global syntactic similarity between two operation names (x1),
considering also their argument names (z3) and types (x3). These scores are
provided by the Similarity Calculator. Moreover, we can tune the weights wi,
ws, and w3 to give more or less importance to the three different parameters. In
the experiments in Sec.] we use equal weights. We leave to Sec. [l a discussion
on how to compute how much two behavioural signatures (query/service) are
similar, and how the general constraint-based model is designed.

SCSP Solver. Finally, after the specification of the model consisting of variables
and constraints, a search for a solution of the assembled SCSP can be started.
This represents the final step (see Fig. [§]). The result can be generalised as a
ranking of services in the considered database: at the top positions we find the
services that are more similar to a user’s request.

Ezperimental Results on a Stateless Scenario. In this section we show the preci-
sion results of our tool through a scenario involving stateless real WSs. Figure [Tl
shows a single-state query that searches for WSs that return the “weather” fore-
cast for a location indicated by the name of a “city” (with a user’s preference
of 1) or its “zip-code” (preference of 0.8). We retrieved 14 different WSDL doc-
uments by querying the word “Weather” on Seekd, which is a public WS
search-engine. These documents list a total of 58 different operations, which
populate our WSDL Registry (see Fig.[]).

Table[dlreports a part of the experiment results. From left to right the columns
respectively report the position in the final ranking, the obtained fuzzy score,
the WS name, and, lastly, the matched service operation.

® http://webservices.seekda.com

http://webservices.seekda.com

162 M. Sargolzaei et al.

5 On Comparing Behaviour Signatures

In this section we zoom inside the Constraint Assembler component that we
introduced in Sec. @l We describe how we can approximate the behaviour of a
posed query with that of a service, since a perfect match can be uncommon.
The basic idea is to compute an approximate bisimulation [11] between the
two automata respectively representing a query, and a WS in a database. The
notion of approximate bisimulation relation is obtained by relaxing the equal-
ity of output traces: instead of requiring them to be identical, we require that
they remain “close”. Metrics (represented as semirings, in our case) essentially
quantify how well a system is approximated by another based on the distance
between their observed behaviours. In this way, we are able to consider different
transition-labels by estimating a similarity score between their operation inter-
faces, and different numbers of states. To model approximate bisimulation with
constraints, we exploited constraint-based graph matching techniques [17]; thus,
we are able to “compress” or “dilate” one automaton structure into another.
In the following, we use the query example in Fig[T2 and the service example
in Fig. [[3] to describe our constraint-based model for the search. We subdivide
this description by considering how we match the different elements of automata
(transitions or states), and how we finally measure their overall similarity.

States. To represent our signature-match problem, for each of the query-
automaton states (cardinality Q) we define a variable that can be assigned to
one or several states of a service (cardinality S). For this purpose, we use Set Var,
i.e., JaCoP variables defined as ordered collections of integers. Considering our
running example, one of the possible matches between these two signatures can
be given by M = qp = {s0,51,53},q1 = {s2}. This matching is represented in
Fig. [2 and Fig. 3 using gray and black labels for states. Clearly, the proposed
modelling solution represents a relationship and not a function, since a query
state can be associated with one or more service-states; on the other hand, dif-
ferent query states can be associate with the same service state, in case a query
has more states than a service. Thus, to match the two automata we allow to
“merge” together those states that are connected by a transition (e.g., so, $1

Table 1. The ranking of the top-ten matched WSs, based on the query represented in
Fig. Ml out of a database of 14 different WSDL documents

Rank Score Name of WS Interface of the operation

1 0.82 weather GetWeather(City : string)

2 0.69 globalweather GetWeather(CityName : string)

3 0.5 Weather Get Weather(ZIP : string)

4 0.48 WeatherWS getWeather(theCityCode : string, theUserID : string)

5 0.47 WeatherWebService getW eatherbyCityName(theCityName : string)

6 0.44 usweather GetW eather Report(ZipCode : string)

7 0.42 WeatherForecast GetWeather ByZipCode(ZipCode : string)

8 0.4 WeatherForecast ~ GetWeather ByPlaceName(PlaceName : string)

9 0.4 weatherservice GetLiveCompactW eathe(cityCode : string, ACode : string)
10 0.36 weatherservice GetLiveCompactW eather ByStationI D(stationid : string,

un : UnitType, ACode : string)

A Tool for Behaviour-Based Discovery 163

and s3 in Fig. [[3J) into a single state (e.g., qo) at the cost of incurring a certain
penalty.

