
A System for Archivable Grammar Documentation

Michael Maxwell

University of Maryland, College Park MD 20742, USA
mmaxwell@umd.edu

Abstract. This paper describes a number of criteria for archivable documenta-
tion of grammars of natural languages, extending the work of Bird and Simons’
“Seven dimensions of portability for language documentation and description.”
We then describe a system for writing and testing morphological and phonologi-
cal grammars of languages, a system which satisfies most of these criteria (where
it does not, we discuss plans to extend the system).

The core of this system is based on an XML schema which allows grammars
to be written in a stable and linguistically-based formalism, a formalism which
is independent of any particular parsing engine. This core system also includes a
converter program, analogous to a programming language compiler, which trans-
lates grammars written in this format, plus a dictionary, into the programming
language of a suitable parsing engine (currently the Stuttgart Finite State Tools).
The paper describes some of the decisions which went into the design of the for-
malism; for example, the decision to aim for observational adequacy, rather than
descriptive adequacy. We draw out the implications of this decision in several
areas, particularly in the treatment of morphological reduplication.

We have used this system to produce formal grammars of Bangla, Urdu,
Pashto, and Persian (Farsi), and we have derived parsers from those formal gram-
mars. In the future we expect to implement similar grammars of other languages,
including Dhivehi, Swahili, and Somali. In further work (briefly described in this
paper), we have embedded formal grammars produced in this core system into
traditional descriptive grammars of several of these languages. These descriptive
grammars serve to document the formal grammars, and also provide automati-
cally extractable test cases for the parser.

1 Introduction

I will take it as given that one of the goals in language documentation is to create de-
scriptions which will be usable as long as possible—preferably for hundreds, if not
thousands, of years. This paper discusses design criteria for computer-supported mor-
phological analysis in support of that goal.

The earliest morphological parsers were written in ordinary programming languages
for specific languages. Hankamer’s keçi [10], for example, was written in the C pro-
gramming language, primarily to parse Turkish.1 One implication of this sort of de-
sign is software obsolesence; the knowledge about the grammar is encoded in a format

1 Hankamer suggests that the program might be useful to parse other agglutinating languages,
but as far as I can determine, it was never used in that way.

C. Mahlow and M. Piotrowski (Eds.): SFCM 2013, CCIS 380, pp. 72–91, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A System for Archivable Grammar Documentation 73

(the C programming language) which is destined to some day be obsolete. Moreover,
the language-specific linguistic aspects of the analysis are intermingled with language-
general aspects (what a suffix is, for example), not to mention information which has
nothing to do with linguistics, such as the way for-loops are encoded in the C program-
ming language.

The use of language-independent parsing engines for morphological parsing was the
first step beyond programs designed from the ground up for a particular language. Pro-
grams like AMPLE (developed by SIL in the 1980s: [26]) and the Xerox XFST finite
state transducer [1], along with many other such tools provide language-general knowl-
edge about many aspects of morphology and phonology. AMPLE, for example, allows
one to build a database of allomorphs conditioned by phonological environments. XFST
allows in addition the statement of various kinds of phonological alternations or pro-
cesses, which can generate allomorphs from underlying forms.

Such language-independent parsing engines represent an important step towards lin-
guistically motivated computational descriptions, in that they release the writer of a
language description from the necessity of building programming tools to treat morpho-
tactics, phonotactics, phonological environments, and phonological processes. This is a
necessary step, but not a sufficient one. A further step is needed to ensure the longevity
of those linguistic descriptions, so that they may be consulted by future generations of
linguists, and used for morphological parsing long after any particular parsing engine
is obsolete and unusable. This paper describes a framework with those characteristics:
it supplies a linguistically based notation, one which will be familiar to most linguists;
and the notation, being stated in XML, is stable and (as much as such a notation can be)
self-documenting.

2 Criteria for Grammatical Descriptions

In this section I motivate criteria for archivable grammatical descriptions, and use these
criteria to argue for a way of describing grammars which is computationally imple-
mentable and at the same time indepenent of any particular parser implementation. I
begin with a seminal document in the language description literature, Seven dimensions
of portability for language documentation and description.

2.1 Seven Pillars for Language Description

Bird and Simons [2] discuss the requirements for producing archivable descriptions of
languages.2 Among these requirements are the following:3

2 Bird and Simons make a distinction between “documentation,” that is primary language data
such as recordings and transcriptions, as opposed to “description,” that is a linguistic analysis
of the primary language data. Since these terms are easily confused, I will use “description”
in the same sense as Bird and Simons, to refer to the linguistic analysis, but “data” to refer to
what Bird and Simons call documentation.

3 I omit some of Bird and Simons’ criteria which seem less relevant to the discussion here,
namely discovery, access, citation, and rights.

74 M. Maxwell

1. Content: Among content-based requirements, Bird and Simons include:
Accountability: By “accountability,” they mean the ability to verify the descrip-

tion against actual language data.
Terminology: The terminology used in a language’s description should be defined,

e.g., by pointing to standardized ontologies.
2. Format: This refers to the structure of the file in which the description is housed.

Openness: Linguistic descriptions should use formats which conform to open
standards.

Encoding: Unicode is preferable.
Markup: Bird and Simons call for plain text markup formats. They further argue

that the markup should be descriptive, not presentational, with XML as the
standard for such markup.

Rendering: There needs to be a method to render linguistic documents in human-
readable form.

3. Preservation: This desideratum refers to the need for linguistic descriptions to be
archivable, as well as to be archived. Bird and Simons emphasize the need for
longevity, that is, planning for the use of the resource for periods of decades (or,
one may hope, centuries).

2.2 More on Pillars for Grammatical Descriptions

Bird and Simons are not explicit about the sorts of language descriptions for which
these criteria are relevant, but they discuss textual descriptions of languages, annotated
corpora, and lexical resources. It may not be at first glance clear how the above criteria
apply to grammatical resources, and specifically to morphological descriptions. I will
therefore elucidate in this section specific ways in which grammatical resources must
be created if they are to support the general goals of content, format, and preservation
which Bird and Simons outline. I will also discuss some additional criteria which are
more specific to grammatical descriptions.

To begin, in order for a grammatical description to meet their criterion of accounta-
bility—the ability to validate a description against primary language data—it must be
possible to test such a description on actual language data. While it may seem that this
can be done by pure thinking (aided, perhaps, by pencil and paper), the last decades
of computational linguistics have shown nothing if they have not demonstrated that
grammatical descriptions are hard to debug. While this has long been clear in syntax, it
has also become clear in morphology and phonology (e.g., [3,16,27,28]). These last two
references describe problems arising in the interpretation of Newman’s [22] description
of Yokuts (= Yawelmani, or Yowlumne). As Weigel [27,28]) and Blevins [3] make clear,
the misinterpretations have resulted in something of a disaster for theoretical phonology,
in that fundamental claims in generative phonology turn out to have been supported by
misunderstandings of Newman’s work.

