
TATL: Implementation

of ATL Tableau-Based Decision Procedure

Amélie David

Laboratoire IBISC - Université d’Évry Val d’Essonne - EA 4526
23 bd de France - 91037 Évry Cedex - France

adavid@ibisc.univ-evry.fr

Abstract. This paper describes the implementation of a tableau-based
decision procedure for the Alternating-time Temporal Logic proposed by
Goranko and Shkatov in 2009, as well as a set of representative formulas
used for testing.

Keywords: Alternating-time Temporal Logic, tableaux, theorem prover.

1 Introduction

The Alternating-time Temporal Logic (ATL) was introduced by Alur, Henzinger
and Kupferman in 2002 [1] in order to formally specify and verify reactive multi-
agent systems. Such systems are represented by a concurrent game structure C,
in short CGS, which are state-transition graphs. Transitions enable to go from
one state of the system to another depending on the choices made by every agent
of the system at a given state. At a given state, the different possible transitions
(which may lead to the same successor state) are represented by move vectors.

In ATL, properties of such systems are expressed with formulas following the
grammar:

F := p | ¬F | (F1 ∧ F2) | (F1 ∨ F2) | (F1 → F2) | 〈〈A〉〉©F | 〈〈A〉〉�F |
〈〈A〉〉♦F | 〈〈A〉〉F1 UF2,
where p is a proposition and A is a coalition, that is, a set of agents. ATL-
formulas represent objectives for the agents of the system C or the possibility
of achieving objectives. The connectors ¬, ∧, ∨ and → have the same meanings
as in classical propositional logic. The operators©, �, ♦ and U are those of
temporal logics and mean next time, always, eventually and until, respectively.
The novelty of ATL in comparison to other temporal logics is the use of agents’
coalitions and strategies for these coalitions by using the path quantifier 〈〈A〉〉.
〈〈A〉〉F means: the coalition A has a strategy to achieve F . So, for example, the
formula 〈〈1, 2〉〉�(p ∧ q) ∧ ¬〈〈2〉〉♦p means that the coalition of agents 1 and 2
has a strategy to always achieve p and q, and the “coalition” with only agent 2
does not have a strategy to eventually achieve p.

Checking whether a formula is satisfiable, that is, checking whether a model
exists for the formula or not, is a common question in logic. Methods to respond
to this question were introduced in 2006 by Goranko and van Drimmelen using

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 97–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

98 A. David

automata [2], and then in 2009 by Goranko and Shkatov using tableaux [3]. To
our knowledge, none of them has been implemented. Therefore, in this paper,
we present TATL, a prototype constituting the first implementation of Goranko
and Shkatov’s decision procedure. The core of TATL is implemented in Ocaml.
TATL is available at http://atila.ibisc.univ-evry.fr/tableau_ATL/.

At first, we recall the tableau-based decision procedure of Goranko and Shka-
tov, then we present, in Section 3, the general principles of TATL’s algorithm.
In Section 4 we explain how to get and use TATL, and in Section 5 how TATL
had been tested.

2 Tableau-Based Decision Procedure

Goranko and Shkatov’s tableau method decides the satisfiability of an ATL
formula θ by constructing a representation of models for θ, if a model exists.
Construction of a tableau for an ATL formula consists of two phases: first, con-
struct a pretableau and then obtain the tableau itself. The pretableau and the
tableau are state-transition graphs. The pretableau contains two kinds of ver-
texes (states and prestates) and two kinds of edges (unmarked and marked tran-
sitions). Prestates and states are sets of ATL-formulas and marked transitions
are labeled by sets of move vectors. Prestates and unmarked transitions are
technical items ensuring the termination of the procedure and will not remain
in the tableau. Intuitively, a prestate is an embryo of states that, when properly
saturated, generates one or more states.

The first phase of the tableau construction uses two rules, SR and Next
recursively applied on new sets of prestates or states. The construction phase
starts with a set containing only the input formula as a prestate. The rule SR
allows one to obtain states from prestates and the rule Next to obtain prestates
from states. The rule SR decomposes each formula of a prestate Γ into primitive
literal formulas, that is, formulas of the form �,p,¬p,〈〈A〉〉©F or ¬〈〈B〉〉©F
(B 	= Σ, where Σ is the coalition of all agents). With the primitive formulas,
we get all the information needed to verify the properties of the current state
of a CGS and with the primitive next-time formulas 〈〈A〉〉©F and ¬〈〈B〉〉©F ,
all the information to verify the properties of next states in the CGS. From
this decomposition, we obtain the states generated by Γ . Then, from each of
these states, say Δ, the rule Next treats all Δ’s next-time formulas in order
to obtain a new set of prestates, the successors of Δ, which respects all the
possible strategies of agents and their objectives. So the rule SR creates states
and unmarked transitions, whereas the rule Next creates prestates and marked
transitions. When a state or a prestate already exists, the rules SR and Next
do not generate copies and only create a transition.

