
Didier Galmiche
Dominique Larchey-Wendling (Eds.)

 123

LN
AI

 8
12

3

22nd International Conference, TABLEAUX 2013
Nancy, France, September 2013
Proceedings

Automated Reasoning
with Analytic Tableaux
and Related Methods

Lecture Notes in Artificial Intelligence 8123

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Didier Galmiche
Dominique Larchey-Wendling (Eds.)

Automated Reasoning
withAnalytic Tableaux
and Related Methods

22nd International Conference,TABLEAUX 2013
Nancy, France, September 16-19, 2013
Proceedings

13

Volume Editors

Didier Galmiche
Université de Lorraine – LORIA UMR CNRS 7503
Campus Scientifique, BP 239
54 506 Vandœuvre-lès-Nancy, France
E-mail: didier.galmiche@loria.fr

Dominique Larchey-Wendling
LORIA – CNRS
Campus Scientifique, BP 239
54 506 Vandœuvre-lès-Nancy, France
E-mail: dominique.larchey-wendling@loria.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40536-5 e-ISBN 978-3-642-40537-2
DOI 10.1007/978-3-642-40537-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946041

CR Subject Classification (1998): I.2.3, F.4.1-2, I.2, F.2, D.1.6, D.2.4, G.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the research papers presented at the International Con-
ference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2013) held September 16–19, 2013, in Nancy, France. This confer-
ence was the 22nd in a series of international meetings held since 1992 (listed on
page VIII) and was co-located with FroCoS 2013, the International Symposium
on Frontiers of Combining Systems.

The Program Committee of TABLEAUX 2013 received 38 submissions. Each
paper was reviewed by at least three referees, and following a thorough and lively
online discussion phase, 20 research papers including four system descriptions
were accepted based on their originality, technical soundness, presentation, and
relevance to the conference. We would like to sincerely thank both all the authors
for their submissions and the members of the ProgramCommittee and additional
referees for their great effort and professional work in the review and selection
process.

In addition to the contributed papers, the program included three keynote
talks: Stéphane Demri (CIMS New York & LSV – ENS Cachan), common with
FroCoS 2013, Sara Negri (University of Helsinki) and Tobias Nipkow (Technische
Universität München). There were also two tutorials: “Noetherian Induction for
First-Order Reasoning,” by Sorin Stratulat (LITA, Université de Lorraine) and
“Generating Tableau Provers Using MetTeL2,” by Dmitry Tishkovsky and Re-
nate A. Schmidt (School of Computer Science, University of Manchester). Two
workshops were held in conjunction with TABLEAUX 2013: “Third Workshop of
the Amadeus Project on Proof Compression,” organized by Pascal Fontaine (IN-
RIA Nancy – Grand-Est, LORIA, Université de Lorraine) and Bruno Woltzen-
logel Paleo (Theory and Logic Group, Vienna University of Technology) and the
Workshop “Logics for Resources, Processes and Programs,” organized by David
Pym (University of Aberdeen) and Didier Galmiche (LORIA – Université de
Lorraine).

We would like to thank the members of the Organizing Committee for their
much appreciated support and expertise, and the Conference Chair and Pro-
gram Committee Chairs of FroCoS 2013 for our fruitful discussions and smooth
coordination of the co-located events.

Finally, we would like to thank our sponsors for their generous and very wel-
come support: Région Lorraine, Communauté Urbaine du Grand Nancy, Univer-
sité de Lorraine, CNRS, INRIA and LORIA. We would also like to acknowledge
the easychair.org conference management system that greatly facilitated the
smooth running of the review and selection process.

July 2013 Didier Galmiche
Dominique Larchey-Wendling

Organization

Program and Conference Chairs

Didier Galmiche LORIA – Lorraine University, Nancy, France
Dominique Larchey-Wendling LORIA – CNRS, Nancy, France

Program Committee

Carlos Areces National University of Córdoba, Argentina
Arnon Avron Tel Aviv University, Israel
Matthias Baaz University of Technology, Vienna, Austria
Philippe Balbiani IRIT – CNRS, Toulouse, France
Marta Cialdea Mayer University of Rome Tre, Rome, Italy
Amy Felty University of Ottawa, Canada
Ulrich Furbach University of Koblenz-Landau, Germany
Valentin Goranko Technical University of Denmark, Denmark
Rajeev Gore Australian National University, Australia
Reiner Hähnle Technical University of Darmstadt, Germany
George Metcalfe University of Bern, Switzerland
Dale Miller INRIA Saclay – LIX, Palaiseau, France
Neil Murray State University of New York, USA
Nicola Olivetti University of Marseille, France
Jens Otten University of Potsdam, Germany
Lawrence C. Paulson University of Cambridge, UK
Nicolas Peltier LIG – CNRS, Grenoble, France
Renate Schmidt University of Manchester, UK
Alex Simpson University of Edinburgh, Scotland, UK
Viorica Sofronie-Stokkermans University of Koblenz-Landau, Germany
Luca Vigano University of Verona, Italy
Arild Waaler University of Oslo, Norway

Additional Referees

James Brotherston
Richard Bubel
Serenella Cerrito
Kaustuv Chaudhuri
Ranald Clouston
Willem Conradie
Stéphane Demri

Martin Giese
Birte Glimm
Valentina Gliozzi
Matthias Horbach
Ullrich Hustadt
Ran Ji
Erisa Karafili

Mohammad Khodadadi
Christoph Kreitz
Roman Kuznets
Ori Lahav
Espen H. Lian
João Marcos
Andrew Matusiewicz

VIII Organization

Daniel Méry
Sara Negri
Fabio Papacchini
Dirk Pattinson
Gian Luca Pozzato

Ulrike Sattler
Claudia Schon
Lutz Strassburger
Jimmy Thomson
Dmitry Tishkovsky

Alwen Tiu
Marco Volpe
Anna Zamansky

Steering Committee

Jens Otten (President) University of Potsdam, Germany
Kai Brünnler Innovation Process Tech. AG, Switzerland
Agata Ciabattoni University of Technology, Vienna, Austria
Martin Giese University of Oslo, Norway
Dominique Larchey-Wendling LORIA – CNRS, Nancy, France
Angelo Montanari University of Udine, Italy
Neil Murray State University of New York, USA
Dale Miller INRIA Saclay – LIX, Palaiseau, France

Sponsoring Institutions

INRIA, Institut National de Recherche en Informatique et en Automatique
LORIA, Laboratoire Lorrain de Recherche en Informatique et ses Applications
CNRS, Centre National de la Recherche Scientifique
UL, Université de Lorraine
CUGN, Communauté Urbaine du Grand Nancy
Région Lorraine

Previous Conferences

1992 Lautenbach, Germany
1993 Marseille, France
1994 Abingdon, UK
1995 St. Goar, Germany
1996 Terrasini, Italy
1997 Pont-à-Mousson, France
1998 Oisterwijk, The Netherlands
1999 Saratoga Springs, USA
2000 St Andrews, UK
2001 Siena, Italy (part of IJCAR)
2002 Copenhagen, Denmark

2003 Rome, Italy
2004 Cork, Ireland (part of IJCAR)
2005 Koblenz, Germany
2006 Seattle, USA (part of IJCAR)
2007 Aix-en-Provence, France
2008 Sydney, Australia (p.o. IJCAR)
2009 Oslo, Norway
2010 Edinburgh, UK (part of IJCAR)
2011 Bern, Switzerland
2012 Manchester, UK (part of IJCAR)

Table of Contents

Invited Talks

Witness Runs for Counter Machines (Abstract) . 1
Clark Barrett, Stéphane Demri, and Morgan Deters

On the Duality of Proofs and Countermodels in Labelled Sequent
Calculi . 5

Sara Negri

A Brief Survey of Verified Decision Procedures for Equivalence of
Regular Expressions . 10

Tobias Nipkow and Maximilian Haslbeck

Research Papers

Dealing with Symmetries in Modal Tableaux . 13
Carlos Areces and Ezequiel Orbe

Tableaux for Verification of Data-Centric Processes 28
Andreas Bauer, Peter Baumgartner, Martin Diller, and
Michael Norrish

Bounded Proofs and Step Frames . 44
Nick Bezhanishvili and Silvio Ghilardi

Compression of Propositional Resolution Proofs by Lowering
Subproofs . 59

Joseph Boudou and Bruno Woltzenlogel Paleo

A Tableau System for Right Propositional Neighborhood Logic over
Finite Linear Orders: An Implementation . 74

Davide Bresolin, Dario Della Monica, Angelo Montanari, and
Guido Sciavicco

Hypersequent and Labelled Calculi for Intermediate Logics 81
Agata Ciabattoni, Paolo Maffezioli, and Lara Spendier

TATL: Implementation of ATL Tableau-Based Decision Procedure 97
Amélie David

A Terminating Evaluation-Driven Variant of G3i . 104
Mauro Ferrari, Camillo Fiorentini, and Guido Fiorino

X Table of Contents

Model Checking General Linear Temporal Logic . 119
Tim French, John McCabe-Dansted, and Mark Reynolds

Semantically Guided Evolution of SHI ABoxes . 134
Ulrich Furbach and Claudia Schon

Psyche: A Proof-Search Engine Based on Sequent Calculus with an
LCF-Style Architecture . 149

Stéphane Graham-Lengrand

Understanding Resolution Proofs through Herbrand’s Theorem 157
Stefan Hetzl, Tomer Libal, Martin Riener, and Mikheil Rukhaia

A Labelled Sequent Calculus for BBI: Proof Theory and Proof
Search . 172

Zhé Hóu, Alwen Tiu, and Rajeev Goré

A Refined Tableau Calculus with Controlled Blocking for the
Description Logic SHOI . 188

Mohammad Khodadadi, Renate A. Schmidt, and Dmitry Tishkovsky

Prefixed Tableau Systems for Logic of Proofs and Provability 203
Hidenori Kurokawa

Correspondence between Modal Hilbert Axioms and Sequent Rules
with an Application to S5 . 219

Björn Lellmann and Dirk Pattinson

Schemata of Formulæ in the Theory of Arrays . 234
Nicolas Peltier

TAFA – A Tool for Admissibility in Finite Algebras 250
Christoph Röthlisberger

Formalizing Cut Elimination of Coalgebraic Logics in Coq 257
Hendrik Tews

Intelligent Tableau Algorithm for DL Reasoning . 273
Ming Zuo and Volker Haarslev

Author Index . 289

Witness Runs for Counter Machines�

(Abstract)

Clark Barrett1, Stéphane Demri1,2, and Morgan Deters1

1 New York University, USA
2 LSV, CNRS, France

Abstract. We present recent results about the verification of counter
machines by using decision procedures for Presburger arithmetic. We re-
call several known classes of counter machines for which the reachability
sets are Presburger-definable as well as temporal logics with arithmeti-
cal constraints. We discuss issues related to flat counter machines, path
schema enumeration and the use of SMT solvers.

Counter machines. Counter machines are well-known infinite-state systems that
have many applications in formal verification. Their ubiquity stems from their
use as operational models for several purposes, including for instance for broad-
cast protocols [FL02] and for logics for data words, see e.g. [BL10]. However,
numerous model-checking problems for counter machines, such as reachability,
are known to be undecidable [Min61, Min67]. Many subclasses of counter ma-
chines admit a decidable reachability problem, such as reversal-bounded counter
automata [Iba78] and flat counter automata [FO97, CJ98, Boi99, FL02]. These
two classes of systems admit reachability sets effectively definable in Presburger
arithmetic (assuming some additional conditions, unspecified herein). Indeed,
the set of reachable configurations can be effectively represented symbolically,
typically by a formula in Presburger arithmetic for which satisfiability is known
to be decidable, see e.g. [Pre29, BC96, Wol09, BBL09]. In general, computing the
transitive closures of integer relations is a key step to solve verification problems
on counter machines, see e.g. [BW94, CJ98, Fri00, BIK09].

Flatness. Flat counter machines are counter machines in which each control
state belongs to at most one simple cycle (i.e. a cycle without any repetition of
edges) [FO97, CJ98]. Several classes of such flat operational devices have been
identified and reachability sets have been shown effectively Presburger-definable
for many of them, see e.g. [CJ98, Boi99, Fri00, FL02, BIK09]. This provides a
decision procedure for the reachability problem, given a prover for Presburger
arithmetic validity. Effective semilinearity boils down to check that the effect of
a loop can be characterized by a formula in Presburger arithmetic (or in any de-
cidable fragment of first-order arithmetic). The results for flat counter machines
can be then obtained by adequately composing formulae for loops and for fi-
nite paths. However, this approach, briefly described in this talk, suffers from at
� Work partially supported by the EU Seventh Framework Programme under grant

agreement No. PIOF-GA-2011-301166 (DATAVERIF). An extended version can be
found in [BDD13].

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 1–4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 C. Barrett, S. Demri, and M. Deters

least two drastic limitations. First, flatness in counter machines remains a strong
restriction on the control graph, though this has been relaxed by considering flat-
table counter machines, see e.g. [BFLS05, LS05, Ler13], where a machine may
not itself be flat, but is known to have a flat unfolding with the same reachability
set. The second limitation is due to the fact that reachability questions are not
the only interesting ones and the verification of properties expressed in dedicated
temporal logics is often desirable, see e.g. [DFGvD10, KF11].

Content of the talk. We present a selection of results about the verification
of counter machines, at times assuming flatness, from reachability problems to
model-checking problems with temporal logics (see e.g. [DDS12]). Systems and
properties are a bit more general than those in [Fri00] but essentially we follow
the same approach. We consider flattable counter machines and how to compute
flat unfoldings by enumerating path schemas while invoking Satisfiability Modulo
Theories (SMT) [BSST08] solvers to optimize this enumeration. This part of the
talk presents preliminary results, and it will be the subject of a dedicated paper.

We provide several results from the literature and we emphasize that the
generation of path schemas is a key problem for formal verification of Presburger
counter systems (see also [Fri00, Ler03]). This is not really new (see e.g. [FO97,
Boi99, Ler03]), but it is becoming an important issue, at least as important
as the design of optimal decision procedures as far as worst-case complexity
is concerned. The talk has been designed to shed some light on this problem.
However, an efficient generation of path schemas means that redundant path
schemas should be eliminated (via a subsumption test) as early as possible in
the enumeration process. A comparison with the algorithm for the acceleration
techniques in FAST [Ler03] or LASH [Boi99] will be in order.

Bounding the set of runs. Enumerating path schemas can also be viewed as
a way to underapproximate the set of runs; this is similar to a standard ap-
proach to consider subclasses of runs by bounding some features and to search
for ‘bounded runs’ that may satisfy a desirable or undesirable property. Examples
include reversal-bounded counter machines (which have a bound on the num-
ber of reversals) [Iba78, GI81, BD11, HL11], context-bounded model-checking
(where there is a bound on the number of context switches) [QR05], and of
course bounded model-checking (BMC) (where there is a bound on the distance
of the reached positions), see e.g. [BCC+03].
Subsumption & Presburger arithmetic. The notion of subsumption takes care of
redundancy, and again subsumption can be checked by testing the satisfiability
of a quantified Presburger formula. It is a challenge to deal with such quantified
formulae in the framework of path schema enumeration since most SMT solvers
do not behave so nicely with quantified formulae (see e.g. [dMB08, BCD+11]).
Part of our future work is dedicated to design a path schema generation algo-
rithm that invokes SMT solvers for quantified Presburger formulae. Deciding
Presburger arithmetic fragments is essential to verify properties of programs;
see e.g. [Sho79] and [SJ80] for an early use of Presburger arithmetic for formal
verification. Most well-known SMT solvers can deal with quantifier-free linear in-
teger formulae, also known as quantifier-free linear integer arithmetic (QF_LIA).

Witness Runs for Counter Machines 3

However, dealing with quantifiers is usually a difficult task for SMT solvers that
are better tailored to theory reasoning. Many general-purpose SMT solvers do
accept formulas with quantifiers and they handle them in roughly the same
way, through heuristic instantiation. For instance, this includes Z3 [dMB08],
CVC4 [BCD+11] and Alt-Ergo [Con12], to cite a few of them, although Z3 ad-
ditionally supports quantifier elimination for certain theories.

References

[BBL09] Boigelot, B., Brusten, J., Leroux, J.: A Generalization of Semenov’s The-
orem to Automata over Real Numbers. In: Schmidt, R.A. (ed.) CADE
2009. LNCS (LNAI), vol. 5663, pp. 469–484. Springer, Heidelberg (2009)

[BC96] Boudet, A., Comon, H.: Diophantine equations, Presburger arithmetic and
finite automata. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp.
30–43. Springer, Heidelberg (1996)

[BCC+03] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded
model checking. Advances in Computers 58, 118–149 (2003)

[BCD+11] Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King,
T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S.
(eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

[BD11] Bersani, M.M., Demri, S.: The complexity of reversal-bounded model-
checking. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011.
LNCS (LNAI), vol. 6989, pp. 71–86. Springer, Heidelberg (2011)

[BDD13] Barrett, C., Demri, S., Deters, M.: Witness runs for counter machines. In:
FROCOS 2013. LNCS. Springer (to appear, 2013)

[BFLS05] Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in
symbolic model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005.
LNCS, vol. 3707, pp. 474–488. Springer, Heidelberg (2005)

[BIK09] Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic
relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 227–242. Springer, Heidelberg (2010)

[BL10] Bojańczyk, M., Lasota, S.: An extension of data automata that captures
XPath. In: LICS 2010, pp. 243–252. IEEE (2010)

[Boi99] Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD
thesis, Université de Liège (1999)

[BSST08] Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo
Theories. Frontiers in Artificial Intelligence and Applications, vol. 185,
ch. 26, pp. 825–885. IOS Press (2008)

[BW94] Boigelot, B., Wolper, P.: Verification with Periodic Sets. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994)

[CJ98] Comon, H., Jurski, Y.: Multiple counter automata, safety analysis and
Presburger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427,
pp. 268–279. Springer, Heidelberg (1998)

[Con12] Conchon, S.: SMT Techniques and their Applications: from Alt-Ergo to Cu-
bicle. Habilitation à Diriger des Recherches, Université Paris-Sud (2012)

[DDS12] Demri, S., Dhar, A.K., Sangnier, A.: Taming Past LTL and Flat Counter
Systems. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS
(LNAI), vol. 7364, pp. 179–193. Springer, Heidelberg (2012)

[DFGvD10] Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking
CTL∗ over flat Presburger counter systems. JANCL 20(4), 313–344 (2010)

4 C. Barrett, S. Demri, and M. Deters

[dMB08] de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340.
Springer, Heidelberg (2008)

[FL02] Finkel, A., Leroux, J.: How to compose Presburger accelerations: Applica-
tions to broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS
2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

[FO97] Fribourg, L., Olsén, H.: Proving safety properties of infinite state sys-
tems by compilation into Presburger arithmetic. In: Mazurkiewicz, A.,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 213–227.
Springer, Heidelberg (1997)

[Fri00] Fribourg, L.: Petri nets, flat languages and linear arithmetic. In: 9th Work-
shop on Functional and Logic Programming (WFLP), pp. 344–365 (2000)

[GI81] Gurari, E., Ibarra, O.: The complexity of decision problems for finite-turn
multicounter machines. In: ICALP 1981. LNCS, vol. 115, pp. 495–505.
Springer (1981)

[HL11] Hague, M., Lin, A.W.: Model checking recursive programs numeric data
types. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 743–759. Springer, Heidelberg (2011)

[Iba78] Ibarra, O.: Reversal-bounded multicounter machines and their decision
problems. JACM 25(1), 116–133 (1978)

[KF11] Kuhtz, L., Finkbeiner, B.: Weak Kripke structures and LTL. In: Katoen,
J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 419–433.
Springer, Heidelberg (2011)

[Ler03] Leroux, J.: Algorithmique de la vérification des systèmes à compteurs. Ap-
proximation et accélération. Implémentation de l’outil FAST. PhD thesis,
ENS de Cachan, France (2003)

[Ler13] Leroux, J.: Presburger Vector Addition Systems. In: LICS 2013, pp. 23–32.
IEEE (2013)

[LS05] Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled,
D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503.
Springer, Heidelberg (2005)

[Min61] Minsky, M.: Recursive unsolvability of Post’s problems of ‘tag’ and other
topics in theory of Turing machines. Annals of Mathematics 74(3), 437–455
(1961)

[Min67] Minsky, M.: Computation, Finite and Infinite Machines. Prentice Hall
(1967)

[Pre29] Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt. In: Comptes Rendus du Premier Congrès de Mathématiciens des
Pays Slaves, Warszawa, pp. 92–101 (1929)

[QR05] Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent soft-
ware. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440,
pp. 93–107. Springer, Heidelberg (2005)

[Sho79] Shostak, R.: A practical decision procedure for arithmetic with function
symbols. JACM 26(2), 351–360 (1979)

[SJ80] Suzuki, N., Jefferson, D.: Verification Decidability of Presburger Array
Programs. JACM 27(1), 191–205 (1980)

[Tin07] Tinelli, C.: An Abstract Framework for Satisfiability Modulo Theories.
In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, p. 10.
Springer, Heidelberg (2007)

[Wol09] Wolper, P.: On the use of automata for deciding linear arithmetic. In:
Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, p. 16.
Springer, Heidelberg (2009)

On the Duality of Proofs and Countermodels

in Labelled Sequent Calculi

Sara Negri

Department of Philosophy
PL 24, Unioninkatu 40 B

00014 University of Helsinki, Finland
sara.negri@helsinki.fi

The duality of proofs and counterexamples, or more generally, refutations, is
ubiquitous in science, but involves distinctions often blurred by the rethoric of
argumentation. More crisp distinctions between proofs and refutations are found
in mathematics, especially in well defined formalized fragments.

Every working mathematician knows that finding a proof and looking for
a counterexample are two very different activities that cannot be carried on
simultaneusly. Usually the latter starts when the hope to find a proof is fading
away, and the failed attempts will serve as an implicit guide to chart the territory
in which to look for a counterexample. No general recipe is, however, gained from
the failures, and a leap of creativity is required to find a counterxample, if such
is at all obtained.

In logic, things are more regimented because of the possibility to reason within
formal analytic calculi that reduce the proving of theorems to automatic tasks.
Usually one can rest upon a completeness theorem that guarantees a perfect
duality between proofs and countermodels. So in theory. In practice, we are
encountered with obstacles: completeness proofs are often non-effective (non-
constructive) and countermodels are artificially built from Henkin sets or Lin-
denbaum algebras, and thus far away from what we regard as counterexamples.
Furthermore, the canonical countermodels provided by traditional completeness
proofs may fall out of the intended classes and need a model-theoretic fine tuning
with such procedures as unravelling and bulldozing.

The question naturally arises as to whether we can find in some sense “con-
crete” countermodels in the same automated way in which we find proofs. Refu-
tation calculi (as those found in [5, 9, 20, 23]) produce refutations rather than
proofs and can be used as a basis for building countermodels. These calculi are
separate from the direct inferential systems, their rules are not invertible (root-
first, the rules give only sufficient conditions of non-validity) and sometimes the
decision method through countermodel constructions uses a pre-processing of
formulas into a suitable normal form (as in [11]). As pointed out in [10] in the
presentation of a combination of a derivation and a refutation calculus for bi-
intuitionistic logic, these calculi often depart from Gentzen’s original systems,
because the sequent calculus LI or its contraction-free variant LJT [2] have
rules that are not invertible; thus, while preserving validity, they do not pre-
serve refutability. Prefixed tableaux in the style of Fitting, on the other hand,

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 5–9, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

6 S. Negri

restrict the refutations to relational models, and countermodels can be read off
from failed proof search. As remarked in [6], the tree structure inherent in these
calculi makes them suitable to a relatively restricted family of logics and, fur-
thermore, the non-locality of the rules makes the extraction of the countermodel
not an immediate task.

We shall present a method for unifying proof search and countermodel con-
struction that is a synthesis of a generation of calculi with internalized seman-
tics (as presented in [14] and in chapter 11 of [19]), a Tait-Schütte-Takeuti style
completeness proof [15] and, finally, a procedure to finitize the countermodel
construction. This final part is obtained either through the search of a mini-
mal, or irredundant, derivation (a procedure employed to establish decidability
of basic modal logics in [14] and formalized in [7] for a labelled sequent system
for intuitionistic logic), a pruning of infinite branches in search trees through
a suitable syntactic counterpart of semantic filtration (a method employed in
[1] for Priorean linear time logic and in [8] for multimodal logics) or through a
proof-theoretic embedding into an appropriate provability logic that internalizes
finiteness in its rules, as in [4].

The emphasis here is on the methodology, so we shall present the three stages
in detail for the case of intuitionistic logic. Our starting point is G3I, a labelled
contraction- and cut-free intuitionistic multi-succedent calculus in which all rules
are invertible. The calculus is obtained through the internalization of Kripke se-
mantics for intuitionistic logic: the rules for the logical constants are obtained
by unfolding the inductive definition of truth at a world and the properties of
the accessibility relation are added as rules, following the method of “axioms
as rules” to encode axioms into a sequent calculus while preserving the struc-
tural properties of the basic logical calculus [18, 13]. The structural properties
guarantee a root-first determinism, with the consequence that there is no need
of backtracking in proof search. Notably for our purpose, all the rules of the
calculus preserve countermodels because of invertibility, and thus any terminal
node in a failed proof search gives a Kripke countermodel.

The methodology of generation of complete analytic countermodel-producing
calculi covers in addition the following (families of) logics and extensions:

Intermediate Logics and Their Modal Companions: These are obtained
as extensions of G3I and of the labelled calculus for basic modal logic G3K
by the addition of geometric frame rules. Because of the uniformity of genera-
tion of these calculi, proofs of faithfulness of the modal translation between the
respective logical systems are achieved in a modular and simple way [3].

Provability Logics: The condition of Noetherian frames, though not first order,
is internalized through suitable formulations of the right rule for the modality.
By choosing harmonious rules (as in [14]), a syntactic completeness proof for
Gödel-Löb provability logic was obtained. Through a variant of the calculus
obtained by giving up harmony, we achieve instead a semantic completeness
proof which gives at the same time also decidability and the finite model property
[17]. Completeness for Grzegorczyk provability logic Grz is obtained in a similar

On the Duality of Proofs and Countermodels in Labelled Sequent Calculi 7

semantic way and prepares the ground for a syntactic embedding of Int into Grz
and thus for an indirect decision procedure for intuitionistic logic [4].

Knowability Logic: This logic has been in the focus of recent literature on
the investigation of paradoxes that arise from the principles of the verificationist
theory of truth [21]. By the methods of proof analysis, it has been possible to
pinpoint how the ground logic is responsible for the paradoxical consequences
of these principles. A study focused on the well known Church-Fitch paradox
brought forward a new challenge to the method of conversion of axioms into rules.
The knowability principle, which states that whatever is true can be known, is
rendered in a standard multimodal alethic/epistemic language by the axiom
A ⊃ ♦KA. This axiom corresponds, in turn, to the frame property

∀x∃y(xRy& ∀z(yRKz ⊃ x � z))

Here R, RK, and � are the alethic, epistemic, and intuitionistic accessibility
relations, respectively. This frame property goes beyond the scheme of geometric
implication and therefore the conversion into rules cannot be carried through
with the usual rule scheme for geometric implications. In this specific case, we
succeeded with a combination of two rules linked together by a side condition
on the eigenvariable. The resulting calculus has all the structural properties of
the ground logical system and leads to definite answers to the questions raised
by the Church-Fitch paradox by means of a complete control over the structure
of derivations for knowability logic [12].

Extensions Beyond Geometric Theories: The generalization and system-
atization of the method of system of rules allows the treatment of axiomatic
theories and of logics characterized by frame properties expressible through gen-
eralized geometric implications that admit arbitrary quantifier alternations and
a more complex propositional structure than that of geometric implications [16].
The class of generalized geometric implications is defined as follows: We start
from a geometric axiom (i.e. a conjunct in the canonical form of a geometric
implication [22], where the Pi range over a finite set of atomic formulas and all
the Mj are conjunctions of atomic formulas and the variables yj are not free in
the Pi)

GA0 ≡ ∀x(&Pi ⊃ ∃y1M1 ∨ . . . ∨ ∃ynMn)

We take GA0 as the base case in the inductive definition of a generalized geo-
metric axiom. We then define

GA1 ≡ ∀x(&Pi ⊃ ∃y1 &GA0 ∨ . . . ∨ ∃ym &GA0)

Next we define by induction

GAn+1 ≡ ∀x(&Pi ⊃ ∃y1 &GAk1 ∨ . . . ∨ ∃ym &GAkm)

Here &GAi denotes a conjunction of GAi-axioms and k1, . . . , km � n.
Through an operative conversion to normal form, generalized geometric impli-

cations can also be characterized in terms of Glivenko classes as those first-order

8 S. Negri

formulas that do not contain implications or universal quantifiers in their negative
parts.

The equivalence, established in [13], between the axiomatic systems based on
geometric axioms and contraction- and cut-free sequent systems with geometric
rules, is extended by a suitable definition of systems of rules for generalized ge-
ometric axioms. Here the word “system” is used in the same sense as in linear
algebra where there are systems of equations with variables in common, and
each equation is meaningful and can be solved only if considered together with
the other equations of the system. In the same way, the systems of rules consid-
ered in this context consist of rules connected to each other by some variables
and subject in addition to the condition of appearing in a certain order in a
derivation.

The precise form of system of rules, the structural properties for the resulting
extensions of sequent calculus (admissibility of cut, weakening, and contraction),
a generalization of Barr’s theorem, examples from axiomatic theories and appli-
cations to the proof theory of non-classical logics through a proof of completeness
of the proof systems obtained, are all detailed in [16].

We shall conclude with some open problems and further directions.

References

1. Boretti, B., Negri, S.: Decidability for Priorean linear time using a fixed-point la-
belled calculus. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607,
pp. 108–122. Springer, Heidelberg (2009)

2. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal
of Symbolic Logic 57, 795–807 (1992)

3. Dyckhoff, R., Negri, S.: Proof analysis in intermediate logics. Archive for Mathe-
matical Logic 51, 71–92 (2012)

4. Dyckhoff, R., Negri, S.: A cut-free sequent system for Grzegorczyk logic, with
an application to the Gödel-McKinsey-Tarski embedding. Journal of Logic and
Computation (2013), doi:10.1093/logcom/ext036

5. Ferrari, M., Fiorentini, C., Fiorino, G.: Contraction-free linear depth se-
quent calculi for intuitionistic propositional logic with the subformula property
and minimal depth counter-models. Journal of Automated Reasoning (2012),
doi:10.1007/s10817-012-9252-7

6. Fitting, M.: Prefixed tableaus and nested sequents. Annals of Pure and Applied
Logic 163, 291–313 (2012)

7. Galmiche, D., Salhi, Y.: Sequent calculi and decidability for intuitionistic hybrid
logic. Information and Computation 209, 1447–1463 (2011)

8. Garg, G., Genovese, V., Negri, S.: Counter-models from sequent calculi in multi-
modal logics. In: LICS 2012, pp. 315–324. IEEE Computer Society (2012)

9. Goranko, V.: Refutation systems in modal logic. Studia Logica 53, 299–324 (1994)
10. Goré, R., Postniece, L.: Combining derivations and refutations for cut-free com-

pleteness in bi-intuitionistic logic. Journal of Logic and Computation 20, 233–260
(2010)

11. Larchey-Wendling, D.: Combining proof-search and counter-model construction for
deciding Gödel-Dummett logic. In: Voronkov, A. (ed.) CADE-18. LNCS (LNAI),
vol. 2392, pp. 94–110. Springer, Heidelberg (2002)

On the Duality of Proofs and Countermodels in Labelled Sequent Calculi 9

12. Maffezioli, P., Naibo, A., Negri, S.: The Church-Fitch knowability paradox in the
light of structural proof theory. Synthese (2012) (Online first), doi:10.1007/s11229-
012-0061-7

13. Negri, S.: Contraction-free sequent calculi for geometric theories, with an applica-
tion to Barr’s theorem. Archive for Mathematical Logic 42, 389–401 (2003)

14. Negri, S.: Proof analysis in modal logic. Journal of Philosophical Logic 34, 507–544
(2005)

15. Negri, S.: Kripke completeness revisited. In: Primiero, G., Rahman, S. (eds.) Acts
of Knowledge - History, Philosophy and Logic, pp. 247–282. College Publications
(2009)

16. Negri, S.: Proof analysis beyond geometric theories: from rule systems to systems
of rules (2012) (submitted)

17. Negri, S.: A terminating cut-free sequent system for Gödel-Löb provability logic.
Manuscript (2012)

18. Negri, S., von Plato, J.: Cut elimination in the presence of axioms. The Bulletin
of Symbolic Logic 4, 418–435 (1998)

19. Negri, S., von Plato, J.: Proof Analysis. Cambridge University Press (2011)
20. Pinto, L., Dyckhoff, R.: Loop-free construction of counter-models for intuitionistic

propositional logic. In: Behara, et al. (eds.) Symposia Gaussiana, Conf. A, pp.
225–232. de Gruyter, Berlin (1995)

21. Salerno, J. (ed.): New Essays on the Knowability Paradox. Oxford University Press
(2009)

22. Simpson, A.: Proof Theory and Semantics of Intuitionistic Modal Logic. Ph.D.
thesis, School of Informatics, University of Edinburgh (1994)

23. Skura, T.: Refutation systems in propositional logic. In: Gabbay, D., Guenthner,
F. (eds.) Handbook of Philosophical Logic, vol. 16, pp. 115–157. Springer (2011)

A Brief Survey of Verified Decision Procedures

for Equivalence of Regular Expressions

Tobias Nipkow and Maximilian Haslbeck

Institut für Informatik, Technische Universität München

Abstract. We survey a number of decision procedures for the equiva-
lence of regular expressions that have been formalised with the help of
interactive proof assistant over the past few years.

1 Introduction

Equivalence of regular expressions is a perennial topic in computer science. Re-
cently it has spawned a number of papers that have formalised and verified
various different algorithm for this task in interactive theorem provers. One of
the motivations is that such verified decision procedures can help to automate
reasoning about binary relations: relation composition corresponds to concate-
nation, reflexive transitive closure to Kleene star, and ∪ to +. It can be shown [9]
that an equivalence between two relation algebraic expressions holds if the corre-
sponding two regular expressions are equivalent—the other direction holds too,
provided the base type of the relations is infinite.

In this brief note we survey the different formalisations that have appeared
over the last few years. We have reproduced most of them in the Isabelle proof
assistant and compare some of them on this basis.

Braibant and Pous [4] where the first to verify an equivalence checker for
regular expressions. The work was carried out in Coq. They followed the classi-
cal approach of translating the regular expressions into automata. The resulting
theory was quite large and their algorithm efficient. Although they set the trend,
the next four verified decision procedures all worked directly on regular expres-
sions. The motivation is simplicity: regular expressions are a free data type which
proof assistants and their users love because it means induction, recursion and
equational reasoning, the core competence of proof assistants and functional
languages.

The outer shell of all the decision procedures that operate directly on regular
expressions is the same. Roughly speaking, there is always a function δ : regexp×
Σ → regexp that extends canonically to words. Starting from some pair (r, s),
all the pairs (δ(r, w), δ(s, w)) are enumerated; the setup guarantees there are
only finitely many δ(r, w) for each r. If for all such pairs (r′, s′), r′ is final iff s′

is final (for a suitable notion of finality), then r ≡ s (and conversely). This is
just an incremental computation of the product automaton or a bisimulation.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 10–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Brief Survey of Verified Decision Procedures 11

2 Derivatives of Regular Expressions

Brzozowski [5] had introduced derivatives of regular expressions in 1964 and
had shown that modulo ACI of +, there are only finitely many derivatives of
a regular expression, which correspond to the states of a DFA for that regular
expression. In 2009, Owens et al. [13] used derivatives for scanner generators in
ML. They wrote

derivatives have been lost in the sands of time, and few computer scien-
tists are aware of them.

As we shall see, they have certainly become better known by now.
In response to Braibant and Pous, Krauss and Nipkow [9] verified partial

correctness an equivalence checker for regular expressions based on derivatives in
Isabelle. The formalization is very small and elegant, although not very efficient
for larger problems. Coquand and Siles [6] extended this work in Coq. The
emphasis of their work is on the finiteness/termination proof in type theory.

Antimirov [1] introduced partial derivatives of regular expressions. They can
be viewed as sets of derivatives, thus building in ACI of +. Moreira et al. [11]
present an equivalence checker for regular expressions based on partial deriva-
tives and show its total correctness in Coq—termination is proved by showing
finiteness of the set of partial derivatives of an expression. We have formalized
the same proofs in Isabelle. Moreover we have shown termination of a modified
version of the equivalence checker by Krauss and Nipkow as follows. Instead of
comparing derivatives normalised w.r.t. ACI of +, we convert them into partial
derivatives before comparing them. Thus we can reuse finiteness of the set of
partial derivatives to prove termination of the algorithm based on derivatives.

3 Marked Regular Expressions

Both McNaughton and Yamada [10] and Glushkov [8] marked the atoms in a
regular expression with numbers in order to turn it into an automaton. Fischer
et al. [7] realize the convenience of working directly with regular expressions in
a functional programming setting. They present matching algorithms on regular
expression with boolean marks indicating where in the regular expression the
matching process has arrived. Independently, Asperti [2] verifies an equivalence
checker for regular expressions via marked regular expressions in the Matita
proof assistant. We have verified the basic algorithm by Fischer et al. and the
one by Asperti in Isabelle and shown that they are closely related: the one by
Fischer et al. marks the atoms that have just occurred, Asperti marks the atoms
that can occur next.

4 Related Formalisations

Moreira et al. [12] formalise a decision procedure for Kleene Algebra with Tests
as an extension of their earlier work [11] and show its application to program veri-
fication by encoding Hoare triples algebraically. Traytel and Nipkow [14] present

12 T. Nipkow and M. Haslbeck

verified decision procedures for monadic second order logics (MSO) on finite
words based on derivatives of regular expressions extended with complementa-
tion and projection. Outside of the application area of equivalence checking, Wu
et al. [15] verify thy Myhill-Nerode theorem in Isabelle using regular expressions.
Berghofer and Reiter [3] verify a decision procedure for Presburger arithmetic
via automata in Isabelle.

References

1. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. Theor. Comput. Sci. 155, 291–319 (1996)

2. Asperti, A.: A compact proof of decidability for regular expression equivalence. In:
Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 283–298. Springer,
Heidelberg (2012)

3. Berghofer, S., Reiter, M.: Formalizing the logic-automaton connection. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 147–163. Springer, Heidelberg (2009)

4. Braibant, T., Pous, D.: An efficient Coq tactic for deciding Kleene algebras.
In: Kaufmann, M., Paulson, L. (eds.) ITP 2010. LNCS, vol. 6172, pp. 163–178.
Springer, Heidelberg (2010)

5. Brzozowski, J.: Derivatives of regular expressions. J. ACM 11, 481–494 (1964)
6. Coquand,T., Siles,V.:Adecisionprocedure for regular expression equivalence in type

theory. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 119–134.
Springer, Heidelberg (2011)

7. Fischer, S., Huch, F., Wilke, T.: A play on regular expressions. Functional pearl.
In: Hudak, P., Weirich, S. (eds.) Proc. Int. Conf. Functional Programming, ICFP
2010, pp. 357–368 (2010)

8. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Sur-
veys 16, 1–53 (1961)

9. Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and relation
algebra. J. Automated Reasoning 49, 95–106 (2012) (published online March 2011)

10. McNaughton, R., Yamada, H.: Regular expressions and finite state graphs for au-
tomata. IRE Trans. on Electronic Comput. EC-9, 38–47 (1960)

11. Moreira, N., Pereira, D., de Sousa, S.M.: Deciding regular expressions (in-)equiva-
lence in Coq. In: Kahl, W., Griffin, T.G. (eds.) RAMiCS 2012. LNCS, vol. 7560,
pp. 98–113. Springer, Heidelberg (2012)

12. Moreira, N., Pereira, D., de Sousa, S.M.: Mechanization of an algorithm for deciding
KAT terms equivalence. Tech. Rep. DCC-2012-04, Universidade do Porto (2012)

13. Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-examined. J.
Functional Programming 19, 173–190 (2009)

14. Traytel, D., Nipkow, T.: A verified decision procedure for MSO on words based on
derivatives of regular expressions. In: Proc. Int. Conf. Functional Programming,
ICFP 2013 (2013)

15. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based
on regular expressions (Proof pearl). In: van Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 341–356. Springer, Heidelberg
(2011)

Dealing with Symmetries in Modal Tableaux

Carlos Areces and Ezequiel Orbe�

FaMAF, U. Nacional de Córdoba (Argentina) and CONICET

Abstract. We present a technique that is able to detect symmetries in
formulas of the basic modal logic (BML). Then we introduce a modal
tableaux calculus for BML with a blocking mechanism that takes ad-
vantage of symmetry information about the input formula to restrict
the application of the (♦) rule. We prove completeness of the calculus.
Finally, we empirically evaluate both, the detection technique and the
blocking mechanism in different modal benchmarks.

1 Introduction

In this work we investigate symmetries in modal logics. We discuss how to detect
them in modal formulas and how to exploit them in a modal tableaux prover.

In the context of automated reasoning a symmetry can be defined as a per-
mutation of the variables (or literals) of a problem that preserves its structure
and its set of solutions. Symmetries have been extensively investigated and suc-
cessfully exploited for propositional satisfiability (SAT) since the introduction
in [21] of symmetry inference rules to strengthen resolution-based proof sys-
tems for propositional logic which lead to much shorter proofs of certain difficult
problems (e.g., the pigeonhole problem). Since then many articles discuss how
to detect and exploit symmetries. Most of them can be grouped into two dif-
ferent approaches: static symmetry breaking [11,12,1] and dynamic symmetry
breaking [7,8]. In the former, symmetries are detected and eliminated from the
problem statement before the SAT solver is used, i.e., they work as a prepro-
cessing step, whilst in the latter symmetries are detected and broken during the
search space exploration. Despite their differences they share the same goal: to
identify symmetric branches of the search space and guide the SAT solver away
from symmetric branches already explored.

Research involving other logics has been done in the last years, e.g. [5,14]. To
the best of our knowledge, symmetries remain largely unexplored in automated
theorem proving for modal logics. We investigated the theoretical foundations to
exploit symmetries in a number of modal logics in [4]. In this paper we present
a graph-based method to detect layered symmetries for the basic modal logic

� This work was partially supported by grants ANPCyT-PICT-2008-306, ANPCyT-
PICT-2010-688, the FP7-PEOPLE-2011-IRSES Project “Mobility between Europe
and Argentina applying Logics to Systems” (MEALS) and the Laboratoire Interna-
tional Associé “INFINIS”. We thank Guillaume Hoffmann for useful comments and
help with HTab.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 13–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 C. Areces and E. Orbe

BML that extend the method presented in [4]. A layered symmetry is a more
flexible notion of symmetry that can be defined in modal logics that enjoy the
tree model property. Then we show how to use symmetry information in a modal
tableaux calculus by presenting a novel blocking mechanism for a modal tableaux
called symmetry blocking, that blocks the application of the (♦) rule if it has been
already applied to a symmetric ¬�-formula. Finally we evaluate empirically both
the detection technique and the blocking mechanism.

Outline. Section 2 introduces the required definitions on modal language and
symmetries. Section 3 presents a graph construction algorithm to detect sym-
metries in modal formulas. Section 4 presents a BML tableaux calculus with
symmetry blocking and proves it correctness. Finally, Section 5 presents exper-
imental results about the detection construction and the effects of symmetry
blocking in modal benchmarks. Section 6 concludes with some final remarks.

2 Definitions

In this section we introduce the basic notions concerning modal languages and
permutations. In what follows, we will assume basic knowledge of classical modal
logics and refer the reader to [9,10] for technical details. Let PROP = {p1, p2, . . .}
be a countably infinite set of propositional variables. The set of (basic) modal
formulas FORM is defined as

FORM := p | ¬p | ϕ ∨ ψ | ϕ ∧ ψ | ¬�ϕ | �ϕ,

where p ∈ PROP, ϕ, ψ ∈ FORM. We will discuss only the mono-modal case, but
the results we present extend naturally to the multi-modal case.

A propositional literal l is either a propositional variable p or its negation ¬p.
The set of literals over PROP is PLIT = PROP ∪ {¬pi | pi ∈ PROP}. A set of
literals L is complete if for each p ∈ PROP either p ∈ L or ¬p ∈ L. It is consistent
if for each p ∈ PROP either p �∈ L or ¬p �∈ L. Any complete and consistent set
of literals L defines a unique valuation v ⊆ PROP as p ∈ v if p ∈ L and p �∈ v if
¬p ∈ L. For S ⊆ PROP, the consistent and complete set of literals generated by
S (notation LS) is S ∪ {¬p | p ∈ PROP\S}.

A modal formula is in modal conjunctive normal form (modal CNF) if it is
a conjunction of modal CNF clauses. A modal CNF clause is a disjunction of
propositional and modal literals. A modal literal is a formula of the form �C or
¬�C where C is a modal CNF clause. Every modal formula can be transformed
into an equisatisfiable formula in modal CNF in polynomial time [24]. In what
follows assume that modal formulas are in modal CNF. Also, we often represent
a modal CNF formula as a set of modal CNF clauses (interpreted conjunctively),
and each modal CNF clause as a set of propositional and modal literals (inter-
preted disjunctively). The set representation disregards order and multiplicity
of clauses and literals in a formula.

Models and semantics for modal CNF formulas are defined in the usual way. A
(pointed) model is a tuple 〈w,W,R, V 〉 such that W is a non-empty set, w ∈ W ,

Dealing with Symmetries in Modal Tableaux 15

R ⊆ W ×W and V (v) ⊆ PROP for all v ∈ W . Let M = 〈w,W,R, V 〉 be a
model. We define |= for modal CNF formulas, clauses and literals as

M |= ϕ iff for all clauses C ∈ ϕ we haveM |= C
M |= C iff there is some literal l ∈ C such that M |= l
M |= p iff p ∈ V (w) for p ∈ PROP
M |= ¬p iff p �∈ V (w) for p ∈ PROP
M |= �C iff 〈w′,W,R, V 〉 |= C, for all w′ s.t. wRw′

M |= ¬�C iff M �|= �C.

The modal depth of a formula ϕ in CNF (notation md(ϕ)) is the maximum
nesting of � operators that occurs in ϕ.

A permutation is a bijective function ρ : PLIT �→ PLIT. We will define per-
mutations using cyclic notation [16], e.g., ρ = (p ¬q)(¬p q) is the permutation
that makes ρ(p) = ¬q, ρ(¬q) = p, ρ(¬p) = q and ρ(q) = ¬p and leaves un-
changed all other literals; ρ = (p q r)(¬p ¬q ¬r) is the permutation ρ(p) = q,
ρ(q) = r and ρ(r) = p and similarly for the negations. If L is a set of literals
then ρ(L) = {ρ(l) | l ∈ L}. Given a modal CNF formula ϕ and a permuta-
tion ρ we define ρ(ϕ) as the formula obtained by simultaneously replacing all
literals l in ϕ by ρ(l). We say that a permutation ρ is consistent if for every
literal l, ρ(¬l) = ¬ρ(l). We say that a permutation ρ is a symmetry for ϕ if
ϕ = ρ(ϕ) when ϕ is represented using sets. For example, consider the formula
ϕ = (¬p ∨ r) ∧ (q ∨ r) ∧ �(¬p ∨ q), then the permutation ρ = (p ¬q)(¬p q) is a
consistent symmetry of ϕ.

In modal logics that enjoy the tree model property there is a direct correlation
between the modal depth of the formula and the depth in a tree model satisfying
it: in models, a notion of layer is induced by the depth (distance from the root)
of the nodes, whereas in formulas, a notion of layer is induced by the nesting of
the modal operators. A consequence of this correspondence is that propositional
literals at different formula layers are semantically independent of each other
(see [2] for details), i.e., at different layers the same propositional literal can be
assigned a different value. This enables the definition of layered permutations [4],
that let us define a different permutation at each modal depth.

A finite permutation sequence ρ̄ is either the empty sequence ρ̄ = 〈〉 or ρ̄ =
ρ : ρ̄2 with ρ a permutation and ρ̄2 a permutation sequence. We sometimes use
the notation ρ̄ = 〈ρ1, . . . , ρn〉 instead of ρ̄ = ρ1: . . . :ρn:〈〉. Let |ρ̄| = n be the
length of ρ̄ (〈〉 has length 0). For 1 ≤ i ≤ n, ρ̄i is the sub-sequence that starts
from the ith element of ρ̄ (in particular, ρ̄i = 〈〉 for i ≥ n and ρ̄1 = ρ̄). ρ̄(i) is
ρi if 1 ≤ i ≤ |ρ̄| and ρ̄(i) = ρId otherwise, for ρId the identity permutation. A
permutation sequence is consistent if all its permutations are consistent.

Let ϕ be a modal CNF formula and ρ̄ a permutation sequence. Then ρ̄(ϕ) is
defined recursively as

〈〉(ϕ) = ϕ
(ρ1:ρ̄2)(l) = ρ1(l) for l ∈ PLIT

(ρ1:ρ̄2)(�C) = �ρ̄2(C)
ρ̄(C) = {ρ̄(A) | A ∈ C} for C a clause or a formula.

16 C. Areces and E. Orbe

One benefit of using a different permutation at each modal depth is that this
enables symmetries (layered symmetries) to be found, that would not be found
otherwise. Consider the formula ϕ = (p∨�(p∨¬r))∧(¬q∨�(¬p∨r)). If we only
consider non-layered symmetries then ϕ has none. However, the permutation
sequence 〈ρ1, ρ2〉 generated by ρ1 = (p ¬q)(¬p q) and ρ2 = (p ¬r)(¬p r) is a
layered symmetry of ϕ.

Definition 1 (ρ̄-simulation). Let ρ̄ be a permutation sequence. A ρ̄-simulation
between two pointed models M = 〈w,W,R, V 〉 and M′ = 〈w′,W ′, R′, V ′〉 is a
family of relations Zρ̄i ⊆W ×W ′, 1 ≤ i, that satisfies the following conditions:

– Root: wZρ̄1w
′.

– Harmony: If wZρ̄iw
′ then l ∈ LV (w) iff ρ̄i(1)(l) ∈ LV ′(w′).

– Zig: If wZρ̄iw
′ and wRv then vZρ̄i+1v

′ for some v′ such that w′R′v′.
– Zag: If wZρ̄iw

′ and w′R′v′ then vZρ̄i+1v
′ for some v such that wRv.

We say that two models M and M′ are ρ̄-similar (notation M�ρ̄M′), if
there is a ρ̄-simulation between them.

Notice that whileM�ρ̄M′ impliesM′ �ρ̄−1 M, the relation �ρ̄ is not sym-
metric. From the definition of ρ̄-simulations it intuitively follows that while they
do not preserve validity of modal formulas (as is the case with bisimulations)
they do preserve validity of permutations of formulas (see [4] for details).

Proposition 1. Let ρ̄ be a consistent layered permutation, ϕ a modal CNF for-
mula and M = 〈w,W,R, V 〉, M′ = 〈w′,W ′, R′, V ′〉 models such that M�ρ̄M′.
Then M |= ϕ iff M′ |= ρ̄(ϕ).

3 Detecting Modal Symmetries

We present a graph-based technique for the detection of symmetries in modal
CNF formulas. In propositional logic, it is standard to reduce the problem of
finding symmetries in formulas to the problem of finding automorphisms in col-
ored graphs where graphs are constructed from formulas in such a way that its
automorphism group is isomorphic to the symmetry group of the formula [1,11]

Although known to be an NP problem, it is not known if the graph auto-
morphism problem is P or NP-complete [15]. Nevertheless there exist polyno-
mial time algorithms for many special cases [23], and the are many efficient
tools [13,20] capable of compute a set of generators [16] for the automorphism
group of very large graphs efficiently.

In [4] we extended the graph construction for propositional formulas presented
in [1] to a wide range of modal logics. In this article we extend this construction
to detect layered symmetries for BML. In what follows, let Var(ϕ, n) denote the
set of variables occurring in ϕ at modal depth n. Clauses occurring at modal
depth 0 are called top clauses, and clauses occurring in modal literals are called
modal clauses.

Dealing with Symmetries in Modal Tableaux 17

Definition 2. Let ϕ be a modal CNF formula of modal depth n. The colored
graph G(ϕ) = (V,E) corresponding to ϕ is constructed as follows:

1. For each propositional variable p ∈ Var(ϕ, i) with 0 ≤ i ≤ n:
(a) Add two literal nodes of color 0: one labeled pi and one labeled ¬pi.
(b) Add an edge between these two nodes to ensure Boolean consistency.

2. For each top clause C of ϕ add a clause node of color 1.
3. For each propositional literal l occurring in C, add an edge from C to the

corresponding literal node lmd(C).
4. For each modal literal �C′ (¬�C′) occurring in C:

(a) Add a clause node of color 2 (color 3) to represent C′.
(b) Add an edge from C to this node.
(c) Repeat the process from point 3 for each literal (propositional or modal)

occurring in C′.

This construction creates a graph with 4 colors and at most 2|V | × (md(ϕ) +
1) + #TopClauses+#ModalClauses nodes.

Example 1. Let us consider the following modal CNF formula ϕ = ¬�(¬p ∨
�q∨�¬q)∧¬�(¬q∨�p∨�¬p). The associated 4-colored graph, G(ϕ), is shown
below (colors are represented by shapes in the figure).

-p

C

A

Ep F

-qq

-q

D

B

Gq H

-pp

A = ¬�(¬p ∨�q ∨�¬q)
B = ¬�(¬q ∨�p ∨�¬p)
C = ¬p ∨�q ∨�¬q
D = ¬q ∨�p ∨�¬p
E = �q
F = �¬q
G = �p
H = �¬p

Group Generators:
ρ̄1 = 〈ρId, ρId, (p ¬p)〉
ρ̄2 = 〈ρId, ρId, (q ¬q)〉
ρ̄3 = 〈ρId, (p q)(¬p ¬q), (p q)(¬p ¬q)〉

Notice the way literals are handled during the construction of G(ϕ): the con-
struction duplicates literal nodes occurring at different modal depth. By doing
this we incorporate the notion of layering introduced in Section 2. Also, modal
literals �C and ¬�C are colored differently. This avoids spurious permutations
mapping �C literals to ¬�C literals and the other way around. The following
Proposition is proved in [4].

Proposition 2. Let ϕ be a modal CNF formula and G(ϕ) = (V,E) the colored
graph obtained following the construction of Definition 2. Then every symmetry
ρ̄ of ϕ corresponds one-to-one to an automorphism π of G(ϕ).

18 C. Areces and E. Orbe

4 Symmetry Blocking

We present a labeled tableaux calculus [18,10] for the basic modal logic BML
and a dynamic blocking mechanism that uses symmetry information from the
input formula. We will use standard tableaux prefixed rules and notation which
we briefly review for completeness. Let PREF be an infinite, non-empty set of
prefixes. Here we will set PREF = IN. Given ϕ a modal CNF formula, C a modal
clause and σ ∈ PREF we call σ:ϕ and σ:C prefixed formulas. The intended
interpretation of a prefixed formula σ:F is that F holds at the state denoted
by σ. Given σ, σ′ ∈ PREF we call σRσ′ an accessibility statement. The intended
interpretation of σRσ′ is that the state denoted by σ′ is accessible via R from σ.

A tableaux for ϕ ∈ BML is a tree whose nodes are decorated with prefixed
formulas and accessibility statements, such that the root node is 0:ϕ. Moreover,
we require that additional nodes in the tree are created according to the following
rules, where ϕ is a modal CNF formula and C a modal clause.

σ:ϕ
(∧)

σ:Ci

for all Ci ∈ ϕ
σ:C

(∨)
σ:l1 | . . . | σ:ln

for all li ∈ C

σ:¬�C
(♦)1

σRσ′, σ′:∼C
σ:�C, σRσ′

(�)
σ′ : C

1 ∼C is the CNF of the negation of C. The prefix σ′ is new in the tableau.

The rules are interpreted as follows: if the antecedents of a rule appear in nodes
in a branch of the tableaux, the branch is extended according to the formulas in
the consequent. For the case of the (∨) rule, n immediate successors of the last
node of the branch should be created. In all other cases only one successor is
created, which is decorated with the indicated formulas. To ensure termination,
we require that nodes are created only if they add at least one prefixed formula
or accessibility statement that was not already in the branch. Moreover, the (♦)
rule can only be applied once to each formula of the form σ:¬�C in a branch.
A branch is closed if it contains both σ:p and σ:¬p, and it is open otherwise. A
branch is saturated if no rule can be further applied in the branch (notice that
the conditions we imposed on rule application lead to saturation after a finite
number of steps).

Let Tab(ϕ) be the set of tableaux for ϕ whose branches are all saturated. The
following classical result establishes that the tableaux calculus we just defined is
a decision method for satisfiability of formulas in BML.

Theorem 1. For any ϕ ∈ BML, any T ∈ Tab(ϕ) is finite. Moreover T has a
saturated open branch if and only if ϕ is satisfiable.

Dealing with Symmetries in Modal Tableaux 19

This completes our brief introduction of the standard tableaux calculus for
BML. We are interested in further restricting the application of the (♦) rule so
that it can be applied to a σ:¬�C formula only if it has not been applied to a
symmetric formula before. Notice that this restriction cannot affect termination
or soundness of the calculus.

Let T ∈ Tab(ϕ), and let Θ be a branch of T. For σ ∈ PREF we will use
depth(σ) for the distance from the root prefix (in particular, if σ is the prefix of
ϕ then depth(σ) = 0). Given a prefixed formula σ:ϕ and a permutation sequence
ρ̄, we define ρ̄(σ:ϕ) = σ:ρ̄depth(σ)+1(ϕ). Finally, given a modal formula ϕ, we
define Var(ϕ) as the set of propositional variables occurring in ϕ; for S a set of
modal formulas, let Var(S) =

⋃
ϕ∈S Var(ϕ).

Symmetry Blocking: Let ρ̄ be a layered symmetry of ϕ, and let Θ be a branch
in a tableau of ϕ. The rule (♦) cannot be applied to σ:ρ̄(¬�ψ) on Θ if it has
been applied to σ:¬�ψ and Var(ρ̄(¬�ψ)) ∩ Var(Γ (σ)) = ∅, for Γ (σ) = {ψ |
σ : �ψ ∈ Θ} the set of �-formulas occurring at prefix σ1.

Note that symmetry blocking is a dynamic condition: after being blocked, a
¬�-formula can be scheduled for expansion if the blocking condition fails in an
expansion of the current branch. This can happen because the set Γ (σ) increases
monotonically as the tableau advances. From now on, we consider that branches
in Tab(ϕ) are saturated using symmetry blocking.

4.1 Completeness

To prove completeness of our calculus with symmetry blocking we rely on the
intuition that we can extend an incomplete model MΘ, built from a saturated
open branch Θ to a complete model even when symmetry blocking was used.

Definition 3. Given an open saturated branch Θ of the tableaux T ∈ Tab(ϕ),
we define a model MΘ = 〈WΘ, RΘ, V Θ〉 as:

WΘ = {σ | σ is a prefix on Θ}
RΘ = {(σ, σ′) | σ, σ′ ∈WΘ and σRσ′ ∈ Θ}

V Θ(σ) = {p | σ : p ∈ Θ}.

Notice that MΘ is always a tree. Given a tree and a permutation sequence,
we can construct a new model as follows.

Definition 4 (ρ̄-image of a tree model). Given a pointed tree model M =
〈w,W,R, V 〉 and a permutation sequence ρ̄. Let depth(v) be the distance of v

1 A more strict symmetry blocking condition is possible, where instead of requiring
Var(ρ̄(¬�ψ)) ∩ Var(Γ (σ)) = ∅ we verify that the variables at each modal depth of
ρ̄(¬�ψ) are disjoint from those in Γ (σ) (i.e., ∀n.Var(ρ̄(¬�ψ), n)∩Var(Γ (σ), n) = ∅).
But this more aggressive blocking condition did not have an impact in our experi-
ments. It is easy to find cases where a ¬�-formula is only blocked under the more
strict condition, but we did not find any such case in the test sets we investigated.

20 C. Areces and E. Orbe

to the root w (in particular depth(w) = 0). Define Mρ̄ = 〈w,Wρ̄, Rρ̄, Vρ̄〉 (the
ρ̄-image of M) as the model identical to M except that

Vρ̄(v) = ρ̄(depth(v) + 1)(LV (v)) ∩ PROP.

Given a model M = 〈W,R, V 〉 and an element w ∈ W , let W [w] denote the
set of all elements that are reachable from w (by the reflexive and transitive
closure of the accessibility relation). Let M[w] = 〈w,W [w], R�W [w], V �W [w]〉
denote the sub-model of M rooted at w.

Given Θ a saturated open branch, let Σ be the set of prefixes added to Θ
by the application of the (♦) rule to a ¬�-formula that has a symmetric ¬�-
formula blocked by symmetry blocking. Intuitively, Σ contains the roots of the
sub-models that need a symmetric counterpart in the completion of MΘ.

Let M [Σ] = {MΘ[σ] | σ ∈ Σ}. This set contains the sub-models to which
we need to construct a symmetric sub-model. By M [Σ]ρ̄ = {MΘ[σ]ρ̄ | MΘ[σ] ∈
M [Σ]} we denote the set of ρ̄-images corresponding to the set of sub-models
M [Σ]. Intuitively, M [Σ]ρ̄ is the set of models that we need to “glue” to the
model MΘ to obtain a complete model.

Definition 5 (Symmetric Extension). Given a saturated open branch Θ, a
model MΘ = 〈WΘ, RΘ, V Θ〉 and a set of symmetric pointed sub-models M [Σ]ρ̄.
The symmetric extension of MΘ is the model MΘ

ρ̄ = 〈WΘ
ρ̄ , R

Θ
ρ̄ , V

Θ
ρ̄ 〉 where:

WΘ
ρ̄ =WΘ �

⊎
W

RΘ
ρ̄ = RΘ �

⊎
R ∪ {(σ, τσ′) | (σ, σ′) ∈ RΘ}

V Θ
ρ̄ (σi) = V Θ �

⊎
V

for all 〈τσ′ ,W,R, V 〉 ∈ M [Σ]ρ̄, where τσ′ is the element corresponding to σ′ in
the disjoint union.

Note that we are gluing the symmetric sub-models to the original model by
adding an edge from the element σ to the root, τσ′ , of the symmetric sub-model if
there is an edge from σ to the root, σ′, of the original sub-model. To be sure that
this construction is sound we have to check that after adding these sub-models
to the original model, the �-formulas holding at σ, Γ (σ), still hold.

The following lemma is the key to prove completeness of our calculus. First
recall the following well known result.

Proposition 3. Let ϕ be a modal formula and PROP a set of propositional
variables such that Var(ϕ) ⊆ PROP. Let M = 〈W,R, V 〉 be a model such that
V :W �→ P(PROP). Then M, w |= ϕ iff M�Var(ϕ), w |= ϕ.

Lemma 1. Let ϕ be a modal CNF formula, ρ̄ a symmetry of ϕ and Θ be a
saturated open branch of T ∈ Tab(ϕ). Let σ be a prefix such that σ:¬�ψ ∈ Θ
and let σ:ρ̄(¬�ψ) ∈ Θ be a blocked formula. Then ρ̄(ψ)

∧
Γ (σ) is satisfiable.

Proof. Given that Θ is a saturated open branch, we know that σRσ′ ∈ Θ and
that σ′ : ψ

∧
Γ (σ) ∈ Θ. From Θ we can construct a modelMΘ = 〈WΘ, RΘ, V Θ〉

such that MΘ, 0 |= ϕ and, in particular,MΘ, σ′ |= ψ
∧
Γ (σ) with (σ, σ′) ∈ RΘ.

Dealing with Symmetries in Modal Tableaux 21

Let MΘ[σ′] = 〈σ′,W ′, R′, V ′〉 be the sub-model rooted at σ′ with W ′ =
WΘ[σ′], R′ = RΘ�WΘ[σ′] and V ′ = V Θ�WΘ[σ′]. Then MΘ[σ′] |= ψ

∧
Γ (σ).

Let N = MΘ[σ′]�Var(ψ) = 〈σ′,W ′, R′, V ′
N 〉 and R = MΘ[σ′]�Var(Γ (σ)) =

〈σ′,W ′, R′, V ′
R〉. By Proposition 3 N |= ψ and R |=

∧
Γ (σ).

Let N ′ = ρ̄(N) = 〈σ′,W ′, R′, V ′′
N 〉. By construction, N �ρ̄N ′ and there-

fore N ′ |= ρ̄(ϕ). Finally, let U = N ′ ∪ R = 〈σ,W ′, R′, V ′′′〉 where V ′′′(w) =
V ′′
N (w) ∪ V ′

R(w) for all w ∈ W ′. By the symmetry blocking condition we know
that Var(ρ̄(ψ)) ∪ Var(Γ (σ)) = ∅ and therefore LV ′′

N (w) ∩ LV ′
R(w) = ∅ for all

w ∈ W ′. It follows that no contradiction will arise when doing V ′′
N (w) ∪ V ′

R(w)
and hence that the valuation function V ′′′(w) is well defined.

Now we have to prove that U |= ρ̄(ψ)
∧
Γ (σ). First we prove that U |= ρ̄(ψ).

Take the restriction of U to Var(ρ̄(ψ)), U�Var(ρ̄(ψ)). By construction of U , we
know that U � Var(ρ̄(ψ)) = N ′ and thatN ′ |= ρ̄(ψ). By Proposition 3, U |= ρ̄(ψ).
That U |=

∧
Γ (σ) holds, follows by the same argument using the model R.

We are now ready to prove a correspondence between formulas in the branch
Θ and truth in the symmetric extension of model built from it.

Lemma 2. Let Θ be a saturated open branch of a tableau T ∈ Tab(ϕ) and ρ̄ a
symmetry of ϕ. For any formula σ : ψ ∈ Θ we have that MΘ

ρ̄ , σ |= ψ.

Proof. The proof is by induction on the syntactic structure of ψ.

[ψ = p] By definition, σ ∈ V Θ
ρ̄ (p). This implies MΘ

ρ̄ , σ |= p.

[ψ = ¬p] Since Θ is open, σ:p �∈ Θ. Thus σ �∈ V Θ
ρ̄ (p), which impliesMΘ

ρ̄ , σ |= ¬p.
[ψ = χ ∧ θ] and [ψ = χ ∨ θ] are trivial, by application of the corresponding
tableau rules and the induction hypothesis.

[ψ = ¬�θ] We have to consider two cases: a) ¬�θ has been expanded by the
application of the (♦) rule. By saturation of (♦), σRσ′, σ′:θ ∈ Θ. By definition
of RΘ

ρ̄ and induction hypothesis: (σ, σ′) ∈ RΘ
ρ̄ and MΘ

ρ̄ , σ
′ |= θ. Combining

this, we obtain MΘ
ρ̄ , σ |= ¬�θ, as required. b) ¬�θ has been blocked by the

application of symmetry blocking. In this case, ¬�θ = ρ̄(¬�χ) = ¬�ρ̄(χ).
By saturation of (♦) we have that σRσ′, σ′:χ ∈ Θ. Moreover, we have that
(σ, σ′) ∈ RΘ and that MΘ, σ′ |= χ. By definition of the symmetric extension
of MΘ we have that (σ, τσ′) ∈ RΘ

ρ̄ and MΘ
ρ̄ , τσ′ |= ρ̄(χ). Which implies that

MΘ
ρ̄ , σ |= ¬�ρ̄(χ) = ¬�θ.

[ϕ = �θ] If there is no state σ′ such that (σ, σ′) ∈ RΘ
ρ̄ then this holds trivially.

Otherwise, let σ′ be such that (σ, σ′) ∈ RΘ
ρ̄ . By definition of RΘ

ρ̄ it must be the
case that σ:¬�χ ∈ Θ and σRσ′ ∈ Θ. We must consider two cases: a) if σ:¬�χ
has not a symmetric counterpart, i.e., it is not blocking a formula σ : ¬�ρ̄(χ)
then, given that σ : �θ ∈ Θ, by saturation of (�), we have that σ′:θ ∈ Θ.
By inductive hypothesis, we have that MΘ

ρ̄ , σ
′ |= θ. From this it follows that

MΘ
ρ̄ , σ |= �θ as required. b) If it is the case that σ:¬�χ is blocking σ:¬�ρ̄(χ),

then, by the definition of the symmetric extension MΘ
ρ̄ and Lemma 1, we have

that (σ, τσ′) ∈ RΘ
ρ̄ and MΘ

ρ̄ , τσ′ |= ρ̄(χ) ∧ Γ (σ). Given that θ ∈ Γ (σ) then,

MΘ
ρ̄ , τσ′ |= θ. From what it follows that MΘ

ρ̄ , σ |= �θ as required.

22 C. Areces and E. Orbe

Theorem 2. The tableau calculus with symmetry blocking for the modal logic
BML is sound and complete.

Proof. The tableaux calculus we introduced is clearly sound for BML and sym-
metry blocking cannot affect soundness. For completeness, let Θ be an open
saturated branch of the tableau T ∈ Tab(ϕ). Since 0 : ϕ ∈ Θ, by Lemma 2 we
get that ϕ is satisfiable.

5 Experimental Evaluation

In this section, we empirically evaluate the detection of symmetries and the effect
of symmetry blocking in modal benchmarks.

For testing we use HTab [19], a tableaux prover developed in Haskell, for the hy-
brid logic H(:,E,D,♦−, ↓) with reflexive, transitive and symmetric modalities2.
HTab includes a series of optimizations that are enabled by default, namely, se-
mantic branching, dependency-directed backtracking, lazy branching, unit prop-
agation and eager unit propagation. For symmetry detection we use Bliss [20], a
graph automorphism tool. Bliss takes as input a graph specification and returns
a set of generators for the automorphism group of the graph. For each formula
the computed symmetries are saved in file. A formula together with its symme-
try file are given as input to HTab. All tests are run on an Intel Core i7 2.93GHz
with 16GB of RAM.

5.1 Symmetry Detection

In Section 3 we presented a graph construction to compute symmetries of modal
formulas. It remains to test how often symmetries appear in modal benchmark
and how hard it is to actually find them. Our testbed is made of 1134 struc-
tured instances: 378 instances from the Logics Workbench Benchmark for BML
(LWB K) [6] (distributed in 9 problem classes)3 and 756 instances from the
QBFLib Benchmarks [17] (distributed in 12 problem classes). Instances from
the QBFLib benchmarks were translated to BML using a variation of Ladner’s
translation [22] that reduces the modal depth of the resulting formula. For each
instance we generate the corresponding graph and feed it to Bliss.

Table 1 shows the results for the LWB K and QBFLib benchmarks. Columns
#Inst and #Sym are the number of instances and the number of instances with at
least one symmetry, respectively. Column T is the total time, in seconds, needed
to process all instances. The table clearly shows that both benchmarks are highly
symmetric. Formulas in QBFLib are large (ranging into the 250 megabytes after
translation into BML) which explains the difference in the time required to
process all instances.

2 Download page: http://www.glyc.dc.uba.ar/intohylo/htab.php
3 We use negate the formulas in LWB K before constructing the tableaux. * p classes
are unsatisfiable, and * n classes are satisfiable.

http://www.glyc.dc.uba.ar/intohylo/htab.php

Dealing with Symmetries in Modal Tableaux 23

Table 1. Detected Symmetries

#Inst #Sym T

LWB K 378 208 10.2
QBFLib 756 746 16656

Table 2. Symmetries in LWB K

Class #Inst #Sym AvGen

k_branch 42 42 12
k_d4 42 0 0
k_dum 42 0 0
k_grz 42 42 4
k_lin 42 1 1
k_path 42 42 35
k_ph 42 39 1
k_poly 42 42 18
k_t4p 42 0 0

The LWB K benchmark presents a behav-
ior that coincide with our expectations: the
existence of symmetries is driven by the codi-
fication used in each problem class. Table 2
shows detailed results for this benchmark.
Column AvGen is the average number of gen-
erators. It shows that some problem classes
(k_branch, k_path, k_grz, k_ph and k_poly)
exhibit a large amount of symmetries while
others exhibit none (k_d4, k_dum, k_t4p) or
very few symmetries (k_lin). The QBFLib
benchmark also exhibit a large amount of
symmetries: 11 of 12 problem classes have
a 100% of highly symmetric instances, al-
though in this case, the translation from QBF
to BML accounts for a large number of the
detected symmetries (see [5] for details on
symmetry detection for QBF formulas). With
respect to efficiency, Table 1 shows that for the LWB K benchmark the time
required to compute the symmetries is negligible. For the QBFLib benchmark,
it greatly varies depending on the problem class and is directly correlated to the
size of the instances.

We also tested symmetry detection on a random testbed. The testbed contains
19000 formulas in CNF generated using hGen [3]. We fix the maximum modal
depth of the formulas (D) to 3. Instances are distributed in 10 sets. For each
set we fix the number of propositional variables (N) (from 10 to 500) and vary
the number of clauses (L) to get different values of the ratio clauses-to-variables
(L/N). This ratio is a good indicator of the satisfiability of the formula: formulas
with smaller value of L/N are likely to be satisfiable, whilst formulas with greater
values of L/N are often unsatisfiable. Each set contain 100 instances for 19
different values of the ratio L/N (from 0.2 to 35). Notice that formula size
grows with L/N (larger values of L/N are obtained by the generation of a larger
number of clauses). As expected, the number of symmetries diminish with the
addition of new, random clauses.

Fig. 1. % of random symmetric instances

Figure 1 shows the percentage of
symmetric instances for each value
of the ratio L/N . The figure shows
that for small values of L/N we
find many symmetric instances even
in randomly generated formulas. As
we increase the value of the ratio,
the number of symmetric instances
rapidly diminish. Again this coin-
cides with expectations: large values

24 C. Areces and E. Orbe

of L/N results from a high number of clauses in the instances, reducing the
possibility of symmetries.

5.2 Symmetry Blocking

The implementation of symmetry blocking (SB) in HTab is straightforward:
whenever there is a ¬�-formula scheduled for expansion, the solver checks if
there is a symmetric formula already expanded. If this is the case, it blocks
the ¬�-formula and continues with the application of the remaining rules. The
solver only verifies the blocking condition if it gets a saturated open branch.
If the blocking condition holds for all blocked formulas the solver terminates.
Otherwise it reschedules formulas for further expansion.

Table 3. Total Times with SB

Solver #Suc #TO T1 T2

HTab+SB 318 636 9657 391167
HTab 311 643 10634 396434

Our testbed includes 954 symmet-
ric instances from the LWB K and
QBFLib benchmarks (for time con-
straints and space limitations, we do
not report results on random for-
mulas). Table 3 presents the results
with and without symmetry blocking
(HTab+SB and HTab, respectively). Columns T1 and T2 are total times, includ-
ing symmetry computation, in seconds, on the complete testbed, including and
excluding timeouts, respectively (timeout was set to 600 seconds). It shows that
HTab+SB outperforms HTab: HTab+SB requires less time to solve all the in-
stances and solves 7 instances more than HTab (HTab+SB is able to solve 9
instances that timeout with HTab, but timeouts in other 2 that HTab is able
to solve). It also shows that there is a large number of formulas with timeouts
(mostly from QBFLib’s formulas)4.

Fig. 2. Performance of HTab vs. HTab with sym-
metry blocking on all formulas

Figure 2 presents a scatter
plot of the running times for
the 320 formulas that succeed
in at least one of the config-
urations. The x axis gives the
running times of HTab without
symmetry blocking, whereas the
y axis gives the running times
of HTab+SB. Each point repre-
sents an instance and its hor-
izontal and vertical coordinates
represent the time necessary to
solve it in seconds. Points on
the rightmost and topmost edges

4 Large formulas from QBFLib often resulted in timeouts. Time constraints put re-
strictions on the timeout value we could use. We are currently running further tests
with larger timeouts.

Dealing with Symmetries in Modal Tableaux 25

represent timeout. Notice that a logscale is used, so that gain or degradation to
the far right and far top are exponentially more relevant. Approximately half
of the instances report a performance gain while the other half report a slight
performance degradation. Degradation is due to the extra overhead imposed
by the blocking mechanism on instances that never trigger SB. Nevertheless,
degradation is negligible for most of the instances.

Table 4. Applications of SB

Status #Inst #Trig B1 B2

Satisfiable 157 73 6319 6278
Unsatisfiable 163 79 1038 87

Table 4 shows information about
the application of SB. Column #Trig
is the number of instances that trig-
ger SB at least once, columns B1 and
B2 are the number of times that SB
is triggered and the number of times
that SB is not correct, respectively.
For satisfiable instances, SB triggers many times but in most cases the blocking
condition fails later in the branch (remember that the blocking condition is dy-
namic). Figure 3a) shows that there is still an improvement for several instances
(44% for all instances, 59% for instances that triggered SB). It also shows that
degradation is almost negligible. This tells us that even in cases where SB is
not correct, delaying the processing of symmetric formulas is beneficial because
the branch has more information available that can avoid branching or close the
branch more rapidly.

a) Satisfiable formulas b) Unsatisfiable formulas

Fig. 3. Performance of HTab vs. HTab+SB

For unsatisfiable instances, SB triggers less often than for satisfiable instances,
but most of the blockings are correct (but notice that SB is not validated if
the branch closes). Figure 3b) shows a great improvement for several instances.
Also HTab+SB proves 7 more instances than HTab. Degradation is also more
noticeable for some instances. A possible explanation is the following: if the
blocked formula plays no role in the unsatisfiability of the problem, blocking it
avoids unnecessary work resulting in a performance gain. If it plays a role in the
unsatisfiability, the solver might be forced to process formulas that would not
be processed otherwise, resulting in a performance degradation.

26 C. Areces and E. Orbe

Table 5. Effect of SB on the LWB K

Class
HTab+SB HTab

n100 n600 T n100 n600 T

k_branch_p 21 21 59.760 13 15 4402.130
k_branch_n 9 10 7010.200 8 10 7197.000
k_grz_p 21 21 0.508 21 21 0.276
k_grz_n 21 21 0.632 21 21 0.380
k_path_p 21 21 4.542 21 21 3.812
k_path_n 21 21 5.348 21 21 3.792
k_ph_p 7 8 8116.900 7 8 8095.48
k_ph_n 21 21 177.560 21 21 178.579
k_poly_p 21 21 29.068 21 21 22.949
k_poly_n 21 21 29.534 21 21 24.229

Table 5 presents detailed results for the LWB K benchmark. We show the
number of the largest formula that could be solved within a time limit of 100
(n100) and a time limit of 600 (n600), and the total time required to process
all the class, including timeouts (T). It shows that the effectiveness of SB is
highly dependent on the problem class. For some classes SB provide an impor-
tant performance gain (e.g., k_branch). On the other hand, for several highly
symmetric classes, SB does not make a difference as it never gets triggered. In
other words, symmetric blocking only addresses a small part of the symmetries
usually present in modal formulas.

6 Conclusions

In this paper we exploited symmetries in a modal tableuax. First we presented
a method to detect symmetries for BML that extend the method presented
in [4] to detect layered symmetries. Given a formula ϕ it generates a graph
such that the automorphism group of the graph is isomorphic to the symmetry
group of the formula. Layering is incorporated by duplicating the literal nodes
occurring at different modal depth. Then we presented a blocking mechanism for
a modal tableaux that uses symmetry information only. This mechanism, called
symmetry blocking, blocks the application of the (♦) rule if it has been already
applied to a symmetric ¬�-formula. Finally we evaluated empirically both, the
detection technique and the blocking mechanism. Experimental results shows
that structured modal benchmarks are highly symmetric and that our detection
algorithm is efficient at computing symmetries. In the case of symmetry blocking,
results shows that the applicability of the blocking mechanism highly depends
on the problem class at hand, and that important performance gains can be
obtained in some classes while imposing only a reasonable overhead on problem
classes not suited for this blocking mechanism. Further testing is needed, and also
other approaches to exploiting modal symmetries like, e.g., symmetry breaking
predicates [12].

Dealing with Symmetries in Modal Tableaux 27

References

1. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult instances of
Boolean satisfiability in the presence of symmetry. IEEE Trans. of CAD 22(9),
1117–1137 (2003)

2. Areces, C., Gennari, R., Heguiabehere, J., de Rijke, M.: Tree-based heuristics in
modal theorem proving. In: Proc. of ECAI 2000, Berlin, pp. 199–203 (2000)

3. Areces, C., Heguiabehere, J.: hGen: A Random CNF Formula Generator for Hybrid
Languages. In: Proc. of M4M-3, Nancy, France (2003)

4. Areces, C., Hoffmann, G., Orbe, E.: Symmetries in modal logics. In: Kesner, D.,
Viana, P. (eds.) Proc. of LSFA 2012, pp. 27–44 (2013)

5. Audemard, G., Mazure, B., Sais, L.: Dealing with symmetries in quantified boolean
formulas. In: Proc. of SAT 2004, pp. 257–262 (2004)

6. Balsiger, P., Heuerding, A., Schwendimann, S.: A benchmark method for the propo-
sitional modal logics K, KT, S4. J. of Aut. Reas. 24(3), 297–317 (2000)

7. Benhamou, B., Sais, L.: Theoretical study of symmetries in propositional calculus
and applications. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 281–294.
Springer, Heidelberg (1992)

8. Benhamou, B., Sais, L.: Tractability through symmetries in propositional calculus.
J. of Aut. Reas. 12(1), 89–102 (1994)

9. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

10. Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Studies in
Logic and Practical Reasoning, vol. 3. Elsevier Science Inc., New York (2006)

11. Crawford, J.: A theoretical analysis of reasoning by symmetry in first-order logic.
In: Proc. of AAAI 1992 Work. on Tractable Reasoning, San Jose, pp. 17–22 (1992)

12. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: Proc. of KR 1996, pp. 148–159 (1996)

13. Darga, P., Liffiton, M., Sakallah, K., Markov, I.: Exploiting structure in symmetry
detection for CNF. In: Proc. of DAC 2004, pp. 530–534 (2004)

14. Déharbe, D., Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Exploiting symmetry
in SMT problems. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 222–236. Springer, Heidelberg (2011)

15. Fortin, S.: The graph isomorphism problem. Technical Report 96-20, University of
Alberta, Edomonton, Alberta, Canada (1996)

16. Fraleigh, J., Katz, V.: A first course in abstract algebra. Addison-Wesley (2003)
17. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satis-

fiability library, QBFLIB (2001), http://www.qbflib.org
18. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gab-

bay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396.
Springer, Netherlands (1999)

19. Hoffmann, G., Areces, C.: Htab: A terminating tableaux system for hybrid logic.
In: Proc. of M4M-5 (2007)

20. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large
and sparse graphs. In: Proc. of ALENEX 2007. SIAM (2007)

21. Krishnamurthy, B.: Short proofs for tricky formulas. Act. Inf. 22(3), 253–275 (1985)
22. Ladner, R.: The computational complexity of provability in systems of modal

propositional logic. SIAM J. on Comp. 6(3), 467–480 (1977)
23. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial

time. Journal of Computer and System Sciences 25(1), 42–65 (1982)
24. Patel-Schneider, P., Sebastiani, R.: A new general method to generate random

modal formulae for testing decision procedures. J. of Art. Int. Res. 18, 351–389
(2003)

http://www.qbflib.org

Tableaux for Verification of Data-Centric Processes

Andreas Bauer, Peter Baumgartner, Martin Diller, and Michael Norrish

NICTA� and Australian National University, Canberra, Australia

Abstract. Current approaches to analyzing dynamic systems are mostly grounded
in propositional (temporal) logics. As a consequence, they often lack expressivity
for modelling rich data structures and reasoning about them in the course of a
computation. To address this problem, we propose a rich modelling framework
based on first-order logic over background theories (arithmetics, lists, records, etc)
and state transition systems over corresponding interpretations. On the reasoning
side, we introduce a tableau calculus for bounded model checking of properties
expressed in a certain fragment of CTL* over that first-order logic. We also de-
scribe a k-induction scheme on top of that calculus for proving safety properties,
and we report on first experiments with a prototypical implementation.

1 Introduction

Current approaches to analyzing dynamic systems are mostly grounded in propositional
(temporal) logics. As a consequence, they often lack expressivity for modelling rich
data structures and reasoning about them in the course of a computation. To address
this problem, we propose an expressive, sorted first-order logic to describe states, a
fragment of CTL∗ to describe systems’ evolution, and we introduce a tableau calculus
for model checking in that logic. Our approach is based on

– process fragments that describe specific tasks of a larger process, inspired by what
is known as declarative business process modelling [17]. As a result, users do not
have to specify a single, large transition system with all possible task interleavings.

– constraints for limiting the interactions between the fragments. In this way, users
can create many small process fragments whose interconnections are governed by
rules that determine which executions are permitted.

– first-order temporal logic. Unlike [8], we choose to extend CTL∗, i.e., a branch-
ing time logic, rather than LTL, since process fragments are essentially annotated
graphs and CTL∗ is, arguably, appropriate to express its properties (cf. [6]).

– sorts for JSON objects [7], where sorts are governed by a custom, static type system
which models and preserves the type information of any input data. JSON objects
allow for richly structured data types such as lists and records.

Tableau calculi have been long considered (e.g., [10]) an appropriate and natural
reasoning procedure for temporal logics. There is even a tableau procedure for propo-
sitional CTL∗ [18]. However, we are not aware of a first-order logic tableaux calculus

� NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 28–43, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Tableaux for Verification of Data-Centric Processes 29

that accommodates our requirements, hence we devise one (Section 4). We note that
we circumvent the difficult problem of loop detection by working in a bounded model
checking setting, where runs are artificially terminated when they become too long.

The high expressivity of our approach comes at the price of high undecidability,
and so practical feasibility is an issue. Ultimately, all our reasoning problems reduce to
first-order logic proof obligations, and hence automated reasoning in first-order logic
becomes a crucial component. Although we focus on the core logic of our framework,
we also report on first experiments with a prototypical implementation that integrates
our tableau procedure with the state of the art SMT solver Z3 [14].

Related Work. In the area of business process modelling, the so-called “business ar-
tifact” approach pioneered the idea of making data a “first-class citizen” (Nigam and
Caswell [16]). The artifacts of this approach are records of data values that can change
over time due to the modifications performed by services, which are formalized using
first-order logic. Process analysis answers the following question: given some artifact
model, a database providing initial values, and a correctness property in terms of a first-
order LTL formula, do all possible artifact changes over time satisfy the correctness
property? For the constraints given in Damaggio et al. [8], this problem is decidable.
We refer to this problem as “concrete model checking” since an initial state has to be
given. We are also interested in the generalization thereof, where the set of possible
initial states is unconstrained, the “general model checking” problem.

Schuele and Schneider [20] give a categorisation of temporal model checking prob-
lems. They differentiate between global model checking techniques, which are basically
fix-point iterations, and local techniques, which are inference based and analyse a for-
mula in a top-down fashion by inspecting its syntax tree. As such, both our concrete
and general model checking problems fall under the local techniques category.

Bersani et al. [4] describe linking SMT-solvers to decide bounded model checking
problems over temporal logic extensions. There, LTL with integer constraints is consid-
ered, which results in an undecidable satisfiability problem. However, by constraining
the number of variables and length of paths, a decidable satisfiability and model check-
ing problem is obtained.

Another example combining data and dynamics is Vianu [23]. This work uses an LTL
in which the propositions can be replaced by a background theory statement, in partic-
ular FOL, to verify systems whose behaviour is expressible as sequence of database
updates. Since the latter results in an infinite-state system, Vianu imposes several re-
strictions on the database properties, and obtains a PSpace model checking algorithm.
In the area of description logics, Hariri et al. [12] and Chang et al. [5] both present
systems that allow for rich queries over dynamically evolving systems. Entities within
the systems can be related to one another and characterized in a first-order style, but
there is no scope for the use of types such as numbers and lists as in our work.

In Ghilardi et al. [9], fragments of first-order linear-time temporal logic with back-
ground theories are considered. While the general satisfiability problem of such a logic
is necessarily undecidable, the authors identify the quantifier-free fragment, which can
be decided in PSpace, given that the background constraints can. Work on temporaliz-
ing description logics heads in a similar direction. The challenge there is to determine

30 A. Bauer et al.

fragments of, e.g., LTL over description logics so that the desired reasoning services
become decidable. See, e.g., Baader et al. [1] for recent work.

2 Preliminaries

We work with sorted signatures Σ consisting of a non-empty set sorts and function
and predicate symbols of fixed arities over these sorts. We assume infinite supplies of
variables, one for each sort. A constant is a 0-ary function symbol. The (well-sorted
Σ-) terms and atoms are defined as usual. We assume Σ contains a predicate symbol =s

(equality) of arity s × s, for every sort s ∈ sorts. Equational atoms, or just equations,
are written infix, usually without the subscript s, as in 1 + 1 = 2. We write θ[x] to
indicate that every free variable in the formula θ is among the list x of variables, and we
write θ[t] for the formula obtained from θ[x] by replacing all its free variables x by the
corresponding terms in the list t.

We assume a sufficiently rich set of Boolean connectives (such as {¬, ∧ }) and the
quantifiers ∀ and ∃. The well-sorted Σ-formulas, or just (FO) formulas are defined as
usual. We are particularly interested in signatures containing (linear) integer arithmetic.
For that, we assume Z ∈ sorts, the Z-sorted constants 0,±1,±2, . . ., the function sym-
bols + and −, and the predicate symbol >, each of the expected arity over Z.

The semantics of our logic is the usual one: a Σ-interpretation I consists of non-
empty, disjoint sets, called domains, one for each sort. We require that the domain for Z
is the set of integers, and that every arithmetic function and predicate symbol (including
=Z) is mapped to its obvious function or relation, respectively, over the integers. Indeed,
we will later see that we treat other sorts, such as lists and other JSON types as “built-
in” (see Section 3). In brief, our modelling framework supports the use of (finite) lists,
arrays and records in a monomorphically sorted setting. Thus, we further require that Σ-
interpretations interpret the function and predicate symbols associated with these sorts
in a way consistent with the intended semantics, which can be given axiomatically. This
is consistent with the de-facto TPTP standard [21], so that compliant theorem provers
can be applied.

A (variable) assignment α is a mapping from the variables into their corresponding
domains. Given a formula θ and a pair (I, α) we say that (I, α) satisfies θ, and write
(I, α) |= θ, iff θ evaluates to true under I and α in the usual sense (the component α is
needed to evaluate the free variables in θ). If θ is closed then α is irrelevant and we can
write I |= θ instead of (I, α) |= θ. We say that a closed sentence θ is valid (satisfiable)
iff I |= θ for all (some) interpretations I.

Processes in our framework are modeled as state transition systems. A state transi-
tion system is a tuple M = (S , I,R) where S is a set of states, I ⊆ S are the initial states,
and R ⊆ S ×S the transition relation.1 Throughout this paper, states are mappings from
the variables into their corresponding domains, i.e., every state s ∈ S is an assignment
(but in general not every assignment α is a state in S).

Our query language is a fragment of CTL∗ over first-logic, which we refer to as
CTL∗(FO). Its syntax is given by the following grammar:

φ ::= θ | ¬φ | φ ∧ φ | Aψ | Eψ ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | Xψ | ψUψ | ψRψ

1 Notice we do not require R to be (left-) total, as runs may be finite.

Tableaux for Verification of Data-Centric Processes 31

where θ refers to a FO formula, φ is called a state formula and ψ a path formula. The
operator X is called “weak next”. A CTL∗(FO) formula is pure FO iff it does not contain
any path quantifier and does not contain any temporal operator.

Let M = (S , I,R) be a state transition system as stated above and s0 ∈ S . A run r
(of M) from s0 is a possibly infinite sequence s0 s1 s2 · · · of states such that (si, si+1) ∈
R. Let r[i] = si, and ri the truncated run si si+1 · · · . By |r| we denote the number of
elements in r or∞, if r is infinite. Obviously, r0 = r.

For any state formula φ ∈ CTL∗(FO), interpretation I, and state s0 ∈ S we define
a satisfaction relation |=. It differs somewhat from the usual definition (cf. [6]) in that
it is implicitly parametric in a set of admissible runs (of M). We identify the set of
admissible runs with its closure under truncation of runs.

A finite run s0 · · · sn is called finished if there is no s ∈ S such that (sn, s) ∈ R. That
is, finished runs do not stop prematurely. The set of standard runs (of M) consists of all
infinite runs and all finished runs. Unless stated otherwise we assume standard runs.

For any state formula φ ∈ CTL∗(FO), interpretation I, and state s0 ∈ S , the satisfac-
tion relation (I, s0) |= φ is defined as follows,

(I, s0) |= θ iff (I, s0) |= θ
(I, s0) |= ¬φ iff (I, s0)
|= φ
(I, s0) |= φ1 ∧ φ2 iff (I, s0) |= φ1 and (I, s0) |= φ2

(I, s0) |= Aψ iff (I, r) |= ψ for all runs r from s0

(I, s0) |= Eψ iff (I, r) |= ψ for some run r from s0,

where the satisfaction relation (I, r) |= ψ for path formulas ψ and admissible r is

(I, r) |= φ iff (I, r[0]) |= φ
(I, r) |= ¬ψ iff (I, r)
|= ψ
(I, r) |= ψ1 ∧ ψ2 iff (I, r) |= ψ1 and (I, r) |= ψ2

(I, r) |= Xψ iff |r| > 1 and (I, r1) |= ψ
(I, r) |= Xψ iff |r| ≤ 1, or |r| > 1 and (I, r1) |= ψ
(I, r) |= ψ1 Uψ2 iff there exists a j ≥ 0 such that |r| > j and (I, r j) |= ψ2,

and (I, ri) |= ψ1 for all 0 ≤ i < j
(I, r) |= ψ1 Rψ2 iff (I, ri) |= ψ2 for all i < |r|, or there exists a j ≥ 0 such that

|r| > j, (I, r j) |= ψ1 and (I, ri) |= ψ2 for all 0 ≤ i ≤ j.

We assume the usual “syntactic sugar”, which can easily be defined in terms of the
above set of operators in the expected way. Note that we distinguish a strong next oper-
ator, X, from a weak next operator, X, as described in [2]. This gives rise to the following
equivalences: ψ1 Rψ2 ≡ ψ2 ∧ (ψ1 ∨ X (ψ1 Rψ2)) and ψ1 Uψ2 ≡ ψ2 ∨ (ψ1 ∧ X (ψ1 Uψ2))
as one can easily verify by using the above semantics. This choice is motivated by our
bounded model checking algorithm, which has to evaluate CTL∗(FO) formulas over fi-
nite traces as opposed to infinite ones. For example, when evaluating a safety formula,
such as Gψ, we want a trace of length n that satisfies ψ in all positions i ≤ n to be
a model of this formula. On the other hand, if there is no position i ≤ n, such that
ψ is satisfied, we don’t want this trace to be a model for Fψ. This is achieved in our
logic as Gψ ≡ ψ ∧ X Gψ and Fψ ≡ ψ ∨ X Fψ hold. Note also that ¬Xψ � X¬ψ, but
¬Xψ ≡ X¬ψ.

32 A. Bauer et al.

3 The Specification Language

We provide a specification language to define processes and the data they manipulate.
A concrete specification consists of the sections TYPES, SIGNATURE, DEFINITIONS,
CONSTRAINTS, and DIGRAPH. We explain each section in turn, including sample ex-
tracts in each explanation from a business process modelling domain.

Logic for Individual States. Our specification logic stratifies into two levels. The first
level uses non-temporal first-order formulas to describe individual states of a system.
Formulas at this level are richly typed, and may refer to user-defined logical notions.

JSON Values, TYPES and SIGNATURE. Users capture the states of their systems with
JSON values. JSON [7] is an untyped framework for writing structured data, including
base types such as strings and integers, as well as structure through records (field names
coupled with values) and arrays. The JSON syntax is rich enough to represent complex
states while remaining human-readable. We layer a simple type-system over JSON,
ultimately providing a connection between these types and the sorts of CTL∗(FO).

The atomic types of our specification language are String, Bool and Integer. In
addition, users can define new types that are built up from these atomic types, the type
operators Array[], List[], and a syntax for record types, i.e., a list of field names
coupled with types for those fields. Types may occur within other type definitions, as
long as there are no recursive loops. This restriction means that users cannot specify
their own recursive types (such as trees). This restriction does not seem too onerous in
practice and makes the axiomatic characterization of the types straightforward.

DB = {
stock: Array[Stock],

nrStockItems: Integer,

open: List[Integer],

gold: Boolean,

invoice: Bool,

paid: Bool,

shipped: Bool }
Stock = {
ident: String,

price: Integer,

available: Integer }

The types from the purchase order example are
shown on the right. The DB type corresponds to the entire
system state. The stock array holds information about
stock items, for each item number 0..nrStockItems−1.
The Stock.available field is the number of items in
stock, per item number. The open list contains the open
order item numbers, those that have not been packed yet.
The gold bit says whether the customer is a gold cus-
tomer. The invoice filed says whether an invoice has
been generated. The paid and shipped fields control
the composition of “process fragments”, see below.

There are naturally various operations over terms of
the corresponding JSON types that our logic must support. Thus we support arithmetic
function and relation symbols (+, <, etc.). Support for JSON record types includes func-
tions for accessing fields of objects (the concrete syntax is the familiar “dot notation”;
e.g., s.value) and for creating new record values by updating field values of old val-
ues (“functional record update”). Depending on the nature of the back-end reasoning
tool, elements of the signature may be characterized directly in FOL, as is done for the
record functions. By contrast, we expect backend reasoning tools to directly support
arithmetic, arrays and lists, with the usual operators on them, freeing us from providing
a FOL axiomatization for the latter (this is not a critical limitation). We refer to this
extended language as JSON Logic, and talk of JSON sentences and JSON terms etc.

Tableaux for Verification of Data-Centric Processes 33

In addition, users can declare and define their own functions, predicates and rela-
tions over these types. Those entities without definition will be uninterpreted. All such,
whether or not they are later defined, are listed in the SIGNATURE section along with
their types. For example, the completed predicate on Status arguments is given in
this section with the syntax completed: [Status] -> Bool.

DEFINITIONS and CONSTRAINTS. The DEFINITIONS section consists of a set of FO
JSON sentences, providing the semantics for (some of) the free predicate and function
symbols declared in the SIGNATURE. Let defs be the image of the DEFINITIONS section
under translation into CTL∗(FO).

The CONSTRAINTS sections consists of a set of JSON CTL∗(FO) path formulas. Un-
like DEFINITIONS, the free variable DB-sorted variable db is permitted. It represents the
database at the current time point. The intention is to provide additional constraints on
the runs considered in the reasoning problems below. Let constraints be the image of
the CONSTRAINTS section under translation into CTL∗(FO).

Examples of definitions and constraints occur in Figure 1. One such is the definition
of the mentioned completed predicate over system statuses. The sample constraint is a
temporal property using the “weak until” W operator. It encodes the rule that customers
without “gold” status can never have their order shipped before they have paid.

Adding Dynamics. Above the state-based level of the previous section, we allow users
to define a “process fragment”-based dynamics for their systems by means of process
graphs. Formally, a process graph G is a directed labeled graph (N, E), where N is a
set of nodes and E ⊆ N × N is a set of edges. Exactly one node must be labelled as
an “init node”. Each node can be labelled as an “entry node” or “exit node” (or both).
A guard is a FO formula with free variables at most {db}; an update term is a FO term
with free variables at most {db}. Entry nodes and edges always have both a guard and
an update term attached to them, which are denoted by guard(n) and upd(n) for entry
nodes n, respectively, and analogously for edges.

