
Robert M. Hierons
Mercedes G. Merayo
Mario Bravetti (Eds.)

 123

LN
CS

 8
13

7

11th International Conference, SEFM 2013
Madrid, Spain, September 2013
Proceedings

Software Engineering
and Formal Methods

Lecture Notes in Computer Science 8137
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Robert M. Hierons Mercedes G. Merayo
Mario Bravetti (Eds.)

Software Engineering
and Formal Methods

11th International Conference, SEFM 2013
Madrid, Spain, September 25-27, 2013
Proceedings

13

Volume Editors

Robert M. Hierons
Brunel University
School of Information Systems, Computing and Mathematics
Uxbridge, Middlesex, UB8 3PH, UK
E-mail: rob.hierons@brunel.ac.uk

Mercedes G. Merayo
Universidad Complutense de Madrid
Departamento de Sistemas Informáticos y Computación
28040 Madrid, Spain
E-mail: mgmerayo@fdi.ucm.es

Mario Bravetti
Università di Bologna
Dipartimento di Scienze dell’Informazione
40127 Bologna, Italy
E-mail: bravetti@cs.unibo.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40560-0 e-ISBN 978-3-642-40561-7
DOI 10.1007/978-3-642-40561-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946018

CR Subject Classification (1998): D.2.4, D.2, F.3, D.3, D.2.4, D.1.5, C.2, C.2.4, F.4.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 11th International Conference on
Software Engineering and Formal Methods, SEFM 2013. The conference was held
in Madrid, Spain, during September 25–27, 2013. The purpose of the SEFM
conference is to bring together practitioners and researchers from academia,
industry and government to advance the state of the art in formal methods, to
facilitate their uptake in the software industry and to encourage their integration
with practical engineering methods.

We received 58 submissions. After a careful reviewing process, the Program
Committee accepted 21 regular papers. Therefore, the acceptance rate of the
conference stayed close to 36%. The conference program was enriched by the
keynotes of Thomas A. Henzinger, on Behavioral Software Metrics, and Wolfram
Schulte, on Building Billions of Software Artifacts. In addition, Marius Bozga,
one of the recipients of the 10 first editions of SEFM most influential paper
award, gave an invited talk on Modeling Heterogeneous Real-Time Components
in BIP.

Several people contributed to the success of SEFM 2013. We are grateful to
the Steering Committee for its support. Its Chair, Prof. Antonio Cerone, deserves
a special mention for his guidance and valuable advice. We would like to thank
the general chair Manuel Núñez, the Program Committee, and the additional
reviewers, for their work on selecting the papers. The process of reviewing and
selecting papers was significantly simplified using EasyChair. We would like to
thank the organisers of the collocated workshops for their commitment to SEFM
2013. Finally, the proceedings have been published through Springer-Verlag and
we are grateful for the assistance provided by Alfred Hofmann and Anna Kramer.

On behalf of the SEFM organisers, we welcome all attendants to the con-
ference and hope that you find the conference’s program useful, interesting and
challenging.

September 2013 Robert M. Hierons
Mercedes G. Merayo

Mario Bravetti

Organization

Program Committee

Wolfgang Ahrendt Chalmers University of Technology, Sweden
Bernhard K. Aichernig TU Graz, Austria
Jesús Almendros Jiménez Universidad de Almeŕıa, Spain
Ade Azurat Fasilkom UI, Indonesia
Luis Barbosa Universidade do Minho, Potugal
Jonathan P. Bowen Museophile Limited, UK
Mario Bravetti Università di Bologna, Italy
Ana Cavalcanti University of York, UK
Antonio Cerone United Nations University, Macao
Benôıt Combemale Université de Rennes, France
Steve Counsell Brunel University, UK
Hung Dang Van UET, Vietnam National University, Vietnam
George Eleftherakis CITY College of Thessaloniki, Greece
José Luiz Fiadeiro University of London, UK
Martin Fränzle Carl von Ossietzky Universität Oldenburg,

Germany
Mercedes G. Merayo Universidad Complutense de Madrid, Spain
Dimitra Giannakopoulou NASA Ames, USA
Stefania Gnesi ISTI-CNR, Italy
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Rob Hierons Brunel University, UK
Mike Hinchey Lero-the Irish Software Engineering Research

Centre, Republic of Ireland
Florentin Ipate University of Pitesti, Romania
Einar Broch Johnsen University of Oslo, Norway
Panagiotis Katsaros Aristotle University of Thessaloniki, Greece
Joseph Kiniry Technical University of Denmark, Denmark
Martin Leucker University of Lübeck, Germany
Peter Lindsay The University of Queensland, Australia
Zhiming Liu United Nations University, Macao
Antónia Lopes University of Lisbon, Portugal
Tiziana Margaria Universität Potsdam, Germany
Stephan Merz INRIA Lorraine, France
Manuel Núñez Universidad Complutense de Madrid, Spain
Mizuhito Ogawa Japan Advanced Institute of Science and

Technology, Japan

VIII Organization

Fernando Orejas Universitat Politècnica de Catalunya, Spain
Olaf Owe Universitity of Oslo, Norway
Gordon Pace University of Malta, Malta
Anna Philippou University of Cyprus, Cyprus
Mario Piattini University of Castilla-La Mancha, Spain
Sanjiva Prasad Indian Institute of Technology Delhi, India
Anders Ravn Aalborg University, Denmark
Jakob Rehof Fraunhofer ISST and Technical University of

Dortmund, Germany
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Leila Ribeiro Universidade Federal do Rio Grande do Sul,

Brazil
Bernhard Rumpe RWTH Aachen University, Germany
Augusto Sampaio Federal University of Pernambuco, Brazil
Ina Schaefer Technische Universität Braunschweig,

Germany
Gerardo Schneider University of Gothenburg, Sweden
Steve Schneider University of Surrey, UK
Massimo Tivoli University of L’Aquila, Italy
Viktor Vafeiadis MPI-SWS, Germany

Additional Reviewers

Arlt, Stephan
Bousse, Erwan
Breuer, Peter
Bøgholm, Thomas
Carvalho, Gustavo
Cavallaro, Luca
Clarisó, Robert
Colombo, Christian
Düdder, Boris
Ferrari, Alessio
Furia, Carlo A.
Gierds, Christian
Golas, Ulrike
Greifenberg, Timo
Habel, Annegret
Hildebrandt, Thomas
Hoelldobler, Katrin
Hu, Zhenjian

Jürjens, Jan
Keiren, Jeroen J.A.
Kolassa, Carsten
Korsholm, Stephan
Kühn, Franziska
Le Guilly, Thibaut
Legay, Axel
Li, Guoqiang
Mahdi, Ahmed
Markin, Grigory
Marques, Eduardo R.B.
Martens, Moritz
Massoni, Tiago
Mazzanti, Franco
Micallef, Mark
Mir Seyed Nazari,

Pedram
Moelle, Andre

Müller, Richard
Oehlerking, Jens
Olsen, Petur
Petri, Gustavo
Petrocchi, Marinella
Qamar, Nafees
Schäf, Martin
Schönfelder, René
Sürmeli, Jan
Techaveerapong, Pakorn
Thoma, Daniel
To, Van Khanh
Trefler, Richard
Truong, Hoang
Yatapanage, Nisansala
Zavattaro, Gianluigi

Abstracts of Keynote
Speeches

Behavioral Software Metrics

Thomas A. Henzinger

Institute of Science and Technology Austria

In this talk I show how the classical satisfaction relation between programs and
requirements can be replaced by quantitative preference metrics that measure
the fit between programs and requirements. Depending on the application, such
fitness measures may include aspects of function, performance, reliability, and
robustness.

Building Billions of Software Artifacts

Wolfram Schulte

Microsoft Corporation

Every day software developers all over the world build hundreds of thousands of
software artifacts, ranging from executables, via libraries, to documentation, and
websites. Build tools are thus one of the most important enablers for software
developers. Consequentially, the last 30 years have seen a plethora of approaches
to build languages and engines, ranging from dependency based builds using
Make, via task based ones using Ant or MSBuild, to IDE integrated ones using
Eclipse or Visual Studio, to embedded DSLs like SCons, Rake, Shake and others.
But despite these efforts, many build systems still suffer from being unreliable,
since dependencies are missing, not saleable, since they were designed for single
machines only, ineffective, since builds are often unnecessarily sequentialized,
and not multi tenancy capable, since many build systems and tools assume that
they execute in particular locations.

During the past year my team has developed a new build system leverag-
ing earlier work on dependency based builds, combining it with the benefits of
DSLs, and hosting it in the Cloud. Conceptually, in our new system every soft-
ware artifact is build from scratch. However by using proper design choices, we
enable many optimizations to build things quickly or not at all, like parallel,
cached, staged, incremental, distributed and multitenant builds. The system is
meanwhile deployed for our first major customer.

In this talk I will present insights and highlight of our journey of creating a
new build system for Microsoft, and I will give a glimpse of the results. I will
describe the challenges we faced and the opportunities that lie ahead. And being
at a formal methods conference, I will show that a little build theory can help
in the design and for the promotion of a new technology, too!

Joint work with Adrian Bonar, Chandra Prasad, Danny van Velzen, Davide
Massarenti, Dmitry Goncharenko, John Erickson and Seva Titov.

Modeling Heterogeneous Real-Time

Components in BIP (Revisited)

Marius Bozga

UJF-Grenoble 1/CNRS VERIMAG

In this talk I will describe a methodology for modeling heterogeneous real-time
components. I will present the BIP language for the description and composition
of layered components as well as associated tools for executing and analyzing
components on a dedicated platform. The language provides a powerful mecha-
nism for structuring interactions involving rendezvous and broadcast. I will show
that synchronous and timed systems are particular classes of components. Fi-
nally, I will provide examples, compare the BIP framework to existing ones for
heterogeneous component-based modeling and review the impact in subsequent
research lines of the original work.

Table of Contents

Real-Time Systems

Verifying MARTE/CCSL Mode Behaviors Using UPPAAL 1
Jagadish Suryadevara, Cristina Seceleanu, Frédéric Mallet, and
Paul Pettersson

A Transformation Approach for Multiform Time Requirements 16
Nadia Menad and Philippe Dhaussy

Real-Time Migration Properties of rTiMoVerified in Uppaal 31
Bogdan Aman and Gabriel Ciobanu

Verification 1

A Verified Protocol to Implement Multi-way Synchronisation and
Interleaving in CSP . 46

Marcel Vinicius Medeiros Oliveira,
Ivan Soares De Medeiros Júnior, and Jim Woodcock

From Extraction of Logical Specifications to Deduction-Based Formal
Verification of Requirements Models . 61

Rados�law Klimek

Model Checking of Security-Critical Applications in a Model-Driven
Approach . 76

Marian Borek, Nina Moebius, Kurt Stenzel, and Wolfgang Reif

Verification 2

Lifting Verification Results for Preemption Statements 91
Manuel Gesell, Andreas Morgenstern, and Klaus Schneider

Rule-Level Verification of Graph Transformations for Invariants Based
on Edges’ Transitive Closure . 106

Christian Percebois, Martin Strecker, and Hanh Nhi Tran

Sound Symbolic Linking in the Presence of Preprocessing 122
Gijs Vanspauwen and Bart Jacobs

Types and Inference

Inferring Physical Units in B Models . 137
Sebastian Krings and Michael Leuschel

XVI Table of Contents

A Tool for Behaviour-Based Discovery of Approximately Matching
Web Services . 152

Mahdi Sargolzaei, Francesco Santini, Farhad Arbab, and
Hamideh Afsarmanesh

A Type System for Components . 167
Ornela Dardha, Elena Giachino, and Michaël Lienhardt

Static Analysis

Early Fault Detection in DSLs Using SMT Solving and Automated
Debugging . 182

Sarmen Keshishzadeh, Arjan J. Mooij, and
Mohammad Reza Mousavi

Static Detection of Implementation Errors Using Formal Code
Specification . 197

Iman Saleh, Gregory Kulczycki, M. Brian Blake, and Yi Wei

Compositional Static Analysis for Implicit Join Synchronization in a
Transactional Setting . 212

Thi Mai Thuong Tran, Martin Steffen, and Hoang Truong

Testing and Runtime Verification

{log} as a Test Case Generator for the Test Template Framework 229
Maximiliano Cristiá, Gianfranco Rossi, and Claudia Frydman

Zero Overhead Runtime Monitoring . 244
Daniel Wonisch, Alexander Schremmer, and Heike Wehrheim

Run-Time Verification of Coboxes . 259
Frank S. de Boer, Stijn de Gouw, and Peter Y.H. Wong

Synthesis and Transformation

Automated Mediator Synthesis: Combining Behavioural and
Ontological Reasoning . 274

Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson

Table of Contents XVII

Program Transformation Based on Symbolic Execution
and Deduction . 289

Ran Ji, Reiner Hähnle, and Richard Bubel

Constraint Specification and Test Generation for OSEK/VDX-Based
Operating Systems . 305

Yunja Choi

Author Index . 321

Verifying MARTE/CCSL Mode Behaviors
Using UPPAAL

Jagadish Suryadevara1, Cristina Seceleanu1, Frédéric Mallet2, and Paul Pettersson1

1 Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden
{jagadish.suryadevara,cristina.seceleanu,paul.pettersson}@mdh.se

2 Aoste Team-project INRIA/I3S, Sophia-Antipolis, France
frederic.mallet@unice.fr

Abstract. In the development of safety-critical embedded systems, the ability to
formally analyze system behavior models, based on timing and causality, helps
the designer to get insight into the systems overall timing behavior. To support the
design and analysis of real-time embedded systems, the UML modeling profile
MARTE provides CCSL – a time model and a clock constraint specification lan-
guage. CCSL is an expressive language that supports specification of both logical
and chronometric constraints for MARTE models. On the other hand, semantic
frameworks such as timed automata provide verification support for real-time sys-
tems. To address the challenge of verifying CCSL-based behavior models, in this
paper, we propose a technique for transforming MARTE/CCSL mode behaviors
into Timed Automata for model-checking using the UPPAAL tool. This enables
verification of both logical and chronometric properties of the system, which has
not been possible before. We demonstrate the proposed transformation and veri-
fication approach using two relevant examples of real-time embedded systems.

Keywords: MARTE, CCSL, Modes, Verification, Model-checking, UPPAAL.

1 Introduction

The increasing complexity and safety-criticality of real-time embedded systems in do-
mains such as automotive and avionics, stresses the need for applying rigorous analysis
techniques during system development in order to ensure predictability [8]. To meet this
need, UML (The Unified Modeling Language) provides a domain-specific modeling
profile called MARTE (Modeling and Analysis of Real-Time and Embedded systems)
[14]. Besides modeling support for performance and schedulability analysis, MARTE
includes CCSL – a time model and a clock constraint specification language, for de-
scribing both logical and physical (chronometric) clock constraints [3]. Also, CCSL
can be used for specifying both synchronous and asynchronous constraints, based on
the coincidence and precedence relationships between clock instances. On the other
hand, semantic frameworks such as timed automata provide modeling and verification
support for real-time systems [1,7,11,2], which CCSL-based models could benefit from.
However, the expressiveness of CCSL poses challenges in providing rigorous analysis
support, like exhaustive verification. The focus of our work, in this paper, is to ad-
dress these challenges and provide a model-checking based verification support for

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 1–15, 2013.
© Springer-Verlag Berlin Heidelberg 2013

2 J. Suryadevara et al.

MARTE/CCSL behavior models. MARTE Statemachine models, called ModeBehav-
iors, can be used to specify the mode-based behavior of a system. In this view, a mode
represents an operational segment, that is characterized by a configuration of system
entities. For instance, during ‘TakeOff’, ‘Flying’ and ‘Landing’ modes of an aircraft,
different parts of the control system may be active in different modes.

In this paper, we propose to constrain MARTE mode behaviors with CCSL spec-
ifications, taking advantage of the underlying MARTE time model. This facilitates
precise specification of logical (of synchronous and asynchronous nature) as well as
timing (chronometric) properties of a system in a mode. Next, as a main contribu-
tion, we present a technique to transform MARTE/CCSL mode behaviors into timed
automata [1,7]. The transformation is based on the synchronized product of the state-
based semantics of the CCSL constraints [4,12]. This proves to be non-trivial due to the
expressiveness of CCSL constraints and the semantic domain of timed automata.

In brief, in this paper, we make the following contributions:

– We provide a mapping strategy to transform CCSL-extended MARTE mode behav-
iors into timed automata, and verify logical and chronometric properties using the
UPPAAL model-checking tool [11].

– We propose novel techniques to address the limitations of mapping synchronous
and chronometric semantics of CCSL into timed automata.

– We demonstrate the proposed modeling and verification approach using two repre-
sentative examples of safety-critical embedded control systems, namely, a temper-
ature control system and an anti-lock braking system.

The rest of the paper is organized as follows. In Section 2, we introduce example em-
bedded systems and present the corresponding mode behavior specifications. In Section
3, we present an overview of CCSL, followed by the CCSL extended mode behaviors
for the example systems. In Section 4, we present the proposed transformation tech-
nique for CCSL-extended mode behavior specifications, and in Section 5, we discuss
verification results based on the transformed timed automata models of the example
systems. The related work is discussed in Section 6. Finally, we conclude the paper in
Section 7, with a discussion of the future work.

2 Example Systems and Mode-Behavior Specifications

In this section, we present the mode behavior specifications of the example embedded
systems used in this paper. We have chosen two simple but representative systems, with
functional and timing aspects commonly found in embedded systems.

MARTE Notation and Stereotypes. In MARTE, the stereotype ModeBehavior extends
the UML Statemachine notation with stereotypes Mode, which extends State, and Mod-
eTransition, which extends Transition (Fig. 1). A ModeBehavior specifies a set of mu-
tually exclusive modes, that is, only one mode is active at a given instant. A mode
represents an operational fragment of the system, called configuration, representing the
set of system entities that are active during the mode instance. The dynamics of mode
switching, either time or event triggered, is specified by means of ModeTransitions.
Transitions are enabled in response to an event occurrence, that is, the activation condi-
tion triggering the mode switching.

Verifying MARTE/CCSL Mode Behaviors Using UPPAAL 3

«mode»
Diagnostic

«mode»
Control

«modeTransition»
after(100s)

«modeTransition»
[MIN < T <MAX]

«modeBehavior»
TCS

«mode»
Calibrate

«mode»
Brake

«modeTransition»
Brake_Pressed

«modeTransition»
Brake_Released

«modeBehavior»
ABS

(a) Temperature Control System (b) Anti-lock Braking System

Fig. 1. UML/MARTE mode behavior specifications

2.1 Example1: A Temperature Control System (TCS)

We consider a simplified version of a temperature control system that regulates the
temperature inside a nuclear reactor core, using thermal-controlling rods. The rods are
inserted into the core of the reactor when the temperature reaches a given upper limit,
denoted by constant MAX, causing the temperature to gradually reduce (as neutrons in
the reactor are absorbed by the control rods). Similarly, the control rods are removed
when the temperature in the reactor falls below MIN. TCS operates in two modes.

In Diagnostic mode, the following actions are triggered that execute the corre-
sponding behaviors1: Diagnostics examines the current status of the control rods,
Reconfig replaces the ineffective control rods if any, and StatusUpdate updates
the status of the rod configuration in the reactor. In Control mode, the system triggers
three actions; PeriodicSense senses the temperature in the reactor, InsertRod
inserts a control rod, and RemoveRod removes a rod from the reactor.

The TCS mode behavior is presented in Fig. 1. After 100 s in Diagnostic mode, the
system changes to Control mode. However, the mode-change from Control to Diagnostic
is triggered by an event occurrence, indicating the sensed temperature in the reactor is
within the specified limits. The following specify the functional and timing properties of
TCS:

TCS1 : Diagnostics is always followed by Reconfig.
TCS2 : The behavior of Reconfig is ‘extended’ by StatusUpdate, only when there

is a change in the control rod configuration.
TCS3 : PeriodicSense executes periodically with a period of 10 s.
TCS4 : PeriodicSense is followed by InsertRod or RemoveRod but not both.
TCS5 : At most two rods can be used in sequence, for cooling the reactor core.

2.2 Example2: An Anti-lock Braking System (ABS)

ABS is a control unit in a car that ensures the stability of the vehicle during drive and
extreme brake situations. It functions in two operational modes: Calibrate and Brake.
The default mode is Calibrate. In this mode, the system maintains the required speed

1 By behavior, we refer to primitive functionality often implemented as a single piece of code.
We assume instantaneous execution of a behavior, if not specified otherwise.

4 J. Suryadevara et al.

equally on all the four wheels, by calibrating and adjusting the current speeds on indi-
vidual wheels. In Brake mode, the ABS ensures lock-free application of brake pressure
on all the wheels, enforcing the car stability, in particular on slippery surfaces.

In the Calibrate mode, the ABS triggers two actions: SenseSpeed periodically
senses the current wheel speed values, and Calibrate estimates the speed to be ad-
justed on each individual wheel with respect to the required speed. In the Brake mode,
ABS triggers three actions: SenseBrake receives the current brake torque value,
BrakeControl determines the brake pressure to be applied, and BrakeWheel ap-
plies required brake pressure with anti-lock braking to individual wheels.

The ABS mode-behavior is shown in Fig. 1. The mode changes are caused by events
Brake Pressed and Brake Released. The following properties specify the functional and
timing constraints in ABS.

ABS1 : SenseSpeed is always followed by Calibrate.
ABS2 : SenseSpeed is periodic with a period of 100 ms.
ABS3 : Calibrate completes within 10 ms after SenseSpeed.
ABS4 : SenseBrake is always followed by BrakeControl.
ABS5 : BrakeControl is always followed by BrakeWheel.
ABS6 : SenseBrake is periodic with a period of 10 ms.
ABS7 : BrakeWheel completes within 1 ms after SenseBrake.

In the next section, we extend the mode behavior specifications of TCS and ABS,
with CCSL constraints specifying the logical and chronometric properties.

3 CCSL

UML/MARTE provides modeling support for structural as well as functional and extra-
functional aspects of a system. CCSL (The Clock Constraint Specification Language
[4]), initially specified in an annex of MARTE, provides an expressive set of constructs
to specify causality (both synchronous and asynchronous) as well as chronological and
timing properties of the system models. The CCSL is formally defined making the
specifications executable at the model level [9].

3.1 CCSL Constraints

CCSL is a declarative language that specifies constraints imposed on the logical clocks
(representing activation conditions) of a model. CCSL clocks refer to any repetitive
events of the system and should not be confused with system clocks. A CCSL clock is
defined as a sequence of clock instants (event occurrences). If c is a CCSL clock, c[k]
denotes its kth instant, for any k ∈ N. Below, we briefly describe the constraints used
in this paper. A complete list of CCSL constructs can be found in André’s work [4].

Synchronous Constraints. Rely on the notion of coincidence of clock instants. For
example, the clock constraint “a isSubclockOf b”, denoted by a ⊂ b, speci-
fies that each instant of the ‘subclock’ a must coincide with exactly one instant of the
‘superclock’ b. Other examples of synchronous constraints are discretizedBy or

Verifying MARTE/CCSL Mode Behaviors Using UPPAAL 5

excludes (denoted #). The latter prevents two clocks from ticking simultaneously.
The former discretizes a dense clock to derive discrete chronometric clocks. IdealClk, a
perfect dense chronometric clock, is predefined in MARTE Time Library, and assumed
to follow the ‘physical time’ faithfully (with no jitter).

Asynchronous Constraints. Are based on instant precedence, a strict (≺) or a non-
strict (�) form. The clock constraint “a isFasterThan b” (denoted by a � b)
specifies that clock a is (non-strictly) faster than clock b, that is for all natural number k,
the kth instant of a precedes or is coincident with the kth instant of b (∀k ∈ N; a[k] �
b[k]). Alternation is another example of an asynchronous constraint. It is a form of

bounded precedence. The constraint “a alternatesWith b” (denoted by a ∼ b

or a ≺1 b) states that ∀k ∈ N; a[k] ≺ b[k] ∧ b[k] ≺ a[k + 1], i.e., an instant of a
precedes the corresponding instant of b which in turn precedes the next instant of a.

Mixed Constraints. Combine coincidence and precedence. The constraint “c = a
delayedFor n on b” constrains c to tick synchronously with the nth tick of b
following a tick of a. It is a mixed constraint since a and b are not assumed to be
synchronous.

Table 1. CCSL constraints for logical and chronometric properties of TCS and ABS

Property CCSL Constraints
TCS2 s ⊂ c
TCS3 Clock p = IdealClk discretizedBy 10 s
ABS2 Clock s = IdealClk discretizedBy 0.1s
ABS6 Clock b = IdealClk discretizedBy 0.01s
TCS1 d ∼ c

TCS4 p ∼ (i ∪ r)∧ i # r

TCS5 i ≺2 r

ABS1 s ∼ l
ABS4 b ∼ r
ABS5 r ∼ w

ABS3 l � s delayedFor 1 on c1

where Clock c1 = IdealClk discretizedBy 0.01s
ABS7 w � b delayedFor 1 on c2

where Clock c2 = IdealClk discretizedBy 0.001s

3.2 CCSL Constraints for TCS and ABS

The functional and timing properties of the TCS and ABS, as CCSL constraints, are
given in Table 1. These properties constrain the system behaviors with respect to causal-
ity and timing. The constraints are listed in three groups: synchronous, asynchronous,
and mixed, in that order. The actions in TCS mode behavior are represented by the
CCSL logical clocks as follows: Diagnostics:d, Reconfig:c, StatusUpdate:
s, PeriodicSense:p, InsertRod:i, and RemoveRod:r. Similarly, for the ABS

6 J. Suryadevara et al.

system, the correspondence between the primitive behaviors and the logical clocks is as
follows: SenseSpeed: s, Calibrate: l, SenseBrake: b, BrakeControl: r,
and BrakeWheel: w.

«mode»
Diagnostic

«mode»
Control

[MIN<
T

<MAX]

«TimedProcessing»
TCS

«NfpConstraint»

d ~ c;
s c

«NfpConstraint»
p ~ (i r); i # r; i <2 r ∞

p = IdealClock discretizedBy 10 s

«mode»
Calibrate

«mode»
Brake

Brake_
Released

«TimedProcessing»
ABS

«NfpConstraint»
b ~ r; r ~ w; w ≤ b delayedFor1 on c2
c2 = IdealClock discretizedBy 0.001 s
b = IdealClock discretizedBy 0.01 s

«NfpConstraint»
s ~ l; l ≤ s delayedFor 1 on c1

c1 = IdealClock discretizedBy 0.01 s
s = IdealClock discretizedBy 0.1 sBrake_

Pressedafter(100s)

Fig. 2. MARTE/CCSL mode behavior specifications

In Fig. 2, we present the CCSL-extended mode behavior specifications of TCS and
ABS. We use MARTE stereotype ‘TimedProcessing’ for mode behaviors. We also use
stereotype ‘NfpConstraint’ to associate CCSL constraints to a mode. In this paper, we
distinguish between the stateful CCSL-constraints that retain history during complete
system ‘runs’ from those that retain history during a mode execution. History-enabled
CCSL constraints are annotated with symbol∞, for instance, the constraint i ≺2 r
for TCS Control mode.

3.3 Synchronized Product of CCSL Constraints: An Example

State-based semantics of CCSL operators has been defined, using Labelled Transition
Systems (LTS) [12]. Thus, combined LTS of composed CCSL operators can be obtained
using the synchronized product of the correspondingLTS [6]. As an example, we present
the synchronized product for CCSL constraints of the TCS Diagnostic mode, as shown
in Fig. 3. The LTS of the constraint d ∼ c is given in Fig. 3.(a). It specifies that
only the clock d can tick in state 1, whereas in state 2 only the clock c. An empty
transition, denoted by ε, represents that no clock ticks, and is useful for composing two
LTSs. The LTS of s ⊂ c, as shown in Fig 3.(b), specifies that, in state A, either only
c ticks or both s and c tick synchronously (denoted by < s,c >). The synchronized
product of the above described LTS, as shown in Fig 3.(c), considers all possible states
and transitions. For instance, in state 2A, the non-ε transition in state 2 of the first LTS,
combines with either the ε, c, or < s,c > transition in state A of the second LTS,
resulting in all possible transitions i.e. ε, c, or < c,s >. For further details on the
synchronization products of CCSL constraints, we refer to the work by Mallet [12].

Fig. 3. Example LTS: a) d ∼ c b) s ⊂ c c) Synchronized product of d ∼ c, s ⊂ c

Verifying MARTE/CCSL Mode Behaviors Using UPPAAL 7

4 MARTE/CCSL Mode Behaviors to Timed Automata

In this section, we propose a mapping strategy to transform MARTE/CCSL mode be-
haviors, henceforth simply referred to as mode behaviors, into timed automata, to pro-
vide model-checking based verification support using UPPAAL, a model-checking tool.
We first present a brief overview of timed automata modeling in UPPAAL.

4.1 Timed Automata and UPPAAL: An Overview

A timed automaton (TAn) is a tuple< L, l0, C,A,E, I >, where L is a set of locations,
l0 ∈ L is the initial location, C is the set of clocks, A is the set of actions, synchroniza-
tion actions and the internal τ -action, E ⊆ L × A× B(C) × 2C × L is a set of edges
between locations with an action, a guard, a set of clocks to be reset, and I : L→ B(C)
assigns clock invariants to locations. A location can be marked urgent (u) or commit-
ted (c) to indicate that the time is not allowed to progress in the specified location(s), the
latter being a stricter form indicating further that the next transition can only be taken
from the corresponding location(s) only. Also, synchronization between two automata
is modeled by channels (e.g., x! and x?) with rendezvous or broadcast semantics.

UPPAAL extends the timed automata language, originally introduced by Alur and
Dill [1], with a number of features such as global and local (bounded) integer variables,
arithmetic operations, arrays, and a C-like programming language. The tool consists
of three parts: a graphical editor for modeling timed automata, a simulator for trace
generation, and a verifier for the verification of a system modeled as a network of timed
automata. A subset of CTL (computation tree logic) is used as the input language for
the verifier. For further details, we refer the reader to UPPAAL tutorial [11].

4.2 Transforming Mode Behaviors into Timed Automata

For the transformation of a MARTE/CCSL mode behavior into the corresponding timed
automaton, several aspects need to be considered, such as, logical clocks, CCSL con-
straints, logical and chronometric time, modes and mode transitions. The transformation
consists mainly of three steps: mapping composed LTS of CCSL constraints of modes
into corresponding TA, referred to as LTS-TA, next modeling logical and chronometric
timing aspects in the transformed TA, and finally associating mode-change behavior.
The mapping strategy is described below and also summarized in Fig. 4.

Logical clocks and CCSL Constraints. For the logical constraints in modes, using
the LTS-based semantics, we first construct the synchronized products. These LTS are
then transformed into TA as follows: states are mapped to locations, transitions become
edges in the corresponding TA. Further, the logical clocks are mapped to boolean vari-
ables, with ‘ticking’ configurations of the LTS transitions modeled as the update actions
of the boolean variables for the corresponding TA action transitions.

Logical and Chronometric Time. The transformation correlates logical semantics of
CCSL and chronometric time progress in TA. This is done by extending the LTS-TA of

8 J. Suryadevara et al.

LTS / CCSL / Modes Timed Automata Remarks

A state in a LTS is mapped to a location in the
corresponding TAn.

A transition with a ticking configuration in a LTS
is mapped to a TAn edge with an update action of
the boolean variables corresponding to logical
clocks that tick synchronously, other boolean
variables are set to 0

CCSL-based mode
TAn

of the mode
LTS

New urgent-location entry. Edges from entry to
initial location of the TAn of the mode LTS.
Also, a global variable m is updated with the
mode identifier.

Non-deterministic durations
between logical clock
configurations

On every edge in the LTS-TAn of modes, a global
clock variable x is reset, and invariant x>0
assigned to all locations.

Logical clock ’c’ with
chronometric period n ms
(i.e. c = IdealClock
discretizedBy n ms’)

For every location in the LTS-TAn, with outgoing
edge containing action c=1, add the invariant
y<=n to the location and guard y > (n-δ) to the
edge, where y is a clock variable, and 0<δ<<n is
necessary to model non-deterministic delay
between logical clock configurations.

Time-triggered mode-
transition

e.g after(n ms)

To every location in the LTS-TAn, assign the
invariant y<=n, and an edge, with guard y>=n, to
the new exit location (urgent), where y is a clock
variable, reset on entry to the mode.

TAn
of the

Mode LTS

Event-triggerd mode-
transition
e.g event ’e’

To every location in the LTS-TAn, add edge with
guard pred(e) to the new exit location (urgent).
Add priority channel P!, to force the transition
when pred(e) holds, i.e. the event ’e’ occurs,

Mode-change
behavior of a mode-
transition (m1 to

m2)

Add an edge from the corresponding exit location
in m1 TAn to the entry location of m2 TAn.

Logical clock ’a’ Boolean variable ’a’ A tick-ing of the logical clock is denoted by the
boolean value 1, and non-ticking by 0.

History-enabled
CCSL constraint

New edges from the entry location to all the
locations of the corresponding LTS-TAn, and
from latter to all the exit-locations of the mode-
TAn. Id1(), Id2() are location identier functions to
support history-enabled constraints.

LTS-TAn

Fig. 4. MARTE/CCSL mode behaviors to timed automata: A mapping strategy

the modes, described above, with timing mechanisms based on clock-variables, clock-
guards, and invariants in TA. To begin with, every location in the LTS-TAn of a mode,
is assigned the invariant x > 0, where x is a clock variable which is also reset on
every edge in the TAn. This models the non-deterministic delay between two consecu-
tive clock configurations. As the next step, we map the CCSL constraints that specify
chronometric durations for the logical clocks (for some constraints, we need to separate
logical and chronometric parts into separate constraints, as explained for ABS mode
behavior transformation later in the section). For instance, a CCSL clock c with period
‘n ms’ is mapped using the invariant y ≤ n to all locations with an outgoing edge with
action update c = 1. Also the edge is assigned the clock guard y > (n− δ). The value
δ(<< n) is necessary to facilitate the non-deterministic delay described above.

Verifying MARTE/CCSL Mode Behaviors Using UPPAAL 9

Modes and Mode Transitions. We further extend the LTS-TA of modes, described
above, to obtain the timed automata for modes, by adding an entry-location (urgent)
and an edge from the new location to the initial location of the corresponding LTS-TAn.
A global mode variable m may be updated with the mode identifier value. The mode
TA are further extended to enable the mode transitions, as described below.

A mode transition, is either time- or event-triggered, and specifies the correspond-
ing mode-change behavior. For each transition, an exit-location (urgent) in the cor-
responding source mode TAn, as well as new edges from every location of the TAn
to the new location are added. For the time-triggered transition, that is, of the form
‘after(n ms)’, we also add an invariant of the form x ≤ n to all the locations in the
TAn, as well as, the guards x ≥ n for all the new edges. On the other hand, for an
event-triggered transition, the event, say ‘e’, is mapped by adding the event predicate,
given by pred(e), as guard on all the new edges. To force the transition in case of event
occurrence, we also use a priority synchronization channel ‘P !’. Finally, in both cases
above, the actual mode-switch behavior of the transition is modeled by connecting the
exit-location of the source mode TAn to the entry-location of the target mode TAn.

Mode History. The Control mode of the TCS (Fig. 2) contains a history-enabled con-
straint i ≺2 r. This specifies that the clock i (for InsertRod) can tick faster than
the clock r (for RemoveRod) but not by more than two instances. Clearly, the state of
the constraint needs to be retained if the mode is exited and re-entered later. When a
mode is transformed into a TAn, an history variable h is updated on all the edges lead-
ing to the exit-location. Moreover, additional edges are added from the entry-location
of the mode TAn to all the locations (not just the initial location corresponding to the
LTS-TAn), with guards based on the value of the variable h. However, to support the
history mechanism, we assume functions ‘Id1()’ and ‘Id2()’ that return the location
information with respect to the history-enabled constraint.

In this section, we have presented techniques to transform MARTE/CCSL mode
behaviors into timed automata. We demonstrate the proposed mapping strategy using
the mode behavior specifications of the example systems, presented earlier in this paper.
We also discuss some additional issues in applying the techniques.

4.3 The Transformed Automaton for the TCS

In Fig. 5, we present the complete TAn model for the CCSL-based mode behavior (Fig.
2) of the TCS. The Diagnostic mode is transformed to the TAn using the synchronized
product of constraints d ∼ c and s ⊂ c. Similarly, the Control mode is transformed

using the synchronized product of the constraints p ∼ (i∪r), i # r, and i ≺2 r.
These mappings are shown in Fig. 5. For simplicity, the entry-locations of the mode TA
are merged with the initial locations in the corresponding LTS-TA.

Next, we have mapped the mode-transitions that trigger the mode-change behavior,
as follows: the time-triggered transition from Diagnostic to Control is mapped using
the invariant x ≤ 100 at all the locations of the Diagnostic TAn, and guards x ≥
100 for the edges to the exit-location. The mode-transition from Control to Diagnostic
is event-triggered, by the predicate denoted by “t” (after the required temperature is

10 J. Suryadevara et al.

TCS Diagnostic Mode TAn

TCS Control Mode TAn

«mode»
Diagnostic

«mode»
Control

MIN < T <MAX

«TimedProcessing»
TCS

«NfpConstraint»

d ~ c;
s c

«NfpConstraint»
p ~ (i r); i # r; i <2 r ∞

p = IdealClock discretizedBy 10 s

CCSL-Mode
to TAn

after(100s)

CCSL-Mode
to TAn

Mode-change
transitions

Fig. 5. TCS mode behavior to timed automaton

sensed). Finally, the mode-change for the above transitions are modeled by connecting
the exit location of the source mode TAn to the initial location of the target mode TAn.

1 From CCSL ’ a l t e r n a t e s W i t h ’ d e f i n i t i o n :

3 left ∼ right : ∀ i ∈ N, l e f t [i] < r i g h t [i] & r i g h t [i] < l e f t [i +1] (where N,
s e t o f n a t u r a l numbers) .

And , p ∼ (i ∪ r) : ∀ i ∈ N* , p [i] < (i ∪ r) [i] & (i ∪ r) [i] < p [i +1]
5 Given ’ p ’ p e r i o d i c , i . e . n s e c o n d s : ∀ i ∈ N, p [i] = s [n* i − (n−1)] where ’ s ’

i s a c h r o n o m e t r i c c l o c k t h a t c o u n t s t h e s e c o n d s .

7 For n =10 , ∀ i ∈ N, s [10* i − 9] < (i ∪ r) [i] < s [10* i + 1]

Listing 1.1. Timing invariants derived from CCSL constraints.

The Control mode of the TCS contains a chronometric constraint for the logical
clock p (for PeriodicSense). This is mapped to the location invariant x ≤ 10, and
guard x ≥ 10 for the transitions causing the clock ‘ticks’ i.e. p=1. However, the other
locations also need to be assigned the invariant, due to causality of the CCSL clocks.
From the proof given in Listing 1.1, and under the assumption that the physical time
(in TA) is s and s[1] is time 0, we infer s[10] is time 10. For i=1, s[1] < (i∪ r)[i] <
s[11], which gives the interval (0,10). This proves the invariants for the locations.

The Control mode contains a history-enabled CCSL constraint i ≺2 r. The state
of the constraint, that is, the current location before exiting the TAn, is saved in a history
variable ‘h’, when the mode is exited. Based on the variable value, the initial location
is chosen, when the mode is re-entered.

Verifying MARTE/CCSL Mode Behaviors Using UPPAAL 11

«mode»
Calibrate

I: x ≤ 10 && y ≤ 100
g1: y > (100-d)
g2: x > (10-d)

g3: x > (10-d) && y > (100-d)

«NfpConstraint»
s ~ l; l ≤ s delayedFor 1 on c1

c1 = IdealClock discretizedBy 0.01 s
s = IdealClock discretizedBy 0.1 s

Fig. 6. Timed automaton for ABS Calibrate mode

4.4 The Transformed Automaton for the ABS

For the transformation of the ABS mode behavior, we chose to skip the complete au-
tomaton model, and focus only on the transformation of the Calibrate mode, given that
the CCSL specification of the Brake mode is similar.

The synchronized product of CCSL constraints for the Calibrate mode can lead to a
combinatory explosion, due to the mixed constraint delayedFor. However, we pro-
pose a novel technique to address this. We separate the causality and the chronometric
aspects of the constraint, using an auxiliary logical clock c, such that the chronometric
duration is specified as ‘logical’ ticks of c with additional constraint on c that specifies
the actual chronometric duration. This facilitates the construction of the synchronized
product and also provides an efficient mapping of the chronometric time to TA. Note
that the invariant I (partly) and the guard g2 (in the mode automaton of Fig. 6) are due
to the chronometric constraint on c (i.e. 10ms). Also, the invariant I at all locations is
due to the chronometric time progress and the causality within the mode.

Another transformation issue arises when transforming the LTS of the CCSL con-
straint “a � b delayedFor 1 on c1”. This is obtained as the synchronized product

of the two constraints a � x (precedes) and x = b delayedFor 1 on c
(coincidence), where x is an auxiliary logical clock introduced for the purpose.
The LTS of both constraints are presented in Fig. 7. For the constraint a � x, we
have considered its unbounded semantics encoded by the variable d, which represents
the number of instances of a that have preceded instances of x (Fig. 7.(a)). Ticks of x
are not shown in the final automaton in Fig. 6, though ‘ticks’ of both x and a update d.

The transformed LTS-TAn for the ABS Calibrate mode is presented in Fig. 6. To
make the model readable, we have not shown the update actions on d, logical clock
resets on each edge (for the clocks that do not ‘tick’ in the configuration), as well as TA

12 J. Suryadevara et al.

Fig. 7. LTS of CCSL constraints: a) a � x b) x = b delayedFor 1 on c

clock resets. To avoid the non-determinism at location XA1, we have used a priority
channel P, to force the transition with guard g3 when both g1 and g2 also hold.

The TA mapping for the ABS, as presented above, shows that the proposed trans-
formation addresses some of the critical issues that arise due to the expressiveness of
CCSL, such as, unbounded operators, mixed constraints, and chronometric time.

5 Verification

In this section, we present a verification approach for MARTE/CCSL mode behaviors
by model checking the corresponding TA, obtained using the transformation approach
presented in the previous section. Verification is performed using the UPPAAL tool.
A set of properties describing deadlock-freedom, liveness, causality, and chronometric
time is specified and verified for the example systems. To support the verification, we
use observer automata for specific kinds of properties, and extend the automata result-
ing from the transformation, to support synchronous (timewise) interactions with the
observers. Such extensions can be easily automated during model transformation.

Deadlock-freedom. The property specified in Eqn.1, as a safety-property, describes the
absence of deadlocks. A deadlock occurs when the system cannot progress further. For
both TCS and ABS mode behaviors, the property is satisfied.

A�¬deadlock (1)

Deadlock-Path identification problem for logical clocks. For CCSL specifications, one
of very important verification problems is the identification of the execution paths, or
sub-paths, for which a given set of clocks eventually do not ‘tick’. In CCSL, such paths
are referred to as deadlock-paths for a given set of logical clocks. For instance, for the
TCS Diagnostic TAn, we have verified the presence of a deadlock-path, using property
in Eqn. 2, for the logical clock s (StatusUpdate action). The equation models a
liveness property, as a“leads to” property in UPPAAL (denoted by�, implemented as
--> in UPPAAL). The property (2) basically states that for all paths, it is always the case
that the clock will eventually tick. In the TCS example, the property fails to hold and an
execution path where s never ticks eventually is shown as a counter-example/diagnostic
trace. The diagnostic traces show the execution path where s never ticks. The property
can be extended to multiple clocks, as in Eqn. 3, where clocks c and s correspond

Verifying MARTE/CCSL Mode Behaviors Using UPPAAL 13

to Reconfig and StatusUpdate respectively. The property is satisfied, indicating
that the clocks together do not lead to any deadlock paths in Diagnostic mode.

s==0� s==1 (2)

(c==0 && s==0)� (c==1 || s==1) (3)

Chronometric durations of logical clocks and event chains. Another benefit provided
by transforming mode behaviors into TA is the possibility of verifying chronometric
aspects, such as, minimum and maximum inter-arrival times, (m,M), of a logical clock
with no explicit chronometric constraints otherwise. For this, we use an observer au-
tomaton as shown in Fig. 8, and the corresponding property to be verified, given by
(4). To enable (time-wise) synchronous interactions between the specification automa-
ton and the observer, we introduce in the former, between the source and the target
locations, a committed location that connects to the target location through an edge
annotated with the synchronization channel ‘sig!’, as shown in Fig. 8. The observer
computes the time between two ‘ticks’ of the logical clock r. By the timing property
given by (4), one is able to verify that the (min, max) inter-arrival time of r is (0, 40)
for the RemoveRod action.

A� (t == 1 imply (cx > m and cx < M)) (4)

We can generalize the observer automaton for two events, to verify end-to-end timing
of event chains that consist of a stimulus-response event pair. For instance, the ABS
Calibrate mode has CCSL timing constraint ‘l ≤ s delayedFor 10 ms’, which
specifies the end-to-end timing for s, l representing SenseSpeed and Calibrate
respectively.

(a) (b)

Fig. 8. a) Extending mode TA transitions b) Observer TAn for chronometric durations

6 Related Work

Wang et al. have recently proposed the MDM (Mode Diagram Modeling) framework
for periodic control systems [15]. They have also provided a property specification lan-
guage, based on the interval logic, to capture the temporal properties that can be verified
against the MDM models, using statistical model checking. Unlike our approach, the
complete verification is undecidable, as MDM may involve complex non-linear com-
putations. Another comparable framework is that of Modecharts and RTL (real time
logic) [10]. RTL assertions for events are comparable to CCSL constraints. Both ap-
proaches define a time structure to specify timed causality semantics of the system
(CCSL is more expressive given its polychronous semantics), and provide structural

14 J. Suryadevara et al.

organization of a system causality and timing behavior to efficiently reason about tim-
ing properties. In comparison, our approach provides the capability of verifying usual
dense-time properties, but also combinations of logical and chronometric time proper-
ties, a feature not existing before. Transformation based approaches have been proposed
for mapping the CCSL or a subset of it, into different semantic domains such as VHDL,
Petri nets, and Promela. André et al. presented an automatic transformation of a CCSL
specification into VHDL code [5]. The proposed transformation assembles instances of
pre-built VHDL components while preserving the polychronous semantics of CCSL.
The generated code can be integrated in the VHDL design and verification flow. Mal-
let and André have proposed a formal semantics to a kernel subset of MARTE, and
presented an equivalent interpretation of the kernel in two different formal languages,
namely Signal and Time Petri nets [13]. In their work, relevant examples have been
used to show instances when Petri-nets are suitable to express CCSL constraints, as
well as instances where synchronous languages are more appropriate. Ling et al. have
proposed a transformation approach for logical CCSL constraints into Promela, us-
ing checkpoint-bisimulation approach, for verification with SPIN model-checker [16].
Also, some property specification patterns for expressing the properties of the model
have been proposed. In comparison to above transformation based approaches, here
we have proposed a model-checking based approach that addresses chronometric con-
straints of CCSL effectively, by overcoming the limitations in specifying synchronous
behavior in otherwise asynchronous modeling framework of timed automata.

7 Conclusion and Future Work

In this paper, we have proposed a transformation approach for MARTE/CCSL mode
behavior specifications into timed automata, to enable model-checking of the speci-
fications using UPPAAL tool. The approach is based on the synchronized product of
the Labelled Transition Systems (LTS) based semantics of CCSL constraints. As the
main contribution, we have been able to bridge the CCSL and timed automata based
frameworks, by successfully mapping the synchronous and discrete chronometric se-
mantics of CCSL into the asynchronous and dense time semantics of timed automata.
To demonstrate the benefits of the proposed transformation approach, we have verified
both logical and chronometric properties using the mode behavior specification of the
example systems in this paper. Since CCSL is an expressive language, we have con-
sidered a subset of CCSL constraints for the transformation, and plan to investigate
other constraints as future work. To support the verification process, we will further
investigate specific classes of logical and timing properties that can be verified, and
model them as property patterns or timed automata observers. Currently, a prototype
version of the tool for constructing synchronized products of CCSL constraints exists,
so we intend to formalize the proposed model transformation technique to integrate the
model-checking based verification within a MARTE/CCSL modeling framework.

Acknowledgment. This work has been partially funded by Swedish Research
Council (VR) through ARROWS project, Mälardalen University (Sweden), Ericsson
Research Foundation (Sweden) and ARTEMIS Grant N269362 – Project PRESTO -
http://www.presto-embedded.eu.

http://www.presto-embedded.eu

Verifying MARTE/CCSL Mode Behaviors Using UPPAAL 15

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

2. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a Tool for Schedu-
lability Analysis and Code Generation of Real-Time Systems. In: Larsen, K.G., Niebert, P.
(eds.) FORMATS 2003. LNCS, vol. 2791, Springer, Heidelberg (2004)

3. André, C., Mallet, F., de Simone, R.: Modeling Time(s). In: Engels, G., Opdyke, B., Schmidt,
D.C., Weil, F. (eds.) MoDELS 2007. LNCS, vol. 4735, pp. 559–573. Springer, Heidelberg
(2007)

4. André, C.: Syntax and Semantics of the Clock Constraint Specification Language (CCSL).
Rapport de recherche RR-6925, INRIA (2009)

5. André, C., Mallet, F., DeAntoni, J.: VHDL observers for clock constraint checking. In: 2010
Int. Symp. on Industrial Embedded Systems (SIES), pp. 98–107 (July 2010)

6. Arnold, A.: Finite transition systems - semantics of communicating systems. Int. Series in
Computer Science. Prentice Hall (1994)

7. Baier, C., Katoen, J.P.: Principles of Model Checking. Representation and Mind Series. The
MIT Press (2008)

8. Bouyssounouse, B., Sifakis, J. (eds.): Embedded Systems Design: The ARTIST Roadmap
for Research and Development. LNCS, vol. 3436. Springer, Heidelberg (2005)

9. DeAntoni, J., Mallet, F.: TimeSquare: Treat Your Models with Logical Time. In: Furia, C.A.,
Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer, Heidelberg (2012)

10. Jahanian, F., Mok, A.: Modechart: a specification language for real-time systems. IEEE
Transactions on Software Engineering 20(12), 933–947 (December)

11. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. Journal on Software Tools
for Technology Transfer 1(1-2), 134–152 (1997)

12. Mallet, F.: Automatic Generation of Observers from MARTE/CCSL. In: Int. Symp. on Rapid
System Prototyping - RSP 2012. IEEE, Tampere (2012),
http://hal.inria.fr/hal-00764066

13. Mallet, F., André, C.: On the semantics of UML/Marte Clock Constraints. In: Int. Symp. on
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC 2009), pp.
301–312. IEEE, Tokyo (2009), http://hal.inria.fr/inria-00383279

14. OMG: UML Profile for MARTE, v1.0. Object Management Group (November 2009),
formal/(2009-11-02)

15. Wang, Z., Pu, G., Li, J., He, J., Qin, S., Larsen, K.G., Madsen, J., Gu, B.: MDM: A Mode
Diagram Modeling Framework. In: Proc. First International Workshop on Formal Techniques
for Safety-Critical Systems, pp. 135–149. EPTCS (2012)

16. Yin, L., Mallet, F., Liu, J.: Verification of MARTE/CCSL time requirements in Prome-
la/SPIN. In: 2011 16th IEEE Int. Conf. on Engineering of Complex Computer Systems
(ICECCS), pp. 65–74 (April 2011)

http://hal.inria.fr/hal-00764066
http://hal.inria.fr/inria-00383279

A Transformation Approach

for Multiform Time Requirements

Nadia Menad1 and Philippe Dhaussy2

1 University of Science and Technology
of Oran Mohamed Boudiaf, Algeria

2 UEB, LabSticc Laboratory UMR CNRS 6285
ENSTA Bretagne, France

firstname.name@ensta-bretagne.fr

Abstract. Many of the timing constraints expressed in physical pre-
scriptions of distributed systems and multi-clock electronic systems can
be expressed in logical concepts. A logical time model has been devel-
oped as a part of the official OMG UML profile MARTE, in order to
enrich the formalism of this profile and also to facilitate the description
and analysis of temporal constraints.

This time model is associated with CCSL (Clock Constraint Speci-
fication Language). Once the software is modeled, the difficulty lies in
both expressing the relevant properties and in verifying them formally.
We present an automatic transformation technique related to a method
for verifying properties by model checking, thus exploiting both the CDL
language (Context Description Language) and the OBP tool (Observer-
based Prover). The technique is based on a translation of MARTE models
and the CCSL constraints into Fiacre code. CDL can express predicates
and observers. These are verified during the exhaustive exploration of the
complete model by OBP. We illustrate our contribution by an illustrative
case.

Keywords: Formal verification, model-checking, CCSL time constraints,
observer automata.

1 Introduction

In the field of modeling software architectures of distributed systems, control-
command systems or multi-clock electronic systems, the specification of func-
tional parts of systems is often associated with temporal constraint specifications.
These systems are often critical and the requirements to be respected during the
modeling step, concern not only the determinism but also temporal constraints
at a functional level. In the system development process, the designers look for
methods and languages that allow them to describe their architectures, through-
out the cycle and at various levels of abstraction. At each level, the modeling of
such systems should allow the expression and the manipulation of time require-
ments, and the evaluation of the accuracy and efficiency of applications in terms
of temporal and measurable requirements.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 16–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Transformation Approach for Multiform Time Requirements 17

For this purpose, the concept of abstract modeling of logical clocks has been
introduced with the CCSL language (Clock Constraint Specification Language)
[And09] within MARTE [MAS08] and adopted by the OMG [OMG10]. CCSL
is a language to define causal, chronological and temporal relationships. It aims
to complement the existing formalisms and to provide models which can be
analysed so as to assess their accuracy with regard to requirements expressed by
the designer. It is therefore essential to adopt temporal analysis approaches by
integrating verification and validation processes based on robust formal notions,
in order to meet current quality requirements of these systems.

To address this issue, several studies have proposed an engineering approach
founded on models, and the use of semi-formal notations such as UML, enriched
with formal notations. For example, UML-MARTE profile aims to express tem-
poral constraints on UML models. The models that are built must not only be
simulated but also interpreted during formal analysis so as to check the temporal
requirements defined by the designer. In this study, we use model-checking verifi-
cation techniques [QS82, CES86]. These techniques have become highly popular
due to their ability to confirm software model properties automatically.

This paper describes exploratory work which studies the association of CCSL
constraint specification and a formal property verification tool named OBP
(Observer-Based Prover)1 [DBRL12]. The verifications carried out by OBP are
based on the exploration of Fiacre programs [FGP+08] as well as the exploita-
tion of observers (Fig. 1). The OBP imports Fiacre models corresponding to
a translation of UML-MARTE models including CCSL specifications. In addi-
tion, it imports CDL programs which describe the properties and context sce-
narios if required. OBP explores the model and evaluates, at each step of the
running model, the value of predicates and the status of all involved observers.
Through this approach, we endeavor to verify both functional and temporal prop-
erties of programs by combining CCSL constraints with the modeled software
architecture.

Our contributions are as follow: (1) we generate Fiacre programs from UML-
MARTE; (2) we exploit the CCSL specifications and enrich these programs by
the addition of Fiacre constraint processes implementing CCSL, taking inspi-
ration from the approach described in [YM11]. We describe, in this paper, the
principles of the Fiacre code generation from CCSL constraints; (3) we show how
to specify observer automata exploiting CDL and to use the OBP tool to verify
them based on generated Fiacre code; (4) we illustrate our contribution with an
example and describe the results of the proofs of the requirements conducted.

This paper is organized as follows: Section 2 presents related work in formal
analysis and verification of CCSL constraints. We present the CCSL language
in Sect. 3. An illustrative case study is presented in Sect. 4 and the principles
of transformation of CCSL constraints into Fiacre are introduced in Sect. 5.
Section 6 describes the verification technique based on observers and, in Sect.
7, we introduce and discuss some results of property proofs. We conclude in
Sect. 8.

1 http://www.obpcdl.org

http://www.obpcdl.org

18 N. Menad and P. Dhaussy

Fig. 1. OBP tool for verification

2 Related Work

Many studies have been conducted to formally verify CCSL constraints. For
instance, the approach [YTB+11] presents an extension in response to CCSL
specifications. The paper suggests a framework for translating CCSL specifica-
tions in dynamical systems, which are handled using the Sigali model-checker to
apply the satisfaction of specified constraint relations. However, this approach
is too restrictive because it only focuses on the implementation of CCSL con-
straints with Signal. [And10] proposed an approach for implementing observers
[HLR93] for the formal verification of CCSL specifications. Observers, encoding
CCSL constraints are translated into Esterel code. [Mal12] describes a technique
to generate VHDL code from a CCSL specification. In these approach, a reach-
ability analysis allows to determine whether an observer has reached an error
state. The Times Square Environment [DMA08], dedicated to solving CCSL
constraints and computing solutions, implements a code generator in Esterel. In
contrast to these works, we propose a more general translation approach that
verifies not only CCSL constraints implementation, but also properties on the
complete model including all the functional components. Furthermore, in our
approach these properties are separated from application model thanks to our
CDL language, thus separating concerns.

[YM11] proposes a translation of CCSL specifications into a Promela model to
formally verify the CCSL constraints by the SPIN model checker. We have been
inspired by this work to design the automatic translation of CCSL constraints
into Fiacre automata. Also, in this approach the properties to be checked are
expressed in LTL logic. We propose to express properties with the CDL language
with observer automata which allow a better expressiveness. For example, in our
paper, we show a property (illustrated in Fig. 7) that would be tedious to express
in LTL.

A Transformation Approach for Multiform Time Requirements 19

3 The CCSL Modeling

CCSL, introduced as an annex of MARTE, is a declarative language used to spe-
cify binary relations between events based on logical clock concepts. In a MARTE
model, any event (for example a communication, transmission or reception ac-
tion, as computing start) may be used to define a time base, considered to be
a logical clock. A clock represents a set of occurrences of discrete events, called
instants. These instants are strictly ordered and provide a temporal reference.
We briefly recall below some examples of CCSL constraints.

3.1 Examples of CCSL Constraints

We present here some of the relations described in [And10, YM11], which are
necessary for the model implementation of the illustrative case study described
in this article, namely the relation of alternative, strict precedence and filtering.

An alternative relation (denoted alternatesWith) is a relation between
two asynchronous clocks C1 and C2. It specifies that for any natural number k,
the kth instant of C1 occurs before the kth instant of C2, and the kth instant
of C2 occurs before the k + 1th instant of C1. For our case study, we illustrate
the relation writei alternatesWith readi by the chronogram in Fig. 2.a and the
automaton in Fig. 2.b. Note that for the non-strict alternation in the expression
(1) above, the symbol ≺ must be replaced by �.

Fig. 2. Illustration of the alternation constraint : writei alternatesWith readi

A precedence relation (denoted strictPrec) is an asynchronous relation
between two clocks C1 and C2. C1 is said to be strictly faster than C2, where
”C1 strictly precedes C2”, noted C1 strictPrec C2, specifies that for any natural
number k, the kth instant of C1 occurs before the kth instant of C2, i.e ∀k ∈
N∗, C1[k] ≺ C2[k].

A filter relation (denoted filteredBy) is a relation which defines a sub-clock
from a given discrete clock. The mapping between the two clocks is characterized
by a filtering pattern (or simply filter) encoded by a finite or infinite binary word
w ∈ {0, 1}∗ ∪ {0, 1}w. C1 filteredBy w, defines the sub-clock C2 of C1 such as
∀k ∈ N∗, C2[k] ≡ C1[w ↑ k], where w ↑ k is the index of the kth 1 in the pattern
w. The binary words are used to represent sequences of activations. When the
latter are periodic, they can be represented by periodic binary words denoted

20 N. Menad and P. Dhaussy

by w = u(v)w. u and v are finite binary words, called respectively prefix and
period.

4 Illustration through a Simple Case Study

We consider a data acquisition circuit (C), with two channels, consisting of
acquisition components (Sensori and Acqi) (i ∈ {1, 2}), an acquired data pro-
cessing component (Comput) and a filter (Filter) sampling the calculated val-
ues. Each acquisition channel i is associated with a pair of components Sensori
and Acqi. We assume that, for each channel i, the component Sensori receives
data from the environment (from a device Devi outside the circuit) and trans-
mits the value to Acqi through a shared memory Mi. Each Devi sends N data
dataik, k ∈ [0 . . .N−1]. Acqi provides Comput with each datum dataik via a syn-
chronous communication port portAcqi. Comput applies the addition of data1k
and data2k respectively received from Dev1 and Dev2 and provides the Filter
with the sum via a fifo. Filter provides the sampled data (one in every three
values) to Devout, external to the circuit.

Fig. 3. Circuit architecture C

The temporal constraints associated with this circuit are:

– Req1: Each acquired datum datai is written in the memory Mi before being
read by Acqi (with i ∈ {1, 2}).

– Req2: Comput starts the calculation of a sum after two receptions of dataik
from each Acqi (with i ∈ {1, 2}).

– Req3: Filter provides the environment with a sampled value from a sequence
of one in every three values calculated by Comput.

In summary, all the timing requirements for our case study, are specified with
CCSL language as follows :

write1 alternatesWith read1 (Req1)
write2 alternatesWith read2 (Req1)
read1 strictPrec comput (Req2)
read2 strictPrec comput (Req2)
filterOut = comput filteredBy (001)w (Req3)

A Transformation Approach for Multiform Time Requirements 21

In addition to the above time constraints, we express the requirements that
are specifically associated with the expected behavior of the circuit. For example,
we can express the following requirement:

– Req4 : the data resultj, j ∈ [0 . . . (N − 1)/3] provided to the environment
after the sampling operation (one value in 3) must have the values data1k +
data2k with k = (3 ∗ j) + 2.

5 Translation Principles of the CCSL Constraints
into Fiacre Programs

This section presents the concepts of Fiacre programs and the translation prin-
ciples of CCSL constraints into Fiacre programs. These principles have been
implemented in our code generator.

5.1 The Fiacre Language

The Fiacre language (Intermediate Format for the Architectures of Distributed
Embedded Components) has been developed within the TOPCASED project2

as a key language linking high-level formalisms such as UML, AADL and SDL
with formal analysis tools. Using an intermediary formal language has the ad-
vantage of reducing the semantic gap between the high-level formalisms and the
descriptions internally manipulated by verification tools such as Petri nets, pro-
cess algebras or timed automata. Fiacre is a language with a formal semantic
that serves as input language for different checking tools. Fiacre allows the be-
havioral and timed aspects of real-time systems to be described. It integrates
the notions of process and components as follows:

– the processes (process) describe automatawith a set of states and a list of tran-
sitions between these states.These later reference classical operations (variable
allocations, if-elsif-else, while, sequence compositions), non-deterministic con-
structions and communications done via ports and via shared variables;

– the components (component) describe compositions of processes. A system
is built as a parallel composition (clause par with the || operator) of compo-
nents and/or processes that can communicate via ports. The Fiacre processes
can be synchronized with or without value passage via the ports. They can
also exchange data via asynchronous communication queues using shared
variables.

5.2 Translation Principles

The general idea of the translation is based on (1) the generation of a Fiacre
Scheduler process, (2) the generation of Fiacre processes corresponding to the

2 http://www.topcased.org

http://www.topcased.org

22 N. Menad and P. Dhaussy

CCSL constraints and (3) the generation of Fiacre component. The principles
of translating CCSL constraints into Fiacre programs and the generation of
Scheduler code are inspired by the work described in [YM11]. We suppose here
that the active objects of the UML model are generated into Fiacre processes
with a translation which is not detailed in this paper.

The role of the Scheduler process is to determine the order of execution of
functional processes based on the constraint process state. Scheduler is in charge
of activating each functional process. To do so, Scheduler, the constraint pro-
cesses and the functional processes are all synchronized through (synchronous)
communication ports. Figure 4 illustrates partially the generation of code for
Sensor1, Acq1 and the alternatesWith constraint. In this figure, we illustrate
the synchronization links with dash lines. For example, Sensor1 is synchro-
nized with Scheduler via the port sync pw1 to execute a writing operation of a
given datum data in memory M1 shared between Sensor1 and Acq1 processes.
AlternatesWith process is synchronized with Scheduler via the ports startA1,
updateA1 and endA1.
Acq1 and Comput communicate through port portAcq1 with a integer value.

Comput and Filter communicate through a shared variable fifoFromComput
of fifo type. Filter is synchronized with Scheduler via sync filter for filtering
operation. sync filter carries a boolean value needed by the Filter behavior. The
Scheduler process and constraint processes share logical clocks (table tab Clocks)
that correspond to events occurring in the circuit computation (write1, write2,
read1, read2, comput, filterOut). The same translation process is applied to other
functional processesSensor2,Acq2,Comput,Filter and the other constraint pro-
cesses StricPrec and FilteredBy.

For this case study, we implement the objectsDev1,Dev2 andDevout with the
CDL language, because we consider that these objects run in the environment
of the circuit3.

Generation of a Fiacre Component: The Fiacre program includes a compo-
nent called C (cf Listing 1) that contains the instances of the processes running
at the same time (operator ||). As result of generation algorithm execution, the
codes of functional processes, constraint processes and Scheduler are generated.
The functional processes are generated from active objects of the UML model
and correspond to the functional parts of the model.

For automatic code generation is possible, we must declare clock numbers
and links between clocks and synchronization triggers generated by Scheduler.
For example, the clock read1 is associated with sync pr1 synchronization port
to synchronize the first instance (Acq:1) of Acq process. The clock filter is
associated with sync filter synchronization port which carries a boolean value.
For this last constraint, in our implementation, we need two indices in the table
tab Clocks. These attributes are specified as follows:

3 The description of CDL language can be found at http://www.obpcdl.org

http://www.obpcdl.org

A Transformation Approach for Multiform Time Requirements 23

Fig. 4. Illustration of the Fiacre architecture partially generated

Synchronization

write1: clockNo: 0, synchro: sync_pw1 none to: Sensor:1;

read1: clockNo: 1, synchro: sync_pr1 none to: Acq:1;

write2: clockNo: 2, synchro: sync_pw2 none to: Sensor:2;

read2: clockNo: 3, synchro: sync_pr2 none to: Acq:2;

comput: clockNo: 4, synchro: sync_comput none to: Comput:1;

filterOut: clockNo: 5, synchro: sync_filter bool:true,

clockNo: 6, synchro: sync_filter bool:false to: Filter:1;

In our case study, the code generator produces 12 processes: Scheduler, 5
constraint processes (2 for alternatesWith, 2 for strictPrec, 1 for filterBy)
and 6 functional processes (Sensor1, Sensor2, Acq1, Acq2, Comput and Filter).
The Fiacre code of the partial component part is generated as follows4:

component C is

var write1, read1, ..., M1 : int, tab_Clocks : T_ARRAY_CLOCK,

fifoToSensor1, fifoFromComput : fifo, ...

port startA1, sync_pr1, sync_pw1, ... : none, portAcq1: int, ...

init write1 := 0; read1 := 1; ... // clock numbers

par

//-------- Scheduler process ---------

Scheduler [startA1, ... sync_pr1, sync_pw1, ...] (&tab_Clocks)

//-------- constraint processes ---------

|| AlternatesWith [startA1, ...](&write1, &read1, &tab_Clocks)

|| ...

//-------- functional processes ---------

|| Sensor1 [sync_pw1] (&fifoToSensor1, &M1)

|| Acq1 [sync_pr1, portAcq1] (&M1)

|| ...

end C

Listing 1. Partial generated component program

4 The complete code of the case study can be found on site http://www.obpcdl.org

http://www.obpcdl.org

24 N. Menad and P. Dhaussy

Generation of Scheduler: The principle of the Scheduler process execution
is as follows: for each iteration, It executes a number of steps as shown (Fig.
5.a): (1) the Start step for the declared clocks initialization and the activation
of constraint processes. (2) the End step for the synchronization at the end
of the constraint processes. (3) An active phase during which the Scheduler
synchronizes with each functional process so that each process runs. A execu-
tion period corresponds to the time between two start steps. (4) An intermediate
phase Update is interposed between the start steps and end steps to synchronize
some constraints if required. The algorithm executed by Scheduler is repeated to
simulate the coincident moment sequence (an instant). Interleaving or simulta-
neous execution of functional processes is simulated by synchronization between
Scheduler and the functional processes involved, at every temporally bounded
instants. For example, Fig. 5.b shows two clocks ck1 and ck2 that are activated
in each case at the same time. ck3 alternates with ck1 or ck2.

Fig. 5. Scheduler process automaton

From the point of view of the Fiacre implementation, and taking into ac-
count the Promela program implementation principle described in [YM11], each
event in the model gives rise to a clock which is located by a Fiacre structure
tab Clocks. This structure is declared as follows:

type T_CLOCK is record clock_state:nat, enable_tick, dead: bool end

type T_ARRAY_CLOCK is array 7 of T_CLOCK

tab_Clocks: T_ARRAY_CLOCK

In each iteration of the Scheduler, each constraint process updates value
clock state which takes integer values 0, 1 or 2, in accordance with the execution
of the automaton it encodes. Once the process has executed a loop constraint,
Scheduler evaluates these values to set the value enable tic to true or false. If
enable tic is evaluated as true, the functional process associated with the event is
synchronized with Scheduler, which triggers an execution step in the functional
process (for example with sync pw1 for triggering Sensor1 as shown Fig. 4).

A Transformation Approach for Multiform Time Requirements 25

The assessment of the value enable tic is set to true only if the clock state value
is equal to 2. In other cases, enable tic are set to false. The value dead is set at
true when the associated clock should not be active in the rest of the execution.

The generation automatically produces the Scheduler code including this part
executed during the Active step:

... if (tab_Clocks [0].enable_tick) then sync_pw1

elsif (tab_Clocks [1].enable_tick) then sync_pr1

elsif (tab_Clocks [2].enable_tick) then sync_pw2

elsif (tab_Clocks [3].enable_tick) then sync_pr2

elsif (tab_Clocks [4].enable_tick) then sync_comput

elsif (tab_Clocks [5].enable_tick) then sync_filter (true)

elsif (tab_Clocks [6].enable_tick) then sync_filter (false)

end ...

Translation of Constraints: We implement each CCSL constraint by a Fi-
acre process that implements the automaton (cf Section 3.1) corresponding to
the constraint (we called those processes constraints processes). These process
are synchronized with Scheduler via the port start, update and end for the
activation of automaton transitions. For example, we show the code for the
alternatesWith constraint corresponding to the automaton shown in Fig. 2.b.
The transitions of this automaton are triggered by signal ports startA, updateA
and endA and update the value of clock state. The encoding principle for the
other two constraints, strict precedence and filtering is similar.

process AlternatesWith [startA, updateA, endA: in none] // ports

(&c1: nat, &c2 : nat, &tab_Clocks: T_ARRAY_CLOCK) // shared variables

is states s1, s2, s3, s4, s5

init to s0

from s0 startA;

tab_Clocks [c1].clock_state := 2; tab_Clocks [c2].clock_state := 1; to s1

from s1 updateA; to s2

from s2 endA; to s3

from s3 startA;

tab_Clocks [c1].clock_state := 1; tab_Clocks [c2].clock_state := 2; to s4

from s4 updateA; to s5

from s5 endA; to s0

6 Formal Verification of Properties

6.1 Verification Principles

To verify a set of requirements on a model, we must explore it exhaustively
and have a formal expression of properties to be checked, for example in the
form of logical formulas or observer automata. In our approach, we express the
properties with CDL language.

Once the observers have been specified, the model is then explored and the
exploration generates a labeled transition system (LTS). It represents all the
behaviors of the model in its environment as a graph of configurations and
transitions. On this LTS, the verification of the properties is carried out by
applying a reachability analysis of observer error states.

26 N. Menad and P. Dhaussy

6.2 Expressing Properties Using CDL

The CDL language allows the user to specify properties which are expressed
as predicates or observer automata. Predicates in CDL reference variables val-
ues: for example, predicate pred1 is {{Proc}1 : v = value} means pred1 is
true if the variable v of the first instance of the Proc process is equal to
the value value. A predicate can also reference a process state: for example,
predicate pred2 is {{Proc}1@stateX} means that pred2 is true if the first in-
stance of the Proc process is in the state stateX . A predicate can also reference
the amount of data contained in a fifo or a boolean expression combining the
previous types of predicates.

This syntax provides a rich mode of expression that together with the ob-
server, enables the expression of properties which would be difficult to express
in linear logic (see the P2 observer Fig. 7). The predicates allow insights into
the behavior of a model while providing expression which is easy to use and un-
derstand for the designer. In our work, we express properties in CDL following
two complementary objectives: one to verify that the implementation of CCSL
constraints is correct, the other to ensure that the functional parts of the circuit
(Sensor1, Sensor2, Acq1, Acq2, Comput, Filter) are properly implemented.

Properties Associated with CCSL Constraints: Here we illustrate the
specifications of some properties associated with CCSL constraints included in
our system model. The goal is to prove the correct Fiacre implementation of
Scheduler and constraint automata. To check a property P1 associated with the
alternation requirement Req1, for example write1 alternatesWith read1, we
declare the CDL events evt write1 and evt read1 (Fig. 6.a). With these events,
we specify the observer, illustrated in Fig. 6.b), encoding the property P1 which
satisfies the alternating synchronization write1 and read1. The initial state of
the observer is the Start state and has an error state (Reject). Each transition of
the observer is triggered by the occurrence of an event (evt write1 or evt read1).

In a similar way, we can specify observers to verify properties of the require-
ment Req2 by declaring the events evt read2 and evt comput:

event evt_read2 is {sync sync_pr1 from {Scheduler}1 to {Sensor}2}

event evt_comput is {sync sync_comput from {Scheduler}1 to {Comput}1}

Fig. 6. Observer automaton corresponding to P1 property

A Transformation Approach for Multiform Time Requirements 27

The CDL language also allows to specify predicates that can be verified during
the exploration of the model. For example, if we want to check that, in an instant,
clocks write1 and read1 do not ”tick” at the same instant, we can declare the
following predicates:

predicate enable_tick_pw1_true is {{C}1:tab_Clocks [0].enable_tick = true}

predicate enable_tick_pr1_true is {{C}1:tab_Clocks [1].enable_tick = true}

predicate enable_tick_rw1_together is

{enable_tick_pw1_true and enable_tick_pr1_true}

We can now declare, with the operator assert5, the following invariant:
not act tick rw1 together. During the exploration of the model, the OBP tool
checks that the invariant is not violated.

The CDL predicates can also facilitate the writing of more complex observers
when they refer to a large number of events. For example, the requirement Req3
associated with the generation of data by Comput and the filtering constraint is
expressed by the CCSL term: filterOut = comput filteredBy (001)w. During
the exploration, we need to verify that the sequence of data generated from
Filter is the sequence generated by Comput with a sampling of one value in 3.
In the current version of the model, the filter word (001) is stored in an array
variable tabF ilter of the constraint process FilteredBy. The (i modulo 3)th

datum of the sequence generated by Comput will be copied in the sequence
derived from Filter if the value tabF ilter[i modulo 3] is equal to 1. Otherwise,
it is not copied into the sequence of data supplied to the environment. To verify
this constraint, we therefore declare the following predicates (for x ∈ {0, 1, 2}):

predicate bitx_true is {{FilteredBy}1:tabFilter[x] = 1}

predicate bitx_false is {{FilteredBy}1:tabFilter[x] = 0}

Transitions of an observer can be decorated with one of the predicates together
with the events evt comput, evt filterT rue and evt filterFalse which trigger
the transitions of the observer and they are declared as follows:

Fig. 7. Observer automaton corresponding to the P2 property

5 See detailed syntax of the CDL language available at http://www.obpcdl.org

http://www.obpcdl.org

28 N. Menad and P. Dhaussy

event evt_filterTrue is {sync filter (true) from {Scheduler}1 to {Filter}1}

event evt_filterFalse is {sync filter (false) from {Scheduler}1 to {Filter}1}

Figure 7 illustrates the observer encoding property P2 and referencing the
above predicates and events.

If we want to verify other properties on the functional parts of our model,
we specify these properties which characterize the behavior of the model. For
example, the Req4 requirement, expressed in Section 4, can be expressed by an
observer automaton using predicates and appropriate events.

7 Experimentation on the Case Study and Discussion

To conduct the experiments, we implemented the OBP tool (Fig. 1). OBP
is structured in three modules. The front end OBP imports Fiacre models
corresponding to a translation of UML-MARTE models including CCSL spec-
ifications. In addition, it imports CDL programs which describe the properties
and context scenarios if required. OBP Explorer explores the model, and after
each transition model run, it hands over to the Observation Engine. It captures
the occurrences of events and evaluates, at each step of the running model, the
value of predicates and the status of all involved observers. A verification of all
invariants and reachability analysis of error state observers is thus conducted.

At the end of exploration, a report is generated by OBP, revealing the list of
property evaluated to true or false. Also, OBP provides either counter examples
on request on the reject or success observer state accessibility or invariant vio-
lations. These indications may refer the user to the scenario having the defeated
properties. We are currently working to facilitate the interpretation of data pro-
vided by OBP and to display understandable data in the user’s models, allowing
ease of diagnosis.

With CDL, we specified observers to verify different properties concerning
requirements (Req1 to Req4) expressed in Section 4. For this proposed case
study, the complexity of exploration6 is reasonable size. As an example, if we
assume that the size of fifo is equal to 1, the number of explored configurations is
then 45 040 and the number of transitions is 167 496. If the size is equal to 3, the
number of explored configurations is then 359 104 and the number of transitions
is 1 702 704.

The use of the Fiacre language in our translation approach serves to reduce
the semantic gap between high-level models expressed in UML MARTE de-
scription, by making it possible to precisely specify the semantics of the input
language for system modeling. This intermediate language enables to share these
specifications through different verification tool-chains. Our CDL language can
be compared with the Property Specification Language (PSL) [IEE05]. In future
work, we investigate to compare CDL expressiveness with PSL and the discussion
in [Mal12] is very interesting for this topic.

6 The tests are run on a machine such as Windows 7, 64-bit - 4 GB RAM with OBP
v.1.3.4.

A Transformation Approach for Multiform Time Requirements 29

8 Conclusion

In this work, we have presented an implementation of CCSL constraints in
the Fiacre language and we expressed properties in the CDL language. The
manipulation of CCSL expressions within the framework of modeling with UML-
MARTE formalism can extend the expressiveness by integrating temporal con-
straints into the model. The logical time model proposed by the OMG to enrich
the UML MARTE allows the description and analysis of temporal constraints.
We have defined a automatic translation approach to generate Fiacre programs
from UML-MARTE models enriched with CCSL constraints. This approach al-
lows to verify formally the implementation of CCSL constraints and functional
requirements.

We carried out a verification technique of properties by model-checking using
the CDL language and the OBP tool. CDL can easily express predicates and
observers which are checked during the exhaustive model exploration by OBP.
We have shown that this language facilitates the expression of properties. They
can be expressed with a very fine granularity, referencing variables and process
states.

We can take benefits of the CCSL automata encoding. These automata are
as reusable inputs to apply the verification. Our translation approach can be an
important step toward the formal verification process of both MARTE models
and CCSL specifications. Once the translation of CCSL constraints into Fiacre
is complete, the operation requires only a single verification as it does not de-
pend on the modeled application. Even though the model may change, the Fiacre
code is reusable as this translation principle is independent of the application. We
think that our approach contributes to clarify its role when addressing this do-
main by expressing temporal properties dedicated to CCSL relation constraints.

Acknowledgment. We wish to thank Dr Zoé Drey for her valuable and con-
structive suggestions related to this paper.

References

[And09] André, C.: Syntax and semantics of the clock constraint specification lan-
guage ccsl. Technical Report 6925, INRIA (2009)

[And10] André, C.: Verification of clock constraints: Ccsl observers in esterel. Tech-
nical Report 7211, INRIA (2010)

[CES86] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst. 8(2), 244–263 (1986)

[DBRL12] Dhaussy, P., Boniol, F., Roger, J.-C., Leroux, L.: Improving model check-
ing with context modelling. In: Advances in Software Engineering, ID
547157, 13 pages (2012)

[DMA08] DeAntoni, J., Mallet, F., André, C.: Timesquare: on the formal execution
of uml and dsl models. In: Tool Session of the 4th Model Driven Develop-
ment for Distributed Real Time Systems (2008)

30 N. Menad and P. Dhaussy

[FGP+08] Farail, P., Gaufillet, P., Peres, F., Bodeveix, J.-P., Filali, M., Berthomieu,
B., Rodrigo, S., Vernadat, F., Garavel, H., Lang, F.: FIACRE: an interme-
diate language for model verification in the TOPCASED environment. In:
European Congress on Embedded Real-Time Software (ERTS), Toulouse.
SEE (January 2008)

[HLR93] Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and
the verification of reactive systems. In: Nivat, M., Rattray, C., Rus, T.,
Scollo, G. (eds.) Third Int. Conf. on Algebraic Methodology and Software
Technology, AMAST 1993, Twente. Workshops in Computing, pp. 83–96.
Springer Verlag (June 1993)

[IEE05] IEEE. IEEE standard for property specification language (psl). Technical
Report 1850 (2005)

[Mal12] Mallet, F.: Automatic Generation of Observers from MARTE/CCSL. In:
RSP 2012 - International Symposium on Rapid System Prototyping, Tam-
pere, Finlande, pp. 86–92. IEEE (October 2012)

[MAS08] Mallet, F., André, C., De Simone, R.: Ccsl: Specifying clock constraints
with uml/marte. ISSE 4, 309–314 (2008)

[OMG10] OMG. Uml profile for marte, v1.1. Object Managment Group, Document
number: PTC/10-08-32 (August 2010)

[QS82] Queille, J.-P., Sifakis, J.: Specification and verification of concurrent sys-
tems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Pro-
gramming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

[YM11] Yin, L., Mallet, F.: Correct transformation from ccsl to promela for veri-
fication. Technical Report 7491, INRIA (2011)

[YTB+11] Yu, H., Talpin, J.-P., Besnard, L., Gautier, T., Marchand, H., Le Guernic,
P.: Polychronous controller synthesis from marte ccsl timing specifications.
In: Memocode (2011)

Real-Time Migration Properties

of rTiMoVerified in Uppaal

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. This paper extends the TiMo family by introducing a real-
time version named rTiMo. The rTiMo processes are able to move be-
tween different locations of a distributed environment, and communicate
locally with other processes. Real-time constraints are used to control
migration and communication in a real-time distributed system. In or-
der to verify several properties of complex mobile systems described in
rTiMo, we establish a relationship between rTiMo networks and a class
of timed safety automata. The relationship allows the verification of tem-
poral properties of real-time migrating processes using Uppaal capabil-
ities. In particular, we check whether certain configurations are reached,
and that certain timing constraints hold for an entire complex evolution.

1 Introduction

A rather simple and expressive formalism calledTiMo was previously introduced
in [8] in order to describe complex distributed systems in which processes are
able to migrate within an environment defined by a number of explicit locations.
Processes are active entities that can move from location to location to meet and
communicate with other processes rather than using the client/server method
(various types of communication are presented in [4]). Each process has its own
agenda and hence initiates and controls its interactions according to its needs and
goals. Timing constraints are used to coordinate interactions in time and space
by using migration and communication [9]. Timing constraints for migration
allow one to specify a temporal interval after which a mobile process must move
to another location. Two processes may communicate if they are present at the
same location. Inspired by TiMo, a flexible software platform supporting the
specification of agents and allowing timed migration in a distributed environment
is presented in [7]. We have enriched this basic formalism with access permissions
by using a type system [10]. More information on the TiMo family is available
at iit.iit.tuiasi.ro/~fml/TiMo.

This paper is devoted to a real-time extension of TiMo named rTiMo, a
calculus in which a global clock is used for the dynamic evolution of the whole
system. In rTiMo, the discrete transitions caused by performing actions with
timeouts are alternated with continuous transitions. Although the syntax of
rTiMo is close to that of TiMo [10], their semantics are different. The number
of semantic rules in rTiMo is higher than in TiMo . Other differences between
rTiMo and TiMo are:

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 31–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

iit.iit.tuiasi.ro/~fml/TiMo

32 B. Aman and G. Ciobanu

• action deadline in rTiMo is a real positive number, while in TiMo it is a
positive natural number;
• clock in rTiMo is a single global clock, while in TiMo there is a local clock
for each location;
• time step in rTiMo can have any length, while in TiMo it has length 1 (at
each location);
• passage of time in rTiMo is performed by delay rules, in contrast with TiMo

where in each location l there is a local function φl that is used to decrement
all timers by 1 at location l;
• evolution step in rTiMo is a sequence of individual actions followed by the
passing of time, in contrast with TiMo where an evolution step is a se-
quence of individual actions happening at the same location l, followed by
the passing of time and elimination of all special symbols � at location l
(� is a purely technical notation used in the formalisation of the structural
operational semantics of TiMo ; intuitively, �P specifies a process P that
is temporarily stalled and so cannot execute any action).

The semantics of rTiMo is provided by multiset labelled transitions in which
multisets indicate the actions executed in parallel. In order to illustrate the co-
ordination in time and space of a migrating process in rTiMo, we adapt the
TravelShop example used in [9] where the clients buy tickets to predefined desti-
nations from some travel agents. Since time is an important issue, it was studied
in various papers [11,13]. Within rTiMo we investigate the possibility of verify-
ing certain interesting real-time properties such as safety properties (a specified
error cannot occur) and bounded liveness properties (configuration reachabil-
ity within a certain amount of time). The development of effective techniques
and tools is required by the automated analysis and verification of complex dis-
tributed systems. We establish a formal relationship between rTiMo and timed
safety automata [15], allowing the use of the model checking capabilities of the
software tool Uppaal [17] to verify several temporal properties of distributed
networks with migrating and communicating processes described in rTiMo.

2 Syntax and Semantics of rTiMo

The syntax of rTiMo is given in Table 1, where we assume:

• a set Loc of locations, a set Chan of communication channels, and a set Id
of process identifiers (each id ∈ Id has its arity mid);

• for each id ∈ Id there is a unique process definition id(u1, . . . , umid
)
def
= Pid,

where the distinct variables ui are parameters;
• a ∈ Chan is a communication channel; l is a location or a location variable;
• t ∈ R+ is a timeout (deadline) of an action; u is a tuple of variables;
• v is a tuple of expressions built from values, variables and allowed operations.

Timing constraints applied to migrating processes allow one to specify how
many time units are required by a process to move from one location to another.

Real-Time Migration Properties of rTiMoVerified in Uppaal 33

A timer in rTiMo is denoted by Δ3. When it is associated with a migration
process goΔ3shop then P , it indicates that process P moves to location shop
after 3 time units. A timer Δ5 associated with an output process aΔ5!〈z〉 then P
else Q makes the channel a available for communication, namely it can send z
for a period of 5 time units. It is also possible to restrict the waiting time for an
input process aΔ4?(x) then P else Q along a channel a; if the communication does
not happen before the deadline 4, the waiting process gives up and it switches
to the alternative process Q.

Table 1. rTiMo Syntax

Processes P,Q ::= aΔt!〈v〉 then P else Q � (output)
aΔt?(u) then P else Q � (input)
goΔtl then P � (move)
0 � (termination)
id(v) (recursion)
P | Q � (parallel)

Located processes L ::= l[[P]]
Networks N ::= L � L | N

The only variable binding constructor is aΔt?(u) then P else Q which binds
the variable u within P (but not within Q). We use fv(P) to denote the free
variables of a process P (and similarly for networks); for a process definition,
we assume that fv(Pid) ⊆ {u1, . . . , umid

}, where ui are the process parameters.
Processes are defined up-to an alpha-conversion, and {v/u, . . .}P denotes P in
which all free occurrences of a variable u are replaced by v, possible after alpha-
converting P in order to avoid clashes.

Mobility is provided by a process goΔtl then P that describes the migration
from the current location to the location indicated by l within t time units. Since l
can be a variable, and so its value is assigned dynamically through communica-
tion with other processes, this form of migration supports a flexible scheme for
the movement of processes from one location to another. Thus, the behaviour can
adapt to various changes of the distributed environment. Processes are further
constructed from the (terminated) process 0, and parallel composition P | Q. A
located process l[[P]] specifies a process P running at location l, and a network
is built from its components N | N ′. A network N is well-formed if there are no
free variables in N .

The first component of the operational semantics of rTiMo is the structural
equivalence ≡ on networks; it is the smallest congruence such that the equalities
in Table 2 hold.

Table 2. rTiMo Structural Congruence

(NNULL) N | 0 ≡ N

(NCOMM) N | N ′ ≡ N ′ | N
(NASSOC) (N | N ′) | N ′′ ≡ N | (N ′ | N ′′)
(NSPLIT) l[[P | Q]] ≡ l[[P]] | l[[Q]]

34 B. Aman and G. Ciobanu

The role of ≡ is to rearrange a network in order to apply the rules of the
operational semantics given in Table 3. Using the equalities of Table 2, a given
networkN can always be transformed into a finite parallel composition of located
processes of the form l1[[P1]] | . . . | ln[[Pn]] such that no process Pi has the
parallel composition operator at its topmost level. Each located process li[[Pi]]
is called a component of N , and the whole expression l1[[P1]] | . . . | ln[[Pn]] is
called a component decomposition of the network N .

The semantics of rTiMo is presented in Table 3. The multiset labelled tran-

sitions of form N
Λ−→ N ′ use a multiset Λ to indicate the actions executed in

parallel in one step. When the multiset Λ contains only one action λ, in order

to simplify the syntax, we write N
λ−→ N ′. The transitions of form N

t� N ′

represent a time step of length t.
In rule (Move0), the process goΔtl then P migrates from location l to l′

and evolves as process P . In rule (Com), a process aΔt!〈v〉 then P else Q, from
location l, succeeds in sending a tuple of values v over channel a to process
aΔt?(u) then P ′ else Q′ from location l. Both processes continue to execute at
location l, the first one as P and the second one as {v/u}P ′. If a communication
action has a timer equal to 0, then by using the rule (Put0) for output action
or the rule (Get0) for input action, the process aΔ0 ∗ then P else Q, for ∗ ∈
{!〈v〉, ?(x)} continues as the alternative process Q. Rule (Call) simulates the
evolution of a recursion process. The rules (Equiv) and (DEquiv) are used to
rearrange a network in order to apply a rule. Rule (Par) is used to compose
larger networks from smaller ones by putting them in parallel and considering
the union of multisets of actions.

The rules devoted to the passing of time are starting with D. In rule (DPar),

N1 | N2 � λ−→ means that no action λ (i.e, an action labelled by l′�l, {v/u}@l, id@l,
goΔ0@l, a?Δ0@l or a!Δ0@l) can be applied to the network N1 | N2 (obtained
using (Par) rules). We use negative premises: the passing to a new step is per-
formed based on the absence of actions. According to [12], our semantics allows
the use of negative premises without leading to an inconsistent set of rules.

A complete computational step is captured by a derivation of the form:

N
Λ−→ N1

t� N ′.
This means that a derivation is a sequence of individual actions followed by a
time step. We say that N ′ is directly reachable from N . If there is no applicable

action, we write N
t� N ′ to indicate time progress.

The first item of the following proposition states that the passage of time
does not introduce any nondeterminism into the execution of a process. Also, if
a process is able to evolve to a certain time t, then it must evolve through every
time moment before t; this means that the process evolves continuously.

Proposition 1. For any networks N , N ′ and N ′′, the following sentences hold:

1. N
0�N ;

2. If N
t�N ′ and N

t�N ′′, then N ′≡N ′′;

3. N
(t+t′)� N ′ if and only if there is a N ′′ such that N

t� N ′′ and N ′′ t′� N ′.

Real-Time Migration Properties of rTiMoVerified in Uppaal 35

Table 3. rTiMo Operational Semantics

(Stop) l[[0]]
 λ−→ (DStop) l[[0]]
t� l[[0]]

(DMove)
t ≥ t

′ ≥ 0

l[[goΔt
l
′ then P]]

t′� l[[goΔt−t′
l
′ then P]]

(Move0) l[[goΔ0l′ then P]]
l�l′−−→ l′[[P]]

(Com) l[[aΔt!〈v〉 then P else Q | aΔt′?(u) then P ′ else Q′]]
{v/u}@l−−−−−→ l[[P | {v/u}P ′]]

(DPut)
t ≥ t

′ ≥ 0

l[[aΔt!〈v〉 then P else Q]]
t′� l[[aΔt−t′ !〈v〉 then P else Q]]

(Put0) l[[aΔ0!〈v〉 then P else Q]]
a!Δ0@l−−−−−→ l[[Q]]

(DGet)
t ≥ t

′ ≥ 0

l[[aΔt?(u) then P else Q]]
t′� l[[aΔt−t′?(u) then P else Q]]

(Get0) l[[aΔ0?(u) then P else Q]]
a?Δ0@l−−−−−→ l[[Q]]

(DCall)
l[[Pid{v/x}]] t� l[[P ′

id]]

l[[id(v)]]
t� l[[P ′

id]]
where id(v)

def
= Pid

(Call)
l[[Pid{v/x}]] Λ−→ l[[P ′

id]]

l[[id(v)]]
Λ−→ l[[P ′

id]]
where id(v)

def
= Pid

(DPar)
N1

t� N
′
1 N2

t� N
′
2 N1 | N2
 λ−→

N1 | N2
t� N

′
1 | N ′

2

(Par)
N1

Λ1−−→ N
′
1 N2

Λ2−−→ N
′
2

N1 | N2
Λ1∪Λ2−−−−→ N

′
1 | N ′

2

(DEquiv)
N ≡ N

′
N

′ t� N
′′

N
′′ ≡ N

′′′

N
t� N

′′′

(Equiv)
N ≡ N

′
N

′ Λ−→ N
′′

N
′′ ≡ N

′′′

N
Λ−→ N

′′′

36 B. Aman and G. Ciobanu

Example 1. We adapt the TravelShop example of [9] in which a client attempts
to get a ticket to a predefined destination in a short time and at a good price.
The scenario involves five locations and six processes.

Fig. 1. The initial network indicates the migration paths of the processes [9]

The role of each process represented in Figure 1 is as follows:

• client is a process that initially resides in the home location, has an amount
of 130 cash, and intends to pay for a flight after comparing two offers (stan-
dard and special) provided by the travel shop. After entering the travelshop
location, the client receives the location of the standard offer where it should
move to obtain this standard offer, and also the location where a special offer
can be obtained. Then, it moves to the special location to receive the special
offer. Finally, the client moves to the bank, pays for the special (cheaper)
offer, and returns to the home location.

• agent is a process that initially resides in the travelshop location, has an
amount of 100 cash, and informs the client where to look for the standard
offer. It then moves to the bank in order to collect the money from the till.
After that, the agent returns to the travelshop.

• flightinfo communicates the standard offer (110 cash) to clients as well as
the location (special) of the special offer.

• saleinfo communicates the special offer (90 cash) to clients together with the
location (bank) of the bank. It can also accept an update of the special offer
coming from the travelshop location.

• update migrates from the travelshop to the special location in order to update
the special offer to the amount of 60 cash.

• till resides at the bank location, has an initial amount of 10 cash, and can
either receive e-money paid in by the clients, or transfer the accumulated
e-money to the agent.

In what follows we use some shorthand notations:
a!〈v〉 → P stands for aΔ∞〈v〉 then P else 0;
a?(u)→ P stands for aΔ∞(u) then P else 0.

Real-Time Migration Properties of rTiMoVerified in Uppaal 37

The rTiMo syntax of these processes is as follows:
client(init) = goΔ5travelshop→ flight?(standardoffer)→

goΔ4standardoffer → finfo2?(p1, specialoffer)→
goΔ3specialoffer → sinfo2?(p2, paying)→ goΔ6paying →
payc!〈min{p1, p2}〉 → goΔ4home→ client(init−min{p1, p2})

update(saleprice) = goΔ0special→ info1!〈saleprice〉
agent(balance) = flight!〈standard〉 → goΔ10bank→ paya?(profit)→

goΔ12travelshop→ agent(balance+ profit)
flightinfo(price, next) = finfo2!〈price, next〉 → flightinfo(price, next)
saleinfo(price, next) = info1Δ10?(newprice)

then saleinfo(newprice, next)
else sinfo2!〈price, next〉 → saleinfo(price, next)

till(cash) = paycΔ1?(newpayment)
then till(cash+ newpayment)
else paya!〈cash〉! then till(0) else till(cash))

A possible final network after 22 units of time is represented in Figure 2.

Fig. 2. A possible final network [9]

3 Timed Safety Automata

Due to their simplicity, timed safety automata have been used by several tools
(e.g., Uppaal) for the simulation and verification of timed automata [1].

Syntax. Assume a finite set of real-valued variables C ranged over by x, y, . . .
standing for clocks, and a finite alphabet Σ ranged over by a, b, . . . standing for
actions. A clock constraint is a conjunctive formula of constraints of the form
x ∼ m or x − y ∼ m, for x, y ∈ C, ∼∈ {≤, <,=, >,≥}, and m ∈ N. The set of
clock constraints, ranged over by g, is denoted by B(C).
Definition 1. A timed safety automaton A is a tuple 〈N,n0, E, I〉, where

• N is a finite set of nodes;
• n0 is the initial node;
• E ⊆ N × B(C)×Σ × 2C ×N is the set of edges;
• I : N → B(C) assigns invariants to nodes.

n
g,a,r−−−→ n′ is a shorthand notation for 〈n, g, a, r, n′〉 ∈ E. Node invariants are

restricted to constraints of the form: x ≤ m or x < m where m ∈ N.

38 B. Aman and G. Ciobanu

start
y<=20

loop
y<=50

end
y<=20

10<=y
enter

x:=0, y:=0

40<=y
leave
y:=0

x==10
work
x:=0

10<=y
y:=0

Fig. 3. Timed Safety Automata

In other words, a timed safety automata is
a graph having a finite set of nodes and
a finite set of labelled edges (representing tran-
sitions), using real-timed variables (represent-
ing the clocks of the system). The clocks are
initialised with zero when the system starts,
and then increased synchronously with the same
rate. The behaviour of the automaton is re-
stricted by using clock constraints, i.e. guards
on edges, and local timing constraints called
node invariants (e.g., see Figure 3). An automa-
ton is allowed to stay in a node as long as the
timing conditions of that node are satisfied. A
transition can be taken when the edge guards
are satisfied by clocks values. When a transition
is taken, clocks may be reset to zero.

Networks of Timed Automata. A network of timed automata is the parallel
composition A1 | . . . | An of a set of timed automata A1, . . . ,An combined into
a single system using the CCS-like parallel composition operator and with all
internal actions hidden. Synchronous communication inside the network is by
handshake synchronisation of input and output actions. In this case, the action
alphabet Σ consists of a? symbols (for input actions), a! symbols (for output
actions), and τ symbols (for internal actions). A detailed example is found in [15].