It is not the case that Newman’s description was unintelligible or inherently faulty;
no less a linguist than Zellig [12, p. 196] described it in glowing terms:

Newman’s long-awaited Yokuts grammar is [. . .] a model contribution to de-
scriptive linguistic method and data. It is written clearly and to the point, in

A System for Archivable Grammar Documentation 75

a matter that is aesthetically elegant as well as scientifically satisfactory. It
is sufficiently detailed [. . .] to enable the reader to become familiar with the
language and to construct correctly his own statements about the language.
Phonology and morphology are treated fully [. . .] students and workers in lin-
guistics should read [this] with close attention to the method of handling de-
scriptive and comparative data.

Nevertheless, Weigel [28] writes:

Newman’s explanations and descriptive rules of Yokuts morphology are often
not completely clear. Indeed, no less a linguist than Charles Hockett had to
admit (in Hockett 1973) that he had misapplied some of Newman’ s rules in an
earlier published piece (Hockett 1967).

One might ask why linguists mis-construe the output of grammars. Certainly com-
plexity is one aspect; for any non-trivial grammar, it is difficult to think through all
the implications of all the rules on all the lexical items and affixes. But there is an-
other reason. One may view a grammar as the description of a piece of software. In
this case, the “software” is originally implemented as “wetware,” that is in people’s
brains; the task is to describe that program (or at least generate its outputs) clearly and
unambiguously.4 The problem of grammatical description is thus an issue of software
documentation. And as is well known, verbal descriptions of software are inherently and
nearly unavoidably ambiguous. Thus, in addition to the complexity of natural language
grammars themselves, we have the ambiguity of their descriptions.

If then a model grammar such as Newman’s can be so misinterpreted, what hope is
there for the average grammar? The hope, I contend, is that we should use computers to
help us validate and understand grammars. But it is obvious that computers cannot inter-
pret descriptive grammars, written in English or any other natural language—computers
are actually worse at this task than humans are. We therefore require computationally
implementable and testable grammars. By implementing such a grammar, we can ar-
rive at a description which can unambiguously answer the questions we put to it, such
as “What is the complete paradigm of verb X?”, a question which (as Weigel notes) is
difficult to answer from Newman’s description.

We thus arrive at the first of several criteria for adequate morphological descriptions:

Criterion 1. A morphological (or more generally, grammatical) description must be
computationally implementable.

This criterion in support of Bird and Simon’s pillar of accountability immediately
raises questions. In particular, what description language should we use? Obvious can-
didates are the programming languages used by modern morphological parsing engines.
But the problem with this answer should be clear from the plural suffix on “candidates”:

4 It is possibile that mental grammars are inherently “fuzzy,” that is that there is no black-and-
white grammar to be described. The same is true, only more so, of languages as they are spoken
by communities, where questions of individual and dialectal variability arise. But I assume for
this paper that there is some definite body of knowledge to be described, even if statements of
variability must form a part of the description.

76 M. Maxwell

which one of the many parsing engines should we use as the standard? SIL’s AMPLE
has the longest history, however it is incapable of describing real phonological rules.
The Xerox finite state transducer, XFST, was developed in the late 1990s as proprietary
software, and can describe phonological rules.5 Another finite state transducer is the
Stuttgart SFST program [24].6

The problem is that while these programs are useful, and certainly capable of creating
testable grammars, none represents a real standard.

Moreover, none of these programs’ notations looks to a linguist quite like a linguis-
tic notation. Linguists are used to thinking in terms of phonological representations,
parts of speech, morphosyntactic feature systems, declension or conjugation classes,
allomorphs and phonological rules, and perhaps exception features. While all of these
constructs can be represented in most modern morphological parsing engines, the ap-
propriate representation is not always clear. For example, how should allomorphs and
their conditioning environments be represented? The answer is clear in AMPLE (in-
deed, this is the only way in AMPLE to represent allomorphy), but it is not at all clear
for the finite state transducers.

This brings us to my second criterion for morphological description:

Criterion 2. There must be obvious formalisms which make it easy to handle the phe-
nomena required for linguistic analysis.

Again, the question arises as to what kind of formalism should be provided. It is
a slight exaggeration to say that for nearly any mechanism which has been used in
languages descriptions, there are proposals from theoretical linguists to do away with
that mechanism. Phonological rules, for example, have been disposed of in Optimality
Theory approaches to phonology. So what is the appropriate linguistic theory that a
morphological parsing framework should implement?

It is safe to say that there is no consensus among linguists as to the One True The-
ory of morphology or phonology. This is in part an indication of our ignorance; we
don’t know enough yet to choose among the possibilities, and indeed the correct the-
ory may not have appeared yet. But it is also the case that the term “correct” is part
of the problem. In fact, linguists have explored several possible meanings of this term,
using the terms Observational Adequacy, Descriptive Adequacy, and Explanatory Ad-
equacy [5]. A description of a language can be considered observationally adequate if
it generates all and only the sentences of the language—or, if one’s interests are con-
fined to morphology and phonology, then it is capable of generating all and only the
possible inflected word forms of the language.7 A theory of linguistics would meet this
standard if it allowed observationally adequate descriptions of the grammars (or of the
morphology and phonology) of all languages.

5 A free implementation with most of the functionality of XFST exists as the Foma program,
see https://code.google.com/p/foma/.

6 http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html
7 As compilers and users of corpora know, it is not clear that the set of all possible word forms

of some language is a well-defined notion. Proper names, loan words in the process of being
assimilated, and other boundary cases make this a dubious concept. For our purposes, however,
I will assume that it is at least an approximation. Alternatively, one may conceive of a grammar
which generates all and only the inflected forms of some static dictionary of words.

https://code.google.com/p/foma/
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html

A System for Archivable Grammar Documentation 77

Given that for most languages, the number of inflected word forms is finite and (rela-
tively) small, it would in principle be possible to create observationally adequate gram-
mars by simply listing all the word forms. That is almost certainly not what humans
do, at least not for languages which have any degree of inflectional or derivational mor-
phology. The next step in Chomsky’s hierarchy of adequacy is descriptive adequacy.
The description of a language meets this standard if its analysis accounts for the intu-
itions that an adult native speaker has about the language; for example, that a writer
is someone who writes, whereas a grammar does not mean someone who *gramms.
Determining those intuitions can be difficult; for example, it is not easy to know which
inflected forms are memorized and which are derived by rule (or in some other way).
Analogously, a descriptively adequate theory would allow descriptively adequate gram-
mars to be written of all natural languages.

Finally, an explanatorily adequate theory would allow the selection from among can-
didate grammars of the correct descriptively adequate grammar.

