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Abstract. In this paper we describe the design of a multiagent system based on 
simple interaction rules that can generate different overall behaviours, from 
asymptotically stable to chaotic, verified by the corresponding largest 
Lyapunov exponent. We show that very small perturbations can have a great 
impact on the evolution of the system, and we investigate some methods of 
controlling such perturbations in order to have a desirable final state. 
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1 Introduction 

Chaos has been extensively studied in physical systems, including methods to control 
it for uni-, bi- and multi-dimensional systems [1]. Also, concepts such as causality 
and the principle of minimal change in dynamic systems have been formalized [11]. 

Many human-related e.g. social or economic systems are nonlinear, even when the 
underlying rules of individual interactions are known to be rational and deterministic. 
Prediction is very difficult or impossible in these situations. However, by trying to 
model such phenomena, we can gain some insights regarding the fundamental nature 
of the system. Surprising or counterintuitive behaviours observed in reality can be 
sometimes explained by the results of simulations. 

Therefore, the emergence of chaos out of social interactions is very important for 
descriptive attempts in psychology and sociology [7], and multiagent systems are a 
natural way of modelling such social interactions. Chaotic behaviour in multiagent 
systems has been investigated from many perspectives: the control of chaos in 
biological systems with a map depending on growth rate [13], the use of a chaotic 
map by the agents for optimization [2] and image segmentation [10], or the study of 
multiagent systems stability for economic applications [3]. However, in most of these 
approaches, chaos is explicitly injected into the system, by using a chaotic map, e.g. 
the well-known logistic map, in the decision function of the agents.  

The main goal of this work is the design of simple interaction rules which in turn 
can generate, through a cascade effect, different types of overall behaviours, from 
stable to chaotic. We believe that these can be considered metaphors for the different 
kinds of everyday social or economic interactions, whose effects are sometimes 
entirely predictable and can lead to an equilibrium while some other times 
fluctuations can widely affect the system state, and even if the system appears to be 
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stable for long periods of time, sudden changes can occur unpredictably because of 
subtle changes in the internal state of the system. We also aim at investigating how 
very small changes can non-locally ripple throughout the system with great 
consequences and if it is possible to reverse these changes in a non-trivial way, i.e. by 
slightly adjusting the system after the initial perturbation has occurred. 

The paper is organized as follows. Section 2 presents the interaction protocol of the 
multiagent system and its mathematical formalization. Section 3 discusses the 
deterministic and chaotic behaviours that emerge from the system execution. Section 
4 presents an experimental study regarding the effects of small perturbations in the 
initial state of the system and the possibility of cancelling them through minimal 
external interventions. The final section contains the conclusions of this work. 

2 The Design of the Multiagent System 

The main goal in designing the structure and the interactions of the multiagent system 
was to find a simple setting that can generate complex behaviours. A delicate balance 
is needed in this respect. On the one hand, if the system is too simple, its behaviour 
will be completely deterministic and predictable. On the other hand, if the system is 
overly complex, it would be very difficult to assess the contribution of the individual 
internal elements to its observed evolution. The multiagent system presented as 
follows is the result of many attempts of finding this balance. 

The proposed system is comprised of n agents; let A be the set of agents. Each 
agent has m needs and m resources, whose values lie in their predefined domains    
Dn, Dr ⊂ ℝ+. This is a simplified conceptualization of any social or economic model, 
where the interactions of the individuals are based on some resource exchanges, of 
any nature, and where individuals have different valuations of the types of resources 
involved.  

In the present model, it is assumed that the needs of an agent are fixed (although an 
adaptive mechanism could be easily implemented, taking into account, for example, 
previous results [8,9]), that its resources are variable and they change following the 
continuous interactions with other agents. 

Also, the agents are situated in their execution environment: each agent a has a 
position πa and can interact only with the other agents in its neighbourhood Λa. For 
simplicity, the environment is considered to be a bi-dimensional square lattice, but 
this imposes no limitation on the general interaction model – it can be applied without 
changes to any environment topology. 