The concrete syntax for process graphs should be obvious from our running example.
Every script, a sequence of assignments, is taken as an update term. The semantics of
entry/exit nodes is defined by implicitly putting an edge between every exit node and
every entry node and using the entry node’s guard and script for the edge.

We capture this intuition formally and in a uniform way by defining a labelled edge

relation consisting exactly of the quadruples m
γ,u−→ n such that m, n ∈ N and either

(m, n) ∈ E, γ = guard(m, n) and u = upd(m, n), or m is an exit node, n is an entry node,
γ = guard(n) and u = upd(n).

The labelled edge relation induces a state transition system M = (S , I,R) as follows.
The states S are all assignments s of the form {	 �→ n, db �→ d} where n ∈ N and d is a
domain element of sort DB. Notice that 	 and db are fixed. Then,

I
def
= {s ∈ S | s() = n0}

R
def
= {(s, s′) ∈ S × S | s()

γ,u−→ s′(), (I, {db �→ s(db)}) |= γ[db], and

s′(db) = (I, {db �→ s(db)})(u[db])

34 A. Bauer et al.

Init

Pack

Stocktake

Declined

Packed

Invoice

Paid Shipped

entry = “true”
exit = “true”
guard = “db.paid � true”
script = “db..paid = true”

guard = “¬acceptable(db)”

Definitions:
completed: ∀db:DB . (completed(db) ⇔ (db.paid = true ∧ db.shipped = true))
acceptable: ∀db:DB . (acceptable(db)⇔ db.open � [| |])
Constraints:
nongold: (db.gold = false⇒ (db.shipped = false W db.paid = true))

Fig. 1. Model of a purchase order system as process fragments and definitions

Notice the transition relation R depends on the interpretation I, which is fixed at the
outset. If a guard evaluates to false under I and the current state, then the edge it is on
is just “not there”. Otherwise the state must be updated as specified by the update term.

We can now explain the dynamics of our running example, a system for handling
purchase orders. The purpose of the modelled system is to accept incoming purchase
orders and process them further (packing, shipping, etc.), or to decline them straight
away if there are problems. The dynamics of the model is depicted as a graph in Fig. 1.
It is comprised of three (process) fragments: the biggest fragment on the left, and beside
it the two one-node fragments labelled “Paid” and “Shipped”.

The depicted model’s initial node (“Init”) is where it waits for a purchase order to
arrive. Subsequently, the system can either start to pack (i.e., enter node “Pack”), or
decline the order (i.e., enter node “Declined”). An order can be declined if the de-
picted guard (¬acceptable(db)) in the annotation of the edge is satisfied. The predicate
acceptable is defined in the DEFINITIONS section of our input specification.

If the order is not declined, an attempt will be made to pack its constituents. As long
as the open list is not empty, the loop between “Pack” and “Stocktake” packs all items
one after the other. Not all guards and scripts are depicted in Figure 1. For example,
there is an edge from “Stocktake” to “Pack” labelled with

guard = “db.stock[head(db.open)].available > 0”
script = “db.stock[head(db.open)].available =

db.stock[head(db.open)].available − 1; db.open = tail(db.open)”

Upon completion, the “Invoice” state is reached, followed by composition with the
fragments “Paid” and “Shipped”. The “Shipped” fragment has a guard and script anal-
ogously to that of “Paid”. The guards make it impossible to compose these fragments
repeatedly, otherwise their composition is subject only to the “nongold” constraint. The
intended final states are those that satisfy the “completed” predicate.

Tableaux for Verification of Data-Centric Processes 35

Reasoning Problems. Assume as given a specification. Let Σ be the induced signature
with sorts sorts. Let defs, constraints and M = (S , I,R) be as defined above. In terms
of our specification language we are interested in the following reasoning problems. In
each of them, let ψ[db] be a path formula, in this context called the query.

Concrete satisfiability problem: Given an initial state s0 ∈ I.
Is there a Σ-interpretation I such that (I, s0) |= E (defs ∧ constraints ∧ ψ) holds?

General satisfiability problem: Is there an initial state s0 ∈ I and a Σ-interpretation I
such that (I, s0) |= E (defs ∧ constraints ∧ ψ) holds?

That is, the concrete vs. general dimension distinguishes whether an initial assignment
is fixed or not. The concrete problems are interesting for implementing deployed sys-
tems and runtime verification. For, if the definitions and constraints are sufficiently re-
stricted (e.g., non-recursive definitions and constraints whose quantifiers range over
finite domains) all state transitions can be effectively executed. See Section 6 for exam-
ples of reasoning problems.

4 Tableaux for CTL∗(FO)

In this section we introduce a tableau calculus for the reasoning problems in Section 3.
Without loss of generality it suffices to consider the general satisfiability problem only.
(Pragmatics aside, any concrete satisfiability problem can be encoded as a general one
as a set of equations in the CONSTRAINTS section). With the abbreviation ψ0 = defs ∧
constraints ∧ ψ the reasoning problem, hence, is to ask whether (I, s0) |= Eψ0 holds
for some s0 ∈ I and Σ-interpretation I. In fact, Ψ0 can be any path formula in the free
variable db.

It comes in handy to assume the signature Σ contains a DB-sorted constant db, rep-
resenting the initial database, and that Σ contains a distinguished sort “Node” and the
nodes N from the process graph as constants. We assume I(n) = n for every n ∈ N.

We formulate the calculus’ inference rules as operators on sets of sequents. A sequent
is an expression of the form (n, t, l) �Q Φ where n ∈ N, t is a ground term of sort DB,
l ≥ 0 is an integer, Q ∈ {E,A} is a path quantifier, and Φ is a (possibly empty) set of
CTL∗(FO) formulas in negation normal form with free variables at most {db}. When we
write s �Q Φ we mean (n, t, l) �Q Φ for some (n, t, l) = s, and when we write s �Q φ, Φ
we mean s �Q {φ} ∪Φ.

Informally, the sequent (n, t, d) �Q Φ means that the computation has reached after
l steps (“length”) into a run the graph node n with a database represented by t and that
database satisfies QΦ. For example, t could be db{open = [|1, 3, 2|]} (in sugared no-
tation) which stands for an update of the initial database db updated on its open-field
with the list [|1, 3, 2|], and QΦ could be the formula A G db.open � [| |]. The calculus
analyses a given sequent by decomposing its formula Φ according to its boolean oper-
ators, path quantifiers and temporal operators. An additional implicit boolean structure
is given by reading the formulasΦ in s �E Φ conjunctively, and reading the formulasΦ
in s �A Φ disjunctively.2 The purpose is to derive a set of sequents with only classical,
i.e., pure FO formulas in Φ, so that a first-order satisfiability check results.

2 These structures are in general not decomposable, as A does not distribute over “or” and E
does not distribute over “and”, and so the calculus needs to deal with that explicitly.

36 A. Bauer et al.

We are using notions around tableau calculi in a standard way, and so it suffices to
summarize the key points. The nodes in our tableaux are labelled with sets Σ of sequents
or the special sign FAIL, which indicates branch closure. Logically, FAIL is taken as
an (any) unsatisfiability set of sequents, e.g., {(n0, db, 0) �A ∅}. We often write σ;Σ
instead of {σ} ∪ Σ, and we often identify the node with its label. A derivationD (from
a path formula ψ0) is a sequence of tableaux, starting from a root node only tableau
labelled with {(n0, db, 0) �E ψ0}. A successor tableaux is obtained by applying one of
the inference rules below to a non-FAIL leaf of the current tableau and branching out
with the conclusions. A refutation (of ψ0) is a derivation from ψ0 of a tableau whose
leaves are all FAIL. We suppose a notion of fair derivations as commonly used with
tableau calculi. Intuitively, a derivation is fair iff it is a refutation or no inference rule
application is deferred forever.

In the inference rules below we use the following notions. A formula is classical iff
it contains no path quantifier and no temporal operator. A formula is a modal atom iff
its top-level operator is a path quantifier or a temporal operator. A sequent s �Q Φ

is classical if all formulas in Φ are classical. We define formA(Φ)
def
= A (

∨
Φ) and

formE(Φ)
def
= E (

∧
Φ) in order to reflect the disjunctive/conjunctive reading of Φ de-

pending on a path quantifier context. If all formulas in Φ are classical then the path
quantifier is semantically irrelevant and omitted from formQ(Φ).

Boolean rules

E-∧ s �E φ ∧ ψ,Φ;Σ

s �E φ, ψ, Φ;Σ
E-∨ s �E φ ∨ ψ,Φ;Σ

s �E φ,Φ;Σ s �E ψ,Φ;Σ

A-∨ s �A φ ∨ ψ,Φ;Σ

s �A φ, ψ, Φ;Σ
A-∧ s �A φ ∧ ψ,Φ;Σ

s �A φ,Φ; s �A ψ,Φ;Σ

if φ is not classical or ψ is not classical (no need to break classical formulas apart).

Rules to separate classical sequents

E-Split
s �E Φ;Σ

s �E Γ; s �E Φ\Γ;Σ
A-Split

s �A Φ;Σ

s �A Γ;Σ s �A Φ\Γ;Σ

if Γ consists of all classical formulas in Φ and Γ is not empty.

Rules to eliminate path quantifiers

E-Elim
s �E Q φ,Φ;Σ

s �Q φ; s �E Φ;Σ
A-Elim

s �A Q φ,Φ;Σ

s �Q φ;Σ s �A Φ;Σ

The above rules apply also ifΦ is empty. In this caseΦ represents the empty conjunction
in s �E Φ, a sequent that is satisfied by every I, and the empty disjunction in s �A Φ,
a sequent that is satisfied by no I.

When applied exhaustively, the rules so far lead to sequents that all have the form
s �Q Φ such that (a) Φ consists of classical formulas only, or (b) Φ consists of modal
atoms only with top-level operators from {U,R,X,X}.

Tableaux for Verification of Data-Centric Processes 37

Rules to expand U and R formulas

U-Exp
s �Q (φUψ), Φ;Σ

s �Q ψ ∨ (φ ∧ X (φUψ)), Φ;Σ
R-Exp

s �Q (φRψ), Φ;Σ

s �Q (ψ ∧ (φ ∨ X (φRψ))), Φ;Σ

The above rules perform one-step expansions of modal atoms with U and R operators.
When applied exhaustively, the rules so far lead to sequents that all have the form

s �Q Φ such that (a)Φ consists of classical formulas only, or Φ consists of modal atoms
only with top-level operators from {X,X}.

Rules to simplify X and X formulas. Below we define inference rules for one-step ex-
pansions of sequents of the form s �Q Xφ and �Q Xφ. The following inference rules
prepare their application.

E-X-Simp
s �E Xφ1, . . . ,Xφn,Xψ1, . . . ,Xψm;Σ

s �E Y (φ1 ∧ · · · ∧ φn ∧ ψ1 ∧ · · · ∧ ψm);Σ

if n+m > 1, where Y = X if n = 0 else Y = X. Intuitively, if just one of the modal atoms
in the premise is an X-formula then a successor state must exist to satisfy it, hence the
X-formula in the conclusion. Similarly:

A-X-Simp
s �A Xφ1, . . . ,Xφn,Xψ1, . . . ,Xψm;Σ

s �A Y(φ1 ∨ · · · ∨ φn ∨ ψ1 ∨ · · · ∨ ψm);Σ

if n + m > 1, where Y = X if m = 0 else Y = X.
To summarize, with the rules so far, all sequents can be brought into one of the

following forms: (a) s �Q Γ, where Γ consists of classical formulas only, (b) s �Q Xφ,
or (c) s �Q Xφ.

Rules to expand X and X formulas.

E-X-Exp
(m, t, l) �E Xφ;Σ

(n1, u1[t], l + 1) �E γ1[t] ∧ φ;Σ · · · (nk, uk[t], l + 1) �E γk[t] ∧ φ;Σ

(m, t, l) �E ¬γ1[t] ∧ · · · ∧ ¬γk[t];Σ

if there is a k ≥ 0 such that m
γi ,ui−→ ni are all labelled edges emerging from m, where

1 ≤ i ≤ k. Notice that the case k = 0 is possible. In this case there is only one conclusion,
which is equivalent to Σ.

This rule binds the variable db in the guards to the term t, which represents the current
database. The variable db in XΦ refers to the databases in a later state and hence cannot
be bound to t.

There is also a rule E-X-Exp whose premise sequent is made with the X operator
instead of X. It differs from the E-X-Exp rule only by leaving away the rightmost con-
clusion. We do not display it here for space reasons. Dually,

38 A. Bauer et al.

A-X-Exp
(m, t, l) �A X φ;Σ

(n1, u1[t], l + 1) �A ¬γ1[t] ∨ φ; · · · (nk, uk[t], l + 1) �A ¬γk[t] ∨ φ; (m, t, l) �E γ1[t] ∨ · · · ∨ γk[t];Σ

if there is a k ≥ 0 such that m
γi ,ui−→ ni are all labelled edges emerging from m, where

1 ≤ i ≤ k.
The conclusion sequent (m, t, l) �E γ1[t] ∨ · · · ∨ γk[t] forces that at least one guard is

true. Analogously to above, there is also a rule A-X-Exp for the X case, which does not
include this sequent. This reflects that X formulas are true in states without successor.

These rules are the only one that increase the length counter l.

Rule to close branches

Close
(m1, t1, l1) �Q1 Φ1; · · · ; (mn, tn, ln) �Qn Φn

FAIL

if every formula in every Φi is classical and F =
∧

i=1,...,n formQi (Φi[ti]) is unsatisfiable
(not satisfied by any interpretation I).

Notice that F is a classical formula, It is meant to be passed to a first-order theorem
prover for checking unsatisfiability.

Let us now turn to analyzing the calculus’ theoretical properties. To this end, we
equip sequents with a formal semantics within the temporal logic framework in Sec-
tion 2. In that framework, a state is a mapping from variables to domain elements. In
our case the (relevant) variables are fixed, which are the Node-sorted variable 	 and the
DB-sorted variable db. Given an interpretation I, we associate to the triple (n, t, l) the
state stateI(n, t, l)

def
= {	 �→ n, db �→ I(t)} (the length l has no relevant meaning for that).

Definition 4.1 (Tableau node semantics). Let I be an interpretation. We say that I
satisfies a sequent s �Q Φ, written as I |= s �Q Φ, iff (I, stateI(s) |= formQ(Φ). We say
that I satisfies a set Σ of sequents, written as I |= Σ, iff I satisfies every sequent in Σ.

The following lemma expresses the correctness of our inference rules.3

Lemma 4.2. Let I be an interpretation and Σ a set of sequents. For every tableau rule
inference with premise Σ and conclusions Σ1, . . . , Σn it holds that I |= Σ if and only if
I |= Σ j, for some 1 ≤ j ≤ n.

Theorem 4.3 (Soundness). Given a state transition system M = (S , I,R) as described
in Section 3 and a path formula Ψ0[db]. If there is a refutation of Ψ0 then for no inter-
pretation I and no s0 ∈ I it holds (I, s0) |= EΨ0.

We are now turning to completeness. In its simplest form, the completeness statement
reads as “if for no interpretation I and no s0 ∈ I it holds (I, s0) |= EΨ0 then there is
a refutation”. For efficiency in practice, one should exploit confluence properties of the

3 Proofs are in the long version of this paper, see http://www.nicta.com.au/pub?id=6988

http://www.nicta.com.au/pub?id=6988

Tableaux for Verification of Data-Centric Processes 39

inference rules and work with fair derivations instead. To this end, we demand that the
inference rules are applied in the order given above, with decreasing priority. (In the
bounded setting described below this is indeed a fair strategy.) Additionally, we would
like to get a stronger model-completeness result saying that a non-refutation leads not
only to a model of Ψ0 but also delivers the corresponding run.

However, the infinite-state model checking problems we are dealing with make any
general completeness result impossible. Our pragmatic solution is to use a form of
bounded model checking by limiting runs to user-given length, as follows.

Let lmax ≥ 0 be an integer, the length bound. We define bounded versions of the rules
to expand X and X formulas by taking k = 0 whenever l = lmax, otherwise the rule is
applied as stated. That is, after lmax expansions of X or X formulas the bounded versions
of the inference rules pretend that the underlying run (of length lmax) has stopped. The
bounded version of the tableau calculus uses that bounded rules.

We need to reflect the bounded version of the calculus at the semantics level. Given
a state transition system M = (S , I,R) and lmax ≥ 0, let the admissible runs of M consist
of all runs r from each s0 ∈ I such that |r| ≤ lmax and if |r| < lmax then r is finished. We
qualify the resulting satisfaction relation of Section 2 by “wrt. runs of length lmax”.

Theorem 4.4 (Bounded tableau calculus completeness). Given a state transition sys-
tem M = (S , I,R) as described in Section 3, lmax ≥ 0 a length bound, and a path formula
Ψ0[db]. LetD be a fair derivation from Ψ0 in the bounded version of the calculus.

Then, D is finite, every non-FAIL leaf Σ consists of classical sequents only, and for
every model I of Σ it holds (I, s0) |= EΨ0 wrt. runs of length lmax.

Conversely, for every interpretation I such that (I, s0) |= EΨ0 wrt. runs of length
lmax there is a non-FAIL leaf Σ such that I satisfies Σ (model completeness).

Thanks to the tableau calculus maintaining the history of expanding formulas, it is easy
to extract from the branches leading to the leaves Σ the corresponding runs. Moreover,
the formula Σ represents the weakest condition on I and this way provides more valu-
able feedback than, say, a fully specified concrete database.

But notice that in order to exploit Theorem 4.4 in practice, one has to establish sat-
isfiability of the non-FAIL leaf node Σ. In general this is impossible, and the first-order
proof problems we are dealing with are highly undecidable (Π1

1 -complete [19]), as the
DEFINITIONS section may contain arbitrary FO sentences over integer arithmetics with
free function symbols [11].

5 Inductive Proofs of Safety Properties

Verifying a safety property A G φ of a state transition system M (under given constraints)
is especially problematic when using bounded model checking. The complexity of
model checking will in most cases be prohibitive in case φ is in fact invariant and the
failure to find a counterexample trace of a given length does not entail invariance.

A relatively simple method for verifying safety properties that has been shown to
often work well in practice in the context of SAT and SMT based model checking is
the k-induction principle [22,15,13]. It attempts to prove an invariant φ by iteratively

40 A. Bauer et al.

increasing a parameter k ≥ 1, the maximal length of considered traces, until a
counterexample trace for the base case is found, k-induction succeeds, or some pre-
determined bound for k is reached. In our setting the the k-induction principle reads as
follows:

Base Case: There does not exist a Σ interpretationI and an assignment α0 with α0(l) =

n0 such that (I, α0) |= E((constraints∧ defs) ∧ ¬(φ ∧ Xφ ∧ ... ∧ X
k−1
φ)).

Induction Step: There does not exist a Σ interpretation I and an assignment α0 with
α0(l) = ni for some ni ∈ N such that (I, α0) |= E (defs∧¬((φ∧Xφ∧ ...∧Xk−1φ)→
Xk−1Xφ)).

Constraints (e.g. of the form A Gψ) can be used for traces starting at the initial states, but
in general not for the inductive step. An upper bound for k can sometimes be computed
from the structure of φ and constraints. In general, k-induction based model checking is
incomplete because a counterexample trace to the inductive step for some k may start at
a state which is unreachable from an intitial state. While the objective of increasing k is
precisely to avoid such “spurious” counterexamples, some properties are not k-inductive
for any k. Strengthening the property to be verified [15,13] is one means of attempting
to avoid that problem. We have adapted the strengthening strategy presented in [15] to
our framework, though more work is required to make this approach practical.

6 Implementation and Experiments

We have implemented the modelling language of Section 3, the tableau calculus of
Section 4, and the k-induction scheme of Section 5 on top of it.4 The implementation,
in Scala, is in a prototypical stage and is intended as a testbed for rapidly trying out
ideas. As the first-order logic theorem prover for the Close rule we coupled Microsoft’s
SMT-solver Z3 [14]. Z3 accepts quantified formulas, which are treated by instantiation
heuristics. Moreover, Z3 natively supports integers, arrays, and lists. For JSON record
types we have to supply axioms explicitly. Non-recursive definitions are passed on as
“functions” to Z3, recursive ones as “constraints”. The coupling of Z3 is currently rather
inefficient, through a file interface using the SMT2 language.

The lack of further improvements currently limits our implementation to problems
that do not require too much combinatorial search induced by a process’ dynamics. But,
in fact, we are currently mostly interested in investigating the usefulness and limits of
currently available first-order theorem proving technology in an expressive verification
framework as ours (recall from Theorems 4.3 and 4.4 and the accompanying discussions
how critically our approach depends on that).

A basic query is F completed(db), which checks whether or not it is possible to fully
execute an (acceptable) order into a completed state. Such “planning” queries are useful,
e.g., for flexible process configuration from fragments during runtime, but also for static
analysis during design time. Our prover can be instructed to exhaust all branches under

4 Our implementation supports concrete reasoning problems (Section 3) by evaluation of
scripts with a Groovy interpreter and a tailored, model elimination based proof procedure
for guards, but we do not discuss this here.

Tableaux for Verification of Data-Centric Processes 41

inference rule applications and extract all runs represented by non-FAIL leaves. With a
length bound lmax = 8 it returns the runs

Init → Pack → Stocktake → Pack → Invoice → Shipped → Paid
Init → Pack → Stocktake → Pack → Stocktake → Pack → Invoice→ Shipped → Paid
Init → Pack → Stocktake → Pack → Invoice → Paid → Shipped
Init → Pack → Stocktake → Pack → Stocktake → Pack → Invoice→ Paid → Shipped

which are exactly the expected ones. In total, 223 branches have been closed, with
912 inference rule applications, and Z3 was called 529. The total runtime is 30 sec-
onds, the time spent in Z3 was negligible. A variation is the query (F completed(db)) ∧
(db.shipped = true R db.paid = f alse) (“Is there a completed state that has shipment
before payment?”) which returns the first two of the above runs. We also experimented
with unsatisfiable variants, e.g., by adding the CONSTRAINT db.gold = false to the
latter query. All these queries can be answered in comparable or shorter time.

Let us now turn to safety properties. They typically occur during design time, and
are clearly general (as opposed to concrete) problems. Here are some examples, stated
in non-negated form:

A G (∀i:Integer.((0 ≤ i ∧ i < db.nrStockItems)⇒ db.stock[i].available ≥ 0))
(“The number of available stock items is non-negative”)

A G ((db.paid = true ∧ db.shipped = false)⇒ F db.shipped = true)
(“Orders that have been paid for but not yet shipped will be shipped eventually”)

A G ((db.gold = false ∧ db.shipped = true)⇒ db.paid = true)
(Follows from non-gold CONSTRAINT)

A G inRange(db.open, db.nrStockItems)
where inRange is defined as ∀l:List[Integer].∀n:Integer.(inRange(l, n)⇔

(l = [| |] ∨ (0 ≤ head(l) ∧ head(l) < n ∧ inRange(tail(l), n))))
(“The open list contains valid item numbers only, in the range 0 . . . db.nrStockItems”)

The first property requires the additional CONSTRAINT db.nrStockItems ≥ 0 ∧
(∀i:Integer.((0 ≤ i ∧ i < db.nrStockItems) ⇒ db.stock[i].available ≥ 0)),
which asserts that that property holds true initially. The proof of that is found with
k = 1. The second property needs k = 3, both proven within seconds.

The third property is problematic. Although valid, it cannot be proven by k-induction
because it admits spurious counterexamples due to ignoring constraints in the induc-
tion step. The fourth property is again valid after adding db.nrStockItems ≥ 0 ∧
inRange(db.open, db.nrStockItems) to CONSTRAINTS, which asserts the property
holds initially. It is provable by k-induction for k = 2. There is a caveat, though: as
said, our prover tries k = 1, 2, . . . in search for a proof by k-induction. Here, for k = 1
an unprovable (satisfiable) proof obligation in the induction step turned up on which Z3
did not terminate. Z3, like other SMT-solvers, does not reliable detect countersatisfia-
bility for non-quantifier free problems. This is a general problem and can be expected
to show up as soon as datatypes with certain properties (like inRange) are present.
Our workaround for now is to use time limits and pretend countersatisfiability in case
of inconclusive results. Notice that this preserves the soundness of our k-induction
procedure.

42 A. Bauer et al.

7 Conclusions and Future Work

In this paper we proposed an expressive modelling framework based on first-order logic
over background theories (arithmetics, lists, records, etc) and state transition systems
over corresponding interpretations. The framework is meant to smoothly support a wide
range of practical applications, in particular those that require rich data structures and
declarative process modelling by fragments and constraints governing their composi-
tion. On the reasoning side, we introduced a tableau calculus for bounded model check-
ing of properties expressed in a certain fragment of CTL* over that first-order logic. To
our knowledge, the tableau calculus as such and our soundness and completeness re-
sults are novel. First experiments with our implementation suggests that bounded model
checking is already quite useful in the business domain we considered, in particular in
combination with k-induction.

From another point of view, this paper is meant as an initial exploration into using
general first-order logic theorem provers as back-ends for dynamic system verification.
Developing such systems that natively support quantified formulas over built-in theories
has been become an active area of research. Improvements here directly carry over to
a stronger system on our side. For instance, we plan to integrate the prover described
in [3].

We also plan to work on some conceptual improvements. Among them are block-
ing mechanisms to detect recurring nodes, partial-order reduction to break symmetries
among fragment compositions, and cone of influence reduction. Each of these reduces,
ultimately, to first-order logic proof problems, which again emphasizes the role of first-
order logic theorem proving in our context.

References

1. Baader, F., Liu, H., ul Mehdi, A.: Verifying properties of infinite sequences of description
logic actions. In: ECAI, pp. 53–58 (2010)

2. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification.
Logic and Computation 20(3), 651–674 (2010)

3. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In:
Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg
(2013)

4. Bersani, M.M., Cavallaro, L., Frigeri, A., Pradella, M., Rossi, M.: SMT-based verification
of LTL specification with integer constraints and its application to runtime checking of
service substitutability. In: Fiadeiro, J.L., Gnesi, S., Maggiolo-Schettini, A. (eds.) SEFM,
pp. 244–254. IEEE Computer Society (2010)

5. Chang, L., Shi, Z., Gu, T., Zhao, L.: A family of dynamic description logics for representing
and reasoning about actions. J. Autom. Reasoning 49(1), 1–52 (2012)

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(1999)

7. Crockford, D.: RFC 4627—The application/json media type for JavaScript Object Notation
(JSON). Technical report, IETF (2006)

8. Damaggio, E., Deutsch, A., Hull, R., Vianu, V.: Automatic verification of data-centric
business processes. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 3–16. Springer, Heidelberg (2011)

Tableaux for Verification of Data-Centric Processes 43

9. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination methods for satisfiabil-
ity and model-checking of infinite-state systems. In: Pfenning, F. (ed.) CADE 2007. LNCS
(LNAI), vol. 4603, pp. 362–378. Springer, Heidelberg (2007)

10. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D.,
Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, ch. 6, pp. 297–396. Kluwer
Academic Publishers (1999)

11. Halpern, J.: Presburger Arithmetic With Unary Predicates is Π1
1 -Complete. Journal of Sym-

bolic Logic 56(2), 637–642 (1991)
12. Hariri, B.B., Calvanese, D., Giacomo, G.D., Masellis, R.D., Felli, P., Montali, M.: Verifica-

tion of description logic knowledge and action bases. In: Raedt, L.D., Bessière, C., Dubois,
D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI. Frontiers in Artificial In-
telligence and Applications, vol. 242, pp. 103–108. IOS Press (2012)

13. Kahsai, T., Tinelli, C.: Pkind: A parallel k-induction based model checker. In: Barnat, J.,
Heljanko, K. (eds.) PDMC. EPTCS, vol. 72, pp. 55–62 (2011)

14. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

15. de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: From refutation
to verification. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 14–26.
Springer, Heidelberg (2003)

16. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

17. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes man-
agement. In: Eder, J., Dustdar, S. (eds.) BPM 2006 Workshops. LNCS, vol. 4103, pp. 169–180.
Springer, Heidelberg (2006)

18. Reynolds, M.: A tableau for CTL*. In: Cavalcanti, A., Dams, D. (eds.) FM 2009. LNCS,
vol. 5850, pp. 403–418. Springer, Heidelberg (2009)

19. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. The MIT Press,
Cambridge (1987)

20. Schuele, T., Schneider, K.: Global vs. local model checking: A comparison of verification
techniques for infinite state systems. In: SEFM, pp. 67–76. IEEE Computer Society, Wash-
ington, Dc (2004)

21. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with
arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 406–419.
Springer, Heidelberg (2012)

22. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a
SAT-solver. In: Hunt Jr., W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp.
108–125. Springer, Heidelberg (2000)

23. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: Fagin, R.
(ed.) ICDT. ACM International Conference Proceeding Series, vol. 361, pp. 1–13. ACM
(2009)

Bounded Proofs and Step Frames

Nick Bezhanishvili1,�, Silvio Ghilardi2,

1 Utrecht University, Utrecht, The Netherlands
2 Università degli Studi di Milano, Milano, Italy

Abstract. The longstanding research line investigating free algebra con-
structions in modal logic from an algebraic and coalgebraic point of view
recently lead to the notion of a one-step frame [14], [8]. A one-step frame
is a two-sorted structure which admits interpretations of modal formulae
without nested modal operators. In this paper, we exploit the potential
of one-step frames for investigating proof-theoretic aspects. This includes
developing a method which detects when a specific rule-based calculus
Ax axiomatizing a given logic L has the so-called bounded proof prop-
erty. This property is a kind of an analytic subformula property limiting
the proof search space. We define conservative one-step frames and prove
that every finite conservative one-step frame for Ax is a p-morphic image
of a finite Kripke frame for L iff Ax has the bounded proof property and
L has the finite model property. This result, combined with a ‘one-step
version’ of the classical correspondence theory, turns out to be quite pow-
erful in applications. For simple logics such as K, T, K4, S4, etc, estab-
lishing basic metatheoretical properties becomes a completely automatic
task (the related proof obligations can be instantaneously discharged by
current first-order provers). For more complicated logics, some ingenu-
ity is needed, however we successfully applied our uniform method to
Avron’s cut-free system for GL and to Goré’s cut-free system for S4.3.

1 Introduction

The method of describing free algebras of modal logics by approximating them
with finite partial algebras is longstanding. The key points of this method are
that every free algebra is approximated by partial algebras of formulas of modal
complexity n, for n ∈ ω, and that dual spaces of these approximants can be
described explicitly [1], [16]. The basic idea of this construction can be traced
back to [15]. In recent years there has been a renewed interest in this method
e.g., [6], [8], [9], [14], [17]. In this paper we apply the ideas originating from
this line of research to investigate proof-theoretic aspects of modal logics. In
particular, we will concentrate on the bounded proof property. An axiomatic
system Ax has the bounded proof property (the bpp, for short) if every formula
φ of modal complexity at most n derived in Ax from some set Γ containing only
formulae of modal complexity at most n, can be derived from Γ in Ax by only

� Supported by theDutchNWOgrant 639.032.918 and theRustaveli ScienceFoundation
of Georgia grant FR/489/5-105/11.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 44–58, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Bounded Proofs and Step Frames 45

using formulae of modal complexity at most n. The bounded proof property is
a kind of an analytic subformula property limiting the proof search space. This
property holds for proof systems enjoying the subformula property (the latter is a
property that usually follows from cut elimination). The bounded proof property
depends on an axiomatization of a logical system. That is, one axiomatization of
a logic may have the bpp and the other not. Examples of such axiomatizations
will be given in Section 5 of the paper.

The main tools of our method are the one-step frames introduced in [14]
and [8]. A one-step frame is a two-sorted structure which admits interpretations
of modal formulae without nested modal operators. We show that an axiomatic
system Ax axiomatizing a logic L has the bpp and the finite model property
(the fmp) iff every one step-frame validating Ax is a p-morphic image of a finite
standard (aka Kripke) frame for L. This gives a purely semantic characterization
of the bpp. The main advantage of this criterion is that it is relatively easy
to verify. In the next subsection we give an example explaining the details of
our machinery step-by-step. Here we just list the main ingredients. Given an
axiom of a modal logic, we rewrite it into a one-step rule, that is, a rule of
modal complexity 1. One-step rules can be interpreted on one-step frames. We
use an analogue of the classical correspondence theory, to obtain a first-order
condition (or a condition of first-order logic enriched with fixed-point operators)
for a one-step frame corresponding to the one-step rule. Finally, we need to
find a standard frame p-morphically mapped onto any finite one-step frame
satisfying this first-order condition. This part is not automatic, but we have
some standard templates. For example, we define a procedure modifying the
relation of a one-step frame so that the obtained frame is standard. In easy
cases, e.g., for modal logics such as K, T, K4, S4, this frame is a frame of the
logic and is p-morphically mapped onto the one-step frame. The bpp and fmp for
these logics follow by our criterion. For more complicated systems such as S4.3
and GL, we show using our method that Avron’s cut-free system for GL [2] and
Goré’s cut-free system for S4.3 [19] provide axiomatic systems with the bpp.

A Worked Out Example. In order to explain the basic idea of our technique,
we proceed by giving a rather simple (but still significant) example. Consider
the modal logic obtained by adding to the basic normal modal system K the
‘density’ axiom:

��x→ �x. (1)

First Step: we replace (1) by equivalent derived rules having modal complexity
1. The obvious solution is to replace the modalized subformulae occurring inside
the modal operator by an extra propositional variable. Thus the first candidate
is the rule y ↔ �x/�y → �x. A better solution (suggested by the proof of
Proposition 1) is to take advantage of the monotonicity and to use instead the
rule

y → �x
�y → �x (2)

Often, the method suggested by the proof of Proposition 1 gives ‘good’ rules, but
for more complicated logics one needs some ingenuity to find the right system

46 N. Bezhanishvili and S. Ghilardi

of derived rules replacing the axioms (this is substantially the kind of ingenuity
needed to find rules leading to cut eliminating systems).

Second Step: this step may or may not succeed, but it is entirely algorith-
mic. It relies on a light modification of the well-known modal correspondence
machinery. We first observe that inference rules having modal complexity 1 can
be interpreted in the so-called one-step frames. A one-step frame is a quadru-
ple S = (W1,W0, f, R), where W0,W1 are sets, f : W1 → W0 is a map and
R ⊆ W1 ×W0 is a relation between W1 and W0. In the applications, we need
two further requirements (called conservativity requirements) on such a one-step
frame S: for the purpose of the present discussion, we may ignore the second
requirement and keep only the first one, which is just the surjectivity of f .
Formulae of modal complexity 1 (i.e., without nested modal operators) can be
interpreted in one-step frames as follows: propositional variables are interpreted
as subsets of W0; when we apply modal operators to subsets of W0, we produce
subsets of W1 using the modal operator �R canonically induced by R. In par-
ticular, for y ⊆W0 the operator �R is defined as �Ry = {w ∈W1 | R(w) ⊆ y},
where R(w) = {v ∈ W0 | (w, v) ∈ R}. Whenever we need to compare, say y
and �Rx, we apply the inverse image f (denoted by f∗) to y in order to obtain
a subset of W1. Thus, a one-step frame S = (W1,W0, f, R) validates (2) iff we
have

∀x, y ⊆W0 (f∗(y) ⊆ �Rx⇒ �Ry ⊆ �Rx).

The standard correspondence machinery for Sahlqvist formulae shows that in
the two-sorted language of one-step frames this condition has the following first-
order equivalent:

∀w∀v (wRv ⇒ ∃k (wRf(k) & kRv)). (3)

In relational composition notation this becomes R ⊆ R ◦ fo ◦R, where fo is the
binary relation such that wfov iff f(w) = v. We may call (3) the step-density
condition. In fact, notice that for standard frames, where we have W1 = W0 and
f = id, step-density condition becomes the customary density condition, see (6)
below.

Third Step: our main result states that both the finite model property and
bounded proof property (for the global consequence relation) are guaranteed
provided we are able to show that any finite conservative one-step frame vali-
dating our inference rules is a p-morphic image of a standard finite frame for our
original logic. The formal definition of a p-morphic image for one-step frames
will be given in Definition 5. Here we content ourselves to observing that, in our
case, in order to apply the above result and obtain the fmp and bpp, we need
to prove that, given a conservative finite step-dense frame S = (W1,W0, f, R),
there are a finite dense frame F = (V, S) and a surjective map μ : V −→ W1

such that R ◦ μ = f ◦ μ ◦ S. In concrete examples, the idea is to take V := W1

and μ := idW1 . So the whole task reduces to that of finding S ⊆ W1 ×W1 such
that R = f ◦ S. That is, S should satisfy

∀w∀v (wRv ⇔ ∃w′ (wSw′ & f(w′) = v)). (4)

Bounded Proofs and Step Frames 47

Some ingenuity is needed in the general case to find the appropriate S (indeed
our problem looks quite similar to the problem of finding appropriate filtrations
case-by-case). As in the case of filtrations, there are standard templates that
often work for the cases of arbitrary relations, transitive relations, etc. The basic
template for the case of an arbitrary relation is that of taking S to be fo ◦ R,
namely

∀w∀w′ (wSw′ ⇔ ∃v (wRv & f(w′) = v)). (5)

Notice that what we need to prove in the end is that, assuming (3), the so-defined
S satisfies (4) and

∀w∀v (wSv ⇒ ∃k (kSv & wSk)). (6)

Thus, taking into consideration that f is also surjective, i.e.,

∀v ∃w f(w) = v, (7)

(because S is conservative), we need the validity of the implication

(7) & (3) & (5) ⇒ (4) & (6).

The latter is a deduction problem in first-order logic that can be solved affir-
matively along the lines indicated in Section 5. The problem can be efficiently
discharged by provers like SPASS, E, Vampire.1

In summary, the above is a purely algorithmic procedure, that may or may
not succeed (in case it does not succeed, one may try to invent better solutions
for the derived rules of Step 1 and/or for defining the relation S in Step 3). In
case the procedure succeeds, we really obtain quite a lot of information about our
logic, because we get altogether: (i) completeness via the finite model property;
(ii) decidability; (iii) the bounded proof property; (iv) first-order definability;
(v) canonicity (as a consequence of (i)+(iv), via known results in modal logic).
Further applications concern the step-by-step descriptions of finitely generated
free algebras (following the lines of [14] and [8]). But we will not deal with free
algebras in this paper.

The large amount of information that one can obtain from successful runs of
the method might suggest that the event of success is quite rare. This is true
in essence, but we shall see in the paper that (besides simple systems such as
K,T,K4,S4) the procedure can be successfully applied to more interesting case
studies such as the linear system S4.3 and the Gödel-Löb system GL. In the
latter case we have definability not in first-order logic, but in first-order logic
enriched with fixed-point operators. However, for finite one-step frames (as for
finite standard GL-frames), this condition boils down to a first-order condition.

The paper is organized as follows. In Section 2 we recall the basic definitions of
logics and decision problems. In Section 3 we introduce one-step frames and state
our main results. In Section 4 we discuss the correspondence theory for one-step
frames. In Section 5 we supply illustrative examples and case studies. Section 6

1 SPASS http://www.spass-prover.org/ (in the default configuration) took less
than half a second to solve the above problem with a 47-line proof.

http://www.spass-prover.org/

48 N. Bezhanishvili and S. Ghilardi

provides concluding remarks and discusses future work. For space reasons, we
can only limit ourselves to giving the definitions, main results and important
examples. For all the other details (especially the proofs), the reader is referred
to the accompanying online Technical Report [7].

2 Logics and Decision Problems

Modal formulae are built from propositional variables x, y, . . . by using the
Booleans (¬,∧,∨, 0, 1) and a modal operator ♦ (further connectives such as
→,� are defined in the standard way). Underlined letters stand for tuples of
unspecified length formed by distinct elements. Thus, we may use x for a tuple
x1, . . . , xn. When we write φ(x) we want to stress that φ contains at most the
variables x. The same convention applies to sets of formulae: if Γ is a set of
formulae and we write Γ (x), we mean that all formulae in Γ are of the kind
φ(x). The modal complexity of a formula φ counts the maximum number of
nested modal operators in φ (the precise definition is by an obvious induction).
The polarity (positive/negative) of an occurrence of a subformula in a formula
φ is defined inductively: φ is positive in φ, the polarity is preserved through all
connectives, except ¬ that reverses it. When we say that a propositional variable
is positive (negative) in φ we mean that all its occurrences are such.

A logic is a set of modal formulae containing tautologies, Aristotle’s principle
(namely �(x → y) → (�x → �y)) and closed under uniform substitution,
modus ponens and necessitation (namely φ/�φ).

We are interested in the global consequence relation decision problem for modal
logics [20, Ch. 3.1]. This can be formulated as follows: given a logic L, a finite set
Γ = {φ1, . . . , φn} of formulae and a formula ψ, decide whether Γ �L ψ. Here the
notation Γ �L ψ means that there is a proof of ψ using tautologies, Aristotle’s
principle and the formulae in Γ , as well as necessitation, modus ponens and
substitution instances of formulae from a set of axioms for L (notice that uniform
substitutions cannot be applied to formulae in Γ).

In proof theory, logics are specified via axiomatic systems consisting of infer-
ence rules (axioms are viewed as 0-premises rules). Formally, an inference rule
is an n+ 1-tuple of formulae, written in the form

φ1(x), . . . , φn(x)

ψ(x).
(8)

An axiomatic system Ax is a set of inference rules. We write �Ax φ to mean
that φ has a proof using tautologies and Aristotle’s principle as well as modus
ponens, necessitation and inferences from Ax. When we say that a proof uses
an inference rule such as (8), we mean that the proof can introduce at any step
i a formula of the kind ψσ provided it already introduced in the previous steps
j1, . . . , jn < i the formulae φ1σ, . . . , φnσ, respectively. Here σ is a substitution
and notation ψσ denotes the application of the substitution σ to ψ.

Given a finite set Γ = {φ1, . . . , φn}, an inference system Ax and a formula
ψ, we write Γ �Ax ψ to mean that ψ has a proof using tautologies, Aristotle’s

Bounded Proofs and Step Frames 49

principle and elements from Γ as well as modus ponens, necessitation and in-
ferences from Ax (again notice that uniform substitution cannot be applied to
members of Γ). We need some care when replacing a logic L with an inference
system Ax, because we want global consequence relation to be preserved, in the
sense of Proposition 1(ii) below. To this aim, we need to use derivable rules: the
rule (8) is derivable in a logic L iff {φ1, . . . , φn} �L ψ. We say that the inference
rule (8) is reduced iff (i) the formulae φ1, . . . , φn, ψ have modal complexity at
most 1; (ii) every propositional variable occuring in (8) occurs within a modal
operator2 An axiomatic system is reduced iff all inference rules in it are reduced.

Definition 1. An axiomatic system Ax is adequate for a logic L (or Ax is an
axiomatic system for L) iff (i) it is reduced; (ii) all rules in Ax are derivable in
L; (iii) �Ax φ for all φ ∈ L.

Proposition 1. (i) For any modal logic L, there always exists an axiomatic
system Ax, which is adequate for L.

(ii) If Ax is an axiomatic system for L, then Γ �Ax ψ iff Γ �L ψ for all Γ, ψ.

Proof. We just indicate how to prove (i) by sketching an algorithm replacing
every rule (8) by one or more reduced rules. Applying exhaustively this algorithm
to the formulae in L (or just to a set of axioms for L) viewed as zero-premises
rules, we obtain the desired axiomatic system for L. Notice that the algorithm has
a large degree of non determinism, so proof-theoretic properties of the outcome
may be influenced by the way we run it.

Take a formula α having modal complexity at least one and take an occurrence
of it located inside a modal operator in (8). We can obtain an equivalent rule by
replacing this occurrence by a new propositional variable y and by adding as a
further premise α→ y (resp. y → α) if the occurrence of α is positive within ψ
or negative within one of the φi’s (resp. if the occurrence of α is negative within
ψ or positive within one of the φi’s). Continuing in this way, in the end, only
formulae of modal complexity at most 1 will occur in the rule. If a variable x
does does not occur inside a modal operator in (8), one can add �(x∨ ¬x) as a
further premise (alternatively, one can show that x is eliminable from (8)). �

Thus by Proposition 1(ii), the global consequence relation Γ �Ax φ does not
depend on an axiomatic system Ax chosen for a given logic L. However, deciding
Γ �Ax φ is easier for ‘nicer’ axiomatic systems. In particular, the bounded proof
property below may hold only for ‘nice’ axiomatic systems for a logic L.

When we write Γ �nAx φ we mean that φ can be proved from Ax, Γ (in the
above sense) by using a proof in which only formulae of modal complexity at
most n occur.

Definition 2. We say that Ax has the bounded proof property (the bpp, for
short) iff for every formula φ of modal complexity at most n and for every Γ
containing only formulae of modal complexity at most n, we have

Γ �Ax φ ⇒ Γ �nAx φ.

2 Requirement (ii) is just to avoid possible misunderstanding in Definition 4.

50 N. Bezhanishvili and S. Ghilardi

It should be clear that the bpp for a finite axiom system Ax which is adequate
for L implies the decidability of the global consequence relation problem for L.
This is because we have a bounded search space for possible proofs: in fact, there
are only finitely many non-provably equivalent formulae containing a given finite
set of variables and having the modal complexity bounded by a given n. Notice
that in a proof witnessing Γ (x) �nAx φ(x) we can freely suppose that only the
variables x occur, because extra variables can be uniformly replaced by, say, a
tautology.

3 Step Frames

The aim of this section is to supply a semantic framework for investigating
proofs and formulae of modal complexity at most 1. We first recall the definition
of one-step frames from [14] and [8], and define conservative one-step frames.

Definition 3. A one-step frame is a quadruple S = (W1,W0, f, R), whereW0,W1

are sets, f : W1 → W0 is a map and R ⊆ W1 ×W0 is a relation between W1 and
W0. We say that S is conservative iff f is surjective and the following condition is
satisfied for all w1, w2 ∈W1 :

f(w1) = f(w2) & R(w1) = R(w2) ⇒ w1 = w2. (9)

We shall use the notation S∗ to indicate the so-called complex algebra (one-
step modal algebra in the terminology of [7, 8]) formed by the 4-tuple

S∗ = (℘(W0), ℘(W1), f
∗,♦R),

where f∗ is the Boolean algebra homomorphism given by inverse image along f
and ♦R is the semilattice morphism associated with R. The latter is defined as
follows: for A ⊆W0, we have ♦R(A) = {w ∈ W1 | R(w) ∩ A �= ∅}.

Notice that a one-step frame S = (W1,W0, f, R), where W0 =W1 and f = id
is just an ordinary Kripke frame. For clarity, we shall sometimes call Kripke
frames standard frames.

We spell out what it means for a one-step frame to validate a reduced ax-
iomatic system Ax. Notice that only formulae of modal complexity at most 1
are involved.

An S-valuation v on a one-step frame S = (W1,W0, f, R) is a map associating
with each variable x an element v(x) ∈ ℘(W0). For every formula φ of complexity
0, we define φv0 ∈ ℘(W0) inductively as follows:

xv0 = v(x) (for every variable x);

(φ ∧ ψ)v0 = φv0 ∩ ψv0; (φ ∨ ψ)v0 = φv0 ∪ ψv0; (¬φ)v0 = W0 \ (φv0).

For each formula φ of complexity 0, we define φv1 ∈ ℘(W1) as f
∗(φv0). For φ of

complexity 1, φv1 ∈ ℘(W1) is defined inductively as follows:

(♦φ)v1=♦R(φ
v0); (φ∧ψ)v1=φv1∩ψv1; (φ∨ψ)v1=φv1∪ψv1; (¬φ)v1 =W1\(φv1).

Bounded Proofs and Step Frames 51

Definition 4. We say that S validates the inference rule (8) iff for every S-
valuation v,we have that

φv11 = W1, . . . , φ
v1
n = W1, imply ψ

v1 =W1.

We say that S validates an axiomatic system Ax (written S |= Ax) iff S validates
all inferences from Ax.

Notice that it might well be that Ax1,Ax2 are both adequate for the same
logic L, but that only one of them is validated by a given S (see Section 5).

We can specialize the notion of a valuation to standard frames F = (W,R) and
obtain well-known definitions from the literature. In particular, given a valuation
v, for any formula φ (of any modal complexity) we can define φv by

xv = v(x) (for every variable x);

(♦φ)v = ♦R(φ
v); (φ ∧ ψ)v = φv ∩ ψv;

(φ ∨ ψ)v = φv ∪ ψv; (¬φ)v =W \ (φv).

We say that F is a frame for L [10, 20] iff φv =W for all v and all φ ∈ L.
We now introduce morphisms of one-step frames. In the definition below, we

use ◦ to denote relational composition: for R1 ⊆ X×Y and R2 ⊆ Y ×Z, we have
R2 ◦ R1 := {(x, z) ∈ X × Z | ∃y ∈ Y ((x, y) ∈ R1 & (y, z) ∈ R2)}. Notice that
the relational composition applies also when one or both of R1, R2 are functions.

Definition 5. A p-morphism between step frames F ′ = (W ′
1,W

′
0, f

′, R′) and
F = (W1,W0, f, R) is a pair of surjective maps μ :W ′

1 −→W1, ν : W ′
0 −→W0

such that
f ◦ μ = ν ◦ f ′ and R ◦ μ = ν ◦R′. (10)

Notice that, when F ′ is standard (i.e.,W ′
1 = W ′

0 and f ′ = id), ν must be f ◦μ
and (10) reduces to

R ◦ μ = f ◦ μ ◦R′. (11)

In the next section we formulate a semantic criterion for an axiomatic system
to enjoy the bounded proof property in terms of one-step frames. For this we
need to recall extensions of one step-frames [8].

Definition 6. A one-step extension of a one-step frame S0 = (W1,W0, f0, R0)
is a one-step frame S1 = (W2,W1, f1, R1) satisfying R0 ◦ f1 = f0 ◦ R1. A class
K of one-step frames has the extension property iff every conservative one-step
frame S0 = (W1,W0, f0, R0) in K has an extension S1 = (W2,W1, f1, R1) such
that f1 is surjective and S1 is also in K.

Theorem 1. An axiomatic system Ax has the bpp iff the class of finite one-step
frames validating Ax has the extension property.

We point out again that the proofs of this and other results of this paper can
be found in [7]. The characterization of the bpp obtained in Theorem 1 may
not be easy to handle, because in concrete examples one would like to avoid
managing one-step extensions and would prefer to work with standard frames
instead. This is possible, if we combine the bpp with the finite model property.

52 N. Bezhanishvili and S. Ghilardi

Definition 7. A logic L has the (global) finite model property, the fmp for
short, if for every finite set of formulae Γ and for every formula φ we have
Γ ��L φ iff there exist a finite frame F = (W,R) for L and a valuation v on F
such that (

∧
Γ)v =W and φv �=W .

We are ready to state our main result.

Theorem 2. Let L be a logic and Ax an axiomatic system adequate for L. The
following two conditions are equivalent:

(i) Ax has the bpp and L has the fmp;
(ii) Every finite conservative one-step frame validating Ax is a p-morphic image

of some finite frame for L.

4 One-Step Correspondence

In this section we develop the correspondence theory for one-step frames based
on the classical correspondence theory for standard frames.

We will start by reformulating Definition 4. Notice that a one-step frame S =
(W1,W0, f, R) is a two-sorted structure for the language Lf having a unary func-
tion and a binary relation symbol. The complex algebra S∗ = (℘(W0), ℘(W1),
f∗,♦R) is also a two-sorted structure for the first-order language La having two
sorts, Boolean operations for each of them, and two-sorted unary function sym-
bols that we call i and ♦ (they are interpreted in S∗ as f∗ and ♦R, respectively).
As a first step, we reformulate the validity of inference in terms of truth of a
formula in the language La. We need to turn modal formulae φ of complexity at
most 1 into La-terms. This is easily done as follows: just replace every occurrence
of a variable x which is not located inside a modal connective in φ by i(x). Let
us call φ̃ the result of such replacement. The following fact is then clear.

Proposition 2. A step frame S validates a reduced inference rule of the kind (8)
iff considering S∗ as a two-sorted La-structure, we have

S∗ |= ∀x (φ̃1 = 1 & · · ·& φ̃n = 1→ ψ̃ = 1). (12)

If we rewrite (12) in terms of the Lf -structure S, we realize that this is a truth
relation regarding a second order formula, because the quantifiers ∀x range over
tuples of subsets. The idea (borrowed from correspondence theory) is to perform
symbolic manipulations on (12) and to convert it into a first-order Lf -condition.
This procedure works for many concrete examples, although there are cases
where it fails. We follow a long line of research, e.g., [3–5, 12, 13, 18, 22] (see
also [10,20]). Similarly to these papers, our basic method is to perform symbolic
manipulations on the algebraic language La.

We start by enriching La. The enrichment comes from the following observa-
tions. Let F = (W0,W1, f, R) be a one-step frame. First of all, the morphism
i := f∗ : ℘(W0) → ℘(W1) has a left i∗ and a right adjoint i!. In fact i∗ is the
direct image along f and i! is ¬i∗¬. The operator ♦ : ℘(W0)→ ℘(W1) (we skip

Bounded Proofs and Step Frames 53

the index R) also has a right adjoint, which is the Box operator � induced by
the converse relation Ro of R. We shall make use also of the related Diamond �
defined as ¬�¬. Thus we enrich La with extra unary function symbols i∗, i!,�,�
of appropriate sorts. In addition, we shall make use of the letters w0

i , w
1
i to de-

note nominals, namely quantified variables ranging over atoms (i.e., singleton
subsets) of ℘(W0), ℘(W1), respectively. For simplicity and for readability, we
shall avoid the superscript (−)1, (−)0 indicating the sort of nominals. However,
we shall adopt the convention of using preferably the variables w,w0, w

′, . . . for
nominals of sort 1, the variables v, v0, v

′, . . . for nominals of sort 0 and the letters
u, u0, u

′, . . . for nominals of unspecified sort (i.e., for nominals that might be of
both sorts, which are useful in preventing, e.g., rule duplications). We call L+

a

the enriched language.
The idea is the following. We want to analyze validity of the inference rule (8)

in a one-step frame F . We initialize our procedure to:

∀x (1 ≤ φ̃1 & · · ·& 1 ≤ φ̃n → 1 ≤ ψ̃). (13)

Here and below, we use abbreviations such as α ≤ β to mean α → β = 1.
Usually, we omit external quantifiers ∀x and use sequent notation, so that (13)
is written as

1 ≤ φ̃1, . . . , 1 ≤ φ̃n ⇒ 1 ≤ ψ̃. (14)

We then try to find a sequence of applications of the rules below ending with
a formula where only quantifiers for nominals occur (that is, the variables x
have been eliminated). If we succeed, the standard translation can easily and
automatically convert the final formula into a first-order formula in the language
Lf . It is possible to characterize syntactic classes (e.g., Sahlqvist-like classes and
beyond) where the procedure succeeds, but for the purposes of this paper we
are not interested in the details of such characterizations. They can be obtained
in a straightforward way by extending the well-known characterizations, see
e.g., [3, 13, 18]). The rules we use are divided into three groups:

(a) Any set of invertible rules in classical first-order sequent calculus. We refer
the reader to proof-theory textbooks such as [21] for more details on this;

(b) Rules for managing nominal quantifiers (see Table 1);
(c) Adjunction rules (see Table 2);
(d) Ackermann rules (see Table 3).

Rules (a)-(b)-(c) are local, in the sense that they can be applied simply by
replacing the formula above the line by the formula below the line (or vice versa).

Rules (d) to the contrary require checking global monotonicity conditions at
the whole sequent level. Ackermann rules eliminate the quantified variables x
one by one in successful runs.

When we start from a logic L, we first need to convert the axioms into reduced
inference rules. The method indicated in the proof of Proposition 1 has the big
advantage of introducing new quantified variables that can be easily eliminated
via the adjunction and the Ackermann rules, as is shown in the example below.

54 N. Bezhanishvili and S. Ghilardi

Table 1. Nominals Rules

φ̃ ≤ ψ̃

∀u (u≤φ̃ → u≤ψ̃)
u ≤ ψ̃1∧ψ̃2

u≤ψ̃1 & u≤ψ̃2

u ≤ ψ̃1∨ψ̃2

u≤ψ̃1 or u≤ψ̃2

u ≤ ¬ψ̃
u �≤ψ̃

u �≤ψ̃
ψ̃≤¬u

w ≤ ♦ψ̃
∃v (w≤♦v & v≤ψ̃)

v ≤ �ψ̃
∃w (v≤�w & w≤ψ̃)

u ≤ 1
�

u ≤ 0
⊥

v ≤ i∗(ψ̃)

∃w (v≤i∗(w) & w≤ψ̃)

Table 2. Adjunction Rules

φ̃ ≤ �ψ̃
�φ̃ ≤ ψ̃

φ̃ ≤ �ψ̃
♦φ̃ ≤ ψ̃

φ̃ ≤ i(ψ̃)

i∗(φ̃) ≤ ψ̃

φ̃ ≤ i!(ψ̃)

i(φ̃) ≤ ψ̃

Table 3. Ackermann Rules

Γ, x≤φ̃⇒ Δ

Γ (φ̃/x)⇒ Δ(φ̃/x)
(x is not in φ, is positive in all Γ , negative in all Δ)

Γ, φ̃≤x⇒ Δ

Γ (φ̃/x)⇒ Δ(φ̃/x)
(x is not in φ, is negative in all Γ , positive in all Δ)

Bounded Proofs and Step Frames 55

Example 1. Let us consider the system K4 that is axiomatized by the axiom
�x→ ��x. Since this axiom does not have modal complexity 1, we turn it into
the inference rule

�x ≤ y

�x ≤ �y (15)

following the algorithm in the proof of Proposition 1. We then initialize our
procedure to �x ≤ i(y)⇒ �x ≤ �y. By adjunction rules, we obtain

i∗(�x) ≤ y ⇒ �x ≤ �y.

We can immediately eliminate y via the Ackermann rules and get�x ≤ �i∗(�x).
We now use nominals rules together with rules (a) (i.e., invertible rules in classi-
cal sequent calculus) and get w ≤ �x⇒ w ≤ �i∗(�x) (notice that the nominal
variable w is implicitly universally quantified here). By adjointness we obtain a
sequent �w ≤ x⇒ w ≤ �i∗(�x) to which the Ackermann rules apply yielding:

w ≤ �i∗(��w).

This is a condition involving only (one) quantified variable for nominals. Thus,
in the language Lf for one-step frames it is first-order definable (to do the
unfolding, it is sufficient to notice that the nominal w stands in fact for the set
{w′ ∈ W1 | w′ = w}). After appropriate simplifications, we obtain

∀w ∀v (R(w, v)→ ∃w1 (f(w1) = v & R(w1) ⊆ R(w))). (16)

5 Examples and Case Studies

In this section we show how to apply Theorem 2 first to basic, and later to more
elaborate examples. The methodology is the following. We have three steps, as
pointed out in Section 1:

– starting from a logic L, we produce an equivalent axiomatic system AxL
with reduced rules (there is a default procedure for that, see the proof of
Proposition 1);

– we apply the correspondence machinery of Section 4 and try to obtain a
first-order formula αL in the two-sorted language Lf of one-step frames
characterizing the one-step frames validating AxL;

– we apply Theorem 2 and try to prove that conservative finite one-step frames
satisfying αL are p-mophic images of standard frames for L.

If we succeed, we obtain both the fmp and bpp for L. In examples, given a finite
conservative one-step frame F = (X,Y, f,R) satisfying αL, the finite frame
required by Theorem 2 is often based on X and the p-morphism is the identity.
Thus one must simply define a relation S on X in such a way that (11) holds
(with R′ = S). Condition (11), taking into consideration that μ is the identity,
reduces to (4). There are standard templates for S. We give some examples below
where the procedure succeeds, supplying also the relevant hints for the definition
of the right S.

56 N. Bezhanishvili and S. Ghilardi

– L = K : this is the basic normal modal logic. To obtain the appropriate S,
we take S := fo ◦R, i.e., we put wSw′ iff f(w′) ∈ R(w).

– L = T : this is the logic axiomatized by �x → x. The one-step correspon-
dence gives f ⊆ R as the semantic condition equivalent to being a one-step
frame for L. To obtain the appropriate S we again take S := fo ◦R.

– L = K4 : this is the logic axiomatized by �x → ��x. As we know, this
axiom can be turned into the equivalent rule (15) and the one-step corre-
spondence gives (16) as the semantic condition equivalent to being a one-
step frame for K4. We take S to be (fo ◦ R)∩ ≥R (where w ≥R w′ is
defined as R(w) ⊇ R(w′)); this is the same as saying that wSw′ holds iff
R(w) ⊇ {f(w′)} ∪R(w′).

– L = S4 Here one can combine the previous two cases. However, the defini-
tion of S as (fo ◦R)∩ ≥R simplifies to ≥R by reflexivity.

The details required to justify the claims are straightforward but sometimes a
bit involved (they considerably simplify by using a relational formalism), see [7,
Sec. 8] for the details. All the claims we need are easy for current provers (the
SPASS prover for instance solves each of the above problems in less than half a
second on a common laptop).

Remark 1. Notice that the definition of a conservative finite one-step frame
(Definition 3) has two conditions. However, only the first one (namely surjec-
tivity of f) is used in the computations above. In fact, it is not clear whether
Theorem 2 holds if we drop the second condition (9) in the definition of a one-
step conservative frame.

A Case Study: S4.3. As a more elaborated example we take S4.3, which is
S4 plus the axiom

�(�x→ y) ∨�(�y → x).

Applying the algorithm from the proof of Proposition 1, we obtain a rule which
is ‘bad’ (the bpp fails for the related axiomatic system, see [7, Sec. 9] for details).

Instead of a rule obtained by the procedure of Proposition 1, we axiomatize
S4.3 by using the reflexivity axiom for T and the following infinitely many rules
proposed by R. Goré [19]:

· · ·�y → xj ∨
∨

j �=i �xi · · ·
�y →

∨n
i=1 �xi

(17)

The rules are indexed by n and the n-th rule has n premises, according to the
values j = 1, . . . , n. If we collectively do the correspondence theory on these
rules, we obtain the following condition on finite one-step frames:

∀w ∀S ⊆ R(w) ∃v ∈ S ∃w′ (f(w′) = v & S ⊆ R(w′) ⊆ R(w)). (18)

This condition is sufficient to prove that a finite one-step frame (X,Y, f,R)
satisfying (18) can be extended to a finite frame (X ′, R′) which is a frame for
S4.3. In the proof, we do not take X ′ to be X , but we define X ′ via a specific
construction (see [7, Thm. 3]). Summing everything up, we obtain:

Bounded Proofs and Step Frames 57

Theorem 3. S4.3 axiomatized by Goré’s rules (17) has the bpp and fmp.

A Case Study: GL. The Gödel-Löb modal logic GL can be axiomatized by
the axiom �(�x → x) → �x. This system is known to have the fmp and to
be complete with respect to the class of finite irreflexive transitive frames. From
the proof-theoretic side, the following rule

x ∧�x ∧�y → y

�x→ �y (19)

has been proposed by Avron in [2], and shown to lead to a cut-eliminating
system. We now analyze the axiomatic system for GL consisting of the only
rule (19). If we analyze the validity of rule (19) in a finite one-step frame, we
obtain the following condition

∀w (R(w) ⊆ {f(w′) | R(w′) ⊂ R(w)}). (20)

Notice that condition (20) implies the one-step transitivity condition (16). Using
Theorem 2 and a specific construction of the p-morphic extension (see [7, Thm.
4] for details), we obtain:

Theorem 4. GL axiomatized by Avron’s rule (19) has the bpp and fmp.

We conclude by mentioning that it is possible to apply our results for show-
ing that the axiomatic system for GL obtained by adding to the transitivity
rule (15) the well-known Löb rule �x → x/x is indeed unsatisfactory from a
proof-theoretic point of view, because the bpp fails for it [7, Ex. 3].

6 Conclusions and Future Work

We have developed a uniform semantic method for analyzing proof systems
of modal logics. The method relies on p-morphic extensions of finite one-step
frames. In simple cases, by a one-step version of the classical correspondence
theory, the application of our methodology is completely algorithmic. This is a
concrete step towards mechanizing the metatheory of propositional modal logic.

We also analyzed our approach in two nontrivial cases, namely for the cut-
free axiomatizations of S4.3 and GL known from the literature. We succeeded
in both cases in proving the fmp and bpp by our methods. The proofs are not
entirely mechanical, but from the details given in [7] it emerges that they are
still based on a common feature: an induction on the cardinality of accessible
worlds in finite one-step frames.

For future, it will be important to see whether this method can fruitfully
apply to complicated logics arising in computer science applications (such as dy-
namic logic, linear or branching time temporal logics, the modal μ-calculus, etc.).
Another important series of questions concerns the clarification of the relation-
ship between our techniques and standard techniques employed in filtrations and
analytic tableaux. Finally, a comparison with the algebraic approach (in a non-
distributive context) to cut elimination via MacNeille completions for the full
Lambek calculus FL developed in [11] might bring further fruitful consequences.

58 N. Bezhanishvili and S. Ghilardi

References

1. Abramsky, S.: A Cook’s tour of the finitary non-well-founded sets. In: Essays in
Honour of Dov Gabbay, pp. 1–18. College Publications (2005)

2. Avron, A.: On modal systems having arithmetical interpretations. J. Symbolic
Logic 49(3), 935–942 (1984)

3. van Benthem, J.: Modal logic and classical logic. Indices: Monographs in Philo-
sophical Logic and Formal Linguistics, III. Bibliopolis, Naples (1985)

4. van Benthem, J.: Modal frame correspondences and fixed-points. Studia Log-
ica 83(1-3), 133–155 (2006)

5. van Benthem, J., Bezhanishvili, N., Hodkinson, I.: Sahlqvist correspondence for
modal mu-calculus. Studia Logica 100, 31–60 (2012)

6. Bezhanishvili, N., Gehrke, M.: Finitely generated free Heyting algebras via Birkhoff
duality and coalgebra. Log. Methods Comput. Sci. 7(2:9), 1–24 (2011)

7. Bezhanishvili, N., Ghilardi, S.: Bounded proofs and step frames. Technical Report
306, Department of Philosophy, Utrecht University (2013)

8. Bezhanishvili, N., Ghilardi, S., Jibladze, M.: Free modal algebras revisited: the
step-by-step method. In: Leo Esakia on Duality in Modal and Intuitionistic Logics.
Trends in Logic. Springer (to appear, 2013)

9. Bezhanishvili, N., Kurz, A.: Free modal algebras: A coalgebraic perspective. In:
Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS,
vol. 4624, pp. 143–157. Springer, Heidelberg (2007)

10. Chagrov, A., Zakharyaschev, M.: Modal Logic. The Clarendon Press (1997)
11. Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural

logics: cut-elimination and completions. Ann. Pure Appl. Logic 163(3), 266–290
(2012)

12. Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Essays in
Honour of J. van Benthem (to appear)

13. Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and com-
pleteness in modal logic. I. The core algorithm SQEMA. Log. Methods Comput.
Sci. 2(1:5), 1–26 (2006)

14. Coumans, D., van Gool, S.: On generalizing free algebras for a functor. Journal of
Logic and Computation 23(3), 645–672 (2013)

15. Fine, K.: Normal forms in modal logic. Notre Dame J. Formal Logic 16, 229–237
(1975)

16. Ghilardi, S.: An algebraic theory of normal forms. Annals of Pure and Applied
Logic 71, 189–245 (1995)

17. Ghilardi, S.: Continuity, freeness, and filtrations. J. Appl. Non-Classical Log-
ics 20(3), 193–217 (2010)

18. Goranko, V., Vakarelov, D.: Elementary canonical formulae: extending Sahlqvist’s
theorem. Ann. Pure Appl. Logic 141(1-2), 180–217 (2006)

19. Goré, R.: Cut-free sequent and tableaux systems for propositional diodorean modal
logics. Technical report, Dept. of Comp. Sci., Univ. of Manchester (1993)

20. Kracht, M.: Tools and techniques in modal logic. Studies in Logic and the Foun-
dations of Mathematics, vol. 142. North-Holland Publishing Co. (1999)

21. Negri, S., von Plato, J.: Structural proof theory. Cambridge University Press, Cam-
bridge (2001)

22. Sambin, G., Vaccaro, V.: A new proof of Sahlqvist’s theorem on modal definability
and completeness. Journal of Symbolic Logic 54, 992–999 (1989)

Compression of Propositional Resolution Proofs

by Lowering Subproofs

Joseph Boudou1,� and Bruno Woltzenlogel Paleo2,��

1 Université Paul Sabatier, Toulouse
joseph.boudou@matabio.net

2 Vienna University of Technology
bruno@logic.at

Abstract. This paper describes a generalization of the LowerUnits al-
gorithm [8] for the compression of propositional resolution proofs. The
generalized algorithm, called LowerUnivalents, is able to lower not only
units but also subproofs of non-unit clauses, provided that they satisfy
some additional conditions. This new algorithm is particularly suited
to be combined with the RecyclePivotsWithIntersection algorithm
[8]. A formal proof that LowerUnivalents always compresses more than
LowerUnits is shown, and both algorithms are empirically compared on
thousands of proofs produced by the SMT-Solver veriT.

1 Introduction

Propositional resolution is among the most successful proof calculi for automated
deduction in propositional logic available today. It provides the foundation for
DPLL- and CDCL-based Sat/SMT-solvers [4], which perform surprisingly well
in practice [10], despite the NP-completeness of propositional satisfiability [5]
and the theoretical difficulty associated with NP-complete problems.

Resolution refutations can also be output by Sat/SMT-solvers with an accept-
able efficiency overhead and are detailed enough to allow easy implementation of
efficient proof checkers. They can, therefore, be used as certificates of correctness
for the answers provided by these tools in case of unsatisfiability.

However, as the refutations found by Sat/SMT-solvers are often redundant,
techniques for compressing and improving resolution proofs in a post-processing
stage have flourished. Algebraic properties of the resolution operation that might
be useful for compression were investigated in [7]. Compression algorithms based
on rearranging and sharing chains of resolution inferences have been developed
in [1] and [12]. Cotton [6] proposed an algorithm that compresses a refutation by
repeteadly splitting it into a proof of a heuristically chosen literal � and a proof of
�, and then resolving them to form a new refutation. The Reduce&Reconstruct
algorithm [11] searches for locally redundant subproofs that can be rewritten
into subproofs of stronger clauses and with fewer resolution steps. In [2] two

� Supported by the Google Summer of Code 2012 program.
�� Supported by the Austrian Science Fund, project P24300.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 59–73, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

60 J. Boudou and B. Woltzenlogel Paleo

linear time compression algorithms are introduced. One of them is a partial reg-
ularization algorithm called RecyclePivots. An enhanced version of this latter
algorithm, called RecyclePivotsWithIntersection (RPI), is proposed in [8],
along with a new linear time algorithm called LowerUnits. These two last al-
gorithms are complementary and better compression can easily be achieved by
sequentially composing them (i.e. executing one after the other).

In this paper, the new algorithm LowerUnivalents, generalizing LowerUnits,
is described. Its achieved goals are to compress more than LowerUnits and to al-
low fast non-sequential combination with RPI. While in a sequential combination
one algorithm is simply executed after the other, in a non-sequential combina-
tion, both algorithms are executed simultaneously when the proof is traversed.
Therefore, fewer traversals are needed.

The next section introduces the propositional resolution calculus using nota-
tions that are more convenient for describing proof transformation operations.
It also describes the new concepts of active literals and valent literals and proves
basic but essential results about them. Section 3 briefly describes the LowerUnits
algorithm. In Sect. 4 the new algorithm LowerUnivalents is introduced and it is
proved that it always compresses more than LowerUnits. Section 5 describes the
non-sequential combination of LowerUnivalents and RPI. Lastly, experimental
results are discussed in Sect. 6.

2 Propositional Resolution Calculus

A literal is a propositional variable or the negation of a propositional variable.
The complement of a literal � is denoted � (i.e. for any propositional variable p,
p = ¬p and ¬p = p). The set of all literals is denoted L. A clause is a set of
literals. ⊥ denotes the empty clause.

Definition 1 (Proof). A directed acyclic graph 〈V,E, Γ 〉, where V is a set of

nodes and E is a set of edges labeled by literals (i.e. E ⊂ V ×L×V and v1
�−→ v2

denotes an edge from node v1 to node v2 labeled by �), is a proof of a clause Γ
iff it is inductively constructible according to the following cases:

1. If Γ is a clause, Γ̂ denotes some proof 〈{v},∅, Γ 〉, where v is a new node.
2. If ψL is a proof 〈VL, EL, ΓL〉 and ψR is a proof 〈VR, ER, ΓR〉 and � is a literal

such that � ∈ ΓL and � ∈ ΓR, then ψL � ψR denotes a proof 〈V,E, Γ 〉 s.t.

V = VL ∪ VR ∪ {v}

E = EL ∪ ER ∪
{
v

�−→ ρ(ψL), v
�−→ ρ(ψR)

}
Γ =

(
ΓL \

{
�
})
∪ (ΓR \ {�})

where v is a new node and ρ(ϕ) denotes the root node of ϕ. !"

If ψ = ϕL � ϕR, then ϕL and ϕR are direct subproofs of ψ and ψ is a child
of both ϕL and ϕR. The transitive closure of the direct subproof relation is

Compression of Propositional Resolution Proofs by Lowering Subproofs 61

Input: a proof ϕ
Input: D a set of subproofs
Output: a proof ϕ′ obtained by deleting the subproofs in D from ϕ

1 if ϕ ∈ D or ρ(ϕ) has no premises then
2 return ϕ ;

3 else
4 let ϕL, ϕR and 	 be such that ϕ = ϕL 	� ϕR ;
5 let ϕ′

L = delete(ϕL,D) ;
6 let ϕ′

R = delete(ϕR,D) ;

7 if ϕ′
L ∈ D then

8 return ϕ′
R ;

9 else if ϕ′
R ∈ D then

10 return ϕ′
L ;

11 else if 	 /∈ Γϕ′
L
then

12 return ϕ′
L ;

13 else if 	 /∈ Γϕ′
R

then

14 return ϕ′
R ;

15 else
16 return ϕ′

L 	� ϕ
′
R ;

Algorithm 1. delete

the subproof relation. A subproof which has no direct subproof is an axiom of
the proof. Contrary to the usual proof theoretic conventions but following the
actual implementation of the data structures used by LowerUnivalents, edges
are directed from children (resolvents) to their parents (premises). Vψ , Eψ and
Γψ denote, respectively, the nodes, edges and proved clause (conclusion) of ψ.

Definition 2 (Active literals). Given a proof ψ, the set of active literals
Aψ(ϕ) of a subproof ϕ are the labels of edges coming into ϕ’s root:

Aψ(ϕ) = {� | ∃ς ∈ Vψ . ς �−→ ρ(ϕ)}

Two operations on proofs are used in this paper: the resolution operation �

introduced above and the deletion of a set of subproofs from a proof, denoted
ψ \ (ϕ1 . . . ϕn) where ψ is the whole proof and ϕi are the deleted subproofs.
Algorithm 1 describes the deletion operation, with ψ \ (ϕ1 . . . ϕn) being the
result of delete(ψ,{ϕ1, . . . , ϕn}). Both the resolution and deletion operations
are considered to be left associative.

The deletion algorithm is a minor variant of the Reconstruct-Proof al-
gorithm presented in [3]. The basic idea is to traverse the proof in a top-down
manner, replacing each subproof having one of its premises marked for deletion
(i.e. in D) by its other direct subproof. The special case when both ϕ′

L and ϕ′
R

belong to D is treated rather implicitly and deserves an explanation: in such a
case, one might intuitively expect the result ϕ′ to be undefined and arbitrary.

62 J. Boudou and B. Woltzenlogel Paleo

Furthermore, to any child of ϕ, ϕ′ ought to be seen as if it were in D, as if
the deletion of ϕ′

L and ϕ′
R propagated to ϕ′ as well. Instead of assigning some

arbitrary proof to ϕ′ and adding it to D, the algorithm arbitrarily returns (in
line 8) ϕ′

R (which is already in D) as the result ϕ′. In this way, the propagation
of deletion is done automatically and implicitly. For instance, the following hold:

ϕ1 � ϕ2 \ (ϕ1, ϕ2) = ϕ2 (1)

ϕ1 � ϕ2 �′ ϕ3 \ (ϕ1, ϕ2) = ϕ3 \ (ϕ1, ϕ2) (2)

A side-effect of this clever implicit propagation of deletion is that the actual
result of deletion is only meaningful if it is not in D. In the example (1), as
ϕ1 � ϕ2 \ (ϕ1, ϕ2) ∈ {ϕ1, ϕ2}, the actual resulting proof is meaningless. Only
the information that it is a deleted subproof is relevant, as it suffices to obtain
meaningful results as shown in (2).

Proposition 1. For any proof ψ and any sets A and B of ψ’s subproofs, either
ψ \ (A ∪B) ∈ A ∪B and ψ \ (A) \ (B) ∈ A∪B, or ψ \ (A ∪B) = ψ \ (A) \ (B).

Definition 3 (Valent literal). In a proof ψ, a literal � is valent for the sub-
proof ϕ iff � belongs to the conclusion of ψ \ (ϕ) but not to the conclusion of
ψ.

Proposition 2. In a proof ψ, every valent literal of a subproof ϕ is an active
literal of ϕ.

Proof. Lines 2, 12, 14 and 16 from Algorithm 1 can not introduce a new literal
in the conclusion of the subproof being processed. Let � be a valent literal of ϕ
in ψ. Because there is only one subproof to be deleted, � can only be introduced

when processing a subproof ϕ′ such that ρ(ϕ′)
�−→ ρ(ϕ). !"

Proposition 3. Given a proof ψ and a set D = {ϕ1 . . . ϕn} of ψ’s subproofs,
∀� ∈ L s.t. � is in the conclusion of ψ \ (D) but not in ψ’s conclusion, then ∃i
s.t. � is a valent literal of ϕi in ψ.

3 LowerUnits

When a subproof ϕ has more than one child in a proof ψ, it may be possible to
factor all the corresponding resolutions: a new proof is constructed by removing
ϕ from ψ and reintroducing it later. The resulting proof is smaller because ϕ
participates in a single resolution inference in it (i.e. it has a single child), while in
the original proof it participates in as many resolution inferences as the number
of children it had. Such a factorization is called lowering of ϕ, because its delayed
reintroduction makes ϕ appear at the bottom of the resulting proof.

Formally, a subproof ϕ in a proof ψ can be lowered if there exists a proof ψ′

and a literal � such that ψ′ = ψ \ (ϕ) � ϕ and Γψ′ ⊆ Γψ. It has been noted in
[8] that ϕ can always be lowered if it is a unit : its conclusion clause has only
one literal. This led to the invention of the LowerUnits algorithm, which lowers

Compression of Propositional Resolution Proofs by Lowering Subproofs 63

Input: a proof ψ
Output: a compressed proof ψ′

1 Units ← ∅ ;

2 for every subproof ϕ in a bottom-up traversal do
3 if ϕ is a unit and has more than one child then
4 Enqueue ϕ in Units;

5 ψ′ ← delete(ψ,Units) ;

6 for every unit ϕ in Units do
7 let {	} = Γϕ ;

8 if 	 ∈ Γψ′ then ψ′ ← ψ′ 	� ϕ ;

Algorithm 2. LowerUnits

every unit with more than one child, taking care to reintroduce units in an order
corresponding to the subproof relation: if a unit ϕ2 is a subproof of a unit ϕ1

then ϕ2 has to be reintroduced later than (i.e. below) ϕ1.
A possible presentation of LowerUnits is shown in Algorithm 2. Units are

collected during a first traversal. As this traversal is bottom-up, units are stored
in a queue. The traversal could have been top-down and units stored in a stack.
Units are effectively deleted during a second, top-down traversal. The last for-
loop performs the reintroduction of units.

4 LowerUnivalents

LowerUnits does not lower every lowerable subproof. In particular, it does not
take into account the already lowered subproofs. For instance, if a unit ϕ1 proving
{a} has already been lowered, a subproof ϕ2 with conclusion {¬a, b} may be
lowered as well and reintroduced above ϕ1. The posterior reintroduction of ϕ1

will resolve away ¬a and guarantee that it does not occur in the resulting proof’s
conclusion. But care must also be taken not to lower ϕ2 if ¬a is a valent literal
of ϕ2, otherwise a will undesirably occur in the resulting proof’s conclusion.

Definition 4 (Univalent subproof). A subproof ϕ in a proof ψ is univalent
w.r.t. a set Δ of literals iff ϕ has exactly one valent literal � in ψ, � /∈ Δ and
Γϕ ⊆ Δ ∪ {�}. � is called the univalent literal of ϕ in ψ w.r.t. Δ.

The principle of LowerUnivalents is to lower all univalent subproofs. Having
only one valent literal makes them behave essentially like units w.r.t. the tech-
nique of lowering. Δ is initialized to the empty set. Then the complements of the
univalent literals are incrementally added to Δ. Proposition 4 ensures that the
conclusion of the resulting proof subsumes the conclusion of the original one.

Proposition 4. Given a proof ψ, if there is a sequence U = (ϕ1 . . . ϕn) of ψ’s
subproofs and a sequence (�1 . . . �n) of literals such that ∀i ∈ [1 . . . n], �i is the
univalent literal of ϕi w.r.t. Δi−1 = {�1 . . . �i−1}, then the conclusion of

ψ′ = ψ \ (U) �n ϕn . . . �1 ϕ1

subsumes the conclusion of ψ.

64 J. Boudou and B. Woltzenlogel Paleo

Proof. The proposition is proven by induction on n, along with the fact that
ψ \ (U) /∈ U . For n = 0, U = ∅ and the properties trivially hold. Suppose a
subproof ϕn+1 of ψ is univalent w.r.t. Δn, with univalent literal �n+1. Because
�n+1 /∈ Δn, there exists a subproof of ψ\(U) with conclusion containing �n+1, and
therefore ψ \ (U)\ (ϕn+1) /∈ U ∪{ϕn+1}. Let Γ be the conclusion of ψ \ (U). The
conclusion of ψ′ = ψ \ (U ∪{ϕn+1}) = ψ \ (U)\ (ϕn+1) is included in Γ ∪{�n+1}.
The conclusion of ψ′ �n+1 ϕn+1 is included in Γ ∪ Δn. As Γ ⊆ Γψ ∪ Δn, the
conclusion of ψ′ �n+1 ϕn+1 . . . �1 ϕ1 is included in Γψ . !"

For this principle to lead to proof compression, it is important to take care
of the mutual inclusion of univalent subproofs. Suppose, for instance, that
ϕi, ϕj , ϕk ∈ U , i < j < k, ϕj is a subproof of ϕi but not a subproof of ψ \ (ϕi),
and �j ∈ Γϕk

. In this case, ϕj will have one more child in

ψ \ (U) �n ϕn . . . �k ϕk . . . �j ϕj . . . �i ϕi . . . �1 ϕ1

than in the original proof ψ. The additional child is created when ϕj is rein-
troduced. All the other children are reintroduced with the reintroduction of ϕi,
because ϕj was not deleted from ϕi.

To solve this issue, LowerUnivalents traverses the proof in a top-down man-
ner and simultaneously deletes already collected univalent subproofs, as sketched
in Algorithm 3.

Figure 1 shows an example proof and the result of compressing it with
LowerUnivalents. The top-down traversal starts with the leaves (axioms) and
only visits a child when all its parents have already been visited. Assuming the
unit with conclusion {a} is the first visited leaf, it passes the univalent test in line
5, is marked for lowering (line 8) and the complement of its univalent literal is
pushed onto Δ (line 7). When the subproof with conclusion {a, b} is considered,
Δ = {a}. As this subproof has only one valent literal b /∈ Δ and {a, b} ⊆ Δ∪{b},
it is marked for lowering as well. At this point, Δ = {a, b}, Univalents contains
the two subproofs marked for lowering and ψ′ is the subproof with conclusion
{a, b} shown in Subfig. (b) (i.e. the result of deleting the two marked subproofs
from the original proof in Subfig. (a)). No other subproof is univalent; no other
subproof is marked for lowering. The final compressed proof (Subfig. (b)) is ob-
tained by reintroducing the two univalent subproofs that had been marked (lines
9 – 12). It has one resolution less than the original. This is so because the sub-
proof with conclusion {a, b} had been used (resolved) twice in the original proof,
but lowering delays its use to a point where a single use is sufficient.

Although the call to delete inside the first loop (line 3 to 8) suggests quadratic
time complexity, this loop (line 3 to 8) can be (and has been) actually imple-
mented as a recursive function extending a recursive implementation of delete.
With such an implementation, LowerUnivalents has a time complexity linear
w.r.t. the size of the proof, assuming the univalent test (at line 5) is performed
in constant bounded time.

Determining whether a literal is valent is expensive. But thanks to Proposi-
tion 2, subproofs with one active literal which is not in Γψ can be considered
instead of subproofs with one valent literal. If the active literal is not valent, the

Compression of Propositional Resolution Proofs by Lowering Subproofs 65

Input: a proof ψ
Output: a compressed proof ψ′

1 Univalents ← ∅ ;
2 Δ← ∅ ;

3 for every subproof ϕ, in a top-down traversal do
4 ψ′ ← delete(ϕ,Univalents) ;
5 if ψ′ is univalent w.r.t. Δ then
6 let 	 be the univalent literal ;

7 push 	 onto Δ ;
8 push ψ′ onto Univalents ;

// At this point, ψ′ = ψ \ (Univalents)
9 while Univalents �= ∅ do

10 ϕ← pop from Univalents;
11 	← pop from Δ ;
12 if 	 ∈ Γψ′ then ψ′ ← ϕ	� ψ

′ ;

Algorithm 3. Simplified LowerUnivalents

⊥

a a

a, c a, c

b, c a, b a, b, c

(a) Original proof

⊥

a a

a, b a, b

b, c a, b, c

(b) Compressed proof

Fig. 1. Example of proof crompression by LowerUnivalents

corresponding subproof will simply not be reintroduced later (i.e. the condition
in line 28 of Algorithm 4 will fail).

While verifying if a subproof could be univalent, some edges might be deleted.
If a subproof ϕi has already been collected as univalent subproof with univalent
literal �i and the subproof ϕ′ being considered now has �i as active literal, the
corresponding incoming edges can be removed. Even if �i is valent for ϕ′, only
�i would be introduced, and it would be resolved away when reintroducing ϕi.
The delete operation can be easily modified to remove both nodes and edges.

Algorithm 4 sums up the previous remarks for an efficient implementation of
LowerUnivalents. As noticed above, sometimes this algorithm may consider a
subproof as univalent when it is actually not. But as care is taken when reintro-
ducing subproofs (at line 28), the resulting conclusion still subsumes the original.
The test that � ∈ Γϕ at line 20 is mandatory since � might have been deleted
from Γϕ by the deletion of previously collected subproofs.

Every node in a proof 〈V,E, Γ 〉 has exactly two outgoing edges unless it is the
root of an axiom. Hence the number of axioms is |V | − 1

2 |E| and because there
is at least one axiom, the average number of active literals per node is strictly
less than two. Therefore, if LowerUnivalents is implemented as an improved

66 J. Boudou and B. Woltzenlogel Paleo

Data: a proof ψ, compressed in place
Input: a set DV of subproofs to delete
Input: a set DE of edges to delete

1 Univalents ← ∅ ;
2 Δ← ∅ ;

3 for every subproof ϕ, in a top-down traversal of ψ do
// The deletion part.

4 if ϕ is not an axiom then
5 let ϕ = ϕL 	� ϕR ;

6 if ϕL ∈ DV or ρ(ϕ)
�−→ ρ(ϕL) ∈ DE then

7 if ρ(ϕ)
�−→ ρ(ϕR) ∈ DE then

8 add ϕ to DV ;
9 else

10 replace ϕ by ϕR ;

11 else if ϕR ∈ DV or ρ(ϕ)
�−→ ρ(ϕR) ∈ DE then

12 if ρ(ϕ)
�−→ ρ(ϕL) ∈ DE then

13 add ϕ to DV ;
14 else
15 replace ϕ by ϕL ;

// Test whether ϕ is univalent.

16 ActiveLiterals ← ∅ ;

17 for each incoming edge e = v
�−→ ρ(ϕ), e /∈ DE do

18 if 	 ∈ Δ then
19 add e to DE ;
20 else if 	 /∈ Δ, 	 ∈ Γϕ and 	 /∈ Γψ then
21 add 	 to ActiveLiterals;

22 if ActiveLiterals = {	} and Γϕ ⊆ Δ ∪ {	} then

23 push 	 onto Δ ;
24 push ϕ onto Univalents;

// Reintroduce lowered subproofs.

25 while Univalents �= ∅ do
26 ϕ← pop from Univalents;
27 	← pop from Δ ;
28 if 	 ∈ Γψ then
29 replace ψ by ϕ	� ψ ;

Algorithm 4. Optimized LowerUnivalents as an enhanced delete

Compression of Propositional Resolution Proofs by Lowering Subproofs 67

recursive delete, its time complexity remains linear, assuming membership of
literals to the set Δ is computed in constant time.

Proposition 5. Given a proof ψ, LowerUnits(ψ) has at least as many nodes
as LowerUnivalents(ψ) if there are no two units in ψ with the same conclusion.

Proof. A unit ϕ has exactly one active literal �. Therefore ϕ is collected by
LowerUnivalents unless � ∈ Δ or � ∈ Δ. If � ∈ Δ all the incoming edges to ρ(ϕ)

are deleted. If � ∈ Δ, every edge v
�−→ v′ where v is on a path from ρ(ψ) to ρ(ϕ)

is deleted. In particular, for every edge v
�−→ ρ(ϕ) the edge v

�−→ v′ is deleted.
Moreover, as � is the only literal of ϕ’s conclusion, ϕ is propagated down the
proof until the univalent subproof with valent literal � is reintroduced. !"

In the case where there are at least two units with the same conclusion in ψ,
the compressed proof depends on the order in which the units are collected. For
both algorithms, only one of these units appears in the compressed proof.

5 Remarks about Combining LowerUnivalents with RPI

Definition 5 (Regular proof [13]). A proof ψ is regular iff on every path from
its root to any of its axioms, each literal labels at most one edge. Otherwise, ψ
is irregular.

Any irregular proof can be converted into a regular proof having the same
axioms and the same conclusion. But it has been proved [9] that such a total
regularization might result in a proof exponentially bigger than the original.

Nevertheless, partial regularization algorithms, such as RecyclePivots [2]
and RecyclePivotsWithIntersection (RPI) [8], carefully avoid the worst case
of total regularization and do efficiently compress proofs. For any subproof ϕ of

a proof ψ, RPI removes the edge ρ(ϕ)
�−→ v if � is a safe literal for ϕ.

Definition 6 (Safe literal). A literal � is safe for a subproof ϕ in a proof ψ
iff � labels at least one edge on every path from ρ(ψ) to ρ(ϕ).

RPI performs two traversals. During the first one, safe literals are collected
and edges are marked for deletion. The second traversal is the effective deletion
similar to the delete algorithm.

Both sequential compositions of LowerUnits with RPI have been shown
to achieve good compression ratio [8]. However, the best combination order
(LowerUnits after RPI (LU.RPI) or RPI after LowerUnits (RPI.LU)) depends
on the input proof. A reasonable solution is to perform both combinations and
then to choose the smallest compressed proof, but sequential composition is time
consuming. To speed up DAG traversal, it is useful to topologically sort the nodes
of the graph first. But in case of sequential composition this costly operation has
to be done twice. Moreover, some traversals, like deletion, are identical in both

68 J. Boudou and B. Woltzenlogel Paleo

algorithms and might be shared. Whereas implementing a non-sequential com-
bination of RPI after LowerUnits is not difficult, a non-sequential combination
of LowerUnits after RPI would be complicated. The difficulty is that RPI could
create some new units which would be visible only after the deletion phase. A
solution could be to test for units during deletion. But if units are effectively
lowered during this deletion, their deletion would cause some units to become
non-units. And postponing deletions of units until a second deletion traversal
would prevent the sharing of this traversal and would cause one more topologi-
cal sorting to be performed, because the deletion phase significantly transforms
the structure of the DAG.

Apart from having an improved compression ratio, another advantage of
LowerUnivalents over LowerUnits is that LowerUnivalents can be imple-
mented as an enhanced delete operation. With such an implementation, a
simple non-sequential combination of LowerUnivalents after RPI can be im-
plemented just by replacing the second traversal of RPI by LowerUnivalents.
After the first traversal of RPI, as all edges labeled by a safe literal have been
marked for deletion, the remaining active literals are all valent, because for ev-

ery edge ρ(ϕ)
�−→ ρ(ϕ′), � is either a safe literal of ϕ or a valent literal of ϕ′.

Therefore, in the second traversal of the non-sequential combination (deletion
enhanced by LowerUnivalents), all univalent subproofs are lowered.

6 Experiments

LowerUnivalents and LUnivRPI have been implemented in the functional pro-
gramming language Scala1 as part of the Skeptik library2. LowerUnivalents has
been implemented as a recursive delete improvement.

The algorithms have been applied to 5 059 proofs produced by the SMT-solver
veriT3 on unsatisfiable benchmarks from the SMT-Lib4. The details on the num-
ber of proofs per SMT category are shown in Table 1. The proofs were translated
into pure resolution proofs by considering every non-resolution inference as an
axiom.

The experiment compared the following algorithms:

LU: the LowerUnits algorithm from [8];
LUniv: the LowerUnivalents algorithm;
RPILU: a non-sequential combination of RPI after LowerUnits;
RPILUniv: a non-sequential combination of RPI after LowerUnivalents;
LU.RPI: the sequential composition of LowerUnits after RPI;
LUnivRPI: the non-sequential combination of LowerUnivalents after RPI as

described in Sect. 5;
RPI: the RecyclePivotsWithIntersection from [8];

1 http://www.scala-lang.org/
2 https://github.com/Paradoxika/Skeptik
3 http://www.verit-solver.org/
4 http://www.smtlib.org/

http://www.scala-lang.org/
https://github.com/Paradoxika/Skeptik
http://www.verit-solver.org/
http://www.smtlib.org/

Compression of Propositional Resolution Proofs by Lowering Subproofs 69

Table 1. Number of proofs per benchmark category

Benchmark Number
Category of Proofs

QF UF 3907
QF IDL 475
QF LIA 385
QF UFIDL 156
QF UFLIA 106
QF RDL 30

Split: Cotton’s Split algorithm ([6]);

RedRec: the Reduce&Reconstruct algorithm from [11];
Best RPILU/LU.RPI: which performs both RPILU and LU.RPI and chooses

the smallest resulting compressed proof;
Best RPILU/LUnivRPI: which performs RPILU and LUnivRPI and chooses

the smallest resulting compressed proof.

For each of these algorithms, the time needed to compress the proof along
with the number of nodes and the number of axioms (i.e. unsat core size) have
been measured. Raw data of the experiment can be downloaded from the web5.

The experiments were executed on the Vienna Scientific Cluster6 VSC-2. Each
algorithm was executed in a single core and had up to 16 GB of memory available.
This amount of memory has been useful to compress the biggest proofs (with
more than 106 nodes).

The overall results of the experiments are shown in Table 2. The compression
ratios in the second column are computed according to formula (3), in which ψ
ranges over all the proofs in the benchmark and ψ′ ranges over the corresponding
compressed proofs.

1−
∑
|Vψ′ |∑
|Vψ|

(3)

The unsat core compression ratios are computed in the same way, but using the
number of axioms instead of the number of nodes. The speeds on the fourth
column are computed according to formula (4) in which dψ is the duration in
milliseconds of ψ’s compression by a given algorithm.∑

|Vψ |∑
dψ

(4)

For the Split and RedRec algorithms, which must be repeated, a timeout has
been fixed so that the speed is about 3 nodes per millisecond.

5 http://www.matabio.net/skeptik/LUniv/experiments/
6 http://vsc.ac.at/

http://www.matabio.net/skeptik/LUniv/experiments/
http://vsc.ac.at/

70 J. Boudou and B. Woltzenlogel Paleo

Table 2. Total compression ratios

Algorithm Compression
Unsat Core

Speed
Compression

LU 7.5 % 0.0 % 22.4 n/ms
LUniv 8.0 % 0.8 % 20.4 n/ms
RPILU 22.0 % 3.6 % 7.4 n/ms
RPILUniv 22.1 % 3.6 % 6.5 n/ms
LU.RPI 21.7 % 3.1 % 15.1 n/ms
LUnivRPI 22.0 % 3.6 % 17.8 n/ms
RPI 17.8 % 3.1 % 31.3 n/ms
Split 21.0 % 0.8 % 2.9 n/ms
RedRec 26.4 % 0.4 % 2.9 n/ms
Best RPILU/LU.RPI 22.0 % 3.7 % 5.0 n/ms
Best RPILU/LUnivRPI 22.2 % 3.7 % 5.2 n/ms

LU
0.2 0.4 0.6 0.8

L
U
n
iv

0.2

0.4

0.6

0.8

1

(a) Compression ratio

LU
0.2 0.4

L
U
n
iv

0.2

0.4

(b) Unsat core compression ratio

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15

(c) Compression ratio difference

0.1

0.2

0.3

-1 -0.5 0 0.5

(d) Duration difference

Fig. 2. Comparison between LU and LUniv

Compression of Propositional Resolution Proofs by Lowering Subproofs 71

LU.RPI
0.2 0.4 0.6 0.8

L
U
n
iv
R
P
I

0.2

0.4

0.6

0.8

1

(a) Compression ratio

LU.RPI
0.2 0.4 0.6 0.8

L
U
n
iv
R
P
I

0.2

0.4

0.6

0.8

1

(b) Unsat core compression ratio

0.2

0.4

0 0.05 0.1 0.15

(c) Compression ratio difference

0.1

0.2

0.3

0.4

-1 -0.5 0 0.5

(d) Duration difference

Fig. 3. Comparison between LU.RPI and LUnivRPI

Figure 2 shows the comparison of LowerUnitswith LowerUnivalents. Subfig-
ures (a) and (b) are scatter plots where each dot represents a single benchmark
proof. Subfigure (c) is a histogram showing, in the vertical axis, the propor-
tion of proofs having (normalized) compression ratio difference within the in-
tervals showed in the horizontal axis. This difference is computed using formula
(5) with vLU and vLUniv being the compression ratios obtained respectively by
LowerUnits and LowerUnivalents.

vLU − vLUniv
vLU+vLUniv

2

(5)

The number of proofs for which vLU = vLUniv is not displayed in the histogram.
The (normalized) duration differences in subfigure (d) are computed using the
same formula (5) but with vLU and vLUniv being the time taken to compress the
proof by LowerUnits and LowerUnivalents respectively.

As expected, LowerUnivalents always compresses more than LowerUnits

(subfigure (a)) at the expense of a longer computation (subfigure (d)). And even
if the compression gain is low on average (as noticeable in Table 2), subfigure

72 J. Boudou and B. Woltzenlogel Paleo

(a) shows that LowerUnivalents compresses some proofs significantly more than
LowerUnits.

It has to be noticed that veriT already does its best to produce compact proofs.
In particular, a forward subsumption algorithm is applied, which results in proofs
not having two different subproofs with the same conclusion. This results in
LowerUnits being unable to reduce unsat core. But as LowerUnivalents lowers
non-unit subproofs and performs some partial regularization, it achieves some
unsat core reduction, as noticeable in subfigure (b).

The comparison of the sequential LU.RPI with the non-sequential LUnivRPI
shown in Fig. 3 outlines the ability of LowerUnivalents to be efficiently com-
bined with other algorithms. Not only compression ratios are improved but
LUnivRPI is faster than the sequential composition for more than 80 % of the
proofs.