When the rules SR and Next cannot be applied any further, the obtained
structure is the complete pretableau of the input formula and the elimination
phase can start. The first elimination rule,PR, eliminates all prestates after hav-
ing properly interconnected states. Then we apply the elimination rules E1, E2,
and E3. The rule E1 eliminates all states that contain an explicit inconsistency,

http://atila.ibisc.univ-evry.fr/tableau_ATL/

TATL: Implementation of ATL Tableau-Based Decision Procedure 99

that is, any state containing formulas F and also ¬F , where F is a primitive
formula. Then we apply rules E3 and E2 until no more states can be eliminated.
The rule E2 eliminates all states which have lost all their successors linked to
the same move vector. Eventualities are formulas of the form a) 〈〈A〉〉♦F2 , b)
〈〈A〉〉F1 UF2 or c) ¬〈〈A〉〉�F3. The rule E3 eliminates all states not satisfying
their eventualities, that is always postponing the realization of F2 for a) and b),
and the realization of F3 for c).

At the end of the elimination phase, we obtain the tableau of the input for-
mula. The tableau is open and the input formula is satisfiable if there remains
at least one state containing the input formula; otherwise, the tableau is closed
and the formula is unsatisfiable.

3 General Principles of TATL

The algorithm of TATL follows the steps described in the previous section. To
represent states and prestates of the tableau and pretableau, that is, vertexes,
we use a structure which allows us to stock information about the name and
type of the vertex, the associated set of formulas, all the possible move vectors
linked to that vertex, its successors, as well as an indicator about its consistency.

During the construction phase, we use four sets of vertexes: partial states,
complete states, partial prestates and complete prestates. Partial prestates and
partial states are waiting for application of the rule SR and the rule Next,
respectively, to become complete prestates and complete states. The rule SR
generates partial states and the rule Next generates partial prestates.

The most difficult rules to implement were the rules SR and E3, so we describe
their implementation in more detail. Indeed, for the rule SR, we need to deal
with decompositions where the operator or occurs. This decomposition gener-
ates several choices and therefore several successors for the same prestate. So we
use a decomposition tree where all interior nodes still contain non-decomposed
formulas and each leaf node contains a set of fully decomposed formulas. Each
node of the tree is composed of two sets: one with decomposed formulas and
primitives, and one with formulas that still need to be decomposed. For each
interior node, we process one of the non-decomposed formulas to obtain succes-
sors. If a formula resulting from the decomposition is not primitive, it joins the
set of non-decomposed formulas.

The rule E3 needs, for each eventuality occurring in the tableau, to find all
states containing that eventuality. This results in finding a path from a given
state to a state satisfying the eventuality, avoiding looping indefinitely in a cycle.
Let us call ξ the set of all states containing the eventuality. Then we separate
the states of ξ which realize the eventuality from the others, using three sets:
to be treated, satisfied and current. The procedure is iterative with the following
halt conditions: the set current is empty or stable at the end of the iteration.
At the beginning, all states ξ are placed in the set to be treated. For each state s
in the set to be treated, we first check if the eventuality is immediately satisfied,
that is, if s contains F2 for an eventuality of the form 〈〈A〉〉♦F2 or 〈〈A〉〉F1 UF2,

100 A. David

and ¬F3 for an eventuality of the form ¬〈〈A〉〉�F3. In that case, we move s to the
set satisfied, otherwise, we check for each move vector leading to successors of s
in ξ whether one of these successors is also in the set satisfied. If the eventuality
is of the form 〈〈A〉〉F1 UF2, we also check that s contains F1. If these conditions
are satisfied then the state is moved to the set satisfied, otherwise it is moved
to the set current. When the set to be treated is empty, if the set current is also
empty or contains all the states to be treated at the beginning of the iteration, we
return the set current, which contains all the states not satisfying the eventuality,
otherwise we move the states of the set current to the set to be treated and the
procedure is repeated.

4 Description of TATL

TATL was conceived as a web application in order to be multi-platform and
easy to use, but binaries are also available. TATL is an Ocaml program and

Fig. 1. Screenshot of TATL’s result page for options 1 and 2

TATL: Implementation of ATL Tableau-Based Decision Procedure 101

we use PHP for the graphical user interface of the web application. The web
application and binaries are both available at http://atila.ibisc.univ-evry.
fr/tableau ATL/. In this paper, we will focus on the web application as the
functionalities of binaries are similar. However, you can find details about the
use of the binaries on the web page.