2.1 Social Model 

Throughout the execution of the system, each agent, in turn, chooses another agent in 
its local neighbourhood to interact with. Each agent a stores the number of previous 
interactions with any other agent b, ia(b), and the cumulative outcome of these 
interactions, oa(b), which is based on the profits resulted from resource exchanges, as 
described in the following section. 
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When an agent a must choose another agent to interact with, it chooses the agent in 
its neighbourhood with the highest estimated outcome: )(maxarg* bob a

b aΛ∈
= . 

The parallelism of agent execution is simulated by running them sequentially and 
in random order. Since one of the goals of the system is to be deterministic, we define 
the execution order from the start. Thus, at any time, it can be known which agent will 
execute and which other agent it will interact with. When perturbations are introduced 
into the system, the same execution order is preserved. It has been shown that the 
order of asynchronous processes plays a role in self-organisation within many multi-
agent systems [4]. However, in our case this random order is not necessary to 
generate complex behaviours. Even if the agents are always executed in lexicographic 
order (first A1, then A2, then A3 etc.), sudden changes in utilities still occur, although 
the overall aspect of the system evolution is much smoother. 

2.2 Bilateral Interaction Protocol 

In any interaction, each agent tries to satisfy the needs of the other agent as well as 
possible, i.e. in decreasing order of its needs. The interaction actually represents the 
transfer of a resource quantum γ from an agent to the other. Ideally, each agent would 
satisfy the greatest need of the other.  

For example, let us consider 3 needs (N) and 3 resources (R) for 2 agents a and b: 
Na = {1, 2, 3}, Nb = {2, 3, 1}, Ra = {5, 7, 4}, Rb = {6, 6, 5}, and γ = 1. Since need 2 is 
the maximum of agent b, agent a will give b 1 unit of resource 2. Conversely, b will 
give a 1 unit of resource 3. 

In order to add a layer of nonlinearity, we consider that an exchange is possible 
only if the amount of a resource exceeds a threshold level θ and if the giving agent a 
has a greater amount of the corresponding selected resource rsel than the receiving 
agent b: )()( selbsela rRrR >  and θ>)( sela rR .  

In the previous situation, if we impose a threshold level θ = 5, agent a will still 
give b 1 unit of resource 2, but b will only satisfy need 1 for agent a. 

Based on these exchanges, the resources are updated and the profit pa is computed 
for an agent a as follows: 

)(

)(
)(

sela

selb
selaa rR

rR
rNp ⋅⋅= γ . (1) 

A bilateral interaction can bring an agent a profit greater or equal to 0. However, its 
utility should be able to both increase and decrease. For this purpose, we can compute 
a statistical average of the profit, pavg, and increase the utility of an agent if the actual 
profit is above pavg, and decrease the utility if the profit is below pavg. 

Thus, the equation for updating the utility level of an agent a is: 
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where the adjusted number of interactions is: ( ) ∈
=

Ab mema
adj
a ibii ),(min , imem is the 

maximum number of overall interactions that the agent can “remember” (i.e. take into 
account) and η is the rate of utility change. At the beginning, the utility of the agent 
can fluctuate more, as the agent explores the interactions with its neighbours. 
Afterwards, the change in utility decreases, but never becomes too small. 

For example, if imem = 20, ua = 0.1, pa = 8.5, η = 1, pavg = 7.5 and the sum of all 
previous interactions is 2, the utility will change to: ua’ = (0.1 · 2 + (8.5 – 7.5) · 1) / 3 
= 0.4. If the sum of all previous interactions is 100, the same utility will change only 
to: ua’ = (0.1 · 20 + (8.5 – 7.5) · 1) / 21 = 0.14. 

