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Abstract. Most state-based formal methods, like B, Event-B or Z, pro-
vide support for static typing. However, these methods and the asso-
ciated tools lack support for annotating variables with (physical) units
of measurement. There is thus no obvious way to reason about correct
or incorrect usage of such units. In this paper we present a technique
that analyses the usage of physical units throughout a B machine, in-
fers missing units and notifies the user of incorrectly handled units. The
technique combines abstract interpretation with classical animation and
model checking and has been integrated into the ProB validation tool,
both for classical B and for Event-B. It provides source-level feedback
about errors detected in the models. The plugin uses a combination of
abstract interpretation and constraint solving techniques. We provide an
empirical evaluation of our technique, and demonstrate that it scales up
to real-life industrial models.

Keywords: B-Method, Event-B, Physical Units, Model Checking, Ab-
stract Interpretation.

1 Introduction and Motivation

Static type checking is generally1 considered to be very useful to catch obvious
errors early on and most specification languages are strongly typed. In particu-
lar, the B language [1] and its successor Event-B [2] are strongly typed. However,
their type systems are relatively simple. In particular, there is no way to subtype
the integers: a variable holding natural numbers and a variable holding a nega-
tive integer have the same type: INTEGER. Moreover, there is no way to specify
physical units for integers, which would have been useful to avoid illegal manip-
ulations, such as adding a speed value to a time value. For safety critical systems
such a static check would be highly desirable, but currently there is no obvious
way to enforce correctness of physical unit manipulations within B models.

In this paper we propose a solution to this problem, by integrating an abstract
interpretation technique into the ProB animator [14,15]. More precisely:

� Part of this research has been sponsored by the EU funded FP7 project 287563
(ADVANCE).

1 See, however, [13].
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– we provide an abstract semantics for B, where integers are represented by
their physical units;

– the abstract semantics can be simulated using the ProB toolset, by switch-
ing from the concrete mode to the abstract mode;

– we can run ProB in abstract mode until a fixpoint is reached;
– the result (abstract values computed for variables, parameters, ...) of the

fixpoint is analyzed and translated into source-level user feedback.

The technique has been implemented both for B and Event-B, and applied to
several industrial safety critical models.

An introductory example can be found in Figure 1. It contains an extract of a
simple B machine modeling a car. The current speed and position are stored in
two variables. The duration of one tick is defined by a constant. Implicitly, the
speed is measured in meters per second, the position in meters from a starting
point and the length of a tick is defined in seconds. However, when updating the
car’s position in the keep speed operation, a multiplication of the speed with
the tick length is missing. While this does not lead to an invariant violation,
it leads to wrong results for the position of the car.

Analyzing the physical units of measurement, the error is easy to detect.
Looking at the units of speed and tick length, we see that the position should
be in meters. Furthermore, we see that adding position (meters) to speed

(meters per second) does not result in a well-formed unit of measurement. Hence,
the missing multiplication is detected.

MACHINE Car

CONSTANTS tick length

PROPERTIES tick length = 2

VARIABLES speed, position

INVARIANT speed : INT & position : INT

INITIALISATION speed,position := 0,0

OPERATIONS

keep speed =

PRE position + speed * tick length : INT

THEN position := position + speed END

...

END

Fig. 1. Introductory Example

2 Inference of Physical Units

Below, in Section 2.1 we will discuss how the syntax of the B language was
extended in order to be able to declare physical units and reason about them.
We will mainly use the international system of units (SI) [20], but a user can also
declare additional non-SI units. Afterwards, how we use abstract interpretation
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will be explained in Section 2.2. Section 3 will explain why we had to improve the
technique with constraint solving. Empirical results will be presented in Section
4. We conclude with alternative approaches and related work in Section 5 and a
discussion of our results and future work in Section 6.

2.1 Syntactic Extension of the B Language

Initially, the user must provide the physical units for certain variables as a start-
ing point of our analysis. For Event-B, this has been achieved by attaching new
attributes to variables in the Rodin database [3]. In classical B, this association
must be described within the B ASCII syntax2. We wanted to ensure that a
B machine making use of the new syntax is still usable by other tools (such
as Atelier-B). This requirement ruled out an extension involving keywords or
constructs which are not part of the standard B language and could therefore
not be parsed by tools other than ProB. Instead, we decided to implement the
new functionality inside semantically relevant comments, i.e., pragmas. While
the usual B block comment is enclosed in /* and */, a pragma is enclosed in
/*@ and */. (Atelier-B will treat such a pragma as an ordinary comment.)