As practiced by generative linguists, the science of linguistics is the search for an
explanatorily adequate theory, based on descriptively adequate grammars. Until such a
theory exists, and indeed until linguists have determined what a possible descriptively
adequate grammar is, it would be inadvisable—not to mention impossible—to create a
computational model for morphology and phonology which allowed for only descrip-
tively adequate grammars. We simply don’t know the range of possible variation, so
trying to limit the range of what can be modeled could prevent the description of phe-
nomena in some language. In other words, it is better to err on the side of excess de-
scriptive power (potentially allowing the modeling of grammars which do not represent
possible human languages) than on the side of insufficient power (thereby preventing
the modeling of some languages).

An additional motivation for not attempting to attain the level of descriptive ade-
quacy is that any such attempt would face a choice among several targets, all of which
are moving. Not only are there multiple theories from which we could choose, but to-
day’s theories of morphology and phonology are not the same as those of ten or twenty
years ago—and there is little reason to think that any theory in existence today will sur-
vive unaltered over the next ten or twenty years. Choosing one putatively descriptively
adequate theory would therefore be very unlikely to result in a model which would
stand the test of time.

In view of these facts, we have elected to create a model which gives observational
adequacy only. The implications of limiting the scope in this way will become more
apparent later, when I discuss the modeling of morphological reduplication; for now, I
will state this point as the following criterion:

Criterion 3. The model should allow for observational adequacy, not (necessarily) for
the level of descriptive adequacy, even if this enables the description of grammars which
may not correspond to any human language.

Even if we did know what constituted a descriptively adequate grammar, our knowl-
edge of the structure of a particular language at some point in time, while sufficient
to describe that language’s morphology to some satisfying level of detail, might be
insufficient to create a descriptively or even observationally adequate grammar of the
language. This is commonplace among field linguists, who wish to describe a language

78 M. Maxwell

based on limited field data; but it may also be true of comparatively well-known lan-
guages, where crucial data may be missing due to defects in previous descriptions, data
which is unavailable, insufficient corpora, etc. An example of this is the notion of de-
fective paradigms. It is known that for some languages, one form or another in the
paradigm of particular verbs may not exist for various reasons [8, 23]. But it is nearly
impossible to distinguish this situation in a corpus (particularly in a corpus of the size
most field linguists will have) from the situation where a form is accidentally missing
from the corpus.

While missing (or incorrectly assuming) paradigm gaps may be a relatively minor
problem, there are many other situations where it will not be clear which analysis
captures the facts of a native speaker’s grammar better, particularly in less documented
languages. Moreover, there may be disagreement among linguists as to the correct de-
scription; for instance, whether semi-regular forms are to be captured by special allo-
morphs of the stem or affix, or by rules governed by exception features (see section 3.2),
or even whether such forms are memorized as entire words: Halle and Mohanan [9] ar-
gue for a rule-based analysis of English past tense verbs like wept, kept, and slept,
while most linguists would be happy to treat those as being listed in the mental lexicon
as irregular forms.

The point here, however, is not that linguists may disagree, or that they may have
insufficient evidence to decide particular cases; rather, a morphological parsing system
intended for use by real linguists should not force them into an analysis that they are
not comfortable with, or which the evidence does not support. If it does, it will not be
used. This point may be summarized by the following criterion:

Criterion 4. If there is disagreement among linguists about the correct analysis of a
particular language, the model should, where possible, allow for alternative analyses.

The need for allowing the modeling of alternative analyses also may arise in the
course of grammar development. It is especially unclear at the beginning of analysis
of a previously undocumented or under-documented language what the phonological
rules are by which allomorphs are derived. Usually only after observing a number of
allomorphs conditioned by similar phonological environments does the linguist realize
that a generalization can be made, allowing the allomorphs of distinct morphemes to be
derived by a single set of rules.

This brings us to another point about modeling grammars, having to do more with the
development of grammars than with the model itself: the need for testing, visualization
and debugging methods. As with software development, grammar development is a
process. Generalizations which seemed clear initially may turn out to be incorrect, while
some correct generalizations may not become clear until much later. Finding out where
a derivation is going wrong requires the ability to test a sequence of rules individually.8

I summarize this point as follows:

8 I assume here a model in which phonological rules are applied in a linear sequence, or possibly
cyclically. But the same point—the need to visualize the application of grammar components,
and to tease out the interaction among such components—applies to other models as well, e.g.,
to Optimality Theory models.

A System for Archivable Grammar Documentation 79

Criterion 5. A grammar development environment must allow linguists to easily see
the effects of individual grammar rules or other components of the grammar.

This same point is also true for the reader of the grammar: it should be possible to
visualize the derivation of individual forms. Moreover, it will be helpful to the reader
(and also to the writer) if the components of the grammar can be displayed in some
familiar form. While XML is a suitable format for archiving and transmission of gram-
mars and other structured data (addressing Bird and Simons’ concern for preservation,
in particular that the need for longevity of the data), it does not lend itself to easy editing
or even comprehension. Anyone who has looked at an XML-tagged textual document,
and at the same document as a formatted PDF, will surely agree. This suggests two cri-
teria; the first refers to static views of the grammar, the second to the ability to edit the
grammar:

Criterion 6. A grammar must be visualizable in a format which is familiar to linguists.

Criterion 7. A grammar development environment must allow easy editing of compo-
nents of the grammar, in some format which is likely to be familiar to a linguist.

There are several final criteria which are of a more practical nature. The first of these
is connected with the fact that linguist must sometimes deal with written forms which
do not represent all the phonemic contrasts of the language, or—worse—may even omit
certain phonemes entirely. Languages written in Arabic scripts, for example, frequently
omit short vowels. In many Brahmi-based scripts, consonants are assumed to be fol-
lowed by a default vowel, unless there is an overt vowel letter following, or there is a
mark indicating that no vowel follows. In practice, however, the mark representing no
vowel is frequently omitted, which makes for ambiguity in the text representation. In
sum, orthographies are seldom ideal, but they are what corpora are written in, and a
linguist looking to create a practical morphological parser must deal with them. At the
same time, the linguist may wish to have a more principled analysis, one which corre-
sponds more closely to the phonological facts of the spoken language. While one could
simply write two formal grammars, one for the orthographic form and one for the lin-
guist’s phonemic form, the two are likely to be quite similar. Certainly morphosyntactic
features of affixes will be identical, as will many other features. A practical grammar
development system should therefore allow parts of the description to be tagged for par-
ticular writing scripts; parts of the description which are not so tagged will be assumed
to apply to all scripts. I capture this requirement as follows:

Criterion 8. A grammar formalism must allow a single grammar description to be
used with multiple scripts, with those parts of the description which apply only to a
particular script being tagged for that script.

Similarly, languages may have dialects which share most features, but differ in small
ways. Again, it would be undesirable to have to write separate grammars for each di-
alect; rather, it should be possible to tag the differences:

Criterion 9. A grammar formalism must allow a single grammar description to be
used with multiple dialects, with those parts of the description which apply only to a
particular dialect being tagged for that dialect.