7 Conclusions and Future Work

LowerUnivalents, the algorithm presented here, has been shown in the previous
section to compress more than LowerUnits. This is so because, as demonstrated
in Proposition 5, the set of subproofs it lowers is always a superset of the set of
subproofs lowered by LowerUnits. It might be possible to lower even more sub-
proofs by finding a characterization of (efficiently) lowerable subproofs broader
than that of univalent subproofs considered here. This direction for future work
promises to be challenging, though, as evidenced by the non-triviality of the
optimizations discussed in Section 4 for obtaining a linear-time implementation
of LowerUnivalents.

As discussed in Section 5, the proposed algorithm can be embedded in the
deletion traversal of other algorithms. As an example, it has been shown that the
combination of LowerUnivalents with RPI, compared to the sequential compo-
sition of LowerUnits after RPI, results in a better compression ratio with only
a small processing time overhead (Figure 3). Other compression algorithms that
also have a subproof deletion or reconstruction phase (e.g. Reduce&Reconstruct)
could probably benefit from being combined with LowerUnivalents as well.

Acknowledgments. The authors would like to thank Pascal Fontaine for pro-
viding veriT’s proofs for the experiments, for co-organizing our joint workshops
on proof compression, and for several interesting and useful discussions on this
topic.

References

1. Amjad, H.: Compressing propositional refutations. Electr. Notes Theor. Comput.
Sci. 185, 3–15 (2007)

2. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time
reductions of resolution proofs. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS,
vol. 5394, pp. 114–128. Springer, Heidelberg (2009)

Compression of Propositional Resolution Proofs by Lowering Subproofs 73

3. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Reducing the
size of resolution proofs in linear time. STTT 13(3), 263–272 (2011)

4. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS,
vol. 5663, pp. 151–156. Springer, Heidelberg (2009)

5. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A.,
Banerji, R.B., Ullman, J.D. (eds.) STOC, pp. 151–158. ACM (1971)

6. Cotton, S.: Two techniques for minimizing resolution proofs. In: Strichman, O.,
Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 306–312. Springer, Heidelberg
(2010)

7. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Exploring and exploiting algebraic
and graphical properties of resolution. In: 8th International Workshop on Satisfia-
bility Modulo Theories - SMT 2010. Royaume-Uni, Edinburgh (July 2010), http://
hal.inria.fr/inria-00544658

8. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional reso-
lution proofs via partial regularization. In: Bjørner, N., Sofronie-Stokkermans, V.
(eds.) CADE 2011. LNCS, vol. 6803, pp. 237–251. Springer, Heidelberg (2011)

9. Goerdt, A.: Comparing the complexity of regular and unrestricted resolution.
In: Marburger, H. (ed.) GWAI. Informatik-Fachberichte, vol. 251, pp. 181–185.
Springer (1990)

10. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Magazine 33(1), 89–92 (2012)

11. Rollini, S.F., Bruttomesso, R., Sharygina, N.: An efficient and flexible approach to
resolution proof reduction. In: Barner, S., Harris, I., Kroening, D., Raz, O. (eds.)
HVC 2010. LNCS, vol. 6504, pp. 182–196. Springer, Heidelberg (2010)

12. Sinz, C.: Compressing propositional proofs by common subproof extraction. In:
Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007.
LNCS, vol. 4739, pp. 547–555. Springer, Heidelberg (2007)

13. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J., Wrightson, G. (eds.) Automation of Reasoning: Classical Papers in Com-
putational Logic 1967–1970, vol. 2. Springer (1983)

http://hal.inria.fr/inria-00544658
http://hal.inria.fr/inria-00544658

A Tableau System for Right Propositional

Neighborhood Logic over Finite Linear
Orders: An Implementation�

Davide Bresolin1, Dario Della Monica2, Angelo Montanari3,
and Guido Sciavicco4

1 Department of Computer Science, University of Verona
Verona, Italy

davide.bresolin@univr.it
2 School of Computer Science, University of Reykjavik

Reykjavik, Iceland
dariodm@ru.is

3 Department of Mathematics and Computer Science,
University of Udine Udine, Italy

angelo.montanari@dimi.uniud.it
4 Department of Information, Engineering and Communications

University of Murcia, Murcia, Spain
guido@um.es

Abstract. Interval temporal logics are quite expressive temporal log-
ics, which turn out to be difficult to deal with in many respects. Even
finite satisfiability of simple interval temporal logics presents non-trivial
technical issues when it comes to the implementation of efficient tableau-
based decision procedures. We focus our attention on the logic of Allen’s
relation meets, a.k.a. Right Propositional Neighborhood Logic (RPNL),
interpreted over finite linear orders. Starting from a high-level descrip-
tion of a tableau system, we developed a first working implementation
of a decision procedure for RPNL, and we made it accessible from the
web. We report and analyze the outcomes of some initial tests.

1 Introduction

Propositional interval temporal logics play a significant role in computer science,
as they provide a natural framework for representing and reasoning about tempo-
ral properties in a number of application domains [10]. Interval logic modalities
correspond to relations between (pairs of) intervals. In particular, Halpern and
Shoham’s modal logic of time intervals HS [11] features a set of modalities that

� The authors acknowledge the support from the Spanish fellowship program ‘Ramon
y Cajal’ RYC-2011-07821 and the Spanish MEC project TIN2009-14372-C03-01
(G. Sciavicco), the project Processes and Modal Logics (project nr. 100048021) of
the Icelandic Research Fund and the project Decidability and Expressiveness for
Interval Temporal Logics (project nr. 130802-051) of the Icelandic Research Fund
in partnership with the European Commission Framework 7 Programme (People)
under “Marie Curie Actions” (D. Della Monica), and the Italian GNCS project
Logiche di Gioco estese (D. Bresolin and A. Montanari).

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 74–80, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Tableau System for Right Propositional Neighborhood Logic 75

make it possible to express all Allen’s interval relations [1]. HS turns out to be
undecidable over all meaningful classes of linear orders, including the class of fi-
nite linear orders we are interested in. Temporal reasoning on finite linear orders
comes into play in a variety of areas. This is the case, for instance, with planning
problems, which consist of finding a finite sequence of actions that, applied to an
initial state of the world, leads to a goal state within a bounded amount of time,
satisfying suitable conditions about which sequence of states the world must
go through. In the last years, a lot of work has been done on (un)decidability
and complexity of HS fragments. The complete picture about finite linear orders
is given in [6]: there exist 62 non-equivalent decidable fragments of HS, parti-
tioned into four complexities classes, ranging from NP-complete to non-primitive
recursive. For each decidable fragment, an optimal decision procedure has been
devised. Nevertheless, none of them is available as a working system (they are
declarative procedures, which turn out to be unfeasible in practice), with the
only exception of the logic of subintervals D over dense linear orders [3]. D has
been implemented in LoTrec [8], a generic theorem prover that allows one to
specify the rules for his/her own modal/temporal logic. Unfortunately, in gen-
eral LoTrec is not suitable for interval logics (D over dense linear orders is a
very special case), because: (i) it does not support the management of world la-
bels explicitly, and (ii) it does not allow closing conditions based on the number
of worlds generated in the construction of a tentative model, but only closing
conditions based on patterns and repetitions.

In this paper, we focus our attention on one of the simplest decidable frag-
ment of HS, namely, Right Propositional Neighborhood Logic (RPNL) [4,9],
interpreted on finite linear orders, whose satisfiability problem has been proved
to be NEXPTIME-complete. RPNL features a single modality corresponding to
Allen’s relation meets. We devised and implemented a working tableau-based
decision procedure for RPNL, based on the original (non-terminating) tableau
system given in [9], which exploits the small model theorem proved in [7] to
guarantee termination.

2 Syntax and Semantics of RPNL

Let D = 〈D,<〉 be a finite linear order. An interval over D is an ordered pair
[x, y], with x, y ∈ D and x < y (strict semantics). Formulas of RPNL are ob-
tained from a countable set AP of proposition letters using the standard boolean
connectives ∨, ∧ and ¬, and the temporal modalities 〈A〉 and [A] (defined as a
shorthand for ¬〈A〉¬). Formulas are interpreted on models M = 〈D, V 〉, where
V : I(D)→ 2AP is a valuation function that associates every interval of D with
the set of proposition letters that hold true on it. The satisfiability relation � is
defined by the semantic clauses for propositional logic plus the modal clause

M, [x, y] � 〈A〉 iff there exists z > y such that M, [y, z] � ϕ.

As shown in [7], satisfiability of RPNL-formulas can be reduced to initial satisfi-
ability, that is, satisfiability on the interval [0, 1]. Hence, it holds that an RPNL-
formula ϕ is satisfiable if and only if there is a model M such that M, [0, 1] � ϕ.

76 D. Bresolin et al.

The decidability proof given in [7] shows that any RPNL-formula ϕ is satis-
fiable over finite linear orders if and only if it is satisfiable over a finite linear
order whose domain has cardinality strictly less than 2m · m + 1, where m is
the number of diamonds and boxes in ϕ. This provides a termination condition
that can be used to implement a fair procedure that exhaustively searches for
a model of size smaller than or equal to the bound. In this paper, we develop
and implement a tableau-based decision procedure for RPNL by tailoring the
general algorithm described in [9] to it and making use of the bound on the size
of the model to guarantee completeness.

3 The Tableau System for RPNL

The abstract structure of a tableau for RPNL is a rooted tree where each node
is labeled with an annotated formula of the form ψ : [x, y], which states that ψ
holds over the interval [x, y] on D. Every branch B of the tableau is associated
with a finite domain DB = {x0, x1, . . . , xN} and it represents a partial model
for the input formula. At each step of tableau construction, a branch and a
node on it are selected and one of the expansion rules is applied to expand the
branch. Expansion rules follow the semantics of RPNL. They include classical
propositional rules plus two additional rules for modalities [A] and 〈A〉:

(box)
[A]ψ : [xi, xj]

ψ : [xj , xj+1], . . . , ψ : [xj , xN]
,

(dia)
〈A〉ψ : [xi, xj]

ψ : [xj , xj+1] | . . . | ψ : [xj , xN] | ψ : [xj , x′j] | . . . | ψ : [xj , x′N]
,

where, for each j ≤ h ≤ N , xh is a point in DB and x′h is a new point added
to DB and placed immediately after xh and immediately before xh+1 (when
h < N). The (dia) rule explores all possible ways of satisfying the formula ψ:
either it satisfies ψ on an existing interval (nodes labelled with ψ : [xj , xh]) or it
adds a new point x′h to the domain and it satisfies ψ on the new interval [xj , x

′
h].

Similarly, the (box) rule asserts that ψ must be true on every existing interval
starting at xj . Thus, the point xi never appears in the consequent of the rules. A
branch in the tableau is declared closed if either p : [xi, xj] and ¬p : [xi, xj] occur
on the branch, for some p ∈ AP and interval [xi, xj] (contradictory branch); or
the cardinality of the domain DB is greater than the upper bound on the size of
models (too long branch). Otherwise, it is considered open. Expansion rules are
applied only to open branches (closed branches are discarded).

Given a branch B, an annotated formula ψ : [xi, xj] is said to be inactive
on B if and only if ψ is a literal or the rule for ψ has been already applied to
it on B, it is active on B otherwise. The branch-expansion strategy applied by
the system is the simplest possible one: the first (top-down) active formula of
the current branch is selected, expanded, and deactivated. Whenever an open
branch with no active formulas is found, the procedure terminates with success
(the formula is satisfiable). If all branches are closed, the procedure terminates
with failure (the formula is unsatisfiable).

A Tableau System for Right Propositional Neighborhood Logic 77

4 Implementation of the Tableau System for RPNL

In this section, we illustrate the difficulties we encountered and the implemen-
tation choices we made to turn the tableau system described in Section 3 into
a computer program. The code of our implementation is written in C++ and
it makes no use of external libraries, except for the C++ Standard Library. We
exploited suitable data structures to represent formulas, nodes, and branches of
the tableau, and we developed a search procedure that keeps track of currently-
open branches and expands them by applying expansion rules according to the
expansion strategy.

Representation of Formulas, Nodes, and Branches. Since in most appli-
cations the input formula ϕ encodes a set of requirements to be jointly satisfied,
e.g., those of a plan, we assume ϕ to be a logical conjunction, whose conjuncts
are entered as distinct lines of a text file. ϕ is first transformed into an equivalent
formula in negated normal form nnf(ϕ). Since such a transformation does not
change the number of diamonds and boxes, it does not affect the bound on the
maximum cardinality of the domain. Then, ϕ is stored as a syntactic tree, whose
leaves are labeled with proposition letters and whose internal nodes are labeled
with Boolean connectives and modalities. In such a way, each subformula of ϕ
corresponds to a subtree of the syntactic tree. Nodes of the tableau are repre-
sented by a structure with four components: a pointer to the subtree representing
the formula labeling the node, two integer variables x and y, that identify the
interval annotating the formula, and a Boolean flag, which specifies whether the
node is active or not. A branch B is implemented as a list of nodes, enriched
with two integer variables N and A representing respectively the cardinality of
the domain DB and the number of active nodes.

The Search Procedure. The search procedure stores the open branches to be
expanded into a priority queue. At the beginning, the queue contains only the
single node initial branch {ϕ : [0, 1]}. Then, the procedure operates as follows:
1. it extracts the branch B with the highest priority from the queue; 2. it checks
whether B meets the closure conditions; if so, it deletes the branch and it restarts
from 1; 3. it finds the closest-to-the-root active node ν in B; if there are no
active nodes in B, it terminates with success and it returns B as a model for ϕ;
4. it applies the appropriate expansion rule to ν, it deactivates ν, it inserts the
branches created by the rule into the queue, and it restarts from 1. The expansion
loop is repeated until either a model for ϕ is found or the queue becomes empty.
In the latter case, no model for ϕ can be found, and the formula is declared
unsatisfiable.

Priority Policies. The priority policy of the queue determines the next branch
to expand. We implemented five different policies: i) the standard FIFO (First
In, First Out) policy; ii) expand the branches with the smallest domain first
(SDF); iii) expand the branches with the largest domain first (LDF); iv) expand
the branches with the smallest number of active nodes first (SAN); v) expand
the branches with the greatest number of active nodes first (GAN). All the poli-
cies are complete: they will eventually check every possible model for the input

78 D. Bresolin et al.

formula with cardinality less than or equal to the selected bound. By default,
the queue follows the FIFO policy, but the user can easily opt for a different one
for a particular problem.

Branch Expansion. If the current branch B (extracted from the queue) is
declared open at step 2 of the search procedure, nodes in B are scanned to
determine the closest-to-the-root active node ν. The expansion of B depends on
the shape of the formula labeling ν. Three cases are possible.

Boolean formula. Since formulas are assumed to be in negated normal form,
the only possible rules are the ∨-rule and the ∧-rule. Let ν be labeled with
ψ ∨ τ : [xi, xj] (the case ψ ∧ τ : [xi, xj] is similar and thus omitted). We must
distinguish four scenarios: (i) both ψ : [xi, xj] and τ : [xi, xj] are already on B,
(ii) ψ : [xi, xj] is on B, while τ : [xi, xj] is not, (iii) τ : [xi, xj] is on B, while
ψ : [xi, xj] is not, and (iv) neither of the two is on B. In case (i), there is no
need to apply the rule: ψ ∨ τ : [xi, xj] is deactivated and B is put back in the
queue. In case (ii), a copy of the branch is generated and the annotated formula
τ : [xi, xj] is added to it; then, ψ ∨ τ : [xi, xj] is deactivared and both B and its
copy are added to the queue. Case (iii) is completely symmetric. In case (iv), two
copies of the branch are generated: one is expanded with the annotated formula
ψ : [xi, xj], the other one with τ : [xi, xj]. Then, ψ ∨ τ : [xi, xj] is deactivated,
both copies of B are added to the queue, and the original B is discarded.

Box formula [A]ψ : [xi, xj]. The box rule is applied. First, we deactivate the
formula [A]ψ : [xi, xj]; then, for each xj < xh ≤ xN , if ψ : [xj , xh] does not
belong to B, we add it; finally, the expansion of B is inserted into the queue.

Diamond formula 〈A〉ψ : [xi, xj]. The diamond rule is applied. First, we check
whether for some xh > xj the annotated formula ψ : [xj , xh] is on B. If this is the
case, we deactivate 〈A〉ψ : [xi, xj] and we put B back in the queue. Otherwise,
we create a distinct copy of B for every possible way of satisfying ψ: N − j
copies Bj+1, . . . , BN , with domain cardinality N , that will be expanded with
the annotated formulas ψ : [xj , xj+1], . . . , ψ : [xj , xN], respectively; N − j + 1
copies B′

j , . . . , B
′
N , with domain cardinality N + 1, that will be expanded with

the annotated formulas ψ : [xj , x
′
j], . . . , ψ : [xj , x

′
N], respectively. For each copy

B′
h, the expansion of the domain is obtained as follows: (i) every annotated

formula τ : [xk, xl] such that xk > xh is replaced by the annotated formula
τ : [xk + 1, xl + 1]. If xk ≤ xh < xl, the annotated formula is replaced by
τ : [xk, xl + 1], while if xl ≤ xh, the annotated formula remains unchanged;
(ii) we add a new node labeled with the annotated formula ψ : [xj , xh+1]; (iii) we
reactivate all annotated formulas [A]τ : [xk, xl] with xl ≤ xh. To conclude the
expansion, we deactivate 〈A〉ψ : [xi, xj], we put all 2 · (N − j) + 1 copies of B in
the queue, and we discard B.

5 Experiments

We have tested our implementation against a benchmark of different problems,
divided into two classes. First, we tested the scalability of the program with

A Tableau System for Right Propositional Neighborhood Logic 79

Table 1. Experimental results

COMBINATORICS

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

1 0.004 0.004 0.004 0.004 0.004 4

2 0.004 0.008 0.004 0.004 0.008 5

3 0.008 0.15 0.03 0.008 0.03 6

4 0.01 – 30.07 0.01 30.29 7

5 0.012 – – 0.012 – 8

6 0.02 – – 0.03 – 9

7 0.07 – – 0.07 – 10

8 0.15 – – 0.16 – 11

9 0.3 – – 0.32 – 12

10 0.56 – – 0.59 – 13

11 0.99 – – 1.06 – 14

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

12 1.67 – – 1.79 – 15

13 2.73 – – 2.94 – 16

14 4.25 – – 4.55 – 17

15 6.56 – – 7.08 – 18

16 9.77 – – 10.82 – 19

17 14.42 – – 15.40 – 20

18 20.79 – – 22.20 – 21

19 29.28 – – 32.11 – 22

20 40.91 – – 44.09 – 23

21 – – – – – –

22 – – – – – –

RANDOMIZED

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

1 0.004 0.004 0.004 0.004 0.004 4

2 0.004 0.004 0.004 0.004 0.004 4

3 0.004 0.004 0.004 0.004 0.004 4

4 0.004 0.004 0.004 0.004 0.004 4

5 0.004 0.004 0.004 0.004 0.004 4

6 0.004 0.004 0.004 0.004 0.004 4

7 0.07 0.23 0.004 0.18 0.004 3 / 4

8 0.004 0.004 0.004 0.004 0.004 4

9 0.004 0.004 0.004 0.004 0.004 4

10 0.004 0.004 0.004 0.004 0.004 4

11 0.004 0.004 0.004 0.004 0.004 4

12 0.004 0.004 0.004 0.004 0.004 4

13 0.01 0.04 0.004 0.02 0.004 4

14 0.004 0.004 0.004 0.004 0.004 4

15 0.004 0.004 0.004 0.004 0.004 4

16 0.004 1.37 0.004 0.01 0.004 4

17 0.004 0.004 0.004 0.004 0.004 4

18 0.004 0.004 0.004 0.004 0.004 3

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

19 1.66 45.43 0.68 1.91 0.02 3 / 4

20 0.02 0.004 0.03 0.03 0.004 2 / 4

21 0.004 0.004 0.004 0.004 0.004 4

22 0.74 14.08 0.004 1.04 0.004 4

23 0.004 0.004 0.004 0.004 0.004 4

24 0.004 0.004 0.004 0.004 0.004 4

25 – – – – – –

26 0.004 0.004 0.004 0.004 0.004 4

27 0.004 – 0.004 0.01 – 3 / 4

28 0.004 0.004 0.004 0.004 0.004 4

29 0.004 – 0.004 0.004 0.004 4

30 0.14 0.08 0.04 0.19 0.01 2 / 4

31 0.004 0.004 0.004 0.004 0.004 unsat

32 0.25 – 0.02 0.31 0.004 2 / 4

33 0.004 0.004 0.004 0.004 0.004 4

34 – – 0.02 0.004 0.02 2 / 4

35 0.004 – 0.004 – 0.004 2 / 4

36 – – – – 1.2 3

respect to a set of combinatorial problems of increasing complexity (COMBI-
NATORICS), where the n-th combinatorial problem is defined as the problem
of finding a model for the formula that contains n conjuncts, each one of the

type 〈A〉pi (0 ≤ i ≤ n), plus n(n+1)
2 formulas of the type [A]¬(pi ∧ pj) (i �= j).

Then, we considered the set of 36 “easy” purely randomized formulas used in [5]
to evaluate an Evolutionary Computation algorithm for RPNL finite satisfia-
bility (RANDOMIZED). Table 1 summarizes the outcome of our experiments.
For each class of problems, the corresponding table shows, for each instance
n, the time necessary to solve the problem for each policy (FIFO, SDF, LDF,
SAN, GAN) and the size of the obtained model (or “unsat” if the instance
was proved to be unsatisfiable). A time-out of 1 minute was used to stop in-
stances running for too long. All the experiments were executed on a notebook
with an Intel Pentium Dual-Core Mobile 1.6 Ghz CPU and 2 Gb of RAM, un-
der Ubuntu Linux 11.04. Despite being a prototypical implementation, our sys-
tem runs reasonably well on the COMBINATORICS benchmark, being able to

80 D. Bresolin et al.

produce a result in a short time for formulas up to 20 conjuncts (and up to
a model size of 23 points). The results of the RANDOMIZED benchmark al-
lows for a first comparison with the Evolutionary algorithm in [5], and shows
that the two algorithms have similar performances on the considered formulas.
The tableau system was able to prove that problem 31 is unsatisfiable, while
the evolutionary algorithm (being incomplete) can only provide positive an-
swers. It is important to stress that there is no available benchmark neither for
RPNL, nor for any other interval temporal logic. To overcome this limitation,
we are currently working to adapt some benchmarks for the modal logic K [2]
and for the temporal logic LTL [12] to the interval semantics. On the web-page
http:// www. di. unisa.it/ dottorandi/dario.dellamonica/tableaux/ it
is possible to find the system available for testing.

References

1. Allen, J.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

2. Balsiger, P., Heuerding, A., Schwendimann, S.: A benchmark method for the propo-
sitional modal logics K, KT, S4. J. of Automated Reasoning 24(3), 297–317 (2000)

3. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableaux for logics of subinterval
structures over dense orderings. J. of Logic and Computation 20(1), 133–166 (2010)

4. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval
neighborhood logics: Expressiveness, decidability, and undecidable extensions. An-
nals of Pure and Applied Logic 161(3), 289–304 (2009)

5. Bresolin, D., Jiménez, F., Sánchez, G., Sciavicco, G.: Finite satisfiability of propo-
sitional interval logic formulas with multi-objective evolutionary algorithms. In:
Proc. of the 12th FOGA (in press, 2013)

6. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval
temporal logics over finite linear orders: the complete picture. In: Proc. of the 20th
ECAI, pp. 199–204 (2012)

7. Bresolin, D., Montanari, A., Sciavicco, G.: An optimal decision procedure for Right
Propositional Neighborhood Logic. J. of Automated Reasoning 38(1-3), 173–199
(2007)

8. Fariñas del Cerro, L., Fauthoux, D., Gasquet, O., Herzig, A., Longin, D., Mas-
sacci, F.: Lotrec: the generic tableau prover for modal and description logics. In:
Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
pp. 453–458. Springer, Heidelberg (2001)

9. Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood
temporal logics. J. of Universal Computer Science 9(9), 1137–1167 (2003)

10. Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics
and duration calculi. J. of Applied Non-Classical Logics 14(1-2), 9–54 (2004)

11. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. J. of the
ACM 38(4), 935–962 (1991)

12. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. Int. J. on Software Tools
for Technology Transfer 2(12), 123–137 (2010)

http://www.di.unisa.it/dottorandi/dario.dellamonica/tableaux/

Hypersequent and Labelled Calculi

for Intermediate Logics�

Agata Ciabattoni1, Paolo Maffezioli2, and Lara Spendier1

1 Vienna University of Technology
2 University of Groningen

Abstract. Hypersequent and labelled calculi are often viewed as an-
tagonist formalisms to define cut-free calculi for non-classical logics. We
focus on the class of intermediate logics to investigate the methods of
turning Hilbert axioms into hypersequent rules and frame conditions
into labelled rules. We show that these methods are closely related and
we extend them to capture larger classes of intermediate logics.

1 Introduction

The lack of cut-free sequent calculi for logics having natural semantic character-
izations and/or simple axiomatizations has prompted the search for generaliza-
tions of the Gentzen sequent framework. Despite the large variety of formalisms
introduced in the literature (see e.g., [17]), there are two main approaches. In
the syntactic approach sequents are generalized by allowing extra structural con-
nectives in addition to sequents’ comma; in the semantic approach the semantic
language is explicit part of the syntax in sequents and rules.

Hypersequent calculus [2] is a prominent example of the syntactic approach,
while labelled calculi internalizing Kripke semantics [15,8,16,10] are the most
developed systems within the semantic approach. Hypersequent and labelled
calculus are general-purpose formalisms powerful enough to capture logics of a
different nature ranging from modal to substructural logics [8,16,10,3], and are
often viewed as antagonist formalisms to define cut-free calculi.

In this paper we focus on propositional intermediate logics, i.e. logics between
intuitionistic and classical logic, in order to analyze and compare the methods in
[7,5] for defining cut-free hypersequent and labelled calculi. Intermediate logics
are an adequate case study for two reasons: (i) Although most of them have a
simple axiomatization obtained by extending intuitionistic logic IL with suitable
axioms, and have a natural Kripke semantics defined by imposing conditions on
the standard intuitionistic frame, corresponding cut-free sequent calculi cannot
be defined in a modular way by simply extending the Gentzen sequent calculus
LJ for IL with new axioms or rules, see [5]. (ii) Cut-free hypersequent and
labelled systems have been provided for a large class of intermediate logics in a
modular and algorithmic way in [5,7]. The resulting calculi are indeed defined by
adding to the base (hypersequent or labelled) calculus for IL extra structural rules

� Work supported by FWF START Y544-N23.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 81–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

82 A. Ciabattoni, P. Maffezioli, and L. Spendier

corresponding to the additional conditions characterizing the considered logic.
The extra rules are constructed in an algorithmic way by turning Hilbert axioms
into hypersequent rules [5] and by turning frame conditions –that are formulas
of first-order classical logic– into labelled rules [7]. The main differences between
these methods are their starting point (syntactic vs. semantic specifications of
the considered logics) and their approach: systematic, i.e. based on a syntactic
classification of Hilbert axioms in the case of hypersequents, and presenting
a specific class of frame conditions (called geometric formulas) for which the
method works, in the case of labelled sequents.

In this paper we analyze both methods and refine the approach in [5] (and
[6]) to introduce new cut-free calculi for intermediate logics. For hypersequents:
we define a first cut-free hypersequent calculus for the logic Bd2 [4], one of
the seven interpolable intermediate logics and the only one still lacking a cut-
free hypersequent calculus. Our calculus is obtained by adapting the method
in [6] to extract a logical hypersequent rule out of the peculiar axiom of Bd2,
and then modifying the obtained rule to make the cut-elimination go through.
For labelled sequents: we classify frame conditions according to their quantifier
alternation and apply to them the algorithm in [5]; the rules resulting from
geometric formulas coincide with those obtained by the method in [7].

2 Preliminaries

The language of propositional intermediate logics consists of infinitely many
propositional variables p, q . . . , the connectives & (conjunction), ∨ (disjunction),
⊃ (implication), and the constant ⊥ for falsity. ϕ, ψ, α, β . . . are formulas built
from atoms by using connectives and ⊥. As usual, ∼ ϕ abbreviates ϕ ⊃ ⊥.

An intuitionistic frame is a pair F = 〈W,�〉 where W is a non-empty set, and
� is a reflexive and transitive (accessibility) relation on W . An intuitionistic
model M = 〈F,�〉 is a frame F together with a relation � (called the forcing)
between elements of W and atomic formulas. Intuitively, x � p means that the
atom p is true at x. Forcing is assumed to be monotonic w.r.t. the relation �,
namely, if x � y and x � p then also y � p. It is defined inductively on arbitrary
formulas as follows:

x � ⊥ for no x x � ϕ&ψ iff x � ϕ and x � ψ
x � ϕ ∨ ψ iff x � ϕ or x � ψ x � ϕ ⊃ ψ iff x � y and y � ϕ implies y � ψ
Intermediate logics are obtained from intuitionistic logic IL either by (i)

adding suitable axioms to the Hilbert system for IL or (ii) imposing on intu-
itionistic frames additional conditions on the relation �. The latter conditions
are usually expressed as formulas of first-order classical logic CL in which vari-
ables are interpreted as elements of W , and the binary predicate � denotes
the accessibility relation of F. Atomic formulas are relational atoms of the form
x � y. Compound formulas are built from relational atoms using the proposi-
tional connectives ∧, ∨, →, ¬, and the quantifiers ∀ and ∃.
Example 1. The intermediate logics below are obtained by extending IL with
the given axiom or frame condition for the accessibility relation �.

Hypersequent and Labelled Calculi for Intermediate Logics 83

Logic Axioms Frame conditions

Jankov (wc) ∼ ϕ∨ ∼∼ ϕ ∀x∀y∀z((x � y ∧ x � z) → ∃w(y � w ∧ z � w))

Gödel (lin) (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ) ∀x∀y∀z((x � y ∧ x � z) → (y � z ∨ z � y))

Bd2 (bd2) ξ ∨ (ξ ⊃ (ϕ ∨ (ϕ ⊃ ψ))) ∀x∀y∀z((x � y ∧ y � z) → (y � x ∨ z � y))

CL (em) ϕ∨ ∼ ϕ ∀x∀y(x � y → y � x)

Hypersequent and Labelled Calculi. Introduced by Avron in [2], the hyper-
sequent calculus is a simple generalization of Gentzen’s sequent calculus whose
basic objects are finite disjunctions of sequents.

Definition 1. A hypersequent is a finite multiset Γ1 ⇒ Δ1| · · · |Γn ⇒ Δn where
each Γi ⇒ Δi, i = 1, . . . , n is a sequent, called a component of the hypersequent.
If all components of a hypersequent contain at most one formula in the succedent,
the hypersequent is called single-conclusion, and multiple-conclusion otherwise.

A hypersequent calculus is defined by incorporating Gentzen’s original calcu-
lus (e.g., LJ, LK or a substructural version of it) as a sub-calculus and adding
an additional layer of information by considering a single sequent to live in the
context of hypersequents. This opens the possibility to define new rules that “ex-
change information” between different sequents. This type of rule increases the
expressive power of hypersequent calculi compared to ordinary sequent calculi
and allows us to capture the characteristic axioms of several intermediate logics.

Labelled systems are a variant of sequent calculus in which the relational seman-
tics of the formalized logics is made explicit part of the syntax [8,16,10]. In a
labelled system, each formula ϕ receives a label x, indicated by x : ϕ. The labels
are interpreted as possible worlds, and a labelled formula x : ϕ corresponds to
x � ϕ. Moreover, labels may occur also in expressions for accessibility relation
(relational atoms) like, e.g., x � y of intuitionistic and intermediate logics.

Definition 2. A labelled sequent is a sequent consisting of labelled formulas and
relational atoms.

Table 1 depicts the labelled calculus G3I for IL. Note that its logical rules
are obtained directly from the inductive definition of forcing. The rule R ⊃
must satisfy the eigenvariable condition (y does not occur in the conclusion).
The structural rules Ref and Trans for relational atoms correspond to the
assumptions of reflexivity and transitivity of � in F.

3 Hypersequent Calculi for Intermediate Logics

It was shown in [5] how to transform a large class of Hilbert axioms into struc-
tural hypersequent rules in a systematic way. This allowed for the automated
definition of cut-free hypersequent calculi for a large class of (substructural) log-
ics. In the case of intermediate logics, the transformation in [5] works for all
axioms within the class P3 of the classification (substructural hierarchy) defined

84 A. Ciabattoni, P. Maffezioli, and L. Spendier

Table 1. Labelled calculus G3I for IL [7]

x � y, x : p, Γ ⇒ Δ, y : p

x : ϕ, x : ψ, Γ ⇒ Δ

x : ϕ&ψ, Γ ⇒ Δ
L&

Γ ⇒ Δ, x : ϕ Γ ⇒ Δ, x : ψ

Γ ⇒ Δ, x : ϕ&ψ
R&

x : ⊥, Γ ⇒ Δ
L⊥

Γ ⇒ Δ, x : ϕ, x : ψ

Γ ⇒ Δ, x : ϕ ∨ ψ
R∨

x : ϕ, Γ ⇒ Δ x : ψ, Γ ⇒ Δ

x : ϕ ∨ ψ, Γ ⇒ Δ
L∨

x � x, Γ ⇒ Δ

Γ ⇒ Δ
Ref

x � y, y : ϕ, Γ ⇒ Δ, y : ψ

Γ ⇒ Δ, x : ϕ ⊃ ψ
R⊃

x � z, x � y, y � z, Γ ⇒ Δ

x � y, y � z, Γ ⇒ Δ
Trans

x � y, x : ϕ ⊃ ψ, Γ ⇒ Δ, y : ϕ x � y, x : ϕ ⊃ ψ, y : ψ, Γ ⇒ Δ

x � y, x : ϕ ⊃ ψ, Γ ⇒ Δ
L⊃

by the following grammar1 based on the (propositional) language of LJ: N0,P0

contain the set of atomic formulas.

Pn+1 ::= ⊥ | � | Nn | Pn+1&Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= ⊥ | � | Pn | Nn+1&Nn+1 | Pn+1 ⊃ Nn+1

The classes Pn and Nn contain axioms with leading positive and negative con-
nective, respectively. A connective is positive (negative) if its left (right) logical
rule is invertible [1]; note that in the sequent calculus LJ, ∨ is positive, ⊃ is
negative and & is both positive and negative.

Example 2. The axioms (lin), (wc) and (em) in Example 1 are within the class
P3. The corresponding hypersequent rules can be generated using the PROLOG-
system AxiomCalc, which implements the algorithm in [5] and is available at
http://www.logic.at/people/lara/axiomcalc.html.

Theorem 1 ([5]). Given an axiom A ∈ P3, the rules generated by the algorithm
in [5] are sound and complete for the intermediate logic IL+A and they preserve
cut elimination when added to the hypersequent version of LJ.

3.1 Extending the Method - A Case Study

Not all axioms defining intermediate logics are within the class P3. For instance,
(bd2) (i.e. ξ ∨ (ξ ⊃ (ϕ ∨ (ϕ ⊃ ψ)))) is in P4 and cannot be transformed into an
equivalent structural rule using the procedure in [5]. In this section we show how
to combine a heuristic method with the procedure in [5] (in fact, its classical
and multiple-conclusion version in [6]) to introduce a logical rule for (bd2). We
present ad-hoc proofs of soundness, completeness and cut elimination for the
resulting calculus.

1 The substructural hierarchy, as originally defined in [5], is based on the language of
Full Lambek calculus with exchange and on the invertibility of its logical rules.

Hypersequent and Labelled Calculi for Intermediate Logics 85

Table 2. Hypersequent calculus HLJ’

G | ϕ⇒ ϕ
(init)

G | ⊥ ⇒
(⊥, l)

G | Σ ⇒ Π | Γ ⇒ Δ

G | Γ ⇒ Δ | Σ ⇒ Π
(ee)

G | Γ ⇒ Δ

G | Γ, ϕ⇒ Δ
(w, l)

G | Γ ⇒ ϕ,Δ G | Γ, ψ ⇒ Δ

G | Γ, ϕ ⊃ ψ ⇒ Δ
(⊃, l)

G | Γ, ϕ⇒ ψ

G | Γ ⇒ ϕ ⊃ ψ,Δ
(⊃, r)

G | Γ ⇒ ϕ,ϕ,Δ

G | Γ ⇒ ϕ,Δ
(c, r)

G | Γ ⇒ ϕ,Δ G | Γ ⇒ ψ,Δ

G | Γ ⇒ ϕ&ψ,Δ
(&, r)

G | ϕ,ψ, Γ ⇒ Δ

G | ϕ&ψ, Γ ⇒ Δ
(&, l)

G | Γ, ϕ, ϕ⇒ Δ

G | Γ, ϕ⇒ Δ
(c, l)

G | ϕ, Γ ⇒ Δ G | ψ,Γ ⇒ Δ

G | ϕ ∨ ψ, Γ ⇒ Δ
(∨, l)

G | Γ ⇒ ϕ,ψ,Δ

G | Γ ⇒ ϕ ∨ ψ,Δ
(∨, r)

G | Γ ⇒ Δ

G | Γ ⇒ ϕ,Δ
(w, r)

G | Γ ⇒ ϕ,Δ H | ϕ,Σ ⇒ Π

G | H | Γ,Σ ⇒ Π,Δ
(cut)

G | Γ ⇒ Δ | Γ ⇒ Δ

G | Γ ⇒ Δ
(ec)

G
G | Γ ⇒ Δ

(ew)

Inspired by [14] we use as base calculus (the hypersequent version of) Mae-
hara’s calculus LJ’ for intuitionistic logic, see [13]. This is a multiple-conclusion
version of LJ where the intuitionistic restriction, i.e., the consequent of a se-
quent contains at most one formula, applies only to the right rule of ⊃ (and ∀,
in the first order case). The rule schemas for the hypersequent version of LJ’
(we call this calculus HLJ’) are depicted in Table 2. Note that Γ,Σ,Π,Δ stand
for multisets of formulas while G and H denote hypersequents.

The calculus HBd2 is obtained by extending HLJ’ with the following rule:

G | Γ ′, Γ ⇒ Δ′ G | Γ, ϕ⇒ ψ,Δ
(bd2)

∗

G | Γ ′ ⇒ Δ′ | Γ ⇒ ϕ ⊃ ψ,Δ

Remark 1. A careful application of the transformation steps of the procedure
in [6] to the axiom ξ ∨ (ξ ⊃ (ϕ ∨ (ϕ ⊃ ψ))) yields a similar rule (we call it
(bd2)’) with ψ not occurring in the premise. Indeed by using the invertible rules
of HLJ’ ((⊃, r) is when Δ = Γ = ∅) from G | ⇒ ξ | ⇒ ξ ⊃ ϕ∨ (ϕ ⊃ ψ) we get

G | ⇒ ξ | ξ ⇒ ϕ, ϕ ⊃ ψ

which is easily seen to be inter-derivable in HLJ’ with the following rule:

G | Γ ′, ξ ⇒ Δ′ G | Γ ⇒ ξ G | Γ, ϕ⇒ Δ

G | Γ ′ ⇒ Δ′ | Γ ⇒ ϕ ⊃ ψ,Δ

The rule (bd2)’ is then obtained by applying cut to the premises G | Γ ′, ξ ⇒ Δ′

and G | Γ ⇒ ξ. However (bd2)’ does not preserve cut elimination when added
to HLJ’: e.g., ⇒ α | α ⇒ β, α ⊃ ((α ⊃ β) ⊃ δ) can be proved with a cut
on ⇒ α | α ⇒ β,∼ β and ∼ β ⇒ α ⊃ ((α ⊃ β) ⊃ δ) but it has no cut-free
proof. The rule (bd2)

∗ was obtained by a last heuristic step: by inspecting the
counterexample for cut admissibility and changing the rule (bd2)’ accordingly.

86 A. Ciabattoni, P. Maffezioli, and L. Spendier

We show that HBd2 is sound and complete for the logic Bd2.

Definition 3. A hypersequent G := Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn is interpreted
as: GI := (

∧
Γ1 ⊃

∨
Δ1) ∨ · · · ∨ (

∧
Γn ⊃

∨
Δn) where

∧
Γi is the conjunction

& of the formulas in Γi (� when Γi is empty), and
∨
Δi is the disjunction of

the formulas in Δi (⊥ when Δi is empty).

The height |d| of a derivation d is the maximal number of inference rules + 1
occurring on any branch of d. The principal formula of a logical rule is the com-
pound formula introduced in the conclusion. Formulas, which remain unchanged
by a rule application, are referred to as contexts. Henceforth we use �S ϕ (or
�S Γ ⇒ Δ, or �S G) to denote that a formula ϕ (a sequent Γ ⇒ Δ, or a
hypersequent G) is derivable in the calculus S.

Theorem 2 (Soundness and Completeness). For any sequent Γ ⇒ Δ

�HBd2 Γ ⇒ Δ iff �LJ+(bd2) Γ ⇒ Δ

Proof. “⇒”: We show for any hypersequent G, if �HBd2 G then �LJ+(bd2) G
I .

By induction on the height of a derivation of G. The base case (G is an initial
sequent) is easy. For the inductive case it suffices to see that for each inference
rule inHBd2 with premise(s)G1 (and G2), the sequentG

I
1 ⇒ GI (GI

1, G
I
2 ⇒ GI)

is derivable in LJ+(bd2). The only non-trivial case to show is (bd2)
∗:

�LJ+(bd2) (G | Γ ′, Γ ⇒ Δ′)I , (G | Γ, ϕ ⇒ ψ,Δ)I ⇒ (G | Γ ′ ⇒ Δ′ | Γ ⇒ ϕ ⊃ ψ,Δ)I

that follows by a (cut) with the axiom (bd2), i.e.,⇒
∧
Γ ∨(

∧
Γ ⊃ (ϕ∨(ϕ ⊃ ψ))).

“⇐”: The rules of LJ are derivable in HBd2. A proof of the axiom (bd2) is:

ϕ⇒ ϕ ϕ,ψ ⇒ ψ, ξ
(bd2)

∗

⇒ ϕ | ϕ⇒ ψ,ψ ⊃ ξ
(∨, r)

⇒ ϕ | ϕ⇒ ψ ∨ (ψ ⊃ ξ)
(⊃, r)

⇒ ϕ | ⇒ ϕ,ϕ ⊃ (ψ ∨ (ψ ⊃ ξ))
(∨, r), (w, r)

⇒ ϕ ∨ (ϕ ⊃ (ψ ∨ (ψ ⊃ ξ))) | ⇒ ϕ ∨ (ϕ ⊃ (ψ ∨ (ψ ⊃ ξ)))
(ec)

⇒ ϕ ∨ (ϕ ⊃ (ψ ∨ (ψ ⊃ ξ)))

The cut elimination proof for the calculus HBd2 requires a special strategy.
It proceeds by cases according to the cut formula. For non-atomic cut formulas
having & and ∨ as outermost connective, we use the invertibility of the rules to
replace the cut by smaller ones.

Cut formulas having ⊃ as outermost connective require a different handling.
In this case we proceed by shifting the cut upwards in a specific order: First we
move the cut upwards in the right derivation dr which has the cut formula on the
right side of the sequent (Lemma 2). If the cut formula is introduced by (⊃, r)
or (bd2)

∗ we proceed by shifting the cut upwards in the left derivation dl until
the cut formula is introduced and finally cut the premises to replace the cut by
smaller ones (Lemma 1). Moving the cut upwards can indeed be problematic in
presence of (⊃, r) or (bd2)∗ in dl. E.g., in the following situation:

Hypersequent and Labelled Calculi for Intermediate Logics 87

...dr

G | Γ ′ ⇒ Δ′ | Γ ⇒ α ⊃ β,Δ

...dl

H | Σ,α ⊃ β, ϕ⇒ ψ
(⊃, r)

H | Σ,α ⊃ β ⇒ ϕ ⊃ ψ,Π
(cut)

G | H | Γ ′ ⇒ Δ′ | Γ,Σ ⇒ Δ,ϕ ⊃ ψ,Π

The reason being the presence of the context Δ that does not permit the subse-
quent application of (⊃, r) to the following derivation

...dr

G | Γ ′ ⇒ Δ′ | Γ ⇒ α ⊃ β,Δ

...dl

H | Σ, α ⊃ β, ϕ⇒ ψ
(cut)

G | Γ ′ ⇒ Δ′ | H | Γ,Σ, ϕ⇒ Δ,ψ

However, it is always possible to shift the cut upward over dl when the cut
formula in the right premise is introduced by a rule (⊃, r) or (bd2)∗. For instance,
in the above case assume that G | Γ ′ ⇒ Δ′ | Γ ⇒ α ⊃ β,Δ is the conclusion of
a (bd2)

∗ rule whose premises are

d′r � G | Γ ′, Γ ⇒ Δ′ and d′′r � G | Γ, α⇒ β,Δ

The original cut above is shifted upwards as follows (we omit the contexts G
and H for simplicity):

...d′r

Γ ′, Γ ⇒ Δ′

Γ ′ ⇒ Δ′ | Γ ′, Γ,Σ ⇒ Δ′

...dr

Γ ′ ⇒ Δ′ | Γ ⇒ α ⊃ β,Δ

...dl
Σ,α ⊃ β, ϕ⇒ ψ

(cut)
Γ ′ ⇒ Δ′ | Γ,Σ, ϕ⇒ Δ,ψ

(bd2)
∗

Γ ′ ⇒ Δ′ | Γ ′ ⇒ Δ′ | Γ,Σ ⇒ Δ,ϕ ⊃ ψ

Definition 4. The complexity |ϕ| of a formula ϕ is defined as usual: |ϕ| = 0 if
ϕ is atomic, |ϕ&ψ| = |ϕ ∨ ψ| = |ϕ ⊃ ψ| = max(|ϕ|, |ψ|) + 1. The cut-rank ρ(d)
of a derivation d is the maximal complexity of cut formulas in d + 1. (ρ(d) = 0
if d is cut-free).

We use the following notation where ϕ is a formula and Σ is a multiset of

formulas for n ≥ 0: ϕn =

n︷ ︸︸ ︷
{ϕ, . . . , ϕ} and Σn =

n︷ ︸︸ ︷
Σ ∪ . . . ∪Σ

Lemma 1 (Shift Left and Reduction of ⊃). Let dl and dr be derivations in
HBd2 such that:

– dl is a derivation of H | Σ1, (α ⊃ β)n1 ⇒ Π1 | · · · | Σk, (α ⊃ β)nk ⇒ Πk,
– dr is a derivation of G | Γ ⇒ α ⊃ β,Δ,
– ρ(dl) ≤ |α ⊃ β| and ρ(dr) ≤ |α ⊃ β|,
– dr ends with an application of (⊃, r) or (bd2)

∗ introducing α ⊃ β.

Then we can find a derivation d of G | H | Γn1 , Σ1 ⇒ Δn1 , Π1 | · · · | Γnk , Σk ⇒
Δnk , Πk in HBd2 with ρ(d) ≤ |α ⊃ β|.

88 A. Ciabattoni, P. Maffezioli, and L. Spendier

Proof. By induction on |dl|. If |dl| ends in an axiom, we are done. Otherwise,
consider the last inference rule (R) applied in |dl|. Suppose that (R) acts only
on H , or (R) is any rule other than (⊃, l) introducing α ⊃ β, (⊃, r), or (bd2)∗.
Then the claim follows by applications of the inductive hypothesis, (R) and,
if needed, weakening and contraction. When (R) = (⊃, l) and α ⊃ β is the
principal formula the claim follows by applying the inductive hypothesis and
subsequent cuts with cut formulas α and β.

The only interesting cases arise when (R) is (⊃, r) or (bd2)∗.When dr ends in
an application of (⊃, r), the required derivation is simply obtained by applying
the inductive hypothesis and (R) (note that in this case Δ is empty and hence
no context is added to the premises by the inductive hypothesis).

If dr ends with (bd2)
∗ and (R) = (⊃, r) the case is handled as described on

the previous page. Assume that dr ends with (bd2)
∗ and (R) = (bd2)

∗ as in the
following derivation (we omit the contexts for simplicity):

... dr

Γ ′ ⇒ Δ′ | Γ ⇒ α ⊃ β,Δ

... d′l

Σ′, Σ1, (α ⊃ β)n1 ⇒ Π ′

... d′′l

Σ1, (α ⊃ β)n1 , ϕ⇒ ψ,Π1
(bd2)

∗

Σ′ ⇒ Π ′ | Σ1, (α ⊃ β)n1 ⇒ ϕ ⊃ ψ,Π1
(cut)

Γ ′ ⇒ Δ′ | Σ′ ⇒ Π ′ | Γn1 , Σ1 ⇒ ϕ ⊃ ψ,Π1,Δ
n1

where Γ ′ ⇒ Δ′|Γ ⇒ α ⊃ β,Δ is the conclusion of a (bd2)
∗ rule with premises

d′r � Γ ′, Γ ⇒ Δ′ and d′′r � Γ, α⇒ β,Δ

The cut is moved upwards as follows:
...d′r

Γ ′, Γ ⇒ Δ′

Γ ′, Γn1 , Σ1 ⇒ Δ′

...dr

Γ ′ ⇒ Δ′ | Γ ⇒ α ⊃ β,Δ

...d′′l

Σ1, (α ⊃ β)n1 , ϕ⇒ ψ,Π1
(cut)

Γ ′ ⇒ Δ′ | Γn1 , Σ1, ϕ⇒ ψ,Δn1 ,Π1
(bd2)

∗

Γ ′ ⇒ Δ′ | Γ ′ ⇒ Δ′ | Γn1 , Σ1 ⇒ ϕ ⊃ ψ,Π1,Δ
n1

Lemma 2 (Shift Right). Let dl and dr be derivations in HBd2 such that:

– dl is a derivation of H | Σ,ϕ⇒ Π,
– ϕ is either atomic or of the form α ⊃ β,
– dr is a derivation of G | Γ1 ⇒ ϕn1 , Δ1 | · · · | Γk ⇒ ϕnk , Δk,
– ρ(dl) ≤ |ϕ| and ρ(dr) ≤ |ϕ|.

Then we can find a derivation d of G | H | Γ1, Σ
n1 ⇒ Δ1, Π

n1 | · · · | Γk, Σ
nk ⇒

Δk, Π
nk in HBd2 with ρ(d) ≤ |ϕ|.

Proof. By induction on |dr|. If |dr| ends in an axiom, we are done. Otherwise,
consider the last inference rule (R) in |dr|. If (R) acts only on G or (R) is any rule
other than a logical rule introducing ϕ then the claim follows by applications of
the inductive hypothesis, (R) and, if needed, weakening or contraction. If (R) is
(⊃, r) or (bd2)∗ and ϕ is the principal formula. The claim follows by applications
of the inductive hypothesis, the corresponding rule (R) and Lemma 1.

Hypersequent and Labelled Calculi for Intermediate Logics 89

Theorem 3 (Cut elimination). Cut elimination holds for HBd2.

Proof. Let d be a derivation in HBd2 with ρ(d) > 0. The proof proceeds by a
double induction on 〈ρ(d),#ρ(d)〉, where #ρ(d) is the number of applications
of (cut) in d with cut rank ρ(d). Consider an uppermost application of (cut) in
d with cut rank ρ(d). Let dl and dr be its premises, where dl is a derivation of
H | Σ,ϕ ⇒ Π , and dr is a derivation of G | Γ ⇒ ϕ,Δ. We can find a proof
of G | H | Γ,Σ ⇒ Δ,Π in which either ρ(d) or #ρ(d) decreases. Indeed we
distinguish the following cases according to ϕ:

– ϕ is an atomic formula or ϕ = α ⊃ β. The claim follows by Lemma 2.
– Suppose ϕ = α ∨ β. Being ∨ an invertible connective in HBd2 on the left

and on the right (standard proof), we can find the derivations d′r � G | Γ ⇒
α, β,Δ, as well as d′l � H | α,Σ ⇒ Π and d′′l � H | β,Σ ⇒ Π . The claim
follows by replacing the cut with cut formula α ∨ β with cuts on α and β.

– The case ϕ = α&β is similar since & is also invertible on both sides.

4 Labelled Calculi for Intermediate Logics

A methodology to define cut-free labelled calculi for a large class of interme-
diate logics is contained in [7,10]. The resulting calculi are obtained by adding
to the labelled intuitionistic system G3I (see Table 1) new structural rules,
corresponding to the peculiar frame conditions of the considered logics.

The (formulas defining) frame conditions, to which the method in [7] applies,
are called geometric formulas. These consist of conjunctions of formulas of the
form ∀x(P1 ∧ · · · ∧Pm → ∃y(M1 ∨ · · · ∨Mn)), where x, y are sequences of bound
variables, each Pi is a relational atom, each Mj is a conjunction of relational
atoms Qj1 , . . . , Qjk and y does not appear in P1, . . . , Pm. If y does not appear
in Mi (for all i = 1, . . . , n) the resulting formula is called a universal axiom. As
shown in [7], the rule scheme corresponding to geometric formulas has the form

Q1[z1/y1], P1, . . . , Pm, Γ ⇒ Δ · · · Qn[zn/yn], P1, . . . , Pm, Γ ⇒ Δ

P1, . . . , Pm, Γ ⇒ Δ
(geom)

where each Qj is the multiset of Qj1 , . . . , Qjk and z1, . . . , zn are eigenvariables
(i.e. variables not occurring in the conclusion). The accessibility relation � in
all intermediate logics of Example 1 is characterized by universal or geometric
axioms.

Theorem 4 ([7]). Cut is admissible in any extension of G3I by rules of the
form (geom). Weakening and contraction are height-preserving (hp-) admissible,
i.e. whenever their premises are derivable, so is their conclusion with at most
the same derivation height. All rules are hp-invertible.

Henceforth we will use P,Q, . . . (possibly indexed) to indicate relational atoms
and A,B,C, . . . (possibly indexed) for compound formulas.

90 A. Ciabattoni, P. Maffezioli, and L. Spendier

4.1 Towards a Systematic Approach

Inspired by the algorithms in [5,6] for hypersequent calculi, we provide a system-
atic method to transform a large class of frame conditions for intermediate logics
into labelled rules. Soundness, completeness and cut-elimination are proved for
the generated calculi, that in the case of geometric formulas coincide with those
introduced in [7].

We classify the frame conditions characterizing intermediate logics into a hier-
archy which intuitively accounts for the difficulty to deal proof theoretically with
the corresponding formulas of first-order classical logic. As for the substructural
hierarchy in [5] (see Section 3) the classification is based on the invertibility of
the logical/quantifier rules of the base calculus, which in our case is LK’, i.e., a
variant of Gentzen LK calculus for first-order classical logic in which all logical
rules are invertible, while the universal (existential) quantifier is invertible on
the right (respectively on the left). W.l.o.g. we will consider formulas in prenex
form. The class to which a formula belongs is determined by the alternation of
universal and existential quantifiers in the prefix. The resulting classification is
essentially the arithmetical hierarchy.

Definition 5. The classes Πk and Σk are defined as follows: A ∈ Σ0 and A ∈
Π0, if A is quantifier-free. Otherwise:

– if A is classically equivalent to ∃xB where B ∈ Πn then A ∈ Σn+1

– if A is classically equivalent to ∀xB where B ∈ Σn then A ∈ Πn+1

Example 3. Universal axioms are in Π1, while geometric formulas are in Π2.

We show below how to transform all formulas within the class Π2 into struc-
tural labelled rules that preserve cut-elimination once added to (a slightly mod-
ified version of) G3I. The resulting rules are equivalent to the corresponding
axioms, that is, LK’ extended with the defined rules or LK’ extended with the
original formula proves the same sequents.

As for the algorithm in [5,6] (see Remark 1), the key ingredients for our
transformation are: (1) the invertibility in LK’ of the rules R∀ (i.e. introduction
of ∀ on the right) and L∃ (i.e. introduction of ∃ on the left) and of all logical
rules; (2) the following lemma that allows formulas to change the side of the
(labelled) sequent going from the conclusion to the premises.

Lemma 3 ([5]). The sequent A1, . . . , An ⇒ B1, . . . , Bm is equivalent to the rule

B1, Γ ⇒ Δ · · · Bm, Γ ⇒ Δ

A1, . . . , An, Γ ⇒ Δ

where Γ,Δ are fresh metavariables standing for multisets of formulas.

Proof. “⇒”: Follows by m applications of CUT (and weakening). “⇐”: Follows
by instantiating Γ = ∅ and Δ = B1, . . . , Bm.

Theorem 5. Every frame condition F within the class Π2 can be transformed
into a set of equivalent structural rules in labelled calculi.

Hypersequent and Labelled Calculi for Intermediate Logics 91

Proof. Let F = ∀x∃yA, where A is a quantifier-free formula, x = x1, . . . , xh and
y = y1, . . . , yl. W.l.o.g. we assume that A is in disjunctive normal form and has
the shape B1∨· · ·∨Bk where every Bi has the form Qi1 ∧· · ·∧Qin ∧¬Pi1 ∧· · ·∧
¬Pim . By the invertibility of the rule R∀,⇒ F is equivalent to⇒ ∃yA′, where A′

is obtained by replacing in A all x1, . . . , xh with fresh variables x′1, . . . , x
′
h (eigen-

variable condition). We distinguish two cases according to whether F contains
at least one existential quantifier (F ∈ Π2) or it does not (F ∈ Π1).

Assume that l = 0 (F ∈ Π1). By the invertibility of R∨, R∧ and R¬, ⇒ A′ is
equivalent to a set of atomic sequents P ⇒ Q with P,Q multisets of relational
atoms Pir , Qis . By Lemma 3, these sequents are equivalent to rules of the form

Q,Γ ⇒ Δ

P, Γ ⇒ Δ
(Π ′

1)

Assume that l > 0 (F ∈ Π2). By Lemma 3, ⇒ ∃yA′ is equivalent to
∃yA′, Γ ⇒ Δ

Γ ⇒ Δ
which is in turn equivalent to

A′′, Γ ⇒ Δ

Γ ⇒ Δ
where A′′ is ob-

tained by replacing in A all y1, . . . , yl with fresh variables y′1, . . . , y
′
l (eigenvariable

condition). By the invertibility of L∨, L∧ and L¬ we get

{Qi1 , . . . , Qin , Γ ⇒ Δ,Pi1 , . . . , Pim}i=1...k

Γ ⇒ Δ
(Π2)

The resulting rules are equivalent to F .

Remark 2. The (Π2) rule (which is, in fact, a rule schema) is invertible. To make
(Π ′

1) invertible we simply repeat P in its premises, thus obtaining

P ,Q, Γ ⇒ Δ

P, Γ ⇒ Δ
(Π1)

which is interderivable with the rule (Π ′
1) in LK’.

Observe that while (Π1) coincides with the rule defined in [7] for universal ax-
ioms, this is not the case for geometric formulas. Indeed the above procedure
applied to a geometric formula generates a rule of the form (Π2) which might
contain relational atoms (Pi1 , . . . , Pim) on the right hand side of premises and is
therefore not of the form (geom) [7]. Being geometric formulas Π2 formulas of
a particular shape, we show below that the (Π2) rules for them (generated by
Th. 5) can be easily transformed into rules with no relational atom on the right
hand side; the resulting rules are nothing but the (geom) rules in [7].

Corollary 1. Geometric axioms are equivalent to rules of the form (geom).

Proof. Geometric axioms are formulas in Π2 of the form ∀x∃yAG, where AG is
B1 ∨ · · · ∨ Bn ∨ C1 ∨ · · · ∨ Cm where each Bi is Qi1 ∧ · · · ∧ Qik and each Cj is
¬Pj . Theorem 5 transforms such an axiom into the equivalent rule

{Qi1 , . . . , Qik , Γ ⇒ Δ}i=1...n {Γ ⇒ Δ,Pj}j=1...m

Γ ⇒ Δ
(Π ′

2)

92 A. Ciabattoni, P. Maffezioli, and L. Spendier

The claim follows by showing that (Π ′
2) can be transformed into a rule

Q1, P1, . . . , Pm, Γ ⇒ Δ · · · Qn, P1, . . . , Pm, Γ ⇒ Δ

P1, . . . , Pm, Γ ⇒ Δ
(ΠG

2)

where each Qi is a multiset of Qi1 , . . . , Qik . Observe that (ΠG
2) is nothing but a

(geom) rule [7]. To derive (ΠG
2) we use (Π ′

2) and m initial sequents:

{Qi, P1, . . . , Pm, Γ ⇒ Δ}i=1...n {P1, . . . , Pm, Γ ⇒ Δ,Pj}j=1...m

P1, . . . , Pm, Γ ⇒ Δ
(Π ′

2)

To derive (Π ′
2) we first apply (ΠG

2) followed by m applications of CUT.

Rules for non-geometric Π2 formulas manipulate relational atoms in both
sides of the sequent. We show below that this is not an obstacle for obtaining
admissibility results analogous to those in Theorem 4. The base calculus we will
work with is a slightly modified version of G3I which is obtained by adding
initial sequents of the form x � y, Γ ⇒ Δ,x � y to G3I. Note that these
sequents, which are needed for our completeness proof (Theorem 6), were first
introduced for G3I and later removed as they were not needed in the labelled
systems for intermediate logics presented in [7]; the reason being that in these
systems no rule contains atoms x � y in the succedent.

Henceforth we denote by G3SI∗ (super-intuitionistic) the system obtained by
adding to our base calculus rules of the form (Π1) and (Π2) defined by applying
Theorem 5 to the set ∗ of formulas within the class Π2.

Consider the following version of the structural rules for contraction and weak-
ening (Z is either a labelled formula u : ϕ or a relational atom x � y):

Table 3. Structural rules

Γ ⇒ Δ
Z,Γ ⇒ Δ

L-W
Γ ⇒ Δ
Γ ⇒ Δ,Z

R-W
Z, Z, Γ ⇒ Δ

Z, Γ ⇒ Δ
L-C

Γ ⇒ Δ,Z, Z

Γ ⇒ Δ,Z
R-C

Lemma 4. In G3SI∗ we have:

1. Substitution of variables is hp-admissible; 2. Weakening is hp-admissible;
3. All the rules are hp-invertible; 4. Contraction is hp-admissible.

Proof. 1. We need to show that if y is free for x in every formula in Γ ⇒ Δ
and Γ ⇒ Δ is derivable in G3SI∗ then so is Γ [y/x] ⇒ Δ[y/x] with the same
derivation height. The proof is by induction on the height of the derivation of
Γ ⇒ Δ and follows mostly the proof of the same theorem in [7].

2. The proof follows the pattern of [7] with the new case of R-W for x � y.
Also in this case the proof is by induction on the premise of weakening. When
Γ ⇒ Δ is concluded by a rule R with variable condition, i.e. by R ⊃ or (Π2),
we first might need to replace the eigenvariable of the rule with a new one. For
instance, if R is R ⊃ and the premise of weakening is a sequent of the form

Hypersequent and Labelled Calculi for Intermediate Logics 93

x � y, x : ϕ, Γ ⇒ Δ′, y : ψ, we first replace y with a new z (Lemma 4.1) and
obtain x � z, x : ϕ, Γ ⇒ Δ′, z : ψ; now by the inductive hypothesis x � z, x :
ϕ, Γ ⇒ Δ′, z : ψ, x � y; the conclusion follows by R ⊃.

3. Observe that L ⊃ and the rules (Π1) and (Π2) are hp-invertible since
their premises are obtained from the conclusion by applying weakening which is
hp-admissible. For the other rules the proof is as in [7].

4. Similar to the case of weakening.

The proof of soundness and completeness of our calculi follows the same pattern
of the analogous proof in [11] and it is sketched below. Let FSI∗ = 〈W,�〉 be a
frame with the properties of the accessibility relation expressed as (Π2 and Π1)
formulas in ∗. Let L = {x, y, z . . . } be the labels occurring in aG3SI∗-derivation.
An interpretation I of L in FSI∗ is a function I : L→ W .

Definition 6. Let MSI∗ = 〈FSI∗ ,�〉 be a model and I an interpretation. A
labelled sequent Γ ⇒ Δ is valid in MSI∗ if for every interpretation I we have:
if for all labelled formulas x : ϕ and relational atoms y � z in Γ , xI � ϕ and
yI � zI hold, then for some w : ψ, u � v in Δ we have wI � ψ or uI � vI . A
sequent Γ ⇒ Δ is valid in a frame FSI∗ when it is valid in every model MSI∗ .

Theorem 6 (Soundness and Completeness). For any sequent Γ ⇒ Δ

�G3SI∗ Γ ⇒ Δ iff Γ ⇒ Δ is valid in every frame FSI∗.

Proof. “⇒”: By induction on the height of a derivation of Γ ⇒ Δ in G3SI∗.
The claim is straightforward if Γ ⇒ Δ is initial (notice the new case of sequents
of the form x � y, Γ ′ ⇒ Δ′, x � y that are clearly valid). The cases of the rules
for G3I are as in [11] with R ⊃ similar to the case R�, while (Π2) is handled
as the mathematical rules there with eigenvariable.

“⇐”: We show that each sequent Γ ⇒ Δ is either derivable in G3SI∗ or it
has a countermodel in a frame with properties expressed by formulas in ∗. We
first construct in the usual manner a derivation tree for Γ ⇒ Δ by applying the
rules of G3SI∗ root first. If the reduction tree is finite, i.e., all leaves are initial
or conclusions of L⊥, we have a proof in G3SI∗. Assume that the derivation
tree is infinite. By König’s lemma, it has an infinite branch that is used to build
the needed counterexample. Let Γ ⇒ Δ = Γ0 ⇒ Δ0, Γ1 ⇒ Δ1, . . . , Γi ⇒ Δi, . . .
be one such branch. Consider the sets Γ ≡

⋃
Γi and Δ ≡

⋃
Δi for i 	 0. We

now construct a countermodel, i.e. a model that makes all labelled formulas and
relational atoms in Γ true and all labelled formulas and relational atoms in Δ
false. Let FSI∗ be a frame, whose elements are all the labels occurring in Γ,Δ.
FSI∗ is defined as follows: (i) for all x : p in Γ it holds that xI � p in FSI∗ ; (ii)
for all x � y in Γ we have xI � yI in FSI∗ ; (iii) for all x′ : p′ in Δ we have
x′I � p′ in FSI∗ ; finally (iv) for all x′ � y′ in Δ it holds x′I � y′I in FSI∗ . FSI∗

is well defined as it is not the case that either x � y is in Γi and x � y is in
Δj or x � y, x : p is in Γi and y : p is in Δj (for any i and j), as otherwise we
would have an initial sequent and therefore the branch would be finite, against
the hypothesis. We then show that for any formula ϕ, ϕ is forced at xI if x : ϕ
is in Γ and ϕ is not forced at xI if x : ϕ is in Δ. As all relational atoms in Γ

94 A. Ciabattoni, P. Maffezioli, and L. Spendier

are true and those in Δ are false by definition of FSI∗ we have a countermodel
to Γ ⇒ Δ. By induction on the formula ϕ.

If ϕ is ⊥, it cannot be in Γ because no sequent in the branch contains x : ⊥
in the antecedent, so it is not forced at any node of the model. If ϕ is an atom
p in Γ then xI � p by definition; and xI � p if it is in Δ.

If x : ϕ&ψ is in Γ, there exists i such that x : ϕ&ψ appears first in Γi, and
therefore, for some j 	 0, x : ϕ and x : ψ are in Γi+j . By inductive hypothesis,
x � ϕ and x � ψ and therefore x � ϕ&ψ (analogous for x : ϕ ∨ ψ in Δ).

If x : ϕ&ψ is in Δ then either x : ϕ or x : ψ is in Δ. By inductive hypothesis,
x � ϕ or x � ψ and therefore x � ϕ&ψ (analogous for x : ϕ ∨ ψ in Γ).

If x : ϕ ⊃ ψ is in Γ, we consider all the relational atoms x � y that occur
in Γ. If there is no such atom then x � ϕ ⊃ ψ is in the model. Else, for any
occurrence of x � y in Γ, by construction of the tree either y : ϕ is in Δ or
y : ψ is in Γ. By inductive hypothesis y � ϕ or y � ψ, and since x � y we have
x � ϕ ⊃ ψ in the model.

If x : ϕ ⊃ ψ is in Δ, at next step of the reduction tree we have that x � y and
y : ϕ are in Γ, whereas y : ψ is in Δ. By inductive hypothesis this gives x � y
and y � ϕ but y � ψ, i.e. x � ϕ ⊃ ψ.

Theorem 7 (Cut elimination). The cut rule (Z is either u : ϕ or x � y)

Γ ⇒ Δ,Z Z, Γ ′ ⇒ Δ

Γ, Γ ′ ⇒ Δ′, Δ
CUT

can be eliminated from G3SI∗-derivations.

Proof. We distinguish two cases according to the cut formula Z. When Z is a
labelled formula u : ϕ, the proof has the same structure of the cut elimination
proof in [7] for G3I extended with rules of the form (geom). It proceeds by a
double induction on the complexity of the cut formula and on the sum of the
derivation heights of the premises of cut. We observe that the additional initial
sequents, i.e. x � y,Σ ⇒ Π,x � y, make no trouble as Z belongs to Σ ⇒ Π .
Moreover, cuts can be permuted upward over any structural rule (Π1) and (Π2).
To avoid clashes with the variable conditions when permuting a cut with (Π2)
(or with R ⊃) an appropriate substitution (Lemma 4.1) is used.

When Z is a relational atom x � y the proof proceeds by induction on the
derivation height of the right premises of cut, i.e. Γ ⇒ Δ,x � y. The base case
is when this is initial; then it is either (i) u � v, u : p, Γ ′′ ⇒, Δ′′, v : p, x � y; or
(ii) u � v, Γ ′′ ⇒ Δ′′, u � v, x � y; or else (iii) x � y, Γ ′′ ⇒ Δ,x � y. If (i) or
(ii), the conclusion of cut is initial. Otherwise, if (iii), the conclusion of cut is
obtained by weakening (Lemma 4.2). Assume that Γ ⇒ Δ,x � y is not initial
and that R is the last rule applied to derive it. We reason by cases according
to R and show that the cut can be shifted upwards over the premise(s) of R.
The key observation is that x � y is left unchanged by the application of R as
no rule of G3SI∗ changes the relational atoms appearing on the right hand side
of its conclusion. If R is a logical rule other than R ⊃ or a rule following the
(Π2) scheme then cut is simply permuted upwards with R. For instance let R
be (Π1); then the derivation

Hypersequent and Labelled Calculi for Intermediate Logics 95

Q1, . . . , Qm, P1, . . . , Pn, Γ
′′ ⇒ Δ,x � y

P1, . . . , Pn, Γ
′′ ⇒ Δ,x � y

Π1

x � y, Γ ′ ⇒ Δ′

P1, . . . , Pn, Γ
′′, Γ ′ ⇒ Δ′, Δ

CUT

is transformed into
Q1, . . . , Qm, P1, . . . , Pn, Γ

′′ ⇒ Δ,x � y x � y, Γ ′ ⇒ Δ′

Q1, . . . , Qm, P1, . . . , Pn, Γ
′′, Γ ′ ⇒ Δ′, Δ

CUT

P1, . . . , Pn, Γ
′′, Γ ′ ⇒ Δ′, Δ

Π1

If R is a rule with variable condition as R ⊃ or a rule following the (Π2)
scheme then we need first to replace the eigenvariable in the premise(s) of R
and then permute cut and R. Note that the permutation with a R ⊃ rule is not
problematic as the cut formula x � y on the right hand side always belongs to
the context of the rule (i.e., to the Δ in the rule schemas in Table 1).

Open Problems: (1) Characterize the class of axioms that can be transformed
into equivalent hypersequent logical rules (Section 3.1 shows a particular axiom
for which this is the case) and define an algorithm for the transformation. Note
that when defining logical rules the cut-admissibility of the resulting calculus
needs either an ad-hoc syntactic proof or suitable semantic methods as in [12].

(2) Are there intermediate logics characterized by frame conditions that are
Π2 formulas not equivalent to any geometric formula?

(3) Not all frame conditions are formulas within the class Π2. As shown in [4],
all axiomatizable intermediate logics are definable by canonical formulas that are
in the class N3 of the substructural hierarchy (cf. Sec. 3). In light of this result,
which is the maximum nesting of quantifiers occurring in formulas defining frame
conditions for intermediate logics? How to capture all2 these formulas?

Acknowledgment. We are grateful to Sara Negri for her suggestions and for
pointing out [11] to us.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation 2(3), 297–347 (1992)

2. Avron, A.: A Constructive Analysis of RM. J. of Symb. Logic 52(4), 939–951 (1987)
3. Avron, A.: The method of hypersequents in the proof theory of propositional non-

classical logic. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic:
From Foundations to Applications, pp. 1–32. Oxford University Press (1996)

4. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press (1997)
5. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical

logics. In: Proceedings of LICS 2008, pp. 229–240. IEEE (2008)
6. Ciabattoni, A., Straßburger, L., Terui, K.: Expanding the realm of systematic proof

theory. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 163–178.
Springer, Heidelberg (2009)

2 See [9] for a recent work in this direction.

96 A. Ciabattoni, P. Maffezioli, and L. Spendier

7. Dyckhoff, R., Negri, S.: Proof analysis in intermediate logics. Archive for Mathe-
matical Logic 51(1-2), 71–92 (2012)

8. Gabbay, D.: Labelled Deductive Systems: Foundations. Oxford Univ. Press (1996)
9. Negri, S.: Proof analysis beyond geometric theories: from rule systems to systems

of rules (submitted)
10. Negri, S.: Proof analysis in non-classical logics. In: Logic Coll. 2005, pp. 107–128

(2007)
11. Negri, S.: Kripke completeness revisited. In: Primiero, G., Rahman, S. (eds.) Acts

of Knowledge - History, Philosophy and Logic. College Publications (2009)
12. Lahav, O.: From Frame Properties to Hypersequent Rules in Modal Logics. In:

Proceedings of LICS 2013 (2013)
13. Takeuti, G.: Proof Theory, 2nd edn. North-Holland (1987)
14. Rothenberg, R.: On the relationship between hypersequent calculi and labelled

sequent calculi for intermediate logics with geometric Kripke semantics. PhD thesis
(2010)

15. Simpson, A.: The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD
thesis (1994)

16. Viganò, L.: Labelled Non-Classical Logics. Kluwer (2000)
17. Wansing, H.: Sequent Systems for Modal Logic. In: Gabbay, D., Guenther, F. (eds.)

Handbook of Philosophical Logic, pp. 61–145. Kluwer, Dordrecht (2002)

TATL: Implementation

of ATL Tableau-Based Decision Procedure

Amélie David

Laboratoire IBISC - Université d’Évry Val d’Essonne - EA 4526
23 bd de France - 91037 Évry Cedex - France

adavid@ibisc.univ-evry.fr

Abstract. This paper describes the implementation of a tableau-based
decision procedure for the Alternating-time Temporal Logic proposed by
Goranko and Shkatov in 2009, as well as a set of representative formulas
used for testing.

Keywords: Alternating-time Temporal Logic, tableaux, theorem prover.

1 Introduction

The Alternating-time Temporal Logic (ATL) was introduced by Alur, Henzinger
and Kupferman in 2002 [1] in order to formally specify and verify reactive multi-
agent systems. Such systems are represented by a concurrent game structure C,
in short CGS, which are state-transition graphs. Transitions enable to go from
one state of the system to another depending on the choices made by every agent
of the system at a given state. At a given state, the different possible transitions
(which may lead to the same successor state) are represented by move vectors.

In ATL, properties of such systems are expressed with formulas following the
grammar:
F := p | ¬F | (F1 ∧ F2) | (F1 ∨ F2) | (F1 → F2) | 〈〈A〉〉©F | 〈〈A〉〉�F |

〈〈A〉〉♦F | 〈〈A〉〉F1 UF2,
where p is a proposition and A is a coalition, that is, a set of agents. ATL-
formulas represent objectives for the agents of the system C or the possibility
of achieving objectives. The connectors ¬, ∧, ∨ and → have the same meanings
as in classical propositional logic. The operators©, �, ♦ and U are those of
temporal logics and mean next time, always, eventually and until, respectively.
The novelty of ATL in comparison to other temporal logics is the use of agents’
coalitions and strategies for these coalitions by using the path quantifier 〈〈A〉〉.
〈〈A〉〉F means: the coalition A has a strategy to achieve F . So, for example, the
formula 〈〈1, 2〉〉�(p ∧ q) ∧ ¬〈〈2〉〉♦p means that the coalition of agents 1 and 2
has a strategy to always achieve p and q, and the “coalition” with only agent 2
does not have a strategy to eventually achieve p.

Checking whether a formula is satisfiable, that is, checking whether a model
exists for the formula or not, is a common question in logic. Methods to respond
to this question were introduced in 2006 by Goranko and van Drimmelen using

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 97–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

98 A. David

automata [2], and then in 2009 by Goranko and Shkatov using tableaux [3]. To
our knowledge, none of them has been implemented. Therefore, in this paper,
we present TATL, a prototype constituting the first implementation of Goranko
and Shkatov’s decision procedure. The core of TATL is implemented in Ocaml.
TATL is available at http://atila.ibisc.univ-evry.fr/tableau_ATL/.

At first, we recall the tableau-based decision procedure of Goranko and Shka-
tov, then we present, in Section 3, the general principles of TATL’s algorithm.
In Section 4 we explain how to get and use TATL, and in Section 5 how TATL
had been tested.

2 Tableau-Based Decision Procedure

Goranko and Shkatov’s tableau method decides the satisfiability of an ATL
formula θ by constructing a representation of models for θ, if a model exists.
Construction of a tableau for an ATL formula consists of two phases: first, con-
struct a pretableau and then obtain the tableau itself. The pretableau and the
tableau are state-transition graphs. The pretableau contains two kinds of ver-
texes (states and prestates) and two kinds of edges (unmarked and marked tran-
sitions). Prestates and states are sets of ATL-formulas and marked transitions
are labeled by sets of move vectors. Prestates and unmarked transitions are
technical items ensuring the termination of the procedure and will not remain
in the tableau. Intuitively, a prestate is an embryo of states that, when properly
saturated, generates one or more states.

The first phase of the tableau construction uses two rules, SR and Next
recursively applied on new sets of prestates or states. The construction phase
starts with a set containing only the input formula as a prestate. The rule SR
allows one to obtain states from prestates and the rule Next to obtain prestates
from states. The rule SR decomposes each formula of a prestate Γ into primitive
literal formulas, that is, formulas of the form �,p,¬p,〈〈A〉〉©F or ¬〈〈B〉〉©F
(B �= Σ, where Σ is the coalition of all agents). With the primitive formulas,
we get all the information needed to verify the properties of the current state
of a CGS and with the primitive next-time formulas 〈〈A〉〉©F and ¬〈〈B〉〉©F ,
all the information to verify the properties of next states in the CGS. From
this decomposition, we obtain the states generated by Γ . Then, from each of
these states, say Δ, the rule Next treats all Δ’s next-time formulas in order
to obtain a new set of prestates, the successors of Δ, which respects all the
possible strategies of agents and their objectives. So the rule SR creates states
and unmarked transitions, whereas the rule Next creates prestates and marked
transitions. When a state or a prestate already exists, the rules SR and Next
do not generate copies and only create a transition.

When the rules SR and Next cannot be applied any further, the obtained
structure is the complete pretableau of the input formula and the elimination
phase can start. The first elimination rule,PR, eliminates all prestates after hav-
ing properly interconnected states. Then we apply the elimination rules E1, E2,
and E3. The rule E1 eliminates all states that contain an explicit inconsistency,

http://atila.ibisc.univ-evry.fr/tableau_ATL/

TATL: Implementation of ATL Tableau-Based Decision Procedure 99

that is, any state containing formulas F and also ¬F , where F is a primitive
formula. Then we apply rules E3 and E2 until no more states can be eliminated.
The rule E2 eliminates all states which have lost all their successors linked to
the same move vector. Eventualities are formulas of the form a) 〈〈A〉〉♦F2 , b)
〈〈A〉〉F1 UF2 or c) ¬〈〈A〉〉�F3. The rule E3 eliminates all states not satisfying
their eventualities, that is always postponing the realization of F2 for a) and b),
and the realization of F3 for c).

At the end of the elimination phase, we obtain the tableau of the input for-
mula. The tableau is open and the input formula is satisfiable if there remains
at least one state containing the input formula; otherwise, the tableau is closed
and the formula is unsatisfiable.

3 General Principles of TATL

The algorithm of TATL follows the steps described in the previous section. To
represent states and prestates of the tableau and pretableau, that is, vertexes,
we use a structure which allows us to stock information about the name and
type of the vertex, the associated set of formulas, all the possible move vectors
linked to that vertex, its successors, as well as an indicator about its consistency.

During the construction phase, we use four sets of vertexes: partial states,
complete states, partial prestates and complete prestates. Partial prestates and
partial states are waiting for application of the rule SR and the rule Next,
respectively, to become complete prestates and complete states. The rule SR
generates partial states and the rule Next generates partial prestates.

The most difficult rules to implement were the rules SR and E3, so we describe
their implementation in more detail. Indeed, for the rule SR, we need to deal
with decompositions where the operator or occurs. This decomposition gener-
ates several choices and therefore several successors for the same prestate. So we
use a decomposition tree where all interior nodes still contain non-decomposed
formulas and each leaf node contains a set of fully decomposed formulas. Each
node of the tree is composed of two sets: one with decomposed formulas and
primitives, and one with formulas that still need to be decomposed. For each
interior node, we process one of the non-decomposed formulas to obtain succes-
sors. If a formula resulting from the decomposition is not primitive, it joins the
set of non-decomposed formulas.

The rule E3 needs, for each eventuality occurring in the tableau, to find all
states containing that eventuality. This results in finding a path from a given
state to a state satisfying the eventuality, avoiding looping indefinitely in a cycle.
Let us call ξ the set of all states containing the eventuality. Then we separate
the states of ξ which realize the eventuality from the others, using three sets:
to be treated, satisfied and current. The procedure is iterative with the following
halt conditions: the set current is empty or stable at the end of the iteration.
At the beginning, all states ξ are placed in the set to be treated. For each state s
in the set to be treated, we first check if the eventuality is immediately satisfied,
that is, if s contains F2 for an eventuality of the form 〈〈A〉〉♦F2 or 〈〈A〉〉F1 UF2,

100 A. David

and ¬F3 for an eventuality of the form ¬〈〈A〉〉�F3. In that case, we move s to the
set satisfied, otherwise, we check for each move vector leading to successors of s
in ξ whether one of these successors is also in the set satisfied. If the eventuality
is of the form 〈〈A〉〉F1 UF2, we also check that s contains F1. If these conditions
are satisfied then the state is moved to the set satisfied, otherwise it is moved
to the set current. When the set to be treated is empty, if the set current is also
empty or contains all the states to be treated at the beginning of the iteration, we
return the set current, which contains all the states not satisfying the eventuality,
otherwise we move the states of the set current to the set to be treated and the
procedure is repeated.

4 Description of TATL

TATL was conceived as a web application in order to be multi-platform and
easy to use, but binaries are also available. TATL is an Ocaml program and

Fig. 1. Screenshot of TATL’s result page for options 1 and 2

TATL: Implementation of ATL Tableau-Based Decision Procedure 101

we use PHP for the graphical user interface of the web application. The web
application and binaries are both available at http://atila.ibisc.univ-evry.
fr/tableau ATL/. In this paper, we will focus on the web application as the
functionalities of binaries are similar. However, you can find details about the
use of the binaries on the web page.

At the top of the page, a menu gives access to three options:

1. enter a formula as specified above;
2. choose among a set of preselected formulas corresponding to test cases (see

Section 5);
3. use the random generator of formulas.

Option 1 (One formula) allows one to enter an ATL-formula and get in return
the information about the satisfiability of the formula as well as the pretableau
and the tableau, as shown in the screenshot in Fig. 1.

On the result area, each state (or prestate) is displayed with 4 elements: a
name, a set of formulas, a mark and a set of successors. Prestates are referred to
as Px and states as Sx where x is a number and the pretableau always begins
with prestate P1. The check mark indicates that the state is consistent whereas
the cross indicates that it is inconsistent. Successors of states are also given
with their associated move vectors. An example of a move vector could be, for
instance, (0, 1, 0) for a formula with 3 agents. As agents are automatically sorted
by their number, the first element of the move vector corresponds to the choice
of the player with the smallest number. When a formula is satisfiable, this means
that there exists at least one model for that formula. It is possible to manually
construct a model from a tableau via the explanations in the completeness proof
of [3]. For the tableau of Fig. 1, a model can be:

s2

{∅}
s5

{∅}

s6{q} s4

{p, q}

0

0

0
0

Option 2 (Preselected formula) allows one to select a formula among a set of
42 formulas and get in return the pretableau, the tableau, and the satisfiability
of the formula, in the same way as in option 1. This set of formulas has been
used to test the application (see Section 5).

Options 3 (Random formulas) allows one to randomly generate a set of ATL-
formulas and get the answer on their satisfiability. This option needs some ad-
ditional information to run: a set of propositions, a maximum number of agents
from which TATL creates effective agents, a number of formulas to generate, a
maximal depth of formulas and a time-out in seconds to stop the computation
when it takes too long. The screenshot in Fig. 2 shows the output for this option.
A check mark indicates that the formula is satisfiable, a cross that the formula
is unsatisfiable and a question mark that the computation has timed-out. Click-
ing on the box in front of each generated formula transforms the syntax of the

http://atila.ibisc.univ-evry.fr/tableau_ATL/
http://atila.ibisc.univ-evry.fr/tableau_ATL/

102 A. David

Fig. 2. Example of results obtained with the option “random formulas”

formula to make it compatible with option “One formula”, thereby getting the
pretableau and tableau of the formula.

5 Tests for TATL

A common way to test an implementation is to compare the outputs against
another implementation. But, to our knowledge, there are no available tools
to decide the satisfiability of an ATL-formula, either by using tableaux or by
using automata. So we decided to check that TATL works correctly by creating
a set of ATL-formulas that enables us to test each part of the algorithm. It
should be noted that, to our knowledge, a benchmark set does not exist for
ATL-satisfiability, thus our set of formulas might be used as a starting set for
more refined future benchmarks. Our set consists of 42 formulas and allows us
to test 50 points distributed in 15 categories, which are:

Coalition screen output Next-time formulas
recognition of formulas Cartesian product for move vectors
Treatment of agents formula decomposition
Primitives Rule E2
Inconsistency(Rule E1) Rule E3
Eventualities Creation of state/prestates sets
Move vectors Several eventualities
sorting of Next-time formulas

The set of formulas is provided in the appendix. Details of the 50 points
and of the 15 categories can be found at http://atila.ibisc.univ-evry.fr/
tableau ATL/test cases.ods. For instance, the formulas 23, 24 and 25 have
been conceived to test eventualities, whereas formulas 16 and 17 allowed us to
test the rule E2.

In order to test our implementation, we manually calculated a tableau for
each of the 42 formulas and compared our results with TATL results to en-
sure that both satisfiability outputs and tableau’s descriptions comply with the
specification for these test cases.

http://atila.ibisc.univ-evry.fr/tableau_ATL/test_cases.ods
http://atila.ibisc.univ-evry.fr/tableau_ATL/test_cases.ods

TATL: Implementation of ATL Tableau-Based Decision Procedure 103

6 Conclusion and Perspectives

TATL is, to our knowledge, the first implementation for testing the satisfiability
of an ATL-formula. TATL is multi-platform and easy to use thanks to its web
interface. TATL is also available as a command line application. As no reference
tools were available for testing, we also provide a set of ATL-formulas. Such a
set can be reused to develop more sophisticated benchmarks for ATL. TATL is
a prototype so we need to improve it, for example, using better data structures
to save computation time. We also worked on automata’s construction based on
tableaux, so we plan to add this functionality to TATL, by adding automata
construction.

Acknowledgment. The author would like to thank for their help and support
Serenella Cerrito, Marta Cialdea Mayer, Valentin Goranko and Laurent Poligny.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of
Alternating-time temporal logic. Theor. Comput. Sci. 353(1-3), 93–117 (2006)

3. Goranko, V., Shkatov, D.: Tableau-based decision procedures for logics of strategic
ability in multi-agent systems. ACM Trans. Comput. Log. 11(1) (2009)

List of the 42 Formulas

1 p
2 p ∧ q
3 p ∨ q
4 p→ q

5 〈〈1〉〉©p
6 〈〈1〉〉♦p
7 〈〈1〉〉�p
8 〈〈1〉〉pUq

9 ¬〈〈1〉〉pUq
10 ¬〈〈1〉〉♦p
18 ¬p ∨ 〈〈1〉〉♦p
19 p ∧ ¬p

11 〈〈1, 2〉〉pUq ∧ 〈〈1, 2〉〉©r
12 〈〈1, 2〉〉pUq ∧ 〈〈3, 4〉〉©r
13 〈〈1, 2〉〉pUq ∧ 〈〈2, 3〉〉©r
14 〈〈2, 1〉〉pUq ∧ 〈〈3, 2〉〉©r

15 〈〈〉〉pUq ∧ 〈〈1, 2〉〉©r
16 ¬〈〈1, 2〉〉©p ∧ 〈〈1〉〉�p
17 ¬〈〈1, 2〉〉©p ∧ 〈〈1, 2, 3〉〉�p
20 (p ∧ q) ∧ 〈〈1〉〉�¬(p ∧ q)
21 〈〈1〉〉�p ∧ ¬〈〈2〉〉♦〈〈1〉〉�p
22 〈〈1〉〉©p ∧ ¬〈〈1〉〉©p

23 〈〈1〉〉pUq ∨ ¬〈〈1〉〉�q
24 〈〈1, 2〉〉pU(¬〈〈1〉〉�p)
25 〈〈1〉〉(¬〈〈1, 2〉〉�p)Uq
26 〈〈〉〉�〈〈〉〉pUq
27 ¬〈〈1〉〉�p ∧ 〈〈1, 2〉〉©p ∧ ¬〈〈2〉〉©¬p
31 〈〈1, 2, 3〉〉�〈〈2, 3, 4〉〉�(p ∧ q)

33 ¬¬〈〈1〉〉pUq
34 ¬(〈〈1〉〉�p ∨ 〈〈1〉〉�¬p)
35 ¬(〈〈1〉〉�p ∧ 〈〈1〉〉�¬p)
36 ¬〈〈1〉〉pU¬〈〈2〉〉q Ur
37 〈〈1〉〉�¬q ∧ 〈〈2〉〉pUq

38 〈〈1〉〉�p ∧ ¬〈〈1, 2〉〉�p
39 ¬〈〈1〉〉©p ∧ 〈〈2〉〉©¬p
40 〈〈1〉〉©p ∧ 〈〈2〉〉©¬p
41 〈〈1〉〉pUq ∧ 〈〈2〉〉q Ur ∧ 〈〈2〉〉�¬r
42 〈〈1〉〉pUq ∧ 〈〈2〉〉q Ur ∧ 〈〈1〉〉�¬r

28 〈〈1〉〉©p ∧ 〈〈2〉〉©q ∧ 〈〈1, 2〉〉©r ∧ ¬〈〈1〉〉©r ∧ ¬〈〈3〉〉©q
29 ¬〈〈1〉〉©r ∧ ¬〈〈3〉〉©q ∧ 〈〈1〉〉©p ∧ 〈〈2〉〉©q ∧ 〈〈1, 2〉〉©r
30 ¬〈〈1〉〉©r ∧ 〈〈1〉〉©p ∧ 〈〈2〉〉©q ∧ ¬〈〈3〉〉©q ∧ 〈〈1, 2〉〉©r
32 〈〈1, 2, 3〉〉�〈〈2, 3〉〉�(p ∧ q) ∧ 〈〈4〉〉©¬p

A Terminating Evaluation-Driven Variant of G3i

Mauro Ferrari1, Camillo Fiorentini2, and Guido Fiorino3

1 DiSTA, Univ. degli Studi dell’Insubria, Via Mazzini, 5, 21100, Varese, Italy
2 DI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy

3 DISCO, Univ. degli Studi di Milano-Bicocca, Viale Sarca, 336, 20126, Milano, Italy

Abstract. We present Gbu, a terminating variant of the sequent calcu-
lus G3i for intuitionistic propositional logic. Gbu modifies G3i by anno-
tating the sequents so to distinguish rule applications into two phases: an
unblocked phase where any rule can be backward applied, and a blocked
phase where only right rules can be used. Derivations of Gbu have a triv-
ial translation into G3i. Rules for right implication exploit an evaluation
relation, defined on sequents; this is the key tool to avoid the generation
of branches of infinite length in proof-search. To prove the completeness
of Gbu, we introduce a refutation calculus Rbu for unprovability dual
to Gbu. We provide a proof-search procedure that, given a sequent as
input, returns either a Rbu-derivation or a Gbu-derivation of it.

1 Introduction

It is well-known that G3i [10], the sequent calculus for intuitionistic proposi-
tional logic with weakening and contraction “absorbed” in the rules, is not suited
for proof-search. Indeed, the näıve proof-search strategy, consisting in applying
the rules of the calculus bottom-up until possible, is not terminating. This is
because the rule for left implication retains the main formula A → B in the
left-hand side premise, hence such a formula might be selected for application
more and more times. A possible solution to this problem is to support the proof-
search procedure with a loop-checking mechanism [5,6,7]: whenever the “same”
sequent occurs twice along a branch of the proof under construction, the search
is cut. An efficient implementation of loop-checking exploits histories [6,7]. In
the construction of a branch, the formulas decomposed by right rules are stored
in the history; loops are avoided by preventing the application of some right
rules to formulas in the history.

In this paper we propose a different and original approach: we show that
terminating proof-search for G3i can be accomplished only exploiting the infor-
mation contained in the sequent to be proved by means of a suitable evaluation
relation. Our proof-search strategy alternates two phases: an unblocked phase
(u-phase), where all the rules of G3i can be backward applied, and a blocked
phase (b-phase), where only right-rules can be used. To improve the presenta-
tion, we embed the strategy inside the calculus by annotating sequents with
the label u (unblocked) or b (blocked); we call Gbu the resulting calculus (see
Fig. 1). A Gbu-derivation can be straightforwardly mapped to a G3i-derivation

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 104–118, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Terminating Evaluation-Driven Variant of G3i 105

by erasing the labels and, possibly, by padding the left contexts; from this, the
soundness of Gbu immediately follows. Unblocked sequents, characterizing an
u-phase, behave as the ordinary sequents of G3i: any rule of Gbu can be (back-
ward) applied to them. Instead, b-sequents resemble focused-right sequents (see,
e.g., [2]): they only allow backward right-rule applications (thus, the left context
is “blocked”). Proof-search starts from an u-sequent (u-phase); the transition
to a b-phase is determined by the application of one of the rules for left impli-
cation or right disjunction. For instance, let [A → B,Γ u⇒H] be the u-sequent
to be proved and suppose we apply the rule → L with main formula A → B.

The next goals are the b-sequent [A→ B,Γ b⇒A] and the u-sequent [B,Γ u⇒H],
corresponding to the two premises of → L. While the latter goal continues the
u-phase, the former one starts a new b-phase, which focuses on A. Similarly, if
we apply the rule ∨Rk (with k ∈ {0, 1}) to [Γ u⇒H0 ∨H1], the phase changes to

b and the next goal is [Γ b⇒Hk], the only premise of ∨Rk.
Rules for right implication have two possible outcomes determined by the

evaluation relation. Indeed, let [Γ l⇒A→ B] be the current goal (l ∈ {u, b}) and
let A→ B be the selected main formula: if A is evaluated in Γ , then we continue

the search with [Γ l⇒B] and the phase does not change (see rule → R1); note
that the formula A is dropped out. If A is not evaluated in Γ the next goal is
[A,Γ u⇒B]. Moreover, if l = b, we switch from a b-phase to an u-phase and this
is the only case where a b-sequent is “unblocked”. The crucial point is that, due
to the side conditions on the application of rules→ R1 and→ R2 (which rely on
the evaluation relation), every branch of aGbu-tree has finite length (Section 3);
this implies that our proof-search strategy always terminates. We point out that
we do not bound ourselves to a specific evaluation relation, but we admit any
evaluation relation satisfying properties (E1)–(E6) defined in Section 2.

The proof of completeness ([Γ ⇒ H] provable in G3i implies [Γ u⇒H] prov-
able in Gbu) involves non-trivial aspects. Following [3,9], we introduce a refuta-
tion calculus Rbu for asserting intuitionistic unprovability (Section 4). From an
Rbu-derivation of an u-sequent σu = [Γ u⇒H] we can extract a Kripke counter-
model for σu, namely a Kripke model such that, at its root, all formulas in Γ are
forced and H is not forced; from this, it follows that σu is not intuitionistically
valid. In Section 5 we introduce the function F which implements the proof-
search strategy outlined above; if the search for a Gbu-derivation of σu fails, an
Rbu-derivation of σu is built. To sum up, F(σu) returns either aGbu-derivation
or an Rbu-derivation of σu; in the former case we get a G3i-derivation of the
sequent σ = [Γ ⇒ H], in the latter case we can build a countermodel for σ.

2 Preliminaries and Evaluations

We consider the propositional language L based on a denumerable set of propo-
sitional variables V , the connectives ∧, ∨, → and the logical constant ⊥. We
denote with V(A) the set of propositional variables occurring in A, with |A| the
size of A, that is the number of symbols occurring in A, and with Sf(A) the set
of subformulas of A (including A itself).

106 M. Ferrari, C. Fiorentini, and G. Fiorino

A (finite) Kripke model for L is a structure K = 〈P,≤, ρ, V 〉, where 〈P,≤, ρ〉
is a finite partially ordered set with minimum ρ and V : P → 2V is a function
such that α ≤ β implies V (α) ⊆ V (β). The forcing relation �⊆ P ×L is defined
as follows:

– K, α � ⊥ and, for every p ∈ V , K, α � p iff p ∈ V (α);
– K, α � A ∧B iff K, α � A and K, α � B;
– K, α � A ∨B iff K, α � A or K, α � B;
– K, α � A→ B iff, for every β ∈ P such that α ≤ β, K, β � A or K, β � B.

Given a set Γ of formulas, K, α � Γ iff K, α � A for every A ∈ Γ . Monotonicity
property holds for arbitrary formulas, i.e.: K, α � A and α ≤ β imply K, β � A.
A formula A is valid in K iff K, ρ � A. Intuitionistic propositional logic coincides
with the set of the formulas valid in all (finite) Kripke models [1].

As motivated in the Introduction, we use (labelled) sequents of the form σ =

[Γ l⇒H] where l ∈ {b, u}, Γ is a finite set of formulas and H is a formula. We

adopt the usual notational conventions; e.g., [A,Γ l⇒H] stands for [{A}∪Γ l⇒H].
The size of σ is |σ| =

∑
A∈Γ |A| + |H |; the set of subformulas of σ is Sf(σ) =⋃

A∈Γ∪{H} Sf(A).
The semantics of formulas extends to sequents as follows. Given a Kripke

model K and a world α of K, α refutes σ = [Γ l⇒H] in K, written K, α � σ, iff
K, α � Γ and K, α � H ; σ is refutable if there exists a Kripke model K with root
ρ such that K, ρ � σ; in this case K is a countermodel for σ. It is easy to check
that σ is refutable iff the formula ∧Γ → H is not intuitionistically valid iff, by
soundness and completeness of G3i [10], [Γ ⇒ H] is not provable in G3i.

Evaluations. An evaluation relation �E is a relation between a set Γ of formulas
and a formula A satisfying the following properties:

(E1) Γ �E A iff Γ ∩ Sf(A) �E A.
(E2) A,Γ �E A.
(E3) Γ �E A and Γ �E B implies Γ �E A ∧B.
(E4) Γ �E Ak, with k ∈ {0, 1}, implies Γ �E A0 ∨ A1.
(E5) Γ �E B implies Γ �E A→ B.
(E6) Let K = 〈P,≤, ρ, V 〉 and α ∈ P ; if K, α � Γ and Γ �E A, then K, α � A.