A network can perform delay transitions (delay for some time), and action
transitions (follow an enabled edge). An action transition is enabled if the
clock assignment also satisfies all integer guards on the corresponding edges. In
synchronisation transitions, the resets on the edge with an output-label are per-
formed before the resets on the edge with an input-label. To model urgent syn-
chronisation transitions that should be taken as soon as they are enabled (the
system may not delay), a notion of urgent channels is used. 1-to-many synchro-
nisations are possible using broadcast channels: an edge with synchronisation
label a! emits a broadcast and any enabled edge with synchronisation label a?
synchronises with the emitting automata.

Let u, v, . . . denote clock assignments mapping C to non-negative reals R+.
Even though u and v and N are overloaded (we keep the initial notations in
both formalisms), they are understood according to their context. g |= u means
that the clock values u satisfy the guard g. For d ∈ R+, the clock assignment
mapping all x ∈ C to u(x) + d is denoted by u + d. Also, for r ⊆ C, the clock
assignment mapping all clocks of r to 0 and agreeing with u for the other clocks
in C\r is denoted by [r �→ 0]u. Let ni stand for the ith element of a node vector
n, and n[n′

i/ni] for the vector n with ni being substituted with n′
i.

Real-Time Migration Properties of rTiMoVerified in Uppaal 39

A network state is a pair 〈n, u〉, where n denotes a vector of current nodes of
the network (one for each automaton), and u is a clock assignment storing the
current values of all network clocks and integer variables.

Definition 2. The operational semantics of a timed automaton is a transition
system where states are pairs 〈n, u〉 and transitions are defined by the rules:

• 〈n, u〉 d−→ 〈n, u+ d〉 if u ∈ I(n) and (u+ d) ∈ I(n), where I(n) =
∧
I(ni);

• 〈n, u〉 τ−→ 〈n[n′
i/ni], u

′〉 if ni
g,τ,r−−−→ n′

i, g |= u, u′ = [r �→ 0]u and u′ ∈
I(n[n′

i/ni]);

• 〈n, u〉 τ−→ 〈n[n′
i/ni][n

′
j/nj], u

′〉 if there exist i �= j such that

1. ni
gi,a?,ri−−−−−→ n′

i, nj
gj ,a!,rj−−−−−→ n′

j, gi ∧ gj |= u,
2. u′ = [ri �→ 0]([rj �→ 0]u) and u′ ∈ I(n[n′

i/ni][n
′
j/nj]).

4 Relating rTiMo to Timed Safety Automata

In order to use well-known tools such as Uppaal for the verification of dis-
tributed networks with migration and communication, we establish a relation-
ship between rTiMo and timed safety automata.

Building a timed safety automaton for each located process: Given a component
l[[P]] of an rTiMo network, we associate to it a timed safety automaton A =
〈N,n0, E, I〉 with a local clock x, where n0 = l0, N = {l0}, E = ∅, I = ∅. The
nodes of the associated automata are labelled using the current location of the
located process P (l in this case), and an index such that the nodes are uniquely
labelled in this automaton (we start with the index 0, and increment it when
necessary). Thus, l0 means that we model a located process running at location l
in rTiMo . The components N , E and I are updated depending on the structure
of process P :

– for P = aΔt!〈v〉 then P1 else P ′
1 we have

• N = N ∪ {li+1, li+2};
∗ If P is running at location l, and N contains some indexed nodes l,
namely l0, . . . , li then add li+1 and li+2 to N . The two nodes indicate
the two executions of the located process P , leading to either P1

or P ′
1.

• E = E ∪ {n, x < t, a!, x = 0, li+1} ∪ {n, x == t, τ, x = 0, li+2};
∗ If process P is running at location l, and i > 0 it means that the au-
tomaton already contains some edges, and a process P was launched
from the then or else branch of a process P ′. Since the translation
is made depending on the structure of the processes, it means that
the action leading to P is already modelled in the automaton. If
P ′ = bΔt′ !〈w〉 then P else P ′′ or P ′ = bΔt′ !〈w〉 then P ′′ else P or
P ′ = bΔt′?(x) then P else P ′′ or P ′ = bΔt′?(x) then P ′′ else P or
P ′ = goΔt′ l then P , then the action of P ′ is modelled by an edge
with the last component lk, and thus n = lk.

40 B. Aman and G. Ciobanu

∗ Otherwise, n = l0.
The edge {n, x < t, a!, x = 0, l′i+1} encodes the then branch leading to
process P1, while the edge {n, x == t, τ, x = 0, li+2} encodes the else
branch leading to process P ′

1. Channel a is an urgent channel (commu-
nication takes place as soon as possible).
• I(n) = {x <= t}.
∗ The process should communicate before a maximum of t units of
time have elapsed.

– for P = aΔt?(y) then P1 else P ′
1 we have

• N = N ∪ {li+1, li+2};
∗ If P is running at location l, and N contains some indexed nodes l
(namely l0, . . . , li), then add li+1 and li+2 to N . The two nodes in-
dicate the two executions of the located process P , leading either to
P1 or P ′

1.

• E = E ∪ {n, x < t, a?, {x = 0, y = v}, li+1} ∪ {n, x == t, τ, x = 0, li+2};
∗ If process P is running at location l and i > 0, using a similar
argument as for the output action, it holds that n = lk.
∗ Otherwise, n = l0.

The edge {n, x < t, a?, {x = 0, y = v}, l′i+1} encodes the then branch
leading to process P1, while the edge {n, x == t, τ, x = 0, li+2} encodes
the else branch leading to process P ′

1. In order to use an assignment y = v
on the edge with a?, we impose the condition that channel a can be used
at most once for output actions in the translated rTiMo network. This
requirement reflects somehow the global asynchronicity of distributed
systems (as it is described formally in process calculi).
• I(n) = {x <= t}.
∗ The process should communicate before a maximum of t units of
time have elapsed.

– for P = goΔtl′ then P ′ we have
• N = N ∪ {l′j};
∗ If N contains indexed nodes l′ (namely l′0, . . . , l

′
j−1), then add l′j

to N .
∗ Otherwise, add l′0 to N .

The new node indicates the execution of process P leading to P ′.
• E = E ∪ {n, x == t, τ, x = 0, l′j};
∗ If process P is running at location l and i > 0, using a similar
argument as for the communication actions, it holds that n = lk.
∗ Otherwise, n = l0.

• I(n) = {x <= t}.
∗ The process should leave location n before a maximum of t units of
time have elapsed.

– for P = 0 we have
• N , E and I remain unchanged, and the construction of A stops.

– for P = id(v) we have
• N remains the same;

Real-Time Migration Properties of rTiMoVerified in Uppaal 41

• E = E ∪ {n, x == 0, τ, {x = 0, varid = v}, l0};
∗ If process P is running at location l and i > 0, using a similar
argument as for the communication actions, it holds that n = lk.
∗ Otherwise, n = l0.

• I(n) = {x <= 0}.
∗ The process should leave location n in maximum of 0 units of time.

– for P =P1 | . . . |Pk,k>1, and Pj does not contain operator | at top level, then
• N = N ∪ {li+1};
∗ If P is running at location l, and N contains some indexed nodes l
(namely l0, . . . , li), then add li+1 to N .

• E = E ∪ {n, , a!, {x = 0}, li+1};
∗ If process P is running at location l and i > 0, using a similar
argument as for the communication actions, it holds that n = lk.
We use a new channel labelled a as a broadcast channel, in order to
start at the same time all the parallel processes from P .
∗ Otherwise, n = l0.

The new edge leads to process P1. For each of the other processes Pj ,
j > 1, a new automaton Aj = 〈Nj , nj0, Ej , Ij〉 is constructed, where:
∗ nj0 = l0; Nj = {l0, l1}; Ej = {l0, , a?, {x = 0}, l1}; Ij(l0) = ∅.

This automaton is constructed then recursively using the definition of Pj .
• I(n) = {x <= 0}.
∗ The process has to communicate in maximum of 0 units of time.

Building a timed automaton for each located process leads to the next result
about the equivalence between an rTiMo networkN and its corresponding timed
safety automaton AN in state 〈nN , uN〉 (i.e., (AN , 〈nN , uN 〉). Their transition
systems differ not only in transitions, but also in states; thus, we adapt the
notion of bisimilarity:

Definition 3. A symmetric relation ∼ over TiMo networks and the timed
safety automata, is a bisimulation if whenever (N, (AN , 〈nN , uN 〉)) ∈∼:

– if N
λ−→ N ′, then 〈nN , uN〉 τ−→ 〈nN ′ , uN ′〉 and (N ′, (AN ′ , 〈nN ′ , uN ′〉)) ∈∼ for

some N ′.
– if N

t� N ′, then 〈nN , uN〉 d−→ 〈nN ′ , uN ′〉 and (N ′, (AN ′ , 〈nN ′ , uN ′〉)) ∈∼ for
some N ′, where uN ′ = uN + d.

Having defined bisimulation, we can state our main theorem as follows.

Theorem 1. Given an rTiMo network N with channels appearing only once
in output actions, there exists a timed safety automaton AN with a bisimilar
behaviour. Formally, N ∼ AN .

Proof (Sketch). The construction of the timed safety automaton simulating a
given rTiMo network is presented above. Due to the limitations of Uppaal , we
imposed the requirement of using at most once an output actions in order to
allow the assignment y = v on edges with input labels (as used in the building
of the automaton).

42 B. Aman and G. Ciobanu

A bisimilar behaviour is given by:

• at the start of execution, all clock in rTiMo and their corresponding timed
automata are set to 0;

• the consumption of a go action in a node li is matched by an τ edge obtained
by translation;

• a communication rule is matched by a synchronisation between the edges
obtained by translations;

• the passage of time is similar in both formalisms: in rTiMo the global clock
is used to decrement by d all timers in the network when no action is possible,
while in the timed automata all local clocks are decremented synchronously
with the same value d when no edge can be taken.

Thus, the size of a timed safety automata AN is polynomial with respect to the
size of a TiMo network N , and the state spaces have the same number of states.

Reachability Analysis. One of the most useful question to ask about a timed
automaton is the reachability of a given set of final states. Such final states may
be used to characterise safety properties of a system.

Definition 4. We write 〈n, u〉 −→ 〈n′, u′〉 whenever 〈n, u〉 σ−→ 〈n′, u′〉 for σ ∈
Σ ∪ R+. For an automaton with initial state 〈n0, u0〉, 〈n, u〉 is reachable if and
only if 〈n0, u0〉 →∗ 〈n, u〉. More generally, given a constraint φ ∈ B(C) if 〈n, u〉
is reachable for some u satisfying φ then a state 〈n, φ〉 is reachable.

Invariant properties can be specified using clock constraints in combination
with local properties on nodes. The reachability problem is decidable [5].

The reachability problem can be also defined for rTiMo networks.

Definition 5. We write N −→ N ′ if N
λ−→ N ′ or N

t′� N ′ for actions λ of the
form l′ � l, {v/u}@l, id@l, goΔ0@l, a?Δ0@l or a!Δ0@l. Starting from an rTiMo

network N0, a configuration N1 is reachable if and only if N0 →∗ N1.

The following result is a consequence of Theorem 1.

Corollary 1. For an rTiMo network with channels appearing only once in out-
put actions, the reachability problem is decidable.

Bisimulation. Two timed automata are defined to be timed bisimilar in [5] if
and only if they perform the same action transitions and reach bisimilar states.

Definition 6. A symmetric relation R over the timed automata and the alpha-
bet Σ ∪ R+, is a bisimulation if:

– for all (s1, s2) ∈ R, if s1
σ−→ s′1 for σ ∈ Σ ∪ R+ and s′1, then s2

σ−→ s′2 and
(s′1, s

′
2) ∈ R for some s′2.

Proposition 2. [6] Timed bisimulation is decidable.

In a similar way to our previous approach in [2], we define the bisimulation
over configurations of rTiMo networks.

Real-Time Migration Properties of rTiMoVerified in Uppaal 43

Definition 7. A symmetric relation R over the rTiMo networks and the set
Act of actions, is a bisimulation if:

– for all (N1, N2) ∈ R, if N1
λ−→ N ′

1 for λ ∈ Act and N ′
1, then N2

λ−→ N ′
2 and

(N ′
1, N

′
2) ∈ R for some N ′

2.

– for all (N1, N2) ∈ R, if N1
t� N ′

1 for t ∈ N and N ′
1, then N2

t� N ′
2 and

(N ′
1, N

′
2) ∈ R for some N ′

2.

The following result is a consequence of Theorem 1.

Corollary 2. For two rTiMo networks with channels appearing only once in
output actions, timed bisimulation is decidable.

5 Verifying Properties of rTiMo by Using Uppaal

By virtue of the results presented in the previous section, we can verify real-time
systems corresponding to a subclass of rTiMo networks by using Uppaal . In
general, modelling and verification of real-time systems in Uppaal were pre-
sented in [16]. Uppaal can be used to check temporal properties of networks of
timed safety automata, properties expressed in Computation Tree Logic (CTL).
If φ and ψ are boolean expressions over predicates on nodes, integer variables
and clock constraints, then the formulas have the following forms:

A [] φ - Invariantly φ; A 〈 〉 φ - Always Eventually φ;
E [] φ - Potentially Always φ; E 〈 〉 φ - Possibly φ;
φ � ψ - φ always leads to ψ. This is a shorthand for A [] (φ⇒ A 〈 〉 ψ)

The properties most commonly used in verification of timed systems are E 〈 〉 φ
and A [] φ. They represent safety properties (a specified error can not occur).

The properties A 〈 〉 φ, E [] φ and φ � ψ represent unbounded liveness prop-
erties (used to express and check global progress), and are not commonly used in
Uppaal case studies. Bounded properties are important for timed systems.

Example 2. Using both types of properties, we performed some verifications in
Uppaal for the system presented in Example 1.

• E[]clientcash <= 0
Checks if potentially always on some path clientcash <= 0 is not satisfied.

• A <> till.bank1 imply till.x >= 1
Checks if the till automaton is in the bank node, then the value of the local
clock is >= 1.

• E <> (clientcash == 70)&&(agentcash == 170)&&(bankcash == 60)
Checks if there exists a state containing the configuration of Figure 2.

• A[] not deadlock
Checks that there exists deadlocks. The error is due to state space explosion.

Several other properties of rTiMo systems can be verified by using Uppaal .

44 B. Aman and G. Ciobanu

Fig. 4. Verification in Uppaal

6 Conclusion

When modelling distributed systems it is useful to have explicit notions of lo-
cations, clocks, explicit migrations and resource management. Various process
calculi derived from π-calculus [18] have been proposed to model some of these as-
pects. Various features were introduced over the basic π-calculus: e.g., explicit lo-
cations in distributed π-calculus [14], and explicit migration and timers in timed
distributed π-calculus (tDπ) [11]. TiMo [8] is essentially a simplified version of
tDπ designed to allow appropriate software architecture for implementation [7].
TiMo represents an attempt to bridge the gap between the existing (theoretical)
process calculi and forthcoming realistic languages for multi-agent systems.

Several proposals for real-time modelling and verification are present in the
literature: timed automata [1], timed CSP [20], timed ACP [3], and several timed
extensions of CCS [19,21]. In this paper we defined a formalism called rTiMo

that uses real-time and explicit timeouts, and so is useful for expressing certain
temporal properties of multi-agent systems with migration and time constraints.
In order to illustrate in rTiMo the coordination of migrating agents in time and
space, we adapt the TravelShop example from [9] in which a client attempts to
get a ticket to a predefined destination in a short time and/or at a good price.
Although the syntax of rTiMo is quite close to that of TiMo , its semantics is
different in many aspects: the number of semantic rules, number of clocks, time
nature (continuous or discrete), systems evolution.

We established a formal relationship between rTiMo and timed safety au-
tomata allowing the use of model checking capabilities provided by Uppaal to
verify several temporal properties of distributed networks with migrating and
communicating processes described in rTiMo. The verification performed on
the TravelShop example also validates the rTiMo semantics.

As future work we intend to use this relationship for improvements in rTiMo

(e.g., constraints on integers, lower and upper time bounds) in order to extend
the classes of complex systems that can be modelled and analysed.

Acknowledgements. Many thanks to the reviewers for their useful comments.
The work was supported by a grant of the Romanian National Authority for
Scientific Research, project number PN-II-ID-PCE-2011-3-0919.

Real-Time Migration Properties of rTiMoVerified in Uppaal 45

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

2. Aman, B., Ciobanu, G., Koutny, M.: Behavioural Equivalences over Migrating
Processes with Timers. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE 2012.
LNCS, vol. 7273, pp. 52–66. Springer, Heidelberg (2012)

3. Baeten, J.C.M., Bergstra, J.A.: Real Time Process Algebra. Journal of Formal
Aspects of Computing Science 3(2), 142–188 (1991)

4. Baumann, J., Hohl, F., Radouniklis, N., Rothermel, K., Straβer, M.: Communica-
tion Concepts for Mobile Agent Systems. In: Rothermel, K., Popescu-Zeletin, R.
(eds.) MA 1997. LNCS, vol. 1219, pp. 123–135. Springer, Heidelberg (1997)

5. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–
124. Springer, Heidelberg (2004)

6. Čerāns, K.: Decidability of Bisimulation Equivalences for Parallel Timer Processes.
In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993)

7. Ciobanu, G., Juravle, C.: Flexible Software Architecture and Language for Mobile
Agents. Concurrency and Computation: Practice and Experience 24, 559–571 (2012)

8. Ciobanu, G., Koutny, M.: Modelling and Verification of Timed Interaction and
Migration. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp.
215–229. Springer, Heidelberg (2008)

9. Ciobanu, G., Koutny, M.: Timed Mobility in Process Algebra and Petri Nets.
Journal of Logic and Algebraic Programming 80, 377–391 (2011)

10. Ciobanu, G., Koutny, M.: Timed Migration and Interaction With Access Permis-
sions. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 293–307.
Springer, Heidelberg (2011)

11. Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. Electronic Notes in
Theoretic Computer Science 164(3), 81–99 (2006)

12. Groote, J.F.: Transition System Specifications with Negative Premises. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 332–341. Springer,
Heidelberg (1990)

13. Hennessy, M., Regan, T.: A Process Algebra for Timed Systems. Information and
Computation 117, 221–239 (1995)

14. Hennessy, M.: A Distributed π-calculus. Cambridge University Press (2007)
15. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for

Real-time Systems. Information and Computation 111, 192–224 (1994)
16. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Test-

ing Real-Time Systems Using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

17. Larsen, K.G., Petterson, P., Yi, W.: Uppaal in a Nutshell. International Journal
on Software Tools for Technology Transfer 1(2), 134–152 (1997)

18. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press (1999)

19. Moller, F., Tofts, C.: A Temporal Calculus of Communicating Systems. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer,
Heidelberg (1990)

20. Reed, G.M., Roscoe, A.W.: A Timed Model for Communicating Sequential Pro-
cesses. Theoretical Computer Science 58(1-3), 249–261 (1988)

21. Yi, W., Pettersson, P., Daniels, M.: Automatic Verification of Real-time Commu-
nicating Systems by Constraint-solving. In: International Conference on Formal
Description Techniques, pp. 223–238 (1994)

A Verified Protocol to Implement Multi-way

Synchronisation and Interleaving in CSP

Marcel Vinicius Medeiros Oliveira1,
∗
, Ivan Soares De Medeiros Júnior1,

and Jim Woodcock2

1 Departamento de Informática e Matemática Aplicada, UFRN, Brazil
2 Department of Computer Science, University of York, England

Abstract. The complexity of concurrent systems can turn their devel-
opment into a very complex and error-prone task. The use of formal
methods like CSP considerably simplifies this task. Development, how-
ever, usually aims at reaching an executable program: a translation into
a programming language is still needed and can be challenging. In pre-
vious work, we presented a tool, csp2hc, that translates a subset of CSP
into Handel-C source code, which can itself be converted to produce files
to program FPGAs. This subset restricts parallel composition: multi-
synchronisation and interleaving on shared channels are not allowed. In
this paper, we present an extension to csp2hc that removes these restric-
tions. We provide a performance analysis of our code.

Keywords: concurrency, multi-synchronisation, compilation, protocols.

1 Introduction

Concurrent applications are normally complicated since they consist of many
components running in parallel. This usually yields to a complex and error-
prone development [11]. In order to minimize these problems, formal methods
like CSP [11] have been proposed. They are usually process algebras designed for
describing and reasoning about synchronisation between processes. Furthermore,
phenomena that are exclusive to the concurrent world, like deadlock and livelock,
can be much more easily understood and controlled using such formalisms. The
tools available for these languages increased their success. For CSP, the model-
checker FDR2 [3] provides an automatic check of finite state specifications for
correctness and properties like deadlock and divergence freedom. It accepts a
machine-processable version of CSP, called CSPM [11], which combines an ASCII
representation with a functional language.

Using CSP, we can describe concurrent systems at various levels of abstrac-
tion: specifications, design, and implementation. This allows a stepwise
development in a single framework. Nevertheless, a translation into a practical
programming language is still needed. In order to minimize this gap, it is better
to target languages that directly support the CSP style of concurrency through

∗
Partially supported by INES and CNPq: grants 573964/2008-4 and 560014/2010-4.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 46–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Verified Protocol 47

channels, such as occam-2 [5] and Handel-C1, or packages that add these features
such as JCSP [13] for Java, CCSP [6] for C, and C++CSP [2] for C++.

This translation is usually non-trivial and rather problematic. In [9], we pre-
sented a methodology for developing verified concurrent applications in which
developers: (i) specify the system’s concurrent behaviour in CSP and verify its
correctness and further properties using tools like FDR2; (ii) gradually refine it
verifying the correctness of the transformation (again, using tools like FDR2);
and finally, (iii) automatically translate the CSPM implementation into Handel-C
code, which can itself be compiled into a Hardware Description Language (HDL)
to program Field-Programmable Gate Arrays (FPGAs).

The tool that supports the translation from CSPM into Handel-C, csp2hc,
accepts a subset of CSPM that includes SKIP, STOP, sequential and parallel com-
position, recursion, prefixing, external and internal choice, alternation, guarded
processes, datatypes, constants, functions, and some expressions. The translation
of some of these constructs, however, was restricted. For instance, due to subtle
differences in Handel-C’s concurrency model, the translation of CSPM parallel
composition into Handel-C’s par construct was only possible if: (i) all channels
shared by the processes were in the synchronisation set (e.g. cs in the defini-
tion of sharing parallel composition at Page 48); and (ii) there was no multi-
synchronisation (more than two processes synchronising on a given channel). In
this paper, we present an approach to remove these restrictions.

Translations of process algebras into programming languages have already
been presented. They target different programming languages like occam-2 [5],
Ada [1], Java and C. Some of them have no tool support, whilst others have
limited tool support. None of them, however, achieved a comprehensive support
of CSP parallel composition as we do here. For instance, [4] proposes an auto-
matic translation from CSP# [12] into code. They, however, only consider inter-
leaving: parallel composition and multi-synchronisation are left aside. In [8], we
presented a translation strategy from Circus [7] to Java. This strategy included
the treatment of multi-synchronisation and its basic ideas are used here.

In Section 2, we introduce CSPM, Handel-C, and the previous version of csp2hc.
Section 3 describes the approach to implement CSP model of parallelism in
Handel-C. In Section 4, we present a performance analysis of the translation and
generated code. Finally, our conclusions and future work are in Section 5.

2 Background

In this section, we describe csp2hc’s previous version and the languages involved
in the translation focusing on the features used in the context of this paper.

2.1 CSP

CSP is a process algebra that can be used to describe systems composed by
interacting components, which are independent self-contained processes with

1 At http://www.mentor.com/products/fpga/handel-c/

http://www.mentor.com/products/fpga/handel-c/

48 M.V.M. Oliveira, I.S. De Medeiros Júnior, and J. Woodcock

--!!mainp SYSTEM
--!!int_bits 2
datatype ALPHA = a | b
datatype ID = Lt.ALPHA | unknown
channel enter, leave
channel cash, ticket, change : ID

--!!channel enter out within CAR
--!!channel leave out within CAR
CAR = enter -> leave -> CAR

--!!channel enter in within MACHINE
--!!channel cash in within MACHINE
--!!channel ticket out within MACHINE
--!!channel change out within MACHINE
MACHINE =

enter -> cash?id -> ticket.id ->
change.id -> MACHINE

--!!channel enter in within CUST
--!!channel leave in within CUST
--!!channel cash out within CUST
--!!channel ticket in within CUST
--!!channel change in within CUST
--!!arg id ID within CUST
CUST(id) =
(enter -> cash!id ->
(ticket.id -> change.id -> SKIP
[]change.id -> ticket.id -> SKIP));
leave -> CUST(id)

CUSTOMERS =
CUST(Lt.a) ||| CUST(Lt.b) ||| CUST(unknown)

PAID_PARKING = (CUSTOMERS
[| {|cash,ticket,change,enter|} |]
MACHINE) \ {|cash,ticket,change|}

SYSTEM = CAR [| {| enter,leave |} |] PAID_PARKING

Fig. 1. CSPM Example: a Paid Car Park

interfaces that are used to interact with the environment [11]. Most of the CSP
tools, like FDR2 and ProBE, accept a machine-processable CSP, called CSPM.

The two basic CSPM processes are STOP and SKIP; the former deadlocks, and
the latter does nothing but terminate. The prefixing a -> P is initially able to
perform only the event a; afterwards it behaves like process P. A boolean guard
may be associated with a process: g & P behaves like P if the predicate g is true;
it deadlocks otherwise. The operator P1;P2 combines P1 and P2 in sequence. The
external choice P1[]P2 initially offers events of both processes. The performance
of the first event or termination resolves the choice in favour of the process that
performs either of them. The environment has no control over the internal choice
P1|~|P2, in which the choice is resolved internally. The sharing parallel compo-
sition P1[|cs|]P2 synchronises P1 and P2 on the events in the synchronisation
set cs; events that are not listed occur independently. The alphabetised parallel
composition P1[|cs1|cs2|]P2 allows P1 and P2 to communicate in the sets cs1

and cs2, respectively; however, they must agree on events in cs1∩cs2. Processes
composed in interleaving P1|||P2 run independently. The event hiding operator
P\cs encapsulates the events that are in cs. Finally, P[[a<-b]] behaves like P ex-
cept all occurrences of a in P are replaced by b. The CSPM interruption, untimed
timeout, exceptions, linked parallel, and replicated operators are omitted here;
they are not accepted by csp2hc.

By way of illustration, Figure 1 presents the specification of a parking spot.
It contains special comments called directives (--!!), which give extra informa-
tion to csp2hc, such as: information on whether simple synchronisation channels
are input channels or output channels within a process; the types of processes
arguments; the main behaviour of the system; the length of integers used in the
system; and the moment in which internal choices should be resolved.

The process PAID PARKING describes a parking spot with a pay and display
machine that accepts cash, and issues tickets and change. First, we declare a
datatype ALPHA: variables of type ALPHA can assume either value a or b. The
next datatype, ID, represents identifications: the constructor Lt receives an ALPHA

value and returns a value of ID (for example, Lt.a); another possibility is the

A Verified Protocol 49

unknown ID. After receiving the cash, the machine issues tickets and gives the
change. The process CUST models a customer: after entering the parking spot, a
customer must interact with the ticket machine: he inserts the cash into it, picks
the ticket and the change in any order, and finally, leaves the parking spot.
Customers have unique identification that guarantees that tickets and changes
are only issued to the customer who inserted the cash. The identifications are
used to instantiate each customer in process CUSTOMERS, which is defined as the
interleaving of all customers. The paid parking spot is modelled by PAID PARKING

as a parallel composition of all customers and a machine; they synchronise on
cash, ticket, change, and enter; all but enter are encapsulated. Finally, the main
behaviour of the system, SYSTEM, is the parallel composition between the CAR and
the parking. Using FDR2, we can verify that the SYSTEM is deadlock free and
livelock free. Furthermore, using FDR2’s refinement check, we can also verify
that the SYSTEM satisfies the abstract specification that only requires that, after
entering, a customer must leave before the next customer enters.

Despite being a simple example, this example was not accepted by the previous
version of csp2hc. This is due to the existence of both (i) shared channels among
the customers (i.e enter) that are not in the synchronisation channel set since
customers are interleaved, and (ii) multi-synchronisation of a customer, the CAR
and the MACHINE on channels enter and leave.

2.2 Handel-C

Handel-C is a procedural language, rather like occam, but with a C-like syn-
tax. Its main purpose is the compilation into netlists to configure FPGAs or
ASICs (Application-Specific Integrated Circuits). Although targeting hardware,
it is a programming language with hardware output rather than a hardware
description language. This makes Handel-C different from VHDL. A hardware
design using Handel-C is more like programming than hardware engineering; this
language is developed for programmers who have no hardware knowledge at all.

Handel-C offers a subset of C that includes common constructs like structures,
functions, macros, arrays, pointers, logical operators (and their bitwise counter-
parts), and control flow constructs like while and for loops, if and switch. How-
ever, it does not include recursion and processor-oriented features like floating
point arithmetic, which is supported through external libraries.

Handel-C extends C by providing constructs for describing parallel behaviour.
The parallel construct par{P; Q;} executes instructions P and Q in parallel, which
may communicate via channels. Its semantics corresponds to the CSP alphabe-
tised parallel P [|α(P) || α(Q)|] Q, where α(P) and α(Q) denotes all communi-
cations of P and Q, respectively. The prialt statement selects one of the channels
that are ready to communicate, and communicates via this channel. The only
data type allowed in Handel-C is int, which can be declared with a fixed size.

By way of illustration, we present a simple BUFFER that receives an integer
value through a channel input and outputs it through channel output. This
buffer can be decomposed into a process IN that receives an integer value and
passes it through channel middle to another process OUT that finally outputs this

50 M.V.M. Oliveira, I.S. De Medeiros Júnior, and J. Woodcock

value. A possible CLIENT can interact with the BUFFER by sending an integer value
via channel input and receiving it back via channel output. The Handel-C code
presented below implements this interaction.

set clock = external "clock1";
chan int 8 input, output, middle;
void IN(){ int 8 v; while(1) { input?v; middle!v; } }
void OUT(){ int 8 v; while(1) { middle?v; output!v; } }
void BUFFER(){ par{ IN(); OUT(); } }
void CLIENT(){ int 8 v; input!10; output?x; }
void main(){ par { BUFFER(); CLIENT(); } }

We define an external clock named clock1, and declare the channels used in
the system. The Handel-C function IN implements the process of same name. It
declares a local variable v and starts an infinite loop: in each iteration, it receives
a value via channel input, assigns it to v, and writes its value on middle. The
function OUT is very similar; however, it receives a value via middle and writes it
on output. The BUFFER is defined as the parallel composition of IN and OUT. The
main function is the parallel composition of the BUFFER with the CLIENT.

2.3 The Translator csp2hc

The automatic translation from CSPM to Handel-C is straightforward for some
CSPM constructs because Handel-C provides constructs that facilitate the de-
scription of parallel behaviour based on CSP concepts. The version of csp2hc
presented in [9] mechanised the translation of a subset of CSPM to Handel-C,
which included SKIP, STOP, sequential and parallel composition, recursion, pre-
fixing, external and internal choice, alternation, guarded processes, datatypes,
constants, functions, and some expressions. It, however, restricted the use of
some of these constructs like, for instance, parallel composition.

The implementation of concurrency in Handel-C differs from the CSP concepts.
Handel-C has a degenerate kind of multi-way synchronisation, in which one writer
and multiple readers can take part, but no participation control takes place: if
just one reader and the writer are ready for communicating the synchronisation
happens (the multi-synchronisation is not enforced like in CSP). For this reason,
the translation of CSPM parallel composition into Handel-C’s par construct was
restricted to cases in which there were no multi-way synchronisation, and shared
channels between two processes composed in parallel were in the synchronisation
channel set of the composition. This guaranteed that processes only synchronised
on multi-shared channels when all parts involved were willing to synchronise on
that channel, and that processes did not synchronise on channels that were not
in the synchronisation channel set.

The extension of csp2hc to accommodate multi-synchronisation and interleav-
ing on shared channels is not trivial. The former requires the implementation
of a centralised protocol in which a controller determines when the synchroni-
sation is allowed to happen and the latter requires the translation of renaming.
In the next section, we present the results that made it possible to deal with
multi-synchronisation and interleaving on shared channels within csp2hc.

A Verified Protocol 51

3 Parallelism in csp2hc

The CSP parallel composition cannot be directly translated into Handel-C’s par-
allel constructor, par, for two reasons: (1) par does not enforce synchronisation
between multiple parts (multi-synchronisation); and (2) par does not prevent
the synchronisation on a channel if processes have access to the channel. In our
example, such näıve translation would contain the following Handel-C code.

void PAID_PARKING(){ par{ CUSTOMERS(); MACHINE(); } }
void SYSTEM(){ par{ CAR(); PAID_PARKING(); } }
void main(){ SYSTEM(); }

This implementation, however, is wrong because it does not prevent customers
synchronising on enter and does not enforce the multi-synchronisation on enter

between the CAR, the MACHINE, and one of the customers. In this section, we
describe the approach used in csp2hc to accomplish this behaviour.

Our approach has two restrictions that are automatically verified by csp2hc.
The first restriction guarantees communications on synchronised channels by
requiring the existence of exactly one writer for every channel that is being shared
in parallel compositions. For example, c?x -> SKIP [|{|c|}|] c?y -> SKIP is not
accepted by the approach. Its translation would result in a code in which both
parallel branches are reading on a channel, hence, waiting to some other process
to write on it. This would characterise a deadlock in the implementation that
does not correspond to the specified behaviour in CSPM, which does not deadlock
and terminates. The second restriction guarantees that every parallel branch is
either a reader or a writer to every channel, but not both. By way of illustration,
c!0 -> c?x -> SKIP [| {| c |} |] c?x -> c?y -> SKIP is not accepted by the
approach. This process satisfies the first restriction but not the second restriction
because the left branch treats c as both an output and an input. In this example,
a similar deadlock state is reached in the Handel-C code.

As we discuss in Section 4, the solution follows the expected performance
results discussed in [14]. The computational arrangements for allowing any of
the synchronising processes to back off (which CSP allows) is even more costly
than allowing both parties to back off during channel synchronisation. For this
reason, we only use the solutions presented here if there are multi-synchronised
channels or if we need to enforce interleaving of channels. Otherwise, the parallel
composition is directly translated as presented in [9].

The solution for multi-synchronisation is based on a protocol we presented
in [15] that controls the accesses to the channels in a parallel composition and
the solution to enforce the interleaving is based on CSPM renaming. Both so-
lutions use the concept of parallel branch that we describe in the sequel. Their
application directly affects the translation of prefixing, external choice and the
arguments of the processes within the system, which are slightly changed.

3.1 Analysis of Parallel Compositions

Our tool starts the branch identification from the main process given in the
directive --!!mainp (in our example SYSTEM) and sets an identification to each

52 M.V.M. Oliveira, I.S. De Medeiros Júnior, and J. Woodcock

Fig. 2. Example Branches Identification

one of the running parallel branches. The result of this identification process in
our example is presented in Figure 2.

The implementation of the concept of branch reuses the solution for datatypes
presented in [9] by considering an implicit datatype BRANCH = B 0 | ... | B 4.
As a result, we have the following extra lines of code.

#define BRANCH unsigned int 3
#define BR_0 0
...
#define BR_4 4

The translation of a parallel branch considers the current identification of
the branch being translated: every process has an extra argument that identifies
the branch from which it has been invoked. Our tool translates the left branch
first and, before translating the right branch, it updates the current branch
identification (BR ID) by incrementing it with the number of sub-branches of the
left branch. We have the following translation for the main process.

void main(){ BRANCH BR_ID; BR_ID = 0; SYSTEM(BR_ID+0); }
inline void SYSTEM(BRANCH BR_ID){ par{ {CAR(BR_ID+0); }; { PAID_PARKING(BR_ID+1); } } }

In the main process, we declare BR ID and initialise it to zero. The SYSTEM behaves
like a parallel composition between CAR and PAID PARKING; they are parametrised
by the branch identification. The translation of CAR is the first one, hence, the
value BR ID + 0 is used as argument. Nevertheless, this process itself is a branch;
hence, the value BR ID + 1 is used as argument to invoke PAID PARKING. The
translation of processes PAID PARKING and CUSTOMERS though are slightly different
as we can see in the code below.

inline void PAID_PARKING(BRANCH BR_ID) {
par{ {CUSTOMERS(BR_ID+0);} ; {MACHINE(BR_ID+3);} } }

inline void CUSTOMERS(BRANCH BR_ID) {
par{ {CUST(BR_ID+0,ID_Lt_LUT[a]);};

{par{ {CUST(BR_ID+1,ID_Lt_LUT[b]);}; {CUST(BR_ID+2,unknown);} };} } }

In the translation of PAID PARKING, the process MACHINE is given the local vari-
able BR ID incremented by three because the left branch, CUSTOMERS, has three
branches. In the translation of CUSTOMERS, the first invocation to CUSTOMER does
not increment the BR ID; the following invocations, though, do increment it.

The branches identification is used in an analysis of the parallel structure
of the system that results on a list of synchronisation for each channel. In
our implementation, a synchronisation is a set that contains the identification
of all branches that take part in the synchronisation. By way of illustration,

A Verified Protocol 53

in our example, there are three possibilities of synchronisation on enter: the
CAR (BR 0) and the MACHINE (BR 4) take part in all of them; the third (and last)
element is one of the clients. The list of synchronisations for the channel enter
is 〈{BR 0, BR 4, BR 1}, {BR 0, BR 4, BR 2}, {BR 0, BR 4, BR 3}〉. Similar mappings are created
for each individual channel.

The branches identification and the synchronisation list play an important role
in both solutions presented in this paper: the multi-synchronisation protocol and
channel interleaving described in Sections 3.2 and 3.3 that follow. A synchroni-
sation whose cardinality is greater than two characterises a multi-synchronised
channel and a synchronisation list with more than one element indicates the
need to enforce the interleaving on that channel.

csp2hc’s analysis of the parallel structure is based on the channels rather than
on the events. For this reason, the translation of some specifications might use the
solutions presented in Sections 3.2 and 3.3 unnecessarily. For instance, the cus-
tomers are composed in interleaving and our strategy uses the solution presented
in Section 3.3 to enforce the interleaving on ticket because all customers use
this channel. Nevertheless, this is not necessary because the synchronisation on
ticket is parameterised by the customers identification. The translation of such
channels uses an array of channels whose size is defined by the cardinality of the
channel type. Each element of the array is a different channel that corresponds
to a different value. Hence, despite using the same channel, different customers
never synchronise (CUST(unknown) and CUST(Lt.a) work on ticket[unknown] and
ticket[Lt a]). Although being semantically correct, the use of the protocol adds
performance costs (see Section 4) unnecessarily. An optimisation to remove this
unneeded use of the protocol is in our research agenda. It requires a static analy-
sis of CSPM expressions that allows comparing events rather than only channels.

3.2 The Multi-synchronisation Protocol

In [15], we used the Circus refinement calculus to develop a protocol that imple-
ments an abstract multi-way synchronisation using only pairwise synchronisa-
tion: each multi-synchronised channel has a central controller and references to
this channel are implemented as a client of this controller. In what follows, we
extend the protocol from [15] by allowing both multi-synchronised channels and
interruptions (possibly carrying values) to take part in external choices.

Controllers. The controllers are implemented as an infinite loop in which it
iteratively runs a two-phase commitment protocol described later in this section.
Hence, termination of the controller needs to be guaranteed by external man-
agers. The first one, PManager, monitors the main behaviour of the system and
communicates its termination to the controllers’ manager using endManager.

inline void PManager() { BRANCH BR_ID; BR_ID = 0; SYSTEM(BR_ID+0); endManager!syncout;}

The controllers’ manager (CManager) receives this communication and propa-
gates it to each controller MSyncController i using channel end controller i .
Each client receives message from the controller on channel fromSync and sends

54 M.V.M. Oliveira, I.S. De Medeiros Júnior, and J. Woodcock

Fig. 3. Controller Activity Diagram

message to the controller on channel toSync. A controller has reference point-
ers to two arrays of channels fromSync[] and toSync[]. These arrays contain all
controller-client communication channels. They are used as argument in each
controller’s instantiation. We present below the controllers’ manager of a system
with two multi-synchronised channels A and B.

inline void CManager (){
chan SYNC end_controller_A; chan SYNC end_controller_B;
par{ seq{ endSystem?syncin;

par{ end_controller_A!syncout; end_controller_B!syncout; }; };
MSyncController_A(&toSync_A[0], &fromSync_A[0] , &end_controller_A);
MSyncController_B(&toSync_B[0], &fromSync_B[0] , &end_controller_B); }; }

The Handel-C main function is the parallel composition of both controllers.

void main(){ par{ {PManager();} ; {CManager();} } }

Handel-C’s prialt construct is used in the implementation of the controller
to offer a choice among various channels. This construct, however, cannot be
changed dynamically because Handel-C requires all choices to be statically de-
fined. For this reason, our Handel-C implementation of the protocol provides a dif-
ferent version of the controller for each possible number of multi-synchronisation
parts. The behaviours of these versions are almost identical; they only differ in
the number of elements in the arrays of channels that are offered in the choices.
This is due to the complexity and length. We refrain from presenting the de-
tails of the resulting code, which can be found at the project webpage2. In what
follows, we informally described the protocol workflow.

In Figure 3, we present the controllers’ activity diagram. It can be divided into
three phases whose composition is presented below: subscription, commitment
and synchronisation. Only in some of these phases, the controller allows clients
to withdraw from the synchronisation.

2 Project webpage at http://www.dimap.ufrn.br/~marcel/research/csp2hc/

http://www.dimap.ufrn.br/~marcel/research/csp2hc/

A Verified Protocol 55

Subscribe The controller waits for the clients to indicate their intention to
synchronise on the channel (subscribe). A local countdown controls
the loop that implements the corresponding tail recursion in the
original CSP implementation of the protocol. When all clients have
subscribed, the controller moves to the commitment phase. While
receiving subscriptions, if the controller receives an indication to
terminate, it does so. The controller does not need to broadcast
the withdraw because a termination signal will only arrive when
the clients have terminated.

Commit The controller asks all clients to commit to the synchronisation and
receives answers from all of them. If all clients answer positively,
the controller broadcasts a confirmation to all clients and moves to
the synchronisation phase.

Sync The controller receives the communication value from the writer
and broadcasts this value to all other clients. The controller recurses
and goes back to the initial state of the subscription phase.

Withdraw During the subscription phase, if a client withdraws, the controller
acknowledges the signal, increments the countdown and keeps re-
ceiving signal from other clients. If, however, a client withdraws
in the commitment phase, the controller broadcasts the withdraw
and goes back to the subscription phase. Nevertheless, it expects
new signals only from those clients that have withdrawn. Hence,
the countdown is set to the difference between the total number of
clients and the number of clients that have withdrawn.

Clients. At the other end of the protocol, we have the multi-synchronisation
clients, which are used in the translation of the processes from the original CSP
specification. In this translation, however, communications and choices that in-
volve multi-synchronised channels are replaced by an invocation to a client’s
execution. The client offers all channels involved in the choice possibly inter-
acting with different controllers. Its execution terminates only when a success-
ful communication takes place. For simple communication, the termination of
the client’s execution indicates a successful multi-synchronisation. For external
choices, however, the termination of the client returns an identification of the
communication (either multi-synchronised or not) that happened. The behaviour
of the process after this communication depends on this information.

In Figure 4, we present the client’s activity diagram. Its behaviour can also be
divided into the phases of subscription, commitment and synchronisation. The
client’s phases are composed as follows.

Subscribe The client sends a subscription to the multi-synchronisation con-
troller. It is possible, though, that a client is involved in many
multi-synchronisations. In such cases, this signal is sent to all the
corresponding controllers. The client waits to receive a confirma-
tion request from one of the controllers. When such a signal arrives,
it moves to the next phase.

56 M.V.M. Oliveira, I.S. De Medeiros Júnior, and J. Woodcock

Fig. 4. Clients Activity Diagram

Commit The client commits to communicating with the controller and re-
frains from communicating on other channels. The client is not
allowed to withdraw. It receives from the controller either a confir-
mation or a withdraw. If the former is received, the client moves to
the synchronisation phase.

Sync If the client is the writer, it sends the communication value to the
corresponding controller. If, however, the client is a reader, it re-
ceives this value from the controller. Finally, it sends a withdraw sig-
nal to all other controllers, terminates and returns an indication of a
successful communication on the corresponding multi-synchronised
channel.

Withdraw During subscription, non-multi-synchronised channels (interrup-
tions) may also happen. In such cases the client sends a withdraw to
all controllers that are interacting with it, terminates, and returns
a successful communication on the interruption. In the commitment
phase, if the controllers sendswithdraws, the client returns to the sub-
scriptionphase. It, however, does not send anewsubscriptionbecause
the controller is already aware of its intention.

3.3 Forced Interleaving

As explained in Section 3, a näıve translation of our example would result in an
incorrect implementation because it would not prevent customers to synchronise
on enter. In this section we present a strategy that transforms the specification
in a correct manner to enforce the interleaving on enter between the customers.

The strategy is based on the synchronisation information described in Sec-
tion 3.1 and makes use of CSP renaming. The main idea is to apply the trans-
formation that follows at the source level before the actual compilation. The
transformation consists of the following phases: (1) Definition of each branch’s
renaming for each channel; (2) Creation of renamed copies of the branches;
(3) Translation of the extended specification. In what follows, we present a de-
tailed description of each of these phases.

In the definition of each branch’s renaming, csp2hc defines what re-
naming must be applied to each individual branch. Formally, for every channel c

A Verified Protocol 57

and branch b in the system, the renaming [[c <- c i]] must be applied to
b if, and only if, the i-th element of the synchronisation list contains b. For
instance, processes CAR (BR 0) and MACHINE (BR 4) take part in all synchronisation
of channel enter; the renaming [[enter <- enter 0, enter <- enter 1, enter

<- enter 2]] needs to be applied to them. On the other hand, each client takes
part in only one synchronisation on enter. For example, CUST(Lt.a) (BR 1) needs
to be renamed using [[enter <- enter 0]]. The renaming definition of each
branch is done in an identical manner for all other channels in the system.

In the creation of renamed copies of the branches, the original specifi-
cation is extended with the declaration of the new channels and the definition
of renamed copies of all processes. The copies are needed because a process may
be instantiated in different branches requiring different renamings. In our ex-
ample, we have three renamed copies of CUST (one for each instantiation), and
one renamed copy of every other process in the system. The new channels are
also included in the synchronisation channel sets in which the original channel
is present. For conciseness, we present below only the changes related to enter.
Our example, however, also renames channels leave, cash, ticket, and change.

CAR_RN0 = CAR [[enter <- enter_0, enter <- enter_1, enter <- enter_2, ...]]
MACHINE_RN0 = MACHINE [[enter <- enter_0, enter <- enter_1, enter <- enter_2, ...]]
CUST_RN0(id) = CUST(Lt.a)[[enter <- enter_0, ...]]
CUST_RN1(id) = CUST(Lt.b)[[enter <- enter_1, ...]]
CUST_RN2(id) = CUST(unknown)[[enter <- enter_2, ...]]
CUSTOMERS_RN0 = CUST_RN0(Lt.a) ||| CUST_RN1(Lt.b) ||| CUST_RN2(unknown)
PAID_PARKING_RN0 = (CUSTOMERS_RN0

[| {|enter,enter_0,enter_1,enter_2,cash,...,ticket,...,change,...|} |]
MACHINE_RN0) \ {|cash,...,ticket,...,change,...|}

SYSTEM_RN0 = CAR_RN0 [| {| enter,enter_0,enter_1,enter_2,leave,... |} |] PAID_PARKING_RN0

The extended specification is finally translated resulting in an implementation
that correctly implements multi-synchronisation and interleaving.

The translation of the extended specification follows the strategy from [9]
extended with multi-synchronisation as discussed in Section 3.2. Hence, this
translation naturally deals with multi-synchronised channels like enter 0. A fur-
ther extension needed to the original strategy presented in [9] was the translation
of renaming explained below.

The translation of functional renaming (channels are renamed once) is rather
simple: the original channel is simply replaced by the new channel. For example,
CUST RN0(id) is translated as CUST(id) but replaces enter to by enter 0.

The translation of non-functional renaming is slightly more elaborate. In these
cases, a channel is renamed to more than one new channel, like in CAR RN0.
The result of such translations replaces references to the original channel to an
external choice between all new channels. By way of illustration, we present
below the specification that corresponds to the translation of CAR RN0.

CAR_RN0 = (enter_0 -> SKIP [] enter_1 -> SKIP [] enter_2 -> SKIP);
(leave_0 -> SKIP [] leave_1 -> SKIP [] leave_2 -> SKIP); CAR_RN0

It is important to emphasize that, as expected, the external environment is
oblivious of the renaming used in our strategy. This is achieved by forbidding
channels that are used to communicate with the environment (marked as buses

58 M.V.M. Oliveira, I.S. De Medeiros Júnior, and J. Woodcock

Fig. 5. Experiments Results

using directives) to be interleaved. Hence, the interleaved channels are not visible
to the environment and their renaming does not affect the system’s interface.
The overall resulting code can be found at the project’s webpage.

3.4 Formalisation

In [15], we presented a calculational approach to prove the correctness of a
protocol for multi-synchronised channels that are not part of an external choice
and do not communicate values. The protocol extension presented here accepts
both multi-synchronised channels and interruptions (possibly carrying values) in
external choices. A relatively simple adaptation of the proof from [15] guarantees
the validity of our extension.

Using FDR2, we also verified that a specification with multi-synchronised
channels and interruptions being offered in a choice is refined by its correspond-
ing instance of the multi-synchronisation protocol. This verification ensures the
correctness of the protocol for a comprehensive instance of the problem with
bounded channel types. The same approach was used to ensure the correctness
of the translation of interleaved channels.

4 Experiments

In our experiments, we translated simple CSPM specifications containing multi-
synchronised and interleaved channels and compiled the resulting Handel-C code.
The experiments were executed on an Intel i3, 2.53GHz, with 3GB RAM, run-
ning Windows 7 (64 bits). We considered the translation time and dimensions
of the compiled code like number of lines of code (in thousands - KLOC) and

A Verified Protocol 59

the number of NAND gates (NANDs) and Flip Flops (FFs). The experiments
were executed with an increasing number of processes taking part in the multi-
synchronisation and interleaving, and we monitored the growth rate of the col-
lected data. These rates were almost identical for the number of NANDs and
FFs; hence, we omit below the results on the number of FFs.

Figure 5 presents the results of the experiment. For multi-synchronisation,
they presented an exponential growth in the translation time, which enforces
csp2hc users to make limited use of this feature. The growth rate of the gener-
ated code and its compilation, however, proved to be linear. This indicates the
practical usefulness of the protocol on a large scale. Nevertheless, optimisation
in the translation process is essential. The results for interleaving presented a
linear growth rate and allowed us to consider a much larger number of processes.
In these experiments, the growth rates of the generated code and its compilation
were linear indicating the scalability of our solution.

5 Conclusions

In [9], we presented a translation from CSPM to Handel-C and a tool that au-
tomates this translation. They foster a methodology that starts from a CSPM

specification, which is verified, gradually refined, and automatically translated
into Handel-C code. The results presented here provide a further step towards
providing a framework that fully supports the development of verified hardware.

Previous versions of csp2hc supported a useful subset of CSP, but imposed
restrictions on parallel composition: its translation was allowed only if channels
shared between the processes were in the synchronisation set and not multi-
synchronised. In this paper, we present translation strategies to both limitations.
Although some conditions are still required, we considerably extend the trans-
lation strategy of csp2hc by providing means to translate multi-synchronisation
and interleaving as those of the example presented in Figure 1.

A relatively simple adaptation of the proof of the protocol we used as a basis
presented in [15] guarantees the validity of our extensions. We have also veri-
fied that an abstract specification with various multi-synchronised channels and
interruptions being offered in a choice is refined by its instance of the multi-
synchronisation protocol. The same approach has been used to ensure the cor-
rectness of the translation strategy of interleaved channels.

Using csp2hc, we are able to translate some of the classical CSPM prob-
lems (e.g. the dining philosophers) including many of the examples provided
with the FDR2 distribution and a complex specification provided by our in-
dustrial partner that involves multi-synchronisation and interleaving. There are,
however, still optimisations and extensions to be done in csp2hc.

The experiments demonstrated the feasibility of the multi-synchronisation
protocol for large networks. The translation, however, presented an exponential
growth in time. For this reason, the current translation of multi-synchronisation
is feasible only for small networks (up to 11 in our example). An optimisation in
the translation process is essential and left as future work. The investigation of

60 M.V.M. Oliveira, I.S. De Medeiros Júnior, and J. Woodcock

the performance of a purely distributed protocol [10] is in our research agenda.
Furthermore, in a near future, we will also address an optimisation to remove
the unneeded use of the extensions discussed in this paper.

Specifications not accepted by csp2hc need to be manually transformed. This
transformation is often possible and can be verified using FDR2. A complete
automatic translation from CSPM to Handel-C requires the translation of further
CSPM constructs and expressions, which includes FDR2’s functional language.

References

1. Burns, A., Wellings, A.: Concurrency in Ada, 2nd edn. Cambridge University Press
(November 1997)

2. Brown, N., Welch, P.: An Introduction to the Kent C++CSP Library. In: Broenink,
J.F., Hilderink, G.H. (eds.) Communicating Process Architectures 2003, pp. 139–
156 (September 2003)

3. Formal Systems Ltd. FDR: User Manual and Tutorial, version 2.82 (2005)
4. Lin, S.-W., Liu, Y., Hsiung, P.-A., Sun, J., Dong, J.S.: Automatic generation of

provably correct embedded systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012.
LNCS, vol. 7635, pp. 214–229. Springer, Heidelberg (2012)

5. Hinchey, M.G., Jarvis, S.A.: Concurrent Systems: Formal Development in CSP.
McGraw-Hill, Inc., New York (1995)

6. McMillin, B., Arrowsmith, E.: CCSP-A Formal System for Distributed Program
Debugging. In: Proceedings of the Software for Multiprocessors and Supercomput-
ers, Theory, Practice, Experience, Moscow, Russia (September 1994)

7. Oliveira, M.V.M.: Formal Derivation of State-Rich Reactive Programs using Circus.
PhD thesis, Department of Computer Science, University of York (2006)

8. Oliveira, M., Cavalcanti, A.: FromCircus to JCSP. In: Davies, J., Schulte, W., Bar-
nett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 320–340. Springer, Heidelberg
(2004)

9. Oliveira, M., Woodcock, J.: Automatic Generation of Verified Concurrent Hard-
ware. In: Butler, M., Hinchey, M., Larrondo-Petrie, M.M. (eds.) ICFEM 2007.
LNCS, vol. 4789, pp. 286–306. Springer, Heidelberg (2007)

10. Parrow, J., Sjödin, P.: Designing a multiway synchronization protocol. Computer
Communications 19(14), 1151–1160 (1996)

11. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall (1998)

12. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs for
system modeling and verification. In: Proceedings of the Third IEEE International
Symposium on Theoretical Aspects of Software Engineering, pp. 127–135. IEEE
Computer Society, Washington, DC (2009)

13. Welch, P.H.: Process oriented design for Java: concurrency for all. In: Arabnia,
H.R. (ed.) Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, pp. 51–57. CSREA Press (June 2000)

14. Welch, P.H., Wood, D.C.: Higher Levels of Process Synchronisation. In: Bakkers,
A.W.P. (ed.) Proceedings of WoTUG-20: Parallel Programming and Java, pp. 104–
129 (1997)

15. Woodcock, J.C.P.: Using Circus for Safety-Critical Applications. Electronic Notes
Theoretical Computer Science 95, 3–22 (2004)

From Extraction of Logical Specifications
to Deduction-Based Formal Verification

of Requirements Models

Radosław Klimek

AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland

rklimek@agh.edu.pl

Abstract. The work relates to formal verification of requirements mod-
els using deductive reasoning. Elicitation of requirements has significant
impact on the entire software development process. Therefore, formal
verification of requirements models may influence software cost and re-
liability in a positive way. However, logical specifications, considered as
sets of temporal logic formulas, are difficult to specify manually by inex-
perienced users and this fact can be regarded as a significant obstacle to
practical use of deduction-based verification tools. A method of building
requirements models, including their logical specifications, is presented
step by step. Requirements models are built using some UML diagrams,
i.e. use case diagrams, use case scenarios, and activity diagrams. Orga-
nizing activity diagrams into predefined workflow patterns enables au-
tomated extraction of logical specifications. The crucial aspect of the
presented approach is integrating the requirements engineering phase
and the automatic generation of logical specifications. Formal verifica-
tion of requirements models is based on the deductive approach using the
semantic tableaux reasoning method. A simple yet illustrative example
of development and verification of a requirements model is provided.

Keywords: requirements engineering, formal verification, deductive rea-
soning, use case diagrams, use case scenarios, activity diagrams, workflows
patterns, temporal logic, logical specifications, semantic tableaux method.

1 Introduction

Software modeling enables better understanding of the domain problem and
of the system under development. Requirements engineering is an important
part of software modeling. Requirements elicitation should lead into a coherent
structure of requirements and have significant impact on software quality and
costs. Thinking of requirements must precede the analysis, design, and code
generation acts. Requirements models are descriptions of delivered services in
the context of operational constraints. Identifying software requirements of the
system-as-is, gathering requirements and formulation of requirements by users
allows defects to be identified earlier in a life cycle.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 61–75, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

62 R. Klimek

UML, i.e. the Unified Modeling Language [16], which is ubiquitous in the
software industry can be a powerful tool for the requirements engineering pro-
cess. Use cases are central to UML since they strongly affect other aspects of
the modeled system and, after joining the activity diagrams, may constitute a
good vehicle to discover and write down requirements. Temporal logic is a well
established formalism which allows to describe properties of reactive systems,
also visualized in UML. The semantic tableaux method, which is a proof formal-
ization for assessing logical satisfiability, seems intuitive and may be regarded as
goal-based formal reasoning.

Formal methods enable precise formulation of important artifacts arising dur-
ing software development and help eliminate ambiguity. There are two well es-
tablished approaches to formal reasoning and system verification [5]. The first
is based on state exploration (“model checking”) and the second is based on
deductive reasoning. However, model checking is an operational rather than an-
alytic approach.Deductive inference enables the analysis of infinite computation
sequences. On the other hand, one important problem of the deductive approach
is the lack of automatic methods for obtaining logical specifications considered as
sets of temporal logic formulas. The need to build logical specifications manually
can be recognized as a major obstacle to untrained users. Thus, the automation
of this process seems particularly important. Moreover, application of the formal
approach to the entire requirements engineering phase may increase the maturity
of requirements models.

Motivation, Contributions and Related Works. The motivation for this
work is the lack of tools and practical applications of deductive methods for
formal verification of requirements models. Another motivation, which is asso-
ciated with the previous one, is the lack of tools for automatic extraction of
logical specifications from software models. However, requirements models built
using use case and activity diagrams seem to be suitable for such an extraction
process. All of the aforementioned aspects of the formal approach seem to be an
intellectual challenge in software engineering.

The contribution of the work is a method for building formal requirements
models, including their logical specification, based on some UML diagrams. A
complete deduction-based system which enables the automated and formal ver-
ification of requirements models is proposed. Another contribution is a method
for automating the generation of logical specifications. The generation algorithm
for selected workflow patterns is presented. The reasoning process is performed
using the semantic tableaux method for temporal logic. The proposed method
is characterized by the following advantages: introducing workflow patterns as
primitives to requirements engineering and logical modeling, scaling up to real-
world problems, and logical patterns once they are defined and widely used. All
these factors are discussed in the work and summarized in the last section.

There are some fundamental works on requirements engineering, c.f. the work
by van Lamsweerde [15], which is a comprehensive study of many fundamentals
of this area. The work by Chakraborty et al. [4] discusses some social processes
associated with requirements engineering. In the work by Rauf et al. [17], a

From Extraction of Logical Specifications 63

method for extracting logical structures from documents is presented. In the
work by Kazhamiakin [11], a method based on formal verification of require-
ments using temporal logic and model checking approach is proposed, and a
case study is discussed. Hurlbut [10] provides a very detailed survey of selected
issues concerning use cases. The informal character of scenario documentation
implies several difficulties in reasoning about the system behavior and validating
the consistency between the diagrams and scenario descriptions. Barrett et al. [2]
presents the transition of use cases to finite state machines. Zhao and Duan [20]
shows formal analysis of use cases; however, the Petri Nets formalism is used. Es-
huis and Wieringa [8] addresses the issues of activity diagram workflows but the
goal is to translate diagrams into a format that allows model checking. There
are some other works in the area of the formal approach and UML-based re-
quirements engineering but there is a lack of works for deduction-based formal
verification with temporal logic and the semantic tableaux method for UML-
based requirements models. The work [12] is a (very) preliminary version of
this one, and the differences include: a lower level of formalization, differences
in predefined workflow patterns, more casual algorithm for generating logical
specifications, and the lack of an accurate case study.

2 Methodology

The outline of the procedure and guidelines used for the construction of a re-
quirements model, as it is understood in the work, is briefly discussed below.
It constitutes a kind of methodology and its subsequent steps are presented in
Fig. 1. The entire procedure can be summarized in the following items:

1. Use case diagrams

2. Use case scenarios a1, a2, a3, ...

3. Activity diagrams P,WL

4. Logical spec. generation Π(P,WL) −→ L

5. Defining properties Q

6. Reasoning process C(L)⇒ Q

R
eq

ui
re

m
en

ts
m

od
el

m
at

ur
ity

Lo
gi

ca
lm

od
el

in
g

&
re

as
on

in
g

Formalization

Fig. 1. Software requirements modeling and deduction-based verification

64 R. Klimek

1. use case diagrams – use case modeling to understand functions and goals of
a system;

2. use case scenarios – identifying and extracting atomic activities;
3. activity diagrams – modeling workflows using predefined patterns;
4. automatic generation of logical specifications from requirements models;
5. manual definition of the desired model properties;
6. formal verification of a desired property using the semantic tableaux method.

All steps are shown on the left side of Fig. 1. The first three steps involve the
requirements modeling phase but the last three steps involve generation of logical
specification and analysis of requirements model properties. The loop between
the last two steps refers to a process of both identifying and verifying more
and more new properties of the examined model. Some symbols and notation
resulting from the introduced formalization are on the right side of Fig. 1 and
they are discussed in further sections of the work. Generally, it leads, step by
step, from an abstract view of a system to more and more detailed and reliable
and, finally, verified requirements models.

3 Use Cases and Identification of Activities
Defining use cases and scenarios is important not only to understand the func-
tionalities of a system but also to identify elementary activities. The activities
play an important role when building logical specifications, i.e. the logical specifi-
cation is modeled over atomic activities. The use case diagram consists of actors
and use cases. Actors are objects which interact with a system and create the
system’s environment, thus providing interaction with the system. Use cases are
services and functionalities which are used by actors. The use case diagrams
are a rather descriptive technique and do not refer to any details of the system
implementation [18].

Let us present it more formally. In the initial phase of a system modeling, use
case diagramsUCD1, ..., UCDn are built. EveryUCDi diagramcontains some use
casesUC1, ..., UCm which describe the desired functionality of a system. A typical
and sample use case diagram is shown in Fig. 2. It consists of three actors and three
use cases, UC1, UC2 and UC3, modeling a system of car insurance and damages
liquidation. The diagram seems to be intuitive and is not discussed in detail.

Use cases are commonly used for capturing requirements through scenarios
which are brief narratives that describe the expected use of a system. A scenario
is a possible sequence of steps which enables the achievement of a particular goal
resulting from the functionality of a use case. Every use case UCi has its own
scenario. From the point of view of the approach presented here, scenarios play
an additional important role, which is identification of atomic activities used to
build individual scenario steps. An activity is the smallest unit of computation.
Thus, every scenario contains some activities a1, ..., an. The set of atomic ac-
tivities AA contains all activities identified and defined for all scenarios. The
most valuable situation is when the entire use case scenario involves identified
activities and the narrative does not dominate and is limited to model behavior,
which is later formally shown in activity diagrams.

From Extraction of Logical Specifications 65

Client

InsuranceCompany

UC3: InsuranceDamageLiquidation

UC2: PoliceReport

Police«extends»

UC1: PurchaseInsurancePolicy

UC3: InsuranceDamageLiquidation
Scenario:

1. Client’s “SystemLogIn”
2. Client’s “DamageVindication”
3. “SupplyDocumentaryEvidence”
4. “MechanicalRepairs”
5. “BodyRepairs”
6. “RentVehicle”
7. “TestDrive”
8. Client’s “SystemLogOut”

Alternatives:
2. If vindication is already processed then

“WarningDoubleVindication” and
“SystemLogOut”

Extensions:
3. If there exists the police report then

include it when
“SupplyDocumentaryEvidence”

Fig. 2. A sample use case diagram UCD “CarInsuranceLiquidatingDamages” (left) and
a scenario for the use case UC3 “InsuranceDamageLiquidation” (right)

A sample scenario for the use case UC3, i.e. “InsuranceDamageLiquidation”,
is shown in Fig. 2. It contains some atomic activities which are identified when
preparing the scenario. The alternative and extension points are defined. The
“DamageVindication” activity represents the registration process in the insurer
system and the start of the process of recovery damages. While the car repair
process is carried out (“MechanicalRepairs” and “BodyRepairs”), the client can
hire a replacement vehicle (“RentVehicle”). The level of formalization presented
here, i.e. when discussing use cases and their scenarios, is intentionally not very
high. This assumption seems realistic since this is an initial phase of require-
ments modeling. Dynamic aspects of activities are to be modeled strictly when
developing activity diagrams, c.f. section 5.

4 Logical Background

Temporal logic TL introduces symbolism for reasoning about truth and falsity
of formulas throughout the flow of time, taking the changes of their valuations
into consideration. Two basic and unary operators are � for “sometime (or even-
tually) in the future” and � for “always in the future”; these are dual operators.
Temporal logic exists in many varieties; however, these considerations are limited
to the linear-time temporal logic or linear temporal logic LTL. Linear temporal
logic refers to infinite sequences of computations and attention is focused on
the propositional linear time logic PLTL. These sequences refer to the Kripke
structure which defines the semantics of TL, i.e. a syntactically correct formula
can be satisfied by an infinite sequence of truth evaluations over a set of atomic
propositions AP. It should be pointed out that atomic propositions are identical
to atomic activities defined in section 3, i.e. AA = AP . The basic issues related
to the TL syntax and semantics are discussed in many works, e.g. [7,19].

66 R. Klimek

The properties of the time structure are fundamental to a logic. Of particular
significance is the smallest, or minimal, temporal logic, e.g. [3], also known as
temporal logic of class K. The minimal temporal logic is an extension of the
classical propositional calculus of the axiom �(Φ ⇒ Ψ) ⇒ (�Φ ⇒ �Ψ) and the
inference rule |−Φ =⇒ |−�Φ. The essence of the logic is the fact that there are
no specific assumptions for the properties of the time structure. The following
formulas may be considered as typical examples: action⇒ �reaction, �(send⇒
�receive), �alive,�¬(badevent), etc. The considerations of the work are limited
to this logic since it allows to define many system properties (safety, liveness);
it is also easier to build a deduction engine, or use existing verified provers, and
to quickly verify the approach proposed in the work.

Semantic tableaux is a decision-making procedure for checking satisfiability of
a formula. The method is well known in classical logic but it can also be applied in
modal and temporal logics [6]. The method is based on formula decompositions.
In the semantic tableaux method, at the end of the decomposition procedure, all
branches of the received tree are searched for contradictions. When all branches
of a tree have contradictions, it means that the inference tree is closed. If a nega-
tion of the initial formula is placed in the root, this leads to the statement that
the initial formula is true. This method has some advantages over the traditional
axiomatic approach. In the classical reasoning approach, starting from axioms,
longer and more complicated formulas are generated and derived. Formulas be-
come longer and longer step by step, and only one of them will lead to the
verified formula. The method of semantic tableaux is characterized by a reverse
strategy. The method provides, through so-called open branches of the semantic
tree, information about the source of an error, if one is found, which is another
and very important advantage of the method. Summing up, the tableaux are
global, goal-oriented and “backward”, while resolution is local and “forward”.

A simple yet illustrative example of an inference tree is shown in the left side
of Fig. 3. The relatively short formula gives a small inference tree, but shows
how the method works. The label [i, j] means that it is the i-th formula, i.e. the
i-th decomposition step, received from the decomposition transformation of a
formula stored in the j-th node. The label “1 :” represents the initial world in
which a formula is true. The label “1.(x)”, where x is a free variable, represents
all possible worlds that are consequences of world 1. On the other hand, the label
“1.[p]”, where p is an atomic formula, represents one of the possible worlds, i.e.
a successor of world 1, where formula p is true. The decomposition procedure
adopted and presented here refers to the first-order predicate calculus and can be
found, for example, in the work [9]. All branches of the analyzed trees are closed
(×). There is no valuation that satisfies the root formula. This, consequently,
means that the formula before the negation is always satisfied.

An outline architecture of the proposed deduction-based verification system is
presented in Fig. 3. A similar system is proposed in work [13]. The system works
automatically and consists of some important elements. The G component gen-
erates logical specifications which are sets of a usually large number of temporal
logic formulas (of class K). Formula generation is performed automatically from

From Extraction of Logical Specifications 67

[1,−]1 : ¬((�(a⇒ �b) ∧�(b⇒ �c))⇒ �(a⇒ �c))

[2, 1]1 : �(a⇒ �b) ∧ �(b⇒ �c) ∧�a ∧�¬c
[3, 2]1 : �a

[4, 2]1 : �¬c
[5, 2]1 : �(b⇒ �c)

[6, 2]1 : �(a⇒ �b)

[7, 3]1.[a] : a

[8, 4]1.(x) : ¬c
[9, 5]1.(y) : b⇒ �c

[10, 9]1 : ¬b
[13, 6]1.(z) : a⇒ �b

[15, 13]1 : ¬a
×

[16, 13]1 : �b

[17, 16]1.[b] : b

×

[11, 9]1 : �c

[12, 11]1.[c] : c

[14, 6]1.[z] : a⇒ �b

[18, 14]1 : ¬a
×

[19, 14]1 : �b

[20, 19]1.[b] : b

×

���

�������

��	
 ������������

��������� �

P

�� ��������

������ �
Q

���

�����	
 ����

L

Fig. 3. A sample inference tree (left) and a deduction-based verification system (right)

workflow models, which are constructed from predefined patterns for activity di-
agrams. The extraction process is discussed in section 6. The whole specification
L can be treated as a conjunction of formulas f1∧. . .∧fn = C(L), where every fi
is a formula generated during the extraction process. The Q formula is a desired
property for a requirements model. Both the system specification and the exam-
ined properties are input to the T component, i.e. Semantic Tableaux Temporal
Prover, or shortly ST Temporal Prover, which enables the automated reasoning
in temporal logic using semantic tableaux. The input for this component is the
formula C(L)⇒ Q, or, more precisely:

f1 ∧ . . . ∧ fn ⇒ Q (1)

Due to the fact that the semantic tableaux method is an indirect proof, i.e.
reductio ad absurdum, after the negation of the formula 1, it is placed at the
root of the inference tree and decomposed using well-defined rules of the semantic
tableaux method. If the inference tree is closed, it means that the initial formula 1
is true. The output of the T component, and therefore also the output of the
entire deductive system, is the answer Yes/No. This output also realizes the final
step of the procedure shown in Fig. 1. However, the verification procedure can
be performed for the further properties, c.f. the loop in Fig. 1.

The verification procedure which results from the deduction system in Fig. 3
can be summarized as follows:

68 R. Klimek

1. automatic generation of system specifications (the G component);
2. introduction of the property Q of the system;
3. automatic inference using semantic tableaux (the T component) for the

whole complex formula, c.f. formula 1.
Steps 1 to 3, in whole or individually, may be processed many times, whenever
the specification of the UML model is changed (step 1) or if there is a need for
a new inference due to the revised system specification (steps 2 or 3).

5 Workflow Patterns and Modeling Activities

Activity diagrams constitute a closure of the development phase for requirements
models, by introducing dynamic aspects for models. This aspect is subjected to
the correctness analysis for safety and liveness properties. The activity diagram
enables modeling of workflow activities. It constitutes a graphical representation
of workflow showing the flow of control from one activity to another. It supports
choice, concurrency and iteration. The important goal of activity diagrams is to
show how an activity depends on others [16].

f1

f4

(a) Sequence

f1

f2 f3

f4

(b) Concurrency

f1

f2 f3

f4

(c) Branching

f1

f2

f3

f4

(d) LoopWhile

SystemLogIn

DamageVindication

SupplyDocumentaryEvidence

MechanicalRepairs

RentVehicle

SystemLogOut

WarningDoubleVindication

BodyRepairs

TestDrive

Fig. 4. Workflow patterns for activities (left) and a sample activity diagram AD3 for
use case UC3 “InsuranceDamageLiquidation” (right)

From the viewpoint of the approach presented in the work, it is important to
introduce a number of predefined workflow patterns for activities that provide all
workflows in a structural form. A pattern is a generic description of the structure
of some computations. Nesting of patterns is permitted. The following workflow
patterns are predefined: sequence, concurrent fork/join, branching and loop while
for iteration as they are shown in Fig. 4. It is assumed that only predefined
patterns can be used for modeling of activity behavior. Such structuring is not
a limitation when modeling arbitrarily complex sets of activities.

From Extraction of Logical Specifications 69

For every use case UCi and its scenario, a activity diagram ADi is developed/-
modeled. The activity diagram workflow is modeled only using atomic activities
which are identified when building a use case scenario. Furthermore, workflows
are composed only using the predefined design patterns shown in Fig. 4. A sam-
ple activity diagram AD3 is shown in Fig. 4. It models behavior of the UC3

use case shown in Fig. 2, using activities from the scenario in Fig. 2. After the
start of the vindication process, i.e. “DamageVindication”, it is checked whether
it is already being processed. If yes, the decision to register this fact is made,
as it is likely another attempt at vindication of the same event, c.f. “Warning-
DoubleVindication”. The scenario analysis and the nature of other activities, i.e.
“MechanicalRepairs”, “BodyRepairs” and “RentVehicle”, leads to the conclusion
that they can and should be performed concurrently.

6 Generating Logical Specifications

The phase of modeling requirements is complete when all activity diagrams for all
scenarios are built, c.f. Fig. 1 and section 5. Then, the phase of generating logical
specifications and formal analysis of the desired properties begins. The logical
specification generation process must be performed in an automatic way. Such
logical specifications usually consist of a large number of temporal logic formulas
and their manual development is practically impossible since this process can
be monotonous, error-prone and the creation of such logical specifications is
difficult for inexperienced analysts. On the other hand, the verified properties of
the system constitute usually easier formulas, not to mention the fact that they
are rather individual temporal logic formulas.

The proposed algorithm for automatic extraction of logical specifications is
based on the assumption that all workflows for activity diagrams are built using
only well-known workflow patterns, c.f. Fig. 4. The process of building a logical
specification can be presented in the following steps:

1. analysis of activity diagrams to extract all predefined workflow patterns,
2. translation of the extracted patterns to a logical expression WL,
3. generating a logical specification L from logical expressions, i.e. receiving a

set of temporal logic formulas.

Predefined workflow patterns constitute a kind of primitives which are de-
fined using temporal logic formulas. Therefore, an elementary set pat() of for-
mulas over atomic formulas ai, where i > 0, which is also denoted pat(ai), is
a set of temporal logic formulas f1, ..., fm such that all formulas are syntacti-
cally correct (and restricted to the logic K). For example, an elementary set
pat(a, b, c, d) = {a⇒ �b, b⇒ �(c∨d),�¬((a∨b)∧¬c)} is a three-element set of
PLTL formulas, created over four atomic formulas. Let Σ be a set of predefined
design patterns, i.e. Σ = {Sequence, Concurrency, Branching, LoopWhile}.
The proposed temporal logic formulas should describe both safety and liveness
properties of each pattern. Let us introduce some aliases: Seq as Sequence,
Concur as Concurrency, Branch as Branching and Loop as LoopWhile.

70 R. Klimek

Every activity workflow is designed using only predefined design patterns.
Every design pattern has a predefined and countable set of linear temporal logic
formulas. The workflow model can be quite complex and it may contain nesting
patterns. Let us define a logical expression, which is similar to well known reg-
ular expressions, to represent any potentially complex structure of the activity
workflow but also to have a literal representation for these workflows. The logical
expression WL is a structure created using the following rules:

– every elementary set pat(ai), where i > 0 and every ai is an atomic formula,
is a logical expression,

– every pat(Ai), where i > 0 and every Ai is either
• an atomic formula, or
• a logical expression pat(),

is also a logical expression.

Examples of logical expressions are given in the section 7.

/* ver. 6.04.2013 */
Sequence(f1,f4):
f1 => <>f4 / ~f1 => ~<>f4 / []~(f1 & f4)
Concurrency(f1,f2,f3,f4):
f1 => <>f2 & <>f3 / ~f1 => ~(<>f2 & <>f3)
f2 & f3 => <>f4 / ~(f2 & f3) => ~<>f4
[]~(f1 & (f2 | f3)) / []~((f2 | f3) & f4) / []~(f1 & f4)
Branching(f1,f2,f3,f4):
f1 => (<>f2 & ~<>f3) | (~<>f2 & <>f3)
~f1 => ~((<>f2 & ~<>f3) | (~<>f2 & <>f3))
f2 | f3 => <>f4 / ~(f2 | f3) => ~<>f4 / []~(f1 & f4)
[]~(f2 & f3) / []~(f1 & (f2 | f3)) / []~((f2 | f3) & f4)
LoopWhile(f1,f2,f3,f4):
f1 => <>f2 / ~f1 => ~<>f2
f2 & c(f2) => <>f3 & ~<>f4 / ~(f2 & c(f2)) => ~(<>f3 & ~<>f4)
f2 & ~c(f2) => ~<>f3 & <>f4 / ~(f2 & ~c(f2)) => ~(~<>f3 & <>f4)
f3 => <>f2 / ~f3 => ~<>f2
[]~(f1 & f2) / []~(f1 & f3) / []~(f1 & f4)
[]~(f2 & f3) / []~(f2 & f4) / []~(f3 & f4)

Fig. 5. A predefined set of patterns P and their temporal properties

The last step is to define a logical specification which is generated from logi-
cal expressions. The logical specification L consists of all formulas derived from a
logical expression WL using the algorithm Π , i.e. L(WL) = {fi : i ≥ 0 ∧ fi ∈
Π(WL, P)}, where fi is a TL formula. Generating logical specifications is not a
simple summation of formula collections resulting from a logical expression. The
generation algorithm has two inputs. The first one is a logical expressionWL which
is a kind of variable, i.e. it varies for every (workflow) model, when the workflow
is subjected to any modification. The second one is a predefined set P which is
a kind of constant, i.e. once defined then widely used. The example of such a set

From Extraction of Logical Specifications 71

is shown in Fig 5. However, the formulas are not discussed in the work because
of its limited size. They might be a subject of consideration in a separate work.
Moreover, the formulas can and should be prepared by an expert with skills and
theoretical background. It guarantees that an inexperienced software analyst or
engineer will be able to obtain correct logical models. Most elements of the prede-
fined P set, i.e. comments, two temporal logic operators, classical logic operators,
are not in doubt. The slash allows to place more formulas in a single line. f1, f2
etc. are atomic formulas for a pattern. They constitute a kind of formal arguments
for a pattern. �f means that sometime (or eventually in the future), activity f is
satisfied, i.e. the token reaches the activity. c(f) means that the logical condition
associatedwith activity f has been evaluated and is satisfied. All formulas describe
both safety and liveness properties for a pattern [1].

The output of the generation algorithm is a logical specification understood
as a set of temporal logic formulas. The algorithm (Π) is as follows:
1. at the beginning, the logical specification is empty, i.e. L = ∅;
2. the most nested pattern or patterns are processed first, then, less nested

patterns are processed one by one, i.e. patterns that are located more towards
the outside;

3. if the currently analyzed pattern consists only of atomic formulas, the logical
specification is extended, by summing sets, by formulas linked to the pattern
currently being analyzed pat(), i.e. L = L ∪ pat();

4. if any argument is a pattern itself, then
(a) firstly, the f1 formula, and next
(b) the f4 formula
of this pattern (if any), or otherwise considering only the most nested nesting
far left, or right, respectively, are substituted separately in the place of the
pattern as an argument.

Let us supplement the algorithm by some examples. The example for the step 3:
Concur(a, b, c, d) gives L = {a⇒ �b ∧�c,¬a⇒ ¬(�b ∧�c), b ∧ c⇒ �d,¬(b ∧
c) ⇒ ¬�d,�¬(a ∧ (b ∨ c)),�¬((b ∨ c) ∧ d),�¬(a ∧ d)}. The example for the
step 4: Branch(Seq(a, b), c, d, e) leads to L =

�

�

�

�

{ a ⇒ �b,¬a ⇒ ¬�b,�¬(a ∧
b)}∪

�

�

�

�

{ a⇒ (�c∧¬�d)∨(¬�c∧�d),¬a ⇒ ¬((�c∧¬�d)∨(¬�c∧�d)), c∨d ⇒
�e,¬(c ∨ d) ⇒ ¬�e,�¬(c ∧ d),�¬(a ∧ (c ∨ d)),�¬((c ∨ d) ∧ e),�¬(a ∧ e)} ∪
�

�

�

�

{ b ⇒ (�c ∧ ¬�d) ∨ (¬�c ∧ �d),¬b ⇒ ¬((�c ∧ ¬�d) ∨ (¬�c ∧ �d)), c ∨ d ⇒
�e,¬(c∨d)⇒ ¬�e,�¬(c∧d),�¬(b∧(c∨d)),�¬((c∨d)∧e),�¬(b∧e)}

�

�

�

	

={ a⇒
(�c∧¬�d)∨(¬�c∧�d),¬a⇒ ¬((�c∧¬�d)∨(¬�c∧�d)), c∨d⇒ �e,¬(c∨d)⇒
¬�e,�¬(c ∧ d),�¬(a ∧ (c ∨ d)),�¬((c ∨ d) ∧ e),�¬(a ∧ e), b ⇒ (�c ∧ ¬�d) ∨
(¬�c ∧ �d),¬b ⇒ ¬((�c ∧ ¬�d) ∨ (¬�c ∧ �d)),�¬(b ∧ (c ∨ d)),�¬(b ∧ e)}.
The first set follows from the

�

�

�

�

nested pattern, the second set follows directly
from the algorithm point

�

�

�

�

4a , and then the third set follows from the algorithm
point

�

�

�

�

4b , while the
�

�

�

�

final specification is the sum of all generated sets.

Remarks. Formulas f1 and f4 play an important role for every pattern, i.e.
they are certainly the first and the last, respectively, active activity/task for a

72 R. Klimek

pattern. In the case of nested patterns, f1 and f4 enable considering the pattern
as a whole, which is the goal of the last step of the algorithm. It is mandatory
for every two patterns to have disjoint sets of atomic activities; moreover, every
two patterns contained in a logical expression are either disjointed or completely
contained in one another, c.f. formula 2, which, in conjunction with a particular
role of f1 and f4, does not lead to potential contradictions. Formulas f1 and
f4 must be considered separately, c.f. 4a and 4b of the algorithms, in order to
guarantee access to a pattern both to/from the “front” and to/from the “back” of
a pattern with respect to both the preceding and the following pattern. It may
cause some redundancy of generated formulas, but on the other hand it covers
all properties of combined patterns, i.e. it guarantees reachability (liveness), if
necessary, of all (individual) activities.

7 Reasoning and Verification

Let us summarize the entire method proposed in the work. The first phase, let
us call it the modeling phase, enables development of requirements models and
includes the following steps:

– modeling of all use case diagrams UCD1, ..., UCDm, where UC1, ..., UCn are
all use cases contained in all use case diagrams;

– modeling of scenarios for all use cases UC1, ..., UCn and identification of
atomic activities AA = {a1, ..., al};

– modeling of activity diagramsAD1, ..., ADn for all scenarios using predefined
workflow patterns, c.f. Fig. 4, and using the identified atomic activities.

All the above steps require the assistance of an engineer and cannot be done
automatically. The next phase, let us call it the analytical phase, introduces a
certain degree of automation and includes the following steps:

– translation of all activity diagrams AD1, ..., ADn (and their workflows) to
logical expressions WL,1, ...,WL,n;

– generation of logical specifications L1, ..., Ln for all logical expressions using
the Π algorithm, i.e. Π(P,WL,i) −→ Li for every i = 1, ..., n;

– summing of specifications, i.e. L = L1 ∪ ... ∪ Ln;
– (manual) definition of the desired property Q;
– start of the process of automatic reasoning using the semantic tableaux

method for formula f1 ∧ ... ∧ fk ⇒ Q, where f1, ..., fk are formulas which
belong to the logical specification L.

The above steps illustrate the entire operation of the system shown in Fig. 3. The
loop between the last two steps, c.f. Fig. 1, refers to a process of both introducing
and verifying more and more new properties (formula Q) of the examined model.

Let us consider the activity diagram AD3 shown in Fig. 4 for use case UC3

“InsuranceDamageLiquidation”. Activity diagrams constitute the input for the
deduction system shown in Fig. 3. The logical expression WL,3 for AD3 is

From Extraction of Logical Specifications 73

Seq(SystemLogIn,Branch(DamageV indication, Concur(
SupplyDocumentaryEvidence, Seq(MechanicalRepairs, BodyRepairs),
RentV ehicle, T estDrive),WarningDoubleV indication, SystemLogOut))

Substituting letters of the Latin alphabet in places of propositions: a –
SystemLogIn, b – DamageVindication, c – SupplyDocumentaryEvidence, d –
MechanicalRepairs, e – BodyRepairs, f – RentVehicle, g – TestDrive, h – Warn-
ingDoubleVindication, and i – SystemLogOut, then the expression WL,3 is

Seq(a,Branch(b, Concur(c, Seq(d, e), f, g), h, i)) (2)

Replacing propositions (atomic activities) by Latin letters is a technical matter.
In the real world, original names of the activities would be used.

A logical specification L for the logical expression WL,3 is built in the fol-
lowing steps. At the beginning, the specification of a model is L = ∅. Most
nested pattern is Seq. The next considered pattern is Concurrency, and then
Branching. The most outside situated pattern is once again Seq. The resulting
logical specification contains the formulas

L = {d⇒ �e,¬d⇒ ¬�e,�¬(d ∧ e), c⇒ �d ∧�f,¬c⇒ ¬(�d ∧�f),

d ∧ f ⇒ �g,¬(d ∧ f)⇒ ¬�g,�¬(c ∧ (d ∨ f)),�¬((d ∨ f) ∧ g),
�¬(c ∧ g), c⇒ �e ∧�f,¬c⇒ ¬(�e ∧�f), e ∧ f ⇒ �g,

¬(e ∧ f)⇒ ¬�g,�¬(c ∧ (e ∨ f)),�¬((e ∨ f) ∧ g),
b⇒ (�c ∧ ¬�h) ∨ (¬�c ∧�h),¬b⇒ ¬((�c ∧ ¬�h) ∨ (¬�c ∧�h)),

c ∨ h⇒ �b,¬(c ∨ h)⇒ ¬�b,�¬(c ∧ h),�¬(b ∧ (c ∨ h)),
�¬((c ∨ h) ∧ i),�¬(b ∧ i), b⇒ (�g ∧ ¬�h) ∨ (¬�g ∧�h),

¬b⇒ ¬((�g ∧ ¬�h) ∨ (¬�g ∧�h)), g ∨ h⇒ �b,¬(g ∨ h)⇒ ¬�b,
�¬(g ∧ h),�¬(b ∧ (g ∨ h)),�¬((g ∨ h) ∧ i),

a⇒ �b,¬a⇒ ¬�b,�¬(a ∧ b), a⇒ �i,¬a⇒ ¬�i,�¬(a ∧ i)} (3)

Formula 3 represents the output of the G component in Fig. 3.
Formal verification is the act of proving the correctness of a system (live-

ness, safety). Liveness means that the computational process achieves its goals,
i.e. something good eventually happens. Safety means that the computational
process avoids undesirable situations, i.e. something bad never happens. The
liveness property for the model can be

b⇒ �f (4)

which means that if the damage vindication is satisfied then sometime in
the future the replacement car is reached, formallyDamageV indication⇒
�RentV ehicle. The safety property for the examined model can be

�¬(h ∧ f) (5)

74 R. Klimek

which means that it never occurs that the rental of a vehicle and the
double vindication are satisfied in the same time, or more formally
�¬(WarningDoubleV indication ∧ RentV ehicle). When considering the prop-
erty expressed by formula 4 then the whole formula to be analyzed using semantic
tableaux, providing a combined input for the T component in Fig. 3, is

((d⇒ �e) ∧ (¬d⇒ ¬�e) ∧ ... ∧ (¬a⇒ ¬�i) ∧ (�¬(a ∧ i)))⇒ (b⇒ �f) (6)

When considering the property expressed by formula 5 then the whole formula
is constructed in a similar way as

((d⇒ �e) ∧ (¬d⇒ ¬�e) ∧ ... ∧ (¬a⇒ ¬�i) ∧ (�¬(a ∧ i)))⇒ (�¬(h ∧ f)) (7)

In both cases, i.e. formulas 6 and 7, after the negation of the input formula within
the prover, the inference trees are built. Presentation of a full inference tree for
both cases exceeds the size of the work. (The simple inference tree from Fig. 3 gives
an idea how it works.) All branches of the semantic trees are closed, i.e. formulas 4
and 5 are satisfied in the considered requirements model. In the case of falsification
of the semantic tree the open branches are obtained and provide information about
the source of an error what is another advantage of the method.

Although the logical specification was generated for only one activity diagram
AD3, that is L = L3, c.f. formula 3, the method is easy to scale up, i.e. extending
and summing up logical specifications for other activity diagrams and their sce-
narios. Then, it will be possible to examine logical relationships (liveness, safety)
for different activities coming from different activity diagrams.

8 Conclusion

The work proposes a two-phase strategy for formal analysis of requirements mod-
els. The first one is carried out by an engineer using a defined methodology and
the second one can be (in most) automatic and enables formal verification of
the desired properties (liveness, safety). Introducing logical patterns as logical
primitives allows for breaking of some barriers and obstacles in receiving log-
ical specifications as a set of a large number of temporal logic formulas in an
automated way. Application of formal verification, which is based on deductive
inference, helps to significantly increase the maturity of requirements models
considering infinite computations and using a human-intuitive approach.

Futureworksmay include the implementation of the logical specification genera-
tion module and the temporal logic prover.Considering graph transformations [14]
is encouraging for requirements models involving distributed representation of
knowledge and their efficient implementation. It should result in a CASE software
which could be a first step involved in creating industrial-proof tools, i.e. imple-
menting another part of formal methods, hope promising, in industrial practice.

Acknowledgement. The author would like to thank the anonymous Reviewers
for their valuable comments that helped to improve the work. This work is co-
financed by the EU, Human Capital Operational Programme, SPIN project no.
502.120.2066/C96 and co-financed by the AGH Research Fund no. 11.11 120.859.

From Extraction of Logical Specifications 75

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Let-
ters 21(4), 181–185 (1985)

2. Barrett, S., Sinnig, D., Chalin, P., Butler, G.: Merging of use case models: Semantic
foundations. In: 3rd IEEE International Symposium on Theoretical Aspects of
Software Engineering (TASE 2009), pp. 182–189 (2009)

3. van Benthem, J.: Temporal Logic. In: Handbook of Logic in Artificial Intelligence
and Logic Programming, vol. 4, pp. 241–350. Clarendon Press (1993–1995)

4. Chakraborty, S., Sarker, S., Sarker, S.: An exploration into the process of require-
ments elicitation: A grounded approach. Journal of the Association for Information
Systems 11(4), 212–249 (2010)

5. Clarke, E., Wing, J., et al.: Formal methods: State of the art and future directions.
ACM Computing Surveys 28(4), 626–643 (1996)

6. d’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J.: Handbook of Tableau Meth-
ods. Kluwer Academic Publishers (1999)

7. Emerson, E.: Temporal and Modal Logic. In: Handbook of Theoretical Computer
Science, vol. B, pp. 995–1072. Elsevier, MIT Press (1990)

8. Eshuis, R., Wieringa, R.: Tool support for verifying uml activity diagrams. IEEE
Transactions on Software Engineering 30(7), 437–447 (2004)

9. Hähnle, R.: Tableau-based Theorem Proving. ESSLLI Course (1998)
10. Hurlbut, R.R.: A survey of approaches for describing and formalizing use cases.

Tech. Rep. XPT-TR-97-03, Expertech, Ltd. (1997)
11. Kazhamiakin, R., Pistore, M., Roveri, M.: Formal verification of requirements using

spin: A case study on web services. In: Proceedings of 2nd International Conference
on Software Engineering and Formal Methods (SEFM 2004), Beijing, China, pp.
406–415 (September 28-30, 2004)

12. Klimek, R.: Proposal to improve the requirements process through formal verifica-
tion using deductive approach. In: Filipe, J., Maciaszek, L. (eds.) Proceedings of
7th Int. Conf. on Evaluation of Novel Approaches to Software Engineering (ENASE
2012), Wrocław, Poland. pp. 105–114. SciTePress (June 29–30, 2012)

13. Klimek, R.: A Deduction-based System for Formal Verification of Agent-ready
Web Services. In: Advanced Methods and Technologies for Agent and Multi-Agent
Systems, Frontiers of Artificial Intelligence and Applications, vol. 252, pp. 203–212.
IOS Press (2013), http://ebooks.iospress.nl/publication/32843

14. Kotulski, L.: Supporting software agents by the graph transformation systems. In:
Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006.
LNCS, vol. 3993, pp. 887–890. Springer, Heidelberg (2006)

15. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML
Models to Software Specifications. John Wiley & Sons (2009)

16. Pender, T.: UML Bible. John Wiley & Sons (2003)
17. Rauf, R., Antkiewicz, M., Czarnecki, K.: Logical structure extraction from software

requirements documents. In: 19th IEEE International Requirements Engineering
Conference (RE 2011), Trento, Italy, August 29-September 2, pp. 101–110. IEEE
Computer Society (2011)

18. Schneider, G., Winters, J.: Applying use cases: a practical guide. Addison-Wesley
(2001)

19. Wolter, F., Wooldridge, M.: Temporal and dynamic logic. Journal of Indian Council
of Philosophical Research XXVII(1), 249–276 (2011)

20. Zhao, J., Duan, Z.: Verification of use case with petri nets in requirement analysis. In:
Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.)
ICCSA 2009, Part II. LNCS, vol. 5593, pp. 29–42. Springer, Heidelberg (2009)

http://ebooks.iospress.nl/publication/32843

Model Checking of Security-Critical

Applications in a Model-Driven Approach

Marian Borek, Nina Moebius,
Kurt Stenzel, and Wolfgang Reif

Department of Software Engineering,
University of Augsburg, Germany

{borek,stenzel,moebius,reif}@informatik.uni-augsburg.de

Abstract. This paper illustrates the integration of model checking in
SecureMDD, a model-driven approach for the development of security-
critical applications. In addition to a formal model for interactive verifi-
cation as well as executable code, a formal system specification for model
checking is generated automatically from a UML model. Model check-
ing is used to find attacks automatically and interactive verification is
used by an expert to guarantee security properties. We use AVANTSSAR
for model checking and KIV for interactive verification. The integration
of AVANTSSAR in SecureMDD and the advantages and disadvantages
over interactive verification with KIV are demonstrated with a smart
card based electronic ticketing example.

1 Introduction

Security-critical system vulnerabilities are reported constantly. Such systems
range from a desktop application (e.g., a browser) to security-critical systems like
MasterCard and VISA [22] or the Google single sign-on password system [21]. To
identify and eliminate protocol flaws during development model checking can be
used. Therefore, an input model for the model checker has to be created which
is then used to find attacks or automatically check security properties. There are
several model checkers (e.g. NuSMV[8], SPIN[12], PRISM[11]) but only a few
are tailored towards cryptographic protocols. AVANTSSAR[1] is a project for
Automated Validation of Trust and Security of Service-oriented Architectures. It
integrates three different model checkers (Cl-AtSe, SATMC, OFMC) by using a
common input language called ASLan++[20]. It can be used to find flaws in cryp-
tographic protocols [2] or to prove security properties under some assumptions
(e.g. a fixed number of loop executions or a fixed trace length). Cryptographic
protocols are based on message exchange over channels that are influenced by an
attacker. Since the specification of a system using cryptographic protocols can
quickly become too large and complex for a model checker due to computing re-
source constraints, it is necessary to abstract and simplify this specification.When
security properties are to be checked for an application using cryptographic proto-
cols (such as an electronic ticketing system) then usually the whole application has
to be abstracted. This is time-consuming, error-prone and needs a lot of expertise.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 76–90, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Model Checking of Security-Critical Applications 77

SecureMDD is a model-driven approach for developing security-critical appli-
cations. From a platform independent model runnable code as well as a formal
specification for interactive verification of application-specific security proper-
ties can be generated automatically. Interactive verification is time-consuming
and requires expert know-how but it guarantees the properties for an arbitrary
number of protocol runs and loop executions. On the other hand, classic model
checking assures an automatic validation of properties, but only for fixed number
of protocol runs. In our approach, model checking is meant to be an addition to
interactive verification by an expert and can be used to find attacks. It is also
useful to eliminate some security flaws before using interactive verification.

This paper focuses on the integration of AVANTSSAR into SecureMDD as well
as on the question how far a model of an application which is used to generate
runnable code canbeabstractedautomatically for validationof application-specific
security properties with AVANTSSAR. As a result, a SecureMDD application can
be model-checked automatically.

This paper is structured as follows. Section 2 gives an overview of the model-
driven approach and Section 3 pictures an eTicket example. Section 4 describes
the transformation from a SecureMDDmodel into an ASLan++ specification and
section 5 shows some abstraction rules. Section 6 explains some security flaws us-
ing the eTicket example and section 7 compares model checking and interactive
verification. Section 8 discusses related work and concludes this paper.

2 The SecureMDD Approach

SecureMDD is a model-driven approach to develop security-critical systems. From
a model that represents a system, runnable code, a formal specification for in-
teractive verification and an ASLan++ specification for model checking can be
generated automatically. The formal specification is used to verify application-
specific security properties for an infinite number of agents and protocol runs. The
ASLan++ specification is only used to find security flaws due to the limitations
like a finite number of agents and protocol runs. Examples for mentioned security-
properties are that during a transfer in an online banking system no money is
lost, that security-critical data remains secret or that a Dolev-Yao attacker [10]
cannot harm the system.