At the top of the page, a menu gives access to three options:

1. enter a formula as specified above;
2. choose among a set of preselected formulas corresponding to test cases (see

Section 5);
3. use the random generator of formulas.

Option 1 (One formula) allows one to enter an ATL-formula and get in return
the information about the satisfiability of the formula as well as the pretableau
and the tableau, as shown in the screenshot in Fig. 1.

On the result area, each state (or prestate) is displayed with 4 elements: a
name, a set of formulas, a mark and a set of successors. Prestates are referred to
as Px and states as Sx where x is a number and the pretableau always begins
with prestate P1. The check mark indicates that the state is consistent whereas
the cross indicates that it is inconsistent. Successors of states are also given
with their associated move vectors. An example of a move vector could be, for
instance, (0, 1, 0) for a formula with 3 agents. As agents are automatically sorted
by their number, the first element of the move vector corresponds to the choice
of the player with the smallest number. When a formula is satisfiable, this means
that there exists at least one model for that formula. It is possible to manually
construct a model from a tableau via the explanations in the completeness proof
of [3]. For the tableau of Fig. 1, a model can be:

s2

{∅}
s5

{∅}

s6{q} s4

{p, q}

0

0

0
0

Option 2 (Preselected formula) allows one to select a formula among a set of
42 formulas and get in return the pretableau, the tableau, and the satisfiability
of the formula, in the same way as in option 1. This set of formulas has been
used to test the application (see Section 5).

Options 3 (Random formulas) allows one to randomly generate a set of ATL-
formulas and get the answer on their satisfiability. This option needs some ad-
ditional information to run: a set of propositions, a maximum number of agents
from which TATL creates effective agents, a number of formulas to generate, a
maximal depth of formulas and a time-out in seconds to stop the computation
when it takes too long. The screenshot in Fig. 2 shows the output for this option.
A check mark indicates that the formula is satisfiable, a cross that the formula
is unsatisfiable and a question mark that the computation has timed-out. Click-
ing on the box in front of each generated formula transforms the syntax of the

http://atila.ibisc.univ-evry.fr/tableau_ATL/
http://atila.ibisc.univ-evry.fr/tableau_ATL/

102 A. David

Fig. 2. Example of results obtained with the option “random formulas”

formula to make it compatible with option “One formula”, thereby getting the
pretableau and tableau of the formula.

5 Tests for TATL

A common way to test an implementation is to compare the outputs against
another implementation. But, to our knowledge, there are no available tools
to decide the satisfiability of an ATL-formula, either by using tableaux or by
using automata. So we decided to check that TATL works correctly by creating
a set of ATL-formulas that enables us to test each part of the algorithm. It
should be noted that, to our knowledge, a benchmark set does not exist for
ATL-satisfiability, thus our set of formulas might be used as a starting set for
more refined future benchmarks. Our set consists of 42 formulas and allows us
to test 50 points distributed in 15 categories, which are:

Coalition screen output Next-time formulas
recognition of formulas Cartesian product for move vectors
Treatment of agents formula decomposition
Primitives Rule E2
Inconsistency(Rule E1) Rule E3
Eventualities Creation of state/prestates sets
Move vectors Several eventualities
sorting of Next-time formulas

The set of formulas is provided in the appendix. Details of the 50 points
and of the 15 categories can be found at http://atila.ibisc.univ-evry.fr/
tableau ATL/test cases.ods. For instance, the formulas 23, 24 and 25 have
been conceived to test eventualities, whereas formulas 16 and 17 allowed us to
test the rule E2.

In order to test our implementation, we manually calculated a tableau for
each of the 42 formulas and compared our results with TATL results to en-
sure that both satisfiability outputs and tableau’s descriptions comply with the
specification for these test cases.

http://atila.ibisc.univ-evry.fr/tableau_ATL/test_cases.ods
http://atila.ibisc.univ-evry.fr/tableau_ATL/test_cases.ods

TATL: Implementation of ATL Tableau-Based Decision Procedure 103

6 Conclusion and Perspectives

TATL is, to our knowledge, the first implementation for testing the satisfiability
of an ATL-formula. TATL is multi-platform and easy to use thanks to its web
interface. TATL is also available as a command line application. As no reference
tools were available for testing, we also provide a set of ATL-formulas. Such a
set can be reused to develop more sophisticated benchmarks for ATL. TATL is
a prototype so we need to improve it, for example, using better data structures
to save computation time. We also worked on automata’s construction based on
tableaux, so we plan to add this functionality to TATL, by adding automata
construction.