80 M. Maxwell

Finally, it is important in language documentation that the grammar description not
suffer obsolescence. While the use of open-source software as a parsing engine partially
alleviates this problem, since one can presumably re-compile the source code in the
future, it is not a complete answer. First, there is no guarantee that the source code
of such a parsing engine will re-compile; programming languages change, and so do
libraries that the parsing engine may require.9 In principle, such problems could be
overcome by running old versions of all the software; in practice, this solution is too
complex for use.

A second issue with the use of open-source software for preventing obsolesence is
that even this may not suffice for the long term. What will the computing landscape be
in a hundred years, or five hundred? Imagine if we had to reconstruct programs which
were written for Babbage’s mechanical computers. It is safer to assume much less about
what facilities will be available; and text (Unicode) data in plain text markup formats
is far safer than untagged data in the programming langauge of a present-day parsing
engine (cf. Bird and Simons’ point about “Markup,” specifically their calls for the use of
plain text markup, as well as their point about “Openness,” their term for the avoidance
of proprietary formats). I represent this criterion as follows:

Criterion 10. A plain text with markup representation of the grammar is to be preferred
to a representation in the programming language of some particular software.

While one could no doubt add criteria for grammatical modeling and the develop-
ment of grammatical analyses, the above list will suffice for now. I will now describe a
methodology which we have developed and are using, and how it satisfies these criteria.

3 Satisfying the Criteria for Grammatical Descriptions

At the University of Maryland, we have developed a technology which allows the state-
ment of language-specific aspects of morphological and phonological descriptions in
a transparent, parser-independent and linguistically motivated formalism. This tech-
nology has allowed us to satisfy many of the criteria outlined in the previous section.
Planned extensions will further increase the ability to satisfy these criteria, but the ex-
isting system is robust enough to have been used for constructing descriptions from
which (along with XML-based dictionaries) parsers for five languages have been built
and tested automatically.

In broad overview, descriptions are written in an XML-based formal grammar for-
mat and validated against an XML schema. These descriptions are then read into a
converter program, along with lexicons. The converter functions in a way analogous to
a modern programming language compiler: it converts the XML-based description into
a corresponding internal representation, which is in turn output in the form required by

9 The author experienced this with a parser he wrote in the 1990s. The parser and its user inter-
face was written in three programming languages: C, Prolog, and Smalltalk. Within one year,
all three languages changed in ways which broke the parser. While changing the parts written
in C would not have been difficult (it involved a change from 16 bit integers to 32 bit integers),
the changes in Prolog (having to do with calling the C code from Prolog) were extensive, and
the Smalltalk vendor went out of business, leaving only another vendor’s incompatible version.

A System for Archivable Grammar Documentation 81

an external parsing engine (currently the Stuttgart Finite State Tools, SFST). Running
the parsing engine’s “compiler” over this output results in a form usable by the parsing
engine for morphological analysis.

For three of the five languages that we have worked on, we have additionally em-
ployed Literate Programming [17]: we embed the formal grammar as XML fragments
into an XML-based (DocBook, [25]) descriptive grammar. Each fragment appears in
the text of the overall document next to the description of the grammar construction
that the fragment instantiates, allowing the descriptive grammar to explain the formal
grammar, while at the same time allowing the formal grammar to disambiguate the de-
scriptive grammar where necessary. The fragments appear in an order which is useful
for expository purposes; e.g., fragments having to do with nominal affixes appear in the
nouns chapter, while fragments containing verbal suffixes appear in the verbs chapter.
The fragments can be extracted by an XSLT transformation and placed in the correct
order for computational processing in a file to be read by the converter program men-
tioned above.

In addition, the interlinear and in-line examples found in our descriptive grammars
are extracted and used for parser testing. (Additional testing is done by running the
parser over corpora.)

The use of Literate Programming and the extraction of examples from the descriptive
grammar is discussed elsewhere [6, 19, 21]. The remainder of this document discusses
the formal grammar and converter implementation, plus planned enhancements.

3.1 Formal Grammar Implementation

As mentioned above, the formal grammar of a language is a linguistically-based de-
scription of the morphology and phonology of that language, written in XML and val-
idated against an XML schema. After briefly describing this schema, I show how this
approach accomplishes most of the design goals outlined in the earlier sections of this
paper.

The XML schema, to be documented in [20], organizes information about the gram-
mar into five general categories:

1. Morphosyntactic Feature System
2. Grammatical Data
3. Morphological Data
4. Phonological Data
5. Lexical Data

The Morphosyntactic Feature System specification is slightly simplified from the
model given in [4, 13, 15], and defines the possible morphosyntactic features including
both simple features (e.g., binary features) and feature structures (features whose values
consist of other features).

The Grammatical Data module supplies information about parts of speech (typically
just those that accept affixes). This information includes which of the morphosyntactic
features defined in the Feature System are possible for each part of speech. It also points

82 M. Maxwell

to the affixes that each part of speech takes (these are defined in the Morphological Data
module), and specifies their morphotactics.

The Morphological Data module defines the derivational and inflectional affixes of
the language. They are defined here, rather than in the Grammatical Data module, so
that they can be shared across parts of speech. For example, in Tzeltal (an ergative lan-
guage of Mexico), transitive and intransitive verbs share absolutive agreement suffixes.
If these two verb classes are defined as different parts of speech in the grammatical
module, the shared absolutive suffixes can be defined once in the Morphological Data
module, and used for both parts of speech.10

As will be discussed in greater detail below, the model allows for “ordinary” pre-
fixes, suffixes and infixes; these may be defined either as underlying forms, with any
allomorphs derived by phonological rules, or as allomorphs which appear in particular
phonological environments. In addition, there is allowance for affixes defined as pro-
cesses, that is, as morphological rules which may attach constant phonological material
(as with ordinary affixes), but may also copy or delete parts of the base, and which can
therefore model processes such as reduplication.11 Allowing affixes to be represented
as either a set of allomorphs, or as underlying representations with allomorphs derived
by phonological rule, and allowing affixes to also be represented as processes, are two
examples of the way the model allows for multiple analyses of a language’s grammar
(criterion 4).

In addition, the Morphological Data module allows for the definition of inflectional
classes (declension and conjugation classes); since they are defined here, they can be
shared by multiple parts of speech, as in Pashto, where nouns and adjectives have more
or less similar declension classes. Finally, any “stem names” are defined in the Mor-
phological Data module. These allow the implementation of irregular stems for certain
lexemes, such as the diphthongized forms of Spanish verbs.12

The Phonological Data module defines the phonemes and/or graphemes of the lan-
guage, boundary markers (used to delimit morpheme boundaries), and phonological
rules. The latter come in three varieties: rules which change input phonemes (or graph-
emes) to other phonemes (graphemes); rules which epenthesize phonemes (or graph-
emes); and rules which delete phonemes (graphemes).