The SecureMDD approach (see Fig. 1) uses a platform-independent UML
model, a UML profile as well as a platform-independent and easy to use
modeling language MEL [17] [6] to define security-critical applications. Based
on the platform-independent application model a formal specification and three
platform-specific models (one for each component type) are generated. The
formal specification is the basis for the verification of application-specific security
properties [18] using the theorem prover KIV[4]. The platform-specific models
are tailored for their target platforms, e.g., Java Card for a smart card, Java
for a terminal or a PC, and Java based Web services for a service. A smart card
is a secure device that can be accessed only via a predefined interface and is
tamper-proof: nobody has access to the operating system or the internal memory

78 M. Borek et al.

Fig. 1. SecureMDD Approach

directly. A terminal is also a secure device that receives instructions from a user
and can have an interface for the communication with a smart card. A PC is
a personal computer where the user has access to internal storage. A service
will be deployed on servers that are assumed to be secure devices. Services can
be connected by terminals or other services over a network. To perform tasks,
a service can orchestrate other services, or several autonomous services can
collaborate together. Services can only be accessed via their specified interfaces.

The approach illustrated in Fig. 1 is fully tool-supported and all model
transformations are implemented. In this paper, we focus on the integration of
AVANTSSAR in SecureMDD.

3 Electronic Ticket Example

By using the electronic ticketing system a user is able to buy train tickets online.
The tickets are stored on his smart card and can be inspected multiple times. Only
a genuine inspector device is able to validate and “punch” tickets. Additionally,
only the card owner is able to buy tickets and to view or delete his purchased
tickets.

Fig. 2 shows the deployment diagram of the application. It defines the com-
ponents, the communication structure and the abilities of the attacker. There
are two kinds of users involved in the system, the card owner (User) and the
inspector (Inspector). The card owner can use his home PC (UserDevice) to
buy, show or delete tickets on the card (ETicketCard). To buy a new ticket, the
UserDevice connects to a server called ETicketServer. An Inspector is able to
validate and “punch” tickets on a valid card with his inspector device (Inspec-
torDevice) without access to the ETicketServer. The attacker has full Dolev-Yao
abilities on the connections. That means an attacker can read, send and suppress
messages that are exchanged over any connection. This is represented by the
stereotype �Threat� with the properties {read, send, suppress}. InspectorDe-
vice, ETicketCard and ETicketServer are secure devices. This means that neither
the modeled participants nor the attacker have access to their internal storage.

Model Checking of Security-Critical Applications 79

Fig. 2. Deployment diagram of the application

The assumptions are that a terminal is a closed and sealed device (e.g., an ATM
or cash card reader) and that the attacker has no physical access to the servers
running the services. UserDevice represents a personal computer, with its user
being able to access its internal storage. Additionally, the PC is insecure, which
means that an attacker also has access to the device, e.g., through malware.

Three security properties are required to hold for this system. Firstly, only
tickets issued by ETickerServer are valid and can be “punched”. Secondly, a paid
ticket can not be lost (i.e., a bought ticket is stored on the server until the card
has received the ticket and has sent a delete ticket confirmation to the server),
even if the UserDevice crashes, the ETicketCard is removed from the card reader
or because of an attacker. Thirdly, a ticket can not be “punched” twice.

4 Translation of a SecureMDD Model into ASLan++
Specification

This section describes the transformation from a SecureMDD model (using
deployment diagrams (see Fig. 2), class diagrams and activity diagrams) into
ASLan++. The focus is on the correct translation without regard to the execu-
tion time of model checking. The transformations are application-independent
but are illustrated using the electronic ticketing example.

SecureMDD uses UML that is tailored on security-critical applications. The
static view is modeled by class diagrams and a deployment diagram, and the dy-
namic view is modeled by activity diagrams. The class diagrams define the partici-
pants, their attributes and the messages classes. The deployment diagram defines
the communication structure as well as the attacker abilities. The activity dia-
grams contain the message exchange as well as the actions that will be executed
after receiving amessage (e.g., decrypting ofmessages, comparing of values or deb-
iting a credit card). A platform-independent and domain-specific language called
MEL [17] [6] is used. It supports assignments, object creation, local variables, com-
parisons and predefined operation (e.g., encrypt, sign, hash, generateNonce, etc.).

80 M. Borek et al.

Fig. 3. A part of the activity diagram used by SecureMDD to describe the behavior of
ETicketCard

Fig. 3 depicts a snippet of an activity diagram that describes a part of ETicket-
Card’s behavior. It describes the first step of the protocol to buy a ticket (which
is initiated by the user) after a successful authentication between ETicketCard
and ETickerServer. The activity diagram shows two partitions. The left one de-
scribes the participant UserDevice and the right one (1) represents the participant
ETicketCard. UserDevice sends the message BuyTicket with ticketInfo and pin
to an ETicketCard. After ETicketCard receives the message BuyTicket (3-4) it
checks its state to ensure that an authentication has previously occurred and
compares the received pin with the correct one stored in the pin attribute of the
card(6). If the check fails, the state will be reset to StateCard.IDLE and the pro-
tocol step is finished (26). StateCard is an enumeration defined in a class diagram
that can be IDLE, AUTHENTICATED, EXP TICKET, etc. After a successful
check waitingForTicket is set to true and a new transactionId (of type Nonce)
is generated (8-9). waitingForTicket, transactionId, state and pin are class at-
tributes of ETicketCard defined in the class diagram. After creating the local
variable msg of type BuyInfo (11-14) this message is encrypted with a session
key (16-20) which was exchanged in a previous authentication protocol. At the
end, the state is set to EXP Ticket (22) and the message ReqTicket with the
encrypted content is sent to UserDevice (23).

ASLan++[20] is a textual language used by AVANTSSAR for specifying
security-critical applications. The major building blocks are entities. They
declare types, symbols, a body and other items. Each participant modeled as class
in SecureMDD is translated into an ASLan++ entity. These entities are called
agents. The local variables as well as class attributes are translated to symbols

Model Checking of Security-Critical Applications 81

inside the resulting entities. The types of the attributes that are described by
classes or primitives in SecureMDD are defined as types in ASLan++. A body
section contains the dynamic part of the application as well as the communication
structure and the attacker abilities on the individual communication channels.

1 e n t i t y ETicketCard (. . .) {
2 . . .
3 on (UserDevice −> Actor :
4 buyTicket . (t i c k e t I n f o . (. . .) . ? M buyTicket pin)) :
5 {
6 i f (State = sta t e c a rd au then t i c a t ed & M buyTicket pin = Pin)
7 {
8 Wait ingForTicket := t ;
9 Transac t ionId := f r e s h () ;

10
11 L buyTicket msg cc In fo . . .
12 L buyTi cke t msg t i c k e t In f o . . .
13 L buyTicket msg cardID id := Id i d ;
14 L buyTicket msg transac t ionId := Transac t ionId ;
15
16 L buyTicket enc := sc rypt (SessionKey , buyInfo . (
17 cCInfo . (. . .) . t i c k e t I n f o . (. . .) .
18 iD . (L buyTicket msg cardID id) .
19 L buyTicket msg transac t ionId
20)) ;
21
22 State := s t a t e c a r d ex p t i c k e t ;
23 Actor −> UserDevice : reqTicke t . (L buyTicket enc) ;
24 }
25 e l s e {
26 State := s t a t e c a r d i d l e ;
27 } } }

Listing 1. A part of the ASLan++ specification that describes the behavior of
ETicketCard

List. 1 shows the ASLan++ representation of the protocol step depicted in
Fig. 3. The participant ETicketCard is described by an entity (1). The ability to
receive the message BuyTicket from UserDevice is specified by the on(...) state-
ment (3-4). It describes a conditional branch without else case. If the condition
UserDevice→ Actor : buyTicket... (3-4) inside the on statement is true then the
actor (ETicketCard) receives the message buyTicket... from the UserDevice. →
describes that the attacker can read, send and suppress messages on this connec-
tion. In ASLan++ it is not possible to define complex data types (e.g., a class
that contains some attributes). Hence, for sending or receiving the message BuyT-
icket, only the attributes and the type information specified by constants to avoid
type confusion are used. After ETicketCard receives the message BuyTicket (3-
4) it checks its State and the received pin (6). If the check fails, the state will
be set to statecard idle (26). If the check was successful WaitingForTicket is set
to true (8). After that TransactionId is set to a “fresh” value (this value is new
and unique) (9). In SecureMDD we used for this the predefined function gener-
ateNonce. The assignment of complex data types has to be customized. Therefore,
an object assignment has to be fragmented in several assignments for existing data
types. The instantiation of complex data types, in this case BuyInfo, needs several
statements because each attribute has to be assigned separately (11-14). After the
instantiation msg is encrypted symmetrically with SessionKey (16-20). Finally,

82 M. Borek et al.

the state is set to statecard exp ticket (22) and the encrypted message is sent to
UserDevice (23). The complete SecureMDD model and ASLan++ specification
of eTicket is available on our website1.

In the following some interesting aspects of the transformation of the UML
application model into ASLan++ are described. In SecureMDD a participant is
able to receive any known message type while he is waiting for a message. In
our ASLan++ specification this behavior is formalized with an infinite loop and
a non-deterministic choice of receiving messages inside the body of each agent
(see List. 2). A non-deterministic choice is defined by the select statement that
contains conditional branches without an else case (on(...)). A → Actor : M1
means that the actor receives the message M1 from the agent A.

1 whi l e (t rue)
2 {
3 s e l e c t
4 {
5 on (A−>Actor : M1) : { . . . }
6 on (A−>Actor : M2) : { . . . }
7 . . .
8 on (B−>Actor : Mn) : { . . . }
9 } }

Listing 2. Definition of agent behavior

If/else statements, equality checks, logical expressions (e.g., AND, OR) as well
as encrypt and sign operations can be directly mapped to existing equivalent
ASLan++ language constructs. SecureMDD supports lists and key-value con-
tainers, whereas ASLan++ only supports sets. For example, lists in SecureMDD
contain following operations:

– add(Element e) : void Adds the element e to the end of the list.
– remove(Element e) : void Deletes the element e from the list.

Therefore, SecureMDD lists are emulated using ASLan++ sets. Each ASLan++
list element is defined as a tuple consisting of the original list element and a unique
index, while the set maintains an index counter. Add and remove have been trans-
lated in a simple and efficient way into ASLan++. The add operation increases
this counter and inserts a new tuple into the set consisting of the original element
and the new counter value as index. This allows us to insert duplicate elements
into a set. The remove operation for a SecureMDD list is translated to an existing
remove operation on ASLan++ sets. For this operation the index can be ignored.

Arithmetic operations like addition and multiplication are supported in Se-
cureMDD but not in ASLan++. For some examples like eTicket they are not
necessary but we have also examples modeled with SecureMDD that use arith-
metic operations. Currently, SecureMDD applications that use arithmetic will
not be translated into ASLan++. This is a severe limitation of AVANTSSAR
and the used model checkers. However, we are not aware of a model checker that
supports arithmetic and is tailored on security applications.

1 http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/

secureMDD/

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD/

Model Checking of Security-Critical Applications 83

SecureMDD and ASLan++ support a full Dolev-Yao attacker [10] who is able
to read, send, and suppress messages on the fly. Secure devices in SecureMDD
like an InspectorDevice are translated to ASLan++ as an honest agent and an
insecure device like UserDevice becomes a dishonest agent. Dishonest means that
an attacker can play the role of such an agent.

SecureMDD uses invariants to specify security properties. The invariants can
be translated into ASLan++ goals. The validated goals for our eTicket example
are described in section 6.

5 Automatic Abstractions

SecureMDD models like eTicket are too large for the model checkers integrated
in AVANTSSAR. The eTicket case study has 52 different protocol steps (where
one protocol step can lead to several transition rules in ASLan). More precisely,
an eTicket ASLan++ specification that is translated one-to-one without any ab-
stractions leads to 162 transition rules. This is a lot compared to the average 20
transition rules that are considered by the AVANTSSAR examples.

The execution time of model checking depends on several factors. One of those
factors is the number of agents as well as the complexity of their behavior. The
behavior of system participants can be specified in ASLan++ primarily using
guards and statements (e.g., the sending or receiving of a message, a conditional
branch or an assignment). ASLan++ is translated into ASLan by AVANTSSAR.
ASLan uses transition rules with pre- and postconditions to define the partic-
ipants’ behavior. A transition rule transfers a state machine from one state to
another if the precondition is true. The number of such transition rules as well
as their interconnectivity is also crucial for the complexity of the system specifi-
cation. The attacker capabilities are just as important. If an attacker is able to
generate and send messages to a system agent, it is checked at every transition
whether the attacker is capable of generating a message that could lead to a se-
curity property being violated. If loops or more than one session are specified,
the complexity of the specification depends on the number of transition rule ex-
ecutions and on the maximum trace length. A trace contains a list of transition
rules and represents one possible execution order of the specified system.

Since model checkers need a lot of computing resources which are not always
available, the application models need to be abstracted. This is usually done
manually [2] and only by security experts. A manually abstracted version of the
full eTicket example leads to 55 transition rules. In the following some automatic
abstractions are mentioned with that the generated specification has only 65 tran-
sition rules against the 162 without any abstractions. This is very close to the
manually abstracted version and can not be significantly reduced further without
omitting some of the applications functionality.

1. Removing participants that are not security-critical
An honest agent such as a terminal in SecureMDD which only forwards mes-
sages between other agents can be omitted in the abstract specification. In or-
der for all communication options to be preserved, new communication paths

84 M. Borek et al.

have to be created. The attacker abilities on a new communication path is the
most permissive combination of his abilities on the paths that are replaced
by the new, direct communication path. If, however, such an agent that only
forwards messages is dishonest (e.g., an “insecure” PC), the attacker abilities
on a new communication path are “read, send, suppress”. In the eTicket case
study (see Fig. 2) the agent UserDevice can be removed. A new communi-
cation path is created between User and ETicketServer, between User and
ETicketCard as well as between ETicketCard and ETicketServer. The at-
tacker capabilities on the new created communication paths are “read, send,
suppress”. Using this abstraction, the resulting specification for the eTicket
case study has 10% less transition rules.

2. Deleting unused class attributes
Some class attributes are necessary for the implemented application but are
never used in the protocols. For example the attributes of TicketInfo (depar-
ture, destination, expiration, ...) are relevant for the real users and inspectors
but not for the formal specification. Hence, if the attributes of a class are never
used by the protocols (especially no constructor call of the class) and if the
security properties do not refer to those class attributes, they don’t need to be
specified in ASLan++. Consequently, such a SecureMDD class with unused
attributes is translated to an ASLan++ type. Model checking a simplified
eTicket version with the model checker Cl-AtSe using this abstraction, is five
times faster than a version of eTicket that does not use this abstraction.

3. Reducing conditional branches
In SecureMDD, the section between receiving a message and sending the
next is called a protocol step and is considered to be atomic. If all steps in
ASLan++ could be specified to be atomic each step could be translated into a
single transition rule. However, in ASLan++ steps that contain branches are
translated into several transition rules in ASLan, which increases the com-
plexity of the specification. It is possible to merge several nested conditional
branches into one by combining the branch conditions with a logical AND if
only the innermost branch contains other statements. By doing so one can
eliminate transition rules from the resulting ASLan specification. This ab-
straction can be used quite often with SecureMDD models and is executed
automatically on the UML model.

In SecureMDD, any system participant can receive any modeled message
after having executed a step. For the state machine in ASLan this results
in a large number of possible transition combinations. In most protocols,
however, the message order is fixed by using explicit state variables that are
usually checked in a branch condition immediately after receiving a message
(see Fig. 3 (6)). But as already mentioned, conditional branches are to be
avoided in ASLan++. Because for receiving a message a conditional branch
without else case (on(...) see List. 1 (3-4)) is used, the mentioned abstrac-
tion would not be applicable. But because usually, in SecureMDD, all else
cases from the state checks are the same (e.g. only set the state to idle), it
is possible to get the required behavior by adding on(true) state:= idle; to
the ASLan++ select statement inside the infinite loop of an entity depicted

Model Checking of Security-Critical Applications 85

in List. 2. This is done automatically if the assumptions hold. This abstrac-
tion reduces the number of transition rules of the eTicket case study by 50%
compared to a version of eTicket that does not use this abstraction.

4. Assuming a fixed message order
Another abstraction is to specify the message receive order statically in
ASLan++. This means that the dynamic state check while receiving a
message has to be translated into cascading receive blocks in the ASLan++
specification where the inner one can only receive a message if the outer one
has received and executed a message. To guarantee that such abstraction
does not lead to false positives the dynamic state checks remains. The static
receive order is implemented very efficiently by the AVANTSSAR tools and
leads to a major speed up that makes it possible for the first time to find
security flaws in the eTicket case study.

The aforementioned abstractions are done automatically during the transforma-
tions and leads to a significant reduction of the system complexity andmakemodel
checking of medium-sized systems like eTicket with ASLan++ and a model-
driven approach feasible in the first place. However, the execution time of model
checking rises exponential with the number of transition rules. Therefore, larger
systems like an electronic health card [16] which has 105 different protocol steps
(translated and abstracted to approx. 130 transition rules) are too big for model
checking application-specific properties for the whole application.

6 Security Flaws

AVANTSSAR is a project about ”Automated VAlidatioN of Trust and Security
of Service-oriented ARchitectures”. It integrates three model checkers (Cl-AtSe,
OFMC and SATMC) which use the same input language called ASLan++. But
not all model checkers support its full syntax. Because only Cl-AtSe[19] covers
all needed syntax elements and because speed tests illustrate that all three model
checkers are comparably fast [19] we decided to use Cl-AtSe for our tests. Cl-AtSe
is a ”Constraint Logic based Attack Searcher” for security protocols. To find at-
tacks it uses rewriting and constraint solving techniques as well as different kinds
of backward strategies. Cl-AtSe supports a split function to split a specification
into subtasks that can be executed in parallel. The tests were performed on a
3GHz quad core computer. Without using the split function, the CPU load was
constantly at 13%, with the split function we were able to use the full capacity.

For the eTicket example we have defined three application-specific security
properties in ASLan++. They are used to test which kind of protocol flaws can
be found, which assumptions are necessary as well as how long it takes to find
those flaws.

1. Only tickets that were issued by the eTicket server can be “punched”
To ensure this application-specific security property it is also necessary that
only tickets that are stored on a valid card can be “punched”. Hence, before
an inspector “punches” a ticket, the card has to authenticate itself with the

86 M. Borek et al.

inspector device. This is done using certificates. Then, it is ensured that the
incoming messages were sent by the authenticated participant. This is done
using nonces. The inspector device has to send a nonce encrypted with the cer-
tified card public key to the card and the card has to answer with the received
nonce encrypted with the public key of the inspector device. If such a nonce
is not used, the attacker can inject an answer message and a ticket that is not
stored on a card will be “punched”. That would lead to the fact that the men-
tioned security property does not hold. For testing the model checker we have
removed the nonce. This security flaw has been detected with the abstracted
version in a few seconds. The split function was not used and the assumptions
were that each transition rule can be executed only once in a trace.

2. A paid ticket cannot be lost (i.e., a bought ticket is stored on the
server until it has been received by the card)
Before a ticket can be bought, an authentication has to take place and a valid
PIN has to be provided. If the user buys a ticket but does not receive it be-
cause the attacker has suppressed the message that contains the ticket, then
the ticket is paid for but not stored on the buyer’s card. Hence, a recovery
protocol is used to be able to receive the last paid ticket until it can be stored
successfully on the card. Therefore, a previously processed authentication and
a boolean flag waitingForTicket set to true are necessary.WaitingForTicket is
set to true before the ReqTicket message is sent out (see Fig. 3) and it is set to
false after the ticket is received. However, after a ticket is bought but has not
been received yet, it is possible that the card owner buys a new one. In this
case, the first bought ticket which is stored on the server will be overwritten by
the new one and the old ticket is lost. But that is against the security property.
To find the flaw it is necessary that a ticket can be bought two times. Hence,
for Cl-AtSe it is necessary that each transition rule can occur in a trace at least
two times. This value has to be set manually and leads to a higher complexity
and a higher execution time. With the abstracted version and the split func-
tion that allows a full CPU load the flaw could not be found even after a week.
To ensure that this attack exists in the ASLan++ specification, we predeter-
mined the attack trace. Then the attack was found. Another way to find the at-
tack but without giving the full attack trace, is to omit protocol steps that are
not necessary for the security property. This abstraction needs expert know-
how and can cause that some attacks can not be found. But it also reduces the
complexity and raises the chance to find an attack. In this way we delete the
inspector, the inspector device, all protocol steps that receive messages from
the inspector device as well as the show ticket and delete ticket functionality.
Then we were able to find the attack with the split function in 30 minutes.

3. A ticket cannot be “punched” multiple times
After a long time of analyzing the eTicket case study we havemanually found a
security flaw (security property is violated) that was actually hard to find and
can only occur if almost all protocol steps are considered and the handshake is
executed three times. Taking this knowledge into consideration we have tried
to find the attack using model checking. Despite the abstraction, elimination
of all not used protocol steps and the split function that allows a full CPU

Model Checking of Security-Critical Applications 87

load the flaw could not be found even after a week. For the attack a handshake
between card and server has to be processed and a ticket has to be bought,
stored on the card and the delete ticket confirmation that should be sent to the
server has to be suppressed. Then the ticket has to be stamped by an inspec-
tor device. For that the public keys have to be exchanged between card and
inspector device and their certificates has to be verified. Additionally, a ticket
has to be chosen and then stamped. After that a new Ticket has to be bought
to set the WaitingForTicket flag to true. This means that a new handshake
has to be processed but this time the message to buy the ticket has to be sup-
pressed. After that the first bought ticket that is still stored on the server can
be recovered by processing a handshake and the recovery. That replaces the
stamped ticket with the same ticket but it is not stamped. After that the ticket
can be stamped a second time. This attack requires 73 steps, which is a lot.

7 Comparison: Model Checking vs Interactive Verification

Existing ASLan++ specifications that consider security applications can often
be checked within a few minutes. But to achieve this in the first place, the real
applications are abstracted manually. In case of a real application not the whole
system is considered but only a manually chosen part. For example, for our eT-
icket case study that has 52 different protocol steps (whereby one protocol step
can lead to several transition rules in ASLan) the ASLan++ specification also
considers that a user is able to view his purchased tickets. Because the exchanged
messages to view purchased tickets are not relevant for the considered properties,
a manual abstracted specification would omit those messages. But this has to be
done by an expert because it is non-trivial which parts of the application can
be omitted. Additionally, the assumptions (e.g., only one or maybe two protocol
runs are considered) are too restrictive.

In contrast to classic model checking, with interactive verification it is possible
to verify security properties of an application that uses cryptographic protocols
for an arbitrary number of agents and protocol runs. The formal model for in-
teractive verification with KIV is based on algebraic specifications and Abstract
State Machines (ASMs) [7]. It specifies a world in which agents exchange mes-
sages according to the protocols, and an attacker tries to break the security. The
interactive verification of the mentioned security properties for eTicket (see 6)
by an expert requires approx. three weeks to verify the properties for all possible
protocol runs and for an arbitrary but finite number of agents. For model check-
ing of medium-sized applications the application model has to be abstracted
to reduce the search space. If these abstractions are done manually they are
time-consuming, error-prone and require expert know-how. Interactive verifica-
tion is also time-consuming and requires expert know-how but with “simplifier
rules” that are generated automatically by KIV some verification steps can be
automated. Arithmetic is also a difficult task for most model checkers. For ex-
ample, ASLan++ only provides a successor as well as an equal function. Other
model checkers like NuSMV[8] provide basic arithmetic like addition, subtraction,

88 M. Borek et al.

multiplication, comparison etc. But in those model checkers, a fixed range of val-
ues has to be specified. Model checkers that are able to verify properties for an
arbitrary number of agents and protocol runs are currently work in progress.
OFMC[15] is a model checker that implements a fixpoint module which uses an
over-approximation of the search space to allow a verification for an unbounded
number of transitions. To cope with the infinite set of traces, OFMC uses some
abstractions that are not safe, which can lead to false attacks. It is also possible
that the abstractions run into non-termination and nothing can be proved with
the fixpoint module. Although OFMC is integrated in AVANTSSAR, it only sup-
ports a subset of full ASLan, which is not enough to specify our eTicket example.
Hence, we were not able to test the fixpoint module of OFMC.

8 Related Work

Model checking is still used with a manual abstraction of an existing application
[2]. Such abstractions can be done systematically and fault-preserving [13] but
they are still time-consuming and need expert know-how. In our model-driven ap-
proach, runnable code as well as formal specifications are generated automatically
from a model. To ensure that the generated code and the formal specification fit
together, the resulting formal specificationmust not be adjusted manually. Hence,
abstractions have to be done automatically. There are model-driven approaches
that already generate formal specifications automatically for model checking.

The approach developed by Deubler et al. [9] considers the model-driven de-
velopment of secure service-based systems and uses SMV to automatically check
role-based access control policies. SecureUML [5] is also a model-driven ap-
proach that defines application behavior with UML. It uses Maude and Spin for
model checking and Isabelle for interactive verification. However, it is tailored to
role-based access control applications. Arsac et al. [3] use BPMN for model-
ing security-critical business processes and AVANTSSAR for model checking of
security properties like role-based access control.

But all these approaches are not able to check or verify application-specific
security properties. That is because they focus on the interaction between agents
and do not model the full application behavior. Hence, by using those approaches
one is only able to validate high level security properties like secrecy, integrity,
authentication, authorization and role-based access control. But many system
requirements are application-specific like “only tickets that were issued by a valid
ticket server can be punched”. Additionally, a few of them also generate code from
the applicationmodel automatically but this code has to be extended by logic that
is usually also security-critical. By combining our approach called SecureMDD
with AVANTSSAR it is possible to model check the full system behavior for
application-specific properties automatically.

UMLsec [14] describes another model-driven approach that uses sequence dia-
grams or state charts to model the system behavior and integrates model checkers
(e.g., Spin) and automated theorem provers (e.g., SPASS) to check security prop-
erties like secrecy and integrity but are not restricted to those. UMLsec does

Model Checking of Security-Critical Applications 89

not integrate AVANTSSAR and has not demonstrated the limitations of model
checking in a model-driven approach.

9 Conclusion

Model checking can be used to find protocol flaws in security-critical systems.
In this paper we successfully integrate model checking using AVANTSSAR into
SecureMDD, a model-driven approach for security-critical applications. We have
written model-transformations to automatically transform a SecureMDD model
into ASLan++. The transformation automatically does abstractions on the UML
input model to reduce the complexity of the resulting specification. The gener-
ated specification is very close to a manually written one that specifies the full
application functionality. We have defined application-specific security proper-
ties for an eTicket application and have shown that within one week and a 3GHz
quad core computer some attacks could be found but not all. The properties are
checked for the whole system that has 52 protocol steps and represents a real
and medium-sized application. Because the system complexity rises exponential
with each protocol step, even larger applications than our eTicket case study are
too big for model checking of application-specific properties for the whole system
without omitting functionality. Finally, we have shown the difference between
interactive verification and model checking. Future work could be to annotate
protocol parts in the SecureMDD model that should be omitted in the resulting
ASLan++ specification to reduce the system complexity.

We come to the conclusion that model checking enriches a model-driven ap-
proach for security-critical applications greatly. Such an approach with automatic
generation and abstraction of formal specifications avoids expert know-how about
formal methods as needed for interactive verification. But for large systems the
complexity of model checking the whole system is too big. Furthermore, classic
model checking is suitable to find application-specific security flaws but for verifi-
cation (arbitrary number of agents and protocol runs) of large systems, interactive
theorem proving is needed.

References

1. Armando, A., et al.: The AVANTSSAR platform for the automated validation of
trust and security of service-oriented architectures. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 267–282. Springer, Heidelberg (2012)

2. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Tobarra, L.: Formal
analysis of saml 2.0 web browser single sign-on: breaking the saml-based single
sign-on for google apps. In: Proceedings of the 6th ACM Workshop on Formal
Methods in Security Engineering, pp. 1–10. ACM (2008)

3. Arsac, W., Compagna, L., Pellegrino, G., Ponta, S.E.: Security validation of
business processes via model-checking. In: Erlingsson, Ú., Wieringa, R., Zannone,
N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 29–42. Springer, Heidelberg (2011)

4. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system devel-
opment with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 363–366.
Springer, Heidelberg (2000)

90 M. Borek et al.

5. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: From UML Models
to Access Control Infrastructures. ACM Transactions on Software Engineering
and Methodology, 39–91 (2006)

6. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model-driven development of secure
service applications. In: 2012 35th Annual IEEE Software Engineering Workshop
(SEW), pp. 62–71. IEEE (2012)

7. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level
System Design and Analysis. Springer (2003)

8. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

9. Deubler, M., Grünbauer, J., Jürjens, J., Wimmel, G.: Sound development of
secure service-based systems. In: Proceedings of the 2nd International Conference
on Service Oriented Computing, pp. 115–124. ACM (2004)

10. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. In: Proc. 22nd
IEEE Symposium on Foundations of Computer Science. IEEE (1981)

11. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for
automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

12. Holzmann, G.: The model checker spin. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

13. Hui, M.L., Lowe, G.: Fault-preserving simplifying transformations for security
protocols. Journal of Computer Security 9(1), 3–46 (2001)

14. Jürjens, J.: Model-based security engineering with UML. In: Aldini, A., Gorrieri,
R., Martinelli, F. (eds.) FOSAD 2004/2005. LNCS, vol. 3655, pp. 42–77. Springer,
Heidelberg (2005)

15. Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for
symbolic analysis of security protocols. In: Foundations of Security Analysis and
Design V. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg (2009)

16. Moebius, N., Stenzel, K., Borek, M., Reif, W.: Incremental development of large,
secure smart card applications. In: Proceedings of the Workshop on Model-Driven
Security. ACM (2012)

17. Moebius, N., Stenzel, K., Reif, W.: Modeling Security-Critical Applications
with UML in the SecureMDD Approach. International Journal on Advances in
Software 1(1) (2008)

18. Moebius, N., Stenzel, K., Reif, W.: Formal verification of application-specific secu-
rity properties in a model-driven approach. In: Massacci, F., Wallach, D., Zannone,
N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 166–181. Springer, Heidelberg (2010)

19. Turuani, M.: The CL-atse protocol analyser. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

20. von Oheimb, D., Mödersheim, S.: ASLan++ — A formal security specification
language for distributed systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue,
M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 1–22. Springer, Heidelberg (2011)

21. ZDNet. Attackers hit google single sign-on password system (2010)
22. ZDNet. Chip and pin is broken, say researchers (2010)

Lifting Verification Results

for Preemption Statements

Manuel Gesell, Andreas Morgenstern, and Klaus Schneider

Embedded Systems Group, Department of Computer Science,
University of Kaiserslautern, Germany

Abstract. The normal operation of synchronous modules may be tem-
porarily suspended or finally aborted due to requests of their environ-
ment. Hence, if a temporal logic specification has already been verified
for a synchronous module, then the available verification result can typ-
ically only be used if neither suspension nor abortion will take place.
Also, the simulation of synchronous modules has to be finally aborted so
that temporal logic specifications referring to infinite behaviors cannot
be completely answered. In this paper, we therefore define transforma-
tions on temporal logic specifications to lift available verification results
for synchronous modules without suspension or abortion to refined tem-
poral logic specifications that take care of these preemption statements.
This way, one can establish simulation and modular verification of syn-
chronous modules in contexts where preemptions are used.

1 Introduction

Reactive systems have been introduced as a special class of systems that have an
ongoing interaction with their environment [11]. Their execution is divided into
reaction steps, where the system reads inputs from the environment and reacts
by computing the corresponding outputs. In contrast to interactive systems, the
environment is allowed to initiate the interactions at any time, so that reactive
systems usually have to work under real-time constraints. Typical examples are
synchronous hardware circuits, many protocols, and many embedded and cyber-
physical systems.

For the design of reactive systems, synchronous languages have been devel-
oped [9,3] whose paradigm directly reflects the reactive nature of the systems
they describe. In addition to the explicit notion of reaction steps, languages
like Esterel [4] and Quartz [15] offer many convenient statements for the design
of reactive systems. One class of such statements are preemption statements
for abortion and suspension that overwrite the normal behavior of the system
when a specified condition holds. For example, the abortion statement abort S
when(σ) behaves as its body statement S as long as the condition σ is false, and
immediately terminates when σ holds. The suspension statement suspend S
when(σ) also behaves as its body statement S as long as the condition σ is false,
and suspends the computation in each step where σ holds. Both preemption
statements can moreover be weak or strong which makes a difference on their

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 91–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

92 M. Gesell, A. Morgenstern, and K. Schneider

influence on the control and data flow of the controlled statement S: While the
weak versions allow the data flow actions to take place even if the condition σ
holds, the strong versions also block the data flow.

Since reactive systems are often used in safety-critical applications, their func-
tional correctness is of essential importance. For this reason, simulation and for-
mal verification are routine steps in their design flows, and in particular, model
checking is often used for these systems. However, due to the well-known state
space explosion problem, a modular or compositional verification [7,6] is desired
where modules can be replaced by their already verified properties. Large reac-
tive systems can only be verified by modular or compositional approaches despite
the tremendous progress on model checking procedures we have seen in the past
two decades. Another reason for modular verification is that modules are de-
fined for being reused later on, and therefore the effort for formal verification
amortizes when one can simply reuse also the already verified properties.

However, it is clear that calling a module S in a preemption statement changes
the behavior, so that temporal properties that hold for S may no longer be valid
for the entire statement. It is therefore unclear how one can reuse available veri-
fication results for the statement S, which leads to the central question answered
by this paper: ‘What can we say about temporal properties of (weak)abort
S when(σ) or (weak)suspend S when(σ), when we know that S satisfies a
temporal property ϕ?’

In this paper, we therefore define transformations to map a temporal logic
formula ϕ to modified temporal logic formulas Θwk

ab (ϕ, σ), Θ
st
ab(ϕ, σ), Θ

wk
sp (ϕ, σ),

Θst
sp(ϕ, σ) such that these formulas hold for weak abort S when(σ), abort S

when(σ), weak suspend S when(σ), and suspend S when(σ), respectively,
provided that S satisfies ϕ. It is clear that these formulas are equivalent to ϕ if
σ is false, and that ‘as much as possible’ of ϕ should be retained.

The results we present in this paper are not only useful for modular verifica-
tion, which is our main interest. In [2], the authors considered the problem to
make specifications for the simulation of reactive systems, which is difficult since
the simulation has to be aborted after some finite time, so that properties that
refer to the infinite behavior of the system cannot be completely answered. Our
results can be also used for simulation in preemption contexts.

In [8], we already established modular verification techniques for synchronous
programs. There a preemption context was simulated by introducing new in-
put variables for the verification task. Hence, some assumptions about the con-
text were made during the verification of a module. In this paper, however,
we lift a given verification result M |= ϕ where M does not consider any
preemption statement to new results Θwk

ab (M, σ) |= Θwk
ab (ϕ, σ), Θ

st
ab(M, σ) |=

Θst
ab(ϕ, σ), Θ

wk
sp (M, σ) |= Θwk

sp (ϕ, σ), Θ
st
sp(M, σ) |= Θst

sp(ϕ, σ) where Θwk
ab (M, σ),

Θst
ab(M, σ), Θwk

sp (M, σ), Θst
sp(M, σ) are weak abort M when(σ), abort M

when(σ), weak suspendM when(σ), and suspendM when(σ), respectively.
Thus, concerning preemption statements, the results presented here are stronger
since they allow us to introduce preemption in the module even if it has not
been considered there from the beginning.

Lifting Verification Results for Preemption Statements 93

The outline of our paper is as follows: Section 2 explains the syntax and se-
mantics of the linear temporal logic (LTL), the representation of synchronous
systems by guarded actions and transition systems, and defines the preemp-
tions Θwk

ab (G, σ), Θst
ab(G, σ), Θwk

sp (G, σ), and Θst
sp(G, σ) for a set of guarded actions

G. Then, in Section 3 the transformations Θwk
ab (ϕ, σ), Θ

st
ab(ϕ, σ), Θ

wk
sp (ϕ, σ), and

Θst
sp(ϕ, σ) are defined and correctness proofs are given. Section 4 illustrates our

approach.

2 Preliminaries

This section introduces the temporal logic LTL, the representation of synchronous
systems by synchronous guarded actions, and their represented state transition
systems as foundations for our transformations.

2.1 Syntax and Semantics of LTL

For specifications, we consider linear temporal logic, since it is well-known that
branching time logics like CTL do not lend themselves well for modular verifi-
cation [12]. Given a finite set of variables V , the following grammar rules with
starting symbol S define the formulas of the temporal logic LTL.

S ::= AP P ::= 0 | 1 | V | ¬P | P ∧ P | P ∨ P | XP | [P U P] | [P U P]

The symbol S represents thereby state formulas and P represents the path for-
mulas. Similar to preemption statements, [ϕ U ψ] is often called the ‘strong un-
til’ while [ϕ U ψ] is called the ‘weak until’ operator. It is well-known that these
operators are sufficient to define LTL, but for convenience, we may also intro-
duce further operators like Gϕ := [ϕ U 0] (always), Fϕ := [1 U ϕ] (eventual),
[ϕW ψ] := [¬ψ U ϕ ∧ ψ)] (weak when), and [ϕ W ψ] := [¬ψ U (ϕ ∧ ψ)] (strong
when). Their meaning is defined on state transition systems.

Definition 1 (Transition Systems). A transition system T = (S, I,R,L)
for a finite set of variables V is given by a finite set of states S ⊆ 2V , a set
of initial states I ⊆ S, a transition relation R ⊆ S × S, and a label function
L : S → 2V that maps each state to the set of variables that hold in this state.

An infinite path is a function π : N→ S with (π(t), π(t+1)) ∈ R, where we denote
the t-th state of the path π as π(t−1) for t ∈ N. The semantics of path formulas
of a transition system T is defined by the relation (T , π, t) |= ϕ that defines if
a path formula ϕ holds on position t of a path π of a transition system T (see
e. g. [14] for a full definition).

– (T , π, t) |= p holds iff p ∈ L(π(t)) for every p ∈ V
– (T , π, t) |= Xϕ holds iff (T , π, t+ 1) |= ϕ
– (T , π, t) |= [ϕ U ψ] holds iff there is a δ such that (T , π, t + δ) |= ψ and for all

x < δ, we have (T , π, t+ x) |= ϕ
– (T , π, t) |= [ϕ U ψ] holds iff (T , π, t) |= [ϕ U ψ] or for all x, we have (T , π, t+x) |= ϕ.

Aϕ holds in a state s of T if all paths π starting in s satisfy (T , π, 0) |= ϕ. Finally,
a transition system T satisfies a LTL formula AΦ if all initial states satisfy Φ, in
this case, we write T |= AΦ.

94 M. Gesell, A. Morgenstern, and K. Schneider

2.2 The Synchronous Model of Computation

The execution of synchronous languages [9,3] is divided into a discrete sequence
of reaction steps that are also called macro steps. Within each macro step, the
system reads all inputs and instantaneously generates all outputs depending on
the current state and the read inputs. Also, the next state is computed in parallel
to the current outputs. There are many synchronous languages including Esterel
[4], Quartz [15], Lustre [10], Signal [13], and SyncCharts [1]. In the following, we
do not focus on a particular synchronous language, and therefore use synchronous
guarded actions as an intermediate representation for any synchronous language.
An example for generating guarded actions for a Quartz program is presented
in [8] while [5,15] describes the general compilation.

Definition 2 (Synchronous Guarded Actions). A synchronous system over
input Vi, label Vl, state Vs, and output variables Vo is defined by a set of guarded
actions. A guarded action is thereby a pair γ ⇒ α consisting of a boolean con-
dition γ called the trigger of the guarded action and its action α. Actions are
either immediate assignments x = τ or delayed assignments next(x) = τ where
x ∈ Vl ∪ Vs ∪ Vo.

The intuitive meaning of synchronous guarded actions is a state transition system
over the variables V := Vi∪Vl ∪Vs∪Vo (see Definition 1). A state s is thereby a
valuation of variables to their respective values and the transition relation will
be formally defined below. Intuitively, the meaning is that whenever the guard
is true in a state s, the action is fired, which means that the corresponding
equation must be true. In case of an immediate assignment x = τ this means
that in state s, variable x must have the same value as τ , and for a delayed
assignment next(x) = τ , it means that in all successor states s′, variable x
must have the value that τ has on s. Whenever there is no guarded action that
determines the value of a variable, a default action takes place. This default
reaction assigns a default value for event variables, and the previous value for
memorized variables. Input and label variables are always event variables, while
state and output variables may be event or memorized variables. Both kinds of
variables are important for the convenient modeling of reactive systems.

Furthermore, we partition the set of guarded actions into control and data
flow actions, which will be important for defining strong and weak preemptions.

Definition 3 (Control and Data Flow). The control flow are guarded actions
writing a label variable Vl, while the data flow are guarded actions writing a state
variable Vs or an output Vo. We assume that guarded actions of the control flow
have the form γ ⇒ next(�) = true.

Label variables Vl correspond with places in the program where the control flow
can rest between the macro steps, i.e., these labels denote places in the program
code where a macro step ends and where another one starts. By construction,
these labels are translated to boolean variables where only guarded actions as
shown above are obtained. Since labels are event variables, they will be auto-
matically reset to false if there is no assignment making them true.

Lifting Verification Results for Preemption Statements 95

The above informal remarks lead to the following formal definition of a state
transition system. The aim is to generate boolean formulas for the initial state
condition and the transition relation that can be directly used for model check-
ing. To this end, we first define some auxiliary functions.

Definition 4 (Reactions per Variable). Assume that for a variable x ∈ V,
we have the guarded actions (γ1, x = τ1), . . . , (γp, x = τp) with immediate and
(χ1,next(x) = π1), . . . , (χq,next(x) = πq) with delayed assignments. Then,
we define the following boolean formulas over V ∪ V ′, where v′ ∈ V ′ represents
the variable v ∈ V in the next step/state and Initial(x) denotes the initial value of
variable x that is 0 for integers and false for booleans. Additionally, we make
use of the substitution 〈ϕ〉V′

V that replaces all occurrences of a variable v ∈ V in
ϕ by the corresponding variable v′ ∈ V ′.

– Default(x) :=

{
Initial(x) : if x is an event variable
x : if x is a memorized variable

– ImmActs(x) :=
∧p

j=1(γj → x = τj)

– DelActs(x) :=
∧q

j=1(χj → x′ = πj)

– InitDefActs(x) :=
(∧p

j=1 ¬γj
)
→ x = Initial(x)

– NextDefActs(x) :=
〈∧p

j=1 ¬γj
〉V′

V
∧
(∧q

j=1 ¬χj

)
→ x′ = Default(x)

We will use the above formulas to construct now an initial state condition I and
the transition relation R of a transition system.

Definition 5 (Symbolic Representation of Systems). For a synchronous
system over the variables V consisting of input Vi, label Vl, state Vs, and output
variables Vo, the transition system T := (S, I,R,L) is defined by the states
S = 2V , L(s) := s, the following initial state condition I, and the state transition
relation R, where Vwrite := Vl ∪ Vs ∪ Vo denotes the writable variables.

– I :=
∧

x∈Vwrite
ImmActs(x) ∧

∧
x∈Vwrite

InitDefActs(x)
– R :=

∧
x∈Vwrite

ImmActs(x) ∧
∧

x∈Vwrite
DelActs(x) ∧

∧
x∈Vwrite

NextDefActs(x)

Whenever one of the guards γi of an immediate assignment γi ⇒ x = τi holds
in the definition of R, then the equation x = τi must hold, since the assignment
has an immediate effect. Analogously, if a guard χi of a delayed assignment
χi ⇒ next(x) = πi holds, then the equation x′ = πi that defines the value for x
in the next step must hold. The value of x is determined by the default action if
no guard χi held in the previous step and no guard γi holds in the current step.

2.3 Preemption Statements

In the following, we describe the semantics of the four different preemption
statements ((weak)abort, (weak)suspend) used in Quartz1.

1 We only consider the immediate variants of these statements in this paper that
observe the preemption condition also in the first macro step of the statement while
other variants omit the starting point of time. All results presented here can be easily
transferred to the omitted delayed variants as well.

96 M. Gesell, A. Morgenstern, and K. Schneider

Definition 6 (Preemption of Synchronous Systems). Given guarded ac-
tions G of a synchronous system over input Vi, label Vl, state Vs, and output
variables Vo. Then, the weak/strong abortion and weak/strong suspension with a
condition σ is obtained by modifying the guarded actions as follows to obtain syn-
chronous systems Θst

ab(G, σ), Θwk
ab (G, σ), Θst

sp(G, σ), and Θwk
sp (G, σ), respectively.

preemption control flow data flow
(γ ⇒ next() = true) ∈ G (γ ⇒ α) ∈ G

strong abort σ Θst
ab(G, σ) ¬σ ∧ γ ⇒ next() = true ¬σ ∧ γ ⇒ α

weak abort σ Θwk
ab (G, σ) ¬σ ∧ γ ⇒ next() = true γ ⇒ α

strong suspend σ Θst
sp(G, σ) (¬σ ∧ γ) ∨ (∧ σ)⇒ next() = true ¬σ ∧ γ ⇒ α

weak suspend σ Θwk
sp (G, σ) (¬σ ∧ γ) ∨ (∧ σ)⇒ next() = true γ ⇒ α

The table shows that the guarded actions of the data flow are only modified by
the strong preemption statements since weak preemption allows data actions to
take place at the time of preemption. Moreover, weak and strong abortions have
the same effect on the control flow. Abortion statements disable all assignments
to control flow labels � so that the control flow leaves the system in case of
abortion. During a suspension, the control flow is kept and does not move to
other labels.

In addition, any preemption context represented by the transition system
T ′ := (S ′, I ′,R′,L′) changes the behavior only if σ holds. Hence on a path π
where no preemption takes place (∀i.π(i) �|= σ), the behavior of T ′ is equivalent
to the original transition system T := (S, I,R,L). Hence, it is clear that we
have S ⊆ S ′, I ⊆ I ′ and R ⊆ R′, which allows us to apply the following lemma:

Lemma 1. Let T = (S, I,R,L) and T ′ = (S ′, I ′,R′,L′) be two transition
systems where S ⊆ S ′, I ⊆ I ′, R ⊆ R′, and L(ϑ) = L′(ϑ) holds for any state
ϑ ∈ S. Then, there exists a simulation relation � between T and T ′.

Proof. Simply define the simulation relation � as follows: ϑ1 � ϑ2 :⇔ ϑ1 = ϑ2,
i.e. � is the identity relation that satisfies the simulation relation properties.

3 Making LTL Specifications Preemptive

In general, a temporal logic formula ϕ that holds in a synchronous system given
by its guarded actions G will no longer be valid in one of the systems Θst

ab(G, σ),
Θwk

ab (G, σ), Θst
sp(G, σ), and Θwk

sp (G, σ). For example, the system G = {true ⇒
next(�) = true, � ⇒ c = i} with Vi = {i}, Vl = {�}, and Vo = {c} is modified
to Θst

ab(G, abrt) = {¬abrt ⇒ next(�) = true,¬abrt ∧ � ⇒ c = i}. There-
fore, the LTL specification A G (c↔i) that holds on G is no longer satisfied
in Θst

ab(G, abrt). However, a specification like A [(c↔ i) U abrt] holds, which
states that c is equivalent to i until an abortion takes place.

In the following, we define transformationsΘst
ab(ϕ, σ), Θ

wk
ab (ϕ, σ),Θ

st
sp(ϕ, σ), and

Θwk
sp (ϕ, σ) for temporal logic formulasϕ so that we establish the followingmodular

proof rules. These rules allow us to reason about a satisfied temporal logic property

Lifting Verification Results for Preemption Statements 97

(e.g. Θst
ab(ϕ, σ)) of a system in a preemption context (e.g. Θst

ab(G, σ)), in case the
property ϕ has already been proved for G. Since we want to use our rules in an
interactive verification tool that considers systems defined by guarded actions, we
define these rules directly on guarded actions. Nevertheless, the correctness proofs
will use the equivalent representation of transition systems that we defined in the
previous section.

G |= ϕ
Θst

ab(G, σ) |= Θst
ab(ϕ, σ)

G |= ϕ

Θwk
ab (G, σ) |= Θwk

ab (ϕ, σ)

G |= ϕ DFNxtEvtFree(G)
Θst

sp(G, σ) |= Θst
sp(ϕ, σ)

G |= ϕ

Θwk
sp (G, σ) |= Θwk

sp (ϕ, σ)

The upper part defines the assumptions of the rule, the lower part defines the
conclusions that hold by the rule. The condition DFNxtEvtFree(G) and the trans-
formation Θst

sp(ϕ, σ) are explained in Section 3.2.
To this end, we assume without loss of generality that the given specification ϕ

is in negation normal form and the next operators are shifted inwards such that
next operators only occur in front of a variable, its negation or a next operator.

3.1 Transformation for Strong Abortion

An abortion can stop the execution of a system in every step. Hence, a preemp-
tive specification should express that either the specification ϕ has already been
satisfied or that the execution was aborted in a step before the specification was
fulfilled (or violated). These thoughts lead to the following definition.

Definition 7 (Transformation Θst
ab(ϕ, σ)). The transformation Θst

ab(ϕ, σ) that
generates an abort-sensitive specification for Aϕ is defined recursively as

Θst
ab(ϕ, σ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σ ∨ ϕ, if ϕ is propositional

σ ∨ X(Θst
ab(ψ, σ)), if ϕ = Xψ

[Θst
ab(ψ, σ)⊗Θst

ab(γ, σ)], if ϕ = ψ ⊗ γ with ⊗ ∈ {U,U}
Θst

ab(ψ, σ) ⊗Θst
ab(γ, σ), if ϕ = ψ ⊗ γ with ⊗ ∈ {∧,∨}.

The crucial point of the definition is that we have to forbid the use of a variable
after an abortion took place, which is achieved in that all recursive calls will
finally introduce a disjunction with σ. The definition states that for the next
operator, the specification ϕ = Xψ must lead to a specification that requires that
the execution is aborted in the current or next step since σ holds or ψ holds in the
next step. Thus, the specification ϕ := [ψ U γ] (and [ψ U γ] respectively) requires
that ψ holds in every step until (eventually) γ or σ holds (the condition σ is added
implicitly by the recursive calls). Note that it is impossible to abort the left-hand
side of a (strong) until without aborting the right-hand side, too. The same is
valid for the Boolean operators because σ is added simultaneously on both sides.
For a propositional formula ϕ, we have for example Θst

ab(Gϕ, σ) = [ϕ U σ] and
Θst

ab(Fϕ, σ) = F(ϕ ∨ σ).
Correctness. To prove the correctness of the proof rule related to the above
transformation, we will make use of the following lemmata.

98 M. Gesell, A. Morgenstern, and K. Schneider

Lemma 2 (Containment of ϕ). The transformation preserves the original
specification if no preemption takes place, i.e., Θst

ab(ϕ, false) = ϕ holds.

Proof. The lemma can be easily proved by induction over ϕ.

The following lemma states that the transformed specifications are vacuously
satisfied if σ holds.

Lemma 3. For an arbitrary but fixed condition σ and a path π′ through Θst
ab(G, σ)

and a position m such that π′(m) � σ holds, we have

(Θst
ab(G, σ), π′,m) |= Θst

ab(ϕ, σ).

Proof. The proof can be easily shown by an induction over the structure of ϕ.

The following theorem ensures the correctness of the modular proof rule for
strong abortion, and even that the assumption and conclusion of the rule are
equivalent.

Theorem 1. For any set of guarded actions G and any condition σ, the follow-
ing holds Θst

ab(G, σ) |= Θst
ab(ϕ, σ)↔ G |= ϕ.

Proof. The ’→’ direction states that we retained ‘as much as possible’ in our
transformation and it follows directly from Lemma 2 and Lemma 1. The ’←’
direction directly proves the correctness of the proof rule.

Let T be the original transition system for G and T ′ be the transition system
for Θst

ab(G, σ). Obviously, if σ does not occur on a path π′ through T ′, then the
original system T already contained π′ and we can conclude from Lemma 2 that
(T ′, π′) |= Θst

ab(ϕ, σ) = ϕ.
Assume we have a path π ∈ T through the original system and π′ ∈ T ′ is a

path that is equivalent to π up to a minimal position tσ where σ holds. We show
by finite induction on the number of temporal operators (‖ϕ‖) in an arbitrary
formula ϕ, that ∀m ≤ tσ: if (T , π,m) |= ϕ we have (T ′, π′,m) |= Θst

ab(ϕ, σ).

Base Case: ‖ϕ‖ = 0, hence ϕ is propositional and Θst
ab(ϕ, σ) is equivalent to

ϕ ∨ σ. A case distinction for π′(m) solves the case: for π′(m) � σ we have
(T ′, π′,m) |= σ and for π′(m) � σ we have (T ′, π′,m) |= ϕ following from the
definition of π and π′. Hence, (T ′, π′,m) |= ϕ ∨ σ = Θst

ab(ϕ, σ) holds.
Inductive Step: ‖ϕ‖ = m + 1, hence, Θst

ab(ϕ, σ)’s result is besides the triv-
ial boolean combinations either σ ∨ XΘst

ab(ψ, σ), [Θ
st
ab(ψ, σ) U Θst

ab(γ, σ)], or
[Θst

ab(ψ, σ) U Θst
ab(γ, σ)].

For the next operator we have (T , π,m) |= Xψ
def⇒ (T , π,m + 1) |= ψ. If

m+ 1 < tσ, we can apply the inductive hypothesis to conclude (T ′, π′,m+
1) |= Θst

ab(ψ, σ). Otherwise, σ holds at position m+ 1, and one can conclude
from Lemma 3 that (T ′, π′,m+ 1) |= Θst

ab(ψ, σ)
Now we turn to the strong-until-operator, i. e. we consider the case that

(T , π,m) |= [ψ U γ], hence there exists a tγ such that ∀m ≤ t′ < tγ .
(T , π, t′) |= ψ and (T , π, tγ) |= γ. Hence, if tγ < tσ, we can use our in-
ductive hypothesis to conclude that ∀m ≤ t′ < tγ .(T ′, π′, t′) |= Θst

ab(ψ, σ)

Lifting Verification Results for Preemption Statements 99

and (T ′, π′, tγ) |= Θst
ab(γ, σ). For the other case, we apply Lemma 3 to con-

clude that (T ′, π′, tσ) |= Θst
ab(γ, σ) and we can apply the I.H. to prove that

∀m ≤ t′ < tσ.(T ′, π′, t′) |= Θst
ab(ψ, σ). Hence (T ′, π′,m) |= Θst

ab([ψ U γ] , σ)
holds in both cases. The case for weak until is shown analogously.

3.2 Transformation for Strong Suspension

A suspension can postpone the current execution of the guarded actions to a
later point of time. Hence, no guarded action is executed during the suspension,
but the delayed assignments of the previous step still take place. The suspend-
sensitive specification must ensure that either the execution of the system is
suspended, and a violation of the specification is secondary (because no step of
the original system is executed) or the next macro step of the system is executed,
and as a consequence, the specification must be satisfied for this step. Note that
it is possible to suspend the system infinitely often and that this case must be
covered as well.

Unfortunately, the transformation defined below is not applicable if the data
flow contains next assignments to event variables, because such an assignment
may get lost during a suspension. The problem is explained in detail in The-
orem 2. Hence, we exclude systems violating this requirement by adding the
assumption DFNxtEvtFree(G) to the rule. This condition checks that the data
flow is free of next assignments to event variables.

Definition 8 (Transformation Θst
sp(ϕ, σ)). For a given specification Aϕ, the

transformation Θst
sp(ϕ, σ) is defined as

Θst
sp(ϕ, σ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[ϕW ¬σ] , if ϕ is propositional[
(XΘst

sp(ψ, σ)) W ¬σ
]
, if ϕ = Xψ

[Θst
sp(ψ, σ)⊗Θst

sp(γ, σ)], if ϕ = ψ ⊗ γ with ⊗ ∈ {U,U}
Θst

sp(ψ, σ) ⊗Θst
sp(γ, σ), if ϕ = ψ ⊗ γ with ⊗ ∈ {∧,∨}.

The crucial point is again that we have to forbid the use of a variable when-
ever the suspension takes place. Note again that all recursive calls will finally
introduce a weak when operator. A module satisfying a specification ϕ := Xψ is
suspendable in two macro steps. The definition states that the evaluation is post-
poned to the first point of time where σ becomes false. Thus, the specifications
ϕ := [ψ U γ] (and [ψ U γ] respectively) must lead to a specification that requires
that ψ holds in every step until (eventually) γ holds or an (in)finite suspension
takes place (covered by the weak when operator introduced by recursive calls).

We have Θst
sp(Gϕ, σ) = G [ϕ W ¬σ] and Θst

sp(Fϕ, σ) = F [ϕW ¬σ], for a propo-
sitional ϕ.

An interesting fact is that an infinite suspension is equivalent to an abortion,
hence only a special case of it. Hence, the transformation for abort can be also
obtained from the suspension transformation.

100 M. Gesell, A. Morgenstern, and K. Schneider

Correctness. The following theorem ensures the correctness of the modular
proof rule for strong suspension.

Theorem 2. For any set of guarded actions G, where DFNxtEvtFree(G) holds
for G and any condition σ, we have Θst

sp(G, σ) |= Θst
sp(ϕ, σ)↔ G |= ϕ.

Since the already proved rule for abort is a special case of the suspension rule,
we only have to extend the proof of Theorem 1 at the appropriate places. We
will omit this here and only describe the proof idea with help of Figure 1. There,
the effect of a suspension on a simple Quartz program (given in Figure 2) is
described in Figure 1. We consider three important points of time t0, t1 and
t1s: t0 corresponds to a not suspended macro step starting in l0, where the
next assignment to x takes place. The time step t1 is the intended execution of
the macro step starting in l1, but this step is now suspended. Nevertheless, the
assignment to the variable x from the previous step takes place (v0), but the
immediate assignment to y is postponed until t1s, which is the first point of time
where the suspension is released. The assertion ϕ(x, y) intended to be evaluated
at point t1 is postponed as well. It is no problem to evaluate ϕ(x, y) in t1s,
since the immediate assignment is executed in the same step and for the delayed
assignment the default reaction transfers the value v0 to the step t1s (indicated
by the dashed box). Unfortunately, this holds only for memorized variables,
since event variables are set to the type’s default value and so the value v0
gets lost during suspension. Hence, the example shows that a next assignment
to an event variable in the data flow may completely change the behavior of
the system. Hence, nothing can be deduced from the original specification. The
delayed assignments to the control flow events are not problematic, i.e., are
handled correctly.

Fig. 1. Time Table for Suspend

.

.

.
l0: pause;
next (x) = v0;
l1: pause;
y = v1;
assert(ϕ(x,y));

.

.

.

Fig. 2. Quartz Program

3.3 Transformation for Weak Abortion

The weak preemption statements differ from their strong variants by allowing
the execution of the data flow when the preemption takes place. If the abortion
should take place at the termination point, it will therefore not modify the
behavior. A weak abort-sensitive specification should express that either the
specification ϕ is already satisfied or the execution was aborted in a state not
violating the specification, but before it was ultimately fulfilled.

Lifting Verification Results for Preemption Statements 101

Definition 9 (Transformation Θwk
ab (ϕ, σ)). For a given specification Aϕ, the

transformation Θwk
ab (ϕ, σ) is defined as

Θ
wk
ab (ϕ, σ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ, if ϕ is propositional

σ ∨ XΘwk
ab (ψ,σ), if ϕ = Xψ

[Θwk
ab (ψ, σ)⊗ (Θwk

ab (γ, σ) ∨ σ ∧ Θwk
ab (ψ, σ))], if ϕ = [ψ ⊗ γ] for ⊗ ∈ {U,U}

Θwk
ab (ψ, σ)⊗Θwk

ab (γ, σ), if ϕ = ψ ⊗ γ and ⊗ ∈ {∧,∨}

The crucial point of the definition is that the specification must not be violated in
a step where a weak abortion takes place. Hence, for the evaluation of a variable
the value of σ is unimportant and only influences reads to the variable in a later
step. This requires a different treatment of the until operators: Their evaluation
must stop in a step where σ is satisfied. Furthermore, in such a step also one
side of the operator must be satisfied. Hence, Θwk

ab (ψ, σ) ∨Θwk
ab (γ, σ) must hold,

but the right-hand side of this disjunction is already covered by

Θwk
ab (γ, σ) ∨ σ ∧ (Θwk

ab (ψ, σ) ∨Θwk
ab (γ, σ)) = Θwk

ab (γ, σ) ∨ σ ∧Θwk
ab (ψ, σ)

and so it is enough to additionally demand σ∧Θwk
ab (ψ, σ) to successfully stop the

evaluation of the operator. For the next operator, the specification ϕ = Xψ must
lead to a specification that requires that the execution is aborted in the first step
(without restrictions) or ψ holds in the next step (with/without abortion).

Regarding the examples, we haveΘwk
ab (Gϕ, σ) = [ϕ U (σ ∧ ϕ)] andΘwk

ab (Fϕ, σ) =
F(σ ∨ ϕ) for a propositional ϕ .

Correctness. The following theorem ensures the correctness of the modular
proof rule for weak abortion.

Theorem 3. For any set of guarded actions G and any condition σ, the follow-
ing holds: Θwk

ab (G, σ) |= Θwk
ab (ϕ, σ)↔ G |= ϕ.

The proof is similar to the proof of Theorem 1: the used Lemma 2 is analogous
for the weak abortion case, but Lemma 3 must be replaced by the following
lemma:

Lemma 4. Let T be the original transition system for G that satisfis ϕ and T ′

be the transition system for Θwk
ab (G, σ). Assume we have paths π ∈ T and π′ ∈ T ′

that is equivalent to π up to a minimal position where σ holds. For an arbitrary
position m such that π′(m) � σ holds, we have (Θwk

ab (G, σ), π′,m) |= Θwk
ab (ϕ, σ).

Proof. The proof can be made by an induction over the structure of ϕ and the
fact (Θwk

ab (G, σ), π′,m) |= ϕ which follows from the definition of Θwk
ab .

With this lemma and the fact inferred from Definition Θwk
ab that the considered

paths π and π′ are equivalent up to tσ, the proof is analogous to Theorem 1.

3.4 Transformation for Weak Suspension

A weak suspension freezes the control flow, but the data flow is not affected.
Hence, the weak suspend-sensitive specification must express that in case of a
suspension, the current state is not left which motivates the following definition.

102 M. Gesell, A. Morgenstern, and K. Schneider

Definition 10 (Transformation Θwk
sp (ϕ, σ)). Given Ω := G(σ∧Θwk

sp (γ, σ)) and
⊗ ∈ {∧,∨,U}, then we define

Θwk
sp (ϕ, σ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[(σ ∧ ϕ) U (¬σ ∧ ϕ)] , if ϕ is propositional[
σ U ¬σ ∧ XΘwk

sp (ψ, σ)
]
, if ϕ = Xψ[

Θwk
sp (ψ, σ) U (Θwk

sp (γ, σ) ∨Ω)
]
, if ϕ = [ψ U γ]

Θwk
sp (ψ, σ) ⊗Θwk

sp (γ, σ), if ϕ = ψ ⊗ γ.

Regarding the examples, we have Θwk
sp (Gϕ, σ) = G [(σ ∧ ϕ U (¬σ ∧ ϕ)]) and that

Θwk
sp (Fϕ, σ) = F [(σ ∧ ϕ) U (¬σ ∧ ϕ ∨ Gσ)] holds for a propositional ϕ.
It is again provable that the weak abortion is equivalent to an infinite weak

suspension. The only difference to the strong case is that the weak until operator
inΘwk

sp (ϕ, σ) is not changed, because both sides already cover the changes made in

Θwk
ab (ϕ, σ). The term

[
Θwk

sp (ψ, σ) U Θwk
sp (γ, σ) ∨ G(σ ∧ (Θwk

sp (ψ, σ) ∨Θwk
sp (γ, σ)))

]
is reducible to

[
Θwk

sp (ψ, σ) U Θwk
sp (γ, σ)

]
.

Correctness. The following theorem ensures the correctness of the modular
proof rule for weak suspension.

Theorem 4. For any set of guarded actions G and any condition σ, the follow-
ing holds: Θwk

sp (G, σ) |= Θwk
sp (ϕ, σ)↔ G |= ϕ.

Proof. The proof for the weak suspend case is analogous to the proof of The-
orem 2, but the exclusion of delayed assignments to event variables (checked by
DFNxtEvtFree(G)) is not necessary, because all data flow assignments are exe-
cuted in case of a weak suspension. Hence, the assignments to y and x’s take
place at t1 and ϕ(x,y) can be evaluated there, too. We illustrate this situation in
Figure 3 in analogy to Figure 1. Nevertheless, a set of guarded actions containing
next assignments to event variables may only satisfy ϕ(x,y) during suspension,
since the assignment to x is lost after t1.

Fig. 3. Time Table for Weak Suspend

Lifting Verification Results for Preemption Statements 103

4 Example

In this section, we show how to apply the developed proof rules. To this end, let
us assume that we have an already implemented traffic light controller, like the
one represented by the (simplified) set of guarded actions in Figure 4 obtained
from the Quartz file in Figure 5. Note that during compilation a boot flag bf is
added that is false in the first macro step and true in all other steps. This
is necessary for initialization purposes. The traffic light controller has one input

control flow:
True ⇒ next(bf)
¬req∧(¬bf∨l0) ⇒ next(l0)
req∧(¬bf∨l0) ⇒ next(l1)
l1 ⇒ next(l2)

data flow:
req∧(¬bf∨l0∨l2) ⇒ ylw
l1 ⇒ grn = True

specifications:
A G (req→grn∨ylw∧(X grn))

Fig. 4. Compiled Guarded Actions

module TrafficLightController
(event ?req , !ylw , !grn){
loop{

while (¬req){
l0: pause;

}
emit (ylw);
l1: pause;
emit (grn);
l2: pause;

}
} satisfies {
A G (req→grn∨ylw∧X grn);

}

Fig. 5. Quartz Source Code

variable req and two output variables ylw and grn (indicated by ? and ! re-
spectively), which are Boolean events. Thus, the outputs are false for macro
steps not assigning a value to them. A traffic light usually has three lights, we
will model these lights with the two output variables: ylw=true means that the
yellow light is on, grn=true means that the green light is on, and grn=false
means that the red light is on. The behavior of the controller is very simple,
as long as the environment does not request a green light by req=true, the
controller will respond by not setting any output (hence, the red light is on).
A request is answered by enabling the yellow light (and the red light, since
grn=false) in the current step, and the green light in the next step. Fur-
thermore, it is easily provable that the controller implements the specification
A G (req→ grn ∨ ylw ∧ X grn).

Assume, we want to extend the traffic light controller to operate additionally
lights for a crossing pedestrian (with priority). To this end, we reuse the already
existing controller, like it is done in Figure 72. In Figure 6, we added the guarded
actions for the compiled version where we simplified the Quartz compiler’s output
and for a better readability, we replaced the term (C.l0 ∨ C.l1 ∨ C.l2) by inC

and (P.l0 ∨ P.l1 ∨ P.l2) by inP. The original module was used twice, but
embedded in two different abort statements (in the second call the output
for the yellow light is ignored, which is indicated by the underscore). It is not
obvious that this implementation is correct, but we will see that our rules help
to determine this.

2 We omitted the immediate modifier for both abort statements to be consistent
with the defined rules.

104 M. Gesell, A. Morgenstern, and K. Schneider

control flow:
True ⇒ next(bf)
¬reqP∧¬reqC∧(bf∨(C.l2∨C.l0)∨inP)

⇒ next(C.l0)
¬reqP∧reqC∧(bf∨(C.l2∨C.l0)∨inP)

⇒ next(C.l1)
¬reqP∧C.l1∧¬reqP ⇒ next(C.l2)
reqP∧(bf∨inC∨(P.l0∨P.l2))

⇒ next(P.l1)
reqP∧P.l1 ⇒ next(P.l2)

data flow:
bf∧reqC∧¬reqP ⇒ ylwC
¬reqP∧reqC∧C.l0 ⇒ ylwC
C.l1∧¬reqP ⇒ grnC
reqC∧C.l2∧¬reqP ⇒ ylwC
P.l1 ⇒ grnP
reqP∧P.l2 ⇒P.ylw
reqP∧(C.l0∨C.l1∨C.l2) ⇒P.ylw
reqC∧¬reqP∧(P.l0∨P.l1∨P.l2) ⇒ ylwC

Fig. 6. Compiled Guarded Actions

module TrafficLightController2
(event ?reqC , !ylwC , !grnC ,

?reqP , !grnP ,){
loop{

abort{
C: TrafficLightController

(reqC , ylwC , grnC);
}when (reqP);
weak abort{

P: TrafficLightController
(reqP , , grnP);

}when(¬reqP);
}

}

Fig. 7. Quartz Source Code

Applying our rules for the two abort statements after renaming the variables
to the specification ϕ(req,ylw,grn) = G(req→ grn ∨ ylw ∧ X grn) leads to
Θst

ab(ϕ(reqC,ylwC,grnC), reqP). Hence, we have to evaluate
Θst

ab([(¬reqC ∨ grnC ∨ ylwC ∧ X grnC) U false], reqP) =
G (reqC→ reqP ∨ grnC ∨ ylwC ∧ X (grnC ∨ reqP))

Using the same steps we deduce the specification for the weak abort as
Θwk

ab (ϕ(reqP, ,grnP), σ) = [reqP→ grnP ∨ X grnP U ¬reqP].
Hence, we know that the module calls of the TrafficLightController to-

gether with the surrounding abort statement satisfies the corresponding spec-
ification (without having to verify it).

Additionally, the first specification tells us that we reached the goal priori-
tizing the pedestrian’s lights, because reqP is able to shadow a green light for
the cars. The second specification shows that in every step, we are inside the
second abort either reqP→ grnP ∨ X grnP or ¬reqP holds. Additionally, we
know that the statement before the second abort terminates if and only if
reqP holds. Hence, in the first step of the second abort statement, the prop-
erty grnP ∨ X grnP must hold. Hence, the reuse of the traffic-light controller
lead to a correct implementation.

Nevertheless, we have to define similar rules for the other Quartz statements,
e.g. a rule for sequences, to determine a property that is valid for the whole
TrafficLightController2 module.

5 Conclusion

In this paper, we defined transformations to modify given verification results such
that these will take care of preemptions of the system. These transformations
allow us to define modular proof rules for preemption statements to reason about
their correctness. We are thereby able to introduce preemption statements even
though these have not been considered in the available verification results, and
our transformations automatically derive new specifications that hold under the
preemption contexts.

Lifting Verification Results for Preemption Statements 105

References

1. André, C.: SyncCharts: A visual representation of reactive behaviors. Research
Report tr95-52, University of Nice, Sophia Antipolis, France (1995)

2. Armoni, R., Bustan, D., Kupferman, O., Vardi, M.Y.: Resets vs. Aborts in linear
temporal logic. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 65–80. Springer, Heidelberg (2003)

3. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages twelve years later. Proceedings of the IEEE 91(1),
64–83 (2003)

4. Berry, G., Gonthier, G.: The Esterel synchronous programming language: De-
sign, semantics, implementation. Science of Computer Programming 19(2), 87–152
(1992)

5. Brandt, J., Schneider, K.: Separate compilation for synchronous programs. In: Falk,
H. (ed.) Software and Compilers for Embedded Systems (SCOPES), Nice, France.
ACM International Conference Proceeding Series, vol. 320, pp. 1–10. ACM (2009)

6. de Boer, F.S., de Roever, W.-P.: Compositional proof methods for concurrency:
A semantic approach. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.)
COMPOS 1997. LNCS, vol. 1536, pp. 632–646. Springer, Heidelberg (1998)

7. de Roever, W.-P.: The need for compositional proof systems: A survey. In: de
Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536,
pp. 1–22. Springer, Heidelberg (1998)

8. Gesell, M., Schneider, K.: Modular verification of synchronous programs. In: Ap-
plication of Concurrency to System Design (ACSD), Barcelona, Spain. IEEE Com-
puter Society (2013)

9. Halbwachs, N.: Synchronous programming of reactive systems. Kluwer (1993)
10. Halbwachs, N.: A synchronous language at work: the story of Lustre. In: Formal

Methods and Models for Codesign (MEMOCODE), Verona, Italy, pp. 3–11. IEEE
Computer Society (2005)

11. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K. (ed.)
Logic and Models of Concurrent Systems, pp. 477–498. Springer (1985)

12. Kupferman, O., Vardi, M.Y.: On the complexity of branching modular model check-
ing (extended abstract). In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS,
vol. 962, pp. 408–422. Springer, Heidelberg (1995)

13. Le Guernic, P., Gauthier, T., Le Borgne, M., Le Maire, C.: Programming real-time
applications with SIGNAL. Proceedings of the IEEE 79(9), 1321–1336 (1991)

14. Schneider, K.: Verification of Reactive Systems – Formal Methods and Algorithms.
Texts in Theoretical Computer Science (EATCS Series). Springer (2003)

15. Schneider, K.: The synchronous programming language Quartz. Internal Re-
port 375, Department of Computer Science, University of Kaiserslautern,
Kaiserslautern, Germany (December 2009)

Rule-Level Verification of Graph

Transformations for Invariants
Based on Edges’ Transitive Closure�

Christian Percebois, Martin Strecker, and Hanh Nhi Tran

IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse, France

{Christian.Percebois,Martin.Strecker,Hanh-Nhi.Tran}@irit.fr

Abstract. This paper develops methods to reason about graph
transformation rules for proving the preservation of structural proper-
ties, especially global properties on reachability. We characterize a graph
transformation rule with an applicability condition specifying the match-
ing conditions of the rule on a host graph as well as the properties to
be preserved during the transformation. Our previous work has demon-
strated the possibility to reason about a graph transformation at rule-
level with applicability conditions restricted to Boolean combinations of
edge expressions. We now extend the approach to handle the applica-
bility conditions containing transitive closure of edges, which implicitly
refer to an unbounded number of nodes. We show how these can be in-
ternalized into a finite pattern graph in order to enable verification of
global properties on paths instead of local properties on edges only.

Keywords: graph transformations, verification, formal methods, tran-
sitive closure, global property.

1 Introduction

Graph transformations have numerous applications in computer science. Many
of them can be considered safety critical and therefore have to satisfy stringent
correctness requirements. Verifying the correctness of a transformation involves
formulating a property to be verified using a suitable logic and providing a
method for proving the correctness of a given transformation. Although many
efforts have been made to prove properties about transformation systems, like
confluence or termination, there is only little work on ensuring the correctness
of transformations. One challenge here is that many verification problems turn
out to be hard to express, or worse, to be undecidable on graphs.

Two popular strategies can be used for verification of graph transformations:
model checking and theorem proving. Works on model checking involve exploring
the set of reachable states of a graph transformation system with respect to

� Part of this research has been supported by the Climt (Categorical and Logical
Methods in Model Transformation) project (ANR-11-BS02-016).

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 106–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Rule-Level Verification of Graph Transformations for Invariants 107

a start graph to ensure that the required conditions holds. This technique is
in particular possible if the graph is small enough but puts immediate limits
on the state space of problems, potentially enormous, that can be explored by
model checkers. In contrast to the model checking approach, the theorem proving
approach reasons about constraints on states, not about instances of states. The
search space of a theorem prover is thus typically infinite, whereas the search
space of model checkers are usually finite (though large). One drawback of the
theorem proving approach is that it is typically done interactively with advanced
proof skills and not automatically, as in model checking.

The work described in this paper adopts the theorem proving approach to
prove that a transformation rule is correct when applied to an arbitrary graph,
provided certain applicability conditions are met. Our aim is to develop methods
allowing to demonstrate the preservation of a given structural property during
a graph transformation. A fundamental question underlying our approach is: is
it possible to reason about a graph transformation by just taking into account
the elements appearing in the rule itself, without having to consider others that
might exist in the graph where the rule is applied?

This paper homogenizes and continues the strands developed by the authors
in previous papers [17,18], in which we have shown that reasoning about a trans-
formation applied to an arbitrary graph can be essentially reduced to reasoning
about a bounded portion of the graph, namely the image of the transformation
rule in the target graph. However, in this previous work, the verifiable proper-
ties are restricted to those that can be formulated by Boolean combinations of
simple edge relations, encompassing properties that hold for vertices or constant-
size vertex-neighborhoods. Consequently, the proposed solution could not handle
global properties that hold for the graph as a whole, thus concern possibly an
infinite number of edges which are outside of the rule, as acyclicity and connec-
tivity. Generally, global properties must be expressed and verified at a global
level [3]. The challenges here are how to express those global properties in the
rule’s applicability condition and how to reason about a possibly infinite num-
ber of nodes and edges with a finite number of computations. In this paper, we
extend our approach to deal with global properties on paths in the rules’ appli-
cability conditions, especially connectivity and separation, thus allow verifying
global properties at the rule-level.

First we introduce transitive closure patterns to express that the rule can be
applied provided that two nodes are connected via the transitive closure of an
edge relation. Then we show that this pattern, even though referring to a possibly
unbounded number of nodes, can be reduced to a verification on simple edges,
thus allows automation in this case. We also point out that sometimes one has to
stipulate the non-existence of a connection in the underlying graph. Reasoning
about these negative connectivity patterns turns out to be much more difficult,
and we cannot give a complete calculus. We present however some reasoning
patterns that allow a simplification in common situations.

We have used the interactive proof assistant Isabelle to model the transfor-
mations and to carry out the proofs described in this paper.

108 C. Percebois, M. Strecker, and H.N. Tran

The rest of the paper is structured as follows: after a summary of our graph
transformation representation in Section 2, we give some introductory examples
in Section 3. Then in Section 4 we describe the background of our approach for
rule-level verification. Section 5 presents the main contributions of this paper
to handle the applicability conditions having transitive closure patterns in order
reduce them to a finite case. In Section 6 we discuss some significant related
work. Then we conclude with a perspective on future work.

2 Graphs and Graph Transformations

In order to facilitate the understanding of the rest of this article, we summarize
our way of representing graphs and graph transformations.

In its simplest form, a graph gr is a datatype with two functions nodes (yield-
ing the set of the nodes of the graph) and edges (yielding the set of edges of
the graph). An edge is just an ordered pair of nodes. The node set of a graph is
assumed to be finite (and, consequently, is the edge set).

A graph transformation rule gt is characterized by the following elements:

– Transfo gives the rule’s name, followed by a list of parameters that designate
nodes of the graph that the rule is applied to.

– Appcond specifies under which applicability condition the rule can be ap-
plied to a given graph. This condition, having as only free variables the rule’s
parameters, is a path formula whose structure will be defined later.

– Action describes which nodes and edges are to be deleted or added during
the transformation.

Visually represented, a graph transformation rule consists of a left-hand side
graph (LHS) and a right-hand side graph (RHS). The rule’s LHS presents the
rule’s applicability condition and the rule’s RHS presents the result of the rule’s
actions.

The specification of the transformation in Figure 1 is given as follows. The
transformation Refactoring is applicable to three nodes c1, c2 and c3. The ap-
plicability condition is that there is an edge between c1 and c3 (written as
� c1, c3 �) and another between c2 and c3. The action is to delete the edge
� c1, c3 � and to add one between c1 and c2.

c1 c2

c3

c1 c2

c3

n1 n2

n3

n4 n1 n2

n3

n4

Fig. 1. Application of a graph transformation rule

Rule-Level Verification of Graph Transformations for Invariants 109

Transfo Refactoring(c1, c2, c3)
Appcond� c1, c3 � ∧ � c2, c3 �
Action delete-edges: � c1, c3 �

add-edges: � c1, c2 �
When applying the transformation rule gt to a host graph gr, we need the notion
of morphism which maps the variables of the rule to nodes of the target graph.
For example, in Figure 1 the morphism is the mapping [c1 �→ n1, c2 �→ n2, c3 �→
n3]. Quite naturally, some nodes of the graph gr might not be in the image of
the morphism, e.g. node n4.

For a transformation rule gt, its applicability condition appcond gt is repre-
sented by a path formula pf built on path expressions pe which are defined as
follows:

pe ::=� n1, n2 � - edge between nodes n1 and n2

| n1 � n2 - path between nodes n1 and n2

pf ::= pe - elementary path formula
| ¬ pf
| pf ∧ pf

Given a graph transformation gt, a host graph gr, a graph morphism gm:

– the predicate path-form-interp defines what it means for the applicability
condition of gt, i.e. the path formula pf, to be satisfied under gm in gr.

– the application apply-graphtrans-rel performs the modifications specified in
the action part of the transformation rule gt, by adding (respectively delet-
ing) nodes and edges. The precise definition is technically more complex
because it has to take deletion of dangling edges into account (c.f. [16]).

With these preliminaries, we can define apply-transfo-rel, the relation between
a graph gr and the graph gr′ resulting from applying the transformation gt to gr.

∃gm.path-form-interp gr gm pf ∧ apply-graphtrans-rel gt gr gr′

apply-transfo-rel gt gr gr′

This definition is entirely descriptive and not executable, because it imposes
no choice as to which morphism gm (among several applicable morphisms) is
selected. The graph gr′ thus appears as a function of gr.

3 Illustrating Examples

To illustrate the motivations of our work, we use the example of refactoring nav-
igation models to reorganize the set of web pages included in a web application
and the links between those pages.

The rule displayed in Figure 2 describes a refactoring step that might be
carried out on a navigation model. This rule refers explicitly to three pages c1,
c2 and c3. The solid arrow −→ presents a direct navigation link r and the dashed
arrow − → presents a navigation path r∗ (reflexive-transitive closure of direct
navigation links). The refactoring step consists in cutting the direct navigation
link between c1 and c3 and introducing one between c1 and c2. As explained in

110 C. Percebois, M. Strecker, and H.N. Tran

c1 c2

c3

c1 c2

c3

Fig. 2. Reorganizing a navigation model

Section 2, the rule’s LHS presents the applicability condition. The application
context might require that this refactoring only extends, but does not restrict the
previous navigation possibility, for example in order to avoid that pages become
unreachable. For example, the transformation keeps c3 accessible from c1 thanks
to the navigation path c2− → c3. If r is the navigation relation before and r′ the
navigation relation after refactoring, we can express this preservation property
more formally by the requirement r∗ ⊆ (r′)∗.

The delicate point about this transformation is the navigation path c2− → c3
in the rule’s applicability condition, because it might be composed of some edges
inside the rule, or might refer to an arbitrary number of intermediate nodes that
are not explicitly mentioned in the rule. The next sections discuss three possible
patterns of such a path and point out the problems to resolve for reducing
the reasoning of graph transformation application to reasoning about the graph
transformation rule.

3.1 Edge Conditions

The first example, displayed in Figure 1, describes the refactoring rule where the
navigation path c2− → c3 contains just one edge (c2, c3). This example repre-
sents a more general case of transformation rules whose applicability condition
includes only the elements described inside the rule. In other words, the appli-
cability conditions of such rules can be expressed with path formulae that are
essentially Boolean combinations of simple edge relations.

In our previous work [17], we have proposed a solution to reason locally about
this kind of transformation rules to prove the preservation of reachability prop-
erties. We will briefly recapitulate the approach in Section 4.

3.2 Positive Path Conditions

Figure 3 shows the second example illustrating a more complicated case of ap-
plicability condition where the navigation path c2− → c3 is a reflexive-transitive
closure of direct navigation links. Thus, this path might pass through nodes that
are not described explicitly in the rule but appear in the host graph where the
rule is applied. For example, when applying the rule on the graph in the lower
part of Figure 3, we can see that the nodes in the image of the morphism (the
dark-shaded area), namely n2 and n3, are connected by a path running through
the outside node n4.

Suppose that the transformation preserves the navigation path c2− → c3, this
example typifies transformation rules requiring the existence of transitive closure

Rule-Level Verification of Graph Transformations for Invariants 111

c1 c2

c3

c1 c2

c3

n1 n2

n3 n4

n1 n2

n3 n4

Fig. 3. Positive path condition (n2 � n3)

patterns in the rule’s applicability condition. We call such conditions “positive
path conditions”.

The first representation of the rule defined in Figure 2 is given in Figure 4a.
The applicability condition, which is restricted to positive path condition in this
example, is that there is an edge between c1 and c3 (written as � c1, c3 �) and
a path between c2 and c3 (written as c2 � c3).

Transfo Refactoring(c1, c2, c3)
Appcond � c1, c3 � ∧(c2 � c3)

Action delete-edges: � c1, c3 �
add-edges: � c1, c2 �

(a) positive path condition

Transfo Refactoring(c1, c2, c3)
Appcond � c1, c3 � ∧(c2 � c3)

∧¬(c2 � c1)
Action delete-edges: � c1, c3 �

add-edges: � c1, c2 �

(b) positive and negative path conditions

Fig. 4. Definition of the rule Refactoring

The question here is how to reduce reasoning about the transitive closure
relation r∗ in the rule’s LHS to reasoning about the direct edge relation r.

In Section 5.1, we will propose a solution to eliminate positive path conditions
in order to enable a rule-level verification of reachability properties.

3.3 Negative Path Conditions

Unfortunately, defined as in Figure 2, an application of the rule might lead to an
incorrect result if the navigation path c2− → c3 is affected by the transformation.
Figure 5 shows an example of such situations. As one can see in this example, the
path between the images of c2 and c3, namely the navigation path n2− → n3,
runs through nodes n4 and n1. While n4 is outside the image of the rule in the
graph, n1 and n3 are inside the rule’s image. The transformation deletes the
image of edge (c1, c3) on the graph, i.e. the edge (n1, n3) and the navigation
path n2− → n3 is not preserved. Consequently, n1 is no more connected to n3

after application of the rule, contrary to the intention of the rule.
Specifically for this example, a (very strict) solution is to forbid a path between

c2 and c1: ¬(c2− → c1). This solution introduces a “negative path condition”

112 C. Percebois, M. Strecker, and H.N. Tran

c1 c2

c3

c1 c2

c3

n1 n2

n3

n4

n1 n2

n3

n4

Fig. 5. Positive path condition (n2 � n3); Negative path condition ¬(n2 � n1)

into the rule’s applicability condition besides the positive one and makes the
local reasoning about the rule more difficult to deal with.

Figure 4b shows the rule in Figure 2 reinforced by forbidding the path be-
tween c2 and c1 to guarantee its correct applications on any graph. This second
applicability contains then a negative path condition ¬(c2 � c1).

In Section 5.1, we will outline where negative path conditions come into play
during elimination of positive path conditions.

4 Rule-level Verification Based on Graph Decomposition

In this section, first we formalize the problem of graph transformation verifi-
cation. Then, we briefly recapitulate our approach for reasoning about graph
transformation at rule-level.

The properties that we want to prove are properties of global preservation of
reachability or non-reachability (separation), formalized in the form
– (edges gr)∗ ⊆ (edges gr′)∗ for reachability or
– (edges gr′)∗ ⊆ (edges gr)∗ for non-reachability (separation).

where edges gr is the edge relation of the original graph and edges gr′ is the
edge relation of the transformed graph.

In [17], we have shown that if we restrict the applicability conditions to path
formulae that are essentially Boolean combinations of simple edge relations, it is
possible to reason about a graph transformation by just taking into account the
nodes appearing in the rule itself, without having to consider other nodes that
might exist in the graph where the rule is applied. We explain the main points
of our approach in the following.

In a transformation, nodes included in a rule, denoted as node set A, repre-
sent free variables of the transformation’s application condition, i.e. the possible
images of the transformation under a given graph morphism. Embedding these
conditions into a larger graph leads us to split the graph into an interior zone of
A which is involved in the transformation, and an exterior zone of A which is a
priori unaltered.

Rule-Level Verification of Graph Transformations for Invariants 113

Since the properties of interest in this paper are mostly concerned with the
edge relations of a graph, we define the interior and exterior of a relation r with
respect to a node set A as follows:

definition interior A r = r ∩ (A×A)
definition exterior A r = r \ (A×A)

So an edge belongs to the interior if both of its endpoints are in A; otherwise it
belongs to the exterior.

An example is depicted in Figure 1: when choosing A = {n1, n2, n3} and
r = (edges gr), the interior zone is the dark-shaded part in Figure 1, i.e.
{(n1, n3), (n2, n3)}, and the exterior zone is the light-shaded part, i.e. {(n4, n1)}.

The interior and exterior of a relation are disjoint and add up to the whole
relation again:

interior A r ∩ exterior A r = ∅ (1)

interior A r ∪ exterior A r = r (2)

Similar lemmas hold for transitive closure and reflexive-transitive closure; in
the following we give those of reflexive-transitive closure:

((interior A r)∗ ∩ (exterior A r)∗)∗ = ∅ (3)

((interior A r)∗ ∪ (exterior A r)∗)∗ = r∗ (4)

The following two lemmas are at the heart of the decomposition method that
we propose. When applied from right to left, they split up a goal into an exterior
and an interior that can then be further simplified.

(interior A r ⊆ interior A s) ∧ (exterior A r ⊆ exterior A s) = (r ⊆ s) (5)

((interior A r)∗ ⊆ (interior A s)∗) ∧ ((exterior A r)∗ ⊆ (exterior A s)∗)
=⇒ (r∗ ⊆ s∗) (6)

However, the converse of the last lemma does not hold in general. In fact, we
will choose A to be the largest set of nodes i.e. nodes of the interior occurring
in both relations r and s. We call field this and so we have:

field s ⊆ A ∧ r∗ ⊆ s∗ =⇒ (interior A r)∗ ⊆ (interior A s)∗ (7)

field r ⊆ A ∧ r∗ ⊆ s∗ =⇒ (exterior A r)∗ ⊆ (exterior A s)∗ (8)

The detail proofs of the above lemmas are given in [16]. Examining the above
subset containments of interior and exterior enables us to have a sound and also
complete decomposition for a class of graphs where the region A has been chosen
large enough.

Concretely, considering the edge relation edges gr (or variants with transi-
tive closures (edges gr)∗) of a graph gr, to prove the preservation of reacha-

114 C. Percebois, M. Strecker, and H.N. Tran

bility properties after the transformation on the graph gr′, we replace the goal
(edges gr) ⊆ (edges gr′) with two new goals:

(exterior A (edges gr)) ⊆ (exterior A (edges gr′))
and (interior A (edges gr)) ⊆ (interior A (edges gr′))

where in practice A will be the largest set of nodes whose existence is ascertained
in the actual proof goal.

If the rules only have preconditions that are Boolean combinations of edge
relations, it is sufficient to split the graph into an interior (the subgraph which lies
entirely within the image of the rule’s free variables under the graph morphism)
and an exterior (the rest of the graph). The exterior of the graph can henceforth
be disregarded; it is sufficient to verify the desired property on the interior of the
graph, which can be done by a Boolean satisfiability check or, in the simplest
case, by a symbolic computation.

Let us conclude this section by applying the above procedure to our example in
Figure 1 to prove the preservation of all the paths in gr′ after the transformation.
The operational description of the rule specifies the addition of the edge (n1, n2)
and the deletion of the edge (n1, n3) in the graph gr′. The injective morphism
injective-morphism maps the variables of the rule to the nodes of the target
graph gr. The initial goal is (edges gr)∗ ⊆ (edges gr′)∗. After expansion of
definitions and some tidying of the proof state, this goal is derived into:

[[n1 ∈ nodes gr;n2 ∈ nodes gr;n3 ∈ nodes gr;
injective-morphism[c1 �→ n1, c2 �→ n2, c3 �→ n3];
(n1, n3) ∈ edges gr; (n2, n3) ∈ edges gr;
nodes gr′ = nodes gr; edges gr′ = {(n1, n2)} ∪ (edges gr − {(n1, n3)})]]
=⇒ (edges gr)∗ ⊆ ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))∗

Since the variables n1, n2 and n3 are free in our goal, we choose A = {n1, n2, n3},
and obtain two new subgoals:

(exterior {n1, n2, n3} (edges gr))∗
⊆ (exterior {n1, n2, n3} ({(n1, n2)} ∪ (edges gr − {(n1, n3)})))∗

∧ (interior {n1, n2, n3} (edges gr))∗
⊆ (interior {n1, n2, n3} ({(n1, n2)} ∪ (edges gr − {(n1, n3)})))∗

We develop the first goal by using the definition of exterior and the distributive
property and get the refined goal:

(exterior {n1, n2, n3} (edges gr)) ⊆ ({(n1, n2)} \ ({n1, n2, n3} × {n1, n2, n3}))∪
(exterior {n1, n2, n3} (edges gr) \ ({(n1, n3)} \ ({n1, n2, n3} × {n1, n2, n3})))

In this first goal, we have ({(n1, n2)} \ ({n1, n2, n3} × {n1, n2, n3})) = ∅ and
({(n1, n3)} \ ({n1, n2, n3}×{n1, n2, n3})) = ∅. Thus, the goal can be eliminated.

The second goal, after reductions by using the definition of interior, becomes

Rule-Level Verification of Graph Transformations for Invariants 115

{(n1, n3), (n2, n3)}∗ ⊆ {(n1, n2), (n2, n3)}∗ which can be verified by a simple
symbolic computation.

5 Local Reasoning about Path Conditions

The question about local reasoning becomes more complex in the presence of
transitive closures in the applicability conditions of a rule, as in the relation
c2− → c3 in Figure 2. Dealing with transitive closure is a difficult problem that
quickly becomes undecidable [8]. The existence of transitive closure patterns
might be in the form of positive path conditions (as in Figure 4a) or negative
path conditions (as in Figure 4b) that is considered as the adequate applicability
condition of the rule in Figure 2:

Appcond� c1, c3 � ∧ (c2 � c3) ∧ ¬(c2 � c1)

This applicability condition requires the presence of the edge (c1, c3), the
existence of a path between c2 and c3, but forbids a path between c2 and c1.

In the following, we outline:

– how to eliminate positive path conditions (Section 5.1);
– where negative path conditions come into play during elimination of positive

paths (Section 5.1);
– after the reductions of transitive closure patterns, how to reason about graph

transformations by applying the decomposition approach presented in Sec-
tion 4 (Section 5.2).

We recall that we are mainly interested in problems of preservation of reachability
of the form (edges gr)∗ ⊆ (edges gr′)∗. Slightly rewritten, this is the problem of
showing (x, y) ∈ (edges gr)∗ ⇒ (x, y) ∈ (edges gr′)∗, for arbitrary x, y.

Lastly, the problems of preservation of separation are symmetric and can be
handled with identical methods, so we only concentrate on the first kind of
problem. To simplify the discussion and avoid complicated case distinctions, we
furthermore make the assumption that graph morphisms are injective.

5.1 Materialization of Paths

The first step in our simplification procedure consists in replacing paths in our
applicability conditions by edges in order to reduce reasoning about paths to
reasoning about edges only. The following property justifies this step:

Lemma 1 (Path replacement)

(a, b) ∈ r∗ =⇒ ({(a, b)} ∪ r)∗ = r∗

and similarly for transitive closure (.)+ instead of reflexive-transitive closure (.)∗.

The lemma expresses that a path a � b known to exist in a graph can be
materialized by adding the edge � a, b� without changing the path relation.

116 C. Percebois, M. Strecker, and H.N. Tran

Proof. In the following, we show the property for transitive closure only; reflexive-
transitive closure is similar, but slightly more involved.

One direction of this equation is trivial by using monotonicity of the transitive
closure relation:

r ⊆ r ∪ {(a, b)} =⇒ r+ ⊆ (r ∪ {(a, b)})+

The direction ({(a, b)}∪r)+ ⊆ r+ can be seen by expanding (v, w) ∈ ({(a, b)}∪
r)+ into (v, w) ∈ r+ ∨ ((v = a ∨ (v, a) ∈ r+) ∧ (b = w ∨ (b, w) ∈ r+)) and then
showing (v, w) ∈ r+ by case distinction. These steps lead to four situations
automatically resolved:

[[(a, b) ∈ r+; v = a; b = w]] =⇒ (v, w) ∈ r+,
[[(a, b) ∈ r+; v = a; (b, w) ∈ r+]] =⇒ (v, w) ∈ r+,
[[(a, b) ∈ r+; (v, a) ∈ r+; b = w]] =⇒ (v, w) ∈ r+,
[[(a, b) ∈ r+; (v, a) ∈ r+; (b, w) ∈ r+]] =⇒ (v, w) ∈ r+. #$

In Lemma 1, we have dealt with the addition of a new edge; we need a related
lemma for removal of an edge, as the edge � c1, c3 � in the rule presented in
Figure 4.

Lemma 2 (Deletion of unreachable edge)

(v, a) /∈ r∗ =⇒ ((v, w) ∈ (r − {(a, b)}))∗ ⇔ ((v, w) ∈ r∗)

This lemma expresses that if a node a is not reachable from a node v in a graph,
then any edge (a, b) starting from a can be removed without influencing the
reachability from v.

Proof. The left to right direction is trivial: as (r−{(a, b)}) ⊆ r, so (r−{(a, b)})∗ ⊆
r∗ by monotonicity of transitive closure.

To prove the other direction, we define the set reach v r of nodes reachable
from node v under relation r: reach v r = {w/(v, w) ∈ r∗}.
– The definition of reach allows us to conclude :

(v, w) ∈ r∗ =⇒ (v, w) ∈ (r ∩ (reach v r) × (reach v r))∗ (a)

– By assumption we have (v, a) /∈ r∗ which means a /∈ reach v r and implies:

(a, b) /∈ ((reach v r)× (reach v r))∗ (b)

– From (a) and (b) we can conclude that (r ∩ (reach v r) × (reach v r))∗ ⊆
(r − {(a, b)})∗ and therefore (v, w) ∈ (r − {(a, b)})∗. #$

5.2 Proving Preservation of Paths

Lemma 1 and Lemma 2 are used as conditional rewrite rules in the process of
materialization. The starting point is to show that ({(a, b)} ∪ r)∗ = r∗, if there
is a path a� b in the applicability condition of a rule. During simplification, we
may obtain subgoals of the form (x, y) ∈ r∗, which may be simplified by

– recursive use of Lemma 1,
– recursive use of Lemma 2,
– monotonicity rules of the form (x, y) ∈ r∗ =⇒ (x, y) ∈ s∗, for r ⊆ s.

Rule-Level Verification of Graph Transformations for Invariants 117

To ensure termination, we do not try to simplify or to prove goals of the form
(x, y) /∈ r∗. Rather, these negative path conditions have to be directly given as
hypotheses.