For our work we have introduced four pragmas to the B language:

1. “unit”, the pragma used to attach a physical unit to a B construct. This
can be done either by specifying it by a B expression in an SI-compatible
form or by using a predefined alias like “cm” instead of “10**-2 * m”. The
given unit has to be a valid SI unit [20]; i.e., a derived unit such as “m *
s**-2” is acceptable. The usage is shown in Figure 2.

2. “inferred unit”, which works similar to unit. It is included in the pretty
print of a machine, attaching units inferred by ProB to variables and con-
stants. This enables the user to generate a model containing the information
gathered by our analysis.

3. “conversion”, used to annotate operations meant as conversions between
units. An example can be found in Figure 3.

4. “unit alias”, used to define new aliases for existing unit definitions.

2.2 Using Abstract Interpretation

Inferring units of measurement has a strong connection to type checking, which
can be seen as a special kind of abstract interpretation [8]. In consequence,
inference of units throughout a B machine can be done by abstract interpretation
of the operations of a machine and abstract evaluation of invariants, guards, etc.

Regarded as an abstract interpretation, type checking in B can be performed
with the abstract domain outlined in Figure 4. Initially, any type is still possible,
represented by the bottom element ⊥. Upon type checking, the type of each
construct is inferred as one of the following inductively defined B types:

2 Screenshots of input, output and errors messages can be found on
http://www.stups.uni-duesseldorf.de/models/sefm2013/screenshots.

http://www.stups.uni-duesseldorf.de/models/sefm2013/screenshots
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MACHINE UnitExample

VARIABLES

/*@ unit 10 * m */ x,

y

INVARIANT x:NAT & y:NAT & x>y

INITIALISATION x,y := 0,0

OPERATIONS

n <-- addToX = BEGIN n := x + y END;

END

Fig. 2. Example Usage of the Unit Pragma

MACHINE ConversionExample

VARIABLES

/*@ unit 10**-2 * m */ x,

/*@ unit 10**-3 * m */ y

INVARIANT x:NAT & y:NAT

INITIALISATION x,y := 0,0

OPERATIONS

mmToCm = x := /*@ conversion */ (10*y)

END

Fig. 3. Example Usage of the Conversion Pragma

– ⊥ ∈ Types
– Bool ∈ Types
– String ∈ Types
– Z ∈ Types
– Given ⊆ Types where Given contains all the user-defined deferred, enumer-

ated or parameter sets
– x ∈ Types∧ y ∈ Types ⇒ x× y ∈ Types
– t ∈ Types ⇒ P(t) ∈ Types 3

Furthermore, if multiple types are inferred, there is a type error. This is de-
noted by the special type �4. We define Types� = Types ∪ {�}. Note, that
for Event-B, the Rodin tool also generates a type error if the inferred type still
contains ⊥. This can occur for a predicate such as {} = {}, where the type of
{} would be inferred as P(⊥).

Basically, types are ordered using the relation 	, forming the lattice in Fig. 4
and defined using the following five rules. (We define � in the usual way: s � t
iff s 	 t ∧ s 
= t.)

3 Functions and relations are stored as sets of couples.
4 As the top element represents the least upper bound that matches two different
types. However, only one type is acceptable for a correct model.
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any type

Bool Integer
User
Set

multiple types / 
error

Powerset 
of X

String
Couple of 
X and Y

P( any type)

P(Bool) P(Z) P(Set) P(P(X))P(String) P(XxY)

Fig. 4. B Type System and the relation �

– ⊥ 	 t for any t ∈ Types�
– t 	 � for any t ∈ Types�
– t 	 t for any t ∈ Types�
– s× t 	 s′ × t′ iff s 	 s′ ∧ t 	 t′.
– P(t) 	 P(t′) iff t 	 t′.