Transitions. In our running example, if we match the two behaviours as defined
by M, we consequently obtain a match for the transitions (and their labels)
as well. Our model has a variable (IntVar, in JacoP) for each of the transi-
tions in a query automaton; considering the example in Fig. 12l we have three
variables I, 2, 3. In Fig. [2 and Fig. [[3] we label each transition with its iden-
tifier (l1,...,l3,m1,...,m5), and a string that represents its related operation-
name (in this example, we ignore parameter names and types for the sake of
brevity). Thus, the full match-characterisation is now M = qo = {so, s1, $3}, @1 =
{s2},11 = ma,ls = m3,l3 = ms. Note that, if a query has more transitions than
a service, it may happen to be impossible to match all of them; for this reason,
since we need to assign each of the variables in order to find a solution, we assign
a mark NM (i.e., Not Matched) to unpaired transitions.

Match Cost. In this paragraph we show how to compute a global similar-
ity score I' for a match M (i.e., I'(M)). We consider two different kinds of
scores, i) a state similarity-score, o(M), is derived from how much we need to
(de)compress the behaviour (in terms of number of states) to pass from one sig-
nature to another, and 4) a transition similarity-score, (M), is derived from a
comparison between matched labels. In a simple case, we can consider the mean
value I'(M) = (o(M)+0(M))/2, or we can imagine more sophisticated aggrega-
tion functions. A rather straightforward function is o(M) = min(#Sn, #Quq)/
max(#Sm, #Qua) (if #Sym = #Quq, our match is perfect), but we can think of
non-linear functions as well, for instance. The score §(M) is computed by aggre-
gating the individual ssim syntactic similarity-scores (computed by the Similar-
ity Calculator in Sec.H]) obtained for each label match, and then averaging on the
number of matched labels. For our example, (M) = (ssim(label, , labely,,) +
ssim(labely, , label,,,) + ssim(labely,, labely,))/3.

An Ezxperiment with Stateful Services. Since all current WS standards are state-
less, for this experiment we hand-crafted four stateful WSs (see Tab.). We
use the following query against this database. The ideal service matching the
query first retrieves the weather forecast for a city based on its name, and then
retrieves the forecasts for its neighbouring cities:

q0 GetWeather(SetCity : string) q1;ql GetNeighbourhoodWeather() q0 [1.0].

mgs : AddToBasket
lo : AddBasket

l; : AddBasket

\ my : Login ms : AddToBasket my : Shipping

me : LogOut
me gOu ms : Charging

ls : Charge

Fig. 13. A possible service in a database

Fig.12. A query example related to the query in Fig.

164 M. Sargolzaei et al.

Table 2. Our registry of hand-crafted stateful WSs, and the obtained similarity scores

ID WSBS 0 o I' Rk
S1 q0 getweather(city:string) q0 76 .5 .63 4
S2 q0 getweather(city:string) ql ; q1 getneighborsweather q0 8 1 9 1
S3 q0 login(password:string) ql; ql getweather(city:string) q2 ; q2 getneighborsweather q0 .8 .66 .73 3
Si q0 GetWeather(myCity:string) q1; q1 getNeighWeather q0 69 1 .84 2

Table [2] shows the results of this experiment: the transition similarity-score
(M), the state similarity-score (M), the global similarity-score I'(M), and
the rank Rk of each service. These results match our expectations, since the
behaviour of S5 and S; each is identical to the behaviour of our query, while the
operation interface of S5 is more similar to the query compared to that of Sjy.