(x, y) ∈ (edges gr)∗ =⇒ (x, y) ∈ (edges gr′)∗

where edges gr is the edge relation of the original graph and edges gr′ is the
edge relation of the transformed graph, possibly after addition of some edges
that materialize paths.

To get rid of the abstract set edges gr and edges gr′, we perform the graph
decomposition presented in Section 4. By choosing A is the set of all nodes found
in the transformation rule, (interior A (edges gr))∗ is the image of the rule LHS
and (exterior A (edges gr))∗ = ∅. Consequently, this process leaves us with the
only goal:

(interiorA (edges gr))∗ ⊆ (interiorA (edges gr′))∗

We can therefore reduce the global reasoning on gr and gr′ to the local reasoning
on the images of LHS and RHS.

With these observations, we can verify the transformation in our example in
Figure 4b. In this example, we have the preconditions: (x, y) ∈ (edges gr)∗;
(n1, n3) ∈ edges gr and (n2, n3) ∈ (edges gr)∗. We furthermore have (n2, n1) /∈
(edges gr)∗. Under these preconditions, we have to show

(x, y) ∈ ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))∗

We now materialized the path n2 � n3 by the edge (n2, n3), then showing
that this goal is equivalent to

((x, y) ∈ ({(n2, n3), (n1, n2)} ∪ (edges gr − {(n1, n3)}))∗

Proof. Indeed,
– By assumption we have (n2, n1) /∈ (edges gr)∗. By Lemma 2 we can write:

(n2, n3) ∈ (edges gr − {(n1, n3)})∗ ⇔ (n2, n3) ∈ (edges gr)∗ (a)

– Then by monotonicity of reflexive-transitive closure we have:

(n2, n3) ∈ (edges gr − {(n1, n3)})∗ =⇒
(n2, n3) ∈ ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))∗

(b)

– From (b) and using Lemma 1 to add the edge (n2, n3) to the set in (b), we
have (n2, n3) ∈ ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))∗ =⇒

({(n2, n3), (n1, n2)} ∪ (edges gr − {(n1, n3)}))∗

= ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))∗
(c)

Thanks to (c), we have the new equivalent proof goal ((x, y) ∈ ({(n2, n3), (n1, n2)}
∪ (edges gr − {(n1, n3)}))∗ which can then be tackled with the methods of Sec-
tion 4.

118 C. Percebois, M. Strecker, and H.N. Tran

Choosing A = {n1, n2, n3}, after decomposing the graph, we get the goal

{(n1, n3)}∗ ⊆ {(n2, n3), (n1, n2)}∗

which can be verified by a simple symbolic computation. #$

6 Related Work

There are two main approaches in formal verification of graph transformations:
solutions based on category theory and solutions based on a logical framework.
The first one uses an underlying algebraic formalism as a framework for speci-
fying and executing transformations. The second one defines a suitable logical
framework to encode graphs and their properties, then uses inference methods
to verify the properties on graphs as logical structures. While the category ap-
proach can propose efficient solutions, its level of generalization is rather low.
Logical frameworks present general solutions but have to dealt with the problem
of decidability and computational complexity. Some recent work on verification
of graph transformations tries to take advantage of both of the above approaches.

In this paper we have followed the logical approach, however without defin-
ing a new logic, and focus on the verification of global properties. In the same
spirit, Basil Becker et al. [1,2] proposed an automatic verification of invariants
by creating symbolic representations for possible violations of the rule’s proper-
ties. Then every transformation rule is inspected with respect to well-formedness
constraints expressed either as a forbidden or a conditional forbidden pattern
of the modeling language’s meta-model. This work encodes graph patterns as
first-order predicates, therefore it has to define additional maintenance rules in
order to ensure global properties which cannot be expressed by forbidden or
conditional forbidden patterns. In comparison with [2], we try to encapsulate
global properties at the rule level by replacing paths with edges (see Lemma 1
and Lemma 2) without adding extra-predicates on nodes and edges which have
to be analyzed during the verification process.

In [3] the authors analyzed global graph properties as connectivity, acyclicity
and the Eulerian and Hamiltonian properties which are not definable in a basic
modal logic. Then they proposed using a basic hybrid logic for some of these
properties, a hybrid logic with a specific operator for Hamiltonian property and
a hybrid logic together with a graded modal logic in order to handle numerical
conditions for Eulerian property.

The work in [12] adds proposition graphs to transformation rules in order to
compactly described feature connectivity patterns required during the transfor-
mation. The invariants to be verified are expressed in Computation Tree Logic
(CTL). The main result of this paper states a satisfaction condition theorem
for a transformation rule which preserves a given property. Close to us, [10] in-
troduced the *-labelled edge notation as a replacement for a set of paths, each
representing a possible sequence of edges. On the opposite, forbidden paths using
regular expressions is proposed in the tool Augur2 [11].

Rule-Level Verification of Graph Transformations for Invariants 119

In [9], the authors verified graph transformations written in Core UnCAL
against the specified input/output graph structural constraints (schemes) in
Monadic Second-Order logic (MSO). They first represented both Core UnCAL
transformations and schemes by MSO formulas and then developed an algorithm
to reduce the graph transformation verification problem to the validity of MSO
over trees. The efficiency of this work relies on the algorithm to map the type-
annotated Core UnCAL to a MSO-definable graph transduction, in conjunction
with the decision procedure to verify MSO formulas.

The traditional algebraic approach has been also explored for reasoning on
graph transformations. In this context, graph structures and properties are log-
ically interpreted [13,5]. In [14,6] Pennemann et al. introduced the notion of
nested graph conditions to describe structural properties. Since these conditions
are first-order logic on graphs with a graphical representation of the nodes and
edges, they cannot describe non-local graph properties. This approach extracts
graph conditions and feeds them into SAT solvers or first-order theorem provers.
However, there is no tight coupling between the semantics (expressed in categor-
ical terms) and the proof obligation generator, and thus there is a dependency
on a larger trusted code base.

In [7], the authors generalized the concept of nested graph conditions to Hy-
peredge Replacement conditions (HR) as conditions over graphs with variables.
HR+ [15], the extension of HR, have been proposed as counterpart to MSO for-
mulas to deal with global properties. The authors investigated the expressiveness
of HR+ conditions and show that graphs with variables and replacement mor-
phisms form a weak adhesive HLR category. Their conditions allow to express
non-local properties of graphs.

In [4] the authors generalized Courcelle’s notion of recognizable graph lan-
guages. They defined the logic on subobjects together with a procedure for
translating MSO graph formulas into automaton functors for a class of categories
including the category of graphs. This work allows defining complex properties
such as “a subgraph is closed under reachability”, or “there exists a path from
x to y”. However, this theoretical approach has practical consequences: graph
decomposition into smaller units leads to a complex translation of graph formu-
las and more troublesome is the explosion of the state sets of automata which is
still an open problem.

7 Conclusion

Expressive transformation patterns (such as transitive closure) that go beyond
what is commonly used in graph rewriting systems are useful in some applica-
tion domains, and they are amenable to a formal analysis. In this sense, we have
presented simplification strategies that reduce reasoning about paths to rea-
soning about edges. These strategies can be understood as preprocessing steps
carried out before verification procedures applicable to more restricted graph
transformations.

The simplification method we have presented is sound, but not complete. Also,
our approach is currently geared towards the preservation of particular properties

120 C. Percebois, M. Strecker, and H.N. Tran

(reachability and separation). However, for dealing with the challenge of transi-
tive closures, we think that our heuristic approach is a good compromise that
we try to extend to other common reasoning patterns. We will also investigate
more systematic sound and complete procedures, but for weaker logics.

As witnessed by our examples, it is difficult to get rules right; in particular, this
means that some preconditions covering unsuspected special cases are usually
missing. Another interesting line of research is therefore to help developers of
rules find the right applicability patterns for transformations that are supposed
to satisfy particular correctness conditions.

References

1. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verifica-
tion for systems with dynamic structural adaptation. In: Proceedings of the 28th
International Conference on Software Engineering, ICSE 2006 pp. 72–81. ACM
(2006)

2. Becker, B., Lambers, L., Dyck, J., Birth, S., Giese, H.: Iterative development
of consistency-preserving rule-based refactorings. In: Cabot, J., Visser, E. (eds.)
ICMT 2011. LNCS, vol. 6707, pp. 123–137. Springer, Heidelberg (2011)

3. Benevides, M.R.F., Menasché Schechter, L.: Using modal logics to express and
check global graph properties. Logic Journal of IGPL 17(5), 559–587 (2009)

4. Sander Bruggink, H.J., König, B.: A logic on subobjects and recognizability. In:
Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP Advances in Information and
Communication Technology, vol. 323, pp. 197–212. Springer, Heidelberg (2010)

5. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transformation
systems with nested application conditions. Part 2: Embedding, critical pairs and
local confluence. Fundam. Inf. 118(1-2), 35–63 (2012)

6. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19(02),
245–296 (2009)

7. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. In: Elec-
tronic Communications of the EASST (2010)

8. Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: The bound-
ary between decidability and undecidability for transitive-closure logics. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 160–174.
Springer, Heidelberg (2004)

9. Inaba, K., Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Graph-transformation verifi-
cation using monadic second-order logic. In: Proceeding of the 13th International
ACM SIGPLAN Symposium on Symposium on Principles and Practice of Declar-
ative Programming. ACM Press (July 2011)

10. Koch, M., Mancini, L.V., Parisi-Presicce, F.: Graph-based specification of access
control policies. J. Comput. Syst. Sci. 71(1), 1–33 (2005)

11. König, B., Kozioura, V.: Augur 2 — a new version of a tool for the analysis of
graph transformation systems. Electron. Notes Theor. Comput. Sci. 211, 201–210
(2008)

12. Langari, Z., Trefler, R.: Application of graph transformation in verification of dy-
namic systems. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423,
pp. 261–276. Springer, Heidelberg (2009)

Rule-Level Verification of Graph Transformations for Invariants 121

13. Orejas, F., Ehrig, H., Prange, U.: Reasoning with graph constraints. Formal As-
pects of Computing 22, 385–422 (2010)

14. Pennemann, K.-H.: Resolution-like theorem proving for high-level conditions. In:
Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS,
vol. 5214, pp. 289–304. Springer, Heidelberg (2008)

15. Radke, H.: Correctness of graph programs relative to hr+ conditions. In: Ehrig,
H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372,
pp. 410–412. Springer, Heidelberg (2010)

16. Strecker, M.: Interactive and automated proofs for graph transformations. Techni-
cal report, IRIT/Université de Toulouse (2012), http://www.irit.fr/
~Martin.Strecker/Publications/proofs graph transformations.html

17. Strecker, M.: Locality in reasoning about graph transformations. In: Schürr, A.,
Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 169–181. Springer,
Heidelberg (2012)

18. Tran, H.N., Percebois, C.: Towards a rule-level verification framework for property-
preserving graph transformations. In: Proceeding of the IEEE ICST Workshop on
Verification and Validation of Model Transformations (April 2012)

http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.html
http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.html

Sound Symbolic Linking

in the Presence of Preprocessing

Gijs Vanspauwen and Bart Jacobs

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
{gijs.vanspauwen,bart.jacobs}@cs.kuleuven.be

Abstract. Formal verification enables developers to provide safety and
security guarantees about their code. A modular verification approach
supports the verification of different pieces of an application in separation.
We propose symbolic linking as such a modular approach, since it allows
to decide whether or not earlier verified source files can be safely linked
together (i.e. earlier proven properties remain valid).

If an annotation-based verifier for C source code supports both sym-
bolic linking and preprocessing, care must be taken that symbolic linking
does not become unsound. The problem is that the result of a header
expansion depends upon the defined macros right before expansion.

In this paper, we describe how symbolic linking affects the type check-
ing process and why the interaction with preprocessing results in an
unsoundness. Moreover, we define a preprocessing technique which en-
sures soundness by construction and show that the resulting semantics
after type checking are equivalent to the standard C semantics. We im-
plemented this preprocessing technique in VeriFast, an annotation-based
verifier for C source code that supports symbolic linking, and initial ex-
periments indicate that the modified preprocessor allows most common
use cases. To the extent of our knowledge, we are the first to support
both modular and sound verification of annotated C source code.

Keywords: modular program verification, verification of C programs,
C preprocessor.

1 Introduction

One of the means to create safe and secure software is the formal verification of
source code. Formal verification allows a developer to prove certain properties of
his source code, so that he in turn can rigorously provide guarantees to the users
of his software. There are many different tools available to verify source code.
Tools that allow to show arbitrary properties of code, require some hints to be
provided. Indeed, the validity of arbitrary properties of code is undecidable. For
many verifiers these hints must be provided as annotations added to the source
code. We only consider annotation-based verifiers [1–5] in this paper.

Proving security properties of code is most often a daunting task. A modular
verification approach allows a developer to concentrate on the security sensitive
parts of his application. We propose symbolic linking as such a modular approach.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 122–136, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Sound Symbolic Linking in the Presence of Preprocessing 123

After having verified different source files in isolation, symbolic linking allows to
show whether or not the source files can be safely (i.e. earlier proven properties
remain valid) linked together into an application without having to reverify them.
As far as we can see, we are the first to report on a both modular and sound
verification technique for annotated C source code. To support sound modular
verification with symbolic linking, we modified the lexical and semantical analysis
phases of verification. However, we show that the resulting semantics of these
modifications are equivalent to the standard C semantics.

The first modification impacts the type checking procedure of the semantical
analysis phase. Symbolic linking requires that for each C source file there is a
header file containing forward declarations that describe the functionality from
the source file. Besides that, it also requires that the verification of a single source
file is performed with the assumption that the annotations in the header files of
other source files are valid. Since header files can textually include each other
using the C preprocessor, this last requirement implies, as explained further on,
that the type checking procedure of the verifier must be recursive to type check
every header file in isolation.

The second modification is concerned with lexical analysis, in particular pre-
processing. Allowing the full functionality of the C preprocessor during verifica-
tion renders symbolic linking unsound. Indeed, the result of including a header
file depends on the context (i.e. the set of defined macros) at the point of inclu-
sion. This can trick symbolic linking into thinking that earlier verified files can
be safely linked together, while it is not safe to do so. A possible solution is to
modify the behavior of the C preprocessor: if a header inclusion is encountered
during preprocessing, expand it with an empty set of defined macros so that a
header is always expanded in the same way. This resolves the verification hazard,
but this context-free preprocessor differs from the normal C preprocessor. This
can be solved by running both preprocessors in parallel and signaling an error if
they diverge. To define this parallel preprocessor, precautions must be taken to
support header files that use a macro as guard to prevent double inclusions.

In Section 2, we discuss symbolic linking and recursive type checking in more
detail. The unsoundness problem caused by preprocessing is clarified in Section 3.
Our solution to this problem is presented in Section 4 and in Section 5 we show
that for the verification of a given source file, the semantics of recursive type
checking after parallel preprocessing are equivalent to the standard C seman-
tics. We implemented symbolic linking and the parallel preprocessing technique
in VeriFast [4], an annotation-based verifier for single- and multi-threaded C
programs. The implementation and some findings of initial experiments are de-
scribed in Section 6. Finally, we end this paper with a discussion on related work
and some conclusions in Section 7.

2 Symbolic Linking

Verifying an existing application with an annotation-based verifier is a nontrivial
task. If a lot of source code must be annotated to prove correctness of a small

124 G. Vanspauwen and B. Jacobs

piece of security-sensitive functionality, the verifier is not modular and verifi-
cation would become unmanageable for applications with a large code base. A
modular verifier allows the verification of smaller pieces of code in isolation.

To build a modular application, a linker can be used to combine different com-
piled object files into an executable program. Symbolic linking is the verification
counterpart of this compilation stage. Instead of object files, manifest files are
created during verification. These manifest files describe the essential contents
of the source files from the point of view of the verifier. During the symbolic link-
ing process the manifest files are inspected to decide whether or not the original
verified source files can be safely linked together.

This process imposes some conditions on the structure of the source files. First,
we describe these conditions. Then we elaborate on the contents of the generated
manifest files and how they are used by the symbolic linking process. We finish
our discussion on symbolic linking with the necessity of a recursive type checking
process for the verifier.

2.1 Source File Structure

An abstract view of a source file is one in which the file simply declares some pro-
gram elements and these declarations may use program elements from other files.
Symbolic linking requires that these dependencies are explicitly recorded in inter-
faces. In the context of the C language, for each source file a header file is used as
its interface. The function headers of the functions implemented in a C source file
are recorded in its corresponding header file together with annotations. Without
going into the details of the VeriFast annotation language, here is an example of a
C source file abs.c implementing the function abs(), which returns the absolute
value of its only argument, together with its interface abs.h:

abs.c

#include ”abs . h”

int abs (int x)
//@ requ i re s true ;
//@ ensures 0 <= x ? r e su l t == x :

r e s u l t == 0 − x ;
{ i f (0<=x) { return x ;}

else {return 0 − x ;} }

abs.h

#ifndef ABS H
#define ABS H

int abs (int x) ;
//@ requ i re s true ;
//@ ensures 0 <= x ? r e su l t == x :

r e s u l t == 0 − x ;
#endif

The verification of another source file that uses the function abs(), has to
include the header abs.h (as would be necessary for compilation too) so the
verifier can find the annotation. That source file must then be verified with the
assumption that the annotation found in the header abs.h is true.

2.2 Manifest Files

The implementation in a source file is thus verified with the assumption that an-
notated declarations (without implementation) in interface files are valid. During
verification of a source file, all the declarations that were used but not imple-
mented by the file, should be recorded in the manifest. These requires-records

Sound Symbolic Linking in the Presence of Preprocessing 125

from the manifest file contain the name of the interface where the declaration
was found and the name of the declaration itself. Besides the requires-records,
there are also provides-records included in the manifest. These records describe
all implemented constructs from the source file, together with the name of the
interface where the construct was declared. Of course the verifier must check
that an annotation of a declaration in an interface conforms with the annotation
of its implementation in the source file.

The symbolic linking process uses the manifest files to decide if the earlier
verified files can be safely linked together. The process checks that there exists
some matching provides-record for each requires-record in the manifest files of
the earlier verified files. This ensures that all necessary functionality is correctly
implemented somewhere. Due to the annotations in the interface, the linking pro-
cess knows that a declaration has the same meaning in all source files (ignoring
preprocessing for now) and thus earlier proven properties remain valid.

2.3 Recursive Type Checking

An important issue was ignored when describing manifest files and the symbolic
linking process. For the verification of C source code with VeriFast, header files
(i.e. interfaces) can contain auxiliary constructs (inductive data types, pure func-
tions over these data types, predicates, . . .) for specifying annotations. These
constructs can then be used in the annotations in the rest of the header file
as well as in the source file. Of course a header file can also use annotation
constructs from another header. If this is the case, it must be made sure that
the first header file includes the second. Otherwise the semantics of an inclusion
depends upon the type checking context in which the header file was included
and thus its meaning can be different for different source files that included it.
The following unsound example illustrates this requirement:

main.c

#include ” true . h”
#include ” unsa f e . h”

int main ()
//@ requ i re s true ;
//@ ensures true ;
{ unsa f e () ;

return 0 ; }

unsafe.c

#include ” f a l s e . h”
#include ” unsa f e . h”

void unsa f e ()
//@ requ i re s f a l s e ;
//@ ensures true ;
{ void ∗∗p ;

∗p = 0 ; }

unsafe.h

void unsa f e () ;
//@ requ i re s pre () ;
//@ ensures true ;

true.h

/∗@
f i xpo in t boo l pre (){

return true ;
} @∗/

false.h

/∗@
f i xpo i n t boo l pre (){

return f a l s e ;
} @∗/

The fixpoint functions from true.h and false.h specify pure functions that
can be used in other VeriFast annotations and can be considered to be synonyms
for true, respectively false in the rest of this example. The file unsafe.h is
an interface containing the forward declaration of the function unsafe() anno-
tated with a contract. In file unsafe.c, the header file unsafe.h is included after

126 G. Vanspauwen and B. Jacobs

including the file false.h. The expansion of unsafe.h will be a forward decla-
ration of the function unsafe() with the same contract as its implementation
in unsafe.c. Again without going into the details of the annotation language
of VeriFast, the contract in unsafe.c trivially holds since the precondition is
false. So verification succeeds even if there clearly is a memory violation in the
function unsafe(). A function with false as a precondition may never be used
of course or verification will fail. Verification of the function main() in main.c

also succeeds since by including the file true.h before including unsafe.h, the
precondition of unsafe() is trivially satisfied (i.e. it is simply true) so the func-
tion may be used anywhere. These files verify correctly in isolation, but they
should not be compiled together into an application. It is clear from this exam-
ple that the semantics of the forward declaration of the function unsafe() from
the included header unsafe.h is dependent upon previous includes.

A way to ensure that includes are independent from previous includes, is to
type check each (directly or indirectly) included header file recursively in isola-
tion: type check an included header with an empty set of declarations before
using its declarations to type check the file that included the header. If an in-
cluded header file is well-typed in isolation, we know it includes all the necessary
constructs for the semantics of its contents. In our previous example the recursive
type checking of unsafe.h will fail, since the pure function pre() is not defined
there. To ensure that this kind of type checking preserves the semantics of a
language, the language must exhibit the following property which we consider
an axiom for the C language:

Axiom 1
A declaration that is well-typed according to two sets of type checked declarations,
has the same semantics relative to the two sets if one is a subset of the other.

Since in the C programming language a declaration cannot be hidden by a
subsequent declaration in the same scope and we only allow includes at global
scope (this follows from the definitions of a preprocessor tree in Section 4 and
the fact that a proper prefix of a declaration in C is itself not a valid declaration),
the C language has this property.

3 Unsoundness Caused by Preprocessing

In the context of the C programming language, header files are used as interfaces
for symbolic linking and these have to be included in a source file by using the
preprocessor. However, an annotation-based verifier for C source code that sup-
ports symbolic linking, cannot allow full C preprocessor functionality1 without
becoming unsound.

The problem is that the C preprocessor performs textual inclusion and also
allows to define textual macros. The earlier described symbolic linking process
implicitly assumes that interfaces contain the same annotations for different

1 C11 - ISO/IEC 9899:2011: standard for the C programming language.

Sound Symbolic Linking in the Presence of Preprocessing 127

source files being verified. But the result of a header file inclusion, depends on
the context (i.e. defined macros) at the point of inclusion. We clarify this problem
by an example and end this discussion with possible alternative solutions.

3.1 Unsound Example

The unsound example presented here is quite similar to the one from Section 2.
Consider the following files annotated for verification with VeriFast:

main.c

#define PRE true
#include ” unsa f e . h”

int main ()
//@ requ i re s true ;
//@ ensures true ;
{ unsa f e () ;

return 0 ; }

unsafe.c

#define PRE f a l s e
#include ” unsa f e . h”

void unsa f e ()
//@ requ i re s f a l s e ;
//@ ensures true ;
{ void ∗∗p ;

∗p = 0 ; }

unsafe.h

#ifndef UNSAFE H
#define UNSAFE H

void unsa f e () ;
//@ requ i re s PRE;
//@ ensures true ;

#endif

The file unsafe.h is an interface containing the forward declaration of the
function unsafe() annotated with a contract. In file unsafe.c, the header file
unsafe.h is included after defining the preprocessor symbol PRE to false. After
preprocessing, the expansion of unsafe.h will be a forward declaration of the
function unsafe() with the same contract as its implementation. So verifica-
tion unsafe.c of will succeed since the precondition is false. Verification of the
function main() in main.c also succeeds since by defining preprocessor symbol
PRE to true before including unsafe.h, the precondition of unsafe() is trivially
satisfied. Like before, these files verify correctly in isolation, but they should not
be compiled together into an application.

Unfortunately, the symbolic linking process concludes that they can be safely
linked together. This is clear from the manifest files generated for main.c and
unsafe.c, i.e. main.vfmanifest, respectively unsafe.vfmanifest:

main.vfmanifest

. r e q u i r e s .\ unsa f e . h#unsaf e

. prov ides main : pre lude . h#main ()

unsafe.vfmanifest

. p rov ide s .\ unsa f e . h#unsaf e

The manifest file for unsafe.c only contains a provides-record for function
unsafe() and the manifest file for main.c only contains a requires-record for the
same function and a provides-record for the function main(). Since all required
functionality is provided, symbolic linking decides that the files can be linked
together.

The problem of combining preprocessing with symbolic linking, was shown
here for the contract of a simple function inside a header file. The same problem
can emerge if macro symbols are used for function names, function parameters
or other parts of declarations.

128 G. Vanspauwen and B. Jacobs

3.2 Alternative Solutions

There are different possible solutions for the unsoundness problem introduced
by preprocessing, each with their advantages and disadvantages. One solution
could be to include annotations after preprocessing in the manifest files and check
during symbolic linking that corresponding annotations are identical. However,
in VeriFast annotations can be specified using inductive data types, primitive
recursive pure functions over these data types and predicates. For this solution
to work, these construct also have to be included in the manifest file and will
make it bloated.

Another possible solution would be to reverify the source files during symbolic
linking. In many cases this solution is unacceptable (e.g. it deteriorates modu-
larity) or even impossible (e.g. linking with a library when only the header files
of that library are available and not the source code).

Finally, the solution presented in the rest of this paper makes use of a mod-
ified (context-free) preprocessor. This context-free preprocessor does the trick
by processing each included header with an empty set of defined macros. Thus
the inclusion is not dependent on the context in which the include occurs (i.e.
context-free). The context-free preprocessor should then be executed in parallel
with the normal preprocessor and if their outputs diverge, an error is reported.
This ensures that a correct execution of the resulting parallel preprocessor is
context-free and compliant with the normal C preprocessor.

4 Preprocessing for Sound Symbolic Linking

Here, we describe our solution to the unsoundness problem. First, we formalize
the preprocessor by describing its behavior with a set of inference rules. Then,
based on this formalization, a parallel preprocessing process is explained that
resolves the unsoundness by construction. We conclude this discussion of our
solution with a formal definition of the resulting semantics of the verification
process as compared to a normal compilation process.

4.1 Preprocessing Formalized

Before presenting our solution, it is instructive to formalize the behavior of the
preprocessor. Using the unspecified sets W and H we define in Definition 1 a
token which represents the contents of a source file. Representing a source file by
a single token simplifies the definitions that follow. A token can be a list of words

Definition 1.
w ∈ W and h ∈ H
t ∈ T ::=
| w̄ | def w w̄

| t t | undef w

| h | ifdef w t else t endif

Definition 2.
m ∈ H→ T

Definition 3.
d ∈W ⇀ W∗

Definition 4.
τ ::=
| []
| w :: τ
| (h, τ) :: τ

Sound Symbolic Linking in the Presence of Preprocessing 129

h1 w1 h2 w2 w3 w4

w5

h1 w6 w7

w5

Fig. 1. Graphical representation of the preprocessor tree
[(h1, [w5]), w1, (h2, [(h1, [w5]), w6, w7]), w2, w3, w4]

(w̄ ∈ W∗), a sequence of other tokens (t t) or a preprocessor directive. In this
simplified setting there are directives for header inclusion (h), macro definition
(def w w̄), macro removal (undef w) and conditional compilation (ifdef w
t else t endif). During preprocessing, a header map m is used to retrieve the
contents of header files and the partial function d is used to remember the defined
macros. The output of the preprocessor is a preprocessor tree τ, which is in fact
a list of words augmented with the original include structure of the source file
as illustrated in Fig. 1.

The behavior of the C preprocessor can then be captured by the (incomplete)
inference rules rules in Definition 5 using big-step semantics. The complete set of
rules can be found in a technical report [6]. Only the rules for macro definition,
macro expansion and header expansion are shown here. The judgment m �
(d, t) ⇓ (d′, τ) defined by Definition 5, indicates that, given a certain header map
m, the formal preprocessor will accept a token t and a set of defined macros
d and it returns a resulting preprocessor tree τ and an updated set of defined
macros d′.

In rule P-define the function update is used to add the defined macro to
d. Since a premise in the rule P-words-undefined states that w is not in the
domain of d, the word is just copied to the resulting preprocessor tree. In the
rule P-words-defined on the other hand, w is in the domain of d and its

Definition 5. Inference rules for preprocessing

m � (d,def w w̄) ⇓ (d[w := w̄], [])
P-define

w /∈ dom(d) m � (d, w̄) ⇓ (d, τ)

m � (d,w :: w̄) ⇓ (d,w :: τ)
P-words-undefined

w ∈ dom(d)
d(w) = w̄1 m � (d, w̄2) ⇓ (d, τ2)

m � (d|dom(d) \ {w}, w̄1) ⇓ (d|dom(d) \ {w}, τ1)

m � (d,w :: w̄2) ⇓ (d, τ1 τ2)
P-words-defined

m � (d,m(h)) ⇓ (d′, τ)

m � (d, h) ⇓ (d′, [(h, τ)])
P-header-exp

130 G. Vanspauwen and B. Jacobs

expansion w̄ is preprocessed before adding it to the resulting preprocessor tree.
The domain restriction of a function is used there to indicate that the expansion
of a macro is preprocessed without the macro itself as a defined macro. Finally,
the problematic rule P-words-exp describes how a header is expanded. It is
clear from this rule that the header is preprocessed with the current partial
function of defined macros d before the expansion is returned.

4.2 Parallel Preprocessing

As mentioned before, it is the context-dependency of the inclusion of a header
in rule P-header-exp that renders symbolic linking unsound. To overcome this
problem we define the context-free preprocessor. The context-free preprocessor
works exactly the same as the normal preprocessor except that when it encoun-
ters an include directive, the expansion of the included file is calculated by a
recursive call with an empty set of defined macros. This is done by replacing the
rule P-header-exp with the rule CFP-header-cf-exp from Definition 6 (for
the complete set of rules see [6]), which results in the definition of the judgment
m � (d, t) ⇓cf (d′, τ). Since the defined macros at the point of inclusion are the
only source of variability in the resulting expansion, the context-free preproces-
sor always expands an included file in the same way. So the context of defined
macros does not influence the result of an inclusion. Note that the macros that
are defined during preprocessing of the header file, are added to the preexisting
macros.

Definition 6. Inference rule for context-free header expansion

m � (∅,m(h)) ⇓cf (d′, τ)

m � (d, h) ⇓cf (d ∪ d
′
, [(h, τ)])

CFP-header-cf-exp

The context-free preprocessor clearly behaves differently from the normal
preprocessor, but its context-freeness ensures that symbolic linking is sound.
However, the compliance to the C standard of the normal preprocessor is also
required. Our solution is to run both preprocessors in parallel and signal an error
if they diverge. Care must be taken with the inclusion of header files that pro-
tect themselves from double inclusions by using a macro as guard (i.e. guarded
headers). Since the inference rule CFP-header-cf-exp calls the preprocessor
recursively with an empty set of defined macros, the macro guarding a header
file is never defined at that point during preprocessing. Thus the second time a
guarded header is included, it is expanded anyway by the context-free preproces-
sor. The normal preprocessor will not expand the second include of that guarded
header. So a naive parallel preprocessing technique, would fail here.

To make parallel preprocessing succeed for guarded headers, we remove the
secondary occurrences of header includes during context-free preprocessing. Only
thereafter are the produced normal preprocessor tree and context-free prepro-
cessor tree checked for equality during parallel preprocessing. This is safe to do,
since the context-free preprocessor always expands a header to the same parse
tree. To formalize this we first need the function Ih that does nothing more than

Sound Symbolic Linking in the Presence of Preprocessing 131

collecting all the header names that occur in an outputted preprocessor tree τ

or in a set
¯̃
h containing header nodes (i.e. ordered pairs of header names and

preprocessor trees).

Definition 7. Function Ih collects header names

Ih([]) = ∅
Ih(b :: τ) = Ih(τ)

Ih((h, τh) :: τ) = {h} ∪ Ih(τh) ∪ Ih(τ)
and

Ih(
¯̃
h) =

⋃
h̃∈¯̃

h

Ih([h̃])

Having defined the function Ih, we now can specify the function RSO which re-
moves secondary occurrences from a preprocessor tree. As shown in Definition 8,
this function expects a preprocessor tree τ and a set of already encountered
header names h̄. Only the case for τ = (h, τh) :: τr and h /∈ h̄ is worth discussing.
Secondary occurrences from the tree τh are removed first and only then are they
removed from τr. Note that the header names encountered while processing τh
must be added to the set of already encountered headers names h̄ before pro-
cessing τr. This is the reason for adding the set Ih([(h, τh′)]) to h̄ before RSO is
called recursively.

Definition 8. Function RSO removes secondary occurrences

RSO([], h̄) = []
RSO(b :: τr, h̄) = b :: RSO(τr, h̄)

RSO((h, τh) :: τr, h̄) = (h, []) :: RSO(τr, h̄) (if h ∈ h̄)
RSO((h, τh) :: τr, h̄) = let τh′ = RSO(τh, h̄ ∪ {h}) in (if h /∈ h̄)

(h, τh′) :: RSO(τr, h̄ ∪ Ih([(h, τh′)]))

Finally, we can formalize the parallel preprocessing technique. Let the judg-
mentm, t � τp, τcfp as defined in Definition 9 indicate that parallel preprocessing
succeeded and produced the normal preprocessor tree τp and the context-free pre-
processor tree τcfp for a specific token t and header map m (and an empty set
of defined macros). Thus the implementation of the parallel preprocessing tech-
nique (see Section 6) must ensure that if it was successful, then τp = RSO(τcfp,∅)
holds. Notice that this means that we do not support unguarded headers.

Definition 9. Semantics of parallel preprocessing

∀m, t, τp, τcfp. m, t � τp, τcfp ⇔ ∃ dp, dcfp.

⎧⎨
⎩

m � (∅, t) ⇓ (dp, τp) ∧
m � (∅, t) ⇓cf (dcfp, τcfp) ∧
τp = RSO(τcfp,∅)

4.3 Resulting Semantics

Our sound approach to modular verification we call symbolic linking requires a
modified (i.e. context-free) preprocessing phase and a modified semantic analysis
phase (i.e. recursive type checking). While the behavior of each phase separately

132 G. Vanspauwen and B. Jacobs

differs from the C standard, we prove in Section 5 that their combined semantics
are equivalent to the semantics defined by the C standard.

In order to state the soundness theorem for our approach, we need a way to
specify the semantics of normal compilation and the semantics of a verification
process with parallel preprocessing and recursive type checking. For this reason
we introduce the following concepts:

– a declaration block (b ∈ W ∗):
a list of declarations that is not interrupted by an include directive

– a type checked declaration block (btc ∈W ∗ × E):
an ordered pair of a declaration block and its type checking environment

– a type checking environment (e ∈ E = NW∗×E
0):

a multiset of declaration blocks

Strictly speaking E is the smallest set for which E = NW∗×E
0 holds. Now

we can express the semantics of compilation and verification in terms of a type
checking environment. We will discuss these in turn.

Compilation. Let the function CP from Definition 10 represent the normal
type checking procedure in the compilation process. The input to CP is a normal
preprocessor tree τ and a current global type checking environment eg, and the
output is the resulting type checking environment which represents the semantics
of the source file during compilation. This resulting type checking environment
is a multiset containing all the declaration blocks found in the preprocessor tree
together with the environment in which they are to be type checked. For a one-
pass compile language like C every declaration is type checked given all the
previous encountered declarations. This is the reason that eg is called the global
environment. So the rule for CP(b :: τ, eg) in Definition 10 correctly includes the
previous global environment as the type checking environment of the encountered
declaration block b. Note that b is used here to implicitly indicate the longest
match of consecutive words in the tree that is not interrupted by an include.

Definition 10. Function CP computes semantics of compilation

CP([], eg) = eg
CP(b :: τ, eg) = CP(τ, eg � {|(b, eg)|})

CP((h, τh) :: τ, eg) = CP(τ,CP(τh, eg))

Verification. The function VF specified in Definition 11 (and named VFs in [6])
represents the recursive type checking process of a verifier that supports our
solution for sound symbolic linking. The output of VF is again a type checking
environment and represents the semantics of the corresponding source file as
seen by the verification process.

In contrast to CP, VF does recursive type checking and so the type check-
ing environment ed expected by VF is not global. It only contains declarations
directly declared in the current expansion. Besides a context-free preprocessor
tree τ and a direct type checking environment ed, the function VF also expects

Sound Symbolic Linking in the Presence of Preprocessing 133

Definition 11. Function VF computes semantics of verification

VF([], ¯̃ht, ed) = ed

VF(b :: τ,
¯̃
ht, ed) = let e := ed �MH(

¯̃
ht) in

VF(τ,
¯̃
ht, ed � {|(b, e)|})

VF(h̃ :: τ, ¯̃ht, ed) = VF(τ, ¯̃ht ∪ Iτ([h̃]), ed)

Definition 12. Function Iτ collects header nodes

Iτ([]) = ∅
Iτ(b :: τ) = Iτ(τ)

Iτ((h, τh) :: τ) = {(h, τh)} ∪ Iτ (τh) ∪ Iτ (τ)
and

Iτ(
¯̃
h) =

⋃
h̃∈¯̃

h

Iτ([h̃])

a set of transitively encountered header nodes
¯̃
ht. In this set the occurrences of

included headers are collected together with their transitive includes. As for ed,
this multiset only contains headers from the current expansion. To calculate the

transitive includes of the encountered header in the rule for VF(h̃ :: τ,
¯̃
ht, ed),

the function Iτ from Definition 12 is used before adding the result to
¯̃
ht.

The rule for VF(b :: τ,
¯̃
ht, ed) does all the work to get the correct recursive type

checking environment for type checking the encountered declaration block. The
recursive type checking environment is the direct type checking environment

together with all the declaration blocks occurring in
¯̃
ht. But the declaration

blocks from ¯̃ht must be type checked before they are to be added to the type
checking environment of the encountered declaration block. So the auxiliary
function MH from Definition 13 is used in the let expression of rule VF(b ::

τ, ¯̃h, ed) to calculate these type checked declaration blocks from ¯̃ht. Function
MH simply calculates the resulting type checking environment of all the header

nodes in ¯̃ht using the function VF. These type checking environments are then
merged and the final resulting type checking environment is returned.

Definition 13. Function MH merges header nodes into type checking environment

MH(¯̃h) =
⊎

(h,τ)∈¯̃
h

VF(τ,∅,∅)

5 Proof of Equivalence

In the previous section we formalized the semantics of compilation and verifica-
tion with sound symbolic linking. We now must make sure that their semantics
are equivalent. Otherwise a successful verification would be meaningless, since
the verification is then performed on a semantically different program. So we
need a way to compare type checking environments which represent the seman-
tics of compilation and verification.

Comparing type checking environments can be done using the two mutually
recursive judgments from Definition 14 and Definition 15. The (asymmetric)

134 G. Vanspauwen and B. Jacobs

Definition 14. Equivalence of type checking environments

∅ � ∅
Env-eq-empty

e1 � e2 e11 � e21

{|(b, e11)|} � e1 � {|(b, e21)|} � e2
Env-eq-not-empty

Definition 15. Subsumption of type checking environments

∀ e1, e2. (e1 � e2 ⇔ ∃e3.e1 � e2 � e3)

judgment � from Definition 14 means equivalence between two type checking
environments. Clearly two empty environments are equivalent. If two environ-
ments are equivalent, adding a type checked declaration block to each of them
where the type checking environment of the first subsumes the one of the second
as defined by the judgment & from Definition 15, preserves this equivalence.

To see why the judgment from Definition 14 indeed implies that equivalent
type checking environments have the same semantics according to the C lan-
guage, note that the C language has the property mentioned in Axiom 1: decla-
rations can not be hidden by subsequent ones.

If we can prove that (when parallel preprocessing succeeds) for a preprocessor
tree τp generated from a specific source file by the normal preprocessor and a pre-
processor tree τcfp generated form the same file by the context-free preprocessor,
the semantics of CP (τp,∅) are the same as that of V F (τcfp,∅,∅)'MH(Iτ(τcfp)),
we know that the verification has the same semantics as compilation. This main
property of our approach is expressed in Theorem 1.

Theorem 1. Soundness theorem

∀m, t, τp, τcfp. m, t � τp, τcfp ⇒ CP(τp,∅) � VF(τcfp,∅,∅) �MH(Iτ(τcfp))

We proved this theorem by first showing the validity of Lemma 1 from which
Theorem 1 can be straightforwardly deduced. The proof of Lemma 1 is omitted
here for space reasons but can be found in [6].

Lemma 1. Main lemma

∀ τp, τcfp, eg, ed, eo, ¯̃ht,
¯̃
ho.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¯̃
ht = Iτ(

¯̃
ht) ∧

¯̃
ho = Iτ(

¯̃
ho) ∧

(∀h, τh. (h, τh) ∈ Iτ(τcfp) ⇒ (h, τh) /∈ Iτ(τh)) ∧
(∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τcfp) ∧

(h, τ2) ∈ Iτ(τcfp) ∪ ¯̃
ht ∪ ¯̃

ho)⇒ τ1 = τ2) ∧
τp = RSO(τcfp, Ih(

¯̃
ht ∪ ¯̃

ho)) ∧
eg � ed �MH(¯̃ht ∪ ¯̃

ho) � eo

⇒ CP(τp, eg) � VFs(τcfp,
¯̃
ht, ed) �MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ(τcfp)) � eo

6 Implementation

The recursive type checking procedure as represented by the function VF from
Subsection 4.3, was already implemented in VeriFast to support symbolic linking.

Sound Symbolic Linking in the Presence of Preprocessing 135

When performing recursive type checking in that implementation, the problem
that occurs due to the removal of secondary occurrences of guarded headers by the
C preprocessor, was solved by preprocessing, parsing and type checking all header
files in isolation. Only then are the declarations a header contains added to the
type checking environment of the file that included the header. The unsoundness
introduced by preprocessing was addressed originally by only allowing includes
and header guards, but nothing else of the capabilities of the C preprocessor.

The parallel preprocessing technique from Subsection 4.2 was straightforward
to implement in VeriFast. An implementation of the C preprocessor and the
context-free preprocessor are run in parallel and an error is reported if their out-
puts diverge. If a single header is included many times, the function VF is not
very efficient. For every declaration block that needs the header for type checking
its declarations, the function VF is recursively called for that header through the
function MH. In the actual implementation the result for each header is remem-
bered, so when it is needed again, it does not have to be recomputed. Another
issue in the implementation was the use of lemma functions. To make sure during
symbolic linking that these functions are correctly implemented, lemma functions
are also recorded in the manifest files and their termination is ensured.

Since the verification process itself did not have to be updated, the necessary
modifications were nicely isolated. Only the preprocessing stage and the type
checking stage of the verifier had to be updated. Initial tests with the modified
verifier, show we support most common use cases of the C preprocessor. To
support this claim, these are the use cases we currently support: the use of
header guards, using macro definitions as constants and enumerations, and using
macros for abbreviating repetitive code. Although not supported in the current
implementation, we can extend it to support parameterized headers. This can
be done by introducing a new preprocessor directive that states which macros
are the parameters of a header. The definitions of these macros at the point of
inclusion must then be recorded in the manifest files during verification for an
equality check during symbolic linking to ensure context-freeness. A theoretical
foundation for this approach still has to be developed.

7 Related Work and Conclusion

There are several annotation-based verifiers available for C source code including
Microsoft’s Verifying C Compiler (VCC) [1], the Escher C Verifier [2] from Escher
Technologies, the work of Claude Marché et al. resulting in the Caduceus [5] tool,
and the Frama-C [3] platform and its plug-ins (e.g. WP [3] and Jessie [3]).

Microsoft states on its website that VCC is sound and modular. VCC indeed
allows the verification of files in isolation, but the problem of linking earlier
verified files together is not mentioned. Since the C preprocessor can be used
before verification, a header file can have a different meaning for different include
sites. However, there is no way to determine if properties of source files earlier
proven by VCC remain valid if they are linked together in an application. So this
seams to break modularity. The Escher C Verifier, the Caduceus tool and the
Frama-C platform do not claim to be modular. The Frama-C platform does let

136 G. Vanspauwen and B. Jacobs

you verify source files in isolation, but requires all the source files to be presented
together if an entire application is to be soundly verified.

As for as we can see, no other verifier for C source code supports both modu-
lar verification and a mechanism for determining whether or not earlier proven
properties remain valid when source files are linked together. The modular verifi-
cation approach we implemented in VeriFast (i.e. symbolic linking with parallel
preprocessing), does support this by limiting the capabilities of the preprocessor
and these limitations are quite permissive. Moreover, we proved that the result-
ing semantics are equivalent to the standard C semantics; a property which is
necessary when deviating from the C standard. Since our solution only impacts
the lexical and semantical analysis phases, it is a valid candidate for implemen-
tation in other verifiers.

Acknowledgements. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme [FP7/2007-2013]
under grant agreement n°317753, and more precisely from the STANCE project
(a Source code analysis Toolbox for software security AssuraNCE).

This research is also partially funded by the EU FP7 project NESSoS, the
Interuniversity Attraction Poles Programme Belgian State, the Belgian Science
Policy, and by the Research Fund KU Leuven.

References

1. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

2. Crocker, D., Carlton, J.: Verification of C programs using automated reasoning. In:
Proceedings of the Fifth IEEE International Conference on Software Engineering
and Formal Methods, SEFM 2007, pp. 7–14. IEEE Computer Society, Washington,
DC (2007)

3. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c: a software analysis perspective. In: Eleftherakis, G., Hinchey,M., Holcombe,
M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

4. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: Ver-
iFast: A powerful, sound, predictable, fast verifier for C and java. In: Bobaru, M.,
Havelund,K., Holzmann,G.J., Joshi, R. (eds.) NFM2011. LNCS, vol. 6617, pp. 41–55.
Springer, Heidelberg (2011)

5. Moy, Y., Marché, C.: Inferring local (non-)aliasing and strings for memory safety.
In: Heap Analysis and Verification (HAV 2007), Braga, Portugal, pp. 35–51 (2007)

6. Vanspauwen, G., Jacobs, B.: VeriFast: Sound symbolic linking in the presence of
preprocessing. CW Reports CW638, Department of Computer Science, KU Leuven
(2013)

Inferring Physical Units in B Models

Sebastian Krings and Michael Leuschel

Institut für Informatik, Universität Düsseldorf�

Universitätsstr. 1, D-40225 Düsseldorf
sebastian.krings@uni-duesseldorf.de, leuschel@cs.uni-duesseldorf.de

Abstract. Most state-based formal methods, like B, Event-B or Z, pro-
vide support for static typing. However, these methods and the asso-
ciated tools lack support for annotating variables with (physical) units
of measurement. There is thus no obvious way to reason about correct
or incorrect usage of such units. In this paper we present a technique
that analyses the usage of physical units throughout a B machine, in-
fers missing units and notifies the user of incorrectly handled units. The
technique combines abstract interpretation with classical animation and
model checking and has been integrated into the ProB validation tool,
both for classical B and for Event-B. It provides source-level feedback
about errors detected in the models. The plugin uses a combination of
abstract interpretation and constraint solving techniques. We provide an
empirical evaluation of our technique, and demonstrate that it scales up
to real-life industrial models.

Keywords: B-Method, Event-B, Physical Units, Model Checking, Ab-
stract Interpretation.

1 Introduction and Motivation

Static type checking is generally1 considered to be very useful to catch obvious
errors early on and most specification languages are strongly typed. In particu-
lar, the B language [1] and its successor Event-B [2] are strongly typed. However,
their type systems are relatively simple. In particular, there is no way to subtype
the integers: a variable holding natural numbers and a variable holding a nega-
tive integer have the same type: INTEGER. Moreover, there is no way to specify
physical units for integers, which would have been useful to avoid illegal manip-
ulations, such as adding a speed value to a time value. For safety critical systems
such a static check would be highly desirable, but currently there is no obvious
way to enforce correctness of physical unit manipulations within B models.

In this paper we propose a solution to this problem, by integrating an abstract
interpretation technique into the ProB animator [14,15]. More precisely:

� Part of this research has been sponsored by the EU funded FP7 project 287563
(ADVANCE).

1 See, however, [13].

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 137–151, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

138 S. Krings and M. Leuschel

– we provide an abstract semantics for B, where integers are represented by
their physical units;

– the abstract semantics can be simulated using the ProB toolset, by switch-
ing from the concrete mode to the abstract mode;

– we can run ProB in abstract mode until a fixpoint is reached;
– the result (abstract values computed for variables, parameters, ...) of the

fixpoint is analyzed and translated into source-level user feedback.

The technique has been implemented both for B and Event-B, and applied to
several industrial safety critical models.

An introductory example can be found in Figure 1. It contains an extract of a
simple B machine modeling a car. The current speed and position are stored in
two variables. The duration of one tick is defined by a constant. Implicitly, the
speed is measured in meters per second, the position in meters from a starting
point and the length of a tick is defined in seconds. However, when updating the
car’s position in the keep speed operation, a multiplication of the speed with
the tick length is missing. While this does not lead to an invariant violation,
it leads to wrong results for the position of the car.

Analyzing the physical units of measurement, the error is easy to detect.
Looking at the units of speed and tick length, we see that the position should
be in meters. Furthermore, we see that adding position (meters) to speed

(meters per second) does not result in a well-formed unit of measurement. Hence,
the missing multiplication is detected.

MACHINE Car

CONSTANTS tick length

PROPERTIES tick length = 2

VARIABLES speed, position

INVARIANT speed : INT & position : INT

INITIALISATION speed,position := 0,0

OPERATIONS

keep speed =

PRE position + speed * tick length : INT

THEN position := position + speed END

...

END

Fig. 1. Introductory Example

2 Inference of Physical Units

Below, in Section 2.1 we will discuss how the syntax of the B language was
extended in order to be able to declare physical units and reason about them.
We will mainly use the international system of units (SI) [20], but a user can also
declare additional non-SI units. Afterwards, how we use abstract interpretation

Inferring Physical Units in B Models 139

will be explained in Section 2.2. Section 3 will explain why we had to improve the
technique with constraint solving. Empirical results will be presented in Section
4. We conclude with alternative approaches and related work in Section 5 and a
discussion of our results and future work in Section 6.

2.1 Syntactic Extension of the B Language

Initially, the user must provide the physical units for certain variables as a start-
ing point of our analysis. For Event-B, this has been achieved by attaching new
attributes to variables in the Rodin database [3]. In classical B, this association
must be described within the B ASCII syntax2. We wanted to ensure that a
B machine making use of the new syntax is still usable by other tools (such
as Atelier-B). This requirement ruled out an extension involving keywords or
constructs which are not part of the standard B language and could therefore
not be parsed by tools other than ProB. Instead, we decided to implement the
new functionality inside semantically relevant comments, i.e., pragmas. While
the usual B block comment is enclosed in /* and */, a pragma is enclosed in
/*@ and */. (Atelier-B will treat such a pragma as an ordinary comment.)

For our work we have introduced four pragmas to the B language:

1. “unit”, the pragma used to attach a physical unit to a B construct. This
can be done either by specifying it by a B expression in an SI-compatible
form or by using a predefined alias like “cm” instead of “10**-2 * m”. The
given unit has to be a valid SI unit [20]; i.e., a derived unit such as “m *
s**-2” is acceptable. The usage is shown in Figure 2.

2. “inferred unit”, which works similar to unit. It is included in the pretty
print of a machine, attaching units inferred by ProB to variables and con-
stants. This enables the user to generate a model containing the information
gathered by our analysis.

3. “conversion”, used to annotate operations meant as conversions between
units. An example can be found in Figure 3.

4. “unit alias”, used to define new aliases for existing unit definitions.

2.2 Using Abstract Interpretation

Inferring units of measurement has a strong connection to type checking, which
can be seen as a special kind of abstract interpretation [8]. In consequence,
inference of units throughout a B machine can be done by abstract interpretation
of the operations of a machine and abstract evaluation of invariants, guards, etc.

Regarded as an abstract interpretation, type checking in B can be performed
with the abstract domain outlined in Figure 4. Initially, any type is still possible,
represented by the bottom element ⊥. Upon type checking, the type of each
construct is inferred as one of the following inductively defined B types:

2 Screenshots of input, output and errors messages can be found on
http://www.stups.uni-duesseldorf.de/models/sefm2013/screenshots.

http://www.stups.uni-duesseldorf.de/models/sefm2013/screenshots

140 S. Krings and M. Leuschel

MACHINE UnitExample

VARIABLES

/*@ unit 10 * m */ x,

y

INVARIANT x:NAT & y:NAT & x>y

INITIALISATION x,y := 0,0

OPERATIONS

n <-- addToX = BEGIN n := x + y END;

END

Fig. 2. Example Usage of the Unit Pragma

MACHINE ConversionExample

VARIABLES

/*@ unit 10**-2 * m */ x,

/*@ unit 10**-3 * m */ y

INVARIANT x:NAT & y:NAT

INITIALISATION x,y := 0,0

OPERATIONS

mmToCm = x := /*@ conversion */ (10*y)

END

Fig. 3. Example Usage of the Conversion Pragma

– ⊥ ∈ Types
– Bool ∈ Types
– String ∈ Types
– Z ∈ Types
– Given ⊆ Types where Given contains all the user-defined deferred, enumer-

ated or parameter sets
– x ∈ Types∧ y ∈ Types⇒ x× y ∈ Types
– t ∈ Types⇒ P(t) ∈ Types 3

Furthermore, if multiple types are inferred, there is a type error. This is de-
noted by the special type)4. We define Types� = Types ∪ {)}. Note, that
for Event-B, the Rodin tool also generates a type error if the inferred type still
contains ⊥. This can occur for a predicate such as {} = {}, where the type of
{} would be inferred as P(⊥).

Basically, types are ordered using the relation *, forming the lattice in Fig. 4
and defined using the following five rules. (We define � in the usual way: s � t
iff s * t ∧ s �= t.)

3 Functions and relations are stored as sets of couples.
4 As the top element represents the least upper bound that matches two different
types. However, only one type is acceptable for a correct model.

Inferring Physical Units in B Models 141

any type

Bool Integer
User
Set

multiple types /
error

Powerset
of X

String
Couple of
X and Y

P(any type)

P(Bool) P(Z) P(Set) P(P(X))P(String) P(XxY)

Fig. 4. B Type System and the relation �

– ⊥ * t for any t ∈ Types�
– t *) for any t ∈ Types�
– t * t for any t ∈ Types�
– s× t * s′ × t′ iff s * s′ ∧ t * t′.
– P(t) * P(t′) iff t * t′.

The abstract domain used to perform unit analysis is an extension of the
abstract domain used for type checking. While the types for boolean, string
and the construction of sets, sequences and couples remain, the integer type is
replaced by an entire subdomain. An abstract integer value is now represented
by a set of triples of the form [10c × ue] where c ∈ Z is the exponent of the
coefficient, u a SI base unit symbol and e ∈ Z the exponent of the unit.5

Definition 1. A unit is a set of triples {[10c1 × u1e1], . . . , [10ck × uk
ek]} such

that for all i ∈ 1..k we have ci ∈ Z, ei ∈ Z, ui being a base SI unit and ∀j • j ∈
1..k ∧ j �= i⇒ ui �= uj.

With the definition above, m
s would be expressed as {[100 ×m1], [100 × s−1]}.

The empty set of triples denotes a dimensionless integer value.

Definition 2. The set of all valid units is denoted by Units.

As in the type checking domain, we add an element ⊥U to Units denoting that
initially any unit is possible. Additionally, we define)U representing the fact that
multiple units were inferred. Again, this should not occur in a correct model.

Summarizing, our abstract interpretation framework for B uses the set of all
possible B values as the concrete domain C and maps it to the abstract domain
A, which is recursively defined by

– boolean ∈ A
– string ∈ A
– ∀u ∈ Units ∪ {⊥U ,)U} ⇒ int(u) ∈ A
– ∀S ∈ Given, u ∈ Units ∪ {⊥U ,)U} ⇒ set(S, u) ∈ A
– x ∈ A ∧ y ∈ A ⇒ couple(x, y) ∈ A
– t ∈ A ⇒ set(t) ∈ A.

5 For convenience, some SI derived units and units accepted for use with the SI stan-
dard (see [20]) are stored on their own rather than converting them.

142 S. Krings and M. Leuschel

Note, that we need both set(t) and set(t, u): While the first is a set with
elements that may hold a unit themselves, i.e. a set integers, the second has a
unit directly attached to it, i.e. an enumerated set. The rules for the ordering of
abstract values are as follows:

– ⊥U *U u for any u ∈ Units ∪ {)U}
– u *U)U for any u ∈ Units ∪ {⊥U}
– ⊥U *U)U

– t * t for any t ∈ A
– ⊥ * t for any t ∈ A
– t *) for any t ∈ A
– int(u) * int(u′) iff u * u′

– set(t, u) * set(t, u′) iff u * u′

– couple(s, t) * couple(s′, t′) iff s * s′ ∧ t * t′

– set(t) * set(t′) iff t * t′

To perform abstract interpretation the abstraction and concretization func-
tions α : C → A and γ : A → P(C) need to be defined. These functions have
to be recursively defined, as the B type system contains arbitrarily nested data
types. The following definitions of α and γ are used:

α(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

boolean if x ∈ {true, false}
string if type of x is string

int(unit) if x ∈ Z with an annotated unit

int(⊥U) if x ∈ Z without an annotated unit

set(S, unit) if x ∈ S, S annotated with unit

set(S,⊥U) if x ∈ S, S without an annotated unit

couple(α(x1), α(x2)) if x is of type x1 × x2
set(α(x1)) if x ∈ P(x1)

with S ∈ Given and

γ(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{true, false} if y = boolean

{s|type of s is string} if y = string

S if y = set(S, unit), with any unit

Z if y = int(unit), with any unit

γ(y1)× γ(y2) if y = couple(y1, y2)

P(γ(y1)) if y = set(y1).

The B instructions the abstract interpreter needs to implement can be cate-
gorized by their effect on the units of measurement:

1. Instructions like addition of integers or concatenation of sequences expect
all operands and the result to hold the same unit.

Inferring Physical Units in B Models 143

2. Instructions that work on abstract elements which are composed in a dif-
ferent way while still holding the same units. The Cartesian product for
example maps two sets to a set of couples.

3. Instructions like multiplication or division are able to generate new units
based on the units of their operands.

Data: Factors x1 ∈ Units, x2 ∈ Units
Result: Product p ∈ Units
p := ∅ foreach triple [10c1 × ue1] ∈ x1 do

if there is a triple [10c2 × ue2] ∈ x2 then
p := p ∪ {[10c1+c2 × ue1+e2]}
x2 := x2 \ {[10c2 × ue2]}

else
add [10c1 × ue1] to p

end

end
p := p ∪ x2

Algorithm 1. Abstract Multiplication

The first and second kind of operations can be implemented by unification
or returning) if incompatible units are found. This could be achieved by a
classical type inference algorithm (e.g., Hindley-Milner). The third kind however
needs more work, and is one justification for using abstract interpretation rather
than (unification-based) type inference. On the representation outlined above,
multiplication is implemented by addition of the exponents of triples holding the
same unit symbol. See Algorithm 1 for an outline. With the multiplication in
place, a

b can easily be implemented as a× b−1.
A few operations were not immediately obvious, in particular modulo division.

It was not clear what the correct operation on the unit domain had to be. The
B Book [1] (page 164) defines the result as

n mod m = n−m ∗
⌊ n
m

⌋
.

Consequently, for the unit of n mod m

unit(n mod m) = unit
(
n−m ∗

⌊ n
m

⌋)
= unit(n).

Following the above reasoning, in the current implementation of the unit in-
terpreter the unit of n mod m is the unit of n. However, other definitions are
certainly possible. Up to now, our empirical evaluation did not reveal any prob-
lems with the given definition.

We perform a fixpoint search by executing all operations of a B machine. Ad-
ditionally, we evaluate properties and invariants in every iteration. Pseudocode
can be found in Algorithm 2. For the example machine in Figure 2, the fixpoint
search would perform the following steps:

144 S. Krings and M. Leuschel

1. Initialize the machine: If a unit is attached to an identifier, the unit is stored.
Otherwise, ⊥U is used. In the example, we set the initial state σ0 to
{(x, int({[101 ×m1]})), (y, int(⊥U))}.

2. Evaluate the invariant on σ0. The predicate x > y allows us to infer the
unit of y, updating σ0 = {(x, int({[101 ×m1]})), (y, int({[101×m1]}))}. No
incorrect usage of units is detected.

3. Execute addToX on σ0:
(a) Generate local state σIN = {(n, int(⊥U)} ∪ σ0.
(b) Evaluate x+ y = int({[101 ×m1]})) + int({[101 ×m1]})) = int({[101 ×

m1]}))
(c) Substitute n by calculating the least upper bound of ⊥U and int({[101×

m1]})). The resulting output state is
σOUT = {(n, int({[101 × m1]})), (x, int({[101 × m1]})), (y, int({[101 ×
m1]}))}.

4. Again, no incorrect usage of units is detected.
5. The next iteration executes addToX a second time. However, the state does

not change and the fixpoint is reached.

3 Extending Abstract Interpretation with Constraints

Below we show that our abstract interpretation scheme on its own still has some
limitations. Consider the B machine in Figure 5, where the variable x contains
a length in meters and t holds a time interval in seconds. The unit of y should
be inferred. Evaluating the expression t := (x∗y)∗ t needs several interpretation
steps:

1. The interpreter computes the product of x and y. As y = int(⊥U), the
interpreter can only return int(⊥U) as a result.

2. In consequence, the interpreter finds that (x∗y)∗t = int(⊥U)∗t = int(⊥U)∗
int({[100 × s1]}) = int(⊥U).

3. The assignment t := (x ∗ y) ∗ t is evaluated by computing the least upper
bound of t and int(⊥U), i.e., int({[100×m1]}). No information is propagated
back to the inner expressions; we are thus unable to infer the unit of y.

The example shows that it is necessary to attach some kind of constraints to
the resulting variables containing ⊥U . Inside, the operation and the operands
that lead to ⊥U are stored. We implemented constraints for multiplication, di-
vision and exponentiation, as those can not be handled by unification alone.

In the example given in Fig. 5 two constraints are used to infer the unit of
variable y. First, a constraint containing x and y is attached to the result of
the inner multiplication. The result of the outer multiplication is annotated in
the same way. When computing the assignment to t, we know the unit that the
outer multiplication has to return. We can use the domain operation for division
of units to reverse the multiplications and compute the value of y.

In general, once a variable with an attached constraint is unified with another
variable, the unit plugin has different ways to react:

Inferring Physical Units in B Models 145

σ = {(identifier of x, α(x)) : x variable or constant}
evaluate properties / invariant (might replace ⊥U by units in σ)
repeat

foreach operation / event do
update σ by executing operation / event:

evaluate preconditions / guards (might replace ⊥U by units in σ)
perform substitutions x := x′ by setting x to lub(x, x′) in σ

if parameter or return value contains �U then
report error

end
evaluate properties / invariant (might replace ⊥U by units in σ)
if σ contains �U then

report error
end
if invalid unit usage detected then

report error
end
foreach variable holding a constraint do

evaluate constraint if possible
end

end

until σ did not change in loop

Algorithm 2. Fixpoint Search

– The other variable does not hold a physical unit at the moment. Hence, we
can not solve the constraint.

– The other variable contains a physical unit. Now, we have to look at the
variables inside:
• If both variables are currently unset, there are multiple possible solu-
tions. We again delay the computation to the next iteration of the fix-
point algorithm.
• If one of the variables is unknown and the other one contains a unit, we
can compute the missing unit.
• If both are set, the constraint is dropped without further verification.

– Further unifications in the second step may trigger this process on another
variable.

We do not perform error handling when evaluating constraints. If a new unit
has been inferred, the state has changed and the next iteration of the fixpoint
search will eventually discover new errors. If the state did not change, the con-
straint could only detect an error already reported. See Algorithm 2 for details.

4 Empirical Results

Our empirical evaluation was based on three key aspects:

– the effort needed to annotate the machines and debug them if necessary;

146 S. Krings and M. Leuschel

MACHINE InvolvedConstraintUnits

VARIABLES /*@ unit m */ x, y, /*@ unit s */ t

INVARIANT

x:NAT & y:NAT & t:NAT

INITIALISATION x,y,t := 1,1,1

OPERATIONS

Op = BEGIN t := (x*y)*t END

END

Fig. 5. Machine requiring involved constraint solving

– additionally, the number of iterations performed and the time spent in search
for a fixpoint was of particular interest;

– the accuracy of the abstract interpretation.

The first case study is based on an intelligent traffic light warning system.
The traffic light broadcasts information about its current status and cycle to
oncoming cars using an ad-hoc wireless network. The system should warn the
driver and eventually trigger the brakes, in case the car approaches a traffic light
and will not be able to pass when it would be still allowed6.

After the annotations were done, the plugin reported an incorrect usage of
units. The underlying cause was the definition

ceil div(a, b) ==
a

b
+
b− 1 + a mod b

b
,

a ceiling division that rounds the result up to the next integer value. It was
introduced to keep the approximation of breaking distances sound.

The expected result for the unit of ceil div is the unit of a regular division,
that is the unit of a divided by the unit of b. However, the definition above does
not lead to a consistent unit. Thus, the former definition of ceil div was not
convenient for use with the unit plugin. It was changed to

ceil div(a, b) ==
a

b
+

min(1, a mod b)

(b + 1) mod b
,

which leads to the expected result.
Furthermore, the speed of the car was stored as a length and implicitly used

as a “distance per tick”. Our plugin discovered that the speed variable could not
be associated with any suitable unit without giving further errors.

Regarding the performance factors mentioned above, the number of iterations
and the computation time was measured. Furthermore we timed annotating the
machine and correcting unit errors if necessary. The results are listed in bench-
marks 1 to 3 in Table 1. For comparison purposes, the table also lists the number

6 The machines used in this case study can be downloaded from
http://www.stups.uni-duesseldorf.de/models/sefm2013/.

http://www.stups.uni-duesseldorf.de/models/sefm2013/

Inferring Physical Units in B Models 147

of lines of code and the number of operations for each machine7. No variables con-
tained)U , so the abstract interpretation did not lead to a loss of precision.

The effort needed to annotate and correct the model was reasonably low, in
particular when compared with the time needed to create the model in the first
place. The evaluation also showed that it is easy to split developing the model
and performing unit analysis.

The second case study used a ClearSy tutorial on modeling in B8. It contains
both abstract and implementation machines (all in all seven B machines). The
system uses several sensors to estimate the remaining amount of fuel in a tank.

The first step was to annotate all variables with their respective units. When
no error was found, the number of pragmas was gradually reduced, to measure
the efficiency of our approach with less user input available. Eventually, we only
needed one pragma for the abstract and one for the implementation machine.
All other units could be inferred9. In the process, no unit reached)U . The
benchmarks are presented in Table 1, rows 4 to 10: again, the computation time
is very low and only two iterations are needed to fully infer the units of all
variables. The additional step of introducing an implementation level did not
lead to longer computation times. No significant annotation work was needed on
the implementation machine, once the abstract machine had been analyzed.

To evaluate the performance of the unit plugin on large scale examples, sev-
eral B railway models from Alstom were used as benchmarks. As most of these
machines are confidential, neither source code nor implementation details can
be provided.

During the evaluation, the plugin showed some difficulties in handling large B
functions or relations of large cardinality. Mainly, this is because for every new
element that is added to a relation, the plugin tries to infer new units for range
and domain. In almost all cases this does not modify the currently inferred units.
In a future revision, the plugin might rely more on information from the type
checker to reduce the number of inferences.

Furthermore, lookup of global variables and their units slowed the interpreter
down. When accessing elements of deferred or enumerated sets, the machine had
to be unpacked frequently. To overcome this limitation, certain units are now
cached to reduce the lookup time.

Currently, there is no way to annotate both range and domain of a function
or relation at once, as this would require another pragma or at least a second
variant of the unit pragma. Therefore, they have to be annotated on their own.
Our evaluation shows that this is possible without substantial rewriting of a
machine.

7 Both were counted on the internal representation of the machines. Thus, the metrics
include code from imported machines. Comments are not counted, as they are not in
the internal representation. However, new lines used for pretty printing are counted.

8 The tutorial including the machines can be found at
http://www.tools.clearsy.com/wp1/?page_id=161.

9 The exception being variables and sets belonging to the system’s status. Here, no
unit of measurement applies and no unit was inferred.

http://www.tools.clearsy.com/wp1/?page_id=161

148 S. Krings and M. Leuschel

Examples 11 to 13 in Table 1 shows the benchmark results for some of the
Alstom machines. Total lines of code and number of operations are again given
to ease comparison with the former case studies. As can be seen, our analysis
scales to these large, industrial examples.

As a last case study, we used some of the Event-B hybrid machines described
in [4]. Hybrid systems usually consist of a controller working on discrete time
intervals, while the environment evolves in a continuous way. To deal with the
challenge of analyzing both a discrete and a continuous component simultane-
ously, time is modeled by a variable called “now”. It can be used as input to
several functions mapping it to a real-world observation, taken from the environ-
ment at that moment in time. Hence, this approach is an addition to the former
case studies using different techniques.

From the three models described in [4], two were used as case studies: the
hybrid nuclear model and the hybrid train model. The hybrid nuclear model
was originally introduced in [6]. It models a temperature control system for a
heat producing reactor that can be cooled by inserting one of two cooling rods
once a critical temperature is reached. The hybrid train example was originally
developed in [18]. It features one or more trains running on the same line. Each
train receives a point m on the track where it should stop at the least.

The machines with less abstraction introduced hybrid components by using
functions as explained above. The unit plugin stores these functions as mappings
from one unit to another. Hence, to be able to fully analyze the usage of units
inside a machine, there have to be annotations on both the discrete and the
continuous variables.

In the train models, the variables holding speed and position were annotated
in the abstract model. In the more concrete model, the acceleration was stored as
m
s while one of the time variables was annotated as seconds. Both configurations
lead to full inference of the used units through all variables and constants. No
unset variables or variables with multiple inferred units occurred.

In the hybrid nuclear models, different combinations of annotating one of
the temperatures and one of the time variables were tried. Regardless of the
combination, once both a temperature and a time were annotated, all other
units could be inferred. The belonging benchmarks are 14 to 19 in Table 1.

5 Alternative Approaches and Related Work

Aside from the idea to use abstract interpretation, an extension of the type
checking capabilities of ProB was initially considered. This approach would act
more like a static analysis of the B machine, rather than interpreting it (ab-
stractly) while observing the state space. Note, however, that simple classical
unification-based type inference (Hindley-Milner style) is not powerful enough
due to the generation of new units, e.g., during multiplication.

A type checking approach for a modeling language is followed in [10]. The
authors describe a language extension for Z adding physical units. The correct
usage of units is verified by static analysis. Support for physical units is also
present in the specification languages Modelica [16] and Charon [5].

Inferring Physical Units in B Models 149

Table 1. Benchmarks

No. machine LOC operations iterations time analysis time annotating

1 Car 74 4 2 < 10 ms ≈ 30 min

2 TrafficLight 81 2 1 < 10 ms ≈ 20 min

3 System 322 20 2 50 ms ≈ 60 min

4 measure 42 2 1 < 10 ms ≈ 5 min

5 utils 24 2 1 < 10 ms ≈ 5 min

6 utils i 38 2 1 < 10 ms ≈ 5 min

7 ctx 16 0 1 < 10 ms ≈ 5 min

8 ctx i 16 0 1 < 10 ms ≈ 5 min

9 fuel0 64 2 2 < 10 ms ≈ 5 min

10 fuel i 106 6 2 < 10 ms ≈ 5 min

11 compensated gradient 3079 20 3 620 ms ≈ 45 min

12 vital gradient 986 4 3 160 ms ≈ 45 min

13 sgd 773 0 2 170 ms ≈ 90 min

14 T m0 115 6 3 20 ms ≈ 15 min

15 T m1 179 11 3 30 ms ≈ 15 min

16 C m0 108 4 3 20 ms ≈ 15 min

17 C m1 141 4 3 20 ms ≈ 15 min

18 C m2 162 4 3 40 ms ≈ 15 min

19 C m3 228 7 3 90 ms ≈ 15 min

Aside from specification languages, several extensions for general purpose lan-
guage exist. Among others there are solutions for Lisp [9], C [11], C++ [21], Java
[22] and F# [12].

In [12] and [23] the limitations of unification-based type inference mentioned
above are solved by inferring new units as the solutions of a system of linear
equations. In our approach these equations can be found in the constraints men-
tioned in Section 3.

In contrast to the interpreter based approach, implementing an extended type
checker would possibly have resulted in less implementation work. On the down-
side, it would not be able to animate or to reason about intermediate states. In
contrast, the interpreter based approach can also be used as an interactive aid
while debugging errors.

Another approach is followed in [19] and [17], providing an expressive type
system containing physical units for Simulink, a modeling framework based on
Matlab. The approach followed in [19] differs from the one implemented in this
paper. Instead of using abstract interpretation, the problem is translated into
an SMT problem [7], which can be solved by a general purpose solver. In the
approach presented in [17], the SMT backend is replaced by a set of constraints
solvable by Gauss-Jordan elimination.

In addition to performing unit analysis, an SMT or constraint based approach
makes it easier to generate test cases that verify the required properties. In par-
ticular, calculating the unsatisfiable core makes it possible to generate minimal

150 S. Krings and M. Leuschel

test cases for certain errors. However, in contrast to the abstract interpreter
based approach, verifying intermediate states and performing animation involve
multiple reencodings of the problem to SMT-LIB.

6 Discussion and Conclusion

In conclusion, our first set of goals could be fulfilled. The newly developed plu-
gin extends ProB by the ability to perform unit analysis for formal models
developed in B or Event-B. We provide source-level error feedback to the user
and usually a small number of annotations is sufficient to infer the units of all
variables and check the consistency of a machine. In future, we plan to support
other languages, in particular TLA

+ and Z.
As anticipated, the plugin is able to infer units of constants and variables and

handle their conversions. Additionally, user controlled unit conversions can be
performed and are fully integrated with the analysis tools.

Furthermore, the extension of B by pragmas leaves all machines usable by the
different tools and tool sets without limitations. Deploying unit analysis does
not interfere with any step of a user’s usual B workflow.

Most machines only needed a few iterations inside the fixpoint algorithm.
Furthermore, the top element was only reached in machines containing errors.
Thus, the selected abstract domain seems fitting for the desired analysis results.

While the overall performance generally matches the expectations, there is
still room for improvement. Especially on large machines, computations should
be refined. Yet, more input from industrial users is needed first, both in form of
reviews and test reports as well as in form of case studies and sample machines.

We plan to further investigate the usage of constraints to speed up unit infer-
ence. In particular, an in-depth comparison with the SMT and constraint based
approaches will be performed. This comparison will focus both on speed as well
as on the completeness of the resulting unit information.

All in all, the unit analysis plugin extends the capabilities of B and ProB

and is a useful addition to the existing B tools. It should be able to find errors
which are not easily discoverable by the existing tools and might lead to errors
in a future implementation. The technique scales to real-life examples and the
animation capabilities aid in identifying the causes of errors.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool en-
vironment for Event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 588–605. Springer, Heidelberg (2006)

Inferring Physical Units in B Models 151

4. Abrial, J.-R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In:
Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg
(2012)

5. Anand, M., Lee, I., Pappas, G., Sokolsky, O.: Unit & dynamic typing in hybrid
systems modeling with CHARON. In: Computer Aided Control System Design,
pp. 56–61. IEEE (2006)

6. Back, R.-J., Seceleanu, C.C., Westerholm, J.: Symbolic simulation of hybrid sys-
tems. In: Proceedings APSEC 2002, pp. 147–155. IEEE Computer Society (2002)

7. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0.
Technical report, Department of Computer Science, University of Iowa (2010),
http://www.SMT-LIB.org

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
POPL 1977, pp. 238–252. ACM (1977)

9. Cunis, R.: A package for handling units of measure in Lisp. ACM SIGPLAN Lisp
Pointers 5, 21–25 (1992)

10. Hayes, I.J., Mahony, B.P.: Using units of measurement in formal specifications.
Formal Aspects of Computing 7 (1994)

11. Jiang, L., Su, Z.: Osprey: a practical type system for validating dimensional unit
correctness of C programs. In: Proceedings ICSE 2006, pp. 262–271. ACM (2006)

12. Kennedy, A.: Types for units-of-measure: Theory and practice. In: Horváth, Z.,
Plasmeijer, R., Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 268–305. Springer,
Heidelberg (2010)

13. Lamport, L., Paulson, L.C.: Should your specification language be typed. ACM
Trans. Program. Lang. Syst. 21(3), 502–526 (1999)

14. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

15. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

16. Modelica Association. The Modelica Language Specification version 3.0 (2007)
17. Owre, S., Saha, I., Shankar, N.: Automatic dimensional analysis of cyber-physical

systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 356–371. Springer, Heidelberg (2012)

18. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer (2010)

19. Roy, P., Shankar, N.: SimCheck: An expressive type system for Simulink. In: Pro-
ceedings NFM 2010, pp. 149–160. NASA (2010)

20. Thompson, A., Taylor, B.N.: The International System of Units (SI). Nist Special
Publication (2008)

21. Umrigar,Z.:Fully staticdimensional analysiswithC++.ACMSIGPLANNotices 29,
135–139 (1994)

22. van Delft, A.: A Java extension with support for dimensions. Software: Practice
and Experience 29(7), 605–616 (1999)

23. Wand, M., O’Keefe, P.: Automatic dimensional inference. In: Computational Logic:
Essays in Honor of Alan Robinson, pp. 479–483 (1991)

http://www.SMT-LIB.org

A Tool for Behaviour-Based Discovery

of Approximately Matching Web ServicesÆ,ÆÆ

Mahdi Sargolzaei1, Francesco Santini2,
Farhad Arbab3, and Hamideh Afsarmanesh1

1 Universiteit van Amsterdam, Amsterdam, Netherlands
{H.Afsarmanesh,M.Sargolzaei}@uva.nl

2 EPI Contraintes, INRIA - Rocquencourt, France
francesco.santini@inria.fr

3 Centrum Wiskunde & Informatica, Amsterdam, Netherlands
Farhad.Arbab@cwi.nl

Abstract. We present a tool that is able to discover stateful Web Ser-
vices in a database, and to rank the results according to a similarity
score expressing the affinities between each of them and a user-submitted
query. To determine these affinities, we take behaviour into account, both
of the user’s query and of the services. The names of service operations,
their order of invocation, and their parameters may differ from those
required by the actual user, which necessitates using similarity scores,
and hence the notion of soft constraints. The final tool is based on Soft
Constraint Automata and an approximate bisimulation among them,
modeled and solved as a Constraint Optimisation Problem.

1 Introduction

Web Services (WSs) [1] constitute a typical example of the Service Oriented
Computing (SOC) paradigm.WS discovery is the process of finding a suitable
WS for a given task. To enable a consumer use a service, its provider usually
augments a WS endpoint with an interface description using the Web Service
Description Language (WSDL). In such loosely-coupled environments, automatic
discovery becomes even more complex: users’ decisions must be supported by
taking into account a similarity score that describes the affinity between a user’s
requested service (the query) and the specifications of actual services available
in the considered database.

Although several researchers have tackled this problem and some search tools
(e.g., [16]) have achieved good results, very few of them (see Sec. 6) consider the

Æ This work was carried out during the second author’s tenure of the ERCIM “Alain
Bensoussan” Fellowship Programme, which is supported by the Marie Curie Co-
funding of Regional, National and International Programmes (COFUND) of the
European Commission.

ÆÆ The first and fourth authors are partially supported by the FP7 project GLONET,
funded by the European Commission.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 152–166, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Tool for Behaviour-Based Discovery 153

behavioural signature of a service, which describes the sequence of operations a
user is actually interested in. This is partly due to the unavoidable limitations
of today’s standard specifications, e.g., WSDL, which do not encompass such
aspects. Despite this, the behaviour of stateful services represents a very impor-
tant issue to be considered during discovery, to provide users with an additional
means to refine the search in such a diverse environment.

In this paper, we first describe a formal framework (originally introduced
in [4]) that, during the search procedure, considers both a description of the
requested (stateful) service behaviour, and a global similarity score between
services and queries. This underlying framework consists of Soft Constraint Au-
tomata (SCA), where semiring-based soft constraints (see Sec. 2) enhance clas-
sical (not soft) CA [5] with a parametric and computational framework that can
be used to express the optimal desired similarity between a query and a service.

The second and the main contribution of the work reported in this paper is
an implementation of such a framework using approximate bisimulation tech-
niques [11] between two SCA: we implement this inexact comparison between a
query and a service as a Constraint Optimisation Problem (COP), by using Ja-
CoP libraries1. In the end, we are able to rank all search results according to their
similarity with a proposed query. In this way, we can benefit from off-the-shelf
techniques with roots in Artificial Intelligence (AI), in order to tackle the search
complexity over large databases. To evaluate a similarity score we use different
metrics to measure the syntactical distance between operations and between pa-
rameter names (see Sec. 4), e.g., between “getWeather” and “g weather”. These
values are then automatically cast into soft constraints as semiring values (see
Sec. 2), with the purpose of being parametrically composed and optimised for
the sake of discovery. Thus, a user may eventually choose a service that adheres
to her/his needs more than the other ones in a database.

The exploitation of the behaviour during a search process represents the main
feature of our tool. SCA represent the formal model we use to represent be-
haviours: the different states of an SCA represent the different states of a stateful
service/query. Relying on SCA allows us to have a framework that comes along
with sound operators for composition and hiding of queries [4]. Our plan is to
integrate this search tool with the tool presented in [14]. In this comprehensive
tool it will be possible, first to search for the desired WSs (or components), and
then to compose them into a more complex structured service [14].

The rest of this paper is structured as follows. In Sec. 2 we summarise the
background on semiring-based soft constraints [7], as well as the background on
SCA [4]. Section 3 shows some examples of how to use SCA to represent the
behaviour of services and the similarity between their operation and parameter
names. Section 4 describes our tool which implements the search introduced in
Sec. 3, while Sec. 5 focuses on how we measure the similarity between two dif-
ferent behavioural signatures. Section 4 introduces the first experimental results
evaluating the precision of this tool. In Sec. 6 we report on the related work.
Finally, in Sec. 7 we draw our conclusions and explain our future work.

1 Java Constraint Programming solver (JaCoP): http://www.jacop.eu

http://www.jacop.eu

154 M. Sargolzaei et al.

2 Soft Constraint Automata

Semring-based Soft Constraints. A c-semiring [7] (simply semiring in the
sequel) is a tuple S � �A,�,�,0,1�, where A is a possibly infinite set with
two special elements 0,1 � A (respectively the bottom and top elements of A)
and with two operations � and � that satisfy certain properties over A: � is
commutative, associative, idempotent, closed, with 0 as its unit element and 1
as its absorbing element; � is closed, associative, commutative, distributes over
�, 1 is its unit element, and 0 is its absorbing element. The � operation defines
a partial order �S over A such that a �S b iff a� b � b; we say that a �S b if b
represents a value better than a. Moreover, � and � are monotone on �S , 0 is
the min of the partial order and 1 its max, �A,�S� is a complete lattice and �
is its least upper bound operator (i.e., a� b � lub	a, b
) [7].

Some practical instantiations of the generic semiring structure are the boolean
��false, true�,,�, false, true�, fuzzy ��0..1�,max,min, 0, 1�, probabilistic ��0..1�,
max, �̂, 0, 1� and weighted �R� � ����,min, �̂,�, 0� (where �̂ and �̂ respec-
tively represent the arithmetic multiplication and addition).

A soft constraint [7] may be seen as a constraint where each instantiation of
its variables has an associated preference. An example of two constraints defined
over the Weighted semiring is given in Fig. 2. Given S � �A,�,�,0,1� and an
ordered finite set of variables V over a domain D, a soft constraint is a function
that, given an assignment η : V � D of the variables, returns a value of the
semiring, i.e., c : 	V � D
 � A. Let C � �c � c : D�I�V � � A� be the set of all
possible constraints that can be built starting from S, D and V : any function
in C depends on the assignment of only a (possibly empty) finite subset I of V ,
called the support, or scope, of the constraint. For instance, a binary constraint
cx,y (i.e., �x, y� � I � V) is defined on the support supp	c
 � �x, y�. Note that
cη�v � d� means cη� where η� is η modified with the assignment v � d. Note
also that cη is the application of a constraint function c : 	V � D
 � A to
a function η : V � D; what we obtain is, thus, a semiring value cη � a.The
constraint function ā always returns the value a � A for all assignments of domain
values, e.g., the 0̄ and 1̄ functions always return 0 and 1 respectively.

Given the set C, the combination function � : C � C � C is defined as
	c1 � c2
η � c1η � c2η [7]; supp	c1 � c2
 � supp	c1
 � supp	c2
. Likewise, the
combination function � : C � C � C is defined as 	c1 � c2
η � c1η � c2η [7];
supp	c1�c2
 � supp	c1
�supp	c2
. Informally,�/� builds a new constraint that
associates with each tuple of domain values for such variables a semiring element
that is obtained by multiplying/summing the elements associated by the original
constraints to the appropriate sub-tuples. The partial order �S over C can be
easily extended among constraints by defining c1 �S c2 �� �η, c1η �S c2η.

The search engine of the tool we present in Sec. 4 relies on the solution of
Soft Constraint Satisfaction Problems (SCSPs) [7], which can be considered as
COPs. An SCSP is defined as a quadruple P � �S, V,D,C�, where S is the
adopted semiring, V the set of variables with domain D, and C is the constraint
set. Sol	P
 �

�
C collects all solutions of P , each associated with a similarity

value s � S. Soft constraints are also used to define SCA (see Sec 2).

A Tool for Behaviour-Based Discovery 155

Soft Constraint Automata. Constraint Automata were introduced in [5] as a
formalism to describe the behaviour and possible data flow in coordination mod-
els (e.g., Reo [5]); they can be considered as acceptors of Timed Data Streams
(TDS) [3,5]. In [4] we paved the way to the definition of Soft Constraint Au-
tomata (SCA), which represent the theoretical fundament behind our tool.

SCA [4] use a finite set N of names, e.g., N � �n1, . . . , np�, where ni (i � 1..p)
is the i-th input/output port. The transitions of SCA are labeled with pairs
consisting of a non-empty subset N � N and a soft (instead of crisp as in [5])
data-constraint c. Soft data-constraints can be viewed as an association of data
assignments with a preference for that assignment. Formally,

Definition 1 (Soft Data-Constraints). A soft data-constraint is a function
c : 	�dn � n � N� � Data
 � A defined over a semiring S � �A,�,�,0,1�,
where �dn � n � N� � Data is a function that associates a data item with every
variable dn related to port name n � N � N , and Data is the domain of data
items that pass through ports in N . The grammar of soft data-constraints is:

c�dn�n�N� � 0̄ � 1̄ � c1 � c2 � c1 � c2

where �dn � n � N� is the support of the constraint, i.e., the set of variables
(related to port names) that determine its preference.

Informally, a soft data-constraint is a function that returns a preference value
a � A given an assignment for the variables �dn � n � N� in its support. In the
sequel, we write SDC	N,Data
, for a non-empty subsetN ofN , to denote the set
of soft data-constraints. We will use SDC as an abbreviation for SDC 	N ,Data
.
Note that in Def. 1 we assume a global data domain Data for all names, but,
alternatively, we can assign a data domain Datan for every variable dn.

We state that an assignment η for the variables �dn � n � N� satisfies c with
a preference of a � A, if cη � a.

In Def. 2 we define SCA. Note that by using the boolean semiring, thus within
the same semiring-based framework, we can exactly model the “crisp” data-
constraints presented in the original definition of CA [5]. Therefore, CA are
subsumed by Def. 2. Note also that weighted automata, with weights taken from
a proper semiring, have already been defined in the literature [10]; in SCA,
weights are determined by a constraint function instead.

Definition 2 (Soft Constraint Automata). A Soft Constraint Automaton
over a domain Data, is a tuple TS � 	Q,N ,��,Q0, S
 where i) S is a semiring
�A,�,�,0,1�, ii) Q is a finite set of states, iii) N is a finite set of names, iv)
�� is a finite subset of Q � 2N � SDC � Q, called the transition relation of

TS, and v) Q0 � Q is the set of initial states. We write q
N,c
��� p instead of

	q,N, c, p
 ���. We call N the name-set and c the guard of the transition. For

every transition q
N,c
��� p we require that i) N �� �, and ii) c � SDC	N,Data

(see Def. 1). TS is called finite iff Q,�� and the underlying data-domain Data
are finite.

156 M. Sargolzaei et al.

q0 q1

�L�
c1

�M�
c2

Fig. 1. A Soft Constraint Automaton Fig. 2. c1 and c2 in Fig 1

The intuitive meaning of an SCA TS as an operational model for service
queries is similar to the interpretation of labeled transition systems as formal
models for reactive systems. The states represent the configurations of a service.
The transitions represent the possible one-step behaviour, where the meaning
of q

N,c
���	 p is that, in configuration q, the ports in n � N have the possibility

of performing I/O operations that satisfy the soft guard c and that leads from
configuration q to p, while the ports in N �N do not perform any I/O operation.
Each assignment of variables �dn � n � N� represents the data associated with
ports in N , i.e., the data exchanged by the I/O operations through ports in N .

In Fig. 1 we show an example of a (deterministic) SCA. In Fig. 2 we define
the weighted constraints c1 and c2 that describe the preference (e.g., a monetary
cost) for the two transitions in Fig. 1, e.g., c1	dL � 2
 � 5.

In [4] we have also softened the synchronisation constraints associated with
port names in N over the transitions. This allows for different service operations
to be considered somehow similar for the purposes of a user’s query. Note that
a similar service can be used, e.g., when the “preferred” one is down due to
a fault, or when it offers bad performances, e.g., due to the high number of
requests. Definition 3 formalises the notion of soft synchronisation-constraint.

Definition 3 (Soft Synchronization-constraint). A soft synchronization-
constraint is a function c : 	V � N
 � A defined over a semiring S �
�A,�,�,0,1�, where V is a finite set of variables for each I/O ports, and N is
the set of I/O port names of the SCA.

3 Representing the Behaviour of Services with SCA

In this section we show how the formal framework presented in Sec. 2 (e.g., SCA)
can be used to consider a similarity score between a user’s query and the service
descriptions in a database, in oder to find the best possible matches for the user.

We begin by considering how parameters of operations can be associated
with a score value that describes the similarity between a user’s request and
an actual service description in a database. We suppose to have two different
queries: the first, getByAuthor	Firstname
, which is used to search for confer-
ence papers using the Firstname (i.e., the parameter name) of one of its authors;
the name of the invoked service operation is, thus, getByAuthor. The second
query, getByTitle(Conference), searches for conference papers, using the title
of the Conference wherein the paper has been published; the name of the in-
voked operation is getByTitle. These two queries are represented as the SCA

A Tool for Behaviour-Based Discovery 157

q0 q1

�getByAuthor�
c1

�getByT itle�
c2

Fig. 3. Two soft Constraint Automata
representing two different queries

Fig. 4. The definitions of c1 and c2 in
Fig. 3

(see Sec. 2) q0 and q1, in Fig. 3. Soft constraints c1 and c2 in Fig. 4, define a
similarity score between the parameter name used in a query and all parameter
names in the database (for the same operation name, i.e., either getByAuthor
or getByTitle). These similarity scores can be modeled with the fuzzy semiring
��0..1�,max,min, 0, 1� wherein the aim is to maximise the similarity (� � max)
between a request and a service returned as a matching result. Constraint c1 in
Fig. 4 states that similarity is full if a getByAuthor operation in the database
takes Firstname as parameter (since 1 is the top preference of the fuzzy semir-
ing), less perfect, that is 0.8, if it takes Fullname (usually, Fullname includes
Firstname), or even less perfect, that is 0.2, if it takes Lastname only. Similar
considerations apply to the operation name getByTitle (see Fig. 3) and c2 in
Fig. 4. Similarity scores are automatically extracted as explained in Sec. 4.

Suppose now that our database contains the four services represented in Fig. 5.
All these services are stateless, i.e., their SCA have a single state each. For in-
stance, service a has only one invocable operation whose name is getByAuthor,
which takes Lastname as parameter. Service d has two distinct operations,
getByAuthor and getByTitle.

According to the similarity scores expressed by c1 and c2 in Fig. 4, queries q0
and q1 in Fig. 3 return different result values for each operation/service, depend-
ing on the instantiation of variables dgetByAuthor and dgetByTitle . Considering q0,
services a, b, and d have respective preferences of 0.2, 1, and 0.8. If query q1 is
used instead, the possible results are operations c and d, with respective pref-
erences of 1 and 0.3. When more than one service is returned as the result of
a search, the end user has the freedom to choose the best one according to his
preferences: for the first query q0, the user can opt for service b, which corre-
sponds to a preference of 1 (i.e., the top preference), while for query q1 the user
can opt for c (top preference as well).

a b c d

�getByAuthor�
dgetByAuthor � Lastname

�getByAuthor�
dgetByAuthor � Firstname

�getByT itle�
dgetByTitle � Conference

�getByAuthor�
dgetByAuthor � Fullname

�getByT itle�
dgetByTitle � Proceedings

Fig. 5. A database of services for the queries in Fig. 3; d perfoms both kinds of search

158 M. Sargolzaei et al.

q0

�x�
cx�x � getByAuthor � � 1
cx�x � getByTitle� � 0.7

Fig. 6. A similarity-based query for
the Author/Title example

q0 q1 q2 q3

�x1�
cx1�x1 � Login� � 1

�x2�
cx2�x2 � LogOut� � 1

�x3�
cx3�x3 � AddToBasket � � 1

�x4�
cx4�x4 � AddToBasket � � 1

�x5�
cx5�x5 � Shipping� � 1

�x6�
cx6�x6 � Charging� � 1

Fig. 7. A similarity-based query for the on-
line purchase service

We now move from parameter names to operation names, and show that
by using soft synchronisation constraints (see Def. 3), we can also compute a
similarity score among them. For example, suppose that a user queries q0 in
Fig. 3. The possible results are services a, b and d in the database of Fig. 5,
since service c has an operation named getByTitle, different from getByAuthor.
However, the two services are somehow similar, since they both return a paper
even if the search is based either on the author or on the conference. As a result,
a user may be satisfied also by retrieving (and then, using) service c. This can
be accomplished with the query in Fig. 6, where cx	x � getByAuthor
 � 1,
and cx	x � getByTitle
 � 0.7. Note that we no longer deal with constraints on
parameter names, but on operation names. Then, we can also look for services
that have similar operations, not only similar parameters in operations.

However, the main goal of this paper is to compute a similarity score con-
sidering also the behaviour of queries and services. For instance (the query in
Fig. 7), a user may need to find an on-line purchase service satisfying the fol-
lowing requirements: i) charging activity comes before shipping activity, ii) to
purchase a product, the requester first needs to log into the system and finally
log out of the system, and iii) filling the electronic basket of a user may consist
of a succession of “add-to-basket” actions. In Sec. 5 we will focus on this aspect.

Constraints on parameter (their data-types as well) and operation names can
be straightforwardly mixed together to represent a search problem where both
are taken into account simultaneously for optimization. The tool in Sec. 4 ex-
ploits this kind of search: the similarity functions represented by constraints are
computed through the composition of different syntactic similarity metrics.

4 Tool Description

Conceptually, our behaviourally-based WS discovery proceeds in four successive
steps: i) generate a Web Service Behaviour Specification (WSBS) for each reg-
istered WS (a WSBS is basically a CA), ii) process preference-oriented queries
(basically represented as SCA), iii) model an approximate bisimulation between
a query and our services as an SCSP (see Sec. 2), and finally, iv) solve this
problem (see Sec. 2). Note that we are also able to translate other kinds of
behavioural service specification, as WS-BPEL2, into (S)CA [8].

2 WS-Business Process Execution Language, 2.0: http://tinyurl.com/czkoolw

http://tinyurl.com/czkoolw

A Tool for Behaviour-Based Discovery 159

Fig. 8. General architecture of the tool

Step i is needed because no standard language or tool exists to specify the
behaviour of stateful WSs. Therefore, we have to define our internal WSBS
as a behavioural specification for WSs, using WSDL and some extra necessary
annotations. In step ii, we obtain a query from a user and we process it to find
the similarities between the request and the actual services in the database. In
the third step, we set up an SCSP (see Sec. 2), where soft-constraint functions
are assembled by using the similarity scores derived from step ii ; at the same
time, we define those constraints that compare the two behavioural signatures
(query/service), and measure their similarity. Finally, we find the best solutions
for this SCSP, and we return them to the user. All these steps are implemented
by different software modules, whose global architecture is defined in Fig. 8.

WSDL Parser. We rely on a repository of WSDL documents that are captured
in a registry, i.e., the WSDL Registry (see Fig. 8). WSDL is an XML-based stan-
dard for syntactical representation of WSs, which is currently the most suitable
for our purpose. First, we parse these XML-based documents to extract the
names and interfaces of service operations using the Axis2 technology.3

WSBS Generator. While a WSDL document specifies the syntax and the
technical details of a service interface, it lacks the information needed to convey
its behavioural aspects. In fact, a WSDL document only reveals the operation
names and the names and data types of their arguments. Hence, we must indi-
cate the permissible operation sequences of a service. If we know that a WS is
stateless, then all of its operations are permissible in any order. For a stateful
service, however, we need to know which of its operations is (not) allowed in
each of its states. In [14], some of the authors of this paper have already for-
malised the behaviour of a WS (i.e., the WSBS) in terms of CA [5]. Therefore,
we adopt the Extensible Coordination Tools (ECT) [2], which consist of a set of
plug-ins for the Eclipse platform4, as the core of the WSBS Generator, in order
to generate a CA to specify the externally observable behaviour of a service.
Normally, the ECT is used to give a semantics to Reo circuits [5]. The resulting
CA are captured as XML documents, where the states! and transitions!
tags identify the structure of each automaton. It is also possible to indicate the

3 http://axis.apache.org/axis2/java/core/
4 ECT webpage: http://reo.project.cwi.nl/reo/wiki/Tools

http://axis.apache.org/axis2/java/core/
http://reo.project.cwi.nl/reo/wiki/Tools

160 M. Sargolzaei et al.

q0 q1

�AddToBasket�

�AddToBasket�

�Purchase�

Fig. 9. An example of WSBS

q0 AddToBasket q1;

q1 AddToBasket q1;

q1 Purchase q0.

Fig. 10. Text file representing the
WSBS in Fig. 9

behaviour of WSs in text files, in a simplified form. The file in Fig. 10 describes
the service represented in Fig. 9. In our architecture, all WSBSs are stored in a
WSBS Registry (see Fig. 8).