The abstract domain used to perform unit analysis is an extension of the
abstract domain used for type checking. While the types for boolean, string
and the construction of sets, sequences and couples remain, the integer type is
replaced by an entire subdomain. An abstract integer value is now represented
by a set of triples of the form [10c × ue] where c ∈ Z is the exponent of the
coefficient, u a SI base unit symbol and e ∈ Z the exponent of the unit.5

Definition 1. A unit is a set of triples {[10c1 × u1
e1 ], . . . , [10ck × uk

ek ]} such
that for all i ∈ 1..k we have ci ∈ Z, ei ∈ Z, ui being a base SI unit and ∀j • j ∈
1..k ∧ j 
= i ⇒ ui 
= uj.

With the definition above, m
s would be expressed as {[100 ×m1], [100 × s−1]}.

The empty set of triples denotes a dimensionless integer value.

Definition 2. The set of all valid units is denoted by Units.

As in the type checking domain, we add an element ⊥U to Units denoting that
initially any unit is possible. Additionally, we define�U representing the fact that
multiple units were inferred. Again, this should not occur in a correct model.

Summarizing, our abstract interpretation framework for B uses the set of all
possible B values as the concrete domain C and maps it to the abstract domain
A, which is recursively defined by

– boolean ∈ A
– string ∈ A
– ∀u ∈ Units ∪ {⊥U ,�U} ⇒ int(u) ∈ A
– ∀S ∈ Given, u ∈ Units ∪ {⊥U ,�U} ⇒ set(S, u) ∈ A
– x ∈ A ∧ y ∈ A ⇒ couple(x, y) ∈ A
– t ∈ A ⇒ set(t) ∈ A.

5 For convenience, some SI derived units and units accepted for use with the SI stan-
dard (see [20]) are stored on their own rather than converting them.
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Note, that we need both set(t) and set(t, u): While the first is a set with
elements that may hold a unit themselves, i.e. a set integers, the second has a
unit directly attached to it, i.e. an enumerated set. The rules for the ordering of
abstract values are as follows:

– ⊥U 	U u for any u ∈ Units ∪ {�U}
– u 	U �U for any u ∈ Units ∪ {⊥U}
– ⊥U 	U �U

– t 	 t for any t ∈ A
– ⊥ 	 t for any t ∈ A
– t 	 � for any t ∈ A
– int(u) 	 int(u′) iff u 	 u′

– set(t, u) 	 set(t, u′) iff u 	 u′

– couple(s, t) 	 couple(s′, t′) iff s 	 s′ ∧ t 	 t′

– set(t) 	 set(t′) iff t 	 t′

To perform abstract interpretation the abstraction and concretization func-
tions α : C → A and γ : A → P(C) need to be defined. These functions have
to be recursively defined, as the B type system contains arbitrarily nested data
types. The following definitions of α and γ are used:

α(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

boolean if x ∈ {true, false}
string if type of x is string

int(unit) if x ∈ Z with an annotated unit

int(⊥U ) if x ∈ Z without an annotated unit

set(S, unit) if x ∈ S, S annotated with unit

set(S,⊥U ) if x ∈ S, S without an annotated unit

couple(α(x1), α(x2)) if x is of type x1 × x2

set(α(x1)) if x ∈ P(x1)

with S ∈ Given and

γ(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{true, false} if y = boolean

{s|type of s is string} if y = string

S if y = set(S, unit), with any unit

Z if y = int(unit), with any unit

γ(y1)× γ(y2) if y = couple(y1, y2)

P(γ(y1)) if y = set(y1).

The B instructions the abstract interpreter needs to implement can be cate-
gorized by their effect on the units of measurement:

1. Instructions like addition of integers or concatenation of sequences expect
all operands and the result to hold the same unit.
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2. Instructions that work on abstract elements which are composed in a dif-
ferent way while still holding the same units. The Cartesian product for
example maps two sets to a set of couples.