Notice that the model does not define phonological features. While the model could
be extended to allow this (as well as the definition of phonological rules using such
features), this omission is intentional. First, the nature of phonological features is still
in doubt; it is not clear whether they are hierarchically structured, for example. Second,
the use of phonological features in parsing would preclude the use of most present-day

10 The ergative agreement prefixes on Tzeltal transitive verbs are homophonous with the posses-
sive prefixes on nouns. Depending on how their morphosyntactic features are defined, it would
also be possible to define these prefixes once in the Morphological Data module, and use them
for both nouns and transitive verbs.

11 This is discussed further below; however, this has not yet been implemented in the converter
program.

12 An alternative analysis would derive some or all irregular stems by phonological rules, proba-
bly conditioned on lexeme-specific rule exception features; this can also be modeled.

A System for Archivable Grammar Documentation 83

parsing engines. 13 In generative phonology, the principle use of phonological features
is to define natural classes of phonemes, which are then used in the inputs and environ-
ments of phonological rules. Such a definition may be termed intensional. The approach
taken in our model may be described as extensional: natural classes are instead defined
by listing their member phonemes (or perhaps graphemes).

It is sometimes convenient to define natural classes, contexts (regular expressions
over phonemes, graphemes and natural classes), and environments (the combined left
and right context of some phonological process) once, and re-use these definitions for
multiple rules or allomorph environments. These elements can therefore be defined in
the Phonological Data module, and referred to where used (by their XML ID); but they
may also be simply written out in rules or allomorph environments, which is convenient
when such an element is needed only once.

As discussed above, the linguist must sometimes deal with scripts which differ in
their ability to represent the phonology (criterion 8). The phonology module is fre-
quently the locus of such differences; such differences are handled by tagging affected
elements for the script for which they are relevant. Script-specific elements are there-
fore tagged with a ‘script’ attribute; they can then be included, or not, by removing or
retaining them during a pre-processing stage, prior to their being read by the converter
program. Dialect-specific elements are handled in the same way (cf. criterion 9).

The Lexical Data specification is derived from the ISO Lexical Markup Framework
standard [14], supplying just the information about suppletive word forms and stem
allomorphs required for morphological parsing. Words which require no special treat-
ment (i.e., “regular” words) could be loaded in this module, but they are usually handled
more quickly by pre-processing a dictionary into whatever form is required by the pars-
ing engine, and them loading them into the parser directly, during the parser compilation
phase.

Affixes as Processes. As discussed earlier, the goal of this framework is to attain the
level of observational adequacy (cf. criterion 3). This is perhaps nowhere more appar-
ent than in the treatment of affixes as processes, particularly reduplication. Reduplica-
tive morphology in real languages ranges from complete reduplication, where an entire
word is pronounced twice (used for a sort of pluralization in Bahasa Indonesian), to
forms in which a single phoneme of the base is copied, perhaps augmented by some
constant phoneme or sequence of phonemes (as was found in the perfect of some An-
cient Greek verbs). Complications abound; for example, it is not unheard of for both the
reduplicant and its correspondent in the base (the input to the reduplication process) to
undergo some phonological process for which only one or the other is in the appropriate
phonological environment.

Among theoretical linguists, it has become a cottage industry to develop theories
which limit the possible forms of reduplication to all and only forms which are attested
in languages of the world. In contrast, the model described here makes no attempt at
limiting the power of reduplication; the formalism is sufficiently powerful allows almost
anything to happen, even for the phonemes of a (fixed length) word to be reversed,

13 One exception is the Hermit Crab parser, described in http://www-01.sil.org/
computing/hermitcrab/ . This parser was originally developed by the author in the 1990s,
but it has been re-implemented more recently in SIL’s FLEx tool.

http://www-01.sil.org/computing/hermitcrab/
http://www-01.sil.org/computing/hermitcrab/

84 M. Maxwell

something which has never been observed in real languages. That is, the formalism is
observationally adequate, but probably not descriptively adequate.

The formalism is based on [18]. It involves matching an input word (the base) with a
regular expression over phonemes, graphemes and natural classes. The output is formed
by concatenating copies (possibly altered) of the parts of the base which matched the
regular expression in some pre-defined order, possibly combined with other strings or
phonemes.

An example may help; for ease of exposition, I will use a notational formalism, rather
than the XML formalism.

Suppose we have a rule of reduplication which copies the first consonant (if any) of
the base, adds the vowel ‘e’, and appends this to the base. Conceptually, we may cap-
ture this with the input regular expression ‘(C) X’, where ‘C’ is assumed to have been
defined as the natural class of consonants, ‘X’ is a variable matching any sequence, and
the parentheses around the ‘C’ represent optionality. The content parts are implicitly
numbered; the ‘C’ as part 1, the ‘X’ as part 2. The output may then be specified as ‘1 e
1 2’. Note that if the base is vowel-initial, the optionality of the ‘(C)’ in the regular ex-
pression means that part 1 would be a null match, giving what is presumably the desired
result.14 Had the input regular expression been ‘C X’ (with the consonant obligatory),
the rule would not match a vowel-initial base, meaning that this affix process would not
apply to such a base.

In addition to copying part of the base to the output or adding specific strings (repre-
sented as phonemes, graphemes, and boundary markers), process affixes allow modifi-
cation of input parts which are copied over. Suppose for example the grammar defines
phonemes /p/, /ph/, /t/, /th/, /k/ and /kh/, and suppose further that the output of the above
process had been defined conceptually as

[1 (/ph/→/p/,/th/→/t/,/kh/→/k/)] e 1 2

where the square brackets are used here for grouping the phonological process of dea-
spiration with the output part to which the process applies. Applied to a base beginning
with an aspirated consonant such as /phu/, this would give the reduplicated form /pe-
phu/; applied to a base which began with an unaspirated consonant such as /grap/, the
result would be /gegrap/.15

The use of this process affix formalism is not limited to rules of reduplication; it can
also be used to describe the situation where an affix simply modifies its input, without
copying or adding additional phonemes. For example, the following rule describes an

14 The parsing of the base into the parts which correspond with the regular expression must
prioritize contentful parts of the regular expression (like the part in the example which matches
a consonant) over less contentful parts (like the variable matching any string), lest the output
be ambiguous. One can imagine regular expressions which would remain ambiguous even
under such prioritization, such as ‘(C)(C)X’ matched against a base beginning with a single
consonant followed by a vowel; presumably what would be intended in such a case would
be ‘((C)C)X’ or ‘(C(C))X’. Some error checking will therefore be required, to avoid such
ambiguous regular expressions.

15 This is known to linguists as Grassmann’s Law, and the examples given are from Ancient
Greek (ignoring vowel length for purposes of exposition).