We can automatically extract a single-state automaton from the operations
defined in a WSDL document describing a stateless WS: we use this support-tool
to extract the automata for the real-worldWSs used in our following experiment.
For stateful WSs, we developed an interactive tool that (using a GUI) allows a
programmer (see Fig. 8) to visually create the automaton states describing the
behavior of a service, and tag its transitions with the operations defined in its
WSDL document.

Query Processor. At search time, a user specifies a desired service by means of
a text file, and feeds it to this module. An example of our query is represented in
Fig. 11. The query format allows to specify all desired transitions among states,
including operation names, and the names and data types of their arguments. It
enables to search for multiple similar services (separated by “or” operators) at
the same time while the tool ranks all the results in the same list. Finally, the tool
assigns to each service description a preference score prescribed by the user. A
user may use a score (e.g., fuzzy preferences in �0..1�) to weigh all the results, as
represented in Fig. 11. Each query is represented as an SCA [4] (see Sec. 2), since
preferences can be represented by soft constraints. This textual representation
resembles a list of WSBSs, each of them associated with a preference score (see
Fig. 11 and Fig. 10 for a comparison).

Similarity Calculator. As Fig. 8 shows, this module requires two inputs: the
WSBSs and the processed query. It returns three different kinds of similarity
scores, which reflect the similarities between one service and one query i) oper-
ations names, ii) names of input-parameters of operations, and iii) data types
of input-parameters. We use different string similarity-metrics (also known as
string distance functions) as the functions to measure the similarity between
two text-strings. We have chosen three of the most widely known metrics, in-
cluding the Levenshtein Distance, the Matching Coefficient, and the QGrams
Distance. Each of these metrics operates with two input strings, and return a
score estimating their similarity. Since each function returns a value in �0..1�, we
average these three scores to merge them into a single value still in �0..1�.

These similarity scores are subsequently used by the Constraint Assembler in
Fig. 8, in order to define the similarity functions that are translated into soft
constraints, as explained in Sec. 3. The representation of the search problem

A Tool for Behaviour-Based Discovery 161

q0 Weather(City:string) q0, [1.0] or q0 Weather(Zipcode:string) q0, [0.8]

Fig. 11. A single-state query asking for the weather conditions over a City, or using a
Zipcode. Different user’s preference scores are represented within square brackets.

in terms of constraints is completely constructed by the Constraint Assembler
module, while the Similarity Calculator only provides it with similarity scores.

Constraint Assembler. This module produces a model of the discovery prob-
lem, in the form of approximate bisimulation (see Sec. 5), as an SCSP (see
Sec. 2). To do so, it represents all preference and similarity requirements as soft
constraints. In order to assemble these constraints, we used JaCoP, which is a
Java library that provides a finite-domain constraint programming paradigm.
We have made ad-hoc extensions to the crisp constraints offered by JaCoP
in order to equip them with weights, and we have exploited the possibility to
minimise/maximise a given cost function to solve SCSPs. Specifically, we have
expressed the WSs discovery problem as a fuzzy optimisation problem, by im-
plementing the fuzzy semiring, i.e., ��0..1�,max,min, 0, 1� (see Sec. 2).

For instance, SumWeight is a JaCoP constraint that computes a weighted
sum as the following pseudo-code: w1 " x1 �w2 " x2 �w3 " x3 � sum, where sum
represents the global syntactic similarity between two operation names (x1),
considering also their argument names (x2) and types (x3). These scores are
provided by the Similarity Calculator. Moreover, we can tune the weights w1,
w2, and w3 to give more or less importance to the three different parameters. In
the experiments in Sec. 4 we use equal weights. We leave to Sec. 5 a discussion
on how to compute how much two behavioural signatures (query/service) are
similar, and how the general constraint-based model is designed.

SCSP Solver. Finally, after the specification of the model consisting of variables
and constraints, a search for a solution of the assembled SCSP can be started.
This represents the final step (see Fig. 8). The result can be generalised as a
ranking of services in the considered database: at the top positions we find the
services that are more similar to a user’s request.

Experimental Results on a Stateless Scenario. In this section we show the preci-
sion results of our tool through a scenario involving stateless real WSs. Figure 11
shows a single-state query that searches for WSs that return the “weather” fore-
cast for a location indicated by the name of a “city” (with a user’s preference
of 1) or its “zip-code” (preference of 0.8). We retrieved 14 different WSDL doc-
uments by querying the word “Weather” on Seekda5, which is a public WS
search-engine. These documents list a total of 58 different operations, which
populate our WSDL Registry (see Fig. 8).

Table 1 reports a part of the experiment results. From left to right the columns
respectively report the position in the final ranking, the obtained fuzzy score,
the WS name, and, lastly, the matched service operation.

5 http://webservices.seekda.com

http://webservices.seekda.com

162 M. Sargolzaei et al.

5 On Comparing Behaviour Signatures

In this section we zoom inside the Constraint Assembler component that we
introduced in Sec. 4. We describe how we can approximate the behaviour of a
posed query with that of a service, since a perfect match can be uncommon.

The basic idea is to compute an approximate bisimulation [11] between the
two automata respectively representing a query, and a WS in a database. The
notion of approximate bisimulation relation is obtained by relaxing the equal-
ity of output traces: instead of requiring them to be identical, we require that
they remain “close”. Metrics (represented as semirings, in our case) essentially
quantify how well a system is approximated by another based on the distance
between their observed behaviours. In this way, we are able to consider different
transition-labels by estimating a similarity score between their operation inter-
faces, and different numbers of states. To model approximate bisimulation with
constraints, we exploited constraint-based graph matching techniques [17]; thus,
we are able to “compress” or “dilate” one automaton structure into another.

In the following, we use the query example in Fig 12, and the service example
in Fig. 13 to describe our constraint-based model for the search. We subdivide
this description by considering how we match the different elements of automata
(transitions or states), and how we finally measure their overall similarity.

States. To represent our signature-match problem, for each of the query-
automaton states (cardinality Q) we define a variable that can be assigned to
one or several states of a service (cardinality S). For this purpose, we use SetVar,
i.e., JaCoP variables defined as ordered collections of integers. Considering our
running example, one of the possible matches between these two signatures can
be given by M � q0 � �s0, s1, s3�, q1 � �s2�. This matching is represented in
Fig. 12 and Fig. 13 using gray and black labels for states. Clearly, the proposed
modelling solution represents a relationship and not a function, since a query
state can be associated with one or more service-states; on the other hand, dif-
ferent query states can be associate with the same service state, in case a query
has more states than a service. Thus, to match the two automata we allow to
“merge” together those states that are connected by a transition (e.g., s0, s1

Table 1. The ranking of the top-ten matched WSs, based on the query represented in
Fig. 11, out of a database of 14 different WSDL documents

Rank Score Name of WS Interface of the operation

1 0.82 weather GetWeather�City : string�

2 0.69 globalweather GetWeather�CityName : string�

3 0.5 Weather Get Weather�ZIP : string�

4 0.48 WeatherWS getWeather�theCityCode : string, theUserID : string�

5 0.47 WeatherWebService getWeatherbyCityName�theCityName : string�

6 0.44 usweather GetWeatherReport�ZipCode : string�

7 0.42 WeatherForecast GetWeatherByZipCode�ZipCode : string�

8 0.4 WeatherForecast GetWeatherByP laceName�P laceName : string�

9 0.4 weatherservice GetLiveCompactWeathe�cityCode : string,ACode : string�

10 0.36 weatherservice GetLiveCompactWeatherByStationID�stationid : string,
un : UnitType,ACode : string�

A Tool for Behaviour-Based Discovery 163

and s3 in Fig. 13) into a single state (e.g., q0) at the cost of incurring a certain
penalty.

Transitions. In our running example, if we match the two behaviours as defined
by M, we consequently obtain a match for the transitions (and their labels)
as well. Our model has a variable (IntVar, in JacoP) for each of the transi-
tions in a query automaton; considering the example in Fig. 12, we have three
variables l1, l2, l3. In Fig. 12 and Fig. 13 we label each transition with its iden-
tifier (l1, . . . , l3,m1, . . . ,m5), and a string that represents its related operation-
name (in this example, we ignore parameter names and types for the sake of
brevity). Thus, the full match-characterisation is nowM � q0 � �s0, s1, s3�, q1 �
�s2�, l1 � m2, l2 � m3, l3 � m5. Note that, if a query has more transitions than
a service, it may happen to be impossible to match all of them; for this reason,
since we need to assign each of the variables in order to find a solution, we assign
a mark NM (i.e., Not Matched) to unpaired transitions.

Match Cost. In this paragraph we show how to compute a global similar-
ity score Γ for a match M (i.e., Γ 	M
). We consider two different kinds of
scores, i) a state similarity-score, σ	M
, is derived from how much we need to
(de)compress the behaviour (in terms of number of states) to pass from one sig-
nature to another, and ii) a transition similarity-score, θ	M
, is derived from a
comparison between matched labels. In a simple case, we can consider the mean
value Γ 	M
 � 	σ	M
�θ	M

#2, or we can imagine more sophisticated aggrega-
tion functions. A rather straightforward function is σ	M
 � min	�SM,�QM
#
max	�SM,�QM
 (if �SM � �QM, our match is perfect), but we can think of
non-linear functions as well, for instance. The score θ	M
 is computed by aggre-
gating the individual ssim syntactic similarity-scores (computed by the Similar-
ity Calculator in Sec. 4) obtained for each label match, and then averaging on the
number of matched labels. For our example, θ	M
 � 	ssim	label l1 , labelm2
 �
ssim	label l2 , labelm4
 � ssim	label l3 , labelm5

#3.

An Experiment with Stateful Services. Since all current WS standards are state-
less, for this experiment we hand-crafted four stateful WSs (see Tab. 2). We
use the following query against this database. The ideal service matching the
query first retrieves the weather forecast for a city based on its name, and then
retrieves the forecasts for its neighbouring cities:

q0 GetWeather�SetCity : string� q1; q1 GetNeighbourhoodWeather�� q0 �1.0�.

q0 q1

l1 : AddBasket

l3 : Charge

l2 : AddBasket

Fig. 12. A query example

s0 s1 s2 s3

m1 : Login

m6 : LogOut

m2 : AddToBasket

m3 : AddToBasket

m4 : Shipping

m5 : Charging

Fig. 13. A possible service in a database
related to the query in Fig. 12

164 M. Sargolzaei et al.

Table 2. Our registry of hand-crafted stateful WSs, and the obtained similarity scores

ID WSBS θ σ Γ Rk

S1 q0 getweather(city:string) q0 .76 .5 .63 4

S2 q0 getweather(city:string) q1 ; q1 getneighborsweather q0 .8 1 .9 1

S3 q0 login(password:string) q1; q1 getweather(city:string) q2 ; q2 getneighborsweather q0 .8 .66 .73 3

S4 q0 GetWeather(myCity:string) q1; q1 getNeighWeather q0 .69 1 .84 2

Table 2 shows the results of this experiment: the transition similarity-score
θ	M
, the state similarity-score σ	M
, the global similarity-score Γ 	M
, and
the rank Rk of each service. These results match our expectations, since the
behaviour of S2 and S4 each is identical to the behaviour of our query, while the
operation interface of S2 is more similar to the query compared to that of S4.

6 Related Work

Compared to the work reported in the literature, the solution in this paper
seems more general, compact, and comprehensive, because it can encompass
any semiring-like metrics, and the whole framework is expressively modeled and
solved using Constraint Programming. Moreover, elaborating on a formal frame-
work allows us to easily check properties of services/queries (e.g., to model-check
or bi/simulate them [4]), and to have join and hide operators to work on them [4].
Most of the literature seems to report more ad-hoc engineered and specific so-
lutions, instead, which consequently, are less amenable to formal reasoning.

In [18] the authors propose a new behaviour model for WSs using automata
and logic formalisms. Roughly, the model associates messages with activities and
adopts the IOPR model (i.e., Input, Output, Precondition, Result) in OWL-S 6

to describe activities. The authors use an automaton structure to model service
behaviour. However, similarity-based search is not mentioned in [18]. In [21] the
authors present an approach that supports service discovery based on structural
and behavioural service models, as well as quality constraints and contextual in-
formation. Behaviours are matched through a subgraph isomorphism algorithm.
In [12] the problem of behavioural matching is translated to a graph matching
problem, and existing algorithms are adapted for this purpose.

The model presented in [19] relies on a simple and extensible keyword-based
query language and enables efficient retrieval of approximate results, including
approximate service compositions. Since representing all possible compositions
can result in an exponentially-sized index, the authors investigate clustering
methods to provide a scalable mechanism for service indexing.

In [6], the authors propose a crisp translation from interface description of
WSs to classical crisp Constraint Satisfaction Problems (CSPs). This work does
not consider service behaviour and it does not support a quantitative reasoning
on similarity/preference involving different services. In [20], a semiring-based
framework is used to model and compose QoS features of WSs. However, no
notion of similarity relationship is given in [20].

6 OWL-S: Semantic Markup for Web Services, 2004: www.w3.org/Submission/OWL-S/

www.w3.org/Submission/OWL-S/

A Tool for Behaviour-Based Discovery 165

In [9], the authors propose a novel clustering algorithm that groups names
of parameters of WS operations into semantically meaningful concepts. These
concepts are then leveraged to determine similarity of inputs (or outputs) of
web-service operations. In [15] the authors propose a framework of fuzzy query
languages for fuzzy ontologies, and present query answering algorithms for these
query languages over fuzzy DL-Lite ontologies. In [13] the authors propose a
metric to measure the similarity of semantic services annotated with an OWL
ontology. They calculate similarity by defining the intrinsic information value of a
service description based on the “inferencibility” of each of OWL Lite constructs.
The authors in [16] show a method of WS retrieval called URBE (UDDI Registry
By Example). The retrieval is based on the evaluation of similarity between the
interfaces of WSs. The algorithm used in URBE combines the analysis of the
structure of a WS and the terms used inside it.

7 Conclusions

We have presented a tool for similarity-based discovery of WSs that is able
to rank the service descriptions in a database, in accordance with a similarity
score between each of them and the description of a service desired by a user.
The formal framework behind the tool consists of SCA [4], which can represent
different high-level stateful software services and queries. Thus, we can use SCA
to formally reason on queries (e.g., bisimulation for SCA is introduced in [4]). The
tool is based on implementing approximate bisimulation [11] with constraints
(see Sec. 5), which allows to quantitatively estimate the differences between two
behaviours. Defining this problem as an SCSP makes it parametric with respect
to the chosen similarity metric (i.e., a semiring), and allows using efficient AI
techniques for solving it: subgraph isomorphism is not known to be in P .

Our main intent has been to propose a formal framework and a tool with
an approximate bisimulation of behaviours at its heart, not to directly com-
pete against tools such as [16], which although show higher precision than what
we have summarised in Sec. 4, do not support behaviour specification in their
matching. Nevertheless, in the future we plan to refine the performance of our
tool by also evaluating a semantic similarity-score between the operation and
parameter names, using an appropriate ontology for services as OWL-S.

References

1. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services - Concepts, Ar-
chitectures and Applications. Data-Centric Systems and Applications. Springer
(2004)

2. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y., Proença, J.: Modeling, testing and
executing Reo connectors with the Eclipse Coordination Tools. Tool demo session
at FACS 8 (2008)

3. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003)

166 M. Sargolzaei et al.

4. Arbab, F., Santini, F.: Preference and similarity-based behavioral discovery of ser-
vices. In: ter Beek, M.H., Lohmann, N. (eds.) WS-FM 2012. LNCS, vol. 7843,
pp. 118–133. Springer, Heidelberg (2013)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

6. Benbernou, S., Canaud, E., Pimont, S.: Semantic web services discovery regarded
as a constraint satisfaction problem. In: Christiansen, H., Hacid, M.-S., Andreasen,
T., Larsen, H.L. (eds.) FQAS 2004. LNCS (LNAI), vol. 3055, pp. 282–294. Springer,
Heidelberg (2004)

7. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

8. Changizi, B., Kokash, N., Arbab, F.: A Unified Toolset for Business Process Model
Formalization. In: Proceedings of FESCA 2010 (2010)

9. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web
services. In: Proceedings of Very Large Data Bases, vol. 30, pp. 372–383, VLDB
Endowment (2004), http://dl.acm.org/citation.cfm?id=1316689.1316723

10. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn.
Springer Publishing Company, Incorporated (2009)

11. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Trans. Automat. Contr. 52(5), 782–798 (2007)

12. Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral matchmaking for service
retrieval. In: IEEE International Conference on Web Services (ICWS), pp. 145–152.
IEEE Computer Society (2006)

13. Hau, J., Lee, W., Darlington, J.: A semantic similarity measure for semantic web
services. In: Web Service Semantics Workshop at WWW (2005)

14. Jongmans, S.-S.T.Q., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Auto-
matic code generation for the orchestration of web services with Reo. In: De Paoli, F.,
Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 1–16. Springer,
Heidelberg (2012)

15. Pan, J.Z., Stamou, G., Stoilos, G., Taylor, S., Thomas, E.: Scalable querying ser-
vices over fuzzy ontologies. In: Proceedings of World Wide Web, WWW 2008,
pp. 575–584. ACM, New York (2008), http://doi.acm.org/10.1145/
1367497.1367575

16. Plebani, P., Pernici, B.: Urbe: Web service retrieval based on similarity eval-
uation. IEEE Trans. on Knowl. and Data Eng. 21(11), 1629–1642 (2009),
http://dx.doi.org/10.1109/TKDE.2009.35

17. le Clément, V., Deville, Y., Solnon, C.: Constraint-based graph matching. In: Gent,
I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 274–288. Springer, Heidelberg (2009)

18. Shen, Z., Su, J.: Web service discovery based on behavior signatures. In: Proceed-
ings of the 2005 IEEE International Conference on Services Computing, SCC 2005,
vol. 01, pp. 279–286. IEEE Computer Society, Washington, DC (2005)

19. Toch, E., Gal, A., Reinhartz-Berger, I., Dori, D.: A semantic approach to approx-
imate service retrieval. ACM Trans. Internet Technol. 8(1) (November 2007)

20. Zemni, M.A., Benbernou, S., Carro, M.: A soft constraint-based approach to QoS-
aware service selection. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 596–602. Springer, Heidelberg (2010)

21. Zisman, A., Dooley, J., Spanoudakis, G.: Proactive runtime service discovery. In:
Proceedings of the 2008 IEEE International Conference on Services Computing,
SCC 2008, vol. 1, pp. 237–245. IEEE Computer Society, Washington, DC (2008),
http://dx.doi.org/10.1109/SCC.2008.60

http://dl.acm.org/citation.cfm?id=1316689.1316723
http://doi.acm.org/10.1145/1367497.1367575
http://doi.acm.org/10.1145/1367497.1367575
http://dx.doi.org/10.1109/TKDE.2009.35
http://dx.doi.org/10.1109/SCC.2008.60

A Type System for Components�

Ornela Dardha1, Elena Giachino1, and Michaël Lienhardt2

1 INRIA Focus Team / University of Bologna, Italy
{dardha,giachino}@cs.unibo.it

2 University of Paris Diderot, France
lienhar@inria.fr

Abstract. In modern distributed systems, dynamic reconfiguration, i.e.,
changing at runtime the communication pattern of a program, is chal-
lenging. Generally, it is difficult to guarantee that such modifications will
not disrupt ongoing computations. In a previous paper, a solution to this
problem was proposed by extending the object-oriented language ABS
with a component model allowing the programmer to: i) perform up-
dates on objects by means of communication ports and their rebinding;
and ii) precisely specify when such updates can safely occur in an object
by means of critical sections. However, improper rebind operations could
still occur and lead to runtime errors. The present paper introduces a
type system for this component model that extends the ABS type system
with the notion of ports and a precise analysis that statically enforces
that no object will attempt illegal rebinding.

1 Introduction

In modern complex distributed scenarios, unplanned dynamic reconfiguration,
i.e., changing at runtime the communication pattern of a program, is challeng-
ing as it is difficult to ensure that such modifications will not disrupt ongoing
computations. In [14] the authors propose to solve the problem by integrating
notions coming from component models [2–4,8] within the actor-based Abstract
Behavioral Specification programming language (ABS) [13]. ABS is designed for
distributed object-oriented systems and integrates concurrency and synchroniza-
tion mechanisms to solve data races. Actors, called cogs or simply groups, are
dynamic collections of collaborating objects. Cogs offer consistency by guaran-
teeing that at most one method per cog is executing at any time. Within a cog,
objects collaborate using (synchronous) method calls and collaborative concur-
rency with the suspend and await operations which can suspend the execution
of the current method, and thus allow another one to execute. Between cogs,
collaboration is achieved by means of asynchronous method calls that return fu-
ture, i.e., a placeholder where the result of the call is put when its computation
finishes.

� This research is partly funded by the EU project FP7-231620 HATS and by the
French National Research Agency (ANR), projects REVER ANR 11 INSE 007.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 167–181, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

168 O. Dardha, E. Giachino, and M. Lienhardt

On top of the ABS language, [14] adds the notions of ports, bindings and safe
state to deal with dynamic reconfiguration. Ports define variability points in an
object and can be rebound (i.e., modified) from outside the object (on the con-
trary, fields, which represent the inner state of the object, can only be modified
by the object itself). To ensure consistency of the rebind operation, [14] enforces
two constraints on its application: i) it is only possible to rebind an object’s port
when the object is in a safe state; and ii) it is only possible to rebind an object’s
port from any object within the same cog. Safe states are modeled by anno-
tating methods as critical, specifying that while one or more critical methods
are executing, the object is not in a safe state. The resulting language offers a
consistent setting for dynamic reconfigurations, which means performing modifi-
cations on a program at runtime while still ensuring consistency of its execution.
Consistency is based on two constraints: both synchronous method calls and re-
binding operations must involve two objects in the same cog. These constraints
are enforced at runtime; therefore, programs may encounter unexpected runtime
errors during their execution.

In this paper, we define a type system for the component model that stati-
cally ensures the legality of both synchronous method calls and port rebindings,
guaranteeing that well-typed programs will always be consistent. Our approach
is based on a static tracking of group membership of the objects. The difficulty
in retrieving this kind of information is that cogs as well as objects are dynamic
entities. Since we want to trace group information statically, we need a way to
identify and track every group in the program. To this aim, we define a technique
that associates to each group creation a fresh group name. Then, we keep track of
which cog an object is allocated to, by associating to each object a group record.
The type system checks that objects indeed have the specified group record,
and uses this information to ensure that synchronous calls and rebindings are
always performed locally to a cog. The type system is proven to be sound with
respect to the operational semantics. We use this result to show that well-typed
programs do not violate consistency during execution.

Motivating Example. In the following we present a running example that gives
a better understanding of the ABS language and the component extension, and
most importantly, motivates our type system. Consider the following typical
distributed scenario: suppose that we have several clients working together in a
specific workflow and using a central server for their communications. Updating
the server is a difficult task, as it requires to update its reference in all clients
at the same time in order to avoid communication failures.

First, in Fig. 1 we consider how this task is achieved in ABS. The programmer
declares two interfaces Server and Client and a class Controller. Basically, the
class Controller updates the server in all the clients ci by synchronously calling
their setter method. All the clients are updated at the same time: since they
are in the same cog as the controller they cannot execute until the execution of
method updateServer has terminated.

A Type System for Components 169

interface Server { ... }

interface Client { Unit setServer(Server s); ... }

class Controller {

Client c1, c2, ... cn;

Unit updateServer(Server s2) {

c1.setServer(s2);

c2.setServer(s2);

...

cn.setServer(s2);

}}

Fig. 1. Workflow in ABS

However, this code does not ensure that the update is performed when the
clients are in a safe state. This can lead to inconsistencies because clients that
are using the server are not aware of the modification taking place. This problem
can be solved by using the notions of port and rebind [14] as shown in Fig. 2.
Here, the method updateServer first waits for all clients to be in a safe state
(await statement performed on the conjunction of all clients) and then updates
their reference one by one (rebind server s which is declared to be a port).

interface Server { ... }

interface Client { port Server s; ... }

class Controller {

Client c1, c2, ... cn;

...

Unit updateServer(Server s2) {

await ‖c1‖ ∧ ‖c2‖ ∧ . . . ∧ ‖cn‖;
rebind c1.s = s2;

rebind c2.s = s2;

...

rebind cn.s = s2;

}}

Fig. 2. Workflow using the Component Model

However, runtime errors can still occur. For instance, if the clients and the con-
troller are not in the same cog, the update will fail. Consider the code in Fig. 3.
Method main instantiates classes Client and Controller –and possibly other
classes, like Server, present in the program– by creating objects c1,c2,...,cn,c.
These objects are created in the same cog by the new command, except for
client c1, which is created and placed in a new cog by the new cog command.

170 O. Dardha, E. Giachino, and M. Lienhardt

Now, suppose that the code in Fig. 2 is executed. At runtime, the program
will check if the controller and the client belong to the same cog to respect the
consistency constraints on rebinding. In case of c1 this check will fail by leading
to a runtime error.

The present paper addresses this problem in order to avoid these runtime
errors and the overhead in dealing with them. We present a type system that
tracks cog membership of objects thus permitting to typecheck only programs
where rebinding is consistent. So, the code presented above would not typecheck,
as shown in § 3, thus discarding the program at compile time instead of leading
to a runtime error.

Unit main () { ...

Client c1 = new cog Client (s);

Client c2 = new Client (s);

...

Client cn = new Client (s);

Controller c = new Controller (c1, c2, ... cn);

}

Fig. 3. Client and Controller objects creation

Roadmap. The rest of the paper is structured as follows: § 2 introduces the
calculus, types and terms; § 3 presents our type system and its properties; and
§ 4 concludes the paper and discusses future and related works.

2 The Calculus

In this section we present the calculus underlying our approach, which is a com-
ponent extension of the ABS language1. We present formally only the syntax of
the calculus which is necessary for specifying the type system. We already gave
some intuitions about the operational semantics of the calculus in the introduc-
tion and through the example, whereas for the formal definition we refer to the
original paper [14] and the extended version of this paper [9].

The syntax of the calculus is given in Fig. 4 and corresponds to the original
one, except for types, which are here extended in order to store also group
information. This syntax is based on several categories of names: I and C range
over interface and class names; V ranges over type variables for polymorphism;
G ranges over cog names, which will be explained thoroughly in § 3; D, Co and
fun range respectively over data type, constructor and function names; m, f and p

1 For the sake of readability, the calculus we consider is a subset of [14]. The notion of
location has been dropped, since it is orthogonal to ports and rebinding. The validity
of our approach and of our type system still holds for the full calculus.

A Type System for Components 171

P ::= Dl { s } Program
Dl ::= D | F | I | C Declarations

T ::= V | D[〈T 〉] | (I, �) Type

� ::= ⊥ | G[f : T] | α | μα.� Record

D ::= data D[〈T 〉] = Co[(T)]|Co[(T)]; Data Type

F ::= def T fun[〈T 〉](T x) = e; Function

I ::= interface I [extends I] { port T x;S } Interface

C ::= class C [(T x)] [implements I] { Fl M } Class
Fl ::= [port] T x Field Declaration

S ::= [critical] (G, �) T m(T x) Method Header
M ::= S { s } Method Definition
s ::= skip | s;s | T x | x = z | await g Statement
| if e { s } else { s } | while e { s } | return e

| rebind e.p = z

z ::= e | new [cog] C (e) | e.m(e) | e!m(e) | get(e) Expression with Side Effects
e ::= v | x | fun(e) | case e {p⇒ ep} Expression
v ::= null | Co[(v)] Value
p ::= | x | null | Co[(p)] Pattern
g ::= x | x? | ‖x‖ | g ∧ g Guard

Fig. 4. Core ABS Language and Component Extension

range respectively over method, field and port names (in order to have a uniform
presentation, we will often use f for both fields and ports); and x ranges over
variables, with the addition of the special variable this indicating the current
object. For the sake of readability, we use the following notations: an overlined
element corresponds to any finite, possibly empty, sequence of such element; and
an element between square brackets is optional.

A program P consists of a sequence of declarations ended by a main block,
namely a statement s to be executed. Declarations include data type declara-
tions D, function declarations F , interface declarations I and class declarations
C. A type T can be: a type variable V; a data type D like Bool or futures
Fut〈T 〉, used to type data structures; or a pair consisting of an interface name
I and a record � to type objects. Note that the ABS type system only uses
interface names to type objects, but here we add records to track in which cog
an object is located. Records can be: ⊥, meaning that the structure of the object
is unknown; G[f : T], meaning that the object is in the cog G and its fields f
are typed with T ; or regular terms, using the standard combination of variables
α and the μ-binder. Data types D have at least one constructor, with name
Co, and possibly a list of type parameters T . Functions F are declared with a
return type T , a name fun, a list of parameters T x and a code e. Interfaces I
declare methods and ports that can be modified at runtime. Classes C imple-
ment interfaces; they have a list of fields and ports Fl and implement all declared

172 O. Dardha, E. Giachino, and M. Lienhardt

methods. Method headers S are used to declare methods with their classic type
annotation, and i) the possible annotation critical that ensures that no rebinding
will be performed on that object during the execution of that method; and ii)
a method signature (G, �) which will be described and used in our type system
section. Method declarations M consist of a header and a body, the latter being
a sequential composition of local variables and commands. Statements s are
standard except for await g, which suspends the execution of the method until
the guard g is true, and rebind e.p = z, which rebinds the port p of the object e
to the value stored in z. Expressions z include: expressions without side effects e;
new C (e) and new cog C (e) that instantiate a class C and place the object in the
current cog and in a new cog, respectively; synchronous e.m(e) and asynchronous
e!m(e) method calls, the latter returning a future that will hold the result of
the method call when it will be computed; and get(e) which gives the value
stored in the future e, or actively waits for it if it is not computed yet. Pure
expressions e include values v, variables x, function call fun(e) and pattern
matching case e {p⇒ ep} that tests e and execute ep if it matches p. Patterns
p are standard: matches everything, x matches everything and binds it to x,
null matches a null object and Co(p) matches a value Co(ep) where p matches
ep. Finally, a guard g can be: a variable x; x? which is true when the future
x is completed, false otherwise; ‖x‖ which is true when the object x is in a
safe state, i.e., it is not executing any critical method, false otherwise; and the
conjunction of two guards g ∧ g has the usual meaning.

3 Type System

The goal of our type system is to statically check whether synchronous method
calls and rebindings are performed locally to a cog. Since cogs and objects are
entities created at runtime, we cannot know statically their identity. We address
this issue by using a linear type system approach on names of cogs G, G′, G′′ . . .
that abstracts the runtime identity of cogs. This type system associates to
every cog creation a unique cog name, which makes it possible to check if two
objects are in the same cog or not. Precisely, we associate objects to their cogs
using records �, having the form G[f : T], where G denotes the cog in which the
object is located and [f : T] maps any object’s fields f to its type T . In order
to correctly track cog membership of each expression, we also need to keep
information about the cog of the object’s fields in a record. This is needed, for
instance, when an object stored in a field is accessed within the method body
and then returned by the method; in this case one needs a way to bind the cog
of the accessed field to the cog of the returned value. Let us now explain the
method signature (G, �) annotating a method header. The record � is used as the
record of this during the typing of the method, i.e., � is the binder for the cog of
the object this in the scope of the method body, as we will see in the typing rules
in the following. The set of cog names G is used to keep track of the fresh cogs that

A Type System for Components 173

S:Data

∀i Ti ≤ T
′
i

D〈T 〉 ≤ D〈T ′〉

S:Bot

(L, �) ≤ (L,⊥)

S:Fields

∀i Ti ≤ T
′
i f
∈ ports(L)

(L, G[f : T ; f : T]) ≤ (L, G[f : T ′])

S:Ports

∀i Ti ≤ T
′
i f ∈ ports(L)

(L, G[f : T]) ≤ (L, G[f : T ; f : T ′])

S:Type

L ≤ L
′ ∈ CT

(L, �) ≤ (L′
, �)

Fig. 5. Subtyping Relation2

the method creates. In particular, when we deal with recursive method calls, the
set G gathers the fresh cogs of every call, which is then returned to the main
execution. Moreover, when it is not necessary to keep track of cog information
about an object, because the object is not going to take part in any synchronous
method call or any rebind operation, it is possible to associate to this object the
unknown record ⊥. This special record does not keep any information about the
cog where the object or its fields are located, and it is to be considered different
from any other cog, thus to ensure the soundness of our type system. Finally,
note that data types also can contain records: for instance, a list of objects is
typed with List〈T 〉 where T is the type of the objects in the list and it includes
also the record of the objects.

A typing environment Γ is a partial function from names to typings, which
assigns types T to variables, a pair (C, �) to this, and arrow types T → T ′ to
function symbols like Co or fun.

3.1 Subtyping Relation

The subtyping relation ≤ on types is a preorder and is presented in Fig. 5.
Rule S:Data states that data types are covariant in their type parameters. Rule
S:Bot states that every record � is a subtype of the unknown record ⊥. Rules
S:Fields and S:Ports use structural subtyping on records. Fields, like methods,
are what the object provides, hence it is sound to forget about the existence of
a field in an object. This is why the rule S:Fields allows to remove fields from
records. Ports on the other hand, model the dependencies the objects have on
their environment, hence it is sound to consider that an object may have more
dependencies than it actually has during execution. This is why the rule S:Ports

allows to add ports to records. Notice that in the standard object-oriented setting
this rule would not be sound, since trying to access a non-existing attribute would
lead to a null pointer exception. Therefore, to support our vision of port behavior,
we add a Rebind-None reduction rule to the component calculus semantics which
simply permits the rebind to succeed without modifying anything if the port is
not available. Finally, rule S:Type adopts nominal subtyping between classes
and interfaces.

2 For readability, we let L be either a class name C or an interface name I.

174 O. Dardha, E. Giachino, and M. Lienhardt

tmatch(T, T) = id tmatch(�, �) = id tmatch(V, T) � [V �→ T]

∀i. tmatch(Ti, T
′
i) = σi ∀i, j, σi|dom(σj) = σj|dom(σi)

tmatch(D〈T 〉, D〈T ′〉) �
⋃
i

σi

tmatch(�, �′) = σ

tmatch((I, �), (I, �′)) � σ

∀i. tmatch(Ti, T
′
i) = σi ∀i, j, σi|dom(σj)

= σj|dom(σi)
∀i, σ(G) ∈ {G, G′}

tmatch(G[f : T], G′[f : T ′]) � [G �→ G
′]
⋃
i

σi

pmatch(, T) � ∅ pmatch(x, T) � ∅;x : T pmatch(null, (I, �)) � ∅
Γ (Co) = T → T ′ tmatch(T ′, T ′′) = σ ∀i. pmatch(pi, σ(Ti)) = Γi

pmatch(Co(p), T ′′) �
⊎
i

Γi

C ≤ I ∈ CT dom(σ
′
) ∩ dom(σ) = ∅ fields(C) = (f : (I, �); f ′ : D(. . .))

(I, G[σ � σ′(f : (I, �))]) ∈ crec(G, C, σ)

equals(G, G′)

coloc(G[. . .], (C, G′[. . .]))

ports(C) ⊆ ports(I) and ∀p ∈ ports(C). ptype(p, C) ≤ ptype(p, I)
heads(I) ⊆ heads(C) and ∀m ∈ I. mtype(m, I) = mtype(m, C)

implements(C, I)

ports(I) ⊆ ports(I
′
) and ∀p ∈ ports(I). ptype(p, I) ≤ ptype(p, I

′
)

heads(I′) ⊆ heads(I) and ∀m ∈ I
′. mtype(m, I) = mtype(m, I′)

extends(I, I’)

Fig. 6. Auxiliary functions and predicates

3.2 Functions and Predicates

The type system makes use of several auxiliary functions and predicates pre-
sented in Fig. 6 3. Function tmatch returns a substitution σ of the formal pa-
rameters to the actual ones. It is defined both on types and on records. The
matching of a type T to itself, or of a record � to itself, returns the identity
substitution id; the matching of a type variable V to a type T returns a substi-
tution of V to T ; the matching of data type D parameterized on formal types
T and on actual types T ′ returns the union of substitutions that correspond to
the matching of each type Ti with T ′

i in such a way that substitutions coincide
when applied to the same formal types; the matching of records follows the same
idea as that of data types. Finally, tmatch applied on types (I, �), (I, �′) returns
the same substitution obtained by matching � with �

′. Function pmatch, per-
forms matchings on patterns and types by returning a typing environment Γ . In
particular, pmatch returns an empty set when the pattern is or null, or x : T
when applied on a variable x and a type T . Otherwise, if applied to a construc-
tor expression Co(p) and a type T ′′ it returns the union of typing environments
corresponding to patterns in p. Function crec asserts that (I, G[σ'σ′(f : (I, �))])
is a member of crec(G, C, σ) if class C implements interface I and σ′ and σ are
substitutions defined on disjoint sets of names. Function fields(C) returns the
typed fields and ports of a class C. Function port instead, returns only the typed

3 For readability reasons, the lookup functions like ports, fields, ptype, mtype, heads
are written in italics, whether the auxiliary functions and predicates are not.

A Type System for Components 175

T:Var/Field

Γ (x) = T

Γ � x : T

T:Null

interface I [· · ·] { · · · } ∈ CT

Γ � null : (I, �)
T:Constructor

Γ (Co) = T → T ′ tmatch(T , T ′) = σ Γ � v : T ′

Γ � Co(v) : σ(T
′
)

T:Fun

Γ (fun) = T → T
′

tmatch(T , T ′) = σ Γ � v : T ′

Γ � fun(v) : σ(T
′
)

T:Case

Γ � e : (T, �) Γ � p ⇒ ep : (T, �) → (T ′, �′)

Γ � case e {p ⇒ ep} : (T ′, �′)
T:Branch

Γ � p : (T, �) Γ ; pmatch(p, (T, �)) � ep : (T ′, �′)

Γ � p ⇒ ep : (T, �) → (T ′, �′)

T:Sub

Γ � e : T T ≤ T ′

Γ � e : T ′

T:FGuard

Γ � x : Fut〈T 〉
Γ � x? : Bool

T:CGuard

Γ � x : (I, �)

Γ � ‖x‖ : Bool

T:LGuard

Γ � g1 : Bool Γ � g2 : Bool

Γ � g1 ∧ g2 : Bool

Fig. 7. Typing Pure Expressions and Guards

ports. Predicate coloc states the equality of two cog names. Predicates imple-
ments and extends check when a class implements an interface and an interface
extends another one properly. A class C implements an interface I if the ports
of C are at most the ones of I. This follows the intuition: since ports indicate
services then an object has at most the services declared in its interface. Then,
any port in C has a subtype of the respective port in I. Instead, for methods, C
may define at least the methods declared in I having the same signature. The
extends predicate states when an interface I properly extends another interface
I′ and it is defined similarly to the implements predicate.

3.3 Typing Rules

In this section we present the typing rules. Typing judgments use a typing envi-
ronment Γ and possibly a set G which indicates the set of new cogs created by
the term being typed. They have the following forms: Γ � g : Bool for guards,
Γ � e : T for pure expressions, Γ,G � z : T for expressions with side effects
and Γ,G � s for statements. Finally, typing judgments for method, class and
interface declarations are Γ �M , Γ � C and ∅ � I, respectively.
Pure Expressions. Typing rules for pure expressions are given in Fig. 7. Rule
T:Var/Field states that a variable is of type the one assumed in the typing
environment. Rule T:Null states that null is of type any interface I declared
in the CT and any record �. Rule T:Constructor states that constructor Co

applied to a list of values v is of type σ(T ′) where the constructor is of a functional
type T → T ′ and the values are of type T ′ obtained by the auxiliary function
tmatch. Rule T:Fun for function expressions is the same as the previous one
for constructor expressions. Rule T:Case states that if all branches are well-
typed and have the same type, then the case expression is also well-typed. Rule
T:Branch states that a branch p⇒ ep is well-typed if the pattern p is well-typed

176 O. Dardha, E. Giachino, and M. Lienhardt

T:Exp

Γ � e : T

Γ, ∅ � e : T

T:New

Γ (this) = (C
′
, G[. . .])

params(C) = T f Γ � e : T ′ tmatch(T , T ′) = σ T ∈ crec(G, C, σ)

Γ � new C(e) : T
T:Cog

params(C) = T f Γ � e : T ′ tmatch(T , T ′) = σ T ∈ crec(G, C, σ)

Γ, {G} � new cog C (e) : T
T:SCall

mtype(m, I) = (G, �)(T x) → T Γ � e : (I, σ(�)) Γ � e : σ(T) coloc(σ(�), Γ (this))
Γ � e.m(e) : σ(T)

T:ACall

mtype(m, I) = (G, �)(T x) → T Γ � e : (I, σ(�)) Γ � e : σ(T)

Γ � e!m(e) : Fut〈σ(T)〉

T:Get

Γ � e : Fut〈T 〉
Γ � get(e) : T

Fig. 8. Typing Expressions

and the expression ep is well-typed in the extension of Γ with typing assertions
for the pattern. Rule T:Sub is the standard subsumption rule.

Guards. Typing rules for guards are given in Fig. 7. Rule T:FGuard states that
if a variable x has type Fut〈T 〉, the guard x? has type Bool. Rule T:CGuard

states that ‖x‖ has type Bool if x is an object. Rule T:LGuard states that if
each gi has type Bool for i = 1, 2 then the conjunction g1 ∧ g2 has type Bool.

Expressions. The typing rules for expressions with side effects are given in
Fig. 8. These are different w.r.t. the previous ones as they keep track of the
new cogs created. Rule T:Exp is a weakening rule which asserts that a pure
expression e is well-typed in a typing context Γ and an empty set of cogs, if it is
well-typed in Γ . Rule T:New assigns type T to the object new C(e) if the actual
parameters have types compatible with the formal ones, by applying function
tmatch, the cogs of the object and this coincide and the type T is in the crec
predicate. Rule T:Cog is similar to the previous one, except for the creation of
a new cog G where the new object is placed. Rules T:SCall and T:ACall type
synchronous and asynchronous method invocations, respectively. Both rules use
mtype to obtain the method signature as well as the method’s typed parameters
and the return type, i.e., (G, �)(T x) → T . The group record �, the parameters
types and the return type of the method are the “formal” ones. In order to
obtain the “actual” ones, we use σ that maps formal cog names to actual cog
names. Consequently, the callee e has type (I, σ(�)) and the actual parameters
e have types σ(T). Finally, the invocations are typed in the substitution σ(T).
The rules differ in that the former also checks whether the group of this and the
group of the callee coincide, by using the auxiliary function coloc, and also the
types of the returned value are σ(T) and Fut〈σ(T)〉, respectively. Rule T:Get

states that get(e) is of type T , if expression e is of type Fut〈T 〉.
Statements. The typing rules for statements are presented in Fig. 9. Rule
T:Skip states that skip is always well-typed. Rule T:Decl states that T x is
well-typed if variable x is of type T in Γ . Rule T:Semi types the composition of
statements, if s1 and s2 are well-typed in the same typing environment and, like

A Type System for Components 177

T:Skip

Γ, ∅ � skip

T:Decl

Γ (x) = T

Γ, ∅ � T x

S:Semi

Γ,G1 � s1 Γ,G2 � s2

Γ,G1 � G2 � s1; s2

S:Assign

Γ (x) = T Γ,G � z : T

Γ,G � x = z
S:Await

Γ � g : Bool

Γ, ∅ � await g

S:Cond

Γ � e : Bool Γ, G1 � s1 Γ,G2 � s2

Γ,G1 � G2 � if e { s1 } else { s2 }

S:While

Γ � e : Bool Γ,G � s

Γ,G � while e { s }
S:Return

Γ � e : T Γ (destiny) = T

Γ, ∅ � return e
Rebind

Γ (this) = (C, G[. . .]) T p ∈ ports(I) Γ � e : (I, �) Γ, G � z : T coloc(�, Γ (this))
Γ,G � rebind e.p = z

Fig. 9. Typing Statements

T:Method

Γ, x : T ,destiny : Fut〈T 〉, this : (C, �),G � s

Γ � [critical] (G, �) T m(T x){ s } in C

T:Class

∀I ∈ I. implements(C, I) Γ, x : T � M in C

Γ � class C (T x) implements I { Fl M }

T:Interface

∀I′ ∈ I. extends(I, I′)

� interface I extends I { port T x;S }

Fig. 10. Typing Declarations

in linear type systems, they use distinct cog names. Hence, their composition
uses the disjoint union ' of the corresponding sets. Rule T:Assign asserts the
well-typedness of the assignment x = z if both x and z have the same type T .
Rule T:Await asserts that await g is well-typed whenever the guard g has type
Bool. Rules T:Cond and T:While are quite standard, except for the presence of
the linear set of cog names. Rule T:Return asserts that return e is well-typed
if expression e has the same type as the variable destiny. Finally, rule T:Rebind

types statement rebind e.p = z by checking that: i) p is a port of the right type,
and ii) z is in the same group as this.

Method, Class and Interface Declarations. The typing rules are presented
in Fig. 10. Rule T:Method states that method m is well-typed in class C if the
method’s body s is well-typed in a typing environment augmented with the
method’s typed parameters; type information about destiny and the current
object this; and cog names as specified by the method signature. Rule T:Class

states that a class C is well-typed when it implements all the interfaces I and
all its methods are well-typed. Rule T:Interface states that an interface I is
well-typed if it extends all interfaces in I.

Remark. The typing rule for assignment requires the group of the variable
and the group of the expression being assigned to be the same. This restriction
applies to rule for rebinding, as well. To see why this is needed let us consider
a sequence of two asynchronous method invocations x!m();x!n(), both called
on the same object and both modifying the same field. Say m does this.f = z1
and n does this.f = z2. Because of asynchronicity, there is no way to know the
order in which the updates will take place at runtime. A similar example may

178 O. Dardha, E. Giachino, and M. Lienhardt

Γ (this) = (Controller, G[. . .]) (Server, �) s ∈ ports(Client)
∀i = 2, ..., n Γ � ci : (Client, G[. . . , s : (Server, �)])

Γ, ∅ � s2 : (Server, �) coloc(G[. . . , s : (Server, �)], Γ (this))

∀i Γ, ∅ � rebind ci.s = s2

Fig. 11. Rebind derivation

be produced for the case of rebinding. Working statically, we can either force
the two expressions z1 and z2 to have the same group as f, or keep track of all
the different possibilities, thus the type system must assume for an expression
a set of possible objects it can reduce to. In this paper we adopt the former
solution, we let the exploration of the latter as a future work. We plan to relax
this restriction following a similar idea to the one proposed in [11].

Example Revisited.We now recall the example of the workflow given in Fig. 2
and Fig. 3. We show how the type system works on this example: by applying
the typing rule for rebind we have the derivation in Fig. 11 for any clients from
c2 to cn. For client c1, if we try to typecheck the rebinding, we would have the
following typing judgments in the premise of Rebind:

Γ (this) = (Controller, G[...]) Γ, ∅ � c1 : (Client, G′[. . . , s : (Server, �)])

But then, the predicate coloc(G′[. . . , s : (Server, �)], Γ (this)) is false, since
equals(G, G′) is false. Then one cannot apply the typing rule Rebind, by thus
not typechecking rebind c1.s = s2.

3.4 Properties of the Type System

In this section we briefly overview the properties of the type system and we out-
line the runtime system devised in order to provide the proofs of those properties.
The full technical treatment with proofs can be found in [9]. Before stating the
properties that our type system enjoys, we first introduce the following notions:

Runtime typing environments Δ are obtained by augmenting typing environ-
ments Γ with runtime information about objects and futures, namely o : (C, �)
and f : Fut〈T 〉 where o and f are object and future variables, respectively.

Runtime configurations N extend the language with constructs used during
execution, mainly with objects. An object ob(o, σ,Kidle, Q) has a name o; a
substitution σ mapping the object’s fields, ports and special variables like this,
destiny, to values; a running process Kidle, that is idle if the object is idle; and
a queue of suspended processes Q. A process K is { σ | s } where σ maps the
local variables to their values and s is a list of statements.

Reduction relation N → N ′ is defined over runtime configurations and follows
the definition of such relation in [13, 14].

A Type System for Components 179

Runtime judgments are of the formΔ,G �R N meaning that the configuration
N is well-typed in the typing context Δ by using a set G of new cogs.

Our type system enjoys the classical properties of subject reduction and type
correction stated in the following.

Theorem 1 (Subject Reduction). If Δ,G �R N and N → N ′ then ∃ Δ′, G′
such that Δ′ ⊇ Δ, G′ ⊆ G and Δ′,G′ �R N ′.

Proof. The proof is done by induction over the operational semantics rules.

Theorem 2 (Correction). If Δ,G �R N , then for all objects
ob(o, σ, { σk | s }, Q) ∈ N with either s = rebind x.fi = x′; s′ or s = x.m(x); s′,
there exists an object ob(o′, σ′,Kidle, Q

′) ∈ N such that σ ◦ σk(x) = o′ and
σ(cog) = σ′(cog). Where ◦ defines the composition of substitutions.

Proof. The proof is done by induction over the structure of N .

As a consequence of the previous results, rebinding and synchronous method
calls are always performed between objects of the same cog:

Corollary 1. Well-typed programs do not perform i) an illegal rebinding or ii)
a synchronous method call outside the cog.

4 Conclusions, Future and Related Works

This paper presents a type system for a component-based calculus [14], an ex-
tension of ABS [13] with ports and rebind operations. Ports denote the access
point to the functionalities provided by the environment and can be modified
by performing a rebind operation. There are two consistency issues involving
ports: i) ports cannot be modified while in use; this problem is solved in [14] by
combining the notions of ports and critical section; ii) it is forbidden to modify a
port of an object outside the cog; this problem is solved in the present paper by
designing a type system that guarantees the above requirement. The type system
tracks an object’s membership to a certain cog by adopting group records. Re-
bind statement is well-typed if there is compatibility of groups between objects
involved in the operation.

Regarding future work, we want to investigate several directions. First, as dis-
cussed in Section 3 our current approach imposes a restriction on assignments,
namely, it is possible to assign to a variable/field/port only an object belonging
to the same cog. We plan to relax this restriction following an idea similar to
the one proposed in [11], where instead of having just one group associated to
a variable, it is possible to have a set of groups. Second, we want to deal with
runtime misbehavior. For instance, deadlocks are intrinsically related to the se-
mantic model, which requires a component to be in a safe state when rebinded,
thus introducing synchronization points between the rebinder and the rebindee.
For this reason deadlocks may arise. How to detect and avoid this kind of mis-
behavior is left as future work, possibly following [10]. Moreover, in this paper

180 O. Dardha, E. Giachino, and M. Lienhardt

we showed how to use our technique for a very specific safety problem in the
context of a component-based language, but we believe the tracking of object/-
group identities/memberships is useful for other problems (deadlock detection,
race detection, resource consumption) and other settings (business processes and
web-services languages). We plan to investigate this direction further.

Related Works. Most component models [2–4, 8] have a notion of component
distinct from that of object. The resulting language is structured in two separate
layers, one using objects for the main execution of the program and the other us-
ing components for the dynamic reconfiguration. This separation makes it harder
for the reconfiguration requests to be integrated in the program’s workflow. The
component model used in the present paper has a unified description of objects
and components by exploiting the similarities between them. This bring several
benefits w.r.t. previous component models: i) the integration of components and
objects strongly simplifies the reconfiguration requests handling, ii) the sepa-
ration of concepts (component and object, port and field) makes it easier to
reason about them, for example, in static analysis, and iii) ports are useful in
the deployment phase of a system by facilitating, for example, the connection to
local communication. Various type systems have been designed for components.
The type system in [15] categorizes references to be either Near (i.e., in the same
cog), Far (i.e., in another cog) or Somewhere (i.e., we don’t know). The goal is to
automatically detect the distribution pattern of a system by using the inference
algorithm, and also control the usage of synchronous method calls. It is more
flexible than our type system since the assignment of values of different cogs is
allowed, but it is less precise than our analysis: consider two objects o1 and o2
in a cog c1, and another one o3 in c2; if o1 calls a method of o3 which returns
o2, the type system will not be able to detect that the reference is Near. In [1]
the authors present a tool to statically analyze concurrency in ABS. Typically,
it analyses the concurrency structure, namely the cogs, but also the synchro-
nization between method calls. The goal is to get tools that analyze concurrency
for actor-like concurrency model, instead of the traditional thread-based concur-
rency model. On the other hand, our type system has some similarities with the
type system in [5] which is designed for a process calculus with ambients [6],
the latter roughly corresponding to the notion of components in a distributed
scenario. The type system is based on the notion of group which tracks commu-
nication between ambients as well as their movement. However, groups in [5] are
a “flat” structure whether in our framework we use group records defined recur-
sively; in addition, the underlying language is a process calculus, whether ours
is a concurrent object-oriented one. As object-oriented languages are concerned,
another similar work to ours is the one on ownership types [7], where basically, a
type consists of a class name and a context representing object ownership: each
object owns a context and is owned by the context it resides in. The goal of the
type system is to provide alias control and invariance of aliasing properties, like
role separation, restricted visibility etc. [12].

A Type System for Components 181

References

1. Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of may-happen-in-parallel
in concurrent objects. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE 2012.
LNCS, vol. 7273, pp. 35–51. Springer, Heidelberg (2012)

2. Alliance, O.: Osgi Service Platform, Release 3. IOS Press, Inc.(2003)
3. Bhatti, N.T., Hiltunen, M.A., Schlichting, R.D., Chiu, W.: Coyote: A system for

constructing fine-grain configurable communication services. ACM Trans. Comput.
Syst. 16(4) (1998)

4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: The Frac-
tal Component Model and its Support in Java. Software - Practice and Experi-
ence 36(11-12) (2006)

5. Cardelli, L., Ghelli, G., Gordon, A.D.: Types for the ambient calculus. Information
and Computation 177(2), 160–194 (2002)

6. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213
(2000)

7. Clarke, D.G., Potter, J., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA, pp. 48–64 (1998)

8. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J.: A component
model for building systems software. In: Proc. IASTED Software Engineering and
Applications, SEA 2004 (2004)

9. Dardha, O., Giachino, E., Lienhardt, M.: A Type System for Components. Full
version (2013), http://www.cs.unibo.it/~giachino/

10. Giachino, E., Grazia, C.A., Laneve, C., Lienhardt, M., Wong, P.Y.H.: Deadlock
analysis of concurrent objects: Theory and practice. In: Johnsen, E.B., Petre, L.
(eds.) IFM 2013. LNCS, vol. 7940, pp. 394–411. Springer, Heidelberg (2013)

11. Giachino, E., Lascu, T.A.: Lock Analysis for an Asynchronous Object Calculus.
Presented at ICTCS (2012), http://www.cs.unibo.it/~giachino/

12. Hogg, J., Lea, D., Wills, A., de Champeaux, D., Holt, R.: The geneva convention
– on the treatment of object aliasing. OOPS Messenger (1992)

13. Johnsen, E., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: Abs: A core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

14. Lienhardt, M., Bravetti, M., Sangiorgi, D.: An object group-based component
model. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 64–78. Springer, Heidelberg (2012)

15. Welsch, Y., Schäfer, J.: Location types for safe distributed object-oriented pro-
gramming. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS, vol. 6705,
pp. 194–210. Springer, Heidelberg (2011)

http://www.cs.unibo.it/~giachino/
http://www.cs.unibo.it/~giachino/

Early Fault Detection in DSLs

Using SMT Solving and Automated Debugging�

Sarmen Keshishzadeh1, Arjan J. Mooij2, and Mohammad Reza Mousavi3

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Embedded Systems Innovation by TNO, Eindhoven, The Netherlands

3 Center for Research on Embedded Systems, Halmstad University, Sweden
s.keshishzadeh@tue.nl, arjan.mooij@tno.nl, m.r.mousavi@hh.se

Abstract. In the context of Domain Specific Languages (DSLs), we
study ways to detect faults early in the software development cycle. We
propose techniques that validate a wide range of properties, classified
into basic and advanced. Basic validation includes syntax checking, ref-
erence checking and type checking. Advanced validation concerns domain
specific properties related to the semantics of the DSL. For verification,
we mechanically translate the DSL instance and the advanced properties
into Satisfiability Modulo Theory (SMT) problems, and solve these prob-
lems using an SMT solver. For user feedback, we extend the verification
with automated debugging, which pinpoints the causes of the violated
properties and traces them back to the syntactic constructs of the DSL.
We illustrate this integration of techniques using an industrial case on
collision prevention for medical imaging equipment.

Keywords: Early Fault Detection, Formal Verification, Domain Spe-
cific Language (DSL), Satisfiability Modulo Theories (SMT), Delta
Debugging.

1 Introduction

Domain specific languages (DSLs, [20,15]) are used to specify software at a higher
level of abstraction than implementation code, and to mechanically generate
code afterwards. By trading generality for expressiveness in a limited domain,
DSLs offer substantial gains in ease of use compared with general-purpose pro-
gramming and specification languages in their domain of application [15]. Hence,
DSLs bring formality closer to domain requirements.

Our goal is to investigate ways to provide early fault detection (see, e.g.,
[11]) when developing industrial software using DSLs. Program verification tech-
niques often focus on implementation code, and heavily depend on abstraction
techniques. Since DSLs are based on domain specific abstractions, we aim to
integrate verification at the level of the DSL, i.e., before generating any code.

� This research was supported by the Dutch national program COMMIT and carried
out as part of the Allegio project.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 182–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Early Fault Detection in DSLs Using SMT Solving 183

Meta-modelling frameworks, such as the Eclipse Modelling Framework (EMF,
[19]), XText [7], and MontiCore [14], provide support for developing editors, per-
forming validation, and generating code. The validation for DSLs often concerns
basic validation, such as syntax checking, reference checking, and type checking.
In this paper, we focus on techniques for more advanced kinds of validation.

Our investigation is based on a prototype DSL for collision prevention, de-
veloped in collaboration with Philips Healthcare; see [16]. The main objective
of this DSL is to facilitate the reuse of software among different product config-
urations. The primary goals are hence to reach a convenient abstraction level,
and to generate implementation code. Since correct and timely functioning is
vital for medical systems, this prototype DSL is an interesting study case for
advanced validation.

Through our interaction with the software developers, we have identified two
important user requirements for the integration of advanced validation in indus-
trial DSLs. These have guided our selection of formal techniques.

The first requirement is to hide the validation techniques from the user of
the DSL. This implies that a push-button technology should be used, such as
model-checking [1] or satisfiability checking [3]. It also implies that we should not
rely on user knowledge about applying verification techniques and analyzing their
outputs. To this end we mechanically generate the validation input from the DSL
instance; this input includes both the formal model and the formal properties.
We also translate any property violations back to the abstraction level of the
DSL. To detect the syntactic constructs that cause the property violations, we
have used an automated debugging technique called delta debugging [23,4,22].
Thus the detected causes are presented in the DSL editor.

The second requirement is to provide feedback to the users in a short amount
of time (in the order of seconds to minutes). This often rules out model-checking
techniques based on explicit state-space exploration [9], and generic numerical
analysis techniques for hybrid systems [8]. We aim to use existing tools as they
are, and therefore we refrain from developing ad-hoc abstraction techniques for
our specific DSL. We have used Satisfiability Modulo Theories (SMT) [2,6] solv-
ing. SMT solvers check satisfiability of first order logic formulae with respect to a
combination of background theories, e.g., on integer arithmetic. In recent years,
SMT solvers have been extensively applied as an efficient means for program
verification [6].

Thus we propose an integration of three techniques, viz., domain-specific lan-
guages, SMT solving and delta debugging. Fig. 1 gives an overview of our ap-
proach; we refer to it throughout this paper. The traditional use of DSLs is
depicted at the left, starting with a system specification which is formalized as
a DSL instance. The DSL instance is used for basic validation, and for generat-
ing implementation code in languages such as C++. In addition, we introduce
advanced validation by automatically generating a set of SMT problems that
express some system properties for the DSL instance. Finally the verification
results are linked back to the DSL instance.

184 S. Keshishzadeh, A.J. Mooij, and M.R. Mousavi

Verifier &
Debugger

System Specification

Formalize

DSL InstanceDSL Instance SMT ProblemSMT Problem

ResultsResults
C++ CodeC++ Code

Generate

SMT Solver

Advanced Validation

SMT Problem
Generator

Respond

System Properties

Formalize Property Patterns Execute

Basic Validator

Fig. 1. Overview of the Automated Approach

Although the SMT problems are generated from the DSL instance, the ver-
ification results do not change the DSL instance; so Fig. 1 is not a round-trip
engineering environment. Instead, the verification results are displayed in the
DSL editor. Automated debugging is used to determine a fault location.

Related work. Delta-debugging has initially been developed for debugging pro-
grams. We are aware of a few research works [12,21] that apply this technique
to more abstract domains. In this paper, we apply it to a declarative DSL.

Integrations of satisfiability checking and debugging have been studied in both
hardware and software domains. [18] applies such an integration in the context
of logic circuits. [13] proposes a method that, given a C program with an assert
statement and a set of failing test cases, provides a list of potential fault locations
in an interactive process. This method analyzes a failure trace by encoding the
definition and use relation for program variables as MAX-SAT problems. Unlike
C programs there is no definition-use relation among the statements of our DSL.
Hence, this approach is not applicable in our case.

An integration of verification techniques and DSLs is reported in [17]. Their
goal is to maximize reusability among different DSLs. They extract common-
alities shared between different DSLs (e.g., a Boolean expressions module) and
encapsulate them as analysis-DSLs. Analysis tools, such as model checkers and
SMT solvers, are applied to instances of analysis-DSLs. Their validation is lim-
ited to properties shared between various domains, e.g., completeness of a set of
specified restrictions, and consistency of simultaneously activated restrictions.

Overview. In Section 2, we introduce the industrial prototype DSL, its syntax
and informal semantics. Subsequently, we describe the kinds of properties that
we aim to validate in Section 3. The translation to SMT is presented in Sec-
tion 4. Automated debugging for determining the causes of property violations
is presented in Section 5, whereas the integration with the DSL editor is reported
in Section 6. In Section 7 we draw some conclusions and suggest future research.

Early Fault Detection in DSLs Using SMT Solving 185

CArm

Table

Detector

(a) Geometry

Motors

Safety Layer

data

Sensors

User Interface

data

request

request

(b) Architecture

Fig. 2. Industrial Study Case

2 A Prototype DSL for Collision Prevention

To illustrate our approach, we consider the interventional X-ray scanners of
Philips Healthcare. These systems consist of several moving objects with shapes
as sketched in Fig. 2(a). For example, the Table can be moved horizontally, the
Detector can be moved vertically, and the CArm can be rotated.

To prevent collisions between these objects, the architecture contains a safety
layer as depicted in Fig. 2(b). All movement requests from the user to the motors
pass this layer. For making decisions on user requests, this layer stores data from
the sensors in internal structures called “geometric models”. In particular each
geometric model stores the (shortest) distance between each pair of objects.

To describe the safety layer, we consider a simplified prototype DSL that
focuses on decision rules for collision prevention. We illustrate the syntax and
the intuitive meaning of the syntactic constructs using the example instance in
Fig. 3. For confidentiality reasons, numbers and details have been changed.

2.1 Physical Objects and Geometric Models

Each DSL instance declares the physical objects in the system. The example in
Fig. 3 corresponds to the geometry in Fig. 2(a) with three objects, viz., Table,
CArm and Detector. The shapes of the objects are not specified in the DSL.

This example DSL instance declares a predefined geometric model and a user-
dependent geometric model:

– Actuals: current object distances, as given by the sensors;
– LookAhead: predicted object distances, based on Actuals and user requests.

The definitions of these models are internal, and not specified in the DSL.

2.2 Movement Restrictions

The user requests consist of a vector for each object movement (translation and
rotation). The collision prevention logic is specified in terms of restrictions on
these object movements. Each restriction contains an activation condition, which

186 S. Keshishzadeh, A.J. Mooij, and M.R. Mousavi

Fig. 3. Example Instance of the DSL

is a boolean expression, and an effect that is only considered when the activation
condition evaluates to true. The effect specifies a speed limitation for a specific
object movement; to be more precise, a limitation on the (Euclidean) norm of the
movement vector. An absolute speed limit specifies a maximum speed that may
be requested to the motors. A relative limit indicates the maximum percentage
of the user request that may be requested to the motors.

The example restrictions in Fig. 3 illustrate that the expressions can refer
to the (shortest) distance between two objects in a specific geometric model.
Constants can be annotated with measurement units, or otherwise a default
unit is assumed. Further processing of a DSL instance unifies the applied units.

For each object movement, multiple restrictions can specify absolute and rel-
ative limits. In this case, for each object movement, only the most-restrictive
activated limits are considered, i.e., the minimum of the absolute limits and the
minimum of the relative limits; the other limits are masked. Given the incoming

request vector
−−−−−−−→
inRequest for an object movement, we first compute the requested

speed inSpeed. Using the most-restrictive activated limits absLimit and relLimit
for this object movement, we compute the resulting speed outSpeed and the

outgoing movement request vector to the motors
−−−−−−−−→
outRequest as follows:

inSpeed = norm(
−−−−−−−→
inRequest)

outSpeed = min(absLimit, relLimit × inSpeed)

−−−−−−−−→
outRequest =

outSpeed

inSpeed
× −−−−−−−→inRequest

Early Fault Detection in DSLs Using SMT Solving 187

3 Validation Properties

In this section we describe several kinds of properties, that can be analysed early
in the software development cycle, in particular before generating code.

3.1 Basic Validation

Practically all modern editors for programming languages and domain-specific
languages offer some basic types of validation:

– based on the language (context-free analysis):
• parsing: syntactic constructs are in accordance with the DSL grammar;

– based on the parse tree (context-dependent analysis):
• referencing: references refer to elements that have been defined;
• type checking: expressions have a well-defined type.

In addition, there can be domain-specific constraints like acyclic dependencies.
There can also be warnings for correct fragments that are probably not intended,
such as, in our DSL, the distance between an object and itself.

3.2 Advanced Validation

Our aim is to offer validation that goes beyond basic validation. In this section
we consider the system properties focusing on collision prevention, which include
value ranges, safety properties, and absence of deadlocks.

In our example DSL, such checks often require additional knowledge about
the environment, including the geometric models and the timing. We try to keep
these details to a minimum in order to make the verification feasible and to give
quick feedback to the user. In our analyses this has an impact on the following:

– distances: We only assume that the distance function on pairs of objects is
symmetric and gives non-negative values. We ignore whether the distances
are feasible in practice.

– timing: We ignore the acceleration characteristics of the physical objects,
and any time delays between sensing and acting.

However, this can result in false positive reponses for well-definedness of ex-
pressions and safety properties and false positive/negative responses for dead-
lock. The challenge is to balance the number of false positive/negative results
with the number of additional details that need to be provided. In what follows,
we categorize the kind of checks that could be useful for our DSL users.

Well-definedness of Expressions. There are some general conditions that
can be checked. For example, a potential division by zero, or a potential expo-
nentiation resulting in a complex number. (Similarly, for DSLs allowing for case
analysis, we can check whether the cases are complete and non-overlapping.)
Such checks are more involved than basic type checking, because they involve
the valuation of distance variables and arithmetic operations on them.

188 S. Keshishzadeh, A.J. Mooij, and M.R. Mousavi

Ranges. The minimum of activated absolute limits of each object movement
should be a non-negative real number; similarly, the minimum of activated rel-
ative limits should be a real number between 0 and 1.

Safety. The ultimate goal of the safety layer is to prevent collisions. We check
specific speed limits when two objects are “very close” and “approaching”. We
also check monotonicity properties (with respect to each distance parameter),
e.g., the closer two objects, the stricter the speed limits. The notion of “ap-
proaching” can be expressed by comparing object distances in the Actuals (cur-
rent distances) and the LookAhead (predicted distances) geometric models; see
also the activation condition of ApproachingTableAndDetector in Fig. 3.

Deadlock. Sometimes objects can reach a deadlock position. Consider for ex-
ample restriction ApproachingTableAndCArm in Fig. 3. Suppose we move the
Table and the CArm towards each other. If the remaining distance is exactly 35
mm, then the speed of the CArm is limited to 0, independently of any (future)
user request for the CArm. Unless there is another way to move the CArm, this
object has reached an individual deadlock.

We aim to warn the DSL-user for such situations, where certain sensor inputs
can stop an object independently of any future user request. As we abstract from
the dependencies between distance parameters in different geometric models,
our possibilities to formulate this property are limited. We formulate it as “for
each object, and for each valuation of the Actuals geometric model, there exist
a valuation of the LookAhead geometric model (a user dependent geometric
model), such that the object can move”. This can result in false positive/negative
responses. The false negative responses may sound serious in our context, but
this check is still useful as a warning for typical domain errors.

4 From DSL Instances and Properties to SMT

In this section we describe the SMT problem generator from Fig. 1. We describe
the advanced validation properties from Section 3.2 using examples, but for
each property also a formal pattern is defined. Given any DSL instance, these
properties are mechanically instantiated to a set of SMT problems in the common
SMT-LIB format, which is supported by various SMT solvers.

In Section 4.1 we address well-definedness of expressions, and in Section 4.2
we address the other properties, which need to take all restrictions into account.
Finally, in Section 4.3 we report on our experiences with SMT solvers.

Note that all SMT expressions are written in the prefix style. As a convention,
in our examples any SMT variable GeoModel Object1 Object2 represents the
expression Distance[GeoModel](Object1,Object2) in the DSL instance. So we
can assume that GeoModel Object1 Object2 is non-negative. The SMT problem
generator (Fig. 1) guarantees that Distance[GeoModel](Object1,Object2)and
Distance[GeoModel](Object2,Object1) are represented by the same variable.
For brevity we use ahead instead of LookAhead in our naming convention.

Early Fault Detection in DSLs Using SMT Solving 189

4.1 Well-definedness of Expressions

Since users can specify complicated activation conditions or speed limits, we
provide mechanisms to warn for mathematically undefined expressions. As an
example we focus on potential divisions by zero, which can occur at two places.
First, any divisions in the activation condition are checked in isolation. Second,
divisions appearing in effect clauses are checked under the assumption that the
corresponding activation condition holds.

Consider the following restriction which contains division at both locations:

restriction DivByZeroSample
activation 1 / (1 + Distance[Actuals](Table,CArm)) > 0 &&

Distance[Actuals](Table,CArm) < 5
effect absolute limit CArm[Rotation] at

1 / (6 - Distance[Actuals](Table,CArm))

Assuming non-negative distances, both checks are satisfied in our example. The
following assertion statement encodes the check for the effect clause in SMT.

(assert (forall ((actuals_Table_CArm Real))

(implies (and (>= actuals_Table_CArm 0.0)

(> (/ 1.0 (+ 1.0 actuals_Table_CArm)) 0.0)

(< actuals_Table_CArm 5.0))

(not (= (- 6.0 actuals_Table_CArm) 0.0)))))

In this example, the SMT variable actuals Table CArm corresponds to Dis-
tance[Actuals](Table,CArm), and condition (>= actuals Table CArm 0.0)
encodes the domain knowledge that the used distances are non-negative.

4.2 Ranges, Safety, and Deadlock

The remaining properties need to take all restrictions into account. We first
introduce a procedure to translate the speed limits enforced by the restrictions
to SMT expressions. Each restriction is mapped to a single SMT expression, and
afterwards they are combined. This allows for tracing the detected faults back
to the corresponding DSL constructs in Section 5. For each identified pattern for
these properties we give an example from Fig. 3. To keep the formulae simple,
we omit the information that each distance is non-negative (see Section 4.1).

Consider the following general template of a restriction:

restriction [restriction]

activation [act_restriction]
effect
relative/absolute limit [object_movement] at [eff_restriction]

Each restriction is translated to a function definition with as parameters
the distances it depends on. We encode restrictions as functions with an if-
then-else (ite) structure with [act restriction] and [eff restriction]
specified as the condition and the then part of the conditional statement, re-
spectively.

190 S. Keshishzadeh, A.J. Mooij, and M.R. Mousavi

(define-fun func_restriction ((arg_1 Real)...(arg_n Real)) Real

(ite [act_restriction]
[eff_restriction]

infinity))

We define a sufficiently large number as infinity. If the activation condition is
not satisfied, then infinity is returned, implying that there is no speed limit.

Multiple active restrictions can affect the same absolute/relative limit of an
object movement. In this case, if at least one of the effects is active, we take the
minimum of the activated effects as the overall effect for this limit. Otherwise,
there is no restriction on the object movement. In SMT, the overall effect is
specified again as a function with an ite structure. The parameter set of this
function is the union of the parameter sets of the contributing functions.

(define-fun Object_Movement_Limit ((arg_1 Real)...(arg_n Real)) Real
(ite (or [act_restriction_1] [act_restriction_2] ...)

(min (func_restriction_1 arg_11 arg_12 ... arg_1k)

(func_restriction_2 arg_21 arg_22 ... arg_2l)

...)

([DEFAULT_VALUE])))

The value of [DEFAULT VALUE] is determined by the limit type. For relative
limits, 1 is used; for absolute limits, infinity is used.

Let RelDetTrans be the SMT function that specifies the overall relative trans-
lation limit for Detector. In our example, the only restriction that contributes to
this overall limit is ApproachingTableAndDetector, which is specified in terms
of the two parameters actuals Table Detector and ahead Table Detector.
These are also the parameters of the overall function RelDetTrans.

Ranges. For functions specifying the overall relative limit we check that the
return value is between 0 and 1 for any valuation of distance parameters. The
pattern for absolute limits is similar. For example, the following property will be
generated for Fig. 3. Given the function RelDetTrans that specifies the overall
relative translation limit for Detector, this property specifies that the relative
limit for the Translation movement of Detector is at most 1:

(assert (forall((actuals_Table_Detector Real)(ahead_Table_Detector Real))
(<= (RelDetTrans actuals_Table_Detector ahead_Table_Detector) 1.0)))

Safety. As an example, we consider the monotonicity properties for each rel-
ative/absolute limit and each rotation/translation movement with respect to
each distance parameter. Based on Fig. 3, the following property is generated
to verify the monotonicity of the relative limit of the translation movement for
Detector with respect to actuals Table Detector. This means that decreasing
this distance parameter, while maintaining the other distance parameters, may
not lead to a more relaxed limit.

(assert (forall ((actuals_Table_Detector Real)(ahead_Table_Detector Real)

(actuals_Table_Detector’ Real))

Early Fault Detection in DSLs Using SMT Solving 191

(implies

(<= actuals_Table_Detector actuals_Table_Detector’)

(<= (RelDetTrans actuals_Table_Detector ahead_Table_Detector)

(RelDetTrans actulas_Table_Detector’ ahead_Table_Detector)))))

Deadlock. We identified the following pattern to check for absence of rota-
tion/translation deadlock: “for each valuation of distance parameters in Actuals,
there exists a valuation of LookAhead (a user-dependent geometric model) such
that relative and absolute limits are non-zero”.

For the example in Fig. 3, the following property expresses deadlock freedom
of the Detector translation movement. There is no absolute limit specified for this
movement and this property only depends on the arguments of RelDetTrans.

(assert (forall ((actuals_Table_Detector Real))

(exists ((ahead_Table_Detector’ Real))
(not (= (RelDetTrans actuals_Table_Detector ahead_Table_Detector’) 0.0))

)))

4.3 Feasibility of SMT Solving

Applying this translation to real examples has led to some observations. First
of all, most state-of-the-art SMT solvers have limited support for non-linear
constraints such as exponentiation. Thus the occurrence of complex non-linear
expressions in a DSL specification may limit the analysis power of our method.
In our examples, exponentiation was mainly applied to model brake patterns.
We have temporarily isolated these patterns from the rest of the DSL. Approx-
imating non-linear constraints remains as one of the issues that we want to
investigate in our future work.

Secondly, in order to keep validation practically feasible, we have slightly
modified the SMT expressions. Since forall is an expensive operation for SMT
solvers [10], we follow a counterexample-based approach. Instead of showing that
the expressions hold for all parameter values, we aim to find parameter values
that violate the property; in other words, if the negated property cannot be
satisfied by any valuation, the property itself holds for all possible valuations.
We have not used specific facilities (such as quantifier instantiation) provided by
specific SMT solvers (such as Z3) in our analyses.

5 Automated Debugging

Based on the SMT problems presented in Section 4, the “verifier and debugger”
component in Fig. 1 checks the validity of the properties. Since we encode the
DSL restrictions as SMT functions with distance parameters, for any violated
property, SMT solvers provide a counterexample in terms of distance values.

We aim for a debugger that mechanically computes the location of any fault
in terms of the DSL instance. In this section we first describe suitable locations
to report faults for the different types of properties. Then we present a procedure
to compute these locations. Finally we discuss how to avoid computing masked
restrictions as locations.

192 S. Keshishzadeh, A.J. Mooij, and M.R. Mousavi

5.1 Fault Location

In case of any property violation, we aim to indicate the location of any fault in
the DSL instance. We distinguish three kinds of locations in the DSL:

Expression. The well-definedness property from Section 4.1 is defined for each
expression in isolation. In case of a violation, the fault location is the expres-
sion itself.

Restriction. The properties from Section 4.2 are verified against the whole
DSL instance. In these cases the fault locations are the restrictions that can
be pivotal in causing the violation. We define this as follows:

“A restriction r is a pivotal restriction for causing the violation of
property P , if there exists a set of restrictions that does not violate
property P , but after adding restriction r the property is violated.”

Fixed. If a property is violated for all subsets of the restrictions, then there is
no pivotal restriction. For our example properties, this can apply to safety
properties that specify a certain speed limit. For such properties that do not
(trivially) hold for the empty set of restrictions, we report any violations at
a fixed location in the DSL instance.

Debugging is only needed when restrictions should be identified as fault loca-
tion. In the remainder of this section, we focus on the properties from Section 4.2
that are trivially valid for the empty set of restrictions and violated by the full
set of restrictions.

5.2 Procedure to Locate a Single Pivotal Restriction

Our debugging procedure is based on the delta-debugging approach of [22]. In
[22] the delta-debugging procedure is introduced for isolating the relevant part
of a failure inducing program input. We adapt this procedure to our setting to
detect restrictions that cause property violations. In particular, for a violated
property we aim to find a pivotal restriction by narrowing down the difference
between sets of passing (satisfying the property) and failing (violating the prop-
erty) restrictions. Our procedure can be summarized as follows:

1. Choose a passing (R+) and a failing (R−) set, i.e., a set of restrictions that
satisfies the property and a set that violates the property, such that R+ ⊆
R−. We choose R+ as the empty set, and R− as the set of all restrictions.

2. Repeatedly try to minimize the difference between sets R+ and R−:
(a) Select a set R of restrictions such that R+ ⊂ R ⊂ R−;
(b) Use the SMT solver to check whether R satisfies the property;
(c) If set R satisfies the property, then replace the passing set R+ by R,

otherwise replace the failing set R− by R.
3. The single restriction r that distinguishes the passing set R+ from the failing

set R− is a pivotal restriction for the property violation.

Early Fault Detection in DSLs Using SMT Solving 193

Step 2.(a) Step 2.(b) Step 2.(c) Step 3

Iteration R+ R− R Status of R Minimization Fault

1 {} {r1, r2} {r1} satisfies the property R+ := R -

2 {r1} {r1, r2} - - - r2

Fig. 4. Isolating a faulty restriction with delta-debugging

As an example, consider Fig. 3 where the relative limit for Detector trans-
lation can be negative. Fig. 4 illustrates the application of this fault isolation
procedure to detect a faulty restriction. Restrictions r1 and r2 represent the first
and second restriction in Fig. 3. Finally, in the second iteration, restriction r2,
i.e., ApproachingTableAndDetector, is identified as a fault location.

From the description of Step 2(a) one can easily deduce that the fault isolation
procedure is non-deterministic. In the presence of multiple faulty restrictions,
each execution of this procedure can identify a different restriction.

Regarding the performance, in the worst case the number of iterations of
Step 2 is linear in the total number of restrictions. One can constrain the choice
of R in Step 2(a) to make it logarithmic. Moreover, the debugging considers
only subsets of the original specification, for which SMT solving has a lower
complexity (i.e., typically consuming much less time and memory).

5.3 Masked Restrictions

The procedure from Section 5.2 can also report restrictions as faults at points
where they are masked (see the DSL semantics in Section 2.2). To illustrate this,
we consider three example restrictions r1, r2, and r3 based on a single distance
parameter. Fig. 5(a) represents the individual relative limits for a specific object
movement in terms of the distance parameter. The overall effect is defined as
the minimum of the individual effects, as depicted in Fig. 5(b).

The effect of a restriction r is masked for a given set of distance values, if
there exists at least one restriction r′ for which the effect is less than the effect
of r for the same combination of distance values. In this example, the effect of
restriction r3 is masked by another restriction for every distance value.

Considering the range property “relative limits should be at most 1”, re-
striction r3 in isolation violates this property, and hence the procedure from
Section 5.2 can indicate this masked restriction as the fault location. Masking is
no issue for the verification, but it is undesired that debugging reports masked
restrictions as fault location.

If the semantics of the DSL is correctly implemented throughout code gener-
ation, masked restrictions will never lead to failures and hence, are considered
spurious by the domain experts. To avoid reporting masked restrictions as fault
locations, we replace all restrictions by just their unmasked parts, as shown
in Fig. 5(b). This requires a small modification of the SMT formulations from
Section 4.2. For restriction r3 it results in the following SMT expression:

194 S. Keshishzadeh, A.J. Mooij, and M.R. Mousavi

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance �d�

0.5

1.0

1.5

2.0

2.5

3.0
Relative Limit

r1

r2

r3

(a) Effects of restrictions

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance �d�

0.5

1.0

1.5

2.0

2.5

3.0
Relative Limit

(b) Unmasked parts of restrictions

Fig. 5. Masked restriction

(define-fun r3 ((d Real)) Real
(ite (and [act_r3]

(not (and [act_r1] (< [eff_r1] [eff_r3])))

(not (and [act_r2] (< [eff_r2] [eff_r3]))))

[eff_r3]

infinity))

In comparison with the encoding from Section 4.2, the activation condition is
extended with two conjuncts indicating that its effect is not masked by an active
restriction r1 nor by an active restriction r2. We apply a similar encoding to
restrictions r1 and r2. In this way masked restrictions have no effect any more,
and hence, they cannot be identified as fault location.

6 Integration with DSL Editor

We have implemented the introduced verification and debugging approach using
the Eclipse Modeling Framework (EMF, [19]). Xtext is the open-source frame-
work that we have applied to specify the grammar of the DSL. It is integrated
with Xtend for validation and code generation. Z3 [5] is the SMT solver that we
have used in our experiments. To hide all the verification and debugging strate-
gies from the user, we provide the user with a Python script that for a given DSL
instance verifies the set of predefined properties through a sequence of calls to
Z3. For any violated property the debugging procedure is automatically invoked.

Basic validators are continuously executed while editing an instance of the
DSL. To avoid additional delays while editing, we have decided not to perform
continuous validation using SMT checkers. We generate the SMT problems and
the Python script using an Xtend code generator. The validation can be initiated
on user request by invoking the Python script. The validation results are stored,
interpreted by a validator and shown back in the editor.

The user is notified about the validation results using “warnings”, which result
in a yellow underlining of the problematic parts together with a textual message;
see Fig. 6. We cannot use “errors”, because they block future executions of
all code generators (including the SMT problem generator). We also warn the
user about verification or debugging attempts for which the corresponding SMT
problem is not decidable (e.g., as a result of non-linear expressions).

Early Fault Detection in DSLs Using SMT Solving 195

Fig. 6. Debugging results displayed in the DSL editor

7 Conclusions and Future Work

We have used a Domain Specific Language (DSL) for collision prevention to
study ways to support early fault detection in industrial applications. The goal
is to add value to the use of DSLs beyond code generation. In particular we have
focused on validation types that are more advanced than the usual basic types
of validation that can be found in modern programming environments.

For this prototype DSL, we have shown a useful set of advanced properties that
can be verified efficiently using the SMT solver Z3. Actual instances consisting
of 16 distance parameters from geometric models, and 81 restrictions lead to
264 generated properties from 5 property patterns. In case of 226 violations, the
whole advanced validation process (including a non-optimized generator of SMT
problems and Python scripts (22 sec.), and verification and debugging (105 sec.))
takes about 2 minutes on a standard desktop computer. The results are displayed
at logical locations in the DSL editor. To this end, we have integrated three
techniques, viz., domain-specific languages, SMT solving and delta debugging.

In the studied DSL, restrictions can sometimes be masked by other restrictions
and hence they have no observable effect. In particular, we have shown how to
ensure that masked restrictions are not reported as fault location.

We envisage some possible extensions of the present work. The debugging
procedure can be extended to detect all possible causes of a property violation.
Moreover, we aim to investigating other abstraction levels in order to rule out
false positive/negative responses.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.

In: Handbook of Satisfiability, vol. 185, pp. 825–885 (2009)
3. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-

fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press
(2009)

4. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings of ICSE
2005, pp. 342–351. ACM (2005)

196 S. Keshishzadeh, A.J. Mooij, and M.R. Mousavi

5. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Communications of the ACM 54(9), 69–77 (2011)

7. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: SPLASH/OOPSLA Companion, pp. 307–309. ACM (2010)

8. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

9. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

10. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009)

11. Hooman, J., Mooij, A.J., van Wezep, H.: Early fault detection in industry using
models at various abstraction levels. In: Derrick, J., Gnesi, S., Latella, D., Treharne,
H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 268–282. Springer, Heidelberg (2012)

12. Hwang, J.H., Xie, T., Chen, F., Liu, A.X.: Fault localization for firewall policies.
In: Proceedings of SRDS 2009, pp. 100–106. IEEE Computer Society (2009)

13. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. ACM SIGPLAN Notices 46(6), 437–446 (2011)

14. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional de-
velopment of domain specific languages. J. STTT 12(5), 353–372 (2010)

15. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

16. Mooij, A.J., Hooman, J., Albers, R.: Gaining industrial confidence for the intro-
duction of domain-specific languages. In: Proceedings of IEESD, 2013 (to appear,
2013)

17. Ratiu, D., Voelter, M., Molotnikov, Z., Schaetz, B.: Implementing modular domain
specific languages and analyses. In: Workshop on MoDeVVa (2012)

18. Smith, A., Veneris, A., Ali, M.F., Viglas, A.: Fault diagnosis and logic debugging
using boolean satisfiability. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 24(10), 1606–1621 (2005)

19. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work. Pearson Education (2008)

20. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Notices 35(6), 26–36 (2000)

21. Woehrle, M., Bakhshi, R., Mousavi, M.R.: Mechanized extraction of topology anti-
patterns in wireless networks. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H.
(eds.) IFM 2012. LNCS, vol. 7321, pp. 158–173. Springer, Heidelberg (2012)

22. Zeller, A.: Why Programs Fail? A Guide to Systematic Debugging. Morgan Kauf-
mann (2009)

23. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Transactions on Software Engineering 28(2), 183–200 (2002)

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 197–211, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Static Detection of Implementation Errors
Using Formal Code Specification

Iman Saleh1, Gregory Kulczycki2, M. Brian Blake1, and Yi Wei3

1 Department of Computer Science, University of Miami, Florida, USA
{iman,m.brian.blake}@miami.edu

2 Cyber Innovation Unit, Battelle Memorial Institute, Virginia, USA
kulczycig@battelle.org

3 Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, USA

ywei1@nd.edu

Abstract. The software engineering community suggests that formal specifica-
tion of source code facilitates the verification that can help to identify hidden
functional errors. In this work, we investigate the impact of various levels of
formal specification on the ability to statically detect errors in code. Our goal is
to quantify the return on investment with regards to the effectiveness of identi-
fying errors versus the overhead of specifying software at various levels of de-
tail. We looked at common algorithms and data structures implemented using
C# and specified using Spec#. We selectively omitted various parts of the speci-
fication to come up with five different levels of specification, from unspecified
to highly-specified. For each level of specification, we injected errors into the
classes using a fault injection tool. Experimentation using a verifier showed that
over 80% of the errors were detected from the highest specification levels while
the levels in between generated mixed results. To the best of our knowledge,
our study is the first to quantitatively measure the effect of formal methods on
code quality. We believe that our work can help convince skeptics that formal
methods can be practically integrated into programming activities to produce
code with higher quality even with partial specification.

Keywords: Formal Methods, Mutation Testing, Experimentation.

1 Introduction

Formal Methods used in developing computer systems are mathematically based
techniques for describing and reasoning about system properties [1]. Ideally, formal
methods can provide the means of statically proving that a system has been imple-
mented correctly with respect to its specification. In other words – in theory at least –
formal methods can be used to mathematically verify that the code is correct without
ever having to run the program [2][3]. In this work, we use the Spec# verification
system [4] to investigate how formal specification and verification can be practically
employed to detect implementation errors. Our results demonstrate how writing speci-
fications can potentially increase software correctness, and our experiment provides

198 I. Saleh et al.

an insight into the usefulness of different specification constructs on improving the
code implementation practices.

We adapt a methodology from the software testing fields where code mutation is
used to assess the quality of a testing technique. Mutation testing [5][6][7] is carried
out by injecting errors in the code and measuring the ability of a testing tool to detect
these errors. The main assumption with this methodology is that the number of muta-
tion errors detected by a tool is an indication of number of errors that this tool can
detect in the future when unknown bugs are present in the code. We use a similar
methodology to evaluate the ability of code specification in detecting mutation errors.

To the best of our knowledge, our study is the first to provide an empirical
evidence of the benefits of using formal methods on writing bug-free code and to
propose using mutation testing techniques to evaluate the quality of formal specifica-
tions. We believe that our work can help convince skeptics that formal methods can
be practically integrated within programming practices to enhance code quality and
that exhaustive code specification is not required to achieve that goal. We also make
our dataset publicly available [8] to stimulate research in that direction.

2 Formal Specifications and Verification

Formal Methods used in developing computer systems are mathematically-based
techniques for describing system properties [9]. A method is formal if it has a sound
mathematical basis, typically given by a formal specification language. In our work,
we use Hoare-style specification. The specification employs preconditions and post-
conditions to specify the behavior of a method [10]. A tool that statically verifies the
correctness of the code with respect to the specifications is called a verifying compi-
ler. The input and output of a verifying compiler is shown in Figure 1. The input is a
set of mathematical specifications and code that is intended to implement those speci-
fications. A compiler performs standard checks – such as syntax and type checking –
on both the code and the specs, and then a verifier attempts to prove that the code
correctly implements the specifications.

Fig. 1. Input and output of a verifying compiler

 Static Detection of Implementation Errors Using Formal Code Specification 199

In this work, we choose Spec# [4] as our specification language as it represents a
recent effort of integrating formal specification with current programming practices.
Spec# uses constructs with similar syntax to the C# programming language. Conse-
quently, it is easier for programmers to learn the languages over other specification
languages that use special-purpose mathematical notations. We also use the Boogie
verifier for Spec#. Boogie is a static verifier that uses a theorem prover to verify that a
program or class satisfies its specification. All verifications in our experiments are
done automatically using the Boogie tool. In the following paragraphs, we describe
each construct used to write code specification along with examples that we adapt
from the Spec# documentation [4].

- Non-Null Types are used to denote whether an expression may or may not evaluate
to null. Such a mechanism helps programmers avoid null-dereference errors. For ex-
ample, the notation Transcript! t declares an attribute t as a non-null type by
using the exclamation point (!).

- Preconditions specify the conditions under which the method is allowed to be
called, using a requires clause. Here is a simple example:

class ArrayList {
public virtual void Insert(int index , object value)
requires 0 <= index && index <= Count; { . . . }

- Postconditions specify the change in the system state after a method’s execution
using ensures clauses For example, the postconditions of Insert can be specified as:

ensures Count == old(Count) + 1;
ensures value == this[index];
ensures Forall{int i in 0 : index ; old(this[i]) == this[i]};
ensures Forall{int i in index : old(Count); old(this[i]) ==
this[i+1]};

The old(Count) denotes the value of Count on entry to the method. In the third line,
the special function Forall is applied to the comprehension of the boolean expression
old(this[i]) == this[i], where i ranges over the integer values in the half-open interval
from 0 to less than index .

- Frame Conditions limit the parts of the program state that the method is allowed to
modify. For example, the following method specification denotes that method M is
permitted to have a net effect on the value of x.

void M() modifies x ; {…}

- Class Contracts are also called object invariants and spell out what is expected to
hold for each object’s data fields in the steady state of the object [4]. For example, the
following class fragment declares that the lengths of the arrays students and absent are
to be the same.

class AttendanceRecord {

Student[]! students;

bool[]! absent;

invariant students.Length == absent.Length; … }

200 I. Saleh et al.

- Loop Invariants are logical assertions that must evaluate to true at the beginning
and end of every iteration of the loop. The following code fragment shows an exam-
ple of a loop invariant.

for (int n = i; n < j; n++)

invariant i <= n && n <= j; {

s += a[n];

}

- Assertions are boolean expressions that specify assumptions within a piece of code.
Assertions are typically checked at runtime, however, they can also be used to help a
code verifier statically prove that some other code conditions hold. As an example:

public int doubler(int x){

int XX;

XX = 2 * x;

assert XX == 2 * x;

return XX;

}

3 Research Hypothesis

We are interested in studying the effect of using formal code specification and verifi-
cation in enabling the writing of bug-free code. Our research hypothesis can hence be
stated as follows: “Implementation errors based on common code mutations can be
detected statically (without running the code) by using formal code specification and
verification techniques. These errors are not detected using a non-verifying compiler.
Furthermore, the number of errors detected increases as more comprehensive specifi-
cation levels are used.”

In this experiment, specification levels are based on the inclusion or exclusion of
the various formal constructs described above, such as non-null annotations, inva-
riants, and pre and post conditions.

4 Data Set

Our dataset is comprised of a total of 248 program mutations generated out of a set of
13 formally specified C# classes. These classes are implemented and formally speci-
fied, using Spec#, by the authors of [11] based on a collection of textbook algorithms
provided in [12]. The data set represents a set of general-purpose algorithms including
search and sort algorithms, basic data structures, mathematical calculations and array
manipulation functionalities. The classes are selected as a set of simple yet practical
examples of using code specifications. Table 1 lists the classes along with short de-
scriptions of their functionalities.

Note that classes 4 and 5 represent the same implementation of the Bubble Sort al-
gorithm but with different specifications. The specification writers used this example
to demonstrate different ways to express the same assertion using different Spec#
constructs. We use this example in the experiment to show the effect of different

 Static Detection of Implementation Errors Using Formal Code Specification 201

specifications on the ability to discover errors, as will be detailed later. Our dataset is
available at [8] for use in replicating results and conducting similar experiments.

Table 1. Data Set Description

5 Methodology

We test our hypothesis by applying the following steps:

1. Each class in Table 1 is verified using the Boogie verifier to ensure that the im-
plementation initially satisfies the formal specifications.

2. A fault injection tool, implemented by the authors of [6], is used to automatically
introduce errors in each class. Software fault injection techniques are described in
[5] and the authors of [6] extend these techniques for object-oriented code. These
techniques simulate programmer errors by randomly applying mutation opera-
tors. A subset of these mutation operators, which could be generated for our code
dataset, is used in our experiment and we describe them in Table 2.

3. The Boogie verifier is executed on each mutant of each class. If the verifier gene-
rates an error, than the mutant is said to be killed and the specification has
enabled the error to be detected. Otherwise, the error has not been detected by the
automatic verifier and the mutant is said to be alive.

4. Step (3) is repeated for different types of errors and the total number of errors
detected using different specification levels is calculated.

The following specification levels are considered in the experiment:

– L0: No specification, this level acts as a baseline
– L1: Specifying only the non-null types
– L2: Adding assertions and both loop and class invariants to L1 specifications

 Class Description
1 CircQueue Circular array implementation of Queue.
2 IntStack Non-Circular array implementation of Stack.
3 ArrayCount Calculates the number of nulls in an array.
4 BubbleSort1 Implements the Bubble Sort to sort an array of integers.
5 BubbleSort2 Implements the Bubble Sort to sort an array of integers.
6 SegmentSum Calculates the sum of the elements in an array segment
7 DutchNationalFlag Given `N' objects colored red, white or blue, sorts them so

that objects of the same color are adjacent, with the colors
in the order red, white and blue.

8 GCD Calculates the Greatest Common Divisor of two numbers.
9 SumXValues Sum the first x numbers in an array.
10 Reverse Reverses the order of elements in an array.
11 Queue Non-Circular array implementation of Queue.
12 BinarySearch Implements the Binary Search to determine if an element

is in an array.
13 SumEven Sums values at the even indices of an array.

202 I. Saleh et al.

– L3: Specifying only the methods preconditions in addition to L1 specifications
– L4: The highest available level of specification of a class including non-null

types, methods contracts, frame conditions, loop and class invariants and asser-
tions.

Table 2. Mutation Operators Used in the Experiment

These levels are selected from a practicality standpoint as we believe they capture

the different levels of efforts that can be invested by programmers in writing formal
specifications. It is worth noting here that L4 is the highest specification level pro-
vided by the specification writers and does not necessarily imply a comprehensive
specification of the code behavior.

The independent variable in the proposed experiment is the specification level. The
specification level is a nominal variable that includes the five levels of specification
L0 to L4. The dependent variable is a ratio value capturing the percentage of errors
detected to the total number of errors injected into the code. This is also called the
mutation score in the software testing terminology.

The main idea is that the number of errors detected using either of the specification
levels studied in our experiment is an indication of the correctness of software pro-
duced using that level. Our goal is to measure the effectiveness of the formal

Table 3. Mutation operators applied to each class and the corresponding number of mutants

Operator Description Example
AOR Arithmetic Operator Replacement a = b + c to a = b – c
ROR Relational Operator Replacement while(a < b) to while(a > b)
PRV Reference assignment with other compatible type a = b to a = c
EOC Replace == with Equals() x == 0 to x.Equals(0)
JID Member variable initialization deletion int[] a = new int[2] to int[] a
JTD this keyword deletion this.x to x

 Class Mutation Operators No. Of Mutants
1 CircQueue AOR – ROR – EOC – JID 25
2 IntStack ROR – EOC – JID 13
3 ArrayCount ROR – JTD 7
4 BubbleSort1 AOR – ROR 22
5 BubbleSort2 AOR – ROR 22
6 SegmentSum ROR 5
7 DutchNationalFlag AOR – ROR 41
8 GCD AOR – ROR - EOC – PRV 31
9 SumXValues AOR – ROR 13

10 Reverse ROR 5
11 Queue ROR – EOC - JID 13
12 BinarySearch AOR – ROR 35
13 SumEven AOR – ROR – EOC – JID 16

Total 248

 Static Detection of Implementation Errors Using Formal Code Specification 203

specification in detecting design-time errors and hence maximizing software correct-
ness. The mutation scores are used as a measure of that effectiveness. We would also
like to study the effect of each level of specification on our ability to detect errors. A
total of 248 mutants were generated and formally verified throughout the experiment.
Table 3 gives a summary of number of mutants generated for each class and the muta-
tion operators that they cover.