Conditions (E1)–(E5) concern syntactical properties; note that, by (E1), the eval-
uation of A w.r.t. Γ only depends on the subformulas in Γ which are subformulas
of A. Intuitively, the role of an evaluation relation is to check if the “information
contained” in A is semantically implied by Γ (see (E6)). In the sequel, we also

write [Γ l⇒H] �E A to mean Γ �E A.
In the examples we use the evaluation relation �Ẽ defined below. Let L� be

the language extending L with the constant � (K, α � �, for every K and every
α in K). To define �Ẽ , we introduce the function R which simplifies a formula
A ∈ L� w.r.t. a set Γ of formulas of L (see [4]):

A Terminating Evaluation-Driven Variant of G3i 107

R(A,Γ) =

⎧⎪⎨⎪⎩
� A ∈ Γ
A if A �∈ Γ and A ∈ V ∪ {⊥,�}
B (R(A0, Γ) · R(A1, Γ)) if A �∈ Γ and A = A0 ·A1 with · ∈ {∧,∨,→}

B(A) performs the boolean simplification of A [4,8], consisting in applying the
following reductions inside A:

K ∧�
 K K ∧ ⊥
 ⊥ K ∨ �
 � K ∨ ⊥
 K K → �
 � K → K
 �
�∧K
 K ⊥ ∧K
 ⊥ � ∨K
 � ⊥ ∨K
 K � → K
 K ⊥ → K
 �

We set Γ �Ẽ A iff R(A,Γ) = �.

Theorem 1. �Ẽ is an evaluation relation.

Proof. We have to prove that �Ẽ satisfies properties (E1)–(E6) of Section 2.

– (E1) It is easy to prove, by induction on the structure of A, that R(A,Γ) =
R(A,Γ ∩ Sf(A)), thus Γ �Ẽ A iff Γ ∩ Sf(A) �Ẽ A.

– (E2) It immediately follows by the definition of �Ẽ and R.
– (E3) Let Γ �Ẽ A and Γ �Ẽ B. By definition of �Ẽ , R(A,Γ) = R(B,Γ) = �.

To prove Γ �Ẽ A∧B, we must show that R(A∧B,Γ) = �. If A∧B ∈ Γ , this
immediately follows. Otherwise: R(A ∧ B,Γ) = B(R(A,Γ) ∧ R(B,Γ)) =
B(�∧ �) = �. The proof of properties (E4) and (E5) is similar.

– (E6) Let K = 〈P,≤, ρ, V 〉 and α ∈ P such that K, α � Γ . It is easy to prove, by
induction on A, that K, α � A↔R(A,Γ). Now, if Γ �Ẽ A then R(A,Γ) = �;
hence by the above property K, α � A↔ � and this implies K, α � A. !"

3 The Sequent Calculus Gbu

We present the G3-style [10] calculus Gbu for intuitionistic propositional logic.
The calculus consists of the axiom rules (rules with zero premises) ⊥L and Id,
and the left and right introduction rules in Fig. 1. The main formula of a rule is
the one put in evidence in the conclusion of the rule. In the conclusion of a rule,
when we write C, Γ we assume that C �∈ Γ ; e.g., in the rule ∧L it is assumed
that A ∧ B �∈ Γ , hence the formula A ∧ B is not retained in the premise. The
choice between →R1 and →R2 depends on the relation �E . In the application
of→L to σ = [A→ B,Γ u⇒H], contraction of A→ B is explicitly introduced in
the leftmost premise σA; as a consequence we might have |σA| ≥ |σ|. In all the
other cases, passing from the conclusion to a premise of a rule, the size of the
sequents strictly decreases. The rule →R2 is the only rule that, when applied
backward, can turn a b-sequent into an u-sequent.

AGbu-tree π is a tree of sequents such that: if σ is a node of π with σ1, . . . , σn
as children, then there exists a rule of Gbu having premises σ1, . . . , σn and
conclusion σ. The root rule of π is the one having as conclusion the root sequent
of π. A Gbu-derivation of σ is a Gbu-tree π with root σ and having conclusions

108 M. Ferrari, C. Fiorentini, and G. Fiorino

[⊥, Γ l⇒H]
⊥L

[H,Γ l⇒H]
Id

[A,B, Γ u⇒H]

[A ∧B,Γ u⇒H]
∧L

[Γ l⇒A] [Γ l⇒B]

[Γ l⇒A ∧B]
∧R

[A,Γ u⇒H] [B, Γ u⇒H]

[A ∨B,Γ u⇒H]
∨L

[Γ b⇒Hk]

[Γ l⇒H0 ∨H1]
∨Rk

k ∈ {0, 1}

[A→ B,Γ b⇒A] [B, Γ u⇒H]

[A→ B,Γ u⇒H]
→L

[Γ l⇒B]

[Γ l⇒A→ B]
→R1

if Γ �E A

[A,Γ u⇒B]

[Γ l⇒A→ B]
→R2

if Γ ��E A

Fig. 1. The calculus Gbu

of an axiom rule as leaves. A sequent σ is provable in Gbu iff there exists a Gbu-
derivation of σ; H is provable in Gbu iff [u⇒H] is provable in Gbu. Note that
Gbu has the subformula property: given a Gbu-tree π with root σ, for every
sequent σ′ occurring in π it holds that Sf(σ′) ⊆ Sf(σ).

A Gbu-derivation π can be translated into a G3i-derivation π̃ applying the
following steps: erase the labels from the sequents in π; when rule → R1 is
applied, add the formula A to the left context; rename all occurrences of →R1

and →R2 to →R. From this translation and the soundness of G3i [10] we get
the soundness of Gbu. Semantically, this means that, if σ is provable in Gbu,
then σ is not refutable.

Here we provide an example of a Gbu-derivation, then we prove that Gbu is
terminating. The completeness of Gbu (Theorem 4) is proved in Section 5 as a
consequence of the correctness of the proof-search procedure.

Example 1. Let W = ((((p → q) → p) → p) → q) → q be an instance of the
Weak Pierce Law [1]. In Fig. 2 we give a Gbu-derivation1 π1 of σ1 = [u⇒W],
using the evaluation �Ẽ of Section 2. Sequents are indexed by integers; by πi
we denote the subderivation of π1 with root σi. When ambiguities can arise,
we underline the main formula of a rule application. Building the derivation
bottom-up, the only choice points are in the (backward) application of rule →L
to σ4 and σ7, since we can select both A and B as main formula. If at sequent
σ6 we choose B instead of A, we
get the Gbu-tree with root σ6
sketched on the right. We have
σ7′ �Ẽ p (indeed, p occurs on the
left in σ7′), hence the rule →R1

must be applied to σ7′ , which

[p,B,Ab⇒ q]8′

[p,B,Ab⇒ p→ q]7′
→ R1

....
[p,Au⇒ q]9′

[p, (p→ q)→ p
︸ ︷︷ ︸

B

, Au⇒ q]6
→ L

1 The derivations and their LATEX rendering are generated with g3ibu, an implemen-
tation of Gbu and Rbu available at http://www.dista.uninsubria.it/~ferram/.

http://www.dista.uninsubria.it/~ferram/

A Terminating Evaluation-Driven Variant of G3i 109

W = A→ q A = (B → p)→ q B = (p→ q)→ p

[p,B,Ab⇒ p]8
Id

[p,B,Ab⇒B → p]7
→ R1

[q, p,Bu⇒ q]9
Id

[p,B,Au⇒ q]6
→ L

[B,Ab⇒ p→ q]5
→ R2

[p,Au⇒ p]10
Id

[B,Au⇒ p]4
→ L

[Ab⇒ ((p→ q)→ p)
︸ ︷︷ ︸

B

→ p]3
→ R2

[qu⇒ q]11
Id

[Au⇒ q]2
→ L

[u⇒ ((((p→ q)→ p)→ p)→ q)
︸ ︷︷ ︸

A

→ q]1
→ R2

Fig. 2. Gbu-derivation of Weak Pierce Law

yields the b-sequent σ8′ . Since σ8′ is blocked, we cannot decompose again left
implications; thus the proof-search fails without entering an infinite loop. ♦

Termination of Gbu. We show that every Gbu-tree has finite depth. A Gbu-
branch is a sequence of sequents B = (σ1, σ2, . . .) such that, for every i ≥ 1, there
exists a rule R of Gbu having σi as conclusion and σi+1 among its premises.
The length of B is the number of sequents in it. Let γ = (σi, σi+1) be a pair
of successive sequents in B with labels li and li+1 respectively; γ is a bu-pair if
li = b and li+1 = u; γ is an ub-pair if li = u and li+1 = b. By BU(B) and UB(B)
we denote the number of bu-pairs and ub-pairs occurring in B respectively. Note
that the only rule generating bu-pairs is → R2. Moreover, |σi+1| ≥ |σi| can
happen only if (σi, σi+1) is an ub-pair generated by → L: σi+1 is the leftmost
premise of an application of → L with conclusion σi. As a consequence, every
subbranch of B not containing ub-pairs is finite. Hence, if we show that UB(B)
is finite, we get that B has finite length.

We prove a kind of persistence of �E , namely: if A occurs in the left-hand side
of a sequent σ occurring in B, then σ′ �E A for every σ′ following σ in B.

Lemma 1. Let B = (σ1, σ2, . . .) be a Gbu-branch where, for every i ≥ 1, σi =

[Γi
li⇒Hi]. Let n ≥ 1 and A ∈

⋃
1≤i≤n Γi. Then, Γn �E A.

Proof. By induction on |A|. If A ∈ Γn, by (E2) we immediately get Γn �E A. If
A �∈ Γn, there exists i : 1 ≤ i < n such that A ∈ Γi and A �∈ Γi+1. This implies
A = B · C with · ∈ {∧,∨,→}. Let · = ∧; then σi+1 is obtained from σi by an
application of ∧L with main formula B ∧ C, hence B ∈ Γi+1 and C ∈ Γi+1. By
induction hypothesis, Γn �E B and Γn �E C; by (E3), Γn �E B ∧ C. The cases
· ∈ {∨,→} are similar and require properties (E4) and (E5). !"

Now, we provide a bound on BU(B).

110 M. Ferrari, C. Fiorentini, and G. Fiorino

[Γ→, ΓAt l⇒H]
Irr

if [Γ→, ΓAt l⇒H] is irreducible

{
H = ⊥ or H ∈ V \ ΓAt

l = b or Γ→ = ∅

[A,B, Γ u⇒H]

[A ∧B,Γ u⇒H]
∧L

[Γ l⇒Hk]

[Γ l⇒H0 ∧H1]
∧Rk

k ∈ {0, 1}

[Ak, Γ
u⇒H]

[A0 ∨ A1, Γ
u⇒H]

∨Lk

k ∈ {0, 1}
[Γ b⇒H0] [Γ b⇒H1]

[Γ b⇒H0 ∨H1]
∨R

[B, Γ u⇒H]

[A→ B,Γ u⇒H]
→L

[Γ l⇒B]

[Γ l⇒A→ B]
→R1

if Γ �E A

[A,Γ u⇒B]

[Γ l⇒A→ B]
→R2

if Γ ��E A

{ [Γ→, ΓAt b⇒A] }A→B∈Γ→

[Γ→, ΓAt u⇒H]
SAt
u

where Γ→ �= ∅ and (H = ⊥ or H ∈ V \ ΓAt)

{ [Γ→, ΓAt b⇒A] }A→B∈Γ→ [Γ→, ΓAt b⇒H0] [Γ→, ΓAt b⇒H1]

[Γ→, ΓAt u⇒H0 ∨H1]
S∨
u

Fig. 3. The refutation calculus Rbu

Lemma 2. Let B = (σ1, σ2, . . .) be a Gbu-branch. Then, BU(B) ≤ |σ1|.

Proof. Let (σb
i , σ

u
i+1) be a bu-pair in B. Since bu-pairs are generated by applica-

tions of →R2, we have: σb
i = [Γ b⇒A → B], σu

i+1 = [A,Γ u⇒B] and Γ ��E A. By
Lemma 1, for every j ≥ i+1 it holds that Γj �E A. Thus, any bu-pair following
(σb

i , σ
u
i+1) must treat an implication C → D with C �= A. Since Gbu has the

subformula property, the main formulas of →R2 applications belong to Sf(σ1).
Thus, BU(B) is bounded by the number #Sf(σ1) of subformulas of σ1. Since
#Sf(σ1) ≤ |σ1|, we get BU(B) ≤ |σ1|. !"

Since between two ub-pairs of B a bu-pair must occur, UB(B) ≤ BU(B) + 1; by
Lemma 2, UB(B) is finite. We can conclude:

Proposition 1. Every Gbu-branch has finite length. !"

As a consequence, every Gbu-tree has finite depth and Gbu is terminating.

4 The Refutation Calculus Rbu

In this section, following the ideas of [3,9], we introduce the refutation calculus
Rbu for deriving intuitionistic unprovability. Intuitively, an Rbu-derivation π
of a sequent σu is a sort of “constructive proof” of refutability of σu in the sense
that from π we can extract a countermodel Mod(π) for σu.

We denote with ΓAt a finite set of propositional variables and with Γ→ a finite

set of implicative formulas. A sequent σ is irreducible iff σ = [Γ→, ΓAt l⇒H] with

A Terminating Evaluation-Driven Variant of G3i 111

H ∈ {⊥} ∪ (V \ ΓAt) and (l = b or Γ→ = ∅). The rules of Rbu are given in
Fig. 3. As in Gbu, writing C, Γ in the conclusion of a rule, we assume that
C �∈ Γ . The notions of Rbu-tree, Rbu-derivation and Rbu-branch are defined
analogously to those for Gbu.

The rule SAt
u has a premise [Γ→, ΓAt b⇒A] for every A such that A→ B ∈ Γ→;

since Γ→ �= ∅, there exists at least one premise. The rule S∨u is similar and has
at least two premises. All the premises of SAt

u and S∨u are b-sequents.
It is easy to check that an Rbu-branch is also a Gbu-branch2. Accordingly,

Proposition 1 implies that the calculus Rbu is terminating. In the following we
prove that Rbu is sound in the following sense:

Theorem 2 (Soundness of Rbu). If an u-sequent σu is provable in Rbu,
then σu is refutable. !"

Example 2. Let S = ((¬¬p → p) → (¬p ∨ p)) → (¬¬p ∨ ¬p) be an instance of the
Scott principle [1], where ¬Z = Z → ⊥. We show the Rbu-derivation π1 of [u⇒S].

S = A → (¬¬p ∨ ¬p) A = (¬¬p → p) → (¬p ∨ p)

[p,¬¬pb⇒⊥]10

Irr

[p,¬¬pb⇒¬p]9

→ R1

[p,¬¬pu⇒⊥]8
SAt
u

[¬p ∨ p, p,¬¬pu⇒⊥]7
∨L1

[p,¬¬p,Au⇒⊥]6
→ L

[¬¬p,Ab⇒¬p]5

→ R2

[¬¬p,Ab⇒ p]12

Irr

[¬¬p,Ab⇒¬¬p → p]11

→ R1

[¬¬p,Au⇒ p]4
SAt
u

[Ab⇒¬¬p → p]3

→ R2

[¬pb⇒ p]17

Irr

[¬pu⇒⊥]16
SAt
u

[¬p ∨ p,¬pu⇒⊥]15
∨L0

[¬p,Au⇒⊥]14
→ L

[Ab⇒¬¬p]13

→ R2

[pu⇒⊥]21
Irr

[¬p ∨ p, pu⇒⊥]20
∨L1

[p,Au⇒⊥]19
→ L

[Ab⇒¬p]18

→ R2

[Au⇒¬¬p ∨ ¬p]2
S∨u

[u⇒ ((¬¬p → p) → (¬p ∨ p))︸ ︷︷ ︸
A

→ (¬¬p ∨ ¬p)]1
→R2

♦

Soundness of Rbu. Let π be anRbu-derivation with root σb = [Γ→, ΓAt b⇒H].
By Π(π, σb) we denote the maximal subtree of π having root σb and only con-
taining b-sequents (that is, any subtree of π with root σb extending Π(π, σb)
contains at least one u-sequent). Since only the rules ∧Rk, ∨R and →R1 can

be applied in Π(π, σb), every leaf σ′ of Π(π, σb) has the form [Γ→, ΓAt b⇒H ′],
where H ′ ∈ Sf(H); moreover, σ′ is either an irreducible sequent (hence a leaf
of π) or the conclusion of an application of →R2 (the only rule of Rbu which,
read bottom-up, “unblocks” a b-sequent). Thus, π can be displayed as in Fig. 4.
The sequents σu

1 , . . . , σ
u
n (n ≥ 0) are called the u-successors of σb in π, while the

sequents τb1 , . . . , τ
b
m (m ≥ 0) are the i-successors (irreducible successors) of σb

in π. Let d(π) be the depth of π; if d(π) = 0, then σb coincides with τb1 , hence
σb has no u-successors and has itself as only i-successor.

Now, let us consider an Rbu-derivation π of an u-sequent σu having root rule
R = SAt

u or R = S∨u . Every premise σ′ of R is a b-sequent and the subderivation

2 The converse in general does not hold since the rule ∨R of Rbu requires a b-sequent
as conclusion.

112 M. Ferrari, C. Fiorentini, and G. Fiorino

. . .

.

... πi

σu
i = [Γ→, ΓAt, Ai

u⇒Bi]

σb
i = [Γ→, ΓAtb⇒Ai → Bi]

→R2
. . . τbj = [Γ→, ΓAtb⇒Hj]

Irr
. . .

...

.
Π(π, σb)

σb = [Γ→, ΓAtb⇒H]

where i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, n ≥ 0, m ≥ 0, n+m ≥ 1 and:

– the Rbu-tree Π(π, σb) only contains b-sequents;
– πi is an Rbu-derivation of σu

i .

Fig. 4. Structure of an Rbu-derivation π of σb = [Γ→, ΓAt b⇒ H]

of π with root σ′ has the structure shown in Fig. 4. The set of the u-successors
of σu in π is the union of the sets of u-successors in π of the premises of R; the
set of the i-successors of σu in π is defined analogously. To display a proof π of
this kind we use the concise notation of Fig. 5.

Example 3. Let us consider the Rbu-derivation π1 in Ex. 2. The u-successors
and i-successors are defined as follows:

u-sequent u-successors i-successors

σ2 σ4 , σ14 , σ19

σ4 σ6 σ12

σ8 σ10

σ16 σ17 ♦

Now we describe how to extract from an Rbu-derivation of an u-sequent σu a
Kripke countermodel Mod(π) for σu. Mod(π) is defined by induction on d(π).
By K1(ρ, ΓAt) we denote the Kripke model K = 〈{ρ}, {(ρ, ρ)}, ρ, V 〉 consisting
of only one world ρ such that V (ρ) = ΓAt. Let R be the root rule of π.

(K1) If R = Irr, then d(π) = 0 and σu = [ΓAt u⇒H] (being σu irreducible,
Γ→ = ∅). We set Mod(π) = K1(ρ, ΓAt), with ρ any element.

(K2) Let R be different from Irr, SAt
u , S∨u and let π′ be the only immediate

subderivation of π. Then, Mod(π) = Mod(π′).
(K3) Let R be SAt

u or S∨u and let π be displayed as in Fig. 5.
If n = 0, then K is the model K1(ρ, ΓAt), with ρ any element.
Let n > 0 and, for every i ∈ {1, . . . , n}, let Mod(πi) = 〈Pi,≤i, ρi, Vi〉.
Without loss of generality, we can assume that the Pi’s are pairwise dis-
joint. Let ρ be an element not in

⋃
i∈{1,...,n} Pi and let K = 〈P,≤, ρ, V 〉 be

the model such that:
– P = {ρ} ∪

⋃
i∈{1,...,n} Pi;

– ≤ = { (ρ, α) | α ∈ P } ∪
⋃

i∈{1,...,n} ≤i;

– V (ρ) = ΓAt and, for every i ∈ {1, . . . , n} and α ∈ Pi, V (α) = Vi(α).
Then Mod(π) = K. The model Mod(π) is represented in Fig. 5.

A Terminating Evaluation-Driven Variant of G3i 113

π =

.... π1

σu
1 . . .

.... πn

σu
n τb1 . . . τbm

σu = [Γ→, ΓAt u⇒H]
R

– R ∈ {SAt
u , S∨

u}, n ≥ 0, m ≥ 0, n + m ≥ 1.
– σu

1 , . . . , σ
u
n are all the u-successors of σu in π.

– πi is an Rbu-derivation of σu
i (1 ≤ i ≤ n).

– τb
1 , . . . , τ

b
m are all the i-successors of σu in π.

ρ

Mod(π1)

ρ1

....

Mod(πn)

ρn

Fig. 5. An Rbu-derivation π with root rule SAt
u or S∨

u and the model Mod(π)

Example 4. We show the Kripke model Mod(π1) extracted from the Rbu-
derivation π1 of Ex. 2. The model is displayed as a tree with the convention that
w < w′ if the world w is drawn below w′. For
each wi, we list the propositional variables
in V (wi). We inductively define the models
Mod(πi) for every i such that σi = [Γi

u⇒Hi]
is an u-sequent. At each step one can check

w2:

w4:

w8: p

w16: w21: p

that Mod(πi), ρi � σi, where ρi is the root of Mod(πi). Hence, Mod(π1), w2 � S
(Mod(π1) is a countermodel for S).

– ByPoint (K3), since σ8 has no u-successors (see Ex. 3),Mod(π8) = K1(w8, {p}).
Similarly, Mod(π16) = K1(w16, ∅).

– Since σ21 is irreducible, by Point (K1) Mod(π21) = K1(w21, {p}).
– By Point (K2), Mod(π6) = Mod(π7) = Mod(π8). Similarly,

Mod(π14) = Mod(π15) = Mod(π16) and Mod(π19) = Mod(π20) = Mod(π21).
– By Point (K3), Mod(π4) is obtained by extending with w4 the model Mod(π6)

(indeed, σ6 is the only u-successor of σ4) and V (w4) = Γ4 ∩ V = ∅. Similarly,
Mod(π2) is obtained by gluing on w2 the models generated by the u-successors
σ4, σ14 and σ19 of σ2 and V (w2) = Γ2 ∩ V = ∅.

– Finally, Mod(π1) = Mod(π2) by Point (K2). ♦

We prove the soundness of Rbu. Given an Rbu-tree π with root [Γ→, ΓAt b⇒H]

and only containing b-sequents, every leaf of π has the form [Γ→, ΓAt b⇒H ′].

Lemma 3. Let π be an Rbu-tree with root σb = [Γ→, ΓAt b⇒H] and only con-

taining b-sequents, let σb
1 = [Γ→, ΓAt b⇒H1],. . . , σ

b
n = [Γ→, ΓAt b⇒Hn] be the

leaves of π. Let K = 〈P,≤, ρ, V 〉 be a Kripke model and α ∈ P such that:

(H1) K, α � Hi, for every i ∈ {1, . . . , n};
(H2) K, α � Z, for every Z ∈ Γ→ ∩ Sf(H);
(H3) V (α) = ΓAt.

Then, K, α � H.

Proof. By induction on d(π). If d(π) = 0, then σb = σb
1 and the assertion

immediately follows by (H1). Let us assume that d(π) > 0 and let R be the root

114 M. Ferrari, C. Fiorentini, and G. Fiorino

rule of π. Since both the conclusion and the premises of R are b-sequents, R is
one of the rules ∧Rk, ∨R and → R1. The proof proceeds by cases on R. The
cases R ∈ {∧Rk,∨R} immediately follow by the induction hypothesis.

If R is → R1, then σb = [Γ→, ΓAt b⇒A → B], the premise of R is σ′ =

[Γ→, ΓAt b⇒B] and, by the side condition, Γ→, ΓAt �E A. By induction hypoth-
esis on the subderivation of π having root σ′, we get K, α � B. We show that
K, α � A. Let ΓA = (Γ→∩Sf(A))∪ΓAt. Since ΓA∩Sf(A) = (Γ→∪ΓAt)∩Sf(A)
and Γ→, ΓAt �E A, by (E1) we get ΓA �E A. By the hypothesis (H2) and (H3)
of the lemma, it holds that K, α � ΓA; by (E6), we deduce K, α � A. Thus
K, α � A and K, α � B, which implies K, α � A→ B. !"

Now, we show that the model Mod(π) is a countermodel for σu.

Theorem 3. Let π be an Rbu-derivation of an u-sequent σu and let ρ be the
root of Mod(π). Then Mod(π), ρ � σu.

Proof. By induction on d(π). If d(π) = 0, then Mod(π) is defined as in (K1) and
the assertion immediately follows.

Let d(π) > 0 and let R be the root rule of π. If R �∈ {SAt
u , S∨u}, the assertion

immediately follows by induction hypothesis (the case R =→R1 requires (E6)).
Let R = S∨u (the case R = SAt

u is similar). Let σu = [Γ→, ΓAt u⇒H0 ∨H1] and
let K = 〈P,≤, ρ, V 〉 be the model Mod(π). By a secondary induction hypothesis
on the structure of formulas, we prove that:

(B1) K, ρ � A, for every A→ B ∈ Γ→;
(B2) K, ρ � A→ B, for every A→ B ∈ Γ→;
(B3) K, ρ � H0 and K, ρ � H1.

To prove Point (B1), let A→ B ∈ Γ→. By definition of S∨u , π has an immediate

subderivation πA of σb
A = [Γ→, ΓAt b⇒A] of the form (see Fig. 4):

. . .

.

.

.

.
πi

σu
i = [Γ→, ΓAt, Ai

u⇒Bi]

σb
i = [Γ→, ΓAt b⇒Ai → Bi]

→R2

. . . τb
j = [Γ→, ΓAt b⇒Hj]

Irr
. . .

.

.

.

.
Π(πA, σb

A)

σb
A = [Γ→, ΓAt b⇒A]

We show that Π(πA, σ
b
A) meets the hypothesis (H1)–(H3) of Lemma 3 w.r.t. the

root ρ of K, so that we can apply the lemma to infer K, ρ � A. We prove (H1).
Let us assume n ≥ 1 and let i ∈ {1, . . . , n}; we must show that K, ρ � Ai → Bi.
Since σu

i is an u-successor of σu, the root ρi of Mod(πi) is an immediate successor
of ρ in K. By the main induction hypothesis Mod(πi), ρi � σ

u
i ; this implies that

Mod(πi), ρi � Ai and Mod(πi), ρi � Bi. Since Mod(πi) is a submodel of K, we
get K, ρi � Ai and K, ρi � Bi, which implies K, ρ � Ai → Bi. Let m ≥ 1 and
j ∈ {1, . . . ,m}. By definition of τbj , either Hj = ⊥ or Hj ∈ V \ ΓAt; in both
cases K, ρ � Hj . This proves that hypothesis (H1) of Lemma 3 holds. To prove

A Terminating Evaluation-Driven Variant of G3i 115

hypothesis (H2), let Z ∈ Γ→ ∩ Sf(A). Since |Z| < |A → B|, by the secondary
induction hypothesis on Point (B2) we get K, ρ � Z. The hypothesis (H3) follows
by the definition of V in K. We can apply Lemma 3 to deduce K, ρ � A, and
this proves Point (B1).

We prove Point (B2). Let π and Mod(π) be as in Fig. 5 (with H = H0 ∨H1).
Let A → B ∈ Γ→ and let α be a world of K such that K, α � A; we show
that K, α � B. By Point (B1), α is different from ρ. Thus, n ≥ 1 and, for some
i ∈ {1, . . . , n}, α belongs to Mod(πi). Let ρi be the root of Mod(πi). By the main
induction hypothesis, Mod(πi), ρi�σ

u
i ; since A→ B belongs to the left-hand side

of σu
i , we get Mod(πi), ρi � A→ B, which implies K, ρi � A→ B. Since ρi ≤ α

and K, α � A, we get K, α � B; thus K, ρ � A→ B and Point (B2) holds.
The proof of Point (B3) is similar to the proof of Point (B1), consider-

ing the immediate subderivations of π with root sequents [Γ→, ΓAt b⇒H0] and

[Γ→, ΓAt b⇒H1]. By Points (B2) and (B3) we conclude K, ρ � σu. !"

By Theorem 3, we get the soundness of Rbu stated in Theorem 2.

5 The Proof-Search Procedure

We show that, given an u-sequent σu, either a Gbu-derivation or an Rbu-
derivation of σu can be built; from this, the completeness ofGbu follows. To this

aim, we introduce the function F of Fig. 6. A sequent [Γ l⇒H] is in normal form
if l = b implies Γ = Γ→, ΓAt; given a sequent σ in normal form, F(σ) returns
either a Gbu-derivation or an Rbu-derivation of σ. To construct a derivation,
we use the auxiliary function B: given a calculus C ∈ {Gbu,Rbu}, a sequent
σ, a set P of C-trees and a rule R of C, B(C, σ,P ,R) is the C-tree having root
sequent σ, root rule R, and all the C-trees in P as immediate subtrees.

Proof-search is performed by applying backward the rules of Gbu. For in-
stance, the recursive call F([A,B, Γ ′u⇒H]) at line 3 corresponds to the backward
application of the rule ∧L to σ = [A ∧B,Γ ′ u⇒H]; according to the outcome, at
lines 4–5 a Gbu-derivation or an Rbu-derivation of σ with root rule ∧L is built.
We remark that the input sequent of F must be in normal form; to guarantee
that the recursive invocations are sound, the rules ∨Rk and → L, generating
b-sequents, can be backward applied to [Γ u⇒H] only if Γ has the form Γ→, ΓAt.

To save space, some instructions are written in a high-level compact form (see,
e.g., line 8); the rules used in lines 1 and 32 are defined as follows:

Rax([Γ
l⇒H]) =

{

⊥L if ⊥ ∈ Γ

Id otherwise
Rs([Γ

l⇒H]) =

⎧

⎪
⎨

⎪
⎩

∨R if l = b

SAt
u if l = u and H ∈ V

S∨u otherwise

By ‖σ‖ we denote the maximal length of a Gbu-branch starting from σ (by
Prop. 1, ‖σ‖ is finite). Note that, whenever a recursive call F(σ′) occurs along
the computation of F(σ), it holds that ‖σ′‖ < ‖σ‖.

In the next lemma we prove the correctness of F.

116 M. Ferrari, C. Fiorentini, and G. Fiorino

Precondition : σ is in normal form (l = b implies Γ = Γ→, ΓAt)
1 if ⊥ ∈ Γ or H ∈ Γ then return B(Gbu, σ, ∅, Rax(σ)) // Rax(σ) is ⊥L or Id

2 else if σ = [A ∧B, Γ ′u⇒H] where Γ ′ = Γ \ {A ∧ B} then
3 π′ ← F([A,B, Γ ′u⇒H])
4 if π′ is a Gbu-tree then return B(Gbu, σ, {π′}, ∧L)
5 else return B(Rbu, σ, {π′}, ∧L)
6 else if σ = [A0 ∨ A1, Γ ′u⇒H] where Γ ′ = Γ \ {A0 ∨ A1} then
7 π0 ← F([A0, Γ ′u⇒H]) , π1 ← F([A1, Γ ′u⇒H])
8 if ∃k ∈ {0, 1} s.t. πk is an Rbu-tree then return B(Rbu, σ, {πk}, ∨Lk)
9 else return B(Gbu, σ, {π0, π1}, ∨L)

10 else if σ = [Γ l⇒A→ B] then

11 if Γ
E A then π′ ← F([Γ l⇒B]) , k ← 1

12 else π′ ← F([A,Γ u⇒B]) , k ← 2
13 if π′ is a Gbu-tree then return B(Gbu, σ, {π′}, → Rk)
14 else return B(Rbu, σ, {π′}, → Rk)

15 else if σ = [Γ l⇒H0 ∧H1] then

16 π0 ← F([Γ l⇒H0]) , π1 ← F([Γ l⇒H1])
17 if ∃k ∈ {0, 1} s.t. πk is an Rbu-tree then return B(Rbu, σ, {πk}, ∧Rk)
18 else return B(Gbu, σ,{π0, π1}, ∧R)

19 // Here σ = [Γ→, ΓAt l⇒H], where H = ⊥ or H ∈ V \ ΓAt or H = H0 ∨H1

20 else if (l = u and Γ→ �= ∅) or H = H0 ∨H1 then
21 Refs ← ∅ // set of Rbu-trees
22 if H = H0 ∨H1 then

23 π0 ← F([Γ b⇒H0]) , π1 ← F([Γ b⇒H1])
24 if ∃k ∈ {0, 1} s.t. πk is a Gbu-tree then return B(Gbu, σ, {πk}, ∨Rk)
25 else Refs ← Refs ∪ {π0, π1 }
26 if l = u then
27 foreach A→ B ∈ Γ→ do

28 πA ← F([Γ→, ΓAtb⇒A]), πB ← F([B, Γ→ \ {A→ B}, ΓAtu⇒H])
29 if πB is an Rbu-tree then return B(Rbu, σ, {πB}, → L)
30 else if πA is a Gbu-tree then return B(Gbu, σ, {πA, πB}, → L)
31 else Refs ← Refs ∪ { πA }
32 return B(Rbu, σ, Refs, Rs(σ)) // Rs(σ) is ∨R or SAt

u or S∨u
33 // Here (H = ⊥ or H ∈ V \ ΓAt) and (l = b or Γ→ = ∅)
34 else return B(Rbu,σ, ∅, Irr)

Fig. 6. F(σ = [Γ
l⇒ H])

Lemma 4. Let σ be a sequent in normal form. Then, F(σ) returns either a
Gbu-derivation or an Rbu-derivation of σ.

Proof. By induction on ‖σ‖. If ‖σ‖ = 1, F(σ) does not execute any recursive
invocation and the computation ends at line 1 or at line 34. In the former case,
a Gbu-derivation of σ is returned. In the latter case, since σ is in normal form
and none of the conditions at lines 1, 2, 6, 10 15, 20 holds, the sequent σ is
irreducible and the tree built at line 34 is an Rbu-derivation of σ.

Let ‖σ‖ > 1. Whenever a recursive call F(σ′) occurs, we have that ‖σ′‖ <
‖σ‖ and σ′ is in normal form, hence the induction hypothesis applies to F(σ′).
Using this, one can easily show that the arguments of function B are correctly
instantiated. We only analyse some cases.

A Terminating Evaluation-Driven Variant of G3i 117

Let us assume that one of the return instructions at lines 8–9 is executed.
By induction hypothesis, for every k ∈ {0, 1}, πk is either a Gbu-proof or an
Rbu-derivation of σk = [Ak, Γ

′ u⇒H]. If, for some k, πk is an Rbu-derivation of
σk, then the Rbu-tree returned at line 8 is an Rbu-derivation of σ. Otherwise,
both π0 and π1 are Gbu-derivations, hence the value returned at line 9 is a
Gbu-derivation of σ.

Let us assume that F(σ) ends at line 32; in this case σ satisfies the conditions
at lines 19 and 20. If l = b, then H = H0 ∨H1. Since the condition at line 24 is
false, we have Refs = {π0, π1} and, by induction hypothesis, both π0 and π1 are
Rbu-derivations. Accordingly, the value returned at line 32 is anRbu-derivation
of σ with root rule Rs(σ) = ∨R. Let l = u and let us assume that H = ⊥ or
H ∈ V\Γ . In this case σ = [Γ→, ΓAt u⇒H] and the set Refs contains an Rbu-tree

πA of σA = [Γ→, ΓAt b⇒A] for every A→ B ∈ Γ→. By induction hypothesis, πA
is an Rbu-derivation of σA, hence line 32 returns an Rbu-derivation of σ with
root rule Rs(σ) = SAt

u . The subcase (l = u and H = H0 ∨H1) is similar. !"

Finally, we get the completeness of Gbu:

Theorem 4. An u-sequent σu is provable in Gbu iff σu is not refutable.

Proof. The ⇒-statement follows by the soundness of Gbu. Conversely, let σu

be not refutable. Then, there is no Rbu-derivation π of σu; otherwise, by The-
orem 3, from π we could extract a countermodel for σu. Since σu is in normal
form, by Lemma 4 the call F(σu) returns a Gbu-derivation of σu. !"

6 Conclusions and Future Works

We have presented Gbu, a terminating sequent calculus for intuitionistic propo-
sitional logic. Gbu is a notational variant of G3i, where sequents are labelled to
mark the right-focused phase. Note that focusing techniques reduce the search
space limiting the use of contraction, but they do not guarantee termination of
proof-search (see, e.g., the right-focused calculus LJQ [2]). To get this, one has
to introduce extra machinery. An efficient solution is loop-checking implemented
by history mechanisms [6,7]. Here we propose a different approach, based on an
evaluation relation defined on sequents. Histories require space to store the right
formulas already used so to direct and possibly stop the proof-search. Instead,
we have to compute evaluation relations when right-implication is treated. We
remark that, with an appropriate implementation of the involved data struc-
tures (see [4]), the evaluation relation �Ẽ defined in Section 2 can be computed
in time linear in the size of the arguments. Hence, we get by means of computa-
tion what history mechanisms get using memory. Although a strict comparison
is hard, to stress the difference between the two approaches we provide an ex-
ample where Gbu outperforms history-based calculi. Let σ = [Γ→ u⇒⊥], where
Γ→ = {p1 →⊥, . . . , pn →⊥} and the pi’s are distinct propositional variables.
The only rule that can be used to derive σ is →L. For every pi→⊥ chosen as
main formula, the right-hand premise is provable in Gbu, while the left-hand

118 M. Ferrari, C. Fiorentini, and G. Fiorino

premise σb
i = [Γ→ b⇒ pi] is not. Thus, we have a backtrack point which forces the

application of→L in all possible ways. Being σb
i blocked, the unprovability of σb

i

is immediately certified. With the calculi in [7], the search process is similar, but
to assert the unprovability of [Γ→ ⇒ pi] one has to chain up to n applications
of →L and build an history set containing all the pi’s.

Differently from the history mechanisms, Gbu only exploits the information
in the left-hand side of a sequent. We are investigating the use of more expressive
evaluation relations to better grasp the information conveyed by a sequent and
further reduce the search space. Finally, we aim to extend the use of these
techniques to other logics having a Kripke semantics.

References

1. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press (1997)
2. Dyckhoff, R., Lengrand, S.: LJQ: A Strongly Focused Calculus for Intuitionistic

Logic. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS,
vol. 3988, pp. 173–185. Springer, Heidelberg (2006)

3. Ferrari, M., Fiorentini, C., Fiorino, G.: Contraction-free linear depth sequent calculi
for intuitionistic propositional logic with the subformula property and minimal
depth counter-models. Journal of Automated Reasoning 51(2), 129–149 (2013)

4. Ferrari, M., Fiorentini, C., Fiorino, G.: Simplification rules for intuitionistic propo-
sitional tableaux. ACM Transactions on Computational Logic (TOCL) 13(2), 14:1–
14:23 (2012)

5. Gabbay, D.M., Olivetti, N.: Goal-Directed Proof Theory. Springer (2000)
6. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward

proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U.,
Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225.
Springer, Heidelberg (1996)

7. Howe, J.M.: Two loop detection mechanisms: A comparision. In: Galmiche, D. (ed.)
TABLEAUX 1997. LNCS, vol. 1227, pp. 188–200. Springer, Heidelberg (1997)

8. Massacci, F.: Simplification: A general constraint propagation technique for propo-
sitional and modal tableaux. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS
(LNAI), vol. 1397, pp. 217–231. Springer, Heidelberg (1998)

9. Pinto, L., Dyckhoff, R.: Loop-free construction of counter-models for intuitionistic
propositional logic. In: Behara, M., et al. (eds.) Symposia Gaussiana, Conference A,
pp. 225–232. Walter de Gruyter, Berlin (1995)

10. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in The-
oretical Computer Science, vol. 43. Cambridge University Press (1996)

Model Checking General Linear Temporal Logic

Tim French, John McCabe-Dansted, and Mark Reynolds�

School of Computer Science and Software Engineering
University of Western Australia

Crawley, Perth Western Australia 6009
{tim.french,john.mccabe-dansted,mark.reynolds}@uwa.edu.au

Abstract. We address the problem of model checking temporal formu-
las with Until and Since over general linear time. General linear time
allows us to go beyond discrete natural numbers time and consider tem-
poral models with continuous properties for applications such as dis-
tributed systems and message passing, and to even more unrestricted
contexts thrown up by natural language semantics and AI modelling of
human reasoning. We use a recently formalised compositional language
that is capable of describing models of any satisfiable formula. Given
a model described in this model expression language and a temporal
logic formula, the algorithm decides whether the formula is satisfied in
the model. As for standard natural-numbers time model checkers, the
computational time required by the algorithm is linear in the size of the
model expression. We illustrate this result briefly with some examples
including a system that needs to interact with a environment exhibiting
Zeno behaviours.

1 Introduction

Traditionally, temporal logics have used a discrete model of time [16]. However,
many systems have to interact asynchronously with an external environment or
other components, and a continuous model of time may be more appropriate
for specifying and reasoning about their behaviour. For applications involving
natural language semantics, philosophical reasoning and analysing human rea-
soning, even stranger models of time may need to be contemplated. Here we
only assume that time is linear and we investigate what it means to undertake
the model-checking task in this context. As well as developing a very general no-
tion of temporal model-checking for such applications, we also aim to eventually
see if such a general procedure can perhaps be modified easily to give specific
model-checking techniques for particular flows of time.

We use the well-established propositional temporal language with Until and
Since introduced in [12]. This gives us the temporal logic, US/L, of this lan-
guage over the class of all linear flows of time. By restricting our attention to
particular sets of linear flows of time we can define other logics with the general
language: fixing on real numbers time gives us the useful continuous-time logic

� The work was partially supported by the Australian Research Council.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 119–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

120 T. French, J. McCabe-Dansted, and M. Reynolds

RTL[17], while fixing on the natural numbers gives us a temporal logic easily
inter-translatable with standard PLTL with past.

Model checking is an important task in the verification of systems. It is just
a formal version of the task of checking whether a system does obey a specifica-
tion. Typical existing continuous time model checking algorithms take as input
a timed graph such as a timed automata [1,2] and a temporal formula. In these
graphs, state transitions are labelled with (possibly zero) durations. By consid-
ering all runs of such an automaton, we find a corresponding set of temporal
models—the set of possible behaviours of the system. Model checking the sys-
tem equates to deciding whether the given formula is satisfied by all the models
in this set. Our version of model checking is similar but we have a different way
of specifying the set of models.

The two main differences between existing model checking approaches and
ours, as presented here, are as follows. The timed automata approaches usually
deal with metric information (limits on the durations between events) while
we do not. However, we do handle models exhibiting quite general temporal
behaviours while timed automata approaches have limitations in dealing with
the infinitely short and dense types of behaviours. In particular, we will examine
what are known as Zeno behaviours: when there are infinite changes of state
in a bounded interval of time. In this paper we only briefly describe some toy
examples of such situations. However, it is becoming increasingly recognised that
they do pose an issue for formal approaches to hybrid systems and the like [14]. A
cycle of zero length transitions for a timed automaton provides a hint that Zeno
behaviour could occur; however, it does not allow us to specify what happens
after an accumulation point. Similar but more complex are properties of fractal
signals or mathematical rules such as “between each pair of rationals there is an
irrational”.

To allow representation of a full range of models of US/L, [4] presented a
compositional language of model expressions (MEs), following pioneering work
by [13,3,18]. Structures are built as sequences of simpler structures via com-
binations of four well-known operations which we re-visit below. The motiva-
tion for the development of the model expression language was to provide a
simple way of finitely describing general linear structures, objects which are
usually infinite and complicated, in a simple standard formal way, and allow-
ing enough expressibility so that any satisfiable formula of US/L has a model
finitely representable in this language [3,4]. The recent work in [4] goes further
and gives an efficient procedure for synthesising the model expression of a model
of any given satisfiable formula. However, having finite representations has also
opened the possibility for an algorithm for model checking formulas against those
representations.

The idea of a model checking procedure for US/L against the model expres-
sions of [4] was mooted in [5] but this paper is the first detailed account of
an algorithm with a proof of correctness and analysis of its performance. An
implementation of the model checker is available online [15].

Model Checking General Linear Temporal Logic 121

In the next two sections, we define the temporal logic US/L and the formal
notation for describing its models. In section 4, we present a few toy examples
of model checking with these languages. Section 5 presents the model checking
procedure in detail and we prove it correct in the next section. Section 7 briefly
considers the complexity of the algorithm and reports on some experiments in
empirical tests of running times on large inputs. Section 8 concludes.

2 The Logic

Fix a countable set L of atoms. Here, frames (T,<), or flows of time, will be
irreflexive linear orders. Structures T = (T,<, h) will have a frame (T,<) and a
valuation h for the atoms, i.e. for each atom p ∈ L, h(p) ⊆ T .

The well-formed formulas of the language L(U, S) are generated by the 2-place
connectives U and S along with classical ¬ and ∧. That is, we define the set of
formulas recursively to contain the atoms and for formulas α and β we include
¬α, α ∧ β, U(α, β) and S(α, β). (Note the prefix use of U and S as in [3,8,12].)

The logic US/L consists of formulas of L(U, S) evaluated at points in (linear)
structures T = (T,<, h). We write T, x |= α when α is true at the point x ∈ T .
This is defined recursively as follows. Suppose that we have defined the truth of
formulas α and β at all points of T. Then for all points x:
T, x |= p iff x ∈ h(p), for p atomic;
T, x |= ¬α iff T, x �|= α;
T, x |= α ∧ β iff both T, x |= α and T, x |= β;
T, x |= U(α, β) iff there is y > x in T such that T, y |= α and for all z ∈ T

such that x < z < y we have T, z |= β; and
T, x |= S(α, β) iff there is y < x in T such that T, y |= α and for all z ∈ T

such that y < z < x we have T, z |= β.
The logic is discussed more fully in other papers, for example: [19,21]. See

those references for investigations of the “strict” versus “non-strict” connectives,
infix versus postfix operators, various abbreviations, etc.

We use the following abbreviations in illustrating the logic: Fα = U(α,�),
“alpha will be true (sometime in the future)” Gα = ¬F (¬α), “alpha will always
hold (in the future)”; and their mirror images P and H . We also use the standard
classical abbreviations α∨β = ¬(α∧β), “alpha or beta” α→ β = ¬α∨β, “alpha
implies beta”, α↔ β = (α→ β) ∧ (β → α) “alpha iff beta”.

3 Building Structures

As in [4], we define a notation which allows the description of a temporal struc-
ture in terms of simple basic structures via a small number of ways of putting
structures together to form larger ones.

The general idea is simple: using singleton structures (the flow of time is one
point), we build up to more complex structures by the recursive application of
four operations. They are:

122 T. French, J. McCabe-Dansted, and M. Reynolds

– concatenation of two structures, consisting of one followed by the other;
– ω repeats of some structure laid end to end towards the past;
– ω repeats laid end to end towards the future;
– and making a densely thorough shuffle of copies from a finite set of structures.

These operations are well-known from the study of linear orders (see, e.g. , [3]).
Model Expressions are an abstract syntax for defining models that are con-

structed using the following set of primitive operators:

I ::= a | λ | I + J | ←−I | −→I | 〈I0, . . . , In〉

where a ∈ Σ, and Σ is some alphabet1. We refer to these operators, respectively,
as a letter, the empty order, concatenation, lead, trail, and shuffle.

Definition 1. [Correspondence] Given Σ = 2L, a model expression I corre-
sponds to a structure as follows:

– λ is the empty sequence and corresponds to the (pseudo)frame2 (∅, <, h)
where < and h are empty relations.

– a corresponds to any single point structure ({x}, <, h) where < is the empty
relation and h(p) = {x} if and only if p ∈ a.

– I + J corresponds to a structure (T,<, h) if and only if T is the disjoint
union of two sets U and V where ∀u ∈ U , ∀v ∈ V , u < v and I corre-
sponds to (U,<U , hU) and J corresponds to (V,<V , hV). (<U , hU refers to
the restriction of the relations < and h to apply only to elements of U).

–
←−I corresponds to the structure (T,<, h) if and only if T is the disjoint union
of sets {Ui|i ∈ ω} where for all i, for all u ∈ Ui, for all v ∈ Ui+1, v < u, and
I corresponds to (Ui, <

Ui , hUi).

–
−→I corresponds to the structure (T,<, h) if and only if T is the disjoint union
of sets {Ui|i ∈ ω} where for all i, for all u ∈ Ui, for all v ∈ Ui+1, u < v, and
I corresponds to (Ui, <

Ui , hUi).
– 〈I0, . . . , In〉 corresponds to the structure (T,<, h) if and only if T is the

disjoint union of sets {Ui|i ∈ Q} where
1. for all i ∈ Q (Ui, <

Ui , hUi) corresponds to some Ij for j ≤ n,
2. for every j ≤ n, for every a �= b ∈ Q, there is some k in the open interval

(a, b) where Ij corresponds to (Uk, <
Uk , hUk),

3. for every a < b ∈ Q for all u ∈ Ua, for all v ∈ Ub, u < v.

For convenience we define “I corresponds to T” to be equivalent to “T cor-
responds to I”. The MEs are important for modelling US/L formulas. Every
satisfiable US/L formula φ has an ME I such that a structure T that corre-
sponds to I will satisfy φ, yet MEs are minimal in that excluding any operator
(except λ) will render them unable to represent models for some US/L formulas.

We will give an illustration of the non-trivial operations below. The lead op-

eration, I =
←−J has ω submodels, each corresponding to J , and each preceding

the last, as illustrated in Fig. 1.

1 Typically, we will let Σ = 2L so the letter indicates the atoms true at a point.
2 Of course, the empty pseudo-frame is not counted as a frame and we do not allow
empty structures.

Model Checking General Linear Temporal Logic 123

. . .
JJJ

Fig. 1. The lead operation, where I =
←−J

The trail operator is the mirror image of lead, whereby I =
−→J has ω structures,

each corresponding to J and each proceeding the earlier structures.
The shuffle operator is harder to represent with a diagram. The model ex-

pression I = 〈I1, . . . In〉 corresponds to a dense, thorough mixture of intervals
corresponding to I1, . . . , In, without endpoints. We define the shuffle operation
using the rationals,Q as they are a convenient order with the required properties.

I I1 I I2
. . .

I In

I I1 I I2
. . .

I In

...
...

I ≡
I

I
���������

���������

Fig. 2. The shuffle operation, where I = 〈I1, . . . , In〉

The definition of model expressions is not deterministic, as the construct for
the shuffle 〈I1, . . . , In〉 does not specify how the structures corresponding to
I1, . . . , In are mapped to Q. This is inconsequential, and as long as the mapping
is dense for each i from 1 to n, the resulting structures will be isomorphic [4].

It is important to note that such a model expression language is capable of
expressing a model for any satisfiable formula.

Theorem 1. If φ is a satisfiable formula of L(U, S) then there is an ME I and
a structure T, and point x such that T corresponds to I, and T, x � φ. [4]

The following proposition follows trivially from the definition of correspondence.

Proposition 1. Given an ME I that corresponds to some structure (T,<, h) it
is the case that h (p) = T iff every letter within I contains p. Likewise h (p) is
non-empty iff some letter within I contains p.

124 T. French, J. McCabe-Dansted, and M. Reynolds

In proofs that use several restrictions of the same structure, we will find the
following abbreviations useful.

Definition 2. We define TU = (U,<U , hU) to be the restriction of a structure
T = (T,<, h) to a set U ⊆ T ; formally for each x, y in U we have x <U y iff
x < y, and for each p ∈ L we have hU (p) = h (p) ∩ U .

Lemma 1. Say that an ME K is of the form
←−I , −→I or 〈I0, . . . , In〉 and cor-

responds to a structure T = (T,<, h). Take the sets Ui from the definition of
correspondence of K to T and let S be

⋃
i>j Ui for some j ∈ Q. Note that for the

cases of
←−I , −→I we have i ∈ ω and so in these cases we could equivalently require

that j ∈ ω. Then K also corresponds to TS.

Proof. This proposition is trivial for
←−I and

−→I . For 〈I0, . . . , In〉 the function
f (i) = 1

i−j gives us an order preserving bijection from rationals greater than j
to all rationals. We let Vf(i) = Ui for each i > j and we see that K corresponds
to
⋃

i∈Q Vi =
⋃

i>j Ui. !"

We now define presatisfaction. Intuitively T = (T,<, h) presatisfies U(p, q)
means U(p, q) would be true at a point immediately prior to all points in T .

Definition 3. We say that a structureT = (T,<, h) presatisfies U(p, q) iff there
exists a y ∈ h (p) such that for each x ∈ T we have x < y → x ∈ h (q).

4 Examples

In this section we will briefly discuss a paradox discovered by the Ancient Greek
philosopher Zeno, and a system that interacts with an environment that has Zeno
properties. Zeno properties are not normally formally defined, but for clarity we
can loosely define a Zeno property to be a property that only occurs if an infinite
number of state changes occur within a bounded amount of time [14].

Zeno is reputed [11] to have presented a number of famous paradoxes. These
paradoxes have a common theme, that to achieve motion we need to move past an
infinite number of segments. The most famous is the Achilles and the Tortoise
paradox, where each time Achilles catches up to where the tortoise was, the
Tortoise has moved on. No matter how often Achilles catches up, the Tortoise
will still be ahead. We will formalise a simpler paradox from Zeno in US/L.

Say we are walking towards a wall. We will have to halve the distance between
us and the wall in infinite number of times, yet we eventually reach the wall.

We see that: we will halve the distance; whenever we have halved the distance,
we will halve the distance again, but only after a period of not halving the
distance; once we have reached the wall we will not halve the distance anymore;
and finally, we reach the wall. Where h represents “we have halved the distance”
and r represents “we have reached the wall”. We represent this using the formula:

Fh ∧G (h→ U (h,¬h)) ∧G (r→ G¬h) ∧ Fr .

Model Checking General Linear Temporal Logic 125

We see that this does not cause a contradiction as this formula is satisfied at the
leftmost point x of any structure T corresponding to

−−−−−→
{h}+ ∅+ {r}.3

Although a system will generally only be able to perform finitely many opera-
tions per second it may interact with an environment that exhibits Zeno proper-
ties. Perhaps the most famous example of such an environment is the Bouncing
Ball example, where at each bounce we assume the ball loses half its velocity.
Then each bounce takes half the time of the last, and that an infinite number of
bounces occur before the ball finally stops, which requires only finite time. We do
not claim that any real system works precisely this way, as there are any number
of other forces at play, particularly as the height of the “bounces” approaches
the Planck length. Never-the-less useful models of real world behaviour admit
Zeno properties, and adding real world limitations preventing Zeno behaviour
may make the model more complex without increasing its usefulness.

At some sporting event, it may be that a player is awarded a point if the
ball bounces twice. An automated system may detect such bounces and make
a ruling as to whether to award a point. The system may poll a given sensor,
to determine whether a bounce has occurred since the previous polling event.
If the system detects two bounces it awards a point. Where b indicates that a
bounce has just occurred, s indicates that system has just checked its sensor,
and e indicates the end of the round.

The player deserves a point precisely if θ = F (b ∧ F (b ∧ Fe)) holds while the
system awards a point precisely where the formula θs = F (b∧F (s∧F (b∧F (s∧
Fe)))) holds. The result is correct if θ ↔ θs holds. We can verify the result is
correct for a run of the system against the environment described by the ME:

{s}+ {b}+ {s}+ {s}+ {b}+ {s}+
−→
{b}+ {e}

5 Model Checking

We will begin this section by providing the preliminary definitions needed to
define the model checking procedure. It will be defined at a high level to make
the intuitions and correctness clear. The implementation is also available [15].
First, we will define our model checking problem.

Definition 4. We define the model checking problem as follows: given an ME
I and formula φ, determine whether there exists a structure T = (T,<, h) cor-
responding to I and point x ∈ T such that T, x � φ.

It is common to define the model checking problem as determining whether a
formula φ is true at a given point. To solve this variation of the problem, with
our model checking procedure, we can add a special atom p0 and model check
the formula p0 → φ. We will not explicitly consider MEs that contain the empty
sub-ME λ as these can be trivially reduced to an equivalent ME without λ.

3 Note that this ME cannot correspond to an interval of the reals. For the reals we
could replace ∅ with 〈∅〉 and use the Dedekind closure found in [4].

126 T. French, J. McCabe-Dansted, and M. Reynolds

The model checking procedure we will define follows the traditional approach
of iteratively replacing formulas with atoms. The result of adding a formula α
as an atom to an ME I is “add atomα (I)” which will be defined later in this
section. We will only consider formulas where all subformulas have been replaced
with atoms, that is formulas of the form: p∧q, ¬p, U(p, q) and S(p, q). We define
add atomp∧q (I) as the ME that results when each letter within I that contains
both p and q has p ∧ q added and likewise define add atom¬p (I) as the ME
where each letter that does not contain p has ¬p added or formally:

Definition 5. Let p, q be atoms, φ be a formula of the form p ∧ q or ¬p and a
be a letter. If φ = p∧q and p, q ∈ a or φ = ¬p and p, /∈ a we let add atomφ (a) be
a∪{φ}; otherwise we let add atomφ (a) be a. We define add atomφ (I) recursively
as follows:

1. add atomφ (I + J) = add atomφ (I) + add atomφ (J)

2. add atomφ

(←−I) =
←−−−−−−−−−−
add atomφ (I)

3. add atomφ

(−→I) =
−−−−−−−−−−→
add atomφ (I)

4. add atomφ (〈I0, . . . , In〉) = 〈add atomφ (I0) , . . . , add atomφ (In)〉

The case of U(p, q)/S(p, q) is less simple. We will now take a fixed formula of
the form U(p, q), and show how to add it as an atom to an ME.

For each Boolean �∈ {�,⊥} and ME K we will define a Boolean pre (K,�).
Say that K corresponds to an interval TK of T. Informally, � represents whether
U(p, q) would be true at a point added immediately after TK, and pre (K,�)
represents whether U(p, q) would be true at a point added immediately prior to
TK. In the proof of correctness this will be formalised in terms of presatisfaction.

Definition 6. We define a function “pre” from Booleans and MEs to Booleans
such that: for any Boolean � and pair of MEs I,J

1. pre (I + J ,�) = pre (I, pre (J ,�))
2. pre

(−→I ,�) = pre (I,�)
3. pre (a,�) = p ∈ a ∨ (� ∧q ∈ a)
4. pre (J ,�) = (� ∨∃l ∈ L (J) s.t. p ∈ l)∧∀l ∈ L (J) , q ∈ l; where J is of the

form
←−I or 〈. . .〉 and L (J) is the set of letters within J .

An important property of pre is that pre (I,�) ≡ pre (I, pre (I,�)). This prop-
erty is quite useful for dealing with leads as we only have to treat the last

occurrence of I specially. For example, if we add U (p, p) as an atom to
←−
{p},

U (p, p) would be true everywhere except the last point so which can be repre-

sented using the finite ME
←−−−−−−−−
{p, U (p, p)} + {p}. When considering the use of pre

in part 3 of the definition below it is also helpful to look back to Fig. 2 and note
that the fragment of I = 〈I0, . . . , In〉 that follows an Ij in I itself resembles the
whole of I.

Model Checking General Linear Temporal Logic 127

Definition 7. We define add atomU(p,q) (I) as t (I,⊥): where t is a function
that takes an ME and a Boolean as input, and outputs an ME as follows: for
any Boolean �, pair of MEs I,J and sequence of MEs I0, . . . , In
1. t (I + J ,�) = t(I, pre (J ,�)) + t (J ,�)

1. t
(←−I ,�) =

←−−−−−−−−−−
t(I, pre (I,�)) + t (I,�)

2. t
(−→I ,�) =

−−−−−−−−−−→
t(I, pre (I,�))

3. t (K,�) = 〈t (I0,�′) , . . . , t (In,�′)〉 where K = 〈I0, . . . , In〉
and �′= pre (K,�)

4. t (a,�) =
{
a if �= ⊥
a ∪ {U(p, q)} if �= �

The Since operator is the mirror image of the Until operator. It is easy to
reverse add atomU(p,q) (I) to provide a definition of add atomS(p,q) (I), see [7].

We define the length of an ME to be the total number of occurrences of letters

and operators in the ME, so e.g. 〈{}, {p, q, r, z}〉 {}+{} and
←−−→
{p} all have a length

of 3. Note that adding an until as an atom only increases the length of MEs that
contain ←−. Despite the semantic complexity of a shuffle it does not increase the
computational complexity of model checking.

Having provided all these preliminary definitions it is now trivial to provide
a formal definition of our model checking procedure.

Definition 8. The model checking procedure takes as input an ME I and for-
mula φ. We enumerate the subformulas φ1, . . . , φn of φ from shortest to longest
(so φn = φ), let I0 = I, and Ii = add atomφi (Ii−1) for each i ∈ {0, . . . , n}.
Finally, we return “true” if there is a letter a in In such that φ ∈ a, and “false”
otherwise.

6 Proof of Correctness

In this section we prove the correctness of the model checking procedure. First
we will define the concept of adding a formula as atom to structure T.

Definition 9. Say T = (T,<, h) then T with α added as an atom is Tα =
(T,<, h′) where h′ (p) = h (p) for all p ∈ L and for each point x ∈ T we have
x ∈ h′ (α) iff T, x � α.

We now formalise and prove the correctness of add atom in the next lemma.

Lemma 2. Say I corresponds to T using L as our set of atoms and α is a
formula of the form p∧q, ¬p, U(p, q) or S(p, q). Then add atomα (I) corresponds
to Tα = (T,<, h′) using L ∪ α as our set of atoms.

The case where α is of the form p ∧ q or ¬p is trivial. For a proof of correctness
for U(p, q) see Sect. 6.1. Since the S operator is essentially the U operator with
the direction of time reversed we may prove the correctness of S(p, q) in the
same way as U(p, q).

128 T. French, J. McCabe-Dansted, and M. Reynolds

Theorem 2. Given an ME I and formula φ, the model-checking procedure halts,
and it returns “true” iff there exists a structure T = (T,<, h) and point x ∈ T
such that I corresponds to T and T, x � φ.

Proof. We see that the definitions of pre and t are not circular and so the model-
checking procedure halts.

Let T be a structure corresponding to I. Take the enumeration φ1, . . . , φn of
the subformulas of φ used by the model checker. Let L0 = L, T0 = T and I0 = I.
For each i ∈ {0, . . . , n} let Li = Li−1 ∪ {φi}, and let Ti = (Ti, <i, hi) = Tφi

i−1,
and as in the model checking procedure we let Ii = add atomφi (Ii−1). For each
i let Pi be the proposition that Ii corresponds to Ti using Li as our set of atoms.
We see that P0 is trivially true. From Lemma 2 we see that if Pi−1 is true then
Pi is true. Thus by induction Pn is true. We see that from Proposition 1 that
there exists a letter within In that contains φ iff there exists y ∈ hn (φ). Finally
from the definition of Tn we see that T, x � φ iff y ∈ hn (φ). !"

6.1 Correctness of Adding U(p, q) as an Atom

We will now prove the correctness of add atomU(p,q) (I). We fix a structure

T = (T,<, h) over the set of atoms L and a structure S = TU(p,q). Whenever we
discuss correspondence of an ME to S or a restriction of S, we will interpret the
correspondence using L ∪ {U(p, q)} as our set of atoms. We will first prove that
the function “pre” accurately predicts whether an interval presatisfies a formula.

Lemma 3. LetK be an ME that corresponds to some intervalTW = (W,<K, hK)
of T = (T,<, h). Let R = {y : ∀x ∈W, x < y}, that is the set of points after the
interval TW , and let TR be the restriction of T to the points in TR. We let � be
“TR presatisfies U(p, q)”. Then TW∪R presatisfies U(p, q) iff pre (I,�) is true.

Proof. Say that K is a minimal ME that provides a counterexample to this
lemma. Say K is of the form:

a It trivially follows from definition of pre and presatisfaction that a does not
provide a counterexample.

I + J Following the definition of correspondence, we divide W into U and
V such that I and J correspond to TU and TV respectively. Since K is
minimal, J is not a counterexample and so we see that TV ∪R presatisfies
U(p, q) iff pre (J ,�). Likewise I is not a counterexample, so TU∪(V ∪R) pre-
satisfies U(p, q) iff pre (I, pre (J ,�)) = pre (K,�). Thus we do not have a
counterexample.−→I Following the definition of correspondence we divide W into U0, U1, Con-
sider the following four cases:

– pre (I,⊥) = ⊥ and pre (I,�) = ⊥: then since I is not a counterexample, we
see that TW∪R does not presatisfy U(p, q) (regardless of whether T(W−U0)∪R

presatisfies U(p, q)). Since pre
(−→I ,�) = pre (I,�) = ⊥, we do not have a

counterexample.

Model Checking General Linear Temporal Logic 129

– pre (I,⊥) = � and pre (I,�) = �: We see that TW∪R presatisfies U(p, q)
regardless, so again this is not a counterexample.

– pre (I,⊥) = ⊥ and pre (I,�) = �: From the definition of pre we see that
every letter of I (and thus K) has q but does not have p. Since K corresponds
to TW , hW (q) = W and hW (p) = ∅. Hence TW∪R presatisfies U(p, q) iff
TR does.

– finally note that there is no ME I where pre (I,⊥) = � and pre (I,�) = ⊥.
←−I or 〈. . .〉. Consider whether TW∪R presatisfies U(p, q).

– Yes: then there exists y ∈ hW∪R(p) such that for each point x < y in TW∪R

we have x ∈ h (q).
• Say y ∈ R, then every point in W is less than y and so it must be the
case that hW (q) = W . Since hW (q) = W we see that every letter K
has q and so pre (K,�) = �. We see that TR presatisfies U(p, q) and so
�= �.

• Say y /∈ R. Then y ∈ W . We see that if there were a letter within K
that did not contain q, then there would be a point x < y in W such
that x /∈ h (q), contradicting the definition of presatisfaction. Hence every
letter of K contains q. Since y ∈W we see that a letter within K contains
p. Thus pre (K,�) = � regardless of �.

– No: Since K provides a counterexample pre (K,�) = �. Thus every letter
within K has q.

• Say a letter within K contains p. Then we see that there is a point y
such that y ∈ hW (p) and furthermore that every point x < y in W is in
hW (q). Thus TW presatisfies U(p, q), giving us a contradiction.

• Say that no letter within K has p. Then from the definition of pre we see
that �= � and so TR presatisfies pUq. Since every point in W satisfies
p we see that TW∪R also presatisfies U(p, q), giving us a contradiction.

By the principle of contradiction we conclude that no counterexample exists. !"

Lemma 4. Let K be an ME corresponding to some interval TW = (W,<K, hK)
of T = (T,<, h). Let R = {y ∈ T : ∀x ∈W, x < y}, that is the set of points
after TW . Let � be “TR presatisfies U(p, q)”. Then t (K,�) corresponds to SW .

Like Lemma 3, the proof of Lemma 4 proceeds by considering each possible form
of a minimal ME that provides a contradiction. [7]

We now get correctness of add atomU(p,q) (I) from the following corollary.

Corollary 1. If I corresponds to T then add atomU(p,q) (I) corresponds to S.

7 Complexity

In this section we will give a brief summary of our complexity results and bench-
marks. Many more details and benchmarks can be found in [7].

130 T. French, J. McCabe-Dansted, and M. Reynolds

It is easy to implement the algorithm such that it is polynomial with respect to
the largest ME produced by the algorithm and the size of the input formula [15].

We see that after u Until operators have been processed
←−I gives us something

of the form
←−I0 + I1 + · · ·+ In, potentially increasing the size of the ME at most

n + 1 times. As leads can be nested this means the final ME may be as much
as (u + 1)L times larger than the size of input ME, where L is the number of

leads. The case of Since operators is similar and from this we can get an |φ||I0|

upper bound on the growth factor. Unfortunately this is exponential in the size
of the ME. Our implementation stores MEs as Directed Acyclic Graphs (DAG)
with identical subMEs are deduplicated. For convenience we will write t (I,�)
as I�. Each unique subME produced by adding an Until formula is of the form

I�, I⊥,
←−
I�, or

←−
I⊥ where I is a subME of the original ME. Thus adding an

atom increases the size of the DAG by at most four times. This gives us a 4|φ|

upper bound on the growth factor. This upper bound can be refined to |φ| 2|φ|
[7]. These upperbounds on the growth allow an implementation that is linear in
time with respect to the input ME, for formulas of fixed size [7,15].

In a follow on publication [6] we will show that the model checking problem is
PSPACE-Complete. We will show that our model-checking problem is PSPACE-
hard by a reduction from solving satisfiability of Quantified Boolean Formulas,
and present a Model Checking algorithm that does not store the interim MEs
allowing it to run using only a polynomial amount of space (but inefficient in
time).

Theorem 3. Our Model-Checking problem is PSPACE-complete. [6]

Having considered theoretical complexity, we will use benchmarks to quantify
actual performance. We choose random formulas of size n using the following
simple recursive procedure: if n is 1, choose randomly from six atoms; if n is
2 choose a negation of the randomly chosen atom, otherwise with equal chance
choose to start either with “¬” or a binary operator. If we choose to start with a
binary operator we then randomly pick one from the set {U , S, ∧, ∨}. If unary,
let the remainder of the formula be a random formula of size n − 1; if binary
choose a random split of n− 1 into n0 and n1 such that n0 + n1 +1 = n and let
the left child be a random formula of size n0 and the right child be a random
formula of size n1. Randomly generated MEs are similar but where n = 1 we
randomly choose a subset of the 6 atoms, and choose one of {←−,−→} in place of
¬. We see that there are 26 possible subsets of atoms, which is enough to encode
non-trivial problems such a prenex QBF satisfiability problem with 26 atoms.

In Table 1, the ith row represents the case where we model check a random
ME of size 10i against a random formula of size 100. Recall that the formula
column is the number of unique sub-formula, which will be slightly less than
the size of the input formula. Likewise the “InputME” column may be smaller
than 10i. We see that the performance of the algorithm is plausibly linear in the
size of the ME for a fixed formula. We are able to model check non-trivial MEs,
for example checking the ME of size 107 takes only half an hour. Note that the
deduplication done when first parsing the input is at least O (n lnn). This could

Model Checking General Linear Temporal Logic 131

Table 1. Fixed size formula: |φ| = 100, |Ii| = 10i

i Formula InputME FinalME MB CPU

1 75 10 12 1 0.00
2 74 96 170 3 0.02
3 73 722 2233 6 0.47
4 75 5694 15444 14 2.02
5 73 51551 120463 109 19.07
6 72 453679 1174276 800 231.52
7 71 4027606 8313117 6297 1514.78

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

In
cr

ea
se

 in
 s

iz
e

of
 M

E
 (

ra
tio

)

Square root of # of added atoms

observed
fitted line

Fig. 3. Plot of growth of |In|/|I0| vs.
√
n for 215 × 215 problem

be disabled, to get “true” linear time, but this extra lnn only occurs before the
model checker starts and provides significantly better performance in practice.

Let In be our initial ME I0 after n atoms have been added, and let rn =
|In|/|I0| be the ratio between the input ME and the final ME. Since exponential
growth in rn is the only way that we can get exponential growth in the time
or space used by this algorithm, an obvious question is how quickly it grows in
practice. We plot how quickly rn grows in the 215 by 215 problem, against

√
n

(see Fig. 3). We see that the graph closely fits a straight line. This suggests that
the growth is of order

√
n. We will now attempt to quantify how accurate

√
n is

as a predictor of rn for randomly generated problems in general.
We note than an interim (or final) ME In has n+6 atoms, since each iteration

adds an additional atom, an each randomly generatedME begins with 6 atoms.
Let an = n + 6 be the number of atoms used in In. We have found that in all
cases rn = λn

√
an where 0.113 < λn < 0.466. This result held not just for every

n, but also for all randomly generated I and φ considered. These included I of

132 T. French, J. McCabe-Dansted, and M. Reynolds

size up to 107 and φ of size up to 106 (see [7] for details). Since
√
an can be used

to predict rn to within an order of magnitude for all these cases it is plausible
that for randomly generated model checking problems, rn is of order

√
an. In

any case, rn appears to be sublinear. While these randomly generated results
may or may not apply to a given real world application, it is clear that there is
a large class of problems for which rn will not grow exponentially.

8 Conclusions

In this paper we have investigated the idea of model checking in general linear
temporal logic. We have managed to formalise the task using the logic US/L and
the model expression language of [4]. We have provided an algorithm, proved it
correct and analysed its performance.

We have an |I| |φ| 2φ upper bound on the number of unique sub-MEs in the
resulting ME, and have a similar bound on worst case performance. As this
model checking problem can be solved in time linear with respect to the length
of input model it is expected to be tractable in practice, and this expectation was
supported by benchmarks on random formulas. For example, we have checked
a randomly generated ME of size 107 against a randomly generated formula of
size 100, using 6 atoms in only half an hour. Interestingly, despite the semantic
complexity of the shuffle operator it is easy to model check, both in theory and
in practice. Also of interest, we have found that our model checking problem is
polynomial if we constrain either the size of the model or the formula. The model
checking problem is also known to be PSPACE-complete [7,6], so the complexity
is quite similar to that of LTL. We also note the similarity of the complexity of
model-checking to synthesis and satisfiability. Synthesis [4] and Satisfiability [17]
checking temporal logic with Until and Since are also PSPACE-complete over
the reals, and over general linear time as well [20].

As mentioned, we hope in the future to be able to make easily specialised
versions of the model checker for logics of the language with Until and Since
over useful specific flows of time. In particular we will be examining RTL.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In:
LICS 1990, pp. 414–425. IEEE Computer Society (1990)

2. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

3. Burgess, J.P., Gurevich, Y.: The decision problem for linear temporal logic. Notre
Dame J. Formal Logic 26(2), 115–128 (1985)

4. French, T., McCabe-Dansted, J.C., Reynolds, M.: Synthesis for temporal logic over
the reals. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L.S. (eds.) Advances
in Modal Logic 2012, pp. 217–238. College Publications (2012)

5. French, T., McCabe-Dansted, J., Reynolds, M.: Indiscrete models: Model building
and model checking over linear time. In: Lodaya, K. (ed.) ICLA 2013. LNCS,
vol. 7750, pp. 50–68. Springer, Heidelberg (2013)

Model Checking General Linear Temporal Logic 133

6. French, T., McCabe-Dansted, J.C., Reynolds, M.: Complexity of model checking
general linear time. In: TIME 2013 (accepted, to appear, 2013)

7. French, T., McCabe-Dansted, J.C., Reynolds, M.: Model checking for composi-
tional models of general linear time: Long version. Tech. rep., CSSE, UWA (Dec
2012), http://www.csse.uwa.edu.au/~john/papers/ModelCheckZeno_tech.pdf

8. Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical Founda-
tions and Computational Aspects, vol. 1. Oxford University Press (1994)

9. Gabbay, D.M., Hodkinson, I.M., Reynolds, M.A.: Temporal expressive complete-
ness in the presence of gaps. In: Oikkonen, J., Väänänen, J. (eds.) Logic Colloquium
1990, Proceedings ASL European Meeting 1990, Helsinki. Lecture Notes in Logic,
vol. 2, pp. 89–121. Springer (1993)

10. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: 7th ACM Symp. on Princ. of Prog. Languages, Las Vegas, pp. 163–173 (1980)

11. Hugett, N.: Zeno’s paradoxes: 3.2 achilles and the tortoise. In: Zalta, E. (ed.)
Stanford Encyclopedia of Philosophy. Chapman and Hall, Boca Raton (2010)

12. Kamp, H.: Tense logic and the theory of linear order. Ph.D., UCLA (1968)
13. Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fundamenta

Mathematicae 59, 109–116 (1966)
14. Mosterman, P.: 15.6 pathological behaviour classes, hybrid dynamic systems: Mod-

eling and execution. In: Fishwick, P. (ed.) Handbook of Dynamic SystemModelling,
ch. 15, pp. 15–22 to 15–23. Chapman and Hall, Boca Raton (2007)

15. McCabe-Dansted, J.C.: Model checker for general linear time (online applet and
data) (2012), http://www.csse.uwa.edu.au/
~mark/research/Online/mechecker.html

16. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Symposium
on Foundations of Computer Science, Providence, RI, pp. 46–57 (1977)

17. Reynolds, M.: The complexity of the temporal logic over the reals. Annals of Pure
and Applied Logic 161(8), 1063–1096 (2010), doi:10.1016/j.apal.2010.01.002

18. Reynolds, M.: Continuous temporal models. In: Stumptner, M., Corbett, D.,
Brooks, M. (eds.) AI 2001. LNCS (LNAI), vol. 2256, pp. 414–425. Springer,
Heidelberg (2001)

19. Reynolds, M.: Dense time reasoning via mosaics. In: TIME 2009: Proceedings of the
2009 16th International Symposium on Temporal Representation and Reasoning,
pp. 3–10. IEEE Computer Society, Washington, DC (2009)

20. Reynolds, M.: The complexity of temporal logics over linear time. Journal of Stud-
ies in Logic 3, 19–50 (2010)

21. Reynolds, M.: A tableau for until and since over linear time. In: Combi, C., Leucker,
M., Wolter, F. (eds.) TIME, pp. 41–48. IEEE (2011)

http://www.csse.uwa.edu.au/~john/papers/ModelCheckZeno_tech.pdf
http://www.csse.uwa.edu.au/~mark/research/Online/mechecker.html
http://www.csse.uwa.edu.au/~mark/research/Online/mechecker.html

Semantically Guided Evolution of SHI ABoxes

Ulrich Furbach and Claudia Schon

University of Koblenz-Landau, Germany
{uli,schon}@uni-koblenz.de

Abstract This paper presents a method for the evolution of SHI
ABoxes which is based on a compilation technique of the knowledge
base. For this the ABox is regarded as an interpretation of the TBox
which is close to a model. It is shown, that the ABox can be used for a
semantically guided transformation resulting in an equisatisfiable know-
ledge base. We use the result of this transformation to efficiently delete
assertions from the ABox. Furthermore, insertion of assertions as well
as repair of inconsistent ABoxes is addressed. For the computation of
the necessary actions for deletion, insertion and repair, the E-KRHyper
theorem prover is used.

1 Introduction

Description Logic knowledge bases consist of two parts: the TBox and the ABox.
The TBox contains the terminological knowledge and describes the world using
so called concepts and roles. The ABox contains knowledge about individuals,
stating to which concepts they belong to and via which roles they are connec-
ted. There is a considerable amount of work introducing update algorithms and
mechanisms for Description Logic knowledge bases, which is of great interest
to the Semantic Web community (see [11,16] for details). It is an indisputable
fact, that in practice, knowledge bases are subject to frequent changes ([10]) and
that even the construction of a knowledge base can be seen as an iterative pro-
cess. On the other hand this abets inconsistencies in knowledge bases. Therefore
the removal of inconsistencies from knowledge bases is of great interest as well
([13]). In this paper we are interested in an evolution of the knowledge base on
the instance level. For this, we consider the TBox to be fixed and consistent. We
address three different operations on the instance level of the knowledge base:
deletion, insertion and repair. Instance-level deletion means the deletion of an
instance assertion from the deductive closure or the knowledge base by removing
as few assertions as possible. Instance-level insertion means adding an instance
assertion to the knowledge base. In both cases it is important that the result-
ing knowledge base is consistent. For the task of ABox repair we are given an
inconsistent knowledge base with consistent terminological part. The aim is to
remove assertions from the ABox such that the resulting ABox together with the
TBox is consistent. In all three tasks the changes performed should be minimal.
This corresponds to the goal of maintaining as much from the original ABox as
possible. This view of minimal change corresponds to a formula based approach

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 134–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Semantically Guided Evolution of SHI ABoxes 135

as opposed to a model based approach as investigated in [16]. In the model based
approach the set of models of the knowledge base resulting form a change opera-
tion should be as close as possible to the set of models of the original knowledge
base.

In [15], [7] and [5] instance level deletion, insertion and repair are addressed
for DL-Lite knowledge bases. In [14] inconsistent DL-Lite ABoxes are considered.
[14] establishes inconsistency-tolerant semantics in order to be able to use those
inconsistent ABoxes for query answering. [19] studies the complexity of reasoning
under inconsistent-tolerant semantics. Algorithms for the calculation of minimal
repair of DL-Lite ABoxes suggested in [14] test the satisfiability of every single
ABox assertion and every pair of ABox assertions w.r.t. the TBox. Since for
DL-Lite the satisfiability test is tractable, this approach is reasonable. However
the ExpTime completeness of consistency testing of SHI ABoxes forbids such
an approach. Further the algorithms suggested in [14] cannot be used for SHI
ABoxes, because these algorithms exploit the following nice property of DL-Lite:
as shown in [5], in DL-Lite the unsatisfiability of an ABox w.r.t. a TBox is either
caused by a single assertion or a pair of assertions. However in SHI an arbitrary
number of assertions can cause unsatisfiability w.r.t. a TBox.

Our approach is motivated by the observation that a consistent ABox can be
seen as a (partial) model of the TBox, which can be used to guide the reason-
ing process, as proposed in [6]. In [3] this approach was used for model-based
diagnosis, where an initial interpretation, which is very close to a model, was
used to compute the deviations of a minimal model to this interpretation. In
[1] the same approach was applied to view deletion in databases. In our case it
is reasonable to assume, that the ABox is very close to a model of the TBox.
We use this assumption to semantically guide the construction of instance-based
deletion, insertion and repair of ABoxes. As in [3], we gradually revise the as-
sumption of the given ABox being a model for the TBox. This leads to a natural
construction of minimal instance deletions/insertions and repairs of ABoxes.

The advantage of this approach is that there is no need to define new al-
gorithms for updates and repair, which have to be proven correct. Instead we
will use a static compilation of the knowledge base according to the update or
repair requirement. We prove that this transformation preserves the necessary
semantics. A theorem prover can be used to compute the necessary update and
repair actions. A hypertableau-based theorem prover like E-KRHyper is very
well suited for this task, because the transformation enables it to calculate only
the deviation of the ABox. Since E-KRHyper has recently been extended to deal
with knowledge bases given in SHIQ [4], we chose to use this theorem prover.

Our approach is related to axiom pinpointing. For a given consequence, ax-
iom pinpointing is the task to find the minimal subsets of the knowledge base
under consideration, having this consequence. See [2] for details. In [12] laconic
and precise justifications are introduced. Given an ontology and an entailment,
a justification is a minimal subset of that ontology such that the entailment still
holds in the subset. Roughly spoken, laconic justifications are not allowed to con-
tain superfluous parts. In contrast to axiom pinpointing and justifications, we

136 U. Furbach and C. Schon

calculate subsets of the ABox and not of the whole knowledge base. In [20] inco-
herent TBoxes, i.e. TBoxes containing an unsatisfiable concept, are investigated.
[11] considers so called syntactic ABbox updates. Similar to our approach, asser-
tions are added to or removed from the ABox. In contrast to our approach, it is
neither guaranteed that the removed assertion is not contained in the deductive
closure nor that the result of adding the assertion is consistent.

In Section 2 we give both syntax and semantics of the Description Logic
SHI. In addition to that, we introduce the notion of DL-clauses as used in [17].
In Section 3 we give definitions for instance-level deletion, insertion and repair.
Section 4 introduces the so called K∗-transformation which in Section 5 is used to
calculate the instance-level deletion, insertion and repair. The K∗-transformation
is implemented and in Section 6 we present first experimental results. Proofs of
all theorems, propositions and lemmas can be found in [9].

2 SHI and DL-Clauses

First, we introduce the Description Logic SHI. Given a set of atomic roles NR,
the set of roles is defined as NR ∪ {R− | R ∈ NR}, where R− denotes the
inverse role corresponding to the atomic role R. Let further Inv be a function
on the set of roles that computes the inverse of a role, with Inv(R) = R− and
Inv(R−) = R. A role inclusion axiom is an expression of the form R * S,
where R and S are atomic or inverse roles. A transitivity axiom is of the form
Trans(S) for S an atomic or inverse role. An RBox R is a finite set of role
inclusion axioms and transitivity axioms. *∗ denotes the reflexive, transitive
closure of * over {R * S, Inv(R) * Inv(S) | R * S ∈ R}. A role R is transitive
in R if there exists a role S such that S *∗ R, R *∗ S, and either Trans(S) ∈ R
or Trans(Inv(S)) ∈ R. If no transitive role S with S *∗ R exists, R is called
simple.

Let NC be the set of atomic concepts. The set of concepts is then defined as
the smallest set containing �, ⊥, A, ¬C, C ! D, C " D, ∃R.C and ∀R.C for
A ∈ NC , C and D concepts and R a role.

A general concept inclusion (GCI) is of the form C * D, and a TBox T is a
finite set of GCIs.

Given a set of individuals NI , an ABox A is a finite set of assertions of the
form A(a) and R(a, b), with A an atomic concept, R an atomic role and a,
b individuals from NI . Note that in our setting, the ABox is only allowed to
contain assertions about the belonging of individuals to atomic concepts and
roles.

A knowledge base K is a triple (R, T ,A) with signature Σ = (NC , NR, NI).
The tuple I = (·I , ΔI) is an interpretation for K iff ΔI is a nonempty set and
·I assigns an element aI ∈ ΔI to each individual a, a set AI ⊆ ΔI to each
atomic concept A, and a relation RI ⊆ ΔI ×ΔI to each atomic role R. ·I then
assigns values to more complex concepts and roles as described in Table 1. I is
a model of K (I |= K) if it satisfies all axioms and assertions in R, T and A
as shown in Table 1. A TBox T is called consistent, if there is an interpretation

Semantically Guided Evolution of SHI ABoxes 137

Table 1. Model-theoretic semantics of SHI. R+ is the transitive closure of R.

Concepts and Roles

�I = ΔI (R−)I = {(y, x) | (x, y) ∈ RI}
⊥I = ∅ (∀R.C)I = {x | ∀y : (x, y) ∈ RI ⇒ y ∈ CI

(¬C)I = ΔI\CI (∃R.C)I = {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI}
(C �D)I = CI ∪DI

(C �D)I = CI ∩DI

TBox & RBox axioms ABox axioms

C � D ⇒ CI ⊆ DI C(a) ⇒ aI ∈ CI

R � S ⇒ RI ⊆ SI R(a, b) ⇒ (aI , bI) ∈ RI

Trans(R) ⇒ (RI)+ ⊆ RI

satisfying all axioms in T . A concept C is called satisfiable w.r.t. R and T iff
there exists a model I of R and T with CI �= ∅.

In the sequel we adapt the notion of DL-clauses introduced in [17] to the De-
scription Logic SHI. These DL-clauses allow to use existent theorem provers
which are based on the hypertableau calculus to compute models or to de-
cide satisfiability. DL-clauses are universally quantified implications of the form∨
Vj ←

∧
Ui:

Definition 1. ([17]) An atom is of the form B(s), R(s, t), ∃R.B(s) or ∃R.¬B(s)
for B an atomic concept and s and t individuals or variables. An atom not
containing any variables is called a ground atom. A DL-clause is of the form
V1 ∨ . . . ∨ Vn ← U1 ∧ . . . ∧ Um with Vi atoms and Uj atoms of the form B(s)
or R(s, t) and m ≥ 0 and n ≥ 0. If n = 0, we denote the left hand side (head)
of the DL-clause by ⊥. If m = 0, we denote the right hand side (body) of the
DL-clause by �.

Definition 2. (Semantics of DL-clauses; [17]) Let V1∨. . .∨Vn ← U1∧. . .∧Um be
a DL-clause and NV a set of variables, disjoint from NI . Let further I = (ΔI , ·I)
be an interpretation and μ : NV → ΔI be a variable mapping. Let aI,μ = aI

for an individual a and xI,μ = μ(x) for a variable x. Satisfaction of an atom, a
DL-clause, and set of DL-clauses N in I and μ is defined as follows:
I, μ |= C(s) if sI,μ ∈ CI

I, μ |= R(s, t) if 〈sI,μ, tI,μ〉 ∈ RI

I, μ |=
n∨

j=1

Vj ←
m∧
i=1

Ui if I, μ |= Vj for some 1 ≤ j ≤ n whenever I, μ |= Ui

for each 1 ≤ i ≤ m

I |=
n∨

j=1

Vj ←
m∧
i=1

Ui if I, μ |=
∨n

j=1 Vj ←
∧m

i=1 Ui for all mappings μ

I |= N if I |= r for each DL-clause r ∈ N

We will not give the transformation into DL-clauses. The details can be found
in [17]. The transformation avoids an exponential blowup by using the well-
known structural transformation [18] and can be computed in polynomial time.

138 U. Furbach and C. Schon

By Ξ(T) (Ξ(A)) we denote the set of DL-clauses for a TBox T (an ABox A).
For a knowledge base K = (T ,A), Ξ(K) = Ξ(T) ∪ Ξ(A). According to [17] for
every interpretation I, I |= K iff I |= Ξ(T) and I |= A.

Since we assume the ABox assertions to be atomic, the ABox itself corresponds
to a set of DL-clauses.

Example 1. The TBox T = {B * ∃R.C, ∃R.C * D,D * C} corresponds to the
set of DL-clauses Ξ(T) = {∃R.C(x) ← B(x), D(x) ← R(x, y) ∧ C(y), C(x) ←
D(x)}.

Sometimes it is convenient to regard both the body and the head of a DL-
clause C as a set of atoms like C = H ← B. This allows us to write A ∈ B
(A ∈ H) if atom A occurs in the body (in the head) of DL-clause C. The
signature of a set of DL-clauses is the set of atomic concepts and atomic roles
occurring in the DL-clause. The size of a DL-clause C is defined as the numbers
of atoms occurring in C and is denoted size(C). The size of a set of DL-clauses
N denoted by size(N) is the sum of sizes of all DL-clauses in N . In the sequel
we need a function extracting the concept/role from an atom:

Definition 3. (Symbol Extraction Function) Let A be an atom. Then σ(A) is
defined as follows:

σ(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B if A = B(s) for some atomic concept B,

R if A = R(s, t) for some atomic role R,

∃R.B if A = ∃R.B(s) for some atomic role R and

B = E or ¬E for some atomic concept E.

By σ(N) for a set of atoms N we denote the union of σ(A) for all atoms A ∈ N .
In the following it is convenient for us to regard an interpretation as the set

of ground atoms assigned to true by the interpretation. A set of ground atoms
and an interpretation can be seen as equivalent, since every set of ground atoms
uniquely determines a Herbrand interpretation. Now we can introduce the idea
of minimal models to DL-clauses.

Definition 4. (Minimal Model for a Set of DL-Clauses) Let DL be a set of DL-
clauses. An Interpretation I is called a minimal model for DL, iff I is a model
for DL and further there is no model I ′ for DL such that I ′ ⊂ I.

Next we define minimality of models w.r.t. a set of ground atoms. We will later
use this notion in order to minimize the number of ABox assertions which are
to be deleted.

Definition 5. (Γ Minimal Model) Let DL be a set of DL-clauses and Γ be a
set of ground atoms. An interpretation I is a Γ -minimal model for DL iff I is
a model for DL and further there is no model I ′ for DL with I ′ ∩ Γ ⊂ I ∩ Γ .

3 ABox Evolution

We address three different operations on the instance level of the knowledge
base: deletion, insertion and repair. The first scenario we are considering is the

Semantically Guided Evolution of SHI ABoxes 139

following: given a knowledge base K = (T ,A) with a consistent TBox T , we
want to remove an ABox assertion for example A(a) from the ABox. In general
it is not sufficient to only delete A(a) from the ABox, because A(a) can still
be contained in the deductive closure. So the task is to determine a minimal
set of ABox assertions, which have to be deleted from the ABox in order to
prevent that A(a) is a logical consequence of the knowledge base. This leads to
the following definition.

Definition 6. (Minimal Instance Deletion) Let K = (T ,A) be a knowledge base
where T is consistent. A ground atom D of the form A(a) or R(a, b) with D ∈ A
is called delete request. Further A′ ⊆ A is called minimal instance deletion of D
from A if T ∪A′ �|= D and there is no A′′ with A′ ⊂ A′′ ⊆ A and T ∪ A′′ �|= D.

Example 2. We consider the ABox

A = {B(a), D(a), C(b), R(b, b), R(a, a)}
together with the TBox given in Example 1. The delete request D(a) has a
minimal instance deletion

A′ = {C(b), R(b, b), R(a, a)}
Next we want to repair an ABox which is not consistent w.r.t. its TBox.

Definition 7. (Minimal ABox Repair) Let K = (T ,A) be a knowledge base
where T is consistent. A′ ⊆ A is called minimal ABox repair of A if T ∪ A′ is
consistent and there is no A′′ with A′ ⊂ A′′ ⊆ A and T ∪ A′′ consistent.

Note that we define the notion of a minimal ABox repair in a way, that it is also
applicable to an ABox which is consistent to its TBox. In this case, the minimal
ABox repair corresponds to the original ABox.

The third instance level operation we address is insertion of an assertion into
an existing ABox. The problem that arises when considering insertion is, that
the resulting ABox might be inconsistent w.r.t. its TBox.

Example 3. Let us consider the set of DL-clauses

Ξ(T) = {⊥ ← C(x) ∧D(x)}
together with the ABox

A = {C(a)}
Adding the assertion D(a) into A leads to A′ = {C(a), D(a)}, which is incon-
sistent w.r.t. T .
We avoid inconsistent results by the next definition.

Definition 8. (Minimal Instance Insertion) Let K = (T ,A) be a knowledge
base with T consistent and D a ground atom of the form A(a) or R(a, b). An
ABox A′ is called minimal instance insertion of D into A if

– D ∈ A′,
– (A′ \D) ⊆ A,
– T ∪ A′ is consistent and there is no A′′ with D ∈ A′′ and (A′ \ D) ⊂

(A′′ \D) ⊆ A and T ∪ A′′ is consistent.

140 U. Furbach and C. Schon

4 K∗-Transformation

We will solve the tasks defined in Section 3 by using the K∗-transformation which
will be introduced in this section. As discussed in the introduction we want to
use the ABox of the knowledge base as a partial model, which will guide our
transformation.

Considering the task of deleting a given instance, we want to determine a
minimal set of ABox assertions which have to be deleted in order to prevent
the instance from being contained in the deductive closure of the knowledge
base. The idea of the transformation we are about to use was introduced in
[3]. We replace occurrences of an atom A(a) in a clause by ¬NegA(a). This
transformation can be seen as switching the sides in the clause representation
of DL-clauses. This makes sense, when a bottom-up proof procedure like E-
KRHyper is used: a fact A(a) ← changes the side and the clause becomes ←
NegA(a). As a consequence A(a) is not derived explicitly. It is assumed to be in
the model until the opposite has to be derived.

Deducing an atom NegA(a) means that we have to revise the ABox and that
we have to remove atom A(a) from the ABox. By using this transformation
we only need to calculate the atoms we have to remove from the ABox. All
remaining atoms will be kept in the ABox. Since it is reasonable to expect the
ABox to be very large, it is advantageous to calculate only the deviation from
the original ABox.

Definition 9. The Neg and the ABox function map atoms to renamed atoms:

– For atomic concepts A and an individual or variable a:
• Neg(A(a)) = NegA(a)
• ABox (A(a)) = ABoxA(a)

– For atomic roles R and individuals or variables a, b:
• Neg(R(a, b)) = NegR(a, b)
• ABox (R(a, b)) = ABoxR(a, b)

We slightly abuse notation by using the Neg function to rename atomic concepts
and atomic roles: for B an atomic concept or an atomic role: Neg(B) = NegB .
Further for a set of atoms P , Neg(P) is defined as: Neg(P) = {Neg(A) | A ∈ P}.
So we can use the Neg function to rename atoms, sets of atoms and atomic
concepts and roles.

Definition 10. 1 (Renaming) Let DL be a set of DL-clauses and S a set of
atomic concepts and atomic roles. Let C ∈ DL be C = H ← B. Then RS(C),
the renaming of C w.r.t. S is

1 Due to the helpful remarks of an anonymous reviewer of the DL Workshop,
this definition was revised. These changes also affect the results presented in the
experiments.

Semantically Guided Evolution of SHI ABoxes 141

RS(C) =

{C} (1)

∪

{(
∨

A∈H,

σ(A)/∈S

A) ∨ (
∨

B∈B,

σ(B)∈S

Neg(B))← (
∧

B∈B,

σ(B)/∈S

B) ∧ (
∧

A∈H,

σ(A)∈S

Neg(A))} (2)

∪
{⊥ ← R(x, y) ∧ NegR(x, y) | ∃A ∈ (H ∪B) with σ(A) = R ∈ S or ∃A ∈ H

of the form A = ∃R.C(z) and R ∈ S} (3)

∪
{⊥ ← D(x) ∧NegD(x) | ∃A ∈ (H ∪B) with σ(A) = D ∈ S or

∃A ∈ H of the form A = ∃R.D(z) and R ∈ S} (4)

For a set of DL-clauses DL, the renaming RS(DL) w.r.t. S is defined as the
union of the renaming of all its clauses.

Note that renaming is a bijective function on a set of DL-clauses. Further re-
naming can be performed in time linear to the size of the set of DL-clauses times
the size of S.

The next proposition states the fact, that renaming preserves satisfiability.
Furthermore given a model for a set of DL-clauses DL, it is possible to calculate
a model for the renamed set of DL-clauses RS(DL) and vice versa.

Proposition 1. (Renaming Models) Let DL be a set of DL-clauses, S a set of
atomic concepts and atomic roles and I an interpretation. Then I |= DL iff IS |=
RS(DL), where IS and I have the same domain and the same interpretation
of individuals. In addition to that the interpretation of all roles and concepts

occurring in DL coincide. Further (Neg(B))I
S

= BI for all concepts names

B ∈ S and (Neg(R))I
S

= RI for all atomic roles R ∈ S.

Definition 11. (K*-Transformation) Let K = (T ,A) be a knowledge base
(where T is consistent). Let S be the set of atomic concepts and atomic roles
occurring in A. Then K∗ is the clause set obtained by renaming Ξ(T) w.r.t. S
and adding the set of DL-clauses {ABox (A)← � | for all assertions A ∈ A}.

We have to add {ABox(A) ← � | for all assertions A ∈ A} to the result of
renaming for two reasons: first of all we have to introduce the individuals occur-
ring in the ABox to the theorem prover. Furthermore it is helpful to calculate
minimal deletions.

Proposition 2. Let K = (T ,A) be a knowledge base and S be the set of atomic
concepts and atomic roles occurring in A and T . Then Ξ(T), RS(Ξ(T)) and
K∗ are equisatisfiable.

142 U. Furbach and C. Schon

Example 4. We consider the set of DL-clauses given in Example 1 together with
the ABox A = {B(a), D(a), C(b), R(b, b), R(a, a)}. Then S = {B,D,C,R}. Re-
naming the DL-clauses given in Example 1 w.r.t. S leads to K∗:

∃R.C(x)← B(x).

∃R.C(x) ∨ NegB(x)← �.
D(x)← R(x, y) ∧ C(y).

NegR(x, y) ∨ NegC(y)← NegD(x).

C(x)← D(x).

NegD(x)← NegC(x).

⊥ ← R(x, y) ∧ NegR(x, y).

⊥ ← C(x) ∧ NegC (x).

⊥ ← B(x) ∧ NegB(x).

⊥ ← D(x) ∧ NegD(x).

ABoxB(a)← �.
ABoxD(a)← �.
ABoxC(b)← �.

ABoxR(b, b)← �.
ABoxR(a, a)← �.