Similarly, the social outcome of an agent a concerning agent b is updated as 
follows: 
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In this case, the social model concerns only 1 agent and thus the use of the actual 
number of interactions can help the convergence of the estimation an agent has about 
another. 

Regarding the computation of the average profit, we used a statistical approach 
where we took into account 100 continuous interactions between two randomly 
initialized agents, which exchange resources for 100000 time steps. The average 
profit depends on the number of resources, their domain and the interaction threshold. 

3 Types of Behaviours 

A key challenge in applied dynamical systems is the development of techniques to 
understand the internal dynamics of a nonlinear system, given only its observed 
outputs [5]. As the observed output of our multiagent system, we consider only the 
agent utilities. We can view this output as a discrete time series, one for each agent. In 
the following, we analyse the evolution of these time series over time. Since there is 
no stopping condition for the agent interactions, we restrict our study to a predefined, 
finite time horizon, e.g. 1000, 2000 or 10000 time steps. 

Depending on the number of agents and the initial state of the system, several types 
of behaviours can be observed: 

 
• Asymptotically stable: When only 2 agents exist in the system, we noticed that 

they can perform an indefinite number of interactions. They can stabilize to a 
continuous exchange of resources, possibly the same resource in both cases      
(γ units of the same resource are passed back and forth between the 2 agents). 
With 2 agents, the system quickly converges to a stable state (figure 1). 
Depending on the initial state, a stable state can also be reached by some agents 
in a system with multiple agents. The typical behaviour in the latter case is a 
high frequency vibration around the value of convergence. However, it is also 
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possible that multiple agents all converge to stable states and the system remains 
in equilibrium afterwards; 

• Quasiperiodic: With more interacting agents in the system, usually their utilities 
no longer converge to a stable value. Instead, the values belong to a certain 
range, with few, predictable oscillations around the mean value. Figure 2 shows 
the evolution of the utility of 4 agents over 10000 time steps. In order to smooth 
out short-term fluctuations and highlight longer-term trends, a simple moving 
average method is used, with a window size of 10 time steps; 

• Chaotic: With a high number of agents (e.g. over 10), the complexity of their 
interactions usually exceeds the deterministically predictable level. The utilities 
of some agents widely fluctuate, even after the initial period where a part of the 
system approaches a stable zone. Figure 3 displays the behaviour of 100 agents 
over 10000 time steps. A simple moving average is applied here again, with a 
window size of 100 time steps. One agent (with a utility value around -3) has 
unpredictable great changes, although they appear to be governed by a higher-
level order of some kind. Another agent has a sudden drop in utility around time 
step 9000, although it has been fairly stable before. 
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Fig. 1. Asymptotically stable behaviour - 
2 agents, 1000 time steps 
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Fig. 2. Quasiperiodic behaviour - 4 agents, 
10000 time steps 

Fig. 3. Chaotic behaviour - 100 agents 10000 
time steps 
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Fig. 4. Chaotic and non-chaotic variations 

 
We consider that the third type of behaviour is chaotic, since it satisfies the typical 

features of chaos [6]: 
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• Nonlinearity: Given the nonlinearity caused by the minimum threshold for 
resource exchange, the system can be viewed as a hybrid one, with transitions 
between different ways of operation. Also, the maximum of the social outcome 
can change, thus an agent can interact with different neighbours, which results 
in different profits and further changes to the social outcomes; 

• Determinism: Apart from the random initialization of the agent parameters 
(which nevertheless can be controlled by using the same seed for the random 
number generator), all the interaction rules are deterministic; 

• Sensitivity to initial conditions: As we will show in the experimental study 
presented in section 4, very small changes in the initial state of the system can 
lead to a radically different final state; 

• Sustained irregularity and mostly impossible long-term predictions: These are 
also characteristic of observed behaviours. 