3. Instructions like multiplication or division are able to generate new units
based on the units of their operands.

Data: Factors x1 ∈ Units, x2 ∈ Units
Result: Product p ∈ Units
p := ∅ foreach triple [10c1 × ue1 ] ∈ x1 do

if there is a triple [10c2 × ue2 ] ∈ x2 then
p := p ∪ {[10c1+c2 × ue1+e2 ]}
x2 := x2 \ {[10c2 × ue2 ]}

else
add [10c1 × ue1 ] to p

end

end
p := p ∪ x2

Algorithm 1. Abstract Multiplication

The first and second kind of operations can be implemented by unification
or returning � if incompatible units are found. This could be achieved by a
classical type inference algorithm (e.g., Hindley-Milner). The third kind however
needs more work, and is one justification for using abstract interpretation rather
than (unification-based) type inference. On the representation outlined above,
multiplication is implemented by addition of the exponents of triples holding the
same unit symbol. See Algorithm 1 for an outline. With the multiplication in
place, a

b can easily be implemented as a× b−1.
A few operations were not immediately obvious, in particular modulo division.

It was not clear what the correct operation on the unit domain had to be. The
B Book [1] (page 164) defines the result as

n mod m = n−m ∗
⌊ n

m

⌋
.

Consequently, for the unit of n mod m

unit(n mod m) = unit
(
n−m ∗

⌊ n

m

⌋)
= unit(n).

Following the above reasoning, in the current implementation of the unit in-
terpreter the unit of n mod m is the unit of n. However, other definitions are
certainly possible. Up to now, our empirical evaluation did not reveal any prob-
lems with the given definition.

We perform a fixpoint search by executing all operations of a B machine. Ad-
ditionally, we evaluate properties and invariants in every iteration. Pseudocode
can be found in Algorithm 2. For the example machine in Figure 2, the fixpoint
search would perform the following steps:
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1. Initialize the machine: If a unit is attached to an identifier, the unit is stored.
Otherwise, ⊥U is used. In the example, we set the initial state σ0 to
{(x, int({[101 ×m1]})), (y, int(⊥U ))}.

2. Evaluate the invariant on σ0. The predicate x > y allows us to infer the
unit of y, updating σ0 = {(x, int({[101 ×m1]})), (y, int({[101 ×m1]}))}. No
incorrect usage of units is detected.

3. Execute addToX on σ0:
(a) Generate local state σIN = {(n, int(⊥U)} ∪ σ0.
(b) Evaluate x+ y = int({[101 ×m1]})) + int({[101 ×m1]})) = int({[101 ×

m1]}))
(c) Substitute n by calculating the least upper bound of ⊥U and int({[101×

m1]})). The resulting output state is
σOUT = {(n, int({[101 × m1]})), (x, int({[101 × m1]})), (y, int({[101 ×
m1]}))}.

4. Again, no incorrect usage of units is detected.
5. The next iteration executes addToX a second time. However, the state does

not change and the fixpoint is reached.

3 Extending Abstract Interpretation with Constraints

Below we show that our abstract interpretation scheme on its own still has some
limitations. Consider the B machine in Figure 5, where the variable x contains
a length in meters and t holds a time interval in seconds. The unit of y should
be inferred. Evaluating the expression t := (x∗y)∗ t needs several interpretation
steps:

1. The interpreter computes the product of x and y. As y = int(⊥U ), the
interpreter can only return int(⊥U ) as a result.

2. In consequence, the interpreter finds that (x∗y)∗t = int(⊥U )∗t = int(⊥U )∗
int({[100 × s1]}) = int(⊥U ).

3. The assignment t := (x ∗ y) ∗ t is evaluated by computing the least upper
bound of t and int(⊥U ), i.e., int({[100×m1]}). No information is propagated
back to the inner expressions; we are thus unable to infer the unit of y.

The example shows that it is necessary to attach some kind of constraints to
the resulting variables containing ⊥U . Inside, the operation and the operands
that lead to ⊥U are stored. We implemented constraints for multiplication, di-
vision and exponentiation, as those can not be handled by unification alone.

In the example given in Fig. 5 two constraints are used to infer the unit of
variable y. First, a constraint containing x and y is attached to the result of
the inner multiplication. The result of the outer multiplication is annotated in
the same way. When computing the assignment to t, we know the unit that the
outer multiplication has to return. We can use the domain operation for division
of units to reverse the multiplications and compute the value of y.