6 Results and Analysis

For each class used in our experiment, we calculated the mutation score at different
levels of specifications. We then analyzed the results to test if there’s a significant
difference achieved at the different specification levels. The mutation score achieved
for each of the 13 classes is depicted in Figure 2 at different levels of specifications.

Fig. 2. The mutation scores achieved at different specification levels

Fig. 3. The mutation scores achieved at different specification levels for different types of mu-
tation operators

204 I. Saleh et al.

A boxplot [13] is a graphical way for depicting a set of data values. The bottom of
the box is the 25th percentile and the top of the box the 75th percentile. The line across
the middle of the box is the median or 50th percentile. The plot also displays outliers,
which is a value that is significantly distant from the rest of the data. The plot is used
to visualize the differences/similarities between data sets. It should be noted here that
the mutation tool generates errors that are syntactically correct and hence none of
these injected errors are detected by the C# non-verifying compiler. In other words,
the mutation score of the non-verifying compiler is consistently equal to zero. Our
next set of results calculates the mutation scores achieved at different levels of speci-
fications for different types of mutation errors. The results are depicted in Figure 3.
As seen in the figure, L4 performs the best by detecting the highest number of errors
across different error types while L2 comes at the second rank. There’s no significant
difference between L0, L1 and L3 in their ability to detect errors. Using preconditions
at L3 fails to detect errors compared to invariants used at L2. This is due to the nature
of the code employed by the experiment. We describe this case and others in more
detail in the following subsection where we take a closer look on some of the exam-
ples where errors are not detected by the specification.

6.1 Observations

− Mutants that do not Introduce a Logical Error
Some errors are not detected by any of the specification levels as shown in Figure 2.
Mainly, the errors of type JID (the deletion of a variable initialization) and JTD (the
deletion of this keyword) are never detected. However, throughout our experiment,
all JID errors have generated a Spec# compilation warning. It should also be noted
that the JTD mutation introduces an error whenever a program has a local variable
and class attributes with the same name. This was not the case in our experiment and
hence the mutation did not actually result in an error. An example is shown in Listing
3. Mutants that remove the this keyword on lines 8 or on line 11 are not killed by the
specification as they don’t constitute a logical error in this case.

− Preconditions
The results suggest that the preconditions have less ability in detecting errors than
assertions and both loop and class invariants. We note here that a mutant is killed by a
precondition if the mutation causes violation of this precondition on a method call.
This case is not common in our dataset where many programs consisted of a class
with one method. This explains the high variance of the mutation score at L3.

− Different Specification Constructs
We have also investigated a case where the same code has two different specifica-
tions. The result shows a difference in the mutation score when the same class is an-
notated with different loop invariants. This is depicted in Figure 4 where the same
implementation of the Bubble Sort algorithm has been specified differently using two
different sets of loop invariants. As shown in the figure, there’s a difference in num-
ber of error detected at L2 and L4. The BubbleSort1 code is shown in Listing 1. The
mutation score is enhanced, for BubbleSort2, when the loop invariant at line 13 is
written using Spec# comprehension keyword max as follows:

 Static Detection of Implementation Errors Using Formal Code Specification 205

invariant forall{int i in (n: a.Length);
a[i] == max{int k in (0..i); a[k]}}

According to the results, using the Spec# keyword enables better verification of the

assertion and hence achieves higher mutation score. This is due to the fact that the
Spec# verifier can smartly handle comprehension expressions, like sum, min, max,
count, and product, and translates them into verification conditions that can be tackled
by a first-order Satisfiability Modulo Theories (SMT) solver. It is hence recommended
to use these expressions in writing the formal specifications, whenever it is feasible.
More details about the verification of comprehension assertions can be found in [11].

Fig. 4. The effect of different loop invariants on error detection

1 public class BubbleSort1 {
2
3 static void Sort_Forall(int[]! a)
4 modifies a[*];
5 ensures forall{int i in (0: a.Length), int j in (0: a.Length),
6 i <= j; a[i] <= a[j]}; {
7 for (int n = a.Length; 0 <= --n;)
8 invariant 0 <= n && n <= a.Length;
9 invariant forall{int i in (n: a.Length), int k in (0: i);
10 a[k] <= a[i]}; {
11 for (int j = 0; j < n; j++)
12 invariant j <= n;
13 invariant forall{int i in (n+1:a.Length), int k in (0: i);
14 a[k]<= a[i]};
15 invariant forall{int k in (0: j); a[k] <= a[j]}; {
16 if (a[j+1] < a[j]) {
17 int tmp = a[j]; a[j] = a[j+1]; a[j+1] = tmp;
18 }
19 }
20 }
21 }
22 }

Listing 1. An implementation of the Bubble Sort algorithm

Another example, shown in Listing 2, is the implementation of a GCD calculator. A
mutant changing line 6 to be while (i < a-b) is not detected by the precondition at
line 4 but can be detected by the invariant as it causes violation to the assertion at line 7.

206 I. Saleh et al.

− Loop Invariants
In some cases, the loop invariants have actually concealed an error that is detected
when no invariant is added. This is due to the way the Boogie verifier handles loop
unfolding. The verifier treats loops as if the only thing known at the beginning of an
iteration is that the loop invariant holds. This means that loop invariants are used to
rule out unreachable states that otherwise would cause the program verifier to gener-
ate an error message [14]. Figure 5 shows two examples where loop invariants at L2
and L4 cause some errors to be undetected by the verifier as they prevent the verifier
from checking states that are specified as unreachable by the loop invariant. An ex-
ample, for ArrayCount invariant, is shown in Listing 3.

1 public class GCD{
2 static int CalculateGCD(int a, int b)
3 requires a > 0 && b > 0; {
4 int i = 1; int res = 1;
5 while (i < a+b) {
6 invariant i <= a+b;
7 invariant res > 0 && a % res == 0 && b % res == 0;
8 invariant forall{int k in (1..i), a % k == 0 && b % k == 0;
9 k <= res};{
10 i++;
11 if (a % i == 0 && b % i == 0) { res = i; }
12 }
13 return res;
14 }
15 }

Listing 2. An implementation of a GCD calculator

1 public class ArrayRefCount {
2 [Rep]public string []! a;
3 [SpecPublic] int count;
4 invariant 0 <= count && count <= a.Length;
5
6 public ArrayRefCount(string[]! input)
7 requires 0 < input.Length; {
8 this.count = 0;
9 string[]! b = new string[input.Length];
10 input.CopyTo(b, 0);
11 this.a = b;
12 }
13
14 public void CountNonNull()
15 ensures count == count{int i in (0: a.Length); (a[i] != null)};

{
16 expose(this){
17 int ct = 0;
18 for (int i = 0; i < a.Length; i++)
19 invariant i <= a.Length; //infers 0<=i
20 invariant 0 <= ct && ct <= i;
21 invariant ct == count{int j in (0: i); (a[j]!=null)}; {
22 if (a[i]!=null) ct++;
23 }
24 count = ct;
25 }
26 }
27 }

Listing 3. An implementation of a class used to count number of nulls in an array

 Static Detection of Implementation Errors Using Formal Code Specification 207

Fig. 5. The effect of loop invariants on error hiding

1 public class IntQueue {
2
3 [Rep][SpecPublic] int[]! elements = new int[10];
4 [SpecPublic] int head;
5 [SpecPublic] int tail;
6 invariant 0 <= head && head <= elements.Length;
7 invariant 0 <= tail && tail <= elements.Length;
8 invariant head <= tail;
9 ...
10 [Pure] public bool IsFull()
11 ensures result == (tail == elements.Length); {
12 return (tail == elements.Length);
13 }
14 ...
15 }

Listing 4. A code snippet of an implementation of a Queue data structure

− Errors Undetected under the Highest Level of Specification
Theoretically, all mutation errors should be detected when code is fully specified,
which is expected at L4. However, looking at the results, this is not the case. We take
a closer look at some of the cases where errors in L4 go undetected by the Boogie
verifier. Listing 4 for example shows the implementation of the isFull() method for a
queue data structure class. The queue is implemented using a static array of integers.
The isFull() method returns true if the tail of the queue is equal to number of elements
in the array. One of the mutants generated for this class consisted of changing the
return statement of the isFull() method at line 12 to be:

return (tail >= elements.Length);

This mutant is however not killed by the Boogie verifier. The reason is that, given
the class invariant at line 7, the condition tail >= elements.length is equivalent
to tail == elements.length which still satisfies the postcondition.

Another case where errors are not detected at L4 is the case when the specification
is actually incomplete. Consider for example a mutant of the code is Listing 3 (b) that
introduces an error in the swap operation at line 17 to be:

208 I. Saleh et al.

int tmp = a[j]; a[j] = a[j*1]; a[j+1] = tmp;

This mutant actually satisfies the loop invariant and the Bubble sort postcondition
as it replaces a[j+1] by a[j] whenever a[j] is greater than a[j+1], the value of a[j+1] is
however overwritten and hence this error causes distortion to the input array. The
error goes undetected as the method postcondition does not explicitly specify that the
sorted array is a permutation of the input array.

To summarize, the highest level of specification used in our experiment failed to
detect some errors due to one of two reasons: (1) The introduced error only affected
code readability but did not affect correctness, or (2) The specification was incom-
plete and hence did not comprehensively specify the code behavior.

7 Validity Discussion

7.1 Internal Validity

First, a core assumption in our experiment is that the mutation score measured at a
certain level of specification is an accurate measure for predicting software reliability
achieved at that level of specification. Our assumption stems from the fact that the set
of mutation operators used in our experiment are based on the Mothra mutation test-
ing system [15]. Mothra defines a set of mutation operators derived from studies of
programmers’ errors and correspond to mistakes that programmers typically make.
This set of operators represents more than ten years of refinement through several
mutation systems [5]. The authors of [16] extend these operators to support C# object
orientation and syntax. They empirically evaluate the quality of these mutation opera-
tors and establish their relationship to actual programmers’ errors [17]. We use the
tool that they provide in our experiment. An alternative approach would be to have
students or developers implement each algorithm, introducing a larger variety of er-
rors into the code. Such an experiment would have to guard against other threats to
validity, as results would largely depend on the population selected, their familiarity
with the code specification practices and their level of programming expertise

Secondly, the asymmetry in number of mutants generated for mutation operator
implies that, while we can draw results on the ability of specification to detect errors,
we cannot however draw conclusive connection between the type of error and the
mutation score. And third, the author of the specification is not an expert in Spec#, yet
was helped by Spec# experts [11]. In real-life scenarios, it is expected that the specifi-
er would undergo some kind of formal trainings to write the specification and hence
we consider our experiment setting to simulate a real-life case. However, these speci-
fications are not guaranteed to be comprehensive and hence we actually expect that
better mutation could be achieved with more exhaustive specifications.

Finally, the high variance in the mutation scores achieved at L3 suggests that fur-
ther study is needed before drawing conclusions on the effect of preconditions on
detecting mutation errors.

 Static Detection of Implementation Errors Using Formal Code Specification 209

7.2 External Validity

Threats to external validity are conditions that limit the ability to generalize the results
of experiments to industrial practice [16]. The data set used consisted of basic algo-
rithms whose implementations typically do not depend on object-oriented design such
as the use of inheritance or method overloading. An extension of this research is
needed to cover a broader and richer set of classes with different programming con-
structs and covering different object-oriented design patterns.

We have also used C# and Spec# as our programming and specification languages,
respectively. Hence, care should be taken if results are to be generalized to other lan-
guages, especially if different verification techniques are used. Moreover, the Spec#
verifier is neither sound nor complete. Consequently, the verifier can generate false
positives as well as false negatives when verifying the code correctness.

8 Related Work

Since the early 1980s, the research community has recognized the need for rigorous
engineering methods to face the increase in size and complexity of software systems.
Consequently, formal methods have been developed and specification languages have
been introduced such as the Vienna Definition Method (VDM) [18], the Z notation [19],
Eiffel [20], SAL [21], the Java Modeling Language (JML) [22] for Java, and the Spec#
language for C#. Additionally, there has been a significant progress in developing veri-
fication tools. The Isabelle [23] interactive theorem prover, the RESOLVE verifying
compiler [26], the Boogie verifier [4] and the ESC/Java2 [24] are some examples. The
authors of [25] present the challenges faced by current specification and verification
techniques. The work proposes some partial solutions and promising approaches to the
open problems. The myths and benefits of formal methods have been discussed by a
large number of papers, a summary can be found in [26]. In related work [27][28][29],
we proposed formal specification of data-centric Web services in order to enhance their
reuse. The justification for using formal methods and annotating code with formal asser-
tions remains however a major issue affecting their wide adaptation by programmers. In
this work, we try to address this issue by quantitatively measuring the effect of formal
methods on code quality. Our study also establishes an empirical methodology for eva-
luating the quality of the code specifications.

9 Conclusions

In this study, we empirically illustrate that formal specifications using Spec# can ena-
ble the detection of programmer’s errors at design-time. We have shown by using
statistical methods that the higher the level of specification, the higher the probability
of detecting errors. Based on our results, we can sort the specification levels by their
ability of detecting errors in the code:

1. Highest Available Specification Level.
2. Invariants and Assert statements.
3. Preconditions.
4. Non-null types or no specification.

210 I. Saleh et al.

It should be noted that, even though the highest available specifications in our ex-
periments were not guaranteed to be exhaustive, these specifications have enabled the
discovery of 83%, on average, of the injected errors. As shown in the results, some
errors are detected by using a verifying-compiler without adding code specifications.
This is due to the fact that a verifying-compiler applies some additional checks, e.g.
array bound checking and possible divisions by zero. This can be a useful practice for
developers that would like to enhance the quality of their code without adding the
effort of formally specifying it. A study of the overhead of specifying code would be
a valuable addition to the current study as it would enable developers to evaluate the
cost of formally specifying code versus developing testing tools. Finally, studying the
common specification errors and running mutation techniques on the contracts is
another interesting area for experimentation.

References

[1] Marciniak, J.J.: Encyclopedia of Software Engineering, 2nd edn. Wiley Interscience
(2001)

[2] Wing, J.M.: A Specifier’s Introduction to Formal Methods. Computer 23(9), 8–22 (1990)
[3] Harton, H.K., Sitaraman, M., Krone, J.: Formal Program Verification. In: Wah, B.W.

(ed.) Wiley Encyclopedia of Computer Science and Engineering. John Wiley & Sons,
Inc., Hoboken (2008)

[4] Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Over-
view. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS
2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

[5] Voas, J.M., McGraw, G.: Software Fault Injection: Inoculating Programs Against Errors.
John Wiley & Sons (1998)

[6] Derezińska, A.: Advanced Mutation Operators Applicable in C# Programs. In: Sacha, K.
(ed.) Software Engineering Techniques: Design for Quality. IFIP, vol. 227, pp. 283–288.
Springer, Boston (2006)

[7] Jia, Y., Harman, M.: An Analysis and Survey of the Development of Mutation Testing.
IEEE Transactions on Software Engineering 37(5), 649–678 (2011)

[8] Saleh, I.: Spec# Mutation Testing DataSet (2013), http://filebox.vt.edu/
users/imostafa/DataSets/FormalSpecification/

[9] Wah, B.W.: Wiley Encyclopedia of Computer Science and Engineering, 1st edn. Wiley-
Interscience (2009)

[10] Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Communications of the
ACM 12(10), 576–580 (1969)

[11] Leino, K.R.M., Monahan, R.: Automatic Verification of Textbook Programs that Use
Comprehensions. Presented at the ECOOP Workshop, Berlin, Germany (2007)

[12] Dijkstra, E.W., Feijen, W.H.J., Sterringa, J.: A Method of Programming, 1st English
Edn. Addison-Wesley (1988)

[13] Tukey, J.W.: Exploratory Data Analysis, 1st edn. Addison Wesley (1977)
[14] Leino, K.R.M., Müller, P.: Using the Spec# Language, Methodology, and Tools to Write

Bug-Free Programs. In: Müller, P. (ed.) LASER Summer School 2007/2008. LNCS,
vol. 6029, pp. 91–139. Springer, Heidelberg (2010)

 Static Detection of Implementation Errors Using Formal Code Specification 211

[15] DeMillo, R.A., Guindi, D.S., McCracken, W.M., Offutt, A.J., King, K.N.: An extended
overview of the Mothra software testing environment. Presented at the Proceedings of the
Second Workshop on Software Testing, Verification, and Analysis, pp. 142–151 (1988)

[16] Derezinska, A., Szustek, A.: Tool-Supported Advanced Mutation Approach for Verifica-
tion of C# Programs, Los Alamitos, CA, USA, pp. 261–268 (2008)

[17] Derezinska, A.: Quality Assessment of Mutation Operators Dedicated for C# Programs.
Presented at the Sixth International Conference on Quality Software, QSIC 2006, pp.
227–234 (2006)

[18] Jones, C.B.: Software Development: A Rigorous Approach, 1st edn. Prentice Hall (1980)
[19] Sufrin, B., Morgan, C., Sorensen, I., Hayes, I.: Notes for a Z handbook: Part 1-The ma-

thematical language, Oxford University, Computing Laboratory, Programming Research
Group (1984)

[20] Meyer, B.: Eiffel: The Language. Prentice Hall (1992)
[21] Hackett, B., Das, M., Wang, D., Yang, Z.: Modular checking for buffer overflows in the

large, New York, NY, USA, pp. 232–241 (2006)
[22] Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the Design of JML Ac-

commodates both Runtime Assertion Checking and Formal Verification. Science of
Computer Programming 55(1-3), 185–208 (2005)

[23] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, 1st edn. Springer (2002)

[24] Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting eSC/Java and JML. In: Barthe, G., Burdy,
L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp.
108–128. Springer, Heidelberg (2005)

[25] Leavens, G.T., Leino, K.R.M., Muller, P.: Specification and verification challenges for
sequential object-oriented programs. Formal Aspects of Computing 19, 159–189 (2007)

[26] Gogolla, M.: Benefits and Problems of Formal Methods. In: Llamosí, A., Strohmeier, A.
(eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 1–15. Springer, Heidelberg (2004)

[27] Saleh, I., Kulczycki, G., Blake, M.B.: Formal Specification and Verification of Data-
Centric Service Composition. In: IEEE International Conference on Web Services, ICWS
2010, pp. 131–138 (2010)

[28] Saleh, I., Kulczycki, G., Blake, M.B.: Demystifying Data-Centric Web Services. IEEE
Internet Computing 13(5), 86–90 (2009)

[29] Saleh, I., Kulczycki, G., Blake, M.B., Wei, Y.: Formal Methods for Data-Centric Web
Services: From Model to Implementation. In: IEEE International Conference on Web
Services, ICWS 2013, pp. 332–339 (2013)

Compositional Static Analysis for Implicit Join
Synchronization in a Transactional Setting

Thi Mai Thuong Tran1, Martin Steffen1, and Hoang Truong2,�

1 Department of Informatics, University of Oslo, Norway
2 University of Engineering and Technology, VNU Hanoi

Abstract. We present an effect-based static analysis to calculate upper bounds
on multithreaded and nested transactions as measure for the resource consump-
tion in an execution model supporting implicit join synchronization. The analysis
is compositional and takes into account implicit join synchronizations that arise
when more than one thread jointly commit a transaction. Central for a composi-
tional and precise analysis is to capture as part of the effects a tree-representation
of the future resource consumption and synchronization points (which we call
joining commit trees). The analysis is formalized for a concurrent variant of
Featherweight Java extended by transactional constructs. We show the soundness
of the analysis.

1 Introduction

Software Transactional Memory (STM) [13,3] has recently been introduced to concur-
rent programming languages as an alternative for lock-based synchronization, enabling
an optimistic form of synchronization for shared memory. Nested and multi-threaded
transactions are advanced features of recent transactional models. Multi-threaded trans-
actions means that inside one transaction there can be more than one thread running
in parallel. Nesting of transactions means that a parent transaction may contain one or
more child transactions which must commit before their parent. Additionally, if a trans-
action commits, all threads spawned inside must join via a commit. To achieve isolation,
each transaction operates via reads and writes on its own local copy of the memory,
called log. It is used to record these operations to allow validation or potentially roll-
backs at commit time. The logs are a critical factor of memory resource consumption
of STM. As each transaction operates on its own log of the variables it accesses, a
crucial factor in the memory consumption is the number of thread-local transactional
memories (i.e., logs) that may co-exist at the same time in parallel threads. Note that the
number of logs neither corresponds to the number of transactions running in parallel (as
transactions can contain more than one thread) nor to the number of parallel threads,
because of the nesting of transactions. A main complication is that parallel threads do
not run independently; instead, executing a commit in a transaction may lead to a form
of implicit join synchronization with other threads inside the same transaction.

� This work was partly supported by the research Project QG.11.29, Vietnam National University,
Hanoi.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 212–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ifi.uio.no
http://www.uio.no
http://uet.vnu.edu.vn

Compositional Static Analysis for Implicit Join Synchronization 213

In this paper, we develop a type and effect system for statically approximating the
resource consumption in terms of the maximum number of logs of a program. It can be
more generally understood as a compositional static analysis of a concurrency model
with implicit join synchronization. For the concrete formulation of the analysis, we
use a variant of Featherweight Java extended with transactional constructs known as
Transactional Featherweight Java (TFJ) [9]. The language features non-lexical starting
and ending a transaction, concurrency, choice and sequencing. The analysis is compo-
sitional, i.e., syntax-directed. The analysis is multi-threaded in that, due to synchro-
nization, it does not analyze each thread in isolation, but needs to take their interaction
into account. This complicates the effect system considerably, as the synchronization is
implicit in the use of commit-statements and connected to the nestedness of the trans-
actions. To our knowledge, the issue of statically and compositionally estimating the
memory resource consumption in such a setting has not been addressed.

The rest of the paper is structured as follows. Section 2 starts by illustrating the exe-
cution model and sketching the technical challenges in the design of the effect system.
Section 3 introduces the syntax and operational semantics. Section 4 presents an ef-
fect system for estimating the resource consumption. The soundness of the analysis is
sketched in Section 5. We conclude in Section 6 with related and future work.

2 Compositional Analysis of Implicit Join Synchronization

We start by sketching the concurrency model with nested and multi-threaded transac-
tions. The consequences for a compositional analysis of the memory resource consump-
tion are presented informally and by way of examples.

Example 1 (Joining commits). Consider the following (contrived) code snippet.

1 o n a c i d ; / / t h r e a d 0 (main t h r e a d)
2 o n a c i d ;
3 spawn (e1 ; commit ; commit) ; / / t h r e a d 1
4 o n a c i d ;
5 spawn (e2 ; commit ; commit ; commit) ; / / t h r e a d 2
6 commit ;
7 e3
8 commit ;
9 e4 ;

The main expression of thread 0 spawns two new threads 1 and 2. The onacid-
statement expresses the start of a transaction and commit the end. Hence, thread 1 starts
its execution at a nesting depth of 2 and thread 2 at depth 3. See also Fig. 1a, where the
values of n represent the nesting depth of open transactions at different points in the
main thread. We often write in the illustrations and examples [and] for starting resp.
committing a transaction. Note that e.g. thread 1 is executing inside the first two trans-
actions started by its parent thread and that it uses two commits (after e1) to close those
transactions. Important is that parent and child thread(s) commit an enclosing transac-
tion at the same time, i.e., in a form of join synchronization. We call an occurrence of
a commit-statement which synchronizes in that way a joining commit. Fig. 1b makes
the nesting of transactions more explicit and the right-hand edge of the corresponding
boxes marks the joining commits. E.g., e2 and e3 cannot execute in parallel since e2 is
sequentialized by a joining commit before e3 starts. #$

214 T. Mai Thuong Tran, M. Steffen, and H. Truong

[[[] e3] e4

e1]]

e2]]]

5+3+7
5+7+2

thread0

thread1

thread2

n = 0 n = 2 n = 3 n = 1

(a)

[[[] e3] e4

e1]]

e2]]]

[[[] e3] e4

e1]]

e2]]]

(b)

Fig. 1. Nested, multi-threaded transactions and join synchronization

Our goal is a compositional, static worst-case estimation of memory resource consump-
tion for the sketched execution model. To achieve isolation, an important transactional
property, each thread operates on a local copy of the needed memory which is writ-
ten back to global memory when and if the corresponding transaction commits; that
thread-local and transactional-local memory is called log. We measure the resource
consumption at a given point by the number of logs co-existing at the same time. This
ignores that different logs have different memory needs (e.g., accessing more variables
transactionally). Abstracting away from this difference, we concentrate on the synchro-
nization and nesting structure underlying the concurrency model. A more fine-grained
estimation of resource consumption per log is an orthogonal issue and the correspond-
ing refinement can be incorporated. The refinement would be based on a conservative
estimation of the memory consumption per individual transaction, which in turn de-
pends on the resource consumption per variable used in the transaction and potentially,
dependent on the transactional model, how many times variables are accessed.

Example 2 (Resource consumption). In Example 1, assume that e1 opens and closes three
nested transactions (i.e., is of the form [. . . [. . . [. . .] . . .] . . .] . . .), e2 four, e3 five, and e4

six. The resource consumption after spawning e2’s thread is at most 15 = 5+3+7 (at the
left vertical line): the main thread executes inside three transactions, thread 1 inside five
(3 from e1 plus 2 “inherited” from the parent), and thread 2 inside 7. At the point when
thread 0 executes e3, i.e., after its first commit, the worst case is 14 = 5+ 7+ 2. Note
that e2 cannot run in parallel with e3 whereas e1 can: the commit before e3 synchronizes
with the commit after e2 which sequentializes their execution. Thus e1 still contributes
5, e2 contributes only 2, and the main thread of e3 contributes 7 (i.e, 5 from e3 and 2 from
the enclosing transactions). #$

To be scalable, the analysis should be compositional. In principle, the resource con-
sumption of a sequential composition e1;e2 is approximated by the maximum of con-
sumption of its constituent parts. For e1 and e2 running (independently) in parallel, the
consumption of e1 ‖ e2 is approximated by the sum of the respective contributions. The
challenges in our setting are:

Multi-threaded analysis: due to joining commits, threads running in parallel do not
necessarily run independently and a sequential composition spawn e1;e2 does not

Compositional Static Analysis for Implicit Join Synchronization 215

sequentialize e1 and e2. They may synchronize, which introduces sequentialization,
and to be precise, the analysis must be aware of which program parts can run in par-
allel and which cannot. Assuming independent parallelism would allow us to analyze
each thread in isolation. Such a single-threaded analysis would still yield a sound
over-approximation, but would be too imprecise.

Implicit synchronization: Compositional analysis is rendered intricate as the synchro-
nization is not explicitly represented syntactically. In particular, there is no clean
syntactic separation between sequential and parallel composition. E.g., writing (e1 ‖
e2);e3 would make the sequential separation of e1 ‖ e2 from e3 explicit and would
make a compositional analysis straightforward. Here instead, the sequentialization
constraints are entailed by joining commits and it’s not explicitly represented with
which other threads, if any, a particular commit should synchronize.

Thus, the model has neither independent parallelism nor full sequentialization, but syn-
chronization is affected by the nesting structure of the multi-threaded transactions.

Example 3. Let us split the code of Example 1 after the first spawn to analyze the two
parts, say el and er independently. Writing m for the effect that over-approximates the
memory consumption, a rule for sequential composition could resemble the following:

� el :: m1 � er :: m2 m = f (m1,m2)

� el;er :: m

In the schematic rule, � e :: m is read as “expression e has effect m as interface specifica-
tion”. For compositionality, the “interface” information captured in the effects must be
rich enough such that m can be calculated from m1 and m2. Especially, the upper bound
of the overall resource consumption, i.e., the value we are ultimately interested in, is in
itself non-compositional. Consider Fig. 2, which corresponds to Fig. 1a except that we
separated the contributions of el and er (by the surrounding boxes). As the execution of
el partly occurs before er and partly in parallel, m1 must distinguish the sequential and
the parallel contribution of e1, i.e., the contribution of the spawned thread. Moreover,
the parallel part of m1 is partly synchronized with er by joining commits, and thus the
effects must contain information about the corresponding synchronization points. Ulti-
mately, the judgments of the effect system use a six-tuple of information that allows a
compositional analysis of sequential and parallel composition (plus the other language
constructs). A central part of the effect system to achieve compositional analysis is a
tree-representation of the future resource consumption and joining commits, which we
call jc-trees. #$

[[[] e3] e4

e1]]

e2]]]

el

er

;[[[[

ee11]]]]

[[]] ee33]] ee44

ee22]]]]]]

Fig. 2. Compositional analysis (sequential composition el ;er)

216 T. Mai Thuong Tran, M. Steffen, and H. Truong

Table 1. Abstract syntax

P ::= 0 | P ‖ P | p〈e〉 processes/threads
L ::= class C{�f :�T ;K; �M} class definitions
K ::= C(�f : �T){this.�f := �f} constructors
M ::= m(�x:�T){e} : T methods
e ::= v | v. f | v. f := v |if v then e else e
| let x:T = e in e | v.m(�v) expressions
| new C(�v) | spawn e | onacid | commit

v ::= r | x | null values

3 A Transactional Calculus

Next we present the syntax and semantics of TFJ. We have chosen this calculus as the
vehicle for our investigation, as it supports a quite expressive transactional concurrency
model, and secondly, it allows us to present the formal semantical analysis in a concise
manner. Note, however, that the core of our analysis, i.e., a compositional analysis of
concurrent threads with join-synchronization does not depend on the concrete choice
of language. TFJ as presented here is, with some adaptations, taken from [9]. The main
adaptations, as in [10], are: we added standard constructs such as sequential compo-
sition (in the form of the let-construct) and conditionals. Besides that, we did not use
evaluation-context based rules for the operational semantics, which simplifies the anal-
ysis. The underlying type system (without the effects) is standard and omitted here.

3.1 Syntax

Table 1 shows the abstract syntax of TFJ. A program consists of a number of process-
es/threads p〈e〉 running in parallel, where p is the thread’s identifier and e the expres-
sion being executed. The empty process is written 0. The syntactic category L captures
class definitions. In absence of inheritance, a class class C{�f :�T ;K; �M} consists of a
name C, a list of fields �f with corresponding type declarations �T (assuming that all
fi’s are different), a constructor K, and a list �M of method definitions. A constructor
C(�f :�T){this.�f := �f} of the corresponding class C initializes the fields of instances of
that class, these fields are mentioned as the formal parameters of the constructor. We
assume that each class has exactly one constructor, i.e., we do not allow constructor
overloading. Similarly, we assume that all methods defined in a class have a different
name; likewise for fields. A method definition m(�x:�T){e} : T consists of the name m of
the method, the formal parameters�x with their types �T , the method body e, and finally
the return type T of the method. In the syntax, v stands for values, i.e., expressions that
can no longer be evaluated. In the core calculus, we implicitly assume standard val-
ues like booleans, integers, . . . ; besides those, values can be object references r, vari-
ables x or null. The expressions v. f and v1. f := v2 represent field access and field up-
date respectively. Method calls are written v.m(�v) and object instantiation is new C(�v).

Compositional Static Analysis for Implicit Join Synchronization 217

The next two expressions deal with the basic, sequential control structures: conditionals
and sequential composition (represented by the let-construct). The language is multi-
threaded: spawn e starts a new thread of activity which evaluates e in parallel with the
spawning thread. Specific for TFJ are the two dual constructs onacid and commit. The
expression onacid starts a new transaction and executing commit successfully termi-
nates a transaction. For a thread spawned inside a transaction, we impose the following
restriction: after a joining commit with its parent, the child thread is not allowed to
start another transaction. This restriction is imposed to simplify the analysis later and is
not a real restriction in practice as one can transform programs easily to adhere to that
convention (at the expense of spawning further threads).

3.2 Semantics

The operational semantics of TFJ is given in two different levels: a local and a global
one. The local semantics of Table 2 deals with the evaluation of one expression/thread
and reducing configurations E � e. Local transitions are thus of the form E � e−→E ′ � e′,
where e is one expression and E a local environment. Note that in the chosen presenta-
tion, the expression starts uniformly with a let and the redex is always the left expression
of the let construct. Locally, the relevant commands only concern the current thread and
consist of reading, writing, invoking a method, and creating new objects.

Definition 1 (Local environment). A local environment E of type LEnv is a finite
sequence of the form l1:ρ1, . . . , lk:ρk, i.e., of pairs of transaction labels li and a corre-
sponding log ρi. We write |E| for the size of the local environment, i.e., the number of
pairs l:ρ in the local environment.

Transactions are identified by labels l, and as transactions can be nested, a thread can
execute “inside” a number of transactions. So, the E in the above definition is ordered,
where e.g. lk to the right refers to the inner-most transaction, i.e., the one most recently
started and committing removes bindings from right to left. For a thread with local
environment E , the number |E| represents the nesting depth of the thread, i.e., how
many transactions the thread has started but not yet committed. The corresponding logs
ρi can be thought of as “local copies” of the heap. The log ρi, a sequence of mappings
from references to values, is used to keep track of changes by a thread in transaction li.

The first four rules deal straightforwardly with the basic, sequential control flow.
Unlike the first four rules, the remaining ones do access the heap. Thus, the local envi-
ronment E is consulted to look up object references and then changed in the step. The
access and update of E is given abstractly by corresponding access functions read,
write, and extend (which look-up a reference, update a reference, resp. allocate a new
reference on the heap). Note that also the read-function actually changes the environ-
ment from E to E ′ in the step. The reason is that in a transaction-based implementation,
read-access to a variable may be logged, i.e., remembered appropriately, to be able to
detect conflicts and to do a roll-back if necessary. The premises assume that the class
table is given implicitly where fields(C) looks up fields of class C and mbody(C,m)
looks up the method m of class C. Otherwise, the rules for field look-up, field update,
method calls, and object instantiation are standard.

218 T. Mai Thuong Tran, M. Steffen, and H. Truong

The rules of the global semantics are given in Table 3. The semantics works on
configurations of the form Γ � P, where P is a program and Γ is a global environment.
Besides that, we need a special configuration error representing an error state. Basically,
a program P consists of a number of threads evaluated in parallel (cf. Table 1), where
each thread corresponds to one expression, whose evaluation is described by the local
rules. Now describing the behavior of a number of (labeled) threads or processes p〈e〉,
we need one E for each thread p. This means, Γ is a “sequence” (or rather a set) of p:E
bindings where p is the name of a thread and E is its corresponding local environment.

Definition 2 (Global enviroment). A global environment Γ of type GEnv is a finite
mapping, written as p1:E1, . . . , pk:Ek, from threads names pi to local environments Ei

(the order of bindings plays no role, and each thread name can occur at most once).

So global steps are of the form:

Γ � P =⇒ Γ ′ � P′ or Γ � P =⇒ error . (1)

Also the global steps make use of a number of functions accessing and changing
the (this time global) environment. As before, some semantical functions are left ab-
stract. However, their abstract properties relevant for proving soundness of our anal-
ysis are given later in Definition 3 after discussing the global rules. Note further, that
two specific implementations of those functions (an optimistic and a pessimistic) have
been given in [9]. As the functions’ concrete details are irrelevant for our static analy-
sis, we refer the interested reader to [9] for possible concretizations of the semantics.
Rule G-PLAIN simply lifts a local step to the global level, using the reflect-operation,
which roughly makes local updates of a thread globally visible; the premise Γ � p:E
means p:E ∈ Γ . Rule G-SPAWN deals with starting a thread. The next three rules
treat the two central commands of the calculus, those dealing with the transactions.
The first one G-TRANS covers onacid, which starts a transaction. The start function
creates a new label l in the local environment E of thread p. The two rules G-COMM

and G-COMM-ERROR formalize the successful commit resp. an erronous use of the
commit-statement outside any transaction. In G-COMM, l is the label of the transaction

Table 2. Semantics (local)

E �let x : T = v in e−→ E � e[v/x] R-RED

E �let x2 : T2 = (let x1 : T1 = e1 in e) in e′ −→ E �let x1 : T1 = e1 in (let x2 : T2 = e in e′) R-LET

E �let x : T = (if true then e1 else e2) in e−→ E �let x : T = e1 in e R-COND1

E �let x : T = (if false then e1 else e2) in e−→ E �let x : T = e2 in e R-COND2

read(E,r) = E ′,C(�u) fields(C) = �f
R-LOOKUP

E �let x:T = r. fi in e−→ E ′ �let x:T = ui in e

read(E,r) = E ′,C(�r) fields(C) = �f
write(r �→ (C(�r)[fi �→r′]),E ′) = E ′′

R-UPD

E �let x:T = r. fi := r′ in e−→ E ′′ �let x:T = r′ in e

read(E,r) = E ′,C(�u) mbody(C,m) = (�x,e)
R-CALL

E �let x:T = r.m(�r) in e′ −→ E ′ �let x : T = e[�r/�x][r/this] in e′

r fresh E ′ = extend(r �→C(�u),E)
R-NEW

E �let x:T =newC(�u) in e−→ E ′ �let x = r in e

Compositional Static Analysis for Implicit Join Synchronization 219

Table 3. Semantics (global)

Γ � p : E E � e−→ E ′ � e′ reflect(p,E ′,Γ) = Γ ′
G-PLAIN

Γ � P ‖ p〈e〉=⇒ Γ ′ � P ‖ p〈e′〉

p′ fresh spawn(p, p′ ,Γ) = Γ ′
G-SPAWN

Γ � P ‖ p〈let x : T = spawn e1 in e2〉=⇒ Γ ′ � P ‖ p〈let x : T = null in e2〉 ‖ p′〈e1〉

l fresh start(l, p,Γ) = Γ ′
G-TRANS

Γ � P ‖ p〈let x : T = onacid in e〉=⇒ Γ ′ � P ‖ p〈let x : T = null in e〉

Γ = Γ ′′, p:E E = E ′, l:ρ intranse(Γ , l) = �p = p1 . . . pk

commit(�p,�E,Γ) = Γ ′ p1:E1, p2:E2, . . . pk:Ek ∈ Γ �E = E1,E2, . . . ,Ek
G-COMM

Γ � P ‖ . . . ‖ pi〈let x : Ti = commit in ei〉 ‖ . . . =⇒ Γ ′ � P ‖ . . . ‖ pi〈let x : Ti = null in ei〉 ‖ . . .

Γ = Γ ′′, p:E E = /0
G-COMM-ERROR

Γ � P ‖ p〈let x : T = commit in e〉=⇒ error

to be committed and the function intranse(Γ , l) finds the identities p1, . . . , pk of all con-
current threads in the transaction l and which all join in the commit. In the erroneous
case of G-COMM-ERROR, the local environment E is empty; i.e., the thread executes a
commit outside of any transaction, which constitutes an error.

Definition 3. The properties of the abstract functions are specified as follows:

1. The function reflect satisfies the following condition: if reflect(p,E,Γ) = Γ ′ and
Γ = p1:E1, . . . , pk:Ek, then Γ ′ = p1:E ′1, . . . , pk:E ′k with |Ei|= |E ′i | (for all i).

2. The function spawn satisfies the following condition: Assume Γ = p:E,Γ ′′ and
p′ /∈ Γ and spawn(p, p′,Γ) = Γ ′, then Γ ′ = Γ , p′:E ′ s.t. |E|= |E ′|.

3. The function start satisfies the following condition: if start(l, pi,Γ) = Γ ′ for Γ =
p1:E1, . . . , pi:Ei, . . . , pk:Ek and for a fresh l, then Γ ′ = p1:E1, . . . , pi:E ′i , . . . , pk:Ek,
with |E ′i |= |Ei|+ 1.

4. The function intranse satisfies the following condition: Assume Γ = Γ ′′, p:E s.t.
E = E ′, l:ρ and intranse(Γ , l) = �p, then
(a) p ∈ �p and
(b) for all pi ∈ �p we have Γ = . . . , pi : (E ′i , l:ρi),
(c) for all threads p′ with p′ /∈ �p and Γ = . . . , p′:(E ′, l′:ρ ′), . . ., we have l′ �= l.

5. The function commit satisfies the following condition: if commit(�p,�E,Γ) = Γ ′ for
Γ = Γ ′′, p:(E, l:ρ) and for a �p = intranse(Γ , l) then Γ ′ = . . . , p j:E ′j, . . . , pi:E ′i , . . .
where pi ∈ �p, p j /∈ �p, p j:E j ∈ Γ , with |E ′j|= |E j| and |E ′i |= |Ei|− 1.

4 Effect System

Next we present our analysis as an effect system. The underlying types T include names
C of classes, basic types B (natural numbers, booleans, etc.) and Void. The underlying
type system for judgments of the form Γ � e : T (“under type assumptions Γ , expression
e has type T”) is standard and therefore omitted here.

220 T. Mai Thuong Tran, M. Steffen, and H. Truong

Thread-local Effects, Sequential Composition, and Joining Commits. On the local
level, the judgments of the effect part are of the following form:

n1 � e :: n2,h, l,�t,S , (2)

where n1, n2, h, and l are natural numbers with the following interpretation. n1 and
n2 are the pre- and post-condition for the expression e, capturing the current nesting
depth: starting at a nesting depth of n1, the depth is n2 after termination of e. We call the
numbers n1 resp. n2 the current balance of the thread before and after execution. Starting
from the pre-condition n1, the numbers h and l approximate the maximum resp., the
minimum value of the balance during the execution of e. Executing e, however, may
spawn new child threads and the remaining elements�t and S take their contribution into
account. Roughly speaking, the information S is needed to achieve compositionality
wrt. sequential composition and�t for compositionality wrt. parallel composition.

The S-part represents the resources of threads being spawned in e, more precisely
their resource consumption after e. S is needed when considering e in a sequential
composition with a trailing expression. E.g., in the sequential composition of Figure
2, the S of the left expression corresponds to the part of the left box which overlaps
with the trailing expression on the right. Depending on the nesting depth at the point of
being spawned, a thread may or may not be synchronized by a joining commit in the
trailing expression. E.g., splitting the program of Figure 1a after the second spawn and
before the first commit, this commit affects only the thread of e2 but not the one of e1.
To distinguish the two situations, S must contain, for each thread, the thread’s nesting
depth at the point it is spawned. Thus, S is of the form {(p1,c1),(p2,c2), . . .}, i.e., a
multi-set of pairs of natural numbers. For all spawned threads, S keeps its maximal
contribution to the resource consumption at the point after e, i.e., (pi,ci) represents
that the thread i can have maximally a resource need of pi + ci, where pi represents
the contribution of the spawning thread (“parent”), i.e., the nesting depth at the point
when the thread is being spawned, and ci the additional contribution of the child threads
themselves. In contrast,�t is needed for compositionality wrt. parallel composition. The
�t is a sequence of non-negative numbers, representing the maximal, overall (“total”)
resource consumption during the execution of e, including the contribution of all threads
(the current and the spawned ones) separated by joining commits of the main thread.
We call�t a joining-commit sequence, or jc-sequence for short. In Example 3, the right-
hand expression [spawn (e2]]])]e3]e4 has one joining commit, i.e., the jc-sequence is of
length 2. Assuming that the execution of the expression starts at nesting depth 2 (as
is the case at the end of the left-hand expression) the jc-sequence is�t = 10,7 (where
10 = ((4+ 3)+ 3)∨ ((5+ 2)+2) and 7 = 6+ 1). For uniformity, we use ∨ resp. ∧ not
only for the least upper bound resp. greatest lower bound in general, but also for the
maximum, resp. the minimum of natural numbers.

The rules for expressions are shown in Table 4. The rules for variables, the null
reference, for field look-up and field update, and for object instantiation are omitted
(cf. [11]), as they neither affect the balance nor is any other thread involved. Note that
not “counting” the resource consumption of these operations reflects the decision, as
stated earlier, that we simply use the number of logs running in parallel as measure for
memory consumption. The committing in rule T-COMMIT similarly keeps the maximal

Compositional Static Analysis for Implicit Join Synchronization 221

value constant. Considered in isolation, the commit is a joining commit, and hence�t has
two elements, where the resource consumption is decreased by one after the commit.

The treatment of sequential composition is more complicated, for the reasons ex-
plained in Section 2. In particular, calculating the jc-sequence�u and the parallel weight
S for the composed expression from the corresponding information in the premises is
intricate. The following two definitions formalize the necessary calculations:

Definition 4 (Parallel weight). Let S be a multi-set of the form {(p1,c1), . . . ,(pk,ck)}
where the pi, ci, and l are natural numbers. The overall parallel weight of S is defined
as |S|= ∑i(pi + ci). Furthermore we define the following functions:

par(S, l) = {(p,c) ∈ S | p≤ l} seq(S, l) = {(p,c) ∈ S | p > l} .
.S/l = {(l,0),(l,0), . . .} S ↓l = par(S, l)∪.seq(S, l)/l

(3)

where for .S/l , the number of tuples in S equals the number of (l,0) in .S/l .

To determine S in T-LET, the spawned weight S1 of e1 is split into two halves:

1. The part par(S1, l2) of S1 unaffected by a commit in e2 and thus able to run in
parallel with e2.

2. The part seq(S1, l2) of S1 affected by a commit in e2 via a join synchronization.

The parallel weight S1 of e1 is a multi-set of pairs (pi,ci), one pair for each spawned
thread, where the first element pi of the pair represents the balance of the parent thread
at the time of the spawning, i.e., the nesting depth inherited from the parent thread.
Whether the contribution (pi,ci) of a thread spawned in e1 counts as being composed
in parallel or affected by a join synchronization with e2 depends on whether e2 does
a commit which closes a transaction containing the thread of (pi,ci). The par(S1, l2)
consists of the half of S1 unaffected by any join synchronization. Even if seq(S1, l2)
in contrast synchronizes via joining commits in e2, it still contributes to the resource
consumption after e2, because transactions may be nested, and after the joining syn-
chronization, the rest of a spawned thread still consumes resources corresponding to
the not-yet-committed parent transactions. The operation .seq(S1, l2)/l2 calculates that
remaining contribution. So .S1/l2 contains the consumption after e1 of threads spawned
during e1. In the conclusion of T-LET, that estimation is added to e2’s own contribution
S2 by multi-set union, resulting in S1 ↓l2 ∪S2 overall. The correctness of the calculation
in T-LET depends on the restriction that once a spawned thread commits a transaction
inherited from its parent thread, it will not open another transaction. Note, however, that
corresponds to the standard semantics of the explicit join-construct, e.g., in Java, letting
the caller wait for the termination of the thread it intends to “join”.

Definition 5 (Sequential composition of jc-sequences). Let�s= s0, . . . ,sk,�t = t0, . . . , tm,
and m ≥ p ≥ 0. Then �s⊕p�t is defined as:�s⊕p�t = s0, . . . ,(sk ∨ t0 . . .∨ tp), tp+1, . . . , tm.
Given a parallel weight S and a n ≥ m ≥ 0, then �n is defined as S �n�t = t ′0, t

′
1, . . . , t

′
m

where t ′0 = t0 + |S|, t ′1 = t1 + |.S/n−1|, . . . , t ′m = tm + |.S/n−m|.

222 T. Mai Thuong Tran, M. Steffen, and H. Truong

l1

n1

s0 s1 s2 s3

(a)�s of e1

n2

t0 t1 t2 t3

(b)�t of e2

n1 n2

s0 s1 s2 s3 ∨ t0∨ t1∨ t2
p = n2− l1 = 2

t3

(c)�s⊕p�t of e1;e2

Fig. 3. Sequential composition of jc-sequences (cf. Definition 5)

The compositional calculation of the jc-sequence �u (cf. Definition 5) takes care of
two phenomena: Firstly, the parallel weight S1 at the end of e1 may increase the re-
source consumption of the jc-sequence�t. This is formalized by the � operation of
Definition 5. Secondly, joining commits of e2 may no longer be joining commits of the
composed expression let x = e1 in e2. For instance, in Example 3, the (only) joining
commit of er (the one separating e3 from e4) is no longer a joining commit of el;er, as
it cannot synchronize with anything outside the composed expression. The calculation
of the composed jc-sequence from the constituent ones as �s⊕p�t “merges” an appro-
priate number of elements from�t (using ∨) depending on how many joining commits
disappear in the composition. This number p is given by n2− l1. See also the illustra-
tion in Fig. 3, where the respective joining commits are indicated by the vertical, dotted
lines. So in rule T-LET, the overall�u is given as�s⊕p (S1 �n2

�t). The calculation of the
remaining effects in T-LET is straightforward: given the balance n1 as pre-condition,
the post-condition n2 of e1 serves as pre-condition for the subsequent e2, whose post-
balance n3 gives the corresponding final post-balance. The values h and l are calculated
by the least upper bound, resp., the greatest lower bound of the corresponding numbers
of e1 and e2. The treatment of h, l, and of the current balance is simple because the
syntax of sequential composition reflects and separates the contributions of e1 and e2.
The treatment of conditionals in rule T-COND is comparatively simple, after having

defined an appropriate order on the jc-sequences and the parallel weights.

Table 4. Effect system

T-ONACID

n � onacid:: n+1,n+1,n, [n+1], /0

n≥ 1
T-COMMIT

n � commit:: n−1,n,n−1, [n;n−1], /0

n1 � e1 :: n2,h1, l1,�s,S1 n2 � e2 :: n3,h2, l2,�t,S2

h = h1 ∨h2 l = l1 ∧ l2 p = n2− l1 S = S1 ↓l2 ∪S2 �u =�s⊕p (S1 �n2
�t)

T-LET

n1 �let x:T = e1 in e2 :: n3,h, l,�u,S

n � e1 :: n′,h1, l1,�s,S1 n � e2 :: n′,h2, l2,�t,S2
T-COND

n � if v then e1 else e2 :: n′,h1 ∨h2, l1 ∧ l2,�s∨�t,S1 $S2

n1 � e :: 0,h,0,�s,S
T-SPAWN

n1 � spawn e :: n1,n1,n1, [n1 + s0],S∪{(n1,h−n1)}

mtype(C,m) :: n′1→ n′2,h, l,�t,S n′1 ≤ n1 n = n1−n′1
T-CALL

n1 � v.m(�v) :: n′2 +n,h+n, l +n,�t +n,S+n

Compositional Static Analysis for Implicit Join Synchronization 223

Definition 6 (Order). The order relation on jc-sequences (of equal length) �s ≤�t is
defined pointwise and we write �s ∨�t for the corresponding least upper bound. For
parallel weights, the order S1 * S2 is defined as follows. For pairs of natural num-
bers and in abuse of notation, (p1,c1) * (p2,c2) iff p1 = p2 and c1 ≤ c2. Then for
S1 = {(p1,c1), . . . ,(pk,ck)} and S2 = {(p′1,c

′
1), . . . ,(p′k,c

′
k),(p′k+1,c

′
k+1), . . .}, S1 * S2

if (pi,ci)* (p′i,c
′
i), for all 1≤ i≤ k. We write S1$S2 for the corresponding least upper

bound of S1 and S2 wrt. *.

When spawning a new thread e (cf. rule T-SPAWN), the pre-condition n1 remains un-
changed, as the effect of e as determined by the premise does not concern the current,
i.e., spawning thread. Likewise, the maximal and minimal value are simply n1, as well.
The jc-sequence of total resource consumption takes into account the contribution s0 of
the spawned thread before its first joining commit plus the resource consumption n1 of
the current thread. Finally, the parallel weight S of the spawned expression is increased
by the maximal value h of e’s thread, where that contribution is split into the “inher-
ited” part n1 and the rest h− n1. The effect of a method call v.m(�v) (cf. T-CALL) is
given by the interface information of method m in class C appropriately increased by
the difference n of the balance n1 at the call-site and the specified pre-condition n′1; the
interface information for the method is looked up using mtype in the given class table
(the function is standard and its definition is omitted here). The appropriate adapation
of the interface information concerning�t and S is defined as follows:

Definition 7 (Shift). Given a natural number n, the addition�t +n on a jc-sequence�t is
defined point-wise. For parallel weights S = {(p1,c1), . . . ,(pk,ck)}, S+ n is defined as
{(p1 + n,c1), . . . ,(pk + n,ck)}.

Global Effects, Parallel Composition, and Joining Commit Trees. The rest of the
section is concerned with formalizing the resource analysis on the global level, in
essence, capturing the parallel composition of threads (cf. Table 5 below). The key
is again to find an appropriate representation of the resource effects which is compo-
sitional wrt. parallel composition. At the local level, one key was to capture the syn-
chronization point of a thread in what we called jc-sequences. Now that more than
one thread is involved, that data-structure is generalized to jc-trees which are basically
finitely branching, finite trees where the nodes are labeled by a transaction label and an
integer. With t as jc-tree, the judgments at the global level are of the following form:
Γ � P :: t.

Definition 8 (Jc-tree). Joining commit trees (or jc-trees for short) are defined as tree
of type JCtree=Node of Nat×Lab× (List ofJCtree), with typical element t. We write
�t for lists of jc-trees. We write also [] for the empty list, and Node(n, l,�t) for a jc-tree
whose root carries the natural number n as weight and l as label, and with children�t.

Definition 9 (Weight). The weight of a jc-tree is given inductively as |Node(n, l,�t)|=
n∨∑|

�t|
i=1(|ti|). The initial weight of a join tree t, written |t|1, is the weight of its leaves.

224 T. Mai Thuong Tran, M. Steffen, and H. Truong

Definition 10 (Parallel merge). We define the following two functions ⊗1 of type
JCtree× JCForest→ JCForest and ⊗2 of type JCForest2 → JCForest by mutual in-
duction. In abuse of notation, we will write ⊗ for both in the following.

t⊗1 [] = [t]
Node(n1, l, f1)⊗1 (Node(n2, l, f2) :: f) = Node(n1 +n2, l, f1⊗2 f2) :: f

Node(n1, l1, f1)⊗1 (Node(n2, l2, f2) :: f) = Node(n2, l2, f2) :: (Node(n1, l1, f1)⊗1 f) l1 �= l2

[]⊗2 f = f
t :: f1⊗2 f2 = f1⊗2 (t⊗1 f2)

Remember from Definition 1, that local environments are of the form l1:ρ1, . . . , lk:ρk.
In the semantics, the transaction labelled lk is the inner-most one.

Definition 11 (Lifting). The function lift of type LEnv×Nat+ → JCtree is given in-
ductively as:

lift([], [n]) = Node(n,⊥, [])
lift((l:ρ :: E),�s :: n) = Node(n, l, [lift(E,�s)]) .

Note that the function is undefined if |E| �= |�s|− 1. It is an invariant of the semantics,
that |E|= |�s|−1, and hence the function is well-defined for all reachable configurations.
Defining the weight (and in abuse of notation) of a jc-sequence �s as the maximum of
their elements, we obviously have |�s|= |lift(E,�s)|.

Table 5. Effect system

|E| � e :: n,h, l,�s,S t = lift(E,�s)
T-THREAD

p:E � p〈e〉 :: t

Γ1 � P1 : t1 Γ2 � P2 : t2
T-PAR

Γ1,Γ2 � P1 ‖ P2 : t1⊗2 t2

5 Correctness

This section establishes the soundness of the analysis, i.e., that the static estimation
over-approximates the actual potential resource consumption for all reachable configu-
rations. We start by defining the actual resource consumption of a program:

Definition 12 (Resource consumption). The weight of a local environment E, written
|E| is defined as its length, i.e., the number of its l:ρ-bindings. The weight of a global
environment Γ , written |Γ | is defined as the sum of weights of its local environments.

The following lemmas establish a number of facts about the operations used in the
calculation of resource consumption needed later. The proofs, omitted here for lack of
space, can be found in the technical report [11]. The next two lemmas show that the way
the resource consumption is calculated in the let-rule is associative, which is a crucial
ingredient in subject reduction.

Compositional Static Analysis for Implicit Join Synchronization 225

Lemma 1 (Associativity of parallel weight). Let S1,S2 be parallel weights and l be
a non-negative natural number. Define the function f as f (S1, l,S2) = S1 ↓l ∪S2. Then
f (f (S1, l2,S2), l3,S3) = f (S1, l2∧ l3, f (S2, l3,S3)).

Lemma 2 (Associativity of ⊕ and �). Let l1 = n1− |s|+ 1, l2 = n2− |�t|+ 1, p1 =
n2− l1, and p2 = n3− l2. Then�s⊕p1 (S1 �n2 (�t⊕p2 (S2 �n3�u))) = (�s⊕p1 (S1 �n2

�t))⊕p2

((S2∪S1 ↓l2)�n3�u).

The order on trees is defined “point-wise” in that the smaller tree must be a sub-tree
(respecting the labelling) of the larger one and furthermore each node of the smaller
tree with weight w1 is represented by the corresponding node with a weight w2 ≥ w1.

Definition 13 (Order on trees). We define the binary relation≤ on jc trees inductively
as follows: Node(n, l,�s)≤ Node(m, l,�t) if n≤ m and for each tree si in�s, there exists a
t j in�t such that si ≤ t j. (Note that the labels l in a jc tree are unique.)

Lemma 3 (Lifting of ordering). If �s ≤�t (as comparison between jc-sequences), then
lift(E,�s)≤ lift(E,�t) (as comparison between jc trees).

Lemma 4 (Lifting and commit). lift(E, l:ρ ,n ::�u)≥ lift(E,�u).

Lemma 5 (Monotonicity). If t1 ≤ t ′1 and t2 ≤ t ′2, then (t1⊗ t2)≤ (t ′1⊗ t ′2).

Next we prove preservation of well-typedness under reduction, i.e., subject reduction,
split into two parts, preservation under local resp. global reduction steps.

Lemma 6 (Subject reduction (local)). If n1 � e1 :: n2,h1, l1,�s,S1 and E1 � e1 −→ E2 �
e2, then n1 � e2 :: n2,h2, l2,�t,S2 s.t. h2 ≤ h1, l2 ≥ l1,�t ≤�s, and S2 * S1.

Lemma 7 (Subject reduction). If Γ � P :: t and Γ � P =⇒ Γ ′ � P′ then Γ ′ � P′ ::
t ′ where t ′ ≤ t.

The next lemma states a basic correctness property of our analysis, namely that for
well-typed configurations, the actual resource consumption |Γ | is over-approximated
via the result |t| of the analysis. We prove a slightly stronger statement namely that the
actual resource consumption is approximated by the initial weight |t|1.

Lemma 8. If Γ � P :: t, then |Γ | ≤ |t|1.

The final result as corollary of subject reduction and the previous lemma: the stati-
cally calculated result is an over-approximation for all reachable configurations:

Theorem 1 (Correctness). Given an initial configurationΓ0 � p0〈e0〉 and Γ0 � p0〈e0〉 ::
t (with Γ0 as empty global context). If Γ0 � p0〈e0〉=⇒∗ Γ � P, then |Γ | ≤ |t|.

6 Conclusion

We have formalized a static, compositional effect-based analysis to estimate the re-
source bounds for a transactional model with nested and multi-threaded transactions.
The analysis focuses on transactional memory systems where thread-local copies of

226 T. Mai Thuong Tran, M. Steffen, and H. Truong

memory resources (logs) caused by nested and multi-threaded transactions is our main
concern. As usual, the challenge in achieving a sound static analysis lies in obtaining
the following three goals at the same time: 1) compositionality, 2) precision, and 3)
soundness. Without compositionality, the analysis is guaranteed not to scale for large
programs, therefore not usable in practice. Without precision, compositionality and
soundness can trivially be achieved by overly abstracting all details and ultimately re-
jecting all programs as potentially erroneous. Of course without soundness, it is point-
less to formally analyze programs. Achieving all three goals in a satisfactory manner
requires human ingenuity. In our setting the effect system can, in a compositional way,
statically approximate the maximum number of logs that co-exist at run-time. This al-
lows to infer the memory consumption of the transactional constructs in the program. To
achieve a higher degree of precision in the approximation, it is important to take the un-
derlying concurrency model and its synchronization into account. The main challenge
is that the execution model has neither independent parallelism nor full sequentializa-
tion. To our knowledge, this is the first static analysis taking care of memory resource
consumption for such a concurrency model. Abstracting away from the specifics of
memory consumption and the concrete concurrent calculus, the effect system presented
here can be seen as a careful, compositional account of a parallel model based on join-
synchronization. It is promising to use our compositional techniques as explored here
also to achieve different program analyses in a similar manner for programs based on
fork/join parallelism. We expect that adapting our techniques to a model with explicit
join synchronization, as e.g., in Java, leads to a simplification, as the synchronization is
syntactically represented in the program code.

Related work. Estimating memory, or more generally, resource usage has been studied,
in various other settings. To specify upper bounds for the memory usage of dynamic, re-
cursive data types, the notion of sized types have been introduced in [8]. Their system, a
type and effect system as well, certifies a time limit for functional (and single-threaded)
programs, relying on annotations by the programmer specifying time limits for each
individual function. Hofmann and Jost [6] use a linear type system to compute linear
bounds on heap space for a first-order functional language. One significant contribution
of this work is the inference mechanism through linear programming techniques. Exten-
sions from linear to polynomial resource bounds are presented in [5] and [4]. [15] deals
with a first-order, call-by-value, garbage-collected functional language. Their approach
is based on program analysis and model checking and not type-based. For imperative
and object-oriented languages Wei-Ngan Chin et al. [2] treat explicit memory manage-
ment in a core object-oriented language. Programmers have to annotate the memory
usage and size relations for methods as well as explicit de-allocation. In [7], Hofmann
and Jost combine amortized analysis, linear programming and functional programming
to calculate the heap space bound as a function of input for an object oriented language.
In [1] the authors present an algorithm to statically compute memory consumption of a
method as a non-linear function of the method’s parameters. The bounds are not precise.
The main difference of our work in comparison to the above related ones is in that we are
dealing not only with a multi-threaded analysis —many of the cited works are restricted
to sequential languages— but also the complex and implicit synchronization struc-
ture entailed by the transactional model. The work in [14], as here, provides resource

Compositional Static Analysis for Implicit Join Synchronization 227

estimations in a concurrent (component-based) setting. The concurrency model in that
work, however, is considerably simpler, as sequential and parallel composition are ex-
plicit constructs in the investigated calculus. Simpler is also the treatment in [16], which
presents an analysis which is which does not treat parallel composition in a composi-
tional manner, i.e., the compositional treatment is single-threaded. As a consequence,
in that work, the effects do not capture the tree-like join-synchronization as here, at the
expense of compositionality for parallel composition.

Current and future work. We formalized the calculus and the type system in the Coq
theorem prover (and using the OTT semantical framework [12]) and are currently work-
ing on a formalization of the correctness proof with the longer-term goal to use Coq’s
program extraction to obtain a formally correct implementation of the effect type sys-
tem. Besides that, we plan to refine the effect system by deriving more detailed informa-
tion about the logs (e.g. memory cells per log, or number of variables per log and so on)
to infer memory consumption more precisely (which is an orthogonal problem, as men-
tioned). Furthermore, a challenging step is to automatically infer interface information
concerning the resource consumption for method declarations.

References

1. Braberman, V., Garbervetsky, D., Yovine, S.: A static analysis for synthesizing parametric
specifications of dynamic memory consumption. Journal of Object Technology 5(5) (2006)

2. Chin, W.-N., Nguyen, H.H., Qin, S.C., Rinard, M.: Memory usage verification for OO pro-
grams. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 70–86. Springer,
Heidelberg (2005)

3. Harris, T., Larus, J.R., Rawja, R.: Transactional Memory, 2nd edn. Morgan & Claypool
(2010)

4. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis. In: Pro-
ceedings of POPL 2011. ACM (January 2011)

5. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial potential. A static
inference of polynomial bounds for functional programs. In: Gordon, A.D. (ed.) ESOP 2010.
LNCS, vol. 6012, pp. 287–306. Springer, Heidelberg (2010)

6. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional pro-
grams. In: Proceedings of POPL 2003. ACM (January 2003)

7. Hofmann, M., Jost, S.: Type-based amortised heap-space analysis. In: Sestoft, P. (ed.) ESOP
2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006)

8. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using sized
types. In: Proceedings of POPL 1996. ACM (January 1996)

9. Jagannathan, S., Vitek, J., Welc, A., Hosking, A.: A transactional object calculus. Science of
Computer Programming 57(2) (August 2005)

10. Mai Thuong Tran, T., Steffen, M.: Safe commits for Transactional Featherweight Java. In:
Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 290–304. Springer, Heidelberg
(2010)

11. Mai Thuong Tran, T., Steffen, M., Truong, H.: Estimating resource bounds for software trans-
actions. Technical report 414, University of Oslo, Dept. of Informatics (December 2011)

12. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strniša, R.: Ott:
Effective tool support for the working semanticist. Journal of Functional Programming 20(1)
(2010)

228 T. Mai Thuong Tran, M. Steffen, and H. Truong

13. Shavit, N., Toitu, D.: Software transactional memory. In: 22nd POPL. ACM (January 1995)
14. Truong, H., Bezem, M.: Finding resource bounds in the presence of explicit deallocation. In:

Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 227–241. Springer,
Heidelberg (2005)

15. Unnikrishnan, L., Stoller, S.D., Liu, Y.A.: Optimized live heap bound analysis. In: Zuck,
L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575,
pp. 70–85. Springer, Heidelberg (2003)

16. Xuan, T.V., Anh, H.T., Mai Thuong Tran, T., Steffen, M.: A type system for finding upper
resource bounds of multi-threaded programs with nested transactions. In: ACM Proceedings
of the 3rd ACM International Symposium on Information and Communication Technology,
SoICT, ACM (2012)

{log} as a Test Case Generator for the Test

Template Framework

Maximiliano Cristiá1, Gianfranco Rossi2, and Claudia Frydman3

1 CIFASIS and UNR, Rosario, Argentina
cristia@cifasis-conicet.gov.ar

2 Università degli studi di Parma, Parma, Italy
gianfranco.rossi@unipr.it

3 LSIS-CIFASIS, Marseille, France
claudia.frydman@lsis.org

Abstract. {log} (pronounced ‘setlog’) is a Constraint Logic Program-
ming language that embodies the fundamental forms of set designation
and a number of primitive operations for set management. As such, it
can find solutions of first-order logic formulas involving set-theoretic op-
erators. The Test Template Framework (TTF) is a model-based testing
method for the Z notation. In the TTF, test cases are generated from test
specifications, which are predicates written in Z. In turn, the Z notation
is based on first-order logic and set theory. In this paper we show how
{log} can be applied as a test case generator for the TTF. According
to our experiments, {log} produces promising results compared to other
powerful constraint solvers supporting the Z notation, such as ProB.

1 Seeking a Test Case Generator for the TTF

Model-Based Testing (MBT) attempts to generate test cases to test a program
from its specification. These techniques have been proposed for, and applied to,
several formal notations such as Z [1], finite state machines and their exten-
sions [2], B [3], algebraic specifications [4], etc. The Test Template Framework
(TTF) was first proposed by Stocks and Carrington [1] as a MBT method for
the Z notation. Recently, Cristiá and others provided tool support for the TTF
by means of Fastest [5–7], and extended it to deal with Z constructs not included
in the original presentation [8] and beyond test case generation [9, 10].

Given a Z specification, the TTF takes each Z operation and partitions its
input space in a number of so-called test specifications. For the purpose of this
paper, it does not really matter how these test specifications are generated be-
cause the problem we are approaching here starts once they are given. In this
context, a test specification is a conjunction of atomic predicates written in the
Z notation. That is, a test specification is a conjunction of atomic predicates
involving sets as well as binary relations, functions and partial functions, se-
quences and other mathematical structures as defined in the Z Mathematical
Toolkit (ZMT) [11]. Clearly, a test specification can also be seen as the set of
elements satisfying the conjunction of atomic predicates.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 229–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

230 M. Cristiá, G. Rossi, and C. Frydman

According to the TTF, a test case is an element belonging to a test speci-
fication. In other words, a test case is a witness satisfying the predicate that
characterizes a test specification. Hence, in order to find a test case for a given
test specification it is necessary to find a solution for a Z formula. When Fastest
was first implemented (early 2007) a rough, simple satisfiability algorithm was
implemented, which proved to be reasonable effective and efficient [5, 7]. How-
ever, this algorithm tends to be slow on complex test specifications. Furthermore,
given the advances in the field of tools such as SMT Solvers [12] and Constraint
Solvers [13, 14] it is worth to evaluate them as test case generators for the TTF
since this is a clear application for them.

In [16] we have analyzed the application of SMT Solvers for this task. Con-
cerning the TTF and the way it works, our results with SMT Solvers were not
entirely satisfactory since these tools found just a few test cases. It is important
to observe that the ZMT defines some mathematical concepts in a different way
with respect to SMT Solvers. For example, in the ZMT the set of functions is
included in the set of partial functions, which is included in the type of binary
relations, which in turn is the power set of any cross product. SMT Solvers usu-
ally do not define the concept of partial functions but only total functions, and
in that case they are primitive objects (i.e. they are not defined as sets of ordered
pairs). This makes it difficult to use these tools for the TTF.

In this paper we extend our analysis to two Constraint Solvers, namely ProB
[17] and {log} [18, 19]. {log} is a Constraint Logic Programming (CLP) language
that embodies the fundamental forms of set designation and a number of primi-
tive operations for set management; and ProB is an animator and model checker,
featuring constraint solving capabilities, for the B-Method but also accepting a
significant subset of the Z notation. Both ProB and {log} natively support sets
and set-theoretic operations.

In order to apply these solvers to the problem of finding test cases from test
specifications within the TTF it is necessary to define an encoding of (at least a
significant portion of) the ZMT into the input languages of the solvers. While the
embedding of the ZMT into ProB turns out to be quite natural, the embedding
of the ZMT into {log} has not been investigated before.

Thus, an original contribution of this paper is to show how {log} can be
adapted to work with concepts and operators defined in the ZMT and how the
latter can be embedded into the former. Furthermore, we present the results of an
empirical assessment of {log} and ProB used as test case generators for the TTF,
in which we compare the effectiveness and efficiency of both systems in finding
solutions (i.e. test cases) out of a number of satisfiable test specifications. While
both {log} and ProB show good performances when compared with Fastest, it
seems that the former, with the proposed extensions, can get better results than
the latter as regards the specific application taken into account (i.e. it finds more
test cases in less time).

The encoding of the ZMT into {log}, plus the results of the empirical assess-
ment and those presented in [16], may have a non trivial impact on tools for
notations such as VDM, B and even TLA+ and Alloy. In effect, all of these

{log} as a Test Case Generator for the Test Template Framework 231

notations are based on similar set theories and, thus, can benefit from the en-
coding presented here since their users can use {log} as a satisfiability solver or
a specification animator.

This paper assumes the reader is familiar with the mathematics underlying
either Z or B and with general notions of formal software verification. Sections
2 and 3 introduce the TTF and {log}, respectively. In Section 4 we show the
modifications and extensions introduced in {log} to make it more suitable as a
test case generator for the TTF. Section 5 presents an encoding of a significant
portion of the ZMT into the input language of {log}. The results of an empirical
assessment comparing {log} and ProB are shown in Section 6. Finally, in Sections
7 and 8 we discuss the results shown in this paper and give our conclusions.

2 Test Cases in the TTF

In the TTF, test cases are derived from test specifications. The work presented in
this paper starts once test specifications have been generated, making it unnec-
essary to explain the process to get them. Test specifications are sets satisfying
predicates that depend on input and state variables. In the TTF, both test speci-
fications and test cases are described in Z by means of schemata. For example, the
first schema in Fig. 1 corresponds to a test specification borrowed from one of our
case studies, which is a Z specification of a real satellite software. In the figure,
BYTE is a given type (i.e. uninterpreted sort) and DTYPE ::= SD |HD |MD .
Observe that although mem does not participate in TransmitSDSP

24 , a test case
generator must be able to bind to it a set of 1024 ordered pairs representing a
function. The second schema in Figure 1 is a test case (generated by {log}) for
TransmitSDSP

24 . Note how the TTF uses schema inclusion to link test cases with
test specifications.

Although this example does not use partial functions nor sequences, these
features are heavily used in Z specifications and the TTF works with them.
Hence, many of the test specifications used in our empirical assessment include
partial functions and sequences, and other set operators as well. Any tool that
could be used as test case generator for the TTF should be able to deal with
such mathematical objects. Note that the problem here is not the logic structure
of the test specification (it is just a conjunction of atomic predicates), but rather
the ability to manage efficiently such mathematical objects.

TransmitSDSP
24 is a satisfiable test specification. However, the TTF tends to

generate many unsatisfiable test specifications. Fastest implements a test speci-
fication pruning method that proved to be effective, efficient and easily extensi-
ble [6, 7]. Hence, we are more concerned in finding a better test case generator
rather than a replacement for the pruning method.

3 Solving Set Formulas with {log}
{log} [18–20] is a CLP language that extends Prolog with general forms of
set data structures and basic set-theoretic operations in the form of primitive

232 M. Cristiá, G. Rossi, and C. Frydman

TransmitSDSP
24

c, t : DTYPE → N; mem : 1 . . 1024→ BYTE ; sdwp : N

c SD = 0 ∧ sdwp < 3 ∧ 33 . . 160
= ∅
33 + (t SD − c SD) ∗ 2 . . 33 + (t SD − c SD + 1) ∗ 2
= ∅
33 . . 160 ∩ 33 + (t SD − c SD) ∗ 2 . . 33 + (t SD − c SD + 1) ∗ 2
= ∅
¬ 33 . . 160 ⊆ 33 + (t SD − c SD) ∗ 2 . . 33 + (t SD − c SD + 1) ∗ 2
¬ 33 + (t SD − c SD) ∗ 2 . . 33 + (t SD − c SD + 1) ∗ 2 ⊆ 33 . . 160
33 + (t SD − c SD) ∗ 2 . . 33 + (t SD − c SD + 1) ∗ 2
= 33 . . 160

TransmitSDTC
24

TransmitSDSP
24

c = {sd #→ 0, hd #→ 1,md #→ 2}
t = {sd #→ 63, hd #→ 0,md #→ 1}
sdwp = 0
mem = {1 #→ G11084, 2 #→ G11116, . . . and 1022 more elements . . .}

Fig. 1. Typical test specification and test case in the TTF

constraints. Sets are primarily designated by set terms, that is, terms of one of
the forms: {}, whose interpretation is the empty set, or {t1, . . . , tn | s}, where s
is a set term, whose interpretation is the set {t1}∪{t2}∪ · · ·∪{tn}∪ s . The kind
of sets that can be constructed in {log} are the so-called hereditarily finite sets,
that is finitely nested sets that are finite at each level of nesting. For example,

{1,2,3}, {X,{{},{a}},{{{b}}}}, and {X|S}
are all admissible set terms. Note that properties of the set constructor, namely
permutativity and right absorption, allow the order and repetition of elements in
the set term to be immaterial. Thus, for example, the set terms {1,1,2}, {2,1},
and {1,2} all denote the same set composed of two elements, 1 and 2. Note
that similarly to Prolog’s lists, a set {t1, . . . , tn | s} can be partially specified, in
that either some of its elements t1, . . . , tn or the remaining part s can contain
unbound variables (hence “unknowns”).

Sets can be also denoted intensionally by set formers of the form {X :
exists([Y1, . . . ,Yn],G) }, where G is a {log}-goal (see below) and X ,Y1, . . . ,Yn

are variables occurring in G. The logical meaning of the intensional definition
of a set s is ∀X (X ∈ s ↔ ∃X ,Y1, . . . ,Yn(G)). The procedural treatment of
an intensional definition in {log}, however, is based on set grouping (see, e.g.,
[21]): collect in the set s all instances of X satisfying G for some instantiation
of Y1, . . . ,Yn . Thus intensional set formers are always replaced by the corre-
sponding extensional sets. Obviously, this limits the applicability of intensional
set formers to cases in which the denoted set is finite and relatively “small”.

Finally, sets can be denoted by interval terms, that is terms of the form
int(a,b), where a and b are integer constants, whose interpretation is the inte-
ger interval [a, b]. Differently from intensional sets, however, intervals are not

{log} as a Test Case Generator for the Test Template Framework 233

converted to the corresponding extensional sets; rather, constraints dealing with
intervals directly work on the endpoints of the intervals.

Basic set-theoretic operations are provided in {log} as predefined predicates,
and dealt with as constraints. For example, the predicates in and nin are used
to represent membership and not membership, respectively, the predicate subset
represents set inclusion (i.e., subset(r , s) holds iff r ⊆ s holds), while inters rep-
resents the intersection relations (i.e., inters(r , s , t) holds iff t = r ∩ s). Basically,
a {log}-constraint is a conjunction of such atomic predicates. For example,

1 in R & 1 nin S & inters(R,S,T) & T = {X}
where R, S, T and X are variables, is an admissible {log}-constraint, whose in-
terpretation states that set T is the intersection between sets R and S, R must
contain 1 and S must not, and T must be a singleton set.

The original collection of set-based primitive constraints has been extended
in [22] to include simple integer arithmetic constraints over Finite Domains as
provided by CLP(FD) systems (cf. e.g. [15]). Thus the set of predefined pred-
icates in {log} includes predicates to represent the usual comparison relations,
such as <, >, =<, etc., whereas the set of function symbols includes integer
constants and symbols to represent the standard arithmetic operations, such as
+,−, ∗, div, etc. Accordingly, a {log}-constraint can be formed by set predicates
as well as by integer comparison predicates. For example,

inters(R,S,T) & size(T,N) & N =< 2

states that the cardinality of R ∩ S must be not greater than 2.
The {log}-interpreter contains a constraint solver that is able to check satisfi-

ability of {log}-constraints with respect to the underlying set and integer arith-
metic theories. Moreover, when a constraint c holds, the constraint solver is able
to compute, one after the other, all its solutions (i.e., all viable assignments of
values to variables occurring in c). In particular, automatic labeling is called at
the end of the computation to force the assignment of values from their domains
to all integer variables occurring in the constraint, leading to a chronological
backtracking search of the solution space. For example, the constraint:

X in int(1,5) & Y in int(4,10) & inters({X},{Y},R) & X >= Y

is proved to be satisfiable and the following three solutions are computed:

X = 4, Y = 4, R = {4}; X = 5, Y = 5, R = {5}; X = 5, Y = 4, R = {}.
Possibly remaining irreducible constraints are also returned as part of the com-
puted answer for a given constraint. For example, solving the constraint
inters({1},{Y},R) will return the two following answers:

R = {1}, Y = 1; R = {}, Y neq 1.

Clauses, goals, and programs in {log} are defined as usual in CLP. In particu-
lar, a {log}-goal is a formula of the form B1 & B2 & . . . & Bk , where B1, . . . ,Bk

are either user-defined atomic predicates, or atomic {log}-constraints, or dis-
junctions of either user-defined or predefined predicates, or Restricted Universal
Quantifiers (RUQs). Disjunctions have the form G1 or G2, where G1 and G2

are {log}-goals, and are dealt with through nondeterminism: if G1 fails then

234 M. Cristiá, G. Rossi, and C. Frydman

the computation backtracks, and G2 is considered instead. RUQs are atoms of
the form forall(X in s , exists([Y1, . . . ,Yn],G)), where s denotes a set and G
is a {log}-goal containing X ,Y1, . . . ,Yn . The logical meaning of this atom is
∀X (X ∈ s → ∃Y1, . . . ,Yn(G)), that is G represents a property that all ele-
ments of s are required to satisfy. When s has a known value, the RUQ can
be used to iterate over s , whereas, when s is unbound, the RUQ allows s to be
nondeterministically bound to all sets satisfying the property G. For example,
the goal forall(X in S,X in {1,2,3}) will bound S to all possible subsets of
the set {1,2,3}. The following is an example of a {log} program:

is_rel(R) :- forall(P in R, exists([X,Y], P = [X,Y])).

dom({},{}).

dom({[X,Y]/Rel},Dom) :- dom(Rel,D) & Dom = {X/D} & X nin D.

This program defines two predicates, is rel and dom. is rel(R) is true if R is
a binary relation, that is a set of pairs of the form [X,Y]. dom(R,D) is true if D
is the domain of the relation R. The following is a goal for the above program:

R = {[1,5],[2,7]} & is rel(R) & dom(R,D)

and the computed solution for D is D = {1,2}. It is important to note that
is rel(R) can be used both to test and to compute R; similarly, dom(R,D)
can be used both to compute D from R, and to compute R from D, or simply to
test whether the relation represented by dom holds or not.
{log} is fully implemented in Prolog and can be downloaded from [20]. It can

be used both as a stand-alone interactive interpreter and as a Prolog library
within any Prolog program.

4 Improving {log} for the TTF

In order to use {log} as a test case generator for the TTF we need to shown
how (at least) a significant portion of the ZMT can be embedded into {log}’s
language. This requires primarily the definition of new predicates that implement
fundamental notions of the ZMT that are not directly supported by {log}.

The new predicates are defined in a {log}’s library specially developed for the
TTF. They include predicates for checking whether a set is a binary relation or
a partial function, for determining the range of a binary relation or the domain
of a sequence, for calculating a function on an argument, and so on.

An example of one of such predicates is the predicate is rel shown in Section
3: is rel(R) is true if the set R is a binary relation.

As another example, the following clauses restate the usual ZMT definition of
a partial function as a {log} predicate: is pfun(F) is true if F is set of ordered
pairs where any two of them cannot have the same first component:

is_pfun(F) :- forall(P1 in F, forall(P2 in F, nofork(P1,P2))).

nofork([X1,Y1],[X2,Y2]) :- (X1 neq X2 or (X1 = X2 & Y1 = Y2)).

{log} as a Test Case Generator for the Test Template Framework 235

Note that if the the second disjunct in nofork is omitted then is pfun(F) can
only be used to test if F is a partial function or not, but it cannot be used to
build a partial function. In that case, calling is pfun(F) with F unbound, will
return only the solution F = {} and nothing else. Therefore, the second disjunct
in nofork is crucial to make {log} a test case generator for the TTF.

Other fundamental notions of the ZMT are implemented in a similar manner
within the {log}-TTF library. The availability of general forms of set designation
in {log} makes this task relatively easy. However, the procedural behavior of this
straightforward approach may turn out to be quite unsatisfactory in many cases.

One of the main problems with this solution is the “generality” of the defined
predicates. As a matter of fact, the same predicate can be used either to test or
to compute values for its arguments, values can be either completely or partially
specified and, in the case of set variables, they can be represented either as
sets or as intervals. For example, dom(Rel ,Dom) can be used both to compute
the domain of a given relation and to compute the relation associated with
a given domain This means that, for example, the goal dom(Rel,int(1,10))
succeeds but it generates through backtracking 10! equivalent solutions—which
are permutations of each other—simply because int(1,10) is computed as a
set. Similarly, that goal but with a bigger interval, e.g. int(1,1000), takes too
much time even to compute the first solution. Though abstractly an interval is
just a special case of a set, in practice some operations (e.g., iterating over all its
elements) can be performed much more efficiently over intervals than over sets.

To overcome these weaknesses we split the definitions of many of the pred-
icates added to support part of the ZMT into different subcases, which are
selected according to the different possible instantiations of their parameters.
For example, predicate dom has now two different subcases:

dom1({},{}).

dom1({[X,Y]/R},D) :- D = {X/S} & X nin S & dom1(R,S).

dom2({[A,Y]},D) :- D = int(A,A).

dom2({[A,Y]/R},D) :-

D = int(A,B) & A < B & A1 is A + 1 & dom2(R,int(A1,B)).

The definition of dom(Rel,Dom) is modified accordingly so to allow it to select
the proper subcase: dom1 is selected when Dom is either an unbound variable or
it is bound to a set; vice versa, dom2 is selected when Dom is bound to an interval
(in both cases, Rel can be either bound or unbound). With these definitions,
the goal shown above, dom(Rel,int(1,1000)), terminates in a few milliseconds
and it generates one solution only.

Moreover, cases in which the presence of unbound variables may lead to a
huge number of different solutions are avoided as much as possible by making
use of the delay mechanism offered by {log}. For example,

dsubset(S1,S2) :- delay(subset(S1,S2), nonvar(S1)).

defines a version of the predicate subset that delays execution of subset(S1,S2)
while S1 is unbound. Thus, for example, given the goal dsubset(S,int(1,100))
& S = {0|R}, where S is an unbound variable, it will be immediately proved to

236 M. Cristiá, G. Rossi, and C. Frydman

be unsatisfiable since {0|R} is trivially proved to be not a subset of int(1,100),
whereas the same goal using subset would cause 2100 different solutions for S
to be attempted before concluding it is unsatisfiable, leading to unacceptable
execution time in practice. Note that, if at the end of the whole computation,
a delayed goal is still suspended then it is anyway executed, disregarding its
delaying condition.

The second main problem with the straightforward solution presented at the
beginning of this section is that often intervals need to be processed even if
their endpoints are not precisely known yet. For example, we would like to solve
a goal such as subset(int(A1,B1),int(A2,B2)), where some of the interval
endpoints A1, A2, B1, B2 are unbound variables. Unfortunately, the current ver-
sion of {log} does not allow this kind of generality in interval management. As
is common in constraint solvers dealing with Finite Domains (e.g., CLP(FD)),
interval endpoints in {log} must be integer constants. However, differently from
many other solvers, {log} allows intervals to be managed as first-class objects
of the language, being intervals just a special case of sets. For example, we can
compute the intersection of two intervals, or the union of two intervals, or the
union of an interval and a set, and so on. The endpoints of the involved intervals,
however, must be known.

To overcome these limitations, at least for those cases that are of interest
for our specific application, we define new versions of the primitive constraints
dealing with intervals whose endpoints can be unknown. For example, the im-
proved version of constraint subset, called isubset, deals efficiently with the
case where both of its arguments are intervals, through the following predicate:

intint_subset(S,T) :-

S=int(I,J) & T=int(K,N) & I =< J & K =< N & I >= K & J =< N.

If some endpoints of the involved intervals are unknown, then calling isubset

simply causes the proper integer constraints over the endpoints to be posted.
Note that we require that in an interval int(a, b), b is always greater or equal
than a. We exclude the possibility that int(a, b) with b > a is interpreted as
the empty set, which conversely was previously allowed in {log}. In fact, giving
this possibility would cause the empty set to have an infinite number of different
denotations, which may turn out to be very unpractical when interval endpoints
are allowed to be unknown and solutions for them must be computed explicitly.
Finally, note that the delayed version of the {log} predicates for the TTF are
modified so as to use these improved versions in place of the usual set constraints
(e.g., dsubset uses isubset in place of subset).

The improved versions of the set constraints have been added to {log} as
user-defined predicates but they will possibly be moved to the interpreter level
once a general algorithm for all these special cases is found. As a matter of
fact, allowing partially specified sets and intervals with unknown endpoints to
be used freely in set constraints requires non-trivial problems to be solved. For
instance, even the simple equation int(A,B) = {1,Y , 5,X , 4 |R}, where X , Y ,
A, B , and R are unbound variables, has no obvious solution. Therefore such kind
of generalizations are left for future work.

{log} as a Test Case Generator for the Test Template Framework 237

5 Embedding the ZMT into {log}
In this section we present an embedding of the ZMT into {log}, in which we
extensively exploit the new features added to {log} introduced in the previous
section. The embedding rules are given as follows:

rule name
Z notation
{log} language

where the text above the line is some Z term and the text below the line is one
or more {log} formulas. Some embedding rules are listed in Fig. 2. The rules not
shown here can be consulted in [23]. The Z terms are syntactic entities sometimes
annotated with their types. For example, in rule seq, X is any type.

Z Z

int(−109, 109)
basic types

[X]

set(X)
free types

X ::= c1| . . . |cn
X = {c1, . . . , cn}

× x #→ y

[X ,Y]
seq

s : seqX

list(s)
P |F

A : (P |F)X
dsubset(A,X)

↔ R : X ↔ Y
is rel(R)

#→ f : X #→ Y

is pfun(f)
→ f : X → Y

is pfun(f) & dom(f ,X)

⊆ A ⊆ B

dsubset(A,B)

⊆ ¬ A ⊆ B

dnsubset(A,B)
apply

f : X #→ Y f x

apply(f ,X ,Y)

#
A : FX #A

size(A,N)
∩ A ∩ B

dinters(A,B ,C)
dom

R : X ↔ Y domR

dom(R,D)

Fig. 2. Some typical embedding rules

The embedding rule labeled “basic types” is not really necessary. In effect,
given that the elements of basic types have no structure and no properties be-
yond equality, declaring them in {log} is unnecessary because the tool will au-
tomatically generate constants as needed. Furthermore, {log} will deduce that
X is a set if that name participates in a set expression. It should be noted that
the constants declared in rule “free types” must all start with a lowercase let-
ter because otherwise {log} will regard them as variables. Note that ordered
pairs are embedded as Prolog lists of length two. Some rules, such as apply
or size, need to introduce fresh variables. In that case, the expression, for in-
stance f x , is replaced by the new variable. For example, f x > 0 is embedded
as apply(F ,X ,Y) & Y > 0. is rel, is pfun, dom, dinters, dsubset and apply are
predicates included in the {log}’s-TTF library.

There are some embedding rules not shown in the figure. Lower-case vari-
ables declared in Z are embedded with a name starting with upper-case, since
otherwise {log} takes them as constants. Given a Z arithmetic expression, each

238 M. Cristiá, G. Rossi, and C. Frydman

sub-expression is given a name by introducing a new variable which is later
used to form the full expression. For example, x ∗ (y + z) is embedded as
M is Y +Z & N is X ∗M . In this way, {log} can identify common sub-expressions
improving its constraint solving capabilities.

This encoding works as long as the following hypotheses are satisfied:

Hypothesis 1. The Z specification has been type-checked and all proof obliga-
tions concerning domain checks have been discharged [24].

Hypothesis 2. All the test specifications where a partial function is applied
outside its domain have been eliminated by running the pruning algorithm
implemented in Fastest.

Hypothesis 3. Domain and ranges of binary relations have been normalized.

We believe these hypothesis are reasonable and easy to achieve. If they are not
verified before the translation is performed, the solutions returned by {log} may
turn out to be inconsistent at the Z level. Hypothesis 3 makes it unnecessary to
explicit the domain and range of binary relations because {log} will generate a
binary relation populated by any terms provided they verify the other predicates
in the goal (while normalization introduces domain and ranges as predicates).
For example, R : 1 . . 10 ↔ X is normalized as R : Z ↔ X ∧ domR ⊆ 1 . . 10,
which is simply translated as is rel(R) & dom(R,D) & dsubset(D , int(1, 10)).

Besides, note that the untyped character of {log} does not conflict with
Z, at least as a test case generator for the TTF. Consider a Z specification
with two basic types, X and Y , and the test specification [A : PX ; B :
PY ; v : X ; w : Y | v ∈ A ∧ w ∈ B]. When this is translated into {log}
it becomes: dsubset(A,X) & dsubset(B ,Y) & V in A & W in B . Since X and
Y are unbound variables, part of a possible solution for this goal could be
A = {a}, B = {a}, V = a, W = a. Although in this paper we are concerned
only with the translation from Z to {log}, we want to emphasize that when a test
case returned by {log} is translated back to Z the types of the variables at the Z
level must be considered. For example, the solution above must be translated as
A = {aX } ∧ B = {aY } ∧ v = aX ∧ w = aY , where aX and aY are assumed
to be constants of type X and Y , respectively, created during the translation by
noting that A and B , at the Z level, have different types.

6 Empirical Assessment

In this section we empirically assess {log} as a test case generator for the TTF.
In order to evaluate its effectiveness and efficiency we compare it with ProB,
which is a mainstream tool with constraint solving capabilities for the B notation
(which in turn uses a mathematical toolkit similar to the ZMT).

Since Fastest was first implemented, it has been tested and validated with
eleven Z specifications, some of which are formalizations of real requirements.
For each of them, a number of test specifications are generated. After eliminating
those that are unsatisfiable, Fastest tries to find a test case for the remaining
ones. However, it fails to find test cases for 154 out of 475 satisfiable test speci-
fications. In [16], we have chosen 68 of these test specifications for which Fastest

{log} as a Test Case Generator for the Test Template Framework 239

fails to evaluate different tools as test case generators for the TTF1. We consider
that these test specifications are representative of the problem at hand since,
although they are satisfiable, Fastest was unable to solve them, meaning that
they are among the most complex.

In order to evaluate {log} and compare it with ProB we make use of this same
collection of test specifications. Each specification is translated from Z into the
input languages of {log} by applying the encoding described in Sect. 5, and to
ProB (in this case the encoding is straightforward requiring only a syntactic
translation). So far, the translation is done “by hand”, since we consider that
implementing an automatic translator before having some evidence of what tool
is the best test case generator for Fastest could have been a waste of time. At the
same time, the manual translation can be as unreliable as an unverified program
implementing the translation. To minimize errors in the translations, however,
all the test specifications were manually verified by two different persons besides
who wrote them. The Z test specifications and their corresponding translations
will become test cases for the automatic translator that has been started after
the assessment was completed.

These experiments were ran on the following platform: Intel CoreTM i5-
2410M CPU at 2.30GHz with 4 Gb of main memory, running Linux Ubuntu
12.04 (precise) of 32-bit with kernel 3.2.0-30-generic-pae. {log} 4.6.16 over SWI-
Prolog 5.8.0 for i386 and ProB 1.3.5-beta14 over SICStus Prolog 4.2.0 (x86-
linux-glibc2.7) were used during the experiments. The original Z test speci-
fications and their translation into {log} and ProB can be downloaded from
http://www.fceia.unr.edu.ar/~mcristia/setlog-ttf.tar.gz. The transla-
tion of each test specification is saved in a file ready to be loaded into the corre-
sponding tool. Scripts to run the experiments are also provided. The results can
be analyzed with simple grep commands.

We ran two experiments for each tool differing in the timeouts set to let the
tools to find a solution for each test specification (otherwise they may run forever
in some goals). The two timeouts are 1 second and 1 minute. Hence, both tools
can return two possible answers: a) the solution for the goal; or b) some error
condition like timeout or an indication that the goal cannot be solved due to
some limitation of the tool.

The intention of Table 1 is to provide some measure of the complexity and
size of each case study from which the 68 test specifications were taken (for
more information see [7]). R/T means whether the Z specification was writ-
ten from real requirements or not. LOZC stands for lines of Z code in LATEX
mark-up. Columns State and Oper represent the number of state variables and
operations, respectively, defined in each specification. Unsolved is the number
of satisfiable test specifications that Fastest failed to solve in each case study.

1 We have chosen 68 test specifications out of 154 because the unchosen specifications
belong to the same case study, they are all very similar to each other (in many
of them only a variable ranging over an enumerated type changes its value leaving
the problematic predicates the same), and similar to some of those included in the
experiments.

240 M. Cristiá, G. Rossi, and C. Frydman

Table 1. Complexity and size of the case studies

N Case study R/T LOZC State Oper. Unsolved

1 Savings accounts (3) Toy 165 3 6 8
2 Savings accounts (1) Toy 171 1 5 2
3 Launcher vehicle Real 139 4 1 8
4 Plavis Real 608 13 13 29
5 SWPDC Real 1,238 18 17 12
6 Scheduler Toy 240 3 10 4
7 Security class Toy 172 4 7 4
8 Pool of sensors Toy 46 1 1 1

Table 2 summarizes the results of this empirical assessment. As can be seen, the
table is divided in two parts. The first one shows the figures for ProB, and the
second those for {log}. Each part, in turn, is divided into the two experiments
ran for each tool. For each experiment the number of solved goals (Sol) and
unsolved goals (Uns) of each case study, are shown. The last row of the table
shows the time spent by each tool in processing the 68 goals for each experiment.

As can be seen, these experiments show that {log} outperforms ProB in the
number of solved goals and in the time spent in doing that. In the 1 second
experiment, {log} solves 52 goals in 29 seconds while ProB solves 40 in 1 minute,
that is a 30% increase in effectiveness and a 50% increase in efficiency. Despite
of what Table 2 may suggest, {log} does not solve all the goals that ProB does.
Indeed, in case studies 4 and 5 both tools discover the same number of test cases
but each tool solves goals that the other does not. Combining all the goals solved
by both tools, in the 1 minute experiment we get a total of 58 goals solved. This
suggests that combining both tools can be beneficial for Fastest and that there

Table 2. Summary of the empirical results

ProB {log}
N 1 s 1 m 1 s 1 m

Sol Uns Sol Uns Sol Uns Sol Uns

1 7 1 7 1 8 8
2 1 1 1 1 2 2
3 8 8 8 8
4 17 12 17 12 17 12 17 12
5 12 10 2 10 2 10 2
6 2 2 2 2 2 2 4
7 4 4 4 4
8 1 1 1 1

Totals 40 28 50 18 52 16 54 14

Time 1 m 0 s 19 m 40 s 0 m 29 s 13 m 43 s

{log} as a Test Case Generator for the Test Template Framework 241

are more improvements to add to {log}. Note that the tools differ the most in
the 1 second experiments, where {log} solves 52 goals and ProB 40. This might
suggest that {log} implements rules that initially narrow the search space better
than ProB. The fact that sets in ProB are implemented as Prolog’s lists whereas
in {log} they are first-class objects, might also have a non-negligible impact.

7 Discussion

According to [17], in ProB “sets are represented by Prolog lists” and “any global
set of the B machine, . . . , will be mapped to a finite domain within SICStus Pro-
log’s CLP(FD) constraint solver”. Conversely, {log} is based on a well-developed
theory of sets and deals with sets and set constraints as first-class entities of the
language. Moreover, in order to get better efficiency it combines general set
constraint solving with efficient constraint solving over Finite Domains. This
combination allows {log} to offer various advantages compared to CLP(FD). On
the one hand, the presence of very general and flexible set abstractions in {log}
provides a convenient framework to model problems that are naturally expressed
in terms of sets, whereas CLP(FD) may require quite unnatural mappings to in-
tegers and sets of integers. On the other hand, the deep combination of the two
models, i.e. that of hereditarily finite sets and that of Finite Domains, allows
domains in {log} to be constructed and manipulated as other sets through gen-
eral set constraints, rather than having to be completely specified in advance as
usual in FD constraint programming. The improvement added to {log} for the
TTF, which allows intervals to have endpoints with unknown values (see Section
4) is another step ahead with respect to CLP(FD).

The results shown in this paper might indicate that treating sets as first-class
objects of a CLP language would be the right choice to further enlarge the class
of goals that can be solved in a reasonable time. All this, in turn, might be an
indication that sets present fundamental differences with respect to other data
structures—such as functions, lists, arrays, etc.—requiring specific theories and
algorithms to solve the satisfiability problem of set theory. The results shown
in [16] would also indicate that set processing would require a theory such as
the one underlying {log}, and not those underlying SMT solvers. The previous
analysis might partially conflict with [25, 26], since in these papers the authors
are able to discharge a number of proof obligations generated in B specifications
by encoding its mathematical model in some SMT solvers. However, although
dual problems, satisfiability is not exactly the same than proof.