A System for Archivable Grammar Documentation 85

affix formed by palatalizing the stem-final consonant, under the assumption that the
phoneme inventory has been defined as including /p/, /py/, /t/, /ty/, /k/ and /ky/:16

X C
1 2 →
1 [2 (/p/→/py/,/t/→/ty/,/k/→/ky/)]

We are now in a position to understand why this system achieves only the level of
observational adequacy, not (probably) descriptive adequacy. Consider the following
description of a putative process affix process (‘C’ and ‘V’ are assumed to have been
defined as the natural classes of consonants and vowels respectively):

C V C C V C
1 2 3 4 5 6 →
6 5 4 3 2 1

This rule takes a six phoneme input and reverses it. It is highly unlikely that such a
process exists in any human language, but it can be easily described in the notation used
here (or in its XML equivalent). Most generative linguists would prefer a theory which
disallowed (or at least made highly unlikely) statements of such nonexistent processes.
The problem is that we don’t have such a theory, but we still wish to be capable of
writing grammars—which is wy we have settled for the level of observational adequacy;
that is, we are content to describe all languages, but make no attempt to limit possible
descriptions to only natural languages.17

3.2 Converter Implementation

This section describes how the converter takes as input a formal grammar stated in
XML, and outputs the grammar in the form required by a parsing engine.

There are several reasons for using a formalism which requires a converter in order to
be usable by a parsing engine, rather than a formalism which is directly interpretable by
the parsing engine. First, criterion 2 in section 2.2 dictates that the formalism needed to
handle linguistic structures should be (relatively) obvious. By constructing our linguis-
tically based formalism in XML, we hope that the formal grammar mechanism will be
more easily learned by most working linguists, and grammars written in that formalism
will be more easily understood by linguists.

Another reason for using a formalism such as the one described here, rather than the
programming language of some parsing engine, is to prevent the formal grammar from
becoming obsolete when the parsing engine becomes obsolete, as it (like any software)
inevitably will. This is another of the criteria given above (10), as well as helping answer
Bird and Simons’ points about “Markup” and “Openness.”

16 This rule is based on Oaxacan Mixe, as described by Dieterman [7, p. 39].
17 It is at least possible that the explanation for the non-existence of processes reversing their

input is due to factors other than the human language capability, e.g., the fact that such systems
have no plausible diachronic source. The fact that certain reversals do occur in language games,
e.g., the reversal of two consonants across a vowel, might be taken as such evidence. Thus, the
search for a formalism which prevents such unattested processes might be misguided.

86 M. Maxwell

As discussed above, we are currently using the Stuttgart Finite State tools (SFST)
as our parsing engine. Given that a formal grammar written in XML cannot be di-
rectly interpreted by SFST, there is a need for converting the XML representation into
the representation required by SFST. In principle, this could be done using Extensi-
ble Stylesheet Language Transformations (XSLT). In practice, it has been easier to do
the transformation in Python. The converter is written as an object-oriented program,
where the classes correspond one-for-one to the elements defined in the XML schema.
The conversion takes place in two phases. In the first phase (corresponding roughly to
the “front end” of a modern programming language compiler), the XML representation
is converted into the internal representation as Python objects. References from some
objects to definitions made elsewhere (e.g., from natural classes to the phonemes they
are composed of) are converted into pointers to the corresponding definitions (analo-
gous to “object binding” in modern compilers). Most errors and warnings are issued at
this stage.

In the second phase, corresponding to the “back end” in a modern compiler, the
converter writes the parsing engine’s code to output. Some optimization is done at this
point, in the sense that the output code is optimized for “compilation” by the parsing
engine.18

Since the first phase maps between two fairly congruent representations, it makes
use of a mostly declarative format for the individual classes; most of the non-declarative
code for converting from XML to the internal format is contained in an abstract super-
class.

The second phase, however, can be more complex, since it maps between two repre-
sentations which at times diverge strongly. Where these representations are similar, the
conversion is fairly straightforward. Consider for example the following code:

def SFSTOutput(self, sFormat, ExtraArg=None):
"""
Output this context in the form expected by SFST, i.e.,
(X | Y | Z)
"""
if sFormat == 'AsRegex':

self.SFSTOutputList("PhonologicalContexts",
"(",
"|",
")",
sFormat)

else:
AbstractClasses.LangClass.SFSTOutput(sFormat, ExtraArg)

This SFSTOutput() function is defined for the class AlternativeContexts,
which encodes a set of alternative phonological contexts forming part of the

18 There is no attempt to ensure that the final transducer as compiled by the parsing engine will
be optimal, e.g., by tweaking the alignment of lexical and surface sides of lexical items. This
might have significant effects if the citation form of lexemes includes a prefix, which is re-
moved to form the stem.

A System for Archivable Grammar Documentation 87

environment of a phonological rule (or a phonologically determined allomorph); for
example, the context of a long vowel or a vowel plus consonant. The function is called
with an argument list specifying a format (and an optional extra argument). The only
format this particular function knows about is called ‘AsRegex’; any other format
is referred by the ‘else’ clause to the superclass of AlternativeContexts, here
AbstractClasses.LangClass. For this ‘AsRegex’ format, the function needs to
output the alternatives in the format which SFST expects for a regular expression,
namely a parenthesized list with list members separated by the character ‘|’. Since
outputting of lists with various delimiters is a common task in the converter, the de-
tails of outputting the list (such as the need to output the separator character after ev-
ery member of the list except the last) is here delegated to a more generic function,
SFSTOutputList(), which takes as additional arguments the character which starts
the list (here an open parenthesis), the separator character (‘|’), and the character which
marks the end of the list (a close parenthesis).

The XML elements which constitute the alternatives (represented by X, Y and Z in
the quoted comment) will be recursively output by SFSTOutput() functions defined
on whatever classes these individual contexts belong to. This is the general pattern for
how the SFSTOutput() function is written on all classes: there may be several cases,
depending on the purpose for which the element is being output (although here there is
only one case, the ‘AsRegex’ case). Within each such case, the class specifies some
of the output (here, the open and close parentheses, and the pipe symbol ‘|’), while the
output of elements which may be contained by an element of the specified class are
delegated to those classes (here, the classes of the embedded contexts).

A more complex conversion is needed for other constructs. The code for converting
Affix Allomorphs, for example, has four cases. One of these cases constrains the al-
lomorph to appear in its required environment. This requires outputting the allomorph
itself, as well as calling the environment class to output the phonological environment,
in essence creating a rule which blocks the allomorph if this environment is not satis-
fied. The mechanism for accomplishing this is that all allomorphs are initially inserted
in the transducer bracketed by marks which would block a derivation containing them
from appearing at the end of the derivation. The marks are erased for allomorphs whose
environment is satisfied; finally, any words still containing marks are removed from the
network. This is precisely the sort of non-obvious solution that is one of our motiva-
tions for the use of a linguistically informed formalism, which must be automatically
converted into the parsing engine’s formalism.