In the worst case the K∗-transformation quadruples the size of a set of DL-
clauses: S is the set of all concepts/roles occurring in the clause set. The ABox
contains b assertions and the TBox consists of a single clause: C = H1∨. . .∨Hi ←
B1 ∧ . . . ∧ Bj with n = i + j. W.l.o.g. the symbols of all atoms occurring in C
are concepts. This set of DL-clauses has the size n+ b. Renaming results in:

{H1 ∨ . . . ∨Hi ← B1 ∧ . . . ∧Bj ,

Neg(B1) ∨ . . . ∨ Neg(Bj)← Neg(H1) ∧ . . . ∧ Neg(Hi),

⊥ ← σ(H1)(x) ∧ Neg(σ(H1))(x),

...

⊥ ← σ(Hi)(x) ∧Neg(σ(Hi))(x),

⊥ ← σ(B1)(x) ∧ Neg(σ(B1))(x),

...

⊥ ← σ(Bj)(x) ∧ Neg(σ(Bj))(x),

∪{ABox (A)← � | for all assertions A ∈ A}

The first clause is the original clause from the TBox. Its size is n. The second
clause is created by renaming and has size n. Then n clauses of size 2 follow. At
the end of the clause set are b clauses of the form ABox (A) each of size 1. All in
all the resulting set of clauses has the size n+ n+ 2 ∗ n+ b ≤ 4 ∗ (n+ b), which
is four times higher than the size of the original set of DL-clauses.

Semantically Guided Evolution of SHI ABoxes 143

5 Using the K∗-Transformation for ABox Evolution

Firstly we address deletion: Recall that according to the definition of the Neg
function, Neg(A) is defined as {Neg(A) | A ∈ A}. Next we show how to use
Neg(A)-minimal models to calculate minimal instance deletions. For a given
model M we construct Del(M) = {A ∈ A | Neg(A) ∈ M}. Intuitively Del(M)
constitutes the set of ABox assertions supposed to be deleted from the ABox to
obtain a minimal instance deletion.

Theorem 1. Let K = (T ,A) be a knowledge base where T is consistent, S the
set of atomic concepts and atomic roles occurring in A, and D a delete request.
Let MS be a Neg(A)-minimal model for K∗∪{Neg(D)← �}. Then A\Del(MS)
is a minimal instance deletion of D from A.

Proof by first showing T ∪(A\Del(MS)) �|= D by constructing a model according
to Proposition 1 for T ∪ (A \Del(MS)) ∪ {← D} from MS . And then showing
that there is no Del′ ⊂ Del(MS) with T ∪ (A \Del′) �|= D. See [9] for details.

Example 5. Now we delete D(a) from the DL-clauses of our running example.
For this, we add the clause NegD(a)← to the result of the K∗ transformation
given in Example 4. For lack of space we only give the relevant part of a Neg(A)
minimal model for this set of clauses:

M = {ABoxB(a),ABoxD(a),ABoxC(b),ABoxR(b, b),ABoxR(a, a),

NegD(a),NegB(a), . . .}

This model gives us the minimal deletion: A′ = {C(b), R(b, b), R(a, a)}

Note that Theorem 1 can further be used for minimal deletion of a delete
request D which belongs to the deductive closure of the knowledge base but is
not contained in the ABox A. (Meaning D /∈ A but T ∪ A |= D). In this case
we only have to make sure, that σ(D) ∈ S. If σ(D) does not occur in A we have
to add D manually to S in order to render the instance deletion possible.

The K∗-transformation introduced in Definition 11 can be used to repair an
ABox, which is inconsistent w.r.t. its TBox. The basic idea is to replace each
occurrence of ⊥ in T by a new atom false and further add false to S. After
that, we use the K∗-transformation and construct the minimal instance deletion
of false from the ABox. The resulting ABox is a minimal ABox repair.

Lemma 1. Let K = (T ,A) be a knowledge base with consistent T , Tfalse the
TBox obtained from T by replacing every occurrence of ⊥ by false, Afalse be
A∪ {false} and Kfalse = (Tfalse ,Afalse). Let S be the set of atomic concepts and
roles occurring in A and T plus false. Then there is a Neg(A)-minimal model
for K∗

false ∪ {Negfalse ← �}.

Corollary 1. Let K = (T ,A), Tfalse and S be defined as in Lemma 1. Then
A \Del(M) is a minimal ABox repair for A for all Neg(A)-minimal models M
for K∗

false ∪ {Negfalse ← �}.

144 U. Furbach and C. Schon

Corollary 1 follows immediately from Theorem 1 with D = false . See [9] for both
proofs. Lemma 1 together with Corollary 1 implies, that such a minimal ABox
repair can always be constructed.

Next we consider a special case of deletion. For a given knowledge base K =
(T ,A), Theorem 1 can only be used to construct a minimal instance deletion of
D from A if K∗∪{Neg(D)← �} is satisfiable. However if K∗∪{Neg(D)← �} is
not satisfiable, there is no Neg(A)-minimal model for K∗ ∪ {Neg(D)← �} and
therefore we cannot use Theorem 1 for the construction of a minimal instance
deletion.

Example 6. Let T be a TBox containing the assertion � * C stating that
everything belongs to the concept C. This corresponds to the DL-clause C(x)←
�. Let us further consider the ABox: A = {C(a), B(a), C(b), B(b)} The K∗-
transformation leads to

K∗ = {C(x)← �,
⊥ ← NegC (x),

⊥ ← C(x) ∧ NegC (x),

ABoxC (a),

ABoxB(a),

ABoxC (b),

ABoxB(b)}

If we now want to delete C(a) from A, we have to construct Neg(A)-minimal
models for K∗∪{NegC (a)← �}. However K∗∪{NegC (a)← �} is unsatisfiable.
So we are not able to construct a minimal instance deletion of C(a) from A
using Theorem 1. Taking a closer look at the TBox reveals the problem: the
TBox claims, that everything has to belong to the concept C. So the only way
to remove C(a) from A is to remove individual a entirely from the ABox.

The next Theorem uses this idea and states how to construct minimal ABox
deletions in the case that K∗ ∪ {Neg(D)← �} is unsatisfiable. Please note that
the requirement of T ∪A being consistent in the next theorem is not a limitation
since we are always able to repair an ABox which is inconsistent with respect to
its TBox using Corollary 1.

Theorem 2. Let K = (T ,A) be a knowledge base with T ∪ A consistent. Let
further S be the set of atomic concepts and roles occurring in A and let D
be a delete request with Ind(D) the set of individuals occurring in D. If K∗ ∪
{Neg(D) ← �} is unsatisfiable, then A′ ⊆ A is a minimal instance deletion
of D from A, where A′ is obtained from A by removing all ABox assertions
containing an individual from Ind(D).

With the help of Theorem 1 and 2 we are now able to construct minimal
instance-level deletions independent from the satisfiability of K∗ ∪ {Neg(D) ←
�}.

Semantically Guided Evolution of SHI ABoxes 145

Next we address the insertion of an assertion into an existing ABox. This can
be obtained, by first adding the assertion to the ABox and afterwards construct-
ing all possible minimal repairs for the resulting ABox. If the added assertion
is not contained in any of these minimal ABox repairs, then it is not possible
to insert the assertion into the ABox without rendering the ABox inconsistent
w.r.t. its TBox. If there is a minimal repair containing the added assertion, then
the insertion is possible and the respective minimal ABox repair gives us the
result of the insertion.

Example 7. In the Example 3, we can repair A′. There are two minimal ABox
repairs for A′: A′′ = {C(a)} and A′′′ = {D(a)}. The first minimal repair cor-
responds to deleting the previously inserted D(a) and therefore is not desirable.
The second minimal repair however allows us to keep the inserted assertion.

6 Experimental Results

We developed a prototypical implementation for deletion of ABox assertions using
the K∗-transformation. We use the E-KRHyper theorem prover to construct the
Neg(A)-minimal models which lead us to the minimal deletions. Another theorem
prover able to handle DL-clauses is HermiT [17]. However HermiT is not able to
calculate Neg(A)-minimal models. This is why we chose the E-KRHyper theorem
prover for our implementation. All tests were carried out on a computer featuring
an AMD Phenom X6 1090T @ 3.2GHz and 8GB RAM. To the best of our know-
ledge, there is no system performing deletion of ABox assertions as described in
this paper. This is why we cannot compare our system to another system.

In Section 4 we briefly discussed the complexity of the entireK∗-transformation.
There is a linear blow up of the knowledge base and there is also polynomial time
complexity for performing the transformation. The real costs for performing the
deletion, insertion and repair are caused by the theorem prover which has to com-
pute the Neg(A)-minimal models. For an overview about this issue we refer to [8].
We use E-KRHyper for the construction of Neg(A)-minimal models. For this we
extended E-KRHyper by a feature to construct Γ -minimal models in a bottom-up
way. This extension renders it possible to give E-KRHyper a set of DL-clauses to-
gether with a set of predicate symbols P and an integer i. Then E-KRHyper only
constructs models containing at most i instances of P predicates. During reason-
ing, E-KRHyper discards all models with more than i instances of P predicates.
If E-KRHyper is not able to find a model with i or less instances of P predicates,
it terminates by stating that the maximal number of instances is reached. We use
this feature to construct Neg(A)-minimal models: for S the set of concepts and
roles occurring in the knowledge base, we first call E-KRHyper with K∗, the set
Neg(S) and i = 1. We successively increase i until E-KRHyper either gives us a
model or a proof for the unsatisfiability of the set of DL-clauses. This ensures that
the first model given by E-KRHyper is a Neg(A)-minimal model.

146 U. Furbach and C. Schon

3653 13653 23653 33653 43653 53653

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

number of ABox assertions

ru
n
ti
m
e
(s
ec
)

K∗-transformation (atomic)

K∗-transformation (non-atomic)

E-KRHyper without K∗

Fig. 1. Time used for atomic and non-atomic deletions

We use the ALHI ontology VICODI 2 for testing our approach. The smallest
version of this ontology consists of 223 axioms in the TBox and RBox and 53653
ABox assertions. The larger versions of this ontology are generated by duplicat-
ing the assertions of the original ABox several times and changing the names of
the individuals in the assertions. Unfortunately the repetitive structure of the
larger versions of the ontology, resulting from this construction, is not suitable to
test the efficiency of our approach. This is why we focus on the smallest version of
the VICODI ontology. We construct different versions with increasing numbers
of ABox assertions. The TBox and RBox remain unchanged. For each version
of the so created ontologies we used 1000 different ABox assertions as a delete
request D, calculated the K∗-transformation and used E-KRHyper to calculate
the minimal ABox deletion. In Figure 1 we show the results for the different
ABox sizes we considered. For most of the delete request considered, it was suffi-
cient to only remove the delete request itself from the ABox. We call those cases
atomic deletions. If more than one ABox assertion has to be deleted, we speak of
non-atomic deletions. Figure 1 gives information on the average time used for a
delete request leading to an atomic deletion as well as leading to a non-atomic de-
letion. Another way to determine atomic deletions is to use E-KRHyper without
the K∗-transformation. If we want to test, if D can be removed from the ABox
by deleting only D from the ontology KB, we can test KB \ {D} ∪ {¬D} for
satisfiability using E-KRHyper. Satisfiability of KB \ {D}∪ {¬D} implies, that
KB \ {D} �|= D. Meaning that D can be deleted atomically. Note that this test
can only be used for atomic deletions and is completely useless for the calculation
of non-atomic deletions. You can find the time used for those atomic deletions
computed by E-KRHyper without the K∗-Transformation in Figure 1. Compar-
ing the lines for E-KRHyper and atomic deletions using the K∗-transformation
shows, that the K∗-Transformation is faster in calculating atomic deletions.

2 http://www.vicodi.org

Semantically Guided Evolution of SHI ABoxes 147

In addition to that the K∗-Transformation is able to calculate non-atomic dele-
tions as well and is therefore better suited for deletion than E-KRHyper. Figure
1 reveals another nice property of the K∗-transformation: increasing the size of
the ABox only leads to a harmless increase of the time necessary to calculate the
minimal deletion. We owe this property to the fact, that we only calculate the
deviation from the original ABox. For the calculation of non-atomic deletions
more than one run of E-KRHyper is necessary. This explains why non-atomic
deletions take longer than atomic deletions. However the time necessary to calcu-
late a non-atomic deletion only increases moderately when the size of the ABox
under consideration is increased.

7 Conclusion and Future Work

In this paper we give a semantically guided compilation technique, the so called
K∗-transformation, for SHI knowledge bases. The transformed knowledge base
is equisatisfiable to the original one. A theorem prover can be used for the com-
putation of the necessary actions for deletion, insertion and repair from the result
of the K∗-transformation. Especially theorem provers based on a hypertableau
calculus are suited for these computations. The approach is implemented and
we introduced first experimental results using the theorem prover E-KRHyper.

In future work, we want to extend our implementation to enable it to do ABox
repair and insertion of assertions as well.

Since E-KRHyper is able to handle the DL SHIQ, we plan to extend our
approach to qualified number restrictions.

References

1. Aravindan, C., Baumgartner, P.: Theorem proving techniques for view deletion in
databases. Journal of Symbolic Computation 29, 2000 (2000)

2. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Com-
put. 20(1), 5–34 (2010)

3. Baumgartner, P., Fröhlich, P., Furbach, U., Nejdl, W.: Semantically Guided The-
orem Proving for Diagnosis Applications. In: Pollack, M.E. (ed.) IJCAI 1997,
Nagoya. Morgan Kaufmann (1997)

4. Bender, M., Pelzer, B., Schon, C.: System description: E-KRHyper 1.4 - Extensions
for unique names and description logic. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS, vol. 7898, pp. 126–134. Springer, Heidelberg (2013)

5. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Updating aboxes in
DL-Lite. In: Laender, A.H.F., Lakshmanan, L.V.S. (eds.) AMW. CEUR Workshop
Proceedings, vol. 619. CEUR-WS.org (2010)

6. Chu, H., Plaisted, D.A.: Semantically guided first-order theorem proving using
hyper-linking. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 192–206.
Springer, Heidelberg (1994)

7. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update
and erasure in description logic ontologies. J. Log. and Comput. 19 (2009)

148 U. Furbach and C. Schon

8. Dix, J., Furbach, U., Niemelä, I.: Nonmonotonic reasoning: Towards efficient cal-
culi and implementations. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of
Automated Reasoning, pp. 1241–1354. Elsevier, MIT Press (2001)

9. Furbach, U., Schon, C.: Semantically guided evolution of SHI aboxes. Reports of
the Faculty of Informatics 4/2013, Universität Koblenz-Landau (2013),
http://www.uni-koblenz.de/FB4/Publications/Reports

10. Grau, B.C., Ruiz, E.J., Kharlamov, E., Zhelenyakov, D.: Ontology evolution un-
der semantic constraints. In: Proc. of the 13th Int. Conference on Principles of
Knowledge Representation and Reasoning (2012)

11. Halashek-Wiener, C., Parsia, B., Sirin, E.: Description logic reasoning with syn-
tactic updates. In: Meersman, R., Tari, Z. (eds.) OTM 2006, Part I. LNCS,
vol. 4275, pp. 722–737. Springer, Heidelberg (2006)

12. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In:
Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirun-
arayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg
(2008)

13. Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies.
In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 124–137. Springer,
Heidelberg (2009)

14. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010)

15. Lenzerini, M., Savo, D.F.: On the evolution of the instance level of DL-Lite know-
ledge bases. In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Description
Logics. CEUR Workshop Proceedings, vol. 745. CEUR-WS.org (2011)

16. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Foundations of instance level updates in
expressive description logics. Artificial Intelligence 175(18), 2170–2197 (2011)

17. Motik, B., Shearer, R., Horrocks, I.: Optimized Reasoning in Description Logics
Using Hypertableaux. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603,
pp. 67–83. Springer, Heidelberg (2007)

18. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (1986)

19. Rosati, R.: On the complexity of dealing with inconsistency in description logic
ontologies. In: IJCAI 2011. AAAI Press (2011)

20. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) IJCAI. Morgan
Kaufmann (2003)

http://www.uni-koblenz.de/FB4/Publications/Reports

Psyche: A Proof-Search Engine Based on
Sequent Calculus with an LCF-Style Architecture

Stéphane Graham-Lengrand

CNRS - École Polytechnique, France

Abstract. Psyche is a modular proof-search engine designed for either
interactive or automated theorem proving, and aiming at two things: a
high level of confidence about the output of the theorem proving process
and the ability to apply and combine a wide range of techniques. It ad-
dresses the first aim by adopting and extending the LCF architecture to
guarantee, using private types, not only the correctness but also the com-
pleteness of proof search. It addresses the second by offering a much more
appropriate API than just the primitives corresponding to the inference
rules of the logic in natural deduction: it uses instead a focused sequent
calculus for polarised classical logic. Finally, Psyche features the ability
to call decision procedures such as those used in Sat-Modulo-Theories
solvers. We therefore illustrate Psyche by using it for SMT-solving.

1 Psyche in Brief

Psyche [11], the Proof-Search factorY for Collaborative HEurisics, is a modu-
lar platform for automated or interactive theorem proving, built on an architec-
ture (similar to LCF) where a small kernel interacts with plugins and decision
procedures:

– The kernel is based on a proof-search engine à la Prolog, offering an API
to perform incremental and goal-directed constructions of proof-trees in (a
standard but carefully chosen) Sequent Calculus.

– Psyche can produce proof objects (and print them in LATEX format).
– Plugins can be programmed to drive the kernel, using its API, through the

search space towards an answer provable or not provable; soundness of the
answer only relies on the kernel via the use of a private type for answers
(similar to LCF’s theorem type).

– Plugins can be interactive.
– Psyche offers a memoisation feature to help program efficient plugins.
– The kernel is parameterised by a procedure deciding the consistency of collec-

tions of literals with respect to a background theory, just as in SAT-modulo-
theories (SMT) solvers.

The current version 1.5 of Psyche features a kernel designed for propositional
logic modulo theories (same logic as that of DPLL(T) used in SMT-solving),
and decision procedures for the empty theory and Linear Rational Arithmetic
(LRA). It is a program of about 4200 lines of OCaml 4.00, using hash-consing
in most data structures for efficiency.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 149–156, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

150 S. Graham-Lengrand

2 Motivation

Psyche’s architecture is designed for the ambition of allowing various theorem
proving techniques (generic or problem-specific) to collaborate on a common
platform, whilst giving high confidence in the answers produced.

Interfacing the numerous techniques and tools available for theorem prov-
ing is legitimately receiving a lot of attention: Automated Theorem Provers,
SAT/SMT-solvers, Proof assistants, etc. While trust is already an issue even for
a tool running on its own, it becomes even more of an issue when different tools
interact. Proof-checking is one way of addressing this, being permissive in the
algorithms used for theorem proving, as long as they output some proof objects
that can be checked. Another way is the LCF-style [7], where only a small ker-
nel of primitives needs to be trusted, and anything smarter (e.g. the interaction
between sophisticated techniques) boils down to calls to the primitives.

In the context of proof-checking, a natural way to interact with different
(already implemented) techniques, is the black box approach, where an external
tool is called and its output is converted back into a proof that can be checked
by the system [2,3]. It is somewhat more surprising that, despite the highly
programmable possibilities of the LCF architecture, the most successful integ-
ration of automated reasoning techniques in an LCF-based proof assistant such
as Isabelle [8] seems to also use variants of the black box approach (as very
impressively demonstrated by Sledgehammer) [12,10].

Psyche aims at producing answers that are correct by construction, not hav-
ing to rely on proof-checking; it therefore adopts the LCF philosophy (although
it can produce proof objects), also because having a simple trusted kernel is a
convenient starting point for different techniques to collaborate. But the goal
here is to open the black boxes and program their algorithms directly with calls
to the kernel’s API, as plugins for Psyche.

Such a deeper level of integration opens up the perspective of interleaving the
use of different techniques: An external tool requires an input problem that it can
entirely treat; but implementing the steps of its algorithm as small progressions
in the search-space covered by the main system, allows more possibilities, such
as running the technique up-to-a-point, where a switch to another technique may
be appropriate (e.g. depending on newly generated goals).

The challenge is for the kernel to offer an appropriate API of proof-search or
proof-construction primitives, to allow the efficient implementation of theorem
proving techniques as plugins. Most LCF-style systems offer primitives corres-
ponding to the inference rules of Natural deduction, or a Hilbert-style system.
This is a very fine-grained level, that leaves most (if not all) of the work to the
plugin and makes its implementation cumbersome: these formalisms are more
about proof-construction than proof-search.

Psyche makes the choice of a bigger grain, and leaves to the kernel some real
proof-search computation, but where no decision needs to be made. For this we
use a focused sequent calculus LKp(T) [4,5], which extends the logic programming
paradigm to polarised classical logic modulo a background theory T . Polarities
and Focusing [6,1] are tools that can be used to describe effective proof-search

Psyche: A Proof-Search Engine Based on Sequent Calculus 151

strategies in Sequent Calculus, hugely narrowing the search-space offered by
Gentzen’s original rules. In our case, they also specify a sensible division of
labour between Psyche’s kernel and Psyche’s plugins, redesigning the standard
LCF-style API.

3 Overview and General Architecture

The kernel contains the mechanisms for exploring the proof-search space in a
sound and complete way, taking into account branching and backtracking. It
has no strategy regarding the order in which branches are explored, and this
lack of intelligence makes its code rather short. If it reaches a proof, then that
proof is correct by construction, and if the entire search space is explored and
no proof is found, then the kernel correctly outputs that no proof exists.

The plugins then drive the kernel by specifying in which order the branches of
the search space should be explored and to which depth, something that is ex-
pected to depend on the kind of problem that is being treated. The quality of the
plugin is how fast it drives the kernel towards a answer Provable/NotProvable.

This already departs from the traditional LCF-style in that some actual proof-
search computation is performed in the kernel, not just atomic steps of proof-
construction:

prem1 . . . premn
name

conc

In traditional LCF, each inference rule of the
logic (as on the right-hand side) will give rise to
a primitive of the kernel’s API:

name: thm -> · · · -> thm -> thm

In Psyche’s kernel, such an inference rule will be wrapped in the kernel’s
unique API primitive:

machine: statement -> output
such that machine(conc) will trigger the recursive calls machine(prem_1),. . . ,
machine(prem_n).

Psyche’s general architecture is illustrated by its main top-level call (slightly
reworded for clarity):

Plugin.solve(Kernel.machine(Parser.parse input))

Psyche has a collection of parsers (currently one for DIMACS and one for SMT-
Lib2) and calls the appropriate one on Psyche’s input. The resulting abstract
syntax tree is fed to the kernel’s machine function that will initiate the search.
This produces a value of type output that is given to the plugin to work with,
so as to finally produce an answer provable or not provable. This could give the
impression that the plugin performs computation after the kernel has finished
its work, but this is not quite true, as illustrated by the nature of type output:

type output = Final of answer | Fake of coin -> output

which describes the kernel as a slot machine: when it is run, it outputs

152 S. Graham-Lengrand

– either a final answer provable or not provable
– or a fake output that represents unfinished computation: in order for com-

putation to continue, the plugin needs to “insert another coin in the slot
machine”; proof-search will then resume according to the inserted coin.

To summarise, the kernel performs proof-search as long as there is no decision
to be made (on which backtrack may later be needed), and when it hits such
a point, it stops and asks for another coin to indicate how to proceed next.
The plugin drives the kernel in the exploration of the proof-search space by
inserting carefully chosen coins, hoping that one day the machine will stop with
the jackpot: a value of the form Final(...).

Now while this architecture somewhat departs from LCF, it does share with it
the distrust of anything outside the kernel: when concerned with the soundness
of the answer (whichever it be), the plugin is here considered as an adversary,
so Psyche defines the type answer as abstract, i.e. a private type that only the
kernel can inhabit (just like the thm type of LCF). Psyche’s type

answer = Provable of statement*proof | NotProvable of statement

can be read by the plugin and the top-level if need be, but cannot be inhabited by
them. That way, a plugin cannot cheat about Psyche’s answer: the worst it can
do is to crash Psyche’s runs. In Psyche as in traditional LCF, inhabitation of
the abstract type (in case of Psyche, with a value of the form Provable(...))
explicitly or implicitly constructs a proof of the statement. But contrary to LCF,
Psyche also gives guarantees when the output is not provable: it can only occur
when the kernel has entirely explored the search-space unsuccessfully.

4 Psyche’s Kernel

As described above, the kernel’s API has the slot machine as its only primitive,
controlled by the coins that are inserted in it. In order for efficient plugins to
be conveniently programmed, the kernel’s primitive needs to accept a rather
expressive range of coins that can specify a smart exploration of the search-
space. This depends on the inference system that is used in the kernel for the
incremental and bottom-up construction of proof-trees, and on identifying the
inference rules that the kernel will perform automatically from those that will
pause computation and prompt the plugin for new directions.

For this, our sequent calculus LKp(T) [4,5] describing classical logic modulo a
theory T uses polarities and focusing (see e.g. [1]). The connectives and literals
of classical logic are tagged with polarities: + and −. Polarities do not affect the
(classical) provability of formulae, but only the shape of proofs and therefore
the structure of the proof-search space. Focusing is the phenomenon whereby
the inference rules decomposing the connectives of the same polarity can be
chained without losing completeness (thus narrowing the search-space), see [5]
for a full description. But in brief, focusing organises the proof-search process as
an alternance between two kinds of phases: synchronous and asynchronous.

Psyche: A Proof-Search Engine Based on Sequent Calculus 153

– An asynchronous phase decomposes the formulae of the sequent whose main
connective is negative, using invertible inference rules (the premises are prov-
able if the conclusion is): these represent no backtrack point in proof-search.

– A synchronous phase starts with the selection of a positive formula: the
formula and its sub-formulae are then decomposed recursively (before doing
anything else in the sequent) as long as these remain positive. When these
become negative, another asynchronous phase starts.

We use focusing to divide the labour between Psyche’s kernel and plugins:
The kernel applies the asynchronous steps automatically without any instruction
from the plugin, and then stops and asks for another coin describing the next
synchronous phase, where smart choices may have to be made (starting with the
selection of the positive formula to work on). An important consequence of this
division of labour is that every kernel call terminates, because the length of
each phase is bounded by the size of the formula(e) being decomposed.

The choice of polarities on connectives and literals affects the kernel-plugin in-
teraction. For instance the polarity of ∨ will determine whether it is decomposed

Γ � Ai

Γ � A1∨+A2

Γ � A1, A2, Γ
′

Γ � A1∨−A2, Γ
′

automatically by the kernel (second rule,
asynchronous) or with a smart choice by
the plugin (first rule, synchronous):

The code of the kernel is rather small (575 lines) and purely functional.
Continuation-Passing-Style (CPS) is used to minimise the use of the stack and
provide a natural way to represent the progression of the kernel within the search
space: the API function machine: statement->output
actually wraps the real (tail-)recursive function

search: statement->(output->’a)->’a

with the identity continuation. Continuations are heavily used for branching and
backtracking (e.g. when search applies a rule with several premises, it makes
a recursive call on one of the branches and stacks up the others in the passed
continuation; similarly when the plugin chooses to explore one branch, the kernel
records the other ones -forcing in the end the entire exploration of the search-
space), and naturally implement a slot machine waiting for its coin.

5 Plugins

A plugin is an OCaml module of a fixed module type declaring a function
solve: output->answer (again, answer is for the plugin an abstract type).

However, it is likey that the sophisticated strategies/heuristics that the plugin
is meant to implement rely on some clever choice of data-structures for formulae,
sets of formulae, sets of literals. So the plugin and the kernel have to agree
on those three data-structures that are communicated both ways during the
interaction. In Psyche 1.5, the kernel is parameterised by the data-structures,
and the plugin provides them.

154 S. Graham-Lengrand

We first tested Psyche’s architecture with a basic plugin Naive, which imple-
ments collections as lists and inserts the first available coin in the slot machine,
whenever asked. This works fine for small tautologies, printable on a screen.

But the first real aim was to capture in Psyche some propositional SAT and
SAT-Modulo-Theories solving techniques, making DPLL(T) technology avail-
able in a generic proof-search framework like Psyche. For this we describe in [5]
how to see DPLL(T), canonically expressed as a transition system [9], as a simple
bottom-up proof-construction mechanism in LKp(T). More practically, every rule
of DPLL(T) can be seen as the insertion of a particular coin in Psyche’s slot
machine. We implemented this as two different plugins for Psyche: DPLL_Pat
and DPLL_WL. These remain toy plugins, because, although it is now clear from [5]
how to perform each rule of DPLL(T) in Psyche, we still have to decide which
rule to apply. This is where the two plugins differ: DPLL_Pat looks up the applic-
ability of DPLL(T)’s rules by using Patricia tries to implement sets of clauses,
while DPLL_WL looks it up using the technique of watched literals.

Just like DPLL(T)-based solvers are made efficient by using features such
as backjumping and lemma learning, our plugins are made more efficient by the
use of memoisation, which avoids re-doing, for some open branch, the same steps
as those used in a previously completed branch. Psyche 1.5 therefore offers a
memoisation module, to be used by plugins to record values of (the abstract)
type answer. And the kernel’s slot machine accepts from the plugin, as a special
coin carrying such a value, “here is an already found answer that also applies to
the current goal”. The kernel accepts the value as closing the current branch (one
way or another) without any proof-checking (since the abstract type ensures
the value came as an earlier output of the kernel); it only checks that the value
applies to the current goal. Now for a memoised answer Provable to be reusable
as often as possible, it is useful to prune the provable sequent, just before it is
tabled, from the formulae and literals that were not used in its proof. This is easy
to do for the complete proofs of LKp(T) (eager weakening are applied a posteriori
by inspection of the inductive structure). Psyche’s kernel actually performs the
pruning on-the-fly whenever an inference is added to complete proofs, so that,
whenever it outputs Final(sequent,proof), the sequent is already pruned. This
is Psyche’s way of performing conflict analysis, a key process of SMT-solving.

6 Conclusion and Perspectives

Psyche is run from the command-line, taking as input the indicated file(s)
or directory(ies) (or the standard input): psyche [OPTION]... [FILE/DIR]...
Version 1.5 is distributed with a DIMACS parser, which we used to test Psyche
on (propositional) SAT benchmarks, and an SMTLib2 parser (unmodified from
the Alt-Ergo prover), which we used to test it on QF_LRA benchmarks (making
use of the distributed simplex algorithm for LRA). The results are available on
Psyche’s website [11]. Since Psyche has no ambition to beat state-of-the-art
SAT- and SMT-solvers, it works well on small instances but its performance
starts declining between 20Kb and 100Kb of input problem size (of course this

Psyche: A Proof-Search Engine Based on Sequent Calculus 155

is no appropriate measure of difficulty): There is no intrinsic problem of scalab-
ility, but the current plugins and decision procedures are illustrative toys (the
heuristics for applying DPLL(T) rules in the current plugins are still basic, and so
is the decision procedure for LRA -e.g. it is not incremental). What we offer here
is a platform and its modularity: anyone with better (or different) heuristics or
decision procedures can simply write them as OCaml modules of our predefined
module types, and Psyche will seamlessly run with them, keeping the same
LCF-style guarantees. Moreover, nothing in Psyche’s proof-engine relies on the
input being sets of clauses, so Psyche might offer a convenient framework to
generalise the known techniques for the satisfiability of formulae in clausal form.

The short-to-medium term plans are as follows:

– kernel: handle existential variables and propagate first-order unifiers through
branching, construct and store proof-terms rather than whole proofs;

– theories: improve the procedure for LRA (e.g. making it incremental) and
implement other theories (Congruence Closure, LIA, bit vectors, etc);

– plugins: implement a user-interactive plugin asking which coins to insert,
improve the DPLL(T) plugins to better handle non-clausal formulae, and
implement other theorem proving techniques as plugins: analytic tableaux,
clausal tableaux (e.g. connections) and resolution are all done in the theory.

In the long-term, we plan to investigate whether LKp(T) may help mixing
first-order reasoning with theories (i.e. investigate instantiations in presence of a
theory), and prove Psyche’s correctness in a proof assistant (since the functional
kernel seems small enough and the plugins need not be certified).

Acknowledgements. Contributors of Psyche include S. Graham-Lengrand, A.
Mahboubi, A. Bernadet, M. Farooque, Damien Rouhling and M. Vegreville.

References

1. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992)

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud,
J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011)

3. Besson, F., Cornilleau, P.-E., Pichardie, D.: Modular SMT proofs for fast reflex-
ive checking inside Coq. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS,
vol. 7086, pp. 151–166. Springer, Heidelberg (2011)

4. Farooque, M., Graham-Lengrand, S.: Sequent calculi with procedure calls. Tech-
nical report, Laboratoire d’Informatique de l’Ecole Polytechnique (January 2013),
http://hal.archives-ouvertes.fr/hal-00779199

5. Farooque, M., Graham-Lengrand, S., Mahboubi, A.: A bisimulation between
DPLL(T) and a proof-search strategy for the focused sequent calculus. In: Momigli-
ano, A., Pientka, B., Pollack, R. (eds.) Proceedings of the 2013 International Work-
shop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP
2013), Boston, USA. ACM Press (September 2013)

http://hal.archives-ouvertes.fr/hal-00779199

156 S. Graham-Lengrand

6. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–101 (1987)
7. Gordon, M.J., Milner, R.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78.

Springer, Heidelberg (1979)
8. The Isabelle theorem prover, http://isabelle.in.tum.de/
9. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:

From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
of the ACM Press 53(6), 937–977 (2006)

10. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Schulz, S., Ternovska, E. (eds.) IWIL 2010. EPiC Series, vol. 2, pp. 1–11. EasyChair
(2012)

11. Psyche: the Proof-Search factorY for Collaborative HEuristics,
http://www.lix.polytechnique.fr/˜lengrand/Psyche/

12. Weber, T.: SMT solvers: New oracles for the HOL theorem prover. International
Journal on Software Tools for Technology Transfer (STTT) 13(5), 419–429 (2011)

http://isabelle.in.tum.de/
http://www.lix.polytechnique.fr/~lengrand/Psyche/

Understanding Resolution Proofs

through Herbrand’s TheoremÆ

Stefan Hetzl1, Tomer Libal2, Martin Riener3, and Mikheil Rukhaia4

1 Institute of Discrete Mathematics and Geometry, Vienna University of Technology
2 Microsoft Research - Inria Joint Center / École Polytechnique

3 Institute of Computer Languages, Vienna University of Technology
4 Inria Saclay / École Polytechnique

Abstract. Computer-generated proofs are usually difficult to grasp for
a human reader. In this paper we present an approach to understanding
resolution proofs through Herbrand’s theorem and the implementation
of a tool based on that approach.

The information we take as primitive is which instances have been
chosen for which quantifiers, in other words: an expansion tree. After
computing an expansion tree from a resolution refutation, the user is
presented this information in a graphical user interface that allows flex-
ible folding and unfolding of parts of the proof.

This interface provides a convenient way to focus on the relevant parts
of a computer-generated proof. In this paper, we describe the proof-
theoretic transformations, the implementation and demonstrate its use-
fulness on several examples.

1 Introduction

Computer-generated proofs are often difficult to understand for a human reader.
This is usually due to a combination of several factors such as the use of de-
duction formats more suited for proof search than for proof presentation, over-
whelming detail in formal proofs, insufficient user interfaces or also extreme proof
length. One of the key problems for understanding formal proofs is to distinguish
relevant information from irrelevant information.

In systems with quantifiers, such as classical first-order logic, the most im-
portant information is typically which instances have been chosen for which
quantifiers. On a purely logical level this insight is embodied by Herbrand’s the-
orem [1,2] which characterizes first-order validity in terms of quantifier instances
and propositional validity. In this paper we present an approach to understand-
ing computer-generated proofs through the lens of Herbrand’s theorem which
takes the information about which instances have been chosen for which quan-
tifiers in a proof as fundamental and thus abstracts from the propositional part
of the proof.

Æ Supported by the joint ANR/FWF-project STRUCTURAL, the joint ANR/FWF-
project ASAP, the FWF-project ASCOP, the WWTF-project VRG12-04 and the
Vienna PhD school in Informatics.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 157–171, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

158 S. Hetzl et al.

A data structure which is well-suited for representing this information are ex-
pansion trees, introduced by Miller in [3]. A first step in distinguishing relevant
from irrelevant information is made by displaying an expansion tree instead of
a proof in, e.g., a resolution or a tableau calculus. This removes the proposi-
tional layer from a proof. However, not all quantifiers are equally important for
understanding a proof, for example often we want to consider a proof modulo a
simple theory and are hence not interested in the instances of the axioms of that
theory. As such distinctions between important and unimportant information
depend on the context and are difficult to automate, we let the user decide what
information he wants to see in a graphical user interface by allowing a flexible
folding and unfolding of expansion trees by point-and-click interactions.

We have implemented our tool in the GAPT-system1 which is a framework for
data structures, algorithms and user interfaces for analyzing and transforming
formal proofs. It contains data structures for example formulas, sequents, res-
olution proofs, sequent proofs and algorithms, e.g., unification, skolemization,
cut-elimination, cut-elimination by resolution [4].

The use of Herbrand’s theorem for understanding proofs is a well-established
technique. It plays the key role in Luckhardt’s (manual) analysis [5] of Roth’s the-
orem where it has been used to obtain polynomial bounds (which were obtained
independently and by purely mathematical as opposed to logical methods by
Bombieri and van der Poorten in [6]). The extraction and analysis of Herbrand-
sequents as described by Hetzl et al. [7] has also been used in the computer-
assisted analysis of Fürstenberg’s topological proof of the infinity of primes by
Baaz et al. [8] which yielded Euclid’s original argument via cut-elimination. Her-
brand’s theorem and methods based on it have furthermore also been used in a
number of smaller case studies such as [9] by Baaz et al. or [10] by Urban. In
the context of the GAPT-system, Herbrand’s theorem also plays a central role
for the development of techniques for lemma generation, see Hetzl et al. [11,12],
and the tool described in this paper is routinely used there.

The general problem of human-readable presentations of computer-generated
proofs is well known and a number of other approaches exist in the literature.
Horacek [13] presents an approach to transforming computer-generated proofs to
a structure that more closely resembles mathematical proofs in natural language.
The TRAMP-system by Meier [14] transforms resolution proofs into natural
deduction proofs at the assertion level. The interactive derivation viewer IDV by
Trac et al. [15] displays a derivation in the TPTP-format as a directed acyclic
graph. In [16], Denzinger and Schulz show how to obtain human-readable proof
presentations in the context of distributed equational reasoning.

Closest to our approach is the work of Pfenning [17,18], an algorithm for
extracting an expansion tree from a resolution refutation by doing grounding,
deskolemization and the change of deduction format from refutation to proof in
one pass. The contribution of this paper is twofold: we describe a more modular
algorithm that first changes the proof format from a resolution refutation to
a positive proof in the sequent calculus and only in a second step extracts an

1 Generic Architecture for Proof Transformations, http://www.logic.at/gapt

http://www.logic.at/gapt

Understanding Resolution Proofs through Herbrand’s Theorem 159

expansion tree from the sequent calculus proof thus generated. Aside from higher
modularity and less implementation effort in the context of the GAPT-system,
this procedure has the practical advantage of allowing a translation to a dag-
like sequent calculus proof in case grounding of the resolution refutation is too
expensive. Secondly we describe the theory and implementation of a convenient
graphical user interface for displaying expansion trees which is available on the
web.

2 Expansion Trees

The language of first-order logic we consider consists of variables and n-ary
function- and predicate- symbols. As usual, terms are built from variables and
function symbols in an inductive fashion. 0-ary function symbols are called con-
stants. Formulas are built from predicates and the connectives �,�,�,�,�, �.
A substitution is a function mapping variables to terms and its application is
extended to terms and formulas in the usual way.

Let A be a formula, an occurrence of a subformula B in A is called negative if
it is in the scope of an odd number of occurrences of � and it is called positive
otherwise. A quantifier occurrence in a formula A is called strong if it is a positive
universal or a negative existential and weak otherwise. So in other words: the
strong quantifiers are exactly those that a transformation to negation normal
form would turn into universal quantifiers.

Expansion trees were introduced by Miller in [19,3]. These structures record
the substitutions for quantifiers in the original formula and the formulas resulting
from instantiations. Informally, an expression QxA�x	
t1 E1

t2 � � �
tn En is an
expansion tree, where Q �
�, �� and t1, . . . , tn are terms such that Ei is again
an expansion tree representing A�ti	 for all i � 1, . . . , n.

We deviate from [3] in that we define expansion trees for blocks of quantifiers
as this is more natural for display purposes. A vector �x1, . . . , xk	 of variables is
often abbreviated as �x. Also in contrast to [3] we only consider expansion trees
of formulas that do not contain strong quantifiers. In our context of automated
deduction, strong quantifiers are removed by Skolemization. As Skolem functions
often possess a natural mathematical interpretation (see e.g. [8]), we opt for
displaying expansion trees that still include the Skolem functions in order to
increase their readability.

Definition 1 (Expansion tree). Expansion trees and a function Sh (for shal-
low) which maps an expansion tree to a formula are defined inductively as
follows:

– A is an atomic expansion tree for A being an atom and Sh�A	 � A.
– If E1, E2 are expansion trees, then so are �E1, E1�E2, E1�E2 and E1 � E2

with Sh��E1	 � �Sh�E1	, Sh�E1 �E2	 � Sh�E1	 � Sh�E2	, etc.
– Let A��x	 be a formula and �t1, . . . , �tn (n � 1) be a list of (vectors of) terms.

Let E1, . . . , En be expansion trees with Sh�Ei	 � A��ti	 for 1 � i � n and
let Q �
�, ��, then Q�xA��x	
 �t1 E1

�t2 � � �
�tn En is an expansion tree with
Sh�Q�xA��x	
 �t1 E1

�t2 � � �
�tn En	 � Q�xA��x	.

160 S. Hetzl et al.

We now define another function Dp (for deep) which maps an expansion tree
to a quantifier-free formula: its full expansion.

Definition 2. Dp maps an expansion tree to a formula as follows:

Dp�E	 � E for an atomic expansion tree E,

Dp��E	 � �Dp�E	,

Dp�E1 �E2	 � Dp�E1	 �Dp�E2	 for � �
�,�,��,

Dp���xA

�t1 E1

�t2 � � �

�tn En	 � Dp�E1	 � � � � �Dp�En	,

Dp���xA

�t1 E1

�t2 � � �

�tn En	 � Dp�E1	 � � � � �Dp�En	.

In [3], a notion of expansion proof was defined from expansion trees using two
conditions: acyclicity and tautology. The acyclicity condition ensures that there
are no cycles between the strong quantifier nodes in the expansion tree. Since
we deal with formulas that do not contain strong quantifiers, there is no need
for this condition.

Definition 3 (Expansion proofs). An expansion tree E is called an expansion
proof of a formula A without strong quantifiers if Sh�E	 � A and Dp�E	 is a
tautology.

The meaning of expansion proofs is that they encode a proof of validity of the
formula they represent. Expansion proofs can be directly translated into sequent
calculus or natural deduction proofs, see e.g. [3].

Theorem 1 (Soundness & Completeness). A formula without strong quan-
tifiers has an expansion proof iff it is valid.

Proof. In [3]. ��

3 Display Expansion Trees

In this section we formally define the data structure of display expansion tree, a
structure that builds on expansion trees by allowing a flexible degree of unfolding.
While an expansion tree E induces only the two formulas Sh�E	 and Dp�E	, the
display expansion trees based on E turn span the whole spectrum between Sh�E	
and Dp�E	. In our tool, the user will then be able to navigate this spectrum
through a comfortable point-and-click interface.

Each quantifier node in a display expansion tree will have one of three states:
open, closed and expanded.

Definition 4 (Display expansion tree). Display expansion trees are defined
as follows:

– A is an atomic display expansion tree for an atom A.
– If E1, E2 are display expansion trees, then so are �E1, E1 � E2, E1 � E2

and E1 � E2.

Understanding Resolution Proofs through Herbrand’s Theorem 161

– Let A��x	 be a formula and �t1, . . . , �tn (n � 1) be a list of (vectors of) terms.
Let E1, . . . , En be display expansion trees with Sh�Ei	 � A��ti	 for 1 � i � n
and let Q �
�, ��, then:
1. Qc�xA��x	
 �t1 E1

�t2 � � �
�tn En is a display expansion tree (this block of
quantifiers is called closed).

2. Qo�xA��x	
 �t1 E1

�t2 � � �
�tn En is a display expansion tree (this block of

quantifiers is called open).
3. Qe�xA��x	
 �t1 E1

�t2 � � �
�tn En is a display expansion tree (this block of
quantifiers is called expanded).

Under the global side condition: If Q�x is open or expanded, then all quanti-
fiers between Q�x and the root must be expanded.

The differences in the status of these quantifier blocks will be apparent once
we explain how to show a display expansion tree to a user. To that aim we first
define the notion of display formula.

Definition 5 (display formula). Display formulas are defined inductively as
follows:

– If A is an atom, then A is a display formula.
– If A,B are display formulas, then so are �A, A�B, A�B and A� B.
– If A��x	 is a display formula, then Q�xA��x	 and Q�x��t1; . . . ; �tn�A��x	 are dis-

play formulas for Q �
�, ��, where �ti are vectors of terms (which represent
substitution instances for �x).

– If A1, . . . , An are display formulas, then
�
�A1, . . . , An� and

�
�A1, . . . , An�

are display formulas for the n-ary connectives
�

and
�
.

Given a display expansion tree E what we show to a user is the display formula
Dy�E	 defined as follows.

Definition 6. Dy maps a display expansion tree to a display formula:

Dy�E	 � E for atomic E,

Dy��E	 � �Dy�E	,

Dy�E1 �E2	 � Dy�E1	 �Dy�E2	 for � �
�,�,��,

Dy�Qc�xA��x	
 �t1 E1

�t2 � � �

�tn En	 � Q�xA��x	 for Q �
�, ��,

Dy�Qo�xA��x	
 �t1 E1

�t2 � � �

�tn En	 � Q�x�t1; . . . ; tn�A��x	,
Dy��e�xA��x	
t1 E1

�t2 � � �
tn En	 �
�

�Dy�E1	, . . . ,Dy�En	�,

Dy��e�xA��x	
t1 E1

�t2 � � �
tn En	 �

�
�Dy�E1	, . . . ,Dy�En	�

The user can hence control the formula that he sees by changing the status
of quantifier nodes of a display expansion tree. A display expansion tree in a
particular state of partial unfolding lies hence between the shallow formula and
the deep formula of the underlying expansion tree. This observation can be made
precise as follows:

162 S. Hetzl et al.

Definition 7. Fm maps display formulas to formulas:

Fm�A	 � A for a formula A,

Fm�Q�xA��x		 � Q�xA��x	 for Q �
�, ��,

Fm�Q�x�t1; . . . ; tn�A��x		 � Q�xA��x	 for Q �
�, ��,

Fm�
�

�A1, . . . , An�	 � A1 � � � � �An,

Fm�
�

�A1, . . . , An�	 � A1 � � � � �An.

Proposition 1. Let E be a display expansion tree. If all quantifiers in E are
closed, then Fm�Dy�E		 � Sh�E	. If all quantifiers in E are expanded, then
Fm�Dy�E		 � Dp�E	.

Proof. By induction on the structure of E. ��

4 Transforming Resolution Proofs to Expansion Trees

In this section we give an algorithm for constructing expansion proofs from
resolution refutations. We proceed by first transforming a resolution refutation
of the negation of a formula F into a proof of F in the sequent calculus [20].
The second step is to transform the sequent calculus proof into an expansion
tree proof. While the second part is done in a similar way to other sources [3],
the first part, to the best of knowledge of the authors, was not described earlier
in this form.

The proofs we expect as input to our algorithm are resolution refutations of
sets of clauses. A clause is a disjunction of literals, a literal is an atom or the
negation of an atom. We will sometimes write a clause in the formatA1, . . . , An �
B1, . . . , Bm for Bi being the positive and Aj the negative literals. This notation
facilitates the connection to the sequent calculus. We will denote clauses by
uppercase Greek letters and formulas by uppercase Latin letters. Substitutions
and most general unifiers are defined as usual and will be denoted by lowercase
Greek letters. Terms are denoted by lowercase Latin letters. We will also write
s�t� in order to emphasize that t is a subterm of s.

The version of the resolution calculus presented in Fig. 1 forms, if one drops
the (Instance) rule, the minimal version required in order to obtain complete-
ness for first-order logic with equality. This makes our algorithm applicable,
via elementary translations, to the proofs obtained by most resolution theorem
provers in the market. The redundant (Instance) rule allows us to take ad-
vantage of simpler proof formats generated by some theorem provers, such as
Prover9. Let C be a set of clauses, a tree over the rules in Fig. 1 with leaves
from C is a refutation of C if:

– the root of the tree is the empty clause �.
– when we apply a binary rule on clauses Γ and Δ, their sets of free variables

must be disjoint.

Understanding Resolution Proofs through Herbrand’s Theorem 163

A� Γ �B �Δ

Γσ �Δσ
(Resolve)

1 A�B � Γ

Aσ � Γσ
(Factor)

1

t � s� Γ A�r� �Δ

A�s�σ � Γσ �Δσ
(Paramod)

2 Γ

Γσ
(Variant)

3

Γ

Γσ
(Instance)

x � x
(Reflexivity)

1. σ is a most general unifier of A and B.
2. σ is a most general unifier of t and r.
3. σ is a variable renaming.

Fig. 1. The resolution calculus

4.1 Transforming Resolution Proofs to Sequent Proofs

The calculus we will use is presented in Fig. 2. It extends the classical sequent
calculus [20] with additional equality rules. The rules for the connectives �,� and
� are analogous to the ones presented. We will denote multisets of formulas by
uppercase Latin letters. sequents are pairs of multisets of formulas denoted by
Γ � Δ. The formulas in the upper sequents that do not occur in the lower
sequent are called auxiliary formulas of the rule, those in the lower sequent are
called the principal formulas.

In order to be able to relate refutations with proofs, we require the following
auxiliary definitions.

A � A
(Ax)

A,Γ � Δ

Γ � Δ,�A
(� : r)

Γ � Δ,A

�A,Γ � Δ
(� : l)

Γ � Δ,A Λ � Π,B

Γ,Λ � Δ,Π,A�B
(� : r)

A,Γ � Δ

A�B,Γ � Δ
(� : l1)

B,Γ � Δ

A�B,Γ � Δ
(� : l2)

Γ � Δ,A�x�

Γ � Δ, �y.A�y�
(� : r)1

A�t�, Γ � Δ

�y.A�y�, Γ � Δ
(� : l)2

Γ � Δ,A,A

Γ � Δ,A
(Contr : r)

A,A, Γ � Δ

A,Γ � Δ
(Contr : l)

Γ � Δ

Γ � Δ,A
(Weak : r)

Γ � Δ

A,Γ � Δ
(Weak : l)

Γ � Δ,A A,Λ � Π

Γ,Λ � Δ,Π
(Cut)

� t � t
(Reflexivity)

Γ � Δ, t � s Λ � Π,A�s�

Γ, Λ � Δ,Π,A�t�
(Eq : r)

Γ � Δ, t � s A�s�, Λ � Π

A�t�, Γ, Λ � Δ,Π
(Eq : l)

1. x does not occur free in Γ,Δ or in �y.A�y�.
2. t does not contain variables bound in A.

Fig. 2. The sequent calculus

164 S. Hetzl et al.

Definition 8. Given two sequents s1 and s2 of the forms Γ � Δ and Π � Λ,
their product s1� s2 is Γ,Π � Δ,Λ. Given two sets of sequents S1 and S2, their
product S1 � S2 is the set containing all possible products between sequents of
each set.

Definition 9 (Clause normal forms). Let A,A1, A2 denote formulas without
weak quantifiers and B,B1, B2 denote formulas without strong quantifiers and
let P denote atoms. Define the mappings CNF��A	 and CNF��B	 by the following
mutual induction:

CNF��P 	 �
� P � CNF��A1 �A2	 � CNF��A1	 � CNF��A2	
CNF��P 	 �
P �� CNF��A1 �A2	 � CNF��A1	 � CNF��A2	
CNF���B	 � CNF��B	 CNF��B1 �B2	 � CNF��B1	 � CNF��B2	
CNF���A	 � CNF��A	 CNF��B1 �B2	 � CNF��B1	 � CNF��B2	
CNF���x.A	 � CNF��A	 CNF���x.B	 � CNF��B	

The case of � is defined by combining the cases of � and �.

The point of the above two transformation is that CNF��A	 is logically equiv-
alent to A while CNF��B	 is logically equivalent to �B, this definition hence
avoids an explicit transformation to negation-normal form before computing a
clause set. This transformation is extended to sequents as follows:

Definition 10 (Clause normal forms of sequents). Let A1, . . . , An �
B1, . . . , Bm be a sequent without strong quantifiers, then CNF��A1, . . . , An �
B1, . . . , Bm	 � CNF��A1 � . . .�An ��B1 � . . .��Bm	.

While this transformation is exponential in the worst case it has not created
problems for our practical applications as the sequents we consider are typically
quite close to a conjunctive normal form. In case it does pose a performance-
problem this transformation can easily be replaced by the polynomial structural
clause form transformation.

Example 1. Let Γ � Δ � P �a	,�x.�P �x	 � Q�x		 � Q�a	, then

CNF��Γ � Δ	 �
� P �a	; P �x	 � Q�x	; Q�a	 ��

The following algorithm generates a sequent proof of A,Π � Λ when the
clause Π � Λ is in CNF��A	.

Data: Formula A and a clause Π � Λ such that Π � Λ 	 CNF�
A�
begin

A is an atom �
 A � A
A � �B �
 apply (� : l) to PCNF�
Π � Λ,B�
A � B � C �
 apply either (� : l1) to PCNF�
B,Π � Λ� or (� : l2) to
PCNF�
C,Π � Λ�
A � �x.A �
 apply (� : l) to PCNF�
A,Π � Λ�
. . .

end

Algorithm 1. PCNF��A,Π � Λ	

The dual algorithm PCNF� for computing a sequent calculus proof in the case
of Π � Λ � CNF��A	 is defined in a similar way and we obtain:

Understanding Resolution Proofs through Herbrand’s Theorem 165

Lemma 1. Let A be a formula without weak quantifiers and B be a formula
without strong quantifiers and Π � Λ a clause, then:

– if Π � Λ � CNF��A	 then PCNF��A,Π � Λ	 is a sequent proof of A,Π � Λ.
– if Π � Λ � CNF��B	 then PCNF��Π � Λ,B	 is a sequent proof of Π � Λ,B.

Proof. By a straightforward induction on the structure of A. ��

For actual applications it is more useful to generate proofs of sequents, not
just of formulas, i.e. we work in a setting where a sequent Γ � Δ takes the role
of the formulas A or B above. To that aim the above algorithms are extended
in a straightforward way to an algorithm PCNF�Γ � Δ,Π � Λ	 that generates a
sequent calculus proof of Γ,Π � Δ,Λ if Π � Λ � CNF��Γ � Δ	.

Lemma 2. Let Γ � Δ be a sequent without strong quantifiers and Π � Λ �
CNF��Γ � Δ	, then PCNF�Γ � Δ,Π � Λ	 is a proof of Γ,Π � Δ,Λ.

Proof. If Π � Λ � CNF��Γ � Δ	, then either Π � Λ � CNF��A	 for some A � Γ
or Π � Λ � CNF��B	 for some B � Δ and we can use Lemma 1. ��

Example 2. Continuing Example 1 we have PCNF�Γ � Δ,� P �a		 �

P �a	 � P �a	

P �a	,�x.�P �x	 � Q�x		 � Q�a	, P �a	
�Weak : �	

and PCNF�Γ � Δ,P �x	 � Q�x		 �

P �x	 � P �x	 Q�x	 � Q�x	

P �x	, P �x	 � Q�x	 � Q�x	
��: l	

P �x	,�x.�P �x	 � Q�x		 � Q�x	
�� : l	

P �x	, P �a	,�x.�P �x	 � Q�x		 � Q�a	, Q�x	
�Weak : �	

and PCNF�Γ � Δ,Q�a	 �		 �

Q�a	 � Q�a	

Q�a	, P �a	,�x.�P �x	 � Q�x		 � Q�a	
�Weak : �	

The last algorithm in this section combines the sequent calculus proofs ob-
tained by PCNF and a refutation of CNF��Γ � Δ	 into a sequent calculus proof of
Γ � Δ. This algorithm translates a dag-like refutation into a tree-like proof and
hence grounds it. The most important step is to replace a resolution inference
by an atomic cut on instances of the sequent calculus proofs obtained from the
premises of the resolution inference.

Data: a refutation R of CNF�
Γ � Δ�
R match begin

An initial clause Π � Λ �
 PCNF
Γ � Δ,Π � Λ�
R is obtained by (Factor) with m.g.u. σ from R� �
 apply (Contr : r) or
(Contr : l) to LK
R��σ
R is obtained by (Resolve) with m.g.u. σ from R1 and R2 �
 apply
(Cut) to LK
R1�σ and LK
R2�σ
. . .

end
Algorithm 2. LK

166 S. Hetzl et al.

Theorem 2. Let Γ � Δ be a sequent without strong quantifiers and let R be a
refutation of CNF��Γ � Δ	, then LK�R	 is a sequent calculus proof of Γ � Δ.

Proof. By a straightforward induction on the structure of the refutation. ��

4.2 Transforming Sequent Proofs to Expansion Trees

In this section we describe how to read off expansion trees from sequent calculus
proofs. The algorithm presented in this section is based on [3] but in addition
deals with quantifier-free cuts and equation rules. The algorithm merge used in
this algorithm for the merging of two expansion trees is defined in [3].

Data: A sequent proof P
if (Ax) then

return an atomic expansion tree for each formula
else

return expansion trees of upper sequents and replace the trees Ei of the
auxiliary formulas with P match begin

(� : r) �
 E1 � E2

(� : l) with principal formula �x.A and auxiliary formula
A�t�x� �
 �x.A�t E
(Contr : l) �
 merge
E1, E2�
(Cut) �
 �
(Eq : r) �
 E2

. . .
end

end
Algorithm 3. ET

Theorem 3. Let P be a sequent proof of s without strong quantifiers, then ET�P 	
is a sequent of expansion trees of the formulas in s.

Proof. By a straightforward induction on the structure of P . ��

4.3 Complexity and Scalability

Expansion trees are an inherently ground formalism. This has the consequence
that the translation from a (non-ground) resolution refutation to an expansion
tree is expontential in the worst case. On the one hand this is a limitation of
the algorithms presented here. On the other hand, grounding has a signifcant
benefit: the witnesses which typically carry important information can only be
read off from a ground proof. We will illustrate this phenomenon in the next
section by describing an example for a clause set whose refutation only shows
that a certain puzzle can be solved while its expansion tree contains the solution
(which necessarily must be a ground term).

An extension of our algorithms which would be useful for such critical cases
would be to carry out the computation of ground instances on demand. The
present user-interface would not change but the implementation of a display
expansion tree would: instead of keeping a complete expansion tree in memory,
it would only store the original resolution refutation and compute the ground
instances of single quantifiers when asked to.

Understanding Resolution Proofs through Herbrand’s Theorem 167

5 Implementation and Examples

Programmed in Scala, GAPT is a framework intended, on the one hand, to
allow an easy and intuitive programming of proof theoretical algorithms and
applications and on the other hand to be as general and flexible as possible, in
order to be able to target the widest range of languages and calculi. To meet
these two requirements, we make extensive use of Scala’s object-oriented (OO)
and functional paradigms. The OO support is used mainly in order to build
a complex type system and abstraction between different logics. The functional
support is used, as we will see in the rest of this paper, in order to map formulas,
proofs and similar data directly to Scala functions and algebraic data structures.
The fact that Scala is compatible with Java allowed us to use its built-in libraries
in order to supply a comprehensive graphical user interface. GAPT supplies
algebraic data structures for terms, formulas, sequents, resolution proofs, sequent
proofs and many other logical objects. The functionality described in this paper
is available from version 1.4 on. The interested reader is invited to download the
current version from http://www.logic.at/gapt.

5.1 Import of a Resolution Proof

The GAPT-System contains two methods for importing resolution proofs. The
first is based on proof replaying by reproving each inference through forward
reasoning [21] in the minimal resolution calculus implemented in GAPT (Fig. 1).
A drawback of this method is that the resulting proofs may differ significantly
from the ones found by the theorem prover and that search might be inefficient
for macro-rules like hyperresolution. Therefore the second method implements
a direct import from the format for the Ivy proof checker [22]. Ivy’s resolution
calculus (Fig. 3) replaces unification by an explicit instance rule which applies
the substitution separately. The next step in the extraction of an expansion
tree - the transformation to LK - grounds the proof, applying the substitution
to the respective subproofs anyway. Therefore we decided to add the instance
rule to GAPT’s resolution calculus instead of merging instance rules into unifiers
within the other inference rules. The flip rule is expanded to a proof of equational
symmetry from the equational reflexivity axiom.

The conversion of Prover9’s output [23] to the Ivy format is performed by
prooftrans which is part of Prover9’s LADR distribution. An Ivy proof is rep-
resented as a Lisp S-Expression which requires a different naming convention,
therefore GAPT’s parser has to integrate proper renaming of constants and vari-
ables according to these conventions.

We will use a running example to illustrate the work-flow of our tool. The run-
ning example is the famous puzzle of a farmer who wants to transport a wolf,
a goat and a cabbage across a river using a boat in which he can take at most
one of these items with him. The difficulty is that he can neither leave goat and
cabbage nor wolf and goat alone on one of the shores. How can he cross the river?
This is formalized as problem PUZ047+1 of the TPTP-library [24]. The formal-
ization uses a 5-ary predicate symbol p whose first four coordinates contain the

http://www.logic.at/gapt

168 S. Hetzl et al.

A� Γ �A�Δ

Γ �Δ
(Resolve)

A�A� Γ

A� Γ
(Factor)

t � s� Γ A�t� �Δ

A�s� � Γ �Δ
(Paramod)

Γ

Γσ
(Instance)

1

Γ, s � t

Γ, t � s
(Flip)

x � x
(Reflexivity)

1. σ is an arbitrary substitution.

Fig. 3. The Ivy Resolution calculus

positions of farmer, wolf, goat and cabbage and whose fifth position contains the
actions already taken. Universally quantified implications describe the possible
actions, the additional axiom p�south, south, south, south, start	 describes the
initial state, the goal is to prove �z p�north, north, north, north, z	. For testing
our running example we first produce a Prover9 output file by running:

$ tptp_to_ladr < PUZ047+1.p > PUZ047+1.in

$ prover9 < PUZ047+1.in > PUZ047+1.out

Then we start the command-line interface of GAPT and load the resolution
proof from the output file.

$./cli.sh

scala> val p = loadProver9Proof("PUZ047+1.out")

This command imports a resolution refutation p. One important aspect of this
refutation is that it does not contain the solution to the puzzle, it merely
shows that the puzzle is solvable. The actual solution will be computed by our
tool automatically by the transformation of the resolution refutation to an ex-
pansion tree. The solution will then be presented in plain sight to the user as
instance of the above-mentioned existential quantifier. This example thus illus-
trates very well the added value of expansion trees over resolution refutations.

5.2 Extraction of an Expansion Tree

As described in Section 4, the extraction of an expansion tree from a resolution
refutation proceeds in two phases. First we import a resolution refutation and
transform it into a sequent calculus proof following Algorithms 1 and 2.

In addition to the resolution proof, the original input formula is extracted
from Prover9’s output file. The rationale behind this is that the user expects
to see an expansion tree representing the input formula, its clause normal form
might be of a significantly different shape. The original formula is transformed
into a sequent which forms the end-sequent of the sequent calculus proof that is
constructed. This can be carried out by

scala> val q = loadProver9LKProof("PUZ047+1.out")

Understanding Resolution Proofs through Herbrand’s Theorem 169

which creates a sequent calculus proof q from the refutation in PUZ047+1.out.
The expansion trees can then be read off from this sequent calculus proof by:

scala> val E = extractExpansionTrees(q)

5.3 The Graphical User Interface

ProofTool is the Graphical User Interface of the GAPT system [25]. It can be
used in two ways: as a pure visualization tool (with the features like zoom-
ing, scrolling, searching, etc.) and as a proof manipulator (allowing to call
GAPT’s proof transformations such as cut-elimination, regularization, skolem-
ization, etc.). The objects ProofTool can render are formulas, sequents, proofs,
trees, sequent- and definition-lists. Sequents consisting of expansion trees are
handled in a special way to support the interactive visualization features spe-
cific to expansion trees. A sequent of expansion trees is displayed in a two column
split pane, where one column is for the antecedent and the other is for the con-
sequent of the sequent.

Expansion trees are displayed in ProofTool in the following way: For each
expansion tree a display expansion tree is produced by adding the state “closed”
to the quantifier nodes occurring in the expansion tree. Then the display formula
of the display expansion tree is rendered on the screen. Finally, the display
formula can be manipulated by changing the state of quantifiers. A single left-
click changes the state from closed to open, from open to expanded, and from
expanded to closed. Additionally a context-menu is opened on a right-click to
allow a direct state-change.

The expansion trees of our running example can be displayed by

scala> prooftool(E)

which allows the solution to the puzzle to be read off with a single click:

take goat
go alone
take wolf
take goat
take cabbage
go alone
take goat
start�������

In order to illustrate the display of an expansion tree with nested quantifiers we
include a screen-shot of a simple example in Figure 4.

Fig. 4. An expansion of the sequent P
a� � P
b�,�x
Q
x,f
x�� � Q
x, g
x��� �
�x
P
x� � �yQ
x, y��

170 S. Hetzl et al.

6 Conclusion

We have described an approach to understanding resolution proofs through Her-
brand’s theorem and a tool based on this approach. We have illustrated its
usefulness on two examples. The computation of ground instances of quantifiers
in combination with a flexible display of an expansion tree in a graphical user
interface allows a very quick access to the crucial turning points of a computer-
generated proof.

There are several important lines for future work: definitions (i.e. abbrevia-
tions of formulas by new predicate symbols) are crucial for human-readable for-
malizations of mathematical proofs. They can be integrated into this approach
in a straightforward way by allowing to fold and unfold them too. Furthermore,
just as the original notions of expansion trees [3], our approach and implemen-
tation supports higher-order logic as well. The only part of the programs not
supporting higher-order logic is the transformation from refutations to sequent
proofs, which is customized to the first-order resolution calculus. Another highly
interesting extension is to carry out the computation of ground instances on
demand as described in Section 4.3. This can be continued much beyond the
scope of resolution proofs. For example, by relying on the relationship between
cut-elimination and tree grammars established in [26] it would even be possible
to do cut-elimination on demand by computing only the instances of a certain
quantifier from a proof with cuts.

References

1. Herbrand, J.: Recherches sur la théorie de la démonstration. PhD thesis, Université
de Paris (1930)

2. Buss, S.R.: On Herbrand’s Theorem. In: Leivant, D. (ed.) LCC 1994. LNCS,
vol. 960, pp. 195–209. Springer, Heidelberg (1995)

3. Miller, D.: A Compact Representation of Proofs. Studia Logica 46(4), 347–370
(1987)

4. Baaz, M., Leitsch, A.: Cut-elimination and Redundancy-elimination by Resolution.
Journal of Symbolic Computation 29(2), 149–176 (2000)

5. Luckhardt, H.: Herbrand-Analysen zweier Beweise des Satzes von Roth: Polyno-
miale Anzahlschranken. Journal of Symbolic Logic 54(1), 234–263 (1989)

6. Bombieri, E., van der Poorten, A.: Some quantitative results related to Roth’s
theorem. Journal of the Australian Mathematical Society 45(2), 233–248 (1988)

7. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: Herbrand Sequent Ex-
traction. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk,
F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 462–477.
Springer, Heidelberg (2008)

8. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: CERES: An Analysis of
Fürstenberg’s Proof of the Infinity of Primes. Theoretical Computer Science 403(2-
3), 160–175 (2008)

9. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Cut-Elimination: Experi-
ments with CERES. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI),
vol. 3452, pp. 481–495. Springer, Heidelberg (2005)

Understanding Resolution Proofs through Herbrand’s Theorem 171

10. Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge
(October 2000)

11. Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction. In:
Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 228–242. Springer,
Heidelberg (2012)

12. Hetzl, S.: Project Presentation: Algorithmic Structuring and Compression of Proofs
(ASCOP). In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P.,
Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 438–442. Springer,
Heidelberg (2012)

13. Horacek, H.: Presenting Proofs in a Human-Oriented Way. In: Ganzinger, H. (ed.)
CADE 1999. LNCS (LNAI), vol. 1632, pp. 142–156. Springer, Heidelberg (1999)

14. Meier, A.: System Description: TRAMP: Transformation of Machine-Found Proofs
into ND-Proofs at the Assertion Level. In: McAllester, D. (ed.) CADE 2000. LNCS,
vol. 1831, pp. 460–464. Springer, Heidelberg (2000)

15. Trac, S., Puzis, Y., Sutcliffe, G.: An interactive derivation viewer. Electronic Notes
in Theoretical Computer Science 174(2), 109–123 (2007)

16. Denzinger, J., Schulz, S.: Recording, Analyzing and Presenting Distributed De-
duction Processes. In: Hong, H. (ed.) 1st International Symposium on Parallel
Symbolic Computation (PASCO). Lecture Notes Series in Computing, vol. 5, pp.
114–123. World Scientific Publishing (1994)

17. Pfenning, F.: Analytic and non-analytic proofs. In: Shostak, R.E. (ed.) CADE 1984.
LNCS, vol. 170, pp. 394–413. Springer, Heidelberg (1984)

18. Pfenning, F.: Proof Transformations in Higher-Order Logic. PhD thesis, Carnegie
Mellon University (1987)

19. Miller, D.: Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon University
(1983)

20. Gentzen, G.: Untersuchungen über das logische Schließen I. Mathematische
Zeitschrift 39(2), 176–210 (1934)

21. Dunchev, C., Leitsch, A., Libal, T., Riener, M., Rukhaia, M., Weller, D.,
Woltzenlogel-Paleo, B.: System Feature Description: Importing Refutations into
the GAPT Framework. In: Proof Exchange for Theorem Proving Second Interna-
tional Workshop, PxTP (2012)

22. Mccune, W., Shumsky, O.: Ivy: A Preprocessor And Proof Checker For First-Order
Logic. In: Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Academic Pub-
lishers (2000)

23. McCune, W.: Prover9 and mace4 manual - output files (2005-2010),
https://www.cs.unm.edu/~mccune/mace4/manual/2009-11A/output.html

24. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

25. Dunchev, C., Leitsch, A., Libal, T., Riener, M., Rukhaia, M., Weller, D.,
Woltzenlogel-Paleo, B.: ProofTool: GUI for the GAPT Framework (to appear)

26. Hetzl, S.: Applying tree languages in proof theory. In: Dediu, A.-H., Mart́ın-Vide,
C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Heidelberg (2012)

https://www.cs.unm.edu/~mccune/mace4/manual/2009-11A/output.html

A Labelled Sequent Calculus for BBI:

Proof Theory and Proof Search

Zhé Hóu, Alwen Tiu, and Rajeev Goré

Logic and Computation Group, Research School of Computer Science
The Australian National University, Canberra, ACT 0200, Australia

Abstract. We present a labelled sequent calculus for Boolean BI (BBI),
a classical variant of the logic of Bunched Implication. The calculus is
simple, sound, complete, and enjoys cut-elimination. We show that all
the structural rules in the calculus, i.e., those rules that manipulate labels
and ternary relations, can be localised around applications of certain log-
ical rules, thereby localising the handling of these rules in proof search.
Based on this, we demonstrate a free variable calculus that deals with
the structural rules lazily in a constraint system. We propose a heuristic
method to quickly solve certain constraints, and show some experimental
results to confirm that our approach is feasible for proof search. Addi-
tionally, we conjecture that different semantics for BBI and some axioms
in concrete models can be captured by adding extra structural rules.

1 Introduction

The logic of bunched implications (BI) was introduced to reason about resources
using additive connectives ∧, ∨, →, �, ⊥, and multiplicative connectives �∗, ∗,
−∗ [14]. Both parts are intuitionistic so BI is also Intuitionistic logic (IL) plus
Lambek multiplicative logic (LM). Changing the additive part to classical logic
gives Boolean BI (BBI). BI logics are closely related to separation logic [17], a
logic for proving properties of programs. Thus, the semantics and proof theory
of BI-logics, particularly for proof search, are important in computer science.

The ternary relational Kripke semantics of BBI-logics come in at least three
different flavours: non-deterministic (ND), partial deterministic (PD), and total
deterministic (TD) [10]. These semantics give different logics w.r.t. validity, i.e.,
BBIND, BBIPD, BBITD respectively, and all are undecidable [3,10]. The purely
syntactic proof theory of BBI also comes in three flavours: Hilbert calculi [16,5],
display calculi [1] and nested sequent calculi [15]. All are sound and complete
w.r.t. the ND-semantics [5,1,15].

In between the relational semantics and the purely syntactic proof theory
are the labelled tableaux of Larchey-Wendling and Galmiche which are sound
and complete w.r.t. the PD-semantics [9,8]. They remark that “the adapta-
tion of this tableaux system to BBITD should be straightforward (contrary to
BBIND)” [11]. We return to these issues in Section 7.

The structural rules of display calculi, especially the contraction rule on struc-
tures, are impractical for backward proof search. Nested sequents also face similar

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 172–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search 173

problems, and although Park et al. showed the admissibility of contraction in
an improved nested sequent calculus, it contains other rules that explicitly con-
tract structures. Their iterative deepening automated theorem prover for BBI
based on nested sequents is terminating and incomplete for bounded depths,
but complete and potentially non-terminating for an unbounded depth [15]. The
labelled tableaux of Larchey-Wendling and Galmiche compile all structural rules
into PD-monoidal constraints, and are cut-free complete for BBIPD using a po-
tentially infinite counter-model construction [8]. But effective proof search is
only a “perspective” and is left as further work [8, page 2].

Surprisingly, many applications of BBI do not directly correspond to its widely
used non-deterministic semantics. For example, separation logic models are in-
stances of partial deterministic models [10] while “memory models” for BBI are
restricted to have indivisible units : “the empty memory cannot be split into
non-empty pieces” [3]. Our goal is to give a labelled proof system for BBI based
upon the ND-semantics which easily extend to the PD- and TD-semantics, and
also these other, more “practical”, semantics.

Our labelled sequent calculus LSBBI for BBI adopts some features from exist-
ing labelled tableaux for BBI [9] and existing labelled sequent calculi for modal
logics [12]. Unlike these calculi, some LSBBI -rules contain substitutions on la-
bels. From a proof-search perspective, labelled calculi are no better than display
calculi since they require extra-logical rules to explicitly encode the frame condi-
tions of the underlying (Kripke) semantics. Such rules, which we refer to simply
as structural rules, are just as bad as display postulates for proof search since
we may be forced to explore all potential models. As a step towards our goal, we
show that the applications of these structural rules can be localised around logi-
cal rules. Thus these structural rules are only triggered by applications of logical
rules, leading to a purely syntax-driven proof search procedure for LSBBI .

Our work is novel from two perspectives. Compared to the labelled tableaux of
Larchey-Wendling and Galmiche, we deal with the non-deterministic semantics
of BBI, which they have flagged as a difficulty, and obtain a constructive cut-
elimination procedure. Compared to the nested sequent calculus of Park et al.,
our calculus is much simpler, and generally gives much shorter proofs. Note
that Park et al. actually gave a labelled variant of their nested sequent calculus,
with the same logical rules as ours. However, their structural rules are still just
notational variants of the original ones, which are lengthy and do not use ternary
relations. We also give some structural rules which we conjecture will give cut-
free labelled calculi for all the other semantics mentioned above.

Detailed proofs of all claims except this conjecture are available in [7].

2 Syntax and Semantics of BBI

Let V ar be a set of propositional variables. BBI formulae are defined inductively
as follows, where P ∈ V ar, �∗, ∗,−∗ are the multiplicative unit, conjunction,
and implication respectively:

A ::= P | � | ⊥ | ¬A | A ∨ A | A ∧ A | A→ A | �∗ | A ∗A | A−∗ A

174 Z. Hóu, A. Tiu, and R. Goré

The Kripke semantics of BBI employs a ternary relation of worlds based on
a non-deterministic monoid structure, á la Galmiche and Larchey-Wendling [5].
A relational frame is a triple (M, �, ε), where � ⊆ M×M×M. Following [5],
we write a, b � c instead of �(a, b, c) and also adopt a single unit ε, rather than a
set of units [4]. We therefore have the following conditions for all a, b, c, d ∈M:

Identity ε, a � b iff a = b
Commutativity a, b � c iff b, a � c
Associativity ∃k, (a, k � d)&(b, c � k)⇒ ∃l, (a, b � l)&(l, c � d).

Intuitively, the relation x, y �z means that z can be partitioned into two parts
x and y. The identity condition can be read as every world can be partitioned
into an empty world and itself. Commutativity captures that partitioning z into
x and y is the same as partitioning z into y and x. Finally, associativity means
that if z can be partitioned into x and y, and x can further be partitioned into
u and v, then all together z consists of u, v and y. Therefore there must exist an
element w which is the combination of v and y, such that w and u form z. We
do not restrict this monoid to be cancellative, so x, y � x does not imply y = ε.

Let (M, �, ε) be a relational frame and v : V ar → P(M) be a valuation. A
forcing relation “�” between m ∈M and BBI-formulae is defined as follows [5]:

m � �∗ iff m = ε
m � ⊥ iff never
m � � iff always
m � ¬A iff m �� A

m � P iff P ∈ V ar and m ∈ v(P)
m � A ∨B iff m � A or m � B
m � A ∧B iff m � A and m � B
m � A→ B iff m �� A or m � B

m � A ∗B iff ∃a, b.(a, b � m and a � A and b � B)
m � A−∗ B iff ∀a, b.((m, a � b and a � A) implies b � B)

A formula A is true at m ∈ M if m � A and is valid if m � A for every
m ∈M in every model ((M, �, ε), v).

3 The Labelled Sequent Calculus for BBI

The inference rules of LSBBI are shown in Figure 1, where p is an atomic formula,
A,B are formulae, w, x, y, z are in the set LV ar of label variables, and ε is the
label constant. We define a mapping ρ : {ε}∪LV ar →M from labels to worlds.
We overload the notation in an obvious way so that ε is the empty world in the
semantics and the label constant, while � is the ternary relation in the semantics
and in the calculus. Therefore, we require that ∀ρ.ρ(ε) = ε.

A sequent Γ � Δ consists of a semi-colon separated multiset Γ of relational
atoms and labelled formulae and a semi-colon separated multiset Δ of labelled
formulae. Note that relational atoms can appear only in the left-hand-side Γ .

A labelled formula w : A means formula A is true in world ρ(w). A rela-
tional atom (x, y � z), which we always write inside parentheses, is interpreted
as ρ(x), ρ(y) � ρ(z) in the semantics. That is, a labelled formula w : A is true iff
ρ(w) � A, and a relational atom (x, y � z) is true iff ρ(x), ρ(y) � ρ(z) holds.

A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search 175

Definition 1 (Sequent Validity). A sequent Γ � Δ in LSBBI is valid if for
all (M, �, ε), v and ρ: if every w : A ∈ Γ and every (x, y � z) ∈ Γ are true then
so is some w′ : B ∈ Δ.

BBI-validity of a formula A corresponds to the sequent validity of � x : A
where x is an arbitrary label. This notion of validity is common for BBI [10,15]
and CBI [2], but is stronger than BI-validity [16], where A is only required to
be true at the world ε in all BI-models. Using labelled sequents, BI-validity
informally corresponds to the sequent validity of � ε : A. For example, the
formula �∗ is BI-valid, but it is not BBI-valid.

In our sequents, the structural connective “;” means additive “and” in the
antecedent and means additive “or” in the succedent. Traditional sequents use
“,” in this role, but our notation is consistent with sequent calculi for the family of
Bunched Implication (BI) logics, where “;” is the additive structural connective
and “,” is the multiplicative structural connective. The “,” connective does not
appear explicitly in our sequents but is encoded implicitly in the relational atoms.

In each rule, the formula/relational atom shown explicitly in the conclusion is
the principal formula/relational atom. In the cut rule, the cut-formula is x : A.

The semantics of ∗ involves an existential condition, so rules ∗L and ∗R incor-
porate existential and universal quantifiers respectively, conversely for the rules
−∗ L and −∗ R. Therefore, rules ∗L and −∗ R create a premise containing new
relations, and the labels in the created relation must be fresh (except for the la-
bel of the principal formula). Rules ∗R and −∗ L create premises using existing
relations from the conclusion. Further, in rules A and AC , the label w must be
fresh in the premise, as it represents a new partition of the original world. Con-
traction admissibility [7] requires the rule AC , a special case of A with a built-in
contraction on (x, y �x). The rule �∗L utilises a substitution [ε/x] where Γ [y/x]
is the result of replacing every occurrence of x in Γ by y.

The additive rules (⊥L, �R, ∧L, ∧R,→ L,→ R) and the multiplicative rules
(�∗L, �∗R, ∗L, ∗R, −∗ L, −∗ R) respectively deal with the additive/ multiplica-
tive connectives. The zero-premise rules are those with no premise (id, ⊥L, �R,
�∗R). Figure 2 shows an example derivation in LSBBI .

Note that we start (at the bottom) by labelling the formula with an arbitrary
world a. Since provability is preserved by substitutions of labels (Lemma 1),
provability of � a : F implies provability of � w : F , for any world w. Thus, if a
formula is provable, then it is true in every world in every model.

3.1 Soundness and Completeness

Definition 2 (Sequent Falsifiability). A sequent Γ � Δ is falsifiable if some
(M, �, ε), v and ρ make every member of Γ true and every member of Δ false.

Theorem 1 (Soundness). The labelled sequent calculus LSBBI is sound w.r.t.
the non-deterministic monoidal Kripke semantics for BBI.

For each rule in LSBBI , we show that if the conclusion is falsifiable, then
the premise is falsifiable. We prove the completeness of LSBBI by showing that

176 Z. Hóu, A. Tiu, and R. Goré

Identity and Cut:

id
Γ ;w : P � w : P ;Δ

Γ � x : A;Δ Γ ′;x : A � Δ′
cut

Γ ;Γ ′ � Δ;Δ′

Logical Rules:

⊥L
Γ ;w : ⊥ � Δ

Γ [ε/w] � Δ[ε/w]
�∗L

Γ ;w : �∗ � Δ
�R

Γ � w : �;Δ �∗R
Γ � ε : �∗;Δ

Γ ;w : A;w : B � Δ
∧L

Γ ;w : A ∧ B � Δ
Γ � w : A;Δ Γ � w : B;Δ

∧R
Γ � w : A ∧ B;Δ

Γ � w : A;Δ Γ ;w : B � Δ
→ L

Γ ;w : A→ B � Δ
Γ ;w : A � w : B;Δ

→ R
Γ � w : A→ B;Δ

(x, y � z);Γ ;x : A; y : B � Δ
∗L

Γ ; z : A ∗ B � Δ
(x, z � y);Γ ;x : A � y : B;Δ

−∗ R
Γ � z : A−∗ B;Δ

(x, y � z);Γ � x : A; z : A ∗B;Δ (x, y � z);Γ � y : B; z : A ∗ B;Δ
∗R

(x, y � z);Γ � z : A ∗ B;Δ

(x, y � z);Γ ; y : A−∗ B � x : A;Δ (x, y � z);Γ ; y : A−∗ B; z : B � Δ
−∗ L

(x, y � z);Γ ; y : A−∗ B � Δ
Structural Rules:

(y, x � z); (x, y � z);Γ � Δ
E

(x, y � z);Γ � Δ
(u,w � z); (y, v � w); (x, y � z); (u, v � x);Γ � Δ

A
(x, y � z); (u, v � x);Γ � Δ

(x, ε � x);Γ � Δ
U

Γ � Δ
(x,w � x); (y, y � w); (x, y � x);Γ � Δ

AC
(x, y � x);Γ � Δ

(ε, w′ � w′);Γ [w′/w] � Δ[w′/w]
Eq1

(ε, w � w′);Γ � Δ
(ε, w′ � w′);Γ [w′/w] � Δ[w′/w]

Eq2
(ε, w′ � w);Γ � Δ

Side conditions:

w �= ε in �∗L, Eq1 and Eq2
the labels x and y do not occur in the conclusion in ∗L and −∗ R
the label w does not occur in the conclusion in A and AC

Fig. 1. The (cut-free) labelled sequent calculus LSBBI for Boolean BI

every derivation of a formula in the Hilbert system for BBI [5] can be mimicked in
LSBBI , possibly using cuts. Detailed proofs are available in our arXiv paper [7].

Theorem 2 (Completeness). The labelled sequent calculus LSBBI is complete
w.r.t. the non-deterministic monoidal Kripke semantics for BBI.

A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search 177

�∗R
(ε, a � a); (a, ε � a); a : A � ε : �∗ id

(ε, a � a); (a, ε � a); a : A � a : A
∗R

(ε, a � a); (a, ε � a); a : A � a : �∗ ∗A
E

(a, ε � a); a : A � a : �∗ ∗ A
U

a : A � a : �∗ ∗A → R� a : A→ (�∗ ∗A)

Fig. 2. An example derivation in LSBBI

3.2 Cut Elimination

We now state the cut-elimination theorem for our labelled sequent calculus. The
general proof outlined here is similar to the cut-elimination proof for labelled
systems for modal logic [12], i.e., we start by proving a substitution lemma for la-
bels, followed by proving the invertibility of inference rules, weakening admissibil-
ity, and contraction admissibility, before proceeding to the main cut-elimination
proof. As there are many case analyses in these proofs, we only outline the
important parts here. More details are available in our arXiv paper [7].

Given a derivation Π , its height ht(Π) is defined as the length of the longest
branch in the derivation tree of Π. The substitution lemma shows that provabil-
ity is preserved under arbitrary substitutions of labels.

Lemma 1 (Substitution). If Π is an LSBBI derivation for the sequent Γ � Δ
then there is an LSBBI derivation Π ′ of the sequent Γ [y/x] � Δ[y/x] where every
occurrence of label x (x �= ε) is replaced by label y, such that ht(Π ′) ≤ ht(Π).

The admissibility of weakening and contraction on both formulae and rela-
tional atoms follows unsurprisingly from our design of the calculus, as does the
invertibility of the inference rules. Note that the rule AC exists for avoiding
contraction on relational atoms when applying the rule A: see [7] for details.

Suppose an application of the cut rule has premise derivations Π1 and Π2

and a cut-formula x : A of size |A|. The cut height is ht(Π1) + ht(Π2) and the
complexity of such a cut rule is (|A|, ht(Π1) + ht(Π2)). If there are multiple
branches in Π1, then ht(Π1) shall be the height of the longest branch, similarly
for ht(Π2). The strict ordering for both parts of the pair is > on natural numbers.

Theorem 3 (Cut-elimination). If Γ � Δ is derivable in LSBBI , then it is
also derivable in LSBBI without using the cut rule.

Proof. By induction on the complexity of the proof in LSBBI . We show that
each application of cut can either be eliminated, or be replaced by one or more
cut rules of less complexity. The argument for termination is similar to the cut-
elimination proof for G3ip [13]. We start to eliminate the topmost cut first, and
repeat this procedure until there is no cut in the derivation. We first show that
cut can be eliminated when the cut height is the lowest, i.e., at least one premise
is of height 1. Then we show that the cut height is reduced in all cases in which
the cut formula is not principal in both premises of cut. If the cut formula is

178 Z. Hóu, A. Tiu, and R. Goré

principal in both premises, then the cut is reduced to one or more cuts on smaller
formulae or shorter derivations. Since atoms cannot be principal in logical rules,
finally we can either reduce all cuts to the case where the cut formula is not
principal in both premises, or reduce those cuts on compound formulae until
their cut heights are minimal and then eliminate those cuts. !"

4 Localising Structural Rules

To obtain an effective proof search procedure for LSBBI , we need to restrict
the use of structural rules, which in LSBBI , can permute upwards through all
rules except for id, �∗R, ∗R, and −∗ L. The other logical rules do not rely on
relational atoms, so we can apply them whenever possible. This allows us to
design a more compact proof system where applications of structural rules are
separated into a special entailment relation for relational atoms. We localise the
structural rules Eq1 and Eq2 first, and then localise the other structural rules.

Let r be an instance of a structural rule where the substitution used in the
rule instance is θ: which is the identity substitution except when r is Eq1 or Eq2.
We can view r (upwards) as a function that takes a set of relational atoms (in
the conclusion of the rule) and outputs another set (in the premise). We write
r(G, θ) for the output relational atoms of an instance of r with substitution θ
and with conclusion containing G. Let σ be a sequence of instances of structural
rules [r1(G1, θ1); · · · ; rn(Gn, θn)]. Given a set of relational atoms G, the result of
the (backward) application of σ to G, denoted by S(G, σ), is defined as:

S(G, σ) =

⎧⎨⎩
G if σ = []
S(Gθ ∪ r(G′, θ), σ′) if G′ ⊆ G and σ = [r(G′, θ);σ′]
undefined otherwise

Given a σ = [r1(G1, θ1); · · · ; rn(Gn, θn)], we denote with subst(σ) the compos-
ite substitution θ1 ◦ · · · ◦ θn, where t(θ1 ◦ θ2) means (tθ1)θ2.

Definition 3. Let G be a set of relational atoms. The entailment relation G �E
u = v holds iff there exists a sequence σ of Eq1 or Eq2 structural rules such that
S(G, σ) is defined, and uθ = vθ, where θ = subst(σ).

The equality entailment does not fully capture the reflexivity, transitivity,
and symmetry of equality. Rather, the structural rule E is used when symmetry
is required to derive an equality. As a second step, we isolate the rest of the
structural rules into a separate entailment relation, as we did with Eq1 and Eq2.

Definition 4. Let G be a set of relational atoms. The entailment relation �R
has the following two forms:

1. G �R (w1 = w2) holds iff there is a sequence σ of E, U , A, AC applications
so that S(G, σ) �E (w1 = w2).

2. G �R (w1, w2�w3) holds iff there is a sequence σ of E, U , A, AC applications
so that (w′

1, w
′
2�w

′
3) ∈ S(G, σ) and the following hold: S(G, σ) �E (w1 = w′

1),
S(G, σ) �E (w2 = w′

2), and S(G, σ) �E (w3 = w′
3).

A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search 179

G �R (w1 = w2)
id

G||Γ ;w1 : P � w2 : P ;Δ

(ε, w � ε);G||Γ � Δ
�∗L

Γ ;w : �∗ � Δ
G �R (w = ε)

�∗R

G||Γ � w : �∗;Δ

S(G, σ)||Γ � x : A;w : A ∗B;Δ S(G, σ)||Γ � y : B;w : A ∗B;Δ
∗R†

G||Γ � w : A ∗B;Δ

S(G, σ)||Γ ;w : A−∗ B � x : A;Δ S(G, σ)||Γ ;w : A−∗ B; z : B � Δ
−∗ L‡

G||Γ ;w : A−∗ B � Δ

†: σ is a derivation of G �R (x, y � w) ‡: σ is a derivation of G �R (x,w � z)

Fig. 3. Changed rules in LS sf
BBI

Thus we can move all the structural rules into �R, giving an intermediate
system LS sf

BBI , with changed logical rules shown in Figure 3. We write G||Γ � Δ
to emphasise that the left hand side of a sequent is partitioned into relational
atoms G and labelled formulae Γ . Note that the entailment �R is not a premise,
but a side condition for the rule to be applicable.

Theorem 4. A sequent Γ � Δ is derivable in LSBBI iff it is derivable in LS sf
BBI .

5 Mapping Proof Search to Constraint Solving

The intermediate system LS sf
BBI is essentially a variant of LSBBI that packages

structural rules at certain points in the proof search. We can further separate
proof search into two stages: guessing the shape of the derivation tree, and then
checking that each entailment �R can be proved. The latter involves guessing a
relational atom to use in the ∗R or −∗ L rule which also satisfies the equality
constraints in the id and �∗R rules. We formalise this via a symbolic proof
system where the relational atoms in the rules ∗R,−∗ L are selected lazily via
the introduction of free variables, that must be instantiated to concrete labels
satisfying all the constraints in the derivation.

Free variables help to make the right decisions when applying ∗R and −∗ L
rules. That is, suppose the id rule (or analogously the �∗R rule) requires a free
variable x to be equal to a label w, we can satisfy this by globally assigning w to
x. In this way, the search space is reduced, and many applications of structural
rules are guided by the result of id and �∗R rules. See Section 6 for an example.

In our symbolic system FVLSBBI , free variables are denoted by x, y and z.
We use u,v,w for either labels or free variables, and a, b, c for ordinary labels. A
symbolic sequent is a sequent possibly with occurrences of free variables in place
of labels. We shall sometimes refer to the normal (non-symbolic) sequent as a
ground sequent to emphasise that it contains no free variables. The symbolic
proof system FVLSBBI is given in Figure 4. The rules are mostly similar to
LS sf

BBI , but lacking the entailment relations �R . Instead, constraints containing
new free variables are introduced when applying ∗R and −∗ L backwards. Notice
also that in FVLSBBI , the ∗R and −∗ L rules do not compute the set S(G, σ).

180 Z. Hóu, A. Tiu, and R. Goré

id

G||Γ ;w1 : P � w2 : P ;Δ
⊥L

G||Γ ;w : ⊥ � Δ
�R

G||Γ � w : �;Δ

G; (ε,w � ε)||Γ � Δ
�∗L

G||Γ ;w : �∗ � Δ
�∗R

G||Γ � w : �∗;Δ

G||Γ ;w : A;w : B � Δ
∧L

G||Γ ;w : A ∧B � Δ
G||Γ � w : A;Δ G||Γ � w : B;Δ

∧R

G||Γ � w : A ∧B;Δ

G||Γ � w : A;Δ G||Γ ;w : B � Δ
→ L

G||Γ ;w : A→ B � Δ
G||Γ ;w : A � w : B;Δ

→ R

G||Γ � w : A→ B;Δ

G; (a, b �w)||Γ ; a : A; b : B � Δ
∗L†

G||Γ ;w : A ∗B � Δ
G; (a,w � c)||Γ ; a : A � c : B;Δ

−∗ R‡
G||Γ � w : A−∗ B;Δ

G||Γ � x : A;w : A ∗B;Δ G||Γ � y : B;w : A ∗B;Δ
∗R�

G||Γ � w : A ∗ B;Δ

G||Γ ;w : A−∗ B � x : A;Δ G||Γ ;w : A−∗ B;y : B � Δ
−∗ L�

G||Γ ;w : A−∗ B � Δ

†: a, b do not occur in the conclusion of ∗L
‡: a, c do not occur in the conclusion of −∗ R
�: x,y do not occur in the conclusion of ∗R
�: x, z do not occur in the conclusion of −∗ L

Fig. 4. Labelled sequent calculus FVLSBBI for Boolean BI

So the relational atoms in FVLSBBI are those that are created by ∗L,−∗ R,�∗L.
We refer to a derivation in FVLSBBI as a symbolic derivation.

An equality constraint is an expression of the form G �?R (u = v), and a
relational constraint is of the form G �?R (u,v �w). Constraints are ranged over
by c, c′, c1, c2, etc. We write G(c) for the left hand side G of c. We write G �?R C
for either an equality or relational constraint. We write fv(c) for the set of free
variables in c, and fv(C) for the set of free variables in a set of constraints C.

Definition 5 (Constraint systems). A constraint system is a pair (C,+) of
a set of constraints and a well-founded partial order on elements of C satisfying
Monotonicity: c1 + c2 implies G(c1) ⊆ G(c2). It is well-formed if it also satisfies
Unique variable origin: ∀x in C, there exists a unique minimum (w.r.t. +)
constraint c(x) = Gx �?R (u,v �w) s.t. x occurs in (u,v �w), but not in Gx, and
x does not occur in any c′ where c′ + c(x). Such a c(x) is the origin of x.

From now on, we use c(x) for the origin (constraint) of x, as defined above.
We use C to range over constraint systems. We write ci ≺ cj when ci + cj and
ci �= cj . Further, we define a direct successor relation � as follows: ci � cj iff
ci ≺ cj and there does not exist any ck such that ci ≺ ck ≺ cj .

During proof search, associated constraints are generated as follows. Note that
the labels for constraints correspond to those in Figure 4.

Definition 6. To a given symbolic derivation Π, we associate a set of con-
straints C(Π) as follows where the lowest rule instance of Π is:

A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search 181

id C(Π) = {G �?R (w1 = w2)}
�∗R C(Π) = {G �?R (w = ε)}
∗R C(Π) = C(Π1)∪C(Π2)∪{G �?R (x,y�w)} where the left premise

derivation is Π1 and the right-premise derivation is Π2

−∗ L C(Π) = C(Π1)∪C(Π2)∪{G �?R (x,w�y)} where the left premise
derivation is Π1 and the right-premise derivation is Π2

– If Π ends with any other rule, with premise derivations
{Π1, . . . , Πn}, then C(Π) = C(Π1) ∪ · · · ∪ C(Πn).

Each constraint c ∈ C(Π) corresponds to a rule instance r(c) in Π where c is
generated. The ordering of the rule applications in the derivation tree of Π then
naturally induces a partial order on C(Π). That is, let +Π be an ordering on
C(Π) defined via: c1 +Π c2 iff r(c1) is applied below r(c2) on the same branch.
Obviously +Π is a partial order. The following property of C(Π) is easy to verify.

Lemma 2. Let Π be a symbolic derivation. Then (C(Π),+Π) is a constraint
system. Moreover, if the root sequent is ground, then (C(Π),+Π) is well-formed.

Given a symbolic derivation Π , let C(Π) be a constraint system (C(Π),+Π)
defined as above. From Lemma 2, if C(Π) �= { }, then there exists a minimum
constraint c, w.r.t. the partial order +Π , such that G(c) is ground.

We now define the solvability of a constraint system. This requires that
(ternary) relational atoms created by the solution must be accumulated across
different constraints, in order to guarantee the soundness of FVLSBBI . A free
variable substitution θ is a mapping from free variables to free variables or labels
with finite domain. We denote with dom(θ) the domain of θ. Given θ and a set
V of free variables, θ � V is the substitution obtained from θ by restricting the
domain to V as shown below left. Given θ and θ′ such that dom(θ′) ⊆ dom(θ),
we define θ \ θ′ as the substitution as shown below right:

x(θ � V) =

{
xθ if x ∈ V
x otherwise.

x(θ \ θ′) =
{
xθ if x �∈ dom(θ′)
x otherwise.

Definition 7 (Simple constraints and their solutions). A constraint c is
simple if its left hand side G(c) contains no free variables. A solution (θ, σ) to a
simple constraint c is a substitution θ and a sequence σ of structural rules s.t.

1. If c is G �?R (u = v) then σ is a derivation of G �R (uθ = vθ).
2. If c is G �?R (u,v �w) then σ is a derivation of G �R (uθ,vθ �wθ).

The minimum constraints of a well-formed constraint system are simple.

Definition 8 (Restricting a constraint system). Let C = (C,+) be a well-
formed constraint system, and c be a minimum (simple) constraint in C. Let
(θ, σ) be a solution to c and G′ = S(G(c), σ). Define a function f on constraints:

f(c′) =

{
(G′ ∪ Gθ �?R Cθ) if c′ = (G �?R C) ∈ C \ {c} and c + c′,
c′ otherwise.

182 Z. Hóu, A. Tiu, and R. Goré

The restriction of C by (c, θ, σ), written C � (c, θ, σ), is the pair (C′,+′), where
(1) C′ = {f(c′) | c′ ∈ C \ {c}} and (2) f(c1) +′ f(c2) iff c1 + c2.