Yet another indication reinforcing the previous analysis is the fact that we
have observed that {log} might not solve some goals because binary relations,
partial functions and lists are not treated as first-class entities. For instance, if
a goal requires some partial functions to have different cardinalities, but there
is no constraint over their elements, {log} may iterate over sets of, say, size one
trying with different elements, but not different sizes. If there is a large number of
elements it would make {log} to run for a long time before finding the solution—if
it ever terminates. According to the ZMT, lists and (total and partial) functions

242 M. Cristiá, G. Rossi, and C. Frydman

are all binary relations. Adding specific constraint solving capabilities for binary
relations including concepts such as domain and range could make {log} to be
more effective in dealing with all of them. So far, as shown in sections 4 and 5,
binary relations are treated as sets of ordered pairs, i.e. not as first-class objects.

8 Conclusions

We have shown how {log} has been improved to use it as a test case generator
for the TTF. An empirical assessment suggests that {log} would perform better
than ProB, in finding more test cases in less time. After these experiments we
can say that {log} should be considered as a good constraint solver candidate
for Fastest and, probably, for other tools of model-based notations such as Z, B,
TLA+, Alloy and VDM, given that they are based on similar set theories.

In the near future we plan to write the translator between Z and {log} in order
to automatize test case generation in Fastest. Also, we will investigate whether
or not binary relations (and thus partial functions, sequences, etc.) should be
promoted to first-class objects of the CLP language embodied by {log}, so it
improves once again its constraint solving capabilities.

Acknowledgments. This work has been partially supported by the GNCS
project “Specifiche insiemistiche eseguibili e loro verifica formale”, and by AN-
PCyT PICT 2011-1002.

References

1. Stocks, P., Carrington, D.: A Framework for Specification-Based Testing. IEEE
Trans. on Software Engineering 22(11), 777–793 (1996)

2. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state ma-
chines from abstract state machines. In: ISSTA 2002: Proc. 2002 ACM SIGSOFT
Int’l Symp. on Software Testing and Analysis, pp. 112–122. ACM (2002)

3. Legeard, B., Peureux, F., Utting, M.: A Comparison of the BTT and TTF Test-
Generation Methods. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.)
ZB 2002. LNCS, vol. 2272, p. 309. Springer, Heidelberg (2002)

4. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Softw. Eng. J. 6(6), 387–405 (1991)

5. Cristiá, M., Monetti, P.R.: Implementing and Applying the Stocks-Carrington
Framework for Model-Based Testing. In: Breitman, K., Cavalcanti, A. (eds.)
ICFEM 2009. LNCS, vol. 5885, pp. 167–185. Springer, Heidelberg (2009)

6. Cristiá, M., Albertengo, P., Rodŕıguez Monetti, P.: Pruning testing trees in the
Test Template Framework by detecting mathematical contradictions. In: Fiadeiro,
J.L., Gnesi, S. (eds.) SEFM, pp. 268–277. IEEE Computer Society (2010)

7. Cristiá, M., Albertengo, P., Frydman, C., Plüss, B., Monetti, P.R.: Tool support
for the Test Template Framework. Software Testing, Verification and Reliability,
n/a–n/a (2012), http://dx.doi.org/10.1002/stvr.1477

8. Cristiá, M., Frydman, C.S.: Extending the Test Template Framework to deal with
axiomatic descriptions, quantifiers and set comprehensions. In: [27], pp. 280–293

http://dx.doi.org/10.1002/stvr.1477

{log} as a Test Case Generator for the Test Template Framework 243

9. Cristiá, M., Plüss, B.: Generating natural language descriptions of Z test cases. In:
Kelleher, J.D., Namee, B.M., van der Sluis, I., Belz, A., Gatt, A., Koller, A. (eds.)
INLG, pp. 173–177. The Association for Computer Linguistics (2010)

10. Cristia, M., Hollmann, D., Albertengo, P., Frydman, C., Monetti, P.R.: A language
for test case refinement in the Test Template Framework. In: Qin, S., Qiu, Z. (eds.)
ICFEM 2011. LNCS, vol. 6991, pp. 601–616. Springer, Heidelberg (2011)

11. Saaltink, M.: The Z/EVES mathematical toolkit version 2.2 for Z/EVES version
1.5. Technical report, ORA Canada (1997)

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53, 937–977 (2006)

13. Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds.): CSCLP 2003. LNCS
(LNAI), vol. 3010. Springer, Heidelberg (2004)

14. Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the minizinc challenge. Con-
straints 15(3), 307–316 (2010)

15. Schulte, C., Carlsson, M.: Finite Domain Constraint Programming Systems. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming,
pp. 493–524. Elsevier (2006)

16. Cristiá, M., Frydman, C.: Applying SMT solvers to the Test Template Framework.
In: Petrenko, A.K., Schlingloff, H. (eds.) Proc. 7th Workshop on Model-Based
Testing, Tallinn, Estonia, March 25. Electronic Proc. in Theoretical Computer
Science, vol. 80, pp. 28–42. Open Publishing Association (2012)

17. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

18. Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: A language for programming in
logic with finite sets. J. Log. Program. 28(1), 1–44 (1996)

19. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861–931 (2000)

20. Rossi, G.: {log}, http://people.math.unipr.it/gianfranco.rossi/
setlog.Home.html (last access)

21. Dovier, A., Pontelli, E., Rossi, G.: Intensional sets in CLP. In: Palamidessi, C.
(ed.) ICLP 2003. LNCS, vol. 2916, pp. 284–299. Springer, Heidelberg (2003)

22. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: Integrating finite domain constraints
and clp with sets. In: PPDP, pp. 219–229. ACM (2003)

23. Cristiá, M., Rossi, G.: Translation of TTF test specifications into {log},
http://www.fceia.unr.edu.ar/~mcristia/publicaciones/

encoding-ttf-setlog.pdf (last access: December 2012)
24. Saaltink, M.: The Z/EVES System. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.)

ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)
25. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for Rodin. In: [27],

pp. 194–207
26. Mentré, D., Marché, C., Filliâtre, J.C., Asuka, M.: Discharging proof obligations

from Atelier B using multiple automated provers. In: [27], pp. 238–251
27. Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,

Riccobene, E. (eds.): ABZ 2012. LNCS, vol. 7316. Springer, Heidelberg (2012)

http://people.math.unipr.it/gianfranco.rossi/setlog.Home.html
http://people.math.unipr.it/gianfranco.rossi/setlog.Home.html
http://www.fceia.unr.edu.ar/~mcristia/publicaciones/encoding-ttf-setlog.pdf
http://www.fceia.unr.edu.ar/~mcristia/publicaciones/encoding-ttf-setlog.pdf

Zero Overhead Runtime Monitoring�

Daniel Wonisch, Alexander Schremmer, and Heike Wehrheim

University of Paderborn
Germany

{alexander.schremmer,heike.wehrheim}@upb.de

Abstract. Runtime monitoring aims at ensuring program safety by
monitoring the program’s behaviour during execution and taking appro-
priate action before a program violates some property. Runtime moni-
toring is in particular important when an exhaustive formal verification
fails. While the approach allows for a safe execution of programs, it may
impose a significant runtime overhead.

In this paper, we propose a novel technique combining verification
and monitoring which incurs no overhead during runtime at all. The
technique proceeds by using the inconclusive result of a verification run as
the basis for transforming the program into one where all potential points
of failure are replaced by HALT statements. The new program is safe by
construction, behaviourally equivalent to the original program (except
for unsafe behaviour), and has the same performance characteristics.

1 Introduction

Runtime verification aims at checking the adherence of software to specific prop-
erties during the actual execution of the program. It is in particular applied when
an exhaustive formal verification (e.g. via model checking) cannot be performed
due to the complexity of the software. Runtime monitoring is a specific form
of runtime verification which uses monitoring concepts to observe the program
behaviour, either by directly inlining monitors into the program [13,15,16] or by
using tools or specific hardware for observation. Different languages for specify-
ing the properties to be monitored [1] as well as synthesis techniques for monitor
generation [2] exist. While ensuring safe program execution, monitoring can in-
cur a significant runtime overhead. Therefore, a number of approaches [12,8] aim
at residual monitor generation where the results of prior (typically static) anal-
ysis’ are used to make the monitor (and thus the monitoring overhead) smaller.
These techniques can however not completely remove all monitoring code in the
general case.

In this paper, we propose a technique which can completely dispense with
monitoring even though an exhaustive formal verification might have failed due
to the programs complexity. Like e.g. [12] the technique builds on a prior analy-
sis, here in the form of an overapproximating predicate analysis as carried out by

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 244–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Zero Overhead Runtime Monitoring 245

the tool CPAchecker [7]. Our interest is in trace properties specified by finite
automata (also called path or protocol properties), i.e. requirements on the al-
lowed sequences of events. Events are first of all method calls, but could also be
arbitrary other statements. The predicate analysis of CPAchecker times out
once the available memory is exceeded. In this case, the analysis will end with
an inconclusive result [5] showing potential points of failure (PPFs, terminology
from [12]; error states in CPAchecker terminology) where the property might
be violated. Instead of using this result for residual monitor generation, we use
it to transform the original program into a new one which needs no tracking of
monitor state transitions at all anymore. More precisely, we take the abstract
reachability tree (ART) as generated by the predicate analysis and transform it
into a program by taking it as the control flow graph of the new program. The
only change we make are at nodes representing PPFs: here, we will replace the
original statement (which appears on the edge of the ART) by a HALT state-
ment1. The resulting new program is then safe by construction (the program
stops before it fails). At the same time, the new program will execute exactly
the same safe traces as the old one since the HALT statements will only be
reached in the unsafe case. We have thus achieved the same effect as common
runtime monitoring techniques.

Apart from the prior predicate analysis the only overhead coming with our
technique is in the size of the transformed program. It usually is larger than
the original program (in terms of lines of code), which can have an effect on the
compilation time and the size of the memory used for storing the program. How-
ever, its runtime performance (ignoring cache effects) is the same (or even better)
than that of the original program: on safe paths the original and the transformed
program will execute exactly the same sequence of statements, on unsafe paths
the transformed program halts as soon as running into the failure becomes un-
avoidable. Hence, original and transformed program are behaviourally equivalent
except for unsafe paths.

The paper is structured as follows. The next section gives background infor-
mation about programs and the construction of the ART. Section 3 describes
how the ART is transformed into a new program and what kind of properties
this transformation guarantees. Section 4 shows the results of an experimental
evaluation. The last section concludes and discusses related work.

2 Background

For the presentation in this paper, we consider programs to be written in a simple
imperative programming language with assignments, assume operations, gotos
and function calls as only possible statements, and boolean and integer variables
only. The programs considered in Section 4 reporting on experimental results
are however not restricted this way: they are written in C, or more specifically
given in CIL. Assume operations together with gotos can be used to express

1 Alternatively, we could throw an exception, write a log, print an error message or
insert user-specified code here.

246 D. Wonisch, A. Schremmer, and H. Wehrheim

if-then-else statements and loops. For readability, we will directly write if-then-
else and while or for statements in our examples. Figure 1 shows our running
example of an (intentionally simple) program which is calling some lock and
unlock functions. The objective is to guarantee that this programs adheres to
common locking idioms (which it does), i.e., in particular no unlock can occur
before a lock. For this simple program, we can of course automatically verify
this property. In general, this might however not always be possible, thus some
kind of runtime monitoring ensuring safe execution might come into play.

1: boolean initialized = false;

2: int lastLock = 0;

3: init();

4: lock();

5: initialized = true;

6: for (int i = 1; i < n; i++) {

7: if (! initialized)

8: init();

9: if (i - lastLock == 2) {

10: lock();

11: lastLock = i;

12: } else {

13: unlock();

14: }}

Fig. 1. Example program LOCKS

Fig. 2. Property Automaton. Disallows
two lock() or unlock() in a row.

Formally, a program P = (A, l0) is represented as a control-flow automaton
(CFA) A together with a start location l0. A CFA A = (L,G) consists of a set
of (program) locations L and a set of edges G ⊆ L × Ops × L that describe
possible transitions from one program location to another by executing certain
operations Ops. A concrete data state c : X → Z ∪ {true, false} of a program
P is a mapping from the set of variables X of the program to integer or boolean
values. The set of all concrete data states in a program P is denoted by C . A set
of concrete data states can be described by a first-order predicate logic formula ϕ
over the program variables (which we make use of during predicate analysis). We
write �ϕ� := {c ∈ C | c |= ϕ} for the set of concrete data states represented by
some formula ϕ. Furthermore, we write γ(c) for the representation of a concrete
data state as formula (i.e. �γ(c)� = {c}). Note that we assume the program to
be started in some arbitrary data state c0.

A tuple (l, c) of a location and a concrete data state of a program is called
concrete state. The concrete semantics of an operation op ∈ Ops is defined in
terms of the strongest postcondition operator SPop(·). Intuitively, the strongest
postcondition operator SPop(ϕ) of a formula ϕ wrt. to an operation op is the
strongest formula ψ which represents all states which can be reached by op from
a state satisfying ϕ. Formally, we have SPx:=expr(ϕ) = ∃x̂ : ϕ[x �→x̂] ∧ (x =
expr[x �→x̂]) for an assignment operation x := expr, SPassume(p)(ϕ) = ϕ ∧ p for

Zero Overhead Runtime Monitoring 247

an assume operation assume(p) (assume(·) omitted in figures, only condition
stated) and SPf()(ϕ) = ϕ for a function call f(). Thus, we assume function calls
to not change the data state of a program. This assumption is, however, not
mandatory; our monitoring approach can as well be applied on top of a proper
interprocedural analysis. In addition, we introduce the operation HALT which
may not appear in the input program and behaves like a skip operation (i.e. does
nothing) but allows us to distinguish an explicit program halt from an endless
loop.

We write (l, c)
g→ (l′, c′) for concrete states (l, c), (l′, c′) and edge g := (l, op, l′),

if c′ ∈ �SPop(γ(c))�. We write (l, c) → (l′, c′) if there is an edge g = (l, op, l′)
such that (l, c)

g→ (l′, c′). The feasible paths of a program P = (A, l0) with CFA
A = (L,G) are the sequences of concrete states and operations the program can
pass through:

paths(P) := {c0 op0 . . . cn−1 opn−1 cn | ∃l0, . . . , ln ∈ L, ∃g0, . . . , gn−1 ∈ G :

(l0, c0)
g0→ . . .

gn−1→ (ln, cn) ∧ ∀0 ≤ i < n : gi = (li, opi, li+1)}

Let trace(π) be the trace given by a path π = c0 op0 . . . cn−1 opn−1 cn:

trace(π) := op0 . . . opn−1

We are ultimately interested in guaranteeing that the program obeys some safety
properties. Safety properties are given in terms of protocol automata which de-
scribe the allowed sequences of operations.

Definition 1. A protocol or property automaton Aprop = (Σ,S, s0, serr, δ) con-
sists of an alphabet Σ, a finite set of states S with initial state s0 and error state
serr, and transition relation δ ⊆ S×Σ×S. The transition relation is determin-
istic. The error state has outgoing transitions (serr, op, serr) ∈ δ for all op ∈ Σ.
The alphabet Σ may contain every operation except for HALT.

The language L(Aprop) of a protocol automaton is the set of traces op1 . . . opn
such that δ∗(s0, op1 . . . opn) �= serr.

The property automaton in Figure 2 describes all valid locking patterns: first, a
call of init() needs to be performed and then lock() and unlock() have to occur in
turns. The operations occuring in property automata are usually function calls,
however, these can also be any syntactic program statement that is expressible
as a BLAST automaton [4].

The property automaton only speaks about part of the program operations,
namely those in Σ. A comparison of program and protocol automaton traces thus
needs to project the traces of the program onto the alphabet of the automaton
(projection written as �). Hence, program P satisfies the safety property of
protocol automaton Aprop, P |= Aprop, if {trace(π) | π ∈ paths(P)} � Σ ⊆
L(Aprop). The subset of paths of a program P satisfying the safety property is
written correctpaths(P) := {π | π ∈ paths(P) ∧ trace(π) � Σ ∈ L(Aprop)}.
Our technique proceeds by first of all trying to verify whether the program sat-
isfies the safety property. To this end, we use predicate analysis (as supplied

248 D. Wonisch, A. Schremmer, and H. Wehrheim

by CPAchecker [7]). If we succeed, the program is safe and can safely be exe-
cuted. If verification fails (due to the complexity of the program or time/memory
limits), we nevertheless use the information the verifier has obtained about the
program so far. This information is available in the form of an abstract reacha-
bility tree (ART).

For the verificationCPAchecker builds the product of the property automa-
ton and an abstraction of the concrete state space as an ART. More precisely,
the concrete data states are abstracted by quantifier-free first order predicate
logic formulas over the variables of the program. We let PS denote the set of
all such formulas. We only sketch the algorithm behind ART construction, for
details see for instance [7]. What is important for us, is its form. The nodes of
the ART take the form (l, s, ϕ) describing the location l the program is in, the
current state s of the property automaton and a predicate formula ϕ as an ab-
straction of the data state. Nodes with property automaton state serr are called
error nodes. Edges between nodes are labelled with operations of the program,
namely the operation which brings us from one node to the next.

Definition 2. An abstract reachability tree T = (N,G,C) consists of a set of
nodes N ⊆ L × S × PS, a set of edges G ⊆ N × Ops × N and a covering
C : N → N .

The covering is used to stop exploration of the abstract state space at a partic-
ular node once we find that the node is covered by an already existing one: if
C(l, s, ϕ) = (l′, s′, ϕ′) then l = l′, s = s′ and �ϕ� ⊆ �ϕ′�. The ART is constructed
by starting with the initial state (l0, s0, true). The successor of an already con-
structed node n is constructed by searching for successor nodes in the CFA,
computing the abstract post operation on the predicate formula of n and deter-
mining the successor property automaton state. After generation of a new ART
node, the algorithm checks whether the new ART node is covered by an existing
one and generates an entry in the covering if necessary. One result of this pro-
cess is that loops are unrolled such that within ART nodes program locations are
only associated to a single state of the property automaton: if a program when
reaching location l can potentially be in more than one state of the (concurrently
running) protocol automaton, these will become separate nodes in the ART.

The verification follows a CEGAR (counter example guided abstraction refine-
ment) approach. It starts with an empty set of predicates, i.e. at the beginning
values of the program variables are not considered at all during ART construc-
tion. When the thus constructed ART contains an error node (a potential point
of failure, PPF) and the user-supplied time/memory limits are not yet exceeded,
it is validated whether this error node is also reachable in the concrete program.
If not (spurious counterexample), new predicates are added and construction
of a more precise ART is initiated. This is known as abstraction refinement (or
short: refinement). The procedure either ends with a conclusive result (an error is
definitely found or absence of errors definitely shown) or might stop somewhere
in between with an inconclusive result due to a timeout or memory overflow. We
thus also speak of conclusive or inconclusive ARTs.

Zero Overhead Runtime Monitoring 249

Fig. 3. An ART for program LOCKS using no predicates

Figure 3 shows the ART of programLOCKS as constructed by CPAchecker

with an empty set of predicates. The nodes thus so far only consist of program
locations and property automaton states. Note that instead of a truely distinct
location identifier, the nodes bear line numbers instead. We sometimes write
more than one operation on an edge to make the ART more compact. The dotted
line depicts the covering. The states labelled error are PPFs: they might not be
reachable in the concrete program, but if they are, the property is violated.

The constructed ART (N,Gart, C) satisfies some healthiness conditions which
we need further on for the correctness of our transformation (and which are
guaranteed by CPAchecker).

Soundness. If ((l, s, ϕ), op, (l′, s′, ϕ′)) ∈ Gart, then for all c ∈ �ϕ�with (l, c)
(l,op,l′)→

(l′, c′) we have c′ ∈ �ϕ′�. Furthermore, if op ∈ Σ, then (s, op, s′) ∈ δAprop , and
s = s′ else.

250 D. Wonisch, A. Schremmer, and H. Wehrheim

Well-constructedness. For every ((l, ·, ·), op, (l′, ·, ·)) ∈ Gart, we have an edge
(l, op, l′) in the CFG. For P = (A, l0) and root of the ART (l0, s0, ϕ0), we
have l = l0, s = s0 and �ϕ0� = C .

Completeness. If (l, op, l′) is an edge in the CFG of the program, then for
all (l, s, ϕ) ∈ N \ dom(C) with ϕ �≡ false and s �= serr, we have some
(l′, ·, ·) ∈ N such that ((l, s, ϕ), op, (l′, ·, ·)) ∈ Gart.

Error path contains exactly one error node. For every error node
n := (l, serr, ·) ∈ N there is neither a successor node n′ with (n, ·, n′) ∈ Gart

nor a covering node n′ with C(n) = n′.
Determinism. For every n ∈ N , there is only one successor node in Gart

except when nodes have outgoing assume edges (i.e., edges labelled with a
condition). In this case, also more than one successor node of n is allowed.

All these properties hold for conclusive and inconclusive ARTs. If the verifier
gives us a conclusive ART, the program is provably safe or contains a definite
error which needs to be fixed. If we get an inconclusive ART, safety needs to be
guaranteed by other means, for example runtime monitoring.

3 Program Transformation

The objective of runtime monitoring is to guarantee safe execution of the pro-
gram although it might possibly contain errors. This can for instance be achieved
by weaving a monitor into the program. Here, we take a different approach. For
generating a version of the program which does not run into errors, we trans-
form the program into a new one which is error-free and – except for the unsafe
behaviour – behaviourally equivalent to the original one. The basis for the trans-
formation is an inconclusive ART, and by using the ART as a control flow graph
of a program, we transform it into a new program.

The transformation begins by constructing – in its most basic form – a goto
program from the ART. Later optimisations bring this into a more readable
form, but here we just formally define transformation into goto programs by
giving the new program again in the form of a control flow automaton and an
initial location. The idea is quite simple: every node in the ART becomes a
location in the new program, and the operations executed when going from one
node to the next are those on the edges in the ART. Furthermore, edges to error
nodes in the ART are translated as a HALT operation and a loop is inserted from
the CFA node corresponding to the error node to itself. In the programs this is
written as HALT: goto HALT.

Definition 3. Let T = (N,G,C) be an abstract reachability tree. The trans-
formed program, program of(T), is a program P ′ = ((L′, G′), l′0) with L′ =
N \ dom(C), l′0 = root(T) = (l0, s0, true) and edges defined as

(l1, op, l2) ∈ G′ if

⎧⎪⎨
⎪⎩
(l1, op, l2) ∈ G if l2 �∈ D ∧ state(l2) �= serr

(l1, ·, l2) ∈ G ∧ op = HALT if l2 �∈ D ∧ state(l2) = serr

(l1, op, l3) ∈ G ∧ (l3, l2) ∈ C else

Zero Overhead Runtime Monitoring 251

where state(l) := s for l = (·, s, ·) and D := dom(C). Additionally, we add an
edge (l,HALT, l) to G′ for every l = (·, serr, ·) ∈ N .

This is well defined because dom(G)∩dom(C) = ∅,C(N)∩dom(C) = ∅, the ART
is deterministic, and an error node cannot be coveredbyanother node (see the prop-
ertyErrorpath contains exactlyoneerrornode). This representation can
be easily brought back into a programming language notationusing gotos, andwith
some effort into a program without gotos and proper loops instead (assuming the
resulting loop structure is reducible). The left of Figure 4 shows the programwhich
is the result of the transformation of the ART of the last section. TheART had four
error nodes and thus we get four HALT statements here. Note that we have - like in
the original program - used loops and if-then-else statements instead of gotos and
assume operations to improve readability.

1: boolean initialized = false;

2: int lastLock = 0;

3: init();

4: lock();

5: initialized = true;

6: for (int i = 1; i < n; i++) {

7: if (! initialized)

8: HALT0: goto HALT0;

9: if (i - lastLock == 2) {

10: HALT1: goto HALT1;

11: } else {

12: unlock();

13: i++;

14: if (i >= n)

15: break;

16:

17: if (! initialized)

18: HALT2: goto HALT2;

19: if (i - lastLock == 2) {

20: lock();

21: lastLock = i;

22: } else {

23: HALT3: goto HALT3;

24: }}}

1: boolean initialized = false;

2: int lastLock = 0;

3: init();

4: lock();

5: initialized = true;

6: for (int i = 1; i < n; i++) {

7:

8:

9: if (i - lastLock == 2) {

10: HALT1: goto HALT1;

11: } else {

12: unlock();

13: i++;

14: if (i >= n)

15: break;

16:

17:

18:

19: if (i - lastLock == 2) {

20: lock();

21: lastLock = i;

22: } else {

23: HALT3: goto HALT3;

24: }}}

Fig. 4. Transformed programs for rmax = 0 and rmax = 1

Due to the fact that the edges in the ART and thus the statements in the
new program are exactly those of the original program assuming that there
are no error nodes on this path, we obtain a new program which is equivalent
to the original one for these paths: it possesses the same error-free paths. For
P , we can use our definition correctpaths(·) to represent the set of error-free
paths. But for P ′, we need to restrict this set to those paths that do not end
in a state that formely violated the property to make the set of error-free paths

252 D. Wonisch, A. Schremmer, and H. Wehrheim

comparable. Therefore we define a modified set correctpaths′(P) := {π | π ∈
correctpaths(P) ∧ π does not end in HALT}, in which ending in HALT means
that the last operation in the path is HALT.

Theorem 1. Let P be a program. Let ART = (N,Gart, C) be an abstract
reachablity tree for P . Let P ′ = program of(ART). Then correctpaths(P) =
correctpaths′(P ′).

Proof. Let P = ((L,G), l0) and P
′ = ((L′, G′), l′0)

“⊆” Let c0 op0 . . . cn−1 opn−1 cn ∈ correctpaths(P). By definition there are

then l0, . . . , ln ∈ L, op0, . . . , opn−1 ∈ Ops such that (l0, c0)
op0→ . . .

opn−1→
(ln, cn). We show by induction over n that there are l′0, . . . , l

′
n ∈ L′ such

that (l′0, c0)
op0→ . . .

opn−1→ (l′n, cn). and opi �= HALT for all 0 ≤ i ≤ n− 1.
Induction basis: For n = 0, let (l, s, ϕ) ∈ N be the abstract element corre-
sponding to l′0. As the ART is well-constructed, we have l = l0 and �ϕ� = C .
Thus, c0 ∈ �ϕ�.

Induction hypothesis: For every program path (l0, c0)
op0→ . . .

opn′−1→ (ln′ , cn′)

of fixed length n′ := n in correctpaths(P), there is a programpath (l′0, c0)
op0→

. . .
opn′−1→ (l′n′ , cn′) in correctpaths′(P ′). Furthermore, we have cn′ ∈ �ϕ�,

l = ln′ if (l, s, ϕ) ∈ N is the ART node that l′n′ represents.
Induction step: By induction hypothesis we find l′0, . . . , l′n−1 ∈ L′ such that

(l′0, c0)
op0→ . . .

opn−2→ (l′n−1, cn−1). Let n1 := (l, s, ϕ) ∈ N be the ART node
corresponding to l′n−1. Again by induction hypothesis we have ln−1 = l and
cn−1 ∈ �ϕ�. By definition of program paths we have g := (ln−1, opn−1, ln) ∈
G. Thus, by completeness of the ART and since ϕ �≡ false (�ϕ� �= ∅ since
cn−1 ∈ �ϕ�) and ln−1 is not a error node (otherwise this path would not
have been in correctpaths(P)), we have some n2 := (l′, s′, ϕ′) ∈ N such
that (n1, opn−1, n2) ∈ Gart and l′ = ln. If n2 /∈ dom(C) we have n2 ∈ N ′,
(n1, opn−1, n2) ∈ G′, and thus (l′n−1, op, l

′
n) ∈ N ′, where l′n ∈ L′ is the node

corresponding to n2. Otherwise, if n2 ∈ dom(C) we have some n3 := C(n2),
n3 /∈ dom(C), and (n1, opn−1, n3) ∈ G′. By soundness of the abstractions in
the ART we furthermore have cn ∈ �ϕ′� and cn ∈ �ϕ′′� for n3 = (l′, s′, ϕ′′).

“⊇” Let c0 op0 . . . cn−1 opn−1 cn ∈ correctpaths′(P ′). By definition there are

then l′0, . . . , l
′
n ∈ L′, op0, . . . , opn−1 ∈ Ops such that (l′0, c

′
0)

op0→ . . .
opn−1→

(l′n, c′n), opi �= HALT . Let (li, si, ϕi) ∈ N be the abstract element corre-

sponding to l′i (i ∈ {0, . . . , n}). We show by induction over n that (l0, c0)
op0→

. . .
opn−1→ (ln, cn) is a path of P with ∧i∈[0..n]ci = c′i.

Induction basis: For n = 0, let (l, s, ϕ) ∈ N be the abstract element corre-
sponding to l′0. As the ART is well-constructed, we have l = l0 and c

′
0 ∈ �ϕ�.

For the initial node ϕ is true and thus c0 := c′0 is a valid initial state of P .

Induction hypothesis: For every feasible program path (l′0, c
′
0)

op0→ . . .
opn′−1→

(l′n′ , c′n′) of fixed length n′ := n in P ′ with (li, si, ϕi) ∈ N and ∧i∈[0..n′]ci =
c′i denoting the abstract element corresponding to l′i (i ∈ {0, . . . , n′}) we

have (l0, c0)
op0→ . . .

opn′−1→ (ln′ , cn′) in P .

Zero Overhead Runtime Monitoring 253

Induction step: By induction hypothesis we find l0, . . . , ln−1 ∈ L such that

(l0, c0)
op0→ . . .

opn−2→ (ln−1, cn−1) is a path inP . Letn1 := (ln−1, sn−1, ϕn−1) ∈
N and n2 := (ln, sn, ϕn) ∈ N be the ART nodes corresponding to l′n−1 and
l′n, respectively. Since the ART is well-constructed and n1, n2 cannot be er-
ror nodes (otherwise the path would not be in correctpaths′(P ′)), we have
(ln−1, opn−1, ln) ∈ G. Thus (ln−1, cn−1)

opn−1→ (ln, cn) in P with c′n−1 =
cn−1 ∧ c′n = cn follows (opn−1 executed on some concrete state cn−1 will
always yield the same successor state cn). �

Furthermore, we perform an optimisation that does not affect the correctness of
the transformation. We omit all edges ((·, ·, ·), ·, (·, ·, false)) ∈ Gart in the ART
leading to nodes labelled false as these represent steps the program will never
execute. If after this removal there is just one outgoing edge from a node and this
edge is labelled with an assume operation, we delete this assume. Additionally,
it is possible to prune all paths which only lead to error nodes.

The run time of the program stays the same or even decreases. This is the
case when the optimisation removes assume operations on edges (because the
ART shows that this condition always holds at the particular node).

Our transformation indeed ensures safety: the transformed program satisfies the
safety property of the automaton, even in cases where the original program was
not safe.

Theorem 2. Let P be a program. Let P ′ = ((L,G), l0) := program of(T),
where T = (NT , GT , CT) is an ART for P wrt. Aprop. Then P ′ |= Aprop.

Proof. We need to show that paths(P ′) = correctpaths(P ′). As correctpaths(P ′)
is always a subset of paths(P ′) by definition, we only need to show paths(P ′) ⊆
correctpaths(P ′). Let π := c0 op0 . . . opn−1 cn ∈ paths(P ′). By definition, there

exist the locations l0, . . . , ln ∈ L and the edges g0, . . . , gn−1 ∈ G with (l0, c0)
g0→

. . .
gn−1→ (ln, cn) ∧ ∀0 ≤ i < n : gi = (li, opi, li+1). Assume π �∈ correctpaths(P ′).

Then trace(π) � Σ �∈ L(Aprop), therefore there must be a smallest index i with
δ∗(s0, (op0, . . . , opi) � Σ) = serr and opi �= HALT because HALT may not be in
the alphabet of the property automaton Aprop. But si must be equal to serr be-
cause of the soundness of the ART. Thus by construction of the transformation,
we find the operation opi = HALT in the program which is a contradiction. We
conclude that π �∈ paths(P ′). �

In general, we might have more than one inconclusive ART available for the
transformation. One parameter that determines how far the analysis proceeds
is the limit of performed refinements rmax. By setting this parameter to a low
value, the analysis time can be reduced. Conversely, setting it to ∞ leads to
an analysis that is most precise but may not terminate. Thus, the analysis that
proceeds the transformation is tunable.

The ART shown in the last section was constructed with rmax = 0 (giving
us no predicates). Figure 5 shows an ART for program LOCKS generated with
rmax = 1. As rmax = 0 means that no refinements happen at all, the generated

254 D. Wonisch, A. Schremmer, and H. Wehrheim

Fig. 5. ART generated with rmax = 1

ART of the last section does not contain any predicates and none of the four
error nodes could be ruled out. In the ART of the more precise analysis for
rmax = 1, one can see that two error nodes could be pruned and the preceeding
node was set to the predicate false instead. This means that the particular path
is infeasible. Subsequent iterations of the CEGAR algorithm of CPAchecker

would rule out more error nodes until CPAchecker would manage to prove the
whole program safe. This would finally lead to a smaller state space, i.e. ART,
and therefore to a smaller transformed program. The corresponding program for
this ART can be seen in the right of Figure 4: we only have two halt statements
left because the verifier has already shown that the other two PPFs (error nodes)
are not reachable.

In summary, we have thus obtained a technique which – alike runtime mon-
itoring – guarantees safe execution of a possibly unsafe program. It does so
although the prior verification has not shown safety, and without adding and
tracking monitor variables in the code.

Zero Overhead Runtime Monitoring 255

4 Experimental Results

As the transformation usually increases program size, we evaluated how much
larger the particular program gets after transformation. We implemented our
technique in the program-analysis tool CPAchecker [7]. We chose the Ad-
justable-Block Encoding (ABE) [3] predicate analysis. All experiments were per-
formed on a 64 bit Ubuntu 12.10 machine with 6 GB RAM, an Intel i7-2620M
at 2.7 GHz CPU, and OpenJDK 7u9 (JVM 23.2-b09). The analysis time does
not include the startup time of the JVM and CPAchecker itself (around 1-2
s). The amount of operations in the program can be estimated by looking at the
lines of code (LOC) because our transformation to C code inserts a newline at
least for every statement and curly brace.

Besides the basic approach described so far, our implementation contains a
further optimization to keep the size of the transformed program small. Instead
of performing a single predicate analysis and ART generation only, we perform
two passes: the first pass generates the product construction of the CFA and the
property automaton yielding ART T1, and the second pass performs a normal
predicate analysis yielding ART T2. In other words, T1 is the result of performing
the predicate analysis with an empty set of predicates. As a last step, we tra-
verse T1 and remove every (error) node (l, serr, true) (true represents the empty
predicate) such that no (l, serr, ϕ) appears in T2 for any ϕ. T1 is then subject to
the generation of the new program. The correctness of this step is based on the
fact that if the predicate analysis proved that the combination of location and
protocol error state is not reachable at all, we can deduce that it must also be
unreachable in T1, because T1 and T2 are both overapproximating the program
behaviour.

Table 1 shows the benchmark results2 for different kinds of programs and dif-
ferent monitor automata. Refinements were disabled, i.e., we used rmax = 0 and
all ARTs were inconclusive. The analysis step includes the protocol automaton
analysis. This step together with the transformation step is run to generate the
C representation of the ART. On the right side of the table, the lines of code
(LOC) of the generated program as well as the remaining potential points of
failure are shown.

Except for the lock example from above, the programs in Table 1 were taken
from the benchmark set of the Software Verification competition 20123 as to
apply our technique on standard benchmark C programs. The token ring bench-
mark was initially a SystemC program passing tokens between different sim-
ulated threads that was amended with a scheduler. The ssl server (originally
named s3 srvr) benchmark is an excerpt from the OpenSSL project mimicking
a server-side SSL connection handler. For the ssl server program, we derived
different protocol automata of varying complexity. The protocol automaton in

2 All benchmark files necessary to reproduce the results are available in the public repos-
itory of CPAchecker under https://svn.sosy-lab.org/software/cpachecker/

branches/runtime verification/.
3 See http://sv-comp.sosy-lab.org/.

https://svn.sosy-lab.org/software/cpachecker/branches/runtime_verification/
https://svn.sosy-lab.org/software/cpachecker/branches/runtime_verification/
http://sv-comp.sosy-lab.org/

256 D. Wonisch, A. Schremmer, and H. Wehrheim

case of the token ring benchmark simply checks whether every task is started at
most once by the scheduler at the same time. The token ring benchmarks are
already complex enough to blast the resource limitations of our workstation at
five parallel processes and rmax =∞ therefore requiring runtime verification.

Table 1. Benchmark results for different programs and properties, with rmax = 0

Program name Analysis Transformation
(Monitor name) LOC Time Mem. Time LOC PPFs

lock2.c 32 0.037s 88MB 0.004s 81 4

token ring.02.cil.c 596 0.795s 88MB 0.041s 4023 5

token ring.03.cil.c 724 1.789s 166MB 0.205s 13967 27

token ring.04.cil.c 846 4.328s 322MB 0.322s 43830 98

s3 srvr.cil.c (mon1) 861 0.963s 112MB 0.062s 5129 1

s3 srvr.cil.c (mon2) 861 0.837s 112MB 0.030s 4284 1

s3 srvr.cil.c (mon3) 861 0.815s 112MB 0.039s 4284 1

s3 srvr.cil.c (mon4) 861 0.848s 112MB 0.040s 4284 1

s3 srvr.cil.c (mon5) 861 1.199s 158MB 0.076s 7658 2

s3 srvr.cil.c (mon6) 861 1.520s 158MB 0.134s 9332 3

The analysis excels with a fast analysis time while recognizing a varying
amount of PPFs in the code and inserting HALT statements at those. As ex-
plained before, this does not mean that additional checks are introduced in the
code. Instead, these HALT statements are woven into the code at places that
might fail with regard to the protocol automaton.

One might wonder whether the code size growth increases the execution time
of the benchmarks because of cache or compiler optimization effects. All relevant
programs that were collected by the Software Verification Competition branch on
nondeterministic integer values and are not meant to be compiled and executed
(in fact, attempts to remove the nondeterministic code lead to programs that do
not terminate at all). For this reason, it was hard for us to derive execution times
for the above benchmarks. Yet we can conclude from performed benchmarks of
our locks example that the execution time is reduced by 25%. We assume that
the inherent loop unrolling (compare Figure 1 and Figure 4) contributed to this
speedup.

5 Conclusion

In this paper, we have proposed a new overhead-free technique for runtime mon-
itoring which can avoid tracking monitor state variables. It proceeds by using
information obtained from inconclusive verification runs as a basis for a program
transformation. The resulting program is guaranteed to be safe and behaviourally
equivalent to the original program up to the unsafe traces.

Zero Overhead Runtime Monitoring 257

Related Work. While runtime monitoring [13,15,16] first focused on properties
to be shown on the assembler level of programs and then quickly evolved to high-
level languages, newer works revolve around typestate properties [17] and the
generation of residual monitors.

Much work focuses on verifying protocol-like properties of programs. This
starts as early as the eighties with the work on typestate analysis. Typestate is a
concept which enhances types with information about their state and the opera-
tions executable in particular states. Recent approaches have enhanced typestate
analysis with ideas of predicate abstraction and abstraction refinement [11,10],
however not employing monitoring in case of inconclusive analysis results. Type-
state properties are more powerful than the protocol properties because the
former may express properties of single objects instead of the whole program.
Other works use an inconclusive typestate analysis to generate residual monitors
to be used in runtime verification [12,8]. This can be seen as a form of partial
evaluation of the monitoring code. Monitor-oriented programming (MOP) [9,16]
allows runtime monitoring of type-state properties for annotated code. The an-
notations can be performed in formal languages and are woven into the code
in the case of inline monitoring. However, there is to the best of our knowledge
no technique that allows to perform runtime monitoring of typestate properties
without inserting monitoring code when the underlying analysis used in the par-
ticular residual monitor generation algorithm (e.g. [8]) is inconclusive. Moreover,
as these algorithms are based on data flow analysis, they do not exhibit the full
precision of our abstract reachability tree approach: we perform a path-sensitive
analysis that ensures that every location of the transformed program has only
one monitor state.

The idea of using the abstract reachability tree of a program obtained by
a predicate analysis is also the idea underlying conditional model checking [5].
While the transformation of an ART into a program is generally envisaged (for
the purpose of benchmark generation), the approach focuses on generating con-
ditions for use in further verification runs. Generation of programs from parts of
an ART, namely certain counterexamples, is also the basis of the work on path
invariants [6] which presents an effective way of abstraction refinement.

A technique for avoiding the introduction of additional program variables for
encoding the monitor state is presented in [14]. Instead of using a monitor state
variable, they directly employ member fields of the objects being monitored.
The relation between monitor state and object state has however to be defined
manually. Moreover, while they can avoid monitor variables, they still need to
insert code for checking conditions on the objects states according to the monitor.

Future Work. In the future, we plan to work on extending the range of proper-
ties that our transformation can handle. For example, we think that null-pointer
dereferences, despite being a property that talks about single objects, can be
checked for with our approach by applying a code transformation before start-
ing the analysis.

258 D. Wonisch, A. Schremmer, and H. Wehrheim

References

1. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule Systems for Run-time Moni-
toring: from Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2010)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

3. Beyer, D., Keremoglu, M., Wendler, P.: Predicate Abstraction with Adjustable-
Block Encoding. In: FMCAD 2010, pp. 189–197 (2010)

4. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The Blast

query language for software verification. In: Giacobazzi, R. (ed.) SAS 2004. LNCS,
vol. 3148, pp. 2–18. Springer, Heidelberg (2004)

5. Beyer, D., Henzinger, T.A., Keremoglu,M.E.,Wendler, P.: Conditional model check-
ing: a technique to pass information between verifiers. In: Tracz,W., Robillard, M.P.,
Bultan, T. (eds.) SIGSOFT FSE, p. 57. ACM (2012)

6. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
Ferrante, J., McKinley, K.S. (eds.) PLDI, pp. 300–309. ACM (2007)

7. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

8. Bodden, E., Lam, P., Hendren, L.: Clara: A framework for partially evaluating
finite-state runtime monitors ahead of time. In: Barringer, H., et al. (eds.) RV
2010. LNCS, vol. 6418, pp. 183–197. Springer, Heidelberg (2010)

9. Chen, F., D’Amorim, M., Roşu, G.: A formal monitoring-based framework for
software development and analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.)
ICFEM 2004. LNCS, vol. 3308, pp. 357–372. Springer, Heidelberg (2004)

10. Das, M., Lerner, S., Seigle, M.: ESP: Path-Sensitive Program Verification in Poly-
nomial Time. In: PLDI, pp. 57–68 (2002)

11. Dhurjati, D., Das, M., Yang, Y.: Path-sensitive dataflow analysis with iterative
refinement. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 425–442. Springer,
Heidelberg (2006)

12. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis exploiting static
analysis: results to reformulate and reduce the cost of dynamic analysis. In: Auto-
mated Software Engineering (ASE), pp. 124–133. ACM (2007)

13. Erlingsson, Ú., Schneider, F.B.: IRM Enforcement of Java Stack Inspection. In:
IEEE Symposium on Security and Privacy, pp. 246–255 (2000)

14. Hallé, S., Tremblay-Lessard, R.: A case for “Piggyback” runtime monitoring. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 295–311.
Springer, Heidelberg (2012)

15. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: A Run-
Time Assurance Approach for Java Programs. Formal Methods in System De-
sign 24(2), 129–155 (2004)

16. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. STTT 14(3), 249–289 (2012)

17. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Trans. Software Eng. 12(1), 157–171 (1986)

Run-Time Verification of Coboxes

Frank S. de Boer1,2, Stijn de Gouw1,2, and Peter Y. H. Wong3

1 CWI, Amsterdam, The Netherlands
2 Leiden University, The Netherlands

3 SDL Fredhopper, Amsterdam, The Netherlands

Abstract. Run-time verification is one of the most useful techniques
for detecting faults. In this paper we show how to model the observ-
able behavior of concurrently running object groups (coboxes) in SAGA
(Software trace Analysis using Grammars and Attributes) which is a
run-time checker that provides a smooth integration of the specification
and the efficient run-time checking of both data- and protocol-oriented
properties of message sequences. We illustrate the effectiveness of our
method by an industrial case study from the eCommerce software com-
pany Fredhopper.

1 Introduction

In [15] Java is extended with a concurrency model based on the notion of con-
currently running object groups, so-called coboxes, which provide a powerful
generalization of the concept of active objects. Coboxes can be dynamically cre-
ated and objects within a cobox have only direct access to the fields of the
other objects belonging to the same cobox. Since one of the main requirements
of the design of coboxes is a smooth integration with object-oriented languages
like Java, coboxes themselves do not have an identity, e.g., all communication
between coboxes refer to the objects within coboxes. Communication between
coboxes is based on asynchronous method calls with standard objects as targets.
An asynchronous method call spawns a local thread within the cobox to which
the targeted object belongs. Such a thread consists of the usual stack of internal
method calls. Coboxes support multiple local threads which are executed in an
interleaved manner. The local threads of a cobox are scheduled cooperatively,
along the lines of the Creol modeling language described in [11]. This means,
that at most one thread can be active in a cobox at a time, and that the active
thread has to give up its control explicitly to allow other threads of the same
cobox to become active.

ABS (Abstract Behavioral Specification language) is a novel language based
on coboxes for modeling and analysis of complex distributed systems. It is a fully
executable language with code generators for Java, Maude and Scala. In [10] a
formal semantics of ABS was introduced based on asynchronous messages be-
tween coboxes. However, as of yet, no formal method for specifying and run-time
verifying traces of such asynchronous messages has been developed. The main
contribution of this paper is tool support for the efficient run-time verification

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 259–273, 2013.
© Springer-Verlag Berlin Heidelberg 2013

260 F.S. de Boer, S. de Gouw, and P.Y.H. Wong

Live
Environment

Live
Environment

Data and Config
Updates

Configurations
changes

Staging
Environment

Data
Manager

Internet

...

Client-side
Web App

Client-side
Web App

Client-side
Web App

Data updates Live
Environment... Load

balancer

Fig. 1. An example FAS deployment

of asynchronous message passing between coboxes, independent from any back-
end. This latter requirement is important because in general the analysis of a
particular backend is complicated by low-level implementation details. Further,
it allows to generalize the analysis to all (including future) backends.

Run-time verification is one of the most useful techniques for detecting faults,
and can be applied during any program execution context, including debugging,
testing, and production [4]. We show how to use attribute grammars extended
with assertions to specify and verify (at run-time) properties of the messages sent
between coboxes. To this end, we first improve the efficiency of the run-time verifi-
cation tool SAGA [6], which smoothly integrates both data- and protocol-oriented
properties of message sequences. Both time and space complexity of SAGA is lin-
ear in the size of the message sequence. Further we extend it to support design-by-
contract for coboxes. We illustrate the effectiveness of our method by an industrial
case study from the eCommerce software company Fredhopper.

2 Case Study

The Fredhopper Access Server (FAS) is a distributed concurrent object-oriented
system that provides search and merchandising services to eCommerce compa-
nies. Briefly, FAS provides to its clients structured search capabilities within the
client’s data. Each FAS installation is deployed to a customer according to the
FAS deployment architecture (See Figure 1).

FAS consists of a set of live environments and a single staging environment. A
live environment processes queries from client web applications via web services.
FAS aims at providing a constant query capacity to client-side web applications.
A staging environment is responsible for receiving data updates in XML for-
mat, indexing the XML, and distributing the resulting indices across all live
environments according to the Replication Protocol. The Replication Protocol is

Run-Time Verification of Coboxes 261

Fig. 2. Replication interaction

implemented by the Replication System. The Replication System consists of a
SyncServer at the staging environment and one SyncClient for each live envi-
ronment. The SyncServer determines the schedule of replication, as well as its
content, while SyncClient receives data and configuration updates according to
the schedule.

Replication Protocol

The SyncServer communicates to SyncClients by creating Worker objects. Work-
ers serve as the interface to the server-side of the Replication Protocol. On the
other hand, SyncClients schedule and create ClientJob objects to handle commu-
nications to the client-side of the Replication Protocol. When transferring data
between the staging and the live environments, it is important that the data
remains immutable. To ensure immutability without interfering with the read-
/write access of the staging environment’s underlying file system, the SyncServer
creates a Snapshot object that encapsulates a snapshot of the necessary part of
the staging environment’s file system, and periodically refreshes it against the
file system. This ensures that data remains immutable until it is deemed safe to
modify it. The SyncServer uses a Coordinator object to determine the safe state
in which the Snapshot can be refreshed. Figure 2 shows a UML sequence dia-
gram concerning parts of the replication protocol with the interaction between a
SyncClient, a ClientJob, a Worker, a SyncServer, a Coordinator and a Snapshot.
The figure assumes that SyncClient has already established connection with a

262 F.S. de Boer, S. de Gouw, and P.Y.H. Wong

SyncServer and shows how a ClientJob from the SyncClient and a Worker from
a SyncServer are instantiated for interaction. For the purpose of this paper we
consider this part of the Replication Protocol as a replication session. We now
informally describe the interaction between the ClientJob and the Worker:

The ClientJob initially connects to a Worker
(SyncServer.getConnection, ClientJob.acceptConnection); the
ClientJob then requests the next set of replication schedules from
the Worker (Worker.command, ClientJob.sendSchedule); After that
the Worker registers with the ClientJob the data to be replicated
(ClientJob.registerItems, Worker.replyRegisterItems); Should
the ClientJob accept the registration, the Worker proceeds send-
ing to the ClientJob (meta information) of files to be replicated
(ClientJob.processFile, Worker.replyProcessFile). For each of
the files the ClientJob replies to the Worker indicating which part of
the files need to be replicated, and with this information Worker sends
relevant parts of the files to the ClientJob (ClientJob.sendContent,
Worker.acceptContent).

3 The Modeling Language

We formally describe coboxes by means of a modeling language which is based
on the Abstract Behavioral Specification language [10]. Throughout the paper
we refer to our own modeling language by ACOG (pure Actor-based Concur-
rent Object Groups). ACOG is designed with a layered architecture, at the base
are functional abstractions around a standard notion of parametric algebraic
data types (ADTs). Next we have an OO-imperative layer similar to (but much
simpler than) Java. ACOG generalizes the concurrency model of Creol [11]
from single concurrent objects to concurrent object groups (coboxes). As in [15]
coboxes encapsulate synchronous, multi-threaded, shared state computation on
a single processor. In contrast to thread-based concurrency, task scheduling is
cooperative, i.e., switching between tasks of the same object happens only at spe-
cific scheduling points during the execution, which are explicit in the source code
and can be syntactically identified. This allows writing concurrent programs in
a much less error-prone way than in a thread-based model and makes ACOG
models suitable for static analysis. In our dialect, unlike in [15], coboxes com-
municate only via pure asynchronous messages, and as such form an actor-based
model as initially introduced by [1] and further developed in [16].

The following fragment of ClientJobImpl illustrates cobox creation and asyn-
chronous communications.

class ClientJobImpl(SyncServer server, SyncClient client, Schedule s)
implements ClientJob {

Set<Schedule> schedules = EmptySet;
Unit executeJob() { server!getConnection(this); }
Unit acceptConnection(Worker w) { .. }

Run-Time Verification of Coboxes 263

Unit sendSchedules(Set<Schedule> ss) { .. }
Unit scheduleJobs() { .. }}

class SyncServerImpl(Coordinator coord) implements SyncServer {
Unit getConnection(ClientJob job) {

Bool shutdown = this.isShutdownRequested();
if (shutdown) {
job!acceptConnection(null);

} else {
Worker w = new cog WorkerImpl(job, this, coord);
job!acceptConnection(w); }}}

The following shows the implementation of ClientJobImpl after connecting with
a Worker.

class ClientJobImpl(SyncServer server, SyncClient client, Schedule s)
implements ClientJob {

Set<Schedule> schedules = EmptySet;
Unit sendSchedules(Set<Schedule> ss) { schedules = ss; }
Unit acceptConnection(Worker w) {

if (w != null) {
w!command(Schedule(s));
await schedules != EmptySet;
this.scheduleJobs();}}..}

class WorkerImpl(ClientJob job, SyncServer server) implements Worker {
Unit command(Command c) { .. job!sendSchedules(schedules); }}

The method acceptConnection invokes method command on the worker and
suspends using the statement await schedules != EmptySet to wait for the
next set of schedules to arrive. The next set of schedules is set by invoking the
method sendSchedules on the ClientJob.

4 Behavioral Interfaces for Coboxes

In this section we introduce attribute grammars extended with assertions to
specify and verify properties of the traces generated between coboxes. As such,
extended attribute grammars provide a new formalism for contracts in general,
and coboxes in particular. In contrast to classes or interfaces, coboxes are run-
time entities which do not have a single fixed interface1. Below we first discuss
how we can still refer statically, in the program text, to these run-time entities
by means of so-called communication views.

1 We consider interfaces here to be a list of all signatures of the methods supported
by some object in the cobox.

264 F.S. de Boer, S. de Gouw, and P.Y.H. Wong

4.1 Communication Views

To be able to refer to coboxes in syntactical constructs (such as specifications),
we introduce the following (optional) annotation of cobox instantiations:

S ::= y = new cog [Name] C(ē)

The semantics of the language remain unchanged. Note that the same cobox
name can be shared among several coboxes (i.e. is in general not unique) since
different cobox creation statements can specify the same cobox name.

Coboxes do not have a fixed interface, as the methods which can be invoked
on an object in a cobox (and consequently appear in traces) are not fixed stat-
ically. In particular, during execution objects of any type can be added to a
cobox, which clearly affects the possible traces of the cobox. Additionally, for
practical reasons it is often convenient to focus on a particular subset of meth-
ods, leaving out methods irrelevant for specification purposes. This is especially
useful for incomplete specifications. To solve both these problems, we introduce
communication views. A communication view can be thought of as an interface
for a named cobox. Figure 3 shows an example communication view associ-
ated with all coboxes named WorkerGroup. Formally a communication view is a

view WorkerView grammar Worker.g specifies WorkerGroup {
send Coordinator.startReplication(Worker w) st,
send ClientJob.registerItems(Worker w, Int id) pr,
receive Worker.sendCurrendId(Int id) id,
receive Worker.replyRegisterItems(Bool reg) ar,
receive Worker.acceptItems(Set<Item> items) is,
receive Worker.acceptEntries(Set<Map<String, Content>> contents) es

}

Fig. 3. Communication View

partial mapping from messages to abstract event names. A communication view
thus simply introduces names tailored for specification purposes (see the next
subsection about grammars for more details on how this event name is used).
Partiality allows the user to select only those asynchronous methods relevant for
specification purposes. Any method not listed in the view will be irrelevant in
the specification of WorkerGroups.

Note that in this asynchronous setting we can distinguish three different
events: sending a message (at the call-site), receiving the message in the queue
(at the callee-site), and scheduling the message for execution (i.e. the point in
time when the corresponding method starts executing). By the asynchronous
nature of the ABS, we cannot detect in the ABS itself when a message has been
put into the queue. Therefore we restrict to the other two events. Since we imple-
ment the run-time checker independently from any back-end (see also Section 5),
we are forced to use the ABS itself for the detection of the observable events.

Run-Time Verification of Coboxes 265

The send keyword identifies calls from objects in the WorkerGroup to methods
of objects in another cobox (in other words: methods required by an object in
the WorkerGroup). Conversely, the keyword receive identifies the scheduling
of calls from another cobox to an object in a WorkerGroup. It is possible that
methods listed in the view actually can never be called in practice (and therefore
won’t appear in the local trace of a cobox). In the above view, this happens if
in a WorkerGroup there is no object of the class Worker.

4.2 Grammars

In this subsection we describe how properties of the set of allowed traces of a
cobox can be specified in a convenient, high-level and declarative manner. We
illustrate our approach by partially specifying the behavior depicted by the UML
sequence diagram in Figure 2. Informally the property we focus on is:

The Worker first notifies the Coordinator its intention to commence a
replication session, the Worker would then receive the last transaction
id identifying the version of the data to be replicated, the Worker sends
this id to the ClientJob to see if the client is required to update its data
up to the specified version. The Worker then expects an answer. Only
if the answer is positive can the Worker retrieve replication items from
the snapshot, moreover, the number of files sets to be replicated to the
ClientJob must correspond to the number of replication items retrieved.

Grammars provide a convenient way to define the protocol behavior of the
allowed traces. The terminals of the grammar are the message names given
in a communication view. The formalization of the above property uses the
communication view depicted in Figure 3. The productions of the grammar
underlying the attribute grammar in Figure 4 specify the legal orderings of these
messages named in the view. For example, the productions

S ::= ε | st T
T ::= ε | id U

specify that the message ‘id’ is preceded by the message ‘st’.
While grammars provide a convenient way to specify the protocol structure of

the valid traces, they do not take data such as parameters and return values of
method calls and returns into account. Thus the question arises how to specify
the data-flow of valid traces. To that end, we extend the grammar with attributes
and assertions over these attributes. Each terminal symbol has built-in attributes
consisting of the parameter names for referring to the object identities of the
actual parameters, and callee for referencing the identity of the callee. Non-
terminals have user-defined attributes to define data properties of sequences of
terminals. In each production, the value of the attributes of the non-terminals
appearing on the right-hand side of the production is defined.2 For example, in
the following production, the attribute ‘w’ for the non-terminal ‘T’ is defined.
2 In the literature, such attributes are called inherited attributes.

266 F.S. de Boer, S. de Gouw, and P.Y.H. Wong

S ::= ε | st T (T .w = st.w;)

Attribute definitions are surrounded by ‘(’ and ‘)’. However the attributes them-
selves do not alter the language generated by the attribute grammar, they only
define properties of data-flow of the trace. We extend the attribute grammar
with assertions to specify properties of attributes. For example, the assertion in
the second production of

T ::= ε | id U (U.w = T .w; U.i = id.id;)
U ::= ε | pr {assert U.w == pr.w && U.i == pr.id;} V

expresses that the ‘id’ passed as a parameter to the method ‘registerItems’ (rep-
resented in the grammar by the terminal pr.id;) must be the same as the
one previously passed into ‘sendCurrentId’ (terminal id.id). Assertions are sur-
rounded by ‘{’ and ‘}’ to distinguish them visually from attribute definitions.

The full attribute grammar Figure 4 formalizes the informal property stated
in the beginning of this subsection. The grammar specifies that for each Worker
object, in its own object cobox, the Coordinator must be notified of the start
of the replication by invoking its method startReplication (st). Only then
can the Worker receive (from an unspecified cobox) the identifier of the current
version of the data to be replicated (id). Next the Worker invokes the method
registerItems on the corresponding ClientJob about this version of the data
(pr). The grammar here asserts that the identifier is indeed the same as that re-
ceived via the method call sendCurrendId. The Worker then expects to receive
a method call replyRegisterItems indicating if the replication should proceed,
the Worker then can recieve method call acceptItems for the data items to be
replicated. The grammar here asserts that this can only happen if the previ-
ous call indicated the replication should proceed. The Worker then can receive
method call acceptEntries for the set of Directories, each identified by a data
item. Since each data item refers to a directory, the grammar here asserts the
number of items is the same as the number of directories.

S ::= ε | st T (T .w = st.w;)
T ::= ε | id U (U.w = T .w; U.i = id.id;)
U ::= ε | pr {assert U.w == pr.w && U.i == pr.id;} V
V ::= ε | ar W (W .b = ar.reg;)
W ::= ε | is {assert W .b;} X (X.s = size(is.items);)
X ::= ε | es {assert X.s == size(es.contents);}

Fig. 4. Attribute Grammars

To further illustrate the above concepts, we consider an additional behavioral
interface for the WorkerGroup cobox. To allow users to make changes to the
replication schedules during the run-time of FAS, every ClientJob would request
the next set of replication schedules and send them to SyncClient for scheduling.
Here is an informal description of the property, where Figure 5 presents the

Run-Time Verification of Coboxes 267

view ScheduleView grammar Schedule.g specifies WorkerGroup {
receive Worker.command(Command c) cm,
send ClientJob.sendSchedules(Set<Schedule> ss) sn,
send SyncServer.requestListSchedules(Worker w) lt,
send SyncServer.requestSchedule(Worker w, String name) gt,
send Coordinator.requestStartReplication(Worker w) st

}

Fig. 5. Communication View for Scheduling

S ::= ε | cm T (T .c = cm.c;)
T ::= ε | gt {assert T .c != ListSchedule &&

gt.n == name(T .c);} U (U.c = T .c;)
| lt {assert T .c == ListSchedule;} U (U.c = T .c;)

U ::= ε | sn {assert sn.ss != EmptySet;} V (V .c = U.c;)
V ::= ε | st {assert V .c != ListSchedule;}

Fig. 6. Attribute Grammar for Scheduling

communication view capturing the relevant messages and Figure 6 presents the
grammar that formalizes the property:

A ClientJob may request for either all replication schedules or a single
schedule. The ClientJob does this by sending a command to the Worker
(cm). If the command is of the value ListSchedule, the Worker is to
acquire all schedules from the SyncServer (lt) and return them to the
ClientJob (sn). Otherwise, the Worker is to acquire only the specified
schedule (gt) and return it to the ClientJob (sn). If the ClientJob asks
for all schedules, it must not proceed further with the replication session
and terminate (st).

In summary, communication views provide an interface of a named cobox.
The behavior of such an interface is specified by means of an attribute grammar
extended with assertions. This grammar represents the legal traces of the named
cobox as words of the language generated by the grammar, which gives rise to a
natural notion of the satisfaction relation between programs and specifications.
Properties of the control-flow and data-flow are integrated in a single formalism:
the grammar productions specify the valid orderings of the messages (the control-
flow of the valid traces), whereas assertions specify the data-flow.

5 Implementation

The input of SAGA consists of three ingredients: a communication view, an at-
tribute grammar extended with assertions and an ABS model. The output is an
ordinary ABS model which behaves the same as the input program, except that it

268 F.S. de Boer, S. de Gouw, and P.Y.H. Wong

throws an assertion failure when the current execution violates the specification.
Since the resulting ABS model is an ordinary ABS model, all analysis tools [18]
(including a debugging environment with visualization and a state-of-the-art cost
analyzer) and back-ends which exist for the ABS can be used on it directly. Be-
cause of the intrinsic complexity of developing efficient and user-friendly parser
generators, we require that the implementation of the parser-generator should
be decoupled from the rest of the implementation of SAGA. This has lead to a
component-based design (Figure 7) consisting of a parser-generator component
and source-code weaving component. We discuss these components, and the sec-
ond requirement on performance of the generated parser, in more detail below.

Fig. 7. SAGA tool architecture

Component for parsing deterministic attribute grammars with inherited attributes.
This parser-generator component processes only the attribute grammar and gen-
erates a parser for it, with ABS as the target language. Parsers for attribute gram-
mars in general take a stream of terminals as input, and output a parse tree
according to the grammar productions (where non-terminal nodes are annotated
with their attribute values). In our case, the attribute grammars also contain as-
sertions, and the generated parser additionally checks that all assertions in the
grammar are true.

Due to the power of general context-free grammars (even without attributes),
they can be quite expensive to parse. By combining results of [17] and Lee [12]
we can deduce the time complexity of parsing n tokens lays between O(n2)
and O(n2.38). However, in our case, whenever a new message (asynchronous
call) is added to the trace, all parse trees of all prefixes have been computed
previously. The question arises how efficient the new parse trees can be computed
by exploiting the parse trees of the prefixes. Unfortunately, for general context-
free grammars, this cannot be done in constant time. For if this was possible
in constant time, parsing the full trace results in a parser which works in linear
time (n terminals which all take a constant amount of time), which is lower

Run-Time Verification of Coboxes 269

than the theoretical quadratic lower-bound. We therefore restrict our attention
to deterministic regular attribute grammars with only inherited attributes. All
grammars used in the case study have this form and parsing the new trace in
such grammars can be done in constant time, since they can be translated to a
finite automaton with conditions (assertions) and attribute updates as actions
to execute on transitions. Parsing the new message consists of taking a single
step in this automaton. Moreover for such grammars, the space complexity is
also very low: it is not necessary to store the entire trace, only the attribute
values of the previous trace must be stored.

Source-code weaving component. The weaving component processes the commu-
nication view and the given ABS model, and outputs a new ABS model in which
each call to a method appearing in the view is transformed. The transformation
inserts code which checks whether the method call which is about to be executed
is allowed by the attribute grammar, and if this is not the case, prevents un-
safe behavior by throwing an assertion failure. In contrast to receive events, the
transformation for send events is invasive, in the sense that it cannot be done
only locally in the body of those methods actually appearing in the view, but
instead it has to be done at all call-sites (in client code). To see this, suppose that
the transformation was done locally, say in the beginning of the method body.
Due to concurrency and scheduling policies, other methods which were called at
a later time could have been scheduled earlier. In such a scenario, these other
methods are checked earlier than the order in which they are actually called by
a client.

The transformation is done in two steps. First, all calls to methods that
occur in a communication view are isolated using pattern matching in the meta-
program. We created a Rascal ABS grammar for that purpose. Second, all call-
statements are preceded by code which checks that the current object is part of
a named cobox (note that this check really has to be done at run-time due to the
dynamic nature of coboxes). If this is the case, the trace is updated by taking a
step in the finite automaton where additionally the assertion is checked. If there
is no transition for the message from the current state, we throw an assertion
error. Intuitively such an error corresponds to a protocol violation.

6 Experience Report

In order to understand the Fredhopper Access Server (FAS), a system with over
150,000 lines of Java code, suitable abstractions are crucial. We developed an
ACOG model which describes the behavior of the replication system, a crucial
(and one of the most complex) component in the FAS. We then specified and
checked this behavior by means of attribute grammars with SAGA.

Table 1 shows metrics for the Java implementation and the ACOG model
of the Replication System (without the attribute grammar). The figures in the
table illustrate the expressive power of the modeling language: the ACOG model
is half the size of the Java implementation. Additionally the ACOG model in-
cludes model-level information such as deployment components and simulation

270 F.S. de Boer, S. de Gouw, and P.Y.H. Wong

Table 1. Metrics of Java and ACOG of the Replication System

Metrics Java ACOG
Nr. of lines of code 6400 3300
Nr. of classes 44 40
Nr. of interfaces 2 43
Nr. of functions N/A 80
Nr. of data types N/A 17

Fig. 8. Protocol violation

of external inputs in the ACOG model, which the Java implementation lacks.
The ACOG model includes also scheduling information, as well as models of file
systems and data bases, while the Java implementation leverages libraries and
its API. This accounts for >1,000 lines of ACOG code.

We detected a crucial protocol violation while running SAGA over the ACOG
model of the Replication System (see Figure 8). The sequence of messages
depicted by the UML sequence diagram violates the grammar Scheduler.g
shown in Figure 6. Specifically, the cobox for the Worker object sends the
method call SyncServer.requestListSchedules before receiving the method
call Worker.command. The following shows part of the implementation of
WorkerImpl that is responsible for this violation.

class WorkerImpl(ClientJob job, SyncServer server, Coordinator coord)
implements Worker {

Maybe<Command> cmd = Just(ListSchedule);
Unit execute() {

if (cmd == Just(ListSchedule)) {
server!requestListSchedules(this);

} else {
server!requestSchedule(this, name(cmd))); }}

Unit command(Command c) { this.cmd == Just(cmd); }}

The reason for the violation is that when the cobox receives the
method call Worker.execute the above implementation does not wait re-
ceiving the method call Worker.command before sending the method call

Run-Time Verification of Coboxes 271

SyncServer.requestListSchedules. The reason this is possible is because the
instance field cmd is initialized incorrectly with the value Just(ListSchedule)
that would allow the conditional statement inside the method execute to in-
voke the method SyncServer.requestListSchedules. The following shows the
correct version of this part of the implementation.

class WorkerImpl(ClientJob job, SyncServer server, Coordinator coord)
implements Worker {

Maybe<Command> cmd = Nothing;
Unit execute() {

this.coord = coord;
await cmd != Nothing;
if (cmd == Just(ListSchedule)) {

server!requestListSchedules(this);
} else {

server!requestSchedule(this, name(cmd))); }}
Unit command(Command c) { this.cmd == Just(cmd); }}

In the correct implementation, the field cmd is initialized with the value Nothing
and an await statement is used to ensure cmd is set by receiving the method call
Worker.command() before proceeding further.

7 Conclusion

We showed using an industrial case study how both protocol-oriented properties
and data-oriented properties of message sequences sent between coboxes can be
specified conveniently in a single formalism of attribute grammars extended with
assertions. Moreover we developed and discussed the corresponding tool support
provided by SAGA. SAGA can be obtained from http://www.cwi.nl/~cdegouw.

Related Work. In [9] a survey is presented of behavioral interface specification
languages and their use in static analysis of correctness of object-oriented pro-
grams. In particular, there exists an extensive literature on the static analysis
of systems of concurrent objects. For example, in [8] a proof system for partial
correctness reasoning about concurrent objects is established based on traces
and class invariants. We present the first specification language for the analysis
of concurrent groups of objects (coboxes), and implemented an efficient run-time
checker. This paper builds on the previous work [6], which integrates (in a single
formalism) both data- and protocol-oriented properties of message sequences of
single-threaded Java programs. Here we extend this work to a concurrent model-
ing language, which requires a very different tool architecture, and add support
for incremental parsing of message sequences with a linear space- and time-
complexity. There exist many interesting approaches to run-time verification,
e.g., monitoring message sequences, but all of these approaches only work in the
context of Java and its low-level concurrency model based on multithreading.

http://www.cwi.nl/~cdegouw

272 F.S. de Boer, S. de Gouw, and P.Y.H. Wong

For example, Martin et al. [13] introduce the Program Query Language (PQL)
for detecting errors in sequences of communication events. PQL was updated last
in 2006 and does not support user-defined properties of data. Allan et al. [2] de-
velop an extension of AspectJ with a trace-based language feature called Trace-
matches that enables the programmer to trigger the execution of extra code by
specifying a regular pattern of events in a computation trace. The underlying
pattern matching involves a binding of values to free variables. Nobakht et al. [14]
monitors calls and returns using the Java Debugger Architecture. Their specifi-
cation language is equivalent in expressive power to regular expressions. Because
the grammar for the specifications is fixed, the user can not specify a convenient
structure themselves, and data is not considered. Chen et al. [3] present Java-
MOP, a run-time monitoring tool based on aspect-oriented programming which
uses context-free grammars to describe properties of the control flow of traces.
However JavaMOP does not integrate data-oriented properties for use in design-
by-contract a la JML. General data-oriented properties can only be specified
by the injection of Java assert-statements using AspectJ, essentially bypassing
JavaMOP. Moreover even this manual injection can only be used to specify a
data-property of the single last message sent/received, not for data properties
of the full history. As such, JavaMOP provides no direct and high-level support
for data-oriented properties. LARVA is developed by Colombo et al. [5]. The
specification language has an imperative flavour: users define a finite state ma-
chine to define the allowed traces (i.e. one has to manually ‘implement’ a parser
for the regular expression). Data properties are supported in a limited manner,
by enriching the state machine with conditions on method parameters or return
values (not on sequences of them).

DeLine and Fähndrich [7] propose a statically checkable typestate system for
object-oriented programs. Typestate specifications of protocols correspond to
finite state machines, data and assertions are not considered in their approach.

Future Work. For practical reasons, good error reporting is essential. Note how-
ever that since error reporting, for example in case of assertion failures, prints to
the screen (and consequently relies on low-level I/O details), it is not back-end
independent. Using the ABS foreign language interface, it is possible to execute
native Java or Maude code which implements the error reporting. As a relatively
simple first step, we could for instance use SDEdit, a sequence diagram editor
already used in the ABS, to visualize traces violating the grammars. Since traces
tend to be large, finding relevant abstractions of the trace is crucial here.

Currently SAGA supports deterministic regular grammars with just inherited
attributes. Such grammars can be incrementally parsed. This immediately sug-
gest another future line of work: is there a larger class of grammars which can
be parsed incrementally?

As the final direction of future work we would like to investigate ways to
control the complexity of extensions of the modeling language including futures
and promises (in the Cobox concurrency model).

Run-Time Verification of Coboxes 273

References

1. Agha, G.: Actors: A model of concurrent computation in distributed systems. MIT
Press, Cambridge (1990)

2. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to aspectj. SIGPLAN Not. 40(10), 345–364 (2005)

3. Chen, F., Roşu, G.: MOP: an efficient and generic runtime verification framework.
SIGPLAN Not. 42(10), 569–588 (2007)

4. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. ACM SIGSOFT Software Engineering Notes 31(3),
25–37 (2006)

5. Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time java
programs (tool paper). In: SEFM 2005, pp. 33–37 (2009)

6. de Boer, F.S., de Gouw, S., Johnsen, E.B., Wong, P.Y.H.: Run-time checking of
data- and protocol-oriented properties of java programs: An industrial case study.
In: SAC (to appear, 2013)

7. DeLine, R., Fähndrich, M.: Typestates for Objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004)

8. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of dis-
tributed systems: Component reasoning for concurrent objects. J. Log. Algebr.
Program. 81(3), 227–256 (2012)

9. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012)

10. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

11. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. SSM 6(1), 35–58 (2007)

12. Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multipli-
cation. J. ACM 49(1), 1–15 (2002)

13. Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws
using pql: a program query language. SIGPLAN Not. 40(10), 365–383 (2005)

14. Nobakht, B., Bonsangue, M.M., de Boer, F.S., de Gouw, S.: Monitoring method
call sequences using annotations. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010.
LNCS, vol. 6921, pp. 53–70. Springer, Heidelberg (2012)

15. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

16. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Inform. 63(4), 385–410 (2004)

17. Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput.
Syst. Sci. 10(2), 308–315 (1975)

18. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The
ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. STTT 14(5), 567–588 (2012)

Automated Mediator Synthesis: Combining

Behavioural and Ontological Reasoning

Amel Bennaceur1, Chris Chilton2, Malte Isberner3, and Bengt Jonsson4

1 ARLES, Inria Paris - Rocquencourt, France
2 Department of Computer Science, University of Oxford, UK

3 Technical University of Dortmund, Germany
4 Department of Information Technology, Uppsala University, Sweden

Abstract. Software systems are increasingly composed of independently
developed heterogeneous components. To ensure interoperability, medi-
ators are needed that coordinate actions and translate exchanged mes-
sages between the components. We present a technique for automated
synthesis of mediators, by means of a quotient operator, that is based on
behavioural models of the components and an ontological model of the
data domain. By not requiring a specification of the composed system,
the method supports both off-line and run-time synthesis. The obtained
mediator is the most general component that ensures freedom of both
communication mismatches and deadlock in the composition. Validation
of the approach is given by implementation of a prototype tool, while ap-
plicability is illustrated on heterogeneous holiday booking components.

Keywords: mediator synthesis, quotient, ontology, deadlock-freeness.

1 Introduction

Modern software-intensive systems are increasingly composed of numerous
independently developed and network-connected software components. These
components often exhibit heterogeneous behaviour, which prevents them from
interacting with one another according to a particular protocol. To circumvent
this problem, mediators (or mediating adapters [YS97, CMS+09]) can be de-
signed, which are intermediary software entities that allow heterogeneous soft-
ware components to interact seamlessly, by coordinating their behaviours and
translating the messages that they exchange. Due to the vast number of po-
tential interaction patterns, it is not feasible to design a generic mediator that
will allow an arbitrary collection of components to communicate. Instead, one
approach towards facilitating communication involves the automated synthesis
of a mediator, based on the behaviours of the components needing to interact.

Automatic mediator synthesis presupposes formal models of the participat-
ing components, each specifying the allowed sequences of interactions. Mod-
els can be directly specified by component developers, or can be automatically
inferred (given their interfaces) by black-box inference [MHS+12]. Existing

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 274–288, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Automated Mediator Synthesis 275

approaches for mediator synthesis also need specifications representing the com-
posed behaviour of the components. For instance, synthesis of protocol convert-
ers in [CL90, PdAHSV02] requires a specification of the service delivered by
the composed system; similarly, in synthesising mediators for composed web ser-
vices, an explicit specification of the relationships between the data parameters
in different interface primitives is needed [BPT10]. Providing such specifications
is an obstacle to automated synthesis, especially at run-time.

In this paper, we propose a rigorous methodology for the automated synthesis
of mediators, based on models of the components and of the data domain, which
does not require an explicit specification of the intended composition, making the
techniques suitable for both off-line and run-time synthesis. Components may
have incompatible behaviours and utilise different interaction vocabularies. To
bridge this heterogeneity barrier, we rely on a domain ontology, which shows the
relationships between data concepts of the interaction vocabularies. The domain
ontology is generic to the application area of the components, and so no extra
information need be supplied at synthesis time.

Our synthesis method is structured into two phases. First, the domain ontol-
ogy is used to derive a correspondence between actions of different components,
together with ordering constraints that must be respected between them. In
the second phase, we synthesise a mediator using a quotient operator, by util-
ising the behavioural models of the participating components and the ordering
constraints derived from the ontology. Our quotient operator extends existing
definitions [BR08], in that it is sensitive to progress properties. Thus, mediators
generated by our methodology are free from communication mismatches, en-
sure progress towards the goals of individual components, and respect the data
constraints implicitly given by the domain ontology.

Outline. Section 2 introduces our component modelling formalism, along with
the notions of parallel composition, refinement and quotient, which are essen-
tial for our synthesis methodology. Ontologies are presented in Section 3, where
their role in modelling the semantics of component actions is explained. Sec-
tion 4 describes the methodology for automatically synthesising mediators free
of communication mismatches and premature deadlock, while Section 5 describes
our prototype implementation and discusses its applicability. Section 6 examines
related work, while Section 7 concludes and suggests future work.

2 Primer on the Compositional Specification Theory

In this section, we introduce the necessary parts of our compositional specifica-
tion theory for modelling components [CCJK12]. The behaviour of a component
specifies the sequences of allowed interactions between the component and its
environment, which can be represented by a labelled transition system (LTS).
The labels are partitioned into input and output actions, although internal ac-
tions can also be accommodated. In a state, the component is willing to receive
(from the environment) any enabled input, and may emit any enabled output. If

276 A. Bennaceur et al.

the environment supplies an input that is not enabled, an inconsistency arises,
which can be understood as either underspecification, or an undesired situation
corresponding to run-time error or bad behaviour.

To model deadlock and termination, a state can be designated as quiescent.
The intuition is that a component must not block (i.e., must eventually emit an
output if no input appears) in a non-quiescent state. The modelling formalism
itself does not distinguish between undesirable deadlock and termination.

Our methodology is equally applicable to deterministic and non-deterministic
models, using the theory in [CCJK12]. Some definitions can be simplified in
the deterministic case, and for simplicity we will use these in this paper. Our
specification theory can then be seen as interface automata extended with the
capability to model deadlock and termination [dAH01].

Definition 1 (Behavioural model). A behavioural model of a component P
is a tuple 〈AI

P ,AO
P , SP , s0P , δP , QP〉, where AI

P and AO
P are disjoint sets referred

to as the inputs and outputs (the union of which we denote by AP), SP is a finite
set of states with s0P ∈ SP being the designated initial state, δP : SP×AP ⇀ SP
is the partial transition function, and QP ⊆ SP are the quiescent states.

We will not be fussy in distinguishing components from their models, and will
often refer to “the component A” for “the behavioural model of A”.

In a behavioural model of a component, we distinguish undesirable deadlocks
from termination by introducing a designated 	 action treated as an input. The
convention is that 	 can only be received when the component has successfully
terminated.

Refinement of components is defined using the alternating simulation for inter-
face automata extended to cope with quiescence. It guarantees safe-substitutivity
of components and preservation of deadlock-freeness.

Definition 2 (Refinement). Let P and Q be components. Then Q is a refine-
ment of P, written Q * P, if AI

P ⊆ AI
Q and AO

Q ⊆ AO
P , and there is a relation

* ⊆ SQ × SP , called an alternating simulation, such that whenever sQ * sP :

– if i ∈ AI
P is enabled in sP , then i is enabled in sQ and δQ(sQ, i) * δP(sP , i),

– if o ∈ AO
Q is enabled in sQ, then o is enabled in sP and δQ(sQ, o) * δP(sP , o),

– if sQ ∈ QQ, then sP ∈ QP ,

and such that s0Q * s0P .

The parallel composition of two components represents the combined effect of
them running asynchronously, and synchronizing on actions that are common to
their sets of inputs and outputs. To preserve the effect that a single output from a
component can be received by multiple components in its environment, we must
define the parallel composition to repeatedly broadcast an output: this means
that an input a and output a combine to form an output a. As each output must
be under the control of at most one component, the parallel composition is only
defined when the composed components have disjoint sets of outputs. To obtain
a modular definition of parallel composition, we first define a generic product of
two transition functions.

Automated Mediator Synthesis 277

Definition 3 (Product). Let P and Q be components. The product of the tran-
sitions functions δP of P and δQ of Q is the partial function δP⊗Q : (SP×SQ)×
(AP ∪ AQ)⇀ (SP × SQ), where δP⊗Q(〈sP , sQ〉, a) is defined as:

– 〈δP(sP , a), δQ(sQ, a)〉 when a ∈ AP ∩AQ, and both δP(sP , a) and δQ(sQ, a)
are defined,

– 〈δP(sP , a), sQ〉 when a ∈ AP \ AQ and δP(sP , a) is defined,
– symmetrically, 〈sP , δQ(sQ, a)〉 when a ∈ AQ \ AP and δQ(sQ, a) is defined,

and δP⊗Q(〈sP , sQ〉, a) is undefined otherwise. #$

A pair of states 〈sP , sQ〉 ∈ (SP ×SQ) of P and Q is said to be incompatible if for
some output action a ∈ AO

P ∪ AO
Q, either δP(sP , a) or δQ(sQ, a) is defined, but

δP⊗Q(〈sP , sQ〉, a) is undefined. Intuitively, in an incompatible pair of states, one
component can perform an output that is not enabled as an input in the other
component, thus creating a communication mismatch. A pair of states 〈sP , sQ〉 ∈
(SP × SQ) is said to be potentially incompatible if there is a (possibly empty)
sequence of outputs a1 · · · an in AO

P ∪ AO
Q that leads to an incompatible pair of

states (i.e., δP⊗Q(. . . (δP⊗Q(δP⊗Q(〈sP , sQ〉, a1), a2) . . .), an) is incompatible).
We use the product operation in the definition of parallel composition.

Definition 4 (Parallel composition). Let P and Q be components such that
AO

P ∩ AO
Q = ∅. If 〈s0Q, s0P〉 is not potentially incompatible, then the parallel

composition of P and Q exists and is defined as the component P || Q =
〈(AI

P ∪AI
Q) \ (AO

P ∪AO
Q),AO

P ∪AO
Q, SP × SQ, (s0P , s

0
Q), δP||Q, QP ×QQ〉, where:

δP||Q(〈sP , sQ〉, a) = δP⊗Q(〈sP , sQ〉, a) whenever δP⊗Q(〈sP , sQ〉, a) is defined
and not potentially incompatible, otherwise δP||Q(〈sP , sQ〉, a) is undefined.

Intuitively, the transition function of P || Q is undefined for inputs that lead
to potentially incompatible pairs of states. If the environment supplies such an
input, then P || Q can potentially reach an incompatible pair of states, and such
a situation is regarded as inconsistent. The component P || Q is quiescent if
both P and Q are quiescent.

Travel Agency Example. To illustrate our synthesis methodology, we consider
a simple yet challenging example of a componentised and heterogeneous travel
agency system, initially presented in [BBG+11]. The first component, called
USClient, is a client-side software entity that allows customers to search for a
holiday package, which consists of a hotel, a flight, and a car, and to purchase
one if they so desire. The second component, called EUService, is a server-side
service that provides operations for selecting the constituent parts of a holiday
package (i.e., a hotel, a flight, and a car) separately.

The behaviour of the USClient and EUService components is represented by
the models in Figures 1 and 2. Component models are represented pictorially
by enclosing the transition system within a box corresponding to the interface.
Labelled arrows pointing at the interface correspond to inputs, whereas arrows
emanating from the interface correspond to outputs. Quiescent states are repre-
sented by squares, and other states by circles.

278 A. Bennaceur et al.

findTripI findTripO confI confO 	

findTripO confO 	

findTripI confI

Fig. 1. Model of USClient

selHotelO selHotelO selHotelO selHotelO selHotelO

selHotelI selHotelI selHotelI selHotelI selHotelI

selF lightI

selF lightI

selF lightI

selF lightO

selF lightO

selF lightO

selCarI

selCarI

selCarI

selCarO

selCarO

selCarO

makeResI

makeResO

	

selF lightO selHotelO selCarO makeResO

selF lightI selHotelI selCarI makeResI 	

Fig. 2. Model of EUService

USClient sends findT ripI, which is a request for a travel package that in-
cludes the travel preference of the customer (i.e., destination, departure and
return dates). Then, USClient receives findT ripO, which is a response includ-
ing a trip proposition. USClient confirms the reservation by sending the confI
request and receiving the acknowledgement within the confO response.

EUService receives the selHotelI, selF lightI, or selCarI requests for finding
a hotel, flight, or a car respectively given some customer preferences, which
consists of a destination, departure and return dates. It then replies with one of
the corresponding responses selHotelO, selF lightO, or selCarO, which include
propositions for a hotel, flight, and car respectively. While requests for a hotel
and a flight can be performed in any order, the request for a car can only
be performed once the flight has been selected. Once all parts of a trip are
validated, the EUService expects to receive a makeResI request for completing
the reservation, and sends the corresponding response makeResO.

The 	 action, which may occur precisely at the end of the transaction, indi-
cates that each component terminates only at the end of the transaction.

The two components have a functional discrepancy that prevents them from
directly interacting to secure a holiday, even though, at a high-level of abstrac-
tion, EUService provides the functionality required by USClient. It is our in-
tention to automatically synthesise a mediator allowing the two components to
successfully interoperate. The synthesis approach is based on the behavioural
models of each component, together with an ontology that represents knowledge
about the domain in which the components belong.

Automated Mediator Synthesis 279

Quotient. The final operation that we consider is that of quotient, which can
be regarded as the adjoint (roughly “inverse”) of parallel composition. Given a
specification for a system R, together with a component P implementing part of
R, the quotient, denoted R/P , yields the weakest specification for the remaining
part ofR to be implemented. Thus,R/P is the weakest component such that P ||
(R/P) * R. It is sufficient to understand quotient in this way without examining
the formal definition below. Consequently, the remainder of this section may be
skipped without losing the ability to understand our synthesis methodology.

Here, we define the quotient R/P under the assumptions that AP ⊆ AR,
reflecting that P is a sub-component of R, and AO

P ⊆ AO
R, which is implied by

P || (R/P) * R. We postulate that AO
R/P = AO

R \ AO
P and AI

R/P = AO
P ∪ AI

R,

which allows R/P to monitor all the actions of P and R.

Definition 5 (Quotient). Let P and R be components such that AO
P ⊆ AO

R
and AP ⊆ AR. The quotient of P from R is the component R/P = 〈AO

P ∪
AI

R,AO
R \AO

P , SR/P , (s0P , s
0
R), δR/P , QR/P〉, defined only when (s0P , s

0
R) ∈ SR/P ,

where:

– SR/P is the largest subset of (SP × SR) such that
• if 〈sP , sR〉 ∈ SR/P and either a ∈ AO

P is enabled in sP , or a ∈ AI
P∩AI

R is
enabled in sR, then δP⊗R(〈sP , sR〉, a) is defined and δP⊗R(〈sP , sR〉, a) ∈
SR/P
• if 〈sP , sR〉 ∈ SR/P and sP ∈ QP and sR �∈ QR, then there is some
a ∈ AO

R/P such that δP⊗R(〈sP , sR〉, a) ∈ SR/P
– δR/P(〈sP , sR〉, a) = δP⊗R(〈sP , sR〉, a) whenever 〈sP , sR〉 ∈ SR/P and
δP⊗R(〈sP , sR〉, a) ∈ SR/P , otherwise δR/P(〈sP , sR〉, a) is undefined

– QR/P = SR/P ∩ ((SP ×QR) ∪ (SP \QP)× SR).

Intuitively, the quotient can be constructed in a manner similar to the parallel
composition of P andR, but avoiding situations where: P can produce an output
not matched by R; R can accept an input in AI

R ∩ AI
P that P cannot accept;

and P is quiescent, R is not, and R/P cannot enforce an output action.

Theorem 1. Let P and R be components such that AO
P ⊆ AO

R and AP ⊆ AR.
If there exists a component Q with inputs AI

R/P and outputs AO
R/P , such that

P || Q * R, then R/P is defined, P || (R/P) * R and Q * (R/P).

3 Ontological Modelling and Reasoning

An ontology is “a specification of a representational vocabulary for a shared
domain of discourse” [Gru93]. The goal of an ontology is to model and reason
about domain knowledge. OWL DL1 (Web Ontology Language), which is the
W3C standard language to model ontologies, is based on a description logic
(DL), which specifies the vocabulary of a domain using concepts, attributes of
each concept, and relationships between these concepts.

1 http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/

280 A. Bennaceur et al.

We provide an overview of the syntax and semantics of the basic DL constructs
in Figure 3 and refer the interested reader to [BCM+03] for further details. Each
concept is given a definition as a set of logical axioms, which can either be
atomic or defined using different operators such as disjunction, conjunction, and
quantifiers. The attributes of a concept are defined using an object property,
which associates the concept with a built-in data type.

For example, consider an extract of the travel agency ontology depicted in
Figure 4. The Flight concept is characterised by attributes hasDepartureDate
and hasReturnDate of the built-in type DateTime, and hasFlightID of type String.

We describe the aggregation of concepts using the W3C recommendation for
part-whole relations2 (hasPart), where different concepts are composed together
to build a whole. A concept E is an aggregation of concepts C andD, written E =
C⊕D, providing both C andD are parts of E, i.e., E = ∃hasPart.C # ∃hasPart.D.
For example, the Trip concept is defined as the aggregation of the Flight, Hotel,
and Car concepts, meaning that each trip instance t ∈ Trip encompasses a Flight
instance (∃f ∈ Flight∧ (t, f) ∈ hasPart), as well as Hotel and Car instances. The
rationale is that the mediator is able to generate a concept by concatenating
the attributes of all its parts (while avoiding duplication of attributes). Dually,
the mediator can create several concepts by distributing the attributes of the
aggregated concept across its different parts. This corresponds to the merging
and splitting of messages.

DL Syntax DL Semantics

Conjunction C %D (C %D)I = CI ∩DI

Disjunction C &D (C &D)I = CI ∪DI

Universal quantifier ∀R.C (∀R.C)I = {x ∈ ΔI | ∀y.(x, y) ∈ RI ⇒ y ∈ CI}
Existential quantifier ∃R.C (∃R.C)I = {x ∈ ΔI | ∃y.(x, y) ∈ RI ∧ y ∈ CI}
Aggregation C ⊕D (C⊕D)I = {x ∈ ΔI | ∃y.(x, y) ∈ hasPartI∧y ∈ CI

∧∃z.(x, z) ∈ hasPartI∧z ∈ DI}
An interpretation I consists of a non-empty set ΔI (the domain of the interpretation)
and an interpretation function, which assigns to every atomic concept A a set AI ⊆ ΔI

and to every atomic object property R a binary relation RI ⊆ ΔI ×ΔI .
C and D are concepts and R is an object property.

Fig. 3. Overview of DL operators

DL is used to support automatic reasoning about concepts and their relation-
ships, in order to infer new relations that may not have been recognised by the
ontology designers. Traditionally, the basic reasoning mechanism is subsump-
tion. Intuitively, if a concept C is subsumed by a concept D, written C
O D,
then any instance of C also belongs to D. In addition, all the relationships in
which D instances can be involved are applicable to C instances, i.e., all prop-
erties of D are also properties of C. Subsumption is a partial order relation, i.e.,
it is reflexive, antisymmetric, and transitive. As a result, the ontology can be
represented as a hierarchy of concepts, which can be automatically inferred by

2 http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

Automated Mediator Synthesis 281

ontology reasoners based on the axioms defining the ontological concepts. Sub-
sumption allows for the replacement of inequivalent messages, provided all of the
necessary data is conveyed. For instance, a mediator can generate a concept out
of a more specific concept, since the latter includes all the necessary attributes
of the former (cf subtyping in object-oriented systems).

Ontologies are used to represent the semantics of actions in components,
by making explicit the meaning of the interaction primitives. Each action of
a component refers to a concept in the ontology, which has an object prop-
erty hasData specifying the semantics of the data embedded in the action sent
or received by the component. For example, the input action selF lightI ∈
AI

EUService is associated with the TravelPreferences concept (i.e., selF lightI =
∃hasData.TravelPreferences). The output action selF lightO ∈ AO

EUService is as-
sociated with the Flight concept, that is selF lightO = ∃hasData.Flight. The
idea here is that EUService allows the selection of a flight by receiving a re-
quest message that contains the attributes of the TravelPreferences concept, that
is, a destination along with departure and return dates. Once the request has
been processed, EUService returns a response that includes the flight informa-
tion, which consists of a hotel identifier, and check in and check out dates.
The output action findT ripI ∈ AO

USClient is also associated with the Travel-
Preferences concept, that is findT ripI = ∃hasData.TravelPreferences. The in-
put action findT ripO ∈ AI

USClient is associated with the Trip concept, that is
findT ripO = ∃hasData.Trip. USClient sends a request message that includes
the travel preference of the customer, and receives a response with a trip, i.e., a
holiday package consisting of a flight, hotel, and car.

Trip

= Flight Car Hotel

Flight

 hasDepartureDate.DateTime
 hasFlightID.String
 hasReturnDate.DateTime

Car

 hasDate.DateTime
 hasCarID.String
 hasFlightID.String

Hotel

 hasHoteID.String
 hasCheckInDate.DateTime
 hasCheckOutDate.DateTime

findTripO

selCarOselHotelOselFlightO

+hasData{some}+ hasData{some} + hasData{some}

findTripI

selHotelI

selFlightI

TravelPreferences
 hasDepartureDate.DateTime
 hasReturnDate.DateTime
 hasDestination.String

selCarI

Subsumption

X Ontological concept

Object property

+ hasData{some}

confI
+ hasData{some}

makeResI

+ hasData{some}

makeResO

confO
+ hasData{some}

TravelConfirmation

 hasDepartureDate.DateTime
 hasReturnDate.DateTime
 hasClientID.String

Fig. 4. The travel agency ontology

4 Automated Mediator Synthesis

In this section, we describe our synthesis methodology for generating mediators
that allow components to successfully communicate with one another. Given
components P and Q, a componentM is said to be a mediator if:

282 A. Bennaceur et al.

G1. P || M || Q is defined, which implies that the composition will never exhibit
any communication mismatches;

G2. P || M || Q is guaranteed to progress until both P and Q have reached a
successfully terminating state; and

G3. P || M || Q must satisfy constraints on correspondences between actions,
and on data flow, that are implicitly imposed by the ontology.

Our methodology finds the most general mediator M satisfying the above
requirements, meaning that it is least refined with respect to the refinement *
of Definition 2. Due to the arbitrariness of the components needing to communi-
cate (especially if they are functionally different), existence of a mediator is not
guaranteed. This correlates with the fact that quotient is a partial operator. As
part of our automated synthesis methodology, the following steps are performed:

1. Using the ontology, we first derive temporal constraints on the occurrences
of actions in P and Q in order to respect the data flow on actions. These
constraints are represented by a component B that observes the executions
of P || M || Q and generates an inconsistency when a constraint is violated.

2. After, we perform a quotient operation that automatically synthesises a me-
diator M such that P || M || Q satisfies requirements G1 and G2, along
with the ordering constraints represented by the observer B (G3).

In the following two subsections, we explain these steps in more detail.

4.1 Inferring Ordering Constraints from Ontologies

By reasoning about the ontology-based semantics of actions, we can derive or-
dering constraints on the components’ communication primitives that respect
the semantical meaning of actions.

Let us consider an input action b that is associated with data db in a do-
main ontology O, i.e., b = ∃hasData.db where b and db are concepts belong-
ing to O. The data required for action b must be provided by one or several
output actions; in the simplest case by an output action a that is associated
with data da such that da
O db. Moreover, action a must precede action
b, written a precedes b. The intuition behind this ordering constraint is that
the action a needs to provide the data required to achieve action b; it essen-
tially corresponds to a data-dependency in which each input action must be
preceded by output actions that supply the data items required for the execu-
tion of this input action. For example, the travel agency ontology specifies that
the input action selF lightI ∈ AI

EUService is associated with the data concept
TravelPreference. Since the only output action associated with this data concept
is findTripI ∈ AI

USClient, and TravelPreference
O TravelPreference due to re-
flexivity of subsumption, we derive the ordering constraint findTripI precedes
selF lightI.

In the general case, a collection of input actions {b1, . . . , bm}, which are as-
sociated with data concepts {db1 , . . . , dbm} respectively, must be preceded by
some collection of output actions {a1, . . . , an}, which are associated with data

Automated Mediator Synthesis 283

a1 a2

b b

a1 a2 b

Fig. 5. Component Seq({a1, a2}, b) enforcing a1 precedes b or a2 precedes b

concepts {da1 , . . . , dan} such that da1 ⊕ · · ·⊕ dan
O db1 ⊕ · · ·⊕ dbm . If there are
several such collections of output actions, it suffices that {b1, . . . , bm} is preceded
by one of them. Clearly, we can restrict our consideration to minimal such col-
lections of output actions. For example, the input action findTripO ∈ AI

USClient

must be preceded by the collection of output actions {selF lightO, selHotelO,
selCarO} ⊆ AO

EUService, since it is the only minimal collection, whose aggre-
gated data is subsumed by the data of findTripO, i.e., Flight⊕Hotel⊕Car
O Trip.

In order to extract such relations, we verify among possible combinations of in-
put/output actions of both components those verifying the data flow conditions.
Even though computing all possible preceding relations is NP-complete, we rely
on efficient search algorithms, which are based on constraint programming, to
make the computation effective in real-world settings [Con12a, pp. 49-57].

For each minimal disjunction of precedes relationships inferred from the on-
tology, we construct an observation component that has as interface the collec-
tion of primitives that appear in the relationship. For instance, the disjunction
a1 precedes b or a2 precedes b is represented by a component whose behaviour
forces either a1 or a2 to precede b, denoted by Seq({a1, a2}, b). Its behavior
is shown in Figure 5. Note that all the actions are treated as inputs and all
states are quiescent since the component is only observing the actions. If the
mediator or a component violates a constraint, the corresponding observer will
generate an inconsistency. The component B respecting the combined effect of
all the ontological constraints is then defined as the parallel composition of the
representations of the individual relationships. Note that this is always defined.