 
Regarding the effect of small perturbations, which in general can be used to control 

a chaotic system, out of many runs under different configurations, we noticed that a 
perturbation can affect the overall system behaviour in more ways: 

 
• No effect within a predefined time horizon: depending on the agent positions, 

the system state and the place where the perturbation occurs, some changes can 
have no effect at all; 

• A temporary effect which is later cancelled out within the time horizon; 
• A permanent effect which reflects in the final state of the system, within the 

predefined time horizon. 
 
We can make a parallel between these kinds of effects and the choices we make in 

everyday life. Out of the many alternatives that we have, a different choice can have 
no effect or sometimes we may not know that something is different until a later time 
when the different choice becomes relevant. Other times, a different choice impacts 
our environment immediately. Even if something changes, the overall environment 
can eventually reduce the perturbation, or the system can toggle to a whole different 
state indefinitely. All these kinds of behaviours have been observed in the designed 
multiagent system. 

We can measure the degree of chaos introduced by a perturbation by considering 
the difference between the changed system and the original system as a time series, 
and computing the largest Lyapunov exponent (LLE) of the variation in an agent 
utility. Basically, LLE describes the predictability of a dynamical system. A positive 
value usually indicates that the system is chaotic [12]. There are methods, e.g. [14], 
which compute the LLE from the output of the system regarded as a time series. 

Figure 4 displays three situations. The variation with a positive LLE (4.83) can be 
considered to be chaotic. We can notice the sudden change in utility after the half of 
the simulation, although the perturbation has occurred in the first time step. A small 
negative LLE (-2.13) indicates an almost deterministic behaviour, which can 
correspond to a quasiperiodic variation. Finally, a high negative LLE (-12.98)  
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indicates a deterministic behaviour, when the time series converges to a value and 
remains stable there. Positive LLEs are not only found in some utility variations, but 
also in some of the original utility evolutions, depending on the system initial state. 

4 Experimental Studies 

A mathematical analysis of a nonlinear hybrid system is usually very difficult. 
Therefore, in the following, we will present an empirical experimental study, where 
we will emphasise different cases or settings which reveal certain types of behaviour.  

Since one of the characteristics of a chaotic system is that small changes in its 
initial state can greatly affect the final state through a cascade effect, we observe the 
influence of perturbations on the system behaviour. We also reflect on the question of 
when it is possible to correct some distortions with the smallest amount of external 
energy, such that, after a perturbation, the system should reach again a desired state 
within a corresponding time horizon, through small changes. 

In all the case studies presented in this section, the following parameters were 
used: the number of agents n = 10, the number of needs and resources m = 10, their 
domains Dn = Dr = [0, 10), the resource transfer quantum γ = 1, the resource exchange 
threshold θ = 5, the interaction memory imem = 20, the utility change rate η = 2, the 
side length of the agent square neighbourhood Λ is 4 and the computed average profit 
pavg = 7.5. 

4.1 Original Behaviour 

The configuration under study is composed of 3 subgraphs (figure 5): one agent, A1, 
is isolated and cannot interact with any other agent. Two agents, A2 and A3, form 
their own bilateral subsystem and seven agents can interact with one another in their 
corresponding neighbourhoods. A change in any of those agents can affect any other 
one in this subgraph, because, for example, A4 can influence A7, A7 can influence 
A9 and A9 can influence A10. The evolution of the agent utilities for 2000 time steps 
is displayed in figure 6. 
 
 

 

Fig. 5. The positions of the agents  
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Fig. 6. The original evolution of agent utilities 
with no perturbation 
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4.2 The Effect of Small Perturbations 

In this section, we observe the evolution of the utilities when a very small 
perturbation is added to or subtracted from a resource of an agent. Figure 7 shows the 
difference between the changed behaviour due to the presence of the perturbation and 
the original behaviour seen in figure 6, with a slightly larger perturbation of 0.1, and 
when the agents execute in lexicographic order. Figure 8 shows this difference for a 
perturbation of only 10-5 and when agents execute in a predefined random order. With 
10 agents and 10 resources, this corresponds to a 10-7 change in the initial system 
state. We can see that, in general, the smaller a perturbation is, the longer it takes for 
its effect to accumulate and impact the observed behaviour of the system.  