Another example of a non-obvious solution concerns rule exception features. These
are lexical features (that is, features assigned to particular roots or stems in the lexi-
con) which either trigger the application of particular rules (positive exception features)
or prevent the application of certain rules (negative exception features). Consider for
example diphthongization in Spanish verb paradigms. For a certain set of verbs (those
which had a long stem vowel in Latin), the vowel /e/ diphthongizes to /ye/ (spelled ‘ie’)
when stressed, while the vowel /o/ diphthongizes to /we/ (spelled ‘ue’) when stressed.19

There is no phonological indication of which verbs undergo this rule and which do not;

19 There are exceptions to this generalization, chiefly where an ‘n’ becomes an ‘ng’, for example:
tiene “he/she has”, tengo “I have”, both with stress on the first syllable.

88 M. Maxwell

hence this information must be stored in the lexicon, either in the form of listed allo-
morphs, or—for a rule-governed analysis—in the form of positive exception features.
Thus, contar∼ cuento “to count/ I count” (a diphthongizing verb) vs. montar∼ monto
“to mount/ I mount” (a non-diphthongizing verb).

Linguists often conceive of such exception features as being part of the phonological
material, and therefore visible to the phonological rules which may require them. The
obvious solution would then be to assign such features to the “surface” side of the trans-
ducer representing the word of the language, and to apply phonological rules on this side
so that rules which need to refer to exception features can “see” them. However, excep-
tion features must be invisible to phonological rules which do not require them, since
the features might otherwise appear to be phonemes, and such rules would therefore not
match the lexical entries containing these phoneme-like exception features.

The problem is that phonologists really conceive of words not as strings composed
of sequences of phonemes and exception features, but rather as sequences of phonologi-
cal features representing such properties as voicing, nasalization, and place and manner
of articulation, with each such feature on a different plane;20 exception features are on
yet other planes. The voice features of two adjacent phonemes are therefore adjacent
on the voice plane, regardless of any exception features, so that the problem that adja-
cency between phonological features would be blocked by exception features or other
phonological features is avoided.

But practical finite state transducers, such as XFST and SFST, have only two planes
(or levels): a lexical side and a surface side. In such a model, exception features on the
surface side would block adjacency between phonological features as seen by phono-
logical rules composed on that side (indeed, distinct phonological features would get in
each other’s way, if they were to be represented in such transducers).

There are several ways that this issue of adjacency could be treated in a transducer
with only two levels. One way would be to construct phonological rules such that ex-
ception features (and other grammatical information relevant to rule application) are
allowed to intervene between any two phonemes in the regular expressions represent-
ing the rule environments. While tools such as SFST allow rules to be constructed in
this way, in practice it tends to make compilation very inefficient. Our converter there-
fore handles exception features in a different way, which may be less obvious at first
sight. When lexical entries are imported from a machine-readable dictionary, the con-
version process constrains any exception features to appear on the lexical side of lexical
entries.21 At the beginning of the derivation, the converter collects these lexical entries
into a lexical transducer L, to which the phonological rules are applied in sequence by
composing each rule on the surface side of L. When translating a rule which is sensitive
to an exception feature, the converter first outputs SFST code which composes a filter
on the lexical (underlying) side of L, thereby selecting a subset L1. This filter is a regular
expression accepting all paths through the lexical transducer which contain the relevant
exception feature. The converter also outputs SFST code to create the complement of

20 I abstract away here from questions of the typology of features, which are generally held to
have still more structure than what is described here.

21 A given lexical entry may have several such exception features; see for instance Harris’s [11]
analysis of Spanish verbal morphology.

A System for Archivable Grammar Documentation 89

this subset—call this L2—by subtracting L1 from L.22 The sensitive rule is then applied
to L1 by composing the rule on the surface side of L1. Finally, L1 and L2 are unioned
to form a new lexical transducer L, to which the remaining phonological rules will be
applied. At the end of the derivation, when the exception features have done their work,
they are removed from the underlying side of L.

Linguists also occasionally find the need to write phonological rules which are sen-
sitive to particular parts of speech, or to certain morphosyntactic features. Allowing
this sensitivity can be done in a way analogous to that used for rule exception features:
splitting the lexicon into two halves allows for rules which do not display such sensi-
tivity (usually the vast majority of such rules) to implicitly ignore the part of speech or
morphosyntactic features.

3.3 Further Work

The description of the work we have done thus far leaves several of the criteria for a
morphological and phonological description system unsatisfied. In particular, the cri-
terion that there be a debuggging environment (5); that the formal grammar be in a
form that is easily visualized by linguists (cf. Bird and Simons’ point about render-
ing linguistic documents in human-readable form, and my criterion 6 that the grammar
be visualizable); and the criterion calling for a grammar editing environment (7), have
not been addressed, unless one considers viewing and editing XML to be something
the average linguist will enjoy, and that editing the SFST code is a suitable means of
debugging.

In addition, while the XML schema supports all the elements described above, not all
such elements are supported by the converter as yet. In particular, the support for affixes
as processes is missing, and the support of listed stem allomorphs is not complete. We
plan to address these shortcomings in future work; I outline the plans here.

First, conversion support for the remaining elements needs to be added.
Secondly, when a descriptive grammar (which we write using a slightly modified ver-

sion of the DocBook XML schema) is converted to PDF presently, the formal grammar
is output in its native XML form. Needless to say, linguists have a hard time interpret-
ing this. For instance, rather than outputting a phonological rule as some complex XML
structure, most linguists would prefer to see it in something like this format:

z → s / VoicelessC
We produce the descriptive grammars by converting the XML source into LATEX (or

more precisely, XeLaTeX), and then producing a PDF from that. The conversion from
XML to LATEX format is done by XSLT transformations, using the dblatex program.23

We therefore need to add XSLT transformations to convert our formal grammars into
LATEX format; alternatively, we could process them using another program (such as our
existing Python-based converter).

A grammar development environment which knows what elements are possible at
any point would also be an improvement over editing the XML formal grammar in a
programmer’s editor. Displaying the elements of the formal grammar in something like

22 Alternatively, by composing the converse of the filter on the underlying side of L.
23 The dblatex program is open source; see http://dblatex.sourceforge.net

http://dblatex.sourceforge.net

90 M. Maxwell

the format a linguist expects (probably an approximation of the planned PDF format)
would also help make grammar editing accessible to more linguists. We currently edit the
DocBook descriptive grammars in the XMLMind editor.24 This program uses Cascading
Style Sheets (css) to display DocBook structures in a semi-wysiwyg editable fashion,
and XML schemas (in the Relax NG, or RNG, format), to determine what elements can
be added at any place in the structure. We already have an RNG schema for our formal
grammar, so the remaining work would be to specify CSS styles for the elements.