In general, once a variable with an attached constraint is unified with another
variable, the unit plugin has different ways to react:
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σ = {(identifier of x, α(x)) : x variable or constant}
evaluate properties / invariant (might replace ⊥U by units in σ)
repeat

foreach operation / event do
update σ by executing operation / event:

evaluate preconditions / guards (might replace ⊥U by units in σ)
perform substitutions x := x′ by setting x to lub(x, x′) in σ

if parameter or return value contains �U then
report error

end
evaluate properties / invariant (might replace ⊥U by units in σ)
if σ contains �U then

report error
end
if invalid unit usage detected then

report error
end
foreach variable holding a constraint do

evaluate constraint if possible
end

end

until σ did not change in loop

Algorithm 2. Fixpoint Search

– The other variable does not hold a physical unit at the moment. Hence, we
can not solve the constraint.

– The other variable contains a physical unit. Now, we have to look at the
variables inside:
• If both variables are currently unset, there are multiple possible solu-
tions. We again delay the computation to the next iteration of the fix-
point algorithm.

• If one of the variables is unknown and the other one contains a unit, we
can compute the missing unit.

• If both are set, the constraint is dropped without further verification.
– Further unifications in the second step may trigger this process on another

variable.

We do not perform error handling when evaluating constraints. If a new unit
has been inferred, the state has changed and the next iteration of the fixpoint
search will eventually discover new errors. If the state did not change, the con-
straint could only detect an error already reported. See Algorithm 2 for details.

4 Empirical Results

Our empirical evaluation was based on three key aspects:

– the effort needed to annotate the machines and debug them if necessary;
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MACHINE InvolvedConstraintUnits

VARIABLES /*@ unit m */ x, y, /*@ unit s */ t

INVARIANT

x:NAT & y:NAT & t:NAT

INITIALISATION x,y,t := 1,1,1

OPERATIONS

Op = BEGIN t := (x*y)*t END

END

Fig. 5. Machine requiring involved constraint solving

– additionally, the number of iterations performed and the time spent in search
for a fixpoint was of particular interest;

– the accuracy of the abstract interpretation.

The first case study is based on an intelligent traffic light warning system.
The traffic light broadcasts information about its current status and cycle to
oncoming cars using an ad-hoc wireless network. The system should warn the
driver and eventually trigger the brakes, in case the car approaches a traffic light
and will not be able to pass when it would be still allowed6.

After the annotations were done, the plugin reported an incorrect usage of
units. The underlying cause was the definition

ceil div(a, b) ==
a

b
+

b− 1 + a mod b

b
,

a ceiling division that rounds the result up to the next integer value. It was
introduced to keep the approximation of breaking distances sound.

The expected result for the unit of ceil div is the unit of a regular division,
that is the unit of a divided by the unit of b. However, the definition above does
not lead to a consistent unit. Thus, the former definition of ceil div was not
convenient for use with the unit plugin. It was changed to

ceil div(a, b) ==
a

b
+

min(1, a mod b)

(b + 1) mod b
,

which leads to the expected result.
Furthermore, the speed of the car was stored as a length and implicitly used

as a “distance per tick”. Our plugin discovered that the speed variable could not
be associated with any suitable unit without giving further errors.

Regarding the performance factors mentioned above, the number of iterations
and the computation time was measured. Furthermore we timed annotating the
machine and correcting unit errors if necessary. The results are listed in bench-
marks 1 to 3 in Table 1. For comparison purposes, the table also lists the number

6 The machines used in this case study can be downloaded from
http://www.stups.uni-duesseldorf.de/models/sefm2013/.

http://www.stups.uni-duesseldorf.de/models/sefm2013/
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of lines of code and the number of operations for each machine7. No variables con-
tained �U , so the abstract interpretation did not lead to a loss of precision.

The effort needed to annotate and correct the model was reasonably low, in
particular when compared with the time needed to create the model in the first
place. The evaluation also showed that it is easy to split developing the model
and performing unit analysis.

The second case study used a ClearSy tutorial on modeling in B8. It contains
both abstract and implementation machines (all in all seven B machines). The
system uses several sensors to estimate the remaining amount of fuel in a tank.

The first step was to annotate all variables with their respective units. When
no error was found, the number of pragmas was gradually reduced, to measure
the efficiency of our approach with less user input available. Eventually, we only
needed one pragma for the abstract and one for the implementation machine.
All other units could be inferred9. In the process, no unit reached �U . The
benchmarks are presented in Table 1, rows 4 to 10: again, the computation time
is very low and only two iterations are needed to fully infer the units of all
variables. The additional step of introducing an implementation level did not
lead to longer computation times. No significant annotation work was needed on
the implementation machine, once the abstract machine had been analyzed.