Considering the travel agency example, by reasoning about the semantics of
the actions of USClient and EUService using the ontology depicted in Figure 4,
we infer that findTripI precedes selF lightI, findTripI precedes selHotelI,
findTripI precedes selCarI, selF lightO precedes findTripO,
selHotelO precedes findTripO, selCarO precedes findTripO,
confI precedes makeResI, and makeResO precedes confO, which leads
to the following observer component:

B = (Seq(findTripI, selF lightI) || Seq(findTripI, selHotelI)
|| Seq(findTripI, selCarI) || Seq(selF lightO, findTripO)
|| Seq(selHotelO,findTripO) || Seq(selCarO, findTripO)
|| Seq(confI,makeResI) || Seq(makeResO, confO)).

284 A. Bennaceur et al.

4.2 Synthesising a Mediator as a Quotient

Having derived the ordering constraints implicitly encoded in the ontology (rep-
resented by the observer component B), we can formulate the synthesis problem
as the problem of performing a quotient operation. We begin by constructing a
goal component G that first performs any sequence of non-	 actions of P and
Q, and thereafter perform a 	 action before becoming quiescent. The goal G,
which can automatically be generated from the syntax of P and Q, is shown
in Figure 6. The synthesis problem involves finding a most general mediatorM

	

AP ∪AQ

AP AQ

	

Fig. 6. Component representing the goal G

such that P || M || Q || B * G. Note that the process G has all actions of P
and Q as outputs. This means that each input action of either P or Q must
be an output action of M, implying that P || M || Q has no input actions
(i.e., is a closed system). If such a mediatorM exists, it is equal to the quotient
G/(P || Q || B), for which it can be shown that requirements G1–G3 hold:

G1 is guaranteed by the fact thatM being defined implies that P || M || Q || B
is defined. Hence P || M || Q cannot enter an incompatible state.

G2 is satisfied since G can only become quiescent after having seen 	, which
means that P || M || Q || B can only become quiescent after having seen
	. Consequently, P || M || Q can only deadlock when all components have
terminated successfully.

G3 is satisfied for the following reason. The data flow constraints are satisfied
since B will generate an inconsistency whenever the sequence of actions does
not satisfy them. This implies P || M || Q will never produce any action
that violates the constraints on occurrences of actions expressed by B.

Remark. Our methodology has considered the case where P || M || Q is modeled
as a closed system. In the case where P || M || Q is an open system and we
have a model E of its environment, we can use the same technique by finding a
mediatorM such that P || M || Q || B || E * G, where we assume that E is just
another component.

Travel Agency Example. The mediator for the packaged holiday example is
shown in Figure 7. Its inputs are the outputs of EUService || USClient and
its outputs are the inputs of EUService || USClient. The main idea is that the
mediator first intercepts the output produced by USClient from the findTripI ac-
tion, transforms it into the equivalent actions for EUService (selHotelI, selFlightI
and selCarI), and then sends them to EUService (also respecting the constraint

Automated Mediator Synthesis 285

selHotelO selHotelO selHotelO selHotelO selHotelO

selHotelI selHotelI selHotelI selHotelI selHotelI

selF lightI

selF lightI

selF lightI

selF lightO

selF lightO

selF lightO

selCarI

selCarI

selCarI

selCarO

selCarO

selCarOfindTripI

findTripO confI

makeResI

makeResO

confO

	

findTripO confO selF lightI selHotelI selCarI makeResI 	

findTripI confI selF lightO selHotelO selCarO makeResO

Fig. 7. The mediator for the travel agency example

that selFlightO must be sent before selCarI). Upon reception of the correspond-
ing responses selHotelO, selFlightO and selCarO from EUService, the mediator
forwards the expected output action findTripO to USClient. The process then
evolves in a similar manner for confirmation of the reservation.

5 Implementation

We implemented the synthesis approach defined in this paper as a prototype tool
available at http://www.rocq.inria.fr/arles/software/onto-quotient/.
The Pellet reasoner3 is used to build the hierarchy of concepts in the ontology
and extract all the subsumption relations. The problem of inferring ordering
constraints is formalised as a constraint satisfaction problem, which we solve
efficiently using the Choco4 constraint solver. In a second step, we generate the
behavioural model of the observer B based on the generated ordering constraints,
compute the goal specification as shown in Fig. 6, and calculate the quotient.
It should be noted that even though B and G are always of a similar shape
(since they are automatically generated), the implementation allows for arbitrary
behavioural models to be used as observer and goal specifications.

In order to enable the components to interoperate, the synthesised behavioural
model of the mediator needs to be concretised and deployed into a concrete arte-
fact so as to realise the specified translations and coordination. This artefact is
called emergent middleware [BBG+11]. The emergent middleware concretises
the mediator model by incorporating information about underlying network lay-
ers. In particular, the emergent middleware: (i) intercepts the input messages,
(ii) parses them so as to abstract from the communication details and represent
them in terms of actions as expected by the mediator, (iii) performs the neces-
sary data transformations, and (iv) uses the transformed data to construct an
output message in the format expected by the interacting component. This is
performed using specific parsers and composers, which are generated based on

3 http://clarkparsia.com/pellet/
4 http://choco.emn.fr/

http://www.rocq.inria.fr/arles/software/onto-quotient/
http://clarkparsia.com/pellet/
http://choco.emn.fr/

286 A. Bennaceur et al.

existing libraries associated with the network communication protocols. In the
case of the travel agency example, we used the wsimport5 library to parse and
compose the messages.

Apart from the travel agency example, we experimented with our approach on
a number of case studies defined within the EU FP7 Connect project [Con12b].
These use cases mainly focus on enabling interoperability between heterogeneous
systems from different countries in a cross-border emergency situation. The ser-
vices are embedded within the GMES (Global Monitoring for Environment and
Security) context, which gives rise to a common domain ontology comprising the
concepts relevant in the considered emergency situations. For the sake of brevity,
we refer to [Con12b] for a more elaborate description on the domain ontology
and the systems involved.

In all the considered examples, we were able to generate a mediator automati-
cally by means of quotient. The quotient could be computed virtually without any
delay, even though inourprototype implementationwemerely focusedon function-
ality. We are thus confident that our approach will scale well even when applied to
more complex case studies, which we are planning to evaluate as future work.

6 Related Work

Pioneering work on mediator synthesis involves the use of formal methods for
protocol conversion, given behavioural models of the participating components.
Existing approaches for the synthesis of protocol converters require a specifi-
cation of the service delivered by the composed system. Lam [Lam88] assumes
a declarative specification of a common protocol to which both protocols can
be abstracted, which presupposes an intuitive understanding of the protocols
to be mediated. Calvert and Lam [CL90] propose a quotient operation for me-
diating communication protocols, which is related to, but different from, our
quotient operation. They require a global specification of the composed system,
which makes it difficult to apply automated mediator synthesis at run-time. A
quotient operation for deterministic interface automata has been presented by
Bhaduri and Ramesh [BR08]. Our quotient extends this definition by considering
also quiescence (deadlock) properties.

To improve the automation of mediator synthesis, Yellin and Strom [YS97]
define an algorithm to generate mediators automatically assuming that there
exist one-to-one correspondences between their actions, which have to be pro-
vided by the developer. Bertoli et al. [BPT10] also assume the correspondence
to be given and use a planning-based algorithm to generate the mediator.
Bersani et al. [BCF+10] define an approach based on SMT-based model check-
ing but assume that the protocols have the same alphabet. Finally, Inverardi
and Tivoli [IT13] adopt a compositional approach where the mediator is gen-
erated based on pre-defined patterns of translations, which have to be given
by the developer. Common to all the aforementioned methods is the assump-
tion of a priori knowledge about the components to be mediated and hence the

5 http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html

http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html

Automated Mediator Synthesis 287

correspondence between their actions must be provided beforehand by develop-
ers using their intuitive understanding of the application domain.

The emergence of the Semantic Web has led to the use of ontologies in system
integration as a means of interpreting the meaning of data or associated services
as they are dynamically encountered in the World-Wide Web. The Web Service
Execution Environment (WSMX) [CM05] provides a framework to mediate in-
teractions between heterogeneous Web Services by inspecting their individual
protocols and performing the necessary translation using predefined mediation
patterns. However, the composition of these patterns is not considered, and there
is no guarantee of deadlock-freeness. Vacuĺın et al. [VNS09] synthesise mediators
between a client and a service specified as OWL-S processes by generating all
the traces of the client protocol and finding the appropriate mapping for each
trace by simulating the service protocol.

In this paper, we define an approach that extends and improves existing work
on mediator synthesis by using ontologies to reason about the domain and au-
tomatically infer the correspondence between the actions of the components in-
volved. This removes the need for a declarative specification of the global system
or the assumption that the components share the same alphabet.

7 Discussion and Evaluation

We have devised a methodology for synthesising mediators to support the in-
teroperability of components. Unlike existing techniques, we make use of an
ontology that relates the functional behaviour of the components, meaning that
the components do not have to share similar communication alphabets. The
synthesis technique is automated in the sense that the user does not need to
specify what the mediator should do, as this can be inferred using behavioural
and ontological reasoning. The synthesis is performed by means of a quotient
operation, which has received renewed interest in the literature recently. The
synthesised mediators are free of communication mismatches, and by considera-
tion of quiescence are guaranteed not to deadlock prematurely or inopportunely.

As a matter of simplicity, we have shunned away from components exhibiting
non-determinism and hidden transitions, although our theory can support these
by using the definitions of parallel composition and quotient in [CCJK12]. Future
work includes incremental re-synthesis of mediators so as to respond efficiently
to changes in the individual components or in the ontology.

Acknowledgements. This work is carried out as part of the European FP7
ICT FET Connect project (http://connect-forever.eu/). The last author was
supported in part by the UPMARC centre of excellence.

References

[BBG+11] Blair,G.S.,Bennaceur,A.,Georgantas,N.,Grace,P., Issarny,V.,Nundloll,
V., Paolucci, M.: The role of ontologies in emergent middleware: Support-
ing interoperability in complex distributed systems. In: Kon, F., Kermar-
rec,A.-M. (eds.)Middleware 2011. LNCS, vol. 7049, pp. 410–430. Springer,
Heidelberg (2011)

288 A. Bennaceur et al.

[BCF+10] Bersani, M.M., Cavallaro, L., Frigeri, A., Pradella, M., Rossi, M.: SMT-
based verification of ltl specification with integer constraints and its ap-
plication to runtime checking of service substitutability. In: Proc. SEFM,
pp. 244–254. IEEE (2010)

[BCM+03] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Schneider, P.: The
Description Logic Handbook. Cambridge University Press (2003)

[BPT10] Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web ser-
vices via planning in asynchronous domains. Artificial Intelligence 174(3-
4), 316–361 (2010)

[BR08] Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion.
Form. Asp. Comput. 20(2), 205–224 (2008)

[CCJK12] Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A compositional
specification theory for component behaviours. In: Seidl, H. (ed.) ESOP
2012. LNCS, vol. 7211, pp. 148–168. Springer, Heidelberg (2012)

[CL90] Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE
Journal on Selected Areas in Communications 8(1), 127–142 (1990)

[CM05] Cimpian, E., Mocan, A.: WSMX process mediation based on choreogra-
phies. In: Bussler, C.J., Haller, A. (eds.) BPM 2005 Workshops. LNCS,
vol. 3812, pp. 130–143. Springer, Heidelberg (2006)

[CMS+09] Cámara, J., Mart́ın, J., Salaün, G., Cubo, J., Ouederni, M., Canal, C.,
Pimentel, E.: ITACA: An integrated toolbox for the automatic compo-
sition and adaptation of web services. In: ICSE, pp. 627–630 (2009)

[Con12a] Connect Consortium. Deliverable D3.4: Dynamic Connector Synthe-
sis: Principles, Methods, Tools and Assessment. FET IP Connect EU
project (2012), http://hal.inria.fr/hal-00805618

[Con12b] Connect Consortium. Deliverable D6.4: Assessment report: Experi-
menting with CONNECT in Systems of Systems, and Mobile Environ-
ments. FET IP Connect EU project (2012),
http://hal.inria.fr/hal-00793920

[dAH01] de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw.
Eng. Notes 26(5), 109–120 (2001)

[Gru93] Gruber, T.R.: A translation approach to portable ontology specifications.
Knowledge Acquisition 5(2), 199–220 (1993)

[IT13] Inverardi, P., Tivoli, M.: Automatic synthesis of modular connectors via
composition of protocol mediation patterns. In: ICSE (to appear, 2013)

[Lam88] Lam, S.: Protocol conversion. IEEE Transaction Software Engineer-
ing 14(3), 353–362 (1988)

[MHS+12] Merten, M., Howar, F., Steffen, B., Pellicione, P., Tivoli, M.: Automated
inference of models for black box systems based on interface descriptions.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 79–96. Springer, Heidelberg (2012)

[PdAHSV02] Passerone, R., de Alfaro, L., Henzinger, T.A., Sangiovanni-Vincentelli,
A.L.: Convertibility verification and converter synthesis: two faces of the
same coin. In: Proc. IEEE/ACM Int. Conf. on Computer-aided Design,
pp. 132–139. ACM (2002)

[VNS09] Vacuĺın, R., Neruda, R., Sycara, K.P.: The process mediation framework
for semantic web services. International Journal of Agent-Oriented Soft-
ware Engineering, IJAOSE 3(1), 27–58 (2009)

[YS97] Yellin, D.M., Strom, R.E.: Protocol specifications and component adap-
tors. ACM Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

http://hal.inria.fr/hal-00805618
http://hal.inria.fr/hal-00793920

Program Transformation

Based on Symbolic Execution and Deduction�

Ran Ji, Reiner Hähnle, and Richard Bubel

Department of Computer Science
Technische Universität Darmstadt, Germany
{ran,haehnle,bubel}@cs.tu-darmstadt.de

Abstract. We present a program transformation framework based on
symbolic execution and deduction. Its virtues are: (i) behavior preser-
vation of the transformed program is guaranteed by a sound program
logic, and (ii) automated first-order solvers are used for simplification
and optimization. Transformation consists of two phases: first the source
program is symbolically executed by sequent calculus rules in a program
logic. This involves a precise analysis of variable dependencies, aliasing,
and elimination of infeasible execution paths. In the second phase, the
target program is synthesized by a leaves-to-root traversal of the symbolic
execution tree by backward application of (extended) sequent calculus
rules. We prove soundness by a suitable notion of bisimulation and we
discuss one possible approach to automated program optimization.

1 Introduction

State-of-the-art program verification systems can show the correctness of com-
plex software written in industrial programming languages [1]. The main reason
why functional verification is not used routinely is that considerable expertise is
required to come up with formal specifications [2], invariants, and proof hints.
Nevertheless, modern software verification systems are an impressive achieve-
ment: they contain a fully formal semantics of industrial programming languages
and, due to automated first-order reasoning and highly developed heuristics, in
fact a high degree of automation is achieved: more than 99,9% of the proof steps
are typically completely automatic. Given the right annotations and contracts,
often 100% automation is possible. This paper is about leveraging the enormous
potential of verification tools that at the moment goes unused.

The central observation is that everything making functional verification hard,
is in fact not needed if one is mainly interested in simplifying and optimizing a
program rather than proving it correct. First, there is no need for complex for-
mal specifications: the property that two programs are bisimilar on observable
locations is easy to express schematically. Second, complex invariants are only
required to prove non-trivial postconditions. If the preservation of behavior be-
comes the only property to be proven, then simple, schematic invariants will do.

� This work has been partially supported by the IST program of the European Com-
mission, Future and Emerging Technologies under the IST-231620 HATS project.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 289–304, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

290 R. Ji, R. Hähnle, and R. Bubel

Hence, complex formulas are absent, which does away with the need for difficult
quantifier instantiations.

On the other hand, standard verification tools are not set up to relate a
source and a target program, which is what is needed for program simplification
and optimization. The main contribution of this paper is to adapt the program
logic of a state-of-the-art program verifier [3] to the task of sound program
transformation and to show that fully automatic program simplification and
optimization with guaranteed soundness is possible as a consequence.

This paper extends previous work [4], where the idea of program specialization
via a verification tool was presented for the first time. We remodeled the ad-
hoc semantics of the earlier paper in terms of standard bisimulation theory [5].
While this greatly improves the presentation, more importantly, it enables the
new optimization described in Sect. 5.

Aiming at a concise presentation, we employ the small OO imperative pro-
gramming language PL. It contains essential features of OO languages, but
abstracts away from technicalities that complicate the presentation. Sect. 2 in-
troduces PL and Sect. 3 defines a program logic for it with semantics and a
calculus. These are adapted to the requirements of program transformation in
Sect. 4. In Sect. 5 we harvest from our effort and add a non-trivial optimization
strategy. We close with related work (Sect. 6) and future work (Sect. 7).

2 Programming Language

PL supports classes, objects, attributes, method polymorphism (but not method
overloading).Unsupported features are generic types, exceptions, multi-threading,
floating points, and garbage collection. The types of PL are the types derived from
class declarations, the type int of mathematical integers (Z), and the standard
Boolean type boolean.

A PL program p is a non-empty set of class declarations, where each class
defines a class type. PL contains at least two class types Object and Null. The
class hierarchy (without Null) forms a tree with class Object as root. The type
Null is a singleton with null as its only element and may be used in place of
any class type. It is the smallest class type.

A class Cl := (cname, scnameopt, f ld,mtd) consists of (i) a classname cname
unique in p, (ii) the name of its superclass scname (optional, only omitted for
cname = Object), (iii) a list of field declarations fld and method declarations
mtd. The syntax coincides with that of Java. The only features lacking from
Java are constructors and initialization blocks. We use some conventions: if not
stated otherwise, any sequence of statements is viewed as if it were the body of
a static, void method declared in a class Default with no fields.

Any complex statement can be easily decomposed into a sequence of simpler
statements without changing the meaning of a program, e.g., y = z ++; can be
decomposed into int t = z; z = z + 1; y = t;, where t is a fresh variable,
not used anywhere else. As we shall see later, a suitable notion of simplicity is
essential, for example, to compute variable dependencies and simplify symbolic

Program Transformation Based on Symbolic Execution and Deduction 291

states. This is built into our semantics and calculus, so we need a precise defi-
nition of simple statements. Statements in the syntactic category spStmnt have
at most one source of side effect each. This can be a non-terminating expression
(such as a null pointer access), a method call, or an assignment to a location.

spStmnt ::= spLvarDecl | locVar’=’spExp’;’ | locVar’=’spAtr’;’
| spAtr’=’spExp’;’

spLvarDecl ::=Type IDENT’;’

spExp ::= (locVar.)optspMthdCall | spOpExp | litVar
spMthdCall ::= mthdName’(’litVaropt(’,’litVar)∗’)’
spOpExp ::= !litVar | -litVar | litVar binOpr litVar
litVar ::= litval | locVar litval ::=Z | TRUE | FALSE | null
binOpr ::= < | <= | >= | > | == | & | | | * | / | % | + | -
locVar ::= IDENT spAtr ::= locVar.IDENT

3 Program Logic and Sequent Calculus

Symbolic execution was introduced independently by King [6] and others in the
early 1970s. The main idea is to take symbolic values (terms) instead of concrete
ones for the initial values of input variables, fields, etc., for program execution.
The interpreter then performs algebraic computations on terms instead of com-
puting concrete results. In this paper, following [7], symbolic execution is done
by applying sequent calculus rules of a program logic. Sequent calculi are often
used to verify a program against a specification [7], but here we focus on sym-
bolic execution, which we embed into a program logic for the purpose of being
able to argue the correctness of program transformations and optimizations.

3.1 Program Logic

Our program logic is dynamic logic (DL) [8]. The target program occurs in
unencoded form as a first-class citizen inside the logic’s connectives. Sorted first-
order dynamic logic is sorted first-order logic that is syntactically closed wrt
program correctness modalities [·]· (box) and 〈·〉· (diamond). The first argument
is a program and the second a dynamic logic formula. Let p denote a program
and φ a dynamic logic formula then [p]φ and 〈p〉φ are DL-formulas. Informally,
the former expresses that if p is executed and terminates then in all reached final
states φ holds; the latter means that if p is executed then it terminates and in
at least one of the reached final states φ holds.

We consider only deterministic programs, hence, a program p executed in a
given state s either terminates and reaches exactly one final state or it does not
terminate and there are no reachable final states. The box modality expresses
partial correctness of a program, while the diamond modality coincides with
total correctness. A dynamic logic based on PL-programs is called PL-DL. The
signature of the program logic depends on a context PL-program C.

292 R. Ji, R. Hähnle, and R. Bubel

Definition 1 (��-Signature ΣC). A signature ΣC = (Srt,�,Pred,Func, LgV)
consists of: (i) a set of names Srt called sorts containing at least one sort for each
primitive type and one for each class Cl declared in C: Srt ⊇ {int, boolean} ∪
{Cl | for all classes Cl declared in C}; (ii) a partial subtyping order �: Srt×Srt
that models the subtype hierarchy of C faithfully; (iii) infinite sets of predicate
symbols Pred := {p : T1 × . . . × Tn | Ti ∈ Srt, n ∈ N} and function symbols
Func := {f : T1×. . .×Tn → T | Ti, T ∈ Srt, n ∈ N}. We call α(p) = T1×. . .×Tn
and α(f) = T1 × . . .× Tn → T the signature of the predicate/function symbol.
Func := Funcr ∪ PV ∪ Attr is further divided into disjoint subsets:

– the rigid function symbols Funcr, which do not depend on the current state
of program execution;

– the program variables PV = {i, j, . . .}, which are non-rigid constants;

– the attribute function symbols Attr, such that for each attribute a of type T
declared in class Cl an attribute function a@Cl : Cl → T ∈ Attr exists. We
omit the @C from attribute names if no ambiguity arises.

(iv) a set of logical variables LgV := {x : T |T ∈ Srt}.

ΠΣC denotes the set of all executable PL programs (i.e., sequences of state-
ments) with locations over signature ΣC . In the remaining paper, we use the
notion of a program to refer to a sequence of executable PL-statements. If we
want to include class, interface or method declarations, we either include them
explicitly or make a reference to the context program C.

Terms t and formulas φ are defined as usual, thus omitted here for brevity.
We use updates u to describe state changes by means of an explicit substitution.
An elementary update i := t or t.a := t is a pair of location and term. They
are of single static assignment (SSA) form, with the same meaning as simple
assignments. Elementary updates are composed to parallel updates u1‖u2 and
work like simultaneous assignments. Updates u are defined by the grammar
u ::= i := t | t.a := t | u ‖ u | {u}u (where a ∈ Attr) together with the usual well-
typedness conditions. Updates applied on terms or formulas, written {u}t resp.
{u}φ, are again terms or formulas. Updates applied on terms or formulas, written
{u}t resp. {u}φ, are again terms or formulas. Terms, formulas and updates are
evaluated with respect to a PL-DL Kripke structure:

Definition 2 (Kripke structure). A PL-DL Kripke structureKΣPL
= (D, I, S)

consists of (i) a set of elements D called domain, (ii) an interpretation I with

– I(T) = DT , T ∈ Srt assigning each sort its non-empty domain DT . It ad-
heres to the restrictions imposed by the subtype order �; Null is always
interpreted as a singleton set and subtype of all class types;

– I(f) : DT1×. . .×DTn → DT for each rigid function symbol f : T1×. . .×Tn →
T ∈ Funcr;

– I(p) ⊆ DT1 × . . .×DTn for each predicate symbol p : T1 × . . .× Tn ∈ Pred;

and (iii) a set of states S assigning meaning to non-rigid function symbols: let
s ∈ S then s(a@Cl) : DCl → DT , a@Cl : Cl → T ∈ Attr and s(i) : DT , i ∈ PV.
The pair D = (D, I) is called a first-order structure.

Program Transformation Based on Symbolic Execution and Deduction 293

valD,s,β(x := t)(s) = s[x← t]
valD,s,β(o.a := t)(s) = s[(a)(valD,s,β(o))← t]
valD,s,β(u1‖u2)(s) = valD,s,β(u2)(valD,s,β(u1)(s))
valD,s,β({u1}u2)(s) = valD,s′,β(u2)(s

′), where s′ = valD,s,β(u1)(s)
valD,s(x = e) = {s′[x← d] | (s′, d) ∈ valD,s(e)}, x ∈ PV
valD,s(o.a = e) = {s′′[a(do)← de] | (s′, do) ∈ valD,s(o) ∧ (s′′, de) ∈ valD,s′(e)}
valD,s(p1; p2) =

⋃
s′∈valD,s(p1)

valD,s′(p2)

valD,s(if(e) {p} else {q}) =

⎧⎨
⎩

valD,s′,β(p), (s′,True) ∈ valD,s(e)
valD,s′,β(q), (s′,False) ∈ valD,s(e)
∅, otherwise

valD,s(while(e){p}) =

⎧⎪⎪⎨
⎪⎪⎩

⋃
s1∈S1

valD,s1(while(e){p}) where S1 = valD,s′(p),

if (s′,True) ∈ valD,s(e)
{s′}, if (s′,False) ∈ valD,s(e)
∅, otherwise

Fig. 1. Definition of PL-DL semantic evaluation function (excerpt)

A variable assignment β : LgV → DT maps a logical variable x : T to its
domain DT . A term, formula or update is evaluated relative to a given first-
order structure D = (D, I), a state s ∈ S and a variable assignment β, while
programs and expressions are evaluated relative to aD and s ∈ S . The evaluation
function val is defined recursively. It evaluates (i) every term t : T to a value
valD,s,β(t) ∈ DT ; (ii) every formula φ to a truth value valD,s,β(φ) ∈ {tt, ff};
(iii) every update u to a state transformer valD,s,β(u) ∈ S → S , (iv) every
statement st to a set of states valD,s(st) ⊆ 2S ; and (v) every expression e : T to
a set of pairs of state and value valD,s,(e) ⊆ 2S×T . As PL is deterministic, all
sets of states or state-value pairs have at most one element.

Fig. 1 shows an excerpt of the semantic definition of updates and programs,
more definitions are in our technical report [9]. The expression s[x← v] denotes
a state coincides with s except at x which is mapped to the evaluation of v.

Example 1 (Update semantics). We illustrate the semantics of updates of Fig. 1.
Evaluating {i := j + 1}i ≥ j in a state s is identical to evaluating the formula
i ≥ j in a state s′ which coincides with s except for the value of i which
is evaluated to the value of valD,s,β(j + 1). Evaluation of the parallel update
i := j‖j := i in a state s leads to the successor state s′ identical to s except
that the values of i and j are swapped. The parallel update i := 3‖i := 4
has a conflict as i is assigned different values. In such a case the last occurring
assignment i := 4 overrides all previous ones of the same location. Evaluation
of {i := j}{j := i}φ in a state s results in evaluating φ in a state, where i has
the value of j, and j remains unchanged.

Remark. {i := j}{j := i}φ is the sequential application of updates i := j and
j := i on the formula φ. To ease the presentation, we overload the concept of
update and also call {i := j}{j := i} as an update. In the following context,
if not stated otherwise, we use the upper-case letter U to denote this kind of
“misused” update, compared to the real update that is denoted by a lower-case
letter u. An update U could be the form of {u} and {u1} . . . {un}.

294 R. Ji, R. Hähnle, and R. Bubel

emptyBox
Γ =⇒ Uφ,Δ
Γ =⇒ U []φ,Δ

assignment
Γ =⇒ U{x := litV ar}[ω]φ,Δ
Γ =⇒ U [x = litV ar;ω]φ,Δ

assignAddition
Γ =⇒ U{x := litV ar1 + litV ar2}[ω]φ,Δ
Γ =⇒ U [x = litV ar1 + litV ar2;ω]φ,Δ

ifElse
Γ,Ub = TRUE =⇒ U [p;ω]φ,Δ Γ,U¬b = TRUE =⇒ U [q;ω]φ,Δ

Γ =⇒ U [if (b) {p} else {q} ω]φ,Δ

loopInvariant

Γ =⇒ Uinv,Δ (init)
Γ,UVmod(b = TRUE ∧ inv) =⇒ UVmod[p]inv,Δ (preserves)
Γ,UVmod(b = FALSE ∧ inv) =⇒ UVmod[ω]φ,Δ (use case)

Γ =⇒ U [while (b) {p} ω]φ,Δ

Fig. 2. Selected sequent calculus rules (for more detail see [9,3])

3.2 Sequent Calculus

We define a sequent calculus for PL-DL. Symbolic execution of a PL-program is
performed by application of sequent calculus rules. Soundness of the rules ensures
validity of provable PL-DL formulas in a program verification setting [3].

A sequent is a pair of sets of formulas Γ = {φ1, . . . , φn} (antecedent) and
Δ = {ψ1, . . . , ψm} (succedent) of the form Γ =⇒ Δ. Its semantics is defined by
the formula

∧
φ∈Γ φ→

∨
ψ∈Δ ψ. A sequent calculus rule has one conclusion and

zero or more premises. It is applied to a sequent s by matching its conclusion
against s. The instantiated premises are then added as children of s. Our PL-DL
sequent calculus behaves as a symbolic interpreter for PL. A sequent for PL-DL
is always of the form Γ =⇒ U [p]φ,Δ. During symbolic execution performed by
the sequent rules (see Fig. 2) the antecedents Γ accumulate path conditions and
contain possible preconditions. The updates U record the current symbolic value
at each point during program execution and the φ’s represent postconditions.
Symbolic execution of a program p works as follows:

1. Select an open proof goal with a [·] modality. If no [·] exists on any branch,
then symbolic execution is completed. Focus on the first active statement
(possibly empty) of the program in the modality.

2. If it is a complex statement, apply rules to decompose it into simple state-
ments and goto 1., otherwise continue.

3. Apply the sequent calculus rule corresponding to the active statement.
4. Simplify the resulting updates and apply first-order simplification to the

premises. This might result in some closed branches. It is possible to detect
and eliminate infeasible paths in this way. Goto 1.

Example 2. We look at typical proof goals that arise during symbolic execution:

1. Γ, i > j ⇒ U [if (i>j) {p} else {q} ω]φ: Applying rule ifElse and sim-
plification eliminates the else branch and symb. exec. continues with p ω.

2. Γ ⇒ {i := c‖ . . .}[j = i; ω]φ where c is a constant: It is sound to replace
the statement j = i with j = c and continue with symbolic execution. This
is known as constant propagation. More techniques for partial evaluation can
be integrated into symbolic execution [10].

Program Transformation Based on Symbolic Execution and Deduction 295

Program

. . . ;

. . .

if (cond) {
. . . }

else {
. . . }

while (guard) {
. . . }

. . .

. . . ;

Symbolic Execution Tree (SET)

n0

cond

guard guard

n3

n4

n5

n6

b0

b1 then-branch b2 else-branch

b3 loop body
b4

b5 loop body
b6

S.E.−→

Fig. 3. Symbolic execution tree with loop invariant applied

3. Γ ⇒ {o1.a := v1‖ . . .}[o2.a = v2; ω]φ: After executing o2.a = v2, the alias
is analyzed as follows: (i) if o2 = null is true the program does not terminate;
(ii) else, if o2 = o1 holds, the value of o1.a in the update is overriden and
the new update is {o1.a := v2‖ . . . ‖o2.a := v2}; (iii) else the new update
is {o1.a := v1‖ . . . ‖o2.a := v2}. Neither of (i)–(iii) might be provable and
symbolic execution split into these three cases when encountering a possibly
aliased object access.

The result of symbolic execution for a PL program p following the sequent cal-
culus rules is a symbolic execution tree (SET), as illustrated in Fig. 3. Complete
symbolic execution trees are finite acyclic trees whose root is labeled with Γ =⇒
[p]φ,Δ and no leaf has a [·] modality. W.l.o.g. we can assume that each inner
node i is annotated by a sequent Γi =⇒ Ui[pi]φi, Δi, where pi is the program
to be executed. Every child node is generated by rule application from its par-
ent. A branching node represents a statement whose execution causes branching,
e.g., conditional, object access, loops etc. We call a sequential block a maximal
program fragment in an SET that is symbolically executed without branching.
For instance, there are 7 sequential blocks in the SET on the right of Fig. 3.

4 Sequent Calculus for Program Transformation

The structure of a symbolic execution tree makes it possible to synthesize a
program by bottom-up traversal. The idea is to apply the sequent calculus rules
reversely and generate the program step-by-step. This requires to extend the
sequent calculus rules with means for program synthesis. Obviously, the syn-
thesized program should behave exactly as the original one, at least for the
observable locations. To this end we introduce the notion of weak bisimulation
for PL programs and show its soundness for program transformation (see [9]).

296 R. Ji, R. Hähnle, and R. Bubel

4.1 Weak Bisimulation Relation of Program

Definition 3 (Location sets, observation equivalence). A location set Loc
is a set containing program variables x and attribute expressions o.a with a ∈ Attr
and o being a term of the appropriate sort.

Given two states s1, s2 and a location set obs. A relation ≈: Loc×S ×S is an
observation equivalence iff for all D, β and ol ∈ obs, valD,s1,β(ol) = valD,s2,β(ol)
holds. It is written as s1 ≈obs s2. We call obs observable locations.

The semantics of a PL program p (Fig. 1) is a state transformation. Executing
p from a start state s results in a set of end states S′, where S′ is a singleton {s′}
if p terminates, or ∅ otherwise. We identify a singleton with its only member, so
in case of termination, valD,s(p) is evaluated to s′ instead of {s′}.

A transition relation −→: Π × S × S relates two states s, s′ by a program

p iff p starts in state s and terminates in state s′, written s
p−→ s′. We have:

s
p−→ s′, where s′ = valD,s(p). If p does not terminate, we write s

p−→.
Since a complex statement can be decomposed into a set of simple statements,

which is done during symbolic execution, we can assume that a program p con-
sists of simple statements. Execution of p leads to a sequence of state transitions:

s
p−→ s′ ≡ s0

sSt0−→ s1
sSt1−→ . . .

sStn−1−→ sn
sStn−→ sn+1, where s = s0, s

′ = sn+1, si a
program state and sSti a simple statement (0 ≤ i ≤ n). A program state has
the same semantics as the state defined in a Kripke structure, so we use both
notations without distinction.

Some simple statements reassign values (write) to a location ol in the observ-
able locations that affects the evaluation of ol in the final state. We distinguish
these simple statements from those that do not affect the observable locations.

Definition 4 (Observable and internal statement/transition). Consider

states s, s′, a simple statement sSt, a transition relation −→, where s
sSt−→ s′,

and the observable locations obs; we call sSt an observable statement and −→ an
observable transition, iff for all D, β, there exists ol ∈ obs, and valD,s′,β(ol) �=
valD,s,β(ol). We write

sSt−→obs. Otherwise, sSt is called an internal statement
and −→ an internal transition, written −→int.

In this definition, observable/internal transitions are minimal transitions that
relate two states with a simple statement. We indicate the simple statement sSt

in the notion of the observable transition
sSt−→obs, since sSt reflects the changes

of the observable locations. In contrast, an internal statement does not appear
in the notion of the internal transition.

Example 3. Given observable locations set obs={x, y}, the simple statement “x
= 1 + z;” is observable, because x’s value is reassigned (could be the same
value). The statement “z = x + y;” is internal, since the evaluation of x, y are
not changed, even though the value of each variable is read by z.

Remark. An observable transition may change the set of observable locations.

Assume an observable transition s
sSt−→obs s′ changes the evaluation of some

Program Transformation Based on Symbolic Execution and Deduction 297

location ol ∈ obs in state s′. To continue with the execution of program p′ from
state s′, the set of observable locations obs′ in state s′ should also contain the
locations ol′ that read the value of ol in some statement in p′, because the change
to ol can lead to a change of ol′ at some later point in p′.
Example 4. Consider obs={x, y} and program fragment “z = x + y; x = 1 +

z;”. z = x + y; becomes observable because the value of z is changed and it will
be used later in the observable statement x = 1 + z;. The observable location
set obs′ should also contain z after the execution of z = x + y; .

Definition 5 (Weak transition). The transition relation =⇒int is the reflex-
ive and transitive closure of −→int: s =⇒int s

′ holds iff for states s0,. . .,sn,
n≥0, we have s = s0, s′ = sn and s0 −→int s1 −→int · · · −→int sn. In the case

of n = 0, s =⇒int s holds. The transition relation
sSt
=⇒obs is the composition of

the relations =⇒int,
sSt−→obs and =⇒int: s

sSt
=⇒obs s

′ holds iff there are states s1

and s2 such that s =⇒int s1
sSt−→obs s2 =⇒int s

′. The weak transition
ŝSt
=⇒obs

represents either
sSt
=⇒obs, if sSt observable or =⇒int otherwise. In other words,

a weak transition is a sequence of minimal transitions that contains at most one
observable transition.

Definition 6 (Weak bisimulation for states). Given two programs p1, p2
and observable locations obs, obs′, let sSt1 be a simple statement and s1, s

′
1 two

program states of p1, and sSt2 is a simple statement and s2, s
′
2 are two program

states of p2. A relation ≈ is a weak bisimulation for states iff s1 ≈obs s2 implies:

– if s1
ŝSt1=⇒obs s

′
1, then s2

ŝSt2=⇒obs s
′
2 and s′1 ≈obs′ s

′
2

– if s2
ŝSt2=⇒obs s

′
2, then s1

ŝSt1=⇒obs s
′
1 and s′2 ≈obs′ s

′
1

where valD,s1(sSt1) ≈obs′ valD,s2(sSt2).

Definition 7 (Weak bisimulation for programs). Let p1, p2 be two pro-
grams, obs, obs′ observable locations, and ≈ a weak bisimulation relation for
states. ≈ is a weak bisimulation for programs, written p1 ≈obs p2, if for the
sequence of state transitions:

s1
p1−→ s′1 ≡ s01

sSt01−→ s11
sSt11−→ . . .

sStn−1
1−→ sn1

sStn1−→ sn+1
1 , with s1 = s01, s′1 = sn+1

1 ,

s2
p2−→ s′2 ≡ s02

sSt02−→ s12
sSt12−→ . . .

sStm−1
2−→ sm1

sStm2−→ sm+1
2 , with s2 = s02, s′2 = sm+1

2 ,

we have (i) s′2 ≈obs s
′
1; (ii) for each state si1 there exists a state sj2 such that

si1 ≈obs′ s
j
2; (iii) for each state sj2 there exists a state si1 such that sj2 ≈obs′ s

i
1,

where 0 ≤ i ≤ n and 0 ≤ j ≤ m.

The above definition requires a weak transition that relates two states with at
most one observable transition. This definition reflects the structural properties
of a program and can be characterized as a small-step semantics [11]. The lemma
Def. 7 to a big-step semantics [12].

Lemma 1. Let p, q be programs and obs the set of observable locations. If p ≈obs

q then for any first-order structure D and state s, valD,s(p) ≈obs valD,s(q) holds.

298 R. Ji, R. Hähnle, and R. Bubel

4.2 The Weak Bisimulation Modality

We introduce a weak bisimulation modality which allows us to relate two pro-
grams that behave indistinguishably on the observable locations.

Definition 8 (Weak bisimulation modality—syntax). The bisimulation
modality [p � q]@(obs, use) is a modal operator providing compartments for
programs p, q and location sets obs and use. We extend our definition of for-
mulas: Let φ be a PL-DL formula and p, q two PL programs and obs, use two
location sets such that pv (φ) ⊆ obs where pv(φ) is the set of all program variables
occurring in φ, then [p � q]@(obs, use)φ is also a PL-DL formula.

The intuition behind the location set usedVar(s, p, obs) defined below is to cap-
ture precisely those locations whose value influences the final value of an observ-
able location l ∈ obs after executing a program p. We approximate the set later
by the set of all program variables in p that are used before being redefined.

Definition 9 (Used program variable). A variable v ∈ PV is called used by
a program p w.r.t. a location set obs, if there exists an l ∈ obs such that

D, s |= ∀vl.∃v0.((〈p〉l = vl)→ ({v := v0}〈p〉l �= vl))

The set usedVar(s, p, obs) is defined as the smallest set containing all heap
locations and all used program variables of p w.r.t. obs.

The formula defining a used variable v of a program p encodes that there is an
interference with a location contained in obs. E.g., variable z in Ex. 4 is a used
variable. We formalize the semantics of the weak bisimulation modality:

Definition 10 (Weak bisimulation modality—semantics). Given p, q pro-
grams, D, s, β, and obs, use as above; valD,s,β([p � q]@(obs, use)φ) = tt iff

1. valD,s,β([p]φ) = tt
2. use ⊇ usedV ar(s, q, obs)
3. for all s′ ≈obs∪use s we have valD,s(p) ≈obs∪use valD,s′(q)

4.3 Sequent Calculus Rules for the Bisimulation Modality

The sequent calculus rules for the bisimulation modality are of the form:

ruleName

Γ1 =⇒ U1[p1 � q1]@(obs1, use1)φ1, Δ1

. . .
Γn =⇒ Un[pn � qn]@(obsn, usen)φn, Δn

Γ =⇒ U [p � q]@(obs, use)φ,Δ

Fig. 4 shows some extended sequent calculus rules, more are available in [9].
Unlike standard sequent calculus rules that are executed from root to leaves,
sequent rule application for the bisimulation modality consists of two phases:
In the first phase, the source program p is evaluated as usual. In addition, the
observable location sets obsi are propagated, since they contain the locations
observable by pi and φi that will be used in the second phase. Typically, obs

Program Transformation Based on Symbolic Execution and Deduction 299

emptyBox
Γ =⇒ U@(obs,)φ,Δ

Γ =⇒ U [nop � nop]@(obs, obs)φ,Δ

assignment
Γ =⇒ U{l := r}[ω � ω]@(obs, use)φ,Δ(

Γ =⇒ U [l = r;ω � l = r;ω]@(obs, use− {l} ∪ {r})φ,Δ if l ∈ use

Γ =⇒ U [l = r;ω � ω]@(obs, use)φ,Δ otherwise

)

ifElse

Γ,Ub =⇒ U [p;ω � p;ω]@(obs, usep;ω)φ,Δ
Γ,U¬b =⇒ U [q;ω � q;ω]@(obs, useq;ω)φ,Δ

Γ =⇒ U [if (b) {p} else {q};ω �
if (b) {p;ω} else {q;ω}]@(obs, usep;ω ∪ useq;ω ∪ {b})φ,Δ

(with b boolean variable.)

loopInvariant

Γ =⇒ Uinv,Δ
Γ,UVmod(b = TRUE ∧ inv) =⇒ UVmod

[p � p]@(obs ∪ use1 ∪ {b}, use2)inv,Δ
Γ,UVmod(b = FALSE ∧ inv) =⇒ UVmod[ω � ω]@(obs, use1)φ,Δ

Γ =⇒ U [while(b){p}ω � while(b){p}ω]@(obs, use1 ∪ use2 ∪ {b})φ,Δ

Fig. 4. A collection of sequent calculus rules for program transformation

contains the return variables of a method and the locations used in the continu-
ation of the program, e.g., program variables used after a loop must be reflected
in the observable locations of the loop body. The result of this phase is a sym-
bolic execution tree as illustrated in Fig. 3. In the second phase, we synthesize
the target program q and used variable set use from qi and usei by applying
the rules in a leaves-to-root manner. One starts with a leaf node and apply the
emptyBox rule, then stepwise generates the program within its sequential block,
e.g., b3,. . . , b6 in Fig. 3. These are combined by rules corresponding to state-
ments that contain a sequential block, such as loopInvariant (containing b3 and
b4). One continues with the sequential block containing the compound state-
ments, e.g., b2, until the root is reached. Note that the order of processing the
sequential blocks matters, for instance, the program for the sequential block b4
must be generated before that for b3, because the observable locations in node
n3 depend on the used variable set of b4 according to the loopInvariant rule.

Lemma 2. The extended sequent calculus rules are sound. (For the proof see [9])

5 Optimization

Sect. 4.2 introduced an approach to program simplification based on the ex-
tended sequent calculus rules. The generated program consists only of simple
statements and is optimized to a certain degree, because the used variable set
avoids generating unnecessary statements. Updates reflect the state of program
execution. In particular, the update in a sequential block records the evaluation
of the locations in that sequential block, it can be used for further optimization.

300 R. Ji, R. Hähnle, and R. Bubel

5.1 Update Simplification

Within a sequential block, after application of sequent rules (e.g., assignment),
we often obtain an update U of the form {u1} . . . {un}. It can be simplified into
a single update {u}, namely the normal form (NF) of update.

Definition 11 (Normal form of update). An update is in normal form,
denoted by Unf , if it has the shape {u1‖ . . . ‖un}, n ≥ 0, where each ui is an
elementary update and there is no conflict between ui and uj for any i �= j.

The normal form of an update U = {u1} . . . {un} can be achieved by applying
a sequence of update simplification steps. Soundness of these rules and that they
achieve normal form are proven in [13]. The update rules are reproduced in [9].

Like elementary updates, updates in normal form are in SSA. It is easy to
maintain normal form of updates in a sequential block when applying the ex-
tended sequent calculus rules of Fig. 4. This can be used for further optimization
of the synthesized program. Take the assignment rule, for example: after each
forward rule application, we do an update simplification step to maintain the
normal form of the update for that sequential block; when a statement is synthe-
sized by applying the rule backwards, we use the update instead of the executed
assignment statement, to obtain the value of the location to be assigned; then
we generate the assignment statement with that value.

Example 5. Consider the program “i = j + 1; j = i; i = j + 1;”. After exe-
cuting the first two statements and simplification, we obtain the normal form up-
date Unf

2 = {i := j + 1‖j := j + 1}. Doing the same with the third statement

results in Unf
3 = {j := j + 1‖i := j + 2}, which implies that in the final state i

has value j+ 2 and j has value j+ 1.
Let i be the only observable location, for which a program is now synthesized

bottom-up, starting with the third statement. The rules in Fig. 4 would allow to
generate the statement i = j + 1;. But, reading the value of location i from
Unf
3 as sketched above, the statement i = j + 2; is generated. This reflects the

current value of j along the sequential block and saves an assignment.

A first attempt to formalize our ideas is the following assignment rule:

Γ =⇒ Unf
1 [ω � ω]@(obs, use)φ,Δ(

Γ =⇒ Unf [l = r;ω � l = r1;ω]@(obs, use− {l} ∪ {r})φ,Δ if l ∈ use
Γ =⇒ Unf [l = r;ω � ω]@(obs, use)φ,Δ otherwise

)

with Unf
1 = {. . . ‖l := r1} being the normal form of Unf{l := r}

However, this rule is not sound. If we continue Ex. 5 with synthesizing the first
two assignments, we obtain j = j + 1; i = j + 2; by using the new rule,
which is clearly incorrect, because i has final value j + 3 instead of j + 2.
The problem is that the values of locations in the normal form update are
independently synthesized from each other and do not reflect how one state-
ment is affected by the execution of previous statements in sequential execution.

Program Transformation Based on Symbolic Execution and Deduction 301

To ensure correct usage of updates in program generation, we introduce the
concept of a sequentialized normal form (SNF) of an update.

Definition 12 (Elementary update independence). An elementary update
l1 := exp1 is independent from another elementary update l2 := exp2 if l1 does
not occur in exp2 and l2 does not occur in exp1.

Definition 13 (Sequentialized Normal Form update). An update is in
sequentialized normal form, denoted by Usnf , if it has the shape of a sequence
of two parallel updates {ua1‖ . . . ‖uam}{u1‖ . . . ‖un}, m ≥ 0, n ≥ 0.
{u1‖ . . . ‖un} is the core update, denoted by Usnfc , where each ui is an ele-

mentary update of the form li := expi, and all ui, uj (i �= j) are independent
and have no conflict.
{ua1‖ . . . ‖uam} is the auxiliary update, denoted by Usnfa , where (i) each uai is

of the form lk := l (k ≥ 0); (ii) l is a program variable; (iii) lk is a fresh program
variable not occurring anywhere else in Usnfa and not occurring in the location
set of the core update lk /∈ {li|0 ≤ i ≤ n}; (iv) there is no conflict between uai
and uaj for all i �= j.

Any normal form update whose elementary updates are independent is also SNF
update that has only a core part.

Example 6 (SNF update).

– {i0 := i‖i1 := i}{i := i0+1‖j := i1} is in sequentialized normal form (SNF).
– {i0 := j‖i1 := i}{i := i0+1‖j := i1} and {i0 := i+1‖i1 := i}{i := i0+1‖j :=
i1} are not in SNF: i0 := j has different base variables on the left and right,
while i0 := i+ 1 has a complex term on the right, both contradicting (i).

To compute the SNF of an update, we need two more rules:

– (associativity) {u1}{u2}{u3}� {u1}({u2}{u3})
– (introducing auxiliary) {u}� {x0 := x}({x := x0}{u}), where x0 /∈ pv

Lemma 3. The associativity rule and introducing auxiliary rule are sound.

We can maintain the SNF of an update on a sequential block as follows: after
executing a program statement, apply the associativity rule and compute the
core update; if the newly added elementary update l := r is not independent
from some update in the core, then apply introduce auxiliary rule to introduce
{l0 := l}, then compute the new auxiliary update and core update.

5.2 Extended Sequent Calculus Rules Involving Updates

With the help of the SNF of an update, the assignment rule becomes:

Γ =⇒ Usnf
1 [ω � ω]@(obs, use)φ,Δ(

Γ =⇒ Usnf [l = r;ω � l = r1;ω]@(obs, use− {l} ∪ {r})φ,Δ if l ∈ use
Γ =⇒ Usnf [l = r;ω � ω]@(obs, use)φ,Δ otherwise

)
where Usnf

1 = Usnfa
1 {. . . ‖l := r1} is the SNF of Usnf{l := r}).

302 R. Ji, R. Hähnle, and R. Bubel

Whenever the core update is empty, the auxAssignment rule

Γ =⇒ Usnfa
1 [ω � ω]@(obs, use)φ,Δ(

Γ =⇒ Usnfa [ω � Tl l
0 = l;ω]@(obs, use− {l0} ∪ {l})φ,Δ if l0 ∈ use

Γ =⇒ Usnfa [ω � ω]@(obs, use)φ,Δ otherwise

)
where Usnfa = {u} and Usnfa

1 = {u‖l0 := l} being the auxiliary update

is used. I.e., the auxiliary assignments are always generated at the start of a
sequential block. Most other rules are obtained by replacing U with Usnf , see [9].

Example 7. We demonstrate that the program from Ex. 5 is now handled cor-
rectly. After executing the first two statements and simplifying the update, we
get the normal form update Unf

2 = {i := j+ 1‖j := j+ 1}. Here a dependency
issue occurs, so we introduce the auxiliary update {j0 := j} and simplify to the

sequentialized normal form update Usnf
2 = {j0 := j}{i := j0 + 1‖j := j0 + 1}.

Continuing with the third statement and performing update simplification re-
sults in the SNF update Usnf

3 = {j0 := j}{j := j0+1‖i := j0+2}. By applying
the rules above, we synthesize the program int j0= j; i = j0+2;, which still
saves one assignment and is sound.

Remark. The program is first synthesized within a sequential block and then
constructed. The SNF updates used in the above rules belong to the current
sequential block. An execution path may contain several sequential blocks. We
keep the SNF update for each sequential block without simplifying them further
into a bigger SNF update for the entire execution path. E.g. in Fig. 3, the
execution path from node n0 to n4 involves 3 sequential blocks b0, b1 and
b4. When we synthesize the program in b4, more precisely, we should write
Usnf
0 Usnf

2 Usnf
4 to represent the update used in the rules. However, we just care

about the SNF update of the b4 when generating the program for b4, so in the
above rules, Usnf refers to Usnf

4 and the other SNF updates are omitted.

Lemma 4. The extended sequent calculus rules involving updates are sound.

6 Related Work

JSpec [14] is a state-of-the-art program specializer for Java. It uses an offline
partial evaluation technique that depends on binding time analysis. Our work is
based on symbolic execution to derive information on-the-fly, similar to online
partial evaluation [15], however, we do not generate the program during symbolic
execution, but synthesize it in the second phase. In principle, our first phase
can obtain as much information as online partial evaluation, and the second
phase can generate a more precise optimized program. A major advantage of
our approach is that the generated program is guaranteed to be correct. There
is work on proving the correctness of a partial evaluator by [16], but they need
to encode the correctness properties into a logic programming language.

Program Transformation Based on Symbolic Execution and Deduction 303

Verifying Compiler [17] project aims at the development of a compiler that
verifies the program during compilation. On contrast, our work might be called
Compiling Verifier, since the optimized program is generated on the basis of
a verification system. Recently, compiler verification became possible [18], how-
ever, it aims at verifying a full compiler with fixed rules, which is very expensive,
while our approach works at a specific target program and is fully automatic.

The product program technique [19] can be used to verify that two closely
related programs preserve behavior, but the programs must be given and loop
invariants must be supplied. This has been applied for loop vectorization [20],
where specific heuristics do away with the need for invariants and target program
is synthesized. The main differences to our work are that we aim at general
programs and we use a different synthesis principle.

7 Conclusions and Future Work

We presented a sound framework for program transformation and optimization.
It employs symbolic execution, deduction and bisimulation to achieve a precise
analysis of variable dependencies and aliasing, and yields an optimized program
that has the same behavior as the original program with respect to the observable
locations. We presented also an improved and sound approach to obtain a more
optimized program by involving updates into the program generation.

The language PL in this paper is a subset of Java, but our technique is valid
in general. We intend to extend our approaches to full Java. Observable locations
need not be restricted to return variables as in here, but, for example, could be
publicly observable variables in an information flow setting. We plan to apply
our approaches to language-based security. Finally, the bisimulation modality is
not restricted to the same source and target programming language, so we plan
to generate Java bytecode from Java source code which will result in a deductive
Java compiler that guarantees sound and optimizing compilation.

References

1. Alkassar, E., Hillebrand, M.A., Paul, W.J., Petrova, E.: Automated verification of
a small hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE
2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010)

2. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from micro-
kernel verification – specification is the new bottleneck. In: SSV. EPTCS, vol. 102,
pp. 18–32 (2012)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Bubel, R., Hähnle, R., Ji, R.: Program specialization via a software verification
tool. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010.
LNCS, vol. 6957, pp. 80–101. Springer, Heidelberg (2011)

5. Sangiorgi, D.: Introduction to Bisimulation and Coinduction (2011)
6. King, J.C.: Symbolic execution and program testing. Communications of the

ACM 19(7), 385–394 (1976)

304 R. Ji, R. Hähnle, and R. Bubel

7. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool: integrating
object oriented design and formal verification. SoSyM 4(1), 32–54 (2005)

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
9. Ji, R., Hähnle, R., Bubel, R.: Program transformation based on symbolic execution

and deduction, technical report (2013)
10. Bubel, R., Hähnle, R., Ji, R.: Interleaving symbolic execution and partial eval-

uation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.)
FMCO 2009. LNCS, vol. 6286, pp. 125–146. Springer, Heidelberg (2010)

11. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

12. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,
G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

13. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246,
pp. 422–436. Springer, Heidelberg (2006)

14. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic program specialization for Java.
ACM-TPLS 25(4), 452–499 (2003)

15. Ruf, E.S.: Topics in online partial evaluation. PhD thesis, Stanford University,
Stanford, CA, USA, UMI Order No. GAX93-26550 (1993)

16. Hatcliff, J., Danvy, O.: A computational formalization for partial evaluation. Math-
ematical Structures in Computer Science 7(5), 507–541 (1997)

17. Hoare, T.: The verifying compiler: A grand challenge for computing research. J.
ACM 50, 63–69 (2003)

18. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)
19. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.

In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011)

20. Barthe, G., Crespo, J.M., Gulwani, S., Kunz, C., Marron, M.: From relational
verification to SIMD loop synthesis. In: PPOPP, pp. 123–134. ACM (2013)

Constraint Specification and Test Generation

for OSEK/VDX-Based Operating Systems�

Yunja Choi

School of Computer Science and Engineering, Kyungpook National University, Korea
yuchoi76@knu.ac.kr

Abstract. This work suggests a method for systematically construct-
ing an environment model for automotive operating systems compliant
with the OSEK/VDX international standard by introducing a constraint
specification language, OSEK CSL, and defining its underlying formal
models. OSEK CSL is designed for specifying constraints of OSEK/VDX
using a pre-defined set of constraint types identified from the
OSEK/VDX standard. Each constraint specified in OSEK CSL is in-
terpreted as a context-free language and is converted into push-down
automata using NuSMV, which allows automated test sequence gener-
ation using LTL model checking. This approach supports selective ap-
plications of constraints and thus is able to control the “degree” of test
sequences with respect to test purposes. An application of the suggested
approach demonstrates its effectiveness in identifying safety problems.

1 Introduction

An automotive operating system is typical safety-critical software and therefore
requires extensive analysis using formal methods. However, existing formal ap-
proaches in this domain [6,7] have either been seen difficult to use or do not
scale in practice. Instead, conformance testing [12] has been a de facto veri-
fication method in industry; for example, in order to get a certificate for an
operating system compliant with the OSEK/VDX international standard [1],
a system must pass a test suite distributed by a certification agency. A major
problem with conformance testing is that the tests are designed for checking
functionalities, not for checking safety, and do not aim at comprehensive ver-
ification. Our previous work [4] revealed some potential safety problems in an
OSEK/VDX-based operating system using model checking, which would have
slipped through with conformance testing.

Though a comprehensive but cost-effective verification approach is hard to
find, we may be able to control the degree of comprehensiveness by modular-
izing systems and selectively applying verification techniques so that we can
achieve comprehensiveness to an anticipated degree with moderate cost. This
work aims at automated test sequence generation that allows comprehensive

� This work was supported by the National Research Foundation of Korea Grant
funded by the Korean Government (NRF-2012R1A1A4A01011788).

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 305–319, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

306 Y. Choi

checking of possible interactions between an automotive operating system and
its application tasks. This is achieved by (1) introducing a constraint specifica-
tion language, OSEK CSL, designed for specifying constraints identified from
the OSEK/VDX standard, (2) defining its underlying formalism in pushdown
automata whose formal models are modularly defined in the input language of
the symbolic model checker NuSMV [13], and (3) generating test sequences using
LTL model checking.

OSEK CSL is devised to make the specification of operational environments
modular and systematic; it is a simple and intuitive constraint specification
language consisting of only four basic building blocks, each of which can be in-
dependently specified and imposed on a system model. Each constraint specified
in OSEK CSL is systematically translated into NuSMV and combined with a
generic task model. The task model is pre-defined as a NuSMV module rep-
resenting the abstract behavior of a generic task as required in the standard.
It is an abstract task model since it includes only the basic requirements from
the OSEK/VDX standard without any implementation details. We have stan-
dardized the mapping between each constraint and a NuSMV module so that
any number of constraints can be added by engineers and their corresponding
NuSMV modules can be instantiated automatically.

Test sequence generation is automated through LTL model checking on the
NuSMV model using trap properties designed to cover all transitions for each
constraint/task module. Our approach enables us to control the degree of test
sequences from “perfect” to “erroneous” and “false”, depending on the number
of constraints imposed for LTL model checking. In this way, the generated test
sequences include correct inputs as well as undesirable or unexpected inputs, as
required by safety analysis.

Our approach is applied to Trampoline [2], an open source operating system
based on OSEK/VDX, and identified two assertion violations and a segmentation
fault error that had been missed by existing approaches, including conformation
testing and model checking.

The remainder of this paper is organized as follows: Section 2 briefly sketches
the background of this work and the overall approach. Section 3 introduces our
OSEK CSL language. Section 4 explains the NuSMV module for a represen-
tative OSEK CSL constraint type and the test sequence generation approach
using LTL model checking. An application result using the suggested approach
is presented in Section 5, followed by a discussion on related work (Section 6)
and the conclusion (Section 7).

2 Background and Approach

OSEK/VDX is a joint project of the automotive industry, which aims at es-
tablishing an industry standard for an open-ended architecture for distributed
control units in vehicles. The standard has been adopted by major automobile
manufacturers as well as by the AUTOSAR open source architecture defined by
a consortium of over 50 automotive manufacturers worldwide.

Constraint Specification and Test Generation 307

Conformance testing is a standard verification method for the certification
of OSEK/VDX-based operating systems. However, conformance test suites are
typically insufficient for identifying safety problems. As OSEK/VDX explicitly
specifies more than 26 basic APIs, thorough conformance testing would require
at least 26×2×3 test cases, even if we assume two arguments per API and even
if only boundary values for the arguments were chosen. The possible number of
execution sequences for these 26× 2 × 3 test cases would rise to 156 factorials,
a large number to be tested in practice.

Our previous works tried to address this issue using property-based code slic-
ing and test generation [4,14]. The idea was to perform focused verification by
slicing the operating system kernel with respect to the given safety properties.
Those approaches have proven increased verification efficiency and effectiveness
in identifying safety issues. Nevertheless, model checking still costs a lot (e.g.,
30 Gbytes of memory were consumed during verification of one safety prop-
erty) and requires some knowledge of the underlying technique. Property-based
slicing and test generation were cheaper and easier to apply in practice com-
pared to a similar approach using model checking, but comprehensiveness was
not achieved. Both cases over-approximated the system environment by allowing
non-deterministic API calls from tasks and by informally imposing constraints
on the environment model or during the scenario generation process.

Temporal logic model checking

Source Code Safety Properties

Property-based
dependency

analysis

Constraint
specification

using
OSEK_CSL

Generic
NuSMV

task model

NuSMV contraint
modules

List of property-
related API functions

Counterexample
traces

Conversion to
test sequencesArbitrary API

sequence
generation

Trap properties

Fig. 1. Overall approach

Figure 1 illustrates an overview of our improved approach. First, we option-
ally identify API functions related to given safety properties through a depen-
dency analysis using a static code analyzer, as explained in [14]. This process
is not mandatory, but helpful in reducing the test input space. Once the list
of (property-related) API functions has been determined, users need to specify
the desired system constraints using OSEK CSL and choose which of those con-
straints will be actually imposed during test sequence generation. OSEK CSL
consists of four basic constructs, each representing a constraint type. We have de-
fined an NuSMV module for each construct as a pushdown automaton. A generic
task model for OSEK/VDX-compliant operating systems is also predefined as
an NuSMV module. Finally, a set of trap properties is specified in LTL by as-
serting that not every state or transition is reachable in each NuSMV module.

308 Y. Choi

Temporal logic model checking is performed to verify whether the given trap
properties are satisfied by the model, defined as a conjunction of the generic
task model, the set of constraint modules, and arbitrary API sequences. If a trap
property is refuted, the corresponding counterexample sequence is converted into
a test sequence.

Since the first part of the approach was already explained in [14] and the
approach is independent of whether property-based extraction of API functions
is used or not (entire API functions can be used as they are), this paper focuses
on constraint specification using OSEK CSL, constraint modeling in NuSMV,
and test sequence generation using temporal logic model checking.

3 Constraint Specification Language

A typical and straightforward environment of an operating system is an arbi-
trary call sequence of API functions provided by the operating system, which
apparently simulates an actual environment, but includes too many impossible or
undesirable interactions and results in a large number of false alarms when ver-
ification is performed. Analyzing counterexamples and identifying false alarms
is a time-consuming process. To reduce such inefficiency, this work suggests a
systematic method for formalizing constraints from the OSEK/VDX standard
and reflecting them in the environment model.

3.1 OSEK/VDX Requirements and Constraints

OSEK/VDX defines task models for user-defined tasks, which are the basic build-
ing blocks of an application program. A task interacts with the operating system
through system calls. OSEK/VDX explicitly defines a total of 26 such APIs.
Figure 2 (a) is the task model for an extended task specified in the standard.
Figure 2 (b) is our version of the same task model annotated with related APIs
and an explicitly specified initial state. We use three types of annotations; the one
finishing with ‘?’ represents an external API call from other tasks, the one finish-
ing with ‘!’ is an internal API call, and the one surrounded by <> is an internal
event caused by system scheduling. For example, the transition from running
to suspended is triggered by the internal API call to either TerminateTask
or ChainTask, but the transitions between ready and running are caused by
priority-based task scheduling.

The OSEK/VDX standard explicitly/implicitly specifies constraints among
the APIs, some of which are listed in Table 1. Analyzing those constraints reveals
that they can be categorized into four types.

1. A system call f1 shall be followed by f2 (though not necessarily directly).
2. The number of calls to f is limited by n.
3. A system call f shall not be called in between two system calls f1 and f2.
4. No system call shall be made after a call to f .

Constraint Specification and Test Generation 309

ready

waiting suspended

running

activate

terminate

preempt

start

wait

release

(a) Task model for an extended task

(from OSEK/VDX)

ready

waiting suspended

running

ActivateTask?

ChainTask?

TerminateTask!

ChainTask!

<preempt>

<start>

WaitEvent!

SetEvent?

(b) Task model and related APIs

Fig. 2. Task model and related APIs

For example, if GetResource is called, the matching system call
ReleaseResource must be called afterwards, and WaitEvent shall not be called
in between them.

The types of constraints can also be classified by scope since some con-
strain global behavior and others constrain local behavior; GetResource
and ReleaseResource are in the local scope because once a task calls the
GetResource system call, ReleaseResource needs to be called in the same task.
On the other hand, WaitEvent and SetEvent are in the global scope. The task
that calls SetEvent should be different from the task that calls WaitEvent
for the same event, but they need to be called in pairs. TerminateTask and
ChainTask are the examples that cannot be followed by any system calls in the
same task.

3.2 Constraint Specification Language OSEK CSL

To formally specify such constraints, we define a simple constraint speci-
fication language called OSEK CSL (Constraint Specification Language for
OSEK/VDX). OSEK CSL consists of four basic constraint types, which can
be defined with context-free grammars and their corresponding pushdown au-
tomata. This section introduces each basic constraint type, defines the constraint

Table 1. Constraints from the OSEK/VDX standard

Constraints

C1 Ending a task without a call to TerminateTask or ChainTask is strictly forbidden
and causes undefined behavior.

C2 TerminateTask, ChainTask, Schedule, WaitEvent shall not be called while a
resource is occupied.

C3 A task calling WaitEvent shall go to the waiting state and shall not be activated.
again before SetEvent is called by other tasks.

C4 OSEK strictly forbids nested access to the same resource.

C5 A task shall not terminate without releasing resources.

310 Y. Choi

specification language, and provides formal definitions for representative con-
straint types.

Definition 1 (constraint types) Let Σ be a set of API functions in the
OSEK/VDX standard and N a set of natural numbers. For any f, f1, f2 ∈ Σ,
A′ ⊆ Σ, and n ∈ N ,

1. InPairs(f1, f2) : f2 shall be called after for each call to f1.

2. Limited(f, n) : The number of calls to f shall not exceed n.

- SetLimited(A′, n) : The total number of calls to the functions in A′ shall
not exceed n.

3. NotInBetween(f, f1, f2) : A call to f shall not be allowed in between calls
to f1 and f2.

4. MustEndWith(f) : f shall be called eventually and no calls shall be allowed
afterwards.

Each constraint type can be defined as a context-free language or a regular
language over Σ. For example, Limited(f, n) and SetLimited(A′, n) are regular
languages that can be formalized using finite automata. InPairs, on the other
hand, requires a little more thought since it cannot be expressed in regular
language, as we need to keep track of the number of calls to a specific system
call. In fact, the derivation rule for InPairs(a, b) can be defined as follows:

S → aSb | abS | Sab | xS | λ, x �∈ {a, b}.

For NotInBetween(c, a, b), where InPairs(a, b) is true, the derivation rules
S → aSb and S → xS are refined:

S → aS′b | abS | Sab | xS | λ, x �∈ {a, b}
S′ → yS′ | S, y �∈ C(a, b) ∪ {a, b},

where C(a, b) =
⋃
{c | NotInBetween(c, a, b)}.

Internal formal specification of these constraints can be standardized as
shown in Figure 3. Figure 3 (a) is a pushdown automaton for InPairs(a, b) ∧
NotInBetween(c, a, b); s0 is the initial state and the final state. It ignores letters
other than a, moves to state s1, pushing 0 to the stack once it receives a. In s1, it
ignores letters other than a, b, and c. It moves to s2, pushing 1 into the stack, if
it receives a. It pushes 1 for each input a, pops for each input b, does not change
for each input other than a, b, c, and moves to s0 if the input is b and the stack
top is 0. Receiving input c when it is in state s1 or s2 results in moving to s3,
which is an error state.

Figure 3 (b) shows the formal representation of InPairs(a, b) ∧
NotInBetween(c, a, b)∧Limited(a, n), limiting the size of the stack and checking
whether the stack is full or not during the language process.
SetLimited(A′, n) allows us to specify the limit of the calls to a set of APIs.

For example, SetLimited({f1, f2}, 10) specifies that the number of calls to f1

Constraint Specification and Test Generation 311

plus the number of calls to f2 shall not exceed 10, which can be categorized as
a regular language. The rule for MustEndWith(f) is also simple:

S → xS | f,where x ∈ Σ − {f}

These constraints are classified into global constraint types and local
constraint types. A global constraint type must hold in a global scope,
i.e., among tasks, and a local constraint type must hold within a task.
According to the OSEK/VDX standard, Limited and SetLimited are
global, while NotInBetween and MustEndWith are local. InPairs can be
both. For example, InPairs(WaitEvent, SetEvent) has global scope, but
InPairs(GetResource,ReleaseResource) has local scope. To distinguish global
InPairs from local ones, we add GInPairs to the four basic constraint types
in OSEK CSL.

An environment of an OSEK/VDX-based operating system is defined using
OSEK CSL based on these four constraint types.

Definition 2 (Environment Model) The language induced by OSEK CSL is
the intersection of an arbitrary number of languages defined by the basic con-
straint types. Formally, let Li be a language defined by one of the constraint
types, and suppose there are n such languages. Then,

L(OSEK CSL) =
⋂

i∈{1..n}
Li.

This defines an environment of an OSEK/VDX-based operating system.

4 Formal Specification Using NuSMV

Since there can be a number of constraints, we need to compute their inter-
sections in order to identify a language accepted by all specified constraints.

Fig. 3. Formal representation of constraint types

312 Y. Choi

1 MODULE InPairs(first, second, alphabet, exclusiveSet, task)

2 VAR

3 state : {s0, s1, s2, s3};

4 mystack : STACK(first, second, alphabet, task.state, state);

5

6 ASSIGN

7 init(state):= s0; /* initial state */

8 init(mystack.top):=0; /* initial value of the stack top */

9 ...

10 next(state):= /* defines the transition relation */

11 case task.state = running & !terminationRequested :

12 case state = s0 :

13 case next(alphabet)=first & mystack.top= 0 : s1;

14 TRUE : state;

15 esac;

16 state = s1 :

17 case next(alphabet)=first & mystack[mystack.top]=0 : s2;

18 next(alphabet)=second & mystack[mystack.top]=0 : s0;

19 next(alphabet) in exclusiveSet : s3;

20 TRUE : state;

21 esac;

22 ...

23 esac;

Fig. 4. NuSMV MODULE for InPairs constraint type

We perform the computation using the model checker NuSMV under the as-
sumption that the maximum number of system calls is bounded. This assump-
tion is necessary since NuSMV is based on a finite state machine which cannot
handle stacks of indefinite size as in constraint automata. Despite the limitation,
NuSMV was chosen because of its modular structure, its simple but sufficient ex-
pression for specifying state machines, and most importantly, its powerful model
checking capability for test sequence generation.

This section describes our method for modeling the representative constraint
type using NuSMV by systematically mapping it to a MODULE in NuSMV. An
NuSMV module for the generic task model is also introduced.

4.1 Formal Specification for Constrained Environments

Due to space limitations, this section provides details of the modeling approach
only for the most frequently used constraint type InPairs ∧ NotInBetween.
Figure 4 shows a fraction of the NuSMV MODULE for the constraint type.

MODULE InPairs(..) is a reusable component for specifying the constraint
type InPairs ∧ NotInBetween in the local scope. It is a straightforward
translation of the automaton in Figure 3 (a); the parameters first and second
are for API function names that are supposed to be in pairs, alphabet is the set of

Constraint Specification and Test Generation 313

API names, task is the name of the task that is the scope of the constraint, and
exclusiveSet is the set of API calls that are not supposed to be called in between
first and second. The exclusiveSet is identified from the NotInBetween con-
straints. If there are no NotInBetween constraints related to first and second,
then the exclusiveSet is empty and InPairs∧NotInBetween = InPairs. As in
Figure 3 (a), there are four states s0, s1, s2, and s3, where s0 is the initial state.
The transitions between states are defined in the ASSIGN construct (line 6)
using the next keyword. All the transitions are only possible when the task is
in the running state. The model checks this condition by task.state = running
(line 11). The transition rules defined in case..esac are a direct translation of
the pushdown automata in Figure 3 (a).

Whenever a new constraint of the InPairs∧NotInBetween type is required,
the module is instantiated in the NuSMV main module. For example, if there
are two tasks with the same type of local constraints, we declare two constraints
as follows:

constraint 1 : InPairs(f1, f2, alphabet, exclusiveSet, task 1);

constraint 2 : InPairs(f ′
1, f

′
2, alphabet, exclusiveSet

′
, task 2);

The NuSMV module for the InPairs constraint type in the global scope
differs little from that in the local scope, since the only difference between them
is whether the stack of the pushdown automata is maintained locally or globally.
Therefore, the same local module can be reused for global constraints of the same
type. The signature for the global constraint type GInPairs is defined as

MODULE GInPairs(first, second, alphabet, exclusiveSet),

where its body is the same as that of InPairs except that line 11 of Figure 4
is removed. The task information is not passed to the global module since it is
independent of tasks.

4.2 Formal Specification for Generic User Tasks

A Basic NuSMV Model for a User Task. A user task is modeled according
to the task model shown in Figure 2 (b). Since it is a general task model, the same
formal specification is used independent of the constraint types. The following
shows the basic form of the NuSMV MODULE for the task model.

1 MODULE Task(alphabet, id, priority)

2 VAR

3 state : {suspended, ready, waiting, running};

4

5 ASSIGN

6 next(state):=

7 case

8 state = suspended & (next(alphabet) = ActivateTask

9 | next(alphabet) = ChainTask) : ready;

10 state = ready /* & if scheduled next */ : running;

314 Y. Choi

11 state = running & (next(alphabet) = TerminateTask |

12 next(alphabet) = ChainTask) : suspended;

13 state = running & next(alphabet) = WaitEvent : waiting;

14 state = waiting & next(alphabet) = SetEvent : ready;

15 TRUE : state;

16 esac;

...

However, this basic form is not enough to model task behavior, and it needs
to be elaborated more to address the OSEK/VDX requirements. The following
lists some of the requirements that have a direct impact on the task model;

1. A task transits to the running state from the ready state only if it is sched-
uled by the operating system (line 10). Priority-based FIFO scheduling is
required in OSEK/VDX.

2. Only one task shall run at a given time. Line 10 should be constrained more
to ensure this.

3. Task priority can be dynamically changed based on the PCP (Priority Ceiling
Protocol). Since task scheduling is priority-based, the change of task priority
needs to be specified.

4. PCP requires resource management. Therefore, we cannot correctly model
task behavior without specifying resource management.

In order to address these requirements, the basic task model is refined by
adding more abstract components and references to those components to the
task model. For example, the signature of the task model changes to

MODULE Task(alphabet, id, priority, res1, res2, readyP, SomeoneIsRunning,

conState),

where res1 and res2 are names of resources, readyP is the name of the variable
that keeps track of the highest number among the priorities of the tasks in the
ready state, SomeoneIsRunning is a global flag indicating whether there is a
running task, and conState is the state of the local constraint of the task. In
order words, each task has references to resources, information on whether its
constraints are currently satisfied or not, and some basic information about other
tasks.

Handling Priority-based FIFO Scheduling. The generic task model keeps
track of the state of each task and selects the task with the highest priority
among all tasks in the ready state, instead of explicitly modeling a priority-
based FIFO queue. This requires a simple change in line 10 of the basic task
model:

10: state = ready & !SomeoneIsRunning :

case priority >= readyP : running;

TRUE : state;

esac;

Constraint Specification and Test Generation 315

It checks whether the state is ready and there is no task running currently. If
this is true, it checks again whether the priority of the task is greater than or
equal to all the priorities of the tasks in the ready state. The task moves to the
running state only when all those conditions are satisfied.

Handling Priority Ceiling Protocol. The priority of a task is statically pre-
defined for each task and cannot be changed throughout the whole execution
life cycle, except for the case when it allocates a resource with higher priority
than the task. This is called Priority Ceiling Protocol (PCP) and is designed to
prevent the problem of priority inversion. The PCP is incorporated into the task
model by defining transition rules for changing the priority of a task, depending
on whether it allocates or releases resources. The following reflects the change
of the basic task module when the system includes two resources:

next(priority):=

case state = running & next(alphabet)=GetResource :

case (res1.owner=0 & (res1.priority > priority)) : res1.priority;

(res2.owner=0 & (res2.priority > priority)) : res2.priority;

TRUE : priority;

esac;

...

This model does not explicitly specify which resource is requested by which
task, but models it as allocating whichever resource is available. It is originally
required to specify the resource type when asking for resource allocation in
the form ‘GetResource(res1)’, but our alphabet consists of API names without
parameters for the sake of simplicity. For the input alphabet GetResource, it
checks and allocates the first available resource. For ReleaseResource, it releases
the last allocated resource first, as specified in the OSEK/VDX requirements.

4.3 Test Generation via LTL Model Checking

Given the generic task model and a set of constraints on the sequence of input
alphabets, our goal is to generate task sequences w.r.t the API call sequence
that executes all paths leading to either final states or error states of tasks and
constraints. We define three types of trap properties for checking reachability:

Definition 3 (trap properties) Suppose there are n number of
constraints specified in OSEK CSL and m tasks. Let CSi =
{csi0, csi1, csi2, csi3}, i = 1..n, be a set of states in the ith constraint and
Sj = {suspendedj, readyj , runningj, waitingj}, j = 1..m, a set of states in the
jth task. Then,

1. A trap property for checking whether there is a path from a kth state to a
final state in the ith constraint/task:

tp
cr
ik

def
= G(CS

i
.state = cs

i
k → ! F (CS

i
.state = cs

i
0)) /*for constraints*/

tp
tr
ik

def
= G(Si

.state = s
i
k → ! F (Si

.state = suspended
i)) /*for tasks*/,

where csik ∈ CSi, sik ∈ {readyi, runningi, waitingi}.

316 Y. Choi

2. A trap property for checking whether an ith task can be activated at least
twice:

tp
ta
i

def
= G((taski.state
= suspended

i & X(taski.state = suspended
i))→

! F (taski.state = ready
i))

3. A set of trap properties for checking whether each element of the alphabet is
exercised as an input at least once:

tpΣ
def
= {G ! (SomeoneIsRunning & alphabet = a) | a ∈ Σ}

Trap properties are specified in LTL (Linear Time temporal Logic), where the
temporal connectives G, X and F mean “Globally”, “neXt states” and “some-
time in Future state”, respectively. For example, tpcrij means that “for all exe-

cution paths if the ith constraint is in state csij , there is no path from the state

leading to the final state csi0. tp
ta
i means that it is globally true that if the ith

task is not in the suspended state and will transit to the suspended state in the
next state, then there will be no path where the task reaches the ready state in
the future. In other words, the property says that a task is not activated again
once it is terminated. The set of system trap properties is the union of all three
types of trap properties:

tp = {tpcrij , tptrpq, tptap | i = 1..n, j = 0..3, p = 1..m, q = 1..3} ∪ tpΣ .

Though we generate trap properties for all system constraints, the degree of con-
straints to be imposed on the model can vary. We define the Degree of constraints
(DoC) asm/n, where n is the total number of constraints specified in OSEK CSL
and m is the number of actual constraints imposed on the NuSMV model. We
say the environment model is perfect if DoC = 1, erroneous if 0 < DoC < 1, and
false if DoC = 0. We impose various degrees of constraints for counterexample
generation because safety verification requires not only perfect test sequences,
but also erroneous test sequences with illegal input values.

The set of trap properties is verified using the model checker NuSMV. NuSMV
generates a counterexample trace if the properties are verified as false. The con-
version from a counterexample trace to a test program is straightforward since the
trace shows a step-by-step change of API calls for each task as shown in Table 2.

Table 2. A fraction of a counterexample trace for tpcr11

steps 1 2 3 4 5 6

task1 state ready running running running running waiting
API calls GetResource ReleaseResource GetResource WaitEvent

task2 state running waiting waiting waiting waiting waiting
API calls WaitEvent

Constraint Specification and Test Generation 317

Table 3. Comparison of branch coverage

scheduler scheduled schedulew schedules eventw tasks events

Formal 100%(3/3) 60%(3/5) 66.67%(2/3) 100%(1/1) 75%(3/4) 100%(4/4) 80%(4/5)
Informal 100%(3/3) 80%(4/5) 66.67%(2/3) 100%(1/1) 75%(3/4) 100%(4/4) 80%(4/5)

5 Experiments

A total of 30 counterexamples were generated for an OSEK/VDX model with
two tasks, two local constraints, and one global constraint, using the suggested
approach. It took 10 minutes 43 seconds for the whole counterexample genera-
tion, performing 44 iterations and searching 3.4e+10 states for each LTL model
checking process on average. The test sequences are used to test the OSEK/VDX-
based open source operating system Trampoline [2], which was also used as a case
example in our previous work using property-based code slicing and simulation-
based scenario generation [14].

Table 3 shows the branch coverage of some of the Trampoline source functions
identified by using property-based code slicing, comparing the coverage result
using OSEK CSL-based test sequence generation (Formal) and the result of
using a random scenario generator (Informal)1. A total of 24 test sequences
(after removing duplicated sequences) of an average length of 6 was used for the
Formal case, while one test sequence of length 32 was used for the Informal
case since it was the sequence that showed the best coverage from our previous
work. Though we did not aim at high code coverage, Table 3 shows that the
suggested approach achieves branch coverage similar to that of the best result
using a random scenario generator.

The more interesting and important result is that the approach using
OSEK CSL actually found safety problems that were missed throughout exist-
ing model checking and testing approaches. These include two assertion viola-
tions and one segmentation fault error. For example,

TASK(t1){ TASK(t2){

WaitEvent(e1); ReleaseResource(r1);

} WaitEvent(e1); }

is a test constructed from the counterexample trace generated from
G ! (SomeoneIsRunning & alphabet = ReleaseResource). This is an example
of erroneous test sequences that do not obey constraints, since ReleaseResource
is called without calling GetResrouce first. Running this test results in the fol-
lowing situation:

trampoline: ../os/tpl_os_kernel.c:522: tpl_put_preempted_proc:

Assertion ‘tpl_fifo_rw[prio].size < tpl_ready_list[prio].size’

failed. ./doit: line 2: 25016 Aborted (core dumped) ./trampoline

1 Abbreviated function names are used to save space.

318 Y. Choi

These problems could not be identified by conformance testing or existing
model-based test generation approaches because they are based on the “correct”
model of OSEK/VDX and do not necessarily test illegal task behaviors.

6 Related Work

Specification-based test generation is a well-known technique. From the early
1990s, there have been numerous approaches that use formal languages to spec-
ify requirements and generate test cases [10]. Among them, references [3,9,16] are
the closest to our work in that they also try to provide a solution for efficient verifi-
cation of OSEK/VDX-based operating systems. [3] uses Z and SPIN for specifying
test requirements and generating test sequences for OSEK/VDX. References [9]
and [16] model OSEK/VDX requirements in Promela and generate test sequences
bymodel checking trap properties using SPIN. All thoseworksmodel OSEK/VDX
functional requirements, but do not explicitly consider system constraints. Our
work focuses on constraint specification in order to generate a more efficient inter-
action environment and provides modular specification methods for constraints.

Our work is also closely related to automated environment generation for
software verification in general [5,15]; Tkachuk et al. [15] developed the Bandera
Environment Generator, which automates the generation of environments from
user-specified assumptions for Java programs. The specification is limited to
regular expressions.

There have been more traditional approaches for verifying automotive soft-
ware using formal methods [8,11], formally specifying OSEK/VDX requirements
in CSP and performing formal verification using model checking or theorem prov-
ing. Using such formal specification languages requires experts in formal meth-
ods, who are usually not available in practice. Our approach provides an intuitive
specification language with underlying formal specification so that constraints
can be easily specified, transformed, and checked.

7 Conclusion

This work presents a systematic and modular method for specifying constraints
for OSEK/VDX-based operating systems. Constraint specification plays an im-
portant role in constructing the correct environment of a system, enabling us
to generate effective test sequences. We have analyzed types of constraints in
OSEK/VDX, categorized them into four basic types, and defined an NuSMV
module for each constraint type so that any constraint of a given type can be
automatically instantiated. These constraints can be selectively imposed on the
generic task model, generating varying degrees of test sequences. Comprehen-
siveness can be controlled through trap properties.

The suggested approach is extensible; though we have identified four con-
straint types in OSEK/VDX, there can be more. We believe that incorporating
additional constraint types will not affect the existing definitions and the under-
lying formalism.

Constraint Specification and Test Generation 319

We note that NuSMV is an effective tool suitable for our purposes, but can-
not handle infinite systems directly without abstractions. Future work will in-
clude more investigation on formal verification tools for infinite systems aimed
at possible replacement of NuSMV and more extensive experiments with various
measures.

References

1. OSEK/VDX operating system specification 2.2.3
2. Trampoline – opensource RTOS project, http://trampoline.rts-software.org
3. Chen, J., Aoki, T.: Conformance testing for OSEK/VDX operating system using

model checking. In: 18th Asia-Pacific Software Engineering Conference (2011)
4. Choi, Y.: Safety analysis of the Trampoline OS using model checking: An experi-

ence report. In: Proceedings of 22nd IEEE International Symposium on Software
Reliability Engineering (2011)

5. de la Riva, C., Tuya, J.: Automatic generation of assumptions for modular verifi-
cation of software specifications. Journal of Systems and Software (2006)

6. In der Riden, T., Kanpp, S.: An approach to the pervasive formal specification and
verification of an automotive system. In: Proceedings of the International Workshop
on Formal Methods in Industrial Critical Systems (2005)

7. Lettnin, D., et al.: Semiformal verification of temporal properties in automotive
hardware dependent software. In: Proceedings of Design, Automation, and Test in
Europe Conference and Exhibition (April 2009)

8. Shi, J., et al.: ORIENTAIS: Formal verified OSEK/VDX real-time operating sys-
tem. In: IEEE 17th International Conference on Engineering of Complex Computer
Systems (2012)

9. Fang, L., et al.: Formal model-based test for AUTOSAR multicore RTOS. In: Pro-
ceeding of the IEEE 5th International Conference on Software Testing, Verification
and Validation, pp. 251–259 (2012)

10. Hierons, R.M., et al.: Using formal specifications to support testing. ACM Com-
puting Surveys (2009)

11. Zhao, Y., et al.: Modeling and verifying the code-level OSEK/VDX operating sys-
tem with CSP. In: 5th International Symposium on Theoretical Aspects of Software
Engineering, pp. 142–149 (2011)

12. John, D.: OSEK/VDX conformance testing - MODISTARC. In: Proceedings of
OSEK/VDX Open Systems in Automotive Networks (1998)

13. NuSMV: A New Symbolic Model Checking, http://nusmv.irst.itc.it/
14. Park, M., Byun, T., Choi, Y.: Property-based code slicing for efficient verifica-

tion of osek/vdx operating systems. In: First International Workshop on Formal
Techniques for Safety-Critical Systems (2012)

15. Tkachuk, O., Dwyer, M.B., Pasareanu, C.S.: Automated environment generation
for software model checking. In: 18th IEEE International Conference on Automated
Software Engineering, pp. 116–129 (October 2003)

16. Yatake, K., Aoki, T.: Automatic generation of model checking scripts based on
environment modeling. In: van de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS,
vol. 6349, pp. 58–75. Springer, Heidelberg (2010)

http://trampoline.rts-software.org
http://nusmv.irst.itc.it/

Author Index

Afsarmanesh, Hamideh 152
Aman, Bogdan 31
Arbab, Farhad 152

Bennaceur, Amel 274
Blake, M. Brian 197
Borek, Marian 76
Bubel, Richard 289

Chilton, Chris 274
Choi, Yunja 305
Ciobanu, Gabriel 31
Cristiá, Maximiliano 229

Dardha, Ornela 167
de Boer, Frank S. 259
de Gouw, Stijn 259
De Medeiros Júnior, Ivan Soares 46
Dhaussy, Philippe 16

Frydman, Claudia 229

Gesell, Manuel 91
Giachino, Elena 167

Hähnle, Reiner 289

Isberner, Malte 274

Jacobs, Bart 122
Ji, Ran 289
Jonsson, Bengt 274

Keshishzadeh, Sarmen 182
Klimek, Rados�law 61
Krings, Sebastian 137
Kulczycki, Gregory 197

Leuschel, Michael 137
Lienhardt, Michaël 167

Mai Thuong Tran, Thi 212
Mallet, Frédéric 1
Menad, Nadia 16
Moebius, Nina 76
Mooij, Arjan J. 182
Morgenstern, Andreas 91
Mousavi, Mohammad Reza 182

Oliveira, Marcel Vinicius Medeiros 46

Percebois, Christian 106
Pettersson, Paul 1

Reif, Wolfgang 76
Rossi, Gianfranco 229

Saleh, Iman 197
Santini, Francesco 152
Sargolzaei, Mahdi 152
Schneider, Klaus 91
Schremmer, Alexander 244
Seceleanu, Cristina 1
Steffen, Martin 212
Stenzel, Kurt 76
Strecker, Martin 106
Suryadevara, Jagadish 1

Tran, Hanh Nhi 106
Truong, Hoang 212

Vanspauwen, Gijs 122

Wehrheim, Heike 244
Wei, Yi 197
Wong, Peter Y.H. 259
Wonisch, Daniel 244
Woodcock, Jim 46

	Preface
	Organization
	Table of Contents
	Real-Time Systems
	Verifying MARTE/CCSL Mode Behaviors Using UPPAAL
	1 Introduction
	2 Example Systems and Mode-Behavior Specifications
	2.1 Example1: A Temperature Control System (TCS)
	2.2 Example2: An Anti-lock Braking System (ABS)

	3 CCSL
	3.1 CCSL Constraints
	3.2 CCSL Constraints for TCS and ABS
	3.3 Synchronized Product of CCSL Constraints: An Example

	4 MARTE/CCSL Mode Behaviors to Timed Automata
	4.1 Timed Automata and UPPAAL: An Overview
	4.2 TransformingMode Behaviors into Timed Automata
	4.3 The Transformed Automaton for the TCS
	4.4 The Transformed Automaton for the ABS

	5 Verification
	6 Related Work
	7 Conclusion and Future Work
	References

	A Transformation Approach for Multiform Time Requirements
	1 Introduction
	2 Related Work
	3 The CCSL Modeling
	3.1 Examples of CCSL Constraints

	4 Illustration through a Simple Case Study
	5 Translation Principles of the CCSL Constraints into Fiacre Programs
	5.1 The Fiacre Language
	5.2 Translation Principles

	6 Formal Verification of Properties
	6.1 Verification Principles
	6.2 Expressing Properties Using CDL

	7 Experimentation on the Case Study and Discussion
	8 Conclusion
	References

	Real-Time Migration Propertiesof rTiMo Verified in Uppaal
	1 Introduction
	2 Syntax and Semantics of rTiMo
	3 Timed Safety Automata
	4 Relating rTiMo to Timed Safety Automata
	5 Verifying Properties of rTiMo by Using Uppaal
	6 Conclusion
	References

	A Verified Protocol to Implement Multi-way Synchronisation and Interleaving in CSP
	1 Introduction
	2 Background
	2.1 CSP
	2.2 Handel-C
	2.3 The Translator csp2hc

	3 Parallelism in csp2hc
	3.1 Analysis of Parallel Compositions
	3.2 The Multi-synchronisation Protocol
	3.3 Forced Interleaving
	3.4 Formalisation

	4 Experiments
	5 Conclusions
	References

	From Extraction of Logical Specifications to Deduction-Based Formal Verification of Requirements Models
	1 Introduction
	2 Methodology
	3 Use Cases and Identification of Activities
	4 Logical Background
	5 Workflow Patterns and Modeling Activities
	6 Generating Logical Specifications
	7 Reasoning and Verification
	8 Conclusion
	References

	Model Checking of Security-Critical Applications in a Model-Driven Approach
	1 Introduction
	2 The SecureMDD Approach
	3 Electronic Ticket Example
	4 Translation of a SecureMDD Model into ASLan++ Specification
	5 Automatic Abstractions
	6 Security Flaws
	7 Comparison: Model Checking vs Interactive Verification
	8 Related Work
	9 Conclusion
	References

	Lifting Verification Results for Preemption Statements
	1 Introduction
	2 Preliminaries
	2.1 Syntax and Semantics of LTL
	2.2 The Synchronous Model of Computation
	2.3 Preemption Statements

	3 Making LTL Specifications Preemptive
	3.1 Transformation for Strong Abortion
	3.2 Transformation for Strong Suspension
	3.3 Transformation for Weak Abortion
	3.4 Transformation for Weak Suspension

	4 Example
	5 Conclusion
	References

	Rule-Level Verification of Graph Transformations for InvariantsBased on Edges’ Transitive Closure
	1 Introduction
	2 Graphs and Graph Transformations
	3 Illustrating Examples
	3.1 Edge Conditions
	3.2 Positive Path Conditions
	3.3 Negative Path Conditions

	4 Rule-level Verification Based on Graph Decomposition
	5 Local Reasoning about Path Conditions
	5.1 Materialization of Paths
	5.2 Proving Preservation of Paths

	6 Related Work
	7 Conclusion
	References

	Sound Symbolic Linking in the Presence of Preprocessing
	1 Introduction
	2 Symbolic Linking
	2.1 Source File Structure
	2.2 Manifest Files
	2.3 Recursive Type Checking

	3 Unsoundness Caused by Preprocessing
	3.1 Unsound Example
	3.2 Alternative Solutions

	4 Preprocessing for Sound Symbolic Linking
	4.1 Preprocessing Formalized
	4.2 Parallel Preprocessing
	4.3 Resulting Semantics

	5 Proof of Equivalence
	6 Implementation
	7 Related Work and Conclusion
	References

	Inferring Physical Units in B Models
	1 Introduction and Motivation
	2 Inference of Physical Units
	2.1 Syntactic Extension of the B Language
	2.2 Using Abstract Interpretation

	3 Extending Abstract Interpretation with Constraints
	4 Empirical Results
	5 Alternative Approaches and Related Work
	6 Discussion and Conclusion
	References

	A Tool for Behaviour-Based Discovery of Approximately Matching Web Services
	1 Introduction
	2 Soft Constraint Automata
	3 Representing the Behaviour of Services with SCA
	4 ToolDescription
	5 On Comparing Behaviour Signatures
	6 Related Work
	7 Conclusions
	References

	A Type System for Components
	1 Introduction
	2 The Calculus
	3 Type System
	3.1 Subtyping Relation
	3.2 Functions and Predicates
	3.3 Typing Rules
	3.4 Properties of the Type System

	4 Conclusions, Future and Related Works
	References

	Early Fault Detection in DSLs Using SMT Solving and Automated Debugging
	1 Introduction
	2 A Prototype DSL for Collision Prevention
	2.1 Physical Objects and Geometric Models
	2.2 Movement Restrictions

	3 Validation Properties
	3.1 Basic Validation
	3.2 Advanced Validation

	4 From DSL Instances and Properties to SMT
	4.1 Well-definedness of Expressions
	4.2 Ranges, Safety, and Deadlock
	4.3 Feasibility of SMT Solving

	5 Automated Debugging
	5.1 Fault Location
	5.2 Procedure to Locate a Single Pivotal Restriction
	5.3 Masked Restrictions

	6 Integration with DSL Editor
	7 Conclusions and Future Work
	References

	Static Detection of Implementation Errors Using Formal Code Specification
	1 Introduction
	2 Formal Specifications and Verification
	3 Research Hypothesis
	4 Data Set
	5 Methodology
	6 Results and Analysis
	6.1 Observations

	7 Validity Discussion
	7.1 Internal Validity
	7.2 External Validity

	8 Related Work
	9 Conclusions
	References

	Compositional Static Analysis for Implicit Join Synchronization in a Transactional Setting
	1 Introduction
	2 Compositional Analysis of Implicit Join Synchronization
	3 A Transactional Calculus
	3.1 Syntax
	3.2 Semantics

	4 Effect System
	5 Correctness
	6 Conclusion
	References

	{log} as a Test Case Generator for the TestTemplate Framework
	1 Seeking a Test Case Generator for the TTF
	2 Test Cases in the TTF
	3 Solving Set Formulas with {log}
	4 Improving {log} for the TTF
	5 Embedding the ZMT into {log}
	6 Empirical Assessment
	7 Discussion
	8 Conclusions
	References

	Zero Overhead Runtime Monitoring
	1 Introduction
	2 Background
	3 Program Transformation
	4 Experimental Results
	5 Conclusion
	References

	Run-Time Verification of Coboxes
	1 Introduction
	2 Case Study
	3 The Modeling Language
	4 Behavioral Interfaces for Coboxes
	4.1 Communication Views
	4.2 Grammars

	5 Implementation
	6 Experience Report
	7 Conclusion
	References

	Automated Mediator Synthesis: Combining Behavioural and Ontological Reasoning
	1 Introduction
	2 Primer on the Compositional Specification Theory
	3 Ontological Modelling and Reasoning
	4 Automated Mediator Synthesis
	4.1 Inferring Ordering Constraints from Ontologies
	4.2 Synthesising a Mediator as a Quotient

	5 Implementation
	6 Related Work
	7 Discussion and Evaluation
	References

	Program Transformation Based on Symbolic Execution and Deduction
	1 Introduction
	2 Programming Language
	3 Program Logic and Sequent Calculus
	3.1 Program Logic
	3.2 Sequent Calculus

	4 Sequent Calculus for Program Transformation
	4.1 Weak Bisimulation Relation of Program
	4.2 The Weak Bisimulation Modality
	4.3 Sequent Calculus Rules for the Bisimulation Modality

	5 Optimization
	5.1 Update Simplification
	5.2 Extended Sequent Calculus Rules Involving Updates

	6 Related Work
	7 Conclusions and Future Work
	References

	Constraint Specification and Test Generation for OSEK/VDX-Based Operating Systems
	1 Introduction
	2 Background and Approach
	3 Constraint Specification Language
	3.1 OSEK/VDX Requirements and Constraints
	3.2 Constraint Specification Language OSEK CSL

	4 Formal Specification Using NuSMV
	4.1 Formal Specification for Constrained Environments
	4.2 Formal Specification for Generic User Tasks
	4.3 Test Generation via LTL Model Checking

	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Author Index