Thirdly, we intend to build a grammar debugging environment, which will allow lin-
guists to generate and view paradigms, and help determine why expected forms are not
being produced. This will involve automatically compiling subsets of the grammar—
e.g., compiling the grammar for a single part of speech, using a single lexical item for
the sake of speed. To show the steps in a derivation, the debugging system would com-
pile the transducer multiple times, with one additional phonological rule applied each
time.

Finally, I have not said anything about Bird and Simon’s call for linguistic descrip-
tions to support the need for terminology to be defined. To some extent, this can be
done in the descriptive grammars associated with our formal XML-based grammars.
However, we also plan to add a simple enhancement to our current XML schema
for tagging appropriate elements, such as morphosyntactic features, by linking to
their definition, e.g., in the ISOcat data category registry of linguistic terminology
(http://www.isocat.org/).

4 Conclusion

I have laid out a number of design critera for a morphological and phonological sys-
tem to be used in language documentation, and shown how the system our team has
developed satisfies most of those criteria. I have also described how we plan to further
develop this system to satisfy the remaining criteria.

A few aspects of the system are still in flux; specifically, the representation and con-
version of lexically listed stem allomorphs, and the conversion of process affixation
into the form needed by a parsing engine. Satisfying the remaining design criteria—for
example, by providing a debugging system—would make the system still more usable.
As the system becomes stable and more usable, we expect to make it freely available
through an open source license (which one is yet to be determined).

References

1. Beesley, K.R., Karttunen, L.: Finite State Morphology. University of Chicago Press, Chicago
(2003)

2. Bird, S., Simons, G.: Seven dimensions of portability for language documentation and de-
scription. Language 79(3), 557–582 (2003)

3. Blevins, J.: A reconsideration of Yokuts vowels. International Journal of American Linguis-
tics 70(1), 33–51 (2004)

24 This is a commercial program; see http://www.xmlmind.com/xmleditor. A similar pro-
gram is the oXygen XML Editor, see www.oxygenxml.com.

http://www.isocat.org/
http://www.xmlmind.com/xmleditor
www.oxygenxml.com

A System for Archivable Grammar Documentation 91

4. Burnard, L., Bauman, S.: TEI P5: Guidelines for electronic text encoding and interchange
(2013)

5. Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge (1965)
6. David, A., Maxwell, M.: Joint grammar development by linguists and computer scientists.

In: IJCNLP, pp. 27–34. The Association for Computer Linguistics (2008)
7. Dieterman, J.I.: Secondary palatalization in Isthmus Mixe: a phonetic and phonological ac-

count. SIL International, Dallas (2008),
http://www.sil.org/silepubs/Pubs/50951/
50951_DietermanJ_Mixe_Palatalization.pdf

8. Halle, M.: Prolegomena to a theory of word formation. Linguistic Inquiry 4, 3–16 (1973)
9. Halle, M., Mohanan, K.P.: Segmental phonology of modern english. Linguistic Inquiry 16(1),

57–116 (1985)
10. Hankamer, J.: Finite state morphology and left to right phonology. In: Proceedings of the

Fifth West Coast Conference on Formal Linguistics. pp. 29–34 (1986)
11. Harris, J.W.: Two theories of non-automatic morphophonological alternations. Language:

Journal of the Linguistic Society of America 54, 41–60 (1978)
12. Harris, Z.: Yokuts structure and Newman’s grammar. International Journal of American Lin-

guistics 10, 196–211 (1944)
13. ISO TC37: Language resource management — Feature structures — Part 1: Feature structure

representation (2006)
14. ISO TC37: Language resource management — Lexical markup framework, LMF (2008)
15. ISO TC37: Language resource management — Feature structures — Part 2: Feature system

declaration (2011)
16. Karttunen, L.: The insufficiency of paper-and-pencil linguistics: the case of Finnish prosody.

In: Kaplan, R.M., Butt, M., Dalrymple, M., King, T.H. (eds.) Intelligent Linguistic Architec-
tures: Variations on Themes, pp. 287–300. CSLI Publications, Stanford (2006)

17. Knuth, D.E.: Literate Programming. Center for the Study of Language and Information, Stan-
ford (1992)

18. Marantz, A.: Re reduplication. Linguistic Inquiry 13, 435–482 (1982)
19. Maxwell, M.: Electronic grammars and reproducible research. In: Nordoff, S., Poggeman,

K.-L.G. (eds.) Electronic Grammaticography, pp. 207–235. University of Hawaii Press
(2012)

20. Maxwell, M.: A Grammar Formalism for Computational Morphology (forthcoming)
21. Maxwell, M., David, A.: Interoperable grammars. In: Webster, J., Ide, N., Fang, A.C. (eds.)

First International Conference on Global Interoperability for Language Resources (ICGL
2008), Hong Kong, pp. 155–162 (2008), http://hdl.handle.net/1903/11611

22. Newman, S.: The Yokuts Language of California. Viking Fund, New York (1944)
23. Rice, C., Blaho, S. (eds.): Modeling ungrammaticality in Optimality Theory. Advances in

Optimality Theory. Equinox Press, London (2009)
24. Schmid, H.: A programming language for finite state transducers. In: Yli-Jyrä, A., Karttunen,

L., Karhumäki, J. (eds.) FSMNLP 2005. LNCS (LNAI), vol. 4002, pp. 308–309. Springer,
Heidelberg (2006)

25. Walsh, N.: DocBook 5: The Definitive Guide. O’Reilly, Sebastopol, California (2011),
http://www.docbook.org/

26. Weber, D.J., Black, H.A., McConnel, S.R.: AMPLE: A Tool for Exploring Morphology.
Summer Institute of Linguistics, Dallas (1988)

27. Weigel, W.F.: The interaction of theory and description: The yokuts canon. Talk Presented
at the Annual Meeting of the Society for the Study of the Indigenous Languages of the
Americas (2002)

28. Weigel, W.F.: Yowlumne in the Twentieth Century. Ph.D. thesis, University of California,
Berkeley (2005)

http://www.sil.org/silepubs/Pubs/50951/50951_DietermanJ_Mixe_Palatalization.pdf
http://www.sil.org/silepubs/Pubs/50951/50951_DietermanJ_Mixe_Palatalization.pdf
http://hdl.handle.net/1903/11611
http://www.docbook.org/

	A System for Archivable Grammar Documentation

	1 Introduction
	2 Criteria for Grammatical Descriptions
	2.1 Seven Pillars for Language Description
	2.2 More on Pillars for Grammatical Descriptions

	3 Satisfying the Criteria for Grammatical Descriptions
	3.1 Formal Grammar Implementation
	3.2 Converter Implementation
	3.3 FurtherWork

	4 Conclusion
	References