Acknowledgment. The author would like to thank for their help and support
Serenella Cerrito, Marta Cialdea Mayer, Valentin Goranko and Laurent Poligny.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of
Alternating-time temporal logic. Theor. Comput. Sci. 353(1-3), 93–117 (2006)

3. Goranko, V., Shkatov, D.: Tableau-based decision procedures for logics of strategic
ability in multi-agent systems. ACM Trans. Comput. Log. 11(1) (2009)

List of the 42 Formulas

1 p
2 p ∧ q
3 p ∨ q
4 p → q

5 〈〈1〉〉©p
6 〈〈1〉〉♦p
7 〈〈1〉〉�p
8 〈〈1〉〉pUq

9 ¬〈〈1〉〉pUq
10 ¬〈〈1〉〉♦p
18 ¬p ∨ 〈〈1〉〉♦p
19 p ∧ ¬p

11 〈〈1, 2〉〉pUq ∧ 〈〈1, 2〉〉©r
12 〈〈1, 2〉〉pUq ∧ 〈〈3, 4〉〉©r
13 〈〈1, 2〉〉pUq ∧ 〈〈2, 3〉〉©r
14 〈〈2, 1〉〉pUq ∧ 〈〈3, 2〉〉©r

15 〈〈〉〉pUq ∧ 〈〈1, 2〉〉©r
16 ¬〈〈1, 2〉〉©p ∧ 〈〈1〉〉�p
17 ¬〈〈1, 2〉〉©p ∧ 〈〈1, 2, 3〉〉�p
20 (p ∧ q) ∧ 〈〈1〉〉�¬(p ∧ q)
21 〈〈1〉〉�p ∧ ¬〈〈2〉〉♦〈〈1〉〉�p
22 〈〈1〉〉©p ∧ ¬〈〈1〉〉©p

23 〈〈1〉〉pUq ∨ ¬〈〈1〉〉�q
24 〈〈1, 2〉〉pU(¬〈〈1〉〉�p)
25 〈〈1〉〉(¬〈〈1, 2〉〉�p)Uq
26 〈〈〉〉�〈〈〉〉pUq
27 ¬〈〈1〉〉�p ∧ 〈〈1, 2〉〉©p ∧ ¬〈〈2〉〉©¬p
31 〈〈1, 2, 3〉〉�〈〈2, 3, 4〉〉�(p ∧ q)

33 ¬¬〈〈1〉〉pUq
34 ¬(〈〈1〉〉�p ∨ 〈〈1〉〉�¬p)
35 ¬(〈〈1〉〉�p ∧ 〈〈1〉〉�¬p)
36 ¬〈〈1〉〉pU¬〈〈2〉〉q Ur
37 〈〈1〉〉�¬q ∧ 〈〈2〉〉pUq

38 〈〈1〉〉�p ∧ ¬〈〈1, 2〉〉�p
39 ¬〈〈1〉〉©p ∧ 〈〈2〉〉©¬p
40 〈〈1〉〉©p ∧ 〈〈2〉〉©¬p
41 〈〈1〉〉pUq ∧ 〈〈2〉〉q Ur ∧ 〈〈2〉〉�¬r
42 〈〈1〉〉pUq ∧ 〈〈2〉〉q Ur ∧ 〈〈1〉〉�¬r

28 〈〈1〉〉©p ∧ 〈〈2〉〉©q ∧ 〈〈1, 2〉〉©r ∧ ¬〈〈1〉〉©r ∧ ¬〈〈3〉〉©q
29 ¬〈〈1〉〉©r ∧ ¬〈〈3〉〉©q ∧ 〈〈1〉〉©p ∧ 〈〈2〉〉©q ∧ 〈〈1, 2〉〉©r
30 ¬〈〈1〉〉©r ∧ 〈〈1〉〉©p ∧ 〈〈2〉〉©q ∧ ¬〈〈3〉〉©q ∧ 〈〈1, 2〉〉©r
32 〈〈1, 2, 3〉〉�〈〈2, 3〉〉�(p ∧ q) ∧ 〈〈4〉〉©¬p

	TATL: Implementation
of ATL Tableau-Based Decision Procedure
	1 Introduction
	2 Tableau-Based Decision Procedure
	3 General Principles of TATL
	4 Description of TATL
	5 TestsforTATL
	6 Conclusion and Perspectives
	References