Lemma 3. The pair (C′,+′) = C � (c, θ, σ) is a well-formed constraint system.

Definition 9 (Solution to a well-formed constraint system). Let C =
({c1, . . . , cn},+) be a well-formed constraint system. A solution (θ, {σ1, . . . , σn})
to C is a substitution and a set of sequences of structural rules, such that:

If n = 0 then (θ, {σ1, . . . , σn}) is trivially a solution.
If n ≥ 1 then there must exist some minimum (simple) constraint in C. For any

minimum constraint ci, let θi = θ � fv(ci), then (θi, σi) is a solution to ci,
and (θ \ θi, {σ1, . . . , σn} \ σi) is a solution to C � (ci, θi, σi).

In Definition 9, suppose a constraint system C = ({c1, · · · , cn},+) has a solu-
tion (θ, {σ1, · · · , σn}). For each constraint ci in C, let c′i be the simple constraint
obtained from ci in the process of restricting C. Then there is a solution (θi, σi)
to c′i, where θi = θ � fv(c′i), and σi ∈ {σ1, · · · , σn}.
Theorem 5 (Soundness). Let Π be a symbolic derivation of a ground sequent

G||Γ � Δ. If C(Π) is solvable, then G||Γ � Δ is derivable in LS sf
BBI .

The proof [7] uses induction on the height of symbolic derivations. Intuitively,
the proof progressively “grounds” a symbolic derivation, root-upwards. At each
inductive step we show that grounding the premises corresponds to restricting
the constraint system induced by the symbolic derivation.

We prove the completeness of FVLSBBI by showing that for every cut-free
derivationΠ of a (ground) sequent in LS sf

BBI , there is a symbolic derivationΠ ′ of
the same sequent such that C(Π ′) is solvable. Obviously, Π ′ should have exactly
the same rule applications as Π ; the only difference is that some relational atoms
are omitted in the derivation, but instead are accumulated in the constraint
system. Additionally, some (new) labels are replaced with free variables. So the
key is to recover the omitted relational atoms in each sequent from the constraint
system while solving constraints. The full proof is in our arXiv paper [7].

Theorem 6 (Completeness). If a sequent has a LS sf
BBI derivation Π, then it

has a symbolic derivation Π ′ such that C(Π ′) is solvable.

6 A Heuristic and Experimental Results

A heuristic. Suppose we want to prove ((a∗b)∗c)→ (a∗(b∗c)). Using FVLSBBI ,
we build a symbolic derivation as in Figure 5 (right associativity for connectives
is assumed). The constraints in the derivation are listed below, with the corre-
sponding rules that generate them:

id3: (a1, a2 � a0); (a3, a4 � a1) �?R (a2 = x8)
id2: (a1, a2 � a0); (a3, a4 � a1) �?R (a4 = x7)
∗R2: (a1, a2 � a0); (a3, a4 � a1) �?R (x7,x8 � x6)
id1: (a1, a2 � a0); (a3, a4 � a1) �?R (a3 = x5)
∗R1: (a1, a2 � a0); (a3, a4 � a1) �?R (x5,x6 � a0).

A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search 183

Let Γ1 := {a2 : c ; a3 : a} and Γ2 := {a3 : a ; a4 : b} in

id1
a2 : c; a3 : a; a4 : b � x5 : a

id2
Γ1; a4 : b � x7 : b

id3
a2 : c;Γ2 � x8 : c

∗R2
a2 : c; a3 : a; a4 : b � x6 : b ∗ c

∗R1
a2 : c; a3 : a;a4 : b � a0 : a ∗ b ∗ c

∗L2
a1 : a ∗ b; a2 : c � a0 : a ∗ b ∗ c

∗L1
a0 : (a ∗ b) ∗ c � a0 : a ∗ b ∗ c

→ R� a0 : (a ∗ b) ∗ c→ a ∗ b ∗ c

Fig. 5. A symbolic derivation for ((a ∗ b) ∗ c)→ (a ∗ (b ∗ c))

From the constraints generated by id rules, we already know how x5,x7,x8
should be assigned. In the following, we shall write (a1, a2 � a0); (a3, a4 � a1)
as G, (a3,x6 � a0); (a2, a4 � x6) as C, 1 as the identity substitution, and ∅ as
an empty sequence of rule applications. Now it is much easier to solve the con-
straint system with the known information. The last constraint can be solved
by ([a3/x5, w/x6], A((a1, a2 � a0); (a3, a4 � a1),1)), which generates (a3, w �
a0); (a2, a4 � w). The resultant constraint system is restricted to the following:

id3: (a3, w � a0); (a2, a4 � w); (a1, a2 � a0); (a3, a4 � a1) �?R (a2 = x8)
id2: (a3, w � a0); (a2, a4 � w); (a1, a2 � a0); (a3, a4 � a1) �?R (a4 = x7)
∗R2: (a3, w � a0); (a2, a4 � w); (a1, a2 � a0); (a3, a4 � a1) �?R (x7,x8 � w)
id1: (a3, w � a0); (a2, a4 � w); (a1, a2 � a0); (a3, a4 � a1) �?R (a3 = a3).

Now the last constraint is trivially solved by (1, ∅). The second last constraint
can be solved by ([a4/x7, a2/x8], E((a2, a4�w),1)), which generates (a4, a2�w).
The remaining constraints are restricted as below.

id3: (a4, a2 � w); (a3, w � a0); (a2, a4 � w); (a1, a2 � a0); (a3, a4 � a1) �?
R (a2 = a2)

id2: (a4, a2 � w); (a3, w � a0); (a2, a4 � w); (a1, a2 � a0); (a3, a4 � a1) �?
R (a4 = a4)

These constraints are trivially solvable by (1, ∅). Therefore the overall solution to
the original (first) constraint system is ([a3/x5, w/x6, a4/x7, a2/x8], A((a1, a2�
a0); (a3, a4 � a1),1) · E((a2, a4 � w),1)), the reader can check that this solution
is compliant with our definitions in Section 5.

But there is a simpler way to see that the label w must exist: the two ternary
relational atoms in G manifest that a0 can be split into a2, a3, a4. This is exactly
what C says. For any variant of G that describes the same splitting of a0 as C,
the “internal” node x6 can always be assigned to either an existing label or a
label generated by the associativity rule. In the example, x6 cannot be matched
to any existing label, so we can assign x6 to be a fresh label globally, and add C
to the l.h.s. of the successor constraints in the partial order ≺. Similarly for any
variant of C with the same splitting of a0. The next lemma extends this idea.

Lemma 4. Given constraints c1 � · · · � cn with G = G(c1) = · · · = G(cn) s.t.
the r.h.s. of c1 to cn form a binary tree where every internal node is some free
variable x with c1 + c(x), and the other nodes are non-ε labels: if G′ ⊆ G and G′

forms a binary tree with the same root and leaves, then c1, · · · , cn are solvable.

184 Z. Hóu, A. Tiu, and R. Goré

Table 1. Initial experimental results

Formula BBeye Naive FVLSBBI

(opt) (Vamp) Heuristic

(a−∗ b) ∧ (� ∗ (�∗ ∧ a))→ b d(2) 0 0.003 0.001
(�∗−∗ ¬(¬a ∗ �∗))→ a d(2) 0 0.003 0.000
¬((a−∗ ¬(a ∗ b)) ∧ ((¬a−∗ ¬b) ∧ b)) d(2) 0 0.004 0.001
�∗ → ((a−∗ (b−∗ c))−∗ ((a ∗ b)−∗ c)) d(2) 0.015 0.017 0.001
�∗ → ((a ∗ (b ∗ c))−∗ ((a ∗ b) ∗ c)) d(2) 0.036 0.006 0.000
�∗ → ((a ∗ ((b−∗ e) ∗ c))−∗ ((a ∗ (b−∗ e)) ∗ c)) d(2) 0.07 0.019 0.001
¬((a−∗ ¬(¬(d−∗ ¬(a ∗ (c ∗ b))) ∗ a)) ∧ c ∗ (d ∧ (a ∗ b))) d(2) 0.036 0.037 0.001
¬((c ∗ (d ∗ e)) ∧ B) where d(2) 0.016 0.075 0.039
B := ((a−∗ ¬(¬(b−∗ ¬(d ∗ (e ∗ c))) ∗ a)) ∗ (b ∧ (a ∗ �)))
¬(C ∗ (d ∧ (a ∗ (b ∗ e)))) where d(3) 96.639 0.089 0.038
C := ((a−∗ ¬(¬(d−∗ ¬((c ∗ e) ∗ (b ∗ a))) ∗ a)) ∧ c)
(a ∗ (b ∗ (c ∗ d)))→ (d ∗ (c ∗ (b ∗ a))) d(2) 0.009 0.048 0.001
(a ∗ (b ∗ (c ∗ d)))→ (d ∗ (b ∗ (c ∗ a))) d(3) 0.03 0.07 0.001
(a ∗ (b ∗ (c ∗ (d ∗ e))))→ (e ∗ (d ∗ (a ∗ (b ∗ c)))) d(3) 1.625 1.912 0.001
(a ∗ (b ∗ (c ∗ (d ∗ e))))→ (e ∗ (b ∗ (a ∗ (c ∗ d)))) d(4) 20.829 0.333 0.001
�∗ → (a ∗ ((b−∗ e) ∗ (c ∗ d))−∗ ((a ∗ d) ∗ (c ∗ (b−∗ e)))) d(3) 6.258 0.152 0.007

Experimental results. We used a Dell Optiplex 790 desktop with Intel CORE i7
2600 @ 3.4 GHz CPU and 8GB memory as the platform, and tested the following
provers on the formulae from Park et al. [15]. (1) BBeye: the OCaml prover
from Park et al. based upon nested sequents [15]; (2) Naive (Vamp): translates a
BBI formula into a first-order formula using the standard translation, then uses
Vampire 2.6 [6] to solve it; (3) FVLSBBI Heuristic: backward proof search in
FVLSBBI , using the heuristic-based method to solve the set of constraints.

The results are in Table 1. In the BBeye (opt) column, the d() indicates the
depth of proof search. The other two columns are for the two methods stated
above. We see that naive translation is comparable with BBeye in most cases,
but the latter is not stable. When the tested formulae involve more interaction
between structural rules, BBeye runs significantly slower. The heuristic method
outperforms all other methods in the tested cases.

Nonetheless, our prover is slower than BBeye for formulae that contain many
occurrences of the same atomic formulae, giving (id) instances such as:

Γ ;w1 : P ;w2 : P ; · · · ;wn : P � x : P ;Δ

We have to choose some wi to match with x without knowing which choice satis-
fies other constraints. In the worst case, we have to try each using backtracking.
Multiple branches of this form lead to a combinatorial explosion. Determinising
the concrete labels (worlds) for formulae in proof search in LSBBI or BBeye [15]
avoids this problem. Further work is needed to solve this in FVLSBBI .

Even though we do not claim the completeness of our heuristics method, it
appears to be a fast way to solve certain problems. Completeness can be restored
by fully implementing LSBBI or FVLSBBI . The derivations in LSBBI are gen-
erally shorter than those in the Display Calculus or Nested Sequent Calculus for

A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search 185

(a, b � c);Γ [c/d] � Δ[c/d]
P

(a, b � c); (a, b � d);Γ � Δ
(a, b � c);Γ � Δ

T

Γ � Δ

(ε, ε � ε);Γ [ε/a][ε/b] � Δ[ε/a][ε/b]
IU

(a, b � ε);Γ � Δ
(a, b � c);Γ [b/d] � Δ[b/d]

C

(a, b � c); (a, d � c);Γ � Δ
In T , a, b do occur in the conclusion but c does not
In all substitutions [y/x], x �= ε

Fig. 6. Some auxiliary structural rules

BBI. The reader can verify that most of formulae in Table 1 can even be proved
by hand in a reasonable time using our labelled system. The optimisations of
the implementation, however, is out of the scope of this paper.

7 Conclusions, Extensions and Further Work

Our main contribution is a labelled sequent calculus for BBIND that is sound,
complete, and enjoys cut-elimination. There are no explicit contraction rules in
LSBBI and all structural rules can be restricted so that proof search is entirely
driven by logical rules. We further propose a free variable system to restrict the
proof search space so that some applications of ∗R,−∗ L rules can be guided by
zero-premise rules. Although we can structure proof search to be more manage-
able compared to the unrestricted (labelled or display) calculus, the undecid-
ability of BBI implies that there is no terminating proof search strategy for a
sound and complete system. The essence of proof search now resides in guessing
which relational atom to use in the ∗R and −∗ L rules and whether they need to
be applied more than once to a formula. Nevertheless, our initial experimental
results already raise the hope that a more efficient proof search strategy can be
developed based on our calculus.

An immediate task is to find a complete and terminating (if possible) con-
straint solving strategy. Although we do not have a counter-model construction
procedure for our labelled systems, this aspect has been studied by Larchey-
Wendling using labelled tableaux [8]. The possibility to adapt his method to
BBIND using our calculus is also a future work.

Another interesting topic is to extend our calculus to handle some semantics
other than the non-deterministic monoidal ones. Our design of the structural
rules in LSBBI can be generalised as follows. If there is a semantic condition
of the form (w11, w12 � w13) ∧ · · · ∧ (wi1, wi2 � wi3) ⇒ (w′

11, w
′
12 � w

′
13) ∧ · · · ∧

(w′
j1, w

′
j2 � w

′
j3) ∧ (x11 = x12) ∧ · · · ∧ (xk1 = xk2), we create a rule:

(w′
11, w

′
12 � w

′
13); · · · ; (w′

j1, w
′
j2 � w

′
j3); (w11, w12 � w13); · · · ; (wi1, wi2 � wi3);Γ � Δ

r

(w11, w12 � w13); · · · ; (wi1, wi2 � wi3);Γ � Δ

And apply substitutions [x12/x11] · · · [xk2/xk1] globally on the premise, where
ε is not substituted. Many additional features can be added in this way. We
summarise the following desirable ones: (1) PD-semantics: the composition of

186 Z. Hóu, A. Tiu, and R. Goré

two elements is either the empty set or a singleton, i.e., (a, b � c) ∧ (a, b � d) ⇒
(c = d); (2) TD-semantics: the composition of any two elements is always defined
as a singleton, i.e., ∀a, b, ∃c s.t. (a, b � c); (3) indivisible unit: (cf. Section 1)
(a, b � ε) ⇒ (a = ε) ∧ (b = ε); and (4) cancellative: if w ◦ w′ is defined and
w ◦ w′ = w ◦ w′′, then w′ = w′′, i.e., (a, b � c) ∧ (a, d � c) ⇒ (b = d). Note that
(2) and (4) are in addition to (1). The above are formalised in rules P , T , IU ,
C respectively in Figure 6.

The formula (F ∗F)→ F , where F = ¬(�−∗ ¬�∗), differentiates BBIND and
BBIPD [10] and is provable using LSBBI + P . Using LSBBI + T , we can prove
(¬�∗−∗ ⊥) → �∗, which is valid in BBITD but not in BBIPD [10], and also
(�∗ ∧ ((p ∗ q)−∗ ⊥))→ ((p−∗ ⊥)∨ (q−∗ ⊥)), which is valid in separation models
iff the composition is total [4]. These additional rules preserve cut-elimination.

Oddly, the formula ¬(�∗ ∧ A ∧ (B ∗ ¬(C−∗ (�∗ → A)))), which is valid in
BBIND, is very hard to prove in the display calculus and Park et al.’s method.
We ran this formula using Park et al.’s prover for a week on a CORE i7 2600
processor, without success. Very short proofs of this formula exist in LSBBI or
Larchey-Wendling and Galmiche’s labelled tableaux (this formula must also be
valid in BBIPD). We are currently investigating this phenomenon.

References

1. Brotherston, J.: A unified display proof theory for bunched logic. ENTCS 265,
197–211 (2010)

2. Brotherston, J., Calcagno, C.: Classical BI: Its semantics and proof theory.
LMCS 6(3) (2010)

3. Brotherston, J., Kanovich, M.: Undecidability of propositional separation logic and
its neighbours. In: LICS, pp. 130–139 (2010)

4. Brotherston, J., Kanovich, M.: Undecidability of propositional separation logic and
its neighbours. Submitted to the Journal of ACM (2013)

5. Galmiche, D., Larchey-Wendling, D.: Expressivity properties of boolean BI through
relational models. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS,
vol. 4337, pp. 357–368. Springer, Heidelberg (2006)

6. Hoder, K., Voronkov, A.: Comparing unification algorithms in first-order theorem
proving. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803,
pp. 435–443. Springer, Heidelberg (2009)

7. Hóu, Z., Tiu, A., Goré, R.: A labelled sequent calculus for BBI: Proof theory and
proof search. arXiv:1302.4783 (2013)

8. Larchey-Wendling, D.: The formal strong completeness of partial monoidal boolean
BI. Submitted to Journal of Logic and Computation (2012)

9. Larchey-Wendling, D., Galmiche, D.: Exploring the relation between intuitionistic
BI and boolean BI: An unexpected embedding. MSCS 19(3), 435–500 (2009)

10. Larchey-Wendling, D., Galmiche, D.: The undecidability of boolean BI through
phase semantics. In: LICS, pp. 140–149 (2010)

11. Larchey-Wendling, D., Galmiche, D.: Non-deterministic phase semantics and the
undecidability of boolean BI. ACM TOCL 14(1) (2013)

12. Negri, S.: Proof analysis in modal logic. JPL 34(5-6), 507–544 (2005)

13. Negri, S., von Plato, J.: Structural Proof Theory. CUP (2001)

A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search 187

14. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. BSL 5(2), 215–244
(1999)

15. Park, J., Seo, J., Park, S.: A theorem prover for boolean BI. In: POPL 2013,
pp. 219–232. ACM, New York (2013)

16. Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications.
Applied Logic Series. Kluwer Academic Publishers (2002)

17. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS 2002, pp. 55–74. IEEE Computer Society (2002)

A Refined Tableau Calculus with Controlled

Blocking for the Description Logic SHOI

Mohammad Khodadadi, Renate A. Schmidt, and Dmitry Tishkovsky�

School of Computer Science, The University of Manchester, UK

Abstract The paper presents a tableau calculus with several refine-
ments for reasoning in the description logic SHOI. The calculus uses
non-standard rules for dealing with TBox statements. Whereas in exist-
ing tableau approaches a fixed rule is used for dealing with TBox state-
ments, we use a dynamically generated set of refined rules. This approach
has become practical because reasoners with flexible sets of rules can be
generated with the tableau prover generation prototype MetTeL. We
also define and investigate variations of the unrestricted blocking mech-
anism in which equality reasoning is realised by ordered rewriting and
the application of the blocking rule is controlled by excluding its applic-
ation to a fixed, finite set of individual terms. Reasoning with the unique
name assumption and excluding ABox individuals from the application
of blocking can be seen as two separate instances of the latter. Experi-
ments show the refinements lead to fewer rule applications and improved
performance.

1 Introduction

There exist various tableau algorithms for reasoning in description logics [2]. In
this paper we present a refinement of the tableau calculus introduced in [12] for
the description logic SHOI . Termination is ensured using a rewriting variant of
the unrestricted blocking rule [19]. A sufficient condition for termination using
unrestricted blocking is the finite model property [19], which SHOI is known
to have [5]. The core tableau rules are in line with a refined tableau calculus
obtained in the tableau synthesis framework [18], but, exploiting the tree model
property of SHOI, transitive roles are accommodated via propagation rules
rather than structural rules.

Labelled tableau approaches allow for a flexible derivation procedure, and are
not limited to logics with a form of tree model property. They are common for
modal and description logics, hybrid logics and various other non-classical logics,
cf. e.g., [6,2,3,4,1].

Different blocking mechanisms have been developed for description logic
tableau algorithms. A common point of these mechanisms is essentially that
they exploit kinds of the tree model property. They compare maximally expan-
ded label sets of concept expressions through the construction of tree-like models.

� This research is supported by UK EPSRC research grant EP/H043748/1.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 188–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Refined Tableau Calculus for SHOI 189

For more expressive logics, for example, logics with role inverse and nominals,
back-and-forth traversal of a tree model is required with implicit backtracking
using forms of dynamic blocking [9,10]. These blocking techniques provide strong
termination results but some care is needed to ensure soundness. In [16,19], it
was shown, the description logics ALBO and ALBOid, which do not have the
tree model property, can be decided using a labelled tableau approach enhanced
by the unrestricted blocking mechanism, while many existing blocking mech-
anisms are not sufficient for description logics without a kind of tree-model
property. The unrestricted blocking mechanism ensures weak termination. It is
generic and reverts decisions only when needed, namely, when only contradic-
tions were obtained. While many techniques in the tableau calculus presented
in this paper have similarities with techniques in existing tableau approaches,
there are also significant differences because our tableau calculus is designed to
be proof-confluent and as general as possible. We describe a rewriting variant of
the unrestricted blocking rule, because equality reasoning is realised by ordered
rewriting. In comparison to tableau calculi using essentially standard tableau
rules for equality, as for example [3,16,19], rewriting performs fewer inferences.
That is because essentially equivalent inference steps on equivalent individuals
are avoided. The ordering ensures only the currently smallest individual term in
an equivalence class is present in the current node of the tableau derivation.

While being generic the unrestricted blocking rule creates potentially a large
number of branching points in the derivation. It is thus important to investig-
ate ways of controlling the application of blocking while preserving soundness,
completeness and termination. The number of applications of the blocking rule
can be reduced by imposing additional side conditions or adding premises to the
rule. In this paper we discuss a general technique of controlling the blocking rule
by not applying it to members of an a priori given, finite set of individual terms.
This variant of the blocking rule can be utilised for reasoning in domains with
the unique name assumption, or where for example it is assumed that some of
the given ABox individuals are distinct.

Non-standard in our approach is the use of dynamically generated rules for
statements in the TBox rather than using a fixed rule. These dynamic rules are
rule refinements obtained in accordance with [20]. Using the MetTeL tool [22]
it is easy to generate tableau provers from tableau calculus specifications. This
means there is no need to implement a prover for the new tableau calculi manu-
ally. This enables us to easily generate a prover for a specific knowledge base
based on a calculus with dynamically generated rules. Following this approach we
can build specialised provers for various computer applications using ontologies
as the information backbone.

The paper is based on the workshop paper [12]. Its main contributions are
threefold. First, it presents a labelled tableau calculus for the description logic
SHOI (Section 3). Second, we discuss a general technique of controlling the
blocking rule by disabling its application to individual terms from an a pri-
ori given, finite set (Section 4). This approach can be utilised for reasoning in
domains with the unique name assumption. Third, we use a novel approach for

190 M. Khodadadi, R.A. Schmidt, and D. Tishkovsky

reasoning with respect to TBox statements (Section 5). Rather than using a fixed
tableau rule for TBox statements, we dynamically generate rules for each state-
ment. These dynamic rules are optimised by atomic rule refinement described
in [20].

The MetTeL tool [22] allows us to automatically generate a prover for a
specific knowledge base based on a calculus with dynamically generated rules.
In order to evaluate the provers that use the tableau calculi with dynamically
generated rules, an experimental comparison between them and provers that
use the fixed tableau rule was undertaken (Section 6). Controlled variants of
unrestricted blocking are also evaluated. Two repositories of existing ontologies
are used as problem sets.

Additionally, we establish the finite model property for SHOI (Section 2).
In [5], the finite model property for SHOI is obtained from a terminating tableau
algorithm. By contrast, our proof of termination in Section 3 takes the reverse
route. In the extended version [13] of this paper we provide an alternative proof
of the finite model property for SHOI by a standard filtration argument that
does not involve any form of tableau reasoning.

The paper is an extended version of the workshop paper [14]. Due to space
limitations all proofs are omitted but can be found in [13].

2 Syntax and Semantics of SHOI
The description logic SHOI [11,9] extends the description logic ALC with
singleton concepts, role inverse, transitive roles and role inclusion axioms. Its
language is defined over disjoint sets of atomic concepts, atomic roles and indi-
viduals. The set of individuals is assumed to be finite. C and D denote concepts,
A denotes an atomic concept, R and T denote roles, r denotes an atomic role and
a and b denote individuals. Concepts and roles are built from atomic concepts,
individuals, and atomic roles using the connectives {·} (singleton operator), ¬,
", and ∃· .· (existential restriction operator), − (role inverse operator) as defined
by these BNFs:

C
def
= A | {a} | ¬C | C " C | ∃R.C and R

def
= r | R−.

The operators�,⊥,! and ∀·.· are defined as usual. We assume that (r−)−
def
= r in

order to simplify the syntax and avoid repetitive occurrences of the role inverse
operator. Further, for every atomic role r, Trans(r) is used to specify that r is
transitive. (The predicate Trans is defined on atomic roles only because, in order
to specify that r− is transitive, it is enough to state that r is transitive.)

A knowledge base consists of an ABox A, a TBox T and an RBox R. A finite
number of concept assertions of the form a : C and role assertions of the form
(a, b) : R constitute the ABox. The hierarchy between concepts are expressed
in the TBox using a finite set of inclusion statements of the form C * D. The
RBox is a finite set of transitivity statements Trans(r) for some atomic roles r
and inclusion statements of the form R * T which are used to express the
hierarchy between roles. Normalisation of the RBox is not assumed.

A Refined Tableau Calculus for SHOI 191

We define the closure R+ of role inclusions in the RBox R as the smallest
RBox that contains R and satisfies the following two properties: (i) if Q * R ∈
R+ then Q− * R− ∈ R+; (ii) if Q * R,R * T ∈ R+ then Q * T ∈ R+. Given
an RBox R, let R∗ denote the RBox R+ ∪ {R * R | R is a role}.

A SHOI-model I is a tuple I def
= (ΔI , ·I), where ΔI is a non-empty domain

of interpretation and ·I is an interpretation function which maps individuals to
elements of ΔI , atomic concepts to subsets of ΔI , and atomic roles to binary
relations over ΔI . The interpretation function extends inductively to all concept
and role expressions as follows.

{a}I def
= {aI} (¬C)I

def
= ΔI \ CI (C "D)I

def
= CI ∪DI

(∃R.C)I
def
= {x | ∃y ∈ CI (x, y) ∈ RI} (R−)I

def
= {(x, y) | (y, x) ∈ RI}

For any expression or statement E, E is true (valid) in the model I is denoted
by I |= E and is defined as follows.

I |= C
def⇐⇒ CI = ΔI I |= a : C

def⇐⇒ aI ∈ CI

I |= R * T
def⇐⇒ RI ⊆ T I I |= (a, b) : R

def⇐⇒ (aI , bI) ∈ RI

I |= C * D
def⇐⇒ CI ⊆ DI I |= Trans(r)

def⇐⇒ rI is transitive

A concept C is satisfiable in a model I iff CI �= ∅. A concept is satisfiable in I
with respect to a knowledge base if it is satisfiable in I whenever every statement
of the knowledge base is true in I. That is, C is satisfiable with respect to
(A, T ,R) in I iff CI �= ∅ provided that I |= E for every E ∈ A ∪ T ∪ R.

The termination result in the next section for our tableau calculus for SHOI
relies on the finite model property of the logic.

Theorem 1 (Finite model property of SHOI [5,13]). If a concept C is
satisfiable with respect to a knowledge base (A, T ,R) in a SHOI-model then it
is satisfiable with respect to (A, T ,R) in a finite SHOI-model.

3 Tableau Calculus TabSHOI

The language of the tableau calculus is an extension of the language of SHOI
with equality formulae and individual terms used as labels. The set of (indi-
vidual) terms s is defined inductively by the grammar rule s

def
= a | f(s,R,C),

where a denotes any individual, C any concept, R any role, and f is a (fixed)
function symbol. Terms which are not ABox individuals can be viewed as be-
ing Skolem terms. Formulae in the tableau language are ABox assertions over
individual terms, and equalities of terms. More precisely, tableau formulae are
defined by the grammar rule E

def
= s : C | (s, t) : R | s ≈ t, where s and t are

individual terms, C is a concept and R is a role.
We extend the interpretation of SHOI to the tableau language as follows. For

every SHOI interpretation I, let the interpretation fI in I of the function f
be an arbitrary function that maps triples (x, ρ, χ) with x ∈ ΔI , ρ ⊆ (ΔI)2,
χ ⊆ ΔI to elements of ΔI . The semantics of tableau formulae is specified by:

192 M. Khodadadi, R.A. Schmidt, and D. Tishkovsky

(f(a,R,C))
I def

= fI(aI , RI , CI), I |= s : C
def⇐⇒ sI ∈ CI ,

I |= s ≈ t
def⇐⇒ sI = tI , I |= (s, t) : R

def⇐⇒ (sI , tI) ∈ RI .

Since the interpretations of the formulae s ≈ t, s : {t} and t : {s} coincide, we
refer to them as equalities, and to formulae of the form s : ¬{t} as inequalities.

Having defined the tableau language, next we give a general description of how
tableau derivations are constructed and define important notions of tableaux. Let
Tab denote a tableau calculus comprising of a set of inference rules. A derivation
or tableau for Tab is a finitely branching, ordered tree whose nodes are annotated
by sets of tableau formulae. Assuming that C is the input concept to be tested
for satisfiability with respect to a knowledge base (A, T ,R), the root node of
the tableau is the set {a : C} ∪ A, where a denotes a fresh individual and A is
the ABox. Successor nodes are constructed in accordance with a set of inference
rules in the calculus. The inference rules have the general form

X0

X1 | . . . | Xn
(side-condition),

where X0 is the set of premises and the Xi are the sets of conclusions. If n = 0,
the rule is called closure rule and written X0/⊥.

If a rule of the calculus is applicable to a leaf node of the tableau with a
matching substitution μ, and it is applied to the leaf node, then the tableau is
extended by attaching to the leaf node n child nodes annotated with N ∪ Xiμ
for i = 1, . . . n, respectively. In order to avoid redundancies we stipulate that
a rule application to a leaf node annotated with N is redundant if there is a
conclusion set Xi for some i = 1, . . . n of the rule such that Xiμ ⊆ N , where μ
is the matching substitution. This ensures rules are not applied more than once
to the same sets of formulae.

A branch in the tableau is a maximal path from the root of the tableau to a
leaf node. If a closure rule has been applied in a branch then the branch is said
to be closed. If a branch is not closed, it is called open. A tableau is closed if all
its branches are closed. A branch is fully expanded if no more rules are applicable
to its leaf node modulo redundancy. We call a tableau fully expanded iff all its
branches are fully expanded. We denote by Tab(A, T ,R, C) a fully expanded
tableau constructed using the calculus Tab for the input concept C (to be tested
for satisfiability) and the knowledge base (A, T ,R).

We use equality reasoning for individual terms to achieve termination for the
calculus. Equality reasoning can be provided in various ways. One is to supply
special tableau rules for reasoning modulo equalities within the branch in a
similar way as it is done in [3,16,19]. Another is to use ordered term rewriting.
Ordered rewriting is more efficient for handling equal individuals because it
allows to reduce the number of tableau formulae in the current branch. Since
all individual terms in any tableau derivation are ground, we are dealing with a
special case of rewriting, namely, ground rewriting.

In this paper, a rewrite system R is a binary relation on the set of all individual
terms and consists of rewrite rules which are pairs of individual terms. In order

A Refined Tableau Calculus for SHOI 193

(⊥):
s : ¬C, s : C

⊥ (¬¬):
s : ¬¬C
s : C

(∃):
s : ∃R.C

f(s,R,C) : C, (s, f(s,R,C)) : R
(�):

s : C �D
s : C | s : D

(¬∃):
s : ¬∃T.C, (s, t) : R

t : ¬C (R � T ∈ R∗) (¬�):
s : ¬(C �D)

s : ¬C, s : ¬D
(¬∃−):

s : ¬∃T−.C, (t, s) : R

t : ¬C (R � T ∈ R∗) (−):
(s, t) : R−

(t, s) : R

(tr):
s : ¬∃T.C, (s, t) : R

t : ¬∃R.C (R � T ∈ R∗, Trans(R) ∈ R) (id1):
s : C

s : {s}
(tr−):

s : ¬∃T−.C, (t, s) : R

t : ¬∃R−.C
(R � T ∈ R∗, Trans(R) ∈ R) (id2):

s : ¬{t}
t : {t}

(TBox):
s : {s}

s : (¬C �D)
(C � D ∈ T) (id3):

(s, t) : R

s : {s}, t : {t}
(RBox):

(s, t) : R

(s, t) : T
(R � T ∈ R+) (≈):

s : {t}
s ≈ t

(s �= t)

Fig. 1. The tableau calculus TabSHOI

to handle equalities, we orient each equality formula appearing in the current
branch according to a special, strict partial ordering . on individual terms. We
denote by s→ t a rewrite rule (s, t) in which s . t. Thus, if an equality formula
s ≈ t appears in a node of a branch then either s → t or t → s is added as a
rewrite rule to the rewrite system of the branch.

Our tableau calculus TabSHOI for the description logic SHOI is given in
Figure 1. The (⊥) rule is the closure rule. The (¬¬) rule removes occurrences
of double negation on concepts. The (") and (¬") rules are standard rules for
handling concept disjunctions. Given a tableau formula s : ∃R.C, the (∃) rule
introduces Skolem term f(s,R,C), as an R-successor of s (instead of introdu-
cing a fresh individual as might be done in other presentations). Using Skolem
terms has many advantages that outweigh drawbacks and perceived inconveni-
ences. In our setting, Skolem terms provide a convenient technical device to
keep track of the order in which witnesses for existential quantification were
introduced and record dependency on other witnesses. Such dependencies are
then used to stop redundant rule applications when combined with term rewrit-
ing. In systems not using Skolem terms this information is typically captured
by an ordering on individual constants. In addition, in combination with block-
ing there is no need to redo inference steps with existential extent that have
already been performed or resurrect phantom concepts. That is because when
rewriting happening on terms, we also rewrite their dependent Skolem terms and
consequently some applications of the (∃) rule become redundant. For example,
rewriting of the term f(i, R, C) to i causes terms such as f(f(i, R, C), R, C) and
f(f(f(i, R, C), R, C), R, C), which may appear in formulae in a branch, to be
rewritten to i. There is also no need for status variables to keep track of whether
individual constants are active or phantom in the deduction process.

The (¬∃) rule is equivalent to the standard rule for universally restricted
concepts. The (¬∃−) rule allows the backward propagation of concepts along

194 M. Khodadadi, R.A. Schmidt, and D. Tishkovsky

inverted links. The (−) rule inverts a given link. The (tr) rule propagates negated
existential concept restriction along a transitive link, while the (tr−) rule does
the same for inverse occurrences of transitive roles.

Equalities of the form s : {s} are tautologies, which are used in our calculus
as domain predicates for keeping track of the terms that have been introduced
to a branch. This is achieved with the three rules (id1), (id2) and (id3).

The (≈) rule is a special rule adding, what we call, a rewrite trigger s ≈ t
to the branch. Let . be any reduction ordering on the set of individuals in the
branch. The addition of any tableau formula s ≈ t to a set N of formulae, which
annotates a leaf tableau node, immediately triggers the following rewrite process.
Suppose that s . t (the case t . s is symmetrical). Then, s → t is added to
a rewrite system R associated with the current tableau branch. The tableau is
extended by attaching one child node to the current leaf node. The child node
is annotated by the set N ′ obtained by rewriting all the tableau formulae in N
with respect to the rewrite system R. In particular, this means that, in N ′ every
term s is replaced by a term u such that s

∗→u with respect to R.
For each concept inclusion C * D of the TBox, the (TBox) rule propagates

the concept ¬C " D to every label occurring on the branch. The (RBox) rule
propagates a link of a role into its super role according to the closure R+ of the
given RBoxR. In Section 5 we replace the (TBox) rule by dynamically generated
rules.

It is not difficult to see that each rule of TabSHOI preserves satisfiability.
Consequently we can state:

Theorem 2 (Soundness). The tableau calculus TabSHOI is sound for SHOI.
That is, if a concept C is satisfiable with respect to the knowledge base (A, T ,R)
then any fully expanded TabSHOI-tableau for (A, T ,R, C) has an open branch.

A tableau calculus Tab is complete iff for every knowledge base (A, T ,R) and
every concept C if C is unsatisfiable with respect to (A, T ,R) then there is
a closed tableau Tab(A, T ,R, C). In order to prove completeness of TabSHOI ,
we prove its constructive completeness, which implies completeness. A tableau
calculus Tab is constructively complete if for every open branch in any fully
expanded tableau Tab(A, T ,R, C) there is a model that validates the knowledge
base (A, T ,R) and satisfies C.

Theorem 3 (Completeness). TabSHOI is a (constructively) complete tableau
calculus for the description logic SHOI.

A form of blocking or loop-checking is necessary in order to ensure termin-
ation. We achieve termination by incorporating a variation of the unrestricted
blocking mechanism described in [16] into the tableau calculus. In [16] equality
reasoning is realised by tableau equality rules, whereas in this paper ordered
rewriting is used. We therefore adapt the unrestricted blocking rule from [16] as
follows:

(ub):
s : {s}, t : {t}
s ≈ t | s : ¬{t} (s �= t).

In order to achieve termination the following condition must hold.

A Refined Tableau Calculus for SHOI 195

Termination Condition: In every open branch there is some node from which
point onward before any application of the (∃) rule, all possible applications
of the (ub) rule have been performed.

The (ub) rule is applicable to any pair of distinct individual terms that are
used as labels in the current leaf node. When it is applied, two tableau successor
nodes are created. In the left node, s ≈ t acts as a trigger which induces rewriting
modulo derived equalities. In the right node, s : ¬{t} indicates that s and t are
not equal. The blocking is reversible, because, when no models can be found in
the left branch, reversion is performed through standard backtracking.

Let TabSHOI(ub) be the calculus consisting of all the rules of TabSHOI and
the (ub) rule. Since, the (ub) rule is sound, and TabSHOI is sound and (con-
structively) complete (Theorem 3), we get:

Theorem 4. TabSHOI(ub) is a sound and (constructively) complete for SHOI .

Based on [17,19] it can be shown that adding the rewriting version of un-
restricted blocking to a sound and constructively complete, ground semantic
tableau calculus ensures termination, if the logic has the finite model property.
A tableau calculus Tab is (weakly) terminating iff for any finite set N , every
closed tableau Tab(N) is finite and every open tableau Tab(N) has a finite open
branch [18]. A procedure based on a tableau calculus is fair if any inference that
is possible is performed eventually [19].

Theorem 5 (Termination). Any fair procedure based on the tableau calculus
TabSHOI(ub) is terminating for satisfiability in SHOI.

As branch selection fairness is particularly important, this provides a weak ter-
mination result and means that in an implementation breadth-first search or the
more efficient depth-first iterative deepening search gives a decision procedure.
Mainstream description logic tableau algorithms with less eager blocking con-
ditions are strongly terminating. We expect to be able to show termination for
algorithms based on TabSHOI(ub) using depth-first left-to-right search as well.

Theorem 6 (Decidability). Any fair procedure based on the tableau calculus
TabSHOI(ub) and satisfying the termination condition is a decision procedure
for SHOI and its sublogics.

4 Controlling the Application of Blocking Using (ubnoS)

The (ub) rule may potentially create a large number of branching points in the
derivation, as it is applicable to all pairs of individual terms in the branch. The
situation is worse if the knowledge base contains a large number of individu-
als and ∃-expressions. Also if the input concept is unsatisfiable with respect to
the knowledge base then no blocking inference steps are needed. However not
blocking is not an option, as it is not known in advance if a problem is un-
satisfiable or not. Examples show without blocking, it is not possible to avoid

196 M. Khodadadi, R.A. Schmidt, and D. Tishkovsky

infinite branches. It is thus important to find ways of controlling the application
of blocking without loosing termination. We may reduce the number of applica-
tions of the (ub) rule, and reduce the search space by imposing appropriate side
conditions on the application of the blocking rule. Ideal are side-conditions, and
additional premises, that maximise the chance of constructing a finite model
without the need for backtracking. It is however not possible to know which
identification of individual terms will aid the discovery of a finite model quickly.
It is clear that systematic approaches for selecting individual terms to identify
are needed, and different approaches display different performances.

The following theorem holds for arbitrary restrictions of the (ub) rule.

Theorem 7 (Soundness and completeness). The (ub) rule constrained by
any additional premises or side-conditions is sound. TabSHOI extended with
such a constrained rule is thus sound and constructively complete for SHOI.

In this section we introduce a general technique for controlling the application
of the (ub) rule. One possible way of controlling the (ub) rule is to find individual
terms whose identification is known not to be essential for termination. It could
also be that the domain of application dictates that certain individuals cannot
be equal. For example, a subset of the ABox individuals may be assumed to be
uniquely named.

Let us assume it is possible to specify a finite set S of individual terms which
we want to exclude from blocking or know their blocking is not essential. Consider
the following variation of the (ub) rule.

(ubnoS):
s : {s}, t : {t}
s ≈ t | s : ¬{t}(t �∈ S, s �= t)

In contrast to the unrestricted blocking rule, the rule is applicable to a pair of
distinct terms s and t if at least one of them does not belong to S. In other
words, the rule is not applied to two terms if both belong to S. This means the
rule is not symmetric with respect to s and t, but this is not essential. One can
however consider a symmetric variant of the rule where s and t are both required
to be outside of S. Although the application of the symmetric rule is even more
restricted, Theorem 8 below remains true.

Let TabSHOI(ubnoS) be the calculus consisting of all the rules of TabSHOI
and the (ubnoS) rule.

Theorem 8. Let S be a finite set of individual terms. Then TabSHOI(ubnoS)
is sound, complete and terminating for SHOI .

Replacing the (ub) rule with the (ubnoS) rule, the calculus remains sound
and complete, since the (ubnoS) rule is a sound rule. However, preservation of
termination needs to be formally proved. This can be done by showing that there
exists a finite open branch for any satisfiable concept C when constructing the
complete tableau using TabSHOI(ubnoS). Since the existence of an open branch is
ensured by soundness, we just need to show there is a finite open branch. This can
be shown by constructing a finite, fully expanded and open branch, with the use

A Refined Tableau Calculus for SHOI 197

of a model branch built for the given concept using TabSHOI(ub). Guided by the
model branch, a finite fully expanded branch for the same concept is constructed
by TabSHOI(ubnoS). During the construction, an association function is used to
limit the possible selection of branches to the ones that mimic the model branch.
The association function is formed using the instances of the blocking rule which
are no longer applicable. The complete proof of a generic variant of this theorem
for arbitrary description logics is presented in [13].

Different variations of the (ubnoS) rule can be introduced based on how S is
chosen. Possible criteria for choosing members of S are syntactic criteria, for
example, individual terms that are not used as labels for any ∃-expressions.

Also, the (ubnoS) rule can be used for reasoning modulo an implicit unique
name assumption for a finite subset of the individuals. This is expected to be
more efficient than adding explicit inequality assertions to the input set to ensure
unique name assumption, which may cause a drop in performance by increasing
the overhead for premise selection. Let Si be a finite set of individual terms which
are assumed to be uniquely named. For each set Si, an instance of the (ubnoS)
rule should be introduced. An ontology which contains national identification
numbers of people as well as student identification numbers, is a good example
for this case. None of the national identification numbers (represented by indi-
viduals) should be identifiable, equally no student identification numbers should
refer to the same person. But a national identification number and a student
identification number can refer to the same person.

In our setting, ABox individuals are not excluded from being blocked as in
many description logic tableau systems and the blocking rule is applicable to
the pairs of ABox individuals. So, we may form a set S using all the ABox
individuals. Then, similar to [8], no terms from S are identified which were not
created during the derivation. For this case individuals in S need to be specified
to be smallest with respect to the reduction ordering ≺ and this instance of
the (ubnoS) rule needs to be used.

(ubnoABox):
s : {s}, t : {t}
s ≈ t | s : ¬{t} (t is not an ABox individual , s �= t)

5 Refined Tableau Calculus

In this section we refine the calculus TabSHOI presented in Section 3. The idea
of the refinement is that the (TBox) rule is replaced by dynamically generated
and refined tableau rules.

In the first step, all the atomic concepts in the TBox T are equi-satisfiably
replaced by constant concepts and the parametric (TBox) rule is represented
as a set of tableau rules for each C * D ∈ T . That is, rather than one rule
schema for all statements, a set of rules, one for each statement, is present in
the calculus. The following rule is generated for each statement C * D from the
TBox T .

s : {s}
s : ¬C | s : D

198 M. Khodadadi, R.A. Schmidt, and D. Tishkovsky

Subsequently, this rule is transformed to an equivalent rule where the disjunctive
normal forms of the negation normal forms of ¬C andD are split into branches of
the rule. For example, for the TBox statement Horse!Baby * Foal, the following
rule is obtained.

s : {s}
s : ¬Horse | s : ¬Baby | s : Foal

Notice that all the atomic concepts in the generated rules are constants and they
can only match with themselves. The benefit of such a replacement of the (TBox)
rule by a set of rules is the possibility of refining the rules. This allows to reduce
the branching factor of the rules, while preserving soundness and (constructive)
completeness, by using atomic rule refinement introduced in [20]. Atomic rule
refinement is a special case of general rule refinement which was introduced
in [18]. Under the atomic rule refinement, all conclusions of a rule that are of
the form s : ¬A, where A is an atomic concept or a singleton, are moved to
the premise of the rule as s : A. For example, the rule for the TBox statement
Horse ! Baby * Foal is refined to the following rule.

s : Horse, s : Baby

s : Foal

In the second step, we apply atomic rule refinement to all the rules obtained
from the TBox statements. Consequently there are fewer branches in the con-
clusions and additional premises are added that limit the application of the
rules. (Similar refinements on instances of the (RBox) rule are possible for more
expressive logics with negated role assertions.)

Let Tabdyn,TSHOI(ub) denote the calculus which consists of the refined generated
tableau rules from the TBox T and all rules of TabSHOI except the (TBox) rule.
That is, for each statement C * D ∈ T a corresponding tableau rule is generated
and refined according to atomic rule refinement. Soundness and completeness of
Tabdyn,TSHOI(ub) is a direct consequence of the results in [20].

Theorem 9. Tabdyn,TSHOI(ub) is sound, constructively complete and terminating
tableau calculus for reasoning in SHOIwith respect to a knowledge base (A, T ,R)
with a fixed TBox T .

6 Implementation and Experimental Results

In order to analyse the practical benefit of atomic rule refinement and the
(ubnoS) rule, two experiments were designed. MetTeL version 2.0-487 was used

to generate provers based on variants of TabSHOI(ub) and Tabdyn,TSHOI(ub) for
various ontologies. MetTeL generates Java code for a tableau prover from the
specification of the syntax of a logic and the specification of a tableau calculus.1

1 More information about how to generate a tableau prover using MetTeL is available
in [21].

A Refined Tableau Calculus for SHOI 199

By default, the tableau provers generated with MetTeL use a depth-first left-
to-right search strategy. While specifying the specification of tableau calculus,
appropriate rule priorities were assigned to ensure the fairness of the expansion
strategy and hence guarantee termination. The generated provers were used with
no modification in this experiment. For simplicity of implementation, instead of
the propagation rules (tr) and (tr−) standard transitivity rules were used in the
calculi. We indicate the variations by the superscript +.

In order to embrace an extensive range of problems with varying input sizes
and expressivity, the experiment used the TONES ontology repository [23] and
the corpus of OWL DL ontologies from [15]. The complete repositories of 874
ontologies were downloaded. A translator using the OWL API [7] was developed
to prepare appropriate input for MetTeL. Each ontology was converted into
three forms with the translator. The first form provided input to Fact++ [24]
which was then used to validate the translation and outputs of the provers.
The second form were translations of the ontology so that we could check its
consistency with a prover generated by MetTeL using Tab+SHOI(ub) as the
tableau specification. The third form was used in two ways. First, it was used
to produce a tableau specification for Tab+,dyn,T

SHOI (ub) containing the dynamic
rules generated from the ontology. Second, the remaining ontology axioms were
translated so that the prover generated using the specification of Tab+,dyn,T

SHOI (ub)
could check its consistency. Inputs prepared for both provers were then used
with a results file from Fact++ to produce additional problem sets. One of the
results files produced by Fact++ contains the class hierarchy of the ontology.
For a randomly picked subsumption relation C * D in the hierarchy and a
fresh individual s, s : C and s : D were added to the input file to form an
additional satisfiable input, and respectively s : C and s : ¬D were added to
form an additional unsatisfiable input. This experiment was aimed at evaluating
the effect on reasoning performance when using Tab+,dyn,T

SHOI (ub) in comparison to
Tab+SHOI(ub). This means we checked the consistency of the input but omitted
checking satisfiability of all concepts and calculating concept hierarchies.

The developed translator successfully translated 628 ontologies and each
prover was executed on 2480 inputs with a timeout of 100 seconds. The com-
parison was done by measuring the execution time of the prover. The results of
the comparison of Tab+SHOI(ub) and Tab+,dyn,T

SHOI (ub) are presented in Table 1.
For the set of results with timeout, when a prover did not return any answer
within 100 seconds, 100 seconds were used in the calculation of the average in
time. While for the set of results without timeout, if one of the provers under
comparison required more than 100 seconds, that input is not included in the
results. The results show that the generated provers based on the refined tableau
calculus were faster for unsatisfiable inputs. Inspection showed this was mainly
a consequence of having additional closure rules. These closure rules were re-
finements of dynamically generated rules from TBox statements where all the
conclusions have been turned into premises in a rule. The scatter plot on the left
of Figure 2 gives a more differentiated picture of the performance. On average
we observed a 22% drop in memory use for satisfiable inputs and a 74% drop for

200 M. Khodadadi, R.A. Schmidt, and D. Tishkovsky

Table 1. Average run times in seconds for Tab+
SHOI(ub) and Tab+,dyn,T

SHOI (ub)

With timeout Without timeout

Input count Tab+
SHOI(ub) Tab

+,dyn,T
SHOI (ub) count Tab+

SHOI(ub) Tab
+,dyn,T
SHOI (ub)

Ontology
consistency 628 27.627 43.094 346 0.951 1.049

Satisfiable
inputs 924 60.847 65.999 180 13.447 0.869

Unsatisfiable
inputs 928 21.521 3.643 760 5.053 1.841

Table 2. Average run times in seconds for Tab+,dyn,T
SHOI (ub) and Tab+,dyn,T

SHOI (ubnoABox)

With timeout Without timeout

Input count (ub) (ubnoABox) count (ub) (ubnoABox)
Ontology
consistency 628 43.094 35.893 346 1.049 1.025

Satisfiable
inputs 924 65.999 56.300 180 0.869 0.661

Unsatisfiable
inputs 928 3.643 3.635 760 1.841 1.832

unsatisfiable inputs when using Tab+,dyn,T
SHOI (ub) in comparison to Tab+SHOI(ub).

As expected, the performance of the systems were not comparable with Fact++.
Moreover, an experiment to compare the performance of Tab+,dyn,T

SHOI (ub) and

Tab+,dyn,T
SHOI (ubnoABox), using the same inputs as before, was designed. Since it is

not yet possible to express rules such as the (ubnoS) rule in the MetTeL rule

specification language, we generated a prover for the tableau calculus Tab+,dyn,T
SHOI

without any blocking mechanism. Then, code implementing the (ubnoABox) rule

Fig. 2. Scatter plots of Tab+
SHOI(ub) vs. Tab+,dyn,T

SHOI (ub) and Tab+,dyn,T
SHOI (ub) vs.

Tab+,dyn,T
SHOI (ubnoABox)

A Refined Tableau Calculus for SHOI 201

was manually added to the generated Java code. In order to have a fair compar-
ison, the prover for the (ub) rule was also created by manually adding code im-
plementing the (ub) rule. The results of the comparison are presented in Table 2
and on the right in Figure 2.

The experimental results show using the (ubnoABox) rule had a small benefit
in most cases, but there was a group of satisfiable problems not solved using the
(ub) rule within the timeout that could be solved under 10 seconds when using
the (ubnoABox) rule. A closer analysis of some of the problems suggested this was
because they implicitly force the unique name assumption for a large number of
ABox individuals.

7 Concluding Remarks

A tableau decision procedure for the description logic SHOI was presented
in this paper. A refined version of the tableau calculus in [12] was presented
which uses dynamically generated tableau rules when reasoning with respect to
a knowledge base. Following a rule refinement technique in [20] the generated
tableau rules were refined leading to a smaller search space. We investigated a
controlled variant of the unrestricted blocking rule not applied to members of
an a priori defined, finite set. This variant can be utilised for scenarios such as
reasoning under unique name assumption.

A comparison was done between the provers generated using the tableau cal-
culus with dynamically generated tableau rules, and a prover with the fixed rule
for dealing with TBox statements. The results showed the former is more op-
timised especially for unsatisfiable inputs. The analysis of the reduction in the
branching points and complexity is left as future work.

Other future plans include studying the relationship between properties of a
logic and minimally required blocking criteria. That is, expressing side conditions
that can be used to control the unrestricted blocking rule to be applied as little
as possible. This should be done without endangering termination. Expressing
existing blocking mechanisms as variants of unrestricted blocking mechanism, is
also one of our future plans. Using these results, we hope to be able to provide
uniform explanations and implementations of blocking mechanisms in tableau
provers.

References

1. Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Tableau calculi for CSL over
minspaces. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 52–66.
Springer, Heidelberg (2010)

2. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Studia Logica 69(1), 5–40 (2001)

3. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Logic Com-
put. 17(3), 517–554 (2007)

4. Cialdea Mayer, M., Cerrito, S.: Nominal substitution at work with the global and
converse modalities. In: Proc. AiML-8, pp. 57–74. College Publ. (2010)

202 M. Khodadadi, R.A. Schmidt, and D. Tishkovsky

5. Duc, C.L., Lamolle, M.: Decidability of description logics with transitive closure
of roles in concept and role inclusion axioms. In: Proc. DL 2010. CEUR Workshop
Proceedings, vol. 573 (2010)

6. Fitting, M.: Proof methods for modal and intuitionistic logics. Kluwer (1983)
7. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies.

Semantic Web 2(1), 11–21 (2011)
8. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.

KR 2006, pp. 57–67. AAAI Press (2006)
9. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and

role hierarchies. J. Logic Comput. 9(3), 385–410 (1999)
10. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Automat.

Reasoning 39(3), 249–276 (2007)
11. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description

logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS,
vol. 1705, pp. 161–180. Springer, Heidelberg (1999)

12. Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: An abstract tableau calculus for
the description logic SHOI using unrestricted blocking and rewriting. In: Proc. DL
2012. CEUR Workshop Proceedings, vol. 846, pp. 224–234 (2012)

13. Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: A refined tableau calculus with
controlled blocking for the description logic SHOI (2013),
http://www.mettel-prover.org/papers/controlled.pdf

14. Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: A refined tableau calculus with
controlled blocking for the description logic SHOI. To Appear in Proc. DL 2013.
CEUR Workshop Proceedings (2013)

15. Matentzoglu, N., Bail, S., Parsia, B.: A corpus of OWL DL ontologies. To Appear
in Proc. DL 2013. CEUR Workshop Proceedings (2013)

16. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description lo-
gics with role negation. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS,
vol. 4825, pp. 438–451. Springer, Heidelberg (2007)

17. Schmidt, R.A., Tishkovsky, D.: A general tableau method for deciding description
logics, modal logics and related first-order fragments. In: Armando, A., Baumgart-
ner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 194–209.
Springer, Heidelberg (2008)

18. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Logical
Methods in Comput. Sci. 7(2), 1–32 (2011)

19. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full
role negation and identity. arXiv e-Print, abs/1208.1476 (2012)

20. Tishkovsky, D., Schmidt, R.A.: Refinement in the tableau synthesis framework.
arXiv e-Print, abs/1305.3131 (2013)

21. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: Mettel2: Towards a tableau prover
generation platform. In: Proc. PAAR 2012. EasyChair Proceedings (2012)

22. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator
MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS,
vol. 7519, pp. 492–495. Springer, Heidelberg (2012)

23. TONES. The tones ontology repository (March 5, 2013)
24. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System descrip-

tion. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 292–297. Springer, Heidelberg (2006)

http://www.mettel-prover.org/papers/controlled.pdf

Prefixed Tableau Systems

for Logic of Proofs and Provability

Hidenori Kurokawa

Kobe University, Department of Information Science
hidenori.kurokawa@gmail.com

Abstract. In this paper, we introduce prefixed tableau systems for log-
ics combining Artemov’s logic of proofs, which is introduced in order to
explore combinatorial structure of proofs, and the logic of provability
(strong provability), which has been studied as a logic of formal prov-
ability (provability and truth) in arithmetic for decades. Such joint logics
have already been studied, but no cut-free tableau systems for these log-
ics have been available in the literature so far. We show the admissibility
of cut for these systems via semantic completeness for cut-free prefixed
tableau systems for these logics.

Keywords: prefixed tableau system, logic of proofs, provability logic.

1 Introduction

Gödel-Löb logic (GL) has been the fundamental modal logic in the area of prov-
ability logic (see, [5]). On the other hand, the logic of proofs (LP, aka justification
logic) was introduced (in [2]) as an explicit modal logic to study the structure
of ‘proofs’ at the level of propositional logic. Yet another logic has been stud-
ied to capture the notion of “being provable in PA and true” (called “strong
provability”). The modal logic for strong provability is known as Grz [5].

Logics that combine GL (Grz) and LP have already been introduced, and
their arithmetic interpretations ([15], [3], [13]) have been studied. Fitting-style
semantics for these logics have also been studied under the names GLA and GrzA
([13], [14]). By combining GL and LP, we can observe how the notion of formal
provability in PA and the notion of proofs in PA interact. A good illustration of
this is one axiom in GLA, i.e., ¬t : ϕ → �¬t : ϕ (we call this “mixed negative
introspection”). This formula is of interest, not only because it is a kind of
negative introspection, which is an analogue of the axiom ¬�ϕ → �¬�ϕ in
S5 but also because this statement is valid in arithmetic interpretations. More
generally, GLA may be of interest because we can express some formula, e.g.,
¬t : �⊥, whose arithmetical interpretation may be interesting and discuss their
provability in a modal propositional logic.

In this paper, we introduce prefixed tableau systems for both GrzA and GLA
and show cut-admissibility of these systems. (Note that the only proof systems of
these logics currently available are Hilbert-style systems.) We claim that cut-free
systems for these logics are desirable. This is because a cut-free proof may give a

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 203–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

204 H. Kurokawa

more perspicuous view about the meaning of a proven sentence in the way that
so-called “proof-theoretic semantics” talks about the meaning of a sentence.

We use prefixed tableau systems primarily because the mixed negative in-
trospection in these logics makes it difficult to formulate cut-free destructive
tableau systems for the logics. In addition to this reason which is analogous to
S5, there are other reasons why semantically proving cut-admissibility of the pre-
fixed tableau systems for these logics is significantly less trivial than one might
initially expect. First, we need to satisfy both the closure conditions for an item
in the semantics called an“evidence function” in order to handle proof terms in
LP and the frame condition for GL (Grz). This apparently requires us to once
use an infinitary construction of maximal consistent set and to somehow make
some feature of it “finite.” Second, for GLA, a new rule called “reflection rule”
also needs a special care.1

2 Hilbert-Style Systems and Kripke-Fitting Models

The language of GLA (LGLA) can be specified as follows:

1. The class of proof terms (Trm) inLGLA is specified as t := x|a|!t|t1 · t2|t1+ t2

In proof-terms, x is a proof variable, a is a proof constant, and we have proof
operators: !(proof-checker), · (proof application), + (proof sum).2

2. The class of formulas (Fmla) in LGLA is specified as follows:

A := pi|⊥|¬A1|A1 → A2|A1 ∧A2|A1 ∨ A2|t :A|�A

Hilbert style system of GLA is given as follows.

I. Axioms: 0) Axioms of Propositional Logic
1) Axioms of LP: 1. t : (ϕ→ ψ)→ (s :ϕ→ t · s :ψ)
2. t :ϕ→ ϕ 3. t :ϕ→!t : t :ϕ 4. t :ϕ→ t+ s :ϕ, s :ϕ→ t+ s :ϕ

2) Axioms of GL: 1.�(ϕ→ ψ)→ (�ϕ→ �ψ) 2.�ϕ→ ��ϕ 3.�(�ϕ→ ϕ)→ �ϕ
3) Connecting Axioms: 1. t :ϕ→ �ϕ 2.¬t :ϕ→ �¬t :ϕ 3. t :�ϕ→ ϕ

II. Rules of Inference: 1. Modus Ponens 2.
ϕ

�ϕ 3. Reflection Rule
�ϕ
ϕ

4. Axiom necessitation c :A, for A ∈ CS(c), where CS is a constant specification
(c.s.), i.e., a function which maps a proof constant to the set of axioms in GLA.

Note: (1) For a reason to be explained later, we define a subsystem of GLA
(“wGLA”) by removing the connecting axiom 3. t :�ϕ → ϕ and reflection rule
from GLA.

1 For modal characteristic rules for GL and Grz, we use extant rules presented in [9].
2 Note that there are countably many proof variables and proof constants in the
language.

Prefixed Tableau Systems for Logic of Proofs and Provability 205

(2) We could formulate GLA∅ (GLA with the empty constant specification)
and define GLACS to be GLA with a specific constant specification. However,
in this paper, we do not discuss topics in which subtle issues about constant
specifications matter. Thus, we have integrated the full constant specification to
the system GLA.

We now define Kripke-Fitting semantics for wGLA.3 Let a quadruple (K,R,Re,
r) be a frame, where K is non-empty set. Let R be binary relation over K satis-
fying the following conditions : (1) R is a strict partial order; (2) R has a single
root r; (3) R has no infinite ascending chain. Re is a reflexive, symmetric and
transitive relation. We also require R ⊆ Re.4 Let E be an evidence function
(a function which assigns to a state and a term an “evidence” that is a set of
formulas): K × Trm −→ P(Fmla) that satisfies the following properties (CS is
a constant specification for wGLA):

1. uRev implies E(u, t) ⊆ E(v, t) (Monotonicity)5;
2. F → G ∈ E(u, t) and F ∈ E(u, s) implies G ∈ E(u, t · s);
3. F ∈ E(u, t) implies t : F ∈ E(u, !t); 4. E(u, s) ∪ E(u, t) ⊆ E(u, s+ t);
5. CS(c) ⊆ E(u, c).

We define a wGLA model as a sextuple (K,R,Re, r, E ,�), where r is the root
node of the relation R and � is a forcing relation such that

1. � commutes with Booleans at each state; for all u ∈ K, u � ⊥.
2. u � �ϕ iff for every v ∈ K, s.t. uRv, v � ϕ
3. u � t :ϕ iff ϕ ∈ E(u, t) and for every v ∈ K, s.t. uRev, v � ϕ.
4. A ∈ CS(c) implies K, u � c :A for every u ∈ K.

We have one additional condition for a model of GLA (w.r.t. a formula ϕ).

Root Soundness: Let r be the root of a tree wGLA model for ϕ. Then con-
sider the following condition : r � Rf(Sb(ϕ)) for a given formula ϕ, where
Rf(Sb(ϕ)) = {�A→ A|�A ∈ Sb(ϕ)}. (Sb(ϕ) stands for the set of subformulas
of ϕ and Rf means “root formulas.”) We call a model that satisfies this con-
dition “a ϕ-sound GLA model” with CS, usually suppressing CS, for a specific
formula ϕ.

Note: Only wGLA axioms and rules are sound with respect to the class of wGLA.
The axiom t : �ϕ → ϕ and reflection rule �ϕ/ϕ are sound only with respect
to �ϕ-sound GLA models. This terminology seems to be inevitable, since �ϕ-
soundness depends on a particular formula �ϕ.

Also, ϕ is said to be valid in a model K (K � ϕ), when for any u ∈ K, u � ϕ.

3 “=⇒”, “∀” and “∃” are abbreviations of “if . . . , then . . . ”, “for all” and “there
exists.”

4 Re could be treated as a universal relation ([13]). But for a technical reason, we use
Re.

5 By symmetry of uRev, 1 implies E(u, t) = E(v, t). We call this stability.

206 H. Kurokawa

We now move on to GrzA. The language of GrzA can be specified in a manner
similar to that of GLA. The only difference is that we have �A instead of �A.

A Hilbert style system of GrzA is as follows.

I. Axioms: 0) Axioms of Propositional Logic 1) Axioms of LP: same as GLA
2) Axioms of Grz: 1. �(ϕ→ ψ)→ (�ϕ→ �ψ)
2. �ϕ→ ϕ 3. �ϕ→ �� ϕ 4. �(�(ϕ→ �ϕ)→ ϕ)→ ϕ

3) Connecting Axioms: 1. t :ϕ→ �ϕ 2. ¬t :ϕ→ �¬t :ϕ

II. Rules of Inference: 1. Modus Ponens 2. Necessitation
ϕ

�ϕ
3. Axiom necessitation c :A for A ∈ CS(c) (CS is a c.s. for GrzA).

A Kripke-Fitting model Ks(= (Ks, Rs, Re, r, E ,�)) for GrzA is given as
follows.

1. Rs is a non-strict partial order (with a single root) that has no strictly
ascending infinite chain. (Note the redundancy of the root soundness.)

2. Other conditions for Kripke-Fitting models for GLA and GrzA are the same.

3 Prefixed Tableau System for GrzA

For the sake of expository convenience, we first introduce a prefixed tableaux
system for GrzA called “TGrzA” and we prove soundness and completeness of
TGrzA.

Here is the prefixed tableau system TGrzA. We follow Fitting’s terminology
for basic notions in the prefixed tableau system (e.g., [6]). σTϕ or σFϕ is called
“a prefixed signed formula,” and Tϕ or Fϕ is called “a signed formula,” where
T and F are intended to mean “true” and “false” respectively, and a prefix σ
is a sequence of positive integers, intended to represent a possible world in a
Kripke-Fitting model. A branch is closed if (1) σTϕ and σFϕ are on it or (2)
some specific closure condition is satisfied in a particular tableau system (e.g.,
see ⊥-rule or CS rules below). A tableau is closed if all branches of it are closed.
We say that a formula ϕ has a tableau proof in TGrzA if 1Fϕ has a closed
tableau in TGrzA. We say σ is used on a branch if a prefix that has σ as its (not
necessarily proper) initial segment has already occurred on the branch, and we
say σ is new, otherwise.

Classical propositional rules α-rule, β-rule and ⊥-rule (see [6]).

α-rule:
σTϕ ∧ ψ
σTϕ

σFϕ ∨ ψ
σFϕ

σFϕ→ ψ

σTϕ

σT¬ϕ
σFϕ

σF¬ϕ
σTϕ

σTψ σFψ σFψ

β-rule:
σTϕ ∨ ψ

σTϕ | σTψ
σFϕ ∧ ψ

σFϕ | σFψ
σTϕ→ ψ

σFϕ | σTψ

⊥-rule: A branch is closed if σT⊥ occurs on it.

Modal Rules: ν-rules: νK
σT � ϕ

σ.nTϕ
ν4

σT � ϕ

σ.nT � ϕ
(σ.n is used for νK , ν4.) νT

σT � ϕ

σTϕ

Prefixed Tableau Systems for Logic of Proofs and Provability 207

π-rule for Grz:
σF � ϕ

σ.nFϕ
(σ.n is new.)

σ.nT � (ϕ→ �ϕ)

Rules for LP: (ν-rules for explicit proofs)

EK
σT t :ϕ

σ.nTϕ
(σ.n is used.) ET

σT t :ϕ

σTϕ
E4

σT t :ϕ

σ.nT t :ϕ
(σ.n is used.)

E4r
σ.nT t :ϕ

σT t :ϕ
EF

σFt :ϕ

σ.nF t :ϕ
(σ.n is used.) EFr

σ.nF t :ϕ

σFt :ϕ

Operational Rules on F’s : ·-rule σF (t · s) :ϕ
σFt :ψ→ ϕ|σFs :ψ

!-rule
σF !t : t :ϕ

σFt :ϕ
+-rule

σF (s+ t) :ϕ

σFt :ϕ

σF (t+ s) :ϕ

σFt :ϕ

Constant Specification (CS) Rules: a branch is closed if it has σFc :A (A ∈ CS(c)).

We give a few further definitions. We write σ ≤ σ′ if σ is a (not necessarily
proper) initial segment of σ′. A signed formula Fϕ, Tϕ is realized at a possible
world u of a model Ks if 1) the formula is Tϕ and Ks, u � ϕ or 2) the formula
is Fϕ and Ks, u � ϕ. Let N be a GrzA interpretation (partial) function from
the set of finite σ-sequences to the underlying set K of a model if, for any
σ, σ′ ∈ Dom(N), (1) ∃u (N (σ)Rsu) and σ ≤ σ′ =⇒ N (σ)RsN (σ′) and (2) ∃u
(N (σ)Reu) =⇒ N (σ)ReN (σ′).

Let Φ be a signed formula (Tϕ or Fϕ). A set S of prefixed signed formula
is satisfiable if there is a model Ks and a mapping N from the prefixes in S to
possible worlds in Ks, such that if σΦ ∈ S, then Φ is realized at N (σ) in Ks.
(Similarly for a branch and a tableau.) Now we prove soundness of the prefixed
tableau system.

Lemma 1. Suppose T is a satisfiable tableau. If any tableau rule for GrzA is
applied to T , then the resulting tableau is still satisfiable.

Proof. Suppose a tableau is GrzA-satisfiable because a branch θ of T is GrzA-
satisfiable, i.e. its members are realized at N (σ) of model Ks. Suppose that a
tableau rule for GrzA is applied to the tableau T . The entire proof is divided
into two cases. Case 1: Our tableau rule is not applied on the branch θ. Then, θ
is still present on the new tableau, which makes θ obviously GrzA-satisfiable.

Case 2: The tableau rule is applied on θ. LP-rules, ν rules for � in GrzA are
similar to the cases of S4LPN in [12]. The proof of the case of π-rule is quite
intriguing and not necessarily a routine, but it is excessively long. Thus, we omit
it here.

Theorem 1 (Soundness).
If ϕ has a prefixed GrzA-tableau proof, then ϕ is valid in all models for GrzA.

Proof. The standard reductio argument showing the soundness of a tableau sys-
tem via the above lemma.

208 H. Kurokawa

Now we move on to the completeness theorem. Let us fix a formula unprovable
in GrzA. We construct a countermodel for the formula. Let us give an outline of
a construction of a countermodel for the unprovable formula ϕ in GrzA.

Step 1. We carry out Lindenbaum-Henkin construction for GrzA.
Step 2. We verify that the constructed canonical (pseudo-)model satisfies the

conditions of evidence function and forcing relation (Truth Lemma). However,
our canonical (pseudo-)model does not satisfy the frame condition that there
is no infinite strictly ascending chain. To satisfy the condition, we take further
steps.

Step 3. We define the notion of bounded bisimulation and prove a proposi-
tion that for any formula of degree n, n-bisimilar states of the two models are
equivalent.

Step 4. By using this, we construct a finite height model from the canonical
model Ks such that the height is less than or equal to the degree of the formula
ϕ. We show that the constructed n-height model is indeed a countermodel for ϕ.

Step 1: We start discussing Lindenbaum-Henkin construction ([7]). We first
give some definitions. A set S of prefixed formulas is GrzA-consistent if no GrzA-
tableau for a finite part of S is closed. S is maximally GrzA-consistent if S is
GrzA-consistent and no S′, s.t. S � S′ is GrzA-consistent. S is π-complete (or
F �ϕ-complete) provided, if σF �ϕ ∈ S, then for some integer k, σ.kFϕ ∈ S. S
omits infinitely many integers if the set of integers that do not appear in prefixes
in S is infinite.

Let us now give Lindenbaum-Henkin construction. Enumerate all formulas
σiΦi in the language of GrzA. Then construct Sn (for each n ∈ N) as follows.

S0 = {1Fϕ};

Sn+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sn ∪ {σnΨn} if this is consistent and Ψn is not F � ψn;
Sn ∪ {σnπ} ∪ {σn.kπ0} ∪ {σn.kT � (ψn → �ψn)}

if Sn ∪ {σnΨn} is consistent, Ψn = π = F � ψn and π0 = Fψn

and σn.k is new (= does not occur in Sn or in σnπ);
Sn otherwise.

Let Sω =
⋃

n Sn. The construction is similar the one for the modal logic K
in [7] except that we use GrzA-consistency. We state the following claims and
lemmas.

Claim. Sn omits infinitely many integers.
Claim. If Sn ∪ {σnπ} is GrzA-consistent, then so is Sn ∪ {σnπ, σn.kπ0, σn.kT �
(ψn → �ψn)}, provided that σn.k is new.
Claim. If Sn omits infinitely many integers, there will be a new prefix to be used
in constructing Sn+1.

Lemma 2. If {1Fϕ} is GrzA-consistent, then Sω will be maximally GrzA-
consistent and π-complete.

Proof. The argument is similar to the standard one used in Henkin-construction
for proving completeness of first-order logic.

Prefixed Tableau Systems for Logic of Proofs and Provability 209

Now we construct a canonical Kripke-Fitting model Ks = (Ks, Rs, Re, r, E ,�)
for GrzA based on this maximal GrzA-consistent set. Let Ks be {σ|σΦ ∈ Sω}.
We identify sequences with possible worlds (so the interpretation function will
be the identity function). The accessibility relations Rs and Re, the root node
r, forcing relation � (for atomic p) and evidence function E are given as follows:
1. σRsσ′ iff σ is a (not necessarily proper) initial segment of σ′ (σ ≤ σ′); 2.
σReσ′ iff 1 ≤ σ and 1 ≤ σ′; 3. r = 1; 4. ψ ∈ E(σ, t) iff σFt :ψ /∈ Sω; 5. σ � p iff
σTp ∈ Sω; σ � ⊥ iff σT⊥ ∈ Sω.

Step 2:We have to verify that the Rs, Re, � and E all satisfy the conditions of
a Kripke-Fitting model for GrzA. It is obvious that ≤ is reflexive and transitive.
We can show that it is anti-symmetric as follows: suppose σ ≤ σ′ and σ′ ≤ σ.
By the definition of non-proper initial segment of a sequence of positive integers,
this implies the following disjunction (σ < σ′ ∧ σ′ < σ) or (σ < σ′ ∧ σ′ = σ)
or (σ′ < σ ∧ σ = σ′) or (σ = σ′ ∧ σ′ = σ). The first three cases imply σ < σ,
a contradiction. So, σ = σ′ holds. It follows from the definition that 1 ≤ σ and
1 ≤ σ′ is an equivalence relation. Also, obviously, Rs ⊆ Re. In this step, we have
to verify the two additional features:

1. E satisfies the conditions of an evidence function;
2. � can be extended to the entire language of GrzA (Truth Lemma);
We now state these two items, but the proofs for the next few propositions

are omitted, since the proofs are similar to those of the S4LPN in [12].

Proposition 1. 1. σFt :ψ ∈ Sω if and only if σ′Ft :ψ ∈ Sω (for any σ, σ′ inKs).
2. σT t :ψ ∈ Sω if and only if σ′T t : ψ ∈ Sω (for any σ, σ′ in Ks).

Corollary 1. Let Ks be the canonical model we have constructed.
1. For all σ1, σ2 ∈ Ks, σ1R

eσ2 (i.e., Re = Rs ×Rs).
2. For any σ ∈ Ks, (σ � t :ϕ) or for any σ ∈ Ks, (σ � t :ϕ).

The constructed E satisfies the conditions of an evidence function.

Proposition 2. The evidence function defined above satisfies the following con-
ditions: (1) monotonicity, (2) closure conditions, (3) constant specification.

Then we can prove the crucial lemma. (Currently, N is the identity function.)

Lemma 3 (Truth Lemma).
σΨ ∈ Sω =⇒ Ψ is realized at σ in Ks.

Proof. Similar to the case of S4LPN ([12]).

Step 3: Let Ks = (Ks, Rs, Re, r, E ,�) be the canonical “model” for GrzA con-
structed by the Lindenbaum-Henkin construction. But this does not yet satisfy
the frame condition for a GrzA model. In order to satisfy the condition that a
model of GrzA has no infinite strictly ascending chain, we finitize the “height”
of the model by using the technique of bounded bisimulation. Here we give some
terminologies (following [4] and [8]). The notion of the height of states in Ks

210 H. Kurokawa

is defined by induction. The only element of height 0 is the root of the model;
the states of height n + 1 are those immediate successors of elements of height
n that have not yet been assigned a height smaller than n + 1. The height of
a model Ks is the maximum n such that there is a state of height n in Ks, if
such a maximum exists; otherwise the height of Ks is infinite. We will construct
a model such that any strictly ascending chain starting from 1 is finite. Hence,
there is no infinite strictly ascending chain in it. Now we introduce the notion
of the degree of a modal formula ϕ.

Definition 1. We define the degree of a modal formula as follows.
1. deg(p) = 0; 2. deg(⊥) = 0; 3. deg(¬ϕ) = deg(ϕ);
4. deg(ϕ ∗ ψ) = max{deg(ϕ), deg(ψ)}, where ∗ ∈ {∨,∧.→};
5. deg(�ϕ) = deg(ϕ) + 1; 6. deg(t : ϕ) = deg(ϕ) + 1.

Let us define n-bisimulation (bounded bisimulation) on arbitrary Fitting mod-
els K = (K,R,Re, r, E ,�). This satisfies minimal conditions as follows: there are
no conditions for R but we assume R ⊆ Re, E is stable w.r.t. Re. The definition
of n-bisimulation here is based on [4]. We added some machinery to handle logic
of proofs. Let K and K′ be such Kripke-Fitting models in the following.

Definition 2. We call w and w′ “n-bisimilar” (w /n w′) if there exists a se-
quence of binary relations Zn ⊆ · · · ⊆ Z0 with the following properties (for
i+1 ≤ n): (0) E(v, t) = E(v′, t) for any v ∈ K and for any v′ ∈ K ′; (1) wZnw

′;
(2) If vZ0v

′, then v and v′ agree on all propositional letters;
(3) If vZi+1v

′ and vRu, then ∃u′ (v′Ru′ and uZiu
′);

(4) If vZi+1v
′ and v′Ru′, then ∃u (vRu and uZiu

′);
(5) If vZi+1v

′ and vReu, then ∃u′ (v′Reu′ and uZiu
′);

(6) If vZi+1v
′ and v′Reu′, then ∃u (vReu and uZiu

′).

The condition (0) is motivated by the stability of evidence function, i.e. uRev
implies E(u, t) = E(v, t).

Definition 3. We define the notion of a generated subset U(v) of the underlying
set K of a model K from v with respect to R (Re), respectively, as follows:
U(v) = {u ∈ K|∃j(0 ≤ j and v(R)ju)}; Ue(v) = {u ∈ K|∃j(0 ≤ j and v(Re)ju)}

Similarly, we define a bounded generated subset Un(v) from v with respect to
R as follows: Un(v) = {u ∈ K|∃i(0 ≤ i ≤ n and v(R)iu)}.

Here we only finitize the height of the canonical model Ks for GrzA (i.e.,
our model may not be a finite one). To do that, we first prove a few general
propositions stating properties of bounded bisimulation. By w ≡n w

′, we mean
that for any ϕ s.t. deg(ϕ) ≤ n, w � ϕ iff w′ � ϕ. We now state a lemma and a
proposition.

Lemma 4. 1. For any w, v ∈ K and w′, v′ ∈ K ′, w /n+1 w
′, wRv, w′R′v′, and

vZnv
′ implies v /n v

′. 2. For any w, v ∈ K and w′, v′ ∈ K ′, w /n+1 w
′, wRev,

w′Re′v′, and vZnv
′ implies v /n v

′.

Proposition 3. For any w ∈ K and w′ ∈ K′, w /n w
′ =⇒ w ≡n w

′.

Prefixed Tableau Systems for Logic of Proofs and Provability 211

Proof. For proofs of lemma 4, proposition 3, see the appendix 1, 2, respectively.

Step 4: The countermodel to be constructed has to satisfy the required frame
condition for a model of GrzA, i.e. there is no infinite strictly ascending chain.
Thus, we construct a finite-height model that is n-bisimilar to the original canon-
ical model Ks for GrzA. We give a few definitions. We use the notation K[r] to
stand for a model K with the root node r. Also, let Un(r) = {v ∈ Ks|∃i(0 ≤ i ≤ n
and r(Rs)iv)}, taking r in the definition of a bounded generated subset of Ks.
(Clearly, Un(r) ⊆ Ks, and Un(r) × Un(r) ⊆ Ks × Ks.) The restriction of Ks

to Un(r) (we use the notation Ks � Un(r)) is defined as follows. The under-
lying set of Ks � Un(r) is Ks ∩ Un(r), accessibility relations are restriction
of Rs, Re, i.e. Rs ∩ (Un(r) × Un(r)) (we use the notation Rs∗ for this) and
Re ∩ (Un(r) × Un(r)) (we use the notation Re∗ for this), the evidence func-
tion is a restriction of the function w.r.t. the domain of the function E � Un(r)
(we use the notation E∗ for this), and the forcing relation is also a restriction
of the first coordinate of the relation, �� Un(r) (we use the notation �∗ for
this). Hence, Ks � Un(r) = (Ks ∩ Un(r), Rs∗ , Re∗ , r, E∗,�∗). The construction
of n-bisimulation defined above can be applied to the two models Ks � Un(r)
and Ks.

Proposition 4. (Ks � Un(r), r) /n (Ks, r) for each n ∈ N.

In order to define n-bisimulation, it suffices to use n+1-sequence of relations
Zn ⊆ Zn−1 ⊆ · · · ⊆ Z0 such that the conditions of bounded bisimulation (3),
(4), (5) and (6) hold among Rs, Rs∗ , Re, Re∗ and Zi for any 0 ≤ i ≤ n. We
want to show that a rooted model Ks[r] restricted to Un(r) is sufficient to show
that n-bisimulation always holds between (Ks, r) and (Ks[r] � Un(r), r).

Proof. Proof is by induction on n. We omit the details due to the limitation of
space, but they are relatively straightforward.

This suffices to show that for any formula ϕ s.t. deg(ϕ) = n, Ks, r � ϕ iff
Ks[r] � Un(r), r �∗ ϕ. The height of the model Ks[r] � Un(r) is n. Hence, for a
formula ϕ for which we have constructed the canonical model Ks s.t. Ks, 1 � ϕ,
we have a model Ks[r] � Un(r), such that Ks[1] � Un(1), 1 � ϕ, where r = 1 and
the height of Ks[1] � Un(1) is at most deg(ϕ) = n. This model may still be an
infinite model since there may be some infinite branching in the tree. However, for
our purpose, a finite-height model suffices. The following are simple consequences
of the foregoing proposition.

Corollary 2. 1. Rs∗ has no strictly ascending infinite chain. 2. Re∗ is an equiv-
alence relation. Moreover, for any σ, σ′ ∈ Ks ∩ Un(1), σRe∗σ′.

Corollary 3. For any ψ, s.t. deg(ψ) = n, Ks[1] � Un(1), 1 �∗ ψ iff Ks, 1 � ψ.

Theorem 2 (Weak Completeness)
If {1Fϕ} has no closed tableau, then there exists a finite-height GrzA model

K, s.t. K = (K,R,Re, r, E ,�), s.t. r � ϕ.

212 H. Kurokawa

Proof. We show the contrapositive. Suppose ϕ is not provable using the prefixed
GrzA-tableau rules. Then {1Fϕ} is GrzA-consistent, and it omits infinitely many
integers. So, we can extend it to a (restricted) maximally GrzA-consistent, π-
complete set Sω by the above construction. We can define a canonical Kripke-
Fitting model Ks out of Sω. By Truth Lemma, we can show Fϕ is realized at
1 in Ks. Ks, 1 � ϕ. By finitizing the height of the model using the proposition
presented above, this is equivalent to Ks[1] � Un(1), 1 �∗ ϕ. Hence, there is a
finite height Kripke-Fitting model K and the root r such that K, r � ϕ.

4 Prefixed Tableau System for wGLA

Now we go back to GLA. Recall we defined an auxiliary subsystem wGLA of GLA
without the axiom 3)-3 t :�ϕ → ϕ and Reflexive rule, 3. �ϕ/ϕ. Both of them
are sound with respect to Kripke-Fitting semantics with the appropriate root
soundness condition. However, to prove completeness smoothly, we first give an
auxiliary prefixed tableau system for wGLA (called “TwGLA”). Here we keep
using Fitting’s terminology (in [6]), but we write σ < σ′ if σ is a proper initial
segment of σ′.
α-rule, β-rules, ⊥-rule, and the rules for LP are the same as those of TGrzA.

Modal Rules: ν-rules: K
σT�ϕ
σ.nTϕ

(σ.n is used.) 4
σT�ϕ
σ.nT�ϕ (σ.n is used.)

The π-rule for GL:
σF�ϕ
σ.nFϕ

(σ.n is new.)

σ.nT�ϕ

CS Rules: a branch is closed if it has σFc :A (A is an axiom of wGLA and A ∈ CS(c).)

An interpretation function N for wGLA, etc. are defined in the same manner
as the one given to GrzA. Note that we use the same convention for a prefix
being “used” on a branch as we used in GrzA. We only state the soundness
and completeness of TwGLA, since the Lindenbaum-Henkin construction and
the argument to ensure that R, Re, � and E all satisfy the conditions of a wGLA
are similar to those of GrzA.6

Theorem 3 (Soundness for wGLA)
If ϕ has a prefixed wGLA-tableau proof, then ϕ is valid in all GLA models.

Theorem 4 (Weak Completeness for wGLA)
If {1Fϕ} has no closed tableau, then there exists a GLA Kripke-Fitting model

K∗ (= (K∗, R∗, Re∗ , r∗, E∗,�∗)), s.t. 1 �∗ ϕ.

6 The two major differences are the following: (1) the definition of Sn in the
Lindenbaum-Henkin construction is modified as follows. In the case when Sn ∪
{σnΨn} is consistent, Ψn = π = F�ψn), π0 = F�ψn, and σn.k is new, we let
Sn+1 = Sn∪{σnΨn}∪{σn.kπ0}∪{σn.kT�ψn}. (2) in the definition of the canonical
model, we have σRσ′ iff σ < σ′.

Prefixed Tableau Systems for Logic of Proofs and Provability 213

5 Prefixed Tableau System for GLA

Now we extend the completeness theorem from wGLA to the full GLA. We first
formulate a prefixed tableau system for GLA, which we call TGLA. It turns out
that the axiom 3)-3 t : �ϕ → ϕ and Reflection Rule �ϕ/ϕ can be dealt with
by adding one tableau rule called “Reflection Rule.” We need to add Reflection
Rule and the following modification of TwGLA to obtain TGLA.

1. Constant specification has to be modified accordingly. Instead of taking all
the axioms for wGLA, we use all the axioms of the full GLA.

2. Reflection Rule: From {1Fϕ}, ——–1Fϕ

{1F�ϕ} can be derived.

Note : This crossing is to emphasize that 1Fϕ is not on the same tableau after
an application Reflection Rule. Due to this feature, this can be taken as a kind of
destructive rule in the sense of [6]. Although satisfiability is preserved from the
premise to the conclusion in this rule, we move from one model K (in the premise)
to another K+ (in the conclusion). Accordingly, the premise and the conclusion
have the same prefix 1, but their interpretations of the prefix 1 are different.

In addition to these, we reformulate the notion of a tableau proof in TGLA.

Definition 4. ϕ has a tableau proof in TGLA if {1F�ϕ} has a closed tableau
in TGLA.

An example: Connection axiom t :��ϕ→ ϕ is derivable by this rule.7

1. —————————1F�(t :��ϕ→ ϕ)
2. 1F��(t :��ϕ→ ϕ) (Reflection Rule, line 1)
3. 1.1F�(t :��ϕ→ ϕ); 1.1T��(t :��ϕ→ ϕ) (π-rule, line 2)
4. 1.1.1F (t :��ϕ→ ϕ); 1.1.1T�(t :��ϕ→ ϕ) (π-rule, line 3)
5. 1.1.1T t :��ϕ (α-rule, line 4)
6. 1.1.1Fϕ (α-rule, line 4)
7. 1.1T t :��ϕ (E4r, line 5)
8. 1T t :��ϕ (E4r, line 7)
9. 1T��ϕ (ET, line 8)
10. 1.1T�ϕ (ν-rule for K, line 9)
11. 1.1.1Tϕ (ν-rule for K, line 10)

×

We show the soundness of the Reflection Rule with respect to the appropriate
root sound Kripke-Fitting semantics. (Soundness of the other rules are already
shown.)

Lemma 5. Suppose T = {1Fϕ} is a tableau that is satisfiable in a ϕ-sound
GLA model. If reflection rule for GLA is applied to T , then the resulting tableau
{1F�ϕ} is still satisfiable in a �ϕ-sound GLA model.

Proof. Suppose {1Fϕ} is satisfiable in a ϕ-sound GLA model. We want to show
that {1F�ϕ} is satisfiable in a �ϕ-sound GLAmodel. (Note that {�ψ → ψ|�ψ ∈
Sb(ϕ)} ⊆ {�ψ → ψ|�ψ ∈ Sb(�ϕ)}. In addition, the only formula from the latter
set that is missing from the former is �ϕ→ ϕ, since Sb(�ϕ)\Sb(ϕ) = {�ϕ}.)
7 To save space, we use “;” to write more than one formula horizontally.

214 H. Kurokawa

Satisfiability implies that there exists a GLA-interpretation (partial) function
N and a GLA model that is ϕ-sound, s.t. K,N (1) � ϕ and N (1) = r (r ∈ K).
To show 1F�ϕ is satisfiable in a �ϕ-sound GLA model, we construct another
GLA-model that is �ϕ-sound and an interpretation function N+ that satisfies
{1F�ϕ}, following the argument in [1] that uses a method of gluing a new root

node. Let K+ be a sextuple (K+, R+, Re+ , r+, E+,�+), s.t.
1. K+ = {r+} ∪K, where r+ is a new root node of K+ (r+ /∈ K).
2. R+ = {(r+, r)} ∪ {(r+, y)|(r, y) ∈ R} ∪R
3. Re+ = {(r+, y)|y ∈ K+} ∪Re.
4. E+ is s.t. ∀u ∈ K [E+(r+, t) = E(u, t) and E+(u, t) = E(u, t)].8
5. The forcing relation �+ is defined as follows.
5.1. For any propositional variable p ∈ Sb(ϕ),
if u = r+, then u �+ p iff r � p, and if u �= r+, then u �+ p iff u � p.
5.2. At any u ∈ K+, �+ commutes with Booleans for any formula in Sb(ϕ).9

5.3. For any �ψ ∈ Sb(ϕ), ∀u ∈ K+, u �+ �ψ iff ∀v ∈ K+, uR+v =⇒ v �+ ψ
5.4. For any t :ψ ∈ Sb(ϕ), ∀u ∈ K+, u �+ t :ψ iff ψ ∈ E+(u, t) and ∀v ∈ K+

(uRe+v =⇒ v �+ ψ)
6. (c.s.) A ∈ CS(c) ((CS) for GLA) implies K+, u �+ c :A for all u ∈ K+

On this model K+, we claim the following.

Claim. ∀ψ ∈ Sb(ϕ) ∀u ∈ K+ [(u = r+ =⇒ u �+ ψ iff r � ψ) and (u �= r+ =⇒
u �+ ψ iff u � ψ)].

Proof. Induction on the structure of ψ.

Let us redefine a new (extended) interpretation functionN+ over the extended
model.10 Let N+(1) = r+ and N+(1.σ) = N (σ). So, K+,N+(1) �+ �ϕ. Hence,
F�ϕ is realized in N+(1) in K+. Thus, {1F�ϕ} is satisfiable. Also, by the last
claim, K+ is �ϕ-sound.
(Lemma)

Soundness of GLA can be shown as follows. The proof of soundness is different
from that of usual modal logics, due to the ϕ-soundness of a model.

Theorem 5 (Soundness for GLA)
If ϕ has a prefixed GLA-tableau proof, then ϕ is valid in all ϕ-sound GLA

models.

Proof. Suppose ϕ has a tableau proof in TGLA. Namely, {1F�ϕ} has a closed
tableau TGLA. And suppose that �ϕ is invalid. Then, there exists a �ϕ-sound
8 The definition of E+ goes beyond Sb(�ϕ) due to its closure conditions. However,
in order to prove this lemma, we do not have to go beyond Sb(�ϕ) since the way
we use �+ does not go into the term induction, but only formula induction within
Sb(�ϕ).

9 Extend � so that the new forcing relation preserves �’s feature of commuting with
Booleans in the new state r+. The old � commutes with Booleans in all states in K.

10 We modify N so that 1 < σ =⇒ N+(1)R+N+(σ) (for σ �= 1). We omit the details
but N+ can be shown to be well-defined.

Prefixed Tableau Systems for Logic of Proofs and Provability 215

GLA-model, s.t. ∃u ∈ K, s.t. u � �ϕ. For u, we have u = N (1) or u �= N (1).
In the former case, N (1) � �ϕ. So, {1F�ϕ} is satisfiable (in a �ϕ-sound
GLA-model). Since all the rules of TGLA preserve satisfiability, any tableau
constructed from {1F�ϕ} is satisfiable. But no satisfiable tableau is closed.
Contradiction.

In the latter case, since N (1) is the root node, N (1)Ru. On the other hand,
u � �ϕ implies that there exists v ∈ K, s.t. uRv and v � ϕ.

By transitivity, N (1)Ru and uRv implies N (1)Rv. N (1)Rv and v � ϕ implies
N (1) � �ϕ. So, {1F�ϕ} is satisfiable (in a �ϕ-sound GLA-model). Since all the
rules of TGLA preserve satisfiability, any tableau constructed from {1F�ϕ} is
satisfiable. But no satisfiable tableau is closed. Contradiction.

Hence, {1F�ϕ} has a closed tableau TGLA =⇒ �ϕ is valid in all �ϕ-sound
GLA models. However, by the lemma, �ϕ is valid in all �ϕ-sound GLA models
=⇒ ϕ is valid in all ϕ-sound GLA models. Therefore, {1F�ϕ} has a closed
tableau TGLA =⇒ ϕ is valid in all ϕ-sound GLA models.

Next, we show weak completeness of TGLA for a formula ϕ with respect to
ϕ-sound Kripke-Fitting models. We prove this by taking the following outline.

(1) Assume unprovability of ϕ, i.e. {1F�ϕ} has no closed tableau in TGLA.
(2) We prove that {1F�N+1ϕ} has no closed tableau in TwGLA. (Here N

stands for |{�ψ|�ψ ∈ Sb(ϕ)}|.)
(3) By using completeness of TwGLA, we can show that there exists a GLA-

model K such that K, r � �N+1ϕ.
(4) By using an argument occasionally used in the literature of provability

logic (in [10]), we transform the model constructed in (3) into a ϕ-sound GLA-
model.

Proposition 5 ((1) ⇒ (2)). If there is a closed tableau for 1F�nϕ (n > 1) in
TwGLA, then 1F�ϕ has a closed tableau in TGLA.

Proof. Suppose 1F�nϕ has a closed tableau in TwGLA (n > 1). Pick one. Then
apply reflection rule n − 1 times on top of it. The resulting tableau must be a
closed tableau for 1F�ϕ in TGLA.

Now we prove the weak completeness of GLA. (This involves steps from (2)
to (4).) Our proof is based on a proof given in [1], which also goes back to [10].

Theorem 6 (Completeness for GLA)
If ϕ has no tableau proof in TGLA, i.e., {1F�ϕ} has no closed tableau in

TGLA, then there exists a ϕ-sound GLA Kripke model K (= (K,R,Re, r, E ,�))
and there exists u ∈ K, s.t. K, u � ϕ.

Proof. Suppose 1F�ϕ has no closed tableau in TGLA. In particular, this implies
that there is no closed tableau for this in TwGLA. By completeness of wGLA,
we have a wGLA-countermodel for ϕ. However, this does not guarantee that the
model is a ϕ-sound GLA countermodel for ϕ. The following argument shows this.

Let N = |{�ψ|�ψ ∈ Sb(ϕ)}|. Proposition 5 (i.e., (1) ⇒ (2)). implies that if
1F�N+1ϕ has a closed tableau in wGLA, then 1F�ϕ has a closed tableau in

216 H. Kurokawa

GLA. So, taking the contrapositive, by the assumption, we obtain the statement
1F�N+1ϕ has no closed tableau in wGLA. By completeness of wGLA, this implies
that there exists a (not necessarily ϕ-sound) GLA-model K s.t. K, r � �N+1ϕ.
(This corresponds to the step (2) ⇒ (3) in the outline.)

Now we show the step (3) ⇒ (4) in the outline. K, r � �N+1ϕ implies that
there is a sequence of nodes r = a0Ra1Ra2 . . . aNRaN+1, s.t. ai � �N+1−iϕ
where 0 ≤ i ≤ N + 1. (Note that aN+1 � ϕ.)

None of the formulas �ψ → ψ (�ψ ∈ Sb(ϕ)) can be false at two (or more)
different nodes ai and aj . Indeed, suppose there is such a ψ1. Then, ai � �ψ1 →
ψ1 and aj � �ψ1 → ψ1, where we assume ai < aj w.l.o.g. Then, ai � �ψ1 and
ai � ψ1. Also, aj � �ψ1 and aj � ψ1. But this clearly raises a contradiction.

We have N formulas of the form �ψ → ψ, each of which is false at most
one world in a chain of N + 1-many world. Then, there exists at least one
world ai in which �ψ → ψ are true at ai. Namely, ∃i (0 ≤ i ≤ N + 1), s.t.
ai �

∧
{�ψ → ψ|�ψ ∈ Sb(ϕ)}. We may have either a case aiRaN+1 or a case

ai = aN+1. Either way, we take the restriction of K. More precisely, take such
a subset K ′(= {u ∈ K|aiRu or ai = u}) as the underlying set of the Kripke-
Fitting model that we want to construct, take the two accessibility relation as
the restrictions of R and Re by this set accordingly, take the evidence function
as the restriction of E concerning its first coordinate to the above set, take the
restriction of forcing relation, and let the new root r′ = ai. We call the new
model K′ = (K ′, R′, Re′, r′, E ′,�′). Then, by construction, K′ is a ϕ-sound GLA
model. Note that this new root was already a part of a model of wGLA, s.t.
r′ � �N+1−iϕ. Also, this truncation does not affect the structure of that part
of the model which is used to ensure that for some u ∈ K ′, u � ϕ since the
restriction is made below aN+1. For R

e′, this is the restriction of Re to K ′×K ′,
i.e., Re′ = Re ∩ (K ′ × K ′). It is easy to check that this is still an equivalence
relation. So, Re′ is also taken care of. Therefore, the restriction K′ is a ϕ-sound
GLA model such that for some v ∈ K ′, v � ϕ.

Corollary 4. Cut is admissible in TGLA.

Corollary 5. GLA is a conservative extension of GL.

6 Discussions

Let us briefly mention that although we have been able to show that cut is ad-
missible in TGLA, unfortunately this does not imply the subformula property (as
discussed in [12]). This is due to the presence of the axiom of LP t : (ϕ→ ψ)→ (s :
ψ → t · s :ψ). This can be taken to be a kind of internal modus ponens, which is a
counterpart of cut in Hilbert-style systems. G. Jäger [11] introduced a convenient
terminology to describe the situation, i.e. “internal cut / external cut.” In all the
currently available sequent calculi for logics including LP one way or another, we
have the admissibility of the external cut but not that of the internal cut (i.e., the
foregoing axiom). Whether we can ultimately eliminate the internal cut or not is
a challenging problem, and we may need a radically different formulation of LP in
order to solve this problem. We leave this issue to our future research.