To evaluate the performance of the unit plugin on large scale examples, sev-
eral B railway models from Alstom were used as benchmarks. As most of these
machines are confidential, neither source code nor implementation details can
be provided.

During the evaluation, the plugin showed some difficulties in handling large B
functions or relations of large cardinality. Mainly, this is because for every new
element that is added to a relation, the plugin tries to infer new units for range
and domain. In almost all cases this does not modify the currently inferred units.
In a future revision, the plugin might rely more on information from the type
checker to reduce the number of inferences.

Furthermore, lookup of global variables and their units slowed the interpreter
down. When accessing elements of deferred or enumerated sets, the machine had
to be unpacked frequently. To overcome this limitation, certain units are now
cached to reduce the lookup time.

Currently, there is no way to annotate both range and domain of a function
or relation at once, as this would require another pragma or at least a second
variant of the unit pragma. Therefore, they have to be annotated on their own.
Our evaluation shows that this is possible without substantial rewriting of a
machine.

7 Both were counted on the internal representation of the machines. Thus, the metrics
include code from imported machines. Comments are not counted, as they are not in
the internal representation. However, new lines used for pretty printing are counted.

8 The tutorial including the machines can be found at
http://www.tools.clearsy.com/wp1/?page_id=161.

9 The exception being variables and sets belonging to the system’s status. Here, no
unit of measurement applies and no unit was inferred.

http://www.tools.clearsy.com/wp1/?page_id=161
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Examples 11 to 13 in Table 1 shows the benchmark results for some of the
Alstom machines. Total lines of code and number of operations are again given
to ease comparison with the former case studies. As can be seen, our analysis
scales to these large, industrial examples.

As a last case study, we used some of the Event-B hybrid machines described
in [4]. Hybrid systems usually consist of a controller working on discrete time
intervals, while the environment evolves in a continuous way. To deal with the
challenge of analyzing both a discrete and a continuous component simultane-
ously, time is modeled by a variable called “now”. It can be used as input to
several functions mapping it to a real-world observation, taken from the environ-
ment at that moment in time. Hence, this approach is an addition to the former
case studies using different techniques.

From the three models described in [4], two were used as case studies: the
hybrid nuclear model and the hybrid train model. The hybrid nuclear model
was originally introduced in [6]. It models a temperature control system for a
heat producing reactor that can be cooled by inserting one of two cooling rods
once a critical temperature is reached. The hybrid train example was originally
developed in [18]. It features one or more trains running on the same line. Each
train receives a point m on the track where it should stop at the least.

The machines with less abstraction introduced hybrid components by using
functions as explained above. The unit plugin stores these functions as mappings
from one unit to another. Hence, to be able to fully analyze the usage of units
inside a machine, there have to be annotations on both the discrete and the
continuous variables.

In the train models, the variables holding speed and position were annotated
in the abstract model. In the more concrete model, the acceleration was stored as
m
s while one of the time variables was annotated as seconds. Both configurations
lead to full inference of the used units through all variables and constants. No
unset variables or variables with multiple inferred units occurred.

In the hybrid nuclear models, different combinations of annotating one of
the temperatures and one of the time variables were tried. Regardless of the
combination, once both a temperature and a time were annotated, all other
units could be inferred. The belonging benchmarks are 14 to 19 in Table 1.

5 Alternative Approaches and Related Work

Aside from the idea to use abstract interpretation, an extension of the type
checking capabilities of ProB was initially considered. This approach would act
more like a static analysis of the B machine, rather than interpreting it (ab-
stractly) while observing the state space. Note, however, that simple classical
unification-based type inference (Hindley-Milner style) is not powerful enough
due to the generation of new units, e.g., during multiplication.