6 Related Work

Compared to the work reported in the literature, the solution in this paper
seems more general, compact, and comprehensive, because it can encompass
any semiring-like metrics, and the whole framework is expressively modeled and
solved using Constraint Programming. Moreover, elaborating on a formal frame-
work allows us to easily check properties of services/queries (e.g., to model-check
or bi/simulate them [4]), and to have join and hide operators to work on them [4].
Most of the literature seems to report more ad-hoc engineered and specific so-
lutions, instead, which consequently, are less amenable to formal reasoning.

In [18] the authors propose a new behaviour model for WSs using automata
and logic formalisms. Roughly, the model associates messages with activities and
adopts the IOPR model (i.e., Input, Output, Precondition, Result) in OWL-S9
to describe activities. The authors use an automaton structure to model service
behaviour. However, similarity-based search is not mentioned in [I8]. In [21] the
authors present an approach that supports service discovery based on structural
and behavioural service models, as well as quality constraints and contextual in-
formation. Behaviours are matched through a subgraph isomorphism algorithm.
In [I2] the problem of behavioural matching is translated to a graph matching
problem, and existing algorithms are adapted for this purpose.

The model presented in [19] relies on a simple and extensible keyword-based
query language and enables efficient retrieval of approximate results, including
approximate service compositions. Since representing all possible compositions
can result in an exponentially-sized index, the authors investigate clustering
methods to provide a scalable mechanism for service indexing.

In [6], the authors propose a crisp translation from interface description of
WSs to classical crisp Constraint Satisfaction Problems (CSPs). This work does
not consider service behaviour and it does not support a quantitative reasoning
on similarity /preference involving different services. In [20], a semiring-based
framework is used to model and compose QoS features of WSs. However, no
notion of similarity relationship is given in [20].

5 OWL-S: Semantic Markup for Web Services, 2004: www .w3. org/Submission/0OWL-S/

www.w3.org/Submission/OWL-S/

A Tool for Behaviour-Based Discovery 165

In [9], the authors propose a novel clustering algorithm that groups names
of parameters of WS operations into semantically meaningful concepts. These
concepts are then leveraged to determine similarity of inputs (or outputs) of
web-service operations. In [I5] the authors propose a framework of fuzzy query
languages for fuzzy ontologies, and present query answering algorithms for these
query languages over fuzzy DL-Lite ontologies. In [I3] the authors propose a
metric to measure the similarity of semantic services annotated with an OWL
ontology. They calculate similarity by defining the intrinsic information value of a
service description based on the “inferencibility” of each of OWL Lite constructs.
The authors in [I6] show a method of WS retrieval called URBE (UDDI Registry
By Example). The retrieval is based on the evaluation of similarity between the
interfaces of WSs. The algorithm used in URBE combines the analysis of the
structure of a WS and the terms used inside it.

7 Conclusions

We have presented a tool for similarity-based discovery of WSs that is able
to rank the service descriptions in a database, in accordance with a similarity
score between each of them and the description of a service desired by a user.
The formal framework behind the tool consists of SCA [4], which can represent
different high-level stateful software services and queries. Thus, we can use SCA
to formally reason on queries (e.g., bisimulation for SCA is introduced in [4]). The
tool is based on implementing approximate bisimulation [I1] with constraints
(see Sec. [), which allows to quantitatively estimate the differences between two
behaviours. Defining this problem as an SCSP makes it parametric with respect
to the chosen similarity metric (i.e., a semiring), and allows using efficient AI
techniques for solving it: subgraph isomorphism is not known to be in P.

Our main intent has been to propose a formal framework and a tool with
an approximate bisimulation of behaviours at its heart, not to directly com-
pete against tools such as [I6], which although show higher precision than what
we have summarised in Sec. [do not support behaviour specification in their
matching. Nevertheless, in the future we plan to refine the performance of our
tool by also evaluating a semantic similarity-score between the operation and
parameter names, using an appropriate ontology for services as OWL-S.

References

1. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.. Web Services - Concepts, Ar-
chitectures and Applications. Data-Centric Systems and Applications. Springer
(2004)

2. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y., Proenga, J.: Modeling, testing and
executing Reo connectors with the Eclipse Coordination Tools. Tool demo session
at FACS 8 (2008)

3. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 34-55. Springer, Heidelberg (2003)

166

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Sargolzaei et al.