Prefixed Tableau Systems for Logic of Proofs and Provability 217

References

1. Artëmov, S.N.: Logic of proofs. Ann. Pure Appl. Logic 67(1-3), 29–59 (1994)
2. Artemov, S.N.: Explicit provability and constructive semantics. The Bulletin of

Symbolic Logic 7(1), 1–36 (2001)
3. Artemov, S.N., Nogina, E.: Logic of knowledge with justifications from the prov-

ability perspective. Technical report, CUNY Ph.D. Program in Computer Science
Technical Report TR-2004011 (2004)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

5. Boolos, G.: The logic of provability. Cambridge University Press (1992)
6. Fitting, M.: Proof Methods for Modal and Intuitionistic Logic. Reidel Publishing

Company (1983)
7. Fitting, M.: Modal proof theory. In: Handbook of Modal Logic. Elsevier, New York

(2006)
8. Goranko, V., Otto, M.: Model theory of modal logic. In: Blackburn, P., Wolter, F.,

van Benthem, J. (eds.) Handbook of Modal Logic, pp. 249–329. Kluwer (2007)
9. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,

Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp.
297–396. Kluwer (1999)

10. Guaspari, D., Solovay, R.M.: Rosser sentences. Ann. Math. Logic 16(1), 81–99
(1979)

11. Jäger, G.: Modal fixed point logics. In: Esparza, J., Spanfelner, B., Grumberg, O.
(eds.) Logics and Languages for Reliability and Security. NATO Science for Peace
and Security Series - D: Information and Communication Security, vol. 25. IOS
Press (2010)

12. Kurokawa, H.: Tableaux and hypersequents for justification logics. Ann. Pure Appl.
Logic 163(7), 831–853 (2012)

13. Nogina, E.: Epistemic completeness of GLA. The Bulletin of Symbolic Logic 13(3),
407 (2007)

14. Nogina, E.: Logic of strong provability and explicit proofs. In: Proceedings of Logic
Colloquium 2008 (2008)

15. Yavorskaya, T.: Logic of proofs and provability. Ann. Pure Appl. Logic 113(1-3)
(2001)

Appendix 1: Proof of the Lemma 4
1. Suppose w /n+1 w

′, wRv, w′R′v′, and vZnv
′. Then there exists a sequence

Zn+1 ⊆ · · · ⊆ Z0 that satisfies the conditions of w /n+1 w
′. We now construct a

new sequence of relations (we call them Z ′
i) based on these Zi that satisfies the

condition of v /n v
′.

To do that, take the generated subsets Ue(v) = {u ∈ K|∃j(0 ≤ j and
v(Re)ju)} and U ′

e(v
′) = {u ∈ K ′|∃j(0 ≤ j and v(Re′)ju)}.11 (i = 0 means

that v (or v′) itself in the set, respectively.) Let Z ′
i = Zi ∩ (Ue(v)× U ′

e(v
′)) and

take the sequence of Z ′
i up to n (0 ≤ i ≤ n), s.t. Z ′

n ⊆ · · · ⊆ Z ′
1 ⊆ Z ′

0. We show
that this sequence satisfies all the conditions for v /n v

′.

11 We use Re, Re here to take of both (3), (4) and (5), (6). Using R is not enough to
show the conditions (5) or (6).

218 H. Kurokawa

For (0), this condition is the same in /n+1 and /n, so it is obvious.
For (1), vZnv

′ is given by assumption, and clearly (v, v′) ∈ Ue(v)× Ue(v
′).

For (2), since Z ′
0 ⊆ Z0 and Z0 satisfies the condition (2), Z ′

0 satisfies (2).
For (3), suppose xZ ′

i+1x
′ and xRy (1 ≤ i+1 ≤ n). Since Z ′

i+1 ⊆ Zi+1, xZi+1x
′

and xRy. By the condition (3) of w /n+1 w
′, ∃y′(x′R′y′ and yZiy

′)). Call the
state y′1. xRy and x

′R′y′1 implies xRey and x′Re′y′1. Since (x, x
′) ∈ Ue(v)×U ′

e(v
′)

(this follows from xZ ′
i+1x

′), (y, y′1) ∈ Ue(v) × U ′
e(v

′). Thus, yZ ′
iy

′
1. Therefore,

∃y′(x′R′y′ and yZ ′
iy

′)). For (4), (5) and (6), the proof is similar to the case (3).
(Case (5) and (6) are even slightly simpler since we directly consider Re.)

2. The proof of the second statement is essentially the same as above.

Appendix 2 : Proof of Proposition 3

Proof by induction on n. Base case: n = 0. deg(ϕ) = 0. Here ϕ is either a
propositional variable and their Boolean combination. Due to the condition (1)
and (2) for w /0 w

′, i.e. wZ0w
′, and if wZw′ then w � p iff w′ � p. Boolean

cases are straightforward.
Inductive case: We assume the statement for n, namely K, w /n K′, w′ =⇒

w ≡n w′, and prove the statement for n + 1, namely K, w /n+1 K′, w′ =⇒
w ≡n+1 w

′. We have two subcases.
Subcase 1. ϕ = �ψ (deg(ϕ) = deg(�ψ) = deg(ψ) + 1 = n + 1). We want to

show that w /n+1 w
′ =⇒ w � �ψ iff w′ � �ψ.

To show this, suppose (A) w /n+1 w
′, and suppose (B) w � �ψ, i.e. ∃v(wRv

and v � ψ). Call this state v1. Then, wRv1 and v1 � ψ. By the condition (1) of
the assumption (A), wZn+1w

′. So, we have wZn+1w
′ and wRv1. By condition

(4) of the assumption (A), ∃v′(w′R′v′ and v1Znv
′). Call this v′1. So w

′R′v′1 and
v1Znv

′
1. Note that we now have all the statements in the assumptions of the

lemma with respect to particular instances v1, v
′
1. Hence, v1 /n v

′
1.

By IH, v1 /n v′1 =⇒ v1 � ψ iff v′1 � ψ. Since the antecedent of the claim
is already shown above, we have v′1 � ψ. So, ∃v′ ∈ K(w′R′v′ and v′ � ψ).
Therefore, w′ � �ψ. The other direction is similar.

Subcase 2. ϕ = t :ψ (deg(ϕ) = deg(t :ψ) = deg(ψ) + 1).
We want to show that w /n+1 w′ =⇒ w � t : ψ iff w′ � t : ψ. To show

this, suppose (A) w /n+1 w′, and suppose (B) w � t : ψ, i.e. ψ /∈ E(w, t) or
∃v ∈ K(wRev and v � ψ). (Call it v1.)

By the condition (0) of w /n+1 w′, without depending the number n + 1,
the first disjunct implies ψ /∈ E ′(w′, t). So, ψ /∈ E ′(w′, t) or ∃v′ ∈ K ′(wRe′v′ and
v′ � ψ) is implied by the first disjunct.

By the condition (1) of the assumption (A), wZn+1w
′. Also, the second dis-

junct implies wRev1. Hence, by the condition (5) of (A), ∃v′ ∈ K ′(v1Znv
′ and

w′Re′v′) (Call it v′1). So, we have w′Re′v′1 and v1Znv
′
1.

By the above lemma (the statement 2), since we have shown the particular
instance of the assumptions of this lemma, we can show v1 /n v

′.
By IH, v1 /n v

′
1 =⇒ v1 � ψ iff v′1 � ψ. Hence, v1 � ψ iff v′1 � ψ.

Thus, v′1 � ψ. So, we have ∃v′ ∈ K ′(w′Re′v′ and v′ � ψ).
So, either way, ψ /∈ E ′(w′, t) or ∃v′ ∈ K ′(wRe′v′ and v′ � ψ) is derivable.

Therefore, w′ � t :ψ. The converse is similar.
 (proposition).

Correspondence between Modal Hilbert Axioms

and Sequent Rules with an Application to S5�

Björn Lellmann1 and Dirk Pattinson1,2

1 Department of Computing, Imperial College London
2 Research School of Computer Science, The Australian National University

Abstract. Which modal logics can be ‘naturally’ captured by a sequent
system? Clearly, this question hinges on what one believes to be natural,
i.e. which format of sequent rules one is willing to accept. This paper
studies the relationship between the format of sequent rules and the cor-
responding syntactical shape of axioms in an equivalent Hilbert-system.
We identify three different such formats, the most general of which cap-
tures most logics in the S5-cube. The format is based on restricting the
context in rule premises and the correspondence is established by trans-
lating axioms into rules of our format and vice versa. As an application
we show that there is no set of sequent rules of this format which is sound
and cut-free complete for S5 and for which cut elimination can be shown
by the standard permutation-of-rules argument.

1 Introduction

Syntactical descriptions of modal logics often are given in terms of Hilbert calculi.
This allows for a simple, intuitive description of the logic and elegant complete-
ness proofs via canonical models. But Hilbert calculi are not optimal to estab-
lish e.g. decidability and interpolation for which Sequent systems are far better
suited. This raises the question of a precise correspondence between Hilbert and
Sequent calculi, and more generally of a classification of the structural, proof-
theoretic machinery such as labels, nested sequents and the format of sequent
rules that is necessary to give complete (cut-free) sequent systems for a given
modal logic. This clearly depends on the format of sequent rules as every logic
L can be captured trivially by the system { ⇒ A | A ∈ L} where A ranges over
the theorems of the logic.

Here, we consider rules that are close in spirit to the standard sequent rules
for modal logics such as K,KT and S4 and restrict ourselves to pure two-sided se-
quents with the comma as only structural connective. In particular, we disallow
labels [13], additional structural connectives as in Display Logic [10] or nested
sequents [3,15]. Our motivating question is thus which modal logics can be cap-
tured by pure sequent calculi, or more precisely, what format of pure sequent rules
is necessary to capture a given modal logic? The rules considered here introduce
precisely one layer of modalities and fix context formulae. Within this format, we

� Supported by EPSRC-Project EP/H016317/1.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 219–233, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

220 B. Lellmann and D. Pattinson

consider three classes of rules that differ in the way context formulae are handled.
The most general of these formats, rules with context restrictions, captures not
only most standard normal logics but also a number of non-normal logics such
as conditional logics, probabilistic or coalition logic, including all non-iterative
logics, and is amenable to reasonably simple purely syntactical criteria sufficient
for cut elimination and the subformula property [12].

Our main contribution is twofold. We establish a correspondence between syn-
tactical shapes of axioms in a Hilbert system and rule formats for logical rules in
a sequent calculus (with cut) so that both formalisms axiomatise the same logic.
We then use this correspondence to obtain impossibility results. Our first such
result merely illustrates the techniques and shows that K4 cannot be axiomatised
by shallow sequent rules (with cut, and a posteriori, also without cut). We then
show that there cannot be a cut-free system of rules with context restrictions
for S5 where the rules additionally satisfy a permutability condition that we call
mixed cut closure. This condition allows to permute cuts between principal and
context formulae, and is present in virtually all pure sequent systems for modal
logics (e.g. [16] or [9] for the dual case of tableau systems). While this does not
show that there cannot be a complete and cut-free pure sequent system for S5,
we still obtain a dichotomy result: either, S5 cannot be axiomatised by rules
with restrictions and a more general rule format and/or proof theoretic struc-
ture is needed, or else the rules of a complete, cut-free system do not allow to
permute principal/context cuts (which we consider to be highly unlikely). While
clearly more work is needed to establish a complete hierarchy of calculi and rule
formats, together with associated impossibility results that we hope to inspire,
we are not aware of any other formal impossibility results, or proof-theoretic
hierarchy of modal sequent systems to date.

Technically, our methods are purely syntactical and we only require logics to
be monotone. Our systems are extensions of the propositional system G3cp of
[16] and we allow contraction throughout so that our results implicitly extend to
systems where contraction has been absorbed into the modal rules (e.g. S4 given
in op.cit.). Rules with restrictions have been used previously in [12] which pro-
vides a formal translation from non-nested (Hilbert) axioms to rules and the idea
for the translation of nested axioms as well as sufficient syntactic criteria for cut
elimination. The formal translation for nested axioms, the converse translation
and the impossibility results (for which the translation is crucial) are new.
Related Work. Our work is close to [5] in spirit where axioms for substruc-
tural logics are translated into (structural) sequent rules and a hierarchy of sub-
structural logics is presented (together with a semantic cut-admissibility proof).
For display logic, [10] gives a back-and-forth translation between so-called prim-
itive axioms for normal modal logics and display rules using extra structural
connectives and, implicitly, also tense logic. Similarly, [13] uses labels to capture
first-order frame conditions over normal modal logics definable by geometric se-
quents. Finally, [6] translates between paraconsistent logics and sequent calculi in
a similar way, using different syntactical formats (and construct cut-free sequent
systems via non-deterministic semantics). We are not aware of any translations

Correspondence between Modal Hilbert Axioms and Sequent Rules 221

between modal axioms and logical rules for pure sequent calculi or any formal
impossibility results.

2 Preliminaries

We write N for the set of non-negative integers and P(S) for the power set of a
set S. We assume familiarity with the standard notions of modal logic as given
e.g. in [2,4]. Throughout the paper we fix a set Λ of modalities which we take
to be unary for expository reasons, and a countable set Var of propositional
variables. The set F of formulae is then defined using the modalities ♥ ∈ Λ,
variables p ∈ Var and the boolean connectives ⊥,∧,∨,→:

F 1 A ::= p | ⊥ | A ∨ A | A ∧ A | A→ A | ♥A

As usual we abbreviate A→ ⊥ by ¬A. Finite sequences A1, . . . , An of formulae
are denoted byA. We write

∧n
i=1Ai or

∧
A for the iterated conjunction A1∧. . .∧

An and similarly for iterated disjunctions. The empty conjunction is ⊥ → ⊥ and
similarly, the empty disjunctions is ⊥. If F is a set of formulae we write Λ(F) for
the set {♥A | ♥ ∈ Λ, A ∈ F} and Prop(p) for the set of propositional formulae
in the variables p. If σ : Var→ F is a substitution and A is a formula we write
Aσ for the result of uniformly substituting every variable in A according to σ.
For a formula A, Sf(A) is the set of subformulae of A and var (A) for the set
of variables occurring in A. A formula is rank-1 if every variable occurs under
exactly one modality and non-iterative if every variable occurs under at most
one modality.

If F is a set of formulae, a multiset over F is a map F → N with finite
support. The notion of union between multisets extends the set-theoretic union
in the obvious way and we write Γ,Δ for the union of the multisets Γ and
Δ. The set S(F) of sequents over F is the set of tuples of multisets over F ,
written as Γ ⇒ Δ. Application of a substitution and the notion of the set of
subformulae extend to multisets and sequents of formulae in the obvious way.
We use the system G3cp from [14,16] with general axioms (see Table 1) for
the underlying (classical) propositional logic and denote this system by G. As
structural rules, We consider are Cut and Con = {ConL,ConR} (see Table 1) and
we write G[CutCon] if a result holds for G and any extension with Cut or Con. For
A ⊆ F we write G[CutCon]+A for the sequent system with groundsequents ⇒ A
for A ∈ A. Derivability in G[CutCon] +A is defined as derivability in G[CutCon]
from assumptions {Γ ⇒ Aσ,Δ | A ∈ A, Γ ⇒ Δ ∈ S(F), σ a substitution} and
denoted by �G[CutCon]+A. In case A = ∅ we also write �G[CutCon].

We consider modal logics given by a Hilbert system, i.e. containing set A ⊆
F of axioms, all (classical) propositional tautologies, and closed under modus
ponens (from A → B and A infer B) and uniform substitution (from A infer
Aσ) as well as monotonicity (from A→ B infer ♥A→ ♥B) for all ♥ ∈ Λ.

222 B. Lellmann and D. Pattinson

Table 1. Rules for the standard systems G,RK and RS5 and the structural rules

Γ,A⇒ A,Δ
A

Γ,⊥ ⇒ Δ
⊥L

Γ,A⇒ Δ Γ,B ⇒ Δ

Γ,A ∨B ⇒ Δ
∨L

Γ,A,B ⇒ Δ

Γ,A ∧ B ⇒ Δ
∧L

Γ,B ⇒ Δ Γ ⇒ A,Δ

Γ,A→ B ⇒ Δ
→L

Γ ⇒ A,B,Δ

Γ ⇒ A ∨B,Δ ∨R
Γ ⇒ A,Δ Γ ⇒ B,Δ

Γ ⇒ A ∧B,Δ ∧R
Γ,A⇒ B,Δ

Γ ⇒ A→ B,Δ
→R

A1, . . . , An ⇒ B

Γ,�A1, . . . ,�An ⇒ �B,Δ RKn

Γ,A⇒ Δ

Γ,�A⇒ Δ
RT

�Γ ⇒ A,�Δ
Σ,�Γ ⇒ �A,�Δ,Π R5

Γ ⇒ A,Δ Σ,A⇒ Π

Γ,Σ ⇒ Δ,Π
Cut

Γ,A,A⇒ Δ

Γ,A⇒ Δ
ConL

Γ ⇒ A,A,Δ

Γ ⇒ A,Δ
ConR

G := {A,⊥L,∨L,∨R,∧L,∧R,→L,→R} RK := {RKn | n ≥ 0} RS5 := {RT, R5}

3 Rules with Restrictions

We briefly recapitulate the notion of a rule with context restrictions from [12].

Definition 1. For a set F of formulae a context restriction over F (or re-
striction) is a tuple 〈F1;F2〉 ∈ P(F)2. For a restriction C = 〈F1;F2〉 and
a sequent Γ ⇒ Δ the restriction of Γ ⇒ Δ according to C is the sequent
(Γ ⇒ Δ)�C= Γ�F1⇒ Δ�F2 consisting of all those formulae from Γ resp. Δ which
are substitution instances of formulae in F1 resp. F2. We write C(F) for the set
of all restrictions over F .

Example 2. Let Γ ⇒ Δ = �(A ∧B), C ∨D ⇒ �E,F . Then:

1. for C∅ := 〈∅; ∅〉 we have (Γ ⇒ Δ)�C∅= ⇒
2. for Cid := 〈{p}; {p}〉 we have (Γ ⇒ Δ)�Cid

= Γ ⇒ Δ
3. for CS5 := 〈{�p}; {�p}〉 we have (Γ ⇒ Δ)�CS5

= �(A ∧B)⇒ �E.

Definition 3. A rule with context restrictions (or simply a rule) is a tuple
P/Σ ⇒ Π where P ⊆ S(Var) × C(F) is the set of premisses with associated
context restrictions, and Σ ⇒ Π ∈ S(Λ(Var)) are the principal formulae, such
that no variable occurs twice in the principal formulae and every variable occurs
in the principal formulae iff it occurs in at least one of the premisses. An instance
of a rule R is given by a substitution σ : Var→ F and a context Γ ⇒ Δ ∈ S(F)
and is written as

{Γ�F1 , Θσ ⇒ Δ�F2 , Υσ | (Θ ⇒ Υ ; 〈F1;F2〉) ∈ P}
Γ,Σσ ⇒ Δ,Πσ

.

We assume that every set of rules is closed under injective renaming of variables
(respecting the variable conditions) and for every ♥ ∈ Λ includes the mono-
tonicity rule Mon = {(p⇒ q; C∅)}/♥p⇒ ♥q. Notions concerning derivability in
G[CutCon] + A are extended in the obvious way to a set R of rules using the
notation �G[CutCon]R+A. A rule is called shallow if the only restrictions occurring
in it are C∅ or Cid. It is one-step if only the restriction C∅ occurs in it.

Correspondence between Modal Hilbert Axioms and Sequent Rules 223

Example 4. Most standard modal rules fit the format of rules with restrictions:

1. RKn is the rule with restrictions {(p1, . . . , pn ⇒ q; C∅)}/�p1, . . . ,�pn ⇒ �q
2. The rule RT is the rule with restrictions {(p⇒ ; Cid)}/�p⇒
3. The rule R5 is the rule with restrictions {(⇒ p; CS5)}/ ⇒ �p.

The rules RT and RKn are also shallow rules, rule RKn also is a one-step rule.

By additionally copying the principal formulae into the premisses in the spirit
of G3-systems such as the system G3s for S4 in [16] Contraction can be made
admissible in cut-free rule sets [12, Thm. 16].

4 From Axioms to Rules

We now give an extension and formalisation of the translation from axioms in a
Hilbert-system to rules in a sequent system from [11,12] which uses the following
standard argument.

Lemma 5. For every set A of axioms and sequent Γ ⇒ Δ we have �GCutCon+A
Γ ⇒ Δ iff �HA

∧
Γ →

∨
Δ.

The following equivalence between rules and axioms therefore suffices:

Definition 6. If R is a set of rules, then a set A of axioms and a set RA of rules
are equivalent over GR if for every sequent Γ ⇒ Δ we have �GRCutCon+A Γ ⇒ Δ
iff �GRCutConRA Γ ⇒ Δ.

The main idea for the translation is to take a substitution instance of a non-
iterative axiom, where the substitution formulae satisfy certain restrictions, and
use the techniques from [11] to turn the non-iterative axiom into a sequent rule.
The restrictions guarantee that when substituting the formulae in the rule we get
a so-called proto rule, i.e. a rule with a fixed number of context formulae that can
be turned into a rule under certain conditions. While this class of axioms might
seem restrictive at first, we show in Section 5 that it is sufficient to construct
every rule with restrictions. In a first step inspired by [5] we consider conjunctive
normal forms of formulae where the polarities of subformulae are controlled.

Definition 7. Let C�, C, Cr be sets of formulae. The sets F�(C�, C, Cr) and
Fr(C�, C, Cr) of left resolvable (resp. right resolvable) formulae for (C�, C, Cr)
are given by the following grammar with starting variable P� (resp. Pr):

P� ::=P� ∨ P� | P� ∧ P� | Pr → P� | A� | B | ⊥ where A� ∈ C�, B ∈ C
Pr ::=Pr ∨ Pr | Pr ∧ Pr | P� → Pr | Ar | B | ⊥ where Ar ∈ Cr, B ∈ C .

Using invertibility of the propositional rules in every calculus containing GCutCon
it is then not hard to see that we can decompose a right resolvable formula into
clauses resp. sequents in the following way.

224 B. Lellmann and D. Pattinson

Lemma and Definition 8. If A is a right (resp. left) resolvable formula with
context formulae in (C�, C, Cr), then A (resp. A→ ⊥) is equivalent to a set CA
of clauses of the form

∧n
i=1 Ai →

∨m
j=1 Bj with n,m ≥ 0 and Ai ∈ C� ∪ C and

Bj ∈ Cr ∪ C corresponding to sequents A1, . . . , An ⇒ B1, . . . , Bm. We then call∧
CA a (C�, C, Cr)-normal form of A. �

The notions of resolvable formulae allow us now to specify the syntactic require-
ment for a formula to be expressible as a rule. For conjunctions of such formulae
we treat each clause separately.

Definition 9. Let V ⊆ Var and let C�, Cr ⊆ F such that for all formulae
A,B ∈ C� ∪ Cr we have var (A) ∩ var (B) = ∅ and var (A) ∩ V = ∅. A formula
is translatable with context formulae in (C�, Cr) and variables in V if it has the
form

∧n
i=1 Ai →

∨m
j=1 Bj with Ai ∈ C� ∪ Λ(Fr(C�, C, Cr)) ∪ V for all i ≤ n and

Bj ∈ Cr ∪ Λ(F�(C�, C, Cr)) ∪ V for all j ≤ m and if furthermore every formula
in C� ∪ Cr occurs at most once on the top level of the formula (i.e. not in the
scope of a modality) and occurs on the top level iff it occurs in the scope of a
modality. A formula is translatable if it is translatable for some sets C�, Cr of
context formulae and variables V .

Intuitively, a formula is translatable with context formulae in (C�, Cr) and vari-
ables in V if it is a substitution instance of a non-iterative formula, where sub-
formulae in C� (resp. Cr) are responsible for the nesting and behave in a way
that they can be turned into context formulae on the left (resp. right) of the cor-
responding rule. The variables in V are used in the construction of the principal
formulae of the rule. A formula might be translatable in more than one way.

Example 10. 1. The axiom (4) �q → ��q is translatable with context for-
mulae in ({�q}, ∅) and variables in ∅.

2. The axiom (5) ¬�q → �¬�q is translatable with context formulae in
(∅, {�q}) or ({¬�q}, ∅) and variables in ∅.

3. The axiom (T) �q → q is translatable with context formulae in (∅, ∅) and
variables in {q}.

Since such an axiom contains a fixed number of context formulae, in the first step
instead of rules we only get so-called proto-rules, i.e. rules with a fixed context.

Definition 11. Given a rule with restrictions R = P/Σ ⇒ Π a proto-rule for
R is a tuple (R;Γ ⇒ Δ) given by a context Γ ⇒ Δ ∈ S(F) such that

1. no propositional variable occurs more than once in Γ ⇒ Δ
2. no propositional variable occurs both in Γ ⇒ Δ and R
3. if Γ ⇒ Δ �= ⇒ , then (Γ ⇒ Δ)�C �= ⇒ for every restriction C of R.

We often leave the context implicit and write R̂ for a proto-rule for R. An
instance of a proto-rule R̂ = (R;Γ ⇒ Δ) is given by a substitution σ : Var→ F
and a context Θ ⇒ Ξ where (Θ ⇒ Ξ)�C= ⇒ for every restriction C of R, and
is the same as the instance of R with substitution σ and context Γσ,Θ ⇒ Δσ,Ξ
according to Definition 3. Derivability using proto-rules is defined as expected.

Correspondence between Modal Hilbert Axioms and Sequent Rules 225

Informally, the difference between rules and proto-rules is that in proto-rules the
premisses including the context are fixed up to substitution, while in rules also
the number of the context formulae in the premisses may vary.

Theorem 12. Every translatable axiom A is equivalent over GMonCutCon to a
proto-rule.

Proof (Sketch). We start with a translatable axiom A, i.e. a formula of the form∧
P∈P �

♥PP ∧
∧
q∈q�

q ∧
∧
L∈L

L→
∨

P∈P r

♥PP ∨
∨
q∈qr

q ∨
∨

R∈R

R

where for some C�, Cr ⊆ F and V ⊆ Var satisfying the restrictions of Defini-
tion 9 we have P � ⊆ Fr(C�, V, Cr),P r ⊆ F�(C�, V, Cr) and q� ∪ qr ⊆ V and
L ⊆ C�,R ⊆ Cr. After turning this into the ground sequent ⇒ A and resolving
propositional logic using GCutCon we replace the formulae P under the modal-
ities with fresh variables tP and add as premises all the sequents tP ⇒ P for
P ∈ P � and P ⇒ tP for P ∈ P r to get

{tP ⇒ P | P ∈ P �} {P ⇒ tP | tP ∈ P r}
{♥P tP | P ∈ P �}, q�,L⇒ {♥P tP | P ∈ P r}, qr,R .

Now we replace the sequents tP ⇒ P (resp. P ⇒ tP) by the sequents correspond-
ing to the clauses of a (C�, C, Cr)-normal form of the formulae tP → P (resp.
P → tP) according to Lemma 8. The lemma ensures that in this step a context
formula ends up on the left (resp. right) hand side of one of these premisses if
and only if it is in L (resp. R). Now we apply a standard trick and introduce
two fresh variables r, s and replace variables q ∈ q� (resp. qr) with premisses
r ⇒ q, s (resp. r, q ⇒ s). Finally, we eliminate the occurrences of the variables
q� ∪ qr in the premisses by performing all possible cuts between sequents in the
premisses with cut formula q ∈ q� ∪ qr. The resulting proto-rule then is seen to
be equivalent to the axiom A, where for the last step and the fact that premisses
ensuring tP → P instead of tP ↔ P suffice we make use of the monotonicity
rules and Cut and the techniques of [12, Lemma 9]. �

In order to produce rules instead of proto-rules we note that in presence of the
propositional rules and Cut a rule where a formula A occurs in the left component
of a context restriction is equivalent to a set of proto-rules with a conjunction∧

i≤nA
i in place of A, where Ai results from A by renaming the variables to

fresh ones, and similarly using disjunction for formulae in the right component.
This motivates the next definition.

Definition 13. Let the formula B be translatable with context formulae in
({C1, . . . , Cn}, {D1, . . . , Dm}) and variables in V . For s1, . . . , sn, t1, . . . , tm ≥ 0
the formula Bs1,...,sn,t1,...,tm is constructed from B by replacing every occur-
rence of a formula Ck with

∧sk
i=1 C

i
k and every occurrence of a formula D� with∨t�

i=1D
i
�, where the formulae Ci

k, D
i
� result from Ck (resp. D�) by injectively

renaming its variables p to fresh variables pi. Then an ω-set for B is a set
{Bs1,...,sn,t1,...,tm | si ≥ 0, tj ≥ 0 for i ≤ n, j ≤ m}.

226 B. Lellmann and D. Pattinson

Example 14. The set {¬
∨n

i=1 �qi → �¬
∨n

i=1 �qi | n ≥ 0} is an ω-set for the
axiom (5) ¬�q → �¬�q.

Intuitively the formulae in an ω-set for B are constructed from B by substituting
each context formula with finite (possibly empty) conjunctions resp. disjunctions
of copies of this formula with fresh variables. By Theorem 12 each of these
axioms translates into a proto-rule and since the context formulae are in the
same positions together they are equivalent to a rule with restrictions.

Corollary 15. Every ω-set for a translatable formula is equivalent over the rule
set GMonCutCon to a rule with restrictions. �

Example 16. Translating the ω-set {¬
∨n

i=1 �qi → �¬
∨n

i=1 �qi | n ≥ 0} for
the axiom (5) ¬�q → �¬�q yields the rule {(⇒ p; 〈∅; {�p}〉)}/ ⇒ �p.

We would like to translate axioms instead of ω-sets of axioms. This is possible
if the conjunctions resp. disjunctions can be pushed into the context formulae.

Definition 17. A formula A with free variables p1, . . . , pn = p is left normal
for a set R of rules if for every k ≥ 0 there are formulae B1, . . . , Bn such that
�GCutConR ⇒

∧k
i=1 A

i ↔ AσB
p where Ai is the result of injectively renaming the

propositional variables p in A to fresh variables pi and σB
p is the substitution

given by σ(pj) = Bj and σ(x) = x for x /∈ p. A formula A is right normal if
A → ⊥ is left normal. A context restriction 〈F1;F2〉 is normal if every formula
in F1 (resp. F2) is left (resp. right) normal.

Adding a translatable axiom where all context formulae are left resp. right nor-
mal for R is equivalent over R to adding its ω-set, and thus we get:

Theorem 18. Let B be a translatable formula with context formulae in (C�, Cr)
and variables in V such that the formulae in C� are left normal in R and those
in Cr are right normal for R. Then B is equivalent over GRCutCon to a rule
with restrictions. �

Since variables are both left and right normal for every rule set this immediately
yields the translation result for non-iterative and rank-1 axioms from [11].

Corollary 19. Every non-iterative (resp. rank-1) axiom is equivalent over the
rule set GMonCutCon to a set of shallow (resp. one-step) rules. �

Example 20. 1. The context formula �q is left normal for RK and thus trans-
lating the axiom (4) �q → ��q using Theorem 18 yields the well-known rule
R4 = {(⇒ p; 〈{�p}; ∅〉)}/ ⇒ �p.

2. Similarly, translating the axiom (T) yields the standard ruleRT from Table 1.
3. By propositional reasoning and the axioms of K adding both axioms (4) and

(5) is equivalent to adding the set {
∧n

i=1 �qi� ∧¬
∨m

j=1 �qjr → �(
∧n

i=1 �qi� ∧
¬
∨m

j=1 �qjr) | m,n ≥ 0}, which is an ω-set for the axiom �q� ∧ ¬�qr →
�(�q�∧¬�qr) under translatability with context formulae in ({�q�}, {�qr}).
By Corollary 15 this set translates into the standard rule R5 from Table 1.

Correspondence between Modal Hilbert Axioms and Sequent Rules 227

5 From Rules to Axioms

The results of the previous section raise the question whether the format of ω-
sets for axioms is really necessary. It turns out that the format is both necessary
and sufficient in the sense that an axiom can be translated into a rule with
restrictions if and only if adding the axiom is equivalent to adding an ω-set. We
show this by translating rules with restrictions back into ω-sets of axioms. The
first step is to bring the premisses of the rules into a normal form.

Lemma and Definition 21. Every rule with restrictions is equivalent to a rule
in standard form over GMonCutCon, i.e. a to rule with restrictions P/Σ ⇒ Π
where

1. if (⇒ p; C∅) ∈ P then there is no premiss (Γ, p⇒ Δ; C) ∈ P and no premiss
(⇒ p; C) ∈ P with C �= C∅

2. for all q1, . . . , qn, p ∈ Var: if (q1, . . . , qn ⇒ p; C) ∈ P and (⇒ qi; Ci) ∈ P for
all i ≤ n, then (⇒ p; C ∪

⋃n
i=1 Ci) ∈ P.

3. no variable occurs both on the left hand side of a premiss and on the right
hand side of a (possibly different) premiss.

Proof (Sketch). For the first claim if there is are premisses (⇒ p; C∅) and (Γ, p⇒
Δ; C) in P , due to the presence of Cut we may replace the latter with (Γ ⇒ Δ; C).
Also, premisses (⇒ p; C) with C �= C∅ are derived by (admissible) Weakening
from (⇒ p; C∅) and thus can be omitted. For the second claim we simply add
the missing premisses, which in the presence of Cut yields an equivalent rule.
For the last claim we use the fact that all our rule sets include Mon and replace
a rule by the cut between this rule and Mon, see [12, Lemma 9]. �

For the rest of this section we assume w.l.o.g. that all rules are in standard form.
Again instead of translating rules directly we first work with sets of proto-rules.
Given a proto-rule we now turn its premisses and conclusion into formulae.

Definition 22. Let R = P/Σ ⇒ Π be a rule and R̂ a proto-rule for R given
by the context Γ ⇒ Δ. The formulae PremR̂ and ConclR̂ are defined by

PremR̂ =
∧

(Θ⇒Ξ;〈F1;F2〉)∈P (
∧
Γ�F1 ∧

∧
Θ →

∨
Ξ ∨

∨
Δ�F2)

ConclR̂ =
∧
Γ ∧

∧
Σ →

∨
Π ∨

∨
Δ

Then by propositional reasoning it is clear that the premisses of a proto-rule R̂
(resp. its conclusion) are derivable if and only if the sequent ⇒ PremR̂ (resp.
⇒ ConclR̂) is derivable. To turn these formulae into an axiom we make use of
the notion of a projective formula, see e.g. [8].

Definition 23. A formula A ∈ F(Λ) is projective if there is a substitution
σ : Var → F(Λ) such that �GMonCutCon ⇒ Aσ; and for all p ∈ var (A) we have
�GMonCutCon A⇒ p↔ pσ. Such a substitution witnesses projectivity of A.

Given a proto-rule R̂ once we have a substitution witnessing the projectivity of
the formula PremR̂ we are done using the following Lemma.

228 B. Lellmann and D. Pattinson

Lemma 24. If R̂ is a proto-rule and σ a substitution witnessing projectivity of
PremR̂, then the axiom ConclR̂σ is equivalent to R̂ over every rule set R.

Proof. In a first step an induction on the complexity of the formula B shows
that if σ witnesses projectivity of a formula A, then for every formula B we
have �GMonCutCon A⇒ B ↔ Bσ. To see that the proto-rule R̂ is derivable using
the axiom assume that we have derivations of its premisses. Then by proposi-
tional logic we also have �GRCutCon ⇒ PremR̂. Thus by projectivity and Cut we
get �GRCutCon ⇒ ConclR̂σ → ConclR̂ which together with the ground sequent
⇒ ConclR̂σ yields ⇒ ConclR̂. Now resolving the propositional connectives us-
ing GCutCon yields the conclusion of R. For the other direction by projectivity
we have �GRCutCon ⇒ PremR̂σ, and resolving the propositional connectives and
applying the rule R and propositional rules yields �GRCutConR ⇒ ConclR̂σ. �

Using standard techniques [8] we can always construct such a substitution:

Definition 25 (θ). Let R = P/Σ ⇒ Π be a rule in standard form and R̂ a
proto-rule for R given by Γ ⇒ Δ. Define the substitution θR̂ by

θR̂(p) :=

⎧⎪⎪⎨⎪⎪⎩
� : (⇒ p; C∅) ∈ P

PremR̂ → p : (Θ ⇒ p,Ξ; C) ∈ P for some C �= C∅ and Θ⇒ Ξ
PremR̂ ∧ p : (Θ, p⇒ Ξ; C) ∈ P for some Θ⇒ Ξ

p : otherwise.

Lemma 26. θR̂ witnesses projectivity of PremR̂ if the latter is satisfiable.

The proof is by standard propositional reasoning and gives the desired transla-
tion when combined with Lemma 24.

Theorem 27. Every proto-rule is equivalent to a translatable axiom.

Proof. By Lemmata 24 and 26 we get equivalence of ConclR̂θR̂ and R̂. Since by
Lemma 21 the rule R was w.l.o.g. in standard form, every variable occurs either
only on the left or on the right of premisses and conclusion, which ensures that
the axiom ConclR̂θR̂ is translatable. �

Moreover, since a rule R is equivalent to the set of proto-rules for R we can
translate rules into sets of axioms.

Proposition 28. Every rule R is equivalent to an ω-set for an axiom AR. If all
context restrictions of R are normal, then it is equivalent to a single axiom AR.
If R is a shallow (resp. one-step) rule, then it is equivalent to a non-iterative
(resp. rank-1) axiom.

Proof. It is not hard to see that a rule R is equivalent to the set of proto-rules
for it and that the set of translations of these proto-rules is an ω-set. In case all
the restrictions are normal, adding the ω-set for the corresponding axiom AR is
equivalent to adding the axiom AR itself. A close inspection of the translations
of shallow and one-step rules together with the fact that all restrictions for such
rules are normal yields the last statement. �

Correspondence between Modal Hilbert Axioms and Sequent Rules 229

In conclusion we thus have the following correspondences between rules and
axioms for monotone modalities and normal context formulae resp. restrictions:

rules with context restrictions � translatable axioms
shallow rules � non-iterative axioms
one-step rules � rank-1 axioms

In the first case if not all context formulae are normal the correspondences hold
only between rules and ω-sets for translatable axioms.

Example 29. We apply the translation procedure to the rule R5 from Table 1.
Proto-rules for R5 are given by sequents �r1, . . . ,�rn ⇒ �s1, . . . ,�sm with
m,n ≥ 0. Thus we get the formulae Prem

R̂5
=
∧n

i=1 �ri → p ∨
∨m

j=1 �sj and

Concl
R̂5

=
∧n

i=1 �ri → �p ∨
∨m

j=1 �sj and the substitution θ
R̂5

with θ
R̂5
(p) =

Prem
R̂5
→ p as well as θ

R̂5
(ri) = ri and θ

R̂5
(sj) = sj . Thus by Lemmata 24 and

26 the rule R5 is equivalent to the set of axioms⎧⎨⎩
n∧

i=1

�ri → �

⎛⎝(

n∧
i=1

�ri → p ∨
m∨
j=1

�sj)→ p

⎞⎠ ∨ m∨
j=1

�sj | m,n ≥ 0

⎫⎬⎭ ,

which is an ω-set for the axiom �r → �((�r → p ∨ �s) → p) ∨ �s under
translatability with context formulae in ({�r}, {�s}) and variables in {p}. By
propositional reasoning and normality of � this ω-set is moreover equivalent
to axioms of the form �r → �((�r ∧ ¬

∨m
j=1 �sj) ∨ p) ∨

∨m
j=1 �sj , and since

� is monotone we may first replace p by � and then omit it, yielding axioms
�r→ �(�r∧¬

∨m
j=1 �sj)∨

∨m
j=1 �sj. Finally, these axioms are equivalent over

K to axioms (4) �r → ��r and {¬
∨m

j=1 �sj → �¬
∨m

j=1 �sj | m ≥ 0}, where
the latter is an ω-set for the axiom (5), which over K is equivalent to (5) itself.

Similarly, rule RT translates into the axiom r∧�((r∧p → s)∧p)→ s. Again,
by arguments as above this axiom can be seen to be equivalent (as an axiom)
over K to the standard axiom (T) �A→ A.

Remark 30. The translations show that Hilbert-style axioms actually corre-
spond to proto-rules instead of rules. Thus from this perspective it would be
more natural to consider sequent systems with proto-rules instead of rules.

6 Application: Limitative Results for K4 and S5

The correspondence results of the previous sections open up new possibilities for
investigations into the expressive power of sequent rules of a certain format by
investigating the limits of the corresponding class of axioms. We exemplify this
by establishing two results: the logic K4 cannot be captured by shallow rules (not
even with cut), and S5 cannot be captured in a cut-free way by rule with context
restrictions with an additional permutation property. Note that the situation for
both logics is different: K4 is not captured by any set of shallow rules, with or
without cut. For S5 we have exhibited a set of rules that, together with cut,

230 B. Lellmann and D. Pattinson

is sound and complete for S5. Here, we show that there cannot be a cut-free
complete set of rules which allows permutations of principal/context cuts into
the premisses of the first rule. While the result for K4 is intuitively obvious (but
still non-trivial to establish formally), our result on S5 can be interpreted to say
that rules with restrictions for S5 must be rather exotic, as they do not satisfy
permutability which is present in virtually all cut-free rule sets. While this also
implies that ‘standard’ proofs of cut-elimination that rely on propagating cut
upwards fail, our considerations are independent of any such proof and just use
permutability of rules. For this section we drop the assumption that the rule sets
include the rule Mon.

Theorem 31. There is no setR of shallow or one-step rules such that GRCutCon
is sound and complete for K4.

Proof. If there was such a set R of rules, then also GRMonCutCon would be
sound and complete for K4. Then by Proposition 28 we would have a non-
iterative axiomatisation A of K4. Now consider the two frames defined by
F1 = ({a, b, c}, {(a, b), (b, c), (a, c)}) and F2 = ({1, 2, 3, 4}, {(1, 2), (2, 3), (1, 4)}).
Clearly F1 is transitive while F2 is not. But given a non-iterative formula which
is satisfied in one of the two frames we can find a world of the other frame and
an assignment such that the formula is satisfied. That is, precisely the same non-
iterative formulae are valid on both frames. On the other hand it is well-known
that K4 is the logic of transitive Kripke-frames which is modally definable by the
formula (4)�p→ ��p. But then (4) must be derivable inHA and would therefore
be valid in F2, a contradiction since F2 is not transitive. �

Along these lines it is also possible to show that shallow rules are not expressive
enough to characterise symmetric frames or that one-step rules cannot capture
reflexivity, thus establishing that the inclusions between the different formats are
proper. The situation becomes more interesting if we want to show limitative
results for rules with restrictions in general. It is well known that the properties
mentioned above together characterise the logic S5, and there is a set of rules
which together with the cut rule captures this logic. On the other hand every
known cut-free sequent system for S5 seems to involve some extensions of the
rule format to facilitate a cut admissibility proof (see e.g. [15] for an overview).
This seems to suggest that there is no set of rules with restrictions which is sound
and cut-free complete for S5. As argued above, our translation implicitly involves
the cut rule which is problematic for proving results about cut-free systems per
se. On the other hand assuming a certain permutability of rules gives us more
information about the rule set. The first step is to show that every rule set which
is sound and cut-free complete for S5 must include certain rules.

Lemma 32. If R is a set of modal rules such that GRCon is sound and complete
for S5, then there are rules R1 = P1/Σ1 ⇒ Π1 and R2 = P2/Σ2 ⇒ Π2 with

1. �p ∈ Σ1 and (⇒ p)�C= ⇒ p for a restriction C of R1

2. �p ∈ Σ2 and �q ∈ Π2; or �q ∈ Π2 and (�p⇒)�C= �p⇒ for a restriction
C of R2.

Correspondence between Modal Hilbert Axioms and Sequent Rules 231

Proof. For the existence of R1 we inspect all possible derivations of the S5-valid
sequent �p⇒ p. In the last applied modal rule �p⇒ must have been principal
due to the rule format. But then (⇒ p)�C= ⇒ p for a restriction C of this rule
since otherwise the sequent �p ⇒ would be derivable, in contradiction to the
fact that �p⇒ ⊥ is not S5-valid.

For the existence of R2 we consider the possible derivations of the S5-valid
sequent �p⇒ �(p∨q). If in such a derivation⇒ �(p∨q) is never principal, then
since no rule decreases the complexity of a formula and since context formulae
cannot change sides, every occurrence of �(p∨q) must come from the weakening
context of an axiom. But then essentially the same derivation is used to derive
�p⇒ , a contradiction since �p⇒ ⊥ is not S5-valid. Thus we have a rule where
⇒ �(p ∨ q) is principal. But then for some Γ ⇒ Δ ∈ {�p ⇒ , p ⇒ , ⇒ p} we
must have (Γ ⇒ Δ)�C= Γ ⇒ Δ for some restriction C of this rule. In the first
two cases we are done, and in the last case we can derive ⇒ p ∨�(p ∨ q), again
a contradiction since the corresponding formula is not S5-valid. �

The additional permutation property which we demand of the rule sets is sug-
gested by standard cut elimination proofs in the spirit of [7] which rely on a
permutation-of-rules argument to transform a derivation with cut into one with-
out. It demands essentially that cuts where the cut formula is principal in the
last applied rule in the derivation of one of the premisses and contextual in that
of the other premiss can be permuted into the premisses of the latter rule. If
the main connective of the cut formula is propositional we also consider an al-
ternative property, G-invertibility, which essentially ensures that we can show
invertibility of the propositional connectives by permuting applications of the
propositional rules below applications of the modal rules. It should be noted
that while these properties are motivated by a certain proof technique, they are
properties of rule sets and as such independent of the proof technique.

Definition 33. A rule setR ismixed-cut closed if wheneverR,Q ∈ R and R has
principal formulae Γ ⇒ Δ,A (resp. A,Γ ⇒ Δ) such that for some restriction
CQ of Q we have (⇒ A)�CQ= ⇒ A (resp. (A ⇒)�CQ= A ⇒), then (Γ ⇒
Δ) �CQ= Γ ⇒ Δ and for every sequent Σ ⇒ Π and restriction CR of R we
have (Σ ⇒ Π)�CR�CQ= (Σ ⇒ Π)�CR . A rule set R is G-inverting if for every
restriction 〈F0;F1〉 of a rule in R and i ∈ {0, 1} we have: whenever A ◦ B ∈ Fi

with ◦ ∈ {∧,∨}, then also A,B ∈ Fi and whenever A → B ∈ Fi, then also
A ∈ F1−i and B ∈ Fi.

Using the two rules from Lemma 32 together with these properties we obtain a
restricted format of the rules in such a rule set.

Lemma 34. Let R be a mixed-cut closed set of modal rules such that GRCon
is sound and complete for S5 and such that GR is mixed-cut closed or R is
G-inverting. Then w.l.o.g. for every restriction 〈F1;F2〉 of a rule in R we have
F1 ⊆ {�p, p} and F2 ⊆ {p}.

Proof. Suppose GR is mixed-cut closed. If e.g. for a restriction 〈F1;F2〉 of a rule
in R we have A ∧B ∈ F1, then by mixed-cut closure of GR applied to this rule

232 B. Lellmann and D. Pattinson

and the rule ∧R we also have p ∈ F1 and p ∈ F2 and thus w.l.o.g. F1 = F2 = {p}.
Similarly for the other propositional connectives. If �A ∈ F1, then using mixed-
cut closure with R2 from the Lemma we have �p ∈ F1. Similarly, if �A ∈ F2,
then also p ∈ F2 using R1 from the Lemma. If on the other handR is G-inverting,
then in a derivation in GRCon we may permute applications of rules from G
below applications of rules from R in such a way that in the new derivation only
variables or modalised formulae occur as contextual formulae of modal rules.
Furthermore using mixed-cut closure of R and the rules R1, R2 as above we may
replace the modalised formulae in the restrictions by modalised variables. Thus
w.l.o.g. we may replace R by an equivalent set R′ of rules where only formulae
of the desired format occur in the restrictions. This preserves mixed-cut closure
of R and G-invertibility. �

Now we are in a position to use techniques similar to the ones used in proving
Theorem 31 to show that the translations of rules in the format specified by the
preceding Lemma cannot characterise S5.

Theorem 35. There is no mixed-cut closed set R of modal rules such that
GRCon is sound and complete for S5 and such that GR is mixed-cut closed
or R is G-inverting.

Proof. Adding the rules Cut and Mon to the rule set R preserves soundness
and completeness. Moreover, bringing the rule set into standard form preserves
the restricted format of the rules guaranteed by Lemma 34. The translations of
proto-rules for rules of this format have the form

q ∧�c ∧ P ∧
n∧

i=1

�Ai →
m∨
j=1

�Bj ∨ r ,

where P is a conjunction of variables and negated variables, and the Ai and
Bj are propositional formulae in the variables of P , the variables q, r and the
formula �c. To see that such axioms are not sufficient to characterise S5 consider
the two frames F1 := (N,N2) and F2 := (N,≤). Then for every such formula A,
world n of F2 and valuation σ : N → P(Var) with F2, n, σ � ¬A we construct
a valuation τ on F1 by setting τ(m) := σ(m + n). Now it is not too difficult to
check that F1, 0, τ � ¬A as well. Similarly every such formula which is satisfied
in F1 can also be satisfied in F2, and thus the same formulae of this format are
valid in the two frames. But F1 is an S5-frame, while F2 is not. As the class of
S5-frames is modally definable [2] the result follows as in Theorem 31. �

7 Discussion

Our goal in this paper was to establish a taxonomy of rule formats, together
with a methodology for obtaining limitative results on the existence of sequent
calculi for particular modal logics. The main application was a formal proof
of non-existence of cut-free sequent calculus for S5 in the most general format

Correspondence between Modal Hilbert Axioms and Sequent Rules 233

considered satisfying a (reasonably mild) additional permutation property. Since
as well as being instrumental for syntactic proofs this property is present in
virtually all cut-free systems, this strongly suggests that a cut-free calculus for S5
will require additional machinery in the rule format or a very different, possibly
semantic proof of cut admissibility. But even in the latter case, the rule set would
need to violate permutability which we consider highly unlikely.

Clearly, these early results offer much potential for refinement, as e.g. rules
with restrictions might be considered too restrictive. Other formats, e.g. using
context relations [1], capture more logics but often permit trivial cut-free systems
with all theorems of a logic as axioms so that further work is needed to map
out this hitherto uncharted landscape. Presently, we are considering a more
relaxed rule format where context formulae are permitted to change sides, and
investigate applications to provability logic.

References

1. Avron, A., Lahav, O.: Kripke semantics for basic sequent systems. In: Brünnler,
K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 43–57.
Springer, Heidelberg (2011)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

3. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577
(2009)

4. Chellas, B.F.: Modal Logic. Cambridge University Press (1980)
5. Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural log-

ics: Cut-elimination and completions. Ann. Pure Appl. Logic 163, 266–290 (2012)
6. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Automated support for the

investigation of paraconsistent and other logics. In: Artemov, S., Nerode, A. (eds.)
LFCS 2013. LNCS, vol. 7734, pp. 119–133. Springer, Heidelberg (2013)

7. Gentzen, G.: Untersuchungen über das logische Schließen. I. Math. Z. 39(2),
176–210 (1934)

8. Ghilardi, S.: Unification in intuitionistic logic. J. Symb. Log. 64(2), 859–880 (1999)
9. Goré, R.: Cut-free sequent and tableau systems for propositional diodorean modal

logics. Studia Logica 53, 433–457 (1994)
10. Kracht, M.: Power and weakness of the modal display calculus. In: Wansing, H.

(ed.) Proof Theory of Modal Logic, pp. 93–121. Kluwer (1996)
11. Lellmann, B., Pattinson, D.: Cut elimination for shallow modal logics. In: Brünnler,

K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 211–225.
Springer, Heidelberg (2011)

12. Lellmann, B., Pattinson, D.: Constructing cut free sequent systems with context
restrictions based on classical or intuitionistic logic. In: Lodaya, K. (ed.) ICLA
2013. LNCS (LNAI), vol. 7750, pp. 148–160. Springer, Heidelberg (2013)

13. Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34, 507–544 (2005)
14. Negri, S., von Plato, J.: Structural proof theory. Cambridge University Press (2001)
15. Poggiolesi, F.: Gentzen Calculi for Modal Propositional Logic. Trends in Logic,

vol. 32. Springer, Heidelberg (2011)
16. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in The-

oretical Computer Science, 2nd edn., vol. 43. Cambridge University Press (2000)

Schemata of Formulæ in the Theory of Arrays�

Nicolas Peltier

CNRS - Grenoble Informatics Laboratory
Nicolas.Peltier@imag.fr

Abstract. We consider schemata of quantifier-free formulæ, defined us-
ing indexed symbols and iterated connectives ranging over intervals (such
as

∨n
i=1 φ or

∧n
i=1 φ), and interpreted in the theory of arrays (with the

usual functions for storing and selecting elements in an array). We first
prove that the satisfiability problem is undecidable (it is clearly semi-
decidable). We then consider a natural restriction on the considered
structures and we prove that it makes the logic decidable by providing a
sound, complete and terminating proof procedure.

1 Introduction

In [2] (see also [3]) the logic of iterated schemata is defined, which enriches the
language of propositional logic with arithmetic parameters, indexed variables and
iterated connectives ranging over intervals of natural numbers. This language
allows one to formally define families of formulæ depending on arithmetic pa-
rameters, such as, e.g., the parameterized formula (p0∧

∧n
i=0 pi ⇒ pi+1)⇒ pn+1.

Decidability and undecidability results have been obtained for the proposed lan-
guage (according to the form of the arithmetic expressions that occur in the for-
mulæ) and proof procedures have been devised to test the validity of schemata
of formulæ. These procedures use the usual decomposition rules of propositional
logic, together with rules performing a lazy instantiation of the parameters and
loop detection techniques encoding a limited form of mathematical induction.
In [5], these results have been extended to some theories beyond propositional
logic, including in particular a fragment of Presburger arithmetic. In the present
paper, we consider schemata of formulæ interpreted over the theory of arrays,
that plays a central role in program verification1. The theory of arrays is defined
by using two function symbols store and select encoding respectively the stor-
age and retrieving of an element in an array, and defined by the two following
axioms:

∀x, z, v, select(store(x, z, v), z) / v (1)
∀x, z, w, v, z / w ∨ select(store(x, z, v), w) / select(x,w) (2)

� This work has been partly funded by the project ASAP of the French Agence Na-
tionale de la Recherche (ANR-09-BLAN-0407-01).

1 This theory does not fall in the scope of the results in [5].

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 234–249, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Schemata of Formulæ in the Theory of Arrays 235

These axioms state that if an element v is inserted into an array x at some
position z, then the resulting array contains v at position z (first axiom) and
contains the same elements as in x elsewhere (second axiom).

This theory allows for instance to model the heap when describing the be-
havior of a program. It is very well-studied and several procedures have been
proposed to test the validity of formulæ modulo this theory and many extensions.
For instance, a decision procedure is defined in [9,8] for dealing with formulæ
over the theory of arrays with uninterpreted or interpreted elements and indices,
which is able to handle a restricted form of quantification over indices. The work
described in [10] focuses on arrays with integer indices and devises a method
to combine existing decision procedures which makes it possible to handle some
important features of arrays such as sortedness or array dimension. We also
mention the logic presented in [11], which is devoted to reasoning with arrays of
integers (by reduction to the emptiness problem for counter automata).

In the present paper, we consider schemata of formulæ interpreted on the
theory of arrays and defined using indexed variables and iterated connectives.
These indexed symbols may be used, for instance, to denote the state of the same
variable at different times during the running of a program. Consider for instance
the following example. If, in an array T , n elements e1, . . . , en are inserted at
distinct indices i1, . . . , in, then it is clear that the result does not depend on the
order in which the insertion is performed. A particular instance of this problem
can be modeled by constructing the following two sequences T ′

n and Tn:

T0 / T T ′
0 / store(T, i′, a)

∧n
j=0 ij �= i′∧n

j=0 Tj+1 / store(Tj , ij, ej)
∧n

j=0 T
′
j+1 / store(T ′

j , ij , ej)

Intuitively, Tn+1 is obtained from T by inserting the elements e1, . . . , en in
the cells i1, . . . , in respectively, and T ′

n+1 is obtained by inserting a, e1, . . . , en
at i′, i1, . . . , in. We want to prove that the array obtained by storing a
into Tn+1 in cell i′ is identical to T ′

n+1 modulo extensionality, i.e. that
∀n ∀i select(store(Tn+1, i

′, a), i) / select(T ′
n+1, i) is a logical consequence of the

previous set of axioms. Note that the index variables j and n must be interpreted
as natural numbers hence this problem cannot be encoded in first-order logic2.
By negating the conclusion, we obtain a clause containing a constant interpreted
as a natural number. Existing SMT-solvers (see, e.g., www.SMT-LIB.org) cannot
decide the validity of such formulæ, unless of course n is instantiated to some
fixed number3. For proving that the formula holds for all values of n, the use of
mathematical induction is essential.

The paper is structured as follows. After defining in Section 2 the syntax and
the semantics of the considered logic, we prove in Section 3 that the satisfiabil-
ity problem is undecidable (it is obviously semi-decidable), by reduction to the
2 It does not fall in the scope of existing procedures for handling combination of first-

order logic and Presburger arithmetic (see, e.g., [7]), since it necessarily involves
induction.

3 As far as we are aware, this problem is out of the scope of the known decidable
extensions of the theory of arrays.

236 N. Peltier

Post correspondence problem. Remarkably, this result still holds if the syntax of
the formula is further restricted by forbidding arrays containing elements of the
same sort as their indices (thus discarding terms such as select(T, select(T, i))).
In Section 4, we impose additional semantic restrictions on the considered in-
terpretations and define a decision procedure for testing the satisfiability of for-
mulæ in this particular class of interpretations. The proof procedure is based on
propositional tableaux enriched by specific rules for equality reasoning modulo
the theory of arrays, together with new simplification and loop detection rules
ensuring termination. The conditions on the interpretations that make possible
the definition of the decision procedure are formally defined in Section 4.2. In-
formally, these conditions can be summarized as follows: two indexed constants
ai and bj, with i < j encoding array indices cannot be equal, unless there ex-
ists a non-indexed constant c such that ai = c = bj or a sequence of constants
c1, . . . , cj−1−i such that ai = c1i+1 = . . . = cj−i−1

j−1 = bj holds in the consid-
ered interpretation. This restriction does not apply in a systematic way on all
the symbols occurring in the formula, but only on those encoding the indices
of certain arrays, more precisely those on which a store operation is performed,
and those containing elements of the same sort as their indices. We call the in-
terpretations satisfying this requirement contiguous. Going back to the previous
example, the requirement holds if we assume for instance (in addition to the pre-
vious properties) that the ij ’s are pairwise distinct (more generally it is clear that
the requirement always holds if constants with distinct indices are interpreted by
distinct terms). Some simple examples of application of our work are presented
in Section 5, in which we show that our procedure can be employed to check
properties of simple programs with loops, where indexed constants ai are used
to denote the value of some variables a at iteration i. Section 6 briefly concludes
the paper and provides some lines of future work. Due to space restrictions, some
of the proofs are omitted.

2 Schemata of Formulæ

2.1 Syntax

The set of sort terms T is constructed inductively over a finite set of base sorts
B using the operator →: if s and s′ are two sort terms in T then the sort term
s→ s′ denotes the sort of the arrays (or functions) mapping elements of sort s
to elements of sort s′. Let nat be a special sort symbol, not occurring in B or T.
Let Σ be a set of symbols (denoting either constants of a base sort or arrays).
Each symbol is Σ is associated with a unique profile that is either a sort term
or of the form nat → s where s is a sort term. A symbol is called indexed iff
its profile is of the later form. The set of indexed and non-indexed symbols are
denoted by Σnat and Σ⊥, respectively.

Let V be a set of arithmetic constants. An arithmetic expression of parameter
n ∈ V is an expression of the form k or n+ k, where n ∈ V and k ∈ N. As usual,
n + 0 is simply written n. The set of arithmetic expressions of parameter n is

Schemata of Formulæ in the Theory of Arrays 237

denoted by TN(n). If α, β ∈ TN(n) then we write α < β iff the previous relation
holds regardless of the value of the parameter n, i.e., iff one of the following
conditions hold: α and β are natural numbers and α < β, α and β are of the
form n+ k and n+ l respectively and k < l, or α is a natural number, β is of the
form n+ k and α < k.

The set of terms T (s, n) of sort s ∈ T and of parameter n ∈ V is built
inductively as follows.
- All non-indexed symbols u ∈ Σ⊥ of profile s are terms in T (s, n).
- For all u ∈ Σnat of profile nat→ s and for all α ∈ TN(n), we have uα ∈ T (s, n).
- For all sort terms s′, for all (t, u) ∈ T (s′ → s, n)×T (s′, n), select(t, u) ∈ T (s, n).
- If s is of the form s′ → s′′, then for all (t, u, v) ∈ T (s, n)× T (s′, n)× T (s′′, n),

store(t, u, v) ∈ T (s, n).
The set T (n) denotes the entire set of terms T (n) def

=
⋃

s∈T T (s, n). If u is a term
of sort s→ s′, then s is the domain of u and s′ is its range. For every arithmetic
expression α, we denote by Σ[α] the set of terms that are either element of Σ⊥
or of the form uα, with u ∈ Σnat.

The term depth δ(u) and the index depth ι(u) of a term u are inductively
defined as follows: δ(uα)

def
= δ(u)

def
= 1 if u ∈ Σnat ∪ Σ⊥, δ(select(t, u)) def

=

max(δ(t), δ(u)) + 1, δ(store(t, u, v) def
= max(δ(t), δ(u), δ(v)) + 1, ι(u)

def
= 0

if u ∈ Σ⊥, ι(un+k)
def
= ι(uk)

def
= k + 1 if k ∈ N, ι(select(t, u)) def

=

max(ι(t), δ(u)), ι(store(t, u, v) def
= max(ι(t), δ(u), δ(v)), For instance, if s ∈ Σ⊥

then select(tn+1, select(s, un)) is of term depth 3 and of index depth 2.
The set F(n) ofA-formulæ of parameter n is inductively constructed as follows

(note that we assume that all formulæ are in negation normal form).
- ⊥,� ∈ F(n).
- If u, v ∈ T (s, n) for some sort s ∈ T, then u / v and u �/ v are in F(n).
- If φ, ψ ∈ F(n) then φ ∧ ψ, φ ∨ ψ ∈ F(n).
- If i ∈ V , φ ∈ F(i), and k, l ∈ N then

∨n+l
i=k φ and

∧n+l
i=k φ are in F(n).

An expression α is an index of a formulæ φ if it occurs in a term of the form uα
of φ. The term depth and index depth of an A-formula φ is the maximal term
(resp. index) depth of the terms occurring in φ. The propositional depth π(φ)

is defined as follows. π(⊥) def
= π(�) def

= π(u / v)
def
= π(u �/ v)

def
= 1, π(φ # ψ) def

=
1 +max(π(φ), π(ψ)) and π(Πn+l

i=kφ) = 1 + π(φ) (with # ∈ {∨,∧}, Π ∈ {
∨
,
∧
}).

For every expression e, we denote by e{α �→ β} the expression obtained from
e by replacing every occurrence of α by β.

2.2 Semantics

The semantics of A-formulæ is defined in a straightforward way. An interpre-
tation I is a function mapping every expression e in T ∪ V ∪ {store, select} ∪⋃

n∈V(TN(n) ∪ T (n) ∪ F(n)) to an object [e]I such that:
- For every sort s ∈ T, [s]I is a non-empty set of elements (the domain of s).
- For every n ∈ V , [n]I is a natural number.
- For every symbol u of profile s ∈ T, [u]I is an element of [s]I .

238 N. Peltier

- For every constant u of profile nat→ s, [u]I is a function from N to [s]I .
- [k]I

def
= k if k ∈ N, and [n+ k]I

def
= [n]I + k if n ∈ V , k ∈ N.

- [store]I is a function that maps every triple (e, e′, f) ∈ ([s→ s′]
I
, [s]

I
, [s′]

I
)

to an element of [s→ s′]
I
.

- [select]I is a function that maps every pair (e, e′) ∈ ([s→ s′]
I
, [s]

I
) to an

element of [s′]I .
- I satisfies the axioms of the theory of arrays, i.e., for every t, u, v, w ∈
([s→ s′]

I
, [s]

I
, [s′]

I
, [s]

I
), we have: [select]I([store]I(t, u, v), u) = v and

[select]I([store]I(t, u, v), w) = [select]I(t, w) if u �= w.
- [uα]

I def
= [u]I([α]I), and for every term f(t1, . . . , tn), where f ∈ {select, store},

n = 2, 3, we have [f(t1, . . . , tn)]
I def
= [f]I([t1]

I , . . . , [tn]
I).

- For every A-formula φ, [φ]
I is a truth value in {true, false}, inductively

defined as follows.
- [�]I def

= true, [⊥]I def
= false, [u / v]

I def
= true iff [u]

I
= [v]

I , [u �/ v]
I def
= true

iff [u]
I �= [v]

I , [φ ∨ ψ]I def
= true iff [φ]

I
= true or [ψ]I = true, and [φ ∧ ψ]I def

=

true iff [φ]
I
= true and [ψ]

I
= false.

- [
∨n+l

i=k φ]
I def
= true iff there exists a natural number m ∈ [k, [n]

I
+ l] such that

[φ]I[i←m] = true, where I[i← m] denotes the interpretation coinciding with
I except on i, for which we have [i]

I[i←m] def
= m.

- [
∧n+l

i=k φ]
I def

= true iff for all natural numbers m ∈ [k, [n]
I
+ l] we have

[φ]
I[i←m]

= true.
An interpretation I is a model of an A-formula φ (resp. set of A-formulæ S) if

[φ]
I
= true (resp. if ∀φ ∈ S, [φ]I = true). This is written I |= φ (resp. I |= S).

An A-formula or a set of A-formulæ having a model is satisfiable.

3 Undecidability Results

The following proposition is an immediate consequence of the previous definition.

Proposition 1. The satisfiability problem is semi-decidable for A-formulæ.

Proof. If the value of the parameter is fixed then all iterated formulæ can be
replaced by standard disjunctions and conjunctions. The obtained A-formula is
then equivalent to a ground formula interpreted on the theory of arrays, for which
satisfiability can be tested by usual procedures. Thus it suffices to enumerate all
the possible values of the parameter until we get one for which the considered
formula is satisfiable.

The next theorem shows that the problem is not decidable.

Theorem 2. The satisfiability problem is undecidable for A-formulæ, even if
the sets of range and domain sorts are disjoint4.
4 The case in which the domain and range of the arrays are allowed to be identical

follows immediately from the results in [5] about the undecidability of schemata of
equational formulæ in the empty theory.

Schemata of Formulæ in the Theory of Arrays 239

Proof. We provide a brief informal overview of the proof. It is based on
an encoding of the Post correspondence problem. We thus consider two se-
quences of words w1,1, . . . , w1,n and w2,1, . . . , w2,n and we construct an A-
formula φ that is satisfiable iff there exists a sequence I1, . . . , Ik such that
w1,I1 . · · · .w1,Ik = w2,I1 . · · · .w2,Ik (where “ .” denotes word concatenation). To
this purpose, we use two indexed arrays W 1 and W 2 denoting the words
w1,I1 . · · · .w1,Ik and w2,I1 . · · · .w2,Ik respectively. More precisely W i is defined
on the domain {a1, . . . , an} and select(W i, aj) contains the character j of the
word wi,I1 . · · · .wi,Ik , defined as a pair (k, l) ∈ [1, n] × [1, |wi,k|], meaning that
this character is the l-th element of the word wi,k. It is straightforward to state
as an A-formula that W i indeed represents a word of the form wi,Ii

1 . · · · .wi,Ii
k ,

for some sequence Ii1, . . . , Iik: it suffices to check that the successor of any element
(k, l) is either of the form (k, l+1) (if l is not the last character in wi,k) or of the
form (k′, 1), for some k′ ∈ [1, n] (if l is the last element of wi,k). Similarly, it is
easy to check that the words denoted by W 1 and W 2 are identical. The difficult
point is to check that the two sequences Ii1, . . . , Iik (i = 1, 2) are identical. For
expressing this property, we take advantage of the expressive power of the theory
of arrays: We introduce two indexed constants bi such that (bi1, . . . , bin) is exactly
the sequence of cells corresponding to the beginning of a new word in W i. To
define these sequences, we construct two arrays Bi (i = 1, 2) containing true
exactly at the cells corresponding to the beginning of a new word in W i (which
can be expressed by stating that for every j = 1, . . . , n, select(Bi, aj) is true iff
select(W i, aj) is of the form (k, 1)). Then we check that this array Bi is identical
to the array obtained by inserting true at every cell bij (1 ≤ j ≤ n), inside an
array containing initially false at each cell aj (1 ≤ j ≤ n). This guarantees that
{bi1, . . . , bin} is indeed the set of cells corresponding to the start of a new word.
The most subtle point is to ensure that the order of these cells is the intended
one, i.e. that the first new word after bj indeed starts at bj+1 and not, say, at
bj+2. This is done by adding axioms “copying” the value of the next element
corresponding to the start of a word all along the array W i in order to check
that two contiguous words really start at some cells bij and bij+1. Using these
sequences bij , it is straightforward to check that the sequences Iij are identical,
by verifying that select(W 1, bj) is equal to select(W 2, bj), for every j = 1, . . . , n.

4 Decidability Results

The results in Section 3 show that the satisfiability problem is undecidable for
A-formulæ. In such a situation, the standard approach consists in focusing on
particular syntactic fragments so that decidability and/or complexity results can
be obtained. In the present paper, instead of restricting the class of formulæ, we
prefer to restrict the class of interpretations by imposing additional conditions
on the considered structures. These conditions are formalized in Section 4.2.

240 N. Peltier

4.1 Simplifying the Syntax

For technical convenience, we shall assume from now that all the formulæ satisfy
some additional syntactic restrictions:

1. The term depth is bounded by 2; and every literal is either an equation or a
disequation between constants or indexed constants or of the form f(u) / v,
with f ∈ {select, store} and u, v are constants or indexed constants.

2. The only arithmetic expressions occurring in the considered formula are 0,
n or n+ 1, where n ∈ V .

3. The formula contains no nested iterations, i.e., for every subformula of the
form

∨n+l
i=0 φ or

∧n+l
i=k φ, φ contains no iterated formula.

It is easy to check that these conditions do not reduce the expressive power
of the language. First, any arithmetic expression distinct from the parameter
n occurring as the upper bound of an iteration can be removed by unfolding
the considered iteration, e.g.,

∨n+2
i=0 φ is equivalent to

∨n
i=0 φ ∨ φ{i �→ n + 1} ∨

φ{i �→ n + 2}. It is also easy to get rid of an iteration whose lower bound is
a number k �= 0: this can be done by introducing a new atom pki stating that
i is strictly greater than k, and defined by the axioms: ¬pk0 ∧ . . . ∧ ¬pkk−1 ∧
pkk ∧

∧n
i=0 ¬pki ∨ pki+1. Then an iteration

∨n
i=k φ (resp.

∧n
i=k φ) can be written∨n

i=0 p
k
i ∧ φ (resp.

∧n
i=0 ¬pki ∨ φ). Condition 3 is also easy to enforce, because

any iteration Πi
j=0ψ occurring inside an iteration can be replaced by a new

atom pi, while adding the axioms: ¬p0 ∨ ψ{i �→ 0} and
∧n

i=0 ¬pi+1 ∨ (ψ{j �→
i + 1} # pi) (with (Π, #) ∈ {(

∨
,∨), (

∧
,∧)}). Afterward, Condition 1 can be

enforced by applying the standard flattening operation (see for instance [6]),
i.e., every complex subterm u of parameter n can be (repeatedly) replaced by
a new constant vn, while adding the axiom

∧n+1
i=0 vi / u{n �→ i}. This ensures

that the term depth is at most 2 and that the symbols select and store only
occur in positive literals (and occur only once in every literal). Condition 2 is
ensured in a similar way, by (recursively) replacing any constant un+k with k > 1

by a constant u′n+k−1, while adding the axiom
∧n+1

i=0 u
′
i / ui+1. Due to space

restrictions, the formal description of these transformations is omitted, see [3,4]
for more details.

4.2 Restricting the Class of Interpretations

We first define a property of the sort terms which depends only on the syntactic
form of the formula. Intuitively, a sort s is called non-cyclic if: (i) no storing
operation is performed on arrays of domain s; and (ii) no array of sort s → s

occurs in the signature, even with array composition (by composing two arrays
of sort s → s′ and s′ → s one gets an array of sort s → s). The condition is
formalized as follows.

Definition 3. Let ≺ be a (fixed) ordering among sort terms, such that s, s′ ≺
s → s′, for all sort terms s, s′. A sort s is non-cyclic in an A-formula φ if the
two following conditions hold.

Schemata of Formulæ in the Theory of Arrays 241

- φ contains no term of the form store(u, v, w) where v is of sort s.
- φ contains no term of sort s′ → s with s′ �. s.

The second condition of Definition 3 is related to the notion of a stratified sig-
nature in [1]: if the formula at hand contains no occurrence of store and if the
signature is stratified then every sort is non-cyclic.

The conditions of Definition 3 are rather restrictive, thus instead of assuming
that every sort is non-cyclic, we prefer to allow cyclic sorts and to add further
restrictions on their interpretations. These restrictions are formalized in the fol-
lowing definition.

Definition 4. A sort s is contiguous in an interpretation I iff for every pair of
constant symbols u, v of profile nat → s and for every k, l ∈ N such that k < l
and I |= uk / vl, one of the following conditions holds:
- There exists a constant w of sort s such that I |= uk / w ∧ vl / w.
- There exists l− k+1 constants w1, . . . , wl−k+1 such that w1 = u, wl−k+1 = v
and ∀i ∈ [1, l− k], I |= wi

k+i−1 / wi+1
k+i.

For instance the condition of Definition 4 holds if s is finite, because in this case
one may associate a non-indexed constant symbol w with each element of the
domain of s; or if the implication k+1 < l⇒ uk �/ vl holds in I, for all constant
symbols u, v ∈ Σnat and for all k, l ∈ N. It also holds if the interpretation of the
constants of sort nat → s is monotonic, i.e., if there exists an ordering ≤ such
that k < l ⇒ ak ≤ bl holds (it suffices to add for each sort s a new constant u
such that uk is interpreted as the maximal term of sort s of the form vk−1).

Definition 5. An interpretation I is contiguous if every sort is contiguous in
I. It is quasi-contiguous iff every cyclic sort is contiguous.

The following lemma shows that quasi-contiguous and contiguous interpretations
are equivalent for satisfiability testing:

Lemma 6. An A-formula has a quasi-contiguous model iff it has a contiguous
model (up to the addition of a finite set of new constant symbols and axioms).

In the next section, we shall therefore assume that all the considered interpre-
tations are contiguous.

4.3 Proof Procedure

We devise a tableau-based proof procedure deciding the satisfiability of A-
formulæ in contiguous (or quasi-contiguous) interpretations. We first briefly re-
view some basic terminology. Tableaux are viewed as trees labeled by sets of
A-formulæ. A branch is a path from the root to a leaf. An interpretation I val-
idates a tableau if there exists a leaf labeled by some set S such that I |= S. A
branch is closed if it contains ⊥. The procedure is defined by rules of the form
H1, . . . , Hn

C1 | . . . | Cm
, meaning that a leaf labeled by a set S can be expanded by m new

children, labeled by S ∪C1,. . . ,S ∪Cm respectively, if S contains H1, . . . , Hn (up
to an instantiation of the meta-variables). The rule only applies if the branch is
open and if there is no i ∈ [1,m] such that S contains all the formulæ in Ci.

242 N. Peltier

Overview of the Proof Procedure. The proof procedure can be informally
described as follows.
- First, the usual decomposition rules of propositional logic are applied, together

with additional transitivity and paramodulation rules handling the properties
of the equality predicate. We also consider generalized decomposition rules un-
folding iterated formulæ (e.g., to infer φ{i �→ n+ 1} from

∧n+1
i=0 φ). In order to

handle store operations, we introduce new atoms of the form t /E s, meaning
that t and s coincide on every element, except on those occurring in the set E.

- Then, we apply an inductive rule performing a case analysis on the parameter
n, considering separately the two cases n = 0 and n > 0. The rule recursively
replaces n by either 0 or n + 1, and thus lazily instantiates the parameter
with natural numbers, which enables further applications of the decomposition
rules. Of course, the addition of the induction rule makes the calculus non-
terminating, since n can be instantiated indefinitely.

- To avoid non-termination, a loop detection mechanism is added to prune infi-
nite branches. To get rid of such branches, we have to ensure that the depth of
the formulæ occurring in the tableau is bounded, so that every infinite branch
contains a cycle, i.e., two nodes labeled by the same set of formulæ. It is easy
to see that the term depth and propositional depth of the formula cannot in-
crease, thus we only have to ensure that its index depth is bounded. To this
aim, we introduce new (satisfiability-preserving) rules allowing to get rid of all
formulæ containing an expression n+2. This ensures that only terms indexed
by 0, n or n+1 will remain in the formula before the inductive rule is applied,
hence the index depth will never be greater than 3. When trying to eliminate
formulæ containing an occurrence of n+2, it turns out that it is sometimes nec-
essary to infer additional properties of the remaining symbols. For instance, if
the considered branch contains a formula select(t, un+2) �/ select(s, un+2) then
we have to express the fact that t and s disagree at some element un+2. But
we have to express this property without explicitly referring to the term un+2

(since our goal is to get rid of all such terms), and of course without intro-
ducing new symbols (which would prevent termination). This cannot be done
in the initial language, thus we need to enrich the syntax by new predicates
allowing to express such properties in a convenient way. Of course, we also
need to add expansion rules encoding the axioms defining these predicates.

Enriching the Syntax. We therefore enrich the syntax of the language by new
constructions. We first consider set expressions, denoting sets of individuals, and
built using the constructor ∪ over a set of basic sets ∅, {u} and θ(α), where u is a
constant or indexed constant and α an arithmetic expression. The sets ∅ and {u}
and the constructor ∪ are interpreted in a natural way, and θ(α) is interpreted in
any interpretation I as the set of terms that are distinct from all expressions in
T I
|<α, with T I

|<α

def
= [Σ⊥]

I ∪{[uk]I | u ∈ Σnat, k < [α]
I}. Intuitively, T I

|<α denotes
the set of named elements whose index is strictly lower than α. We also consider
a predicate symbol ∈ interpreted as usual as set membership, and a symbol /E

stating that two arrays agree on all elements not occurring in the set denoted
by E. For instance, t /{u,v} s states that t and s coincide at every element

Schemata of Formulæ in the Theory of Arrays 243

distinct from u and v and t /θ(α) s states that t and s coincide on every element
in T I

|<α. Furthermore, we introduce a predicate �α (with α ∈ TN(n) ∪ {−1}),
such that I |= t �α s iff there exists an element e ∈ θ(α + 1) (in the domain
of t, s) such that the interpretations of t and s disagree at e. The advantage
of the predicates /E and �α is that they allow us to express properties of
arrays without having to refer explicitly to the symbols denoting elements of
the domain of these arrays. In particular, the symbol /E can be used to encode
store operations. More precisely, every atom of the form store(t, u, v) / s can
be replaced by the conjunction select(s, u) / v ∧ t /{u} s, stating the fact that
s contains v at u and coincides with t at all other elements. Thanks to this
transformation (which obviously preserves satisfiability) we can assume that the
consideredA-formula contains no instance of store. Finally, we add new constants
denoting all terms select(t, u) ∈ T (n), with appropriate axioms, so that the index
of the constant denoting a term select(t, u) is the maximal index in t, u (note
that these special constants do not themselves occur in T (n)).

We are now in position to formally describe the inference rules defining the
proof procedure.

Propositional Decomposition Rules. The rules (∧-D), (∨-D) and (⊥) are
the usual decomposition rules of propositional tableaux. Other decomposition
rules (similar to those in [2]) are added to handle iterated connectives.

(∧-D) φ ∧ ψ
φ, ψ

(∨-D) φ ∨ ψ
φ | ψ

(⊥) φ,¬φ
⊥

(
∧

-D)
∨n+1

i=0 φ∨n
i=0 φ | φ{i �→ n+ 1} (

∨
-D)

∧n+1
i=0 φ

φ{i �→ n+ 1},
∧n

i=0 φ

Equality Rules. The next rules encode the usual properties of the equal-
ity predicate. The rule (S) encodes the substitutivity property, (/E-R1) and
(/E-R2) encode the properties of the predicate /E, whereas (P) allows one to
replace a term by an equal constant or indexed constant. Finally, (Ref) is a clo-
sure rule encoding reflexivity and (C) encodes the fact that interpretations are
contiguous. To this purpose, it suffices to check that all constants of the form
uβ+2 occur either in Σ[β + 1] or in θ(β + 2).

(S) select(t, u) / w, select(s, v) / w′

t �/ s | u �/ v | w / w′ (P) u / u′, φ[u]
φ[u′]

if δ(u′) = 1

and either u′ ∈ T (n) or u does not occur in the scope of select or /E in φ.

(�E-R2)
u �E v, u′ �E′ w

u �� u′ | v �E∪E′ w
(�E-R1)

t �E s, select(t′, u) � v

u ∈ E | t �� t′ | select(s, u) � v

(Ref)
u �/ u
⊥ (C) uβ+2 ∈ E | uβ+2 ∈ θ(β + 2)

where E is the set of terms in Σ[β + 1] that are of the same sort as uβ+2.

244 N. Peltier

∼-Rules. The two following rules handle the predicate �α. The first one encodes
a form of transitivity on �α and /E. Indeed, if u �α v and w /E u hold, for some
set of elements E whose indices are lower or equal to α, then we necessarily have
w �α v. Indeed, by definition, u �α v holds if select(u, e) �= select(v, e) for some
element e distinct from every non-indexed term and from every term indexed
by a natural number that is lower or equal to α. But such an element e cannot
occur in E, thus w coincides with u at e, and w �α v necessarily holds.

(∼-E) u �α v, w /E u′

u �/ u′ | w �α v
if α is maximal in the node, E is a finite set.

The next rule allows one to derive expressions of the form t �α−1 s. Such
an expression is derivable if there exists an element e such that select(t, e) �=
select(s, e) and if this element is distinct from every non-indexed term and from
every term indexed by a natural number that is strictly lower than α. Thanks to
the fact that the interpretations are assumed to be contiguous, we only have to
test that e is distinct from all constants of the same sort of e that are non-indexed
or indexed by α− 1.

(∼-I)
select(t, uα) / v, select(s, w) / w′

uα ∈ E | uα �/ w | v / w′ | t �α−1 s, uα / w, v �/ w′

where E is the set of terms in Σ[α− 1] that are of the same sort as uα.
The next rule in this section allows one to introduce expressions of the form

θ(α). This is done by replacing a constant u occurring in a set E by θ(α), if u
occurs in θ(α). This last condition is tested in the same way as in the previous
rule, by verifying that uα is distinct from all constants that are non-indexed or
indexed by α− 1.

θ-I t /E∪{uα} s
uα ∈ E′ | t /E∪θ(α) s

where E′ is the set of terms in Σ[α− 1] that are of the same sort as uα.
The last rules in this subsection express straightforward properties of �α:

(�-I) t �α+1 s
t �α s

(∼-⊥) t �α t
⊥

(∼-D) t �β s | t ∼β s (∼-T)
t �β s

s′ �β t | s′ �β s

if β is the maximal index in the node, t, s, s′ are non-indexed constants or con-
stants indexed by an expression lower or equal to β.

∈-Rules. The following rules encode the definition of ∈ and of the sets θ(α).

∈-E1
u ∈ E ∪ {v}

u ∈ E | u / v
∈-E2

u ∈ ∅
⊥

∈-E3
u ∈ θ(0)∧
v∈E′ u �/ v

∈-E4
u ∈ θ(β + 1)∧

v∈E′′ u �/ v, u ∈ θ(β)
if E′ and E′′ denote respectively the terms in Σ⊥ and Σ[β] that are of the same
sort as u.

Schemata of Formulæ in the Theory of Arrays 245

Induction Rule. The following rule instantiates the parameter n by considering
the two cases: n = 0 and n > 0. The later case is handled by replacing n by n+1.

(Ind) Φ
Φ[0/n] | Φ{n �→ n+ 1}

where Φ[0/n] denotes the set of A-formulæ obtained from Φ by replacing n by 0,
and by replacing all iterations Π0

i=0φ (with Π ∈ {
∧
,
∨
}) by φ{i �→ 0}.

Loop Detection. The two following rules aim at preventing divergence, as
explained in Section 4.3. The first one simply deletes from a given node all the
A-formulæ containing a maximal index α (the rule applies with α = n+2, but also
with α = 0, 1 after n has been instantiated). Of course, the rule does not preserve
satisfiability in general, but it preserves satisfiability if the considered node is
irreducible by all the previous rules, except (Ind). The intuitive justification is
that these rules extract all the relevant information from the formulæ and express
it using only symbols indexed by expressions that are strictly smaller than α.

For every set ofA-formulæ and for every arithmetic expression α, we denote by
〈S〉α the set of A-formulæ obtained from S by removing all formulæ containing
an index greater or equal to α.

(W)
S
〈S〉α

if α is the maximal index expression in S and either α = n + 2 or α ∈ N and S
contains no occurrence of n.

Note that in contrast to the other rules, S and 〈S〉α denote the labels of the
parent and child nodes (not subsets of these labels). Finally, the rule (L) closes
a node that is subsumed by another node in the proof tree:

(L)
S
⊥

if there exists a node N ′ in the tableau, distinct from the current one labeled by
a set of formulæ S′ such that S′ ⊆ S and either N ′ is a leaf or N ′ occurs in the
same branch as the current node.

The Properties of the Calculus. We denote by StabArray the procedure
defined by the previous inference rules. We assume that the rules are applied
with the following strategy. The rules (L), (W) and (Ind) are applied with a
strictly lower priority than the other rules. The rule (L) is applied only if (W)
does not apply, and (Ind) applies when no other rule applies.

Theorem 7. The calculus StabArray is:

– terminating: every tableau is finite;
– complete (w.r.t. the class of contiguous interpretations): every irreducible

open node has a contiguous model;
– sound (w.r.t. the class of contiguous interpretations): an A-formula admit-

ting a closed tableau has no contiguous model.

246 N. Peltier

The number of A-formulæ occurring in the tableau is at most exponential5
w.r.t. the size of the initial formula. Therefore, it is easy to check that the
complexity of StabArray is at most doubly exponential (since the number of
nodes in the tableau is bounded by the number of sets of formulæ).

Example 8. We consider the following set of A-formulæ: {select(tn+1, un+1) �
v, select(s, un+1) � w, v �� w, un+1 �� un, t0 � s,

∧n

i=0 ti �{ui} ti+1}. Note that this set
has no contiguous model: since un+1 �� un, un+1 must be distinct from un, un−1, . . . , u0,
and thus tn+1 necessarily coincides with t0 (hence with s) on un+1. We first apply the
rule (S) on the first two formulæ, yielding the branches tn+1 �� s, un+1 �� un+1 and
v � w. The last two branches can be closed immediately by applying the rules (Ref)
and (⊥), respectively. Then the rule (∼-I) applies, yielding the two branches: un+1 ∈ E
(where E is the set of terms in Σ[n] of the same sort as un+1) and tn+1 �n s (the
other branches can be closed immediately). We have E = {un}, thus the rule ∈-E1

applies on the first branch, yielding un+1 � un, and the branch can be closed due to
the formula un+1 �� un. In the second branch, we can apply the rule (Ind). In the base
case, we get t1 �0 s and t0 �{u0} t1, hence by (P), s �{u0} t1. Then the rule (∼-E)
derives s �0 s and the branch is closed by (∼-⊥). In the inductive case, n is replaced by
n+ 1, and the formula tn+1 �{un+1} tn+2 is derived by (

∨
-D). By (�E-R1), we derive

select(tn+1, un+2) � v and thus tn+1 �n+1 s can be obtained as in the previous node.
Then the rule (W) applies and removes all formulæ containing n + 2. We get the set
of formulæ: {tn+1 �n+1 s, v �� w, t0 � s,

∧n

i=0 ti �{ui} ti+1}(�). We apply again the
rule (Ind). The base case can be closed immediately as before. In the inductive case,
we derive the formulæ tn+2 �n+2 s, tn+1 �{un+1} tn+2, hence by (∼-E) and (�-I) we
get tn+1 �n+2 s and tn+1 �n+1 s. Then the rule (W) applies again, yielding a set of
formulæ that is identical to (�). Thus the rule (L) applies, closing the whole tableau
(note that some irrelevant rule applications have been omitted for readability).

5 Applications

We provide some simple applications of the proposed procedure. The program
in pseudo-code below copies in an array B all the elements occurring in an array
A and satisfying some property p.
i← 0
j← 0
while i ≤ n do

if p(A[i]) then
B[j]← A[i]
j← j+ 1

end if
i← i+ 1

end while
The behavior of this program can be encoded by the following A-formula.
The parameter n denotes the number of iterations and i is the iteration rank.

5 The exponential blow-up stems from the atoms of the form �E, where E is a set of
terms of arbitrary cardinality.

Schemata of Formulæ in the Theory of Arrays 247

The indexed constants Bi and ji denote the value of B and j at time i. Note
that since A is not affected and since it is always indexed by i, it is simpler to
encode it as an indexed constant rather than as an array.

j0 / 0∧n
i=0(¬p(Ai) / true ∨ (Bi+1 / store(Bi, ji, Ai) ∧ ji+1 / select(succ, ji)))∧n

i=0(p(Ai) / true ∨ (Bi+1 / Bi ∧ ji+1 / ji))

The symbol succ denotes the successor function (succ(x) is written select(succ, x)
because all functions are encoded as arrays in our framework). By using a
straightforward typing algorithm, we can infer that A,B and j are of sorts
nat→ s, nat→ s′ → s and nat→ s′, respectively. The constants true, 0, succ
and p are of sort bool, s′, s′ → s′ and s → bool, respectively. It is clear that
the sort s is non-cyclic. The sort s′ is cyclic, however, it is easy to check that
its interpretation is necessarily contiguous, since j is the only constant of sort
nat→ s′ and since ji+1 is always obtained from ji by applying some increasing
function (thus jl is equal to jk for l > k only if jl = jl−1 = . . . = jk).

We can therefore use StabArray to check that all the values stored in the
final array (at j1, . . . , jn) satisfies the property p. It suffices to check that the
following A-formula, together with the previous axioms, is unsatisfiable: C /
Bn+1 ∧

∨n
i=0 p(select(C, ji)) �/ true. Note that we cannot state in our language

the fact that the initial array satisfies the property p at all cells, since the logic
does not allow universal quantification.

Conversely, we can also check that all elements occurring in the initial array
and satisfying the property p occur in the final array: C / Bn+1 ∧

∨n
i=0(u /

Ai ∧ p(u) / true) ∧
∧n

i=0 select(C, ji) �/ u
We provide another similar example. The following program interleaves in the

same array C the elements occurring in two arrays A and B.
j← 0
i← 0
while i ≤ n do

C[j]← A[i]
C[j+ 1]← B[i]
j← j+ 2

end while

The behavior of the program is modeled as follows.∧n
i=0(Ci+1 / store(store(Ci, ji, Ai), select(succ, ji), Bi))
j0 / 0 ∧

∧n
i=0 ji+1 / select(succ, select(succ, ji))

We can check, for instance, that if the array A satisfies some property p, then
all pairs of consecutive cells in the final array necessarily contain an element
satisfying p:

D / Cn+1 ∧
∨n

i=0(u / ji ∨ u / select(succ, ji))∧
p(select(D, u)) �/ true ∧ p(select(D, select(succ, u))) �/ true∧n

i=0 p(Ai) / true

248 N. Peltier

6 Conclusion

We have shown that the satisfiability problem is undecidable for schemata of
formulæ interpreted in the theory of arrays, and we have defined a restricted
class of interpretations (called quasi-contiguous) in which satisfiability can be
decided in finite time (with a doubly exponential complexity). Future work in-
cludes the implementation of our approach. From a more theoretical point of
view, it would be interesting to provide a lower bound for the complexity of
satisfiability testing for A-formulæ in quasi-contiguous interpretations (only an
upper bound is provided in the present paper). We shall also investigate whether
the presented results extend to more expressive theories, including for instance
a combination of the theory of arrays and Presburger arithmetic, possibly en-
riched with additional axioms allowing to express general properties of arrays
(e.g., to state that an array is sorted or constant on some interval). As evidenced
by the examples in Section 5, such properties can sometimes be expressed in our
language, using iterated conjunctions, but this is possible only if the considered
interval corresponds to a family of constants. Allowing some restricted form of
quantification would therefore enhance the expressive power of the language.

An obvious drawback of our approach is that the conditions on the interpreta-
tions are of a semantic nature and thus must be checked by the user. We therefore
plan to devise syntactic criteria ensuring that the conditions are satisfied (i.e.
ensuring that a satisfiable formula has a contiguous model). The examples in
Section 5 suggest that this is feasible, at least in simple cases. It would also be
interesting to characterize formally the class of programs and properties that
can be modeled in our language.

References

1. Abadi, A., Rabinovich, A., Sagiv, M.: Decidable fragments of many-sorted logic.
J. Symb. Comput. 45(2), 153–172 (2010)

2. Aravantinos, V., Caferra, R., Peltier, N.: A schemata calculus for propositional
logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp.
32–46. Springer, Heidelberg (2009)

3. Aravantinos, V., Caferra, R., Peltier, N.: Decidability and undecidability results
for propositional schemata. Journal of Artificial Intelligence Research 40, 599–656
(2011)

4. Aravantinos, V., Echenim, M., Peltier, N.: A resolution calculus for first-order
schemata. Fundamenta Informaticae (accepted for publication, to appear, 2013)

5. Aravantinos, V., Peltier, N.: Schemata of SMT-problems. In: Brünnler, K., Met-
calfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 27–42. Springer, Heidelberg
(2011)

6. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Information and Computation 183(2), 140–164 (2003)

7. Baumgartner, P., Fuchs, A., Tinelli, C.: (LIA) - Model Evolution with Linear Inte-
ger Arithmetic Constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR
2008. LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008)

Schemata of Formulæ in the Theory of Arrays 249

8. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer-Verlag New York, Inc., Secaucus (2007)

9. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

10. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision procedures for exten-
sions of the theory of arrays. Annals of Mathematics and Artificial Intelligence 50,
231–254 (2007)

11. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays?
In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 474–489. Springer,
Heidelberg (2008)

TAFA – A Tool for Admissibility

in Finite Algebras

Christoph Röthlisberger

Mathematics Institute, University of Bern
Sidlerstrasse 5, 3012 Bern, Switzerland

christoph.roethlisberger@math.unibe.ch

Abstract. Checking whether a quasiequation is admissible in a finitely
generated quasivariety is known to be decidable by checking validity in
a suitable (finite) free algebra on finitely many generators. Nevertheless
this approach is computationally unfeasible since these free algebras can
be very big. TAFA is a system providing algebraic tools to search for the
smallest set of algebras, according to the standard multiset well-ordering,
such that a quasiequation is admissible in the quasivariety if and only if
it is valid in this set of algebras.

1 Introduction

A rule is called admissible in a logic if it does not produce any new theorems
when added to the logic. Admissibility is typically used to establish key prop-
erties of systems such as the completeness of a proof system, e.g., by showing
that some cut-rule is admissible. Admissible rules may also be used to shorten
proofs in a given system for a logic. Admissibility (often alongside equational
unification) has been studied for transitive modal logics and intermediate logics
in [19,9,10,13,15,7], and various kinds of proof systems to check admissibility in
some of these logics have been defined in [11,14,2]. Characterizations of admissi-
bility have also been obtained for certain many-valued logics in [6,17,16,5], but
no general approach has until now been developed for the finite setting.

From an algebraic perspective, a quasiequation is admissible in a finitely gen-
erated quasivariety (which provide algebraic semantics for many-valued logics)
if it is valid in a suitable finite free algebra of this quasivariety. This question is
decidable and there exist general methods to obtain proof systems for checking
validity in finite algebras (see, e.g., [12,1,19]). However, even free algebras on
a small number of generators can be very large since the “worst case” grows
double-exponentially.

In [18] the theoretical background is given for a general algorithm which out-
puts a set of algebras that can be used to check admissibility in a more efficient
way. The algorithm returns the smallest (according to the standard multiset
ordering) set of algebras K for a given finitely generated quasivariety Q, such
that a quasiequation is admissible in Q if and only if it is valid in all the alge-
bras of K. The main feature of the system TAFA is an implementation of this

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 250–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

TAFA – A Tool for Admissibility in Finite Algebras 251

algorithm as a tool for studying admissibility in a wide range of finite algebras.
In particular, rather than generating a tableaux system for a potentially very
large free algebra of a specific finite algebra or many-valued logic (which is possi-
ble by, e.g., [12]), it suffices to generate a tableaux system for the typically small
output algebra(s) of TAFA.

TAFA is also able to solve general algebraic problems like calculating subalge-
bras, different kinds of morphisms, products, congruences and their lattices and
checking properties like being subdirectly irreducible. Please refer to a standard
work like [4] for the details of the algebraic definitions used in this paper. TAFA
is implemented in Delphi XE2 and is currently only compiled for Windows, but
can easily be used on Mac and Linux using an emulator such as Wine. Many
ideas concerning the data structures and basic operations are taken from the
implementation of the Algebra Workbench [20]. TAFA as well as a copy of [18]
are available from https://sites.google.com/site/admissibility/.

2 Basic Features of TAFA

In order to use TAFA the user has first either to define the algebras of interest in
TAFA or to load some predefined (see File > Predefined algebras1) or previously
stored algebras (from a file). Defining a new algebra (see File > New algebra)
includes giving it a name, labelling the elements and defining the operations. The
user can easily rename, delete or edit algebras, their elements and operations or
add some comment by either double clicking the corresponding field of the grid
in the main window or using the menu Edit .

The main window of TAFA contains a list showing for each algebra its name,
cardinality, the names and arities of its operations, and any comments. We say
that an entry of a list, e.g., an algebra in the main window, is selected if it is
highlighted, and chosen if the appropriate checkbox is checked.

TAFA can save the chosen algebras as a binary file (*.fab, fast, illegible), as a
text file (*.fai, slower, legible) or, if the algebra is a partially ordered set with an
operation “meet”, to a *.osf file which can be read by the Algebra Workbench
to visualize the corresponding Hasse diagram. TAFA loads algebras from fab- or
fai-files and is able to copy or remove algebras in the main window (menu File).

The algebras are stored as data type TAlgebra within TAFA, which is con-
nected to lists of the type TAlgebraUniverse and TOperationList providing fur-
ther procedures and objects. Once the algebras of interest are defined in the main
window, the basic operations of universal algebra listed below can be performed.

2.1 Homomorphisms

The menu item Tools > Morphisms opens a dialogue window, where the user can
choose a domain A1 and a codomain A2 (of the same language) from the list of
defined algebras. It is possible to choose whether to calculate all homomorphisms
between A1 and A2 or only those that are surjective, injective or bijective.

1 Navigation through the menus is denoted here by Menu > Menu item.

https://sites.google.com/site/admissibility/

252 C. Röthlisberger

When the button “Calculate” is pressed, TAFA lists the homomorphisms sat-
isfying the chosen criteria. Double-clicking on an entry of the list shows the
mappings from elements of A1 to elements of A2.

Using the Tools menu of this dialogue window it is also possible to add the
homomorphic image as a new algebra to the main window or to save the mapping
informations to a text file.