A type checking approach for a modeling language is followed in [10]. The
authors describe a language extension for Z adding physical units. The correct
usage of units is verified by static analysis. Support for physical units is also
present in the specification languages Modelica [16] and Charon [5].
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Table 1. Benchmarks

No. machine LOC operations iterations time analysis time annotating

1 Car 74 4 2 < 10 ms ≈ 30 min

2 TrafficLight 81 2 1 < 10 ms ≈ 20 min

3 System 322 20 2 50 ms ≈ 60 min

4 measure 42 2 1 < 10 ms ≈ 5 min

5 utils 24 2 1 < 10 ms ≈ 5 min

6 utils i 38 2 1 < 10 ms ≈ 5 min

7 ctx 16 0 1 < 10 ms ≈ 5 min

8 ctx i 16 0 1 < 10 ms ≈ 5 min

9 fuel0 64 2 2 < 10 ms ≈ 5 min

10 fuel i 106 6 2 < 10 ms ≈ 5 min

11 compensated gradient 3079 20 3 620 ms ≈ 45 min

12 vital gradient 986 4 3 160 ms ≈ 45 min

13 sgd 773 0 2 170 ms ≈ 90 min

14 T m0 115 6 3 20 ms ≈ 15 min

15 T m1 179 11 3 30 ms ≈ 15 min

16 C m0 108 4 3 20 ms ≈ 15 min

17 C m1 141 4 3 20 ms ≈ 15 min

18 C m2 162 4 3 40 ms ≈ 15 min

19 C m3 228 7 3 90 ms ≈ 15 min

Aside from specification languages, several extensions for general purpose lan-
guage exist. Among others there are solutions for Lisp [9], C [11], C++ [21], Java
[22] and F# [12].

In [12] and [23] the limitations of unification-based type inference mentioned
above are solved by inferring new units as the solutions of a system of linear
equations. In our approach these equations can be found in the constraints men-
tioned in Section 3.

In contrast to the interpreter based approach, implementing an extended type
checker would possibly have resulted in less implementation work. On the down-
side, it would not be able to animate or to reason about intermediate states. In
contrast, the interpreter based approach can also be used as an interactive aid
while debugging errors.

Another approach is followed in [19] and [17], providing an expressive type
system containing physical units for Simulink, a modeling framework based on
Matlab. The approach followed in [19] differs from the one implemented in this
paper. Instead of using abstract interpretation, the problem is translated into
an SMT problem [7], which can be solved by a general purpose solver. In the
approach presented in [17], the SMT backend is replaced by a set of constraints
solvable by Gauss-Jordan elimination.

In addition to performing unit analysis, an SMT or constraint based approach
makes it easier to generate test cases that verify the required properties. In par-
ticular, calculating the unsatisfiable core makes it possible to generate minimal
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test cases for certain errors. However, in contrast to the abstract interpreter
based approach, verifying intermediate states and performing animation involve
multiple reencodings of the problem to SMT-LIB.

6 Discussion and Conclusion

In conclusion, our first set of goals could be fulfilled. The newly developed plu-
gin extends ProB by the ability to perform unit analysis for formal models
developed in B or Event-B. We provide source-level error feedback to the user
and usually a small number of annotations is sufficient to infer the units of all
variables and check the consistency of a machine. In future, we plan to support
other languages, in particular TLA+ and Z.

As anticipated, the plugin is able to infer units of constants and variables and
handle their conversions. Additionally, user controlled unit conversions can be
performed and are fully integrated with the analysis tools.

Furthermore, the extension of B by pragmas leaves all machines usable by the
different tools and tool sets without limitations. Deploying unit analysis does
not interfere with any step of a user’s usual B workflow.

Most machines only needed a few iterations inside the fixpoint algorithm.
Furthermore, the top element was only reached in machines containing errors.
Thus, the selected abstract domain seems fitting for the desired analysis results.

While the overall performance generally matches the expectations, there is
still room for improvement. Especially on large machines, computations should
be refined. Yet, more input from industrial users is needed first, both in form of
reviews and test reports as well as in form of case studies and sample machines.

We plan to further investigate the usage of constraints to speed up unit infer-
ence. In particular, an in-depth comparison with the SMT and constraint based
approaches will be performed. This comparison will focus both on speed as well
as on the completeness of the resulting unit information.

All in all, the unit analysis plugin extends the capabilities of B and ProB
and is a useful addition to the existing B tools. It should be able to find errors
which are not easily discoverable by the existing tools and might lead to errors
in a future implementation. The technique scales to real-life examples and the
animation capabilities aid in identifying the causes of errors.
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