Arbab, F.; Santini, F.: Preference and similarity-based behavioral discovery of ser-
vices. In: ter Beek, M.H., Lohmann, N. (eds.) WS-FM 2012. LNCS, vol. 7843,
pp. 118-133. Springer, Heidelberg (2013)

Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75-113 (2006)
Benbernou, S., Canaud, E., Pimont, S.: Semantic web services discovery regarded
as a constraint satisfaction problem. In: Christiansen, H., Hacid, M.-S., Andreasen,
T., Larsen, H.L. (eds.) FQAS 2004. LNCS (LNATI), vol. 3055, pp. 282-294. Springer,
Heidelberg (2004)

Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201-236 (1997)

Changizi, B., Kokash, N.; Arbab, F.: A Unified Toolset for Business Process Model
Formalization. In: Proceedings of FESCA 2010 (2010)

Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web
services. In: Proceedings of Very Large Data Bases, vol. 30, pp. 372-383, VLDB
Endowment (2004), http://d1l.acm.org/citation.cfm?id=1316689.1316723
Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn.
Springer Publishing Company, Incorporated (2009)

Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Trans. Automat. Contr. 52(5), 782-798 (2007)

Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral matchmaking for service
retrieval. In: IEEE International Conference on Web Services (ICWS), pp. 145-152.
IEEE Computer Society (2006)

Hau, J., Lee, W., Darlington, J.: A semantic similarity measure for semantic web
services. In: Web Service Semantics Workshop at WWW (2005)

Jongmans, S.-S.T.Q., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Auto-
matic code generation for the orchestration of web services with Reo. In: De Paoli, F.,
Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 1-16. Springer,
Heidelberg (2012)

Pan, J.Z., Stamou, G., Stoilos, G., Taylor, S., Thomas, E.: Scalable querying ser-
vices over fuzzy ontologies. In: Proceedings of World Wide Web, WWW 2008,
pp. 575-584. ACM, New York (2008), http://doi.acm.org/10.1145/

1367497 .1367575

Plebani, P., Pernici, B.: Urbe: Web service retrieval based on similarity eval-
uation. IEEE Trans. on Knowl. and Data Eng. 21(11), 1629-1642 (2009),
http://dx.doi.org/10.1109/TKDE. 2009. 35

le Clément, V., Deville, Y., Solnon, C.: Constraint-based graph matching. In: Gent,
I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 274-288. Springer, Heidelberg (2009)
Shen, Z., Su, J.: Web service discovery based on behavior signatures. In: Proceed-
ings of the 2005 IEEE International Conference on Services Computing, SCC 2005,
vol. 01, pp. 279-286. IEEE Computer Society, Washington, DC (2005)

Toch, E., Gal, A., Reinhartz-Berger, 1., Dori, D.: A semantic approach to approx-
imate service retrieval. ACM Trans. Internet Technol. 8(1) (November 2007)
Zemni, M.A., Benbernou, S., Carro, M.: A soft constraint-based approach to QoS-
aware service selection. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 596-602. Springer, Heidelberg (2010)

Zisman, A., Dooley, J., Spanoudakis, G.: Proactive runtime service discovery. In:
Proceedings of the 2008 IEEE International Conference on Services Computing,
SCC 2008, vol. 1, pp. 237-245. IEEE Computer Society, Washington, DC (2008),
http://dx.doi.org/10.1109/SCC.2008.60

http://dl.acm.org/citation.cfm?id=1316689.1316723
http://doi.acm.org/10.1145/1367497.1367575
http://doi.acm.org/10.1145/1367497.1367575
http://dx.doi.org/10.1109/TKDE.2009.35
http://dx.doi.org/10.1109/SCC.2008.60

	A Tool for Behaviour-Based Discovery of Approximately Matching Web Services
	1 Introduction
	2 Soft Constraint Automata
	3 Representing the Behaviour of Services with SCA
	4 Tool Description

	5 On Comparing Behaviour Signatures
	6 Related Work
	7 Conclusions
	References