The actual number of an agent or resource is not very important, as we study the 
overall performance of the system. However, one can notice that the effects are 
non-local, and a change in one agent can affect other agents in its subgraph. Also, 
even if the perturbation has occurred in the first time step, big differences can appear 
later on, after 686 and 1873 time steps, respectively. 
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Fig. 7. The consequences of a perturbation of 
0.1 in resource 5 of agent A3 
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Fig. 8. The consequences of a perturbation 
of -10-5 in resource 6 of agent A6 

4.3 Perturbation Correction 

Given a perturbation in the initial time step with a non-null effect on the system, we 
are interested in finding a way to cancel or greatly reduce its impact, as observed on 
the time horizon and even beyond. Since this correction must be done from outside 
the system, and consists in changing the amount of a resource of an agent, it is also 
important that we find the minimum (or a small) amount of change needed to return 
the system to its final state as it would have been with no perturbation. 

We would also like to find flexible solutions. A trivial solution would be to reverse 
the perturbation in the first time step. However, it is more interesting to see if there 
can be changes in later steps of the simulation which can tackle the effect of the initial 
perturbation. 

Because the effects of change are non-local and can propagate throughout the 
subgraph of an agent’s neighbours, we have applied, so far, the following search 
methods: 
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• Exhaustive search with one correction point: trying all the resources of all the 
agents in each step of the simulation, adding or subtracting a small amount (e.g. 
0.1, 0.5), and observing the maximum utility variation in the final state of the 
system. If this maximum variation is below a desired threshold (e.g. 1), then a 
solution has been found; 

• Random corrections with one or multiple points: considering 1 or more (e.g. 3) 
sets of quadruples (agent, resource, simulation step, correction amount) which 
inject changes into the simulation, and seeing if the final state of the system 
matches the final state in the original setting. The random search is by far faster 
than exhaustive search, but it cannot tell if any solution exists at all. 

 
Besides considering only the state of the system at the time horizon (e.g. 2000 time 

steps), it is also important to verify if the system behaviour continues to be desirable. 
Figure 9 shows the effect of a 1 point correction for the situation presented in figure 7, 
which remains stable for a test period of 100 more time steps after the initial 2000 
ones. However, if the system is chaotic, it is impossible to guarantee that this 
difference will remain small forever. 
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Fig. 9. A perturbation correction with an amount of -0.5 in resource 2 of agent A4 in step 70, 
leading to a maximum difference of 0.48 utility units from the original final state within the test 
period of 100 time steps 

5 Conclusions 

In this paper we presented the design of a multiagent system that can display different 
types of behaviours, from asymptotically stable to chaotic. In this case, chaos arises 
only from the agent interactions, and it is not artificially introduced through a chaotic 
map.  

As future directions of research, we aim at further analysing the results of the 
interactions in order to see whether some probabilistic predictions can be made, 
taking into account the system state at a certain moment. It is important to determine 
when small perturbations have visible effects and when they can be controlled. Also, 
one must investigate whether classical chaos control techniques used for physical 
systems such as the OGY method, can be applied as well for this multiagent system. 

Another fundamental question is whether the chaos in the system is only transient 
and eventually stabilises into a steady state or its behaviour remains chaotic forever. 
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Out of many experiments, it seems that sometimes the system converges to a stable 
state. In other cases, chaos doesn’t seem to be only transient, e.g. with 50 agents 
executing in lexicographic order (which corresponds to fewer fluctuations), there are 
still sudden changes occurring in the utility variation even after 50000 time steps. One 
needs to distinguish between these cases as well.  

So far, the proposed system is mainly of theoretical importance, but one can 
investigate if it can be used for social or economic simulations, for the modelling of 
biological processes or other typical applications. 
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