2.2 Subalgebras

The menu item Tools > Subalgebras opens a dialogue window which lists all the
subalgebras of the active algebra. The subalgebras are stored as entities of TAl-
gebraUniverse within this dialogue window to save time (there is no need to build
up the operation tables), but it is possible to add the checked subalgebras as
new algebras to the main window using the menu Tools of the dialogue window.
The Options menu of the dialogue window offers the possibility to (heuristically)
first list the smaller and then the bigger algebras by first calculating the subal-
gebras generated by zero or one element, storing their sizes and then trying to
combine the given generators in such a way that the subalgebras generated are
potentially small.

Tools > Generating subalgebra opens a dialogue window where the user can
choose some elements a1, . . . , ak of the active algebra A. TAFA then calculates
the unique subalgebra of A generated by the elements a1, . . . , ak.

2.3 Products

Having defined algebras A1, . . . ,An of the same language in the main window
of TAFA, the user can calculate the direct product A1 × · · · × An using Tools
> Direct product . Specifying some k ∈ N with Tools > Direct power , the direct
power Ak of the selected algebra A is calculated.

2.4 Congruences

Tools > Congruences opens a dialogue window which lists the congruences
Con(A) of the selected algebra A in the main window. Selecting a congruence in
the list shows how the congruence is defined. The dialogue window menu Tools
lets the user store the congruence lattice, given by Con(A), as a new algebra
(with operations “meet” and “join”) to the main window. It is also possible to
quotient the active structure with the selected congruence or to save the con-
gruence informations to a text file.

2.5 Free Algebras

If the set K = {A1, . . . ,Ak} of algebras of the same language is chosen in TAFA,
the menu item Tools > Free algebra lets the user specify a natural number n ∈ N
and TAFA calculates the free algebra of K on n generators, denoted FK(n).

TAFA – A Tool for Admissibility in Finite Algebras 253

There is also the possibility to search for the smallest generating free algebra for
K, i.e., the smallest free algebra FK(n) of K such that all A in K are homomor-
phic images of FK(n).

3 Validity and Admissibility

Given a set of algebras K of the same language, the quasivariety generated by K,
denoted Q(K), is the smallest class of algebras closed under taking isomorphisms,
subalgebras, products and ultraproducts that contains K. Let us assume that K
is a finite set of finite algebras, i.e., Q(K) is finitely generated. Tm denotes the
term algebra over countably infinitely many generators.

We say that a quasiequation Σ ⇒ ϕ ≈ ψ, i.e., a set (possibly empty) of
equations Σ implying a single equation ϕ ≈ ψ, is valid in the quasivariety Q,
written Σ |=Q ϕ ≈ ψ, if for everyA ∈ Q and every homomorphism h : Tm→ A,
whenever h(ϕ′) = h(ψ′) for all ϕ′ ≈ ψ′ ∈ Σ, also h(ϕ) = h(ψ).

The quasiequation Σ ⇒ ϕ ≈ ψ is called admissible in the quasivariety Q if
for every homomorphism σ : Tm→ Tm:

∅ |=Q σ(ϕ′) ≈ σ(ψ′) for all ϕ′ ≈ ψ′ ∈ Σ implies ∅ |=Q σ(ϕ) ≈ σ(ψ).

It is well known (see, e.g., [19,17,18]) that the quasiequations admissible in
Q = Q(K) are the quasiequations valid in FQ(n) where n = max{|A| : A ∈ K}.
Hence checking whether a given quasiequation is admissible in Q is decidable,
since FQ(n) is finite if Q is a finitely generated quasivariety (see [3]). We are now
interested in the “smallest” set of algebras generating the quasivarietyQ(FQ(n)),
i.e., the smallest set of admissibility algebras, to make checking validity faster
(since the corresponding proof system will be smaller). One possibility is to make
use of the Derschowitz-Manna multiset ordering ≤m defined in [8] to compare
multisets of cardinalities of sets of algebras. We say that a set of finite algebras
{A1, . . . ,An} is a minimal generating set for the quasivariety Q(A1, . . . ,An) if
for every set of finite algebras {B1, . . . ,Bk}:

Q(A1, . . . ,An) = Q(B1, . . . ,Bk) implies [|A1|, . . . , |An|] ≤m [|B1|, . . . , |Bk|].

To obtain a minimal generating set for Q(FQ(K)(n)), we have implemented the
algorithm MinGenSet(K) (see [18] for details) which returns the (unique up to
isomorphism) minimal generating set for the quasivariety Q(K) generated by a
finite set K of finite algebras.

The algorithm MinGenSet calculates the congruence lattice of the input
algebras, which takes exponential time with respect to the size of the input.
Therefore we have implemented the algorithm AdmAlgs (see Figure 1), which
combines the decomposing of MinGenSet with the fact that a subalgebra B of
FQ(K)(n) generates the same quasivariety asFQ(K)(n), i.e.,Q(B) = Q(FQ(K)(n)),
if every algebra A of K is a homomorphic image of B. The idea is to reduce
the sizes of the generating algebras (taking subalgebras of the free algebras)
while making sure that the algebras are “complex” enough to generate the given

254 C. Röthlisberger

quasivariety (checking homomorphisms), and then to remove redundancy us-
ing MinGenSet. The algorithm Free(A,D) used in AdmAlgs calculates the
smallest free algebra of D which is a prehomomorphic image of the algebra A
by increasing the number of generators one a time while searching for surjective
homomorphisms onto A. The algorithm SubPreHom(A,B) on the other hand
returns a proper subalgebra of B which has A as a homomorphic image. If there
is no such algebra, B is returned.

1: function AdmAlgs(K)
2: declare A,D : set
3: declare B,B′ : algebra
4: D ← MinGenSet(K)
5: A← ∅
6: for all A ∈ D do
7: B← Free(A,D)
8: B′ ← SubPreHom(A,B)
9: while B′ �= B do
10: B← B′

11: B′ ← SubPreHom(A,B)
12: end while
13: add B to A
14: end for
15: return MinGenSet(A)
16: end function

Fig. 1. Given a finite set K of finite algebras, return the minimal generating set of the
quasivariety Q(FQ(K)(ω))

Given a set K of algebras chosen in TAFA, the user selects the appropriate
free algebra or lets the program find the smallest generating free algebra for
K with Tools > Admissibility algebra. The menu Options of the dialogue win-
dow for calculating admissibility algebras then lets the user choose whether to
search admissibility algebras from smaller to larger or with the usual algorithm
of searching subalgebras (which is independent of the sizes). Although the lat-
ter is much quicker for small algebras, there are some cases where the heuristic
method performs faster. Once the admissibility algebra is stored as a new alge-
bra in the main window, the user can run MinGenSet (from the menu Tools)
to obtain the unique smallest set of admissibility algebras for K.

4 A Case Study: 3-Element Groupoids

In [18], admissibility was studied using TAFA for various algebras and logics
with up to five elements and as many operations, e.g., for the Wajsberg algebra
corresponding to the 3-valued �Lukasiewicz logic, for Kleene and De Morgan
lattices and algebras and for Stone algebras.

TAFA – A Tool for Admissibility in Finite Algebras 255

In order to have a range of “arbitrary” algebras to study we have also considered
the groupoids with three elements, i.e., the 3-element algebras with a binary op-
eration. There are 3330 different groupoids up to isomorphism (out of 39 = 19683
in total) for which TAFA calculates the smallest generating free algebra. Figure 2
illustrates the distribution of the cardinalities of these free algebras. The number
of generators is not always the same to produce a free algebra of a given cardinality
and there are even 16 cases where three generators are needed.

Fig. 2. Cardinality of free algebras (x-axis) and number of groupoids (y-axis)

The main goal was to calculate the smallest set of admissibility algebras for
all 3-element groupoids G, namely the results of MinGenSet(FG(3)). For free
algebras with less than 25 elements we performed MinGenSet directly, for the
larger cases we used AdmAlgs. The admissibility algebras all have fewer than 10
elements. Figure 3 lists the multisets of cardinalities of the minimal generating
sets and how many times they occur.

An algebra is called structurally complete if the sets of valid and admissi-
ble quasiequations coincide for this algebra, and almost structurally complete, if
these sets coincide for quasiequations with unifiable premises (see [18]). These
completeness-checks are accessible in TAFA via the menu Check . Performing this
check to the groupoids confirmed that 654 of the investigated algebras are not
structurally complete, whereas 254 of them are almost structurally complete.
The remaining 2676 groupoids are structurally complete.

Cards. of MinGenSet(FG(3)) 2,2 2 3 4 5 6 8 9

Number of groupoids 16 9 2661 90 108 398 18 30

Fig. 3. Cardinalities of the minimal generating sets

256 C. Röthlisberger

Acknowledgements. I would like to thank George Metcalfe for his helpful
comments and suggestions and Markus Sprenger for providing the source code of
the Algebra Workbench. The author acknowledges support from Swiss National
Science Foundation Grant 20002 129507.

References

1. Baaz, M., Fermüller, C.G., Salzer, G.: Automated deduction for many-valued log-
ics. In: Handbook of Automated Reasoning, ch. 20, vol. II, pp. 1355–1402. Elsevier
(2001)

2. Babenyshev, S., Rybakov, V., Schmidt, R.A., Tishkovsky, D.: A tableau method
for checking rule admissibility in S4. In: Proc. M4M 2009. ENTCS, vol. 262, pp.
17–32 (2010)

3. Birkhoff, G.: On the structure of abstract algebras. Proc. Camb. Philos. Soc. 31,
433–454 (1935)

4. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts
in Mathematics, vol. 78. Springer, New York (1981)

5. Cabrer, L.M., Metcalfe, G.: Admissibility via natural dualities. Manuscript
6. Cintula, P., Metcalfe, G.: Structural completeness in fuzzy logics. Notre Dame J.

Form. Log. 50(2), 153–183 (2009)
7. Cintula, P., Metcalfe, G.: Admissible rules in the implication-negation fragment of

intuitionistic logic. Ann. Pure Appl. Logic 162(10), 162–171 (2010)
8. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.

ACM 22, 465–476 (1979)
9. Ghilardi, S.: Unification in intuitionistic logic. J. Symbolic Logic 64(2), 859–880

(1999)
10. Ghilardi, S.: Best solving modal equations. Ann. Pure Appl. Logic 102(3), 184–198

(2000)
11. Ghilardi, S.: A resolution/tableaux algorithm for projective approximations in IPC.

Log. J. IGPL 10(3), 227–241 (2002)
12. Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford Univ. Press

(1993)
13. Iemhoff, R.: On the admissible rules of intuitionistic propositional logic. J. Symbolic

Logic 66(1), 281–294 (2001)
14. Iemhoff, R., Metcalfe, G.: Proof theory for admissible rules. Ann. Pure Appl.

Logic 159(1-2), 171–186 (2009)
15. Jeřábek, E.: Admissible rules of modal logics. J. Logic Comput. 15, 411–431 (2005)
16. Metcalfe, G.: An Avron rule for fragments of R-mingle. Journal of Logic and Com-

putation (to appear)
17. Metcalfe, G., Röthlisberger, C.: Admissibility in De Morgan algebras. Soft Com-

put. 16(11), 1875–1882 (2012)
18. Metcalfe, G., Röthlisberger, C.: Admissibility in finitely generated quasivarieties.

Logical Methods in Computer Science 9(2:9) (2013)
19. Rybakov, V.: Admissibility of Logical Inference Rules. Studies in Logic and the

Foundations of Mathematics, vol. 136. Elsevier, Amsterdam (1997)
20. Sprenger, M.: Algebra Workbench, http://www.algebraworkbench.net

http://www.algebraworkbench.net

Formalizing Cut Elimination

of Coalgebraic Logics in Coq

Hendrik Tews

Institute of Systems Architecture, TU Dresden, Germany
http://askra.de/

Abstract. In their work on coalgebraic logics, Pattinson and Schröder
prove soundness, completeness and cut elimination in a generic sequent
calculus for propositional multi-modal logics [1]. The present paper re-
ports on a formalization of Pattinson’s and Schröder’s work in the proof
assistant Coq that provides machine-checked proofs for soundness, com-
pleteness and cut elimination of their calculus. The formalization exploits
dependent types to obtain a very concise deep embedding for formulas
and proofs. The work presented here can be used to verify cut elimina-
tion theorems for different modal logics with considerably less effort in
the future.

1 Introduction

In [1], Pattinson and Schröder give two generic proofs of cut elimination for
propositional multi-modal logics. In their framework a concrete modal logic is
specified by a modal similarity type (i.e., a set of modal operators with arity)
and a set of one-step rules. The semantics is given by a functor T together
with a fibred predicate lifting for each modal operator. Models are T -coalgebras
together with a valuation.

Pattinson and Schröder identify semantic conditions that allow them to
prove soundness and cut-free completeness. Together, this gives the first cut-
elimination theorem. They further identify purely syntactic conditions on the
rule set that permit a syntactic cut-elimination proof. A formalization of these
proofs in a proof assistant has many benefits beyond the mere validation of [1].
The formalization permits to obtain machine checked cut-elimination proofs for a
variety of modal logics by verifying the semantic or syntactic preconditions only.
Moreover, if the utilized proof assistant permits the extraction of executable
code, then certified tautology checkers can be extracted from the completeness
proof. Again, because of the modularity of Pattinson’s and Schröder’s work,
the effort necessary for every new certified tautology checker will be relatively
small. Finally, a cut-free calculus provides the foundation for a syntactic proof of
Craig’s interpolation property (and, indeed, [1] deals with Craig interpolation as
an application). A formalization of cut-elimination therefore provides the basis
for the verification of the interpolation theorem and for the extraction of certified
programs that compute interpolants.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 257–272, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://askra.de/

258 H. Tews

In this paper I describe the formalization of about 2/3 of the results of [1] in the
Coq proof assistant [2,3]. From now on, I refer to the specifications, theorems and
proofs in Coq simply as the formalization. The formalization covers the generic
syntax and semantics of coalgebraic logics, soundness, completeness, semantic
and syntactic cut elimination. As an example, I use the modal logicK. The other
material of [1], in particular Craig interpolation and the examples of coalition
logic and the conditional logics CK and CK+ ID are not (yet) contained in the
formalization.

The size of the formalization is considerable. There are about 400 definitions
and about 1300 theorems and lemmas, which are proved with more than 20, 000
lines of proof script in a total of 36, 000 lines of Coq code. About 6, 000 lines
of Coq deal with standard results that are used but not proved in [1] (e.g.,
completeness and cut elimination for propositional logic). With several years of
experience with the proof assistant PVS [4], I missed a few convenient features
of the PVS user interface during the work on the formalization. This led to the
implementation of automatic library compilation in Proof General [5, Sect. 11.2]
and the proof-tree visualization program Prooftree [6]. The complete Coq sources
of the formalization and some technical documentation are freely available on
the internet [7].

A formalization of this extent does always uncover a number of typos and
errors in the formalized work. It is a clear sign for the quality and accurateness
of the pen-and-paper proofs of Pattinson and Schröder that I found only 4 er-
rors beyond the level of nitpicking. The most serious one is probably that their
substitution lemma 3.14 is wrong: The modal rank does not necessarily decrease
as indicated. At first glance this seems to break the induction on modal rank in
the completeness and in the cut-elimination theorem. However, with a suitably
adapted substitution lemma, these proofs only need minor modifications. All
errors that I describe here have been discussed with Dirk Pattinson and Lutz
Schröder to confirm that these are indeed errors and not misunderstandings on
my side.

Related work. Proof theory and, in particular, cut elimination is a very nice
application for theorem proving. The formalization of cut elimination in a proof
assistant provides an additional value, because cut-elimination proofs are com-
plex and it is rarely ever the case that all cases are spelled out in pen-and-paper
proofs. A long debate about the validity of a cut-elimination proof for the prov-
ability logic GL has only recently been resolved [8,9]. Depending on their aims,
different authors use different approaches for their formalization of proof the-
ory. Some use a shallow embedding of proofs and formalize only provability
without an explicit representation of object-logic proofs (e.g., [10,11]). For cut
elimination, one usually prefers a deep embedding of proofs, where object-logic
proofs are terms and can be manipulated in the meta logic of the proof assis-
tant (e.g., [9,12]). Formalizations in Isabelle/HOL that use a parametric rule
set (e.g., [9,12]) need a well-formedness predicate on proof trees. The formal-
ization presented here uses a deep embedding for formulas and proofs and a
shallow embedding for models. The data types for formulas and proofs rely on

Formalizing Cut Elimination of Coalgebraic Logics in Coq 259

dependent types to express the necessary side conditions in a very concise way
without well-formedness predicates. The present work has some similarities with
the work of Chapman [13] in that the formalization covers many different log-
ics. In a sense, the scope of [13] is much broader, because it is not limited to
propositional modal logics. However, while Chapman focuses on inversion, the
present work proves soundness, completeness and cut elimination. Moreover, the
framework of Chapman is not applicable to propositional modal logics, because
its modal rules are, in general, not invertible.

Outline. This paper has a clear presentation problem. In order to be self-
contained it should comprise the formalized material of [1], which is already
at odds with the page limit. Describing several thousand lines of Coq speci-
fication and proofs at a level where the reader can follow the development is
simply impossible. This paper must therefore focus on a few points of the for-
malization. Section 2 introduces a few aspects of Coq’s logic and specification
language. Section 3 presents in detail the deep embedding of coalgebraic logics
that is used in the formalization. Section 4.3 high-lights interesting aspects of
the formalization. In particular, this section discusses the differences between [1]
and the formalization and the errors that I found. Section 5 gives an overview
of the main results of the formalization. Section 6 concludes.

Up to the end of Section 3, this paper is self-contained. Section 4.3 and Sec-
tion 5 can be read at a high level without particular knowledge of coalgebraic
logics and without access to the source code of the formalization. However, for
accurateness, I provide a few technical details in Section 4.3 that require famil-
iarity with the proofs of [1]. Coq definitions that have been omitted for space
reasons can be looked up in the documentation of the formalization [7].

2 Coq Preliminaries

In Coq, Type is a keyword that refers to one element in the infinite hierarchy of
type universes in Coq. So A : Type simply means that A is a type. Prop is the
type of propositions, which may or may not have a proof. Similar to higher-order
logic, a set over A is conveniently modeled as a function A → Prop.

In contrast to higher-order logic, Coq does not distinguish between types and
terms. In Coq, there are only terms and every term has a type, which is a
term again. Therefore, application is always written in the usual postfix way,
even for terms that represent types at the conceptual level. For instance, as
usual, f a stands for the application of function f to argument a. Using the same
application, list A stands for the application of the type constructor list to type
A, that is, for the lists over A, and list (list A) stands for the lists of lists over A.

In Coq, a propositions is a type whose inhabitants are its proofs. A proof for
an implication F → G is a function that maps proofs of proposition F to proofs
of proposition G. Consequently, the simple arrow denotes both, function types
A → B and implications F → G.

260 H. Tews

Frequently used parameters can be declared as Variable’s in Coq. They are
then automatically added to any definition in which they occur, saving the ex-
plicit declaration in each of them. The reader should understand a Variable as
an arbitrary but fixed element of the given type. The Coq definitions and lem-
mas included in this paper do usually not mention declared variables. This is
not always correct, but hopefully less confusing.

3 A Deep Embedding for Parametric Coalgebraic Logics

This section describes the base definitions for formulas, sequents, proof rules and
proofs. The challenge in the formalization is that neither the formula syntax nor
the rule set of the object logic is fixed, because the framework of [1] covers many
different modal logics.

3.1 Formulas

Pattinson and Schröder take a simple propositional calculus with negation and
conjunction and enrich it with modal formulas of the form ♥(A1, . . . , An), where
♥ is a modal operator of arity n and the Ai are arbitrary formulas. The modal
operators are drawn from a modal similarity type Λ. The whole development
of [1] is parametric in Λ. In Coq, I define the type of Λ as a dependently typed
record as follows.

Record modal operators : Type :=
{ operator : Type; arity : operator → nat }.

The modal operators are given as an arbitrary type, the field arity determines
their arity.

The following piece or source code shows the variable declarations for V,
the set of propositional variables, and for L, the modal operators. They are
used in almost all files of the formalization. Pattinson and Schröder assume the
propositional variables to be a countably infinite set. This assumption will be
explicitly added where needed.

Variable V : Type.
Variable L : modal operators.

Inductive lambda formula : Type :=
| lf prop : V → lambda formula
| lf neg : lambda formula → lambda formula
| lf and : lambda formula → lambda formula → lambda formula
| lf modal : forall(op : operator L),

counted list lambda formula (arity L op) → lambda formula.

Formalizing Cut Elimination of Coalgebraic Logics in Coq 261

The keyword Inductive introduces an inductive data type that is generated
in the usual way from the given constructors. The type of formulas is called
lambda formula here and the constructors have an lf prefix, because Pattinson
and Schröder use F(Λ) to denote it. The last constructor, lf modal, for modal
formulas, has a dependent type. It maps an operator op and a list of formulas
to a new formula. In this paper, I write record selection as function application:
operator L selects the type of operators and arity L op applies op to the arity
function. The second argument of lf modal must be a counted list to ensure that
its length matches the arity of op. For a type A and a natural number n, the
type counted list A n contains the lists over A of length n.1 The use of dependent
types is crucial here to capture the meaning of arity for modal operators.

3.2 Sequents

Pattinson and Schröder use a single-sided Gentzen-style sequent system. Se-
quents are defined as finite multisets of formulas. Multisets can be formalized
as functions A −→ � or as a quotient type. In Coq both approaches have their
drawbacks, because predicate extentionality, function extentionality as well as
Hilbert’s ε operator need additional axioms. I therefore decided to treat sequents
as a setoid. A setoid is a type equipped with an equivalence relation, which rep-
resents the intended equality. As underlying type I simply use lists of formulas.
Two such lists are equivalent, if one is a reordering or permutation of the other.
In the formalization, I use the equivalence relation explicitly without relying on
the Coq library of setoids.

Definition sequent : Type := list lambda formula.

Inductive list reorder(A : Type) : list A → list A → Prop :=
| list reorder nil : list reorder [] []
| list reorder cons : forall(a : A)(l1 l2 : list A)(n : nat),

list reorder l1 l2 → list reorder (a :: l1) ((firstn n l2) ++ a :: (skipn n l2)).

The equivalence relation on sequents is called list reorder, because it is used for
other types as well. It is defined here as an inductive relation on lists of an
arbitrary type. The first constructor proves that the empty list is a reordering
of itself. The second constructor proves that, whenever l1 is a reordering of l2,
then also a :: l1 is a reordering of the list obtained by inserting a at an arbitrary
position in l2. The functions firstn and skipn are from the Coq library. They
return and cut off, respectively, the first n elements of a list; ++ denotes list
concatenation.

The advantage of using lists of formulas as sequents is its simplicity. Many
proofs can simply be done by induction on the list structure. The disadvantage
is that the intended equality on sequents is not builtin: It always needs explicit
treatment and, if forgotten, it may happen that a property holds for one sequent
but not for some reordering of it.

1 See [7] for the definition of counted list and some other basic Coq material.

262 H. Tews

(Ax)� Γ, p,¬p
� Γ,A � Γ,B

(∧)� Γ,A ∧B
� Γ,¬A,¬B

(¬∧)
� Γ,¬(A ∧B)

� Γ,A
(¬¬)� Γ,¬¬A

� Γ,A � Δ,¬A
(cut)� Γ,Δ

Fig. 1. Propositional rules

3.3 Rules and Rule Sets

A proof rule is a record with the assumptions and the conclusion.

Record sequent rule : Type := {assumptions: list sequent; conclusion: sequent}.

Pattinson and Schröder do not distinguish between rules and rule instances:
Proofs may only contain rules that appear literally in the respective rule set.
For the propositional part of the calculus Pattinson and Schröder use the rule
schemata in Figure 1. Because of the generice nature of [1], the modal rules of
the calculus are not specified. Pattinson and Schröder only require that modal
rules are one-step rules, see [1, Def. 3.3]. A one-step rule with k assumptions
looks as follows:

� a11, . . . , a1n1
, ¬b11, . . . ,¬b1m1

· · · � ak1 , . . . , aknk
, ¬bk1 , . . . ,¬bkmk

� ♥1(. . .),♥2(. . .), . . . , ¬♥′
1(. . .),¬♥′

1(. . .), . . .

A rule of this form must fulfill 4 conditions in order to be a one-step rule:
(1) all aij and bij must be variables, (2) the conclusion must not be the empty
sequent, (3) all arguments of the modal operators in the conclusion must be (non-
negated) variables and, finally, (4) all variables of the assumptions must appear
in the conclusion.2 In the framework of Pattinson and Schröder, a specific logic
is specified by a set R of one-step rules, among others. Proofs may contain rules
of the set S(R) of weakened substitution instances of R. The set S(R) contains
all rules Γ1σ . . . Γnσ / Γ0σ,Δ for a one-step rule Γ1 . . . Γk/Γ0 ∈ R, an arbitrary
substitution σ and an arbitrary weakening context Δ [1, Def. 3.5].

Rules are formalized as predicates on the type sequent rule. For instance, for
the (∧)-rule we have the following definition.

Definition is and rule(r : sequent rule) : Prop :=
exists(sl sr : sequent)(f1 f2 : lambda formula),
assumptions r = [sl ++ f1 :: sr; sl ++ f2 :: sr] ∧
conclusion r = sl ++ (lf and f1 f2) :: sr.

It is easy to see that is and rule is closed under sequent reordering in the following
sense: Let s be the conclusion of a rule r, then, for every reordering s′ of s
there exists a rule r′ such that s′ is the conclusion of r′. This property is called
rule multiset in the formalization. It is proved for all rule sets and ensures that
provability is closed under reordering.

2 Condition (4) is missing in [1, Def. 3.3], see Section 4.3 below.

Formalizing Cut Elimination of Coalgebraic Logics in Coq 263

3.4 Proofs

To avoid confusion, one must distinguish between meta-logic proofs and object-
logic proofs. The former are proofs in Coq (the meta logic), to establish properties
of the latter. An object-logic proof is a proof in some coalgebraic logic.

Object-logic proofs are finite trees made of rule applications and hypotheses.
Because Pattinson and Schröder frequently change the rule set and the hypothe-
ses, I decided to make object-logic proofs parametric in the hypotheses and the
rule set. Cut elimination is the main concern of the formalization. I therefore
define object-logic proofs as a data type, whose elements can be manipulated by
functions and meta-logic proofs. In the sense of [9] I use a deep embedding for
derivations and rules (and variables).

Inductive proof(rules : set sequent rule)(hypotheses : set sequent)
: sequent → Type :=

| assume : forall(gamma : sequent),
hypotheses gamma → proof rules hypotheses gamma

| rule : forall(r : sequent rule), rules r →
dep list sequent (proof rules hypotheses) (assumptions r) →
proof rules hypotheses (conclusion r).

The type constructor for object-logic proofs takes three arguments: proof r h s
is the type of proof trees with conclusion sequent s using rules and hypotheses
from r and h, respectively. In a given proof tree, the sets of rules and hypothesis
are constant throughout the tree (because these arguments are before the colon
in the inductive definition). In contrast, the sequent may change: a proof tree
of type proof r h (lf and f g) typically contains subtrees of type proof r h f and
proof r h g.

The constructor assume is for hypothesis leafs in the proof tree. It takes two
arguments: the hypothesis gamma and a proof that gamma is indeed a member
of the hypotheses. The constructor rule is for rule applications. It takes three
arguments: a rule r, a proof that r is in the set of rules and a list of sub-proofs,
one for each assumption of r. With all arguments present, it constructs a new
proof tree for the conclusion of r.

The type dep list of dependently typed lists, which occurs in the third ar-
gument of constructor rule, is slightly involved. Let T be a type constructor of
arity one, A be a type and [a 1; a 2; ...; a n] be a (conventional) list over A. Then,
dep list A T [a 1; a 2; ...; a n] is a list of length n with the first element having
type T a 1, the second having type T a 2, and so on until the last element of type
T a n. In the definition of object-logic proofs above, T is the partial application
(proof rules hypothesis) that maps any sequent s to the type of proof trees with
conclusion s. Therefore, dep list sequent (proof rules hypotheses) (assumptions r)
is the type of an inhomogeneous list that contains one proof for each assumption
of the rule r.

264 H. Tews

3.5 Provability

Provability in the object logic is now straight-forward:

Definition provable(rules : set sequent rule)(hypotheses : set sequent)
(s : sequent) : Prop :=

exists(p : proof rules hypotheses s), True.

Provability is not closed under reordering of the conclusion. This property is
established as lemma.

Lemma multiset provability :
forall(rules : set sequent rule)(hypothesis : set sequent)(s r : sequent),
rule multiset rules →
sequent multiset hypothesis →
list reorder s r →
provable rules hypothesis s →
provable rules hypothesis r.

Here, sequent multiset ensures that the set of hypothesis is closed under reorder-
ing and rule multiset ensures the same for rules, as explained before.

It is worth noting again the succinctness of the deep embedding of coalgebraic
logics in Coq. The definitions can be expressed in less than 20 lines and rely only
on the type constructors list, dep list and counted list, where the first is from the
Coq standard library and the other two are well-known under various names in
the Coq literature. The dependent typing handles all side conditions. Separate
predicates to ensure well-formedness of formulas and proofs are not necessary.

4 Highlights of the Formalization

This section presents some interesting aspects of the formalization, including
the differences between [1] and the formalization and the few errors that the
formalization revealed. Readers not familiar with [1] can safely skip over the
technical details, which are only provided here for accurateness. Missing Coq
definitions are described at a high level, readers interested in the source code are
referred to [7].

4.1 Insufficient Intuitionistic Meta Logic

The object logic of Pattinson and Schröder is a classical logic and they also
use classical logic in their reasoning. The logic of Coq is, however, intuition-
istic. In Coq, neither ¬¬P → P nor P ∨ ¬P can be proved in general. Ob-
viously, one has to expect, that some results of Pattinson and Schröder are
not provable in Coq. One can make Coq classical, by assuming, for instance,
forall(P : Prop), ¬ (¬P) → P as an axiom, which is available in a certain mod-
ule of the standard library. Instead of the axiom, I prefer to use a property that

Formalizing Cut Elimination of Coalgebraic Logics in Coq 265

must be explicitly listed in the assumptions of those results that depend on clas-
sical logic. The property, which is called classical logic, is clearly visible in the
sources and one can easily determine why theorems depend on it.

The points where classical reasoning is needed depends crucially on the en-
coding of sequents into formulas and on the fact that disjunction is encoded as
negated conjunction in the object logic. The encoding of sequents into formulas is
used for the semantics of sequents. Pattinson and Schröder associate the formula
Γ̌ =

∨
Γ with the sequent Γ and set �Γ � = �Γ̌ �. Defining the finite disjunction∨

Γ with an existential quantifier (i.e., (A1, . . . , An)̌ = ∃i . Ai) is inappropriate,
because the object logic does not contain quantification. I therefore use an iter-
ative definition (i.e., (A,Γ)̌ = A∨ Γ̌) which results in (A1, A2)̌ = ¬(¬A1 ∧¬A2),
because disjunction is syntactic sugar in the object logic.

For sequents with two or more formulas, the translation into formulas leads
to some kind of Gödel-Gentzen double-negation translation. Therefore, a bit
unexpected, the (Ax) rule can be proved sound without using classical logic,
because ¬(¬P ∧ ¬¬P) is an intuitionistic tautology (contrary to P ∨ ¬P).

In contrast, the soundness of the (cut) rule depends on classical logic. Con-
sider the case where Γ is the empty sequent and Δ contains one formula B.
Then, soundness of (cut) amounts to A ∧ ¬(¬B ∧ ¬¬A) → B, which is not an
intuitionistic tautology, in contrast to A ∧ (B ∨ ¬A)→ B.

The second point where classical logic is needed in the formalization is the
upward correctness of the (¬¬) rule, which is needed in the completeness proof.
However, classical reasoning is here only required for the case where Γ is empty.
For non-empty Γ the double-negation translation makes the statement provable.

Because of the effects of the double-negation translation, the soundness of
the calculus with the (cut) rule and the completeness depend on classical logic.
Soundness without (cut) can be proved in intuitionistic logic.

There is only one third point in the whole formalization that requires
classical logic. This is a technical point inside Proposition 4.13, which is the
base result for the completeness proof.

4.2 Differences in the Formalization

This subsection describes the important differences between the formalization
and [1] and mentions some other noteworthy points. Errors and omissions that
the formalization revealed are discussed in the next subsection.

Non-Negative Modal Rank. The modal rank of a formula or sequent is the
maximal nesting level of modal operators in it. Purely propositional formulas
have modal rank 0. Many proofs in [1] work by induction on the modal rank.
Pattinson and Schröder occasionally use the modal rank −1 to avoid a case
distinction, see for instance [1, Lem. 3.7]. No formula has rank −1.

For simplicity, the formalization uses natural numbers for the modal rank.
To accommodate −1, the modal rank in the formalization is increased by one.
That is, purely propositional formulas have rank 1, the formula ♥(p) has rank 2

266 H. Tews

for a propositional variable p, and so on. No formula has rank 0, but the empty
sequent has rank 0.

Unused Results with Difficult Proofs. A few lemmas have been omitted
from the formalization, mostly because no other results depend on them and they
have a relatively difficult proof. One example is point 2 of Proposition 3.2, which
recalls that the propositional rules including (cut) are complete with respect to
propositional consequence. The proof of this result requires compactness, which
is difficult to capture in the intuitionistic logic of Coq. The second example is
the depth-preservation proof of Lemma 3.13, which is missing in the paper and
which I discuss in the next subsection. The last example is Proposition 4.5 in [1]
about one-step completeness. In coalgebraic logics, one-step completeness is a
technical condition on the modal rules that implies completeness of the whole
calculus. Proposition 4.5 states that it is sufficient to consider finite sets only
for one-step completeness. This proposition is apparently only needed for the
example of coalition logic.

Changes in the Syntactic Cut-Elimination Theorem. In [1], Proposi-
tion 5.6 for syntactic cut elimination states three properties together. First the
admissibility of the non-atomic axiom rule, second the admissibility of contrac-
tion and third the admissibility of cut-elimination. Pattinson and Schröder prove
all three properties in one mutual induction on the modal rank. In their proof,
the induction step for non-atomic axioms of rank n+1 depends on cut elimina-
tion on rank n.

In the formalization I use two substitution lemmas (which are both derived
from a more general result). One for the rule set including (cut) and one for
the rule set without (cut). The latter one permits me to eliminate cut from the
rule set before applying the substitution lemma. Then, the proof for non-atomic
axioms in the formalization only requires cut elimination on purely propositional
formulas of rank 0. Therefore, the result for non-atomic axioms is a separate
proposition in the formalization, which is proved before the remainder of 5.6.

Injective Substitutions. Pattinson and Schröder use injective substitutions
at two points in the syntactic cut-elimination proof, because injective substitu-
tions preserve inclusion of multisets under certain conditions. (More accurately,
Γ ⊆ Δ implies Γσ ⊆ Δσ for sequents Γ and Δ when σ is injective, Γ is a
conclusion of a one-step rule and ⊆ denotes inclusion on multisets.) For obtain-
ing an injective substitution, they write, “We may factorise σ = σm ◦ σe where
σe is a renaming and σm is an injective substitution” [1, page 29]. To avoid
non-constructive definitions, I use a slightly weaker factorization. For a sequent
Γ and a substitution σ I construct an injective σ′

m and a renaming σ′
e such

that only Γσ = Γσ′
eσ

′
m, while, in general, σ �= σ′

m ◦ σ′
e. Nevertheless, the cited

sentence is one of the sentences with the biggest formalization overhead that I
encountered. It required about 1500 lines of Coq and one week to construct σ′

m

and σ′
e out of σ and to prove the necessary properties.

Formalizing Cut Elimination of Coalgebraic Logics in Coq 267

4.3 Omissions and Errors

In this subsection I discuss the non-trivial problems in the formal development
of [1]. During the intense work on the formalization I also discovered a number of
missing side conditions and obviously missing assumptions. These points are not
included here. The fact that there are only 4 non-trivial problems in the proofs
of [1] and that they have only negligible consequences for the main theorems,
shows the accuracy of the pen and paper proofs of Pattinson and Schröder.

One Step Rules. The definition of one-step rules in [1] omits a side condition
on the propositional variables: Just as described in Section 3.3, one must actually
require that the assumptions do only use propositional variables that do appear
in the conclusion. This condition is needed for those proofs that proceed by
induction on the modal rank. For a substitution instance of a one-step rule,
these proofs simply invoke the induction hypothesis on the assumptions of the
rule. For this the modal rank of the assumptions must be smaller than the one
of the conclusion. The simplest way to ensure this on substitution instances of
one-step rules is the side condition on propositional variables.

In Coq, the fixed definition looks as follows:

Definition one step rule(r : sequent rule) : Prop :=
every nth prop sequent (assumptions r) ∧
simple modal sequent (conclusion r) ∧
conclusion r �= [] ∧
every nth
(fun(s : sequent) ⇒

incl (prop var sequent s) (prop var sequent (conclusion r)))
(assumptions r).

The predicate every nth P l is equivalent to Forall3 from Coq’s standard library,
using a different and, for my purposes, more convenient definition. It expresses
that P holds on all elements of the list l. The predicates prop sequent and
simple modal sequent express the constraints on the shape of the formulas in
the assumptions and the conclusion, respectively. The predicate incl l1 l2 from
the standard library holds if every element in l1 appears in l2 (regardless of mul-
tiplicity and order). The function prop var sequent : sequent → list V collects the
propositional variables in a sequent.

Missing Proof for Depth Preservation. The inversion Lemmas 3.12 and 3.13
of [1] state that the inverted rules of (∧), (¬∧) and (¬¬) are depth-preserving
admissible. This means, for instance, for the (∧) rule, that, if Γ,A ∧ B is prov-
able, then so are Γ,A and Γ,B with proof trees of the same or smaller size. The
Lemmas 3.12 and 3.13 differ in the rule set for which they make this statement.
Lemma 3.12 makes the statement for proofs using the propositional rules only
while Lemma 3.13 applies to proofs using propositional as well as modal rules.

3 Note the case! Forall differs from the keyword forall.

268 H. Tews

The proof of Pattinson and Schröder for 3.13 uses their Lemma 3.9, which
states an equivalence of proofs for the two different rule sets and relies then
on 3.12. The problem here is that their Lemma 3.9 makes no statement about
the size of the proof trees. So the proof of Pattinson and Schröder proves the
inversion property, but not the depth-preserving part of the statement.

Depth preservation is important for the syntactic cut-elimination proof, be-
cause this proof uses induction on the size of the proof tree. However, in the
syntactic cut-elimination proof only 3.12 is needed. Lemma 3.13 is (apparently)
never used. In the formalization of Lemma 3.13 I only prove the inversion prop-
erty and omit the depth-preservation part.

Fixed Substitution Lemma. The substitution lemma 3.14 of Pattinson and
Schröder makes the following statement. Assume that Γ is provable with rules of
modal rank at most n (implying that Γ has rank n) and that σ is a substitution
that maps propositional variables to formulas of modal rank at most k (i.e.,
σ has rank k). Then Γσ is provable with rules of modal rank n + k, using
additional assumptions from the set Axk = {¬A,A,Δ | A a formula of rank k,
Δ a sequent of rank k}. The proof is very simple: One takes the same proof
tree and substitutes a suitable element from Axk for every occurrence of the
(Ax) rule. Consider for instance Γ = ¬p, p,♥(p) of rank 1, which can directly
be proved with the (Ax) rule, and the substitution σ of rank 1 that maps p to
♥(p). Then Γσ = ¬♥(p),♥(p),♥(♥(p)) should match an assumption from Ax1,
which is impossible, because Γσ has rank 2.

The substitution lemma is used inside induction proofs on the modal rank for
sequents Γ of rank 1 and substitutions σ of rank n. The idea is to reduce the
modal rank n + 1 of Γσ to rank n of the elements of Axn, making it possible
to apply the induction hypothesis to the elements of Axn. Therefore, the trivial
change of permitting sequents of rank n + k in the set Ax in the substitution
lemma would fix the problem, but make the lemma useless.

For the formalization I define, for an arbitrary substitution σ

Axnσ = {¬pσ, pσ,Δ | p a propositional variable, Δ a sequent of rank n}
In the substitution lemma, the proof of Γσ is permitted to use assumptions from
Axn+k

σ , where n is the rank of Γ and k is the rank of σ, as before. In the proofs
using the substitution lemma, one can apply the induction hypothesis on the
two-element sequent ¬pσ, pσ, which has rank k only, and then use a suitable
weakening lemma to obtain ¬pσ, pσ,Δ.

The σ parameter in the set Axnσ conveys some information through the appli-
cation of the substitution lemma. This makes it possible to use the substitution
lemma inside the proof of point 1 of Proposition 5.6 in [1], which states the ad-
missibility of the non-atomic axiom rule. Pattinson and Schröder prove a special
claim there by induction on the proof tree.

A Gap in the Completeness Proof. Proposition 4.13 in [1] states com-
pleteness for rank n, that is, if Γ of modal rank n is valid in the special n-step
semantics, then it can be proved with rules of rank n. The proposition makes

Formalizing Cut Elimination of Coalgebraic Logics in Coq 269

the statement actually twice, for the rule set including (cut) and, with stronger
assumptions, for the rule set without (cut). We focus here on the proof for the
rule set including the (cut) rule. The proof proceeds by induction on the modal
rank of Γ . Inside the induction step the obligation to find a proof for Γ is made
simpler by reducing the complexity of Γ step by step. In the first step, the
propositional rules are applied until Γ has the form

¬♥1(. . .), . . . ,¬♥k(. . .), ♥′
1(. . .), . . . ,♥′

k′(. . .), ¬q1, . . . ,¬qm, q′1, . . . , q′m′ (∗)

Pattinson and Schröder make now a case distinction: Either the left part with
the modal formulas is valid or the right part with the propositional variables. In
case of the right part one can simply use the (Ax) rule to construct the needed
proof. In case of the left part one can use the one-step completeness of the rule
set (which is an assumption of the proposition) and the induction hypothesis to
obtain a proof for

¬♥1(. . .), . . . ,¬♥k(. . .), ♥′
1(. . .), . . . ,♥′

k′(. . .) (†)

The gap that remains in the proof of Pattinson and Schröder is how to obtain
a proof of (∗) from a proof of (†). One obviously only needs a weakening lemma
for the rule set including (cut). However, this result is missing from [1]. The
weakening lemma 3.11 of [1] states weakening only for the rule set without (cut).

Weakening can be obtained with (cut) in a simple way, however, this requires
the admissibility of non-atomic axioms. Non-atomic axioms are admissible, but
this result is only proved much later in 5.6 and not available at this point. For
the formalization I therefore proof the required weakening lemma by induction
on the proof tree without using non-atomic axioms.

5 Main Theorems in the Formalization

This section presents the Coq source code of a few high-level theorems in the
formalization. For space reasons, missing definitions must be looked up in the
source code [7] if the explanations do not suffice.

The definitions and lemmas that deal with the semantics of coalgebraic logics
need as third parameter a functor T, which is declared as Variable, similar to V
and L.

Variable T : functor.

A functor is a record containing two functions, one for a mapping on types (the
objects) and one for the mapping on functions (the morphisms). Additionally,
functor contains proofs for the relevant properties, such as, for instance, the
preservation of identity morphisms.

The first theorem shown is the completeness result without (cut).

Lemma cut free completeness :
forall(enum V : enumerator V)(LS : lambda structure)

(rules : set sequent rule)(osr : one step rule set rules)(s : sequent),

270 H. Tews

classical logic →
non trivial functor T →
one step cut free complete (enum elem enum V) LS rules osr →
valid all models (enum elem enum V) LS s →
provable (GR set rules) empty sequent set s.

Here, enum V is an enumerator (i.e., an injective function nat → V) for the vari-
ables. It is only needed for constructing substitutions inside the proof.4 The
lambda structure LS contains a predicate lifting of the functor T for each modal
operator in the modal similarity type L together with the necessary properties.
These predicate liftings are used for the semantics of the modal operators. The
universally quantified variable osr is a proof for the fact that rules forms a set
of one-step rules. This property appears as a quantified variable instead of as
an assumption, because it is needed as argument of one step cut free complete,
which expresses that the rule set rules is one-step cut-free complete with respect
to the lambda structure LS. The predicate valid all models ensures that the se-
quent s is valid in all models, while non trivial functor T ensures that there is at
least one such model. The term (enum elem enum V) produces one variable as
witness that the set of variables is not empty. Both one step cut free complete
and valid all models are only well-formed for non-empty variables sets V.

The next theorem is semantic cut elimination. Its proof first uses the sound-
ness of the logic to derive the validity of those sequents that possess a proof. It
then relies on cut free completeness to prove the existence of a cut-free proof.

Theorem semantic admissible cut :
forall(enum V : enumerator V)(LS : lambda structure)

(rules : set sequent rule)(osr prop : one step rule set rules),
classical logic →
non trivial functor T →
one step sound (enum elem enum V) LS rules osr prop →
one step cut free complete (enum elem enum V) LS rules osr prop →
admissible rule set (GR set rules) empty sequent set is cut rule.

Here, we have the additional assumption one step sound that ensures the one-
step soundness and thereby soundness. The predicate is cut rule captures all
instances of (cut) and admissible rule set R H C expresses that all rules in C are
admissible for the rule set R and the assumptions H.

Finally, here is the syntactic cut elimination theorem. Syntactic cut elimina-
tion works by moving applications of the cut rule upwards in the proof until they
finally disappear. The theorem depends on two additional Variables: a decidable
equality relation on the operators and on the propositional variables.

4 Actually, all proofs in the formalization only require finitely many distinct variables.
The number of variables needed depends on the syntactic structure of the sequent s.
Just like Pattinson and Schröder I simply assume infinitely many variables, because
a suitable finite upper bound has not been identified yet.

Formalizing Cut Elimination of Coalgebraic Logics in Coq 271

Variables (op eq : eq type (operator L)) (v eq : eq type V).

Theorem syntactic admissible cut : forall(rules : set sequent rule),
countably infinite V → one step rule set rules →
absorbs congruence rules →
absorbs contraction op eq v eq rules →
absorbs cut op eq v eq rules →
admissible rule set (GR set rules) empty sequent set is cut rule.

This theorem also needs an enumerator for V (provided by countably infinite)
and the one-step property for rules, but here these points appear as conventional
assumptions. The other assumptions are the three absorption properties, where
the latter two need the decidable equalities.

Comparing the two cut elimination statements, we see that the syntactic one
can be proved in intuitionistic logic and makes no assumptions on the functor T.

As an example, the formalization currently contains only the modal logic K
(see e.g., [14]). Its purpose is to ensure that the general results of the formaliza-
tion are applicable to a concrete logic and that all assumptions can be discharged
as expected. For this example, natural numbers are used as propositional vari-
ables and the only modal operator � is defined with an inductive date type. The
example contains an application of each of the main results of the formalization.
Here I only show syntactic cut elimination.

Theorem k syntactic cut :
admissible rule set (GR set k rules) empty sequent set is cut rule.

This theorem uses the equivalent but non-standard rule set k rules, which per-
mits cut elimination, see [1, Ex. 4.6]. The theorem is proved with the theorem
syntactic admissible cut and suitable lemmas for the absorption properties of K.

6 Conclusion and Future Work

This paper presents the formalization of about 2/3 of [1] in the proof assistant
Coq. The formalization contains the necessary definitions to formalize and prove
the results on soundness, completeness and cut elimination of coalgebraic modal
logics. The formalization contains the modal logic K as example, ensuring that
definitions and theorems can be employed. Using this formalization, it should be
possible to obtain machine checked cut-elimination proofs and certified tautology
checkers for a number of different modal logics with relatively little effort.

There are many interesting directions for continuing the work presented here.
First, it would be nice to cover more examples in order to obtain machine checked
cut-elimination theorems for a number of different modal logics. Second, it would
be interesting to also formalize the remainder of [1], in particular the results on
the interpolation property. The third point are certified programs, for instance,
for checking tautologies in a particular modal logic. From definitions and proofs,
Coq can extract Haskell or OCaml programs, which are correct by construction.
Because the completeness proof of Pattinson and Schröder is constructive, one

272 H. Tews

should be able to obtain a tautology checker from it. In the current form of
the formalization, program extraction does not work, because the completeness
result is formulated as theorem only. For program extraction one must restruc-
ture the completeness result into the function that constructs the proof and a
correctness proof of that function.

Acknoledgements. I thank Dirk Pattinson and Lutz Schröder for several dis-
cussions on their paper.

References

1. Pattinson, D., Schröder, L.: Cut elimination in coalgebraic logics. Information and
Computation 208, 1447–1468 (2010)

2. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project, Version 8.4 (2012)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
In: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Com-
puter Science. Springer (2004)

4. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining speci-
fication, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

5. Aspinall, D., Kleymann, T.: User Manual for Proof General 4.2. LFCS Edinburgh
(September 2012), http://proofgeneral.inf.ed.ac.uk

6. Tews, H.: Automatic library compilation and proof tree visualization for Coq Proof
General. Presentation at the 3rd Coq Workshop, Nijmegen (2011)

7. Tews, H.: Formalized Cut Elimination of Coalgebraic Logics: Source Code and
Documentation. TU Dresden (April 2013),
http://askra.de/science/coalgebraic-cut

8. Goré, R., Ramanayake, R.: Valentini’s cut-elimination for provability logic resolved.
In: Areces, C., Goldblatt, R. (eds.) Advances in Modal Logic, pp. 67–86. College
Publications (2008)

9. Dawson, J.E., Goré, R.: Generic methods for formalising sequent calculi applied
to provability logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS,
vol. 6397, pp. 263–277. Springer, Heidelberg (2010)

10. Doczkal, C., Smolka, G.: Constructive completeness for modal logic with transitive
closure. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 224–239.
Springer, Heidelberg (2012)

11. Chapman, P., McKinna, J., Urban, C.: Mechanising a Proof of Craig’s Interpolation
Theorem for Intuitionistic Logic in Nominal Isabelle. In: Autexier, S., Campbell,
J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC/Calculemus/MKM
2008. LNCS (LNAI), vol. 5144, pp. 38–52. Springer, Heidelberg (2008)

12. Dawson, J.E., Goré, R.: Formalised cut admissibility for display logic. In: Carreño,
V.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 131–147.
Springer, Heidelberg (2002)

13. Chapman, P.: Tools and techniques for formalising structural proof theory. PhD
thesis, University of St Andrews (June 2010), http://hdl.handle.net/10023/933

14. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press (2002)

http://proofgeneral.inf.ed.ac.uk
http://askra.de/science/coalgebraic-cut
http://hdl.handle.net/10023/933

Intelligent Tableau Algorithm for DL Reasoning

Ming Zuo and Volker Haarslev

Concordia University, Montreal QC H3G 1M8, Canada
{ming zuo,haarslev}@encs.concordia.ca

Abstract. Although state-of-the-art description logic (DL) reasoners are equipped
with a comprehensive set of optimizations, reasoning performance is still a major
bottleneck in both research and real world applications. In this paper, we propose
a sound and complete algorithm called the intelligent tableau algorithm by incor-
porating comprehensive learning techniques to tackle all DL reasoning tasks. We
also provide a reference implementation reasoner called LIGHT for the DLALC
dialect based on the algorithm we developed. Preliminary tests indicate that signif-
icant improvements can be achieved, i.e., compared to other state-of-the-art rea-
soners, LIGHT is up to two orders of magnitude faster for simple problems and
several orders of magnitude faster for more difficult problems. Even though in this
work our discussion is restricted to theALC reasoning problem, our conjecture is
that the algorithm developed can easily be extended to super-logics ofALC.

Keywords: description logic, automated reasoning, learning, forgetting.

1 Introduction

Most state-of-the-art DL reasoners implement tableau-based decision procedures which
typically check the consistency of an ontology by constructing a so-called pre-model for
the ontology. These procedures create pre-models in an often blind way which highly
depends on the syntax of the input ontologies. Despite many optimization techniques
studied and implemented so far, it is easy to find ontologies where one reasoner per-
forms very well while the other is hopelessly inefficient (e.g., see [5] for combinations
of nominals and qualified cardinality restrictions).

To simplify our discussion in the following sections, we restrict our research scope
in this work on the DL dialectALC (Attributive Concept Language with Complements)
which is a subset of nearly every expressive DL [2]. Applications of the results intro-
duced in this work to more expressive DL dialects will be addressed in our future work.

The paper is structured as follows. We first briefly introduce the syntax and semantics
of ALC and its relationship with other logics. Then we study a sound and complete
reasoning procedure based on a special DL normal form (DLNF). Afterward we discuss
the integration of different types of learning into the reasoning procedure to come up
with the so-called intelligent reasoning algorithm. At last, we show that any TBox can
be converted into DLNF easily. The effectiveness of the algorithm proposed in this work
is demonstrated by empirical results obtained from processing a number of typical test
cases based on our reference implementation.

D. Galmiche and D. Larchey-Wendling (Eds.): TABLEAUX 2013, LNCS 8123, pp. 273–287, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

274 M. Zuo and V. Haarslev

1.1 ALC Description Logic

Let A be a concept name (atomic concept), C and D are arbitrary concepts, and R a
role name (atomic role). In ALC, concepts are formed with the syntax as following:

C,D ::= � | ⊥ | A | ¬C | C !D | C "D | ∀R.C | ∃R.C
where � is the abbreviation of ¬A " A, and ⊥ of ¬A ! A. An atomic concept corre-
sponds to a unary relation in first order predicate logic (FOL), and an atomic role to
a binary relation in FOL. If C and D are concepts, then C * D is a terminological
axiom.C ≡ D is the abbreviation of the two axioms C * D andD * C. A finite set of
terminological axioms is called a terminology or TBox. An interpretation I = (Δ,.I)
consists of a non-empty set Δ and a mapping function .I . The function .I maps ev-
ery role to a subset of Δ × Δ and every concept to a subset of Δ. If there exists an
interpretation I which satisfies every axiom in T , i.e., CI ⊆ DI must hold for every
C * D in T , we call the interpretation a model of T . Hence T is called satisfiable
if such a model exists, and unsatisfiable otherwise. ALC is a syntactic variant of the
propositional modal logic K(m) and can be seen as a fragment of FOL. Axioms in a
TBox can be translated into FOL sentences correspondingly [2]. Let us use the function
F() to represent such a translation. Therefore,

F(A * ∃R.C) = ∀x∃y : A(x)→ (R(x, y) ∧C(y))1

F(A * ∀R.C) = ∀x∀y : A(x)→ (R(x, y)→ C(y))
F(A * B) = ∀x : A(x)→ B(x) = ∀x : ¬A(x) ∨B(x)

In the following sections we shall only focus on the ALC TBox satisfiability reason-
ing problem for ease of illustration and evaluation. Solving other reasoning tasks is
discussed in Section 6.

1.2 The Contribution of This Paper

In this paper we present a reasoning procedure which systematically and effectively uses
a highly optimized DPLL algorithm for DL reasoning. This can be partially compared
to SMT (Satisfiability Modulo Theory) based approaches but offers more advantages.
In addition, we also propose a learning algorithm called unsat-learning which is proven
to be very effective for reasoning optimization. Prior to our work, only approaches for
unsat-caching [4,3,20] have been proposed, which can only prevent unsat-nodes (their
number could be exponential) to be repeatedly expanded whereas our approach can
prevent unsat-nodes to be repeatedly generated, which can reduce the search space ex-
ponentially in the best case. Moreover, we also integrate so-called forgetting techniques
into our DL reasoning algorithm, which improve an algorithm’s tractability in prac-
tice. At last, besides the standard negation normal form (NNF), a new DL normal form
(DLNF) specifically for reasoning optimization is also investigated.

1 In the following sections, we find it more appropriate to replace y by a skolem function f(x).

Intelligent Tableau Algorithm for DL Reasoning 275

2 An Intelligent TBox Reasoning Procedure

2.1 A Reasoning Procedure for DLNF TBoxes

Suppose we are given a TBox T in which the axioms can be divided into three sets Tg ,
Tue, and Tua. In Tg , each axiom is in the format � * C where C is a disjunction of
unary literals. In other words, if we ignore the “� *” part in Tg for all axioms, Tg can be
considered in propositional logic conjunctive normal form (CNF). Let us call it PCNF
to distinguish it from CNF in FOL that allows n-ary relations rather than only unary
ones. In Tue and Tua, all axioms are in the format such that A * ∃R.C and A * ∀R.C
respectively, where A is a positive unary literal; R is an atomic role and C is a concept
in the format of PCNF. In addition, all positive unary literals on the left-hand side of
Tue and Tua are unique.

Definition 1. A TBox T is in Description Logic Normal Form (DLNF) if all axioms
in T can be divided into the three sets Tg , Tue, and Tua as described above.

Example 1.

T ′
= {� * ¬A0 " ¬B0, ¬A0 * B0, ∀R.(A0 ! ¬B0) * ¬A0 " ∀R.¬B0}

T
′′
= {� * ¬A0 " ¬B0, � * A0 "B0, � * ¬A0 " A1 " A2,

A1 * ∀R.¬B0, A2 * ∃R.(¬A0 "B0)}

In Example 1, T ′
is not in DLNF since the last two axioms do not match the definition

of any of the three sets while T ′′
is in DLNF. If a TBox T is in DLNF, then it can be

easily translated to sets of skolemized FOL sentences (as shown below), where f(x) is
a skolemization function which maps instances to instances; x and y are variables of
instances of the underlying domain:

F(Tg) = ∀x
m∧
i=1

n∨
j=1

αij(x)

F(Tua) = ∀x∀y
q∧

l=1

γl(x)→ (sl(x, y)→ dl(y))

F(Tue) = ∀x
p∧

k=1

δk(x)→ (rk(x, fk(x)) ∧ ck(fk(x)))

(1)

Therefore, in Example 1, we have the FOL translation F(T ′′
) as follows:

F(T ′′
g) = ∀x : (¬A0 ∨ ¬B0, A0 ∨B0, ¬A0 ∨ A1 ∨ A2)(x)

F(T
′′
ua) = ∀x∀y : A1(x)→ (R(x, y)→ ¬B0(y))

F(T ′′
ue) = ∀x : A2(x)→ (R(x, f(x)), (¬A0 ∨B0)(f(x)))

where (¬A0 ∨¬B0)(x) is the abbreviation of (¬A0(x) ∨¬B0(x)), and we replace the
symbol “∧” with “,” to emphasize the fit of set data structure during implementation.

276 M. Zuo and V. Haarslev

Let us assume a TBox T is satisfiable and Im = (Δ,.I
m

) is a model of T . Therefore,
Δ must be non-empty, and it should at least contain one instance. If the existence of
such an instance is impossible, i.e, it is impossible to construct a mapping function .Im

to satisfy all axioms in T , then T must be unsatisfiable. Without loss of generality, let
us say i0 is such an instance in Δ. We call the problem space w.r.t. only one single
instance a node. We also use instance names to identify nodes if this does not cause
any confusion. The problem space w.r.t. i0 is called root node or root. Let us take T ′′

from Example 1 to illustrate how we can solve the satisfiability problem for a TBox in
DLNF effectively. As we already stated, the underlying idea of solving the satisfiability
problem of T ′′

is to prove that the existence of i0 is possible.
Step (i) Construct the root node from T .
The logical semantics of the root node is that w.r.t. i0 all axioms in T map to the

logical true under a mapping function. If we can prove that such a mapping function
exists, T is satisfiable. Otherwise, T is unsatisfiable. Now let us consider the root node
of T ′′

which is the instantiation of x with i0 in F(T ′′
) (for unary relations, we use A

instead A(i0) for simplification purpose). Then, we get the root node of T ′′
:

1) {¬A0 ∨ ¬B0, A0 ∨B0,¬A0 ∨ A1 ∨A2}
2) A1 → ∀y : (R(i0, y)→ ¬B0(y))
3) A2 → {R(i0, f(i0)), (¬A0 ∨B0)(f(i0))}

Mapping 3) and 2) to the logical true can be easily achieved if we include (¬A2(i0) :
true) and (¬A1(i0) : true) in our mapping function. We call such kind of sentences
rules. To differentiate the two types of rules, we call the sentences instantiated from
F(Tue) ∃-rules and the ones from F(Tua) ∀-rules. As for 1), finding a mapping to
satisfy all sentences in it is equivalent to finding a propositional model for the corre-
sponding CNF. If there does not exist such a model, it means the mapping function .Im

can not be constructed, hence T ′′
must be unsatisfiable. Let us assume there exists a

propositional model for the CNF of the root node. We call the propositional model of
the CNF inside a node a path of the node. We call an individual element in the path
such as ¬A2(i0), A1(i1) an item.

Step (ii) Find a path of the corresponding node.
Provided that the path of the root node does exist, let us consider a specific item in

the path. We have only three possibilities:

(a) The item matches to an item on the left-hand side of a ∀-rule.
(b) The item matches to an item on the left-hand side of an ∃-rule.
(c) The item does not match to any item on the left-hand side of any rule.

As for (c), the item occurring in the path has no impact on the sentences instantiated
from F(Tua) and F(Tue). If all items in the path fall into this category, satisfiabil-
ity of the underlying TBox is directly proven. For instance, in the above example,
{¬A0, B0,¬A1,¬A2} is a path of the root node. However, none of the elements in
it matches the elements on the left-hand side of 3) and 2). Therefore, T ′′

is satisfiable,
and one can easily construct a model with a complete mapping function for it. As for
the other options (a) and (b), rule expansions are required.

Intelligent Tableau Algorithm for DL Reasoning 277

Step (iii) Perform rule expansions.
If a ∀-rule is triggered, the right-hand side of the rule needs to be added to the cor-

responding node, i.e., adding the sentence ∀y : sl(i, y) → dl(y) to node i. Similarly,
if an ∃-rule is triggered, a relation rk(i, fk(i)) needs to be added to .Im

. Without loss
of generality, let us use a new instance name i1, which does not exist in Δ, to replace
fk(i) instead of keeping the function name.2 Therefore, we add a new instance i1 to Δ
and a binary relation rk(i, i1) to .Im

. Thus a new node w.r.t. i1 is added to the search
space and ck is added to the new node as part of the rule.

A node which generates new nodes is called a predecessor, and the generated nodes
its successors. The corresponding role rk is called an edge. If a PCNF ck is added to
a node because a ∃-rule is triggered by some δk, then δk is called an ∃-prefix and ck
is called an ∃-label of the node. Similarly, if a dl is added to a node due to a triggered
∀-rule by a γl, then γl is called a ∀-prefix and dl a ∀-label of the node. The set of prefixes
of a node is called a prefix set and the set of labels a label set of the node. We call two
nodes equivalent if they contain the same label set. If there is no conflict detected in any
of its successor nodes, then the node is called satisfiable.

To illustrate how it works, let us still use T ′′
from Example 1. Let us assume that

the path we found for the root node is {¬A0, B0, A1, A2} this time.3 A1 triggers a ∀-
rule, therefore we add a special rule ∀y : R(i0, y) → ¬B0(y) to the root node. A2

triggers an ∃-rule. Therefore, Δ = Δ ∪ {i1} where i1 is a new name and .Im

=.Im

∪{R(i0, i1)}. Furthermore, we also create a new node w.r.t. i1. ¬A0 ∨ B0 is added to
the newly created node as part of the ∃-rule. Since we have R(i0, i1) in .Im

, the rule
∀y : R(i0, y) → ¬B0(y) in the node i0 is triggered in which we instantiate y with
i1. Therefore, we have the following node i1 which contains all instantiated sentences
(rules) of F(T ′′

) (due to the ∀x restriction) by replacing x with i1 together with ¬B0

(∀-label) and ¬A0 ∨B0 (∃-label). We separate the label set from the instantiated PCNF
below just for illustration purposes.

1) {¬A0 ∨ ¬B0, A0 ∨B0,¬A0 ∨ A1 ∨A2}, {¬B0,¬A0 ∨B0}
2) A1 → ∀y : (R(i1, y)→ ¬B0(y))
3) A2 → {R(i1, f(i1)), (¬A0 ∨B0)(f(i1))}

It is obvious that there does not exist a proposition model for the PCNF in 1). It means
that the prefix set {A1, A2} of node i1 (which is part of the path of node i0) leads to a
contradiction. In such kind of situation, the path found in the predecessor node needs
to be rolled back and recalculated. This rollback and recalculation procedure is applied
recursively until no valid path can be found for the root node (the corresponding TBox
is unsatisfiable) or all paths have been found for all nodes in the problem space (the
corresponding TBox is satisfiable).

Step (iv) Apply steps (ii) to (iii) recursively until either all paths have been found for
all nodes or no path could be found for the root node.

Proposition 1. The reasoning procedure from step (i) to step (iv) is sound and complete.

2 Refer to [2] for details on the open world assumption in DLs.
3 We chose a complete propositional model for illustration purposes here. A partial model con-

taining only {¬A0, B0} is already sufficient for a satisfiability proof.

278 M. Zuo and V. Haarslev

Proof. The proposition holds because a TBox T can straightforwardly be translated to
FOL to which Herbrand’s theorem applies. The above-mentioned procedure is exactly
a procedure for constructing a herbrand model [10].

2.2 Integrating Learning into Reasoning

The underlying idea of learning w.r.t. logic reasoning is to prune unvisited search space
based on the knowledge achieved from previous search steps. With the pruned search
space, reasoning algorithms are supposed to find search results faster. By considering
the size of the underlying search space regarding to ALC, which can be exponential
w.r.t. the size of input ontologies [2], it is almost certain that effective learning should
improve the average reasoning performance significantly.

As discussed in Section 2.1, finding a path for a node is reduced to finding a propo-
sitional model for the underlying PCNF of the node. Therefore, some proven to be very
effective optimization algorithms such as DPLL equipped with conflict-driven learning
and back-jumping that are also employed by state-of-the-art SAT solvers [22,15] can
be directly used. We call such kind of learning inside a single node local learning. The
discussion and improvements of local learning are beyond the scope of this paper and
we shall focus on global learning, i.e., the kind of learning that affects the reasoning
search space on the pre-model level, which directly affects the number of nodes to be
searched. To be more specific, global learning can be categorized into three types:

1. Unsat-learning: If the status of a node has already been determined as unsatisfiable,
the algorithm should learn from it and block all related unexplored search space
that would definitely lead to a failed search result.

2. Sat-learning: If the status of a node has already been determined as satisfiable,
the algorithm should directly mark the status of its equivalent nodes as satisfiable
without performing reasoning or expansion on them.

3. Unknown-learning: When the algorithm starts, the status of visited nodes are first
marked as “unknown” meaning that the sat/unsat status has not yet been deter-
mined. As the model graph is expanded during reasoning, if a newly created node
is equivalent to a node already marked as “unknown”, then we should avoid du-
plicate reasoning on the latter. In this case, we mark the latter node as “blocked”
meaning its satisfiability should refer to another node. The previously visited node
with an unknown status is called a blocker, and the blocked node is called a blockee.

Let us first check how an algorithm can learn from an unsat node. Without loss of
generality, let us suppose the label set of an unsat node is {cm, d1, d2, . . . , dn}.4 Cor-
respondingly, the prefix set is {δm, γ1, γ2, . . . , γn}. If the node is marked as unsat, it
means that the combination of all its prefixes leads to a conflict w.r.t. T . That is

T |= ∃x : δm(x) ∧ γ1(x) ∧ γ2(x) ∧ · · · ∧ γn(x)→ ⊥ (2)

It is equivalent to:

T |= ∀x : ¬δm(x) ∨ ¬γ1(x) ∨ ¬γ2(x) ∨ · · · ∨ ¬γn(x) (3)

4 ForALC, a non-root node contains exactly one existential label.

Intelligent Tableau Algorithm for DL Reasoning 279

We call the right-hand side of axiom (3) a learned sentence. Let us add the learned
sentence toF(Tg) and populate it to all nodes with a still unknown status. We can easily
prove that all nodes whose prefix set contains the set {δm, γ1, γ2, . . . , γn} are pruned
from the search space. To illustrate how unsat-learning works, let us again consider the
example we used in Section 2.1. Node i1 is unsat and its prefix set is {A1, A2}. Then
the learned sentence is ∀x : (¬A1 ∨ ¬A2)(x). First we rollback the path found for the
root node and the corresponding elements related to that path which were added/created
during reasoning. The second step is to add the learned sentence to T and populate it to
the nodes with an unknown status. In our example, after the second step we get:

F(T ′′
g) = ∀x : {¬A0 ∨ ¬B0, A0 ∨B0,¬A0 ∨ A1 ∨ A2,¬A1 ∨ ¬A2}(x)

The changed root node:

1) {¬A0 ∨ ¬B0, A0 ∨B0,¬A0 ∨ A1 ∨A2,¬A1 ∨ ¬A2}
2) A1 → ∀y : (R(i0, y)→ ¬B0(y))

3) A2 → {R(i0, f(i0)), (¬A0 ∨B0)(f(i0))}

Now if we recalculate the path of the root node or any other node in our problem space
in future search, any supersets containing {A1, A2} will be automatically excluded.
Unsat-learning does not affect the soundness or completeness of the algorithm and the
proof is trivial.

As for sat-learning and unknown-learning, these techniques are also called sat-caching
and blocking in other papers [4,3]. They can be simply implemented as buffering, i.e., all
nodes in the underlying search space are identified by their labels, and if a newly created
node has a buffer hit, it can be directly marked either as ‘sat’ or ‘blocked’ without further
expansion.

However, naive buffering may cause the algorithm to become unsound [8]. Solu-
tions to fix the unsoundness are discussed in [3,6]. The solution introduced in [6] is
widely considered to be the best so far. However, it requires EXPSpace in the worst
case to construct a pre-model which can easily cause the reasoning algorithm to become
intractable.

Considering the procedure we discussed so far, unknown-learning is not a source of
unsoundness since the status of both blockers and blockees is restricted only to “un-
known” whereas sat-learning may cause unsoundness due to the problematic defini-
tion of “satisfiable” in Section 2.1. For example, in the case where all successors are
“blocked” by some other “unknown” nodes, the reasoning algorithm normally marks
the predecessor as “sat” due to no conflict detected in any of its successor nodes. In our
case, such a node will be saved in the sat-buffer and might be reused by others after-
wards due to a buffer hit. This is the source for the unsoundness w.r.t. sat-learning since
any of the related blockers could be proven as “unsat” afterwards. Therefore, in DL we
characterize node satisfiability as relative to blockers compared to absolute node unsat-
isfiability. In fact, there is a simple solution to ensure soundness. All we need to do is to
remove the nodes from the sat-buffer which directly or indirectly depend on a blocker
node whenever such a node is detected as “unsat”.

280 M. Zuo and V. Haarslev

Algorithm 1. Normalization to CNF
1: function NORMALIZE(axiom)
2: remove ≡ and non-top concept from lefthand side of � from axiom
3: convert axiom to NNF
4: if axiom matches � � C � (D �E) then
5: normalize(� � ¬η �D) � η is a new name
6: normalize(� � ¬η �E)
7: normalize(� � C � η)

Algorithm 2. Remove value restrictions
function REMOVEROLEITEM(aDLCNFClause)

for all concept in aDLCNFClause do
if concept matches ∃R.C then

replace concept with δ � δ is a new name
Tue.add(δ � concept)

else if concept matches ∀R.D then
replace concept with γ � γ is a new name
Tua.add(γ � concept)

3 Intelligent Tableau Algorithm

3.1 Normalization

Reasoning algorithms used by state-of-the-art DL reasoners usually require axioms of
the input TBox to be transformed into NNF which can be done easily in linear time.
However, in the above mentioned reasoning procedure we require the input TBox to be
in DLNF. Therefore, before performing reasoning on a TBox, we need an algorithm to
convert an arbitrary TBox into the format of DLNF which is called normalization.

We divide the normalization into two steps: The first step is to remove all conjunc-
tions from all axioms in the target TBox (see Algorithm 1). In the second step, we
remove all concepts with value restrictions from the resulting CNF and then add corre-
sponding axioms to Tua and Tue (see Algorithm 2). Concepts C and D in Algorithm 2
can also be reduced to PCNF easily in a similar way. One can easily tell that in Example
1, T ′′

is the normalization result of T ′
.

Based on Algorithms 1 and 2, we have Proposition 2.

Proposition 2. There exists an algorithm that converts an arbitrary TBox T to T ′ in
polynomial time where T ′ is in DLNF and T ′ is equisatisfiable to T .

Proof. It is obvious that these algorithms require polynomial time. We only need to
prove that T ′ is equisatisfiable to T after normalization. The conversion from line 4
to line 7 in Algorithm 1 is widely used in converting an arbitrary SAT problem into a
3-SAT problem, and the equisatisfiability proof needs not to be repeated here. When
converting to DLNF, the only difference is the introduction of ∃-rules and ∀-rules. In
fact, the equisatisfiability of such a conversion can be proven in exactly the same way.
As for the PCNF conversion of role fillers, the proof can be easily done based on the
fact that equisatisfiability is closed under conjunction.

Intelligent Tableau Algorithm for DL Reasoning 281

3.2 Intelligent Reasoning Algorithm

As we already mentioned in previous sections, the algorithm for finding a path inside
a specific node is implemented as finding a propositional model w.r.t. a CNF. A DPLL
procedure with local learning is described in Algorithm 3.

Algorithm 3. findModel
1: function FINDMODEL(aPCNF)
2: while true do
3: while ¬unsat and ¬finish do
4: unfold()
5: propagateAndDeduce()

6: if unsat then
7: if currentLevel = 0 then
8: return false
9: else

10: resolveConflict()

11: else if ¬ decideNextBranch() then
12: return true

Algorithm 4. ∀- and ∃-unfold
function ∀-UNFOLD(aPositiveUnaryLiteral)

rule← createLocalRule(aPositiveUnaryLiteral)
for all successor ∈ successorList do

if successor.role = rule.role then
successor.addPrefix(rule.prefix)
successor.cnf.add(rule.filler)

function ∃-UNFOLD(aPositiveUnaryLiteral)
node ← createNewNode(aPositiveUnaryLiteral)
for all rule ∈ getLocalRule(node.role) do

node.cnf.add(rule.filler)
node.prefix.add(rule.prefix)

successorList.add(node)

Compared to SAT reasoning, we have to consider the ∃-rule and ∀-rules in DL rea-
soning. The function unfold() for rule expansions is called at line 4 in Algorithm 3. It
is executed whenever a propositional model item has been added. For other functions,
the details are similar to what is described in [22] except that the function resolveCon-
flict() needs to additionally deal with unsat caused by global learning and the rollback()
needs to do the opposite of unfold() if the rolling back item is unfoldable. ∃-unfold and
∀-unfold are described in Algorithm 4.

A recursive depth-first search (DFS) algorithm to determine satisfiability of an in-
put TBox is shown in Algorithm 5. At line 3, the algorithm checks and updates the
local CNF from the results of global learning, if applicable. This can avoid a global

282 M. Zuo and V. Haarslev

propagation when global learning results are applicable that may affect system perfor-
mance at runtime. At line 15 we ensure the soundness of sat-learning, if applicable.
Line 16 can be as simple as adding a disjunction of negated prefixes to Tg as described
in Section 2.2.

Algorithm 5. satCheck
1: external satBuffer, unknownBuffer
2: function SATCHECK(aNode)
3: updateCNFFromGlobalLearning()
4: if ¬ findModel(aNode.pcnf) then
5: return false

6: for all successor ∈ successorList do
7: if successor ∈ satBuffer then
8: successor.status ← SAT
9: else if successor ∈ unknownBuffer then

10: successor.status ← BLOCKED
11: else
12: unknownBuffer.add(successor)
13: if ¬ satCheck(successor) then
14: unknownBuffer.remove(successor)
15: ensureSATLearningSoundness()
16: Learn from successor.prefix
17: return satCheck(aNode)
18: if current �=root then
19: unknownBuffer.remove(current)
20: satBuffer.add(current)
21: return true

3.3 Forgetting

In Algorithm 5, a pre-model is constructed through DFS. Therefore, during reasoning
we only need to keep one single branch in memory to construct the pre-model. Such
kind of algorithms can be implemented in PSPACE as further studied and proved in
[16]. As a result, many tableau-based decision procedures for DL reasoning can be
considered as overall “practically tractable”. With the presence of global buffers, worst
case optimal algorithms using DFS are also studied and presented in [4] in which the
analysis of “practically tractable” algorithms by using global buffers focus only on the
space and time required for the construction of the pre-model whereas the space used by
the global buffers is ignored. As a matter of fact, we can easily prove that, if no proper
action is taken, the size of global buffers, even though only unsat-caching is involved,
can be exponential with regard to the size of the input TBox. Therefore, the “practically
tractable” feature might no longer hold in the presence of global buffers.

By considering the algorithm we proposed in this work, without special treatment,
the size of learning buffers for both global and local learning can also be EXP size
in the worst case. To achieve tractability, an intuitive solution is to remove less useful
learned knowledge from learning buffers, which can be seen as an opposite operation
to learning, and it is normally called forgetting. In our work, forgetting is applicable

Intelligent Tableau Algorithm for DL Reasoning 283

to local learning, unsat-learning, and sat-learning but not to unknown-learning. This
scheme is good enough for practical reasoning since through DFS the number of nodes
with an unknown status is normally small. A forgetting algorithm could be as simple as
using a size-restricted FIFO queue, and it could be as complicated as some advanced
heuristic algorithms.

4 Related Work

We named the algorithm developed in this work as “intelligent tableau” to emphasize
its relationship to the traditional tableau algorithms [2] in that both algorithms construct
tree-like pre-models forALC reasoning. One can easily prove that both are variants for
finding a herbrand model to tackle DL reasoning problems. Learning and forgetting can
be considered as optimization techniques, which could also possibly be integrated into
traditional DL tableau algorithms. The major difference to our work is on how to deal
with disjunctions, i.e., a tightly integrated DPLL vs. standard tableau branching.

Traditional tableau algorithms are implemented by almost all state-of-the-art reason-
ers such as FaCT++ [21], Pellet [19], RacerPro [9] and HermiT [18]. These algorithms
are widely blamed for a low efficiency in the presence of many general inclusion axioms
or disjunctions [12]. Even though equipped with many optimization techniques such as
boolean constraint propagation (BCP), semantic branching, back-jumping, etc., most
DL reasoners still easily become intractable when dealing with ontologies containing
many disjunctions. Even though the JNH test cases we used in Section 5 are considered
as trivial examples for a SAT solver, no state-of-the-art DL reasoner is able to provide
an efficient solution. As for more complicated CNF test cases, these reasoners easily be-
come intractable based on our test results. Modified versions of tableau algorithms such
as hypertableaux [14], which uses hyper-resolution instead of simple tableau branching,
are developed and applied in reasoners such as HermiT. Even though the performance
in dealing with disjunctions is improved, based on our test results, HermiT is normally
performing worse than others in situations where a big amount of nodes needs to be
constructed in the underlying pre-model (see Section 5).

Researchers also presented approaches for DL reasoning through SMT [17], which
make it possible to solve DL reasoning problems by using efficient state-of-the-art SAT
solvers. Some of the underlying ideas coincidentally overlap with our work. However,
even though the SMT solutions have achieved a similar performance for some bench-
mark test cases compared to state-of-the-art DL reasoners, they did not provide effective
ways to prune the underlying search space. In addition, the encoding algorithms used
to reduce DL problems to SAT problems are still as hard as EXPTime which may cause
some significant overhead when considering performance in real-world applications.
Moreover, the black-box consideration of the SAT portion might cause unnecessary
search if a conflict could be easily detected before a full SAT model is constructed. So
far, we were unable to include a practical SMT reasoner in our comparison tests.

The research on EXPTime Tableau for ALC [4] (by applying global caching) has
been further developed and implemented by [6,7]. These kinds of algorithms either
heavily use subset checking or require EXPSpace to construct the pre-model. Both cases
can easily cause intractability in real world applications. Implementations of such kind

284 M. Zuo and V. Haarslev

of reasoning algorithms are still far from building a practical reasoner for real world DL
applications.

5 Empirical Results

The primary goal of the algorithm developed in Section 3.2 is to conduct “fast” reason-
ing — the purpose of DPLL based algorithm is to improve the reasoning performance
w.r.t. to a single node while comprehensive learning is to reduce the number of nodes
to be searched. A good way to verify whether our goal has been achieved is through
running typical benchmark test cases. In addition, designing an enable/disable switch
on some specific optimization feature is the best way to verify its effectiveness. Based
on such motivation, we provide a reference implementation called LIGHT in which sat-
learning and unsat-learning can be switched on and off. We consider the features of our
reasoning procedure such as being DPLL-based, employing DLNF ontology normaliza-
tion and unknown-learning as so fundamental that they are tightly integrated into our
architecture and therefore can not be disabled. We conducted our benchmark tests using
four different settings of LIGHT (see Table 1): (i) both sat-learning and unsat-learning
switched off (L-N); (ii) only sat-learning switched on (L-S); (iii) only unsat-learning
switched on (L-U); (iv) both sat-learning and unsat-learning switched on (LIGHT). Part
of the test results for the employedALC benchmark test cases are shown in Table 1. The
LIGHT reasoner for different platforms together with all test cases we used, complete
test results and test scripts are available for download.5

All test results in Table 1 are based on a Ubuntu Linux 12.04 32 bit platform. The
used hardware is a DELL Precison 390 with Intel Core 2 Duo processor 2.4G equipped
with 4GB memory. For Java based reasoners, we used Oracle JDK v7.0.11. In Table
1, all runtimes are given in seconds. The word “cr” means the system crashed (out of
memory or segment fault) during the test, and “to” means the system was aborted after
a timeout (≥ 2000 seconds). The suffix “s” and “u” of ontology names represents the
corresponding TBox that is either satisfiable or unsatisfiable.

The JNH [11] test cases are CNF benchmarks converted to OWL syntax and are
used to test the capability of DL reasoners for dealing with ontologies containing many
(global) disjunctions. BCS (Basic Call System) [1] test cases are real-world examples
and typical in the sense that large amount of nodes are required to construct a pre-
model. GALEN test cases are used to evaluate the reasoners when dealing with simple
problems. The test cases named “k XX” are taken from Tableaux’98 [13].

As shown in Table 1, in some situations where very limited number of branches is
required to build a pre-model or conflicts can be easily detected, sat and unsat learning
have no significant impact on the results for GALEN and JNH. In these situations,
the effectiveness of LIGHT’s reasoning compared to other reasoners can be primarily
attributed to the optimized DPLL algorithm used. Learning may also have negative
impact in some situations such as K PH 14P. In some cases, with only unsat learning
enabled we can achieve better results than using the combination of the two, i.e., sat-
learning only causes overhead for a test case such as K PATH 20P. In many situations,
unsat-learning is critical for obtaining a good performance. However, in the BCS test

5 http://www.lightreasoner.co.nf/

http://www.lightreasoner.co.nf/

Intelligent Tableau Algorithm for DL Reasoning 285

Table 1. Benchmark results for ALC test cases (runtimes in seconds)

L-N L-S L-U LIGHT HermiT Pellet Fact++ Racer
galen1s 0.12 0.12 0.14 0.12 1.2 1.3 0.44 1.7
galen2s 0.16 0.15 0.16 0.15 1.3 1.4 0.46 1.9
JNH15u 0.02 0.02 0.02 0.02 6.2 119.1 94.7 119.5
JNH16u 0.07 0.06 0.06 0.07 237.4 452.3 cr 15384
JNH17u 0.02 0.02 0.02 0.02 1.6 21.1 9.5 1165
k d4 12nu to to 44.32 44.47 to to 1054 to
k d4 13nu to to 99.77 98.70 to to to to
k dum 18nu 18.04 15.05 17.33 13.99 to to cr 196.29
k dum 19nu to to 37.59 32.27 to to cr 140.88
k ph 14pu 963.7 1001 1005 1014 cr cr cr to
k tp4 21nu 15.84 15.31 5.32 0.32 to 0.54 cr to
k branch 20nu 0.34 0.34 0.35 0.35 to 2.3 14.7 16.1
k branch 21nu 0.39 0.40 0.40 0.39 to 2.4 18.2 19.2
k path 20pu 1.5 1.53 0.19 1.53 cr 21.03 5.85 7.88
k path 21pu 1.7 1.76 0.23 1.78 cr 25.63 7.30 9.0
k poly 15pu 18.36 18.3 18.0 0.43 179.27 27.67 34.97 1.62
k poly 16pu cr cr cr 0.61 373.4 76.98 cr 2.03
k poly 20ns cr cr to 236.7 cr cr cr 149.9
k poly 21ns cr cr to 325.4 cr cr cr 524.6
BCS3s to 0.03 to 0.02 1.6 20.7 cr 0.69
BCS4s to 1.37 to 0.20 133.8 to cr 13.8
BCS5s to to to 2.14 cr to cr 276.2

cases, we also see that sat-learning plays a critical role to ensure effective reasoning.
Overall, the combination of both sat and unsat learning achieves very good results in
most of the cases.

Compared to other DL reasoners, LIGHT is up to one order of magnitude faster for
the GALEN test cases. For the BCS benchmarks, LIGHT is two orders of magnitude
faster than Racer, which is the only reasoner besides LIGHT that can process all three
variants. The overall performance of LIGHT is significantly improved for the bench-
marks selected from Tableaux’98 (the test cases with prefix “k ”). The JNH benchmark
results demonstrate the effectiveness of LIGHT by using an optimized DPLL algo-
rithm in dealing with situations where one has only one node in the pre-model that has
many disjunctions while the other reasoners are several orders of magnitude slower than
LIGHT.

6 Discussion

The TBox satisfiability problem we discussed in this work can be seen as a special case
of the (�) concept satisfiability problem w.r.t. a non-empty TBox. From this perspec-
tive, once an algorithm solves the TBox satisfiability problem, all other DL reasoning
tasks such as concept satisfiability, classification, concept subsumption, ABox satisfia-
bility etc. can also be solved easily by using exactly the same algorithm [2].

286 M. Zuo and V. Haarslev

Some may consider the normalization algorithm we presented in this work that in-
troduces additional variables to be a source of inefficiency. After all, the worst case
complexity analysis even for DPLL based algorithms is tightly related to the number of
variables involved. As a matter of fact, this kind of concern is unjustified. First of all, the
normalization algorithm requires only polynomial (linear) time which is normally triv-
ial compared to the EXPtime reasoning algorithm. Another fact is that no proof or test
results indicate that the introduction of variables can significantly affect the reasoning
performance. Our test results have shown that the introduction of new variables such as
the conversion from 5CNF to 3CNF in SAT reasoning in most of the cases interestingly
improved the reasoning performance.

At last, one may wonder the necessity of the algorithm we proposed in this work.
After all, the algorithm proposed in this work can be easily reduced to finding a Her-
brand model in FOL which is also the case for traditional tableau algorithms. In fact,
one can easily reduce the algorithm proposed in this work to traditional tableau-based
algorithms for further analysis such as computational complexity and termination anal-
ysis. From our perspective, the major benefits of the algorithm proposed in this work
are based on two points. First, this algorithm helps us reduce a DL-based problem to
a SAT based problem so that we can delegate efficient reasoning by using proven to
be efficient algorithms. The other reason is that we simplified the pre-model structure
from an AND-OR graph [6] to an AND-only graph, i.e., all nodes in the discourse have
to be satisfiable to make the corresponding TBox satisfiable. The “OR” portion in the
graph with its reasoning algorithm is completely merged to the “AND” node. Thus,
with the simplified model structure, it is easier to develop and integrate more efficient
optimization algorithms such as comprehensive learning.

7 Conclusion and Future Work

In this paper we presented an efficient reasoning algorithm that incorporates learning
for solving the TBox satisfiability problem. It is based on searching herbrand models,
which is related to but also different from traditional DL tableau algorithms. Preliminary
test results have shown that our presented algorithms are significantly more efficient
than other existing ones. Besides a systematical discussion of learning on DL reason-
ing, our DLNF normalization form has been systematically presented and investigated,
which makes it easier to incorporate effective optimization techniques into automated
reasoning algorithms due to the structured format. Even though the discussion in this
work is restricted to the DL ALC , our conjecture is that the algorithm can be applied
to super-logics ofALC or even other DL related logics with slight modifications which
will be presented in our future work.

References

1. Areces, C., Bouma, W., de Rijke, M.: Description logics and feature interaction. In: Proceed-
ings of the International Workshop on Description Logics (DL 1999), Linköping, Sweden,
pp. 28–32 (1999)

Intelligent Tableau Algorithm for DL Reasoning 287

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook, 2nd edn. Cambridge University Press (2007)

3. Ding, Y., Haarslev, V.: Tableau caching for description Logics with inverse and transitive
roles. In: Proceedings of the 2006 International Workshop on Description Logics (DL 2006),
pp. 143–149 (2006)

4. Donini, F.M., Massacci, F.: EXPTIME tableaux for ALC. Artificial Intelligence 124(1),
87–138 (2000)

5. Faddoul, J.: Reasoning algebraically with description logics. PhD thesis, Department of
Computer Science and Engineering, Concordia University (2011)

6. Goré, R., Nguyen, L.: Exptime tableaux for ALC using sound global caching. Journal of
Automated Reasoning, 1–27 (2011)

7. Goré, R., Postniece, L.: An experimental evaluation of global caching for ALC (system de-
scription). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 299–305. Springer, Heidelberg (2008)

8. Haarslev, V., Möller, R.: Consistency testing: The RACE experience. In: Dyckhoff, R. (ed.)
TABLEAUX 2000. LNCS, vol. 1847, pp. 57–61. Springer, Heidelberg (2000)

9. Haarslev, V., Möller, R.: Racer system description. In: Goré, R.P., Leitsch, A., Nipkow, T.
(eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)

10. Herbrand, J.: Recherches sur la théorie de la démonstration. PhD thesis, University of Paris
(1930)

11. Hooker, J.: Satlib - benchmark problems. Website (2011),
http://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html

12. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. of KR 1998,
pp. 636–647 (1998)

13. Horrocks, I., Patel-Schneider, P.: DL systems comparison. In: Proc. of the 1998 Description
Logic Workshop (DL 1998). CEUR, vol. 11, pp. 55–57 (1998)

14. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. Journal
of Artificial Intelligence Research 36, 165–228 (2009)

15. Ryan, L.O.: Efficient algorithms for clause learning SAT solvers. Master’s thesis, Simon
Fraser University, BC, Canada (2004)

16. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Arti-
ficial Intelligence 48(1), 1–26 (1991)

17. Sebastiani, R., Vescovi, M.: Automated reasoning in modal and description logics via SAT
encoding: the case study of K(m)/ALC-Satisfiability. Journal of Artificial Intelligence Re-
search 35 (2009)

18. Shearer, R., Motik, B., Horrocks, I.: Hermit: A highly efficient OWL reasoner. In: 5th OWL
Experiences and Directions Workshop (2008)

19. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

20. Steigmiller, A., Liebig, T., Glimm, B.: Extended caching, backjumping and merging for
expressive description logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS, vol. 7364, pp. 514–529. Springer, Heidelberg (2012)

21. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer,
Heidelberg (2006)

22. Zhang, L.: Searching for truth: techniques for satisfiability of boolean formulas. PhD thesis,
Departement of Electrical Engineering, Princeton University (2003)

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

Author Index

Areces, Carlos 13

Barrett, Clark 1
Bauer, Andreas 28
Baumgartner, Peter 28
Bezhanishvili, Nick 44
Boudou, Joseph 59
Bresolin, Davide 74

Ciabattoni, Agata 81

David, Amélie 97
Della Monica, Dario 74
Demri, Stéphane 1
Deters, Morgan 1
Diller, Martin 28

Ferrari, Mauro 104
Fiorentini, Camillo 104
Fiorino, Guido 104
French, Tim 119
Furbach, Ulrich 134

Ghilardi, Silvio 44
Goré, Rajeev 172
Graham-Lengrand, Stéphane 149

Haarslev, Volker 273
Haslbeck, Maximilian 10
Hetzl, Stefan 157
Hóu, Zhé 172

Khodadadi, Mohammad 188
Kurokawa, Hidenori 203

Lellmann, Björn 219
Libal, Tomer 157

Maffezioli, Paolo 81
McCabe-Dansted, John 119
Montanari, Angelo 74

Negri, Sara 5
Nipkow, Tobias 10
Norrish, Michael 28

Orbe, Ezequiel 13

Pattinson, Dirk 219
Peltier, Nicolas 234

Reynolds, Mark 119
Riener, Martin 157
Röthlisberger, Christoph 250
Rukhaia, Mikheil 157

Schmidt, Renate A. 188
Schon, Claudia 134
Sciavicco, Guido 74
Spendier, Lara 81

Tews, Hendrik 257
Tishkovsky, Dmitry 188
Tiu, Alwen 172

Woltzenlogel Paleo, Bruno 59

Zuo, Ming 273

	Preface
	Organization
	Table of Contents
	Invited Talks

	Witness Runs for Counter Machines
	References

	On the Duality of Proofs and Countermodels
in Labelled Sequent Calculi
	References

	A Brief Survey of Verified Decision Procedures
for Equivalence of Regular Expressions
	1 Introduction
	2 Derivatives of Regular Expressions
	3 Marked Regular Expressions
	4 Related Formalisations
	References

	Research Papers

	Dealing with Symmetries in Modal Tableaux
	1 Introduction
	2 Definitions
	3 Detecting Modal Symmetries
	4 Symmetry Blocking
	4.1 Completeness

	5 Experimental Evaluation
	5.1 Symmetry Detection
	5.2 Symmetry Blocking

	6 Conclusions
	References

	Tableaux for Verification of Data-Centric Processes
	1 Introduction
	2 Preliminaries
	3 The Specification Language
	4 Tableaux for CTL
	5 Inductive Proofs of Safety Properties
	6 Implementation and Experiments
	7 Conclusions and Future Work
	References

	Bounded Proofs and Step Frames
	1 Introduction
	2 Logics and Decision Problems
	3 StepFrames
	4 One-Step Correspondence
	5 Examples and Case Studies
	6 Conclusions and Future Work
	References

	Compression of Propositional Resolution Proofs
by Lowering Subproofs
	1 Introduction
	2 Propositional Resolution Calculus
	3 LowerUnits
	4 LowerUnivalents
	5 Remarks about Combining
	6 Experiments
	7 Conclusions and Future Work
	References

	A Tableau System for Right Propositional Neighborhood Logic over Finite Linear
Orders: An Implementation
	1 Introduction
	2 Syntax and Semantics of RPNL
	3 The Tableau System for RPNL
	4 Implementation of the Tableau System for RPNL
	5 Experiments
	References

	Hypersequent and Labelled Calculi
for Intermediate Logics
	1 Introduction
	2 Preliminaries
	3 Hypersequent Calculi for Intermediate Logics
	3.1 Extending the Method - A Case Study

	4 Labelled Calculi for Intermediate Logics
	4.1 Towards a Systematic Approach

	References

	TATL: Implementation
of ATL Tableau-Based Decision Procedure
	1 Introduction
	2 Tableau-Based Decision Procedure
	3 General Principles of TATL
	4 Description of TATL
	5 TestsforTATL
	6 Conclusion and Perspectives
	References

	A Terminating Evaluation-Driven Variant of G3i
	1 Introduction
	2 Preliminaries and Evaluations
	3 The Sequent Calculus Gbu
	4 The Refutation Calculus Rbu
	5 The Proof-Search Procedure
	6 Conclusions and Future Works
	References

	Model Checking General Linear Temporal Logic

	1 Introduction
	2 The Logic
	3 Building Structures
	4 Examples
	5 Model Checking
	6 Proof of Correctness
	6.1 Correctness of Adding

	7 Complexity
	8 Conclusions
	References

	Semantically Guided Evolution of SHI ABoxes
	1 Introduction
	2 SHI
and DL-Clauses
	3 ABoxEvolution
	4 K-Transformation

	5 Using
the K-Transformation for ABox Evolution
	6 Experimental Results
	7 Conclusion and Future Work
	References

	Psyche: A Proof-Search Engine Based on
Sequent Calculus with an LCF-Style Architecture
	1 PSYCHE in Brief

	2 Motivation
	3 Overview and General Architecture
	PSYCHE's�Kernel
	5 Plugins
	6 Conclusion and Perspectives
	References

	Understanding Resolution Proofs
through Herbrand’s Theorem
	1 Introduction
	2 Expansion Trees
	3 Display Expansion Trees
	4 Transforming Resolution Proofs to Expansion Trees
	4.1 Transforming Resolution Proofs to Sequent Proofs
	4.2 Transforming Sequent Proofs to Expansion Trees
	4.3 Complexity and Scalability

	5 Implementation and Examples
	5.1 Import of a Resolution Proof
	5.2 Extraction of an Expansion Tree
	5.3 The Graphical User Interface

	6 Conclusion
	References

	A Labelled Sequent Calculus for BBI:
Proof Theory and Proof Search
	1 Introduction
	2 Syntax and Semantics of BBI
	3 The Labelled Sequent Calculus for BBI
	3.1 Soundness and Completeness
	3.2 Cut Elimination

	4 Localising Structural Rules
	5 Mapping Proof Search to Constraint Solving
	6 A Heuristic and Experimental Results
	7 Conclusions, Extensions and Further Work
	References

	A Refined Tableau Calculus with Controlled
Blocking for the Description Logic SHOI
	1 Introduction
	2 Syntax and Semantics of SHOI

	3 Tableau Calculus
	4 Controlling the Application of Blocking Using (ubnoS)
	5 Refined Tableau Calculus
	6 Implementation and Experimental Results
	7 Concluding Remarks
	References

	Prefixed Tableau Systems
for Logic of Proofs and Provability
	1 Introduction
	2 Hilbert-Style Systems and Kripke-Fitting Models
	3 Prefixed Tableau System for GrzA

	4 Prefixed Tableau System for
	5 Prefixed Tableau System for
	6 Discussions
	References

	Correspondence between Modal Hilbert Axioms
and Sequent Rules with an Application to S5
	1 Introduction
	2 Preliminaries
	3 Rules with Restrictions
	4 From Axioms to Rules
	5 From Rules to Axioms
	6 Application: Limitative Results for K4 and S5

	7 Discussion
	References

	Schemata of Formulæ in the Theory of Arrays
	1 Introduction
	2 Schemata of Formulæ
	2.1 Syntax
	2.2 Semantics

	3 Undecidability Results
	4 Decidability Results
	4.1 Simplifying the Syntax
	4.2 Restricting the Class of Interpretations
	4.3 Proof Procedure

	5 Applications
	6 Conclusion
	References

	TAFA – A Tool for Admissibility
in Finite Algebras
	1 Introduction
	2 Basic Features of TAFA

	2.1 Homomorphisms
	2.2 Subalgebras
	2.3 Products
	2.4 Congruences
	2.5 Free Algebras

	3 Validity and Admissibility
	4 A Case Study: 3-Element Groupoids
	References

	Formalizing Cut Elimination
of Coalgebraic Logics in Coq
	1 Introduction
	2 Coq Preliminaries
	3 A Deep Embedding for Parametric Coalgebraic Logics
	3.1 Formulas
	3.2 Sequents
	3.3 Rules and Rule Sets
	3.4 Proofs
	3.5 Provability

	4 Highlights of the Formalization
	4.1 Insufficient Intuitionistic Meta Logic
	4.2 Differences in the Formalization
	4.3 Omissions and Errors

	5 Main Theorems in the Formalization
	6 Conclusion and Future Work
	References

	Intelligent Tableau Algorithm for DL Reasoning
	1 Introduction
	1.1 ALC Description Logic
	1.2 The Contribution of This Paper

	2 An Intelligent TBox Reasoning Procedure
	2.1 A Reasoning Procedure for DLNF TBoxes
	2.2 Integrating Learning into Reasoning

	3 Intelligent Tableau Algorithm
	3.1 Normalization
	3.2 Intelligent Reasoning Algorithm
	3.3 Forgetting

	4 Related Work
	5 Empirical Results
	6 Discussion
	7 Conclusion and Future Work
	References

	Author Index

